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CW/, P.O. Box 94079, 1090 GB Amsterdam, Netherlands 

We construct and analyse explicit methods for solving initial value problems for systems of differential 
equations with expensive right-hand side functions whose Jacobian has its stiff eigenvalues along the negative 
axis. Such equations arise after spatial discretization of parabolic integro-differential equations of Volterra or 
Fredholm type with nonstiff integral parts. The methods to be developed in this paper may be interpreted as 
stabilized forward Euler methods. They require only one right-hand side evaluation per step and the construction 
of a stabilizing matrix. This matrix should be tuned to the class of problems to be integrated. In the case of 
parabolic integro-differential equations, the stabilizing matrix will be based on Chebyshev polynomials and 
will be constructed by means of recursions satisfied by these polynomials. This construction is related to the 
construction of the intermediate stages in the so-called Runge-Kutta-Chebyshev methods for ordinary differential 
equations. In analogy with these methods, we shall call the stabilized Euler methods, Euler-Chebyshev methods. 
They are second-order accurate, and although they are explicit, their stepsize restriction is not prescribed by the 
stiff eigenvalues. For integro-differential equations in which the parabolic part consists of a one-dimensional 
diffusion term, we describe an efficient implementation of the stabilizing matrix, which is based on factorization 
properties of Chebyshev polynomials. © 1997 Published by Elsevier Science B.V. 
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I. Introduction 

We consider the numerical solution of initial value problems (IVPs) for systems of differential 
equations with relatively expensive right-hand side functions. In particular, we shall study IVPs of the 
form 

dyd(t) = D(t)y(t) + v(t), y(to) =Yo, 
t 

y,v E !R,,., ( 1.1) 

where D(t) is an r-by-r matrix whose eigenvalues are assumed negative and v(t) is an expensive 
function. Examples of such problems can be found in the class of semi-discrete parabolic integro­
differential equations of Volterra or Fredholm type. 
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1.1. Volterra integro-dif.ferential equations 

Consider the parabolic Volterra integro-differential equation 
t 

ou~;x) =Lu(t,x)+g(t,x)+ J k(t,r,x,u(t,x)u(r,x))dr, 

to 

x E !t, (1.2) 

where L is an elliptic operator and fl is a domain in Rd. We replace [2 by a set of r points Xi and 
u(t, x) by the set of r values u(t, xi). Let y(t) = (Yi(t)) where Yi(t) represents an approximation 
to u(t,xi)- Then, the initial-boundary value problem for (1.2) can be discretized into an initial value 
problem (IVP) for the r-dimensional system of Volterra integro-differential equations 

t 

dyi ( t) T J ( ( ) ) (it= di(t) y(t) + 9i(t) + k t, r, Xi, Yi(t), Yi r dr, i = 1, ... , r, (1.2') 

to 

where 9i(t) := g(t, xi) and di(t) is an r-dimensional vector representing the discretization of Lat Xi· 
Next, we define 

s 

zi(t,s) := J k(t,r,xi,Yi(t),yi(r))dr, i = 1, ... ,r, (1.3) 

to 

and we replace (1.2') by the equivalent system 

dy~~t) = di(t)Ty(t) + 9i(t) + Zi(t, t), Yi(to) = u(to, Xi), 
i = 1, ... ,r. (1.4) 

Zi(t, to) = 0, 

This problem can be cast into the form (1.1) with Yo = (u(to, xi)), D the r-by-r matrix the row 
vectors of which are given by di, and with 

oz(t, s) 
v(t)=g(t)+z(t,t), 08 =K(t,s,y(t),y(s)), z(t,to)=O, y,zEIRr. (1.5) 

Here, g(t) := (gi(t)), z(t, s) := (zi(t, s)) and K(t, s, y, w) := (k(t, s, Xi,:lJi, wi)). This Volterra 
integro-differential equation problem is an example of the form ( 1.1) where the right-hand side is 
rather expensive, because each evaluation of v(t) requires the integration of the initial value problem 
in (1.5) from s =to until .s = t. Furthermore, since Lis elliptic, the spectrum of its discretization D 
is expected to be negative. 

Example 1.1. The mathematical model for the evolution of a community of species (or population) 
that is allowed to diffuse spatially is described by (cf. [4, p. 6 and p. 183]) 

( 

t 
oN(t, x) o2 N(t, x) · at = oxz + g(t, x) + N(t, x) 1 - j N(s, x)K(t - s) ds), 

to (1.6) 

K(t) := ; 2 texp ( ;t} 
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where N is the size of the population, T is the point where the so-called "strong" generic delay 
kernel }( ( t) assumes it maximum, and g( t, :r) represents external influences. Note that the "birth 
term" N (t. :r:) is considered as part of the function v (t) occmTing in ( 1.1 ). 

