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Abstract. In this paper we study the space of operator trees that can 
be used to answer a join query, with the goal of generating elements 
form this space at random. We solve the problem for queries with acyclic 
query graphs. We first count, in 0( n3 ) time, the exact number of trees 
that can be used to evaluate a given query on n relations. The interme­
diate results of the counting procedure then serve to generate random, 
uniformly distributed operator trees in 0( n2 ) time per tree. We also es­
tablish a mapping between the N operator trees for a query and the 
integers 1 through N -i. e. a ranking-- and describe ranking and un­
ranking procedures with complexity 0( n2 ) and 0( n2 log n), respectively. 

1 Introduction 

1.1 Background 

The selection of a join evaluation order is a major task of relational query opti­
mizers [Ull82, CP85, KRB85]. The problem can be stated as that of finding an 
operator tree to evaluate a given query, so that the estimated evaluation cost is 
minimum. In practice, the combinatorial nature of the problem prevents finding 
exact solutions, and both heuristics and randomized algorithms are considered 
as viable alternatives. 

This paper addresses two basic questions related to the space of operator 
trees of interest: What is the exact size of the space? And, how to generate a 
random element from the space efficiently? We answer those questions for the 
class of acyclic queries -those whose query graph, defined below, is acyclic. 
The answer to the second question has a direct application to randomized query 
optimization, as selection of a random item in the search space is a basic primitive 
for most randomized algorithms [SG88, Swa89b, Swa89a, IK90, IK91, Kan91, 
LVZ93, GLPK94]. 

Acceptable operator trees are subject to restrictions on which relations can be 
joined together, and counting them does not reduce, in general, to the enumera­
tion of familiar classes of trees -e. g. binary trees, trees representing equivalent 
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expressions on an associative operator, etc. A variety of techniques are used to 
enumerate graphs and trees [Knu68, HP73, RH77, GLW82, VF90], but none of 
them seems to apply directly to our problem. 

Previous work has identified restricted classes of queries for which valid op­
erator trees map one-to-one to permutations or to unlabeled binary trees -the 
first class known as star queries, and the second as chain queries, see for example 
[0190, IK91, LVZ93]- thus solving the counting and random generation prob­
lems for those classes. For the general case, since it is easy to generate any valid 
operator tree non-deterministically, quasi-random selection of operator trees has 
been used in some work on randomized query optimization [SG88, Swa89a]. The 
term quasi-random refers to the fact that every valid tree has a non-zero proba­
bility of being selected, but some trees have a higher probability than others and, 
furthermore, there is no precise characterization of the probability distribution. 

Another approach to generate random operator trees is to generate labeled 
binary trees uniformly at random, until one of them turns out to be a valid 
operator tree for the query at hand. The validity of an operator tree can be 
checked efficiently, but the small ratio of valid trees with respect to labeled 
binary trees renders this method impractical [Swa89a, Swa91]. 

The paper is organized as follows. The remainder of this introduction defines 
the space of valid operator trees, and presents some notation and basic prop­
erties. Section 2 presents primitives for the construction of operator trees and 
shows how to efficiently count the number of trees for a given query. Section 3 
is devoted to ranking of trees and random generation. Section 4 presents our 
conclusions. 

1.2 Query Graphs and Join Trees 

Figure 1 shows the graph representation of a query, called a query graph, and 
two operator trees to answer the query. 

P2 P2 

D / 
IXI 

'--...... / 
IXI 

~Pa c p3 c 
/ IXI '-....._ / IXI '-....._ 

p3 Pl D x B 
Pt P2 / IXI '-....._ / '--...... 

A B c A B A D 

Fig. 1. Query graph and operator trees. 
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In the query graph, nodes correspond to relations of the database, and undi­
rected edges correspond to join predicates of the query. The graph shown denotes 
the query {(a, b, c, d) I a E A/\b E B /\c EC /\d ED /\p1 (a, b)/\p2(b, c) /\p3(b, d)}, 
where A, B, C, D are database relations and p1 , P2, p3 are binary predicates. In 
a database system, such a query is usually evaluated by means of binary opera­
tors, and the two operator trees of Fig. 1 can be used to answer this query. The 
first operator tree requires only relational joins (denoted "tx1" ), while the second 
requires Cartesian products (denoted "x" ). For a description of relational op­
erators and query graphs, see, for example, [Ull82, CP85, KRB85]. A Cartesian 
product is required in the second tree of Figure 1 because we start by combining 
information from relations A, D, but there is no edge (i. e. predicate) between 
them in the query graph. 

