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Preface 

This monograph covers a series of lectures presented by Maarten Bergvelt and Fons ten 

Kroode in the seminar "Mathematical Structures in Field Theories" during the academic 

year 1986-1987. At that time Bergvelt was a research fellow at the Max Planck Institute 

in Bonn, Germany, while ten Kroode was preparing his thesis on Kac-Moody algebras 

at the Mathematical Institute of the University of Amsterdam. Notwithstanding the 

pressure they both were under they managed to give a very comprehesive series of 

seminars for an audience of mathematicians and theoretical physicists As is shown by 

the table of contents they covered, starting with finite dimensional semisimple Lie 

algebras and ending with infinite dimensional matrix algebras, all fundamental concepts 

needed to fully understand the structure of Kac-Moody algebras and the integrable 

highest weight representations. All this is richly illustrated by the homogeneous and 

principal realization of the basic module L(.A()) of the Kac-Moody algebra A~1>. 

The editors want to apologize for the delay in publication of the volume. This delay is 

mainly due to the problems in getting the manuscript typed. In the end ten Kroode did it 

himself after having finished his thesis. 

The organizers of the seminar want to express their acknowledgement to ~ergvelt and 

ten Kroode for their most inspiring lectures and to the people of the Centre for 

Mathematics and Computer Science for the printing job. 

The editors 

E.A. de Kerf 

H.G.J. Pijls 
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Chapter 1 simple Lie algebras 

1. 0 introduction 

In this chapter we give a survey of the theory of finite dimensional simple Lie algebras 

in such a way that the generalization to Kac-Moody algebras is not too surprising. We 

will not attempt to prove everything, but we will illustrate the theory with many 

examples. As a standard reference to the theory of finite dimensional simple Lie 

algebras we use [Hum]. 

1.1 simple Lie algebras, definitions 

A Lie algebra over IC is a vector space over IC equipped with an operation on itself, 

called bracket or commutator and denoted by (x,y)-4[x,y], which is bilinear, 

antisymmetric (i.e., [x,y] = - [y,x]) and which satisfies the Jacobi identity: 

(1.1.1) [x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0 

The standard example of a Lie algebra is the space EndV of endomorphisms of a vector 

space V, equipped with the bracket 

(1.1.2) [x,y] := xy - yx 'Vx,yeEndV 

EndV together with this bracket is also denoted by gl(V). More concretely, if V has 

(complex) dimension n we can, by choosing a basis, identify gl(V) with g/(n,IC), the 

space of nxn complex matrices. 

Let from now on g be a fixed Lie algebra. Let!• !?_be two subspaces of g. Then we 

denote by [!, !?_] the vector space spanned by elements [x,y] with xe! and ye!?_. 

A subalgebra ! of g is a subspace of g such that[! , !]C~. An ideal.!_ of g is a 

subalgebra such that [g , .!_]c.!_. For instance {0) and g itself are ideals of g. We will 

call these the trivial ideals. A nontrivial ideal in g/(n,C) is formed by the multiples of the 

identity matrix. Possibly nontrivial ideals are the center ~· defined by the requirement 

[~ , g] = 0, and the so-called derived algebra g' := [g , g]; this depends on g. A Lie 

1 



algebra is called abelian if [g , g] = 0. For example every one dimensional Lie algebra is 
abelian, just as the set of diagonal matrices in g/(n,C). 

A Lie algebra g is called simple if it is nonabelian and if it has no nontrivial ideals. 
The Lie algebra g/(n,(;) is not simple, since it contains the ideal (A.In, AE(;}. In this 
chapter we will study the simple Lie algebras not so much because the property of 
simplicity is of great interest to us, but because these Lie algebras happen to be special 
cases of a class of in general infinite dimensional Lie algebras, the so-called Kac-Moody 
algebras, which are (except when they happen to be finite dimensional) not simple. 

1. 2 simple Lie algebras, examples 

To have some examples of simple Lie algebras, we will briefly describe in this section 
the four classical series of Lie algebras, denoted by A1, B1, c1 and D1. We will skip the 
proof that these algebras are indeed simple. 

The algebra A1 is also known as s/(/+ l ,C) and consists of (/+ 1)x(/+1) traceless 
matrices. The other three series B 1, c1andD1 consist of subalgebras of A1 (for suitable 
/). To describe them, we need a little digression on symmetries of bilinear forms. Let V 
be a vector space and fa bilinear form on V. Then we will call XE g/(V) an 
(infinitesimal) symmetry off if 

(1.2.1) fl.xv,w) + fl.v,xw) = 0 'r/v,wEV 

One easily checks that the symmetries off form a Lie algebra, i.e., that if x,yE g/(V) are 
symmetries off, their commutator [x,yl is also a symmetry off 

Using this concept, B / is defined as the subalgebra of A21 = s/(2/+ l ,C), consisting 
of infinitesimal symmetries of a nondegenera.~ symmetric form on c21+1. One also 
denotes B / by so(2/+ l ,C) and checks that it consists of skew symmetric matrices. 

In the same way c1 is defined as the Lie algebra of infinitesimal symmetries of a 
nondegenerate antisymmetric bilinear form(= symplectic form) on c21. This algebra is 
also denoted by sp(2l,C) and it consists of matrices of the form 

(1.2.2) 
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with Zi lxl matrices and Zi· ~ symmetric. 

The Lie algebra D 1 is defined in a similar way as B 1, but now f is a symmetric 

bilinear form on an even dimensional space c21. D 1 is also known as so(2l,C) and, just 

as B 1, consists of skew symmetric matrices. 

Beside the examples above there exist five more simple Lie algebras, the so-called 

exceptional ones, denoted by F 4, G2, E6, E7 and E8. We will not discuss these here, 

but we remark that especially E8 is very interesting from the point of view of string 

theory. 

1. 3 the Killing form 

In the theory of Lie algebras an important role is played by a certain bilinear form on a 

Lie algebra g. In this section we study some of the properties of this so-called Killing 

form. 

We define for every xe g a linear transformation adxe gl(g) by adx(y) := [x,y]. This 

is called the adjoint action of g on itself. If g has dimension n, adx can be represented 

(after choosing a basis for g) by an nxn matrix. Using this, we introduce the Killing 

form (on finite dimensional Lie algebras) by 

(1.3.1) (xly) :=trace( adx ady) 

By a fundamental property of the trace this definition is independent of the choice of 

basis made to calculate the right hand side of (1.3.1). One also sees that the Killing 

form is bilinear and symmetric. Furthermore, we have 

(1.3.2) ([x,y]lz) = (xl[y,z]) 

Indeed: ([x,y] lz) =trace( ad[x,y] adz) 

=trace( [adx' ady] adz) 

=trace( adx [ady , adz] ) 
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= (xl[y,z]) 

Property (1.3.2) is referred to as the invariance of the Killing form. (In fact it shows that 

adgcg/(g) consists of infinitesimal symmetries of the Killing form, see section 1.2.) 

Very important is the following theorem, which we shall not prove. 

theorem (Cartan) 

The Killing form on a simple (finite dimensional) Lie algebra is nondegenerate. • 

1. 4 Cartan subalgebras 

Let form now on g be a fixed finite dimensional Lie algebra over C. An element xe g is 

called semisimple if adx can be diagonalized. For example (? 6 ) e A 1 = s/(2,C) is 

semisimple while ( g 6 ) is not. A Cartan subalgebra !! of g is a maximal abelian 

subalgebra consisting of semisimple elements. So C (? 6 ) and C ( 6 ~ ) are Cartan 

subalgebras while C ( g 6 ) is not (although it is maximal abelian). 

theorem 1.4.1 

Any simple Lie algebra has a Cartan subalgebra. • 

definition 1.4.2 

An automorphism of g is an invertible linear mapping cp : g~g such that cp([x,y]) = 
[cp(x),cp(y)] Vx,ye g. 

theorem 1.4.3 

Let!! 1 and !!2 be two Cartan subalgebras of g, then there exists an automorphism cp of g 
such that<!>(!! 1) = !!2. • 

We remark that this theorem does not hold for real simple Lie algebras. Therefore, their 

structure theory is more complicated. 

As an example of theorem 1.4.3 we mention the Cartan subalgebras C (? 6 ) and C ( 6 -~ ) 
which are related through conjugacy by the element ( _\ ~ ). 
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Theorem 1.4.3 tells us that all Cartan subalgebras are equivalent. In particular, their 

dimension is an invariant of g and is called the rank of g. The subscripts in the Lie 

algebras A1, •.. , E8 denote their rank. From now on we will fix some Cartan subalgebra 

!! of g. For the classical Lie algebras A1 and c1 one always chooses!! to consist of 

diagonal matrices. 

1. S roots and root spaces 

The importance of Cartan subalgebras lies in the fact that the endomorphisms adh, he!! 

commute. (Indeed we have: adh1 adh2(x) = [hl'[h2,x]] = [x,[h2,h1]] + [h2,[hl'x]] = 

adh2 adh1 (x), where we have used the Jacobi identity and the fact that!! is abelian.) As 

is well known, a set of commuting, diagonalizable operators on a vector space has a 

collection of common eigenvectors which form a basis for this vector space. We will 

study the common eigenvectors of { adh, he!!) . 

Let!!* be the dual of!! (i.e., the space of linear functions ex : !!_~«::) and denote the 

dual contraction by <ex,h>, ae !! *, he!!_. Define for a'* Oe !!_ * the (possibly trivial) 

space 

(1.5.1) &ex := {xe g I [h,x] = <ex,h> x, 'v'he !!_) 

If &cx:i!: 0 it is called a root space, a a root and xe g ex a root vector. The set of all roots 

is called the root system a: 

(1.5.2) a := {exe !!"'-{O) I &a :if: 0) 

The Cartan subalgebra !! itself consists of eigenvectors of ad!!_ with eigenvalues zero, so 

we can write!! = g0. However, one prefers to exclude 0 from the set of roots a. 

Since the eigenvectors of ad!!_ form a basis of g, we have a direct sum 

decomposition 

(1.5.3) 

This is called the root space decomposition of g. 
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1. 6 roots and root spaces for A1 

Recall that Az = sl(l+l,C::). We choose as Cartan subalgebra !! the set of diagonal 

matrices (of trace zero). Let diag(a1, ~, ..• ,a1+1) denote the diagonal matrix with aie II: 

as its entries. Then 

(1.6.1) 

Define the elements A.i of!!* by 

(1.6.2) i = l, 2, ... /,+1 

We have of course the following relation between the A.i's 

(1.6.3) 

and any choice of l of the A.i's yields a basis for!!_*. 

Let Eij be the matrix with a 1 on the (ij)th entry and 0 elsewhere. Then one 

calculates 

( 1.6.4) 

Hence we find that A.i - Af !! * is a root for all i ~ j and that the associated root space is 
given by 

(1.6.5) g~ ~ =a:; E·· 
l\rl\,• lJ 

1 J 

Since the Eij together with!! form a basis for sl(l+ l,C::), we find that all roots are of the 

form A.i - A.j. In other words 

(1.6.6) 
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1. 7 further properties of roots and root spaces 

We want to know which root spaces ga are orthogonal to each other with respect to the 

Killing form (1.3.1); let xae ga, y~e g~, then by the invariance of the Killing form we 

have for all heh: 

(1.7.1) 

Hence, if a + ~ * 0 the root spaces ga and g~ are orthogonal. From this we see that, if 

a is a root, -a must also be a root (for else by (1.5.3) (xaly) = 0 for all ye g_, 

contradicting the nondegeneracy of the Killing form). Since!! is orthogonal to all ga, 

ae A, the restriction of the Killing form to !!X!! must be nondegenerate. This leads to 

the introduction of an isomorphism between!! and!!"': 

(1.7.2) v: h~h"' 

<V(h) , h'> := (h I h') V'h,h'e !! 

Using this isomorphism, we can transport the Killing form to!!"'· This form will also be 

denoted by ( I ). 

In the example of sl(l+ I ,IC) we found that the root spaces 8.a are one dimensional. 

This holds for all simple Lie algebras. A simple calculation, using the Jacobi identity, 

shows that 

(1.7 .3) V'a.~e & 

In fact even more is true; if a,~ and a+~ are roots, then 

(1.7.4) 

From (1.7.3) we see that [.S.a, {_al belongs to!!· Let x±ae&±a' then we can 

write 
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(1.7.5) 

'v'he h 

Since ( I ) is nondegenerate on !:!. we obtain 

(1.7.6) 

So we find the important result that the triple xcv x_a, v-1(a) forms a subalgebra of g_, 
isomorphic to s/(2,C). To see this, we choose a standard basis for s/(2,C): 

(1.7 .7) e =(~ ~) h=(~-~) f=C ~) 
and choose (xa I x_a) to be 1~12 • Then we have an isomorphism 

(1.7.8) h ~ ~ v-1(a) =: av 
lal 

The ex v.s are called coroots. We learn from this that a simple Lie algebra is built up 
from s/(2,C) subalgebras (one for each pair a,-a in A), spanned by xa, x_a and cxv. 

Next we discuss the connection between the different s/(2,C) subalgebras. Let 
a,f3e A, a "*" f3. Then we want to know for which ie Z the element f3 + ia is again a 
root. It turns out that these integers i form a closed interval: -r9~ and that 

(1.7.9) 2(f3la) v r-q=--=<f3,a > 
(al a) 

The set (f3+ia I -r9~} is called the a-root string through f3. For formula (1.7.9) to 
make sense, the right hand side must be an integer and, miraculously, <f3,cxv> turns 
out to be an integer for all a,f3 in the root system of a simple Lie algebra. 
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1. 8 simple roots 

First note that A spans !! *, for if it did not, there would exist an element he!!· such that 

<<X,h> = 0 'Vae!::i., implying that [h,xal = 0 'Vae!::i., or in other words that h would 

belong to the center of g, which, being an ideal, is zero. Next consider the formula 

(1. 7.4). It suggests that we might try to generate all root spaces by taking commutators 

of a subset of the root spaces, or, more or less equivalently, that one might try to write 

the roots as integral linear combinations of a subset of the roots. 

These considerations lead to the concept of a root basis IT of the root system A. 

This is a subset (al' a2, .... , a1) of A that forms a basis of!!* and such that every 

ae A can be written as 

I 

(1.8.1) a= L niai 
i=l 

with either all ni~ or all Dj_SO (and not all °i = 0). 

theorem 

Every root system A associated to a simple Lie algebra g has a root basis IT.+ 

The elements ai of IT are called the simple roots, the corresponding root vectors, 

denoted by ei are called simple root vectors. The root vectors associated to the roots 

-<Xj are denoted by fi. We always normalize things in such a way that 

(1.8.2) 

with 

(1.8.3) 
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1. 9 generators and relations 

The simple root vectors ei, fi and their associated simple coroots a~ satisfy the 
following relations 

(1.9.1) [ei ' 9 = Bij a~ 

(1.9.2) [a~, ej] = <a.j, a.~>ej 

(1.9.3) [a~, 9 = -<a.j, a~>~ 

(1.9.4) [a°:', a':']= 0 
1 J 

(l.9.5) 1-<a..,a.~> (ad e·) J 1 e· = 0 
1 J 

(1.9.6) (ad f./-<a.j,a.;> f.= 0 
1 J 

Relation (1.9.1) for i = j is the definition of a":', while for i :;1: j (1.9.1) follows from the 
1 

relation [ei, 9cga.i-<X· and the fact that a.i - a.j is not a root (because a.i and a.j are 
simple roots). Relation{ (1.9.2) and (l.9.3) just state that ej and fj are root vectors 
associated to the roots aj and -a.j respectively. Relation (1.9.4) is the commutativity of 
!! and finally, relations (1.9.5) and (1.9.6) tell us that the «rroot string through a.j is 

given by a.j, a.j + a.i, a.j + 2a.j•···· a.j +(-<a.j, a.~>)ai. 
Note in these relations the appearance of the matrix of integers 

(1.9.7) lS:i,jS:/ 

This is called the Cartan matrix of g. It is uniquely determined by the root system d of g 
and satisfies the following conditions 
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(1.9.8) (1) 

(2) a·· =O~a·· =0 
IJ JI ' 

(3) det A* 0 and all principal minors of A are positive 

The relations (1.9.1)-(1.9.6) are very important because they are defining relations. 

