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This paper is concerned with the study of A-calculus with explicit recur­
sion, namely of cyclic A-graphs. The starting point is to treat a A-graph as 
a system of recursion equations involving A-terms and to manipulate such 
systems in an unrestricted manner, using equational logic, just as is 
possible for first-order term rewriting. Surprisingly, now the confluence 
property breaks down in an essential way. Confluence can be restored by 
introducing a restraining mechanism on the substitution operation. This 
leads to a family of A-graph calculi, which can be seen as an extension 
of the family of ;\a-calculi (A-calculi with explicit substitution). While the 
Ila-calculi treat the let-construct as a first-class citizen, our calculi support 
the letrec, a feature that is essential to reason about time and space 
behavior of functional languages and also about compilation and 
optimizations of programs. ,c 1997 Academic Press 

INTRODUCTION 

It is important to base the activities of programming, of writing a compiler, and 
of implementing the run-time support for a programming language on mathemati­
cal concepts. This can be done, without introducing too much mathematical 
machinery, with a rewriting or calculator approach that consists of mechanically 
applying a set of rewrite or simplification rules to a program. This method provides 
a programmer, a compiler writer, and an implementor with a sound basis to present, 
check, and try out their ideas. However, the usefulness of this abstract framework 

*A shorter version of this paper appears in the Proceedings of LICS 94 as "'Cyclic Lambda Graph 
Rewriting" [AK94]. 
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relies on how faithfully it models reality. In that respect note that while cvclic struc­
tures are ubiquitous in a program development system [ P J87], traditio;rnl models 
of computation, such as the le-calculus [ Bar84] and term rewriting systems 
( Dershowitz et al. [ DJ90 ], Kl op [ Klo92] ), do not allow reasoning about them. As 
such, these models do not constitute the right computational vehicle for reasoning 
about the time and space behavior of a program. -

Cycles occur in the representation of data structures. Consider the following data 
structure definition written in the lenient language Id [ Nik91]: 

{ones=l:ones 

in ones}. 

(A note on syntax: the construct { · · · in· · · } represents a block expression, which 
consists of a group of unordered bindings and an expression which is written 
following the keyword in; : is the Id list constructor.) This is usually expressed in 
the ),-calculus using the fixed point combinator Y, whose behavior is captured by 
the following rewrite rule: 

YM->M(YM). 

Thus, the above data structure ones becomes 

Y (Ax.1 : .\·), 

which leads to the following rewriting (----> reads as "rewrites or reduces to"): 

Y (},x .1 : x) ----> ( ),x. 1 : x )( Y Ux. 1 : x)) ----> 1 : ( Y Ux. 1 : x) ). 

The above sequence of rewritings suggests that ones is represented in terms of a 
cons cell, with the head containing 1 and the tail pointing to the computation that 
delivers the rest of the list. However, this is not what happens in practice; ones is 
represented in terms of a single cons cell, with the tail pointing to the cons cell 
itself. Thus, access to any element of the list will only involve unwinding the data 
structure and no further computation. As introduced by Turner [Tur79], this 
representation can be captured in the following way: instead of the above Y -rule, 
use its optimized version, which involves a cycle (see Fig. 1, in which (a stands for 

application). 
Cyclic structures do not only occur in non-strict languages. In a strict language, 

one can create them with side-effect operations. For example, in Standard ML 
[ Har86] the data structure ones can be expressed as follows: 

FIG. 1. Cyclic Y-rule. 
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data type reflist =CONS of int*reflist ref I NIL; 

(*Values of reflist have the form Cons(i,j), for i, an integer value, and j, 
a reference to a reflist value, or NIL.*) 

let val x=ref(NIL); 

in 
x :=CONS (1, x); 
x; 

end. 

(*associates x with a reference 
to a location containing NIL*) 

(*change the value x refers to*) 
(*return the reference*) 

Cycles also occur in the data structure representing the run-time environment 
when implementing recursive functions in either strict or non-strict languages. For 
example, the local environment created by the Scheme expression 

(letrec 
( (fact (lambda(n) 

(if (zero? n) 1 

( * n (fact ( - n 1) ) ) ) )) ) 
... ) 

contains a circularity, which is usually implemented using assignments, as described 
in the Scheme report [CR90]. 1 Thus, dealing with cycles is desirable if one wants 
to discuss issues of data representation, and it becomes necessary if one wants to 
provide a computational model that supports reasoning about both functions and 
state. Moreover, capturing cycles is not only important for reasoning about run­
time issues, but it is also important for reasoning about compilation and optimi::a­

tion of programs, as is discussed next. 
Consider the sequence of Fibonacci numbers written in a lazy language (e.g., 

Haskell [HP JW + 92]) as follows: 

let fibs=l: sum fibs (0: fibs) '-----........,,..... ./ 
Pi 

sum=\xy-) (headx+heady) :sum(tailx) (taily) 
....... ...,/ 

""V'" 

in fibs 

(The form "\x y -) e" is Haskell's syntax for a lambda abstraction. As before, is 
the list constructor; sum fibs (0: fibs) performs the addition of the fibs 
sequence and the sequence 0 : fibs.) The corresponding cyclic graph is displayed 
in Fig. 2. In order to share the work among all invocations of a function and all 
accesses to a data structure, it makes sense to perform computations that occur 
inside a function body or inside a data structure at compile time. Specifically, we 

1 Rosaz [Ros92a] argued that the same efficiency can be gained by implementing recursion using 
suitable versions of the Y combinator but at the expenses of more complex analysis. 
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would like to reduce the redexes (i.e., reducible expressions) p 1 and P2 in the 
Fibonacci program above. These redexes are indicated with an arrow in Fig. 2. 
Both redexes express the application of a function to the arguments; their reduction 
corresponds to what in the literature has been referred to as inlining, {3-contraction, 
or unfolding [App92]. However, they are not usual redexes, since they are in a 
cycle. As such, their reduction is not at all obvious. In fact, as shown in this paper, 
a naive approach will lead to a non-confluence result; i.e., depending on how we 
apply the above transformations we get different programs. The lack of confluence 
has both theoretical and practical impacts. From a theoretical point of view, proofs 
that the above transformations are correct might become harder. From a practical 
point of view, non-confluence means that the order of application could ultimately 
have an impact on etliciency. Thus, a rigorous study of the reasons that cause 
confluence to fail is beneficial for getting a better grasp on how to apply program 
transformations, including Wadler's deforestation technique [Wad90], partial 
evaluation [JGS93 ], and the Burstall and Darlington unfold/fold [ BD77]. These 
last transformations introduce new cycles by identifying previously encountered 
expressions. The difficulties of reasoning about circular programs is reflected by the 
fact that, in general, these transformations do not preserve total correctness. 

In conclusion, since cyclic structures are extensively used by implementors and 
compiler writers it is important to provide an abstract framework that allows one 
to reason about them. This paper provides such a framework in the context of 
)"-calculus and first-order rewriting. The paper is organized as follows. We start, in 

+ 

FIG. 2. Cyclic lambda graph for computing the sequence of Fibonacci numbers. 
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Section 1, by introducing our approach to cycles that is based on systems of 
recursion equations. Until Section 9, we restrict our attention to systems of recur­
sion equations involving }.-calculus extended with constants. No nesting of equa­
tions is admitted. In Section 2, we informally show how to manipulate such systems 
in an unrestricted manner, using equational logic, just as is possible for first-order 
term rewriting. This naive way of rewriting, called the .l.8-calculus, is formally 
introduced in Section 3. Surprisingly, as shown in Section 4, the confluence 
property of ).8 breaks down in an essential way. We point out, in Section 5, that 
the same phenomenon occurs in the infinitary lambda calculus developed by Ken­
naway et al. [ KKSdV95a]. We discuss, in Section 6, another source of non-con­
fluence that does not arise in the infinitary lambda calculus. In Section 7, we show 
how to restore confluence by controlling or restricting the operations on the recur­
sion equations. We also point out that the .l.µ-calculus (i.e., the ).-calculus extended 
with the µ-rule) which embodies much of cyclic A.-graph rewriting is confluent. In 
Section 8, we show soundness of MJ with respect to the infinitary lambda calculus. 
In Section 9, we extend our framework to include nesting of recursion equations. 
We discuss a family of calculi, called A.~, that incorporate the ).-calculus, the 
A.1i-calculus, ordinary first-order term rewriting, and term graph rewriting. In Sec­
tion I 0, we discuss previous work. In particular, we relate our approach to Rose's 
system [ Ros92b] and to the framework based on the interaction nets of Lafont 
[ Laf90]. We conclude the paper with future directions of research. 

1. SYSTEMS OF RECURSION EQUATIONS OVER THE /.-CALCULUS 

In the first part of the paper (Sections 1-8) we will consider systems of recursion 
equations over the .l.-calculus. Thus we may write 

Cl.= AX.XO.. 

This is an object whose unwinding is an infinite normal form, also known as a 
Bohm-tree [ Bar84]. We also may consider mutual recursion as in 

oc = (A.x .6xx) a., 6 = (A.y .a.y) o. 

We will always use a., 6, ... , for recursion variables. For the time being, variables 
bound by ). are denoted by x, y, ::;, .... Note that the infinite tree unwinding of the 
last recursion system is not a Bohm-tree, as it contains many /J-redexes. 

FIG. 3. Horizontal sharing. 
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FIG. 4. Vertical sharing. 

These systems of recursion equations allow us to express hori:::ontal sharing, i.e., 
sharing as in a dag (see Fig. 3 ), as opposed to the vertical sharing shown in the 
examples above. More precisely, we say that a graph has only vertical sharing if the 
graph can be partitioned into a tree and a set of edges with the property that either 
begin and end nodes are identical, or the end node is an ancestor (in the tree) of 
the begin node. Equivalently, a graph has only vertical sharing if there are no two 
different acyclic paths starting from the root to the same node (see Fig. 4). The 
following is an example of a system with horizontal sharing: 

(X = 66' 6 = (AX. F ( x)) 0. ( 1.1) 

Since the right-hand side of the equations is restricted to A-calculus terms, the 
horizontal sharing cannot appear inside a lambda abstraction. This restricts the class 
of ),-graphs that we consider. For example, the graph of Fig. 5 is not expressible, as 
the intuitive representation 

rx=),x. +(y, y), y= +(l,x), 

is not correct. This limitation will be removed in the second part of the paper, 
Section 9, in which we introduce a framework with nested recursion equations. We 
restrict ourselves to systems without nesting since interesting observations can 
already be made. 

Note that we admit, in addition to pure A-terms extended with recursion variables, 
operators from a first-order signature, like F and 0 above. We use a harmless mixture 
of applicative notation (with the application operator (a' usually suppressed, except 
in pictures of A-graphs) and functional notation, where operators have some arity 
(like the unary F above). 

In the presentation of a recursion system, it is understood that the first (or top­
most) equation is the leading equation, displaying the root of the A-graph. When 
we want to be more precise, we will present the system displayed in ( 1.1) as 

(rx I rx=66, o=( . .1.x.F(x)) 0). 
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x 

FIG. 5. Lambda body with horizontal sharing. 

The order of the equations in the body of the ( I > construct is not important. 
Furthermore, we will consider recursion systems obtained from each other by I I 
renaming of recursion variables as identical. Thus, 

< 6 I 6 = yy, }' = (AX. F ( x)) 0 > 

is the same expression as the previous one. 
To summarize, until Section 9, we study systems of recursion equations of the 

form 

IX1 =M1 •...• rxn=Mn. 

where M 1 , ... , M 11 are le-calculus terms extended with constants, and the recursion 
variables :x 1, .... 0. 11 are distinct from each other. 

1.1. Correspondence with Graphs 

It is straightforward to assign actual graphs to the recursion systems as intro­
duced above. Several examples will be presented later. One feature should be men­
tioned explicitly: the nodes of the graph contain first-order operators ( F ). or 
application ( (11 ), or ).x, or a variable x, y, :::, .... Other than that, a node may have 
a name x, d, /', .... These correspond to the recursion variables in the recursion 

FIG. 6. Cyclic lambda graph corresponding to 6=(i.x.F(,\, SxJ)(S\"J. 
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FIG. 7. Scope cut-off phenomenon. 

system. Note that unnamed nodes may also be present in the graph (corresponding 
to subterms in the system that have no name, like xix in (ix I ix=h.xix)). In the 
present setting, the root node of the .A-graph will always have a name. 

1.2. Free and Bound Variables 

The notion of a variable (x, y, ... ) bound by a lambda follows from A.-calculus. 
For example, in the system 

the variable x superscripted with 1 is free, and the x's superscripted with 2 and 3 
are bound. As another example, consider 

The x superscripted with 1 is free, while x2 is considered to be bound. The above 
term is displayed in Fig. 6. Our stipulation regarding free and bound variables 
points out a curious phenomenon; even though there is a path from the A.x-node 
to the variable node x 1, .\· 1 is not bound by the A.x-node. We call this phenomenon 
scope cut-o.ff (see Fig. 7 ). This is consistent with other ways of presenting the cyclic 
),-graph of Fig. 6. For example, using the fixed point combinator Y, we would have 
Y(A.6.(A.x.F(o, Sx2 ))(Sx 1)), in which x 1 does indeed occur free. 

The same scope cut-off phenomenon occurs in the system 

ix =A.x.6, c5 = Fx, 
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scope cut-r!ff 

FIG. 8. Cyclic lambda graph corresponding to 01. = i.x.'5. o =h. 

which is displayed in Fig. 8; it is as if a name, in this case o, stops the scope of a 
),. As expected, this has some nasty consequences. With respect to the above system, 
substituting for (J in the first equation yields the system 

in which the underlined x has been captured. In order to avoid this free variable 
capture and still be able to use a naive version of substitution, we adopt the con­
vention that all free and bound variables have to be distinct from each other. Thus, 
we would express the term ex= ),x .o, o = Fx as 

ex=Jcy.(),o=Fx. 

2. LAMBDA GRAPH REWRITING 

We now turn to the issue or defining ,8-reduction on A-graphs or. equivalently, 
systems of recursion equations. Due to the possible presence of cycles, it may not 
immediately be clear what the "right" notion of ,8-reduction is. In order to decide 
what is a right notion, we will compare, with respect to soundness, any notion of 
/J-reduction for recursion systems with the infinitary version of the A-calculus, as 
developed by Kennaway et al. [KKSdV95a]. First, we proceed in an intuitive 
fashion. We give some examples, where the redex being reduced is underlined: 

<ex I ex= ().x.<5xxl a. o = U_v.exy) o) _. fJ 

(ex I ex = oexex, o = ().y. a.y) o) --+ 11 

( ex I IX = oo:a., o = o:o ) . 

Here, there is no problem. We call ( },x. oxx) a an explicit /f-redex, since it is of the 
form (h-.M) N. On the other hand, in a recursion system g, a subterm of the form 
rxN is called an implicit /f-redex if g contains an equation of the form IX= ),x. M. 
Examples of implicit /1-redexes are c5( Sx) and o:( Sy) in the example below: 

(rx I rx=).x.o(Sx), o=),y.rx(Sy)). 
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An implicit redex rxN must first be made explicit by substitution of A.x .M for rx, 

before it can be contracted (i.e., fi-reduced). The act of substitution will be denoted 
by ~ 8 ; we will occasionally underline the variable we substitute for. Thus: 

< rx I rx = ),x. ~( Sx ), J = ),y. rx( Sy)) 

< rx I rx = ),x. (A.y .rx( Sy))( Sx), J = A.y .rx( Sy)) 

<rx I rx=Ax.rx(S(Sx)), c5=A.y.rx(Sy)) 

<rx I rx=A.x.rx(S(Sx))). 

~ s 

~gc 

In the last step, we have applied garbage collection (written as ~scl since the 
definition of o is inaccessible from rx. 

Our stipulation that ft-reduction can only be performed on explicit /1-redexes in 
a system is a matter of choice; definitions of P-reduction directly on implicit 
fi-redexes are possible. However, this stipulation makes it more clear, intuitively, 
what goes on. More importantly, making P-redexes explicit involves making a copy 
of part of the graph that is often necessary. An example is: 

(rx I rx = F(~O, 61),6 = A.x.x) ~s 

(rxlrx=F((h.x)0,61),6=),x.x) ~ 11 

( rx I rx = F( 0, o 1 ), 6 = A.x. x). 

The substitution step has performed a copy of ),x.x, as is necessary in this case. 