1.2. Fredholm integro-differential equations 

A second class of problems consists of partial integro-differential equations of Fredholm type 

ou(t,x) . I ot = Lu.(t,x) + g(t,x) +. k(t,x,~, LL(t,~)) d~, x E [2, (1.7) 

f2 

where again L is an elliptic operator and n is a domain in JR.d. Replacing Q by a set of r points 
Xi and n(t, x) by the set of r values IL(t, xi), and defining y(t) = (yi(t)) where Yi(t) represents an 
approximation to u( t, x i), this equation can be discretized resulting in the r-dimensional system 

dyi ( t) T · ~ ( ) ~ = d; ( t) y (t) + Di (t) + L. IUj k t' x i' x j' .l/j ( t) , i = 1 ....• T. (l.7') 
j=I 

where Wj is the quadrature weight associated with Xj. This system is of the form ( l. l) with 

v(t) = g(t) + K(t, y(t)) := (.rh(t) + t ll'Jk(t, Xf, Xj, :IJJ(t))). 
J=I 

( 1.8) 

Again, we see that the function v(t) is usually quite expensive. 

Example 1.2. The behaviour in time of the temperature distribution above the earth can be modeled 
by an equation of the form (1.7), that is by (cf. [14]) 

I 

ou(t,:z:)_o2u(t,:i:)_J u4 (t.~) de 0 l 
ot - 0:1:2 (l+l:x:-~j)2 <.,,· :s;:c:s; . ( l. 9) 

0 

In this paper, we are interested in explicit numerical integration methods requmng only a few 
right-hand side evaluations. Sections 2--4 will describe such methods in the case of parabolic integro­
differential equations of Volte1Ta type. In Section 5, we show how a similar approach can be used for 
solving parabolic integro-differential equations of Frcdholm type. 

2. Stabilized forward Euler methods 

A family of integration methods for ( 1.1), requiring only one right-hand side evaluation, is given 
by 

Yn+t = Yn + hS(hDn+1;1)(D11+1;2Yn + v(tn + ~h)), Dn+1/2 := D(tn + ~h), (2.1) 

where S(:z·) is a polynomial or rational function. In fact, if v(t) is a given function, then 8(2;) can be 
expressed in tem1s of the stability function of (2.1). Here, the stability function R(2:) of a method is 
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defined by the relation Yn+I = R(hA)Yn which is obtained if the method is applied to the test equation 
y' = >..y, where ).. is a scalar parameter. If IR(h>..)I ~ I, then the numerical solution values {yn} 
remain bounded as n __, oo. It is easily seen that application of (2.1) to the above test equation yields 
the relation Yn+I = (I+ h>..S(h>.))y,1 , so that Rand S are related according to R(:r;) = I + xS(x). 
Hence, S should be such that IRI is bounded by 1 on a large, negative interval on the x-axis. If 
we can determine S in such a way, then S(hDn+i;2 ) can be interpreted as a stabilizing matrix. 
The use of stabilizing or smoothing matrices for relaxing the stability (or convergence) conditions 
in numerical methods for partial differential equations has been proposed in many papers. Usually, 
smoothing matrices are used for residue smoothing in iterative solvers (see, e.g., [6,7,9,10,13)), or for 
right-hand side smoothing (e.g., in [16-18]). The method (2.1) may be considered as a forward Euler 
method in which the right-hand side of the IVP is stabilized (or smoothed) by the matrix S. Therefore, 
we shall call (2. l) a stabilized forward Euler method. 

Most methods employing right-hand side smoothing are only first-order accurate. An advantage of 
the stabilized Euler method (2.1) is that it can easily be made second-order accurate. To see this, we 
substitute the exact solution y into (2.1) and we expand at the point t,1+ 112 to find the residual term 

hy' + d4 h3y"' - h(S(O)I + hS'(O)D + ~h2S"(O)D2 ) (D(y - ~hy' + kh2y") + v) + O(h4 ) 

= hy' + d4 h3 y 111 - h(S(O)I + hS'(O)D + ~h2S"(O)D2)(y' - ~hDy' + kh2 Dy")+ O(h4) 

= h(l - S(O))y' + h2D(~S(O) - S'(O))y' 

+ 2~h3 (y"' - 3S(O)Dy" + 12 (S' (0) - S" (0)) D2 y') + O(h4), (2.2) 

where y and its derivatives are all evaluated at tn+i;2 . Hence, the stabilized forward Euler method 

is second-order accurate if S'(O) = l + O(h2 ) and S'(O) = 1/2 + O(h). It is not possible to achieve 
hird-order accuracy by a special choice of S. In the case where v(t) originates from a Volterra integral 
:erm as in (1.5), we assume that the ODE solver used for integrating (1.5) is at least second-order 
accurate, to achieve second-order overall accuracy [2, p. 151 ]. Note that the conditions on S imply that 
the stability function is second-order consistent, i.e., R(O) =I, R'(O) = 1 +O(h2 ), R"(O) = 1 +O(h). 

