
Uniformly-Distributed Random Generation of
Join Orders

Cesar A. Galindo-Legaria1'2 * Arjan Pellenkoft1

I CWI

Martin L. Kersten 1

P. 0. Box 94079, 1090 GB Amsterdam, The Netherlands

2 SINTEF DELAB
N-7034 Trondheim, Norway

Abstract. In this paper we study the space of operator trees that can
be used to answer a join query, with the goal of generating elements
form this space at random. We solve the problem for queries with acyclic
query graphs. We first count, in 0(n3) time, the exact number of trees
that can be used to evaluate a given query on n relations. The interme­
diate results of the counting procedure then serve to generate random,
uniformly distributed operator trees in 0(n2) time per tree. We also es­
tablish a mapping between the N operator trees for a query and the
integers 1 through N -i. e. a ranking-- and describe ranking and un­
ranking procedures with complexity 0(n2) and 0(n2 log n), respectively.

1 Introduction

1.1 Background

The selection of a join evaluation order is a major task of relational query opti­
mizers [Ull82, CP85, KRB85]. The problem can be stated as that of finding an
operator tree to evaluate a given query, so that the estimated evaluation cost is
minimum. In practice, the combinatorial nature of the problem prevents finding
exact solutions, and both heuristics and randomized algorithms are considered
as viable alternatives.

This paper addresses two basic questions related to the space of operator
trees of interest: What is the exact size of the space? And, how to generate a
random element from the space efficiently? We answer those questions for the
class of acyclic queries -those whose query graph, defined below, is acyclic.
The answer to the second question has a direct application to randomized query
optimization, as selection of a random item in the search space is a basic primitive
for most randomized algorithms [SG88, Swa89b, Swa89a, IK90, IK91, Kan91,
LVZ93, GLPK94].

Acceptable operator trees are subject to restrictions on which relations can be
joined together, and counting them does not reduce, in general, to the enumera­
tion of familiar classes of trees -e. g. binary trees, trees representing equivalent

* C. Galindo-Legaria was supported by an ERCIM postdoctoral fellowship.

281

expressions on an associative operator, etc. A variety of techniques are used to
enumerate graphs and trees [Knu68, HP73, RH77, GLW82, VF90], but none of
them seems to apply directly to our problem.

Previous work has identified restricted classes of queries for which valid op­
erator trees map one-to-one to permutations or to unlabeled binary trees -the
first class known as star queries, and the second as chain queries, see for example
[0190, IK91, LVZ93]- thus solving the counting and random generation prob­
lems for those classes. For the general case, since it is easy to generate any valid
operator tree non-deterministically, quasi-random selection of operator trees has
been used in some work on randomized query optimization [SG88, Swa89a]. The
term quasi-random refers to the fact that every valid tree has a non-zero proba­
bility of being selected, but some trees have a higher probability than others and,
furthermore, there is no precise characterization of the probability distribution.

Another approach to generate random operator trees is to generate labeled
binary trees uniformly at random, until one of them turns out to be a valid
operator tree for the query at hand. The validity of an operator tree can be
checked efficiently, but the small ratio of valid trees with respect to labeled
binary trees renders this method impractical [Swa89a, Swa91].

The paper is organized as follows. The remainder of this introduction defines
the space of valid operator trees, and presents some notation and basic prop­
erties. Section 2 presents primitives for the construction of operator trees and
shows how to efficiently count the number of trees for a given query. Section 3
is devoted to ranking of trees and random generation. Section 4 presents our
conclusions.

1.2 Query Graphs and Join Trees

Figure 1 shows the graph representation of a query, called a query graph, and
two operator trees to answer the query.

P2 P2

D /
IXI

'--...... /
IXI

~Pa c p3 c
/ IXI '-....._ / IXI '-....._

p3 Pl D x B
Pt P2 / IXI '-....._ / '--......

A B c A B A D

Fig. 1. Query graph and operator trees.