2.1. The Collapse Problem 

In orthogonal term graph rewntmg (rewriting with an orthogonal first-order 
term rewriting system, admitting graphs with horizontal and vertical sharing) and 
infinitary term rewriting (admitting infinite trees) it has been a matter of some dis­
cussion what to do with collapsing operators such as a unary operator I with the 
rule l(x) ~ x. Specifically, what should cyclic-I, that is, ( rx I rx = I( a)), rewrite to? If 
this object rewrites to itself~ then non-confluence arises. For let J be another collap­
sing operator with J(x) ~ x. Then 

<rx I rx = l(J(a))) 

rewrites to both (rxlrx=l(rx)) and (rxlrx=J(rx)). The simple solution is to 
proceed with rewriting. Both of these last two expressions rewrite to ( rx I rx = rx), 

which is a "very undefined" kind of expression; this is a special case of expressions 
being undefined by lack of a head normal form. We capture this fact by rewriting 
< rx I rx = rx) to a new object, that we will call • (black hole). For a comparison of 
notions of undefinedness in orthogonal term (graph) rewriting see [ AKK +94]. 
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FIG. 9. Reductions to black hole. 

Also. in the present setting, • arises as a result of reduction; e.g., consider the 
A-graph (see Fig. 9( 1)) 

IX= (Ax.a) A, o = (Ay.oc) B. 

p 

Contracting the p-redex yields 

which is equivalent to (see Fig. 9(3)) 

oc = (Ay.oc) B. 

Contracting the r-redex yields 

IX= (Ax. o) A, 6 = oc, 

which is equivalent to (see Fig. 9(2)) 

oc = (}.x.oc) A. 

Both contracted graphs yield after one more reduction oc = oc, and this rewrites to 
oc = • (see Fig. 9( 4) ). Note that mutual vacuous dependencies of recursion variables 
also rewrite to •; e.g., < oc I oc = 6, o = oc) -++ •. Or, inside a system, 

< oc 1 oc = F( (Ax .x lo), o = (AY. y) o > -- < oc 1 oc = F(o), o = 6) ...... <IX 1 oc = F(. l >. 
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3. nm A.0-CALCULUS 

Here we present the },8-calculus, which formalizes the naive way of reducing 

possibly cyclic redexes introduced so far. Notation: We assume that F" belongs to 
a first-order signature. The metavariables £, E' range over unordered sequences 

(possibly empty) of recursion equations. M[x :=N] denotes the substitution of N 

for each free occurrence of x in M. C[ 0] represents a ),-calculus context with one 

hole D. A system of equations E' is orthogonal to a system E or to a variable a 

if the recursion variables of E' (i.e., the variables that occur as the left-hand side of 

an equation in £') do not intersect with the set of free variables of E and tx.. 

DEFINITION 3.1. The following clauses define the syntax and basic reduction 
axioms of the ),$-calculus. 

SYNTAX: 

g ::= 0'. 1 = M 1, ••• , rx,, = M 11 

REDUCTION AXIOMS: 

/J-rule: 

(),x.M)N __, 11 M[x := NJ 

Suhsl itul ion: 

<xl)'=C[r)],d=M,£) __, 
s <ex I)'= C[M], cl= M, £) 

Black ho!!!: 

< x I l' = y, £) 

Copying: 

<rx I£) 

Naming: 

<ex I}'= C[M], E) 

Garhag!! col!eclion: 

<a I£,£') 

__, c < rx' I E' > if there exists a variable 
mapping rr, 

< x' I £' >" = < x I £) 

--> n < rx I I'= C[ «5], ii= M, £) if the free variables of 
M do not occur bound 
in C[M] and 

---+ gc < ()'. I £) 

M is not a variable 

if£' is non-empty and 
orthogonal to E and rx 
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In the Substitution rule, the equations )' = C[ c5] and c5 = M can overlap as in the 
substitution step 

( ix I ix = ),x. xa) ~ • (a I a = h. x( A.x. xix) ) , 

in which both o and y are instantiated to ix. The operation of copying differs from 
substitution in the sense that copying never gets rid of recursion variables. Given 
two recursion systems g and g 1, g copies to g 1 if there exists a mapping a from 
recursion variables to recursion variables (which is extended in the usual way to a 
system of recursion equations) such that gT = g, leaving the free recursion variables 
of g 1 unchanged. For example, 

(a I a= F(y), y= G(a)) ~c (ix I ix= F(y), y= G(a'), ix'= F(y'), y' =G(a')), 

where the variable mapping a is as follows: ix, a' are mapped to ix, and )', y' are 
mapped to )'. (See [ AK96] for a thorough discussion of copying and its properties.) 
The proviso for the operation of naming, which is written as ~ n, is to forbid 
reductions of the form 

(ex I cx=A.x.Fx) ~(a I cx=X\'".O, o= F,y), 

in which the underlined x gets out of scope. 
To understand why we also admit, in addition to substitution, the operations of 

copying and naming, we make an excursion into the first-order case. Substitution 
by itself causes non-confluence already in the first-order case. For consider the 
recursion system without any rewrite rule: 

(a I cx=S(o), o=S(ix)). 

By substitution and garbage collection this expression yields on the one hand 

(ex I cx=S(S(ex))), (3.2) 

on the other hand 

(ex I cx=S(o), o=S(S(c5))). (3.3) 

These two results cannot be made convergent by further substitutions; they are out 
of sync, that is, at each point in time system ( 3.2) will have an even number of S's, 
while system ( 3.3) will contain an odd number of S's. However, by allowing 
re-introduction of names (i.e., Naming) we can restore 

(ex I cx=S(S{cx))) 

to 

(oc I ex= S(o), o = S(oc)) 
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and converge again. As shown in [ AK96]. conf1uence of substitution and naming 

is guaranteed if the system also contains the operation of copying. Thus. in analogy 

with the first-order case. we consider after substitution the operations of naming 

and copying, hoping to prove confluence of /.8. However. as shown in the next 

section. there are some nasty surprises. 

Remark 3.2. It is interesting to observe that Naming can cause a non-termi­

nating computation to terminate. e.g., 

Since cxO does not depend on the bound variable y it can be given a name. Then 

cx=)-.1·.cxO -+n x=l.y.<5, -+ 5 x=).y.a. 

c5 = :xO () = ( ).y . <5 ) 0 

-+/I X = )._)' .<J, -r+ X =I.)'.•. 

c5 = <J 

The above term a= /.y. xO can be seen as an infinite tower of collapsing contexts. 

As will be discussed in Section 5. this constitutes a source of non-confluence in the 

infinitary calculi. 

This example points out that in order to describe common program manipula­

tions. as the one described above. it is necessary to precisely delimit the body or a 

lambda abstraction. thus indicating how much to copy once the lambda is applied. 

In our simple framework, all unnamed nodes reachable from a lambda-node 

constitute its body. 

4. A COUNTEREXAMPLE TO CONFLUENCE OF A.0 

Consider the reductions (displayed in Fig. 10): 

FIG. 10. Failure of contlui:nce. 
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!X = /,x. <5( Sx ), 

()=A.y.:x(Sy) 

l· 
:x = i,x. 15( S.\· L 

cl = ),y. ( ),x. <l( Sx) )(Sy) 

1/1 

ARIOLA AND KLOP 

:x=),x.(},y.ix(Sy))(Sx), ft ix=),x.ix(S(Sx)), 

o=),y.a(Sy) (5=},y.ix(Sy) 

:x = l.x. 1l( Sx ), -------------------------------+ 
? 

ii= ),_1·.()( S( Sy)) 

Bv using the same parity argument as in the previous section one can see that the 
two -svstci~s obtained are clearly out of sync. The situation is even more serious and 
less c~rable than in the first-order case since the operations of naming and copying 

also do not help. The two expressions 

:x = i,x.:x( S( Sx)) and :x=A.x.<5(Sx), 6=),y.o(S(Sy)) 

are irreversibly separated with respect to any set of operations on ),-graphs that is 
"sound" in a sense that we will elaborate in Section 8. 

The above counterexample corresponds to unfolding or inlining the redexes P 1 

and p > respectively, in the following mutually recursive definitions of CAM L: 

#let rec odd= fun x _,if x = 0 then false else even(x - l) 
~ 

/11 

and even= fun x-> if x = 0 then true else odd(x - 1) ;; 

~ 

The absence of a common reduct means that depending on how we apply these 
transformations we get different programs, which, even though they might produce 
the same observable result, are different from an intensional point of view. As an 
example, unfolding p 1 first triggers the application of the unused /amhda expressions 
transformation [ App92], and thus gets rid of the definition of even. 

4.1. Analysis o( the Countl!rexwnp/e 

The above counterexample is a counterexample not only to cont1uence, but also 
to weak confluence. For ordinary ).-calculus, weak confluence is simple to prove by 
an inspection of "elementary reduction diagrams." Typical for these elementary 
reduction diagrams is that on the converging sides, one has to contract the des­
cendants (residuals) of the redexes contracted on the diverging sides. So what goes 
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wrong in the present case when we try to prove weak confluence? Let us review the 

counterexample, 

a= ),x. [d(Sx)] 1, () = ),y. [rx(Sy)] 2 , 

where we have indicated the two redexes, 1 and 2, that play a role. Both are implicit 

redexes. Reduction of redex 1 requires making it explicit: 

a= J.x. [(J,y. [rx(Sy)] 2 )(Sx)] 1 , d = J.y. [rx(Sy)] 2 • 

Garbage collection yields a = Js. [ ( ),y. [ rx( Sy)] 2 )( Sx)] 1 • The redex marked I can 

now be contracted, with the result 

where S2(x) stands for S(S(x))). 

In the other direction, we contract redex 2, after making it explicit: 

a= ),x. [ c)( Sx) J 1 , d = ),y. [ (J.x. [ c)( Sx) J 1 )(Sy)] 2 • 

Contraction of the redex 2 yields 

a = ),x. [ c)( Sx) J I' (j = ),y. [ o( s 2)')] 1 . 

So, in analogy with pure ),-calculus, we would expect that all we have to do is 

complete the following elementary reduction diagram by contraction of the respec­

tive residuals: 

a= J,x. [o(Sx)] 1 , r> = ),y. [rx(Sy) ]2 __,, 

12 
? 

Now the reason for the failure of confluence comes to the surface: reduction of 

redexes 1 in a= ),x[ c)( Sx) J 1 , r) =Icy. [ d( S 2y) J 1 , or rather a complete development 

of the set of I -redexes, is not possible. Likewise a complete development of the 

singleton set of 2-redexes in 

is not possible. We will show this for the latter case, the 2-redex; the other case of 

the 1-redex is similar. For greater ease in parsing the following expressions, let us 

use underlining instead of [ ] 2 to keep track of implicit or explicit redexes, so 
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is now 

a= ),x .ex( S 2x). 

We claim that this singleton set of underlined redexes cannot be completely 
developed, as the analogy with ),-calculus suggests we ought to do. Indeed, it is 
easily seen that no succession of ---> s or ---> fi in whatever order will be able to 
remove all underlining, using obvious rules for underlining: 

ex= ),x.a(S2x) ---> s 

:x = i.x.(i,x.a(S 2x))(S 2x) 

:x = ix. a( S 4 x) ---> s 

(also applying ---> s on the second expression does not bring us further). 
This elaboration is meant to give an intuition as to why confluence fails of 

course it docs not constitute a proof of that failure. 

4.l. Another Analysis of the Counterexample 

Consider the following abstract reduction system, with elements singleton sets of 
natural numbers n, pairs of natural numbers (n, 111 ), and alternative pairs of natural 
numbers [ n. 111]. There are the following reduction rules: 

{n}---> {211} 

{n}-->(n,n) 

{11}-> [11, 11] 

( n, m)---> ( n + m, m) 

(11.m)->(n,2m) 

[ n, m ] -> { /1 + m } 

[n. m]-+ (11, /1 +m). 

We claim that these are not confluent. Proof: [ 1, I]---> { 2} and [I, 1] ___. (I, 2). Any 
reduct of l 2 i· is of the form { e} or (e 1• e2 ) or [e 1 , e1 ] with e, e 1 , e2 even. Any 
reduct of ( 1, 2) is of the form (o, e) with o odd and e even. 

Using this abstract non-confluent fact, we can give a sketch of the non-confluence 
of reductions of the system 

fa=),x.6(S(x)) 

lc5=.l.y.ex(S(y)). 
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Let us abbreviate: 

{n}: a=},x.a(S"x) 

[ ] {
a=),x.o(S"(x)) 

n,m : o = ),y.o:(S"'(y)) 

{ o:=A.x.o(S"(x)) 
(n,m): o = A.y.o(S"'(y)). 

171 

Then indeed the abstract rewrite rules above are obtained by P-reduction on 
systems of equations together with a limited form of copying. Hence the original 
system, which in abbreviation is [ l, 1 ], is not confluent. Actually this "proof" is 
only giving the basic idea, it is not complete since, e.g., the system abbreviated as 
{ 2} gives rise by copying to other systems than the ones above. For example, 

But also now, all S's ever appearing in reducts/expansions of the latter system will 
have even exponents. On the other hand, the system ( 1, 2) can be expanded, e.g., 
as follows: 

And now in all reducts/expansions of the latter system, the S in the equation for 
a will have odd exponent, and the Ss in all the other equations will have even 
exponents. 

This phenomenon may be thought to be dependent on our particular choice of 
reduction for cyclic redexes, consisting of a substitution step followed by a familiar 
/J-step. However, we claim that it is robust; in fact, as we are going to explain in 
the next section, the same phenomenon occurs in the infinitary version of },-calculus 
[KKSdV95a]. 

5. INFINITARY LAMBDA CALCULUS 

As semantics of A.-graph rewriting we take the infinitary A.-calculus, as introduced 
by Kennaway et al. [KKSdV95a]. The infinitary A.-calculus provides us with a 
notion of correctness of proposed definitions of P-reduction of ),-graphs and 
explains the counterexamples for ( finitary) confluence of A.-reduction of such graphs. 
In this section we will give a short exposition of some of the concepts introduced 
in [ KKSdV95a, KKSdV95b]. 

64J 139 2-5 
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We first emphasize the difference between convergent and strongly convergent 
reductions. In short. a strongly convergent reduction is such that the prefix of the 
term where no reduction occurs is increasing (see Fig. 11 ), that is, the depth of con­

tracted redexes tends to infinity. 
In transfinite orthogonal term rewriting there is a single source of failure of 

infinitary confluence: the presence of collapsing operators, such as the I or K com­
binators, enabling one to build trees that consist of an infinite tower of collapsing 
operators, or rather collapsing contexts. This is proved in [ KKSdV95b]. In the 
infinitary /.-calculus, that is also a source of non-confluence. However, the matter 
is more complicated; there is another phenomenon that causes infinitary non-con­
tluence, not due to collapsing contexts. To explain this, we first need the concepts 
of development and complete development, which are a generalization of the classi­

cal notions of le-calculus. 

DEFINITION 5.1. Let M be a possibly infinite A.-tree, and let S be a set (possibly 

infinite l of redexes in M. 

( i l A de1•elopment of S is a reduction, possibly infinite, in which only des­

cendants of members of S are contracted. 

(ii) A complete dei1elopment of S is a development which is strongly con­
vergent and after which no descendant of a redex of S is left. 

A classical lemma in ).-calculus is the Finite Developments Lemma, stating that 
any development must terminate (see Barendregt [ Bar84] ). Of course, we cannot 
have this for the infinitary ).-calculus, since it admits infinitely many redexes to be 
developed. But there is an analogous statement, that is, any development strongly 
converges. This is, however, not the case, and this gives rise to a failure of infinitary 
contluence, as shown in the next example. 

Consider the infinite unwinding of the term 

<:x I :X=Ax.a(Sx), o=).y.:x(Sy)), 

which, as was discussed in the previous section, was leading to two non-converging 
reductions. Let S1 and S" be the two sets of redexes descending from the two 
redexes :x( Sy), 6( Sx) in that infinite term. The result of the complete development 

~~~~~~ 
Cauchy converging reduction sequence: activity may occur everywhere 

~~~~~ 
Strongly converging reduction sequence, with descendant relations 

FIG. 11. Converging and strongly converging reduction sequences. 
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of S 1 and S 2 is shown in Fig. 12 and 13, respectively. The two infinite terms so 

obtained do not have a common reduct. We present a stylized version of the proof, 

for a formal exposition the reader can consult [ KKSdV95a]. Consider the TRS 

with a unary operator 1J for every n ;;:, 0. There are infinitely many rewrite rules: 

?J(w(x))-> (11 +m)(x). 