D<I D<I D<I 

/ ~ / ~ / ~ 
D l><l c D<I D D<I 

/ ~ / ~ / ~ 
D<I c D<I D l><l A 

/ ~ / ~ / ~ 
A B A B B c 

D<I !><! !><! 

/ ~ / ~ / ~ 
A l><l c l><l A D<I 

/ ~ / ~ / ~ 
D<I D !><! A D<I c 

/ ~ / ~ / ~ 
B c B D B D 

Fig. 2. All join trees of the query graph. 

Figure 2 shows all 6 operator trees for the query of Fig. 1 in which only join 
is required, called join trees here. A purely graph-theoretical definition of join 
trees is given next. 

Definition 1. An unordered binary tree T is called a join tree of query graph 
G = (V, E) when it satisfies the following: 

• The leaves ofT correspond one-to-one with the nodes of G -i. e. leaves(T) = 
V-and 

• the leaves of every subtree T' of T induce a connected subgraph of G -
i. e. Gheaves(T') is connected. 

Join trees are unordered -i. e. do not distinguish left from right subtree-
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because the operator is commutative. There are implementation algorithms that 
do not distinguish a left and right argument [Gra93), so the selection ofleft/right 
argument does not affect the query execution cost. If needed, ordering an opera­
tor tree of n leaves requires a binary choice in each of the n - 1 internal nodes, so 
there are 2n-l ordered trees for each unordered tree of n relations. This mapping 
can be easily used to extend our counting and random generation of unordered 
join trees to the ordered variety. 

In the sequel, we omit the operator 1><1 when drawing join trees: A tree of the 
form (T1 IXI T2) is written simply as (T1 .T2). Also, we assume that query graphs 
are connected and acyclic, i. e. we deal with acyclic queries. 

1.3 Notation and Basic Properties 

We use TG to denote the set of join trees of a query graph G, and T~(lc) ~ TG 
to denote the set of join trees in which a given leaf v is at level k (the level of a 
leaf v in a tree is the length of the path from the root to v). For example, for the 
query graph of Fig. 1, Fig. 2 shows that TG consists of six trees, yg(i) consists 

of only two trees, and yg<3 ) = TG. 
Since our constructions often rely on paths from the root of the join tree to 

a specific leaf, we introduce an anchored list representation of trees. Elements 
of the anchored list are the subtrees found while traversing the path from the 
root to some anchor leaf. For list notation, we use square brackets as delimiters 
and the list construction symbol "I" of Prolog -i. e. [xJL] is the list obtained by 
inserting a new element x at the front of list L. 

Definition2. Let T be a join tree and v be a leaf of T. The list anchored on v 
of T, call it L, is constructed as follows: 

• If T is a single leaf, namely v, then L = O. 
• Otherwise, let T = (Ti .Tr) and assume, without loss of generality, that v is 
a leaf ot Tr. Let Lr be the list of Tr anchored on v. Then L = [1/ JLr]. 

Then we say that T = (L, v). 

Observe that if T = ([T1 , T2 , ••• , nJ, v) is an element of TG, then TE T~(lc); 
that is, the length of anchored list coincides with the level of leaf v in T. In 
addition, every tree 1i, as well as every suffix-based Tf = ([1i, ... ,n],v), for 
i = 1, ... , k, is a join tree of some sub graph of G. 