This means the following: one can start with symbols ei, fi and a.7 and consider the Lie 

algebra generated by them, subject to the relations (1.9.1)-(1.9.6) (with ~j a matrix 

satisfying the conditions (1.9.8)). Then one can prove that the resulting Lie algebra is a 

direct sum of finite dimensional simple Lie algebras. Imposing one more condition on 

the Cartan matrix ("indecomposibility"), one obtains in this way precisely the finite 

dimensional simple Lie algebras. 

This construction of the simple Lie algebras by choosing a Cartan matrix satisfying 

the conditions (1.9.8) and imposing the relations (l.9.1)-(1.9.6) can be generalized. If 

one drops the condition det A * 0 and requires that all proper principal minors are 

positive, one obtains by the same construction the so-called affine Kac-Moody algebras. 

These will be the subject of the rest of these lectures. 
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Chapter 2 affine Lie algebras [Kac] 

2. 0 introduction 

In this chapter we introduce a second class of Kac-Moody algebras, namely the affine 

ones. In contrast with the finite dimensional simple Lie algebras, which were surveyed 

in the preceding chapter, these algebras are neither finite dimensional nor simple. They 

may be defined in two equivalent ways. The first one is purely algebraic and was 

already hinted at in section 1.9; it defines the affine algebras as algebras generated by 

symbols ei, fi and a'! subject to relations (l.9.1)-(l.9.6). This method has the 
1 

advantage that it may also be used to define arbitrary Kac-Moody algebras. 

In this chapter however, we have chosen for an explicit construction of affine 

algebras as the universal central extensions of Lie algebras associated to certain infinite 

dimensional groups. In the next chapter we will study the structure of the affine 

algebras and discover that it is quite similar to the structure of finite dimensional simple 

Lie algebras. As a result we will eventually find the defining relations (l.9.1)-(1.9.6) 

for the affine case. 

2. 1 loop groups 

In this section we will define the loop group G associated to a finite dimensional Lie 

group G. For simplicity we will restrict ourselves to the case where the finite 

dimensional Lie group is G0 = SU(n,<C). The group 00 is the collection of all mappings 

from the unit circle to the group G0 with pointwise multiplication, i.e., 

(2. l.1) 

(A mapping from the unit circle to G0 is represented by a periodic mapping in 9.) 

To give G0 the structure of a Lie group we have to put some differentiable structure on 

G0. In order to do this, one must specify the class of mappings g : S 1 ~ G0 under 

consideration, e.g., continuous, smooth, real analytic, etc. We will not go into such 
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details here and assume that the mappings are "as nice as we want". The interested 

reader is referred to [Pre&Seg]. 

Let\1 be the space of all "nice" vector valued functions f: S1-+R. n = V. The group 

G0 acts naturally on \1; 

(2.1.2) g=(g;
1 ~ ~ g;n Je Gcj gij: S1-+G0 

gnl · · gnn 

n 

g.v := ~ (gi/j) ei 
lj=l 

where (e1, ... , en} is of course the standard basis for R. n. 

2. 2 loop algebras 

Since we have a (faithful) representation of G0 as a subgroup of GL(\1), it is not 

difficult to determine its Lie algebra as a subalgebra of gl(\1) = End \1. Let g(t) = 

(~(t))ij=l be a smooth curve in 0 0 passing through the identity fort= O; 

(2.2.1) 

'v'O 

Its tangent vector at t = 0 is the endomorphism h of \1 defined by 

(2.2.2) 

The Lie algebra io of00 is therefore the collection of mappings h: S1-+ .&o = su(n,C) 

with pointwise commutator; 

13 



(2.2.3) 

In the sequel we will restrict ourselves to the so-called polynomial loop algebra, 

consisting of all su(n,<r:)-valued functions on the unit circle, whose entries have finite 
Fourier expansions; 

(2.2.4) 
l M M 

ggc' := {x: S1-+8() I x(z) = L akcosk0 + L bksink0, ak, bkE ~· N,MeZ} 
k=N k=N 

Complexifying this algebra, we find the algebra gP01 given by 

(2.2.5) 
M 

gpol := { x: S1-.+g = sl(n,C) I x(z) = L ak ~. ake sl(n,C), N,Me Z} 
k=N 

where z = ei9. From (2.2.5) it is clear that gP01 is isomorphic to the tensor product of 

Laurent polynomials in z and z-1 with the finite dimensional algebra g = sl(n,C); 

(2.2.6) 

[zk ® x, zj ® y] = zk+j ® fx,y] Vkje Z, x,ye g_ 

Remark: Since we will only work with the polynomial loop algebra, we will write g 
instead of gpol in the sequel. 

2.3 DiffS1 and G0 ix DiffS 1 

Here we study another interesting infinite dimensional group, namely the group of 
diffeomorphisms of the circle; 

(2.3.1) Diff S1 := {<!>: S1-.+S 1 I cp diffeom.} 

'"""' it. >"- TVCC C.: 1. v'f"l' 'f"2"'~u. ~ · ve 

This group is closely related to the loop group 00, introduced in the preceding section, 

since it acts as a group of automorphisms on G-0; this action is defined by: 
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(2.3.2) 

One easily checks that 

(2.3.3) 

(action) 

This enables us to define the semi direct product group 00 D<DiffS1 as the collection of 

pairs (g •• ) with multiplication law 

(2.3.4) 

It is easy to construct faithful representations of Diff S 1 and 00~Diff S 1 on the space 'I 

of all functions f: s 1~1R n; 

(2.3.5) 

(g •• ).v := g ••• v 

We check the multiplication law (2.3.4); 

(2.3.6) 
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2. 4 the Lie algebras S and 1 Ef> S 

The Lie algebras of Diff S 1 and 001><Diff S 1 may again be constructed as sub-algebras 
of End V. Let <!>(t) be a smooth curve in Diff S1 passing through the identity fort= 0. 
Its tangent vector at t = 0 is the endomorphism of V given by 

(2.4.1) 

where 

(2.4.2) d 
g(0) := dt { <l>(t)(0) } 11=0 

The Lie algebra Vect S 1 of Diff S 1 therefore consists of operators of the form g(0)A, 
d0 g: S 1 ~IR. Note that this is just the collection of vectorfields on the circle, which was to 

be expected. We will again restrict ourselves to the case that g(0) has a finite Fourier 
expansion. After complexification we find the algebra 

(2.4.3) 

As before we will omit the subscript pol and write S for this algebra 

It is obvious that the operators dk := zk+l ! form a basis for S. They satisfy the 
following commutation relations 
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(2.4.4) 

It is now easy to construct the complexification of the (polynomial) Lie algebra 

associated to the semi direct product group 000< Diff S 1; it is the vector space g @ B 

with Lie bracket 

(2.4.5) 

z1c+m ® [x,y] +am z1+m ® y -13k z1c+n ® x - aj3(/-n) dz+n 

Note that the algebra a acts as an algebra of derivations on g, i.e., 

(2.4.6) 'Vde a: add([z1c ® x' z1 ® y]} = 

[add{zk ® x} 'z1 ® y] + cz1c ® x' add{i ® y}] 

(This was to be expected, since the group Diff S 1 acts as a group of automorphisms on 

Oo.) 

2. 5 central extensions of groups 

Let G be a finite dimensional complex Lie group. A representation of G on a vector 

space V is a homomorphism 1t : G~GL(V). We thus have: 

(2.5.1) 

1t(e) = ly 

In physical applications one also encounters a slightly more general situation; (2.5.1) is 

then replaced by 

(2.5.2) 
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1t(e) = Iy 

where £1t(g1 ,g2) is an element of tr:x, the set of non vanishing complex numbers. 

(N.B.: in the case of unitary operators on a Hilbert space we of course want £it to have 

values in U(l) rather than in tr:x.) In this case we speak of a projective representation of 

GonV. 

In the sequel we will assume that the mapping £1t : GxG~tr:x is smooth. Because 

of the associativity of the multiplication (2.5.2) and the fact that 7t(e) = Iy, £it has to 

satisfy 

(2.5.3a) 

(2.5.3b) 

In general any smooth mapping£: GxG~tr:x, satisfying (2.5.3a,b) will be called a 

smooth 2-cocycle with values in a:;X. 

We now define the central extension of G associated to the 2-cocycle as the set 

tr:xxG with multiplication law 

(2.5.4) 

The properties (2.5.3a,b) guarantee that this defines indeed a group and that the set 

a:;X x ( e) is a central subgroup. Moreover, the mapping 1t : a:;X xG~ GL(V) defined by 

(2.5.5) it(A.,g) = A. 7t(g) 

is a homomorphism; 

(2.5.6) 
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= 1t((A.l'gl) <A.2,g2)) 

We conclude that a projective representation of G is in fact a representation of a central 

extension of G. 

Sometimes the mapping 1t : G~GL(V) can be redefined in such a way that the 

factors £Jt(g1 ,g2) are removed from (2.5.2); Let CJ: G~ ([;x be a smooth mapping, 

CJ(e) = 1. Define x' : G~GL(V) by 

(2.5.7) 1t'(g) := CJ(g) 1t(g) 

We then have: 

(2.5.8) 

so that the factors disappear if 

(2.5.9) 

A 2-cocycle of the form (2.5.9) is called a 2-coboundary and 2-cocycles are called 

equivalent if they differ by a 2-coboundary. Since two projective representations 

associated to equivalent 2-cocycles can be transformed into each other by (2.5.7), we 

are only interested in the collection of 2-cocycles modulo 2-coboundaries. This is called 

the second cohomology group of G with values in ([;x; it is denoted by H2(G,([;x). 

2. 6 central extensions of Lie algebras 

We will now construct the Lie algebra of the central extension o:;XxG of G defined in 

the preceding section. The tangent space in the identity (l,e) is of course 
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(2.6.1) 

Let X be a left invariant vectorfield on Cxx G. At (1,e) it is given by 

(2.6.2) a " d ta " X(I ,e) =a dz' 1(1,e) +.., = dt (e 'expt..,) lt=0 

where ae C, E;e g_ and fzis a tangent vector to ex. Since X is left invariant, we have 

(2.6.3) 

d ta " = dt (z,g) (e , expt..,) lt=0 

. d 
= dt (z eta e(g,exptE;) , g exptE;) lt=0 

d a 
= { az + z dt E(g,exptE;) lt=0} dz l(z,g) + Lg* E; 

a 
= a(z,g) dz l(z,g) +Lg* E; 

where a(z,g) := az + z ! E(g,exptE;). If Y is a second left invariant vectorfield, which is 

given in the identity by Y(I,e) = b fz+ T\. we can compute the commutator; 

(2.6.4) a a 
[X , Yl(l,e) = [a(z,g) dz l(z,g) +Lg* E; , b(z,g) dz l(z,g) +Lg* T\l(l,e) 

a a a 
= {adz'b(z,g\1,e) - bdz'a(z,g)(I,e)} dz'(I,e) 

d d a 
+ (dt b(l,exptE;) lt=0 - dt a(l,exptT\) lt=0} dz 1(1,e) + [!:;,T\] 

a 
= [!:;.T\] + ro(E;.11) dz' 1(1,e) 

where 

(2.6.5) d d 
m(E;.T\) := dt ds { e(exptE;, expsT\) - e(exptT\ , expsE;)} lt=s=O 

(We have used that e(e,g) =I V'geG.) 
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If we denote the tangent vector ~ I( ) by c, we may rewrite the bracket (2.6.4) as 
oz I,e 

(2.6.6) [~ + ac , 11 + be] = [~.111 + co(~.11) c 

NB: the bracket on the left hand side is the bracket on the Lie algebra g E9 (; c, the 

bracket on the right hand side is the bracket on the "old" Lie algebra g. Formula (2.6.6) 

tells us that (;c is a one dimensional central subalgebra of g@ (;c. Therefore, g@ (;c is 

called a central extension of g. 

The mapping co: gxg-+(; defined by (2.6.5) is closely related to the 2-cocycle £on 

G; it is called a 2-cocycle on g with values in(;. Because of the antisymmetry of the 

bracket (2.6.6) and the Jacobi identity, co has to satisfy 

(2.6.7a) 

(2.6.7b) 

We now compute what happens, if we take for£ a 2-coboundary in (2.6.5); if 

CJ: G-+ (;x is a smooth function, we have 

(2.6.8) 

d d 
= dt ds CJ(exps11expt~) 1 +CJ* I ([~,111 

t=s=O e 

Using this formula and the fact that CJ(e) = 1, we find for (2.6.5) in the case en(gl ,~) = 

CJ(gl g2)/CJ(gl )CJ(g2): 

(2.6.9) 

where 0 := CJ* 1 : g-+(; is an element of the dual g* of g. Such 2-cocycles are of course 
e 

called 2-coboundaries on g and two 2-cocycles are again called equivalent if they differ 
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by a 2-coboundary. Dividing out the space of 2-cocycles on g with respect to this 
equivalence relation, we obtain the second cohomology group of g with values in tr:, 
denoted by H2(g,tr:). With these definitions it is clear that the mapping (2.6.5) induces a 
homomorphism H2(G,tr:x)~H2(g,tr:). 

At this point one may ask if this mapping is invertible, i.e., if we can, given a 2-
cocycle ro on the Lie algebra g, find a globally defined smooth 2-cocycle e on the Lie 
group G, such that ro and e are related by (2.6.5). If G is finite dimensional, connected 
and simply connected, the answer to this question is affirmative. For infinite 
dimensional groups such as the loop group Ll associated to G however, the situation is 
different. 

In section 2.8 we will construct a 2-cocycle on the loop algebra g. Since the 
corresponding central extension ~ := g Ea tr: c is infinite dimensional, it is in the first 

A place not clear if there exists a central extension G of the loop group <3, which has Lie 
algebra g. In the sequel we will use the representation theory of the algebra g to 

A A construct G explicitly, so that there are no problems concerning existence. However, G 
turns out to be topologically non trivial, i.e., it cannot globally be written as a:;Xx<3. 
Instead G is a fiber bundle over Ll with fiber a:;X. From this we conclude that there 
cannot exist a globally defined, smooth 2-cocycle on a, describing the multiplication in 
A 
G. 

2. 7 H 2(~,C) for~ simple 

Here we compute H2(g,tr:) for a simple finite dimensional Lie algebra g. The calculation 
is interesting, because it suggests how to calculate H2(g,tr:), whi:.:h is what we are really 
interested in. 

Recall that a derivation of g is a linear mapping d, satisfying 

(2.7.1) d([x,y]) = [d(x),y] + [x,d(y)] Vx,yeg 

The Jacobi identity for g states that for any fixed ue g the ad joint action ad u : g~g is a 
derivation on g. It is well known that for g simple all derivations are of this type (see, 
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Let co : g x g-7 (; be an arbitrary 2-cocycle on g. For any xe g the mapping 

ixco: g-7'1:: is linear and therefore, ixcoeg*. Using the Killing form on g, we can 

identify g and g*; 

(2.7.2) v: g-?g* 

<V(x),y> := (xly) 

(Compare with (1.7.2) where this was done for the subalgebra '!_ cg .) 