This is a confluent and terminating TRS. It is not orthogonal. The infinitary version 

is not confluent. For consider the infinite terms (where we have omitted brackets 

in the convention of association to the right) 

1 1 1 1 l l 1 

2 l l l l 1 

2 2 l l l l 

2 2 2 2 2 

where we have "developed" the underlined redexes, that is, the redexes at even posi­

tions. This corresponds to the reduction of redexes marked with 1 in Fig. 12, whose 

leftmost infinite tree is represented as the infinite term I I l . · · (i.e., at each level 

the tree contains one symbol S ). The complete development of the redexes marked 

with 2 in Fig. 13 corresponds to the reduction of the redexes at odd positions, 

yielding 

AX 

I 
'/..x --i- --- Ax 

@1 

/\ 
AY s 

42 ~ I 
@2 

.,_(\ 
I ~ 
@I 

/\ 
1-y S 
I I 
@2 
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I 
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/\ 
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~2 I 

.,_/\ '/../\ 
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/\ 
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~2 ~ 
I\ I\ 

I 
y I 
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I\ 
I 
s 
I 
x 

I 
@2 

,_(\ 

I i 

FIG. 12. Complete development of the redexes marked as 1. 
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6. REGULAR DEVELOPMENTS AND ANOTHER COUNTEREXAMPLE 

It may be thought that non-confluence in the /.8-calculus only arises because of 

expressions that after unwinding to the corresponding infinite ).-tree have no weak 
head normal form. Or. equivalently, that confluence can be restored by equating all 

),$-expressions that have no weak head normal form as in the infinitary ),-calculus. 

However, this is not the case: non-confluence in )J9 also may arise for expressions 
that have an infinitary normal form. 

An example of such an expression is 

<IX I IX = ).x. F ( ;•x ). ;• = }.y. G ( IXY)). 

Indeed. it is easily verified that the corresponding infinite term reduces to the 

infinitary normal form ).x. ( FG)'", independent of the order of reduction of the 

redexes of the form J'X and xy. Establishing that this is indeed a counterexample to 
confluence in ),8 can be done by a reasoning similar to that for the counterexample 

in Section 4. 
A more interesting counterexample is as follows. Before presenting the example, 

we remind the reader that a A.-tree is regular if it contains modulo isomor­
phism only finitely many different sub-trees. A development is regular if it is a 

FIG. 14. Infinite reduction yielding a non-regular tree. 
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AX AX 2 I>--- AX 

I I I 
@1 @ 1 @I 
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FIG. 13. Complete development of the redexes marked as 2. 

1111111 

2 1 1 l 1 l 

2 2 l 1 l 

1 

l 

l 

2 2 2 2 2 

__. 
(!) 

Now it is clear that the two infinite terms 2 2 2 2 · · · and 1 2 2 2 2 · · · have no 

common reduct. A side result of this example is that for confluent and terminating 

TRS's the generalization to infinitary rewriting does not work out well; apparently 

the orthogonality condition is needed. 

Identifying the larger class of terms without weak head normal form does restore 

confluence for the infinitary A-calculus. A term M has a weak head normal form if 

it reduces to some term of the form xN 1 • • • N 11 ( n ;?: 0) or Ax. N. 

THEOREM 5.2. The in.flnitary lambda calculus extended 1-vith the rule (called 

Q-rule) 

M __. Q if M has no weak head normal form 

is infinitary confluent. 

Proc~l See [ KKSdV95a], in which the infinitary calculus referred to m this 

paper is called the 111-infinitary calculus. I 

Remarkably, this is not the case in ),-graph rewriting, as discussed in the next 

section. 
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(i) (ii) 

regular non-regular 

FIG. 15. Relation between ).-graph and i,-trce reductions. 

development of a set of redexes in a regular )Aree and the result of the development 
exists and yields again a regular )Aree. Consider 

(a I a= l.x.F({J(Sx), Sx), /i=Jcy.G(Cl(Sy), Sy)). 

Unwinding these recursion equations yields the infinite Jc-tree in the leftmost corner 
of Fig. 14. A development of the redexes with function part a yields a regular tree, 
as in the figure. Likewise a development of the redexes with function part /1 yields 
a regular tree. But developing both sets of redexes yields a non-regular tree, namely, 
the rightmost one of Fig. 14. To see that we have indeed another counterexample 
to confluence in )J9, we reason as follows, using the soundness of )J9 with respect 
to the infinitary calculus (shown in Section 8 ). Let M be the initial (leftmost) 
infinite term in Fig. 14. Let .M ~ be the middle term in that figure, arising after 
developing all a-redexes in .M. Likewise .M/I is the term arising from M after 
developing all redexes marked fJ in M; this term is not shown in the figure. Finally, 
let Af "· 11 be the term arising from developing both families of redexes, the redexes 
marked x as well as the redexes marked {J. This is the common reduct in the 
infinitary calculus of .M, and M 11 • Now we claim that in fact M "-. fi is the only com­
mon reduct of M, and Mfl. Establishing this is a matter of routine which we omit. 
It follows that in the finite graph calculus ),8 there cannot be a common reduct for 
the two expressions arising from the recursion system under consideration after 
executing the red ex /i( Sx) on the one hand and Cl( Sy) on the other hand. For these 
two expressions unwind to M 11 and M,, respectively. Now if the two expressions 
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would have a common reduct, say C, in Jee, then by its soundness we would have 

in the infinitary calculus a common reduct of M~ and M 11 , namely the unwinding 

of C. But this would be a regular term, as C is a finite expression in Mi>, in con­

tradiction with the claim above that the irregular term M,, 11 is the only common 

reduct of Mx and M 11 • 

Summarizing, we have the situations in Fig. 15, where for each cube the lower 
plane is that of ),-trees and their infinite reductions, and the upper plane is that of 

),-graphs and their finite reductions. The planes are related by tree unwinding. 
Figure 15( i) displays the "normal" situation. Figure 15( ii) refers to the coun­

terexample in Section 4, that is, the loss of confluence in both ,l-graph rewriting and 
in the infinitary ),-calculus. Figure 15( iii) refers to the first counterexample in the 

present section. Figure 15( iv) refers to the second counterexample in this section 

involving developments to non-regular infinite terms. 

7. NOTIONS OF SUBSTITUTION 

Going back to the analysis of the first counterexample, it is not hard to see what 
causes a set of redexes in a recursion system to resist a complete pre-development. 

This occurs only if there is a cyclic configuration in the system as follows: 

cx. 0 = ),x 1 • C 1 [ ( cx. 1 M 1 ) ] 

Here the cx;M; arc the implicit /1-redexcs that we want to pre-develop. If we under­

line all the ex; in the above system and apply substitution, those underlines can 
never disappear. This suggests looking for a new form of substitution that leads to 

finite developments. 
The new substitution, called acyclic suhstitution (written as -+as), consists of 

defining an order on the nodes of a graph, or equivalently on the recursion 

variables (see Fig. 16 ), and then allowing substitution upward only. More precisely: 

call two nodes cyclica!!y cquil'll{ent if they are lying on a common cycle. A plane is 

a cyclic equivalence class. If there is a path from node s to node t, and s, t are not 

in the same plane, we define s > t. Let )' be the name associated to node s, and c'5 
the name associated to node t, then )' > o. Acyclic substitution is then defined as 

follows: 

(ex I y = C[o], c5 = M, E) -+as (ex I y = C[ M], o = M, £) if y > o. 
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FIG. 16. Ordering among recursion variables. 

In C[o] just one occurrence of o is displayed and replaced by M. So in Fig. 16. 

displaying the system 

(iX I o:.= F(v, CJ, oc), v= H(G(v), y), y= H(C, 6), O= G(y)), 

the only _,.as-steps are from o in o:., from v in a, from yin v. The new calculus. called 

hP, that embodies acyclic substitution is given next. 

DEFINITION 7.1. The following clauses define the syntax and basic reduction 

axioms of the ),<:!>-calculus. 

SYNTAX: 

g ::=o:., =M1 . ... ,tXn=M,, 

REDUCTION AXIOMS: 

[3-rule: 

(},x.M) N 

Acyclic substitution: 

(r:x I y= C[o], o = M, E) _,.as (a I y= C[M], o =M, E) if }' > 0 

Fact 7.2. Acyclic substitution is non-terminating; e.g., 

o:.=F)!, y=Gy--.so:.=FGy, )!=G}'_,.aso:.=FGGy, }'=Gy->as""". 

Referring to the above reduction note that the second step involves the reduction 

of a new redex. If reduction is restricted to "old" redexes only then acyclic substitu­

tion becomes terminating. To that end, let us introduce an underlined substitution 

calculus which we call ),<t>as. The terms of the new calculus are systems of recursion 
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equations with underlined recursion variables, with the proviso that the underlined 

variables have to belong to an acyclic substitution redex. For example, the system 

is a legal term. On the other hand, the system 

a= Fy, i' = Gl' 

is not legal since y ':/> )'. The rule of ).<!>as is 

(a I)'= C[&J, <J = M, E) ->!!!!(a I)'= C[M], <J = M, £). 

From now on, we will identify an acyclic substitution redex with the variable we are 

substituting for; e.g., given the system x = Fl', r = 0, we will say that l' is a redex. 

LEMMA 7.3. Let g--+ £§ g 1 by reducing redex cj and g--+ £§ g 2 by reducing redex l'· 
then a common reduct g3 can be jinmd by reducing in g 1 all descendants (ifl' and in 

g 2 all descendants of Q. 

Proof: Let g--+ ~ g 1 by substituting for & in a, and g--+ ~ g 2 by substituting for 

l' in Yf. The only interesting case is when 15 =rt or)'= ::x. In other words, the two sub­

stitutions have a cyclic plane in common (see Fig. 16 ). Note that <J =rt and }' = x are 

not simultaneously possible. Let us assume <J = IJ. We have 

g=a=C[<J], _..... g 1 =a= C[ C 1[2']], 
,) 

<5 = C1 CxJ. 15=C1[1·]. 

1·=N i'=N 

li 
::x=C[C1[N]], 

<5 = C\[2'], 

y=N 

1;· 
g1 = rx = C[Q], _..... g3 :=a= C[ C\[N] ], 

,) 

(5 = C 1[N], <5 = C 1[NJ, 

)'=N )' =N. 
I 

LEMMA 7.4. -++ is stronglv normali::ina. 
~ ~ b 

Proof: Due to the fact that the ordering > among recursion variables is well 

frrnnde.d we can use the multiset ordering [Kio]. The weight associated to a system 
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of recursion equations g is the multiset of all underlined recursion variables; e.g., to 
the system 

a= FQ, r5 = Gy, y = 0, 

we associate the rnultiset 

{{Q, y}}. 

Let 

Without Joss of generality, let M be C 1 [.1;]. Then, in the rnultiset associated to g 1 , 

Q will be substituted by §. By definition, y > Q and J > t;; and so the multiset is 
getting smaller. I 

THEOREM 7.5. Acyclic substitution is confluent. 

Proof As in [Bar84, Kio], confluence follows from Lemmas 7.3 and 7.4 by 
applying the complete development method, which consists of defining a new reduc­
tion relation with the same transitive closure as ->->as and prove that it satisfies the 
diamond property. I 

Next, we prove that acyclic substitution combined with ft-reduction is confluent. 
We thus extend )JPas by allowing the underlining of }.'s that constitute the operator 
part of a /1-redex. The new /1-rulc becomes (2,x. M) N -7 11 M[x := N]. The combi­
nation of as and § is written as ->-+ as;i· The new calculus is called ),c/J and is 
summarized next. 

DEFINITION 7.6. The following clauses define the syntax and basic reduction 
axioms of the ,lc/J-calculus. 

SYNTAX: 

g ::=:x1 = M1, ... , :x"= M" 

M::=x I JI F"(M1, ... ,Mn) I AX.MI MM I (2.x.M) M 

REDUCTION AXIOMS: 

jJ-ru/e: 

(2.x.M) N -)- 11 M[x := N] 

Acyclic substitution: 

<:x I}'= C[g], 0 = M, E) -)-~ <:x I}'= C[M], cl= M, £) 
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We start by showing that -++ asfl is strongly normalizing. The proof follows the 

same steps as in [ Bar84]. We associate a positive integer to each variable (recur­

sion variables and lambda bound variables) occurring in the right-hand side of an 

equation of a system g. The weight of g, written as [g[, is then the sum of the 

weights occurring in g. However, the initial weight associated to variables has to 

obey some conditions. 

DEFINITION 7.7. Let g be a system of recursion equations in )JJ>. g has decreasing 

H'eight property ( dwp) if 

(i) for every §-redex Ux.P) Qin g: 

V.YEP, [x[ >IQ[: 

(ii) for every as-redex 1'· such that )' = M is an equation in g: 

For example, 

has the dwp, while 

and 

violate the conditions ( i) and (ii), respectively, of Definition 7.7. 

PROPOSITION 7.8. For ull .1yste111.1· of' recursion equarions g in A.<P, there exists an 

initial iveight assignmenr so that g has decreasing ireight property. 

Proof: We start by finding the strongly connected components of the graph 

associated to g. We could see the dag so obtained having as nodes the sequences 

of equations that define a cyclic plane. These distinct sequences of equations arc 

then topologically ordered, obtaining a new system of equations g'. The equations 

corresponding to each cyclic plane are not re-ordered. For example, the system 

rx = F)', cl= Grj, )' = He), 17 = He) 

is re-ordered as 

a= Fy, }' = H(), d = Gr7, 17 = H() 

or 

a= Fy, J' =Ho, 17 =Ho, o = G17. 
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In other words, the order of the equations for () and r1 is_ immaterial. N °": we 
enumerate all the variables occurring on the right-hand side of the equat10ns, 

I. II · h · ht t l 1·t order and assign to the m th variable occurrence the o owmg t e ng o e . · ~ 

\Wight 2"'. Since 

2111>2//I 1+2"' 2+ ... 2+ l, 

g has the dwp. I 
PROPOSillON 7.9. !([;-+as/I g I and g has dwp then 

Proof: Follows from the fact that 2111 > 2111 -
1 + 2"' - 2 + · · · 2 + 1. I 

PROPOSITION 7 .10. Let g --> as(i' then !( g has dwp so does g I . 

Proof: If g reduces to g 1 by performing a §-redex then the proof that the first 
condition of the dwp holds is the same as in [ Bar84]. To show that the second 

condition holds let us assume 

(>=C\[Q'.], -->/I o=C\[Q'.], 

x = C[ Ux. C 1 [ 2'] ) C 2 [ 'l]], x = C[ C 1 [ 1'] [ x : = C 2 [ '] ] ] ] , 

J' = .M. )' = M, 

Since during ij-reduction the weights of the recursion variables are not disturbed, 

we still have l]'I > ll'vfl and IJI > INI. Since the weight of the right-hand side of x 
decreases, we still have IQ'.I >IC[ C1[2•J[x := C2[1J] ]JI. 

Let us now assume that g reduces to g 1 by performing an underlined acyclic 
substitution step. Let g be 

o = C_1[Q'.], 

x=C[(2.x.C1[y]l C2[1JH 

y=M, 

IJ=N. 

If we substitute for either 'I or y then the first condition is met because the weight 
of the argument of the f!-redex decreases and x cannot occur free in M. Moreover, 
lg.I is still greater than the weight of the right-hand side. Analogously, if we sub­
stitute fr1f '!: we still have that the weights of)' and IJ are greater than I Ml and I NI, 
respectively. I - -

LEMMA 7 .11. -+->as/I is strongly normalizing. 

Proo( From Propositions 7.9 and 7.10. I 
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LEMMA 7.12. Acyclic suhstitution commutes with /3. 

Pn)(!l We show that -Has commutes with -H 11 . Since ~ asfi is strongly nor­

malizing it is enough to show-that -+~commutes with -> 11 • Letg be 

6 = C1[0-]. 

a= (2,x. C 1[]']) C2[!_7], 

y=M, 

'7 = N. 