282

In the query graph, nodes correspond to relations of the database, and undi­
rected edges correspond to join predicates of the query. The graph shown denotes
the query {(a, b, c, d) I a E A/\b E B /\c EC /\d ED /\p1 (a, b)/\p2(b, c) /\p3(b, d)},
where A, B, C, D are database relations and p1 , P2, p3 are binary predicates. In
a database system, such a query is usually evaluated by means of binary opera­
tors, and the two operator trees of Fig. 1 can be used to answer this query. The
first operator tree requires only relational joins (denoted "tx1"), while the second
requires Cartesian products (denoted "x"). For a description of relational op­
erators and query graphs, see, for example, [Ull82, CP85, KRB85]. A Cartesian
product is required in the second tree of Figure 1 because we start by combining
information from relations A, D, but there is no edge (i. e. predicate) between
them in the query graph.

D<I D<I D<I

/ ~ / ~ / ~
D l><l c D<I D D<I

/ ~ / ~ / ~
D<I c D<I D l><l A

/ ~ / ~ / ~
A B A B B c

D<I !><! !><!

/ ~ / ~ / ~
A l><l c l><l A D<I

/ ~ / ~ / ~
D<I D !><! A D<I c

/ ~ / ~ / ~
B c B D B D

Fig. 2. All join trees of the query graph.

Figure 2 shows all 6 operator trees for the query of Fig. 1 in which only join
is required, called join trees here. A purely graph-theoretical definition of join
trees is given next.

Definition 1. An unordered binary tree T is called a join tree of query graph
G = (V, E) when it satisfies the following:

• The leaves ofT correspond one-to-one with the nodes of G -i. e. leaves(T) =
V-and

• the leaves of every subtree T' of T induce a connected subgraph of G -
i. e. Gheaves(T') is connected.

Join trees are unordered -i. e. do not distinguish left from right subtree-

283

because the operator is commutative. There are implementation algorithms that
do not distinguish a left and right argument [Gra93), so the selection ofleft/right
argument does not affect the query execution cost. If needed, ordering an opera­
tor tree of n leaves requires a binary choice in each of the n - 1 internal nodes, so
there are 2n-l ordered trees for each unordered tree of n relations. This mapping
can be easily used to extend our counting and random generation of unordered
join trees to the ordered variety.

In the sequel, we omit the operator 1><1 when drawing join trees: A tree of the
form (T1 IXI T2) is written simply as (T1 .T2). Also, we assume that query graphs
are connected and acyclic, i. e. we deal with acyclic queries.

1.3 Notation and Basic Properties

We use TG to denote the set of join trees of a query graph G, and T~(lc) ~ TG
to denote the set of join trees in which a given leaf v is at level k (the level of a
leaf v in a tree is the length of the path from the root to v). For example, for the
query graph of Fig. 1, Fig. 2 shows that TG consists of six trees, yg(i) consists

of only two trees, and yg<3) = TG.
Since our constructions often rely on paths from the root of the join tree to

a specific leaf, we introduce an anchored list representation of trees. Elements
of the anchored list are the subtrees found while traversing the path from the
root to some anchor leaf. For list notation, we use square brackets as delimiters
and the list construction symbol "I" of Prolog -i. e. [xJL] is the list obtained by
inserting a new element x at the front of list L.

Definition2. Let T be a join tree and v be a leaf of T. The list anchored on v
of T, call it L, is constructed as follows:

• If T is a single leaf, namely v, then L = O.
• Otherwise, let T = (Ti .Tr) and assume, without loss of generality, that v is
a leaf ot Tr. Let Lr be the list of Tr anchored on v. Then L = [1/ JLr].

Then we say that T = (L, v).

Observe that if T = ([T1 , T2 , ••• , nJ, v) is an element of TG, then TE T~(lc);
that is, the length of anchored list coincides with the level of leaf v in T. In
addition, every tree 1i, as well as every suffix-based Tf = ([1i, ... ,n],v), for
i = 1, ... , k, is a join tree of some sub graph of G.

