Printed at the Mathematical Centre, 413 Kruislaan, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).
THE STRUCTURE OF REAL SEMISIMPLE LIE GROUPS

T.H. KOORNWINDER (ed.)

MATHEMATISCH CENTRUM AMSTERDAM 1982

ISBN 90 6196 239 0
CONTENTS

Contents

Detailed contents of chapters

Introduction, References

I. T.H. Koornwinder,
 REAL SEMISIMPLE LIE ALGEBRAS
 1-23

II. B. Hoogenboom,
 REAL SEMISIMPLE LIE GROUPS
 25-40

III. A.M. Cohen,
 SEMISIMPLE LIE GROUPS FROM A GEOMETRIC VIEWPOINT
 41-77

IV. J. de Vries,
 THE FURSTENBERG BOUNDARY OF A SEMISIMPLE LIE GROUP
 79-112

V. A.G. Helminck,
 CLASSIFICATION OF REAL SEMISIMPLE LIE ALGEBRAS
 113-136

SUBJECT INDEX
 137-141
DETAILED CONTENTS OF CHAPTERS

I. REAL SEMISIMPLE LIE ALGEBRAS
 1. Generalities about semisimple Lie algebras 1
 2. Compact real forms 4
 3. Cartan decompositions 8
 4. Root space decompositions 12
 5. The root system \(\Phi \) 14
 6. Examples 18
 7. Dynkin diagrams 21
 References 23

II. REAL SEMISIMPLE LIE GROUPS
 1. Orthogonal symmetric Lie algebras 25
 2. The Cartan decomposition of a semisimple Lie group 28
 3. Maximal compact subgroups 31
 4. The Iwasawa decomposition of a semisimple Lie group 33
 5. The Weyl group of \(\Phi \) 36
 6. The Cartan decomposition revisited 39
 References 40

III. SEMISIMPLE LIE GROUPS FROM A GEOMETRIC VIEWPOINT
 1. The Bruhat decomposition of a real noncompact
 connected semi-simple Lie group 41
 2. Tits systems 55
 3. The geometry of Tits systems 64
 References 76

IV. THE FURSTENBERG BOUNDARY OF A SEMISIMPLE LIE GROUP
 1. Basic definitions and elementary results 79
 2. Proximal flows 82
 3. Strongly proximal flows 86
 4. Affine T-spaces; fixed point theorems 92
 5. Boundaries of connected Lie groups 95
Appendix A1: Compact convex sets: $\mathcal{C}(X)$ and $\mathcal{M}(X)$
Appendix A2: The barycenter map
Appendix A3: quasi invariant measures
References

V. CLASSIFICATION OF REAL SEMISIMPLE LIE ALGEBRAS
1. Normally related real forms
2. Action of Γ on the root system
3. Γ-order
4. Γ-diagrams
5. Lifting conditions
6. Normal root systems
7. Reduction to the case of real rank one
8. The rank one classification
 References
 Tables
INTRODUCTION

This volume contains the notes of a short course given at the algebra seminar of the Department of Pure Mathematics of the Mathematical Centre. Preceding to this course we studied HUMPHREYS' "Introduction to Lie algebras and representation theory" (see [Hu], in particular Ch.I,II,III and Theorem 25.2); also a few introductory lectures on the theory of Lie groups were given before (see for instance [He,Ch.II], [War] or [Koo]). The principal aim of these notes is to provide the required knowledge about structure theory of real semisimple Lie groups to the beginning research student in analysis on Lie groups who already knows about complex semisimple Lie algebras and general Lie groups. In particular, Chapters I,II and the first section of Chapter III serve this purpose. Certainly, this material is also included in standard texts like HELGASON [He] or WALLACH [Wa], but there it is embedded in a much wider context, and the student looking for a quick introduction may get lost.

A second purpose of this volume is to point out connections between the structure theory of real semisimple Lie groups and other fields of mathematics, notably the geometry of Tits systems (Chapter III) and topological dynamics (Chapter IV). In particular, section 2 of Chapter III and sections 1-4 of Chapter IV can be used as introductions to these other topics, even for people who are not interested in semisimple Lie groups. The final chapter, Ch.V, is of algebraic nature. It discusses the classification of real semisimple Lie algebras, a well-known result of which the proof is often skipped.

All authors have their present address at the Mathematical Centre. I want to thank them for their contribution and also the audience attending the course for stimulating discussions. A.M. Cohen kindly offered hospitality to this course in his algebra seminar and it is due to him that the scope of the course was extended with the topics from Chapters III, IV.

T.H. Koornwinder, editor
REFERENCES

Chapter I

REAL SEMISIMPLE LIE ALGEBRAS

T.H. KOORNWINDER

This chapter presents the basic structure theory of real semisimple Lie algebras. It is assumed that the reader knows the structure theory for complex semisimple Lie algebras, cf. for instance HUMPHREYS [Hu, Ch. I, II, III and Theorem 25.2]. Our development of the theory is parallel to parts of HELGASON'S book: see Ch. II (\S5,6), Ch. III (\S6,7), Ch. V (\S2,6), Ch. VI (\S3), Ch. VII (Theor. 2.16) and Ch. X (Theor. 3.25) in [He]. However, in contrast with [He] we have formulated everything in terms of the restricted root system Σ of g rather than the root system Σ of g_C.

1. GENERALITIES ABOUT SEMISIMPLE LIE ALGEBRAS

Let g be a Lie algebra over a field \mathbb{F} of characteristic 0. Throughout this chapter, when speaking about a Lie algebra, we mean a finite-dimensional Lie algebra.

DEFINITION 1.1. The Killing form of g is the bilinear form B defined by

$$B(X,Y) := \text{tr}(\text{ad } X \circ \text{ad } Y), \ X, Y \in g.$$

DEFINITION 1.2. The Lie algebra g is called semisimple if its Killing form B is a nondegenerate bilinear form.

The easy proofs of (1.1), (1.2) and Prop. 1.3. below are left to the reader:

\begin{align*}
(1.1) \quad B(\sigma X, \sigma Y) &= B(X, Y), \ X, Y \in g, \ \sigma \in \text{Aut}(g), \\
(1.2) \quad B(X, [Y, Z]) &= B([X, Y], Z), \ X, Y, Z \in g.
\end{align*}
PROPOSITION 1.3. Let \(\mathfrak{a} \) be an ideal in \(\mathfrak{g} \). Then \(\mathfrak{B} \) restricted to \(\mathfrak{a} \times \mathfrak{a} \) equals the Killing form \(\mathfrak{B}_{\mathfrak{a}} \) of \(\mathfrak{a} \). Furthermore,

\[
\mathfrak{a}^\perp := \{ X \in \mathfrak{g} | \mathfrak{B}(X, Y) = 0 \quad \forall Y \in \mathfrak{a} \}
\]

is an ideal in \(\mathfrak{g} \).

PROPOSITION 1.4. Let \(\mathfrak{g} \) be semisimple and let \(\mathfrak{a} \) be an ideal in \(\mathfrak{g} \). Then \(\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{a}^\perp \) (direct sum of Lie algebras) and \(\mathfrak{a} \) and \(\mathfrak{a}^\perp \) are semisimple.

PROOF. \(\text{dim } \mathfrak{a} + \text{dim } \mathfrak{a}^\perp = \text{dim } \mathfrak{g} \), since \(\mathfrak{B} \) is nondegenerate. If \(Z \in \mathfrak{g} \) and \(X, Y \in \mathfrak{a} \cap \mathfrak{a}^\perp \) then \(\mathfrak{B}(Z, [X, Y]) = \mathfrak{B}([Z, X], Y) = 0 \), so \([X, Y] = 0 \) and \(\mathfrak{a} \cap \mathfrak{a}^\perp \) is an abelian ideal in \(\mathfrak{g} \). If \(Z \in \mathfrak{g} \) and \(X \in \mathfrak{a} \cap \mathfrak{a}^\perp \) then \(\text{ad } X \text{ ad } Z \mathfrak{a} \cap \mathfrak{a}^\perp = \{0\} \) and \(\text{ad } X \text{ ad } Z \mathfrak{a} \cap \mathfrak{a}^\perp = \{0\} \). Thus \(\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{a}^\perp \). By Prop. 1.3, \(\mathfrak{B}_{\mathfrak{a}} \) and \(\mathfrak{B}_{\mathfrak{a}^\perp} \) are nondegenerate. \(\square \)

PROPOSITION 1.5. Let \(\mathfrak{g} \) be semisimple. Then \(\text{ad} \) is an isomorphism from \(\mathfrak{g} \) onto \(\text{Der}(\mathfrak{g}) \).

PROOF. See [Hu, Theorem 5.3]. The proof given there does not use that \(\mathbb{F} \) is algebraically closed. \(\square \)

DEFINITION 1.6. Let \(\mathfrak{g} \) be a real Lie algebra. The adjoint group of \(\mathfrak{g} \), denoted by \(\text{Int}(\mathfrak{g}) \), is the analytic subgroup of \(\text{GL}(\mathfrak{g}) \) whose Lie algebra is \(\text{ad}(\mathfrak{g}) \).

If \(\mathfrak{g} \) is real then clearly \(\text{Aut}(\mathfrak{g}) \) is a closed subgroup of \(\text{GL}(\mathfrak{g}) \). This observation, together with Prop 1.5 yields:

PROPOSITION 1.7. Let \(\mathfrak{g} \) be a real semisimple Lie algebra. Then \(\text{Int}(\mathfrak{g}) \) is the identity component of \(\text{Aut}(\mathfrak{g}) \). In particular, \(\text{Int}(\mathfrak{g}) \) is a closed subgroup of \(\text{Aut}(\mathfrak{g}) \) and of \(\text{GL}(\mathfrak{g}) \).

DEFINITION 1.8. A real Lie algebra \(\mathfrak{g} \) is said to be compact if \(\text{Int}(\mathfrak{g}) \) (with its own Lie group topology) is compact.

PROPOSITION 1.9. Let \(\mathfrak{g} \) be a real semisimple Lie algebra. Then \(\mathfrak{g} \) is compact if and only if \(\mathfrak{B} \) is negative definite.

PROOF. Assume that \(\mathfrak{B} \) is negative definite. \(\text{Int}(\mathfrak{g}) \) is closed in \(\text{Aut}(\mathfrak{g}) \) and \(\text{Aut}(\mathfrak{g}) \) is closed in \(\text{O}(\mathfrak{g}, \mathfrak{B}) \) (the orthogonal group on \(\mathfrak{g} \) with respect to the
inner product \(-B\). Since \(O(g, B)\) is compact, the same holds for \(\text{Aut}(g)\) and \(\text{Int}(g)\).

Conversely, assume that \(\text{Int}(g)\) is compact. Then there is an \(\text{Int}(g)\)-invariant inner product \((,\cdot,)\) on \(g\). Let \(O(g)\) be the corresponding orthogonal group. Since \(\text{Int}(g) \subset O(g)\) we have \(\text{ad}(g) \subset o(g)\), where \(o(g)\) is the Lie algebra of skew-symmetric matrices on \(g\). Let \(X \in g\) and let \(\text{ad} X\) have matrix \((A_{ij})\) with respect to some orthonormal basis. Then

\[
B(X, X) = \text{tr}(\text{ad} X \cdot \text{ad} X) = \sum_{i,j} A_{ij} A_{ji} = - \sum_{i,j} (A_{ij})^2 \leq 0.
\]

Suppose \(B(X, X) = 0\) then \((A_{ij}) = 0\), so \(\text{ad} X = 0\), hence \(X = 0\). \(\Box\)

Let \(g\) be a real Lie algebra. Let \(g_C := g + ig\) be the complexification of the real vector space \(g\) and extend the bracket operation for \(g\) to a complex bilinear operation on \(g_C\). Then \(g_C\) is a complex Lie algebra: the complexification of the real Lie algebra \(g\).

If \(g_C\) is a complex Lie algebra then \((g_C)_R\) denotes \(g_C\) considered as a real Lie algebra.

A real form of a complex Lie algebra \(g_C\) is a real subalgebra \(g\) of \((g_C)_R\) such that \((g_C)_R = g \oplus ig\) (direct sum of real vector spaces). Then \(g_C\) is isomorphic to the complexification of \(g\).

Lemma 1.10. Let \(g, g_C\) and \((g_C)_R\) be related to each other as above. Let \(B_g, B_{g_C}\) and \(B_{(g_C)_R}\) be the corresponding Killing forms. Then

\[
\begin{align*}
(1.3) & \quad B_{g_C}(X, Y) = B_g(X, Y), \quad X, Y \in g, \\
(1.4) & \quad B_{(g_C)_R}(X, Y) = 2 \text{Re} B_g(X, Y), \quad X, Y \in g_C.
\end{align*}
\]

Proof. (1.3) follows immediately. For the proof of (1.4) choose a basis \(X_1, \ldots, X_n\) of \(g_C\) and let \(\text{ad} X \cdot \text{ad} Y\) have matrix \(P + iQ\) with respect to this basis \((P, Q\) real \(n \times n\) matrices). Then \(X_1, \ldots, X_n, iX_1, \ldots, iX_n\) is a basis of \((g_C)_R\) and \(\text{ad} X \cdot \text{ad} Y\) has matrix \((P & -Q)\) with respect to this basis. Thus

\[
\text{tr}_{g_C} \text{ad} X \cdot \text{ad} Y = \text{tr} P + i \text{tr} Q
\]

and

\[
\text{tr}_{(g_C)_R} \text{ad} X \cdot \text{ad} Y = 2 \text{tr} P. \quad \Box
\]
PROPOSITION 1.11. The Lie algebras g, g_C and $(g_C)_R$ are all semisimple if one of them is.

PROOF. Evident from Lemma 1.10. □

The radical of a Lie algebra g is the largest solvable ideal in g.

PROPOSITION 1.12. Let g be a real Lie algebra. Then g is semisimple if and only if the radical \mathfrak{r} of g is (0).

PROOF. If g is semisimple then, by Prop. 1.3, each abelian ideal of g equals (0). Hence $\mathfrak{r} = (0)$. Conversely assume $\mathfrak{r} = (0)$. Let g_C have radical \mathfrak{r}_C and let σ be the conjugation of g_C with respect to g, i.e. $\sigma(X + iY) := X - iY$, $X, Y \in g$. Then $\sigma \mathfrak{r}_C$ is again a solvable ideal of g_C, hence $\sigma \mathfrak{r}_C = \mathfrak{r}_C$. It follows that $\mathfrak{r}_C = \mathfrak{s} + i\mathfrak{s}$, with \mathfrak{s} being a solvable ideal in g. So $\mathfrak{s} \subset \mathfrak{r} = (0)$. Thus, by [Hu, Theorem 5.1], B_C is nondegenerate, so g is semisimple by Prop. 1.11. □

DEFINITION 1.13. A subalgebra h of a Lie algebra g is said to be reductive in g if $ad_g(h)$ acts on g in a semisimple way (i.e., for each $ad_g(h)$ invariant linear subspace V of g there is a complementary $ad_g(h)$ invariant linear subspace W). Furthermore, a Lie algebra g is called reductive if it is reductive in itself.

PROPOSITION 1.14. Let g be a real or complex Lie algebra. The following two statements are equivalent:
(a) g is reductive.
(b) $g = c \oplus [g, g]$ (direct sum of Lie algebras), where c is the center of g, and $[g, g]$ is semisimple.

PROOF. If (b) holds then (a) follows by Prop. 1.4. Conversely assume (a). Since g is reductive, each abelian ideal of g is included in c. Again by reductivity, g is the direct sum of c and an ideal h. Then h will not have abelian ideals $\neq (0)$. Hence the radical of h is (0), so $h = [h, h] = [g, g]$ and h is semisimple. □

2. COMPACT REAL FORMS

Let g_C be a complex Lie algebra. The subalgebra h_C is called a Cartan subalgebra if h_C is nilpotent and equal to its normaliser in g_C.
The subalgebra \(h_C \) is called toral if, for each \(H \in h_C \), \(\text{ad} \ H \) is a semi-simple endomorphism of \(g_C \).

Proposition 2.1. Let \(g_C \) be a complex semisimple Lie algebra with subalgebra \(h_C \). The following three statements are equivalent:

(a) \(h_C \) is a Cartan subalgebra.
(b) \(h_C \) is a maximal toral subalgebra.
(c) \(h_C \) is a maximal abelian subalgebra and \(h_C \) is toral.

Proof.

(a) \(\iff \) (b): [Hu, Cor. 15.3]
(b) \(\Rightarrow \) (c): [Hu, Prop. 8.2]
(c) \(\Rightarrow \) (b): [Hu, Lemma 8.1] □

Let \(g_C \) be a complex semisimple Lie algebra. Fix a Cartan subalgebra \(h_C \) of \(g_C \) (CSA's exist, cf. [Hu, §8.1] and they are all conjugate under \(\text{Int}(g_C) \), cf. VARADARAJAN [Var, Theorem 4.1.3]). We remember some of the structural properties of the pair \((g_C, h_C) \) (cf. [Hu, §8]). For \(\alpha \in h_C^* \) (dual vector space of \(h_C \)) let

\[
(2.1) \quad g^\alpha := \{ X \in g_C | [H, X] = \alpha(H)X \quad \forall H \in h_C \}.
\]

Let the set \(\phi \) consists of all \(\alpha \in h_C^* \setminus \{0\} \) such that \(\dim g_\alpha > 0 \). Then \(\dim g_\alpha = 1 \) for \(\alpha \in \phi \) and

\[
(2.2) \quad g_C = h_C + \sum_{\alpha \in \phi} g_\alpha \quad \text{(direct sum of vector spaces)}.
\]

The restriction of the Killing form \(B \) of \(g_C \) to \(h_C \) is a nondegenerate form on \(h_C \). For each \(\lambda \in h_C^* \) define \(T_\lambda \in h_C \) such that

\[
(2.3) \quad B(T_\lambda, H) = \lambda(H) \quad \forall H \in h_C.
\]

Define a nondegenerate form \(\langle \cdot, \cdot \rangle \) on \(h_C^* \) by

\[
(2.4) \quad \langle \lambda, \mu \rangle := B(T_\lambda, T_\mu), \quad \lambda, \mu \in h_C^*.
\]

Let

\[
(2.5) \quad h_R := \text{real span} \{ T_\alpha | \alpha \in \phi \}.
\]
Then h_R is a real form of h_C, B is positive definite on h_R and $\langle.,.\rangle$ is positive definite on h_R^*. The set Φ, as a subset of h_R^* with inner product $\langle.,.\rangle$ satisfies the axioms of a reduced root system:

DEFINITION 2.2. Let E be a finite-dimensional real vector space with inner product $\langle.,.\rangle$. A finite subset Σ of $E\setminus\{0\}$ is called a root system if:

- (a) Σ spans E;
- (b) If $\alpha, \beta \in \Sigma$ then $\beta - \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha \in \Sigma$;
- (c) If $\alpha, \beta \in \Sigma$ then $\frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.

The root system Σ is called reduced, if it satisfies the additional condition:
- (d) If $\alpha \in \Sigma$ then the only multiples of α in Σ are $\pm \alpha$.

Define

$$H_{\alpha} = \frac{2}{\langle \alpha, \alpha \rangle} T_{\alpha}, \quad \alpha \in \Phi.$$

For each $\alpha \in \Phi$ choose $X_{\alpha} \in g^0 \setminus \{0\}$. For $\alpha, \beta \in \Phi$ with $\alpha + \beta \in \Phi$ let $c_{\alpha, \beta} \in \mathbb{C} \setminus \{0\}$ be defined by

$$[X_{\alpha}, X_{\beta}] = c_{\alpha, \beta} X_{\alpha + \beta}.$$

THEOREM 2.3. (cf. [Hu, Prop. 25.2]). With notation as above the X_{α}'s can be chosen such that:

- (a) $[X_{\alpha}, X_{-\alpha}] = H_{\alpha}$, $\quad \alpha \in \Phi$;
- (b) $c_{\alpha, \beta} = -c_{-\alpha, -\beta}$, $\quad \alpha, \beta, \alpha + \beta \in \Phi$.

Then the $c_{\alpha, \beta}$'s are real.

If the X_{α}'s satisfy condition (a) of Theorem 2.3 then, for $\alpha, \beta \in \Phi$:

$$B(X_{\alpha}, X_{\beta}) = \begin{cases} 2/\langle \alpha, \alpha \rangle & \text{if } \beta = -\alpha, \\ 0 & \text{if } \beta \neq -\alpha. \end{cases}$$

Provide h_R^* with an ordering $>$ such that each pair of elements of h_R^* is related and such that for $\lambda, \mu, \nu \in h_R^*$ and $t > 0$ we have the implications
\(\lambda > \mu \Rightarrow \lambda + \nu > \mu + \nu \) and \(\lambda > \mu \Rightarrow t\lambda > t\mu \). Then we call \(h^*_R \) an ordered vector space. This induces an ordering on \(\phi \). Let

\[
(2.9) \quad \phi^+ := \{ \alpha \in \phi \mid \alpha > 0 \}.
\]

Choose the \(X_\alpha \)'s as in Theorem 2.3. Then we have a decomposition (direct sum of vector spaces)

\[
(2.10) \quad \beta_\alpha = \Phi + G(X_\alpha, X_{-\alpha}) + \Phi + G(iX_\alpha, iX_{-\alpha}) + (\Phi \otimes (ih_R))
\]

which is orthogonal with respect to \(B \), and

\[
\begin{align*}
B(X_\alpha - X_{-\alpha}, X_\alpha - X_{-\alpha}) &= X_{-\alpha} \frac{4}{<\alpha, \alpha>}, \\
B(iX_\alpha + iX_{-\alpha}, iX_\alpha + iX_{-\alpha}) &= X_{-\alpha} \frac{4}{<\alpha, \alpha>},
\end{align*}
\]

(2.11) \(iH_R \) is negative definite.

Furthermore, we find for \(\alpha, \beta \in \phi^+ \):

\[
\begin{align*}
[iH_\alpha, X_\beta - X_{-\beta}] &= \beta(H_\alpha)(iX_\alpha + iX_{-\alpha}), \\
[iH_\alpha, iX_\beta + iX_{-\beta}] &= -\beta(H_\alpha)(X_\alpha - X_{-\alpha}); \text{ and, if moreover } \alpha \neq \beta:\n[X_\alpha - X_{-\alpha}, X_\beta - X_{-\beta}] &= c_{\alpha, \beta}(X_{\alpha + \beta} - X_{-\alpha - \beta}) + \circ_{\alpha, \beta}(X_{\alpha - \beta} - X_{\alpha + \beta}), \\
i(X_\alpha + X_{-\alpha}), i(X_\beta + X_{-\beta}) &= -c_{\alpha, \beta}(X_{\alpha + \beta} - X_{-\alpha - \beta}) + \circ_{\alpha, \beta}(X_{\alpha + \beta} - X_{-\alpha - \beta}), \\
[X_\alpha - X_{-\alpha}, i(X_\beta + X_{-\beta})] &= c_{\alpha, \beta}(iX_{\alpha + \beta} + iX_{\alpha - \beta}) + \circ_{\alpha, \beta}(iX_{\alpha + \beta} + iX_{\alpha - \beta}),
\end{align*}
\]
\[[X_{-a}, i(X_{a} + X_{-a})] = 2iH_{a}. \]

Corollary 2.4. Let the \(X_{a} \)'s be as in Theorem 2.3. Then \(iH_{a} \) together with the vectors \(X_{a} - X_{-a} (a \in \mathbb{R}) \) and \(iX_{a} + iX_{-a} (a \in \mathbb{R}) \) span a real form \(g \) of \(\mathfrak{g}_{C} \) on which \(B \) is negative definite.

Combination with (1.3) and Prop. 1.9 yields:

Theorem 2.5. Every complex semisimple Lie algebra has a compact real form.

Remark 2.6. If \(u \) is a compact real semisimple Lie algebra then \(\text{Int}(u) \), being a closed subgroup of the compact group \(O(u,B) \), is compact. By [He, Theorem II. 6.9] the universal covering group \(\tilde{u} \) of \(\text{Int}(u) \) is then compact. Hence every connected Lie group \(U \) with Lie algebra \(u \) is compact.

3. **Cartan Decompositions**

Let \(\mathfrak{g}_{C} \) be a complex semisimple Lie algebra and let \(v \) be a compact real form of \(\mathfrak{g}_{C} \). Let \(\tau \) be the conjugation of \(\mathfrak{g}_{C} \) with respect to \(v \). Then \(\tau \) is an involutive automorphism of \((\mathfrak{g}_{C})_{R} \). Since \(B \) is negative definite on \(v \) (Prop. 1.9), the form

\[(3.1) \quad B_{\tau}(X,Y) := -B(X,\tau Y), \quad X,Y \in \mathfrak{g}_{C}, \]

is positive definite Hermitian on \(\mathfrak{g}_{C} \).

Proposition 3.1. Let \(\mathfrak{g}_{C}, v, \tau \) be as above. Let \(\mathfrak{g} \) be a real form of \(\mathfrak{g}_{C} \) and let \(\sigma \) be the conjugation of \(\mathfrak{g}_{C} \) with respect to \(\mathfrak{g} \). Then, for some \(\phi \in \text{Aut}(\mathfrak{g}_{C}) \), \(\phi \cdot v \) is invariant under \(\sigma \).

Proof. \(\sigma \tau \) is in \(\text{Aut}(\mathfrak{g}_{C}) \) and hermitian with respect to \(B_{\tau} \). Hence \(P := (\sigma \tau)^{2} \) is in \(\text{Aut}(\mathfrak{g}_{C}) \) and positive definite hermitian with respect to \(B_{\tau} \). Let \(\{X_{i}\} \) be a basis of eigenvectors for \(P \), i.e. \(PX_{i} = \lambda_{i}X_{i} \) with \(\lambda_{i} > 0 \). For \(t \in \mathbb{R} \) define the linear endomorphism \(P^{t} \) of \(\mathfrak{g}_{C} \) by \(P^{t}X_{i} := \lambda_{i}^{t}X_{i} \). Let us prove that \(P^{t} \in \text{Aut}(\mathfrak{g}_{C}) \). Put

\[[X_{i}, X_{j}] = \sum_{k} c_{ijk} X_{k}. \]

Then

\[\sum_{k} c_{ijk} \lambda^{t} X_{k} = P[X_{i}, X_{j}] = [P X_{i}, P X_{j}] = \sum_{k} c_{ijk} \lambda^{t} \lambda^{t} X_{k}. \]
Hence $c_{ijk}^\lambda k = c_{ijk}^\lambda \lambda I$, which implies $c_{ijk}^\lambda t = c_{ijk}^\lambda \lambda t$. Thus $p^t \in \text{Aut}(g_C)$. The proposition will follow from $\sigma \tau \phi^{-1} = \phi \tau \phi^{-1} \sigma$. We will show that $\phi := p^t$ satisfies this identity. Since $\sigma \tau \phi^{-1} = \sigma \tau \phi^{-1} \sigma$, we also have $\sigma p^t \tau = \tau p^{-1} \sigma$. Hence

\[
\sigma p^t \tau^{-1} = \sigma \tau^{-1} = p^{-1} \sigma \tau = \sigma \tau^{-1} \tau (g) = g.
\]

Let g be a real form of g_C with corresponding conjugation σ and let u be a compact real form of g_C with corresponding conjugation τ. Clearly we have:

(3.2) $\sigma(u) = u \iff \sigma = \tau \iff \tau(g) = g.$

It follows from Prop. 3.1 that, for a given g, we can choose u such that the three equivalent statements of (3.2) hold. In that case, put

(3.3) $k := g \cap u, \quad p := g \cap iu, \quad \theta := \tau \big|_g.$

Then

(3.4) $g = k + p$

is the decomposition of g into eigenspaces k,p of θ with eigenvalues $1,-1$, respectively. Let B_g be the Killing form of g. Then $B_g \big|_k$ is negative definite and $B_g \big|_p$ is positive definite. Indeed, by (1.3):

\[
B_g \big|_k = B_g \big|_k = B_u \big|_k \text{ is negative definite, and a similar reasoning applies to } p \in iu_C.
\]

DEFINITION 3.2. Let g be a real semisimple Lie algebra with Killing form B. An involutive automorphism θ of g is called **Cartan involution** and the corresponding eigenspace decomposition $g = k + p$ into 1 and -1 eigenspaces of θ is called **Cartan decomposition** if $B \big|_k$ is negative definite and $B \big|_p$ is positive definite.

Note that the conditions of this definition imply that

(3.5) $[k,k] \subset k, \quad [k,p] \subset p, \quad [p,p] \subset k.$
Clearly, for any real form \(g \) of \(g_\mathbb{C} \), we realised a Cartan decomposition by (3.3) and (3.4). Conversely, starting with some Cartan decomposition \(g = k + p \) for a real semisimple Lie algebra \(g \), we can consider the complexification \(g_\mathbb{C} \) of \(g \), which is again semisimple, and we can define

(3.6) \[u := k + ip, \]

which turns out to be a compact real form of \(g_\mathbb{C} \).

THEOREM 3.3. Let \(g \) be a real semisimple Lie algebra. Then \(g \) has a Cartan decomposition. If \(g = k_1 + p_1 = k_2 + p_2 \) are two Cartan decompositions of \(g \) then \(\psi . k_2 = k_1, \psi . p_2 = p_1 \) for some \(\psi \in \text{Int}(g) \).

PROOF. We already settled the existence of a Cartan decomposition. Consider the compact real forms \(u_j := k_j + ip_j \) of \(g_\mathbb{C} \) with corresponding conjugations \(\tau_j, j = 1,2 \). Let \(P := (\tau_1 \tau_2)^2 \). By the proof of Proposition 3.1 we have \(\tau_j (p^1 u_2) = p^1 u_2 \), hence

\[p^1 u_2 = (p^1 u_2) \cap u_1 + (p^1 u_2) \cap iu_1, \]

where \(B \) is negative definite on the first summand and positive definite on the second summand. However, \(B \) is negative definite on \(p^1 u_2 \) by (1.1) and Prop 1.9. Hence \(p^1 u_2 \subset u_1 \), so \(p^1 u_2 = u_1 \) by equality of dimension. Let \(\sigma \) be the conjugation of \(g_\mathbb{C} \) with respect to \(g \). Then \(\sigma \tau_j = \tau_j \sigma \) (\(j = 1,2 \)). Hence \(\sigma p^t = p^t \sigma \) for all real \(t \), so \(p^t \in \text{Aut}(g) \). The transformations \(p^t \) form a continuous one-parameter group of automorphisms of \(g \). Thus \(p^t = \exp tX \) with \(X \in \text{Der}(g) = \text{ad}(g) \) (cf. Prop. 1.5). Hence \(p^1 \in \text{Int}(g) \). The theorem follows since \(p^1 (g \cap u_2) = g \cap u_1 \) and \(p^1 (g \cap iu_2) = g \cap iu_1 \). \(\square \)

For \(i = 1,2 \) let \(u_1 \) be a compact real semisimple Lie algebra with involutive automorphism \(\theta_1 \). We call \((u_1, \theta_1) \) and \((u_2, \theta_2) \) *isomorphic* if there is an isomorphism \(\psi \) from \(u_1 \) onto \(u_2 \) such that \(\theta_2 = \psi \theta_1 \psi^{-1} \).

DEFINITION 3.4. An isomorphism class of real semisimple Lie algebras and an isomorphism class of compact real semisimple Lie algebras with involution are called *dual* to each other if they contain members \(g \) and \((u, \theta) \) respectively, such that \(g \) and \(u \) are both real forms of the same complex Lie algebra \(g_\mathbb{C} \), \(g \) has a Cartan decomposition \(g = k + p \), and \(u = k + ip \) with \(\theta | _k = \text{id}, \theta | _p = -\text{id} \).
It follows from Theorem 3.3 that an isomorphy class of the one type has precisely one dual isomorphy class of the other type. If \(g \) and \((u,0) \) belong to dual isomorphy classes then \(g \) and \((u,0) \) are called dual to each other.

The proof of the following proposition is immediate.