Therefore we may write 

(2.7.3) (ixco)(y) = co(x,y) = (d(x)ly) "dx,ye g 

where d: &-7& is a linear mapping. Using the invariance property (1.3.2) of the Killing 

form and the properties (2.6. 7 a.b) of a 2-cocycle, we deduce that d is a derivation; 

(2.7.4) (d([x,y)) I z) = co([x,y ],z) 

= -co(y ,[x,z)) + co(x,[y ,z]) 

= -(d(y)l[x,z]) + (d(x)l[y,z]) 

= ([x,d(y)] + [d(x),y] I z) "dze g 

As remarked above, d must then be of the form adu for some ue g and we obtain 

(2.7.5) co(x,y) = ixco(y) 

= (adu(x)ly) 

= (ul[x,y]) "dx,ye g 
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This shows that any 2-cocycle on a simple Lie algebra g is a 2-coboundary whence 

H2(g,<C) = 0. 

2.8 H 2(j,O::) for~ simple 

The calculation ofH2(g,<C) in the preceding section suggests the following construction 

for nontrivial elements of H2(g,<C); suppose that we have an invariant bilinear form ( I ) : 

g x g~<C and a derivation d: g~g. satisfying 

(2.8.1) (d(x) I y) = -( x I d(Y)) Vx, yeg 

The reader may easily check that ro(x,y) := (d(x)ly) is then a 2-cocycle on g. 
For a simple algebra g this procedure yields only 2-coboundaries, since in that case 

all derivations are of the type adu, ue g. For the loop algebra g we have seen that there 

are also other derivations, namely the elements of the algebra o, introduced in 2.4; this 

opens the possibility to construct nontrivial 2-cocycles on g. 
It remains to show, that there exists an invariant form on g; Jet us assume that 

( I ) : g x g~<C is such a form. Define mappings ckl : g x g~<C by 

(2.8.2) Vk,/e Z, x,ye g 

For fixed k and l ckl is an invariant bilinear form on g. On a simple Lie algebra such a 

form has to be a scalar multiple of the Killing form on g; 

(2.8.3) Vk,/e Z, x,ye g 

Now we use the invariance of the Killing form and the form (I): g x g~<C 

(2.8.4) Vk,/,meZ, 

x.v,ue g 
to derive 

(2.8.5) Vk,/,meZ 
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Substituting m = 0, we conclude that the complex constants A.kl depend only on k+/: 

(2.8.6) 

A possible choice for the A.'s is 

(2.8.7) for some fixed ieZ 

The reader easily checks that the form ( I )i : g x g--+G:: defined by 

(2.8.8) (z1c®x I z'@y)i := 8ic.+/,i tr(adx ady) 

is indeed an invariant form on g. Therefore, the space of invariant bilinear forms is 

infinite dimensional and has basis ( ( I )i } ie z· 
Now fix an ie Z and let de 8 be a derivation. A short calculation shows that the 

condition (d(X)ly)i = - (d(Y)IX)i is only satisfied if we take d = adi, ae G::. We then 

have: 

(2.8.9) 
. d 

(~(X) I y)i = (zl+l dZ(X) I Y)i 

d 
= (z dZ(X) I Y)o 

We conclude that, although there are infinitely many derivations and infinitely many 

invariant forms, the construction yields only one 2-cocycle, (2.8.9) on g. One can 

actually prove that this is essentially (i.e., modulo 2-coboundaries) the only 2-cocycle 

on g; dim H2(g,G::) = 1. The central extension g = i E9 G::c associated to this 2-cocycle is 

therefore universal, i.e., any other nontrivial central extension of i is isomorphic to g. 
The commutation relations in g become 

(2.8.10) cz1c®x ' i®y] = z1c+1®[x,y] + k8k+l,0 (xly) c 'v'k,le Z, x,ye g 
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2. 9 A central extension of j E!> () 

In section 2.8 we have constructed the universal central extension of the loop algebra i 
associated to a simple finite dimensional algebra g. This was done by means of the 2-
cocycle co defined by 

(2.9.1) co(z1c®x,z1®y) = k~+/,O (xly) \7'k,/e Z, x,ye g 

Leaving out the tensor product symbol and thinking again of i as the algebra of 
(polynomial) mappings from S 1 tog, we may also write 

(2.9.2) co(x,y) = 2~ J ( ! x(z) I y(z)) dz 
{SI)+ 

\7'x,yei 

This formula is easily checked by substituting x(z) = zkx, y(z) = iy; its relevance 
is that it shows clearly the invariance of co under the group (DiffS 1)+ of orientation 
preserving diffeomorphisms of the circle; 

(2.9.3) 

= ~ J <c&rx(z') I y(z')) dz' 
21tl I+ 

{S) 

where 'ljlE (DiffS 1)+ and z' := 'ljl-l(z). 

Infinitesimally this becomes 

(2.9.4) 'l;tkeL., x,yeg 

which can of course also be verified with (2.9.1). Formula (2.9.4) enables us to extend 
the 2-cocycle co on g to a 2-cocycle ro on g E!> () defined by 

(2.9.5) OO(x+d ' y+d') := co(x 'Y) \7'x, yei, d,d'e () 

We check the cocycle identity (2.6.6.b); 
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(2.9.6) 

= co(LSC , Y1 + ~(Y)-~('.i{) , z) + c.p. 

= co(~(Y} , Z) - co(~(X) , z) + c.p. 

= co(~(y) , Z) - co(~(z) , y) + c.p. 

=0 

This means that we have constructed a nontrivial element of H2<g@a,c). The associated 

central extension g E9 a E9 Cc has commutation relations 

(2.9.7) 

+ ka.c+m,O (xly) c 

2 .10 invariant bilinear forms 

In section 2.8 we have seen that the Lie algebra g admits infinitely many invariant 

bilinear forms. One easily checks that these forms are nondegenerate. For the 

construction of the 2-cocycle (2.8. 9) it is sufficient to consider only 

(2.10.1) 

(z1c@x I z1®y)o = a.c+1,o (xly) 'v'k,le Z, x,ye g 

Here we will try to construct an invariant bilinear form on g@a@cc, whose restriction 

to the subspace g is given by (I )0. 
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We will start to show that the restriction of such a form to the subalgebra 3 is trivial. 
Let (I): 3 x a~c be an arbitrary bilinear form and define ~j :=(di I dj) Vi,jeZ. The 
invariance of the form ( I ) gives 

(2.10.2) 

or, in terms of the ~j's 

(2.10.3) G-i) a· . k = (k-j) a· . k l+J, l,J+ 

For j = 0 this becomes 

(2.10.4) (i+k) ~k =0 

and we conclude 

(2.10.5) ~=0 ifi+k ~o 

Substituting i+j =-kin (2.10.3), we find 

(2.10.6) (2j+k) a-kk = (k-j) a-(k+j),(k+j) 

and for k = 0 this becomes 

(2.10.7) 2j iloo = -j a-jj 
From this we obtain 

(2.10.8) 

Finally, substituting i = j, we find 

(2.10.9) (k-j) a· . k = 0 J,J+ 

Fork = -2j this reads 
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(2.10.10) -3• a· · =0 
~ J,-J 

Combining (2.10.5), (2.10.8) and (2.10.10), we indeed find 

(2.10.11) 'v'ijeZ 

Having shown that (~ I ~) = 0 'v'ije Z for any invariant bilinear fonn ( I ) on ~@8, we 

proceed to calculate (g I c), (c I dk) and (c I c).For this we need two simple lemmas; 

lemma 2.10.1 

Let g be a finite dimensional simple Lie algebra, then [g , g] = g 

proof· 

[g , g] is an ideal in g and must therefore be either rero or g. In the first case g would be 

abelian, contradicting simplicity.+ 

As a corollary to this lemma we mention that every element xe g can be written as 

(2.10.12) 
N 

x = L [ui 'vi] 
i=l 

lemma 2.10.2 

There exist elements h1, bie !! such that 

(2.10.13) 

proof· 

The Killing form on g remains nondegenerate when restricted to!!_, so for any h1e !! we 

can find an hie!! such that (h1 I h2) = 1. + 

Using (2.10.12), we calculate 

(2.10.14) 
N 

(z1c®x I c) = L ([zk®ui , l®vi] I c) 

i=l 
N 

= L (zk®ui I [l®vi , c]) = 0 

i=l 
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and 

(2.10.15) 
N 

(z1<:®x I dj) = ~ (zk®ui I [l®vi, dj)) = 0 
l=l 

The expression (2.10.13) for the center is used to compute 

(2.10.16) 

and 

(2.10.17) 

Summarizing, we have seen that any invariant bilinear form on lf Eal>$1Cc, whose 
restriction tog is given by ( I )0, is completely detennined by 

(2.10.18) (g le) =0 

(clc) =0 

Therefore, its total isotropic subspace is given by $ <Cdk. Throwing away this 
A k~O 

subspace, we obtain the subalgebra s_e of g~c given by 

(2.10.19) 

on which the bilinear form (2.10.18) is nondegenerate. Note that ge is an extension of g 
by <Cd.o· It is called the full affine algebra associated to g and has commutation relations 
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(2.10.20) 

k+/ R I R k !:: 
z ®[x,y] + z..,1z ®y- k..,2z ®x + kuk+/,O (xly) c 

2 .11 the Virasoro algebra 

In this section we study central extensions of the algebra 8; let ro: 8x8-..+G:: be a 2-

cocycle on 8 and define roij := ro(~,dj). We then have 

(2.11.la) 

(2.11.lb) (j-i) (I)· • k + (i-k) (I). k . + (k-j) (I). k . = 0 
l+J, 1+ ,j J+ ,1 

Substituting k = 0 in (2.11. lb), we find 

(2.11.2) 
i-i 

Ol· . = .;;..i,. (I). • 0 
lJ l+j l+J, ifi+j *o 

We will show that (2.11.2) enables us to modify ro by a 2-coboundary in such a way 

that the result satisfies 

(2.11.3) (I) .. = 0 
lJ 

Indeed, let e : 8-..+G:: be defined by 

(2.11.4) 

We then have 

(2.11.5) 

1 
0(~) = '[Cl>j,o 

=0 fori=O 

0([d· d·]) = (j-i) 0(d· ·) = Jiro. · 0 
1 ' ] l+J J+l l+j, 

=0 
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Assuming now that ro satisfies (2.11.3), we only have to compute roi,-i· For this we 

substitute i+j = -k in (2.11.1 b) and obtain 

(2.11.6) (j-i) (I): • (. .) + (2i+i) (I) • • - (i+ 2i) (I) • • = 0 I+J,- l+j J -J,J ~ -1,1 'v'i,j 

To solve (2.11.6), one may temporarily replace i and j by continuous variables x and y 

and roi,-i by a smooth odd function f(x); relation (2.11.6) then becomes 

(2.11.7) (y-x) f(x+y) - (2x+y) f(y) + (x+2y) f(x) = 0 

Differentiating (2.11. 7) with respect to the variable ~ := x +y in ~ = 0 we obtain 

(2.11.8) x f'(x) - 3f(x) = -2x f'(O) 

The solution of this o.d.e. is 

(2.11.9) f(x) = ax3 + f'(O) x 

The general solution of (211.6) is therefore 

(2.11.10) a,beC 

We conclude that any 2-cocycle on 3 is equivalent to 

(2.11.11) coij = ~+j,O (ai3 + bi) a.bee 

Remark that the linear term in (2.11.11) is in fact a 2-coboundary; it is associated to the 

one form e: a~c defined by 

(2.ll.l2) 

so: 0([...i... d·]) = l(j-i) O· . 0 = -i a. · 0 J. ' J 2 l+j, l+J, 
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Therefore, H2(o,G::) is one dimensional and the algebra o has a universal central 

extension o $ G::K defined by the 2-cocycle roij := oi+j ,0i3. In physics one traditionally 

uses the 2-cocycle (2.11.11) with a= -b = ~2. The commutation relations then become 

(2.11.13) [ii. d·J = G-i) ii. . + 1-5. . 0 (i3-i) 1C 
l ' J 'l+J 12 I+j, 

The algebra o $ G::lC is called the Virasoro algebra. It plays an important role in string 

theory. 

2 .12 the Virasoro extension of affine algebras 

In section 2.8 we have seen that the algebra g $ o admits a central extension by the 2-

cocycle (2.9.5). Let us denote this 2-cocycle by ro1• Section 2.11 shows that there is 

another central extension of g $ o by a 2-cocycle ~: 

(2.12.1) ~(x + d , y + d') = ro2(d,d') 

where ro2 is the 2-cocycle (2.11.11) on o. We will now show that H 2(g$o,G::) is two 

dimensional and that it is spanned by ro1 and ro2. 

Let ro be an arbitrary 2-cocycle on g $ o. Remark that its restrictions to the 

subalgebras g and o are 2-cocycles on these algebras and must therefore be scalar 

multiples of ro1 and ro2 respectively. Therefore, we only have to compute cross terms; 

using (2.10.12), we find: 

(2.12.2) k ~ k 
ro(z ®x, d1) = ,t., ro([z ®ui, l®vi], d1) 

i=l 

N k k 
= - L ( ro([d1, z ®ui], l®vi)+ro([l®vi, d1], z ®ui)} 

i=l 
N 

= -k L ro(zk+/®ui, l®vi) 
i=l 

N 
= kA L ro 1(zk+/®ui, l®vi) for some M:G:: 

i=l 

=0 
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Therefore we have 

(2.12.13) Ct'l(x + d, y + d') = ro(x , y) + ro(d, d') 

We ,conclude .that the universal central extension of g ES 6 is two dimensional and is 

given by the commutation relations 

(2.12.14) 

. . 1 1 + k6ic+m10 (xly) c + afa2 Ual+n,O {l -l) tc 

This algebra is called the Virasoro extension of the affine algebra a. It turns up naturally 

in the representation theory ofg. 
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Chapter 3 structure of affine algebras 

3. 1 root space decomposition of _ie 

We recall from chapter 1 that the finite dimensional simple Lie algebra g has, with 

respect to a given Cartan subalgebra !!. a root space decomposition 

(3.1.1) 

.SU:= {xe g I [h,x] = <<X,h>x, 'Vhe !!J 

This decomposition induces a decomposition of the full affine algebra ge = .e zj®g 
JEZ 

(3.1.2) r = E:9 i;i ® ~ $ { 1 ® h E:9 CCc $ CCd0} 
jeZ,ae~u{O} -

(j,a)#(O,O) 

We have the commutation relations (see (2.10.20)) 

(3.1.3) [1 ® h , i:i ® xal = <<X,h> i:i ® x<X 

From these relations it is clear that zj ® x<X is for all je Z and for all ae Au { 0} a 

common eigenvector of the abelian subalgebra 

(3.1.4) 

This subalgebra is called the Cartan subalgebra of ge. Sometimes we will also work 

with~ := 1 ® h $ CCc. - -
Every element ae !!* can be considered as an element of <fte)* -which will be 

denoted by the same symbol- by defining 
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(3.1.5) <a,c> = 0 = <a,d0> 

If we also introduce a special element & ~)* by 

(3.1.6) <o,l ®~ >= {O}, <o,d0> = 1, <O,c> =0 

we can rewrite .the commutation relations (3.1.3) as 

(3.1.7) 

This means that the decomposition {3. l.2) is a root space decomposition for the algebra 

ge; 

(3 .. L:8) 

where the root system ac(~)* is given by 

(3.1.9) _a={"(= jo +'Cl ljeZ, ne.Au{OJ, (j7a) ~ (0,0)} 

and l!he associated root spaces are 

{3.l.10) 

Note that we 'have excluded the pair (j,Cl) = (0,0) corresponding to the common 

eigenvalue 0 from l!he root system a just as in :the case of the finite root system A. 