Remark 2.1. Instead of (I. I), we may also consider the more general IVP 

dy(t) 
-d- = f (t, y(t)), y(to) =Yo, 

t 
y E lRr, ( 1.1 ') 

where f (t, y) is an arbitrary (expensive) right-hand side function. The stabilized forward Euler method 
(2. I) takes the form 

Yn+I = Yn + h8(h.!)f(t 11 + ~h,y,,), (2.1') 

where J is an approximation to the Jacobian Jn.:= of (tn, y,,)/oy. It can be shown that it is second­
order accurate if 8(0) = I, S''(O) = I /2 and J = .!11 + O(h). 

Next, we investigate the stability of (2.1) in the case where v(t) is defined by (1.5). Let us apply 
(2.1) to the familiar integro-differential test equation of Brunner and Lambert [3] 

/, 

du(t) ;· dt = (u(t) + r1. y(r) dr, uUo) =:!Jo, (2.3) 

/,I) 
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equivalently, to 

d~~t) = ~y(t) + z(t), y(to) =Yo; dz( t) ( ) 
dt=rJYt, z(to) = 0. (2.4) 

~re, e and 7J represent eigenvalues of Dn+i;2 and (o joy+ ojow)K(t, s, y, w), respectively. It will 
' assumed that both e and T/ are negative. The test equation (2.4) results into the relation 

Yn+I = Yn + hS(he)(eYn + Zn+1;2). (2.5) 

relation for zn+ 1 ; 2 can be obtained by specifying the integration method for ( 1.5). We separately 
~cuss the explicit midpoint rule and the two-step backward differentiation formula. 

l. Explicit midpoint rule 

Suppose that the differential equation in (1.5) is integrated by the explicit midpoint rule 

Zv+l/2 = Zv-1/2 + hK(tn+l/2• tv, Yn+l/2• Yv ), v = I, ... , n. 

:re, Yn+i;2 should be approximated by means of the step point values Yv· To avoid the solution 
implicit relations, we use extrapolation (rather than interpolation), to obtain the modified midpoint 

.e 

Zv+l/2 = Zv-1/2 + hK(tn+l/2• tv, 1(3yn - Yn-1 ), Yv)' v = 1, ... 'n. 

r the test equation (2.4) we are led to the recursion 

Yn+1 - hS(he)zn+1/2 = (I+ h~S(he))yn, 

Zn+l/2 = hr]Yn + Zn-1/2 

(2.6) 

e remark that the same recursion results if Yn+l/Z would have been approximated by interpolation 
the values Yn and Yn+ 1 ). It is easily verified that the characteristic equation is given by 

( 2 - [R + Q]( + R = 0, R := I + heS(he), Q := 1 + h27]S(he). 

1ce R and Q are real, it follows that the eigenvalues ( are within the unit circle if R < 1, Q < 
:i 2R + Q > -1. In the ( h~, h217 )-plane, this stability region is given by 

/3 l+R(he) 2 O 
- real < h~ < 0, 2h~ 1 - R(he) < h 7J < ' (2.7) 

1ere /3reaI is the real stability boundary associated with the stability function R. Evidently, the function 
should be bounded away from -1, otherwise negative values of TJ are not allowed. 

!. Backward differentiation formula 

Next we show that integrating (1.5) by a backward differentiation formula (BDF) allows that the 
bility function R assumes values close to - I. Applying the two-step formula 

Zv+l/2=1zv-1/2 -1zv-3/2 + ~hK(tn+l/2• iv+l/2• 1(3Yn -Yn-1), 1(Yv + Yv+1)), (2.8) 

· v = 2, ... , n, and proceeding as in the preceding subsection, we derive for the test equation 
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Yn+1 - hS(hC,)z11 +1/2 =(I+ h(,S(h0)!Jn, 

-hl]Yn+I + 3zn+l/2 = hrm11 + 4zn·-l/2 -- Zn-3/2• 

with characteristic equation 

[4 - Q](3 - [3 + 3R + Q](2 + [1 + 4R]( - R = 0, 

R. := 1 + hC,S(h~), Q := l + h2r1S(hO. 

We derive from the Hurwitz criterion the following stability region in the ( R, Q )-plane: 

R>-L Q < 1, R+ Q < 2, 2R+Q<7, 

2R2 +5RQ+Q2 - 13R-7Q > -12. 

(2.9) 

(2.10) 

Note that this region contains the strip -1 < R < 1 and Q < 1, so that nonzero values of 17 are allowed 

when R is close to - 1. However, it should be remarked that the method (2.1) becomes implicit if 

u = n in (2.8). In fact, on substitution of z(tn + 1h) = Zn+l/2 into (2.1), we obtain for Yn+I 

(2.11) 

bn := Yn + 1hS(hDn+1/2)(3Dn+l/2Yn + 4zn-1/2 - Zn-3/2). 

We solve (2.11) by fixed point iteration, i.e., 

Y:/11 = ~h2 S(hDn+lf2)K(tn+l/"2' f11+1/2• ~(3yn - Yn-1 ), !(yn + Y~i~-1 1 ))) + bn. (2.12) 

The iteration error e~l 1 : = Yn+ 1 -- y~l 1 satisfies, in a first approximation, the relation 

Ul - 112 5.'(/··D )I"' (j-ll I"'·- ° K( ) en+! - 3 I c . l n+l/2 \ e11+l ' \ .- ow tn+l/2• tn+l/21 Yn, Yn . 