The following straightforward observations serve as base cases for our tree
counting scheme. Let G = (V, E) be a query graph with n nodes, and let v E V.
• If the graph has only one node, then it has only one join tree T, and v is at

level 0 in T; that is, JTGJ = ly~(o)I = 1, for n = l.
• If the graph has more than one node, then it has no association tree in which

v is at level O; that is, IT~(o) I = 0, for n > l.
• There is no association tree in which v is at level greater than or equal to n;

that is, ly~(i) I = 0, for i ~ n.

284

• Since v appears at some unique level in any association tree of G, the total
number of association trees is

ITal =I: IT~(i)I .
i

Our algorithms compute the size of each subset T~<0>, T~(l>, ... , T~(n-l) of
Ta, for a graph G of n nodes. Therefore, we use a v-level-partitioned cardinal­

ity ITalv = [IT~(O)I' 17~(l)1, ... , IT~(n-l)I]· Clearly, ITGI can be computed (in

linear time) given ITalv·

2 Construction and Counting of Join Trees

Our approach to counting join trees is based on two primitive operations that
construct join trees of a graph G, given join trees of subgraphs of G. Those
operations derive recurrence equations on the number of join trees of a query
graph. Together with the base cases presented in Section 1.3, these recurrence
equations are used to solve our tree counting problem.

2.1 Graph Extension / Leaf Insertion

Our first operation applies when a query graph G' is extended by adding a new
node v and edge (v, w) to yield G. Then any join tree T' of G' can also be
extended to a join tree T of G, by inserting a new leaf v somewhere in T'. But
by the restrictions on join trees, the new leaf v can be inserted only in certain
places.

- i v T11' Tii n v n
T2 n v

w w w w

T'

Fig. 3. Construction by leaf-insertion.

Figure 3 illustrates the situation. v has to be inserted somewhere in the path
from the root to w. Inserting v somewhere else does not produce a valid join
tree for G. For example, if in Fig. 3 v is inserted somewhere in T1 to yield T{
then Gl1eaves(T{) is not connected, because it excludes node w and therefore edge
(v, w), yet it includes v. For this reason, the valid tree T obtained from T' is
uniquely determined by the level at which v is inserted. Note, however, that if

285

two edges (v,w1), (v,w2) are added instead of just one, then v can be inserted
either in the path to w1 or the path to w2 , and therefore the new tree is not
uniquely defined by the insertion level.

Definition3. Let G = (V, E) be an acyclic query graph. Assume v E Vis such
that G' = Glv-{v} is connected, and let (v,w) EE. We say G is the extension
by v adjacent tow of G'.

Definition4. Let G be the extension by v adjacent tow of G'. Let TE Tc,
T' E Ta', with anchored list representations T = (L, w), T' = (L', w). If Lis the
result of inserting v at position k in L', then T is constructed by leaf insertion
from T', and we say T has insertion pair (T', k) on v.

The level at which a leaf can be inserted is also clearly restricted. For the
same graphs G, G' and join trees T, T' = (L', w) of the above definition, the
length of L' is at least k - 1 -so that the insertion of a new element v in
position k is feasible.

Lemma 5. Let G be the extension by v adjacent to w of G'. Let k 2: l. There is a

bijection between the set T~(k) and insertion pairs {(T', k) IT' E ui::?:k-1 T;,(i)}.
Proof. The bijection is given directly by the leaf-insertion operation. D

Lemma 6. Let G be the extension by v adjacent to w of G'. Let k 2: l. Then,

IT~(k)I = I: IT;,(i)I .
i::'.:k-1

Proof Follows from Lemma 5, given that T:!:Y), T;f,(j) are disjoint for if. j. D

Examplel. Let G be a query graph with nodes {a,b,c,d,e} and edges

{(a, b), (b, c), (c, d), (d, e)}. From the base cases in Sect. 1.3, ITc1 1.l la= [l]. Then,

using Lemma 6 we find ITa1 1• 0 l lb = [O, 1]; ITGl{•oc) le = [O, 1, 1]; ITa1 1.ocd} Id =
[O, 2, 2, l]; and \Tc \0 = [O, 5, 5, 3, 1].