From the defmition (3.1 ;9) of a it is dear diat ,a_ can be written as a disjoint union 

(3.l.11) 

where 

(3.l.12) 

and 
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(3.1.13) _&im := {j8 I jeZ-{O)) 

The roots in are are called real roots; they share the following two properties with roots 

of the finite root system A: 

a) if ye are. then the only multiples of yin a are +y 
II. ,..e . -

b) 'if ye -are: dim &y =dim .z) ®!a= 1 

The roots in aim are called imaginary roots. For these roots we have 

3.2 " generators for ~ 

In this section we will construct a set of generators for the algebra g. Let us start with 

the underlying finite dimensional algebra g; it is generated by the simple root vectors ei 

and fi, i = l, 2,. .. 1. There is however, a smaller set of generators, which we will 

discuss below. 

lemma 3.2.1 l 

Let g be finite dimensional and simple. Then there exists a unique root 0 = 2, ai (Xi 

such that 0+<XiEA 'Vie {l, 2,. .. 1). If a is any other root, 0-a is an integr&i'1linear 

combination of the «j's with non negative coefficients. Moreover, <0,ex~> ~ 0 'Vi. 
1 

proof: 

Since the root system A is finite, there must be a 0e ll such that '+«jE A for all i. For a 

proof of the uniqueness of this 0 we refer to [Hum]. Let a = 2, ki ai be a root and 

suppose that CX;1:0. Then there must be an index j such that a' :~h + aje A (otherwise 

ex would be 0). Going on in this way, and using the finiteness of A, we find a root 

ex"= a+ exj + ak + ... + a1 such that a"+ amei: A for all m. Since 0 is the unique root 

with this property, a" must be 0 and hence 0-a = aj + ak + ... + ex1. To prove the final 
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assertion, l'Cllla1'k that the «j-string through 0 is given by 9.~rai•·······0-«j. 0 where r = 

<8,a~> :=!! 9 (see (l.7.9)).• 
1 

Tue. unique root 0 from this lemma is called the highest root of g; similarly, -9 is the 

lowest root. By multiplying the Killing form on g with a suitable factor, we can always 

achieve 

(3.2'.2) 

Fomiing commutarers. of e_6 with the. simple r00li vec:ters. ei, i =I. 2, .. .1, we can 

amstmct root vectors associated to higher roots then -9; 

(3.2'.3) 

It is possible to show that any element of g can be written as. a linear coml!>ination of 

elements of the fmm (3.2.3). Therefore, e_8 , e1, .•• ., e1 generate g. 

Wi.tl'l this knowledge it is easy to coastrucr a set of generators for I; since ei, fi. 
i = l, 2, •... , l generate g. 1 ® ei, 1 ® fi, i = 1, 2, ...• , I generate the s:ubalgebra 

l 8 1c:f. For simplicity we will writeei, ~for the root vectors 1®ei,1 ®~in ge. 

Moreover, we define 

(3.2.4) Co:=z® e_9' 

for the root vectors associated to the roots 

aa:= i- 0, -txo = -8+ & 

Using the fact that any element of g can be written as a linear combination of elements 

of the form (3~2.3), we derive that any element from the subspace z ® gc:ge can be 

constructed by commuting the elements e0, ep····· e1. Similarly, the elements e0 and 
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z ® ei, i = 1, 2,. ... , I generate the subspace z2 ® g and so on for zk ® g, k>O. In the 

same manner we show that~® g for k<O is generated by f0, f1 , ..•. , t1. 

The center c can be written as c = [z ® h1 , z-1 ® h2] as we saw in the preceding 

chapter. Finally, the derivation d0 cannot be obtained by commuting generators ei, fi, 

i = 0, 1, .... , I. Summarizing, we have: 

proposition 3.2.2 

The root vectors ei, fi, i = 0, 1, .... , I generate g.• 

Analogous to (1.8.2) we define elements 

(3.2.6) i = 0, 1, 2, .... , I 

For i = 1, 2, .... , l we obtain the simple coroots from formula (1.8.2), which form a 

basis for 1 ®!!·For i = 0 we find, using (1.7 .6) and (3.2.2): 

(3.2.7) 

Using (1.8.3), we derive 

(3.2.8) 

Combining this with (3.2.7), we get 

(3.2.9) 
l 

c = L, a:' a:'; 
i=O 1 1 

It is possible to show that the numbers a:' are positive integers. 
1 

With (3.2.9) and (3.1.4) we easily see that the set {d0, av, av, .... , a v} is a basis 
o 1 I 

for fie. 
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3. 3 triangular decomposition of j and ,ie 

From chapter J; we. know that the set f o.1, ~······ a 1) is a root basis for the finite root 

srstem I!!. of g, ie., any root a can be written as an integral linear combination 

I, niai with either all ni;;::o or all niSO. Therefore, the root system Ii can be 

lrJcomposed in a set of positive roots (all ni;;::O) A+ and a set of negative roots (all 

niSO) A_; 

(3.3.1) 

Let!!+ and !!:.. be the subalgebras defined by 

(3.3.2) n := ED g 
-- aeA_ a 

One can show that!!+ is generated by e1, e2,. ... , e1 and!!.- by f1, f2, .... , f1 and one 

obviously has the following "triangular" decomposition of g 

(3.3.3) 

For the case g = sl(n,C) this simply corresponds to the decomposition of a traceless 

matrix in a !ewer triangular part, a diagonal part and an upper triangular part (see 1.6). 

For the algebra ge the situation is quite similar; 

p.roposition 3.3.1 

{a0, al' ....• a1} is a root basis for l 

proof: 

All roots are of the form 'Y = jo+a, je Z, o.e Au{OJ, (j,a) :t: (0,0). Substituting 

o=ao+e, we fmd y=jo.0:+-j9+a. From lemma 3.2.1 it is clear that for J>O j0+a is for 

any ae A an integral linear combination of a 1, .... , a.1 with non negative coefficients.+ 

From this proposition it is clear that we can again write 

(3.3.4) 
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where 

(3.3.5) _a+= {y=ja+a I (j>O, aed) v (j =0, aeA+l 

_a_= (y = ja+a I (j<O, ae d) v (j = 0, ae A_} 

Analogous to (3.3.2) we define 

(3.3.6) "n ·- lb ~ 
-+ .- ..,.e""!+ J2 'Y' 

" lb "e 
~- .- ! _gr 

')'E -

and we have the following triangularqecomposition orge: 

(3.3.7) 

3.4 Cartan matrix and defining relations for .ie 

We finally arrive at the defining relations for affine algebras. Let us start to define the 

Cartan matrix associated tor as the (l+l)x(/+1)-matrix A= <3iAj=0 given by 

(3.4.1) 

Remark that for lSijS/ we reobtain the Cartan matrix associated to the finite 

dimensional Lie algebra _g (see (1.9.7)). The other cases are 

(3.4.2) 

(3.4.3) 

(i-:1: 0) 
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(3.4.4) "io = <a0 , a7'> = <8 - e, a7'> = -<0, a7'> ~ o 
1 1 1 

(i#O) 

From (3.4.2-3.4.4) we see that A shares the properties (1.9.8) (1) and (2) with the 

Cartan matrix of a finite dimensional simple Lie algebra; 

(3.4.5) 

.(2) a·· =O~a·· =0 lj Jl , 

We will now show that the determinant of tpe Cartan matrix of an affine Lie algebra 

is zero. Using (3.2.5) and the expression 0 = l: aiai we may write 

(3.4.6) 
l 

o=ao+e=I: aiai, 
i=O 

i=l 

With the definition (3.1.6) of 8 we compute 

.(3.4.7) 

and 

(3.4.8) 

Hence: 

(3.4.9) 

<8 .a~>=O 
1 

if i = l, 2, .... , 1 

V'j 

showing that the columns of A are dependent whence det A = 0. Since the submatrix 

(aij)i:s;ij:s;/ is the Cartan matrix of a finite dimensional Lie algebra, the (l+l)x(/+ 1)­

matrix A has rank J. One can show that it satisfies in stead of (1.9.8)(3): 

(3.4.10) detA == 0 and all proper principal minors are positive 
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Remark: Apart from the Cartan matrices of loop algebras there are also other matrices 

satisfying (3.4.5)(1 ), (2) and (3.4.10). These matrices are related to the so-called 

twisted loop algebras, which we will not discuss here. 

We can now write down the defining relations forge analogous to (1.9.1-1.9.6). 

We have seen that ge is generated by ei, fi, i = 0, 1, .... , l and the Cartan subalgebra 

l 
~e = EB G::a°;' EB G::tL and these generators are subject to the following relations 

- i=O 1 \) 

(3.4.11) [ei '9 = aij a~ OSijsJ 

(3.4.12) [h , ei] = <<Xi,h> ei 'v'he fte, DSiSl 

(3.4.13) [h ' fi] = -<<Xi,h> fi 'v'he ~. OSisJ 

(3.4.14) [h 'h'] = 0 'v'h, h'e~ 

(3.4.15) 
1-a·· 

(ad ei) 1l(ej) = 0 OSijSl 

(3.4.16) (ad f-) l-aij(f-) = 0 
1 J 

OSijS/ 

Relations (3.4.11)-(3.4.14) are clear, while (3.4.15) and (3.4.16) coincide with (1.9.5) 

and (1.9.6) for lSijSl. For i = 0, j :le- 0 (3.4.15) becomes: 

(3.4.17) 

where we have used (1.7.9) for the 0-root string throu~h aj and. the fact that the 

multiple commutator (3.4.17) cannot yield a central term. The other cases are treated 

similarly. 

Remark: It is possible to study algebras defined by relations (3.4.11)-(3.4.16), where 

the integers aij satisfy only (3.4.5)(1) and (2). In this way one obtains more general 

Kac-Moody algebras than the finite dimensional and affine ones. We refer the interested 

reader to [Kac]. 
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3. S involutions on .ie 

Here we exploit the symmetry between positive and negative roots to define an 

involution ro on ~ (i.e... an automorphism ro : ge ~ ge such that ro2 = 1 ), which will 

be important in the sequel. Since ei, fi, i = 0, 1, .... , I and fi_C generate ge, it is sufficient 

to define ro on these generators. This is done as follows: 

(3.5.1) 

ro(h) = - h Vhefie 

One easily checks that (3.5.1) is compatible with the defining relations (3.4.11)­

(3.4.16), i.e., that it indeed defines an automorphism of ge. 

The image of an arbitrary element of r can now be computed by means of 

(3.5.2) ro(ax + 13y) = am(x) + 13m(y) 

ro((x , y]) = (ro(x) , ro(y)] Ae R 'If x, ye g , a, 1-'e C 

It is clear that ro interchanges positive and negative root vectors and that ro~+) = ~-· 

Closely related to the involution ro is the antilinear involution ro0, which is defined 

on generators by 

(3.5.3) m..(e·) =-f. --u 1 1 

( v)- v ro0 a. - - a. 
1 1 

and is extended to ge by 
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(3.5.4) 

"e f.l Tix, ye g_ , ex, ...,e G:: 
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Chapter 4 representation theory 

4. 0 introduction 

In this chapter we study representations of affine Kac-Moody algebras. Representation. 

theory is a subject with many aspects. Here we will mainly concentrate on the so-called 

integrable highest weight representations. Integrable means that the action of the algebra 

can be "exponentiated" (or "integrated") to the action of an associated group. Highest 

weight means that the representation contains a "vacuum vector". 

We will see that these representation·s have a pre-Hilbert space structure, which 

makes them interesting for applications in quantum mechanics. They also play an 

important role in the theory of soliton· equations. 

4.1 representtatiens and modules 

Let g be a Lie algebra and V some (possibly infinite dimensional) vector space .. A 

representation of g on Vis a Lie algebra komomorphiSm 

(4.1.l) 

m otker words: p is a linear map •. which satisfies 

(4.1.2) p((x.y}) = tp(x) , p(y)l 

The bracket on the right hand side is the commutator in g/(V} •. as <k:fined in· (l.l.2). 

A concept equivalent io that of a. representation is that of a g-module. This is a 

vector space witb an action of & <k:fined by 

(4.l.3) gxv~v 

(x,v) ~ x.v xeg, veV 

such that '9' X,ye g, V, V l' VzE V, A,J,LE ft: 
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(4.1.4) (I) 

(2) (A.x + µy).v =A. x.v + µ y.v 

(3) [x,y].v = x.(y.v) - y.(x.v) 

It is easy to see that a pair (V,p), with pa representation of g on V, defines a g-module 

structure on V and vice versa. We will use the terms representation and g-module as 

well as the notations p(x)(v) and x.v more or less interchangeably. 

A submodule of a g-module is a subspace W of V such that 

(4.1.5) X.WEW Vxeg, VweW 

The zero subspace and V itself are always submodules. These will be called the trivial 

submodules. 

4. 2 reducible and irreducible modules 

Recall the loop algebra g consisting of maps x : S 1 ~ g/(n,tr:) as discussed in chapter 2. 

Geometrically, the most natural g-module seems to be the vector space V = ~n 

consisting of maps f: s 1~n. with as action the pointwise matrix multiplication: 

(4.2.1) (x.t)(z) := x(z) f(z) 

However, from the point of view of representation theory this is a very complicated 

representation. To understand this, consider an interval I on the circle and the collection 

V1cV of all vector valued functions on the circle that vanish on I. It is clear then that if 

fe V1, also x.fE \11 for all xeg. In other words: V1 is a nontrivial submodule of"\/. 

A g-module is called irreducible if it has only trivial submodules and reducible 

otherwise. So V is highly reducible, since it contains many nontrivial submodules. 

In representation theory one tries to use the irreducible modules as building blocks 

for the construction of arbitrary modules. In the sequel we will be interested in a special 
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class of irreducible modules for g (or rather for its central extension g, discussed in the 

previous chapter). 

4. 3 integrable representatiOns 

We are interested in representations for which the action of the Lie algebra can be 

integrated to the action of some associated group, using the exponential map. Since we 

will be working with infinite dimensional spaces, we want to avoid questions about 

convergence. 

To illustrate how this may be done, we first consider the Lie algebra s/(2,C). It has 

a natural (irreducible) representation on c2, and the Chevalley generators e, f and hare 

represented by the matrices 

(4.3.1) (01) (00) (.10) 
e= O O 'f= 1 0 ' h= 0 -1 .· 

Since his diagonal with eigenvalues ±1, expth can be defined as multiplication by 

exp±t on the ± l eigenspaces. 

More generally, an operator A acting on a vector space V such that 

(4.3.2) V=EBV ... ; 
A. "" 

can be exponentiated: exptA acts as multiplication by exptA. on V ")..; 

Now consider the elements e and f. They can be exponentiated 

(4.3.3). (1 (}) (0 1) expte = 0 1 + t • 0 0 ·. 

exptf=(~ ~)+t(~ ~) 

because e1- = 0 = f2 and consequently the power series expansion for exp is a finite 

sum. 