For the test equation (2.4 ), this recursion reduces to 

(j) I 2 S(l ) (j-1) I (Q ) (j-1) 
en+ I = 3 h I) l~ en+ I = 3 . - 1 en+ I . 

Hence. we should add to (2.10) the convergence condition -2 < Q < 4. Note that nonstiff error 

components (i.e., lh~I small) are amplified by a factor h21ril/3 and st("ff" error components (i.e., lhC.I 
large) by a factor less than 2h21r11/(3lhC,I). Thus, for moderate values of the eigenvalues 7/ we may 

expect fast convergence of the interation process (2.12). In the (R, Q)-plane, the stability-convergence 

region always contains the region defined by -1 < R < I and -2 < Q < l. In the (h~, h.277)-plane 

this stability-convergence region is determined by 

3hf, . .., 
-,h'rcal < h(, < 0, -1-- P(I . < h-'1/ < 0, (2.13) 

-- l I.~) 

showing that stability functions assuming values close to - I can be used. 

Remark 2.2. In (2.8) the values of z(L t) are computed halfway the step points tn. Alternatively, we 

may compute them at the step points to obtain the integration method 

Zu+I = 1zi, - *Zu~-1 + ihK(tn+l/21tu+l1 t(3Yn - Yn-1 ), Yu+I)' I/= 2, ... 'n, 
(2.8') 

Zn+l/2=1(zn + Zn+1). 
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It turns out that this approach leads to the same stability and convergence conditions. To see this we 
apply (2.8') to the test equation: 

2Yn+l - hS(hOzn+l = 2(1 + h~S(h~))y11 + h8(h~)zn, 
-2hrmn+l + 3zn+I = 4zn - Zn-1 · 

This recursion also possesses the characteristic equation (2.9). Hence, the stability region is again 
detem1ined by (2.10). The equation for Yn+ 1 becomes 

Yn+I = V1 2S(hDn+1;2)K (tn+l/2' ln+J, 1(3Yn - Yn--1 ), Yn+I) + bn, 

bu := Yn + ihS(hD11+1;2)(6Dn+1/2Yn + 7zn - Zn-1). 

Solving this equation by fixed point iteration yields the same convergence condition as for (2.12). 

Remark 2.3. We can remove the implicitness from (2.1 I) by replacing in (2.8) the last argument 
of K by the extrapolated value 1 (3y,) - y,,,_ 1). However, then the stability polynomial R is again 
required to be bounded away from -1. This can be deduced from the characteristic equation 

3(3 - [3R + 3Q + 1 ](2 + [4R + Q]( - R = O 

which leads to the stability region 

2R+ Q > -1, Q < 1, 2R- Q < 5, R+ Q < 2, 
(2.14) 

2H2 + 3RQ - I lR- 3Q > -9. 

The first inequality requires T/ to be nonnegative if R approximates -1. 

3. Explicit Euler-Chebyshev methods 

We first consider the case where the stability function R is a polynomial. The stability polyno­
mials satisfying IRI ~ 1 on large negative intervals [-/Jrea1, OJ proposed in the literature involve the 
Chebyshev polynomials 

Tm(x) := cos(rnarccos(:i:)). (3.1) 

We shall consider the following cases of second-order consistent stability polynomials: 

I ( , ( , ) ( 3:r ) ) R(:r:) = --, 2m,~ + 1 + n1- - 1 Tm I+ / I , 
3rn~ rn- -

7( 7 ) ') ? /1real = 3 rn- - I ~ 31n,-, 

R(:c) = - 1-(2 - xTm ( cos(?T /rn) + ~x( I - cos(Jr /rn)))), 
2 -:i: 

') 

(lrnl = ~ ~ ~rn2 . 
' (tan (n-j2rn)) 2 

(3.2a) 

(3.2b) 

These polynomials have been discovered in [I] and [ 12], respectively. Note that the effective stability 
boundary rn- 1 (Jrcal increases (almost) linearly with m, so that the h~-condition in (2.7) and (2. l 3) 
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allows increasingly larger effective stepsizes (scaled with respect to the amount of work per step). We 
shall use the stability polynomials (3 .2) in the method (2. I) by defining the stabilizing matrix 

S(hDn+1;2) = c:(W - I)- 1 (Tm(TF) - 1), (3.3) 

where { c:, lV} is respectively given by 

{- r} ._ {-1. 3hD. n+I/2} c,li .- 2 ,1+ ; , 
· m m- ·-I 

(3.4a) 

{c:, W} := {Hl - cos(JT/rn)),cos(JT/rn)I +HI - cos(rr/m))hDn+i;2 }. (3.4b) 

The methods {(2.1), (3.3)} may be considered as a matrix version of the Runge-Kutta-Chebyshev 
methods designed in [11] (see also [8]). Stability plots corresponding to (3.2a) and (3.2b) can be 

computed by means of (2.7) and (2.13), and are given in Section 3.2. 