By cases where the substitution occurs: 

Substitution for 0-· 

o = C\[0-], ----+ (5 = C'_i [ 0-l 
/I 

a= (2,x. C\[]']) C2[!_7], 

)'=M, 

'1 = N 

a=(Jx.C 1[}']l C2['.17], 

y = M, 

17 = N 

Substitution for l'· 

(J=C,[~], 

a=(lx.C 1[}']) C 2[!_7], 

;•=M, 

r7= N 

/'=M, 

Yf= N 

11=M, 

17 =N 

J' =M, 

17=N 

l/=N 

1·=M, 

'7=N 



184 ARIOLA AND KLOP 

Substitution for 'l· 

1i=C,[~]. 

x = (i,.\-. Ci [2']) C2[1) ]. 

;·=M. 

I/= N 

x = (~.x.C 1 [1·J) C2[N], 

I'= ,'lovf. 

17=N 

THEOREYl 7.13. )JJ> is confluent. 

__, <J = C3[Q'.], 
/I 

a=(C 1[j']J[x:=C2[!J]], 

y=M. 

---+ 
/I 

6 = C\[Q'.], 

a=(C 1[]']l[x := C2 [N]], 

}'=M, 

I/= N 

Prool From the previous lemma and Hindley-Rosen's lemma. I 

I 

Confluence of )JJ> guarantees that the lack of conf1uence of 18 docs not impair 

its correctness. as shown in the next section. Moreover, it also allows us to precisely 

identify which redexes cause confluence to fail, namely the spine-cyclic redexes. 

A /f-redex is spine-cyclic when its root and the ),-node lie on the same cycle (sec 

Fig. 17 ). Otherwise. the redex is spine-acyclic. In a spine-acyclic redex the root and 

the /.-node may be cyclic. Reduction of explicit spine-cyclic redexes, such as the 

/f-redex in the equation )' = (J.x. C[ y]) M, does not introduce any problem. Sum­

marizing, Theorem 7.13 says that reduction of implicit and explicit spine-acyclic 

redexes and explicit spine-cyclic redexes is conf1uent, since their reduction involves 

acyclic substitution only. 

FIG. 17. Cycle through a spine. 
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An example of a spine-acyclic redex is the topmost /i-redex of Fig. 2. The lower 

/J-redex is an example or a spine-cyclic redex, since the root or that redex and the 

),-node, named sum, are on the same cyclic plane, and thus a substitution that is 

not acyclic is needed to make it explicit. Implicit spine-cyclic redexes can be made 

explicit by lirst applying the operation of copying, which allows us to unwind a 

cycle without losing any name. For example, if we want to reduce the underlined 

implicit spine-cyclic /J-redex in the system 

we first perform a copy step: 

et.= ),x .6( Sx), (5 = ).y.et.(Sy) ~ c et.= ),x.c5(Sx) 1, et.'= h· .(5( Sx) 1 , r5 = ),y.et.'(Sy). 

The system so obtained contains an implicit spine-acyclic redex, i.e., the one sub­

scripted with l. However, another copy of the implicit spine-cyclic redex is made, 

i.e., the one subscripted with 2. 

Remark 7.14. Another notion of substitution that guarantees confluence is the 

parallel substitution ( ~ ps ), which consists of substituting at once for all the recur­

sion variables: 

0:1 = M1, ... , et.,,= M,, ~ps et. 1 = M 1[i,, := i\!f,,], ... , ex.,,= M,,[i,, := 1'-f,,]. 

For example, we have 

et.= )x .c)( Sx ), c) = ),y.cx.( Sy)~ ps et.= ),x. (),y .IX( Sy))( Sx), 15 = ),y. (X\·.6( Sx) )(Sy). 

This notion is interesting since it allows us to remove the definition of c5. However, 

we do not pursue the study of this notion since it does not underlie common 

program transformations. 

Since a notion of substitution is already present in the ),p-calculus, we are going 

to present it next. 

7.1. The A.µ-Calculus 

An interesting calculus arises by extending "pure" /.-calculus with the p-rule: 

p: JIX .Z(x) ~ Z(px .Z(x) ). 

Here we use the notation used for higher-order term rewriting by means of com­

binatory reduction systems (CRSs), as in [Kv0vR93]. Usually this rewriting rule 

is presented as 11x. Z ~ Z[ x : = px. Z]. The ).11-calculus already offers a form of 

cyclic ),-graph rewriting (see Fig. 18 ); it reduces implicit /1-redexes in a way similar 

to that discussed in Section 4, that is, by first performing some unwinding. Thus, 

it seems puzzling that the ).11-calculus, being an orthogonal combinatory reduction 
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FIG. 18. Reduction of1w:.xx. 

system, is confluent. Translating the .Mi>-counterexample to confluence, presented in 

Section 4, into ).p is instructive. The uppermost cyclic graph of Fig. 10 is expressed 

in the 2p-calculus as 

M := ;.w. .. ),x. (1u'5. ),y. IX( Sy))( Sx ). 

In order to reduce the (implicit) /i-redex IX( Sy), as we did in Section 4, we have to 

apply the ;.1-rule twice, obtaining 

M-+ 1, /ex. (1u5. /cy. M( Sy))( Sx)-+ 1, J.x. (p6. }.y. (J,x. (116 .A.y .M( Sy))( Sx) )(Sy))( Sx). 

The above reduction is displayed in Fig. 19. In Fig. 20 we display one step of sub­

stitution. Comparing the middle graph of Fig. 19 and the rightmost graph of Fig. 20 

we see that the substitution operation embodied in the 11-rulc is much more com­

plex than the unrestricted version of ).8, since it involves making an entire copy 

FIG. 19. 11-re<luction of 110:.i.x.(µ<l.i.y.x(Sy))(Sx). 
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FIG. 20. Display of a substitution step. 

of M. Moreover, in A.µ one step of unwinding is not enough to make the redex 
explicit. Another application of the p-rule is necessary, this causes another copy of 
M to be made. This avoids the out of sync phenomenon. 

At this point we could restrict ourselves to the sub-calculus A.µ, however, this is 
not satisfactory because the A.Lt-calculus is limited in the form of sharing it can 
express. For example, it is unable to directly capture the expression 

ix=F()', y),y=A.x.G(y). 

In fact, by translating the above expression into the }.µ-calculus we obtain 

F(µy.A.x. G(y), tt/1 .A.x. G(y) ), 

where a duplication or unsharing has occurred. In other words, the A.µ-calculus 
expresses vertical sharing only. This gives rise to the following question: how can we 
extend }.p-calculus, with its lack of horizontal sharing, to include this feature that 
is indispensable for efficient graph rewriting, while retaining confluence and still 
properly extending well-known term rewriting techniques? This leads to modular 
lambda graph rewriting, which is introduced after the soundness of Mi> has been 
proved. 

8. SOUNDNESS OF J..0 

In order to define the tree unwinding of a recursion system we first introduce the 
notion of expansion of a term. Let M GK(as•i "N denote n-steps of the Gross­
Knuth strategy applied to the acyclic substitution redexes occurring in the first 
equation of M (i.e., all acyclic substitution redexes in the first equation of M are 

043/139,2-6 
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performed). If the first equation of M does not contain any acyclic substitution 

d t·11 ·t M N. For example, re exes we s 1 wn e ui.-ias•i 

"'= FJ'J' J' = Gy .. 2 rx. = F( GGy)( GGy), y = Gy. 
"'" ' (1Ktas*) 

DEFINITION 8.1. Let g be rx1=M1, ... ,ct.m=Mm, and ct.=ct.1, g GK(as*) "a= 
M, g. Then the nth expansion of g, written as T"(g), is the term M[ct.1 := 

Q, ... , rx.,,, :=Q]. 

Due to the monotonicity of expansion with respect to the ~-ordering (i.e., the 
ordering axiomatized by Q ~ t, for any tree /), we define tree unwinding as follows. 

DEFINITION 8.2. Given a recursion system g, the tree unwinding of g, written 

as T(g), is lim 11 _, T"(g). 

Using the infinitary A-calculus we can now formulate a soundness criterion for 
transformations of ),f)-expressions. (Also the various transformations in Section 9 
satisfy this criterion.) We remind the reader that an Q-step consists of the applica­

tion of the following rule: 

if M has no weak head normal form. 

DEFINITION 8.3. Let g, g' be two recursion systems. We will say that a trans­
formation g _,. g' is sound (with respect to the infinitary A-calculus) if 
T(g) P!J ""' T(g'). (Here /i!J .;;w denotes possibly infinitary reduction, that is a 
sequence of w or less (possibly 0) /1 or Q-steps.) 

THEOREM 8.4. The ),@-calculus is sound with respect to the in.finitary lamhda 

calculus. 

Pruqf. We will prove the result for a single step, the result for multiple steps 
follows from the compression lemma of the infinitary lambda calculus. If g-+ c g 1 , 

g _,. n g 1 or g -+ s g 1 , then g and g 1 are bisimilar graphs and therefore T( K) = T( g 1 ) 

(see [AK96]). If g rewrites to g1 by reducing a /3-redex, say p, then, since acyclic 
substitution commutes with /3 (Lemma 7.12) and the descendant of an as*-redex 
(i.e., an acyclic substitution redex occurring in the first equation) is still an as*­
redex, the following holds, 

where in the tree reduction all the descendants of p are reduced. Next, we will show 
that there exists a t such that T( g) PfJ .;;w t and t = T(g i). If T( g) does not contain 
any descendants of p then we define t = T(g); this may happen if the /1-redex is 
garbage collected during the unwinding. If T(g) contains an infinite number of 
descendants it means that the /J-redex in g lies on a cycle. That is, g contains an 
equation of the form a=C[(Ax.P)Q], where either the context C[D], P, 
or Q contains a reference to fJ, and g contains equations of the form 



LAMBDA CALCULUS WITH FXPLICIT RECURSION 189 

/1 = C 1 [ P' 1], ... , /Jn= C n[ IX]. In the following, without loss of generality, we let /) be 

ex. Let us assume that the context C[ 0] is empty and either P is ex or P is x and 

Q is IX. That is, g contains an equation of one of the following two forms: 

ex = ().x. x) IX or IX = ( ).x. IX) Q. These redexes lead to the following rewritings: 

and 

In this case it is not true that T( g) /I' ~"' TL!i i ). In fact, T( g) rewrites to itself only. 

The problem is that there always exists a redex at depth 0. However, the following 

holds: 

T(g) = T(C[(J,x.P) Q]) 7 T( C[Q]) = T( C[P[x := Q]) = T(g 1). 

In the other cases, we can define t by doing a complete development of all the 

descendants of p that occur in T(g). The next step is to prove that t = T(g 1 ). We 

first show that T"C!i 1) ~I. Let T( g) rewrite to t' by doing all the /J-redexes that are 

reduced in the reduction T"(g) /I' T"(g 1 ), then T"(g 1 ) ~ t' and t' -r-> 11 t. Since all 

the descendants of p contained in t' correspond to an Q in T"(g 1 ) we have 

T"( g 1 ) ~ t. t ~ T( g 1 ) since each finite approximation of t can be obtained by 

reducing a finite approximation of g. I 

9. MODULAR LAMBDA GRAPH REWRITING 

We now, in a sequence of extensions, develop a series of calculi, called X~. leading 

to a very general and flexible calculus which incorporates the },-calculus, the 

Jcµ-calculus, ordinary first-order term rewriting, and vertical and horizontal sharing. 

The distinctive feature of this family of calculi is the presence of nested recursion 

equations. For example. we will write 

( rx I a. = ( },x. ( 6 I <'5 = F (a.. Sx)) ) S.}'), 

where, as in Section 1, it is clear that the underlined x is free. To avoid free variable 

captures we will still assume that both free and bound variables have to be distinct 

from each other. So we will write the above term as 

(rx I IX= (J.y.(61 o= F(cx, Sy))) Sx). 

Moreover, the root of a term is not restricted to be a variable. e.g., 

(fol ex= GO). 
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The general form of ).</Herms is 

< 11 £), 

where 1 is a term and E is an unordered sequence of equations; e stands for the 

empty sequence. We refer to ( t I £) as a box construct. We .call r the exrer~al part 

of the box, and E the internal part. We can see E as the envmmment associated to 

t, or as a set of delayed substitutions. The Jc~-calculi can be seen as an extension 

of the ),p-calculus and of the },a-calculi [ ACCL91, Cur93, Les94] with horizontal 

sharing and vertical sharing, respectively. The Xa-calculi treat the let-construct as a 

first class citizen, while the Jc1p-calculi support the letrec. For example, in J.r/> we can 

have 

(x I x=),x.(F(yx) I y=Jcy.G((xy), }')) ), 

which corresponds to the letrec expression 

letrec x = },x. letrec )' = ),y. G( ( xy ), )') 

in F(yx) 

in x. 

We could also say that the fa-calculi express acyclic lambda graph rewriting, while 

the Jc~-calculi deal with cyclic lambda graph rewriting. Since cycles are ubiquitous 

in the implementation of programming languages, the Jcrj>-calculi follow the tradi­

tion of providing "enriched Jc-calculi" to capture more precisely the operational 

semantics of functional languages [ Ari92, P J87]. 

After having presented the graphical representation of Jeep terms, we discuss the 

basic system ),~ 0 . ),~ 0 is based on the cont1uent notion of acyclic substitution 

(applied also to the external part of a box); it docs not contain rules !'or the 

manipulation of boxes except the empty ones. We show that l.r/i 0 is confluent and 

that the ),-calculus can be defined in it. We then present le/> 1 , which is obtained by 

extending ),~ 0 with some box distribution rules whose job is to move a box con­

struct as far as possible down a term until a variable is reached. We show that the 

},11-calculus is directly definable in },~ 1 and how to translate the ),a-calculus into 

},1 1 • We prove confluence of Jc~ 1 • Finally, we extend }.c/! 1 with rules to enlarge the 

scope of a box and to merge boxes when possible. The calculus so obtained, called 

),~ 2 , is also shown to be confluent in the presence of orthogonal term or term graph 

rewriting system. 

9.1. Graphical Representation (~f' Modular Jc-Graphs 

We graphically represent an expression ( t I £) by a box divided in two parts, the 

upper part corresponding to the external part t and the lower part containing the 

internal part E. A box can be thought of as a refined version of a node. We present 

a series of examples. 
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EXAMPLE 9.1. ( i) The terms 

(a) <exlex=F(fi),/)=G(cx)) 

(h) <H(ex,/3) I x=F(/J),/J=G(ex)) 

( c) < H ( H (ex, /h ;·) J I ex = H (/i. cx)) 

191 

are displayed in Fig. 21. Note that the free variables are drawn outside the box, as 

in Fig. 2lc. 

(ii) The terms 

(a) <H((ex I ex=F(cx)),/f) I /1=F((;· I ;·=F(rl), r5=G(;•))l 

( b) < H(ex', /3) I cx' = < cx I ex= F( ex)), /J = F(/ ), / = < J' 11' = F( 1l), () = G ( ;·))) 

are shown in Fig. 22. Note the "'external names" ex', ;·' of the boxes in Fig. 22b. 

(iii) Boxes can also refer to each other. The term 

<ex' I ex'=< cx I ex.= F(/f'l, /3' =<Ii 11>' = G(ex') » 

is shown in Fig. 23. Note that multiple references to a box are aiming straight at 

its leading node. 

9.2. Basic System 

We start with the basic system ).rjJ 0 • In order to simplify the reading of the reduc­

tion rules we will denote hy t'' the term < t I £). As in the previous section, 

"F orthogonal to a sequence of equations E and to a term t" means that the recur­

sion variables of F do not intersect with the free variables of E and t. We denote 

this property by F J_ E, t. The recursion equation (J = 15 in the black hole rules 

stands for the sequence fl = f5 1 , ••• , <l,, = o. As for 1.8, the proviso ex> o of the acyclic 

substitution and hlack hole rule indicates that there is no cycle between them in the 

(a) .... ·.··.·. 

aF······ .·.:. :-:: .··· 

·········~······ .. ·•.
0
.••·.··········•.t .. 

.. ·,·.·.·.····.·. 

FIG. 21. Graphs associated to i,,P-tcrms. 
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FIG. 22. Graphs associated to ,\~-terms. 

term matching the left-hand side of the rule. For example, rx is greater than r) in the 

following underlined term. 

even though g contains a cycle between rx and o. However, this cycle goes through 

y. which is defined outside the internal box (see Fig. 24). The ).ljJ 0 -calculus is given 

next. 

DEFINITION 9.2. The following clauses define the syntax and basic reduction 

axioms of the ).r/> 0 -calculus. 