More generally, an operator B on V is called locally nilpotent if for every ve V there 

exists an integer nv > 0 such that for n > nv we have 
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(4.3.4) 

It is clear that the operator exptB is well defined in this case, since it acts on every ve V 

as a polynomial (of maximal degree fly) in B. 

lemma 4.3.1 

The group SL(2,a::) = {geg/(2,a::) I det g = 1} is generated by expte and expt'f, 

t, t'e a::. 

proof" 

See [Car]. • 

This means that every element of SL(2,a::) can be written as a product of a finite number 

of expte's and expt'f 's. The proof is a simple exercise in matrix multiplication. What is 

interesting about this result is that if we did not know of the existence of SL(2,a::) 

before, we could have defined it as the group associated to the algebra s/(2,a::) and the 

representation V = a::2, i.e., as the group generated by the operators expte, expt'f. In 

this construction the concept of convergence is never used. 

Next we return to the Kac-Moody algebra g. The analogue of a::h in sl(2,G::) is the 

Cartan subalgebra fi and the analogues of e and fare the Chevalley generators ei and fi, 

i = 0, 1, ... , /. We want the Cartan subalgebra to act by multiplication operators on 

eigenspaces, so we introduce a class of representations for which this is true. 

definition 4.3.2 

Ag-module is called ft-diagonalizable if 

(4.3.5) 

with 

(4.3.6) VA.:= {ve VI h.v = <).., h>v, \ihe Q} 

If V /.., "# 0, then /... is called a weight, V /.., a weight space and elements of V /.., weight 

vectors. These concepts are generalizations of the concepts of roots, root spaces and 
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root vectors for the adjoint representation (see section 1.5). In the sequel we will 

consider only representations for which the weight spaces are finite dimensional, 

although one can easily construct modules for which this is not true. 

We now define a class of representations in which the ei's and the fi's can be 

exponentiated. 

definition 4.3.3 

Ag-module is called integrable if it is fi-diagonalizable and if the ei's and fi's are locally 

nilpotent operators. 

For every integrable g-module V one can define the associated group Gy to be the 

group of automorphisms of V generated by the operators exptei, expt'fi, i = 0, 1, ... , l, 

t, t'E G::. 

4. 4 highest and lowest weight modules 

The generalization of formula (1.7.3) for the adjoint representation to an arbitrary fi­
diagonalizable g-module is given by the following lemma. 

lemma 4.4.l 

Let V =$VA. be an fi-diagonalizable g-module, ecx''' in a root vector, then 

(4.4.1) 

proof: 

Let ve VA.• then 'v'he fi: 

Define for an arbitrary fi-diagonalizable g-module the weight system to be 
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(4.4.2) P(V) := p .. e (Q)* I VA ;t O} 

Let A, A' be two elements of trye weight system. We will call A' a higher weight than A 

if there exists an element a= L, ni ai, nie Z;:,;0, a;tO, such that 

i=l 

(4.4.3) A'= A +a 

This introduces a partial ordering on P(V). Because of (4.4.1) we can say that the 

operator ea increases the weight of VA' if aeli+. In the language of quantum 

mechanics ea (ae Li+) is an annihilation operator and similarly e_a (ae Li+) is a 

creation operator. 

In quantum mechanics one considers systems where all states can be obtained from 

the vacuum by the application of creation operators. In representation theory there is an 

analogous concept. 

definition 4.4.2 

Ag-module V is called a highest weight module with highest weight A if there exists a 

ve V such that 

(1) 

(2) 

(3) 

h.v = <A,h>v 'v'he fl 

/\ 
!!+·v = {0} 

U(fi_).v = V, i.e., Vis generated by the action offi_ on the highest 

weight vector 

Similarly, one defines a lowest weight module V* with lowest weight A to be a 

representation space containing a vector v* such that 

(1) h.v* = <A,h>v* 'v'he fl 

(2) a_.v* = {0} 
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(3) U<fi+>.v* = V, i.e., V is generated by the action of fi+ on the lowest 

weight vector 

Next we want ite know which of the integrable modules are highest or lowest 

weight modules. To answer this question, we have to study the action of the Cartan _.,. 
subalgebra and in particular the action of the central element ce ~ on integrable modules. 

theorem 4.4.3 

Let V be an integrable j.-moctule and ).e P(V), then 

(4.4.4) <l. .a~>eZ 
1 

i = 0, 1, ... , I + 

This means that dre fundamental coroots ex~= [ei,fi) act as integers on the weight 

spaces V'>.; The proof of this theorem uses some facts from the representation theory of 

.sl(2,C), whiCh are however somewhat too technical to discuss here. 

In the previous chapter we have seen that the canonical central element c can be 

expressed as an integral linear combination of the coroots 

·(4.4.5) 
l 

c= I, a':' a~ 
i=O l l 

a'."elN 
1 

Since c is central. it acts on an imducible module as a multiple of the identity operator. 

Using the theorem, we find that<: acts by multiplication by an integer n, called the level 

of V. Note that the representations of level zero are representations of the loop algebra, 

since c is zero in such a representation. 

theorem 4.4.4 [Cha) 

Let V be an irreducible integrable !-module with finite dimensional weight spaces; let n 

be the level of V, ithen 

(1) if n >0, V is a highest weight module 

(2) if n <O: V is a lowest weight module 

(3) if n = 0, V is neither • 
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The irreducible g-modules oflevel 0 (which are loop algebra representations) have only 

recently been discovered and classified. They seem to have found as yet no applications 

in physics. 

Next we describe the highest and lowest weights for integrable representations. 

Define the weight lattice P by: 

(4.4.6) P := {AE (fi)* I <A, a'! >E Z, i = 0, 1, ... , /} 
- l 

(By theorem 4.4.3 P consists of all weights that can possibly appear in P(V) for V 

integrable.) Define the so-called dominant integral weights by: 

(4.4.7) P + :=(A.eP I <A, a'!>;::: 0, i = 0, 1, ... , /} 
1 

theorem 4.4.5 

For every Ae P + there exists a unique irreducible integrable highest weight module with 

highest weight A, denoted by L(A), and a unique irreducible integrable lowest weight 

module with lowest weight -A, denoted by L *(A). Conversely, every irreducible 

integrable highest (lowest) weight module has highest (lowest) weight A (-A) with 

AeP+.+ 

Define the elements ~of P + by 

(4.4.8) ij = 0, 1, ... , l 

These elements Ai are called fundamental weights. It is clear that every element Ae P + 

can be written as 

(4.4.9) 
I 

A=" k· A· 
~ 1 1 
i=O 

The highest weight modules L(Ai) are called the fundamental highest weight modules. 

One can obtain every L(A) with A given by (4.4.8), from the fundamental 

representation by taking tensor products. 
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Especially important is the module L(Au). It has always level one and is called the 

basic representation. In the next chapter we will give an explicit construction for L(A0) 

" for some of the affine Kac-Moody algebras _g. 

4. S the contra variant Hermitian form 

In this section we will discuss the pre-Hilbert space structure of the integrable highest 

weight modules L(.A). Consider the weight space decomposition 

(4.5.l) L(.A) = $ L(.Ah 
A.e@* ,.. 

Define the restricted dual L *(.A) of L(.A) by 

(4.5.2) 

where (L(A))) * is the dual of the finite dimensional weight space L(.A)/.; An element a 
of (L(.A)A,)* can be seen as an element of L(A)*, which is denoted by the same symbol, 

by setting <a , L(.A)µ> = 0 'ifµ'# A.. It is then clear that the restricted dual L *(A) is the 

subspace of the full dual L(A)*, consisting of all linear functions on L(.A) which are 

zero on almost all weight spaces L(A)J,; 

Now define on L *(A) a g-action by 

(4.5.3) <x.Cl, v> := - <a, x.v> 'ifcx.e L *(A), XE ~' VE L(.A) 

It is easy to verify that this action defines a g-module structure on L *(.A); 

(4.5.4) <[x,y].cx. ,v> = - <Cl , [x,y].v> 

=<a. , y.x.v - x.y.v> 

= <x.y.a - y.x.a, v> 

With this action L *(A) is ft-diagonalizable; let cx.e (L(A)A_)*, then for ve L(A)W he fi 
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(4.5.5) <h.CI, v> = - <CI, h.v> = -<µ, h> <CI, v> 

This is zero ifµ * A., hence h.ae (L(A)1.,)* and 

(4.5.6) h.a = - <A , h> a 

So (4.5.2) is the weight space decomposition of L *(A). 

Furthermore L *(A) is a lowest weight module: let ae (L(A) A)*, then for all 

veL(A) 

(4.5.7) <n_.CI, v> = - <CI, n_.v> = 0 
/\ 

'iin_e !!-

since n_.v has always lower weight than A. Furthermore, by (4.5.7), ae (L(A) A)* has 

weight -A. So the notation L *(A) is consistent with the one introduced in theorem 4.4.5. 

Next we introduce an alternative g-module structure on L(A). Recall the linear 

involution ro, defined in section 3.5. Using this, we define on L(A) 

(4.5.8) 7t,\ (x)(v): = 7tA (ro(x))(v) 'iixe g, VE L(A) 

One easily checks that (L(A), 7t,\) is a lowest weight module of lowest weight -A. 

Hence, by the uniqueness of lowest weight modules, we have an isomorphism 

'¥: L(A)~L *(A) such that the following diagram commutes 

(4.5.9) 
'I' 

L(A) ~ L*(A) 

We use this isomorphism to define a bilinear fonn on L(A): 

(4.5.10) BA (v,w) : =<'f'(v) , w> 'iiv, weL(A) 

Since L(A) and L *(A) are non degenerately paired, the form BA is also non degenerate. 

Next we want to modify BA to obtain a Hermitian form, i.e., a form HA that is 

antilinear in the first argument. To this end we consider the antilinear involution ro0. It 

has eigenvalues ± 1 on g. If g1 is the eigenspace corresponding to the eigenvalue + 1, 
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ig1 is the eigenspace corresponding to the eigenvalue -1 and we have g = g1 e ig1. ( g1 

and ig1 are vector spaces over IR!). Since every element of L(A) can be obtained from 

the vacuum vector v A E L(A) A' we also have a decomposition of the module L(A): 

(4.5.11) L(A) = L(A)1 + i L(A)1 

given by 

(4.5.12) 

Thenwedefineforv=v1 +iv2, w=w1 +iw2 

(4.5.13) 

This form satisfies: 

(4.5.14) (a) 

A form with property (4.5.14)(c) is called contravariant. This property expresses the 

fact that all elements of i 1 (for which co0(x) = x) act as anti Hermitian operators on 

L(A). 

It is clear that the construction for the Hermitian form HA above holds for any 

Ae (~)*. The following theorem states that only in the integrable case, i.e., Ae P +• we 

obtain a pre-Hilbert space structure. In physics such a condition is called a quantization 

condition. 

theorem 4.5.1 

The Hermitian form HA : L(A) x L(A) ~<I: is positive definite if and only if Ae P +· 

proof: See [Kac], [Kac&RaiJ. • 
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Chapter 5 the basic representation L(A 0) 

5. 0 introduction 

In this chapter we present two explicit constructions of the basic representation L(i\J) in 

the case of the simplest affine Kac-Moody algebra, namely the universal central 

extension of the loop algebra g, where g = s/(2,C) (see chapter 2). Both constructions 

will turn out to be closely related to the construction of the Fock space by means of 

creation and annihilation operators in quantum field theory. 

In sections 5.1-5.4 we will discuss the so-called homogeneous realization of the 

module L(A0). This method was discovered by Frenkel and Kac in 1980 [Fre&Kac], 

and independently by Segal [Seg], and is therefore often referred to in literature as the 

Frenkel-Kac, Segal construction of the basic representation. It is interesting to remark 

that the formulas for the so-called vertex operators (section 5.4) were already known in 

physics for almost 20 years by that time from the theory of dual models (strings). 

Historically the first explicit construction of L(A0) was given by Lepowsky and 

Wilson [Lep&Wil] in 1978. This so-called principal realization ofL(Ao) will be given in 

section 5.5. 

At this point we recall from chapter 4 that the module L(A0) is unique up to 

isomorphism. This means that the realizations of L(A0) mentioned above must be 

isomorphic. In practice one uses both realizations depending on the specific application 

one has in mind. 

5 .1 the homogeneous Heisenberg subalgebra 

Letg := EB ~ g EBCc EBCd0, where g = s/(2,C). Throughout this chapter we will use 

keZ 
the standard basis 

(5.1.1) e=(~ ~)· f=(~~) 

for s/(2,C). The commutation relations are: 

(5.1.2) [h , e] = 2e, [h , f] = -2f, [e, f] = h 
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Note that in the tenninology of chapter 3 we have: e = e1, f= f1, h =a~. 

For k>O we define 

(5.1.3) 

These elements satisfy the so-catted Heisenberg commutation relations, familiar from 

quantum mechanics; 

(5.1.4) 

Therefore, the subalgebra ~· := EB Cqk EB C c EB a::. Pk is called an infinite Heisenberg 
- k>O k>O 

subalgebra (HSA). In this. particular example one speaks of the. homogeneous HSA. 

Remember from chapter 4 that the center c acts as multiplication by l in the basic 

representation L(A0). Moreover, the highest weight vector v A is killed by the action of 
" k 0 n+ := $ z u $ O::e, so we have in particular: 
- k>O l:! 

(5.1.5) 

It is very easy to construct an irreducible representation over! such that c acts as 

unity and such that there is. a vector which is killed by all pk's; one simply takes the 

space O::[xi; ~1] of pelynomials in all variables xl' x2, ... , and defines the action of~ by 

(5.1.6) 

c.P=P 

In fact; one has the· following theorem,. which can be regarded as an algebraic version of 

the well known Stone-von Neumann theorem. 
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theorem 5.1.1 

Let V be an irreducible ~-module, such that c acts as the identity and such that there 

exists a so-called vacuum vector, which is annihilated by the pk's, then V is isomorphic 

to '1:[xi] with the action of i given by (5.1.6). + 

The problem is of course that the module L(A0) is -by definition- irreducible under 

the action of g but not necessarily under the action of the subalgebra i. Kac has proved 

that L(A0) is completely reducible under the action of i, i.e., it is a direct sum of 

irreducible !-modules of type (5.1.6). If we take the vacuum vectors out of each term of 

this direct sum, we obtain the so-called vacuum space Q(A0) for the action ofi; 

(5.1.7) O(A0) := { ve L(A0) 1 Pk· v = o V'k J 

The structure ofL(Ao) is therefore given by 

(5.1.8) 

5.2 " " the centralizer S of s 

In order to determine the structure of Q(A0) we make the following simple observation; 

if Ae EndL(Ao) commutes with the action of ion L(A0), it maps the vacuum space into 

itself; 

(5.2.1) 
V'veil(Ao) 

Therefore, we can, once we have such operators A, construct new elements of Q(A0) 

starting from the vacuum vector v A , which is obviously in Q(A0) (see (5.1.5)). 
0 

In order to find such operators, recall from chapter 4 that the representation L(Ao) is 

integrable, i.e., the operators ei, fi, i = 0, 1 are locally nilpotent. This enabled us to 

/\ 

define the group GL(Ao) as the group generated by exp tei, exp tfi, i = 0,1, te '1:. A 

possible supply of operators A commuting with the action of ! is given by the 

/\ /\ /\ 

centralizer S of! in GL(i\,); 
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(5.2.2) 
/\ /\ /\ /\ "-1 /\ 
S := {ge GL('\) I gxg = x V'xe !l 

/\ 
One can argue that °t(Ao) is an extension by a one dimensional center of the 

polynomial loop· gi;el!lp: G = SLi(«'.:[z;z - l]) introduced. in chapter 2 and that there. exists a 

surjective homomorphism 1t : GL~i\o)~G. On the level of the algebras g and g this 

corresponds of course. to the projection 

(5.2.3) 