The computation in the above example is isomorphic to the one used to count
unlabeled binary trees in [RH77]. This is the case for chain queries -i. e. those
with nodes {v1, ... ,vn} and edges {(v1,v2),(v2,v3), ... ,(vn-1,vn)}. Then, as

shown in [RH77], the closed form for \Tc I is l/n · (2: ~ 12), for a chain query of

n nodes. Unfortunately, Lemma 6 is, by itself, insufficient to deal with non-chain
queries, as shown in the next example.

Example 2. Take graph G of Example 1, and add a new node f and edge (c, f)
to obtain a new graph H. To find \THIJ using Lemma 6 we need \Tele, but
we obtained only \Ta le in Example l. Independently of the order in which we
consider the nodes of H, we face the same problem: After a sequence of extensions
on a graph in a "chain" fashion, we need to come back to an earlier node to extend
from there, but then the necessary counters are not available.

286

2.2 Graph Union / Tree Merging

A second operation helps to remove the limitation shown in Example 2. The
case to consider now is when a query graph G results from the union of two
graphs G1 , G2 that share exactly one common node, say v. Then any two join
trees T1 E Ta, and T2 E Ta, can be merged to obtain a join tree T E Ta. T is
obtained by interleaving the subtrees of T1 , T2 found in the path from the root
to the common leaf v.

Tf1
T2

1

v

v

v v v

Fig. 4. Construction by tree-merging.

Figure 4 illustrates the situation. We can restrict our attention to the paths
from the root to the common node v, in trees T1, T2 and the resulting tree T. The
path to v in T contains the sub trees found in the paths in T1, T2, interleaved
in some fashion. In terms of anchored lists, if T1 = (Li, v) and T2 = (L2, v),
then T = (L, v), where list L is a merge of lists L1, L2. The merging of two lists
Li, L2 with respective lengths Ii, l2 corresponds to the problem of non-negative
integer decomposition of Ii in 12 + 1 -that is, a list of /2 + 1 non-negative
integers a = [o:o, ... , 0:1 2] such that their surr:i. is equal to Ii. Operationally, the
decomposition [o:o, ... , 0:12] indicates a merge of L1 , L2 as follows: Take the first
o:o elements from L1 , then the first element from L2; now take the next o:i
elements from L1 and then the second element from L2, and so on; the last 0:12

elements of L1 follow the last element of L2. In Fig. 4, for example, the trees
shown are obtained by mergings [2, 0, O], [1, 1, O], and [O, 2, OJ, respectively. Note,
however, that if G1, G2 share more than one node, then their corresponding trees
can be merged in more elaborate ways.

287

Definition 7. Let G = (V, E) be an acyclic query graph. Assume sets of edges
Vi, V2 are such that Glvi> Glv2 are connected, Vi U V2 = V, and Vi n Vi= {v}.
We say G is the union of G1 , G2 with common node v.

Definition 8. Let G be the union of G1, G2 with common node v. Let T E TG,
T1 E Tau T2 E Ta 2 , with anchored list representations T = (L, v), T1 = (L1, v),
T2 = (L2, v). If Lis the result of a merging a of lists L1 , L2, then T is constructed
by tree merging from T1, T2, and we say T has merge triplet (T1, T2, a) on V1, Vi.

Lemma 9. Let G be the union of G1 , G2 with common node v. Let k ~ 1.
There is a bijection between the set T~(k) and merge triplets {(T1 , T2 , a) I T1 E
T~~ i), T2 E T~; k-i), a is an integer decomposition of i in k - i + 1}.

Proof. The bijection is given by the tree merging operation. D

Lemma 10. Let G be the union of G1 , G2 with common node v. Let k ~ l. Then

17~(k)I = 2;: IT~~i)l · IT~;k-i)I · (;)
'

Proof. Follows from Lemma 9. D

2.3 Counting Join Trees

Our tree-construction operations, and their corresponding count equations, can
be applied on query graphs built using graph extension and graph union. We
make this construction explicit by means of a standard decomposition graph.
Algorithms to count and construct trees are implemented by traversals on this
decomposition graph.