The following straightforward observations serve as base cases for our tree 
counting scheme. Let G = (V, E) be a query graph with n nodes, and let v E V. 
• If the graph has only one node, then it has only one join tree T, and v is at 

level 0 in T; that is, JTGJ = ly~(o)I = 1, for n = l. 
• If the graph has more than one node, then it has no association tree in which 

v is at level O; that is, IT~(o) I = 0, for n > l. 
• There is no association tree in which v is at level greater than or equal to n; 

that is, ly~(i) I = 0, for i ~ n. 
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• Since v appears at some unique level in any association tree of G, the total 
number of association trees is 

ITal =I: IT~(i)I . 
i 

Our algorithms compute the size of each subset T~<0>, T~(l>, ... , T~(n-l) of 
Ta, for a graph G of n nodes. Therefore, we use a v-level-partitioned cardinal­

ity ITalv = [IT~(O)I' 17~(l)1, ... , IT~(n-l)I]· Clearly, ITGI can be computed (in 

linear time) given ITalv· 

2 Construction and Counting of Join Trees 

Our approach to counting join trees is based on two primitive operations that 
construct join trees of a graph G, given join trees of subgraphs of G. Those 
operations derive recurrence equations on the number of join trees of a query 
graph. Together with the base cases presented in Section 1.3, these recurrence 
equations are used to solve our tree counting problem. 

2.1 Graph Extension / Leaf Insertion 

Our first operation applies when a query graph G' is extended by adding a new 
node v and edge (v, w) to yield G. Then any join tree T' of G' can also be 
extended to a join tree T of G, by inserting a new leaf v somewhere in T'. But 
by the restrictions on join trees, the new leaf v can be inserted only in certain 
places. 

- i v T11' Tii n v n 
T2 n v 

w w w w 

T' 

Fig. 3. Construction by leaf-insertion. 

Figure 3 illustrates the situation. v has to be inserted somewhere in the path 
from the root to w. Inserting v somewhere else does not produce a valid join 
tree for G. For example, if in Fig. 3 v is inserted somewhere in T1 to yield T{ 
then Gl1eaves(T{) is not connected, because it excludes node w and therefore edge 
( v, w), yet it includes v. For this reason, the valid tree T obtained from T' is 
uniquely determined by the level at which v is inserted. Note, however, that if 
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two edges (v,w1), (v,w2) are added instead of just one, then v can be inserted 
either in the path to w1 or the path to w2 , and therefore the new tree is not 
uniquely defined by the insertion level. 

Definition3. Let G = (V, E) be an acyclic query graph. Assume v E Vis such 
that G' = Glv-{v} is connected, and let (v,w) EE. We say G is the extension 
by v adjacent tow of G'. 

Definition4. Let G be the extension by v adjacent tow of G'. Let TE Tc, 
T' E Ta', with anchored list representations T = (L, w), T' = (L', w). If Lis the 
result of inserting v at position k in L', then T is constructed by leaf insertion 
from T', and we say T has insertion pair (T', k) on v. 

The level at which a leaf can be inserted is also clearly restricted. For the 
same graphs G, G' and join trees T, T' = ( L', w) of the above definition, the 
length of L' is at least k - 1 -so that the insertion of a new element v in 
position k is feasible. 

Lemma 5. Let G be the extension by v adjacent to w of G'. Let k 2: l. There is a 

bijection between the set T~(k) and insertion pairs {(T', k) IT' E ui::?:k-1 T;,(i)}. 
Proof. The bijection is given directly by the leaf-insertion operation. D 

Lemma 6. Let G be the extension by v adjacent to w of G'. Let k 2: l. Then, 

IT~(k)I = I: IT;,(i)I . 
i::'.:k-1 

Proof Follows from Lemma 5, given that T:!:Y), T;f,(j) are disjoint for if. j. D 

Examplel. Let G be a query graph with nodes {a,b,c,d,e} and edges 

{(a, b), (b, c), (c, d), (d, e)}. From the base cases in Sect. 1.3, ITc1 1.l la= [l]. Then, 

using Lemma 6 we find ITa1 1• 0 l lb = [O, 1]; ITGl{•oc) le = [O, 1, 1]; ITa1 1.ocd} Id = 
[O, 2, 2, l]; and \Tc \0 = [O, 5, 5, 3, 1]. 