SYNTAX: 

C[ DJ::= 0 I C[ 0] t I P(t I' ... , C[ 0 ], ... , tJ 1 tC[ DJ I ACX. C[ DJ I 

< C[ DJ I £) I < t I ix= C[ o ], £) 

In a term (tolrx 1 =t 1 •••• ,rx11 =t,,) all the recursion variables rx,, l~i~n. are 

distinct from each other. 

REDUCTION AXIOMS: 

/]-rule: 

(}.rx. t) s --> 11 <t I ix=s) 

External substitution: 

< C[ r5] I ii= s, E) ___. es ( C[s] I 0 = S, £) 

Acyclic substitution: 

<r I rx= C[o], 15=s, £) _.as <r I rx= C[s], o =s, E) if :x > rl 
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FIG. 23. Mutually dependent cyclic boxes. 

Black hole: 

( C[t5] 16= 6, £) ___, < q • J I r5 = 6, £) 

(tlo:=C[<5],<J= <l,£) ---> (tlcx=C[•],r)= 6,£) if C( > 6 

Garhage collection rules: 

if F=Pe and F J_ E, t 

< t I > ---> gc 

Note that we have dropped the distinction between lambda bound variables and 
recursion variables. ex-equivalent },1-terms and terms that arc obtained by a I ··-1 

renaming of recursion variables are identified. ln the ,8-rule notice the role change 
of the bound variable, previously bound by ),, afterward bound by the recursion 

construct < I ). The ,8-rule now becomes strongly normalizing. For example, 

(AO:. o:o: )(ACX. cxcx) ---> 11 ( cxcx I o: = ),o:. cxo:), which does not contain any /3-redex. In order 
to proceed with the computation external substitution has to be applied, yielding 

( (ACX. o:o:) cx I cx = Ao:.cxo:). External substitution allows us to "extract" a tree-like 
prefix without duplicating the environment E. An external substitution redex 
corresponds to an as*-redex, introduced in Section 8. The cyclic binding 6 = 6 in 

the black hole rule allows the reduction of ( 6 I 6 = r5 1, 6 1 = <5> to •. This reduction 
would not have been possible if instead of 6 = (J we simply had 6 = <>. In this case 

the only possible rewriting would have been the following: 

No reduction can occur inside the environment since <land r5 1 lie on the same cycle. 
Moreover, we have included the proviso o: > o in the black hole rule to guarantee 

its confluence. Without it, we would have the following scenario: 

-----> 
as 

' I as 
I 
i 

( 0 I 0 = •, r5 I = • ) 

The proviso "F =Pt:" of the first garbage collection rule guarantees its strong 

normalization. Without that proviso we would have t 1'---> gc t"". 
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FIG. 24. Ordering among recursion variables. 

THEORE\! 9.3. hp 0 is confluent. 

Proof: Call the external and acyclic substitution rules s-reductions, and the 
remain.ing rules a-reductions. a-reductions are confluent, as they do not cause any 
duplication and they commute. By Lemma 7.5, s-reductions are cont1uent. Next, 
ones-step commutes with a sequence of a-steps (Notation: _,. 0' 1 stands for a reduc­
tion of 0 or 1 steps): 

-0 

ls 0 I is . I 

i 
---+> 

0 

Then we have that s-reductions commute with a-reductions. The result thus follows 
from Hindley--Rosen's lemma. I 

LEMMA 9.4. The ).-calculus is directly definable in ).~ 0 . 

Proo( We have 

(l.:x.t)s->11<tlcx=s) -+> 05 <t[ix:=s] lo:=s)-++ 9ct[ix:=s]. 

The last step is justified by the fact that o: cannot occur free in s. I 
THEOREM 9.5. Let R be an orthogonal term rewriting system. Then )</>0 u R i.1· 

confluent. 

Proof Since R-rewriting commutes with )~0 . I 

Rewriting with ).~ 0 u R is already quite interesting from the point of view of term 
graph rewriting, as it can handle horizontal (as shown in the following example) 
and vertical sharing. 

EXAMPLE 9.6. Let CL be combinatory logic, with the rules 

SZ 1 Z 2Z 3 -> Z 1 Z 3(Z2 Z 3 ) 

KZ1Z 2 -> Z 1 

IZ-> Z. 
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Then we have the following reduction in ).</J 0 u R (see also Fig. 25, where the lines 
dividing the graphs correspond to the division in external and internal part. Only 
the nodes reachable from the root are displayed): 

< o: I o: = (JfJ, /J = S;1;·, ;· = I) 

< (J/J I rx = /3/J. /5 =Sn" r = I> 

< Sry/J I a.= (Jff, /i =Sn, i' = I> 

< l'fi( yfil I C( = !W /3 = S;·;', )' = I> 

< 1/J( If)) I o: = /1/1, /i = Sf'i" ;·=I) 

<fifJ I o:=fi(J, /J=S;·;', )'=I). 

---; 
es 

---; 
es 

-+-> es 

-+->CL 

Remark 9.7. As pointed out in Section 7, non-contluence is caused by a notion 
of cyclic substitution. This cyclic substitution is now absent in ),</J 0 . Thus. all 
counterexamples to confluence disappear in )Jp0 and in our subsequent extensions. 
This restriction does not limit the expressive power of our calculi with respect to 
execution. That is, they are powerful enough to simulate finite /J-reductions in the 
infinitary calculus. 

( i) Consider the system 

g=: <a. I :x=).x.)'(Sx). r=).y.cx.(Sy)), 

which caused the first counterexample to confluence (see Section 4 ). In ).rp0 

there is no way of making the implicit fJ-redexes rx( Sy) and y( Sx) explicit by apply­
ing substitution inside the environment. Thus. in )cr/> 0 g does not rewrite to 

FIG. 25. Reduction in i.</> 0 u R. 



196 ARIOLA AND KLOP 

\ x I x = X\·. x( s 'x l). In ;,~ 0 we have the following reductions ( __...., /lesgc stands for 

-+ /i ~ es --+ gc ): 

x I :x = J.x. )'( Sx ), y = J.y. :x( Sy)) 

\).x.;·(Sx) I x=lx.y(Sx), y=),y.x(Sy)) 

< ).x. ( ),y. x( Sy))( Sx) I ex = J.x. J'( Sx ), )' = ),y. ex( Sy)) 

Ux.x(S 2x) I x=h.y(Sx), y=J.y.o:(Sy)) 

<J.x.(h.J•(Sx))(S 2x) I :x=),x.J1(Sx), )'=),y.cx(Sy)) 

Ux. ;.·( S'x) I ex= h.)'( Sx), J' = J.y .o:( Sy)) 

-> es 

-> es 

__...., /lesgc 

-> es 

_, /lesgc 

Note that independently of how many rewriting steps are performed, the informa­
tion contained in g is ),:c.Q, which is the infinite normal form of T(g). 

(ii l Consider the second counterexample (see Section 6 ): 

g == ( x I o: =h. F( y(Sxl, Sx ), ;· = ),y. G(x( Sy), Sy)) 

(h.F\r(Sxl, Sxl I o:=h.F(J•(Sx), Sx), J'=Ay.G(a(Sy), Sy)) 

\).x.F((Ay.G(cx(Sy), Sy))(Sx), Sx) I a=h.F(y(Sx), Sx), 

-> 

-> 

es 

es 

J' = Ay. G ( x( Sy), Sy l) ___,_. riesgc 

\) .. \.F(G(o:(S 2x), S 2x), Sx) I a=h.F(y(Sx), Sx), y=J.y.G(o:(Sy), Sy)) ___,_. 

Ux.F(G(F(J'(S 3x), s·1x), S2x), Sx) I O:=Ax.F(y(Sx), Sx), 

;·=).y.G(a(Sy), Sy)) 

Note that even though g cannot rewrite to a g 1 such that T( g 1 ) is the tree on the 
right-hand side of Fig. 14, reductions in J.~ 0 produce all finite approximations of 
that tree; e.g., the above reduction leads to the approximation ),x.F(G(F(.Q, S'x), 
S2x), Sx). 

9.3. ),p with Hori::.ontal Sharing and J.a- with Vertical Sharing 

We translate the J.p-terms into J.~ 0 as follows: 

~[a]=x 

~[F(1 1 , ... , t,,)] = F(~[t 1 ], ... , ~[tn]) 

~[11 l2] = ~[11] ~[12] 

~[}.ex.I] =J.o:.~[1] 

~[pa.1] =<ex Ix"" ~M ). 
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However, the ),µ-calculus is not directly definable in hp0 ; e.g., 

t =,tax. F(1J., µfi. G(IJ., Pl) -+1, ,tm. F(1J., G(1J., µft. G(IJ., //) l) = s, 
but 

</> [ t] = < IJ. I IJ. = F( IJ., < /3 I fJ = G ( IJ., Pl >) > 
-ttt '·"'" <IJ. I IJ. = F(IJ., G(a:, <!31 {J = G(a:, {J) > l l) = </>[s]. 

To that end, we extend A.</> 0 with the distribution rules of Table l, whose job is 
to move a box construct as far as possible down a term until a variable is reached. 
We call the result A.</> 1• Notation: if Fis 1J. 1 =t 1, ••• ,1J.11 =t 11 then pH stands for 
a:, = t~'° • ... ,a:,,= t~·: 1J. bound by F means that F contains an equation of the form 
IJ.=t. 

EXAMPLE 9.8. The reduction 

µ1J.. F(a, µ{i. G(a:, {J))-> 1, µ1J.. F(a, G(1J., ,tl/3. G(IJ., {3))) 

is defined in A.</> 1 as follows: 

< IJ. I IJ. = F ( IJ., < /3 I fJ = G ( IJ., Pl > ) > --+ es 

(1J. I 1J.=F(1J., (G(rx,/3) I /3=G(rx,fi)))) -+dF 

(1J. I 1J.=F(a:, G((rxl /3=G(1J.,/J)), (/JI /3=G(1J.,/3))))) -+> 90 

< IJ. I IJ. = F ( IJ., G ( IJ., < fJ I fJ = G ( IJ., /3) > ) ) > . 

(See Fig. 26.) 
In order to prove that A.µ is definable in A.</> 1 we need some properties of the dis­

tribution and garbage collection rules, i.e., strong normalization and confluence. 
Using these properties we then show that the distribution and garbage collec­
tion rules unfold the system by pushing the box constructs next to the variables. 
Notation: -+> dgc is the reduction relation induced by the distribution and garbage 
collection rules. 

LEMMA 9.9. -+> dgc is strongly normali:::ing. 

TABLE I 

Distribution Rules 

-> dA 

if 11~ I 

(ts)B 

if 1J. is bound by F 
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FIG. 26. Analysis of 11-step. 

Proof: We associate to each box construct ( t I £) a positive number n, called 

the index of ( 1 [ £). This index, written as d(t), indicates the depth of the external 

part 1 of a box, that is, how much a box has to travel until it reaches a variable: 

d(rx.) 

d( constant) 

d(st) 

d(F 11(1 1 , ••• , t,,)) 

d( i.rx.. l) 

=0 

=0 

= l + max { d( s ), d(t)} 

= l + max { d(t 1 ), ••. , d(t 11 )}, n ?- l 

= l + d(t) 

d( (t I rx. 1 =1 1 , ... , rx. 11 =1 11 )) = 1 +d(t) +max{d(l 1 ), ... , d(I,,)}. 

(We assume max{ J to be 0.) The index of each box appears as a superscript in the 

system below: 

The weight associated with a system of recursion equations g, written as I g[, is then 

the multiset of sequences of indexes associated with all possible nesting of boxes. 

For example. 

I g[ = { { 6 2 1. 6 1 }} . 

The multiset ordering is then induced by the lexicographic order on seq uenccs. If' 

a system of recursion equations g does not contain any box construct we let [ g[ be 

{{ 0} J. The multiset ordering takes care of the duplication of boxes, e.g.: 

( i) If 

g = < H ( rx., rx.) I rx. =<FF fJ I fJ = 1) 2) I -+ dF 

H ( (rx. I rx. = (FF fJ I /1= 1 ) 2 ) 0, ( rx. [ a= ( FF /1 [ /1 = l ) 2 ) 11 ) = g 1, 

then 

[g\ = {{l 2}} > {{O 2, 0 2}} = [g 1[. 
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(ii) If 

g = < < :x 1 :x = H( F /i. F(> ), 11 = H ( F:x, Fa)> 0 1 i5 = <Fi: 1 i: = 1 > 1 >' _,. dCJ 

(o: I o:= < H(Ffl, Fa) I(>= <Fe: I 1:= I) 1) 2, 

{1 = < H( Fo:, Fe)) I c)' = (Fe: I i: = 1) 1 ) 2 ) 0 = g 1, 

lgl={{3 1,3 O}l>{{O 21,0 2 I}}=lg 1I. 

199 

We first restrict our attention to the distribution rules only (written as _,. d ). We 

show the following fact: 

Fact. C[R] _,. d C[R 1 ] => d( C[R]) = d( C[ R1 ]). 

By induction on the structure of C[ D]. 

C[ D] =D. By cases on R. Notation: if E is the sequence of equations 

:x 1 = t 1 , ... , o:,, = t,, then d( £) stands for max { d(t 1 ), .. ., d(l,,)}. 

-- d( (h. t) I) = I + d( Jco:. t) + d( E) 

= I + ( I + d( t) + d( E) ) 

= 1+d(1 10') 

= d(h. t 1'). 

-- d((sl) 1 )=l+d(st)+d(E) 

=I+ I+ max{ d(s), d(l) j + d(E) 

=I +max{ I +d(s), I +d(t)} +d(E) 

=I+ max{ I+ d(s) + d(E), 1 + d(t) +d(E)} 

d( F "(l, , .. ., f 11) /o') = I + d( F "(t I , .. ., I 11 ) )+ c/( £) 

= I + 1 + max { d(t 1 ), .. ., d(t,,) } + d( E) 

since n ~ 1 = 1 + max{ I + d( £) + d( t 1 ), .. ., I + d( £) + d(t,,)} 

= 1 + max{ d(ti\ ... , d(t;1')} 

= d( F"(li'·, ... , t;;') ). 

Note that it is important for n to be greater than zero, otherwise the depth would 

decrease in the reduction ( 0 I ) _,. dF 0. 
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d( «a I al= t I• .. ., a11 = ! 11 ) I E)) 

= 1 + d( <a I o: 1 = 11, ... , o:,, = I /1 > ) + d( E) 

= 1 +I +max{d(ti), ... , d(t,,)} +d(E) 

since n ?:: I 

= 1 +max{l + d(t 1 ) + d(E), ... , I+ d(t 11 ) + d(E)} 

= l + max { d( If.), ... , d(I~·)} 

=cl( <a I 0:1 = tf·, ... , an= r;,) ). 

The proviso of the -+ d 0 -rule guarantees that n is greater than zero. 

Inductive case. If C[ D] is C1 [ D] t then 

d(C 1[R] t)= I +max{d(C1[R]), d(t)} 

= 1 + max d( C 1 [ R 1] ), d(t)} 

=d(C1[R 1] t). 

The same for the other forms of C[ D ]. 

We are now ready to show that 

The proof is by induction on C[ D]. 

Induction hypothesis 

.. C[ D] = D. By cases on the rule being applied. 

- < ),o:. t I E) -+ dA ),a.< t I E). The index of the outside box is l + d( I) and 
it is replaced by d(t). Any other box contained in t and in Eis left unchanged. 

- (sl I E) ->d,., (s I E)(I I E). The index of the outside box is 1 + 
max{d(s), d(I)} and it is replaced by d(s) and d(t), respectively. The index of any 
other box contained in t, s and E is left unchanged. 

-·· (F(t 1 , ... , t 11 ) I E) -+ctF F((t 1 I E), ... , (1,, I£)). Same as the case above. 

~ « o: I 0'.1 = t 1 • ... , a. 11 = 1,,) I E) -> dD ( O'. I CX1 = ( t 1 I E), ... , an= ( t,, I E)). 
The index of the outside box is I + max { d( t 1 ), ... , d( t")} and it is replaced by 0. 

- Inductive case. The only interesting case is when C[ D] is < C 1 [ D] I £). 
then according to the previous fact the index of the outside box does not increase. 
In other words, an internal reduction does not increase the index of the outside 
box. 