PROPOSITION 3.5. Let \(g \) be a real semisimple Lie algebra with involutive automorphism \(\theta \). Then

\[
B_\theta(X,Y) := -B(X,\theta Y), \quad X,Y \in g,
\]

defines a nondegenerate bilinear symmetric form on \(g \). This form is positive definite if and only if \(\theta \) is a Cartan involution: If \(\theta \) is a Cartan involution with corresponding Cartan decomposition \(g = k + p \) then, for \(X \in g \), \(\text{ad} \ X \) is symmetric (respectively skew-symmetric) with respect to \(B_\theta \) if and only if \(X \in p \) (respectively \(X \in k \)).

Observe that, with subalgebras and involutions chosen as in (3.2), (3.3), the form \(B_\theta \) is the restriction of the form \(B_\theta \) (cf. 3.1)) to \(g \).

Let \(g \) be a real Lie algebra with subalgebra \(h \). The analytic subgroup of \(\text{Int}(g) \) with Lie algebra \(\text{ad}(h) \) will be denoted by \(\text{Int}_g(h) \). The subalgebra \(h \) is called a compactly imbedded subalgebra of \(g \) if the group \(\text{Int}_g(h) \) is compact (with its own Lie group topology).

LEMMA 3.6. Let \(g \) be a real Lie algebra. Let \(s \in \text{Aut}(g) \). Define

\[
\tilde{s}(g) := sgs^{-1}, \quad g \in \text{Int}(g).
\]

Then \(\tilde{s} \in \text{Aut}(\text{Int}(g)) \) and

\[
d\tilde{s}(\text{ad} \ X) = \text{ad}(sX), \quad X \in g
\]

PROOF. Let \(X \in g \). Then \(s(\text{ad} \ X)s^{-1} = \text{ad} \ sX \) and \(s(\exp \ \text{ad} \ X)s^{-1} = \exp(\text{ad} \ sX) \).

PROPOSITION 3.7. Let \(g \) be a real semisimple Lie algebra with Cartan decomposition \(g = k + p \). Then \(k \) is a compactly imbedded subalgebra of \(g \).

PROOF. Let \(X \in g \). Then:
Hence $\text{Int}_g(k)$ is the identity component of the closed subgroup
$
\{g \in \text{Int}(g) | g(g) = g\}$ of $\text{Int}(g)$, which in its turn, is a closed subgroup

of $GL(g)$ (cf. Prop. 1.7). It follows that $\text{Int}_g(k)$ is closed in $GL(g)$. By

Prop. 3.5 we have $ad_g(k) \in SO(g;B_0)$. Hence $\text{Int}_g(k) \subset SO(g;B_0)$. We conclude

that $\text{Int}_g(k)$, being a closed subgroup of a compact Lie group, is compact

itself.

4. ROOT SPACE DECOMPOSITIONS

From now on let g be a real semisimple Lie algebra with Killing form

B, Cartan involution θ and corresponding Cartan decomposition $g = k + p$.
Also assume that g is a noncompact Lie algebra, i.e. $\dim p \neq 0$. Then p
always contains nontrivial abelian subspaces, namely the 1-dimensional sub-
spaces. Thus the maximal abelian subspaces of p have nonzero dimension.

Lemma 4.1. Let \mathfrak{a} be a maximal abelian subspace of p. Choose $X \in \mathfrak{a}$ such
that

$$
(4.1) \quad \mathfrak{p}_X := \ker(ad X) \cap p
$$

has minimal dimension. Then $\mathfrak{p}_X = \mathfrak{a}$.

Proof. Clearly $\mathfrak{a} \subset \mathfrak{p}_X \subset p$. Suppose there exists $Z \in \mathfrak{p}_X \setminus \mathfrak{a}$. Then for some Y
in \mathfrak{a} we have $[Y, Z] \neq 0$ and thus $[X + tY, Z] \neq 0$ if $t \neq 0$. Since $ad X$ and $ad Y$
are symmetric (Prop. 3.5) and mutually commuting endomorphisms, it follows

that $\ker(ad(X + tY)) = \ker(ad X)$ for sufficiently small nonzero t, i.e.

$\mathfrak{p}_{X + tY} \subset \mathfrak{p}_X$. But then $\mathfrak{p}_{X + tY} = \mathfrak{p}_X$ by the choice of X. Hence $[X + tY, Z] = 0$,
which is a contradiction.

Theorem 4.2. The maximal abelian subspaces of p are mutually conjugate under

$\text{Int}_g(k)$. If \mathfrak{a} is a maximal abelian subspace of p then

$$
(4.2) \quad p = \bigcup_{k \in \text{Int}_g(k)} k.\mathfrak{a}.
$$

Proof. Let $H \in \mathfrak{a}$ such that \mathfrak{p}_H (cf. (4.1)) has minimal dimension. Let $X \in p$.
We will prove that $k.X \in \mathfrak{a}$ for some $k \in \text{Int}_g(k)$. The function

$k \mapsto B(H, k.X)$ is continuous on the compact (cf. Prop. 3.7) Lie group K,
so it attains a minimum for some $k_0 \in k$. Hence, for all $T \in k$:

$$0 = \frac{d}{dt} g(H, \exp(t \mathrm{ad} k_0 X))|_{t=0} =$$

$$= B(H, [T, k_0 X]) = B([k_0 X, H], T).$$

Now $[k_0 X, H] \in [p, p] \subset k$ and B is negative definite on k, so $[k_0 X, H] = 0$. Hence $k_0 X \in p_H = a$ (cf. Lemma 4.1). This settles (4.2).

Finally, let a and H be as above and let a' be another maximal abelian subspace of p. Let $k \in K$ such that $k H \in a'$. Then $[H, k^{-1} X] = 0$ for all $X \in a'$, so $k^{-1} a' \subset p_H = a$. Hence $k^{-1} a' = a$ because a' is maximal abelian.

REMARK 4.3. Let a be a maximal abelian subspace of p and let b be a subset of a. Let $z_b(p)$ denote the centraliser of b in p and $Z_b(K)$ the centraliser of b in $\text{Int}_g(k)$. Then, in the same way as for Theorem 4.2, it can be proved that

$$(4.3) \quad z_b(p) = \bigcup_{k \in Z_b(K)} k a.$$

DEFINITION 4.4. The (real) rank of the real semisimple Lie algebra $g = k + p$ is the dimension of a maximal abelian subspace of p.

In view of Theorem 3.3 and 4.2 the rank of g is well-defined.

Fix a maximal abelian subspace a of p. For $\alpha \in a^*$ define

$$(4.4) \quad g_\alpha := \{ X \in g | [H, X] = \alpha(H) X \quad \forall H \in a \}.$$

$\alpha \in a^*$ is called a root of the pair (g, a) if $\alpha \neq 0$ and $\dim g_\alpha > 0$. Let Σ be the set of all roots. Since the endomorphisms $\text{ad} H (\text{ad} a)$ of g are symmetric w.r.t. B_0 and mutually commuting, we have the root space decomposition

$$(4.5) \quad g = g_0 + \sum_{\alpha \in \Sigma} g_\alpha.$$

This is a direct sum of vector spaces, orthogonal with respect to B_0. Clearly, Σ is a finite set. Obviously we have

$$(4.6) \quad g_{-\alpha} = g_\alpha.$$
In particular, \(g_0 = 0 \), so \(g_0 = (g_0 \cap k) + (g_0 \cap p) \). Since \(a \) is maximal abelian in \(p \), we have \(g_0 \cap p = a \). Let \(m \) be defined as the centraliser of \(a \) in \(k \). Then \(m = g_0 \cap k \), so

\[
(4.7) \quad g_0 = m + a.
\]

It is also clear that

\[
(4.8) \quad [g_a, g_\beta] \subseteq g_{a + \beta},
\]

so \(g_0 \), and hence \(m \), are subalgebras of \(g \).

It follows from (4.6) that \(a \in \Sigma \) iff \(-a \in \Sigma \). Make \(a^* \) into an ordered vector space. Let \(\Sigma^+ \) denote the set of positive roots. Define

\[
(4.9) \quad n := \sum_{a \in \Sigma^+} g_a.
\]

Because of (4.8) \(n \) is a nilpotent subalgebra of \(g \).

Let \(a \in \Sigma^+ \), \(X \in g_{-a} \). Then \(X = (X + \theta X) - \theta X \in (g_a + g_{-a}) \cap k + g_a \). Hence

\[
g = g_0 \cap k + a + \sum_{a \in \Sigma^+} (g_a + g_{-a}) \cap k + \sum_{a \in \Sigma^+} g_a.
\]

Thus

\[
(4.10) \quad g = k + a + n \quad \text{(direct sum of vector-spaces)}.
\]

This is called the Iwasa decomposition.

5. THE ROOT SYSTEM \(\Sigma \)

The Killing form \(B \) restricted to \(a \) is positive definite. For \(\lambda \in a^* \) define \(A_\lambda \in a \) by

\[
(5.1) \quad B(H, A_\lambda) = \lambda(H) \quad \forall H \in a.
\]

Define an inner product \(\langle \cdot, \cdot \rangle \) on \(a^* \) by

\[
(5.2) \quad \langle \lambda, \mu \rangle := B(A_\lambda, A_\mu).
\]
Lemma 5.1. Let \(a \in \mathbb{E} \) and choose \(X_a \in g_a \setminus \{0\} \) such that, possibly after multiplying \(X_a \) with a nonzero real scalar,

\[
B_\theta(X_a, X_a) = 2/\langle a, a \rangle
\]

Define

\[
X_{-\alpha} := -\theta X_a, \quad H_{\alpha} := [X_a, X_{-\alpha}].
\]

Then \(X_{-\alpha} \in g_{-\alpha}, H_{\alpha} \in a, \)

\[
H_{\alpha} = \frac{2\alpha}{\langle a, a \rangle},
\]

\[
[H_{\alpha}, X_a] = 2X_a, \quad [H_{\alpha}, X_{-\alpha}] = -2X_{-\alpha}.
\]

Thus \(X_a, Y_a, H_a \) span a subalgebra of \(g \) isomorphic to \(\mathfrak{sl}(2, \mathbb{R}) \) and they form a standard basis for this copy of \(\mathfrak{sl}(2, \mathbb{R}) \).

Proof. \(H_a \in g_0 \) and \(8H_a = -H_a \), so \(H_a \in a \). For all \(H \in a \) we have

\[
B(H_a, H) = B([X_a, X_{-\alpha}], H) = B([H_a, X_a], X_{-\alpha}) = a(H)B(X_a, X_{-\alpha}) = a(H)B_\theta(X_a, X_a) = \frac{2\alpha}{\langle a, a \rangle},
\]

This settles (5.5). Now \([H_{\alpha}, X_a] = \frac{2\alpha}{\langle a, a \rangle} X_a = 2X_a \), and similarly for the other formula in (5.6). Finally, the statement about \(\mathfrak{sl}(2, \mathbb{R}) \) follows from [Hu, Example 2.1]. \(\square \)

Lemma 5.2. Let \(X, Y, H \) be a standard basis for \(\mathfrak{sl}(2, \mathbb{R}) \), i.e. \([X, Y] = H, [H, X] = 2X, [H, Y] = -2Y \). Let \(W \) be a finite-dimensional real \(\mathfrak{sl}(2, \mathbb{R}) \)-module. Then \(W \) has a basis of weight vectors \(w \) (i.e. \(H.w = mw \)) with integer weights \(m \) such that for each \(m \in \mathbb{Z} \) the multiplicities of the weights \(m \) and \(-m \) are equal.

Proof. Let \(W := W + iW \). This naturally becomes a \(\mathfrak{sl}(2, \mathbb{C}) \)-module. Let \(V_c \) be an irreducible subspace of \(W \). Then \(V_c \) has a basis \(v_0, v_1, \ldots, v_m \) such that

\[
H.v_j = (m-2j)v_j \quad \text{and} \quad Y.v_j = (j+1)v_{j+1} \quad \text{(cf. [Hu, §7.2])}.
\]

Write \(v_j = v'_j + iv''_j \) with \(v'_j, v''_j \in W \). Then, since \(W \) is a \(\mathfrak{sl}(2, \mathbb{R}) \)-module, we have \(H.v'_j = (m-2j)v'_j \) and \(Y.v'_j = (j+1)v'_{j+1} \) and similarly for \(v''_j \). Thus \(V_c = V + iV \), where \(V \) is an
irreducible submodule of \(W \) with weights \(m, m-2, \ldots, -m+2, -m \) each occurring with multiplicity 1. Since \(W_c \) is a direct sum of irreducible submodules (cf. [Hu, Theorem 6.3]), the same holds for \(W \). \(\square \)

Remember the axioms of a root system, cf. Def. 2.2.

THEOREM 5.3. \(E \), as a subset of \(\mathfrak{a}^* \) with inner product \(\langle \cdot, \cdot \rangle \), is a root system.

PROOF. First we prove that \(E \) spans \(\mathfrak{a}^* \). Let \(H \in \mathfrak{a} \) such that \(\alpha(H) = 0 \) for all \(\alpha \in \Sigma \). Then \((\text{ad } H)(g_\alpha) = 0 \) for all \(\alpha \in \Sigma \), so \((\text{ad } H)(g) = 0 \), so \(H \) is in the center of \(g \). Hence \(H = 0 \) by semisimplicity of \(g \), so \(E \) spans \(\mathfrak{a}^* \).

Next we prove (b) and (c) of Def. 2.2. Fix \(\alpha \in \Sigma \) and \(X_\alpha, X^-\alpha, H_\alpha \) as in Lemma 5.1. Then, via the adjoint action of \(X_\alpha, X^-\alpha \) and \(H_\alpha \) on \(g \), \(g \) becomes a \(\mathfrak{sl}(2, \mathbb{R}) \)-module. Let \(\beta \in \Sigma \). Then \(V := E_j \in \mathbb{Z} \mathfrak{g}_\beta + j \mathfrak{a} \) is a \(\mathfrak{sl}(2, \mathbb{R}) \)-submodule and

\[
[H_\alpha, X] = \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} + 2j)X, \quad X \in \mathfrak{g}_\beta + j \mathfrak{a}.
\]

Thus, for \(j = 0 \), we obtain (c) of Def. 2.2 by applying Lemma 5.2. Again by Lemma 5.2 it follows that

\[
\dim \mathfrak{g}_\beta = \dim \mathfrak{g}_{\beta + j \mathfrak{a}} \text{ if } j = \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle}.
\]

This settles (b) of Def. 2.2. \(\square \)

PROPOSITION 5.4. Let \(\Sigma \) be a root system. If \(\alpha \in \Sigma \) then the only possible multiples of \(\alpha \) in \(\Sigma \) are \(\pm \alpha, \pm \alpha, \pm 2\alpha \).

PROOF. Let \(\beta = c\alpha \in \Sigma \). Then \(2 < \beta, \alpha > / < \alpha, \alpha > \) and \(2 < \beta, \alpha > / < \beta, \beta > \) are integer. \(\square \)

Note that, if \(\Sigma \) is a root system then

\[
\Sigma_1 := \{ \alpha \in \Sigma | j\alpha \notin \Sigma \}
\]

and

\[
\Sigma_2 := \{ \alpha \in \Sigma | 2\alpha \notin \Sigma \}
\]

are reduced root systems.
DEFINITION 5.5. Let \(\Sigma \) be a root system in \(E \). The Weyl group \(W \) of \(\Sigma \) is the group of orthogonal transformations of \(E \) generated by the reflections

\[
\lambda \rightarrow \lambda - \frac{2\langle \lambda, \alpha \rangle}{\langle \alpha, \alpha \rangle}, \quad \alpha \in \Sigma.
\]

Let \(\Sigma \) be the root system of \((g, a) \). The multiplicity \(\mu_\alpha \) of \(\alpha \in \Sigma \) is defined by

\[
(5.9) \quad \mu_\alpha := \dim g_\alpha.
\]

It follows from the proof of Theorem 5.3 that:

PROPOSITION 5.6. Let \(\Sigma \) be the root system of \((g, a) \) with Weyl group \(W \). If \(\alpha \in \Sigma, \quad w \in W \) then \(\mu_{w, \alpha} = \mu_\alpha \).

We conclude this section with some corollaries of Lemma 5.1 and of the proof of Theorem 5.3.

LEMMA 5.7. Let \(\alpha \in \Sigma \). If \(0 \neq X \in g_\alpha \) then \([g_0, X] = g_\alpha \).

PROOF (due to G. van Dijk). Without loss of generality we may assume that \(X = X_\alpha \) as in Lemma 5.1. The Lie algebra generated by \(X_\alpha, X_{-\alpha}, \) and \(H_\alpha \) acts by the adjoint representation on \(\bigoplus_{j \in \mathbb{Z}} g_{ja} \) with weights \(-2, 0, 2\) and possibly \(-4, 4\). By the representation theory of \(\mathfrak{sl}(2, \mathbb{R}) \) \(g_\alpha \) has a basis of weight vectors \(\nu \) belonging to irreducible submodules and each such \(\nu \) can be written as \(\nu = X_\alpha \cdot w \) for some \(w \in g_0 \) (cf. [Hu, §7.2] and the proof of Lemma 5.2).

COROLLARY 5.8. For each \(\alpha \in \Sigma \), \(g_\alpha \) is an irreducible \(\text{ad}(m) \)-module.

PROOF. Let \(0 \neq X \in g_\alpha \). Then, by Lemma 7.7:

\[
g_\alpha = [g_0, X] = [m, X] + [\alpha, X] = \text{ad}(m)X + RX.
\]

COROLLARY 5.9. If \(q \) is a subalgebra of \(g \) which includes the subalgebra \(m + \alpha + \kappa \) then, for each \(\alpha \in \Sigma^+ \), \(q \cap g_{-\alpha} = g_{-\alpha} \) or \(\{0\} \).

COROLLARY 5.10. If \(\alpha \in \Sigma, \quad 0 \neq X \in g_\alpha, \quad 0 \neq Y \in g_{-\alpha} \) then \([X, Y] \neq 0 \).
Let ω denote the Hermitian adjoint of matrices ω. Then, for all $Z \in \mathfrak{g}_0$: $0 = B(Z,[X,Y]) = B(Z,X,Y)$. Choose Z such that $[Z,X] = -\theta Y$ (cf. Lemma 5.7). Then $B_0(Y,Y) = 0$. Hence $Y = 0$. This is a contradiction. □

6. EXAMPLES

EXAMPLE 6.1. Let \mathfrak{g}_C be a complex semisimple Lie algebra. Use the notation of §2. Let Φ be the compact real form of \mathfrak{g}_C obtained in Cor. 2.4 with corresponding conjugation τ. Then τ is an involution of $(\mathfrak{g}_C)_R$ and $(\mathfrak{g}_C)_R^* = \Phi + i\Phi$ is the corresponding decomposition into the 1 and -1 eigenspaces. Let \mathfrak{h}_R be the Killing form of $(\mathfrak{g}_C)_R$. Then \mathfrak{h}_R is negative definite on Φ and positive definite on $i\Phi$ by (1.4). Thus τ is a Cartan involution of $(\mathfrak{g}_C)_R$. Now \mathfrak{h}_R is a maximal abelian subspace of $i\Phi$. The root system of $(\mathfrak{g}_C)_R^{\Phi}\mathfrak{h}_R$ coincides with the root system Φ of $(\mathfrak{g}_C)_R$. If $\alpha \in \Phi$ then the root spaces \mathfrak{g}_α and \mathfrak{g}^α also coincide. However, \mathfrak{g}^α is considered as a complex vector space of dimension 1 and \mathfrak{g}_α as a real vector space of dimension 2. Since \mathfrak{h}_C is maximal abelian in \mathfrak{g}_C, the centralizer of \mathfrak{h}_R in Φ (the space m for $(\mathfrak{g}_C)_R$ equals $i\mathfrak{h}_R$). Thus m is an abelian Lie algebra in this case.

EXAMPLE 6.2. Use again the notation of §2. It follows from Theorem 2.3 that \mathfrak{h}_R is together with the vectors $X_\alpha (\alpha \not\in \Phi)$ span a real form \mathfrak{g} of \mathfrak{g}_C. It also follows from Theorem 2.3 that θ defined by

$$ (6.1) \quad \theta|_{\mathfrak{h}_R} := -i\Phi, \quad \theta X_\alpha = -X_{-\alpha}, $$

is an involution of \mathfrak{g}. Then 1 eigenspace k of θ is spanned by $X_\alpha X_{-\alpha} (\alpha \not\in \Phi)$, the -1 eigenspace p by h_R and $X_\alpha + X_{-\alpha} (\alpha \in \Phi)$. Because of (2.11) and (1.3), θ is a Cartan involution. Note also that the dual compact Lie algebra $\mathfrak{k} + ip$ equals Φ as defined by Cor. 2.4. The space \mathfrak{h}_R is a maximal abelian subspace of p. It is also maximal abelian in \mathfrak{g}. Real semisimple Lie algebras with this property are called normal. It can be proved that the Lie algebra \mathfrak{g} under consideration is unique up to isomorphism as a normal real form of \mathfrak{g}_C (cf. [He., Theorem IX. 5.10]). The root system of the pair $(\mathfrak{g},\mathfrak{h}_R)$ coincides with the root system Φ of $(\mathfrak{g}_C,\mathfrak{h}_C)$. If $\alpha \in \Phi$ then $\mathfrak{g}_\alpha = \mathbb{R} X_\alpha$, i.e. one-dimensional. The subspace m of \mathfrak{g} has dimension zero.

EXAMPLE 6.3. Let $\mathfrak{g}_C = \Delta \ell(n+1),\mathbb{C}$, the Lie algebra of all complex $(n+1)\times(n+1)$ matrices with trace zero (n≥1). Let A^* denote the Hermitian adjoint of
of \(A \in \mathfrak{sl}(n+1, \mathbb{C}) \). Then \(\tau \), defined by \(\tau A := -A^* \), is a conjugate linear involutive automorphism of \(\mathfrak{g}_C \). The fixed point set of \(\tau \) is \(u := \mathfrak{su}(n+1) \), the real Lie algebra of all skew-hermitian \((n+1)\times(n+1)\) matrices with trace zero. The compact Lie group \(SU(n+1) \) has Lie algebra \(u \), so \(u \) is a compact real form of \(\mathfrak{g}_C \). Let \(J \) be the \((n+1)\times(n+1)\) matrix \(\text{diag}(-1,1,\ldots,1) \) and let \(\sigma A := -JA^*J \). Then \(\sigma \) is also a conjugate linear involutive automorphism of \(\mathfrak{g}_C \) and \(\sigma \tau = \tau \sigma \). The fixed point set of \(\sigma \) is \(g := \mathfrak{su}(n,1) \), the real Lie algebra of all matrices

\[
\begin{pmatrix}
-tB & z_1 & \cdots & z_n \\
\vdots & & & \\
z_1 & & & B \\
z_n & & & \\
\end{pmatrix}, \quad B \in \mathfrak{u}(n), \ z_1, \ldots, z_n \in \mathbb{C}.
\]

Let \(k := g \cap \mathbb{R} \), \(p := g \cap (i\mathbb{R}) \), \(\theta := \sigma \tau \). Then \(\theta \) is a Cartan involution for \(g \) and \(g = k + p \) the corresponding Cartan decomposition. We see that \(k \) consists of all matrices

\[
\begin{pmatrix}
-tB & 0 \\
0 & B \\
\end{pmatrix}, \quad B \in \mathfrak{u}(n),
\]

so \(k \) is isomorphic to \(\mathfrak{u}(n) \), and that \(p \) consists of all matrices

\[
\begin{pmatrix}
0 & z_1 & \cdots & z_n \\
z_1 & & & 0 \\
\vdots & & & \\
z_n & & & \\
\end{pmatrix}, \quad z_1, \ldots, z_n \in \mathbb{C}.
\]

Let \(a \) be the abelian subspace of \(p \) consisting of all matrices

\[
(6.2) \quad H_t := \begin{pmatrix} 0 & \cdots & 0 & t \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & t \\ t & \cdots & t & 0 \end{pmatrix}, \quad t \in \mathbb{R}
\]

It follows easily that \(a \) is maximal abelian in \(p \). Thus \(g \) has rank 1.

Let \(\alpha \in \mathfrak{a}^* \) such that \(\alpha(H_t) = t \). We find that \(\Sigma = \{ \alpha, 2\alpha, -\alpha, -2\alpha \} \). \(\mathfrak{g}_\alpha \)
consist of all matrices

\[
\begin{pmatrix}
0 & z_1 & \ldots & z_{n-1} & 0 \\
z_1 \\ \vdots \\ z_{n-1} \\ 0
\end{pmatrix}
\]

\(, z_1, \ldots, z_{n-1} \in \mathfrak{c},\)

so \(\dim g_0 = 2n-2.\)

\(g_{2\alpha}\) consists of all matrices

\[
\begin{pmatrix}
it & 0 & \ldots & 0 & -it \\
0 & 0 \\
\vdots \\
0 \\
it & 0 & \ldots & 0 & -it
\end{pmatrix}
\]

\(, t \in \mathbb{R},\)

so \(\dim g_{2\alpha} = 1.\)

\(m\) consists of all matrices

\[
\begin{pmatrix}
-\text{tr}C & 0 & \ldots & 0 \\
0 & \ddots \\
\vdots & \ddots & C \\
0 & \ldots & 0
\end{pmatrix}
\]

\(, C \in \mathfrak{u}(n-1)\)

In these examples, in particular the last one, some important differences can be observed between root space decompositions for complex and real semisimple Lie algebras:

<table>
<thead>
<tr>
<th>((g_{C}, h_{C}))</th>
<th>((g, \alpha))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset) reduced; (\dim g_{\alpha} = 1 \ \forall \alpha \in \emptyset;) (g^0 = h_{C})</td>
<td>(\Xi) may be non-reduced; (\dim g_{\alpha}) may exceed 1; (\alpha) may be a proper subspace of (g_0).</td>
</tr>
</tbody>
</table>
7. DYNKIN DIAGRAMS

Let Σ be a root system and let Σ_1 and Σ_2 be the associated reduced root systems, cf. (5.7), (5.8). The root system Σ is called irreducible if it cannot be decomposed into two disjoint nonempty mutually orthogonal subsets. Clearly, if one of the root systems Σ, Σ_1, Σ_2 is irreducible, then all of them are irreducible. A subset Δ of Σ is called a base of Σ if Δ is a basis of $\text{span}(\Sigma)$ such that each $\beta \in \Sigma$ is a linear combination of elements of Δ with either all coefficients being nonnegative integers or all coefficients being nonpositive integers. Any base Δ for the reduced root system Σ_1 (which exists by [Hu., Theorem 10.1]) is also a base for Σ. We will use the notation

$$a_{\alpha, \beta} = \frac{2\langle \alpha, \beta \rangle}{\langle \beta, \beta \rangle}, \quad \alpha, \beta \in \Sigma.$$

THEOREM 7.1. The irreducible nonreduced root systems are precisely the root systems

$$(bc)_\ell := \{ \pm e_1, \pm e_2 (1 \leq i \leq \ell), \pm e_1 (1 \leq i \leq \ell), \pm 2 e_1 (1 \leq i \leq \ell) \}, \quad \ell = 1, 2, \ldots$$

PROOF. It follows by direct verification that $(bc)_\ell$ is a root system. This can also be seen, because $(bc)_\ell$ is the root system of $SU(\ell, \ell)$. Clearly $(bc)_\ell$ is nonreduced. If $\Sigma = (bc)_\ell$ then $\Sigma_1 = b_\ell$, so $(bc)_\ell$ is irreducible.

Conversely, let Σ be a nonreduced irreducible root system and let Δ be a base of Σ_1. Since each $\alpha \in \Sigma_1$ is Weyl group conjugate to an element in Δ (cf. [Hu., Theorem 10.3(c)]), we can take $\alpha \in \Delta$ such that $2\alpha \in \Sigma$. Let $\beta \in \Delta \setminus \{ \alpha \}$. Suppose $\langle \alpha, \beta \rangle \neq 0$. Then $a_{\beta, \alpha}$ and $a_{\beta, 2\alpha}$ are negative integers and $a_{\beta, \alpha} = 2a_{\beta, 2\alpha}$. Hence $a_{\beta, \alpha} = -2$, $a_{\beta, -\alpha} = -1$ (cf. [Hu., §9.4]), so (α, β) is a double link in the Dynkin diagram of (Σ_1, Δ) with $\langle \beta, \beta \rangle = 2\langle \alpha, \alpha \rangle$. By the classification theorem (cf. [Hu., Theorem 11.4.]) it follows that the Dynkin diagram equals

$$a_{\alpha} := \circ$$

or

$$b_\ell := \circ - \circ \ldots \circ \quad (\ell \geq 2).$$

Now we know (cf. [Hu., §12.1]) that there exists an orthonormal basis $\{e_1, \ldots, e_\ell\}$ of $\text{span} \Sigma$ such that
\[\Sigma_\lambda = \{ \pm e_i \pm e_j (1 \leq i < j \leq \lambda), \pm e_i (1 \leq i \leq \lambda) \} \]
and
\[\Delta = \{ e_i - e_{i+1} (1 \leq i \leq \lambda - 1), \alpha = e_\lambda \}. \]

We showed that \(2e_\lambda \in \Sigma \). The reflection associated with \(e_1 - e_\lambda \) sends \(2e_\lambda \) to \(2e_1 \), so \(2e_1 \in \Sigma \). On the other hand, since \(a_{e_1} \in \Omega \), \(2(e_1 - e_\lambda) \notin \Sigma \).

Use the notation of §4 and 5. Let \(\Sigma \) be the root system of \(g \) and suppose that \(\Sigma \) is irreducible. Then at most three root lengths occur in \(\Sigma \) and all roots of a given length are conjugate under \(W \) (cf. Theorem 7.1 and [Hu, §10.4, Lemma C]). Thus, by Prop. 5.6, the multiplicity \(\nu_\alpha \) only depends on the length of \(\alpha \in \Sigma \). Below we list the possible Dynkin diagrams for irreducible \(\Sigma \), together with the possible multiplicities. A node \(\bullet \) denotes a single root with multiplicity \(\nu \). A node \(\circ \) denotes a double root with multiplicity \(\nu_1 \) for the smaller root and multiplicity \(\nu_2 \) for the bigger root. All multiplicities are assumed to be nonzero. We used [Hu, Theorem 11.4] and Theorem 7.1.

\[a_\lambda (\lambda \geq 1): \quad \nu \quad \nu \quad \nu \quad \nu \]

\[(bc)_1: \quad \circ \quad \nu_1 \nu_1 \nu_1 \nu_2 \nu_3 \]

\[(bc)_2 (\lambda \geq 2): \quad \circ \quad \nu_1 \nu_1 \nu_1 \nu_2 \nu_3 \]

\[b_\lambda (\lambda \geq 2): \quad \circ \quad \nu_1 \nu_1 \nu_1 \nu_2 \]

\[c_\lambda (\lambda \geq 3): \quad \circ \quad \nu_1 \nu_1 \nu_1 \nu_2 \nu_3 \]

\[d_\lambda (\lambda \geq 4): \quad \circ \quad \nu_1 \nu_1 \nu_1 \nu_2 \nu_3 \]

\[e_\lambda (\lambda = 6, 7, 8): \quad \circ \quad \nu_1 \nu_1 \nu_1 \nu_2 \nu_2 \nu_3 \]

\[f_4 : \quad \circ \quad \nu_1 \nu_2 \nu_2 \nu_3 \]

\[g_2 : \quad \nu_1 \nu_2 \nu_2 \nu_3 \]

It can be shown that two real semisimple Lie algebras which have the
same Dynkin diagram and multiplicity function, are isomorphic. However, the proof is indirect, using the Dynkin diagram of g_C, cf. Ch. V.

REFERENCES

Chapter II

REAL SEMISIMPLE LIE GROUPS

B. HOOGENBOOM

In this chapter the basic structure theory of real semisimple Lie groups is developed. It is assumed that the reader knows the basic theory of Lie groups, cf. for instance ch. II of HELGASON'S book [He].

As in Ch. I, most of the theory is developed parallel to parts of [He]: see ch. IV (§3), ch. V (§6), ch. VI (§1, 2, 5), ch. VII (§2) and ch. IX (Theorem 1.1). However, in contrast to [He], we do not use any differential geometry, and the Weyl group theory is developed here for symmetric spaces of the noncompact type instead of symmetric spaces of the compact type. Our treatise of the Iwasawa decomposition is mainly based on WALLACH’S book: see [Wal, §7.4].