The computation in the above example is isomorphic to the one used to count 
unlabeled binary trees in [RH77]. This is the case for chain queries -i. e. those 
with nodes {v1, ... ,vn} and edges {(v1,v2),(v2,v3), ... ,(vn-1,vn)}. Then, as 

shown in [RH77], the closed form for \Tc I is l/n · ( 2: ~ 12), for a chain query of 

n nodes. Unfortunately, Lemma 6 is, by itself, insufficient to deal with non-chain 
queries, as shown in the next example. 

Example 2. Take graph G of Example 1, and add a new node f and edge (c, f) 
to obtain a new graph H. To find \THIJ using Lemma 6 we need \Tele, but 
we obtained only \Ta le in Example l. Independently of the order in which we 
consider the nodes of H, we face the same problem: After a sequence of extensions 
on a graph in a "chain" fashion, we need to come back to an earlier node to extend 
from there, but then the necessary counters are not available. 
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2.2 Graph Union / Tree Merging 

A second operation helps to remove the limitation shown in Example 2. The 
case to consider now is when a query graph G results from the union of two 
graphs G1 , G2 that share exactly one common node, say v. Then any two join 
trees T1 E Ta, and T2 E Ta, can be merged to obtain a join tree T E Ta. T is 
obtained by interleaving the subtrees of T1 , T2 found in the path from the root 
to the common leaf v. 

Tf1 
T2 

1 

v 

v 

v v v 

Fig. 4. Construction by tree-merging. 

Figure 4 illustrates the situation. We can restrict our attention to the paths 
from the root to the common node v, in trees T1, T2 and the resulting tree T. The 
path to v in T contains the sub trees found in the paths in T1, T2, interleaved 
in some fashion. In terms of anchored lists, if T1 = (Li, v) and T2 = (L2, v), 
then T = ( L, v ), where list L is a merge of lists L1, L2. The merging of two lists 
Li, L2 with respective lengths Ii, l2 corresponds to the problem of non-negative 
integer decomposition of Ii in 12 + 1 -that is, a list of /2 + 1 non-negative 
integers a = [ o:o, ... , 0:1 2 ] such that their surr:i. is equal to Ii. Operationally, the 
decomposition [o:o, ... , 0:12 ] indicates a merge of L1 , L2 as follows: Take the first 
o:o elements from L1 , then the first element from L2; now take the next o:i 
elements from L1 and then the second element from L2, and so on; the last 0:12 

elements of L1 follow the last element of L2. In Fig. 4, for example, the trees 
shown are obtained by mergings [2, 0, O], [1, 1, O], and [O, 2, OJ, respectively. Note, 
however, that if G1, G2 share more than one node, then their corresponding trees 
can be merged in more elaborate ways. 
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Definition 7. Let G = (V, E) be an acyclic query graph. Assume sets of edges 
Vi, V2 are such that Glvi> Glv2 are connected, Vi U V2 = V, and Vi n Vi= {v}. 
We say G is the union of G1 , G2 with common node v. 

Definition 8. Let G be the union of G1, G2 with common node v. Let T E TG, 
T1 E Tau T2 E Ta 2 , with anchored list representations T = (L, v), T1 = (L1, v), 
T2 = (L2, v). If Lis the result of a merging a of lists L1 , L2, then T is constructed 
by tree merging from T1, T2, and we say T has merge triplet (T1, T2, a) on V1, Vi. 

Lemma 9. Let G be the union of G1 , G2 with common node v. Let k ~ 1. 
There is a bijection between the set T~(k) and merge triplets {(T1 , T2 , a) I T1 E 
T~~ i), T2 E T~; k-i), a is an integer decomposition of i in k - i + 1}. 

Proof. The bijection is given by the tree merging operation. D 

Lemma 10. Let G be the union of G1 , G2 with common node v. Let k ~ l. Then 

17~(k)I = 2;: IT~~i)l · IT~;k-i)I · (;) 
' 

Proof. Follows from Lemma 9. D 

2.3 Counting Join Trees 

Our tree-construction operations, and their corresponding count equations, can 
be applied on query graphs built using graph extension and graph union. We 
make this construction explicit by means of a standard decomposition graph. 
Algorithms to count and construct trees are implemented by traversals on this 
decomposition graph. 

Definition 11. A standard decomposition graph is an operator tree H that 
builds a query graph G, using the following: 

• Constant "v" delivers a graph G with one node v; v is the distinguished node 
of G. 