Definition 11. A standard decomposition graph is an operator tree H that
builds a query graph G, using the following:

• Constant "v" delivers a graph G with one node v; v is the distinguished node
of G.

• Unary "+v" takes as input a graph G' = (V',E') with distinguished node
w, v f/. V', and delivers a graph G that is the extension on v adjacent to w of
G'. The distinguished node of G is v.

• Binary "xv" takes as input two graphs G1 = (Vi, Ei), G2 = (Vi, E2) both
with distinguished node v, Vi n Vi = { v}, and delivers a graph G that is the
union of G1, G2. The distinguished node of G is v.

For example, Fig. 5 shows a query graph G and a standard decomposition
graph H for G. It is easy to see that a linear time algorithm obtains standard
decomposition graphs for acyclic query graphs. The number of nodes of the stan­
dard decomposition is linear in the number of nodes of the query graph it builds.
Alternatively, operators in the decomposition graph of G can be interpreted as

288

e

a--b--c--d

Query graph G. a

Standard decomposition graph H.

Fig. 5. Query graph and standard decomposition graph.

+e [O, 5, 5, 5, 3]

I
Xc [0, 0, 2, 3]

/~
+c [O, 1, l] +c [O, l]

I I
+b [O, l] d [l]

I
a [l]

Fig. 6. Counting trees on the standard decomposition graph.

building join trees of G. Adding extra parameters "+v,k" and "xv,a" become
operators for leaf insertion at k and tree merging on ~.

Now, to count the number of join trees of a given acyclic query graph G, we
first obtain a standard decomposition Hof G, and then apply directly Lemmas 6
and 10 bottom-up on H, to compute a result for each node. In each subexpression
H' of H, if H' constructs a graph G' (subgraph of G) with distinguished node v,
then at the root of H' we compute !Ta' Iv- For example, Fig. 6 shows the results
of the computation for the query graph of Fig. 5. Note that this query is neither
a chain nor a star. The total number of different trees is 18.

Theorem 12. Let G be a connected, acyclic query graph on n relations. The
number of J·oin trees for G can be computed in 0(n3) time.

289

Proof A standard decomposition graph H of G can be constructed in linear
time, and the number of nodes of H is linear on n. Then we apply either Lemma 6
or Lemma 10 in each of the O(n) nodes of H. Now, observe that the number
of mergings M(11, 12), for lists of size Ii, 12, satisfies M (11, /2) = M(l1, 12 - 1) +
M(l1-1,12); then a table for M(/1, 12), where /1, /2::; n, can be precomputed in

O(n2) time, and evaluating the expression (~) required in Lemma 10 reduces

to a simple table lookup. Computing the list of values ITa1 Iv' at each node of H
by either Lemma 6 or 10 does not exceed O(n2) time. Then, the computation in
all the nodes of H requires no more than O(n3) time. Finally, !Tai is the result
of adding the values in the list I Ta Iv obtained at the root of H. D

3 Random Generation and Ranking of Join Trees

The bijections given by Lemmas 5 and 9 and the standard decomposition graph
can also be used to rank and to generate random join trees. We show how to do
this next.

3.1 Generating Random Join Trees

To generate random join trees we can apply the following strategy recursively.
Assume a set S is partitioned into sets So, ... , Sm. To generate a random element
of S, first select a partition, say Si, and then generate a random element within
Si. Using a biased probability of selection I Si l/ISI for each partition, and then
generating uniformly from the partition, every element :z: E Si is generated with
probability ISd/ISI · 1/ISil = 1/ISI -i. e. the procedure generates elements from
S uniformly at random.