Since a system of recursion equations g contains a finite number of equations and 
boxes, the garbage collection rules can be easily shown to be strongly normalizing. 
Let us assume there is an infinite sequence over the union of the distribution and 
garbage collection rules. This sequence can only have finitely many distribution 
steps. If not, since the garbage collection rules do not increase the weight of g, it 
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means that the infinite sequence corresponds to an infinite descending chain. This 

is not possible. Thus, it must be that we have an infinite number of consecutive gar­

bage collection steps, which contradicts the strong normalization of the garbage 

collection rules. I 

Remark 9.10. If we change the current distribution rule over a box construct to 

then the distribution rules will no longer be strongly normalizing; e.g., 

« F (ex, cl) I ex= 0) I il = I ) -+ ct « F( ex, c'i) I 6 = 1 ) I ex = ( 0 I 6 = 1)) -+ ct 

« F ( ex, 6 ) I ex = ( 0 I r'i = 1 )) I il = ( I I :x = ( 0 I 1' = I )) ) 

-++ d « F( :x, cl) I ex= 0) I /j = 1) · · · . 

LEMMA 9.11. -++ ctgc is con/luen r. 

Proof The distribution rules define an orthogonal system and thus are con­

tluent. The garbage collection rules are themselves confluent. Since distribution 

and garbage collection rules commute, the result follows from Hindley-Rosen's 

lemma. I 

Notation: t[:x 1 := (ex 1 I£), ... , :x,, :=(ex,, I£)] denotes a simultaneous sub­

stitution. nf ctgc(t) is the normal form with respect to the distribution and garbage 

collection rules. 

LEMMA 9.12(Unfolding Lemma). Lett he a term and E he :x 1=.1· 1, ... ,ex11 =s,,. 

Then 

Proo{ Trivial if E is empty. Otherwise, without loss of generality let us assume 

11 = 1. Since -++ dgc is strongly normalizing we can conduct the proof by noetherian 

induction. 

--- r is a normal form. By structural induction on t. 

-- t is a variable. For t equal to ex 1 the result follows trivially. Otherwise, let 

t be )': 

(t 1 t 2 I ex 1 =s 1) 

(r, I ex, =s,)(t2 I 0:1 =s1) -++ dgc Induction hypothesis 

r,[ex, :=(ex1 I a:, =.1·,)] t2[e<:1 :=(0:1 I a, =.1'1)] -

(t,t2)[0:1 := (cx1 I e<:1 =s1) J. 
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- t is F(t 1 , ••• , t,, ). Same as the case above. 

-- t is A.cx.t 1 • We have 

--+ dA 

),cx.(1 1 lcx 1 =s1 ) -*dgc Induction hypothesis 

),1X.(t1[ex1 :=(1X1 llX1=S1))) := 

(A.cx.t1)[ex 1 := (ex1 I cx1 =s1)]. 

< cx2 I cx2 = ( s2 I cx 1 = s 1)) -++ dgc Induction hypothesis 

(cx2 I ex1 =s2[1X1 := (cx1 I cx1 =s1)]) -

< IX2 I cx2 = S2) [ex I := < IX1 I cx1 =Si)]. 

- t is not a normal form. Then 

(t I£) -+dgc (t' I£). 

By the induction hypothesis, 

From confluence of -*dgc it follows that nf ctgc(t') = nf ctgc(t). I 

THEOREM 9.13. A.µ is directly definable in A.</> 1 • 

Proof We show that 

<f>[µcx. t] -++ .tcp 1 ef>[t[ ex:= µex. t ]]: 

1> [µex. t] 

(ex I ex= </>[t]) 

< ef>[t] I ex= ef>[t]) -++dgc 

nfd90(</i[t] )[ex:= (ex I ex= </J[t])] = 

</i[t][o: :=(ex I ex= </J[t])] 

</>[t[cx :=µcx.t]]. 

Same for the ,8-rule. I 

Definition of</! 

By the Unfolding Lemma 

Since nf dgc( </! [ t] ) = </! [ t] 

Structural induction on t 
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Next we want to show confluence of ).c/J 1 • To that respect, we first need two 

propositions. Notation: =dgc denotes the convertibility relation induced by the dis­

tribution and garbage collection rules. 

PROPOSITION 9.14. Let t be u term and E, F sequences of equations. Then 

(t I£)/.'= dgc (IF I£''), 

Pro4 By noetherian induction on t with respect to the ordering induced by 

->-+ dgc · 

t is a normal form. By structural induction on t. 

t is a variable ex. If ex is bound in E: 

((ex I E) IF) -+du (ex I EF) = 9 c ((ex IF) I £ 1). 

Otherwise: 

t is t 1 t 2 • 

((exiE)IF) 

(ex I F) 

((ex IF) I £ 1· ). 

-++gc 

gc 

((t 1 I£) I F)((t 2 I E) IF) =dgc Induction hypothesis 

((11 IF) I E 1')«t2 IF) I£'') =d•.d 

((t1t2 IF) I£'). 

t is F11 ( t 1, ... , t 11 ). Same as the case above. 

t is ( x I E). Without loss of generality, let us assume E to be ex= s. 

(((ex I x=s) I£) IF) 

(cx:lex=((sJE) IF)) 

-++ d LJ 

-dgc 

(cx:lex=((slF)IE') =dcl 

(((ex I ex=s) IF) I£''). 

Induction hypothesis 

~ t 1s not a normal form. It follows immediately from the induction 

hypothesis. I 
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PROPOSITION 9.15. Let s be a term and Ea sequence of equations. Then 

(C[s] I E) =dgc (C[s 1'] I E). 

Prt)(~f By structural induction on C[ 0] and Proposition 9.14. I 

Interme:::.:::.o 9.16. In the proof of confluence of ),~ 1 we will use the decreasing 
diagram method proposed by van Oostrom [ v094]. The method consists of 
associating a label to each reduction step and giving a well-founded order on these 
labels. If all weakly confluent diagrams turn out to be of a specific kind, namely 
decreasing, then confluence is guaranteed. 

DEFINIT!ON 9.17. Let 1-1 be a measure from strings of labels to multisets of 
labels. If a 1, ... , a11 are labels, 

la 1 ... a 11 i = {{a; I there is no j < i with aj> a;}}. 

Then the diagram 

b I 

I 
I a 1 
J. 

a 

I 

I 8 n 
I 
J. 

-----+ ... -----> 
b1 bm 

is decreasing if {{a, b}} ~ lab 1 ... b111 I and {{a, b}} ~ lba 1 ... a11 I. 

THEOREM 9.18. If a labeled reduction system is weakly confluent and all 1\'eakly 
cm?fluent diagrams are decreasing with respect to a well:f'ounded order on laht>ls then 

the system is con.fluent. 

Proof See [ v094]. I 

THEOREM 9.19. ).~ 1 is confluent. 

Proof We call the external and acyclic substitution reductions s-reductions, and 
the remaining reductions, except /j'-reduction, o-reductions (written as -++ 0 ). Since 
the black hole rule is strongly normalizing, and does not change the depth of a box, 
it follows that o-reductions are strongly normalizing. Their weak confluence thus 
implies confluence. 

Let us study the new system, called A</!'1 , which contains the following rewrite 
rules: 

t -+ nt s: if s is the normal form of t with respect to the o-rules; 
0 

t-+ 11 • s: if s is obtained from t by a complete development of a set, possibly 
empty, of substitution redexes (this is possible since s-substitutions are confluent by 
developments, see Theorem 7.5 ); 
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t--> 11 11 s: ifs is obtained from t by a complete development of a set, possibly 
empty, of /3-redexes. Since /I-reduction does not create new /J-redexes, I-> 1111 s if and 
only if t -++ 11 s. 

Let us first prove the weak confluence diagrams. 

~-- ft-reduction and o-reductions. The goal is to prove the following com­
muting diagram: 

l 'I/I 1 

"'· l"" (9.4) 

-----+ ---~ 
'I /I nf0 

Let us first point out that the only obstacle to /J commuting with o-reductions is 
caused by the distribution of an environment over an application: 

The right-hand side of the reduction is no longer a fi-redex. We call this distribu­
tion-step an interfering d(a *-reduction. The distribution over lambda that restores 
the /i-redex is denoted by dA*: 

If there is no interference, then a single o-reduction step commutes with //-reductions: 

----> 

[· "' j· 
-----+ 

(9.5) 

II/I 

(Note that (1-reduction does not cause any duplication.) Otherwise, we prove the 

following: 

I q/1 I 
""' * l nf0 

-----+ ----+ -----+ 
dA* 11/1 nf0 

(9.6) 

For a single /1-step: 

((A.rx.l)s(---------<t I rx=s)H 

dw * 1 /I = dgc (9.7) 
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( ( t I rx = s) f. = dgc ( tH I rx = sl) follows from Proposition 9.14.) Since --+-> dgc is con­

fluent, ( t I rx = s) 1·: and ( tF I rx = s1') have the same normal form. For the number 

of ff-steps greater than one we first re-order the {1-reduction so that the interfering 

step is the last step. We then have: 

11-l 

\'''' ;'95) l"". 
I----~ I 

I /I I 

fi 

(9.7) 

I 1. I 1. * l (I (9.5) \" 

! ! 
----~ ____ __,, ----~ 

/I /! nf0 

i 
I 
I 
I 
\ nf0 

I 
I 
I 
I 
! 

We are now ready to prove our result (i.e .. diagram (9.4)). Since o-reductions are 

strongly normalizing, the proof is by noetherian induction. The result holds trivially 

f()r a normal form. Otherwise, we have the following two cases: 

II /I I 

I 

( 9.5) \a 
I 
! l----li/1---+ I 

nf0 /.H. ! nf0 

----+ ____ ) 
11 /I nf0 

l 11P I 
d(<1* (9.6) to 
------+ ----------Jo -----?-! dA* 1 ,I/I 1 nf0 

I I 
nf0 I nf0 J H I nf0 

I · · I 
I I 

- ! ___ ....., ----+ ! -
!I /I nf0 

· s-reductions and o-reductions. The goal is to prove the following com­
muting diagram: 

(9.8) 

We remind the reader that the bottom -+ ,15-reduction of the above diagram might 
correspond to an empty reduction: e.g .. 
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The bottom --> ni -step of diagram ( 9.8) is due to the interference between external 
0 

substitution and the distribution of an environment over a box construct: 

«ex: I :x =s) I F) -----7 «s I :x = s) IF) 
es 

d [11 = dgc 

<ex I :x = < s I F)) --.;;;--> « s I F) I ex=< s I F)). 

The right-hand side of the top es-reduction is no longer a dO-redex. We call this 

external substitution an interfering es*-reduction. Analogously, we call this dis­

tribution over the box construct a d D *-reduction. A similar situation is caused by 

acyclic substitution: 

« ex I :x = C[ r)]' (5 = s > I F) --as-------* « :x I = C[ s]' 6 = s > I F > 
' 
Id l:J 
I 

.J, 
d LJ «exlex=<C[s] IF),6=<sJF)) 

= dgc 

<:x I :x=<C[rl] I F),r5= <s IF))--;;;;--> <oc I ex=< C[ <s IF)] IF), o = <s IF)). 

Thus, the distribution of an environment E over a box construct of the form 

< x I F) is interfering if < x I F) is either an es or an as-redex. 

By associating to each variable ex a weight, say 11, as in the proof of strong 

normalization of -->-> ~ and to a variable ex" a depth of n instead of 0, we can show, 

following the steps of the proof of Lemma 9.9, that s-reductions (i.e., developments 

with respect to the s-rules) combined with a-reductions are strongly normalizing. 

Then, by noethcrian induction follows that, in the case of non-interference, -->-> s 

commutes with --H . 
o· 

I 
I 
I a 

± 
---~ 

s 

If the a-reduction interferes with s-reductions, we prove 

j s ' .. I 
d[J* lnf I o 

I 
! 

---~ ___ __, 
nf0 

(9.9) 



208 ARIOLA AND KLOP 

where the s-reductions stand for complete developments. Let the d 0 *-redex be 

:x I F> I E). We first re-order the §-reduction so that the external and acyclic 

substitution re<lexes that interfere with ((ex/ F) / E) are pushed to the end of the 

red uctilH1. We then perform the descendants of the d D * -redex with respect to the 

non-interfering part of the s-reduction. We have 

-----r-+ 
s 

Note that the 11 d D *-redexes are disjoint from each other; that is, the corre­

splmding boxes an:'. not contained within each other. We show by induction on n 

that we can close the above diagram. 

11 = I: Without loss of generality, let F he cx 1 = C 1 [ :x 2 ], ex 1 = C2 [ ex.1 ], ex,= s. 

We have - - . 

<2! I :X1 = C1 [:xJ, 

:x2 = C2 [ :x,], 

s* 
<C1[C\[s]] I ex1 =C1[C2 [s]], 

:x2=C2[.1], 

d LJ* 1 

:x,=sr) 

cx,=s>"' 

= dgc 

0:1 = C1 [s''] '. 

cx,=s"'). 

(C1[C,[s]] I :x 1 =C1[C2 [s]], 

x, = C,[s], 

= <C [C [v''.J"-Jh'JN -(' [C'.[ ,F]F]F 
dgc I 2 ' v..1 - · I - 2 ,\ , 

:x,=s)". 

which 1\11\ows from Proposition 9.15. 

_ . 1~ > l: We re-urder the S *-reduction so that the interfering steps with the 

hrst d D -step are pus~1ed. to the end of the S *-reduction. Note that this re-ordering 

does not cause a duphcat1on of the ctD*-redex. We thus have 

--s I s I s* 
I I 

I 

I 
ldD ldD* !.H. I nf0 

I I I 

dCJ 
! ! ! 
---~ ---~ -------? 

I $ s* nf 
I o 

II -- l 1 d [] 

± 
---->-+ 

s 



LAMBDA CALCULUS WITH EXPLICIT RECURSION 

By re-ordering the dashed middle s-reduction again 

I 
I . 

11 ljdll 

! 
---~ 

s 

s* 

!.H. 

209 

Diagram ( 9.8) follows by noetherian induction with respect to s u a-reductions. 

Summarizing, we have proved the following commuting diagrams: 

nf0l 11/1 I 

nf0 l IS I 

I l nf0 Info 
I I 
! ! 

-----+ -----+ -----+ -----+ 
'/! nf0 !!S nf0 

Moreover, we also know the following diagrams: 

---> ---> ---> 

)'1 s 
'I /i I 

lls 

Is ' 
ll /i 

I /I ' I I I 
I Is I ls 11 /I 
I I I 
! ! ! 

-----+ -----+ -----+ II /I ·s I /i 

According to the ordering 11/f > nf0 < 1 ls, the above diagrams are decreasing, and 

thus by Theorem 9.18 JcrP'1 is confluent. Contluence of h/J 1 then follows from the 

following two points: 

( l) Each rewrite rule of )J/! 1 is a derived rule in /,rjJ 1
1 • That is, 

( 2) Each reduction in )J/! 1
1 is contained in ),<f! 1 : 

t-++;,,p·,t1=t-++,.,1,,11. I 

INTERMEZZO 9.20. )crp 1 extends the ),u-calculus with names of Abadi et al. 

[ ACCL91] with vertical sharing. We translate /,u into ),rjJ 1 as follows: 

f[[x] =x 

I !lah] = .1- [a] f [h] 

I [J,x. a~ = ),x .. T ~a] 

.::F[a[sJl] =«.T[aJ I Y'in::[sD I Y'out 1 : [sD 
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<.()" CT·[ll-
·1 mvar 1u ~ - [', 

•• [ / ] {.'/
0 invar [s] 

Ymvarl(a;x).s = . __ , <r [·] 
_\-_\,.:-71Ilvaru\.\l· S 

.Y'outvar [id] =I: 

x E var 

x~ var 

~ ] {Youtvar [ s] 
Y'outvarl(a/x).s = ·'-Y-[] cc . ~'] 

x - . .:! a',/ outvaru :\: u.I 

XEVar 

x ~var. 

The above translation indicates how to map a let construct into a letrec. Namely, 

in order to avoid variable capture, each binding has to be split in two. For example, 

the term 

let x =cons l x in x 

is translated as 

letrec x' =cons I x in letrec x = x' in x. 

The binding x = x' is generated by Y'invar and the binding x' =cons 1 x is 

generated by Y'outv,w 
The substitution rules and garbage collection rules of A~ 1 simulate the lookup of 

a variable in a substitution, which is expressed in },O" by the following rules: 

x[(a/x).s] a 

x[(a/y).s] x[s] if x * y 

Var,: 

x[id] = x. 