3.1. Computation of S(hD11+1;2) 

The computation of the stabilizing matrix S(hDn+i;2 ) can efficiently be done by using the following 
recursive relations satisfied by the Chebyshev polynomials: 

(3.5) 

From these relations, we can derive the following lemma (the proof of part (a) is straightforward, that 
of part (b) can be found in [10]): 

·_,emma 3.1. Let w - I he nonsingulw; and define Sm:= (HT - n- 1 (Tm(it:) - I). 
(a) For all m. ~ 1, S 111 can be generated by the recursion 

S1=1. 

(b) (f"rn = 2q. then 

S2 = 2(W +I), SJ = 2HrSj-l - Sj-2 + 21, j = 3, ... ,m. (3.6) 

Sm=}~· Fq-1 · · · · · F1, F1 = 2(liV +I), Fj = (21 - FJ-1) 2 , j = 2, ... , q. (3.7) 

By virtue of this lemma, the stabilizing matrix S(hDn+i; 2 ) occurring in (2.1) can be computed by 
defining {c:, W} according to (3.4), by performing either the recursion (3.6) or (3.7) to obtain Sm, and 
by setting S(hDnt 1; 2) = ESm. Part (a) of this lemma presents the conventional way of computing the 
matrix Sm and requires m. - 2 matrix-matrix multiplications. However, if we allow rn to be a power 
of 2, then we can use part (b) of the lemma, requiring only 2q - 2 matrix-matrix multiplications. Note 
that if the matrix D in ( 1.1) does not depend on t, then the stabilizing matrix S is independent of n, 

so that it needs only to be recomputed if h changes. 
It should be remarked that instead of computing the matrix Sm, we may also recursively compute 

for any given vector a, the "stabilized" vector a 111. = 8111 a. This can be achieved by the recursion 

a1 =a, a2 = 2(Hl + I)a, a:i = 2Wa.i-1 - a.i-2 + 2a, j = 3, ... ,m. (3.61) 

This approach is usually more storage economic than using (3.6) or (3.7). Unfortunately, it seems not 
possible to convert the matrix recursion (3.7) into a vector recursion. 



P.J. van der Houwen, B.P. Sommeijer I Applied Numerical Mathematics 24 ( 1997) 203-218 211 

3.2. Stability 

For the cases where the quadrature term is computed by means of the explicit midpoint rule and 
the backward differentiation formulas (2.6) and (2.8), the stability(-convergence) region in the quarter 
plane {h~ ~ 0, h2ry ~ O} is determined by the conditions (2.7) and (2.13). Figs. 1-3 present plots for 
rn = 4 and m = 16. In these plots, h~ is on the horizontal axis and the shaded region corresponds to 
the stability region. 

The derivation of explicit stability conditions from (2. 7) and (2.13) is discussed in the following 
subsections. 

({2.7),(3.2111.-"I {(2.7),(3.2111,m-101 

10 100 

·'10 ·200 

·30 ·300 

... -.,., ·SOO 

eo ..,., 
.70 ·100 

-80 """" 
90 ·900 

·• .. ·1 .. .5 .. .3 ·2 .\ ·150 ·140 ·1211 -100 -80 

(a) (b) 

Fig. I. (a) The case {(2.7), (3.2a), m = 4}. (b) The case {(2.7), (3.2a), rn = 16}. 

((2.13),(3.2a),mo16J 

·160 ·140 ·120 ·100 

(a) (b) 

Fig. 2. (a) The case {(2.13), (3.2a), rn = 4}. (b) The case {(2.13), (3.2a), m = 16}. 
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0 
((2.13),(3.21>).m-16} 

·10 -100 

·20 ·200 

·30 .300 

·500 

·600 

·100 

·900 

-1000~-~­

·250 ·200 '150 ·100 ·50 

(a) (b) 

Fig. 3. (a) The case {(2.13), (3.2b). m = 4}. (b) The case {(2.13), (3.2b), m = 16}. 

3.2.1. Explicit midpoint rule 
In the case (3.2a), we have t :::;; R :::;; 1 in the interval -~m2 :::;:; h~ ~ 0. Hence, in all points 

where R approximates the value t• we have to satisfy the condition 4h~ < h2'fl < 0. Furthermore, 
for h( = 0, we have -4 < h2r7 .< 0. Thus, we may conclude from (2.7) that the stability region 
contains a polygonial region with (-~m2 ,0), (0,0), (0,-4), (-1,-4) and (-~m2,-~m2 ) as its 
comer points. Suppose that m is prescribed and that h is chosen as large as allowed by the condition 
-/Jreal < h~ < 0 with /Jreal ~ ~m2 (cf. (3.2)), i.e., 

/ireul 
h = hmax := p(D), (3.8) 

where p(D) denotes the spectral radius of D. Furthermore, let µ(D) denote the minimal magnitude 
of the eigenvalues~ of D. Then, it is easily verified that for hµ(D) :::;; 1, we should satisfy h2'fl > -4, 
and for hµ(D) ~ I, we have to satisfy h2ry > -4hµ(D). On substitution of (3.8), we are led to an 
upper bound for 1'111 as listed in Table I. 