1. ORTHOGONAL SYMMETRIC LIE ALGEBRAS

DEFINITION 1.1. The pair \((g, s)\) is called an orthogonal symmetric Lie algebra if \(g\) is a real semisimple Lie algebra, \(s\) an involutive automorphism of \(g\) and the set of fixed points of \(s\), which we shall denote by \(K\), is a compactly imbedded subalgebra. If, in addition \(K \cap Z = \{0\}\) (\(Z\) center of \(g\)), then we shall call \((g, s)\) effective.

Let \((g, s)\) be an orthogonal symmetric Lie algebra. Then a pair \((G, K)\) is said to be associated with \((g, s)\) if \(G\) is a connected Lie group with Lie algebra \(g\), and \(K\) is a Lie subgroup of \(G\) with Lie algebra \(k\).

Clearly, if \(g\) is a noncompact semisimple real Lie algebra and \(\theta\) is a Cartan involution of \(g\), then \((g, \theta)\) is an effective orthogonal symmetric Lie algebra; such orthogonal symmetric Lie algebras are said to be of the noncompact type.

If \(G\) is a Lie group, and \(\sigma\) an automorphism of \(G\), then we shall write \(G_{\sigma}\) for the set of fixed points of \(\sigma\) in \(G\), and \((G_{\sigma})_0\) for the identity component of \(G_{\sigma}\).
DEFINITION 1.2. The pair \((G,K)\) is called a symmetric pair if \(G\) is a connected Lie group, \(K\) a closed subgroup of \(G\) and there exists an analytic involutive automorphism \(\sigma\) of \(G\) such that \((G_0)_0^r K \subset G_0^r\). If, in addition, \(Ad_0(K)\) is compact, \((G,K)\) is called a Riemannian symmetric pair.

If \((G,K)\) is a symmetric pair, we shall always let \(\tau\) denote the canonical projection of \(G\) onto \(G/K\), and we put \(o := \tau(e)\). \(G\) will be considered as a Lie transformation group of \(G/K\), and for \(g \in G\) we define a diffeomorphism \(\tau(g)\) of \(G/K\) onto \(G/K\) by \(\tau(g) \cdot g'K := gg'K (g' \in G)\).

In view of what we have said already, the following lemma is obvious:

Lemma 1.3. Let \((G,K)\) be a Riemannian symmetric pair, \(\sigma\) an involutive automorphism of \(G\) such that \((G_0)_0^r K \subset G_0^r\). Let \(g,k\) be the Lie algebras of \(G,K\), respectively. Let \(s := ds\). Then \((g,s)\) is an orthogonal symmetric Lie algebra.

In the situation of Lemma 1.3 \(\sigma\) is uniquely determined by \(s\). If, in addition, \((g,s)\) is of noncompact type, then \(s\) is uniquely determined by \(k\), hence \(\sigma\) is uniquely determined by \(K\).

Remark 1.4. Let \((g,s)\) be an orthogonal symmetric Lie algebra, and \((g,k)\) a pair associated with \((g,s)\). Then \((G,K)\) is not necessarily a Riemannian symmetric pair, because (i) it may be impossible to lift \(s\) to \(G\), (ii) \(K\) may not be closed. However, if \(s\) can be lifted to an involutive automorphism of \(G\), say \(\sigma\), then we may choose \(K : = G_0^r\) (or \(K : = (G_0)_0^r\)), and \((G,K)\) becomes a Riemannian symmetric pair. For example, let \(g\) be a noncompact semisimple Lie algebra, \(0\) a Cartan involution of \(g\). Let \(G : = \text{Int}(g)\), or a simply connected Lie group with Lie algebra \(g\), then \(0\) can be lifted to \(G\) (cf. Theorem 3.3).

One of the main facts for Riemannian symmetric pairs is that they give rise to so called Riemannian symmetric spaces (which will be defined in due course), and that all Riemannian symmetric spaces arise in this way. Thus the classification of Riemannian symmetric spaces can, via Lemma 1.3, be reduced to the classification of certain orthogonal symmetric Lie algebras, cf. [He, ch X]. These things, however, lie outside the scope of this book.

Definition 1.5. ([War, p.52]). Let \(M\) be a \(C^\infty\)-manifold. A Riemannian structure on \(M\) is a choice of a positive definite inner product \(Q(\{\ldots\})_m^r\) on each tangent space \(M_m\), such that if \(X,Y\) are \(C^\infty\)-vector fields, then \(Q(X,Y)\) is a \(C^\infty\)-function on \(M\). If \(Q\) is not positive definite, but only non-degenerate,
we'll speak of a pseudo-Riemannian structure on M. A differential manifold together with a (pseudo-) Riemannian structure is called a (pseudo-) Riemannian manifold.

Definition 1.6. Let M be a Riemannian manifold. M is called a Riemannian symmetric space if for all $m \in M$ there exists an involutive isometry s_m such that m is an isolated fixed point of s_m, s_m is called the symmetry around m.

Remark 1.7. What we have called a Riemannian symmetric space is called in [He] a Riemannian globally symmetric space.

Theorem 1.8. Let (G, K) be a Riemannian symmetric pair. Then there exists a G-invariant Riemannian structure Q on G/K, and in each such Q the manifold G/K is a Riemannian symmetric space, with s_0 given by $s_0(gK) = (sg)K$ (the involutive automorphism of G such that $(G_0)^o \subset K \subset G_0$).

Proof. Let $d\sigma$ and $d\tau$ denote the differential of σ and τ at e. Let g, h denote the Lie algebras of G, K, respectively. Let $p := \{X \in g : \text{d} \sigma(X) = -X\}$, then $g = k + p$. Let $X \in p$, $h \in K$. Then $\sigma(\exp Ad(h)(tX)) = h \exp(-tX)k^{-1}$.

Now there exists an $Ad(G(K))$-invariant inner product B on p (since $Ad(G(K))$ is a compact group). Define $Q_0 := B \circ (d\tau)^{-1}$, then Q_0 is a $d\tau(k) (k \in K)$-invariant form on T_0. Denote the corresponding symmetric bilinear form on $T_0 \times T_0$ also by Q_0. Now define a bilinear form $Q_{\tau}(g).o$ on $(G/K)_{\tau(g)}.o \times (G/K)_{\tau(g)}.o$ by

\[
Q_{\tau}(g).o(X,Y) := Q_0(X,Y), \quad X,Y \in p.
\]

This follows because Q_0 is $Ad(G(K))$ invariant. Now it follows that $\tau(g).o \circ Q_{\tau}(g).o$ is a G-invariant analytic Riemannian structure on G/K (because $\tau(g)$ is analytic for all $g \in G$). But on the other hand, each G-invariant Riemannian structure on G/K arises in this fashion from an $Ad(G(K))$-invariant quadratic form on p.
Let \(s_0 \) be defined by \(s_0(g) := (sg)K \), then \(s_0 \) is an involutive diffeomorphism of \(G/K \) onto itself, and \((ds_0)_{g=0} = -\text{Id} \). Now, let \(g \in G, X, Y \in (G/K) \). Then \(d\tau(g^{-1})(X) \in T_0, d\tau(g^{-1})(Y) \in T_0 \). It follows from the definition of \(s_0 \) that

\[
(1.3) \quad s_0 \circ \tau(g)(xK) = (sgx)K = s(g)s(x)K = (\tau(s(g)) \circ s_0)(xK).
\]

Thus \(s_0 \circ \tau(g) = \tau(s(g)) \circ s_0 \). Let \(X_0 := d\tau(g^{-1})(X), Y_0 := d\tau(g^{-1})(Y) \). Then

\[
Q(ds_0(X), ds_0(Y)) = Q(ds_0(d\tau(g)(X_0)), ds_0(d\tau(g)(Y_0))) = Q(ds_0(X_0), ds_0(Y_0)) = Q(X_0, Y_0) = Q(X, Y).
\]

Hence \(s_0 \) is an isometry. But for an arbitrary point in \(G/K \), say \(\tau(g).o \), the symmetry around \(\tau(g).o \) is given by

\[
(1.4) \quad s_\tau(g).o := \tau(g) \circ s_0 \circ \tau(g^{-1}).
\]

This being an isometry the space \(G/K \) becomes a Riemannian symmetric space. \(\square \)

Remark 1.9. The converse of Theorem 1.8 is also true. This lies, however, again outside the scope of this book, the proof being more difficult than that of Theorem 1.8. But for the sake of completeness, we shall state this converse here, for the proof see [He, Theorem IV.3.3 (i) and (ii)]: Let \(M \) be a Riemannian symmetric space, let \(m_0 \) be a fixed point in \(M \) and let \(s_0 \) denote the symmetry around \(m_0 \). Let \(G := \Gamma_0(M) \) (that is, the connected component of the identity of the group of all isometries of \(M \)), and let \(K \) be the subgroup of \(G \) leaving \(m_0 \) fixed. Then \((G, K) \) is a Riemannian symmetric pair with respect to the involutive automorphism \(s \) defined by \(s(g) := s_0 gs_0 (g \in G) \), and \(M \) is diffeomorphic to \(G/K \).

2. **The Cartan Decomposition of a Semisimple Lie Group**

In this section we shall state and prove the so-called Cartan decomposition of a semisimple Lie group. A refinement of this decomposition, which to some extent gives a uniqueness condition, will be given later on, cf. Theorem 6.2.

Let \(g \) be a noncompact semisimple Lie algebra over \(\mathbb{R} \), let \(\theta \) be a Car-
tan involution of g, and let $g = k + p$ denote the corresponding Cartan decomposition of g (cf. §I.3). Then $(g, 0)$ is an orthogonal symmetric Lie algebra of the noncompact type. Let (G, K) be a pair associated to $(g, 0)$, and assume K to be connected. Let g_c denote the complexification of g, and let u be the compact real form of g_c, defined by $u = k + i p$. Let τ be the conjugation of g_c with respect to u (thus $\tau | g = 0$), and define, just as in (I.3.1), B_τ by $B_\tau(X, Y) := -B(X, \tau Y)(X, Y \in g_c)$, B_0 by $B_0(X, Y) := -B(X, 0 Y)(X, Y \in g)$. Then $B_\tau = B_0 | g \times g$.

Lemma 2.1. (i) If $X \in k$, then $\text{ad} X$ is skew-symmetric with respect to B_τ.

(ii) If $X \in p$, then $\text{ad} X$ is symmetric with respect to B_0.

Proof. Let $X \in k$. Then for all $Y, Z \in g$:

$$B_\tau(\text{ad} X(Y), Z) = B(\tau Y, X(Z)) = B(Y, [X, Z]) = B_\tau(Y, \text{ad} X(Z)).$$

The proof for $X \in p$ is similar. \(\square\)

Now Proposition I.3.7 yields:

Lemma 2.2. $\text{Ad}_G(K)$ is a compact subgroup of $\text{Ad}_G(G)$.

Let $O(n)$ denote the set of all $n \times n$ orthogonal matrices, and $S(n)$ the set of all $n \times n$ symmetric matrices. We shall now prove a polar decomposition for G, the prototype of which is given by:

Lemma 2.3. The mapping $(O, S) \rightarrow Oe^S : O(n) \times S(n) \rightarrow GL(n, \mathbb{R})$ is a homeomorphism.

For a proof, cf. [Che, ch.I]. As a second step, we shall prove the polar decomposition for $\text{Ad}(G) = \text{Int}(g)$.

Proposition 2.4. The mapping $(k, X) \rightarrow k \exp(\text{ad} X) : \text{Int}_g(k) \times p \rightarrow \text{Ad}(G)$ is a homeomorphism.

Proof. Let Z_1, \ldots, Z_n be an orthonormal basis of g with respect to B_0. Let $Y, U, V \in g$. Then a straightforward calculation shows that $B_0(\text{ad} Y(U), V) = -B_0(U, (\text{ad} Y)(V))$, hence $\tau(\text{ad} Y) = -\text{ad}(\tau Y)$. Thus $\psi \in \text{Ad}(G) \Rightarrow \tau \psi \in \text{Ad}(G)$.

Now according to Lemma 2.3, each $X \in GL(n, \mathbb{R})$ can be written as $X = Oe^S$, where O is an $n \times n$ orthogonal matrix, and S is an $n \times n$ symmetric matrix. Let $\psi \in \text{Ad}(G)$, then $\psi = Oe^S$. Thus $e^{2S} = \tau \psi, \psi \in \text{Ad}(G)$ by the above remark. Hence $e^{2t \psi} \in \text{Aut}(g)$. Hence $e^{2t \psi} \in \text{Aut}(g) \forall t \in \mathbb{R}$ (cf. proof...
of Prop. 1.3.1), hence $S \in \text{Der}(g) = \text{ad}(g)$.

Hence $S = \text{ad} Y$ for some $Y \in g$. But also $\text{ad}(\psi Y) = -t(\text{ad} Y) = -tS = -S = -\text{ad} Y$ (S being symmetric). Hence $\psi Y = -Y$, or $Y \in p$.

Thus $0 \in \text{Ad}(G) \cap 0(g,B_g)$. This group has Lie algebra $\text{ad}(g) \cap o(g,B_g) = k$. Now we claim that 0 is in the identity component $\text{Int}_g(\mathfrak{k})$ of $\text{Ad}(G) \cap 0(g,B_g)$. To see this, let $t + \psi(t)$ be a continuous curve in $\text{Ad}(G)$ such that $\psi(0) = e$, $\psi(1) = \psi$. Hence, by Lemma 2.3 and the preceding remarks, $\psi(t) = 0(t)e^{\text{ad} Y(t)}$, where $t \to 0(t)$ is a continuous curve in $\text{Ad}(G) \cap 0(g,B_g)$ joining e and 0. Hence $0 \in \text{Int}_g(\mathfrak{k})$.

Thus the map $\text{Ad}(k) \times p \to \text{Ad}(G)$, defined by $(\psi,X) \to \psi e^{\text{ad} X}$ is a surjective homeomorphism. \square

The (simple) proof of the following lemma is left to the reader.

Lemma 2.5. Let G be a connected Lie group, K a closed Lie subgroup of G. If G/K is simply connected, then K is connected.

Theorem 2.6. Let G be a connected semisimple Lie group with Lie algebra g.

Let $g = k + p$ be a Cartan decomposition of g. Let K be the analytic subgroup of G corresponding to k. Let Z denote the center of G. Then:

(i) $Z \subset K$.

(ii) The map $K \times p \to G$, given by $(k,X) \to k \exp X$ is a homeomorphism of $K \times p$ onto G. Moreover, K is closed.

Proof. It follows from the proof of Proposition 2.4 that the map $p \to \text{Ad}(G)$ given by $X \mapsto e^{\text{ad} X} = \text{Ad}(\exp X)$ is a homeomorphism into, hence the map $p \to G$ given by $X \to \exp X$ is a homeomorphism into. Now, let $H := \text{Ad}^{-1}(\text{Ad}(K))$.

Then H is closed, $Z \subset H$ and $H = KZ$. From Proposition 2.4 it follows that $\text{Ad}(G)/\text{Ad}(K)$ is homeomorphic with p. But also G/H is homeomorphic with $\text{Ad}(G)/\text{Ad}(K)$, hence G/H is simply connected. Thus, by Lemma 2.5, H is connected. H has also Lie algebra k, hence $H = K$. Since Z is discrete (g being semisimple, $\ker(\text{ad}) = 0$, and ad is the differential of Ad, hence $\ker(\text{Ad}) = Z$ is discrete), it follows that $Z \subset K$. This proves (i).

To prove (ii), let $g \in G$. Then we have seen that $\text{Ad}(g) = \text{Ad}(k)e^{\text{ad} X}$ with $k \in K$, $X \in p$. Hence $g = zk \exp(X)$ with $z \in Z$. Since $z \in K$ (by (i)) it follows that the map $K \times p \to G$ is injective. To prove that it is also surjective, assume that $k_1 \exp X_1 = k_2 \exp X_2$, $(k_1 \in K, X_1 \in p)$. Then $\text{Ad}(k_1)e^{\text{ad} X_1} = \text{Ad}(k_2)e^{\text{ad} X_2}$. But we have proved in Proposition 2.4 that the mapping $\text{Ad}(K) \times p \to \text{Ad}(G)$ is a surjective homeomorphism, hence $X_1 = X_2$,
and thus also \(k_1 = k_2 \). □

Remark 2.7. In the preceding lemmas, etc., the word "homeomorphism" can be replaced by "diffeomorphism". However, this would make the proofs more complicated, especially 2.3, cf. [Wal, Prop. 3.2.10].

Corollary 2.8. (Cartan decomposition). \(G = KAK \).

Proof. Let \(g \in G \). Then it follows from Theorem 2.6 that \(g \) can be written as

\[
g = k \exp X, \quad k \in K, X \in p.
\]

But it follows from expression (1.4.2) that \(X \) can be written as

\[
X = \text{Ad}(k_1)H, \quad k_1 \in K, H \in a.
\]

Combination of (2.1) and (2.2) yields \(g = k k_1 \exp H k_1^{-1} \) which proves the corollary. □

3. **Maximal Compact Subgroups**

Let notations be as in §2. That is, \(g \) is a noncompact semisimple Lie algebra over \(\mathbb{R} \), \(\Theta \) is a Cartan involution of \(g \). Then, as we have remarked in §1, \((g, \Theta) \) is an orthogonal symmetric Lie algebra of the noncompact type. Let \((G, K) \) be a pair associated to \((g, \Theta)\). In this section we shall prove that \(K \) is connected, \((G, K) \) is a Riemannian symmetric pair and all maximal compact subgroups of \(G \) are conjugate under inner automorphisms of \(G \).

Theorem 3.1.

(i) \(K \) is connected and closed.

(ii) \(K \) is compact iff \(Z \) is finite.

Proof. It was shown in Theorem 2.6 that \(K_0 \) is closed (\(K_0 \) denoting the identity component of \(K \)), and if we define \(\phi: K \times p \to G \) by \(\phi(k, X) := k \exp X \) (\(k \in K, X \in p \)), then \(\phi(K_0 \times p) = G \).

Now suppose there exist \(k_1, k_2 \in K, X_1, X_2 \in p \) such that \(k_1 \exp X_1 = k_2 \exp X_2 \). Then, by the fact that \(k \in K \) implies that \(\text{Ad}(k) \in O(g, B_g) \), and \(\text{Ad}(k) \) commutes with \(\Theta \) (because \(\text{Ad}(k)k \subset k \), and thus \(\text{Ad}(k)p \subset p \)), we can show that \(k_1 = k_2, X_1 = X_2 \), that is \(\phi \) is \(1 \)-1. Since \(\phi(K_0 \times p) = \phi(K \times p) \) by the above remark, this implies that \(K_0 = K \). Hence \(K \) is connected and closed.
Let \(K^* := K/Z \). Then \(K^* \) is compact (since \(k \) is a compactly imbedded subalgebra by Definition 1.1, this follows from Remark 1.2.6) and \(Z \) is discrete. Hence \(K \) is compact iff \(Z \) is finite. \(\square \)

Corollary 3.2. Suppose \(Z \) is finite. Then \(K \) is maximal compact.

Proof. Let \(K_1 \) be a compact subgroup of \(G \) such that \(K \subset K_1 \subset G \). Let \(k_1 \) denote the Lie algebra of \(K_1 \). Then \(k_1 \) is a compactly imbedded subalgebra. But \(k \) is a maximal compactly imbedded subalgebra of \(g \). (This follows from the fact that \(k \) is compactly imbedded, \(B_{|k^*k} \) is negative definite and \(B_{|p^*p} \) is positive definite, cf. §1.3.) Hence \(k = k_1 \). But then by Theorem 3.1 we get \(K = K_1 \). \(\square \)

Theorem 3.3. There exists an involutive, analytic automorphism \(\tilde{\theta} \) of \(G \) such that \(g_0 = K \) and \((d\tilde{\theta})_{e} = 0 \).

This makes \((G,K)\) a Riemannian symmetric pair.

Proof. \(\theta \) is an automorphism of \(g \). Let \(G^\sim \) be the universal covering group of \(G \). Then \(\theta \) extends to \(G^\sim \). Calling this extension \(\tilde{\theta} \), then \(d\tilde{\theta} = \theta \). By Theorem 2.6 we have \(Z^\sim \subset (G^\sim)^{e} \). Let \(\pi^\sim : G^\sim \to G \) denote the covering map, then \(\ker(\pi^\sim) \subset Z^\sim \). \(\tilde{\theta} \) induces an automorphism of \(G = G^\sim / \ker(\pi^\sim) \), say \(\tilde{\theta} \), such that \(\pi^\sim (G^\sim)^{e} = G_0^\sim \). Now it follows from Theorem 2.6 and Theorem 3.1 that \(G^\sim_{e} = K \), and thus is \((G,K)\) a Riemannian symmetric pair. \(\square \)

Now we have to make use of the following lemma, a proof of which can be found in [Mos]. For about thirty years, the only known proof was Cartan's original proof, which uses quite deep results of Riemannian manifolds of negative curvature (cf. [He]). In Mostow's exposition, some of Cartan's results are proved without using any differential geometry.

Lemma 3.4. ([Mos, §3]). Let \((G,K)\) be a Riemannian symmetric pair of the noncompact type. Let \(K_1 \) be a compact subgroup of \(G \). Then \(K_1 \) acting on \(G/K \) has a fixed point.

Corollary 3.5. Conditions as in Lemma 3.4. Then \(\exists g \in G \) such that \(g^{-1}K_1g \subset K \).

Proof. \(g^{-1}K_1g \subset K \iff gK \) is a fixed point of \(G/K \) under the action of \(K_1 \). \(\square \)

Theorem 3.6. Let \((G,K)\) be a Riemannian symmetric pair of the noncompact type. Then \(K \) has a unique maximal subgroup which is also maximal compact in \(G \).

Proof. \(\text{Ad}_G(K) \) is by definition compact, and its Lie algebra is \(k \). Hence \(k \) is a compact Lie algebra. We can write \(k = \delta + a \), with \(\delta \) semisimple and \(a \)
abelian. Let S and A be analytic subgroups of K with Lie algebras \mathfrak{s} and \mathfrak{a}, respectively. Then S is compact, by Remark I.2.6 (\mathfrak{s} being a compact Lie algebra) and A is abelian. Hence we can write $A = T \times V$ (direct product), where T is a torus and V is analytically isomorphic to a euclidean space.

Put $K' := ST$. Then K' is compact, since S and T are both compact. But K' and V commute, and $K' \cap V$ is a compact subgroup of V. Since V is euclidean this implies that $K' \cap U = \{e\}$. Thus $K' \times V$ is an analytic subgroup of K with Lie algebra \mathfrak{k}. Hence $K = K' \times V$ (direct product). Hence K' is a unique maximal subgroup of K. The second assertion follows from Corollary 3.5. □

Combination of Corollary 3.5 and Theorem 3.6 yields:

COROLLARY 3.7. All maximal compact subgroups of a connected semisimple Lie group G are connected and conjugate under an inner automorphism of G.

4. THE IWASAWA DECOMPOSITION OF A SIMISIMPLE LIE GROUP

In this subsection we shall give a global analogue of the Iwasawa decomposition of a semisimple Lie algebra as given in (I.4.10). Thus, as in (I.4.10), let $g = \mathfrak{h}_1 + \mathfrak{a} + \mathfrak{h}_3$ be an Iwasawa decomposition of the semisimple Lie algebra g over \mathbb{R}. Let G be a connected Lie group with Lie algebra g, and let K, A and N be analytic subgroups of G with Lie algebras $\mathfrak{k}, \mathfrak{a}$ and \mathfrak{n}, respectively. Then we shall prove that the mapping:

$$\phi : (\mathfrak{k}, \mathfrak{a}, \mathfrak{n}) \rightarrow \mathfrak{k} \mathfrak{a} \mathfrak{n}$$

is an analytic diffeomorphism of the product manifold $K \times A \times N$ onto G.

The decomposition $G = KAN$ given by (4.1) is called an Iwasawa decomposition of G.

LEMMA 4.1. Suppose $g = \mathfrak{h}_1 + \mathfrak{h}_2 + \mathfrak{h}_3$ (direct sum of vector spaces), with \mathfrak{h}_i subalgebra of g. Let H_i be an analytic subgroup of G with Lie algebra \mathfrak{h}_i, and suppose that $[\mathfrak{h}_2, \mathfrak{h}_3] \subset \mathfrak{h}_3$. Define $\alpha : H_1 \times H_2 \times H_3 \rightarrow G$ by $\alpha(h_1, h_2, h_3) := h_1 h_2 h_3$. Then α is everywhere regular.

PROOF. Identify the tangent space $(H_1 \times H_2 \times H_3)_{(h_1, h_2, h_3)}$ with $\mathfrak{h}_1 \oplus \mathfrak{h}_2 \oplus \mathfrak{h}_3$. Take $X_i \in \mathfrak{h}_i$.

Then
\[
\begin{align*}
\alpha(h_1 \exp tX_1,h_2,h_3) &= h_1 h_2 h_3 \exp(t \text{Ad}(h_3^{-1}) \text{Ad}(h_2^{-1})X_1), \\
\alpha(h_1,h_2 \exp tX_2,h_3) &= h_1 h_2 h_3 \exp(t \text{Ad}(h_3^{-1})X_2), \\
\alpha(h_1,h_2,h_3 \exp tX_3) &= h_1 h_2 h_3 \exp(t X_3).
\end{align*}
\]
Thus:
\[
\begin{align*}
\alpha(h_1,h_2,h_3)\theta(h_1 X_1, h_2 X_2, h_3 X_3) &= \theta(h_1 h_2 h_3 \exp(t \text{Ad}(h_3^{-1}) \text{Ad}(h_2^{-1})X_1) + \\
&\quad + \text{Ad}(h_3^{-1})X_2 + X_3).
\end{align*}
\]
(\(L_p\) denoting left translation by \(p \in G\), since the tangent vector to the curve \(x \exp t X\) at \(x\) is \(dL_x(X)\). Now suppose \(\text{Ad}(h_3^{-1})X_1 + \text{Ad}(h_2^{-1})X_2 + X_3 = 0\). Then \(X_1 + \text{Ad}(h_2^{-1})X_2 + \text{Ad}(h_2^{-1})X_2 = 0\). But \(X_1 \in h_1\), \(\text{Ad}(h_2^{-1})X_2 \in h_2\) and \(\text{Ad}(h_2^{-1})X_3 \in h_3\) since \([h_2,h_3] \subset h_3\). Hence \(X_1 = 0, X_2 = 0, X_3 = 0\). \(\square\)

This lemma implies:

Corollary 4.2. Let \(g, h_1, H_1\) and \(a\) be as in Lemma 4.1. If, in addition,
\(\alpha(H_1 \times H_2 \times H_3)\) is closed in \(G\) and \(\alpha\) is injective, then \(\alpha\) is a surjective diffeomorphism.

The next lemma is taken from [Wal, Lemma 7.4.2]; it gives the prototype of the Iwasawa decomposition for \(\text{GL}(n,\mathbb{R})\):

Lemma 4.3. Let \(O(p)\) be the group of all \(p \times p\) orthogonal matrices. Let \(D(p)\) be the group of all \(p \times p\) real diagonal matrices with positive entries on the diagonal. Let \(N(p)\) be the group of all \(p \times p\) upper triangular matrices with 1's on the diagonal. Then the map

\[
(k,a,n) \to \text{kan}: O(p) \times D(p) \times N(p) \to \text{GL}(p,\mathbb{R})
\]

is a surjective homeomorphism.

Proof. Suppose there exist \(k,k' \in O(p), a,a' \in D(p)\) and \(n,n' \in N(p)\) such that \(\text{kan} = k'a'n'\). Then \((k')^{-1}k = a'n'^{-1}a^{-1}\) is on the one hand upper triangular with positive diagonal entries, but on the other hand an orthogonal matrix. Hence it is the identity, hence \(k = k'\). Thus \(a = a'\). This implies that \((a')^{-1}a = n'^{-1}\). Now \(n'^{-1}\) is upper triangular with 1's on the diagonal, thus \(a' = a\). Thus \(n' = n\).

Now we shall construct a continuous map of \(\text{GL}(p,\mathbb{R})\) to \(O(p) \times D(p) \times \)
This map gives the inverse of the map \((k,a,n) \mapsto kan\), and this proves the lemma. Let \(g \in \text{GL}(p, \mathbb{R})\). Let \(e_1, \ldots, e_p\) be the standard basis of \(\mathbb{R}^p\). Let \(v_i := g^{-1} e_i\). Apply the Gram-Schmidt orthogonalization process to the basis \(v_1, \ldots, v_p\). This gives a basis \(u_1, \ldots, u_p\) such that \(u_i = \sum_{j=1}^{p} a_{ij} v_j\) with \(a_{ii} > 0\) for all \(i\). Define \(a(g) \in D(p)\) and \(n(g) \in N(p)\) by

\[
\begin{pmatrix}
a_{11} & \cdots & 0 \\
0 & \cdots & a_{pp}
\end{pmatrix}
\]

\[
\begin{pmatrix}
a_{11} & \cdots & a_{1p} \\
0 & \cdots & 0
\end{pmatrix}
\]

Then \(a(g)n(g)v_i = u_i\). Let \(k(g)\) be defined by \(k(g)u_i = e_i\). Then \(k(g) \in O(p)\). Hence \(k(g)a(g)n(g)g^{-1} e_i = e_i\) for all \(i\). Hence \(g = k(g)a(g)n(g)\), and since \(g \mapsto k(g), g \mapsto a(g), g \mapsto n(g)\) are all clearly continuous, the lemma follows. \(\square\)

Now, identify \(\text{ad}(g)\) and \(g\). Let \(G_0\) denote the adjoint group of \(G\). We shall prove the Iwasawa decomposition for \(G_0\) first. Let \(K_0, A_0, N_0\) be the analytic subgroups of \(G_0\) corresponding to \(k, a, n\), respectively. Since the elements of \(G_0\) are endomorphisms, we can represent them by a matrix once we have chosen a basis for \(g\). Hence, choose an orthonormal basis relative to \(B_0\) of \(a, m\) and \(g_\alpha\) (for all \(\alpha \in \Sigma\)). Write this as an ordered orthonormal basis of \(g\), compatible to the chosen linear ordering on \(a^*\). Then, with respect to this basis, \(K_0\) consists of orthogonal matrices, \(A_0\) consists of diagonal matrices with positive diagonal entries and \(N_0\) consists of upper triangular matrices with 1's on the diagonal. That is, \(K_0 \subset O(p), A_0 \subset D(p)\) and \(N_0 \subset N(p)\), where \(\dim g = p\).

Lemma 4.4. The mapping \(\psi: K_0 \times A_0 \times N_0 \to G_0\) given by \(\psi(k,a,n) := kan\) is an analytic diffeomorphism.

Proof. \(\psi\) is clearly injective. Since \(K_0\) is compact, it is closed in \(O(p)\). \(A_0\) is closed in \(D(p)\). Since \(G_0\) and \(N(p)\) are both closed in \(\text{GL}(p, \mathbb{R})\), \(G_0 \cap N(p)\) is closed in \(N(p)\). \(G_0 \cap N(p)\) has Lie algebra \(\text{ad}(g) \cap n(p) = \text{ad}(n)\) (\(n(p)\) being the lie algebra of \(N(p)\)). Hence \(N_0\) is the identity component of \(G_0 \cap N(p)\), hence closed in \(N(p)\). Lemma 4.3 implies that \(K_0 \cdot A_0 \cdot N_0\) is closed in
The lemma now follows from Corollary 4.2. □

The next theorem gives us the so-called Iwasa decomposition. In fact, it states that the mapping ϕ in (4.1) is an analytic diffeomorphism.

THEOREM 4.5. $G = KAN$.