Var 1 entails that the )a-calculus does not deal with cyclic substitutions. The 

distribution rules simulate the following rules: 

Abs: 

(h·.a)[s] 

App: 

(ab)[s] 

),y.a[(y/x).s] 

= (a[s])(b[s]). 

if y occurs in neither a nor s 

9.4. A Calculus f(1r Modular Lambda Graph Rewriting 

Until now we have kept the internal structure of a term. For example, we 

distinguish between the following two terms t 1 and t 2, respectively: 

(o:[o:=(o*o[o=t)) < o: I o: = o * (), (> = t >. 



LAMBDA CALCULUS WITH f.Xl'LIC!T Rl"CURS!ON 211 

However, we would like to consider the underlined box in r 1 as syntactic noise. To 

that end, we rewrite t 1 to t 2 by applying the following box elimination rule: 

( t I :x = s'', F) -> ri , < t I ex.= s, E. F). (9.10) 

The application of this rule becomes at times necessary in order to capture the 

amount of sharing in lazy implementations of functional languages. as described by 

Ariola !!! al. [AFM + 95, AF]. Consider the following reduction: 

An unnecessary copy of the redex I + I has been performed: the reduction of this 

redcx can be shared between the two different applications of :x. This sharing occurs 

if before substituting for :x, the box surrounding the lambda is eliminated, as 

described below: 

( ( a3) + ( C<4) I C< = < ),y. y * 6 I 6 = I + 1)) -> cJ,. < ( :x3) + ( cx.4) I C< = ),y. y * 6, 6 = I + I) 

-++ < ( 3 * 6) + ( C<4) I C< = ),y. )' *cl, 6 = 1 + 1) 

_, < ( 3 * c5 l+ ( :X4 l I :x = J.;·. 1· * 6. b = 2 >. 

However, not all the boxes can be eliminated. Consider the following example: 

()'I)'= (F'.X \ x=G(5, {5=G)')) ~ <l' I r= (Fx I x=GG)')) ~ <r I)'= FGGr) 

1 l 
< l' I y = Fx, ex.= G(5, b = GJ•) -------------------------------+ ? 

We have removed the underlined box which, as depicted in Fig. 24, is on a cycle. 

Once this cyclic box is removed the substitutions fr)r :X and c) will no longer be 

acyclic substitutions. This means that we need to distinguish between two kind of 

boxes: acyclic and cyclic. The boxes of Fig. 26 that are drawn with heavy lines are 

examples of cyclic boxes. The boxes of Fig. 27 are acyclic, since we require the cyclic 

path to go through the internal part of the box and be within the parl!nt hox. 

(A parent box of a box is the smallest box properly containing it.) Only acyclic 

boxes can be removed safely. Note that boxes of the form < t I ) can always be 

safely removed. Also, the underlined box in the term: 

< C< I a= ),y. < b + c) I c) = )' * )')) 

cannot be removed since )' will get out of scope. We can see that internal box as 

a cyclic box by representing each reference to a bound variable as a link back to 

the corresponding ),-node, as in [ AL94]. 
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FIG. 27. Graph ,,f <:x I :x = F(:x. < G(:x. (/31 /3 = G(x. /31) l I ) l). 

F,)!km-ing the above discussion we add a proviso to rule (9.10), obtaining 

<I I J._ = /. F) -> 0 <I I a.= s, E. F) if sH is acyclic. 

We also merge exkrnal boxes with the rule 

However. we still run into problems if in the following example sI. is a cyclic box: 

( 9.11) 

Thus. in order for conl1uence not to fail we need to be able to move the equations 
that are not on a cycle out of a box, as shown in the rule 

(I I x = s11 · 1 • F) -> 0 < t I x = :/1• E. F) if E #- e and E 1• x > E. 

where x > E means that a. and the recursion variables of E do not lie on the same 
cyclic plane; £ 1 > E means that the recursion variables of £ 1 do not occur rrec in 
E. Equipped with the new rule we can now close diagram (9.11 ): 

i 
101 

i 
(t I x=(.~F \ ), F)--~-> (11 x=s1'·, F). 

We need to move equations out of a lambda to cope with the following diagram: 
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The full set of rules is displayed in Table 2. The proviso E # 1:: is to guarantee strong 

normalization. Since box elimination causes more sharing, it means that if we want 

confluence to hold we need to introduce an operation that unshares the system. We 

thus admit the operation of copying; e.g., 

(IX 1 I IX 1 = .1·i , :x 2 = s; > 
I 
I 
I 

(ex 1 I :x 1 = .1· 1 , t = s~, F, F') 

where s~ and F' denote a renamed version of s2 and F, respectively. The dashed ver­

tical reductions consist of a sequence of D r-J steps followed by empty box removals. 

The new system is called i<p 2 • We present all the rules for ),qy 0 , ).r/> 1 , and iqy 2 in 
Table 3. 

PROPOSITION 9.21. Box elimination rules, garhage collection, and black hole rules 

are strongly nomw/i::ing. 

Proof: To each term t we associate a measure, written as 11•(1 ), that consists of 

a multiset counting the distance to the root for every box and every equation. 1r(f) 

is defined as follows: 

inc( 11·( t)) 

ll'(F"U1, ... , t,,)) inc(ir(t 1)u ... u11·(1 11 )) 

lt'(St) inc( 1r(s) u 11·( I)) 

\\'(IX) { { } J 

H'( ( I I :x 1 = 11, ... , ex,, = 111 ) ) H'( I) u l{ 0, ... , 0}} u inc( 11·(! 1 ) u · · · u 11·(1,,) ). 
'--v---' 

n ·t I 

inc adds one to each clement of the multiset, i.e., inc( l{ 11 1, ... , n 111 }} ) = {{ 11 1 + I, ... , 

11 111 +I}}. For example, 11·( ((:x Ix= F/1) I /1=(<1I1) = G<l))) = {l 0, 0, 0, 0, l, 1 }}. It 

is then routine to check that this measure decreases at each box elimination step 

and docs not increase with garbage collection and black hole. It thus follows that 

their union is strongly normalizing. I 

TABLE II 

Box Elimination Rules 

kx.1 1 1· 1 if E # i; and E 1, ex > E 

F(l,, .... 1;', .... I,,) ->11F F(l, ..... 1, ..... 1,,)f 

11's 

u/' ~i_J,.rr (ts) 1: 

(11··)"' -*um lie.I 

<r I ex=s 1'1· 1 , F)-> <r I ex=s1 1, E, F) if E # 1: and E 1, ex> E 
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TABLE Ill 

/i-ni/,· 

I i.1.fl.1 t i 1 =s) 

C[s] jii=s.E) 

.-t1·1·dit· \uhstiluti1m: 

, 1 , ~ C[ 1\]. ,i ~ 1 . /:"\ ... ,. (11x=C[s].1i=s. £) 

Hlad hoit·: 

q,\] l1i~ 0 1i.l:'\ 

1
1 1=C[1ij.1l= 0 <i. E\ 

(itJrhagt.' col/c(tion rult's: 

1' / 

/)1.11rih1aiu11 rules: 

1 n.11 1 

F"11, .... 1,,1' 

I/\ 11 

Box eli111inaf ion rules: 

F11 1 •.•• 1: .... 1,,1 

,,.,, 
/.\·' 

C 'opyinyr 

< q • J I,\ =a 6. E> 
(I I x=C[ •],'5= 0 1\, E) 

ix.1 1 

F"ll: .... I:, I 

-Jo d" 1rs'' 

IA (i.X./ 1'<)/.' 

1, Fi 11, .. ., I,, ... , I,,)'· 

J "' ( /S)/' 

I" (/S !"' 
Im t'· /· 

; 11 x=s 1 <, t:. F) 

if Y. > ,) 

if F # i; and F 1 E. t 

if 11:;, I 

if x is hound by F 

if E = 1: and E 1 , a > h' 

if E # 1: and E 1• x > h' 

if :l a variable mapping rr .. 1" 

PROPOSITION 9.22. The hox elimination rules with garbage colil'ction and h!ack 
hole are confluent. 

Proo( Follows from the fact that all critical palfs converge and from strong 
normalization. I 
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Proof As in the proof of confluence of Ji.I/> 1 , we first prove confluence of a new 

system, called ),lj>~, which contains the following rewrite rules: 

t--> nt. ,e s: ifs is the normal form oft with respect to the box elimination rules, 
black hole and garbage collection rules; 

t--> nto s: ifs is the normal form oft with respect to the distribution rules, black 
hole and garbage collection rules; 

t --> cgc s: if s is obtained from t by performing a copy step followed by the 

reduction to normal form with respect to garbage collection; 

t--> 11 s s: ifs is obtained from t by a complete development of a set, possibly 

empty, of substitution redexes; 

t __, 111 s: ifs is obtained from t by a complete development of a set, possibly 

empty, of /1 redexes. 

We next prove the weak confluence diagrams. 

--> cgc and the other rules. 

l "':" l "" 
-----7 

cgc 

----+, 
nt" I 

icgc 

I 
cgc t 

I 

I 
I 
I nf le 

I 
t 

------!> 
nf ·1a 

l
~I 

"" ["'" 
----+ 

ii s 

The confluence of copying is shown in [ AK96]. Copy does not commute with 

--> nt, 10 because a copy step can turn some cyclic boxes into acyclic boxes, as shown 

next: 

t = ( ()'. I ()'. = (Fe) I a= Gx)) ....... c < :x I ()'. = < F6 I 6 =Go:'> I, 

:x' = < F6 I c5 = G:x' > 1 > = s. 

The underlined cyclic box in t has two descendants in s, of which the one sub­

scripted with one is acyclic. 

->n 1. 10 and --+ 115 • The obstacle to ->n1 ,1 • commuting with --> 115 is due to the 

following interference (s' indicates a renamed version of s ): 

( C[ cl] I <) = s l:".F) ------es _____ __.. ( C[ s"". F] I 6 = s''". '") 

c_l I I l = nf; __ le 

( C[ <l] I 6 = s", F) --08--+ ( C[ sF] I 6 = si:·, F) --;;--> ( C[ s' E' ] I 6 = s'', F, F' ) 
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The same happens in case of acyclic substitution. In other words, """* n 1 1 interferes 

with suhstitution ifs'· Fis involved in the substitution. Following a similar argu­

ment as in th..: study of the interaction between ---> d 0 and the substitution rules (see 

the prtiof uf Theorem 9.23 ), and from the interaction between cgc and nf CJ. we 

have the following commuting diagram: 

-----+ ----+ ---~ 
11 s cgc nfue 

_, nf anJ ___, nt0 • Let us first analyze each distribution rule. 
1, 

---> dA · 

--:i. d ,1. 

-> dF · 

-->dlJ· 

(h:.t)" -----+ )..rx.t 1'. 
dA 

io 
- I ; 

L 
(hx.!) 1' +---- (Ao:.t'( 

gc 

( ts) f' ---------> I h's 1'. 

I d(// 

I io 
I I " 
I L 
I 
I ( f'sF )I:" 
I 
I ju." Jc 
I 
I L I 
I ( ( t's )"° )"°' I 
I 
I ' 
I I 
I JcJm 

L L 
(I's)"" H' - (/'s)F· I:" 

Same as the case above. 

Let F contain 11-equations. Then 

« '.X I £) I F) -dLJ _ __, ( !X I £1) 
1 

I 
ll'lm 
I 
L 

I 
I 
I rJ t e 

< 0: I E, F) -----"""* < !X I £' F IC' > 
c , 1, ... , r 11 

where -.... st·md. f th d · 
and garba~~ C(~llec;io~~ e re uct1on relation induced by the box elimination rules 
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Summarizing, we have: 

(9.12) 

----+ 
c 

From (9.12) and the fact that copying commutes with -++Li,' 

I 

: nf I 
I , 

! 
------+ 

nf. le u cgc 

where -++ nf u cgc stands for the reduction relation induced by 
l.Je 

-+ cgc · 

-+n1 and-+ 111 . The only interference is caused by -+cu: 
I .le 

/1 

= nfo 0 

Following an argument similar to that in the study of the interaction between -+ d«i 

and ff-reduction we then have the following commuting diagram: 

l"" '• 
-----+ 

1/1 

Summarizing, we have the diagrams used in the proof of confluence of ),rp 1 and the 

following diagrams: 

j~· 
"' ("' 
-------+ 

cgc 

---+, 
nfr1e I 

cgc 

lcgc 
I 
I 
! j~I j~i 

cgc l cgc cgc l cgc 

---~ -----+-

----+ 
nf.Je 

ls 

------+ -----+ 
cgc nf: "le 

nfo /I 

I 
I 
I nf IJe 

I 
! 

['"· "" l"' ' 
-----~ 

nf:- 1
e u cgc 

nf I I e 

--+! nf ,, 

jnf,, 
'Je 

----+ 
Ii(! 
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According to the ordering nf . < cgc < nf 0 < 11 /f < II s, the above diagrams are 
~ [J, ' 

decreasing, and thus by Theorem 9.18 ).</J~ is confluent. As in the proof of con-

fluence of }.</J 1 • confluence of }.~ 2 follows from the fact that a reduction of ).rp2 1s a 

derived reduction in 1.cp~, and each reduction in ),</J~ is contained in A</Jz. I 

The presence of both distribution and box elimination rules cause infinite reduc­

tions like the f()llowing one: 

(}.Cl.. xo l J' _,, 11 < o:o I ex= l' > _,, d'" <ex I o: = 1» < o I a= y) --++ gc 

<ex I ex= I') (l -> 0 " 1 < ao I o: =I'> -++ · .. · 

Thus, ).</> 2 does not preserve strong normalization on strong normalizing )-terms. 

We also point out that the system ).~ 0 v Box elimination rules v Copying is con­

tluent. 

Remark 9.24. Given a ).-calculus term M=:).x.C[N], N is said to be a free 

expression of /14 if all free variables of N are free in M. N is said to be a maximal 

free expression (mfo) of M if M does not contain any other free expression that 

properly contains N. If we start from a J.-calculus term such that each ;\,-abstraction 

does not have trivial m!C's (i.e., different from a variable) then the ).~ 2 -calculus is 

able to simulate Wadsworth's interpreter. The trick is played by the /1-rule and the 

box elimination rules: a redex (J.a.M)A will be reduced to <MI o: =A), that is, A 

is put in the environment, as in [ H M76] or, following the terminology of 

[ AKP84 ], A is "'flagged" so that it will not be copied in case the redex is shared. 

This suggests that in order to avoid the extra complication of detecting mfe's at run 

time, as in [Wad71], a term can be first pre-processed by well-known techniques 

[ Hug82, Joh85]. Then sharing of arguments is enough to capture the amount of 

sharing offered hy Wadsworth's interpreter. 

We can now extend J.~ 2 with term rewriting rules. 

THEOREM 9.25. Let R be an orthogonal term rewriting system. Then Al/> 2 u R i.1· 

confluent. 

Pro<!/: Following the proof of confluence of A~ 2 we can show the commuting 

diagrams 

j ,IR l j ;IR 1 

nf0 :II nf0 nf I f ,. u, ln : 1, 

----+ ----+ ---~ -----+ ----+-
llR nf0 1IR cgc nf; 1e 

where ---. 1 R stands for a complete development of a set of R-redexes. I 

We can also extend J.~ 2 with orthogonal term graph rewriting rules. With respect 
to the term rewriting rules 

F(ex)---. G(a, a) 

H(a)--.. I, 
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instead of reducing the term F(H(17)) as 

F(H(17))-> G(H(IJ), H(r7)), 

thus duplicating the redex H(17), we would like to keep the substitution m the 

environment, as in the following reduction: 

F(H(!]))-> (G(a, ex) I a= H(IJ)). 

One possibility is to introduce a new notion of reduction. If I---> r is a first-order 

term rewriting rule, and /" a redex, then we can say 

I"---> (r I x 1 = t 1 , ••• , x,, = t 11 ), 

where a is the mapping x 1 f--t t 1 , ••• , x 11 f--t t,,. The alternative we pursue instead is to 

require the right-hand side of a first-order term rewriting rule to be a M>-term, 

which is linear in its free variables. For example, we express the rule F( ex) ---> G (a, ex) 

as 

F(a) _, ( G(6, ())I 6 =ex). 

Now rewriting can proceed as in first-order term rewriting. 

THEOREM 9.26. Let R be an orthogonal term graph rewriting system. Then 

),rp 2 u R is confluent. 