If (3.2b) is used, we have (2 + h~)(2 - h0- 1 :::;:; R:::;:; 1 in the interval -~m2 :::;:; h~:::;:; 0, so that 
the minimal values of R lie on the curve (2 + h~)(2 - h0- 1• Upon substitution into (2.7), we find 
that the stability region contains the rectangle { -~m2 :::;:; h~ :::;:; 0, -4 < h2ry < O}. Again choosing h 
according to (3.8), we obtain the upper bound for lr1I as listed in Table 1. 

3.2.2. Backward differentiation formula 
Using the stability polynomial (3.2a), the condition (2.13) yields a domain that contains a polygone 

with comer points (-~m2 ,0), (0,0), (0,-3), (-~,-3), and (-~m2,-3m2 ). Proceeding as in the 
previous subsection, we find the upper bounds for 1''71 as given in Table I. 

If the stability polynomial (3.2b) is used, we obtain a polygone with comer points (-~m2 , 0), 
(0, 0), (0, -3), (-2, -3) and (-~m2 , -~m2 ). For hµ(D) :::;:; 2, we require h2ry > -3, whereas 
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Table I 
Maximal stable values of lril for explicit Euler-Chebyshev methods with 
h = hmax = f3reai/ p(D) 

R(x) Volterra term by Volterra term by 
midpoint rule (cf. (2.7)) BDF (cf. (2.13)) 

4 
if hma,:( µ(~) 3 

if hmax :( Jµ~D) hii,., h~ax 
(3.2a) 

4µ(D) 
if hmax~ µ(~) 9µ(D) ? 

hmax 2hmax if hmax~ Jµ(D) 

4 3 
if hmax:( µ(~) hiiiax hii,ax 

(3.2b) 

3µ(D) 
if hmax~ µ(~) 2hmax 

h2ry > -~hµ(D) has to be satisfied if hµ(D) ~ 2. The resulting upper bounds for lrJI are listed in 
Table 1. -

3.3. Application to model problems 

Consider the model problem where L is the d-dimensional Laplace operator and let Dn+i;2 be 
the standard symmetric (2d + 1 )-point discretization on a uniform grid with mesh size L1 and witb 
Dirichlet boundary conditions. This discretization will be denoted by D. For example, if d = 1, then 

- _l l -2 (

-2 1 

D - .6_2 l 
1 

-2 .J (3.9) 

By Gerschgorin's theorem we find that p(D) = 4dL1-2, so that by choosing h according to (3.8) 

h= 4cdm2L12, (3.8') 

where c is a constant given by 2/3 and 4/5 for the polynomials (3.2a) and (3.2b), respectively. Notice 
that for a given spatial mesh size Ll, the right-hand side can be made as large as we want by choosing 
m sufficiently large. 

In [ 10] it was pointed out that in the above model situation, the factor matrices Fj in (3.7) tum out 
to be rather sparse, so that (3.7) can be used without extreme storage requirements. 

Let Dn+i;2 be given by (3.9), let m = 2q, and let R(x) be defined by (3.2a). From (3.4a) it follows 

that W =I+ ~L12 Dn+I/2 , so that (3.7) yields 

1 
2 .J 

0 
2 
0 

I 
0 
2 

1 
0 .J (3.10) 
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It can be shown that all matrices F1 are symmetric with respect to the NE-SW and the NW-SE 
diagonals, and that for j ~ 3, F1 has the following sparseness pattern: 

2 -1 0 1 
2 -1 1 

1 
2 0 -1 0 

1 -1 
-1 0 2 -1 

Fj = (3.11) 

-1 2 -1 
-1 
0 -1 2 
1 -1 

1 -1 
2 

1 0 -1 2 

where the -1 entry in the first row appears in the (2j-l - 1 )st column. Thus, the matrices Fj are 
essentially tridiagonal. This implies that the recursion (3.7) can be used without excessive storage 
requirements. 

4. Implicit methods 

In this section, we consider the case where R is the second-order consistent rational function 

I +.!.x 
R(x) = i . 

I - 2x 

Then /3real = oo and the stabilizing matrix is defined by 

S(hDn+1;2) = (I - !hDn+1;2f 1. 

In order to apply this matrix in (2.1) we have to solve the linear system 

(I -1hDn+1;2)(Yn+1 -yn) = h(Dn+1/2Yn + v(tn + 1h)). 

(4.1) 

(4.2) 

(4.3) 

We may either use a direct (sparce) matrix solver or some iterative linear solver. In one spatial 
dimension, direct solution methods are relatively cheap, however, in two or three dimensions, iter­
ative methods might be a more efficient alternative. One obvious option for an iterative solver is 
the Chebyshev semi-iteration process, because this method fully exploits the fact that the matrix 
I - ~hDn+I/Z has positive eigenvalues (see, e.g., [5]), so that we may expect fast convergence. 