• Unary "+v" takes as input a graph G' = (V',E') with distinguished node 
w, v f/. V', and delivers a graph G that is the extension on v adjacent to w of 
G'. The distinguished node of G is v. 

• Binary "xv" takes as input two graphs G1 = (Vi, Ei), G2 = (Vi, E2) both 
with distinguished node v, Vi n Vi = { v}, and delivers a graph G that is the 
union of G1, G2. The distinguished node of G is v. 

For example, Fig. 5 shows a query graph G and a standard decomposition 
graph H for G. It is easy to see that a linear time algorithm obtains standard 
decomposition graphs for acyclic query graphs. The number of nodes of the stan­
dard decomposition is linear in the number of nodes of the query graph it builds. 
Alternatively, operators in the decomposition graph of G can be interpreted as 
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e 

a--b--c--d 

Query graph G. a 

Standard decomposition graph H. 

Fig. 5. Query graph and standard decomposition graph. 

+e [O, 5, 5, 5, 3] 

I 
Xc [0, 0, 2, 3] 

/~ 
+c [O, 1, l] +c [O, l] 

I I 
+b [O, l] d [l] 

I 
a [l] 

Fig. 6. Counting trees on the standard decomposition graph. 

building join trees of G. Adding extra parameters "+v,k" and "xv,a" become 
operators for leaf insertion at k and tree merging on ~. 

Now, to count the number of join trees of a given acyclic query graph G, we 
first obtain a standard decomposition Hof G, and then apply directly Lemmas 6 
and 10 bottom-up on H, to compute a result for each node. In each subexpression 
H' of H, if H' constructs a graph G' (subgraph of G) with distinguished node v, 
then at the root of H' we compute !Ta' Iv- For example, Fig. 6 shows the results 
of the computation for the query graph of Fig. 5. Note that this query is neither 
a chain nor a star. The total number of different trees is 18. 

Theorem 12. Let G be a connected, acyclic query graph on n relations. The 
number of J·oin trees for G can be computed in 0( n3 ) time. 
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Proof A standard decomposition graph H of G can be constructed in linear 
time, and the number of nodes of H is linear on n. Then we apply either Lemma 6 
or Lemma 10 in each of the O(n) nodes of H. Now, observe that the number 
of mergings M( 11, 12), for lists of size Ii, 12, satisfies M (11, /2) = M(l1, 12 - 1) + 
M(l1-1,12); then a table for M(/1, 12), where /1, /2::; n, can be precomputed in 

O(n2 ) time, and evaluating the expression ( ~) required in Lemma 10 reduces 

to a simple table lookup. Computing the list of values ITa1 Iv' at each node of H 
by either Lemma 6 or 10 does not exceed O(n2) time. Then, the computation in 
all the nodes of H requires no more than O(n3 ) time. Finally, !Tai is the result 
of adding the values in the list I Ta Iv obtained at the root of H. D 

3 Random Generation and Ranking of Join Trees 

The bijections given by Lemmas 5 and 9 and the standard decomposition graph 
can also be used to rank and to generate random join trees. We show how to do 
this next. 

3.1 Generating Random Join Trees 

To generate random join trees we can apply the following strategy recursively. 
Assume a set S is partitioned into sets So, ... , Sm. To generate a random element 
of S, first select a partition, say Si, and then generate a random element within 
Si. Using a biased probability of selection I Si l/ISI for each partition, and then 
generating uniformly from the partition, every element :z: E Si is generated with 
probability ISd/ISI · 1/ISil = 1/ISI -i. e. the procedure generates elements from 
S uniformly at random. 