/\ 
Using these projections, it is more or less natural to study instead of S the group 'Sc G 
defined by 

(5.2.4) 

where! := 1t*~ is a commutative subal.gebra of g. The group Sis easily determined; 

its elements are matrices ( ~ ~·) e SL2(C[z,z-1}), satisfying 

(5.2.5) ( a b )·( .z!c Q )(. d -b ). = ( .}c. · Q ) 
c d. 0 _.z!c . . -c a . 0 -zk 

which is equiwaient to 

(5.2.6) ad+ be= I 

ab=cd=O 

Combining. this with det ( ~ ~) = ad- be = l, we. find: 

(5 . .2.7} . -i a.=xz , xec'\ ieZ 

b=c=O 

A 
Therefore, the group Sis generated by the matrices 

(5.2.8) 't:= , ( z-.1 Q.·) 
0 z 
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The group H := { ( x ~1 ) I xe a:;x} is the Cartan subgroup of G = SLi(C); its 

0 x ( -I )k 
elements are of the form exp(lnx.h). The group 'fr := { z0 ~ I ke Z } is called the 

translation group. One easily establishes the following relations 

(5.2.9) 

I\ 

We proceed to construct lifts of the groups 'fr and H to subgroups of GL(Ao>" For 

the Cartan subgroup H this is done as follows: consider the matrix ( ~ x~ 1 ) e H. Since 

h acts as a diagonal operator on L(A0), we can define the isomorphism exp(lnx.h) of 

L(A0) by 

(5.2.10) 
~ 1 k 

exp(lnx.h).v = k id (lnx.h) .v 
k:<:O 

I\ 

In fact one can prove that exp(lnx.h) is an element of GL(Ao>' i.e., that it can be written 

as a product of generators exp(tei), exp(tfi), tea::, i = 0, 1. Therefore, exp(lnx.h) is a 

lift of the matrix ( ~ x~l ) to tJL(Ao)" Su~h a lift is of course determined up to an 

element of the central subgroup exp(ac)cGL(A )' ae C. In this way we obtain the 

I\ I\ 0 

Cartan subgroup H of GL(i\i 

(5.2.11) 
I\ 
H := {exp(ac + ~h) I a,~eC} 

I\ I\ 

One easily verifies that HcS; 

(5.2.12) exp(ac + ~h) zkh exp(-ac -~h).v = zkh .v 

I\ 

Next we construct a lift of the group 'fr to GL(Ao>" For this we remark that: 

(5.2.13) T= ( z~l ~) = (: ~) ( ~ -z;l) (: ~) x 

( ~ ! ) ( ~1 ~) ( ~ ! ) 
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=.exp(zf) exp(~z- 1 e) exp(zf) exp(e) exp(-f) exp(e) 

Recall from chapter 3 that the generators of g are given by 

(5.2.14) eo=ze_9=zf f -1 -1 o=z ee=z e 

so that we can also write 

(5.2.15) 

Viewing e0, f0, e 1 and f 1 as locally nilpotent operators on L(A0), (5.2.15) .defines a lift 
A A .A 
T of T. The group Tr is then defined as the .group generated by the operator T. We now 

have the following 

proposition S.2.1 

The following operator identities hold on L(A0): (compare with (5.2.9)): 

(5:2.16) 

sketch oftheproof" 

If A is .a nilpotent operator, B an arbitrary .operator, one has the well-known formula 

(5.2.17) 

Using this, we can write 

62 



(5.2.18) 

f\ 
Vxeg 

Expanding the exponentials and using the commutation relations, one obtains (5.2.16). + 

corollary 5.2.2 
f\ f\ f\ f\ 

Tr c S, i.e, the operator T centralizes the action of! . 

proof" 

Immediate from (5.2.16c) (recall that h!i!~). • 

f\ 
f\ f\ 

This completes the construction of S; it is the group generated by Tr and H. Remark 

f\ 

that, while S is abelian, S is not; from (5 .2.16c) we read off: 

(5.2.19) 
f\ 1 f\ 

T exp(ac + ~h) T =exp( (a+2~)c + ~h) 

5.3 the structure of Q (A 0) 

Now we are in a position to determine the structure of Q(Ao). First of all we remark that 

(5.3.1) 
<A ,ac+~h> a 

exp(a:c + ~h).v A = e O .v A = e v A 
0 0 0 

v 
f\ 

since <A0 , h> = <A0 , a: > = 0 (see (4.4.8)). Hence the Cartan subgroup H maps the 

1 

highest weight space L(A0) A into itself and we obtain no new elements of Q(A0) in 

0 
this way. f\ 

Fortunately, this is not true for the action of the translation group Tr; 

lemma 5.3.1 

(5.3.2) 
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proof 

Using (5.2.16c-d) and an easy induction with respect to k, we prove: 

(5.3.3) :f-lk,{Ail+µc +vd0)Tk= (l-vk) h + (µ+2kl-vk2) c +Velo 

rt#..,µ, VE 0:::, keZ 

Hence: 

(5.3.4) 

. . ·. 2 . "k = <A0 + ka1 - .k :B , A.h + µc + vd0> T . v A 
0 

where we have used: <Ao , d0> = 0, <o , d0> = L+ 

The following theorem is due to .Frenkel and Kac. It states that the vacuum space 

" G(:i\J) is irreducible underthe action of S; 

theorem 5.3.2 

The vectors vk := lfk.v Ao• keZ form a .basis for .Q(A0).+ 

For.the sake of completeness we mention 

corollary .S.3.3 

The weight system P(Aa) of L(.AJ is given ·by 

(5.3.5) 

proof" 

According to lemma 5.3.1,the vectors vkhave the weight A0 + ka1 - ~o. Each vk is a 

vacuum vector for R. Let vk,l := x1®vk be the vectar created from this vacuum by the 

operatorq1 :=yl-1h; ithas weight A0 +.ka1 -k2o -/o.+ 
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5. 4 vertex operators 

In the preceding sections we have given an explicit realization of the module L(Ao> as 

the vector space C[xi] ® O(A0), where 0(A0) = E&Cvk, vk = 'fk.v A . In this section 
. 0 

we want to establish the action of the algebra g = . E9 z.I g E9 ~ c E9 ~ d0 on this space. 

k JEZ 

From the construction of L(Ao> the action of z h, c and d0 is already clear; for a typical 

element P ® vk, Pe CCXjl we have 

(5.4.1) 
(i>O) 

(i>O) 

while the action of h and do is given by 

(5.4.2) 

It remains to find formulas for the action of zie, zif, ie Z. For this purpose we 

introduce the so-called vertex operators: 

(5.4.3) X(cx.~) := L ~-i zie 

ieZ 

X(-cx.~) := L ~-i zif 

ieZ 

Here ~is just a formal parameter and the expressions (5.4.3) ought to be considered as 

formal operator valued power series. It will tum out to be relatively easy to give explicit 

formulas for the action of X( ex,~) and X(-cx,~). Extracting the coefficient of ri of these 

formulas, one obtains the action of the operators zie and zif respectively. 

We concentrate on X(cx,~). the procedure for X(-cx,~) being analogous. First of all 

we compute the commutation relations of X(cx,z) with the elements of the homogeneous 

HSA; 
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(5.4.4) 
. kh . 

[Pk, X(cx,s)] = Ls-I [z 2· z1e] 
iEZ 

= sk L. s-<i+k) zi+ke 

ieZ 

= sk X(cx,s) 

[qk, X(cx,s)] = L s-i lt z-kh, zie] 
ieZ 

=f s-k L. s-(i-k) zi-ke 

iEZ 

Remember that Pk is represented by a~k, qk by xk. This and (5.4.4) motivates the 

definition of the following operators: 

(5.4.5) E_(cx,s) := exp(L, si xi) 
i>O 

s-i a 
E+(cx,s) :=exp(-2.L, 1 ax,) 

i>O 1 

These operators satisfy 

(5.4.6) [Pk, E_(cx,s)] = sk E_(cx,s) 

[qk , E_(cx,s)l = o 

To proceed we define the operator Z(cx.s) by 

(5.4.7) 

Using (5.4.4) and (5.4.6) one easily derives: 

66 



(5.4.8) [Pk , Z(a.,C)l = 0 

[qk , Z(a.,C)] = 0 

We see that Z(a.,C) commutes with the action ofi and hence it maps the vacuum space 

Q(Ao) into itself. We will need the following 

lemma 5.4.1 

(5.4.9) 1'-k zca..c) :fk = c2k zca..c) 

(5.4.10) 

(5.4.11) 

proof· 

We have: 

(5.4.12) 

[h , Z(a,C)l = <a.,h> Z(a.,C) = 2Z(a.C) 

d 
[d0 , Z(a,C)l = -C -Z(a,C) 

dC 

f\ k "k . f\ k . "k 
r X(a,~) T = L c-1 r z1e T 

ieZ 

= c2k L. c-(i+2k) zi+2ke 

ieZ 

= ~2k X(a.,~) 

and since T commutes with the action of i. it commutes with the operators E _ ( a.,C) and 

E+(a.,~). This proves (5.4.9); (5.4.10) is proved analogously. For (5.4.11) we remark 

that ad d0 is the derivation z !. . Since zk is always accompanied by c-k, this is 

equivalent to - s .£... + 
ds 

Using (5.4.9), we calculate 

(5.4.13) 
"k 

zca.s).vk = Z(a.,~) .T .v A 
0 

= ~2k :fk Z(a,C).v A 
0 
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So we are ready if we know the action of Z(a.~) on the highest weight vector. For this 

we use (5.4.10) and the fact that h.v Ao= O; this yields: 

(5.4.14) h.Z(a.~).v A = [h, Z(a.~)].v A 
0 0 

= <a,h> Z(a,~).v A 
0 

Since Z(a.~). v Ao must be in Q(Ao) and the weights occurring in this vacuum space are 

of the form A0 + ka1 - k2a we conclude that Z(a.~). v A e L(Ao) A-+a -a; 
0 .,, 1 

(5.4.15) 

The function f(~) is determined as follows: 

(5.4.16) 

Hence: 

(5.4.17) 

and we conclude that f(t) = a~ for some constant ae l:. A small calculation which we 

shall not display here, shows that a = l. 

Eventually we fmd, uSing (5.4.13,15,17): 

(5.4.18) 

We briefly summarize this section with the explicit formula for the action of the 

vertex operator X(a,~) on L(Ao) = l:[xi} ® O(Ao); we· have: 

(5.4.19) X(a.~) = E_(a,~) Z(a.~) E+(a,~) 
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= E_(cx.,~)E+(cx.,~) Z(cx.,~) 

The differential operator 

(5.4.20) 

~-i a 
E_(cx.,~)E+(cx.,~) = exp(L ~i xi) exp( -2 L Tdx?) 

i>O i>O I 

only acts on the polynomial part of the tensor product, while the operator Z(cx.,z) only 

acts on Q(A~ according to (5.4.18). 

5. 5 the principal realization of L(A0) 

In this section we will give a different construction of the module L(Ao). The essential 

ingredients for the homogeneous realization of L(A0) are the homogeneous HSA ! and 

its centralizerA ~ in GL(A~· The question arises if there are other HSA's !' and associated 

centralizers S' and, if there are, whether the homogeneous construction can be 

generalized to the pair<!•, ~'). Kac and Peterson [Kac&Pet 1] have classified all 

inequivalent HSA's and have formulated the following 

theorem 5.1 

Let~= .EI1 zjg El1 Cc El1 Cd0 be the (untwisted) affine algebra, associated to the finite 

~Z 
A 

dimensional simple algebra g. let! be a (maximal) HSA of g and S its centralizer in 

A 
GL(A~· Then the module L(A0) is isomorphic to the tensor product V ® Q(A0), where 

V is an irreducible !-module as in theorem 5.1.1 and Q(A0) the vacuum space of~, 

defined in (5.1.6). Moreover, if g has a symmetric Cartan matrix, Q(A0) is irreducible 

A 

under the action of the group S. • 

In our simple case g = s/(2,C} the classification yields only one other HSA !'. It is 

called the principal HSA and is defined by 

(5.5.1) ~I = El1 c q ' El1 c C El1 c p I 

- k<:O k k<:O k 
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' 1 ( -k-1 -kf) qk := 2k+i z e + z 

The reader easily verifies the Heisenberg commutation relations: 

(5.5.2) 

The centralizers· of!' := 7t*(!') in (j is again easily determined; it consists of all 

matrices{~~) eSLiCO:::[z,z-1)) such that 

(5.5.3) ( a b ) ( O zk ) ( d -b ) ( O zk ) 
c d zk+l O -c a = zk+l O 

The polynomials a, b, c, de O:::{z,£ 1] have to satisfy 

(5.5.4) bdz-ac=O 

-b2z + a2 = 1 

d2z-c2 = z 

ad-bc=l 

\fkEZ 

The only solutions to these equations are b = c = 0, a = d = 1 v a = d = -1 and hence 
/\ /\ S• = {~I} = center SLiCO:::). For S' we find S' = {exp(ac) I ae O:::}. 

/\ 
It is obvious that S' maps the highest weight space L(A0) A into itself. Therefore, 

. 0 
we have, using theorem 5.1.1: 

(5.5.5) 

This can also be formulated by saying that the module L(A0) is irreducible under the 

action of the principal RSA!'. From this we conclude: L(A0) = O:::[xi, i~O]. 
The action of Pk' := zk e + zk + 1 f is given by k and the action of 

qk' := 2k~l (z-k-le+ £kc) by multiplication with xk. Remark that the set {zke+ ~+lf, 
~e-zk+lf, ~h. c, d0} is a basis of g. Therefore, we are ready if we know the action of 

the following vertex operator 

(5.5.6) X(~) = L ( (zie _ zi+Jf) ~(-2i+I) + zih ~-2i} 
iEZ 
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The commutation relations of X(s) with pk' and qk' are easily worked out; 

(5.5.7) [pk', X(s)] = -2 s 2k+l {X(s) - tc) 

' S-(2k+l) I 

[qk , x<rn = -2 2k+i (X(s) - 2cJ 

Defining X(s) := X(s) -tc, this becomes 

(5.5.8) [pk' , x<s)1 = -2 z2k+1 ~<s) 

. " s-<2k+1) " 
[qk , x<s)] = -2 2k+1 x<s) 

/\ 

Hence X(s) is given by the differential operator 

" k s-<2k+1) a 
X(C)=aexp(- L,2s2 +lxk)exp(l:,2 2k+I dx.:") 

k~O k~O k (5.5.9) 

for some complex constant a. One easily shows that a = - }. This completes the 

principal realization of L(Ao). 
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chapter 6 Lie algebras of infinite matrices 

6. 0 introduction 

In the previous chapters we have seen that one can construct interesting Lie algebras by 

choosing a (generalized) Cartan matrix A, introducing generators ei, fi, a':' and 
1 

imposing relations between them involving A (see sections 1.9 and 3.4). Until now we 

have taken A to be a finite matrix. 

In this chapter we will study an example where A is a certain infinite matrix. The 

Lie algebra one obtains by the same construction as before can be realized as a Lie 

algebra of infinite traceless matrices ("sl(oo)"). We also consider a completion of this 

algebra, denoted by A00 and we will see that all affine Kac-Moody algebras of type A~) 
are contained in A00• 

The representation theory for these algebras is the same as before. We will give two 

explicit realizations of the fundamental representations L(Ak), the so-called (fermionic) 

wedge realization and the (bosonic} Pock-realization. The fact that these are realizations 

of the same abstract modules L(Ak) is known in quantum field theory as Bose-Fermi 

correspondence. 