The next two subsections discuss the stability when using a direct solver and when using the 
Chebyshev semi-iteration process. 
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~SE ../.1. Direct linear solvers 

If a direct linear solver is used, we may adopt (4.1) as the stability function of the method. For the 
explicit midpoint rule, we find on substitution of (4.1) into t2.7) that in the quarter plane {h~ ~ 0, 
h211 ~ O} the stability region is given by an infinite strip along the negative h~-axis defined by 
-4 < h2q < 0. A comparison with the stability region associated with the explicit Euler-Chebyshev 
methods generated by the stability polynomials (3.2) and observing that the stepsizes of these methods 
can be chosen as large as we want by choosing m sufficiently large reveals that the explicit Euler­
Chebyshev methods allow values of -17 that are equal to or larger than those allowed by the method 
generated by ( 4.1 ). 

i.11\ Similarly, we find on substitution of (4.1) into (2.13) that for the backward differentiation formula, 

are 
rage 

4.1) 

U) 

.J) 

dal 
er· 

is 
rix 

he 

the stability region is given by the infinite wedge -3 + ~h~ < h217 < 0. This leads to the same 
conclusion as for the explicit midpoint rule. -

../.2. Chebyshev semi-iteration process 

Let Ax = g be the system to be solved, where A has its eigenvalues in the positive interval [p, q]. 
Then the Chebyshev semi-iteration process is defined by (see, e.g., [5]) 

x, = xo + bo(Axo - g), XJ+I = ajXJ + (1 - a1)x1 _, + bj(AxJ - g), j;?: 1, 

w1 Tj(wo) TJ(wo) 
bo=-, aj=2wo , bJ=2w, , j;?:I. 

ll'O Tj+ I ( 11'()) Tj + I (II'()) 
(4.4) 

p+q 2 
W() := ---, W1 := --, 

p-q p-q 

where xo is the initial approximation and where TJ is again the Chebyshev polynomial of the first 
kind. Let us apply (4.4) to (4.3) and suppose that m iterations are performed with Yn as the initial 
approximation to Yn+ 1• Then, it can be verified that the resulting approximation to Yn+ 1 is of the 
form (2.1) with 

, -i( Tm(W)) S(hDn+ 1/2) := w1 (Vl1 - wol) I - To ( , ) , 
m ll() 

W := wol + W1 (I - !hDn+1;2), (4.5) 

4 + h(p(D) + µ(D)) 
ll'() ·= 

. h(p(D) - JL(D)) ' 
4 

U'J := - h(p(D) - µ(D))' 

where p(D) and µ(D) are defined as in the preceding section. Thus, after m iterations, the stability 
polynomial R(x) = I + xS(x) is given by 

R(x) =_I_ ( 2 + .T _ 2:rTm(wo + W1 - w,x/2)). (4.6) 
2 - :r Tm(wo) 

Since R(O) = 1, R'(O) = I+ O(hm) and R"(O) = 1 + O(hm- 1), the method {(2.1), (4.5)} is 
second-order accurate within two iterations (m ;:;:: 2). Furthermore, it follows from (4.6) that in the 
interval -hp(D) ~ x ~ -hµ(D), R(x) is bounded by the curves (2 + x ± 2x/Tm(wo))/(2 - x). By 
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Table 2 
Effective stability boundaries for the method { (2.1), ( 4.5)} 

(} rn =I m = 2 rn = 4 /II.= 6 m=8 rn = 10 m= 12 ·m = 15 m =20 m = 25 

() 4.00 1.86 1.00 O.T\ 0.59 0.51 0.45 0.39 0.33 0.29 

0.010 4.04 1.90 l.05 0.80 0.68 0.61 0.58 0.56 0.58 0.69 

0.0'.25 4.10 1.97 1.14 0.92 0.84 0.84 0.89 1.09 2.00 5.12 

0.050 4.21 2.09 1.32 1.19 l.29 1.60 2.25 4.64 22.78 139.39 

requiring that these curves are between -1 and +L we obtain the condition -2Tm(wo) < .r < 0. 
Thus, we have stability if h satisfies the inequality 

( 4 + h(p(D) + /t(D))) 
hp(D) < 2Trn h(p(D) _ /t(D)) . (4.7) 

The corresponding upper bound for hp(D) can be interpreted as the real stability boundary .Brea! of 
the method {(2.1), (4.5)}. Suppose that /t(D) = Ctp(D). Then ,Greal equals the largest root of the 
equation 

(3 = 2Tm ( 4 + ( 1 + a) 3) . 
(l-n)13 

(4.8) 

In Table 2 the values of 1n - 2.dreal are listed for a few values of rl' and rn. These figures show that for 
o: = 0, the values n1 -- 23real decrease with m, but for all nonzero values of n in this table, m - 2 dreal 

starts to increase for sufficiently large values of m. 