PROOF. First we prove that N_0 is simply connected. By taking inverses we get from Lemma 4.4: $G_0 = N_0A_0K_0$, hence $(n,a) -> naK_0: N_0 \times A_0 \to G_0/K_0$ is a homeomorphism. But the mapping $X \to \exp(\text{ad} X): \mathfrak{g} \to G_0/K_0$ is also a homeomorphism. Hence $N_0 \times A_0$ is homeomorphic with p. Since p is simply connected, it follows that N_0 is simply connected (NB. It is in general true that a connected nilpotent linear Lie group is simply connected, cf. [He, §V.1.4]). Now $\text{Ad}: G \to G_0$ and $\text{Ad}(K) = K_0$, $\text{Ad}(A) = A_0$, $\text{Ad}(N) = N_0$, and $\ker(\text{Ad}) \subseteq Z(G) \subseteq K$ (Theorem 2.6). Hence $G_0 = K_0A_0N_0$, thus $G = \ker(\text{Ad})KAN = KAN$. Suppose $k_1a_1n_1 = k_2a_2n_2$. Applying Ad and using Lemma 4.4 this implies that $\text{Ad}(k_1) = \text{Ad}(k_2)$, $\text{Ad}(a_1) = \text{Ad}(a_2)$, $\text{Ad}(n_1) = \text{Ad}(n_2)$. But A_0 and N_0 are both simply connected, hence $a_1 = a_2$, $n_1 = n_2$. Thus $k_1 = k_2$. The theorem now follows from Corollary 4.2. □

5. THE WIEY GROUP OF E

Let, just as in §I.5, E be the set of restricted roots, that is, the roots of the pair $(\mathfrak{g},\mathfrak{a})$.

DEFINITION 5.1. Let M^* be the normalizer of \mathfrak{a} in K, and let M be the centralizer of \mathfrak{a} in K.

That is: $M^* = \{k \in K: \text{Ad}(k)\mathfrak{a} = \mathfrak{a}\}$,

$M = \{k \in K: \text{Ad}(k)\mathfrak{h} = \mathfrak{h} \text{ for all } \mathfrak{h} \in \mathfrak{a}\}$.

Let m denote the centralizer of \mathfrak{a} in k.

LEMMA 5.2. M and M^* have the same Lie algebra, namely m. Moreover, the group M^*/M is finite.

PROOF. The Lie algebra of M is obviously m. Let m^* be the Lie algebra of M^*. Let $X \in m^*$. Thus, for $H \in \mathfrak{a}$, $[X,H] \in \mathfrak{a}$. Hence $B(\text{ad}(H)X, \text{ad}(H)X) = -B(\text{ad}(H)^2X, X) = 0$, \mathfrak{a} being abelian. Hence, since B is positive definite on \mathfrak{p}, $[X,H] = 0$ for all $H \in \mathfrak{a}$. Hence $X \in m$, hence $m = m^*$.

36
Let $G_0 := \text{Int}(g)$, with subgroups $K_0, M_0^*,$ defined just as for G. Then $\text{Ad}^{-1}(M_0^*) = M$, $\text{Ad}^{-1}(K_0^*) = K$ and $\ker(\text{Ad}) \subset M$. Hence $M^*/M = M_0^*/M_0$. But M_0^*/M_0 is compact (since K_0 is compact) and discrete, hence finite. □

Remark 5.3. Since $m^* \to \text{Ad}(m^*)$ ($m^* \in M^*$) induces an isomorphism of M^*/M into $\text{GL}(a)$, we can regard M^*/M as a group of linear transformation of a.

Let W be the Weyl group of E as defined in §1.5. We shall prove here that W is isomorphic with M^*/M. Remark that via the correspondences $A \leftrightarrow \lambda$, $a^* \leftrightarrow a$ we can regard W as acting on a instead of a^*. We shall always consider W as acting on a. We know that W is generated by the reflections s_a ($a \in E$), with s_a defined by

$$s_a(H) := H - \frac{2}{a(A_a)}A_a \quad (H \in a).$$

Thus we have to prove that $s_a \in M^*/M$ and that M^*/M is generated by the s_a.

Lemma 5.4. Let $a \in E$. Then $s_a \in M^*/M$.

Proof. Let X_a, X_{-a}, H_a be as in Lemma I.5.1. Put $Y_a := X_a - 6X_a$, $Z_a := X_a + 6X_a$. Then $Y_a \in p$, $Z_a \in k$, and $[H_a, Y_a] = 2Z_a$, $[H_a, Z_a] = 2Y_a$, $[Z_a, Y_a] = 2H_a$. Thus for all $t \in \mathbb{R}$:

$$\text{Ad}(\exp tZ_a)H_a = \sum_{n=0}^{\infty} (-1)^n (2t)^n a + \sum_{n=0}^{\infty} (-1)^n (2t)^{2n+1} \frac{(2t)^{2n+1}}{(2n+1)!} Y_a.$$

Hence

$$\text{Ad}(\exp \frac{1}{2}Z_a)H_a = - H_a.$$

Let $k_0 := \exp \frac{1}{2}Z_a$, then (5.2) becomes

$$\text{Ad}(k_0)H_a = - H_a.$$

But the hyperplane $a(H) = 0$ is left pointwise fixed by $\text{Ad}(k_0)$, because $a(H) = 0$ implies $[Z_a, H] = 0$. Hence s_a is the restriction to a of $\text{Ad}(k_0)$ (cf. [Hu, Lemma 9.1]). Since it is also clear that $\text{Ad}(k_0)a \subset a$, the lemma follows. □

Lemma 5.5. Let $k \in M^*$. If $\lambda \in a^*$, put $\lambda^k(H) := (\text{Ad}(k^{-1})H)$ for $H \in a$. Then $\lambda \in E$ iff $\lambda^k \in E$.

Proof. Let $X \in a_a$. Then for all $H \in a$

$$\text{Ad}(\exp tX)H = \sum_{n=0}^{\infty} (-1)^n (2t)^n a + \sum_{n=0}^{\infty} (-1)^n (2t)^{2n+1} \frac{(2t)^{2n+1}}{(2n+1)!} Y_a.$$

Hence

$$\text{Ad}(\exp \frac{1}{2}X)H = - H_a.$$

Let $k_0 := \exp \frac{1}{2}X$, then (5.2) becomes

$$\text{Ad}(k_0)H_a = - H_a.$$

But the hyperplane $a(H) = 0$ is left pointwise fixed by $\text{Ad}(k_0)$, because $a(H) = 0$ implies $[X, H] = 0$. Hence s_a is the restriction to a of $\text{Ad}(k_0)$ (cf. [Hu, Lemma 9.1]). Since it is also clear that $\text{Ad}(k_0)a \subset a$, the lemma follows. □
\[
[H, \text{Ad}(k)X] = \text{Ad}(k)[\text{Ad}(k^{-1})H, X]
\]
\[
= \alpha(\text{Ad}(k^{-1})H) \text{Ad}(k)X
\]
\[
= \alpha^k(H) \text{Ad}(k)X.
\]
Hence
\[
\text{Ad}(k)g_{\alpha} = g_{\alpha}k.
\]

Let, as usual, the connected components in \(2 - \{H \in \alpha a(H) = 0 \text{ for some } \alpha \in \Sigma\} \) be called Weyl chambers.

THEOREM 5.6. Let \(s \in \mathcal{M}^*/M \). Then \(s \) permutes the Weyl chambers. Also \(\mathcal{M}^*/M \) is simply transitive on the set of Weyl chambers in \(a \).

PROOF. Remark first that it is enough to show the theorem for \(\text{Int}(g) \), since \(\ker(\text{Ad}) \subset \mathcal{M} \). Let \(k \in \mathcal{M}^* \) be such that \(s = \text{Ad}(k) \mathcal{M}^*/M \). Lemma 5.5 implies that if some root in \(E \) vanishes at a point \(H \in \mathcal{M}^*/M \), then a root in \(E \) vanishes at \(\text{Ad}(k)H \). Hence \(s \) permutes the Weyl chambers.

Now we know from [Hu, Theorem 10.3] that the subgroup of \(\mathcal{M}^*/M \) generated by all \(s_{\alpha} \, (\alpha \in \Sigma) \) is transitive on the Weyl chambers, hence \(\mathcal{M}^*/M \) is transitive on the Weyl chambers.

Now suppose \(s \in \mathcal{M}^*/M \) such that \(sC = C \) for a Weyl chamber \(C \). Let \(N \) denote the order of \(s \). Choose \(H_0 \in C \), and set \(H := \frac{1}{N} (H_0 + sH_0 + \ldots + s^{N-1}H_0) \). Then \(sH = H \), and \(H \in C \) since Weyl chambers are convex. Let \(k_0 \in \mathcal{M}^* \) be such that \(s = \text{Ad}(k_0) \mathcal{M}^*/M \). Then \(\text{Ad}(k_0) \mathcal{M}^*/M = \mathcal{M}^*/M \). Hence \(s \) permutes the Weyl chambers.

Now suppose \(s \in \mathcal{M}^*/M \) such that \(sC = C \) for a Weyl chamber \(C \). Let \(N \) denote the order of \(s \). Choose \(H_0 \in C \), and set \(H := \frac{1}{N} (H_0 + sH_0 + \ldots + s^{N-1}H_0) \). Then \(sH = H \), and \(H \in C \) since Weyl chambers are convex. Let \(k_0 \in \mathcal{M}^* \) be such that \(s = \text{Ad}(k_0) \mathcal{M}^*/M \). Then \(\text{Ad}(k_0) \mathcal{M}^*/M = \mathcal{M}^*/M \). Hence \(s \) permutes the Weyl chambers.

Now we know from [Hu, Theorem 10.3] that the subgroup of \(\mathcal{M}^*/M \) generated by all \(s_{\alpha} \, (\alpha \in \Sigma) \) is transitive on the Weyl chambers, hence \(\mathcal{M}^*/M \) is transitive on the Weyl chambers.

Now suppose \(s \in \mathcal{M}^*/M \) such that \(sC = C \) for a Weyl chamber \(C \). Let \(N \) denote the order of \(s \). Choose \(H_0 \in C \), and set \(H := \frac{1}{N} (H_0 + sH_0 + \ldots + s^{N-1}H_0) \). Then \(sH = H \), and \(H \in C \) since Weyl chambers are convex. Let \(k_0 \in \mathcal{M}^* \) be such that \(s = \text{Ad}(k_0) \mathcal{M}^*/M \). Then \(\text{Ad}(k_0) \mathcal{M}^*/M = \mathcal{M}^*/M \). Hence \(s \) permutes the Weyl chambers.

Now suppose \(s \in \mathcal{M}^*/M \) such that \(sC = C \) for a Weyl chamber \(C \). Let \(N \) denote the order of \(s \). Choose \(H_0 \in C \), and set \(H := \frac{1}{N} (H_0 + sH_0 + \ldots + s^{N-1}H_0) \). Then \(sH = H \), and \(H \in C \) since Weyl chambers are convex. Let \(k_0 \in \mathcal{M}^* \) be such that \(s = \text{Ad}(k_0) \mathcal{M}^*/M \). Then \(\text{Ad}(k_0) \mathcal{M}^*/M = \mathcal{M}^*/M \). Hence \(s \) permutes the Weyl chambers.

Now suppose \(s \in \mathcal{M}^*/M \) such that \(sC = C \) for a Weyl chamber \(C \). Let \(N \) denote the order of \(s \). Choose \(H_0 \in C \), and set \(H := \frac{1}{N} (H_0 + sH_0 + \ldots + s^{N-1}H_0) \). Then \(sH = H \), and \(H \in C \) since Weyl chambers are convex. Let \(k_0 \in \mathcal{M}^* \) be such that \(s = \text{Ad}(k_0) \mathcal{M}^*/M \). Then \(\text{Ad}(k_0) \mathcal{M}^*/M = \mathcal{M}^*/M \). Hence \(s \) permutes the Weyl chambers.

Now suppose \(s \in \mathcal{M}^*/M \) such that \(sC = C \) for a Weyl chamber \(C \). Let \(N \) denote the order of \(s \). Choose \(H_0 \in C \), and set \(H := \frac{1}{N} (H_0 + sH_0 + \ldots + s^{N-1}H_0) \). Then \(sH = H \), and \(H \in C \) since Weyl chambers are convex. Let \(k_0 \in \mathcal{M}^* \) be such that \(s = \text{Ad}(k_0) \mathcal{M}^*/M \). Then \(\text{Ad}(k_0) \mathcal{M}^*/M = \mathcal{M}^*/M \). Hence \(s \) permutes the Weyl chambers.

Now suppose \(s \in \mathcal{M}^*/M \) such that \(sC = C \) for a Weyl chamber \(C \). Let \(N \) denote the order of \(s \). Choose \(H_0 \in C \), and set \(H := \frac{1}{N} (H_0 + sH_0 + \ldots + s^{N-1}H_0) \). Then \(sH = H \), and \(H \in C \) since Weyl chambers are convex. Let \(k_0 \in \mathcal{M}^* \) be such that \(s = \text{Ad}(k_0) \mathcal{M}^*/M \). Then \(\text{Ad}(k_0) \mathcal{M}^*/M = \mathcal{M}^*/M \). Hence \(s \) permutes the Weyl chambers.
Hence Z_H is generated by $\exp(z_H)$. Hence $\text{Ad}(k_0) \in Z_H$ acts as the identity on $i\alpha$, hence on α. Thus s is the identity, hence M^*/M is simply transitive.

From Theorem 5.6 we obtain:

COROLLARY 5.7. M^*/M is generated by the reflections s_α ($\alpha \in \Sigma$).

Now combination of Lemma 5.4 and Corollary 5.7 yields:

THEOREM 5.8. $W = M^*/M$.

6. **THE CARTAN DECOMPOSITION REVISITED**

PROPOSITION 6.1. Let $a_0 \subset a$, and let $k \in K$ be such that $\text{Ad}(k)a_0 \subset a$. Then there exists $s \in W$ such that

$$s.A = \text{Ad}(k)A \quad \forall A \in a_0.$$

PROOF. Let $H \in \text{Ad}(k^{-1})a$ be such that $z_p(H) = \text{Ad}(k^{-1})a$ (such elements exist, cf. Lemma I.6.1). Then $\exists z_0 \in K \cap Z_{a_0}$ such that $k \in \text{Ad}(z_0^{-1})a$ (by Remark I.4.3). Hence $\text{Ad}(k^{-1})a = \text{Ad}(z_0^{-1})a$, hence $kz_0^{-1} \in M^*$. But since $z_0 \in K \cap Z_{a_0}$, $s := \text{Ad}(kz_0^{-1})a$ satisfies (6.1).

The Cartan decomposition $G = KAK$ as given in §2 has the following disadvantage: it is not a unique decomposition (note that only the A part can be unique). A refinement of Corollary 2.8 in which the A part indeed is unique is established here in Theorem 6.2.

Recall that the connected components of $a^* - (H \in a^*; a(H) = 0$ for some $\alpha \in \Sigma$) are called Weyl chambers. Fix a Weyl chamber a^+ (called the positive Weyl chamber), and call a root $\alpha \in \Sigma$ a positive root if $a(H) > 0$ for all $H \in a^+$. Let $A^+ := \exp(a^+)$. Now it is clear from Corollary 2.8 and Theorem 5.6 that each $g \in G$ can be written as $g = k_1k_2$, with $k_1 \in K$ and $a \in Cl(a^+)$. We claim that the $a \in Cl(a^+)$ in the above decomposition is unique. To see this, suppose that $k_1 \exp H_1k'_1 = k_2 \exp H_2k'_2$ with $k_1k_1' \in K$, $H_1 \in a^+$. Thus for some $k,k' \in K$ we have $k \exp H_1k' = \exp H_2$. By applying the Cartan involution θ we get $k \exp(-H_1)k' = \exp(-H_2)$. Hence $\exp(\text{Ad}(k)(-2H_1)) = \exp(-2H_2)$. Thus $\text{Ad}(k)H_1 = H_2$, since $\text{Ad}(k)H_1 \in p$ and p is 1-1 on p. But Proposition 6.1 states that there then exists $s \in W$ such that $sh_1 = H_2$. Now [He, Th.VII.2.22] states that the only element of the Weyl group which
sends an element of a Weyl chamber to another element of the same Weyl chamber is the identity. Hence $H_1 = H_2$. Thus we have proved:

Theorem 6.2. $G = KCl(A^+)K$, that is, each $g \in G$ can be written as $g = k_1a$k_2$ with $k_1 \in K$ and $a \in Cl(A^+)$. In this decomposition a is unique.

References

SEMISIMPLE LIE GROUPS FROM A GEOMETRIC VIEWPOINT

A.M. COHEN

In Chapter II the Cartan decomposition and the Iwasawa decomposition for a connected real semisimple Lie group G have been discussed. In this chapter we shall deal with yet another decomposition, named after Bruhat, and some of its geometric consequences.

More specifically, we shall discuss the topic of 'B,N-pairs'. The prosaic name of this topic is connected with two particular subgroups of G, usually denoted by N and B. However, in the present text B stands for the Killing form and N is a nilpotent subgroup not contained in M^*A, the (biggest possible) group N of the B,N-pair in G. Therefore, we shall from now on refer to a B,N-pair as a Tits system, thereby displaying the name of its founder (see Tits [Ti] and the references therein). The groups B_0, N_0 that appear in the sequel will play the roles of B,N in Tits' theory.

The geometries of our interest will be based on the cosets with respect to a maximal subgroup of G containing B_0.

1. THE BRUHAT DECOMPOSITION OF A REAL NONCOMPACT CONNECTED SEMI-SIMPLE LIE GROUP.

In this section, G is a real noncompact connected semi-simple Lie group with finite center. $e, g, h, p, a, r, m, K, A, E, M, M^*, N$ are as defined in Ch. I and II. The material of this section is taken from Helgason [He], Steinberg [S] and Warner [W].

1.1. Since $Ad(m)$ for $m \in M$ fixes a pointwise, it stabilizes each $g_\alpha (\alpha \in \Sigma)$. Therefore, M centralizes A and normalizes N. Similarly, M^* normalizes A. Thus $B_0 = MAN$ and $N_0 = M^*A$ are subgroups of G. Moreover, B_0 and N_0 are closed in G and have Lie algebras $b_0 = m + a + n = g_0 + n$ and $m + a$ respectively. Write $H_0 = B_0 \cap N_0$.
LEMMA (i) B_0 is semidirect product of M and (normal) AN, but also of MA and (normal) N.
(ii) N is nilpotent and simply connected, and consists solely of unipotent elements.
(iii) A is abelian.
(iv) $H_0 = MA$ is normal in M^*A and $W = M^*A/MA$.

PROOF. (i), (ii), (iii) Straightforward in view of the previous chapter.
(iv) If $x \in H_0 = B_0 \cap N_0$, then there are $m \in M$, $m' \in M^*$, $a, a' \in A$ and $n \in N$ with $x = man = m'a'$ (according to the definition of B_0 and N_0). Thus $(m')^{-1}man = a'$, and $n = 1$ by uniqueness of the Iwasawa decomposition. This yields $x = ma \in MA$, whence $H_0 \subseteq MA$. The converse is trivial.

Finally, $W = M^*/M = M^*A/MA$ owing to Theorem II.5.8 and a standard isomorphism lemma.

1.2. From now on, we shall identify the two groups W and M^*/M. For $w \in W$, let m_w be an element of M^* that maps onto w under the natural projection $M^* \to W$ (in other words, such that $w = m_w M$). We are mainly interested in cosets of B_0 in G indexed by elements of M^*. For $w \in W$, the left coset $m_w B_0$, the right coset $B_0 m_w$ and the double coset $B_0 m_w B_0$ do not depend on the particular choice of m_w, as $M \subseteq B_0$. Thus there is no harm in writing $w B_0$, $B_0 w$ and $B_0 w B_0$ respectively, and we shall frequently do so. In fact, this remark applies to cosets of any subgroup of G containing M. Also for x a subset of W, we write $B_0 x B_0$ to denote $U_{x \in X} B_0 x B_0$, and so on.

THEOREM (BRUHAT'S LEMMA). Let G be a real noncompact connected semi-simple Lie group with finite center. Retain the notations of above. Then $G = B_0 w B_0$ and, for $w, w' \in W$, the equality $B_0 w B_0 = B_0 w' B_0$ is equivalent to $w = w'$.

This result is the so-called Bruhat decomposition. It states that G consists of double cosets of B_0 indexed by N_0. Thus knowing B_0, N_0 and their interaction under multiplication determines knowledge of G. For complex semi-simple Lie groups, such a decomposition also exists.

Before going into the consequences of this celebrated 'lemma' we shall present Harish-Chandra's proof in five steps, four of which are lemmas. The first of these is a general lemma about nilpotent Lie groups.

1.3. LEMMA. Let V be a connected Lie group with nilpotent Lie algebra v.
(i) The map $\exp: v \to V$ is regular and surjective.
(ii) If V is simply connected, then $\exp: V \rightarrow V$ is a diffeomorphism.

(iii) If U is an analytic subgroup of V and V is simply connected, then U is simply connected and closed in V.

PROOF. (i) We proceed by induction on $\dim V$. If v is abelian, then statement (i) is well known.

Suppose V is nonabelian (hence, $\dim V > 1$). Let C be the center of V, and write $C = \exp c$. Then C is the connected component of unity of the center of V, so C is a closed connected normal subgroup of V. Therefore, V/C is a connected Lie group with Lie algebra $v_1 = v/C$. As $\dim v/C > 0$ and $\dim C > 0$, the induction hypothesis yields that $\exp: v_1 \rightarrow V/C$ and $\exp: C \rightarrow C$ are regular and surjective maps. Thus, if $v \in V$, there are $X, Y \in v$ and $c \in C$ such that $v = (\exp X)c$, and there is $Y \in C$ with $\exp Y = c$, so that $v = (\exp X)(\exp Y) = \exp(X + Y)$. This shows that $\exp: U \rightarrow U$ is surjective.

In order to establish regularity, suppose that for $X, Y \in V$ we have $\frac{\partial}{\partial Y} (\exp Z) = 0$. Then $Y \in C$ as $\exp: v_1 \rightarrow v/C$ is regular. But $\exp(X + tY) = \exp(X)(\exp tY)$, so $\frac{\partial}{\partial Y} (\exp Z) = 0$ implies $Y = 0$, proving regularity of \exp.

(ii) Again, we use induction on $\dim V$, the abelian case being well known.

If V is simply connected, then so is V/C. Therefore, the induction hypothesis yields that $\exp: v_1 \rightarrow V/C$ is injective. Let u be a linear subspace of V complementary to C. If $\exp X_1 \exp Y_1 = \exp X_2 \exp Y_2$ for $X_1, X_2 \in u$ and $Y_1, Y_2 \in C$, then $X_1 - X_2 \in C$ by the injectivity just established. But also $X_1 - X_2 \in u$, so that $X_1 = X_2$. This shows that the map $(u_1, u_2) \mapsto u_1u_2$ from $(\exp u) \times C$ to V is a diffeomorphism, so that C is simply connected. By the induction hypothesis, $\exp: C \rightarrow C$ is injective. Now suppose that $\exp Z_1 = \exp Z_2$ for $Z_1, Z_2 \in u$. There are $X_1, X_2 \in u$ and $Y_1, Y_2 \in C$ such that $Z_1 = X_1 + Y_1$ (i=1,2). Thus $\exp X_1 \exp Y_1 = \exp X_2 \exp Y_2$, and, reasoning as above we get that $X_1 = X_2$. Injectivity of $\exp: C \rightarrow C$ yields that $Y_1 = Y_2$, hence that $Z_1 = Z_2$, so that $\exp: V \rightarrow V$ is injective.

Being bijective and regular, this map must be a diffeomorphism.

(iii) This is immediate from (ii). \qed

1.4. Since N is a nilpotent simply connected Lie group with Lie algebra \mathfrak{n}, we know that N and N are diffeomorphic by means of \exp from what we have just seen. Here is a collection of diffeomorphisms in the other direction.

Lemma. Take $H \subset A$ with $a(H) \neq 0$ for all $a \in \Sigma$. Denote $\phi: N \rightarrow \mathfrak{n}$ the map given by
\[(Ad(n) - I)H = (n \in N). \]

Then \(\phi \) is a diffeomorphism of \(N \) onto \(n \).

PROOF. Let \(n \in N \). There is \(X \in \mathfrak{h} \) with \(n = \exp X \). Clearly, \(\phi(n) = (\exp(\text{ad} X) - I)H \in \mathfrak{h} \) as \([\mathfrak{h}, \mathfrak{n}] \subseteq \mathfrak{h} \). If \(n^{-1} \in N \) with \(\phi(n) = \phi(n^{-1}) \), then \(Ad(n)H = Ad(n^{-1})H \), so \(Ad(n^{-1}n) \) fixes \(H \). Suppose \(Y \in \mathfrak{h} \) satisfies \(n^{-1}n^{-1} = \exp Y \). Then \(\exp(\text{ad} Y)H = H \). We claim that this implies \(Y = 0 \). Write

\[Y = \sum_{\beta \in \Sigma, \beta > 0} Y_\beta, \]

where \(Y_\beta \in \mathfrak{g}_\beta \).

If \(Y \neq 0 \), then there is \(\alpha \in \Sigma^+ \) with \(Y = Y_\alpha + \sum_{\beta \in \Sigma, \beta > \alpha} Y_\beta \) and \(Y_\alpha \neq 0 \), so that \(\exp(\text{ad} Y)H = H - \alpha(H)Y_\alpha + \sum_{\beta \in \Sigma, \beta > \alpha} Y_\beta \).

Thus \(\exp(\text{ad} Y)H \neq H \) as \(\alpha(H) \neq 0 \), contradiction.

Hence \(Y = 0 \), and \(n^{-1}n^{-1} = 1 \), so that \(n = n^{-1} \). We have shown that \(\phi \) is injective.

Next we establish surjectivity. Suppose there is \(Z \in \mathfrak{h} - \phi(N) \). Then \(Z \neq 0 \) as \(\phi(1) = 0 \). Write \(Z = \sum_{\alpha \in \Sigma, \alpha > 0} Z_\alpha \), where \(Z_\alpha \neq 0 \). As \(\Sigma \) has finite cardinality, we may choose \(Z \) such that \(Z_\alpha \neq 0 \). As \(\Sigma \) has finite cardinality, we may choose \(Z \) such that \(\sum_{\alpha \in \Sigma, \alpha > 0} Z_\alpha = Z \).

We claim that this implies \(Z_\alpha = 0 \), so that \(n = n^{-1} \). We have shown that \(\phi \) is injective.

Now the choice of \(H \) implies that \(\text{ad} H \) is nonsingular on \(n \). Thus there is \(Z_1 \in \mathfrak{h} \setminus \{0\} \) with \([H, Z_1] = Z \). Put \(n_1 = \exp Z_1 \) and consider \(Ad(n_1)(H+Z) \).

This element is contained in \(\sum_{\beta \in \Sigma, \beta > \alpha} g_\beta \) and hence, by the 'minimality' assumption on \(Z \), in \(\phi(N) \).

Thus, for some \(n_2 \in N \), we have

\[(Ad(n_2) - I)H = Ad(n_1)(H+Z) - H, \]

which amounts to \(\phi(n_2^{-1}n_2) = Z \). This yields surjectivity of \(\phi \).

It remains to derive that \(\phi \) is regular at any point \(n \) of \(N \). Since for free parameter \(t \) and \(X \in \mathfrak{h} \), we have \(\mu(n \exp tX) = \phi(n) + Ad(n)(t[X,H]) + O(t^2) \) as \(t \to 0 \), we get

\[(d\phi)_n(dL_n(X)) = -Ad(n)(\text{ad}(H)X), \]

where \(L_n \) denotes left multiplication by \(n \).

This shows that \((d\phi)_n(dL_n(X)) = 0 \) implies \(X = 0 \), by nonsingularity of \(\text{ad} H \). Hence, \(\phi \) is regular at any \(n \in N \). \(\Box \)

1.5. **LEMMA**

(i) \(\mathfrak{a} + \mathfrak{n} = \{X \in b_0 | \text{ad} X \text{ has real eigenvalues only}\} \).
(ii) \(n = \{ X \in b_0 \mid \text{ad} \ X \text{ is nilpotent} \} \).

(iii) \(a = \{ X \in b_0 \mid \text{ad} \ X \text{ has real eigenvalues only} \} \).

PROOF. (i) Choose a basis for \(g \) as in the proof of Lemma II.4.3. Let \(Z \in b_0 \), \(Z = T + H + X \) with \(T \in m, H \in a, X \in n \). Each eigenvalue of \(\text{ad}(T + M) \) is an eigenvalue of \(\text{ad} \ Z \). Hence, if \(\text{ad} \ Z \) has real eigenvalues only, then \(\text{ad}(T + H) \) has real eigenvalues only. But \(\text{ad} \ T \) and \(\text{ad} \ H \) are skew-symmetric and symmetric respectively (with respect to the chosen basis) and commute. Therefore \(\text{ad} \ T = 0 \), so \(T = 0 \). This proves (i).

(ii) is an easy consequence of (i).

(iii) is straightforward. \(\square \)

1.6. **LEMMA.** For each \(x \in G \), \(b_0 = b_0 \cap \text{Ad}(x)b_0 + n \).

PROOF. Since \(b_0 \) obviously contains the right hand side, we need only show that the dimensions of the spaces at both sides of the equality sign are the same.

Let \(x \in G \). Then \(x \in k\bar{b}_0 \) for some \(k \in K \) by the Iwasawa decomposition. As \(\text{Ad}(x)b_0 = \text{Ad}(k)b_0 \), we may restrict to the case where \(x \in K \).

Now \(n \cap \text{Ad}(x)b_0 = n \cap \text{Ad}(x)n \) by Lemma 1.5, and \(b_0 = \emptyset n \), so

\[
\begin{align*}
\dim(b_0 \cap \text{Ad}(x)b_0 + n) &= \dim g + \dim(b_0 \cap \text{Ad}(x)b_0 + n) - \dim n \\
- \dim b_0 &= \dim g - \dim(n \cap \text{Ad}(x)b_0) + \dim b_0 \cap \text{Ad}(x)b_0 - \dim b_0 = \\
&= \dim g - \dim(n \cap \text{Ad}(x)n) + \dim b_0 - \dim(b_0 \cap \text{Ad}(x)b_0) = \\
&= \dim(b_0 + \text{Ad}(x)b_0)^{-1} - \dim(n \cap \text{Ad}(x)n) + \dim b_0 = \\
&= \dim(\emptyset n \cap \text{Ad}(x)\emptyset n) - \dim(n \cap \text{Ad}(x)n) + \dim b_0 = \dim b_0,
\end{align*}
\]

where the last equality holds since \(\text{Ad}(x)\emptyset n = \emptyset \text{Ad}(x)n \) as \(x \in K \). The conclusion is \(\dim(b_0 \cap \text{Ad}(x)b_0 + n) = \dim b_0 \), as wanted. \(\square \)

1.7. **PROOF OF THEOREM 1.2.** Let \(x \in G \). We shall first prove that \(x \in b_0 W b_0 \).

Pick \(H \in a \) with \(a(H) \neq 0 \) for all \(a \in \Sigma \). Then by Lemma 1.6, there is \(X \in n \) with \(H + X \in b_0 \cap \text{Ad}(x)b_0 \). In view of Lemma 1.4, \(\text{Ad}(n)H = H + X \) for some \(n \in N \), so that \(\text{Ad}(x^{-1}n)H \in b_0 \). But \(H \), and hence \(\text{Ad}(x^{-1}n)H \) has real eigenvalues only, so \(\text{Ad}(x^{-1}n)H \in a + n \) by Lemma 1.5. Take \(H_1 \in a \) and \(X_1 \in n \) with \(\text{Ad}(x^{-1}n)H = H_1 + X_1 \). Now the eigenvalues of \(\text{ad} \ H_1 \) and \(\text{ad} \ H \) coincide, so \(a(H_1) \neq 0 \) for all \(a \in \Sigma \). Due to Lemma 1.4, there is \(n_1 \in N \) with \(\text{Ad}(n_1)(H_1 + X_1) = H_1 \). It follows that \(\text{Ad}(n_1^{-1}n)H = H_1 \). Therefore \(\text{Ad}(n_1^{-1}n) \)
maps the centralizer in g of H into the centralizer in g of H_1. But these centralizers both coincide with $g_0 = m + a$ (by an easy argument). Hence $Ad(n^{-1}x_{1}\text{)}g_0 = g_0$. But then also $Ad(n^{-1}x_{1}\text{)}a = a$ owing to Lemma 1.5. Let $n^{-1}x_{1}\text{) = n}_a k$ with $k \in K$, $a \in A$, $n \in N$ be the (reverse) Iwasawa decomposition for $n^{-1}x_{1}\text{). Then Ad(k)a \subseteq Ad(a^{-1}n_{2}\text{)}a) \subseteq a + n$, hence $Ad(k)a \subseteq (a+n) \cap n = a$, since $Ad(k)$ commutes with 0. Thus $k \in M^*$ and n_2 normalizes a. It follows that $n_2 = 1$ and that $n^{-1}x_{1}\text{) \in AM^*, so that x \in nAM^*n_1 \subseteq nAM^*N \subseteq B_0WB_0$. This proves $G = B_0WB_0$.