Lemma 13. Let G be a query graph with n nodes, obtained as the extension by
v adjacent to w of G'. Let 1 ::; k1 ::; k2 < n. A random, uniformly distributed T

from Uki$i:$k2 T~(j) can be obtained as follows:

1. Generate a random number r uniformly with 1::; r::; Lkiik2 IT~(j)I·
2. Find k = mini (r ::; E1:o IT~(l) I).
3. Generate a random, uniformly distributed T' from ui>k-1 r;Yl.
4. Build T from insertion pair (T', k). -

Proof. A set in the partition T;(ki), . .. , T~(k2) is seleted with the appropriate
bias in steps 1 and 2, and then an element of the selected partition is generated
uniformly in steps 3 and 4 using the bijection of Lemma 5. D

Lemma 14. Let G be a query graph with n nodes, obtained as the union of
G1 , G2 with common node v. Let 1 ::; k1 ::; k2 < n. A random, uniformly dis­
tributed T from LJk1992 T/!;(j) can be obtained as follows:

290

1. Generate a random number r uniformly with 1:::; r:::; Zki:'.SjSk, ,y;(j)'
2. Find k = minj (r:::; Z{=o ly;(I) I)·
3. Generate a random number r 1 uniformly with 1 :=:; r' :::; ly;(k) I·
4. Find i == minj (r':::; Z{=o IT~;/), . ,y;~k-1) I · (7)) ·
5. Generate random, uniformly distributed T1 from T;;i), T2 from T~;k-i>,

and integer partition of i in k - i + 1 a.
6. Build T from merge triplet (T1, T2, a).

Proof. A set in the partition T~(ki), ... , T~(k,) is selected with the appropriate
bias in steps 1 and 2. The selected set is again partitioned and one of those
partitions is in turn selected with the appropriate bias in steps 3 and 4. Finally,
an element of the resulting set is selected uniformly in steps 5 and 6. The partition
in step 3 and 4, and the uniform selection in steps 5 and 6 use the bijection of
Lemma9. 0

Theorem 15. Let G be a connected, acyclic query graph on n relations. After
a preprocessing step of 0(n3) time, uniformly-distributed random join trees for
G can be generated in 0(n 2) time, given a source of random numbers.

Proof. By Theorem 12, the standard decomposition graph H of G and the count
arrays in the nodes of H can be computed in O(n3) time. This completes the
preprocessing step. To generate a random tree, traverse the decomposition graph
recursively from the top, applying the procedure of either Lemma 13 or 14 at
each node (except for the "constant" nodes of H, which define a one-node query
graph with only one join tree, in which case random selection is trivial). The
time taken by either procedure at each node of H is bound by 0(n). Therefore,
the total time required generate a random tree is 0(n2).

The above scheme generates O(n) random numbers to produce a random
join tree. An alternative to obtain a random tree is to generate a single ran­
dom number, and then unrank such number into a tree, as shown below. The
complexity of unranking, however, is higher.

3.2 Ranking and Unranking Join Trees

Mapping the N join trees of a query graph to the integers 1 through N is based
on the recursive application of the following idea. Assume we want to rank an
element x E S, and S is partitioned into sets So, ... , Sm. If x E S1c, for some
0 :::; k :::; m, and we can find a local rank of x in Sk, then simply set the rank
of x ins to be local-rank(x, Sk) + :=;;01 IS; 1. Conversely, to unrank the element
corresponding to number y under our scheme, first find the set Sk from which
the element must be retrieved, where k = minj (y :=:; I:{=0 IS;!). Then find a

local number y' == y - :=;;01 IS;I, and finally unrank-local(y', Sk)·

291

Example 3. Applying the idea of ranking based on partitions to the query whose
standard decomposition is shown in Fig. 6, the numbers 1 through 5 are assigned
to join trees in which leaf e is at level 1; numbers 6 through 10 are assigned to
those in which e is at level 2; numbers 11 through 15 are assigned to those in
which e is at level 3; and finally 16 through 18 are assigned to those in which e
is at level 4.