5. Euler-Chebyshev methods for Fredholm integro-diff'erential equations 

The Euler-Chebyshev methods developed in the preceding sections can directly be applied to 
parabolic integro-differential equations of Fredholm type. However, the stability properties do change. 
Let us consider the stability test equation 

dy(t) 
~ = (l}(t) + v(t). t•(t) = r1y(t), y(to) =yo, (5. l) 

where (and 1J represent eigenvalues of the matrices Dn+i;2 and oK /oy := (w7 ok(t, Xi, Xj, YJ) /oyJ ), 
respectively. It will be assumed that ~ is negative and r1 is complex. 

Applying (2.1) to (5 .1) leads to the recursion (2.5) with z11+ 1 ; 2 replaced by Vn+ 112 . We shall consider 
the stability of this recursion in the case where v (tn + ~ h) is computed by extrapolation of y-values. 
Interpolation would be much more stable, but leads to implicit relations, the solution of which is rather 
costly, because of the expensive function K (cf. ( 1.8)). This extrapolation procedure is similar to the 
approach of Verwer et al. in their IMEX schemes [ l 5]. 

From (1.8) we see that v(t,, + ±h) can be approximated by 

Vn+l/2 = K(fn + ±h, ±(3yn - Yn-1)). (5.2) 
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Tahle 3 
Numerical results obtained by Euler-Chebyshev methods 

h= 1 h= I h= I h= 1 h= I h= 1 h= 1 h= 1 
5 TO 20 40 &i 160 320 640 

Accuracy 10·· l 7 10 - ~.5 lO -\ ' 10-\X 10 4. 3 10-4.6 )Q-U w-4.7 

(3.2a): rn = 89 64 45 32 23 16 12 8 

(3.2b): ·m= 80 57 40 29 20 15 11 8 

Hence, for the test equation (5.1), we have vn+i;2 = ~17(3y11 -y11 _ 1 ), so that we obtain the recursion 

'.l/n+I = (1 + h~S(h0 + ~hr1S(h~))u11 - jhr1S(l1{).lfn-I· 

with characteristic equation 

(5.3) 

The same stability functions R as used in the Volten-a case can be employed, that is, R is defined by 
either (3.2a), or (3.2b), or (4.1) or (4.6). For stability of the resulting method, Eq. (5.3) should have 

its zeros within the unit circle. As for the Volterra case, we obtain the h~-condition -/3real < h~ < 0. 
The condition involving r7 becomes a condition on h11 rather than on h2 77. Moreover, where h77 was 

assumed to be real in the Volten-a case (corresponding to models of the form ( 1.2) with kernels k not 

depending on x, see, e.g., Example 1.1 ), we now have to assume that r1 is complex-valued because 
the kernel k in (1.8) is expected to depend on x (see Example 1.2). 

6. Numerical experiments 

We illustrate the performance of the explicit Euler-Chebyshev method by integrating the population 

dynamics problem (1.6) over the domain {O ~ :r ~ l, 0 ~ t ~ 2}. We set T = l and imposed 

homogeneous Dirichlet conditions at ;r = 0 and :r = l. In order to check the accuracy of the method, 

we chose the function g such that the exact solution is given by N(t, ::c) = exp(-t) sin(rr:r). We 
applied the Euler-Chebyshev method (2.1) generated by the stability polynomials (3.2a) and (3.2b) 

using the explicit midpoint rule (2.6) and the BDF (2.8) for computing the integral term. In these 
experiments, the stabilizing matrix S(hD11+ 1; 2 ) was generated by the vector recursion (3.6'). 

In order to compare the four methods, we applied these methods with the same stepsize h and we 

chose rn as small as allowed by the stability condition -,Nreal < h~. It turned out that for a given 
integration step h, the four methods produced almost the same accuracies. In Table 3, the maximal 

absolute errors produced at the end point, together with the corresponding values of m, are listed for 

.d = 1 /80 and a sequence of integration steps. These figures show the second-order accuracy of the 
Euler-Chebyshev methods for relatively large time steps h. If h decreases below I /80, the spatial 

discretization error becomes dominant and the overall accuracy is largely determined by the spatial 

error. 
In an actual implementation, it is recommended to choose q (rather than h), put m = 2r1, define h 

according to (3.8'), and generate S(hD11+1; 2 ) by means of the factor matrices FJ given by (3.10) and 

(3.11 ). For example, the results of Table 3 obtained by the generating polynomial (3.2a) with stepsizes 

h = 1/10, 1/40, 1/160 and 1/640 require respectively q = 6,5,4 and 3, that is, the construction of 
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the stabilizing matrix S(hD,,+ 1; 2 ) requires respectively 6, 5, 4 and 3 matrix-vector multiplications 

by matrices that are essentially tridiagonal. Furthermore, since the quadrature rule used for evaluating 

the Volterra term does not affect the overall accuracy, it is recommended to use the explicit midpoint 

rule because of its easy implementation. 
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