Suppose that for $m_{\alpha}m_{1} \in M^*$, we have $B_{0}mB_{0} = B_{0}m_{1}B_{0}$.

Then $m \in B_{0}mB_{0} = NAM^*M = NM^*A$, so after replacement of m_{1} by an element of M^*, we may assume the existence of $a_{1} \in A$ and $n_{1}n_{1} \in N$ with $nm = m_{1}a_{1}n_{1}$. Now for $H \in a$, we have $Ad(nm)a \in Ad(m)H + n$, and $Ad(m_{1}a_{1}n_{1})H \in \in Ad(m_{1}H) + G_{0}$. Thus $Ad(m_{1}^{-1})H = H$ for any $H \in a$, whence $m_{1}^{-1}m_{1} \in M$ and $m_{1}M = m_{1}M$, as wanted. This ends the proof of Theorem 1.2.

1.8. Bruhat's lemma has a refinement which we intend to discuss now. Set $n^{-} = 0n = \sum_{\alpha \in E} - g_{\alpha}$ and $N^{-} = \exp n^{-} = 0N$.

Lemma. $B_{0} \cap N^{-} = \{1\}$.

Proof. Let $x \in B_{0} \cap N^{-}$. Then $x = ma$ for certain $m \in M$, $a \in A$, $n \in N$ by Theorem II.4.5. Choose $H \in a$ with $a(H) \neq 0$ for all $a \in E$. By (a slight generalization of) Lemma 1.4 there are $Y_{1}, Y_{2} \in N$ such that $H + Y_{1} = Ad(x)H = Ad(ma)(H + Y_{2}) = H + Y_{2}$. Hence $Y_{1} = 0$. Consequently, $Ad(x)$ fixes H, and by a reasoning as in the proof of Theorem 1.2, we get $x \in MA$. As $M \cap N^{-} = \{1\}$, it follows that $x = 1$.

1.9. For $w \in W$ (pick $m_{w} \in M^*$ with $w = m_{w}M$, as before and) set

$$n_{w} = n \cap Ad(m_{w})n,$$

$$u_{w} = n \cap Ad(m_{w})n^{-} = n \cap 0Ad(m_{w})u,$$

and set $N_{w} = \exp(u_{w})$,

$$U_{w} = \exp(u_{w}).$$

Note that the notation makes sense as $Ad(M)$ stabilizes both n and n^{-}. Moreover, it is easily seen that $n_{w} = \sum_{\alpha \in E} n_{w_{\alpha}} \cdot g_{\alpha}$ and $u_{w} = \sum_{\alpha \in E} u_{w_{\alpha}} \cdot g_{\alpha}$.
LEMMA. Let \(V \) be a nilpotent simply connected Lie group with Lie algebra \(\mathfrak{v} \). Suppose \(\mathfrak{v} = \mathfrak{v}_0 \supset \mathfrak{v}_1 \supset \cdots \supset \mathfrak{v}_r \supset 0 \) is a chain of ideals of \(\mathfrak{v} \) such that \([\mathfrak{v}, \mathfrak{v}_i] \subseteq \mathfrak{v}_{i+1}\) for all \(i \) (0 \(\leq i \leq r \)). If \(u_1 \) and \(u_2 \) are two linear subspaces of \(\mathfrak{v} \) such that \(\mathfrak{v}_i = u_1 \cap \mathfrak{v}_i \cdot u_2 \cap \mathfrak{v}_i \) for all \(i \), then the map \((X,Y) \mapsto \exp X \exp Y\) \((X \in u_1, Y \in u_2)\) is a bijection from \(u_1 \times u_2 \) onto \(V \).

REMARK. With a little more effort one can show that this map from \(u_1 \times u_2 \) to \(V \) is in fact a diffeomorphism (cf. [He, Lemma VI.5.2]).

PROOF. Injectivity is a consequence of Lemma 1.3(ii). As for surjectivity, this will be established by induction on \(\dim V \). As \(\mathfrak{v}_r = \exp \mathfrak{v}_r \) is a closed subgroup of \(V \) contained in the center, we have by induction that \((X,Y) \mapsto (\exp X)(\exp Y)\mathfrak{v}_r (X \in u_1, Y \in u_2)\) is a surjective map from \(u_1 \times u_2 \) to \(V/\mathfrak{v}_r \). Thus, for any \(v \in V \), there are \(X \in u_1, Y \in u_2, Z \in \mathfrak{v}_r \) such that \(v = (\exp X)(\exp Y)(\exp Z) \).

Writing \(Z = Z_1 + Z_2 \) with \(Z_i \in u_1 \cap \mathfrak{v}_i \cap \mathfrak{v}_r \) \((i=1,2)\), we get \(v = \exp(X+Z_1) \exp(Y+Z_2) \) and hence the desired surjectivity. \(\square \)

1.10. PROPOSITION. \(\mathcal{N}_w \) and \(\mathcal{U}_w \) are closed simply connected subgroups of \(\mathcal{N} \).

Furthermore, \(\mathcal{N}_w \cap \mathcal{U}_w = \{1\} \) and \(\mathcal{N} = \mathcal{N}_w \mathcal{U}_w = \mathcal{U}_w \mathcal{N}_w \).

PROOF. Straightforward application of Lemma 1.3 establishes the first statement, and \(\mathcal{N}_w \cap \mathcal{U}_w = \{1\} \). As for \(\mathcal{N} = \mathcal{N}_w \mathcal{U}_w = \mathcal{U}_w \mathcal{N}_w \), this follows from the preceding lemma (where for the \((\mathfrak{v}_i)_{1 \leq i \leq r}\) one may take the collection \((e^g \mathfrak{g}, \mathfrak{g}, e^{-g})_{g \in \mathfrak{g}} \)). \(\square \)

1.11. For \(w \in \mathcal{W} \), and \(\mathcal{C} \) a subset of \(\mathcal{G} \) normalized by \(H \), write \(\mathcal{C}^w = w^{-1} \mathcal{C} w \). Then \(\mathcal{N}_w = \mathcal{N}_w^{-1} \) and \(\mathcal{U}_w = 0(\mathcal{U}_w^{-1}) \). The latter subgroup of \(\mathcal{G} \) will also be denoted \(\mathcal{U}_w^{-1} \). These notations enable us to rewrite \(\mathcal{B}_0 \mathcal{W}_0 \) as follows:

\[
\mathcal{B}_0 \mathcal{W}_0 = \mathcal{N} \mathcal{M} \mathcal{W}_0 = \mathcal{N} \mathcal{W}_0 = \mathcal{U}_w \mathcal{W}_0 = \mathcal{U}_w \mathcal{W}_0^{-1} = \mathcal{U}_w \mathcal{W}_0^{-1} = \mathcal{W}_0 \mathcal{W}_0^{-1}.
\]

We claim that \(\mathcal{U}_w \) parametrizes the left cosets \(\mathcal{B}_0 \mathcal{W}_0 / \mathcal{B}_0 \) of \(\mathcal{B}_0 \) in \(\mathcal{B}_0 \mathcal{W}_0 \) properly:

LEMMA.

(i) \(\mathcal{G} = \bigcup_{w \in \mathcal{W}} \mathcal{U}_w \mathcal{W}_0 \)

(ii) For \(w \in \mathcal{W} \), the map \(\mathcal{U}_w \to \mathcal{B}_0 \mathcal{W}_0 / \mathcal{B}_0 \) given by
is regular and bijective.

PROOF. (i) results from Theorem 1.2 and the remark just made.
(ii) Let \(\phi \) be the map \(u \mapsto uwB_0 \) under consideration. It is surjective by (i).
Suppose \(uwB_0 = u'wB_0 \) for \(u, u' \in U_w \). Then \(\mu_{w}^{-1} u = \mu_{w}^{-1} u' \in B_0 \cap N^{-1} = \{ 1 \} \) according to Lemma 1.8, so that \(u = u' \). This yields that \(\phi \) is injective.
It remains to settle regularity. For \(I \in u_w \), we have \(u(\exp tX)wB_0 = \mu_{w}^{-1} u \exp(\Ad(m^{-1})X)B_0 \), so that \(d\phi_u(X) = d\Ad(m^{-1})X \in uB_0 \cap N = 0 \), whence \(X = 0 \). \(\square \)

1.12. Next, topologize the quotient space \(G/B_0 \) by its natural quotient topology, i.e., such that the natural map \(G \to G/B_0 \) is open and continuous. Note that \(G/B_0 \) is a Hausdorff space as \(B_0 \) is closed in \(G \).

For \(\alpha \in \Delta \), put \(\nu_\alpha = \dim g_\alpha \) (as in (5.9) of Chapter I) and for \(\Gamma \subseteq \Sigma \) set \(\mu(\Gamma) = \sum_{\alpha \in \Gamma} \nu_\alpha \).

PROPOSITION. (i) \(\dim B_0wB_0/B_0 = \mu(\Gamma) = \sum_{\alpha \in \Gamma} \nu_\alpha \) for any \(w \in W \). (ii) There is a unique \(w_0 \in W \) with \(w_0^{-1} = \sum_{\alpha \in \Delta} \nu_\alpha \). This element is an involution (i.e., \(w_0^2 = 1 \)). Moreover, \(B_0wB_0/B_0 \) is open and dense in \(G \).

PROOF. (i) \(\dim B_0wB_0/B_0 = \dim U_w = \dim U_w = \mu(\Gamma) = \sum_{\alpha \in \Gamma} \nu_\alpha \) in view of I.11.
(ii) The first statements are well-known properties of Weyl groups, see BOURBAKI [Bou, Ch VI, no 16].

Since \(g = n^{-1} \cdot b_0 \) and \(N^{-1} \cdot B_0 = \{ 1 \} \), the map \((n,b) \mapsto nb \) from \(N^{-1} \times B_0 \) to \(G \) is open and injective. It follows that \(N^{-1}B_0/B_0 \) is open in \(G/B_0 \) and that \(n \mapsto nB_0 \) defines a diffeomorphism from \(N^{-1} \) onto \(mN^{-1}B_0/B_0 \) for any \(w \in W \). But \(U_w^{-1} \) is a closed connected subgroup of \(N^{-1} \), so \(U_wB_0/B_0 = mU_w^{-1}B_0/B_0 \) is regularly embedded in \(mN^{-1}B_0/B_0 \) (i.e., its topology as a submanifold is the induced topology), which is open in \(G/B_0 \). Hence, \(U_wB_0/B_0 \) is regularly embedded in \(G/B_0 \). Since, according to (i), \(\dim U_wB_0/B_0 = \mu(\Gamma) = \sum_{\alpha \in \Delta} \nu_\alpha \), we obtain that \(B_0wB_0/B_0 \), being the complement of the strictly lower dimensional subvariety \(U_wB_0/B_0 \), is open and dense in \(G/B_0 \). This yields that \(B_0wB_0 \) is open and dense in \(G \). \(\square \)

1.13. Let \(R \) be the set of fundamental reflections of \(W \), whose members are the reflections \(s_\alpha \) (see (5.1) of Chapter II) for \(\alpha \in \Delta \), i.e. the reflections corresponding to fundamental roots.
The set $\sum_+ \cap w_{-1}^-$ appearing in the foregoing proposition has a very explicit description. For $w \in W$, denote by $l(w)$ the length t of a minimal expression $w = r_1 r_2 \cdots r_t$ of w as a product of fundamental reflections r_i (Ist), also referred to as the length of w.

LEMMA. Let $w \in W$ and $r \in R$. Suppose a is the fundamental root corresponding to r. Then

(i) $\ell(wr) = \ell(w) \pm 1$.

(ii) $\ell(wr) > \ell(w)$ iff $a \in \sum_+ \cap w_{-1}^+$

(iii) $\ell(wr) > \ell(w)$ iff $a \in \sum_+ \cap w_{-1}^-$

(iv) $\ell(wr) < \ell(w)$ iff $a \in \sum_+ \cap w_{-1}^+$

(v) $\ell(wr) < \ell(w)$ iff $a \in \sum_+ \cap w_{-1}^-$

(vi) If $w = r_1 r_2 \cdots r_t$ is a minimal expression of w as a product of fundamental reflections r_i (Ist), then $\sum_+ \cap w_{-1}^- = [r_1 r_2 \cdots r_{i-1} a^{-1}] a$ is a positive root of r_i (Ist).

(vii) If \sum_+ is reduced, then $\ell(w) = |\sum_+ \cap w_{-1}^-|$.

(viii) The unique element w_0 in W with $w_0 l_+ = \sum_+ \cap w_0^-$ (cf. Theorem II. 5.6 and Proposition 1.12) satisfies $\ell(w) + \ell(ww_0) = \ell(w_0)$.

PROOF. See BOURBAKI [Bou, Ch. IV no 1.7, Ch. VII no 1.6] for (i), (vi) and (viii). The other statements are easy consequences. □

w_0 is called the opposite involution or just longest element of W.

1.14. We are out to determine the closure $B_0 \omega B_0$ of $B_0 \omega B_0$ in G for arbitrary $w \in W$ and to verify the axioms of a Tits system for B_0, N_0. A collection of special Lie subgroups of G will be used which we shall introduce now.

Recall that Δ is the base (or set of fundamental roots) of \sum_+, determined by an ordering on α (cf. Section 7 of Chapter I). Fix a subset J of Δ. Write $\sum(J) = \sum_+ \cap \sum_{\alpha \in J} R \alpha$. This is again a root system (see [Car, Prop. 2.5.1]), whose Weyl group will be denoted by W_J. Let $\mathcal{H}(J) = \bigoplus_{\alpha \in \sum(J), \alpha > 0} g_{\alpha}$ and $\mathcal{N}(J) = \mathcal{N}(J)$, and let $g(J)$ denote the subalgebra of g generated by $\mathcal{H}(J)$ and $\mathcal{N}(J)$. Then, clearly, $g(J)$ is a subalgebra of $g(J) + g_0 + \mathcal{N}(J)$. For c a linear subspace of g, put $c(J) = c \cap g(J)$. Note that this is in accordance with $\mathcal{H}(J)$, $\mathcal{N}(J)$ and $g(J)$ as previously defined.

LEMMA. Let J be a subset of Δ.

(i) $g(J)$ is semisimple.

(ii) $g(J)$ has Cartan-decomposition $g(J) = k(J) + p(J)$.

(iii) $a(J)$ is a maximal abelian subalgebra in $p(J)$, and $a(J) = \sum_{\alpha \in \sum(J)} R A_{\alpha}$.

where A_α is defined in (5.1) of Chapter I.

(iv) $(g(J),a(J))$ has root system $\Sigma(J)$.

PROOF. (i) $g(J) = n(J) + g_0(J) + n^-(J)$ and $g_0(J) \supseteq \bigoplus_{\alpha \in \Sigma(J)} [g_\alpha, g_{-\alpha}]$. Thus

$$\ell = n(J) + \bigoplus_{\alpha \in \Sigma(J)} [g_\alpha, g_{-\alpha}] + n^-(J)$$

is contained in $g(J)$. On the other hand, ℓ is a Lie algebra containing $n(J), n^-(J)$ (use the Jacobi identity to verify that the part of ℓ contained in $g_0(J)$ is in fact a Lie subalgebra).

Thus, $\ell = g(J)$. Since ℓ is 0-invariant, any ℓ-invariant linear subspace of g has an ad ℓ-invariant complement (namely, the orthoplement with respect to the inner product B_ℓ defined in (3.7) of Chapter I). Thus ℓ is reductive in g, whence reductive (see Definition I.1.13). According to Lemma I.5.1, we also have $\ell = [\ell, \ell]$, so that ℓ is semi-simple by Proposition I.1.14.

(ii) Clearly, $k(J)$ and $p(J)$ are the eigenspaces of θ in ℓ. In view of Definition I.3.2, it remains to show that $B^\sharp: (X,Y) \mapsto B_\ell([X,Y])$ is a negative definite form on ℓ. For $X \in g$, the map $\text{ad} X \circ \text{ad} Y$ is semi-simple with real non-positive eigenvalues (as it is $-\text{ad} X \circ (\text{ad} X)^\ell$, where the transpose $(\text{ad} X)^\ell$ is taken with respect to $-B_\ell$). Therefore $(\text{ad} X) \circ (\text{ad} Y)^\ell$ has real nonpositive eigenvalues only for any $X \in \ell$, so that B^\sharp is negative semidefinite. But B^\sharp is nondegenerate, since $(X,Y) \mapsto B_\ell(X,Y)$ is nondegenerate according to (i). This shows that B^\sharp is negative definite, as wanted.

(iii) Suppose $X \in p(J)$ commutes with all of $a(J)$. Write $X = X_1 + Y + X_2$ with $X_1 \in n, X_2 \in n^-$ and $Y \in g_0$, and take $H \in a(J)$ with $a(H) \neq 0$ for all $\alpha \in \Sigma(J)$. Then $0 = [H, X] = [H, X_1] + [H, Y] + [H, X_2]$, so $[H, X_1] = [H, X_2] = 0$ by decomposition of g. Since $\text{ad} H$ is nonsingular on n^- and on n it follows that $X_1 = X_2 = 0$, whence $X \in (m + a) \cap p(J) = a(J)$, as wanted.

(iv) Is a direct consequence of earlier statements. \square

1.15. Let $G(J)$ (respectively $K(J), A(J), N(J)$) denote the connected Lie subgroup of G whose Lie algebra is $g(J)$ (respectively $k(J), a(J), n(J)$). Writing $G(J) = K(J) \exp p(J)$ yields that in fact $G(J)$ is a closed subgroup of G (note that $K(J)$ is compact). Denote by $M(J)$ (respectively $M^*(J)$) the centralizer (respectively centralizer of the identity) in $K(J)$ of $a(J)$, and set $B_0(J) = M(J)A(J)N(J)$. Then $M(J)$ is in M, since the centralizer of $a(J)$ in $k(J)$ is contained in m (to prove this, use that the centralizer of $H \in a$ is
Moreover, the reflection s_a for $a \in \Sigma(J)$ of Lemma II.5.4 is actually defined by means of k_0 in $M^*(J)$, so that $\Sigma^*(J)$ is contained in M^*.

Also, observe that $\sum a^+ + a^- = \Sigma(J)$ for $w \in W(J)$ (as w preserves $\Sigma^*(J)$), so that $a_w^+ = a_w^-$ and U_w is contained in $N(J)$. Later on, we shall use that for the unique involution $w_j \in W(J)$, with $w_j^+ = \sum(J)$, we have $U_{w_j} = N(J)$.

PROPOSITION. Let J be a nonempty subset of $\tilde{\Delta}$. Then $G(J)$ is a noncompact connected semi-simple Lie subgroup of G with finite center. Thus $G(J) = K(J)A(J)N(J)$ is an Iwasawa decomposition of $G(J)$ and $G(J) = U_{w_j}W(J)U_{w_j}B(0)$ is a refined Bruhat decomposition of $G(J)$, where $W(J)$ is the Weyl group of $\Sigma(J)$. Moreover, $W(J) \cong M^*(J)/M(J)$.

PROOF. Since J is nonempty, $K(J)$ is nontrivial; hence $p(J) \neq 0$. So $G(J)$ is noncompact. Semi-simplicity of $G(J)$ is immediate from the previous lemma. The center of $G(J)$ is finite as $K(J)$ is compact in regard to Theorem II.3.1. Thus, $G(J)$ is a Lie subgroup as specified (cf. Lemma 1.14 and Theorem II.5.8).

1.16. For the moment, restrict attention to the case where J consists of a single fundamental root α. Then $G(\alpha), A(\alpha), \ldots$ will be used rather than $G(\{\alpha\}), A(\{\alpha\}), \ldots$. Let r be the reflection corresponding to α (thus $r = s_\alpha$). The Bruhat decomposition reads $G(\alpha) = B(0) \cup B(0)$ (where possibly $B(2\alpha) = 0$).

The following lemma concerns multiplication of double cosets of $B(0)$ in G.

LEMMA. Let $w \in W$ and $r \in R$. Then

(i) $B(0)B(0)rB(0) = B(0) \cup B(0)rB(0)$

(ii) If $\ell(wr) > \ell(w)$, then $B(0)B(0)rB(0) = B(0)\cup B(0)$.

(iii) If $\ell(wr) < \ell(w)$, then $B(0)B(0)rB(0) = B(0)\cup B(0)$.

PROOF. Let α be the fundamental root corresponding to r.

(i) As $B(0)B(0) = U_r B(0)$, we have $B(0)B(0)rB(0) = B(0)rU_r B(0) \subseteq B(0)G(\alpha)B(0) \subseteq B(0)B(0)uB(0)$, except in the last equation, the Bruhat decomposition for $G(\alpha)$ is used. On the other hand, $B(0) \subseteq B(0)rB(0)$, so otherwise $N(\alpha) \subseteq U_r \subseteq B(0)$, conflicting Lemma 1.8.

(ii) Suppose $\ell(wr) > \ell(w)$; then $\alpha \in w^+ \Sigma$ by Lemma 1.13 (iii). It suffices
to establish that \(wU_r \) is contained in \(B_0 \). Let \(u = m_u \) for some \(u \in U_r \). Take \(Y \in u \) with \(u = \exp Y \). Now \(x = (m_u m_r)^m_r r \in E \).

(iii) Suppose \(l(w) < l(w_0) \); then \(l((w) r) > l(w) \), so \(B_0 w B_0 r B_0 r B_0 = B_0 w B_0 r B_0 = B_0 w B_0 \cup B_0 w B_0 \cup B_0 w B_0 \) by use of (i) and (ii).

This settles the lemma.

1.17. The results obtained so far on the refined Bruhat decomposition are collected in the theorem below.

Theorem. Let \(G \) be a noncompact connected real semi-simple Lie group with finite center. Retain the usual notations, and put \(B_0 = M A N \) and \(N_0 = M^A \). Then the following holds:

(i) \(B_0 \) and \(N_0 \) generate \(G \).

(ii) \(B_0 \cap N_0 \) is a normal subgroup of \(N_0 \) and \(W = N_0 / H_0 \).

(iii) \(W \) contains a generating set \(R \) such that for any \(w \in W \) and \(r \in R \):

\[
B_0 w r B_0 \leq B_0 w B_0 \cup B_0 w B_0 .
\]

(iv) \(W \) is a Weyl group with root system \(\Sigma \) and opposite involution \(w_0 \).

(v) \(B_0 w B_0 r B_0 r B_0 = B_0 w B_0 \) if and only if \(l(w) > l(w_0) \).

(vi) \(B_0 = H_0 N \), where \(N \) is a normal subgroup of \(B_0 \) and \(H_0 \cap N = \{1\} \).

(vii) \(B_0 \) is the normaliser of \(N \) in \(G \).

(ix) \(N_0 \) is the normaliser of \(H_0 \) in \(G \).

(x) For any \(w \in W \), we have \(N = N w U = U N w \), where \(N_w = N \cap B_0^{-1} \) and \(U_w = N w . \) Furthermore \(N_w \cup U_w = \{1\} \).

(xi) \(G = U w N w B_0 = U w B_0 U w B_0 = U w B_0 w^{-1} U w B_0 \), where \(w \in N \) is such that \(m H_0 = w \), and \(U_w = B_0 m w \cap N w \).

(xii) \(B_0 N_0 \) are closed subgroups of \(G \).

(xiii) \(A, N, N, U \) for \(w \in W \) are closed nilpotent simply-connected subgroups of \(G \).

(xiv) \(H_0 = M A . \)

Proof.

(i) is a direct consequence of Theorem 1.2.

(ii) \(H_0 = B_0 \cap N_0 = M A \cap M^A = M^A \) as \(M \) is normal in \(M^A \).

Furthermore, \(N_0 / H_0 = M^A / M = W \).
(iii),(v) See Lemma 1.16.

(iv) is well known.

(vi) \(MA \cap w \in W B_0 = MAN \cap MAN^w = MA \), since according to Lemma 1.8

\[B_0 \cap N^{w_0} = B_0 \cap N^w = \{1\} \]. Consequently \(H_0 = MA \cap w \in W B_0 = B_0 \cap B_0^w \).

(vii) is known from the construction of \(B_0 \).

(viii) Suppose \(x \in G \) normalizes \(N \). Write \(x = b_1 mb_2 \) for \(b_1, b_2 \in B_0 \) and

\(w \in W \) (cf. Theorem 1.2). Then \(N^w = N^w \) \(m b_2 w_0 b_2^{-1} = N \), so

that \(m \) normalizes \(N \). This implies \(w^+_0 = w_0^+ \), whence \(w = 1 \) and

\[x = b_1 mb_2 \leq B_0 \].

(ix) Suppose \(x \in G \) normalizes \(H_0 \). Since \(m + a \) is the set of fixed points

of \(Ad(H_0) \), this subalgebra is stabilized by \(Ad(x) \). Thus \(Ad(x)a \leq m + a \). In view of Lemma 1.5, this yields \(Ad(x)a \leq a \), whence

\[x \in MA = N_0 \].

(x) Let \(N \) and \(U_w \) be defined as in 1.9. In view of Proposition 1.10 we only have to prove \(N_w = N \cap B_0^{w-1} \) and \(U_w = N \cap B_0^{w_0 w^{-1}} \). Now, \(N_w =

\[= \exp(n \in Ad(m)^n) \leq \exp(n \in \exp(Ad(m)^{n}) \leq N \cap B_0 \], and

\[U_w = \exp(n \in Ad(m)^n) \leq \exp(n \in \exp(Ad(m)^{n}) \leq N \cap B_0^{w_0 w^{-1}} \]. Thus

\[N = N_w = (N \cap B_0^{w-1}) (N \cap B_0^{w_0 w^{-1}}) \].

As \(N \cap B_0^{w-1} \leq B_0^{w_0 w^{-1}} \),

we obtain \(N_w = N \cap B_0^{w-1} \) and \(U_w = N \cap B_0^{w_0 w^{-1}} \), as wanted.

(xi) \(U_w U_w^{-1} = (N \cap B_0^{w_0 w^{-1}}) U_w = N \cap B_0^{w_0 w^{-1}} \). Now refer to Lemma 1.11 to finish the proof of (xi).

(xii), (xiii), (xiv) are well-known facts by now. □

The setting of the above theorem will later be recognized as that of a

Tits system.

1.18. We end this section with a topological consequence of the Bruhat de-

composition.

For each fundamental root \(\alpha \) in \(\Sigma \) with corresponding reflection \(r \),

choose \(m_\alpha \in rM(\alpha) \) and define \(Y_\alpha = Y_\alpha = U \cap M_\alpha \). Then \(G(\alpha) = B_0(\alpha) \cup Y_\alpha B_0(\alpha) \) and \(Y_\alpha \) is a system of left coset representatives of \(B_0(\alpha) \) in \(G(\alpha) - B_0(\alpha) \) as well as of \(B_1 \in B_0 \) in \(B_0 rB_0 \) (cf. Theorem 1.17 (xi)). Furthermore, denote by \(Z_\alpha \)

the intersection \(Y_\alpha A(\alpha)N(\alpha) \cap K \). Then \(Z_\alpha \) is in bijective correspondence with \(Y_\alpha \). For, in view of Iwasawa's decomposition to each \(y \in Y_\alpha \) there belong \(x \in Y_\alpha \) \(A(\alpha)N(\alpha) \cap K \), \(a \in A(\alpha) \) and \(n \in N(\alpha) \) with \(y = x n \), leading to a bi-

jection \(y \mapsto x_y \) from \(Y_\alpha \) to \(Z_\alpha \).

Lemma. Let \(w = r_gr_g \) be a minimal expression of \(w \in W \) with \(r_i \in R \). Then
Theorem 1.19. Let G be a noncompact connected real semi-simple Lie group with finite center. Then

(i) G/B_0 is diffeomorphic to K/M, and hence compact.

(ii) Let S_w for $w = r_1 r_2 \ldots r_t$ as in Lemma 1.18 be the set of elements in W that are products of subsequences of the expression (r_1, r_2, \ldots, r_t). Then S_w is independent of the chosen expression of w and

$$B_0 w B_0 = \bigcup_{w' \in S_w} B_0 w' B_0.$$

Proof. (i) The map $K \to G/B_0$ given by $k \mapsto k B_0$ (in K) is continuous and constant on $x M$ for any $x \in K$. Therefore, a continuous map of K/M to G/B_0 is induced, which is surjective as $G = K B_0$ (Iwawasa's decomposition) and injective as $M = B_0 \cap K$. Since K/M is compact, the map is open, too. The tangent space k/m of K/M at $k M$ for $k \in K$, is mapped onto the tangent space g/b of G/B_0 (as vector spaces). Therefore, the map is regular, whence (i).

(ii) $B_0 w B_0 \subseteq B(a_1) r_1 B(a_1) B(a_2) r_2 B(a_2) \ldots B(a_t) r_t B(a_t) B_0 = G(a_1) G(a_2) \ldots G(a_t) B_0$ by Proposition 1.12(ii) applied to $G(a_1) (1s i t)$.

Proof. (i) By Lemma 1.6, we have $B_0 w B_0 = B_0 w r_1 B_0 r_1 B_0$. Using induction, we get $B_0 w r_1 B_0 = Y_1 Y_2 \ldots Y_{t-1} B_0$, while $B_0 r_1 B_0 = Y_1 Y_2 \ldots Y_{t-1} B_0$ by construction of Y_1. Therefore, $Y_1 Y_2 \ldots Y_{t-1} Y_{t-1} B_0 = Y_1 Y_2 \ldots Y_{t-1} Y_{t-1} B_0$, and we can finish by induction. As for $B_0 w B_0 = Z_1 Z_2 \ldots Z_{t-1} B_0$, the proof is similar.

Proof. (ii) $B_0 w B_0 = Y_1 Y_2 \ldots Y_{t-1} Y_{t-1} B_0 \subseteq B(a_1) r_1 B(a_1) B(a_2) r_2 B(a_2) \ldots B(a_t) r_t B(a_t) B_0 \subseteq B_0 r_1 B_r B_0 \ldots B_0 r_t B_0 = B_0 w B_0$. As all inclusions must be equalities, the proof of (ii) is settled.

1.19. THEOREM. Let G be a noncompact connected real semi-simple Lie group with finite center. Then

(i) G/B_0 is diffeomorphic to K/M, and hence compact.

(ii) Let S_w for $w = r_1 r_2 \ldots r_t$ as in Lemma 1.18 be the set of elements in W that are products of subsequences of the expression (r_1, r_2, \ldots, r_t). Then S_w is independent of the chosen expression of w and

$$B_0 w B_0 = \bigcup_{w' \in S_w} B_0 w' B_0.$$

Proof. (i) The map $K \to G/B_0$ given by $k \mapsto k B_0$ (in K) is continuous and constant on $x M$ for any $x \in K$. Therefore, a continuous map of K/M to G/B_0 is induced, which is surjective as $G = K B_0$ (Iwawasa's decomposition) and injective as $M = B_0 \cap K$. Since K/M is compact, the map is open, too. The tangent space k/m of K/M at $k M$ for $k \in K$, is mapped onto the tangent space g/b of G/B_0 (as vector spaces). Therefore, the map is regular, whence (i).

(ii) $B_0 w B_0 \subseteq B(a_1) r_1 B(a_1) B(a_2) r_2 B(a_2) \ldots B(a_t) r_t B(a_t) B_0 = G(a_1) G(a_2) \ldots G(a_t) B_0$ by Proposition 1.12(ii) applied to $G(a_1) (1s i t)$.

Proof. (i) By Lemma 1.6, we have $B_0 w B_0 = B_0 w r_1 B_0 r_1 B_0$. Using induction, we get $B_0 w r_1 B_0 = Y_1 Y_2 \ldots Y_{t-1} B_0$, while $B_0 r_1 B_0 = Y_1 Y_2 \ldots Y_{t-1} B_0$ by construction of Y_1. Therefore, $Y_1 Y_2 \ldots Y_{t-1} Y_{t-1} B_0 = Y_1 Y_2 \ldots Y_{t-1} Y_{t-1} B_0$, and we can finish by induction. As for $B_0 w B_0 = Z_1 Z_2 \ldots Z_{t-1} B_0$, the proof is similar.