Lemma 13. Let G be a query graph with n nodes, obtained as the extension by 
v adjacent to w of G'. Let 1 ::; k1 ::; k2 < n. A random, uniformly distributed T 

from Uki$i:$k2 T~(j) can be obtained as follows: 

1. Generate a random number r uniformly with 1::; r::; Lki$i$k2 IT~(j)I· 
2. Find k = mini (r ::; E1:o IT~(l) I). 
3. Generate a random, uniformly distributed T' from ui>k-1 r;Yl. 
4. Build T from insertion pair (T', k). -

Proof. A set in the partition T;(ki), . .. , T~(k2 ) is seleted with the appropriate 
bias in steps 1 and 2, and then an element of the selected partition is generated 
uniformly in steps 3 and 4 using the bijection of Lemma 5. D 

Lemma 14. Let G be a query graph with n nodes, obtained as the union of 
G1 , G2 with common node v. Let 1 ::; k1 ::; k2 < n. A random, uniformly dis­
tributed T from LJk1992 T/!;(j) can be obtained as follows: 
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1. Generate a random number r uniformly with 1:::; r:::; Zki:'.SjSk, ,y;(j)' 
2. Find k = minj (r:::; Z{=o ly;(I) I)· 
3. Generate a random number r 1 uniformly with 1 :=:; r' :::; ly;(k) I· 
4. Find i == minj (r':::; Z{=o IT~;/), . ,y;~k-1) I · ( 7)) · 
5. Generate random, uniformly distributed T1 from T;;i), T2 from T~;k-i>, 

and integer partition of i in k - i + 1 a. 
6. Build T from merge triplet (T1, T2, a). 

Proof. A set in the partition T~(ki), ... , T~(k,) is selected with the appropriate 
bias in steps 1 and 2. The selected set is again partitioned and one of those 
partitions is in turn selected with the appropriate bias in steps 3 and 4. Finally, 
an element of the resulting set is selected uniformly in steps 5 and 6. The partition 
in step 3 and 4, and the uniform selection in steps 5 and 6 use the bijection of 
Lemma9. 0 

Theorem 15. Let G be a connected, acyclic query graph on n relations. After 
a preprocessing step of 0( n3 ) time, uniformly-distributed random join trees for 
G can be generated in 0( n 2 ) time, given a source of random numbers. 

Proof. By Theorem 12, the standard decomposition graph H of G and the count 
arrays in the nodes of H can be computed in O(n3 ) time. This completes the 
preprocessing step. To generate a random tree, traverse the decomposition graph 
recursively from the top, applying the procedure of either Lemma 13 or 14 at 
each node (except for the "constant" nodes of H, which define a one-node query 
graph with only one join tree, in which case random selection is trivial). The 
time taken by either procedure at each node of H is bound by 0( n). Therefore, 
the total time required generate a random tree is 0( n2). 

The above scheme generates O(n) random numbers to produce a random 
join tree. An alternative to obtain a random tree is to generate a single ran­
dom number, and then unrank such number into a tree, as shown below. The 
complexity of unranking, however, is higher. 

3.2 Ranking and Unranking Join Trees 

Mapping the N join trees of a query graph to the integers 1 through N is based 
on the recursive application of the following idea. Assume we want to rank an 
element x E S, and S is partitioned into sets So, ... , Sm. If x E S1c, for some 
0 :::; k :::; m, and we can find a local rank of x in Sk, then simply set the rank 
of x ins to be local-rank(x, Sk) + :=;;01 IS; 1. Conversely, to unrank the element 
corresponding to number y under our scheme, first find the set Sk from which 
the element must be retrieved, where k = minj (y :=:; I:{=0 IS;!). Then find a 

local number y' == y - :=;;01 IS;I, and finally unrank-local(y', Sk)· 
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Example 3. Applying the idea of ranking based on partitions to the query whose 
standard decomposition is shown in Fig. 6, the numbers 1 through 5 are assigned 
to join trees in which leaf e is at level 1; numbers 6 through 10 are assigned to 
those in which e is at level 2; numbers 11 through 15 are assigned to those in 
which e is at level 3; and finally 16 through 18 are assigned to those in which e 
is at level 4. 