Lemma 16. Let G be a query graph with n nodes, obtained as the extension by

v adjacent tow of G'. Let 1 :S k1 :S k2 < n. The rank r ofT in LJk 1 <j<k 2 T/;(j)
can be obtained as follows: - -

1. Find the insertion pair (T', k) of T, where T' E Tei, k1 S k S k2.

2. Find the rank r' of T' in LJi>k-i T;;Yl.
3. The rank of T is r = r' + 2:~:01 IT~(il

Proof. In step 1, the partition where T belongs is identified by looking at the
level of leaf v. In step 2, a local rank of T in its partition is obtained using
the bijection of Lemma 5 (assuming some ranking function for the trees in G').
Finally, step 3 adjusts the local rank to the rank in the complete set. 0

Lemma 17. Let G be a query graph with n nodes, obtained as the union of
G1, G2 with common node v. Let 1 < k1 < k2 < n. The rank r of T zn

Uk, ::;j ::;k, T~(j) can be obtained as foll-:Ws: -

1 F . d th t · l t (T rr) f T h T E ..,-v(i) rr? E ..,..v(k-i) and . zn emerge rzp e 1 ,1 2 ,a o , w ere 1 1 01 , 1~ 1a2 ,

a is an integer decomposition of i in k - i + 1.

2. Find the rank r 1 ofT1 in T~~•l, the rank r 2 ofT2 in T~;k-i)' and the rank

r3 ofa:. Set the localrankr' = (r3 -l)·IT~~k-i)l·IT/;~i)l+(r2 -l)·IT~~i)l+r1 .

3. The rank of T is r = r' + L~=~ IT~~I) I · IT~;k-l) I · (7) + L~~1 IT~(l) I·
Proof In step 1, the partition where T belongs is identified from the merge
triplet. In step 2, a local rank is obtained, using the bijection of Lemma 9 (as­
suming some ranking function for trees in G1 and G2 , and on integer decompo­
sitions). Finally, step 3 adjusts the local rank in the complete set. 0

Theorem 18. Let G be a connected, acyclic query graph on n relations. After
a preprocessing step of O(n3) time, jozn trees of G can be ranked in O(n2) time
and unranked in O(n2 logn) time.

Proof. By Theorem 12, the standard decomposition graph Hof G and the count
arrays in the nodes of H can be computed in 0(n3) time. This completes the
preprocessing step. To rank a tree, at each node of H we have to decompose the
tree either into an insertion pair or into a merge triplet, and then use the rules
of Lemma 16 or 17 (except for "constant" nodes of H, in which the ranking is
trivial). The work per node does not exceed 0(n) time, and therefore the work
to compute the local ranks for all the nodes takes time 0(n 2).

292

To unrank a tree, we first translate the rank in TG to a local rank in some
y~(k). Then, using the rules of Lemmas 16 and 17, we find at each node of H an
insertion level k or a merging specification IX in a top-down pass of H (except
for "constant" nodes of H, in which unranking is trivial). In a bottom-up pass
we use the parameters at each node to build the tree. U nranking a merging
specification IX takes 0(n log n) in the worst case, which bounds all the other
computation performed at each node of H. Thus the time required to unrank is
O(n2 logn). 0

4 Discussion

In this paper we described how to efficiently count the number of join trees that
can be used to evaluate a given query, and how to generate them uniformly
at random. The difficulty of these problems results from the fact that there is
no natural one-to-one mapping between join trees and a simple combinatorial
structure. Our concept of a standard decomposition graph provides a supporting
structure for counting and random generation, because it defines a canonical
construction for each tree. The tree constructions are such that they can be
counted efficiently by means of a simple traversal of the decomposition graph.

The integers required by our algorithms can become quite large, as is the case
with other graph counting/ generation problems [v 190). This eventually limits the
applicability of our approach. Nevertheless, our algorithms can be used to a good
extent on practical database queries (e. g. certainly for queries of 20 relations,
using standard 64-bit integers).

We performed experiments on the selection of join evaluation orders, for
query optimization, using the random generation of trees presented here. The
results are encouraging. The interested reader is referred to [GLPK94) for more
details.