Proof. (ii) $B_0 w B_0 = Y_1 Y_2 \ldots Y_{t-1} Y_{t-1} B_0 \subseteq B(a_1) r_1 B(a_1) B(a_2) r_2 B(a_2) \ldots B(a_t) r_t B(a_t) B_0 \subseteq B_0 r_1 B_r B_0 \ldots B_0 r_t B_0 = B_0 w B_0$. As all inclusions must be equalities, the proof of (ii) is settled.

1.19. THEOREM. Let G be a noncompact connected real semi-simple Lie group with finite center. Then

(i) G/B_0 is diffeomorphic to K/M, and hence compact.

(ii) Let S_w for $w = r_1 r_2 \ldots r_t$ as in Lemma 1.18 be the set of elements in W that are products of subsequences of the expression (r_1, r_2, \ldots, r_t). Then S_w is independent of the chosen expression of w and

$$B_0 w B_0 = \bigcup_{w' \in S_w} B_0 w' B_0.$$
Consequently,

\[\frac{B_0 w B_0}{B_0} \supset \frac{B_0 w B_0}{B_0} \supset G(\alpha_1)G(\alpha_2) \cdots G(\alpha_r)B_0/B_0 \supset K(\alpha_1)K(\alpha_2) \cdots K(\alpha_r)B_0/B_0. \]

But the right hand side is the image under a continuous map of a product of compact spaces, hence compact, and therefore closed.

As it contains \(Z_{r_1}Z_{r_2} \cdots Z_{r_n}B_0/B_0 = B_0 w B_0/B_0 \) according to (ii), we get

\[\frac{B_0 w B_0}{B_0} = \frac{B_0 w B_0}{B_0} = G(\alpha_1)G(\alpha_2) \cdots G(\alpha_r)B_0/B_0, \]

whence \(B_0 w B_0 \) is independent of the chosen expression (use uniqueness of \(I \)).

Finally, independence of \(S_w \) from the minimal expression of \(w \) follows since \(B_0 w B_0 \) is independent of the chosen expression (use uniqueness of \(w \) in \(B_0 w B_0 \)).

The above theorem supplies a computational set up for the cohomology of \(G/B \), which in turn is of relevance for certain representations of \(G \). We shall not dwell on these matters any further and refer the interested reader to KLEIMAN [K].

2. TITS SYSTEMS

In this section, \(G \) is an arbitrary (abstract) group. The theme of this section is that for groups with a Tits system, in particular those of the previous section, a lot of structure is determined by a relatively small group \(W \). As notation suggests, \(W \) is the Weyl group of \(G \) if \(G \) is a Lie group such as in Section 1. Since many properties of Tits systems are derived in BOURBAKI [Bou], the reader is referred to this excellent exposition for proofs of several statements below.

2.1. DEFINITIONS. A pair \((B_0,N_0)\) of subgroups of \(G \) is called a *Tits system* provided there is a group \(W \) and a generating subset \(R \) of \(W \) such that

(i) \(B_0 \) and \(N_0 \) generate \(G \)

(ii) \(H_0 = B_0 \cap N_0 \) is a normal subgroup of \(N_0 \) and \(W = N_0/H_0 \)

(iii) For any \(w \in W \) and \(r \in R \)

(iii.1) \(B_0 w B_0 r B_0 \subseteq B_0 w B_0 \cup B_0 w B_0 \)

(iii.1) \(r B_0 r^{-1} \not\subseteq B_0 \)

Note that expressions such as \(w B_0 \) for \(w \in W \) are well defined as \(H_0 \subseteq B_0 \).

For \(w \in W \), denote by \(m_w \) an element of \(N_0 \) such that \(m w H_0 = w \). The group \(W \) will be called the *Coxeter group of the Tits system* (though, in Tits [Ti]
it is called the Weyl group of the system; as we shall see below, W is always a Coxeter group but not necessarily a Weyl group; hence the change of terminology). The Tits system is called saturated if \(\cap_{w \in W} B_0^w = H_0 \), and split if \(B_0 \) contains a normal subgroup N with \(B_0 = H_0 N \) and \(H_0 \cap N = \{1\} \). It is easy to check that if \((B_0, N_0) \) is a Tits system, then \((B_0, N_0) \) for \(N_1 = (\cap_{w \in W} B_0^w)N \) is a saturated Tits system with the same Coxeter group. A tuple \((W, R) \) consisting of a group \(W \) and a generating subset \(R \) of \(W \) is called a Coxeter system if there are natural numbers \(m_{r,s} \geq 1 \) depending on distinct \(r, s \in R \) and satisfying \(m_{r,s} = m_{s,r} \) such that the following set of relations for \(r, s \in R \) with \(r \neq s \) forms a presentation of \(W \):

\[
\begin{align*}
 r^2 &= 1 \\
 (rs)^{m_{r,s}} &= 1.
\end{align*}
\]

Set \(m_{r,1} = 1 \).

The matrix \((m_{r,s})_{r, s \in R} \) is called the Coxeter diagram and the group \(W \) is called the Coxeter group of \((W, R) \).

The Coxeter diagram has a pictorial presentation by means of the graph \((R, \sim) \) in which \(r \sim s \) for \(r, s \in R \) iff \(m_{r,s} > 2 \) and in which the edge \((r, s) \) is labeled \(m_{r,s} \) provided \(m_{r,s} > 3 \). If in a Dynkin diagram, the bonds \(\circ \circ \circ \circ \) (or \(\circ \circ \circ \circ \)) are replaced by the labeled edges \(O-O \) and \(O-O \) respectively, a Coxeter diagram results. Thus Dynkin diagrams may (upon disregarding the ">" signs) be viewed as Coxeter diagrams. This embedding also makes sense at the group level: this is stated in Lemma 2.3 below. If \(w \in W \), then \(\ell(w) \) denotes the length of \(w \) (with respect to \(R \)), i.e. the length \(t \) of a minimal expression \(w = r_1 r_2 \cdots r_t \) of \(w \) as a product of \(r_1 \in R \) (is it). Actually, we shall employ this notion of length for any tuple \((W, R) \) of a group \(W \) and a generating subset \(R \).

2.2. PROPOSITION. Suppose \((W, R) \) is a pair consisting of a group \(W \) and a finite generating subset \(R \) of involutions in \(W \). Then the following statements are equivalent:

(i) \((W, R) \) is a Coxeter system

(ii) There is a collection \((P_r)_{r \in R} \) of subsets of \(W \) such that
(ii) 1 ∈ P_r for all r ∈ R
(iii) P_r ∩ rP_r = ∅ for all r ∈ R
(iv) If r, r' ∈ R and w ∈ P_r with wr' /∈ P_r, then rw = wr!'
(v) For any w ∈ W, r ∈ R with r wr', then rw = wr!

For any w ∈ W, r ∈ R with l(rw) > l(w), there is an integer j (1 ≤ j ≤ l(w)) such that rr...r_j = r_j...r_1.

Moreover, if these statements hold, then p_r = {w ∈ W | l(rw) > l(w)}.

PROOF. See BOURBAKI [Bou, Chapter IV, §1.6 and §1.7]. □

The property formulated in (iii) above is known as the Exchange condition.

2.3. LEMMA. If (W, R) is a pair consisting of a Weyl group W and a set R of fundamental reflections of W, then (W, R) is a Coxeter system.

PROOF. See BOURBAKI [Bou, Chapter V, §3, Theorem I], or do it yourself by establishing (ii) with p_r = {w ∈ W | l(rw) > l(w)} using Lemma 1.13. □

2.4. EXAMPLE. Let G be a noncompact connected real semi-simple Lie group with finite center, and let B_0, N_0, W, R, Σ be as in the previous subsection. Then (B_0, N_0) is a split saturated Tits system whose Coxeter group is a Weyl group of type Σ by (i), (ii), ..., (vi), (vii) of Theorem 1.17. In the sequel we shall see that some of the other statements in Theorem 1.17 follow from this observation. Note that B_0 is the connected Lie subgroup of G whose Lie algebra is _g_0 + _κ_ and that N_0 is the normalizer in G of _g_0. The parallel between this Tits system and the Tits system (g_C_0, n_C_0) of the complexified Lie group _G_C_ is easy to spot: B_0 is the connected Lie subgroup of _G_C_ whose Lie algebra is _g_0 + _κ_ and N_0 is the normalizer in G of _g_0.

2.5. For w ∈ W, let S_w be the subset of W whose members are products of subsequences of a minimal expression for w (cf. Theorem 1.19).

PROPOSITION. Suppose (B_0, N_0) is a Tits system with Coxeter group W and distinguished generating subset R of W. Then (i) (W, R) is a Coxeter system.

Moreover for w, w' ∈ W and r ∈ R we have

(ii) l(rw) > l(w) ⇔ B_0 r B_0 w B_0 = B_0 rw B_0
(iii) l(rw) = l(w) ⇔ B_0 w B_0 r B_0 = B_0 wr B_0
(iv) l(rw) < l(w) ⇔ B_0 w B_0 r B_0 = B_0 w B_0 ∪ B_0 w B_0
(v) l(rw) < l(w) ⇔ B_0 w B_0 r B_0 = B_0 w B_0 ∪ B_0 w B_0
(vi) $B_0 w^1 B_0 w B_0 \subseteq B_0 w^1 w B_0$.

PROOF. (i) We first show that each element of R is an involution. Thus let $r \in R$. Clearly $r \neq 1$ in view of axiom (iii) of Definition 2.1.

By Definition 2.1(iii) with $w = r^1$, the union of double cosets $B_0 r^{-1} B_0 r B_0$ is contained in $B_0 r B_0 \cup B_0$ and distinct from B_0. Since it clearly contains B_0, this implies

$$B_0 r^{-1} B_0 r B_0 = B_0 \cup B_0 r^{-1} B_0.$$

Taking inverses left and right yields

$$B_0 r^{-1} B_0 r B_0 = B_0 \cup B_0 r B_0,$$

whence $B_0 r^{-1} B_0 = B_0 r B_0$.

Applying (iii) of Definition 2.1 with $w = r$ yields

$$B_0 r B_0 r B_0 \subseteq B_0 r B_0 \cup B_0 r^{-1} B_0.$$

But $B_0 r B_0 r B_0 = B_0 \cup B_0 r B_0$ by what we just saw. Hence $B_0 r^2 B_0 = B_0$, i.e. $r^2 \in B_0$. As $m_0 \in N_0$, we get $m_0^2 \in B_0 \cap N_0 = H_0$, proving $r^2 = 1$.

This shows that (B_0, N_0), or rather (G, B_0, N_0, R) is a Tits system in the sense of BOURBAKI [Bou, Chapter IV, §2.1].

The remainder of the proof can now be found in BOURBAKI [Bou, Chapter IV, §2.4, Theorem 2]. It runs as follows: for $r \in R$ define P_r by

$$P_r = \{ w \in W | B w B = B w B \}$$

of Proposition 2.2.

(ii) follows as $P_r = \{ w \in W | \ell(w) > \ell(w) \}$ by Proposition 2.2.

(iii) follows from (ii) by inversion, since $\ell(w) = \ell(w^{-1})$.

(iv) is equivalent to (ii).

(v) is equivalent to (iii).

(vi) is obtained by repeated application of axiom (iii) of Tits systems. □

2.6. Let W be a group with generating subset R of involutions. For J a subset of R, denote by W_J the subgroup of W generated by J. Clearly, this is in accordance with the definition of W_J given in 1.14 for the case where W is a Weyl group with generating set R of fundamental reflections.

Write $D_J = \{ w \in W | \ell(w) \geq \ell(w) \}$ for all $r \in J$.

Here P_r is as in the
last statement of Proposition 2.2. Furthermore, if I is another subset of R, put \(D_{I,J} = I^D \cap D_J \). Thus \(D_{\emptyset,J} = J^D \) and \(D_{J,J} = D_J \). Clearly, \(D_R = \{I\} \), and \(D_{\emptyset} = W \).

Lemma. Let \((W,R)\) be a Coxeter system. Suppose \(I,J,K \) are subsets of \(R \) and \(w \) is an element of \(W \). Then

(i) \((W_{I,J})\) is a Coxeter system, \(W_J \cap R = J \), and if \(w \in W_J \), then \(l(w) \) is the length of \(w \) with respect to \(J \).

(ii) \(W_I \cap (W_{J,K}) = W_{I,J} \cap W_{I,K} \)

(iii) There is a bijection \(D_{I,J} = W_I \backslash W_J \) such that if \(w_{I,J} \in W_I \wedge W_J \cap D_{I,J} \)

there are \(w_1 \in W_I, w_2 \in W_J \) with \(w = w_1 w_{I,J} w_2 \) such that \(l(w) = l(w_1) + l(w_{I,J}) + l(w_2) \).

Proof. (i), (ii) See BOURBAKI [Bou, Chapter IV, §1.8 and Exercise 1.1]. (iii) See BOURBAKI [Bou, Chapter IV, Exercise 1.3].

2.7. From now on, assume that \(B_0, N_0 \) is a Tits system of \(G \) with Coxeter group \(W \) and associated generating set \(R \) of involutions in \(W \). For \(J \) a subset of \(R \), put \(G_J = B_0 \wedge J B_0 \).

Proposition. Let \(I,J \) be subsets of \(R \). Then

(i) \(G_J \) is a subgroup of \(G \). In particular \(G = G_R = B_0 \wedge B_0 \) and \(G_\emptyset = B_0 \).

(ii) The mapping \(W_I \wedge W_J \rightarrow G_I \wedge G_J \) is a bijection of \(W_I \wedge W_J \) onto \(G_I \wedge G_J \).

(iii) \(G_I \cap G_J = G_{I,J} \)

(iv) For any subgroup \(G \) containing \(B_0 \), there is a subset \(K \) of \(R \) such that \(G^1 = G_K \).

(v) The normalizer in \(G \) of \(G_J \) is \(G_J \).

(vi) No two distinct subgroups of \(G \) containing \(B_0 \) are conjugate.

Proof. See BOURBAKI [Bou, Chapter IV, §2].

Note that the case \(I = J = \emptyset \) of statement (ii) above is the Bruhat decomposition for (arbitrary) Tits systems.

2.8. **Definitions.** The subgroups of \(G \) containing \(B_0 \) are called the standard parabolic subgroups of \(G \). A subgroup of \(G \) containing a conjugate of \(B_0 \) is called a parabolic subgroup of \(G \). The maximal parabolic subgroups are those parabolic subgroups which are maximal proper subgroups of \(G \) (i.e. corresponding to subsets \(J \) of \(R \) of cardinality \(|R|-1 \)). The minimal parabolic subgroups are those parabolic subgroups which are minimal among
those that properly contain a conjugate of B_0 (i.e. they correspond to subsets J or R of cardinality 1). In some literature ([W]), minimal parabolics are defined as the conjugates of B_0. Here, the conjugates of B_0 will be called Borel subgroups. Note that this definition does not coincide with that of a Borel subgroup of a linear algebraic group, cf. BOREL [Bor].

2.9. **Example.** Let G be a real noncompact connected semi-simple Lie group with finite center. We want to establish, first of all, what the parabolic subgroups of G look like. We shall identify $J \subseteq R$ with the corresponding subset of Δ (consisting of roots in Δ of reflections in J). Recall the definition $n(J) = \bigoplus_{\alpha \in Z(J), \alpha \geq 0} g_\alpha$, $g(J) = \langle n(J), B_0(J) \rangle$, etcetera from 1.14. Define $g_J = n^{-1}(J) + g_0 + n$. Then g_J is a Lie subalgebra of g containing b. In fact, G_J is the connected Lie subgroup of G whose Lie algebra is g_J. For, the latter subgroup contains B_0, so equals G_1 for some $I \subseteq R$ according to Proposition 2.7 (iv). If $a \in \Delta$ is a root corresponding to $a_a \in J$, then $G(a)$ has Lie algebra $g(\{a_a\}) \subseteq g_J$, so $G(a) \subseteq G_1$. In particular, $a_a \in G_1$, and $J \subseteq I$. On the other hand, if $a \in I$, then $\text{Ad}(a) g_\alpha = g_{-\alpha}$, while $g_\alpha \subseteq g_J$, so $g_{-\alpha} \subseteq g_J$. Hence $a \in J$. The conclusion is that $I = J$, and $G_1 = G_J$.

In the present situation, more is known of the structure of the parabolic subgroups than can be derived from the axioms of Tits systems. Let $J \subseteq R$. By the above paragraph, the pair $(B_0(J), M^*(J)A(J))$ defines a Tits system for $G(J)$ (see 1.14 for notation).

Thus, in particular, for any $w \in W_J$, $r \in J$, we have $w B_0(J) m_r \subseteq B_0(J) w B_0(J) \cup B_0(J) m_w B_0(J)$. From this inclusion it is readily derived that $B_L = H_0 N(J)$ and $N_L = M^*(J) M$ define a Tits system for the subgroup L_J of G generated by B_L and N_L. The Bruhat decomposition of L_J yields

$$L_J = N(J) H_0^w J N(J) = U_{w J} H_0^w J H_0^w N(J),$$

where w is the longest element in W_J (see 1.13). Thus, $G_J = B_0^w J B_0 = N_{w J} U_{w J} H_0^w J U_{w J} = N_{w J} L_J$. Moreover,

$$N_{w J} \cap L_J = N_{w J} \cap H_0^w U_{w J}$$

(by uniqueness of the Bruhat decomposition)

$$= (N \cap B_0^w J) \cap (B_0 \cap B_0^w J) =$$

$$= N \cap (B_0 \cap B_0^w J) = \mathbb{Z} \cap H_0 = \{1\},$$
while \(\text{Ad}(N(J))\), \(\text{Ad} \omega_J (w \in W_J)\) stabilize \(\mathcal{N}_{\omega_J} = \bigoplus_{0 \neq \xi \in \xi(J)} G_\xi\), so that \(L_J\) normalizes \(N_{\omega_J}\). We conclude that \(G_J\) is the semidirect product of a nilpotent simply connected subgroup \(N_{\omega_J}\) and the so-called
Levi-factor \(L_J\) of \(G\) with respect to \(J\), a group closely related to its subgroup \(G(J)\). This decomposition of \(G_J\) is known as the Levi-decomposition of \(G_J\) and plays an important role in many inductive arguments in a manner analogous to what we have seen in Theorem 1.19.

2.10. At the end of this section, the quotient topology on \(G\) is discussed for \(G\) as in the above example. The remainder of this section is devoted to the proof that statements \((x)\) and \((xi)\) of Theorem 1.17 hold for arbitrary split Tits systems whose Coxeter groups are Weyl groups. As this result is inessential for the next section, it may well be skipped by those who are primarily interested in geometry.

For \(w,w^1 \in W\), set \(B_w^w = \omega^{-1}_0 B_w \omega_0; B^w = B_0 \cap \omega^{-1}_0\), and \(B^w = (B^w)^w\). Thus, \(B^w = B_w^w = B_w\).

LEMMA. Suppose \((B_0,N_0)\) is a Tits system with Coxeter group \(W\) and distinguished generating set \(R\). Then for any \(w \in W\) and \(r \in R\) with \(\ell(rw) > \ell(w)\) the following holds:

(i) \(B^0 \cap B^w = \emptyset\) and \(B^w \cap B^w = B^w \cap B^w\).

(ii) \(B^w \cap B^w = B^w \cap B^w\).

Moreover, if \(w,w^1 \in W\) with \(\ell(w^1) = \ell(w) + \ell(w^1)\), then \(B^w \subseteq B^w\).

PROOF. (i) By Propositions 2.5 and 2.7 we have \(B^0 \cap B^w \cap B^w = \emptyset\). Multiplying from the right by \(w^{-1}\) yields \(B^0 \cap B^w \cap B^w = \emptyset\), whence \(B^0 \cap B^w \cap B^w = \emptyset\). Now \(B^0 \subseteq B^0 \cap B^w \cap B^w\), so \(B^0 \subseteq B^w \cap B^w = (B^0 \cap B^w \cap B^w) \cap B^w = B^w \cap B^w\), whence \(B^w \subseteq B^w \cap B^w\). Since the other inclusion is obvious, this proves (i).

(ii) As \(rB^w \cap B^w \cap B^w = \emptyset\), we have \(B^0 \cap B^w \cap B^w = B^w \cap B^w\). Let \(b = x \in B^0\) and write \(b = xy\) with \(x \in B^w\) and \(y \in B^w\). Then \(y = xy^{-1} \in B^w \cap B^w\), whence \(x \in B^w\). It follows that \(b \in (B^0 \cap B^w) \cap B^w = B^w\). Thus \(B^w \subseteq B^w\) and we are done as the other inclusion is trivial.

(iii) First of all, assume \(w = r\). Then \(\ell(rw) > \ell(w)\), so \(\ell(rw^{-1}) > \ell(w^{-1})\). Hence by (i),

\[
B^w = (B^w \cap B^w) \cap B^w = B^w \cap B^w = B^w.
\]
so that $B_{ww} \subseteq B_w$ if $w^1 \in R$. The full statement follows by repeated application of the latter inclusion. □

2.11. From now on in this section, W is a Weyl group and R is a set of fundamental reflections generating W. Therefore, W is finite and there is a longest element w_0 in W (cf. Lemma 1.13(viii)). For $w \in W$, set $B_w^- = B_{ww_0}$.

LEMMA. Suppose (B_0, N_0) is saturated. Then for $w \in W$ and $r \in R$ with $\ell(rw) > \ell(w)$ we have:

(i) $B_w^- = H_0$
(ii) $B_r^- \subseteq B_w^-$
(iii) $B_{rw}^- = B_r^- (B_w^-)^r$

PROOF. (i) By Lemmas 2.10 (iii) and 1.13 (viii) we have $B_w^- = B_v(v^{-1}w_0) \subseteq B_v$ for any $v \in W$. Hence $H_0 = \cap_{v \in W} B_v = \cap_{v \in W} B_w = B_{ww_0}$, proving (i).

(ii) According to Lemma 1.13 (viii) and the hypothesis $\ell(w_0) - 1 = \ell(w^{-1}w_0) + \ell(w^{-1}r) - 1 = \ell(w^{-1}r_0) + \ell(w)$, or $\ell(w(w^{-1}r_0)) = \ell(w) + \ell(w^{-1}r_0)$. Therefore, Lemma 2.10 (iii) yields $B_{rw}^- = B_w(w^{-1}r_0) \subseteq B_w^-$, as wanted.

(iii) First of all, note that $\ell(r(rw_0)) = \ell(w_0) = \ell(w) - \ell(w_0) - \ell(rw) = \ell(rw_0)$, which is the statement that (B_0, N_0) is saturated. Then for $w \in W$ and $r \in R$ the following prevails:

$$B_0^- = B_w^- \cap B_w \cap B_w^- = H_0.$$

PROOF. First of all observe that $B_w \cap B_w^- = B_0 \cap B_0^- = B_0 \cap B_0^- = H_0$. In regard to Lemma 2.11 (i). We next show $B_0^- = B_w^-$ by induction on $\ell(w)$. Note that the statement is equivalent to $B_0^- = B_w^-$ as all terms represent groups.

If $\ell(w) = 0$, then $B_0^- = B_0 = H_0 = B_w^-$ as $w = 1$, and we are done.

If $\ell(w) = 1$, then $w \in R$ and the equality holds as we have seen in the proof of Lemma 2.11 (iii).

Suppose $\ell(w) \geq 2$, and write $w = rw_1$ with $r \in R$ and $\ell(w) = \ell(rw_1)$. Then
This establishes the proposition. □

2.13. From now on, let \((B_0, N_0)\) be a split saturated Tits system (whose Coxeter group \(W\) is a Weyl group). Decompose \(B_0 = H_0N\) for \(N\) a normal subgroup of \(B_0\) with \(H_0 \cap N = \{1\}\) and set \(N_w = w^{-1}NW, N_w = N \cap B_0^w\) and \(U_w = Nww_0\) as before (cf. Theorem 1.17). The following corollary mimics statement (x) of Theorem 1.17.

COROLLARY. \(N \cap U_w = U_wN_w\) with \(N \cap U_w = \{1\}\).

PROOF. Since \(B_0 = B_0B_w^{-1}\), we get \(H_0N = H_0Nw_w^{-1}\). But \(N \cap U_w = N\) in view of \(H_0 \cap N = \{1\}\). Finally, \(H_0 = B_0 \cap B_w^{-1} = H_0N_0 \cap U_w\), whence \(N \cap U_w = \{1\}\).

2.14. Next we show that Theorem 1.17 (xi) has a generalization to the present setting. For \(I, J \subseteq R\), recall from 2.6 that

\[D_{I, J} = \{w \in W | r(w) = s(w) > \ell(w) \text{ for all } r \in I, s \in J\} \]

and \(D_j = D_{\emptyset, J}\). Write \(L_{I, J}(w) = D_j \cap W_w^j\).

PROPOSITION. Let \((B_0, N_0)\) be a split saturated Tits system whose Coxeter group \(W\) is a Weyl group. Then for \(I, J \subseteq R\) and \(w \in W\), the following holds:

(i) If \(w \in D_j\), then \(G_j \cap B_0^w = B_0^w\).

(ii) \(G_j^w = U_{d \in L_{I, J}(w)} U_d G_j\),

with uniqueness of expression at the right hand side (up to the choice of a representative \(n_d\) for each \(d \in L_{I, J}(w)\)).

PROOF. (i) Let \(w \in D_j\). Owing to the exchange condition 2.2, we have \(wW_j \cap S_w = \{w\}\), where \(S_w\) is defined in 1.19. Hence \(S_w \cap W_j = \{1\}\), so that
This yields $G_j \cap B_0^w \subseteq B_0^w J B_0 \cap B_0^w S^{-1}$, ending the proof of (i).

(ii) $G_j^w G = B_0^w J B_0^w = \bigcup_{d \in L,} J \cap d \cap G_j$, thanks to Proposition 2.5 (vi). As for the uniqueness, suppose $umg = umd$ for $u, u \in U_d, d, d' \in L, J\cap \cap G_j$. Then $d = d'$ as $B_0^w J B_0^w = B_0^w J B_0^w$ according to Proposition 2.7 (ii).

Thus $g' = m_d^{-1} (u')^{-1} umd \in G_j \cap B_0^w \subseteq B_0^w \cap B_0^w \subseteq B_0^w \cap B_0^w \cap B_0^w = N \cap B_0^w$. Hence $u = u'$ and $g = g'$. □

2.15. EXAMPLE. Let G be a real noncompact connected semi-simple Lie group with finite center. As a topological space, G/G_j is homeomorphic to $K(KG_j)$. Hence it is compact. Analogously to the proof of Proposition 1.12 (ii), it can be shown that the submanifolds $U_w G_j / G_j$ are regularly embedded in G/G_j. (Note that $U_w G_j / G_j$ is open in G as $U_w G_j / G_j$ is open in G).

For $d \in D_j$, the submanifold $B_0^d G_j / G_j = U_d G_j / G_j$ is diffeomorphic to a vector space over \mathbb{R} of dimension $\dim d$. Thus, there is at least one element $d \in D_j$ such that $\mu(\mathbb{R}^+ \cap d^-) = \dim d - \dim d^- = \mu(\mathbb{R}^-) - \mu(\mathbb{R}^-)$. The nonclosed submanifolds of minimal dimension among the $B_0^w G_j / G_j$ are those of the form $B_0^w R_j / G_j$ for $r \in R \setminus J$. The closures of these submanifolds will play the role of lines in the geometry on G/G_j to be discussed in the next section.

3. THE GEOMETRY OF TITS SYSTEMS

Throughout this section G is a group with Tits system (B_0, N_0) whose Coxeter group W has a distinguished generating set R of fundamental reflections.

3.1. There are two formally distinct ways to describe geometries. They are illustrated by the following pair of definitions of a projective plane.

(A) A projective plane is a set P of points together with a collection L of subsets of P, called lines, such that
(i) Any two points are in exactly one line
(ii) Any two lines have a point in common
(iii) Lines have at least three points
(iv) There is a point and a line such that the point is not in the line.

(B) A projective plane is a tuple \((P,L)\) of sets \(P\) (points) and \(L\) (lines) together with a relation, called incidence, between \(P\) and \(L\), such that (i), (ii), (iii), (iv) of (A) hold (here, a point \(p\) is said to be in a line \(\ell\) if \(p\) and \(\ell\) are incident, and so on).

It is obvious how to obtain one description of a projective plane from the other. The advantage of (B) over (A) is that duality between points and lines is more naturally present. On the other hand in the 'classical approach' (A) a single set \(P\) with its structure is studied, rather than such a formal object as in (B).

The Tits system in \(G\) gives rise to a geometry in the vein of (B), as we shall now see.

3.2. DEFINITIONS. For \(J \subseteq R\), write \(G^J = G^{R \setminus J}\).

If \(r,s\) are distinct fundamental reflections of \(W\), we say that \(xG^{\{r\}}\) and \(yG^{\{s\}}\) for \(x,y \in G\) are incident if \(xG^{\{r\}} \cap yG^{\{s\}} \neq \emptyset\).

The tuple \((G/G^{\{r\}})_{r \in R}\) equipped with the incidence relation thus defined, will be called the Tits geometry associated with \((B_0,N_0)\). This geometry is closely related to the notion of building, cf. Tits [T1] and [T2].

It is our purpose to derive properties of geometries defined as in (A) and obtained from Tits geometries by letting one of the sets \(G/G^{\{r\}}\) for \(r \in R\) be the set of points. We shall formulate this in terms of incidence systems.

An incidence system \((P,L)\) is defined to be a set \(P\) of points and a collection \(L\) of subsets of \(P\), called lines, such that every line has at least two distinct points. If \((P,L)\) is an incidence system, then the collinearity graph of \((P,L)\) is the graph whose vertex set is \(P\) and whose edges are the pairs of collinear points. The incidence system is called connected whenever its collinearity graph is connected. Likewise terms such as connected components, cliques, paths will be applied freely to \((P,L)\) when in fact they are meant for the collinearity graph (a clique of a graph is a set of vertices in the graph such that each pair of mutually distinct members is an edge). For \(x,y \in P\), we let \(d(x,y)\) denote the ordinary distance in the collinearity graph and write \(x \perp y\) to express that \(d(x,y) \leq 1\) (i.e. \(x\) and
y are collinear). Moreover, \(X^i = \{ y \in P \mid y \sim x \} \). For \(X \) a subset of \(P \), we write \(X^i = \cap_{x \in X} x^i \).

The subset \(X \) is called nondegenerate if \(X \cap X^i = \emptyset \); it is called a subspace (of \((P, L)\)) whenever each point of \(P \) belonging to a line that has two distinct points in \(X \), is itself in \(X \). A subspace is called singular if it is a clique. The length \(i \) of a longest chain \(X_0 \subseteq X_1 \subseteq \ldots \subseteq X_k = X \) of nonempty singular subspaces \(X_j \) of a singular subspace \(X \) is called the rank of \(X \) and denoted by \(\text{rk}(X) \). The incidence system is called linear if two distinct points are in at most one line.

From now on, fix \(r \in R \). If \(g \in G \), write \(\overline{g} = gG^{\{r\}} \) and \(\overline{g} = gG_{\{r\}}^G_{\{r\}} = gG_{\{r\}}^{G\{r\}} = gG_{\{r\}}^{\{r\}} \). For \(X \subseteq G \), write \(\overline{X} = \{ \overline{g} \mid g \in X \} \) and \(\overline{X} = \{ \overline{g} \mid g \in X \} \).

Then \((G, \overline{G})\) is the incidence system that we are interested in. Note that for \(g \in G \) the line \(\overline{g} \) is (indeed) determined by the incidence relation of the Tits geometry via \(\overline{g} = \{ x \in G \mid xG^{\{r\}} = gG_{\{r\}}^{\{r\}} \} \). Thus \(g \) has at least two distinct points, namely \(g \) and \(gr \).

This incidence system is said to be a Lie incidence system of type \(W \) over \(r \), or just of type \(X_n^i \), where \(X_n \) is the type of the Coxeter diagram for which \(W \) is the Weyl group, and where \(i \) is the node in \(X_n \) corresponding to \(r \). To fix notation, we let the nodes in \(X_n \) (for connected diagrams) be numbered as depicted in the table.