Pr(}(~l Since term graph rewriting does not cause a duplication we now have the 

following commuting diagrams: 

10. PREVIOUS WORK 

This work follows the tradition of providing calculi that model more closely 

important practical concerns in a language implementation. In particular, our work 

has focused on developing a theory able to capture horizontal and vertical sharing 

in the context of lambda calculus and first-order rewriting. Most of the previous 

work is concerned with first-order theories [ SPvE93]. The operational approach of 

Barendregt et al. [BvEG+87], Smetsers [Sme93], Kennaway et al. [KKSdV94], 

and Farmer et al. [ FW9 l, Far90] is based on pointers, redirections, and indirec­

tions. The category-oriented approach of Lowe [ L6w93 ], Raoult [ Rao84 ], and 

Kenna way [ Ken87, Ken90] describes graph rewriting in terms of a single or double 

pushout. The set-theoretic approach of Ariola et al. [ Ari92, Ari96, AA93, AA95, 
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AK96] and Raoult et al. [ RV92] is the approach described in this paper. Typical 

results are confluence and correctness with respect to either infinitary term rewriting 

[ KKSdV94, Far90] or finite approximations [ Ari96]. 

The issue of lambda calculus and sharing has been addressed by Launchbury 

[ Lau93] and Purushothaman et al. [ PS92] in an attempt to specify the opera­

tional semantics of lazy functional languages such as Haskell [HP JW + 92]. 

Purushothaman et al. deal with vertical sharing only. Launchbury's evaluator deals 

with both kinds of sharing. However, Launchbury does not provide an equational 

theory, and as such his work is not useful for expressing and reasoning about com­

piler transformations. Sharing has been studied in the framework of the calculus of 

explicit substitution by Field [ Fie90] and Rose [ Ros92b]. Usually this approach 

to sharing is referred to as the environment model, where an environment is a 

collection of mappings between variable names and terms. Rose's system allows 

cyclic structures and will be discussed below. 

The issue of sharing has also been studied in the context of optimal (according 

to Uvy's theory [ Lev78]) implementations of A.-calculus. For example, see Mackie 

[Mac94], Asperti and Laneve [AL94, Lan93], Lamping [Lam90], Kathail 

[Kat90], and Gonthier et al. [GAL92]. In this approach sharing is made explicit 

by the use of fan-in nodes. Both kinds of sharing are covered and surprisingly the 

proposed calculi still enjoy confluence. The explanation for this fact is that the 

mechanism of copying in those calculi is more refined than ours, namely node-by­

node. We will discuss the relation with this work in more depth in Section 10.2. We 

remark that our approach is not optimal. 

10.1. Rose's System. 

We present the system introduced by Rose [ Ros92b] in our framework. Rose 

calls his system A.µ, not to be confused with the system of Section 7. I. The set of 

A.µ-terms is defined as follows: 

S::=M/l 

M ::= rx I (A.rx.S) I (ST) 

S stands for a A.µ-term; M, P stand for the A.-component stripped of the substitu­

tion; µ, p, y, and n range over a sequence of equations. The reduction rules are 

given in Table 4. PJi, µ 2 , µ 3 , and µ 4 can be simulated in A.~ 2 as follows: 

((A.a.M'')P S)Y ~<MIµ, p, a= S, y) 

ldA f Orn 

! I 
((A.a.M11P)S)1' 11 <MPP I rx=S)l' 
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TABLE IV 

Rose's >.µ-Calculus 

P11: 
( (}.o:. M 1')'' Sir -> (Mlp.p,1=S.r) 

J.11: 

(o: I 0:1 = M','' • ... , o:k = M~') 

JI 2: 

(tX1 I 0'.1 = M',' 1 •... , rt.k = M:· > -> (M1 l111.rt.1=M',' 1 •••• ,o:,=M:•) 

/13: 
l).o:.M'')" 

/14: 
(M1'P") 1' 

with the recursion variables defined in 11 1 not 

occurring free in M'.". i?; 1. 

(h.M'"" I> 
if p is non-empty 

< M1'·" P"·" I ) 
ifp is non-empty 

(,l.O(.M1')"---+ <(A.O(.M"·")I) 
I J'.l I 

I dA I gc 

i i 
A.rx.M1•1•-----+AO(.M1•.1• 

Om 

(M1'P")I' __ _... ((Mi'·l'P"·l')I) 
1'4 I du1 I gc 

i i 
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Thus, the main difference between A.r/> 2 and Rose's calculus concerns µ 1, which is 
absent in A.r/> 2 • The reason that prevents µ 1 to be simulated in A.r/> 2 is that µ 1 intro­
duces new cyclic boxes. For example, /L 1 allows the following reduction: 
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The internal box of the right-hand side term is on a cycle and thus cannot be 

removed. 

I 0.2. lntaaction Nets 

Di!forently from the /.-graphs drawn in this paper, a net is an undirected graph, 

in which the sharing is not represented by multiple pointers to the same node, but 

by a specific node, called fan-in following Lamping [ Lam90]. The fan-in node is 

drawn as in Fig. 28a; we will often omit the and * symbols. We will come back 

later to the explanation of these symbols. In the fan-in node the two nets connected 

to the higher links share the net connected to the lower link. When the lower link 

is connected to a lambda-node, the fan-in node is in charge of duplication or 

copying. A fan-in drawn upside-down is called fan-out, see Fig. 28b. While the 

fan-in is responsible for sharing, the fan-out is responsible for unsharing. More 

precisely. the fan-out node allows partial sharing; the net connected to the higher 

link is shared and is connected to different nets depending on which side ( , or *) 

we exit the fan-out node. This partial sharing was first introduced by Lamping 

[ Lam90] and Kathail [ Kat90] to provide an optimal (according to Levy's theory 

[ Lev78]) implementation of /.-calculus. and provides the essential ingredient to 

solve our counterexamples to confluence. Lastly, following an idea used by Bourbaki 

in ""Elements de Theorie des Ensembles'' to deal with quantifiers, a variable is 

represented by a link to the corresponding binding node. 
Summarizing, a net for /.-calculus contains the kind of nodes drawn in Fig. 29. 

Each node has a fixed number of ports. For example, the lambda-node has three 

ports, connecting the lambda-node to the context, to the bound occurrences, and 

to the function body. One particular port is called the principal port (indicated with 

an heavy line). The principal port allows an interaction between the nodes to occur. 

The last node is the erasure node (see [ Mac94]) that is used to represents terms 

of the form l.x. Af, where the bound variable x does not occur free in M. The terms 

).x. x. J.x .. n:, and ).x .y are represented by the nets of Fig. 30. In the following, in 

drawing nets we may take the liberty of using variables names. Thus we represent 
the system 

(x I x=/,x.6(Sx), 6=).y.x(Sy)>. 

as in Fig: 3la. Note that we have included a fan-in node between the application 

and the 1.y-node even though the /.y-node is not shared. This is to capture the fact 

l l ~ 
'? Ii 

(a) (b) 

FIG. 28. Fan-in and fan-out nodes. 
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l i L 
AA Y Ii r 

FIG. 29. Nodes of an interaction net for i.-calculus. 

FIG. 30. Interaction nets for i.x.x. i.x.xx. and i.x.y. 

Ax 

I 
@""' Yi 

A.y 

I 

A.y 

I 
G 

@ 

""' s <,~ 
(b) 

FIG. 31. Cyclic interaction nets. 

FIG. 32. Interaction net with two interactions. 

223 
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that c'i( Sx l is an implicit /J-redex. We do the same in the representation of the 

system 

<:x I :x = i.x. F( J'( Sx ), Sx), y = ).y. G( :x(Sy), Sy)), 

which is drawn in Figure 3 lb. 
As was said earlier, these nodes (also called agents by Lafont [Laf90]) interact 

in a very controlled way, namely through the principal port. It is possible to specify 

an action when an interaction occurs by using rewrite rules, which are restricted to 

binary interactions. For example, the net of Fig. 32 cannot be the left-hand side of 

a rule, since it specifics two interactions. Moreover, for each interaction we can 

specify at most one rewrite rule. These conditions guarantee that interaction nets 

satist~· the diamond property, as stated in [Lat90]. 

We can now specify the reduction rules for ).-calculus. First, the /J-rule expresses 

an interaction between the ;, and the application node and is drawn as in Fig. 33. 

The 1.:onncction of link :x to link 15 expresses the fact that the root of the redex is 

over-written by the body of the function. The connection of link x to link y 

expn~sses the fact that the bound variables are replaced by a reference to the argu­

ment. For example, the reduction of ().x.xx)(A.x' .x'x') is given in Fig. 34. We can 

formulate this rule in our equational framework by relaxing our scope rules, namely 

by allowing the body of a lambda abstraction to be spread out through the set of 

equations. The ff-rule then becomes 

:x = (}.x. 15) y _,, cx = (5, x = y, 

where 11 and ;· are recursion variables. We can then mimic the reduction of Fig. 34 

in our modified equational framework with the following reduction: 

cx=(}.x.J)y, -+ cx=c5, 
(5 = xx, 

}'= ).x'.15', 

(? =x'x' 

1) =XX, 

X=)', 

J'=Ax'.15', 

(5' =x'x'. 

. Le_t u~ now assume there exists an obstacle to the A-(fi\ interaction, namely, there 

is a l~n-m. nod.e between the application and the lambda-node. This corresponds to 

the s1tuat1011 m our equational framework of having a name associated to the 

).-node. Consider the system 

(ex I cx=..1.x.J, b=cxy, y=x), 

in which .we assume the variable x is bound by the lambda-node. To make cxy into 

an exphc1t /J-redex we need to apply the substitution operation. Thus, 

( cx I cx = Ax· c5. () = cxy, )' = x) -+ s ( ex I oc = Ax . b, <l = (h. b) y, }' = x ) . 
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a 

~k 
x 1l 

FIG. 33. ft-rule. 

FIG. 34. ,B-reduction of (Ax. xx )().x'. x'x' ). 

FIG. 35. Fan-in and J..-interaction. 

Ax 

I 
@" 

x 

FIG. 36. Fan-in and A.-reduction. 
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Note that only the lambda-node has been duplicated. However, we now have that 

variable x is in the scope of two lambdas. This requires the introduction of a 

mechanism for unsharing x. This is indeed the job of the fan-out node. The right 

way of performing the above substitution should be 

<a I oc = lcx.6, 6 = ocy, )' = x> ---.. <IX I a= }.x.6, 6 =(/ex' .6) )', y = Fan-out(x', x) ). 

(10.13) 

The substitution operation is captured in interaction nets by the rules expressing 

the interaction between a fan-in and a ). (see Fig. 35 ). By crossing the lambda-node 

the fan-in node is duplicated. One copy is in charge of duplicating the lambda-body 

and the other one is responsible for creating two copies of the bound variable. The 

substitution given in 10.13 is displayed in Fig. 36. (Note that the net on the right 

consists of two connected nets, since x is a link to the ),-node.) This rule outlines 

a very important difference between interaction nets and our equational framework. 

The copying necessary to implement the /}-rule is done lazily in the interaction nets 

approach, namely, it is done node-by-node. Instead, in our framework it is done at 

once. In fact, corresponding to the reduction in question we would have 

< oc I oc = Lx-. ocx > --> s < ex I ex = ).x . ( }.x. ax) x) --> ;i < ex I a = ).x. ax > --> s · · · . 

We finally have the rules that deal with fan-in and fan-out nodes. If the fan-in 

and fan-out nodes match, that is the fan-out node is the one introduced by the 

corresponding fan-in node, then they cancel each other out (see the rule on the left 

of Fig. 37 ). Otherwise, both fan-in and fan-out nodes are duplicated (see the rule on 

the right of Fig. 37). In order to keep track of the matching between fan-in and fan­

out nodes, fan nodes need to be labelled with an index which varies during reduc­

tion under the control of some additional nodes called brakets. We do not present 

this additional mechanism here but refer to [GAL92, Mac94, AL94, Lam90]. 

In [Mac94] it is mentioned that our counterexamples disappear in the frame­

work of interaction nets. We are now ready to show in detail how this happens. In 

Fig. 38 we show the reduction corresponding to the counterexample of Section 4. 

a b 

a b a b a b LL I I I I 

y~ y~ (° *XO ) 
yy 0 * 0 * I I I I 

c d c d c d c d 

FIG. 37. Fan-in and fan-out rules. 
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FIG. 38. First counterexample in interaction nets. 

With the introduction of the fan-out nodes we solve the out of sync phenomenon 
since we are no longer required to copy an even number of S's. 

Let us now turn to the third counterexample described in Section 6, which is 
given in Fig. 39. The common net should thus correspond to an irregular tree. This 

translation, also called read back semantics. is explained next. Let us call the 
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x' 

FIG. 39. Third counterexample in interaction nets. 
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top-most fan-in node the red fan-in and the lower one the blue fan-in. In the figure 

we have indicated the corresponding fan-outs. Note that at this point the symbols 

and * are significant. For simplicity we refer to as L (left) and to * as R (right). 

In the read back procedure (called unwinding in this paper) we make use ofa stack 

to remember which port of the fan-in we enter from. We start by generating a 

).x' -node. When we enter the fan-in node we push on the red-stack the symbol R. 

We connect the ).x'-node to the node labelled F. Since F has two arguments we 

duplicate the red stack; one is used to generate the first argument and the other one 

is used for generating the second argument. Let us continue with the second argu­

ment. We generate an S and we go through a fan-in node. but since there are no 

associated fan-out nodes we do not save anything on the stack. We then reach the 

red fan-out, from which we must exit from the port the associated fan-in was 

entered from. This information is saved on the red stack of the second argument. 

Since on the top of the stack we read R we exit the fan-out from the right port and 

we thus generate x' and pop R from the red stack. Since we have reached a bound 

variable it means that we have finished generating the second argument of F. We 

now go back to the generation of the first argument of F. We go through the blue 

fan-in. We thus push R on the blue stack. We then connect the first argument to 

a G. As before since G has two arguments we duplicate both the red and blue 

stacks. We note that both stacks now contain R. We continue with the second argu­

ment of G. We generate an S, we then exit the blue fan-out with an S and the red 

fan-out with an x'. indicating that we have finished with the second argument of G. 

With respect to the first argument we first push L on the red stack. We connect the 

G to an F and duplicate the stacks. On the second argument of F we connect the 

F to an S and then exit the red fan-out from the L port (and pop the red stack). 

This means that we generate one S. We then exit the blue fan-out from the R port 

(the blue stack is now empty), thus generating one more S. We finally exit the red 

fan-out from the R port. This completes the generation of this argument. At this 

point we have the tree drawn in Fig. 40. The rest is generated in a similar way. 

In conclusion, our counterexamples to cont1uence disappear in this framework, 

however, at the expense of greater complexity. Moreover, the correctness of this 

approach has only been shown with respect to ordinary /.-calculus; thus it would 

be interesting to prove that correctness also holds for cyclic graphs. 

FIG. 40. Partial tree. 
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CONCLUSIONS AND FUTURE DIRECTIONS 

We have defined a series of calculi as extensions of the Jc-calculus with the aim 

of providing systems where it is possible to model sharing and cyclic structures. The 

motivation for this work came from the desire to provide a unifying framework for 

reasoning about execution, compilation, and optimization of programs. In these 

three areas sharing and cycles are ubiquitous; they occur after parsing, in the inter­

mediate program representation (language), and during program execution. 

The focus of this paper has been on developing calculi that enjoy the confluence 

property. As such, the resulting calculi fail to capture program transformations that 

deal with mutually recursive functions. Our next step is to study calculi that have 

a more liberal view of rewriting, i.e., substitutions can occur on a cycle. This 

involves the intrnduction of a more abstract notion of confluence. Whilst confluence 

guarantees unicity of normal forms. the new notion of confluence should guarantee 

unicity of infinite normal forms. These calculi should correspond to the inter­

mediate languages used in the compilation of the functional core of both strict and 

non-strict languages. We intend to make use of these calculi in studying the effects 

of diflerent strategies on both the time and space behavior of programs and relating 

them to current optimizations, including loop transformations. 

In order to formalize the compilation and optimization of a program as a 

rewriting process. we intend to enhance current rewriting technology to cover rules 

with conditions and priorities. Priorities are associated with rules in order to 

impose a certain order, with the intention that a rule which is higher in the order 

will be the preferred one to apply. We will also consider the rewriting of discon­

nected graphs, which, as shown by Pinter et al. [ PP94], is useful for detecting 

parallelizable program structures in sequential programs. 
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