6.1 the Lie algebras gl( oo ), s/( oo) and g'(A00 ) 

Consider matrices (gij)i,je z• such that all but a finite number of gij 's are zero. Matrix 

multiplication between such matrices is a well defined operation and we can define a 

commutator in the usual way. The resulting Lie algebra is denoted by g/(oo). 

For elements of g/(oo) the trace is also well defined and we may consider the 

rnbalgebra of traceless elements of g/( co): 

(6.1.1) s/(oo) := {geg/(oo) I tr( g) = 0} 

Let Ei,j be the matrix in g/(oo) which is zero everywhere except for its (i,j)th entry, 

which is one. These matrices satisfy 

(6.1.2) [E· · , Ek 1] = O·k E· l - o.1 Ek · l,J ' J 1, 1 ,J 
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and they form a basis for g/(oo); every element of g/(oo) can be written as a finite linear 

combination of the Ei,j's and conversely every finite linear combination of the Ei,j's 

belongs to g/(oo), 

To give a basis for s/(oo) we introduce the traceless diagonal matrices 

(6.1.3) a': := Ei i - Ei+l i+ 1 
1 ' ' 

Then the collection 

(6.1.4) 

forms a basis for s/(oo). 

Define 

(6.1.5) h := EB Ca': 
- ieZ 1 

This is a maximal abelian subalgebra of s/(oo) and indeed a Cartan subalgebra. As in 

chapter 1 we will construct the roots and root vectors with respect to !!· First we define 

matrices 

(6.1.6) 
ieZ 

These are eigenvectors for _!:!; we have 

(6.1.7) 

\ii,jeZ 

and similarly 

(6.1.8) 
'v'i,je Z 
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Introduce elements <lj_E !!* by 

(6.1.9) 

This defines an infinite Cartan matrix 

(6.1.10) 

Using the a.i's we see that 

(6.1.11) 

[h f·] = - <a· h> f . • J J ' J 'v'he !!_, jeZ 

and ej, fj are root vectors with roots a.j and - a.j respectively (see section 1.5). 

Now an arbitrary matrix Ei,j• i '* j can be obtained by commuting ei's or fi's: let i<j, 

then 

(6.1.12) 

and if i>j then 

(6.1.13) 

If &a and g13 are root spaces, we have 

(6.1.14) 

So we find from (6.1.12-14) that Ei,j is a root vector with root a.i + a.i+l + .... + a.j-l 

(if i<j) or -(a.j + a.j+I + .... + a.i_ 1) (if i>j). Since the Ei,j• i '* j form a basis for the 

elements of sl(oo) not in_!!, the root system is given by: 

(6.1.15) 
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The roots ai, ie Z are simple roots (every root can be expressed as an integral linear 

combination of the ai's with a single sign). The root spaces s/(oo)a, ae ~are all one 

dimensional, just as in the case of finite dimensional simple Lie algebras. 

Using the Cartan matrix (6.1.10), we can write down relations between the 

generators ei, fi and a( (cf. sections 1.9 and 3.4); we have 'v'i,je:Z: 

(6.1.16) 

[a'!, a'!] =0 
1 J 

I-<a.,a:'> 
(ad e·) J 1 e· = 0 

1 J 

One can prove that all other Lie algebraic relations between the generators of s/(oo) can 

be derived from (6.1.16). This means that s/(oo) is isomorphic to the Kac-Moody 

algebra associated to the Cartan matrix A00• In this context one refers to the abstract Lie 

algebra with generators ei, fi and a'! subject to the relations (6.1.16) as g'(A00) and 
1 

distinguishes it from its concrete realization s/(oo). 

We can define elements of g'(Aco> by: 

(6.1.17) 

Of course we have a Lie algebra isomorphism 
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(6.Ll8) 

The homomorphism property is expressed by 

(6.1.19) 'Vx, ye s/(oo) 

6. 2 the center of a Kac-Moody algebra and completions of sl( 00 ) 

The Canan subalgebra g of a Kac-Moody algebra is maximal abelian, hence it contains 

in particular the center £ of the Kac-Moody algebra. For every simple root vector we 

have 

(6.2.1) 'Vcec 

or <cxi , c> = 0 'Vie Z . In the situation where the ei and fi generate the whole algebra 

(which is the case we are interested in) one easily finds: 

(6.2.2) £ = {ceg I <cxi, c> = 0 'Vi} 

Now consider the center of g'(A00) (we think of it as an abstract Kac-Moody 

algebra, not as s/(oo)). We write for Ce£ c !!: 

(6.2.3) 

Then by (6.1.9) and the condition (6.2.2) on the center we must have: 

(6.2.4) 0 = <ai' L A.k a~> 
keZ 

= L A,k <CXi 'Cl~> 
keZ 
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Now the sum in (6.2.3) is finite (by definition of g'(A00)), so there will exist an i>>O, 

such that A.i+k = 0 Vk:<?O. But then we find from (6.2.4) that also A.i-I = 0. Repeating 

the argument, shows that A.i = 0 Vi and that g'(A00) has no center. (This can also be 

deduced from the realization of g'(A00) as sl(oo).) 

Note that this argument is entirely based on the fact that we have defined g'(A00) to 

consist of finite linear combinations of root vectors eex• fex and elements ex~. Let us 

provisionally allow infinite sums and investigate the center in that case. Of course we 

must be careful in specifying which infinite sums we allow in order to ensure that the 

resulting space is a Lie algebra (we will discuss this later). 

By induction one easily sees that the solution of the recursion relation (6.2.4) for A.k 

is given by 

(6.2.5) 

with A.0 and A.1 arbitrary constants. Hence 

(6.2.6) c=(A.1 -A.0) :Lkex~+A.0 :Lex~ 
keZ keZ 

and we find 

(6.2.7) 

So, allowing infinite sums (in a way yet to specify), we obtain a two dimensional center 

for the resulting Lie algebra, which is therefore no longer g'(Aoo>. 

Naively extending the isomorphism t1>: g'(A00)~sl(oo) (see (6.1.18)) to a linear 

mapping (ji, we find that the elements c1 and c2 are mapped on the matrices: 

(6.2.8) (ji(cl) = L k (Ek,k - Ek+l,k+l) = L Ek,k = 1 

~z ~z 

(ji(c2) = L (Ek,k - Ek+l,k+l) = O 

keZ 
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The first relation says that we are no longer dealing with traceless matrices; the algebra 

sl(-) should be ex.tended to the algebra g/(oo). The second relation tells us that, even if 

we replace sl(oo) by gl(oo), the mapping• is not an isomorphism anymore. Therefore, 

the algebra gl(-) should be extended further by a one dimensional center. We will come 

back to this, but first we will be more precise about which infinite sums we will allow. 

The algebra g'(A_) has a root ~pace decomposition: 

(6.2.9) g'(A-> = h e eA &a - a.e 

where~ is defined by (6.1.5) and the root sys.tem A is given by ~6.1.15). We stress that 

the symbol e means that there are only finite sums. Now consider the vector space 

II G::a':' e II &.a 
ieZ 1 aeA 

(6.2.10) 

Here the symbol fi means that we allow all infinite sums. We write for an element ·Of 

(6.2.10): 

(6.2.11) 

We would like to define the commutator of two elements of the form (6.2.11) by 

linearity on the summands, but this is not always possible. For instance let 

(6.2.12) k>O 

x_k := [fk-1 • ffk-2 , ..• [f1 • foJ ... ]] k>O 

Then one checks (for instance by calculation in s/(oo)) that 

(6.2.13) 

where ykl E !!· The commutator of the infinite sums 

(6.2.14) x := ""' x - 4,,,, - k 
k>O 
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would therefore contain all a.':, i>O with infinite coefficients. . 1 
1 

~ 

So we impose on the sums (6.2.11) the following constraint. Let a. = ± L a.i + k 

be a root, then we define the height of a. to be the number of simple roots in a.;k=O 

(6.2.15) 

·-1 

ht(a.) = ht( ± ~ a.i+k ) = j 
k=() 

By abuse of language we will also call j the height of the corresponding root vector ea.. 

Then we demand for an element x of the form (6.2.11) the set 

(6.2.16) {k I k = ht(a.), ca. "#- 0} 

to be finite. So we allow in x an arbitrary sum of elements of the Cartan subalgebra plus 

a finite number of heights. We denote the set of elements satisfying this condition by 

g'(A00). Note that ht(xk) = k and hence x+ and x_ do not belong to g'(A00). 

Let us check that g'(Aoo> is indeed a Lie algebra. We have a triangular decomposition 

(6.2.17) 

where~- (~+)consists of sums of negative (positive) root vectors with a finite number 

of heights and fi consists of arbitrary sums of elements of the Cartan subalgebra. First 

let x, ye~+' then 

(6.2.18) [x,y] = [ L A.a.ea. ' L µ13e13] 

<XEA+ ~EA+ 

:2, A.a.µ13 c(a.,13) ea+!3 

a,~ 
a+~EA+ 

(The elements ecx. were defined in (6.1.17).) This is well-defined since if a.+13e ~+' 

there are only a finite number of pairs (cx.',13'), cx.',13'e ~+' such that a.'+13' = cx.+13. 

Hence the coefficient of ecx.+l3 is finite and the commutator of two elements of!!+ is 

well defined. Due to the symmetry between ~+ and ~- the same holds for the 

commutator in n . 

Now take he E. xe !!+' then 
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(6.2.19) [h,x] =I L A.icx ~ , L µcxecxl 
ieZ ClELl+ 

= Lµcx(LAi<cx,cx~>)ecx 
«Ell+ ie.Z 

The root a is of the form a= aj + aj+I+ ... exj+k and by (6.1.9) <ex, a7>-:/= 0 only 

for a finite number of i's. Hence the coefficient of eex in the right hand side of (6.2.19) 

is again finite. Of course the same holds for a commutator between elements he li and 

yen. 

Finally we take xe ~+and ye~-· Then: 

(6.2.20) [x,y] = [ L A.cxe-a, L µ13e131 
(XE Ll+ ~E Ll+ 

= L A.cxµj3 c(-ex,j3) e13-a 
Cl,~ 

~-ne.1+ 

where c(-ex,j3) is some structure constant. Now for a given ye 6. there is only a finite 

number of pairs (a,{3) of positive roots such that y = 13 - ex: suppose y>O, then we have 

y = exi + cxi+l + ... + <Xi+k and we can take 13 = exi + exi+I + ... + exi+k+/ and 

a = cxi+k+l + cxi+k+2 + .... + cxi+k+/· This gives an infinite number of possibilities. 

However, if we restrict a and ·13 by demanding that their heights can only take a finite 

number of values, there are only a finite number of possibilities. This gives a finite 

coefficient for ej3-cx in (6.2.20) in the case 13-a>O. of The situation for 13-cx:s;O is 

similar. 

We conclude that we have a well defined commutator on g'(AoJ and hence g'(A00) 

is indeed a Lie algebra. 

Next we consider the completion on the level of infinite matrices. Recall that the 

matrix Ei,j corresponds to the root vector eai+ ... <X·_ 1 if i<j and to the root vector 

e-(cxi_1+ ... CX·) if i>j. In both cases the height is give~ by Ii - jl. If we demand that a 

matrix x = t ~j Ei,j has only a finite number of heights, it is clear that x must be of 

finite width1Around the diagonal. We denote the algebra of such matrices by g/(oo). Note 

that g/(oo) is not isomorphic to g'(A00) since the latter contains the central element 

c2 = L a~, which is mapped on the zero matrix in gl( oo) under the linear extension ·ii> 

of thl1~morphism 4> (see (6.2.8)). 
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To repair this unfortunate situation, we introduce an extension A00 := gl( oo) E9 «::: c. 

(We hope that the reader will not be too much confused by the fact that we use the 

symbol A00 both for the infinite Cartan matrix (6.1.10) and for this extension of g/(00).) 

We also introduce an isomorphism (of vector spaces) 

(6.2.21) 

by demanding that• coincides with <!>outside ~: 

(6.2.22) ~e ) =E· · a l,J 

~f )=E· · a J,1 

and that the restriction of • to the center of g'(Aoo> is given by: 

(6.2.23) 

This can be implemented by 

(6.2.24) 

Consequently, we have: 

(6.2.25) --1 ~ v 
<!>(~}="-'a 

k~i k 

--1 :r, v 
<!> (E· ·) = a -c2 1,1 k 

~i 

ifi>O 

ifiSO 

if i ;I: j 

Note that the extension A00 is at the moment only a vector space, not a Lie algebra. 

We can change this situation by demanding that• is a Lie algebra isomorphism, i.e., we 

introduce the following Lie algebra structure on A00 (cf. formula (6.1.19)): 
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(6.2.26) - --I --I 
[x,y]Aoo := lj>{ [lj> (x), lj> (y)] g'(Aoo) ) 

(One easily checks that this indeed defines a Lie algebra structure on A00.) It is clear that 

c is central in A00 (as it should be). Moreover, for x,ye s/(oo)c A00 we can write: 

(6.2.27) - --1. --1 [x,y]Aoo = lj>{ [lj> {x), lj> (y)] g'(Aoo) ) 

- -1 
=lj>{ lj> ([x,y]s/(oo))) 

= [x,y]s/(oo) + 'l'(x,y) c 

Here lf' : s/(oo) x sl(oo)~ C is a two cocycle. Its value on the matrices Ei,j and Ek,/ 

is given by .the coefficient ofa~ in T<f 1(Ei}, q,-1(Ek}l or, what is the same, the 

coefficient.of E0,0 - E1,1 in [Ei,j, Ek,/I· Hence 

(6.2.28) 
if i = l, j = k, iSO, j~l 
if i = .t, j = k, i~l, jSO 

in all other cases 

It is easy to verify that lf' can be extended to a cocycle lf': g/(oo)xgl(oo)~C (denoted by 

the same symbol) by linearity; let x = .4, aij Ei,j' y =.:I: bk/ Ek,/ be two elements of 
gl( oo ), then 1J kl 

(6.2.29) lf'(x,y) = ~ aij bji lf'(Ei,j , Ej} 
IJ 

which is finite because x and y are of finite width around the main diagonal. 

We conclude that the algebraic structure of A00 is given by: 

(6.2.30) [x + ac, y + PcJA
00 

= [x,ylgJ(oo) + lf'(x,y) c 
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where'¥ is the two cocycle on g/(oo) defined by (6.2.28). 

Remark: The calculation (6.2.27) shows that the restriction of the two cocycle '¥ to 

s/(oo) is a two coboundary; define the linear mapping 0: s/(00)-tC by: 

(6.2.31) 

then: 

(6.2.32) 

e(Ei,i - Ei+I ,i+I) :::: 0io 

0(Ei} :== 0 if i "'- j 

0([E· ·,Ek 1])::: 0(0·k E· 1- o-1 Ek ·} 
l,J , J I, 1 ,J 

= O·k o.10(E· · - E· ·) 
J 1 1,1 J,J 

== 'P(E· . , Ek 1) 1,J , 

However, if we would try to extend 0 to a linear mapping g/(oo)-tC, we would find 

(6.2.33) 0(Ei i) = 0(L EJ· J. - EJ·+1 J·+1) = {1 
' . . ' , 0 

J;;::I 

if i:o;;O 

if i>O 

and therefore this 0 is not defined on the identity matrix. This shows that'¥ is not a two 

coboundary on the full algebra g/(oo). This fact will also be clear from the next section. 