We shall establish some properties of \((G, \overline{G})\). Note that \(G \) acts transitively on \((G, \overline{G})\) by left multiplication on \(G \) as a group of automorphisms. For \(I, J \subseteq R \) (recall that \(G^J = G_{R \setminus J} \)) and write \(W^J = W_{R \setminus J} \).
Finally, W is called *irreducible* if there is no partitioning $R = I \cup J$ with $I, J \neq R$ such that $st = ts$ for all $s \in I$, $t \in J$. This is equivalent to connectedness of the Dynkin diagram, and to irreducibility of W in its natural linear representation as a group generated by reflections, cf. Bourbaki [Bou, Ch VI §1.2].

3.3. **Lemma.** Suppose W is irreducible. Set $P_r = \{ w \in W | \ell(rw) > \ell(w) \}$ for $r \in R$ (cf. Proposition 2.2). Then

(i) $S_w \subseteq W_J$ whenever $w \in W_J$.
(ii) $W_J \cap W_I w = W_{I \cap J} w_{I \cap J}$ for any $I, J \subseteq R$ and $w \in W_J$.
(iii) For any $J \subseteq R$ and $r \in R \setminus J$, we have $P_r \cap rW_J r = W_J \cap rW_J r$, and the elements of this set commute with r.

Table

Coxeter diagrams with numbered nodes associated with Dynkin diagrams

<table>
<thead>
<tr>
<th>A_n ($n \geq 1$)</th>
<th>$B_n = C_n$ ($n \geq 2$)</th>
<th>D_n ($n \geq 3$)</th>
<th>E_6</th>
<th>E_7</th>
<th>E_8</th>
<th>F_4</th>
<th>G_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 - 2 - \ldots - n-1 - n$</td>
<td>$1 - 2 - \ldots - n-1 = n$</td>
<td>$1 - 2 - \ldots - n-2$</td>
<td>$1 - 2 - 3 - 5 - 6$</td>
<td>$1 - 2 - 3 - 4 - 6 - 7$</td>
<td>$1 - 2 - 3 - 4 - 5 - 7 - 8$</td>
<td>$1 - 2$</td>
<td>$1 - 2$</td>
</tr>
</tbody>
</table>
PROOF. (i) This is an immediate consequence of Lemma 2.6.

(ii) Clearly, \(W_{\text{in}} \cap W_{\text{in}} \leq W_j \cap W_{\text{in}} \).

In view of (i) and Lemma 2.6, there are \(w_1, w_2 \in W_{\text{in}} \) and \(w \in W_j \cap D_{I, I} \), such that \(w = w_1 \cdot w_2 \). This implies \(W_j \cap W_{\text{in}} = W_j \cap W_{\text{in}} \cdot W_{\text{in}} \) and \(W_{\text{in}} \cap W_{\text{in}} = W_{\text{in}} \cdot W_{\text{in}} \), so that upon replacement of \(w \) by \(w' \), we may assume \(w \in D_{I, I} \cap W_j \). Due to Lemma 2.6, for \(u \in W_{\text{in}} \) there exist \(u_1, u_2 \in W_{\text{in}} \) such that \(u = u_1 \cdot u_2 \) and \(\ell(u) = \ell(u_1) + \ell(w) + \ell(u_2) \). So if \(u \in W_{\text{in}} \), then (i) yields that \(u_1, u_2 \in W_{\text{in}} \), whence \(u = u_1 \cdot u_2 \in W_{\text{in}} \cdot W_{\text{in}} \), and we are done.

(iii) Assume \(v \in P_r \) and \(w \in W_{\text{in}} \) satisfy \(w = rw \). Since \(rw = w' \), the exchange condition 2.2 yields \(\ell(w) = \ell(rw) = \ell(w') = \ell(w) \), i.e., \(\ell(w) = \ell(w') \). Using the exchange condition once again, we obtain that either there is \(w' \in W_{\text{in}} \) with \(rw = w' \) or \(rw = w \).

But the former case leads to the absurdity \(w' \in W_{\text{in}} \), so \(r \) and \(w \) commute, and \(w = w' \).

This shows that \(P_r \cap r W_{\text{in}} \) is contained in \(W_{\text{in}} \cap r W_{\text{in}} \). Since the other inclusion is obvious, this settles the lemma. \(\square \)

3.4. LEMMA. Let \(r \in R \) and \(J \subseteq R \setminus \{ r \} \). Set \(I = W_j x_{<r>} W_j \ldots x_{<r>} W_j \) (2d+1 terms) and \(E = W_j \cap r W_{\text{in}} \). Then

(i) \(B_0 \cdot B_0 \cdot B_0 \cdot B_0 \cdot B_0 \cdot B_0 \subseteq B_0 x_{<r>} E B_0 \),

(ii) \(B_0 \cdot B_0 \cdot B_0 \cdot B_0 \cdot B_0 \cdot B_0 = B_0 (Dn) B_0 \) for any \(b \in B_0 \),

(iii) \(B_0 \cdot B_0 \cdot B_0 \cdot B_0 \cdot B_0 \cdot B_0 = B_0 (Dn) B_0 = B_0 (Dn) B_0 \).

PROOF. (i) Note that \(r P_r \cap W_j = r W_{\text{in}} \cap W_j = r E \) due to the previous lemma. Hence,

\[B_0 \cdot B_0 \cdot B_0 \leq B_0 \cdot B_0 \cdot B_0 \leq (B_0 x_{<r>} B_0) \cup (B_0 (r W_{\text{in}}) B_0) \subseteq B_0 x_{<r>} E B_0 \]

by use of Proposition 2.5. This ends the proof of (i).

(ii) Let \(b \in B_0 \). Suppose \(y \in bw B_0 \). Suppose \(y \in bw B_0 \) for \(w \in D \). If \(\ell(w) > \ell(w') \), then \(B_0 \cdot B_0 \cdot B_0 \subseteq B_0 x_{<r>} B_0 \) by Proposition 2.5, so \(w = rw \in D \cap r D \), and \(y \in bw B_0 \subseteq B_0 (Dn) B_0 \). Assume \(\ell(w) < \ell(w') \). Then \(w' \notin W_j \). By the exchange condition there is an expression

\[w' = rd \quad \text{with} \; d \in D \]
(Note that $u \in D$ implies $S_u \subset D$).

Thus $w^1, rw^1 \in D \cap rD$ and $y \in B_0 wr^1 B_0 \cup B_0 w^1 B_0 \subset B_0 (D \cap rD) B_0$. Hence $w \in D \cap rD$ and $y \in bw B_0 \subset b(D \cap rD) B_0$. We have shown $bDB_0 \cap B_0 rB_0 DB_0 \subset b(D \cap rD) B_0$. Since the other inclusion is obvious, this proves (ii).

(iii) The first equality is obvious from (ii). Since $r(D \cap rD) = D \cap rD$, we have

$$rB_0 (D \cap rD) B_0 \subset B_0 rB_0 (D \cap rD) B_0 \subset B_0 (D \cap rD) B_0 \cup B_0 (D \cap rD) B_0 =$$

$$= B_0 (D \cap rD) B_0.$$

Therefore, also $B_0 (D \cap rD) B_0 \subset rB_0 (D \cap rD) B_0$, whence the second equality of (iii). □

3.5. We are now ready to formulate some basic properties of Lie incidence systems.

PROPOSITION. Let (G, G) be a Lie incidence system as described above. Then

(i) x, y are collinear points of (G, G) iff $y^{-1} x \in G^r G(x) G(r)$.

(ii) G is transitive on ordered pairs of distinct collinear points.

(iii) (G, G) is a clique iff $W = W^r W(r) W(r)$. If it is not a clique, it is nondegenerate.

(iv) Any two lines of (G, G) meet iff $W = W^r W(r) W(r)$.

(v) (G, G) is a linear incidence system.

(vi) For $d \in N$, $x \in G$, and $z \in G$ such that z has two points of distance $\leq d$ to x, any point of z has distance $\leq d$ to x.

(vii) If $I \subset R$ with $r \in I$, then G_I is a subspace of (G, G), which, together with the lines that it contains, is a Lie incidence system of type the Coxeter diagram of W_I over r.

PROOF. (i) x, y are collinear iff there is $z \in G$ with $x y \in z$. Since $x y \in z \iff x, y \in z G(r)G(r) \iff z \in x G(r)G(r) \cap y G(r)G(r)$, we get that x, y are collinear iff $y^{-1} x \in G^r G(r)G(r) \cap G^r G(r)G(r) \neq \emptyset$, i.e. iff $y^{-1} x \in G^r G(r)G(r)$. This establishes (i).

(ii) Since G is transitive on G, we need only check that the stabilizer G^r of l in G is transitive on the neighbors of l. But it is immediate from (i) that the set of neighbors of l is G^r, so that the check is trivial.

(iii) This is a consequence of (i) and (ii), in view of Proposition 2.5 and
Lemma 2.6.

(iv) \(\forall x,y \in G(\bar{r} \in G(\bar{r}) \iff \forall x,y \in G(\bar{r}) \in G(\bar{r}) \)

where in the last equivalence Proposition 2.5 and Lemma 2.6 are used again. Hence (iv).

(v) Suppose \(x,y \in \bar{r} \) for \(x,y,z \in G \) with \(x \neq y \). Write \(y^{-1}x = g_1rg_2 \) with \(g_1,g_2 \in G \). Then \(z \in y^{-1}x \in G[r] \cap G[r] \) so \(g_1^{-1}z \in G[r] \cap G[r] \) and \(G[r] \in G[r] \in G[r] \). Then \(rB_0W[r] < rB_0 \cap B_0W[r] < rB_0 \subseteq B_0 \cap rE_0 \), where \(E = W[r] \cap rW[r] \), by use of Lemma 3.4 (i). Thus \(z \in yg_1G[r]E_0 \). It follows that if \(x,y \in \bar{r} \), then

\[
z_1 \in G[r] \in G[r] = \frac{yg_1G[r]E_0 < G[r]}{G[r]} = \frac{yg_1G[r]E < G[r]}{G[r] = yg_1G[r]E < G[r]} = \frac{yg_1G[r]E < G[r]}{G[r] = zG[r]G[r]},
\]

so that \(z_1 = z \).

This settles uniqueness of the line \(z \) on \(x,y \). The conclusion is that \(G,G \) is a linear incidence system, as wanted.

(vi) Since \(G \) is transitive on pairs of distinct collinear points, we may assume that \(z \) is the (unique) line on \(l \) and \(r \), and that \(x \) has distance \(\leq d \) to \(l \) and \(r \). This means that

\[
x \in G[r] \cdots < rG[r] \cap rG[r] \quad (2d+1) \text{ factors}
\]

In other terms, with \(D \) as in Lemma 3.4, we have \(x \in B_0DB_0 \cap rB_0DB_0 \), whence \(rbx \in B_0DB_0 \).

The previous lemma yields \(B_0x \subseteq B_0(DwD)B_0 \), whence \(rbx \subseteq B_0DB_0 \) for any \(b \in B_0 \). This shows that \(x \) has distance \(\leq d \) to \(br \) for any \(b \in B_0 \), as \(z = (l \cup B_0x \text{ this yields (vi)}.

(vii) Suppose \(x,y \in G \) satisfy \(\bar{x} \not\in \bar{y}, \bar{x} \neq \bar{y} \). Write \(y^{-1}x = g_1rg_2 \) with \(g_1,g_2 \in G \). Note that \(G \cap G[r]G[r] = B_0 \in G[r] < rB_0 \cap B_0 \) by Lemma 2.6. The line on \(x,y \) is \(yg_1 \), so if \(\bar{z} \in G[I] \), then \(\bar{z} = yg_1h \) for some \(h \in G[I] \). In particular \(\bar{z} \in G[I] \). This shows that the line on \(x,y \) is entirely contained in \(G[I] \). The conclusion is that \(G[I] \) is a subspace.
Finally, it is easily seen that the map
\[\phi: G_I/G_{I \setminus \{ r \}} \to G_I/G_{\{ r \}} \]
given by
\[\phi(xG_{I \setminus \{ r \}}) = xG_{\{ r \}} = x \quad (x \in G_I) \]
leads to an isomorphism between the incidence systems
\[(G_I/G_{I \setminus \{ r \}}, \{ zG_{\{ r \}}G_I \setminus \{ r \} | z \in G_I \}) \quad \text{and} \quad (G_I, G_I) \).

Since the former is a Lie incidence system of type the Coxeter diagram of
\[W_I \] over \(r \), so is the latter. \(\Box \)

3.6. The next result states some well-known facts of Weyl groups. The Weyl
group whose Dynkin diagram is of type \(X_n \) will be denoted by \(W(X_n) \). The
fundamental reflection in \(W(X_n) \) corresponding to the node \(i \) in the Dynkin
diagram (numbered according to the table) is denoted \(r_i \). Recall from 2.6
that \(D_{I \setminus J} \) for \(I, J \subseteq \mathbb{R} \) is the set \(\{ w \in \mathbb{I}(I \setminus J) | l(w) < l(ws) \text{ for all } r \in I, s \in J \} \) and that it is a set of \(W_{I \setminus J} \) double coset representatives.

Proposition. (i) If \(W = W(A_n) \), then \(D_{R \setminus \{ r_1 \}, R \setminus \{ r_1 \}} = \{ 1, r_1 \} \).
(ii) If \(W = W(B_n) \) (n\(\geq 2 \)) or \(W = W(D_n) \) (n\(\geq 3 \)), then \(D_{R \setminus \{ r_1 \}, R \setminus \{ r_1 \}} = \{ 1, r_1, w_1 \} \),
where
\[w_1 = \begin{cases} r_1 r_2 \cdots r_{n-1} r_n r_{n-1} \cdots r_2 r_1 & \text{if } W = W(B_n) \\ r_1 r_2 \cdots r_{n-1} r_n r_{n-2} \cdots r_2 r_1 & \text{if } W = W(D_n) \end{cases} \]
and \(w_1 \) normalizes \(W^{\{ r_1 \}} \).

Proof. To facilitate notation, set \(U = W^{\{ r_1 \}} \).
(i) If \(n=1 \), there is nothing to prove. Let \(n>1 \). Suppose \(w \in U \). Then by induction on \(n \), we may assume \(w \in U^{\{ r_2 \}} \cup U^{\{ r_2 \}}r_1 U^{\{ r_2 \}} \). Because \(r_1 \) centralizes \(U^{\{ r_2 \}} \) and \(m_{r_1 r_2} = 3 \), this yields \(r_1 w r_1 \in U^{\{ r_2 \}} \cup U^{\{ r_2 \}}r_1 r_2 U^{\{ r_2 \}} \subseteq U \cup U r_2 r_1 U \cup U r_1 U \). Thus \(r_1 U r_1 U \subseteq U \cup U r_1 U \), and statement (i) readily follows.

(We remark that another way of proof for this statement would be to identify the permutation representation of \(W \) on the cosets of \(W^{\{ r_1 \}} \) as that of the symmetric group on \(n+1 \) letters)
(ii) The two cases \(W = W(B_n) \) and \(W = W(D_n) \) being much alike, we shall only
deal with \(W = W(B_n) \). First of all, note that for \(1 < i < n \) we have

\[
\begin{align*}
\tau_i w_1 &= \tau_i \tau_2 \cdots \tau_{i-2} \tau_{i-1} \tau_i \cdots \tau_{n-1} \tau_n \cdots \tau_1 \\
&= \tau_i \tau_2 \cdots \tau_{i-2} \tau_{i-1} \tau_i \tau_{i+1} \tau_i^{-1} \cdots \tau_{n-1} \tau_n \cdots \tau_1 \\
&= \tau_i \tau_2 \cdots \tau_{n-1} \tau_n \cdots \tau_1 \tau_i \tau_{i+1} \tau_i^{-1} \cdots \tau_1 \\
&= \tau_i \tau_2 \cdots \tau_{n-1} \tau_n \cdots \tau_{i+1} \tau_i \tau_{i-1} \tau_i \cdots \tau_1 \\
&= \tau_i \tau_2 \cdots \tau_{n-1} \tau_n \cdots \tau_1 = w_1 \tau_i,
\end{align*}
\]

while

\[
\begin{align*}
\tau_n w_1 &= \tau_1 \cdots \tau_n \cdots \tau_{n-1} \cdots \tau_2 \tau_1 \\
&= \tau_1 \cdots \tau_{n-1} \tau_n \cdots \tau_{n-1} \cdots \tau_2 \tau_1 \\
&= \tau_1 \cdots \tau_{n-1} \tau_n \cdots \tau_1 \tau_1 = w_1 \tau_n,
\end{align*}
\]

so that \(w_1 \) centralizes \(U \) (if \(W = W(D_n) \), then \(w_1 \) normalizes \(U \) but does not centralize \(U \)).

Next, we show that \(w_1 \not\in U \cup U_1 U \). If there are \(u_1, u_2 \in U \) with \(w_1 = u_1 \tau_1 \tau_2 \cdots \tau_{i-1} \tau_i \tau_{i+1} \tau_i^{-1} \cdots \tau_{n-1} \tau_n \cdots \tau_2 \tau_1 = r_1 \tau_1 \tau_2 \cdots \tau_{n-1} \tau_n \cdots \tau_{i-1} \tau_i \tau_{i+1} \tau_i^{-1} \cdots \tau_1 \), then \(w_1 \) centralizes \(U \), whence \(w_1 \) centralizes \(U \), whence \(w_1 \) centralizes \(U \), and so on, leading to \(w_1 = r_n \). Since this implies that \(r_n \) commutes with \(r_{n-1} \) contradicting \(W = W(D_n) \), we conclude that \(w_1 \not\in U \).

By now, it is readily verified that \(w_1 \in D_n \setminus \{r_i \mid r_i \not\in U \} \). For, by symmetry of \(w_1 \) (\(w_1^2 = 1 \)), it suffices to check that \(w_1 \in D_n \setminus \{r_i \mid r_i \not\in U \} \), i.e.

that \(\ell(w_1) = \ell(w_i) \) for each \(i \) (\(1 < i < n \)). In view of the Exchange condition, the converse would lead to an element \(w_1 \) obtained from \(w_1 \) by omission of a single reflection from its minimal expression, such that \(w_1 \not\in U \cup U_1 U \).

Clearly, omission of \(r_1 \) is out of the question. Omission of \(r_1 \) (\(1 < i < n \)) would lead to

\[
\begin{align*}
w_1 &= r_1 \tau_2 \cdots \tau_{i-1} \tau_i \tau_{i+1} \cdots \tau_n \cdots \tau_1 \\
&= r_1 \tau_2 \cdots \tau_{i-1} \tau_i \tau_{i+1} \cdots \tau_n \cdots \tau_{i+1} \tau_i \tau_{i-1} \tau_i \cdots \tau_1 \\
&= r_1 \tau_2 \cdots \tau_{i-1} \tau_i \tau_{i+1} \cdots \tau_n \cdots \tau_{i+1} \tau_i \tau_{i-1} \tau_i \cdots \tau_1 \\
&\in U \tau_1 \tau_2 \cdots \tau_{i-1} \tau_i \tau_{i+1} \cdots \tau_n \cdots \tau_{i+1} \tau_i \tau_{i-1} \tau_i \cdots \tau_1 = U \tau_1 \tau_2 \cdots \tau_{i-1} \tau_i \tau_{i+1} \cdots \tau_n \cdots \tau_{i+1} \tau_i \tau_{i-1} \tau_i \cdots \tau_1.
\end{align*}
\]
while omission of \(r_n \) results in

\[
{\omega}_1^1 = r_1 r_2 \ldots r_{n-1} r_n \ldots r_1 = 1.
\]

The conclusion is that there is no \(i \) \((1 \leq n)\) with \(\ell(\omega_1^i) \leq \ell(\omega_1) \), proving \(\omega_1 \notin D \setminus \{ r_1 \}, R \setminus \{ r_1 \} \).

It remains to establish that \(W \) consists of the three double \(U \)-cosets (represented by \(1, r_1, \omega_1 \)) only. To do so, it suffices to derive that \(V = U \cup Ur_1U \cup Ur_1U \) is closed under right and left multiplication by \(r_1 \).

If \(n = 2 \), then \(V = \langle r_2 \rangle \cup \langle r_2 \rangle r_1 \langle r_2 \rangle \cup r_1 r_2 r_1 \langle r_2 \rangle = W \), so we are done. Suppose, therefore, that \(n \geq 2 \). By induction, \(U = U \setminus \{ r_2 \} \cup \{ r_2 \} r_1 \cup \{ r_2 \} \). Since \(r_1 \) centralizes \(U \setminus \{ r_2 \} \) and \(r_1 r_2 r_1 = r_2 r_1 r_2 \), this yields \(r_1 U r_1 \cup \{ r_2 \} r_1 \cup \{ r_2 \} \). As \(r_1 U r_1 \subseteq U \), we obtain \(r_1 V \subseteq V \), as wanted. \(\square \)

3.7. Part (i) of the following lemma is a converse to Proposition 3.6 (i).

Lemma. Suppose \(W \) is an irreducible Weyl group and \(r \in R \).

(i) If \(W = W[r] \cup W[r] r \cup W[r] r \), then there is \(n \in \mathbb{N} \) such that \(W = W(A_n) \) and \(r = r_1 \), or \(r_n \).

(ii) If \(W = W[r] \cup W[r] r \cup W[r] r \), then \(W = W(A_2) \).

Proof. (i) In view of Lemma 3.3 (ii) applied to \(J \subseteq R \) with \(r \in J \), we have

\[
W \setminus \{ r \} \cup W \setminus \{ r \} r \setminus \{ r \}.
\]

Taking \(J = \{ s \} \) for \(s \in R \), we get \(m_{rs} \leq 3 \). Suppose the Coxeter diagram of \(W \) has a subdiagram of type \(B_n \) \((n \geq 2)\) or \(D_n \) \((n \geq 3)\) containing \(r \) as node numbered 1. Then, taking for \(J \) the reflections of the nodes in this subdiagram, we get by the above equality that \(W_j \) has only two double cosets with respect to \(W \setminus \{ r \} \), which conflicts Proposition 3.6 (ii). Therefore, using the table, we obtain that \(W = W(A_n) \).

(ii) Set \(U = W[r] \). Since \(1 \in U \cap ruR \), we have that there are at most three left \(U \)-cosets in \(W \). Clearly, \(|W/U| \geq 2 \), and if \(|W/U| = 2 \), then \(ru = Ur \), so that \(r \) centralizes \(U \), which conflicts the irreducibility of \(W \). Thus \(W \) has precisely three left \(U \)-cosets. Let \(s \in R \) with \(rs \neq sr \). Then \(W = U \cup ru \cup srU \).

Hence the group \(W \) has a representation as the full group of permutations on the three cosets of \(U \). It is readily seen (e.g., as \(W(A_n) \) is isomorphic to
the symmetric group on \(n+1 \) letters) that this representation is faithful, i.e., that \(W = W(\mathbb{A}_2) \) (as abstract groups). But then \(W = <r,s> = W(\mathbb{A}_2) \) and we are done. □

3.8. THEOREM. Let \((B_0, N_0)\) be a Tits system in \(G \) whose Coxeter group \(W \) is an irreducible Weyl group. Then

(i) The Lie incidence system \((G, G)\) is of type \(A_{2,1} \) (or, equivalently, of type \(A_{2,2} \)) iff it strictly contains a line and any two lines meet.

In this case, \((G, G)\) is a projective plane.

(ii) The Lie incidence system \((G, G)\) is of type \(A_{n,1} \) (or, equivalently, of type \(A_{n,n} \)) iff \((G, G)\) is a singular space of rank \(n \). If this holds, \((G, G)\) is a projective space of rank \(n \).

PROOF. (i) Suppose \((G, G)\) is of type \(A_{2,1} \). Then \(W = W(\mathbb{A}_2) = <r_1, r_2, r_1 > = <r_2, r_1, r_2 > = <r_1, r_2, r_1 > = <r_2, r_1, r_2 > \), according to Proposition 3.6 (i) (or by direct verification), so that Proposition 3.5 (iii), (iv) can be applied. Together with statement (v) of the same proposition, this yields that Axioms (i) and (ii) of a projective plane given in 3.1 hold for \((G, G)\). As to Axiom (iii), note that \(T \) has cardinality 2 iff \(B_0^G(r) = \emptyset \), which is equivalent to \(B_0^G(r) = \emptyset \).

Since \(B_0^G(r) \), this would lead to \(G(r) = B_0^G(r) \) so that \(B_0 \subseteq G(r) \), which is clearly absurd, in view of Lemma 2.6. Hence, \(T \), and therefore each line, has cardinality \(> 2 \). Finally, the point \(E_2 \) is not on the line \(T \), so Axiom (iv) holds, too. Thus, \((G, G)\) is a projective plane.

As for the other implication, assume \(G \) strictly contains a line and any two lines meet. Then by Proposition 3.5, we have \(W = W(r) \cup W(r) \cup W(r) \cup W(r) \cup W(r) \), so by Lemma 3.7 (ii), \(W = W(\mathbb{A}_2) \), and we are done.

(ii) Suppose that \((G, G)\) is of type \(A_{n,1} \), and put \(r = r_1 \). Then \(W = W(r) \cup W(r) \) by Proposition 3.6 (i), so \((G, G)\) is a clique, indeed. If \(n = 1 \), then \(G \) consists of a line. Let \(n \geq 1 \).

We derive that \((G, G)\) are the points and lines of a projective space by proving the fundamental axiom of Veblen and Young, cf. [VY]. This axiom states that any two lines meeting in a point span a projective plane. In other words, let \(\ell, m \) be two distinct lines intersecting in \(x \), then any two lines intersecting both \(\ell, m \) outside \(x \) meet. In order to verify this we may assume \(x = 1 \) as \(G \) is transitive on \(G \). Since the stabilizer \(G(\ell) \) of \(\ell \) is transitive on lines through \(x \), we may assume \(\ell = T \). The stabilizer of both \(x \) and \(\ell \) contains \(G(\ell, r_2) \). Since the latter group is transitive on \(\ell \) (for \(\ell^1 = G(\ell) < r_2 > = G(r_1, r_2) < r_2 > \) and \(G(\ell, r_2) = G(r_1, r_2) < r_2 > \))
that so I, l assume may we lines, G of transitivity of view In 0. ~ l p.L implies this that show shall We <r>W{r}<r>W{r}. W = since PROOF. n, THEOREM. 1 [TI]). (see Tits and Veldkamp of work earlier of systems incidence Lie mean by (n23) D n, (n22) B type of system. Here (Q,G) characterise the system. Thus (G,G) is a projective space. An easy induction argument shows that 1 = G{r} c
\subseteq G{r} \subseteq \ldots \subseteq G{r,r_2,\ldots,r_n} is a maximal chain of nonempty singular subspaces. Consequently, (G,G) has rank n.

To settle the reverse, observe that if (G,G) is a singular space, then W = W{r} N{r} W{r}, so that W = W(A_m) for some m \in N, and r = r_1 or r_n. If moreover, (G,G) has rank n, so we must have m = n by the previous paragraph.

This ends the proof of the theorem. □

3.9. EXAMPLE. Consider the case where G is a real semi-simple connected non-compact Lie group of type A_n (n>1) with finite centre. The incidence system (G,G) of type A_n,1 is then a projective space of rank n by the above theorem. This incidence system has the topology of a compact Hausdorff space on which G operates as a topological transformation group. Its lines are closed sub-varieties homeomorphic to one point compactifications of real vector spaces of dimension \nu = \mu_n for \mu a fundamental root of the root system of G (cf. 1.12 and 1.19).

In fact, the projective space is defined over a real division algebra F of dimension \nu. Thus \nu = 1,2,4 (or 8 if n=2) according as F consists of the real, complex, quaternion (or octonion) numbers. The corresponding Lie groups are G = SL(n+1,\mathbb{R}), SL(n+1,\mathbb{C}), SU^*(2n+2) = SL(s+1,\mathbb{H}) (and E_6(-26)) in the respective cases.

3.10. Here is another illustration of how to derive geometric properties from the Tits system. We derive the axiom that BUEKENHOUT & SHULT [BS] introduced to characterise Lie incidence systems of type B_n,1 (n2) and D_n,1 (n3) by means of earlier work of Veldkamp and Tits (see [T1]).

THEOREM. Let (G,G) be a Lie incidence system of type B_n,1 (n2) or D_n,1 (n3). Then for any point p \in G and any line \ell \in G, the point p is collinear with precisely one or all points of \ell.

PROOF. Since W = W(B_n) or W(D_n), we get from Proposition 3.6 (ii) that W = S(w(r)) S(w(r)). We shall show that this implies p \perp \ell \neq \emptyset.

In view of transitivity of G on lines, we may assume \ell = 1, so that
Thus, \(p^\perp \cap \mathcal{L} \neq \emptyset \) iff \(x \in G_{(r)} G_{(r)} G_{(r)} = B_0 <^W(r) <^W(r) B_0 = B_0 W B_0 = G \), we obtain \(p^\perp \cap \mathcal{L} \neq \emptyset \), as wanted. The theorem now follows from Proposition 3.5 (vi).

3.11. We end this chapter with some references to further work in this area. First of all, [T1] is the basic reference for Tits systems and the geometries called buildings, while [T2] is of use for the connection between Lie incidence systems and buildings. In [Cool], COOPERSTEIN derives for which Lie incidence systems the lines are of the form \(x^L \cap y^L \) for distinct collinear points \(x, y \). In [Coo2], he characterizes finite Lie incidence systems of type \(A_{n,d}, D_{3,5} \) and \(E_{6,1} \). The \(A_{n,d} \) characterization has been extended to the arbitrary (not necessarily finite) case by COHEN [Coh2]; other extensions of Cooperstein's result are forthcoming. Finally, dual polar spaces, i.e., Lie incidence systems of type \(B_{n,n} \) or \(D_{n,n} \) have been dealt with by CAMERON [Cam], and metasymplectic spaces, i.e. systems of type \(F_{4,1} \), by COHEN [Coh1].

REFERENCES

[Cam] CAMERON, P.J., Dual Polar Spaces, to appear in Geometriae Dedicata.

In this chapter we discuss the so-called Furstenberg boundary of a connected semisimple Lie group with finite center. Our approach is based on [4]. In particular, our point of view is that of topological dynamics. First we shall introduce some notions and results concerning T-spaces; this will culminate in the proof of the existence of a so-called universal strongly proximal minimal T-space for a given topological group T. Then for the case that T is a connected semisimple Lie group with finite center, this "abstract" entity is identified in terms of an Iwasawa decomposition. In 3 appendices, some results concerning compact convex sets in locally convex topological vector spaces and integration theory are summarized.

1. BASIC DEFINITIONS AND ELEMENTARY RESULTS

1.1. The symbol T shall always denote a topological Hausdorff group. A T-space (sometimes called a flow with phase group T or a topological transformation group with acting group T) is a pair $X := \langle X, \pi \rangle$, where X is a topological Hausdorff space and $\pi : T \times X \to X$ is a continuous mapping, satisfying the following conditions

(i) $\pi(e,x) = x$ for all $x \in X$;
(ii) $\pi(s,\pi(t,x)) = \pi(st,x)$ for all $s, t \in T$ and $x \in X$.

In order to simplify the notation, we shall usually write tx instead of $\pi(t,x)$, tb instead of $\pi([t] \times B)$, Ax instead of $\pi(A \times \{x\})$, and, in general, AB or $A.B$ instead of $\pi[A \times B]$. It is easy to see, that for every $t \in T$ the mapping

$$\pi^t : x \mapsto tx : X \to X$$

is a homeomorphism of X onto itself with inverse $(\pi^t)^{-1} = \pi^{t^{-1}}$.

the conditions (i) and (ii) above can be rewritten as $\pi^e = 1_X$ and $\pi^s \circ \pi^t =$
1.2. EXAMPLES.
(i) Let \(H \) be a closed subgroup of \(T \) and let \(T/H \) be the space of all left cosets \(sH \) of \(H \) in \(T \) (\(s \in T \)), endowed with the quotient topology (i.e. the finest topology making the quotient mapping \(\pi : s \mapsto sH : T \to T/H \) continuous). Define \(\pi : T \times (T/H) \to T/H \) by

\[
\pi(t,sH) := tsH \quad (s,t \in T).
\]

Then \(\pi \) is continuous, and it is easily verified that \(\pi \) satisfies the conditions (i) and (ii) of 1.1. So \(<T/H,\pi> \) is a \(T \)-space (that \(T/H \) is a Hausdorff space follows from the fact that \(H \) is closed).