The results we have presented apply only to queries whose graph is acyclic.
We are currently studying the class of cyclic queries, but the problem is more dif­
ficult. Many database problems become significantly more complex when cyclic
structures are allowed (see for example [BFMY83]), and the techniques we use
for the acyclic case do not seem to extend easily to cyclic queries.

References

[BFMY83] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of
acyclic database schemes. Journal of the ACM, 30(3):479-513, July 1983.

(CP85] S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems.
McGraw-Hill, New York, 1985.

(GLPK94] C. A. Galindo-Legaria, A. Pellenkoft, and M. L. Kersten. Fast, random­
ized join-order selection -Why use transformations? In Proceedings of
the Twentieth International Conference on Very Large Databases, Santi­
ago, 1994. Also CWI Technical Report CS-R9416.

293

[GLW82] U. Gupta., D. T. Lee, a.nd C. K. Wong. Ranking a.nd unra.nking of 2-3 trees.
SIAM Journal of Computation, pages 582-590, August 1982.

[Gra93] G. Graefe. Query evaluation techniques for large databases. ACM Com­
puting Surveys, 25(2):73-170, June 1993.

[HP73] F. Harary and E. M. Palmer. Graphical Enumeration. Academic Press,
1973.

[IK90] Y. E. Ioannidis and Y. C. Kang. Randomized algorithms for optimizing
large join queries. Proc. of the ACM-SIGMOD Conference on Management
of Data, pages 312-321, 1990.

[IK91] Y. E. Ioannidis and Y. C. Kang. Left-deep vs. bushy trees: An analysis of
strategy spaces a.nd its implications for query optimization. Proc. of the
ACM-SIGMOD Conference on Management of Data, pages 168-177, 1991.

[Kan91] Y. C. Kang. Randomized Algorithms for Query Optimization. PhD thesis,
University of Wisconsin-Madison, 1991. Technical report #1053.

[Knu68] D. E. Knuth. The Art of Computer Programming, volume 1: Fundamental
Algorithms. Addison-Wesley, 1968. Second edition, 1973.

[KRB85] W. Kim, D. S. Reiner, and D. S. Batory, editors. Query processing in
database systems. Springer, Berlin, 1985.

[LVZ93] R. S. G. Lanzelotte, P. Valduriez, and M. Zait. On the effectiveness of op­
timization search strategies for para.llel execution spaces. Proc. of the 19th
VLDB Conference, Dublin, Ireland, pages 493-504, 1993.

[0190] K. Ono and G. M. Lohman. Measuring the complexity of join enumera­
tion in query optimization. Proc. of the 16th VLDB Conference, Brisbane,
Australia, pages 314-325, 1990.

(RH77] F. Ruskey a.nd T. C. Hu. Generating binary trees lexicographically. SIAM
journal of Computation, 6(4):745-758, December 1977.

[SG88] A. N. Swami and A. Gupta.. Optimization of large join queries. Proc. of
the ACM-SIGMOD Conference on Management of Data, pages 8-17, 1988.

[Swa.89a] A. N. Swami. Optimization of Large Join Queries. PhD thesis, Stanford
University, 1989. Technical report STAN-CS-89-1262.

[Swa89b] A. N. Swami. Optimization oflarge join queries: Combining heuristics and
combinatorial techniques. Proc. of the ACM-SIGMOD Conference on Man­
agement of Data, pages 367-376, 1989.

[Swa91] A. N. Swami. Distribution of query pla.n costs for large join queries. Tech­
nical Report RJ 7908, IBM Research Division, Alma.den, 1991.

[Ull82] J. D. Ullman. Principles of Database Systems. Computer Science Press,
Rockville, MD, 2nd edition, 1982.

[VF90] J. S. Vitter and Ph. Flajolet. Analysis of algorithms and data structures. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume
A: Algorithms and Complexity, chapter 9, pages 431-524. North Holland,
1990.

[vL90] J. van Leeuwen. Graph algorithms. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume A: Algorithms and Complexity,
chapter 10, pages 525-631. North Holland, 1990.