6. 3 connection with loop algebras and their central extensions 

Consider the vector space C00 of all vectors (vi)iE z with almost all vi zero. Introducing 

a basis {ei}iEZ ofC00 we can write 

(6.3.1) C00 = $ Ce· 
ieZ 1 

The Lie algebra g/(oo) acts naturally on 11::00
; we define 
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(6.3.2) E· · ek=O·ke· 1,J J .. l 

and extend by linearity. The completion gl(oo) also acts on C00
• 

Recall from'tihapter 2 the Lie algebra gin = C[z,z-1] ® g/n (see (2.2.6)). A natural 

representation space for Yn is ir;n = C[z,z-1] ®en with action 

(6.3.3) 

Let us now identify ir;n and C00 as follows: 

(6.3.4) -k '°' z 'OI ei -+ei+nk 

where ( ei} 15i5 n is the standard basis for en. Let Ei,j be the standard basis for gin. 

Then the element zk ® Ei,j acts on C00 by the identification (6.3.4): we have 

(6.3.5) k '°'E -I '°' _ s: -(/-k) ® z 'OI i,j . z 'OI em - ujm z · ei 

Because z-/ ®em corresponds to em+n/ and z-(/-k) ® ei to ei+n(/-k)' the element 

~®Ei,j corresponds to the matrix 

(6.3.6) L Ei+(p-k)n,j+pn 
peZ 

Note that this matrix belongs to the completion gl(oo) and that the coefficients of this 

matrix satisfy the periodicity condition 

(6.3.7) 

So what we have done is defining an injection 

(6.3.8) 

k 
z ®Ei,j ~ L Ei+(p-k)n,j+pn 

peZ 
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This is of course a Lie algebra homomorphism and the image is precisely the subalgebra 

of g/( oo), consisting of matrices satisfying the condition (6.3. 7). 

Next we consider the central extension A00 = g/(oo) $<Le. Using the injection t, we 

can pull back the cocycle 'P on g/( 00) to iln to define a central extension gin $ <r:: c with 

commutator 

(6.3.9) [zk ®A , xl ® B] = zk+l ® [A,B] + 'P(t (zk ®A), t (z1 ® B)) c 

n n 

We calculate the central term explicitly; let A=.~ aij Ei,j' B = i ~1bij Ei,j be two 

elements of gin, then I,J-1 ,J-

(6.3.10) k l ~ k l 
'P(t(z ®A), t(z ® B)) = .. £..J aij bpq 'P(t(z ® Ei} , t(z ® Ep,q)) 

l,j,p,q=l 

n 

.. L aij bpq L 'P(Ei+n(r-k),j+nr' Ep+n(s-l),q+ns) 

l,J,p,q=l r,SEZ 

We only get contributions from the terms for which 

(6.3.11) j+nr = p+n(s-/), i+n(r-k) = q+ns 

which is equivalent to 

(6.3.12) j = p, r = s-l, i = q, r-k = s 

from which we find k+l = 0. Hence, performing the p, q, r summations, we find 

(6.3.13) 'P(t(zk ®A), t(z1 ® B)) = 

n 

Bk+l,O .~ cxij Pji L 'l'(Ei+ns,j+n(s-/)' Ej+n(s-1),i+ns) 

IJ=l seZ 

The cocycles on the right hand side of (6.3.13)give a contribution+ 1 if i+ns ::::;; 0 and 

j+n(s-l) ~ 1 and a contribution - I if i+ns ~ 1 and j+n(s-1) ::::;; 0. The first case can only 

occur if l-1 <s<O and the second case only if O:s;s</. 

So if z::;;o, we are in the first case and we get: 
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(6.3.14) 
n -1 

\J'(t(zk ®A) , t(i ® B)) = ok+/ ,o L aij ~ji L ( + 1) 
i,j=l .S=l 

= k ok+/,O tr(AB) 

and if />0: 

(6.3.15) 
n /-1 

\J'(t(zk ®A), t(z/ ® B)) = ok+/,o L aij ~ji L (- 1) 
i,j=l S=O 

= -[ Ok+/,O tr(AB) = k Ok+/,O tr(AB) 

So we find that the pull-back of the two cocycle on g/(oo) gives precisely the usual two 

cocycle on the loop algebras g/n (see (2.8.10)). In other words: all affine Kac-Moody 

algebras A~)= ~n are included in the completed Kac-Moody algebra A00• (Here we 

use that the trace form coincides with the Killing form for s/(n,II:).) 

6. 4 representation theory of sl( oo) and A00 

The representation theory as described in chapter 4 is also valid for the Lie algebra 

g'(A00) = sl(oo). In particular, let 

(6.4.1) P ={A.eh* I <A, a':>eZ V'ieZ} 
- l 

and 

(6.4.2) 

Then for every Ae P + there exists a unique integrable, irreducible highest weight 

module L(A) with highest weight vector v A. 

By applying the lowering operators, we can obtain any vector in L(A) and therefore 

we have a weight space decomposition 

(6.4.3) L(A) = ~ L(A) A-~ k· a· 
k .<... I I 
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where the sum is over vectors ~ = (ki\e z with all but a finite number of ~·s zero. 

The fundamental representations L(Ai) are the ones associated to the fundamental 

weights Ai defined by 

(6.4.4) 

Next we want to extend the action of g'(A00) on L(A) to an action of g'(A00) = A00• 

Again some care must be taken, since we are dealing with infinite sums. Consider an 

element of the completed Cartan subalgebra h = fl a:: a':: 
- 1 

(6.4.5) h = ""' A_. a v ,,(,,,. 1 . 
1 

ieZ 

Acting with h on the highest weight vector, we find 

(6.4.6) h. v A = <A, L A.i a':> v A 

ieZ 1 

and this will in general diverge. So we impose an extra condition on the highest weight 

A: 

(6.4.7) <A, a':>= 0 for all but a finite number of ieZ 
1 

Note that this condition is satisfied for the fundamental weights. With this restriction we 

find that h acts as multiplication by a finite constant on any weight space; let 

VEL(A)A-~ k·a·' then 
.£... I I 

h. v = <A - L, kiai , L, A.j a':> v 
jeZ J 

(6.4.8) 

= { L A.j <A, a':> - l ki <ai, a':>} v 

jeZ J J 

which is finite by (6.4.7), the fact that all but a finite number of ki's are zero and 

(6.1.9). 

A slightly more technical argument shows that the other elements of the completion 

g'(A00) also act in a well defined manner on L(A) (if A satisfies (6.4.7)), so that we 

may think of L(A) as a module both over g'(A00) and over g'(A00) = A00• 
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6.5 the wedge realization of L(Ak) [Kac&Pet 2] 

Consider the Lie algebra sl(n,d::). As is well known, the n-1 fundamental highest weight 

representations L(Ak), k = 1, 2, ... n-1, can be realized as a space of exterior forms 

(6.5.1) k = 1, 2, ... , n-1 

(See, e.g., [Var], chapter 4, section 4.7.) In this section we will construct realizations 

of L(Ak) over g'(A00) (and hence also over its completion g'(Aoo> ) analogous to these 

"wedge" representations. 

Recall the vector space ([;00 = . 6' ([; e1 .. This is a g'(A00) = sl( 00) module but not a 
IEZ 

highest weight module (there is no vector vE ([;00
, which is annihilated by all positive 

root vectors ei = Ei,i+I), and neither is any ofits finite exterior powers Ak d::00
• 

Therefore, we introduce the space of semi infinite exterior products A 00 d::00
• This is 

a vector space with a basis consisting of infinite exterior products of basis elements ei of 
([;00: 

(6.5.2) 

such that i0 > i1 > i2 > .... and such that for l >> 0 iz+I = i1 - 1. On this space s/(oo) acts 

as usual: for XE s/(oo) we have 

(6.5.3) 

Note that er: s/(oo)~End A 00 
([;

00 can be extended to a representation 't: g/(oo)~ 

End A 0011:00
• 

We can distinguish the basis elements (6.5.2) by their behaviour at large/; we will 

say that an element (6.5.2) has charge kif for all/>> 0 i1 = k - I. For instance 

(6.5.4) 
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has charge k. We refer to vk as the kth vacuum. The vector space of all vectors of 

charge k is denoted by A;(«::00
) and we clearly have a decomposition of the total semi 

infinite wedge space in sectors of fixed charge; 

(6.5.5) 

The element vk is a highest weight vector for the space of charge k vectors 

A;(a:::): denoting the restriction of the naturnl sl(00) action cr to ~(«::00) by crk, we can 

write 

(6.5.6) 

and 

(6.5.7) 

=0 

Even more is true: any element of ~(«::00) can be obtained from vk by application 

of elements of sl(oo), showing that A;(«::00 ) is a highest weight module with highest 

weight Ak. To prove this assertion we take an element 

(6.5.8) 

of L(Ak), i.e., for l ~N0 we have i1 = k-1. Then 
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(6.5 .9) 

Finally one can show that 1'1;(0::00
) is irreducible under the action of sl(oo), showing that 

(6.5.10) 

and that the decomposition (6.5.5) of the complete semi infinite wedge space is a 

decomposition in irreducible submodules, namely the fundamental s/(oo) modules. 

Next we introduce elementary creation and annihilation operators on" 00(0::00
). For 

every basis vector ei we define linear operators 

(6:5.11) ) 00 00) 00( 00 E( ei : /\ ('<I:: ~ /\ 0:: ) 

by their action on basis vectors: 

(6.5.12) 

00 

i(e1-)(e1· "e1· "e.1· " .... ) = ~ (-)k01· i· e1· " e1· " e1· " ····" ~1· " ... 0 1 ·2 f::o •k 0 1 2 k 

where the notation ~ik means that the vector eik is deleted. The restrictions of these 

operators to a fixed charge sector raise and lower the charge: 

(6.5.13) 

Furthermore, these operators satisfy anticommutation relations 
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(6.5.14) a) ( e(ei) , e(ej)} = O 

b) ( i(ei) , i(ej)} = 0 

c) {i(e·) e(e·)} = B·· 
1 ' J IJ 

We only check the last one: 

(6.5.15) 

which indeed proves (6.5.14c). 

Mathematically the importance of the operators i(ei) and e(ej) is that the action of the 

basis elements of s/(oo) can be expressed as a product of these operators; we clearly 

have 

(6.5.16) crk(E· ·) = e(e·) i(e·) 
l,J 1 J 

'Iii, j, ke Z 

In physical terminology the i(e/s and e(e/s are creation and annihilation operators for 

fennions and the vacua vk are called ''Dirac seas". 

Next we tum to the action of the completion A00 on /\;('1:: 00
). First we will 

introduce some notation; recall the isomorphisms 

(6.5.17) $: g'(A00) ~ s/(oo) 

and let 'I' be the isomorphism (6.5.10) from /\;('1::00
) to L(Ak). Denote by 1tk the action 

of g'(A00) on L(Ak), by 1tk the action of its completion g'(A00) on L(Ak) and by erk the 

action of A00 on "\<!!::). We then have 
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(6.5.18) 'VxE s/(oo) 

With these formulas, we can calculate the action of a basis {Ei,j, c) for A00• For c we 

have by (6.2.23): 

(6.5.19) 

-1 - <" v) = 'I' 0 7tk £.., ex. • 0 'I' 
jEZ J 

since <Ak, a':>= 1 for allk. 

Ifi.~ j we1have ~- 1(Ei} = q,-\Ei} and hence 

(6.5.20) - -1 - --1 crk(E· ·) = 'If o 7tk( cj> (E· ·)) o 'I' lJ . IJ 

= crk(E· ·) l,J 

So the representation <\ coincides with the natural representation crk for off diagonal 

matrices. Finally, we calculate uk for diagonal matrices. By (6.2.25) we have for i>O 

(6.5.21) - . -1 - --1 crk(E· ·) = 'I' o 1tk( cj> (E· ·)) o 'I' 1,1 1,1 
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= 'Ck(E' ·) 1,1 

while for iSO 

(6.5.22) crk<E· . ) = "'-1 o xkc<f 1 <E· . n o "' 
1,1 1,1 

We can express the representation crk in terms offermionic creation and annihilation 

operators; define normal ordering by 

. {E(ei) i(ej) 
: E(ei) l(ej) : := 

- i(ej) E(ei) 

if i>O 

(6.5.23) if i~O 

Note that, if i :I= j, the anti commutation relations (6.5.14) tell us that the normal 

if i>O 

(6.5.24) 
if i~O 

This means that 

(6.5.25) 

So the effect of completing g'(A00) to g'(A00) is incorporated by performing the normal 

ordering operation on the creation and annihilation operators. 
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6. 6 the bosonic realization of L(A k) over A00 

In this section we will construct a bosonic realization of L(Ak) over A00 analogous to 

the construction in section 5.5 of L(A0) over A ~I)· We first introduce a Heisenberg 

subalgebra in A00• Define a matrix E in g'(A00) by 

(6.6.1) E=;i;:(~ e-) = ~ E· · 1 't' £.,,, l £.,,, I , I+ 
ieZ ieZ 

This matrix is invertible; its inverse is 

(6.6.2) ff 1 = L Ei+l,i = ~(L fi) 
iEZ ieZ 

In fact one easily checks that 

(6.6.3) 

Now define 

(6.6.4) P ·-Ek k .- , 

VkeZ 

k>O 

If we consider these elements as elements of the central extension A00 = g/(oo) EB 0:: c, 

we have 

(6.6.5) [pk' qj] = T L [Em,m+k 'En+j,nl 
m,neZ 

=t L f 0m+k,n+j Em,n - 0m,n E,J+j,m+k 
m,neZ 

= T L \f'(Em,m+k 'En+j,n) c 
m,neZ 

= T0kj L \f'(Em,m+k' Em+k,m) c 
meZ 

I 0 =r0kj L 'f'(Em,m+k • Em+k,m) c 
m=-k+l 
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This means that the subalgebra 

(6.6.6) 

is a Heisenberg subalgebra of A00 • It is easy to verify that the intersection ~ nAl1) 

coincides with the principal Heisenberg subalgebra ~· introduced in (5.5. l ). Therefore, 

~ is called the principal Heisenberg subalgebra of A00• 

One can prove that the fundamental modules L(Ak) remain irreducible under the 

action of~ and therefore we can identify 

(6.6.7) 

The elements of the principal Heisenberg subalgebra act by the assignments 

(6.6.8) 

In order to find the action of the rest of the algebra A00, we introduce the generating 

matrix 

(6.6.9) A(u,v) := ~ ui v·j E· · 
£., 1,J 

i,jEZ 

(u and v are formal parameters comparable to the formal parameter~ in (5.4.3)) and 

/\ 

calculate the commutators of A(u,v) with the elements of the principal Heisenberg 

subalgebra; 

(6.6.10) [pk, ~(u,v)} = [ L Em,m+k , Lui v·j Ei} 

mez i,jeZ 

= L ui v·j { 0i,m+k Em,j - 0jm Ei,m+k 

i,j,meZ 

= ~uiv-j{E·k·-E·· k+O·· k'l'(E··E··)c} 
£., 1- ,J 1,j+ 1,J+ j,l' 1,J 

ijeZ 
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where the notation....!!__ stands for the formal power series ~ r-:..~. With this result it is u~ ~ ~) 
~o natural to define: 

(6.6.11) 
A ll 

A(u,v) := A(u,v) + -c u-v 

Then A(u,v) satisfies 

(6.6.12) 

Similarly one calculates 

(6.6.13) 

As in chapter 5 we see that the action of A(u,v) on L(Ak) = C[xi, i>O] can be 

represented by the vertex operator 

(6.6.14) 

where ck(u,v) is a formal power series, which can be. calculated by acting with r(u,v) 

on the highest weight vector vk. After a small calculation one finds: 

(6.6.15) ck(u,v) = ~~ ....!!__ 
\ v) u-v 
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