Lemma 16. Let G be a query graph with n nodes, obtained as the extension by 

v adjacent tow of G'. Let 1 :S k1 :S k2 < n. The rank r ofT in LJk 1 <j<k 2 T/;(j) 
can be obtained as follows: - -

1. Find the insertion pair (T', k) of T, where T' E Tei, k1 S k S k2. 

2. Find the rank r' of T' in LJi>k-i T;;Yl. 
3. The rank of T is r = r' + 2:~:01 IT~(il 

Proof. In step 1, the partition where T belongs is identified by looking at the 
level of leaf v. In step 2, a local rank of T in its partition is obtained using 
the bijection of Lemma 5 (assuming some ranking function for the trees in G'). 
Finally, step 3 adjusts the local rank to the rank in the complete set. 0 

Lemma 17. Let G be a query graph with n nodes, obtained as the union of 
G1, G2 with common node v. Let 1 < k1 < k2 < n. The rank r of T zn 

Uk, ::;j ::;k, T~(j) can be obtained as foll-:Ws: -

1 F . d th t · l t (T rr ) f T h T E ..,-v(i) rr? E ..,..v(k-i) and . zn emerge rzp e 1 ,1 2 ,a o , w ere 1 1 01 , 1~ 1a2 , 

a is an integer decomposition of i in k - i + 1. 

2. Find the rank r 1 ofT1 in T~~•l, the rank r 2 ofT2 in T~;k-i)' and the rank 

r3 ofa:. Set the localrankr' = (r3 -l)·IT~~k-i)l·IT/;~i)l+(r2 -l)·IT~~i)l+r1 . 

3. The rank of T is r = r' + L~=~ IT~~I) I · IT~;k-l) I · ( 7) + L~~1 IT~(l) I· 
Proof In step 1, the partition where T belongs is identified from the merge 
triplet. In step 2, a local rank is obtained, using the bijection of Lemma 9 (as­
suming some ranking function for trees in G1 and G2 , and on integer decompo­
sitions). Finally, step 3 adjusts the local rank in the complete set. 0 

Theorem 18. Let G be a connected, acyclic query graph on n relations. After 
a preprocessing step of O(n3 ) time, jozn trees of G can be ranked in O(n2 ) time 
and unranked in O(n2 logn) time. 

Proof. By Theorem 12, the standard decomposition graph Hof G and the count 
arrays in the nodes of H can be computed in 0( n3 ) time. This completes the 
preprocessing step. To rank a tree, at each node of H we have to decompose the 
tree either into an insertion pair or into a merge triplet, and then use the rules 
of Lemma 16 or 17 (except for "constant" nodes of H, in which the ranking is 
trivial). The work per node does not exceed 0( n) time, and therefore the work 
to compute the local ranks for all the nodes takes time 0( n 2 ). 
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To unrank a tree, we first translate the rank in TG to a local rank in some 
y~(k). Then, using the rules of Lemmas 16 and 17, we find at each node of H an 
insertion level k or a merging specification IX in a top-down pass of H (except 
for "constant" nodes of H, in which unranking is trivial). In a bottom-up pass 
we use the parameters at each node to build the tree. U nranking a merging 
specification IX takes 0( n log n) in the worst case, which bounds all the other 
computation performed at each node of H. Thus the time required to unrank is 
O(n2 logn). 0 

4 Discussion 

In this paper we described how to efficiently count the number of join trees that 
can be used to evaluate a given query, and how to generate them uniformly 
at random. The difficulty of these problems results from the fact that there is 
no natural one-to-one mapping between join trees and a simple combinatorial 
structure. Our concept of a standard decomposition graph provides a supporting 
structure for counting and random generation, because it defines a canonical 
construction for each tree. The tree constructions are such that they can be 
counted efficiently by means of a simple traversal of the decomposition graph. 

The integers required by our algorithms can become quite large, as is the case 
with other graph counting/ generation problems [v 190). This eventually limits the 
applicability of our approach. Nevertheless, our algorithms can be used to a good 
extent on practical database queries (e. g. certainly for queries of 20 relations, 
using standard 64-bit integers). 

We performed experiments on the selection of join evaluation orders, for 
query optimization, using the random generation of trees presented here. The 
results are encouraging. The interested reader is referred to [GLPK94) for more 
details. 

The results we have presented apply only to queries whose graph is acyclic. 
We are currently studying the class of cyclic queries, but the problem is more dif­
ficult. Many database problems become significantly more complex when cyclic 
structures are allowed (see for example [BFMY83]), and the techniques we use 
for the acyclic case do not seem to extend easily to cyclic queries. 
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