(ii) Let \(X \) be a topological Hausdorff space and let \(\xi : X \to X \) be a homeomorphism of \(X \) onto itself. Then the mapping

\[
\pi : (n,x) \mapsto \xi^n(x) := \xi \circ \cdots \circ \xi(x) : \mathbb{Z} \times X \to X
\]

defines an action of \(\mathbb{Z} \) on \(X \), so that \(<X,\pi> \) is a \(\mathbb{Z} \)-space. Note, that \(\pi^1 = \xi \); therefore, we shall denote this \(\mathbb{Z} \)-space \((X,\xi) \) and call it the discrete flow, generated by \(\xi \).

1.3. Let \(X = <X,\pi> \) be a \(T \)-space. A subset \(A \) of \(X \) is called invariant whenever \(TA \subseteq A \). If \(A \) is invariant, then also its closure \(\overline{A} \) is invariant. The smallest closed invariant subset of \(X \) containing a point \(x \) is clearly \(\overline{Tx} \), the closure of the orbit \(Tx \) of \(x \) (\(\overline{Tx} \) is called the orbit-closure of \(x \)). It is not always the case that for \(x,y \in X \) one has \(y \in \overline{Tx} \) iff \(x \in \overline{Ty} \) (the orbit-closures may not form a partition of \(X \)). Orbit-closures with this property are called minimal. Formally, a subset \(M \) of \(X \) is called minimal whenever \(M \neq \emptyset \), \(M \) is closed and invariant, and if \(A \) is a closed, invariant subset of \(X \) such that \(A \subseteq M \), then either \(A = \emptyset \) or \(A = M \). If \(M \) is a subset of \(X \), then the following statements are equivalent:

(i) \(M \) is minimal;
(ii) \(M \neq \emptyset \) and \(\forall x \in M : \overline{Tx} = M \);

In particular, it follows that an orbit-closure \(\overline{Tx} \) is minimal iff \(\overline{Ty} = \overline{Tx} \) for every \(y \in \overline{Tx} \), iff \(x \in \overline{Ty} \) for every \(y \in \overline{Tx} \).

Since minimal subsets of \(X \) are the minimal elements of the partial ordering (with respect to inclusion) of all non-empty, closed, invariant
1.4. **THEOREM.** Every non-empty compact invariant subset of X includes a minimal subset. In particular, if X is compact, then there is a minimal subset of X. \[]

1.5. **CONSTRUCTIONS**

(i) Let Y be an invariant subset of X, where $X = <X,\pi>$ is a T-space. Then the restriction of π to $T \times Y$ is an action of T on Y, which will, for convenience, also be denoted by π. Thus, we obtain the T-space $<Y,\pi> = Y$. Notation: $Y \subseteq X$.

(ii) Let Λ be an index set and let for every $\lambda \in \Lambda$ be given the T-space $X_\lambda = <X,\pi_\lambda>$. Then the product of the T-spaces $X_\lambda (\lambda \in \Lambda)$ is the T-space $X = <X,\pi>$, where

$$X := \prod_{\lambda \in \Lambda} X_\lambda$$

(cartesian product with the product topology)

$$\pi(t, (x_\lambda)_{\lambda \in \Lambda}) := (\pi_\lambda(t, x_\lambda))_{\lambda \in \Lambda}$$

for $t \in T$ and $x = (x_\lambda)_{\lambda \in \Lambda} \in X$.

It is easily verified that X is, indeed, a T-space. Notation: $X = \prod_{\lambda \in \Lambda} X_\lambda$.

1.6. A **morphism** of T-spaces $\phi: X \to Y$ is a continuous mapping $\phi: X \to Y^*$ such that $\phi(tx) = t\phi(x)$ for all $t \in T$ and $x \in X$. If ϕ is a surjection of X onto Y, then Y is also called a factor of X by ϕ, and X is called an extension of Y by ϕ. An isomorphism of T-spaces is, of course, a morphism of T-spaces $\phi: X \to Y$ such that ϕ is a homeomorphism of X onto Y. In that case, $\phi^*: Y \to X$ is also an isomorphism of T-spaces.

If $\phi: X \to Y$ is a morphism of T-spaces, then ϕ defines an equivalence relation R_ϕ on X, namely,

$$R_\phi := \{(x, x') \in X \times X; \phi(x) = \phi(x')\}.$$

Clearly, R_ϕ is a closed, invariant subset of $X \times X$.

1.7. Let X and Y be T-spaces and let $\phi: X \to Y$ be a morphism of T-spaces.

The following statements are easily verified:

* We shall adopt the following convention: unless stated otherwise, $X := <X,\pi>, Y := <Y,\sigma>$ and $Z := <Z,\zeta>$.
(i) If \(A \) is an invariant subset of \(X \) then \(\phi[A] \) is invariant in \(Y \), and if \(B \) is an invariant subset of \(Y \), then \(\phi^+[B] \) is invariant in \(X \).

(ii) If \(A \) is a minimal subset of \(X \), then \(\phi[A] \) is minimal in \(Y \) (consider \(A \cap \phi^+[B] \) for a closed invariant subset \(B \) of \(\phi[A] \)).

In particular, if \(X \) is compact (hence \(\phi[X] \) closed in \(Y \)) and \(Y \) is minimal then \(\phi \) must be surjective (so \(Y \) is a factor of \(X \)), and if \(X \) is minimal and \(\phi \) is surjective, then \(Y \) is minimal.

1.8. Our aim is, among others, to study factors of compact Hausdorff \(T \)-spaces. So from now on all our \(T \)-spaces will be compact and Hausdorff (although for certain definitions and results compactness is not needed).

2. PROXIMAL FLOWS

2.1. Two points \(x, y \) in a \(T \) space \(X \) are called proximal whenever \(\overline{T(x,y)} \cap \Delta_X = \emptyset \); here \(\Delta_X := \{(z,z) : z \in X\} \). If the points \(x \) and \(y \) are proximal, then \((x,y)\) is called a proximal pair. So \((x,y)\) is a proximal pair whenever there exists a point \(z \in X \) such that

\[
\forall U \in \mathcal{V}_z \quad \exists t \in T: tx \in U \text{ and } ty \in U
\]

(here \(\mathcal{V}_z \) denotes the neighbourhood filter of \(z \)). Obviously, if \((x,y)\) is a proximal pair, then \(\overline{T(x,y)} \cap \Delta_X \neq \emptyset \).

A \(T \)-space \(X \) is called proximal whenever each pair of points is a proximal pair.

2.2. LEMMA. A \(T \)-Space \(X \) is proximal iff every minimal subset of \(X \times X \) is contained in \(\Delta_X \).

PROOF. If \(X \) is proximal and \(M \) is minimal in \(X \times X \), then for \((x,y) \in M \) we have \(\overline{T(x,y)} \cap \Delta_X \neq \emptyset \), but also \(\overline{T(x,y)} \subseteq M \). Hence \(M \cap \Delta_X \neq \emptyset \), and \(M \cap \Delta_X \) is a closed, invariant subset of \(M \). By minimality, \(M \cap \Delta_X = M \), that is, \(M \subseteq \Delta_X \).

Conversely, if every minimal subset of \(X \times X \) is contained in \(\Delta_X \), then this is in particular the case for the minimal subset, which is included in \(\overline{T(x,y)} \) (cf. 1.4). Hence \(\overline{T(x,y)} \cap \Delta_X \neq \emptyset \) for arbitrary \((x,y) \in X \times X \). \(\square \)

2.3. COROLLARY. If \(X_\lambda \) is a proximal \(T \)-space for every \(\lambda \in \Lambda \), then \(\Pi_{\lambda \in \Lambda} X_\lambda \) is proximal.
PROOF. Let \(X := \prod_{\lambda \in \Lambda} X_\lambda \), and, for every \(\lambda \in \Lambda \), \(p_\lambda : X \to X_\lambda \) the canonical projection; obviously, each \(p_\lambda \) is a morphism of \(T \)-spaces. If \(M \) is a minimal subset of \(X \times X \), then \(p_\lambda \times p_\lambda[M] \) is minimal in \(X_\lambda \times X_\lambda \) (cf. 1.7) hence \(p_\lambda \times p_\lambda[M] \subseteq \Delta_{X_\lambda} \), by 2.2. This implies, that \(M \subseteq \Delta_X \), hence \(X \) is proximal by 2.2.

2.4. PROPOSITION. Let \(X \) be a proximal \(T \)-space. Then:

(i) If \(Z \) is a closed, invariant subset of \(X \), then \(Z \) is proximal.

(ii) If \(\phi : X \to Y \) is a factor, then \(Y \) is proximal.

PROOF. (i) is obvious, and for (ii), observe that \(\phi \times \phi[T(x,y)] = \overline{T(\phi x, \phi y)} \).

(Indeed, \(\phi \times \phi[T(x,y)] = T(\phi x, \phi y) \) because \(\phi \) is a morphism of \(T \)-spaces. Hence \(\phi \times \phi[T(x,y)] \subseteq \overline{T(\phi x, \phi y)} \) because \(\phi \times \phi \) is continuous. But \(\phi \times \phi[T(x,y)] \) is compact, hence closed, so that \(\phi \times \phi[T(x,y)] = \overline{T(\phi x, \phi y)} \).

Now it is clear that for each pair \(z_1, z_2 \in Y \) we have:

\[\overline{T(\phi z_1, \phi z_2)} \cap \Delta_Y = \phi \times \phi[T(x,y)] \cap \Delta_Y \subseteq \phi \times \phi[T(x,y)] \cap \Delta_X \neq \emptyset; \]

here \(x, y \in X \) are such, that \(\phi x = z_1 \) and \(\phi y = z_2 \).

2.5. PROPOSITION. Let for \(i = 1,2 \), \(\phi_i : X \to Y \) be a factor, \(X \) and \(Y \) minimal and, in addition \(Y \) proximal. Then \(\phi_1 = \phi_2 \).

PROOF. Consider for \(i = 1,2 \) the graph of \(\phi_i \):

\[\Gamma_i := \{ (x, \phi_i(x)) \mid x \in X \} \subseteq X \times Y. \]

Then \(\Gamma_i \) is a closed, invariant subset of \(X \times Y \). As \(\Gamma_i \) is the image of \(X \) under the mapping \(x \to (x, \phi_i(x)) \), and this mapping is a morphism of \(T \)-spaces, \(\Gamma_i \) is minimal (cf. 1.7).

We claim, that two points \((x,y) \) and \((x,y') \) in \(X \times Y \) are always proximal. If this is true, then in particular for every \(x \in X \) the points \((x, \phi_1(x)) \) and \((x, \phi_2(x)) \) are proximal. Let \((u,v) \in X \times Y \) be the point such that for every neighbourhood of \((u,v) \), say \(U \times V \) (\(U \in \mathcal{U}_u \) and \(V \in \mathcal{V}_v \)), there exists \(t \in T \) with

\[t(x, \phi_1(x)) \in U \times V, \quad t(x, \phi_2(x)) \in U \times V. \]

This implies...
(u,v) \in T(x,\hat{\tau}_1(x)) \text{ and } (u,v) \in T(x,\hat{\tau}_2(x)),

hence (u,v) \in \Gamma_1 \cap \Gamma_2. As \Gamma_1 \text{ and } \Gamma_2 \text{ are minimal, this implies that } \Gamma_1 = \Gamma_2, \text{ hence } \hat{\phi}_1 = \hat{\phi}_2.

It remains to prove our claim. So consider (x,y) and (x,y') in \(X \times Y \). Since Y is proximal, there exists z \in Y such that

\[(*) \quad \forall W \in \mathcal{V}_z \exists t_W \in \mathcal{T} : t_W y \in W \text{ and } t_W y' \in W. \]

Since X is compact, the family of sets

\[F_W := \{ t_{W'} x : W' \in \mathcal{V}_z \text{ and } W' \subseteq W \} \]

for \(W \in \mathcal{V}_z \) has a non-empty intersection in X. Let

\[x' \in \bigcap_{W \in \mathcal{V}_z} F_W. \]

Consider an arbitrary neighbourhood of the point \((x',z) \) in \(X \times Y \), say \(U \times V \) with \(U \in \mathcal{V}_x \) and \(V \in \mathcal{V}_z \). Since \(x' \in F_V \), we have that

\[U \cap \{ t_{W'} x : W' \in \mathcal{V}_z \text{ and } W' \subseteq V \} \neq 0. \]

So there exists \(W' \in \mathcal{V}_z \), \(W' \subseteq V \), such that

\[t_{W'} x \in U. \]

On the other hand, by \((*) \) we have

\[t_W y \in W' \text{ and } t_W y' \in W'. \]

Hence \(t_{W'} (x,y) \in U \times W' \subseteq U \times V \) and \(t_{W'} (x,y') \in U \times W' \subseteq U \times V \). This proves our claim. \(\square \)

2.6. \textbf{Corollary.} Let \(X \) be minimal and proximal. Then the only \(T \)-endomorphism of \(X \) is \(1_X \colon X \to X. \) \(\square \)

2.7. \textbf{Corollary.} If \(T \) is abelian, then the trivial one-point flow is the only flow which is minimal and proximal.
PROOF. Suppose \(X \) is a minimal and proximal \(T \)-space. For every \(t \in T \), \(\pi^t : X \to X \) is an endomorphism, because \(T \) is abelian. Hence \(\pi^t = 1_X \), i.e. the action is trivial. As \(X \) is minimal, this implies that the space consists of one point. \(\square \)

2.8. REMARK. If \(T \) is compact, then every minimal and proximal flow is trivial as well. Indeed, for every \(x,y \in X \) we have \(T(x,y) = T(x,y) \), hence proximality implies that \(T(x,y) \cap \Delta_X \neq \emptyset \), i.e. there exists \(t \in T \) such that \(tx = ty \), hence \(x = y \). A group \(T \), which admits no nontrivial minimal proximal flows will be called strongly amenable. Thus, abelian groups and compact groups are strongly amenable.

2.9. If \(X = \langle X, \pi \rangle \) is a \(T \)-space, and \(S \) is a subgroup of \(T \), then the action of \(T \) on \(X \) induces an action of \(S \) on \(X \). In general, one cannot expect that if \(X \) is minimal, then \(X \) is minimal under the action of \(S \). For proximality, however, we have:

2.10. PROPOSITION. Let \(S \) be a subgroup of \(T \) and suppose that there exists a compact subset \(K \) of \(T \) such that \(T = KS \). If \(X \) is proximal, then \(X \) is proximal under the action of \(S \).

PROOF. First, observe that for any subset \(A \) of \(X \times X \) (similarly: for a subset \(A \) in any \(T \)-space \(Z \)) we have \(KA = KA \). (Indeed, since \(K \) and \(A \) are compact, \(KA \) is compact, hence closed, and \(KA \subseteq KA \), so \(KA \subseteq KA \).) On the other hand, for every \(k \in K \) one has \(kA = KA \subseteq KA \), so \(KA \subseteq KA \).

Now for every pair \((x,y) \in X \times X \) we apply this to \(T(x,y) \); so

\[
\overline{T(x,y)} = KS(x,y) = KS(x,y).
\]

However, \(\overline{T(x,y)} \cap \Delta_X \neq \emptyset \), so \(KS(x,y) \cap \Delta_X \neq \emptyset \). Since \(\Delta_X \) is invariant under \(K \), it follows that \(S(x,y) \cap \Delta_X \neq \emptyset \). \(\square \)

2.11. REMARK. If \(S \) is a closed subgroup of \(T \) and \(T = KS \) with \(K \) compact, then the space \(T/S \) of left cosets of \(S \) (endowed with the usual quotient topology) is a compact Hausdorff space. Conversely, if \(T/S \) is compact and, in addition, \(T \) is locally compact, then it is easy to show that there exists a compact subset \(K \) of \(T \) such that \(T = KS \). (Proof: let \(U \) be a compact neighbourhood of \(e \) in \(T \). Since the quotient mapping \(q: t \mapsto ts : T \to T/S \) is open, the image under \(q \) of every translate \(sU \) of \(U \) (\(s \in T \)) is open in \(T/S \). As \(T/S \) is compact, there are finitely many \(s_1, \ldots, s_n \in T \) such that \(\bigcup_{i=1}^{n} q[s_i U] = T/S \), that is, \(\bigcup_{i=1}^{n} s_i U = T \). Now \(K := \bigcup_{i=1}^{n} s_i U \) is the desired compact set.)
3. STRONGLY PROXIMAL FLOWS

For results and notation from functional analysis, we refer to appendix A1 to this chapter. In particular, one can find there the definition of the space $M(X)$ of probability measures on a compact Hausdorff space X.

3.1. Consider a T-space $X = \langle X, \tau \rangle$. Then for every $t \in T$ the mapping $M(s^t)$: $M(X) \to M(X)$ is defined according to A1.5. For convenience, we shall write for $t \in T$ and $\mu \in M(X)$:

$$t\mu := M(s^t)(\mu) = \mu \circ s^t.$$

Then $(t, \mu) \mapsto t\mu: T \times M(X) \to M(X)$ is a mapping, satisfying the following conditions:

(i) $e\mu = \mu$ (for s^0 is the identity mapping of $C(X)$)

(ii) $\forall s, t \in T: s(t\mu) = (st)\mu$ (for $s^t \circ s^s = s^{ts}$)

(iii) the mapping $(t, \mu) \mapsto t\mu: T \times M(X) \to M(X)$ is continuous.

(The proof is as follows; consider $(t, \mu) \in T \times M(X)$ and for every $(s, v) \in T \times M(X)$ and for every (fixed) $f \in C(X)$:

$$|t\mu(f) - sv(f)| = |\mu(f \circ s^t) - v(f \circ s^s)| \leq$$

$$\leq |\mu(f \circ s^t) - v(f \circ s^s)| + |v(f \circ s^s) - v(f \circ s^t)|$$

$$\leq |\mu(f \circ s^t) - v(f \circ s^s)| + \|f \circ s^t - f \circ s^s\|.$$

As $f \circ \pi$ is continuous on $T \times X$ and X is compact, there exists for every $\varepsilon > 0$ a neigbourhood V of t in T such that

$$|f \circ \pi(t, x) - f \circ \pi(s, x)| < \varepsilon \text{ for all } s \in V, x \in X.$$

Hence $\|f \circ s^t - f \circ s^s\| \leq \varepsilon$ for all $s \in V$. Moreover, if $v \in U_\mu((f \circ \pi^t), \varepsilon)$ (see A1.1 for the notation) we have

$$|\mu(f \circ \pi^t) - v(f \circ \pi^t)| < \varepsilon.$$

Consequently, for all (s, v) in the neigbourhood $V \times U_\mu((f \circ \pi^t), \varepsilon)$ of (t, f) in $T \times M(X)$ we have $|t\mu(f) - sv(f)| < 2\varepsilon$. This proves the desired continuity.
It follows, that the mapping \((t,\mu) \mapsto t\mu: T \times M(X) \to M(X)\) is an action of \(T\) on the compact Hausdorff space \(M(X)\).

3.2. Let us, again, consider a \(T\)-space \(X = \langle X, \pi \rangle\), and consider the embedding mapping \(\delta: X \to M(X)\). It follows from the diagram in 1.5, that \(\delta\) is a morphism of \(T\)-spaces; so if we consider \(X\) as a closed subset of \(M(X)\) (via the embedding \(\delta\)), then \(X\) is invariant in \(M(X)\) under the action of \(T\) on \(M(X)\), and the action of \(T\) on \(X\) is the restriction of the action of \(T\) on \(M(X)\).

Therefore, for convenience (and in accordance with 1.5(i)) the action of \(T\) on \(M(X)\) will also be denoted by \(\pi\). So we have the following diagram for each \(t \in T\):

\[
\begin{array}{ccc}
M(X) & \xrightarrow{\pi^t} & M(X) \\
\downarrow & & \downarrow \\
X & \xrightarrow{\pi^t} & X \\
\end{array}
\]

The following observations are easily verified

(i) \(\forall t \in T: \pi^t: M(X) \to M(X)\) is affine (that is, for all \(u, v \in M(X)\) and \(a \in [0,1]\) the equality \(\pi^t(au + (1-a)v) = a\pi^t u + (1-a)\pi^t v\) holds); this is an immediate consequence of the fact, that \(\pi^t\) is the restriction of a linear operator to a convex set.

(ii) \(\exists M(X) = \delta[X]\) is a closed invariant subset of the \(T\)-space \(\langle M(X), \pi \rangle\), which is different from \(M(X)\). So \(\langle M(X), \pi \rangle\) is not minimal.

3.3. The \(T\)-space \(X = \langle X, \pi \rangle\) is called strongly proximal whenever \(\langle M(X), \pi \rangle\) is proximal.

Since by 3.2 the \(T\)-space \(X\) is isomorphic with a closed invariant subset of \(M(X)\), and invariant sub-\(T\)-spaces of a proximal \(T\)-space are also proximal, we have:

3.4. PROPOSITION. If \(X\) is strongly proximal, then \(X\) is proximal. \(\square\)

The following result characterises strong proximality:

3.5. LEMMA. The following conditions are equivalent for a \(T\)-space \(X:\)
(i) X is strongly proximal;
(ii) $\forall u \in M(X): \overline{T_u \cap \delta[X]} \neq \emptyset$ (i.e. $\exists x \in X \delta_x \subset \overline{T_u}$).

Proof. (i) \Rightarrow (ii): Consider $u \in M(X)$ and $z \in X$. By proximality of $M(X)$ we have (closures are in $M(X)$): $\overline{T_u \cap \delta_z} \neq \emptyset$ (see 2.1). Since $\delta[X]$ is closed and invariant, we have $\overline{T_z \cap \delta[X]} \neq \emptyset$.

(ii) \Rightarrow (i): Consider the mapping

$$\phi: (u, v) \mapsto \frac{1}{2}(u+v): M(X) \times M(X) \rightarrow M(X).$$

Then ϕ is continuous (this is a consequence of the fact, that the w^*-topology in $C(X)'$ is a vector space topology) and ϕ is a morphism of T-spaces (each of the mappings w^* on $M(X)$ is affine). As $M(X)$ is compact, orbit closures are mapped onto orbit closures by ϕ, so for all $u, v \in U(X)$:

$$\overline{T(\mu, \nu)} = \overline{T(\phi(\mu, \nu))}.$$

By (ii), $\delta_x \subset \overline{T(\mu, \nu)}$ for some $x \in X$, hence there are $\mu', \nu' \in \overline{T(\mu, \nu)}$ such that $\phi(\mu', \nu') = \delta_x$, that is, $\frac{1}{2}(\mu' + \nu') = \delta_x \in \text{ex } M(X)$. Consequently, $\mu' = \nu'$, hence $\overline{T(\mu, \nu)} \cap \Delta_x \neq \emptyset$. This proves (i). \square

3.6. **Example.** Let G be a semisimple connected Lie group with finite center, and let $G = \text{KAN}$ be an Iwasawa decomposition of G. Then, if $P := N_G(N)$ (normaliser of N in G), G/P is compact, and, under the natural action of G on G/P (cf. 1.2(i)), G/P is a compact, minimal G-space (minimality: G/P consists of just one G-orbit). We shall show in 4.7 below that G/P is strongly proximal (this result is due to C.C. Moore, 1964). In particular, it follows that G/P admits no invariant measure (if μ were an invariant measure on G/P, then $\overline{T\mu} = \{\mu\}$, hence by 3.5, μ is a point measure of the form δ_x for $x \in G/P$. But then x would be an invariant point in G/P (because δ is a morphism of G-spaces), a contradiction).

3.7. If $\phi: X \rightarrow Y$ is a morphism of T-spaces, then ϕ induces a continuous mapping $M(\phi): M(X) \rightarrow M(Y)$. Since for all $t \in T$ we have $\phi \circ \pi^t = \phi \circ t$, we also have $M(\phi) \circ M(\pi^t) = M(\phi) \circ M(\phi)$. In view of the definition of the actions of T on $M(X)$ and $M(Y)$, respectively, it follows, that $M(\phi)$ is a morphism of T-spaces.

3.8. **Proposition.** Suppose that $X = \langle X, \pi \rangle$ is a strongly proximal T-space and
that \(Y \) is a closed, invariant subset of \(X \). Then \(\langle Y, \pi \rangle \) is strongly proximal.

Proof. By appendix A1.5, the inclusion mapping \(i : Y \to X \) induces an injection \(M(i) : M(Y) \to M(X) \). So \(M(Y) \) may be considered as a closed invariant subset of the (proximal!) \(T \)-space \(M(X) \). Hence \(M(Y) \) is proximal, that is, \(\langle Y, \pi \rangle \) is strongly proximal. \(\square \)

3.9. Proposition. Let \(J \) be an index set and let, for every \(i \in J \), \(X_i := \langle X_i, \pi_i \rangle \) be a strongly proximal \(T \)-space. Then the product \(\prod_{i \in J} X_i \) is strongly proximal as well.

Proof. (1). First we prove the result for finite products. Using induction, it is easy to see that we may restrict ourselves to the case of a product of two strongly proximal \(T \)-spaces \(X_1 \) and \(X_2 \). For \(j = 1, 2 \), let \(p_j : X_1 \times X_2 \to X_j \) be the projection and let \(\psi_j := M(X_1 \times X_2) \to M(X_j) \) be the induced mapping. Since \(\psi_1 \) and \(\psi_2 \) are morphisms of \(T \)-spaces and all orbit closures under consideration are compact, it follows that

\[
\psi_j[T\mu] = T\psi_j(\mu) \quad \text{for all } \mu \in M(X_1 \times X_2) \quad (j=1,2).
\]

Let \(\mu \in M(X) \). Since \(X_1 \) is strongly proximal, it follows from 3.5, that

\[
\overline{T\psi_1(\mu)} \cap \delta^{(1)}[X_1] \neq \emptyset.
\]

Hence by (1) there exists \(\mu' \in \overline{T\psi_1(\mu)} \) such that \(\psi_1(\mu') \in \delta^{(1)}[X_1] \). This implies that

\[
\psi_1[T\mu'] = T\psi_1(\mu') \subseteq \delta^{(1)}[X_1],
\]

because \(\delta^{(1)}[X_1] \) is closed and invariant in \(M(X_1) \). Now 3.5, applied to \(X_2 \) implies, that \(\overline{T\psi_2(\mu')} \cap \delta^{(2)}[X_2] \neq \emptyset \), so there exists \(\mu'' \in \overline{T\psi_2(\mu')} \) with \(\psi_2(\mu'') \in \delta^{(2)}[X_2] \). Then (2) implies that

\[
\psi_1(\mu'') \subseteq \psi_1[T\mu'] \subseteq \delta^{(1)}[X_1].
\]

Consequently, we have \(x_1 \in X_1 \) and \(x_2 \in X_2 \) such that

\[
\psi_1(\mu'') = \delta^{(1)}_{x_1} \quad \text{and} \quad \psi_2(\mu'') = \delta^{(2)}_{x_2}.
\]
Then it is not difficult to show that \(\mu'' = \delta(x_1, x_2)^\ast \) (point-measure on \(X_1 \times X_2 \)). So we have

\[
\delta(x_1, x_2) \in \overline{\mu''} \subseteq \overline{\mu'},
\]

hence 3.5 implies that \(X_1 \times X_2 \) is strongly proximal.

(2) Now suppose \(J \) is infinite. For every finite subset \(F \) of \(J \), let \(p_F: X := \prod_{i \in J} X_i \to \prod_{j \in F} X_j =: X_F \) be the projection, and let \(\psi_F := M(p_F): M(X) \to M(X_F) \) be the induced mapping. Finally, let \(F \) be the set of all finite subsets of \(J \). Since for each \(F \in F \) we have a morphism of \(T \)-spaces

\[
\psi_F: M(X) \to M(X_F),
\]

such that for every \(F \in F \) and \(\mu \in M(X) \), we have

\[
\psi_F(\mu) = (\psi_F(\mu))_{F \in F}.
\]

By the first part of the proof, each \(M(X_F) \) is proximal (for \(X_F \) is strongly proximal), hence by 2.3, the full product \(\prod_{F \in F} M(X_F) \) is proximal. However, by the Stone-Weierstrass theorem, \(\psi \) is injective, hence a topological embedding (indeed, all spaces under consideration are compact Hausdorff). So \(M(X) \), being isomorphic with a closed invariant subset of a proximal \(T \)-space is proximal, i.e. \(X \) is strongly proximal.

\[\ast\] If \(U_i \) is open in \(X_i \) (i=1,2) and \((x_1, x_2) \not\in U_1 \times U_2 \), then it is easy to see that \(\mu''(U_1 \times U_2) = 0 \) (suppose \(x_1 \not\in U_1 \); then we have \(\mu''(U_1 \times U_2) \leq \mu''(U_1) = \psi_1(U_1) = 0 \)). If \(S \) is a compact subset of \(X_1 \times X_2 \), and \((x_1, x_2) \not\in S \), then \(S \) can be covered by finitely many rectangles, none of which contains \((x_1, x_2) \), i.e. each having \(\mu'' \)-measure zero. Hence \(\mu''(S) = 0 \). This implies, that the support of \(\mu'' \) is included in \(\{(x_1, x_2)\} \), hence \(\mu'' = \delta(x_1, x_2) \).

\[\ast\ast\] Consider \(\mu, \nu \in M(X) \) such that \(\psi(\mu) = \psi(\nu) \), that is, \(\psi_F(\mu) = \psi_F(\nu) \) for all \(F \in F \). Let

\[
A := \{ f \circ p_F \mid F \in F \land f \in \mathcal{C}(X_F) \}.
\]

It follows immediately from the definitions and assumptions, that for every \(g \in A \) we have (say \(g = f \circ p_F, f \in \mathcal{C}(X_F) \)):

\[
\mu(g) = \mu(f \circ p_F) = \psi_F(\mu)(f) = \psi_F(\nu)(f) = \nu(f \circ p_F) = \nu(g).
\]

Now \(A \) is a subalgebra of \(\mathcal{C}(X) \) containing the constant functions and separating the points of \(X \), so \(A \) is dense in \(\mathcal{C}(X) \) (Stone-Weierstrass). As \(\nu|_A = \nu|_A \), this implies that \(\mu = \nu \). This shows, that \(\psi \) is injective.
3.10. **Proposition.** Let \(\phi: X \to Y \) be a surjective morphism of T-spaces. If \(X \) is strongly proximal, then so is \(Y \).

Proof. The induced morphism \(M(\phi): M(X) \to M(Y) \) is surjective (A1.5). Now apply 2.4(ii). \(\Box \)

3.11. **Theorem.** There exists a unique (up to isomorphism) universal minimal strongly proximal T-space \(S_P^T \), which is characterized by the following properties

(i) \(S_P^T \) is minimal and strongly proximal;

(ii) For every minimal, strongly proximal \(Y \) there exists a unique morphism of T-spaces \(\phi:S_P^T \to Y \).

Proof. Since in every minimal T-space an image of \(T \) is dense, there is only a set of isomorphism types of minimal T-spaces*. Let \(\{X_i\}_{i \in I} \) be a complete set of representatives of isomorphism classes of strongly proximal, minimal T-spaces. Let \(S_P^T \) be the T-space, defined by a minimal subset of the product \(\prod_{i \in I} X_i \) (cf. 1.4 and 1.5(i)). Then 3.8 and 3.9 imply, that \(S_P^T \) is strongly proximal; by choice, \(S_P^T \) is minimal. So condition (i) is fulfilled.

If \(Y \) is an arbitrary minimal, strongly proximal T-space, then \(Y \) is isomorphic to \(X_j \) for some \(j \in J \). Therefore, the restriction to \(S_P^T \) of the projection \(p_j: \prod_{i \in I} X_i \to X_j \) defines a morphism of T-spaces from \(S_P^T \) into \(Y \) (and, by 1.7, onto \(Y \)). It follows from 2.5, that such a morphism is unique. So (ii) is satisfied.

Finally, suppose that \(X' \) is a T-space with properties (i) and (ii). Then there exists (unique) morphisms of T-spaces \(\phi:S_P^T \to X' \) and \(\psi:X' \to S_P^T \). Then by 2.6, \(\psi \circ \phi \) is the identity map of \(S_P^T \) and \(\phi \circ \psi \) the identity map of \(X' \). It follows that \(\phi \) (and \(\psi \) as well) is an isomorphism. Thus, \(S_P^T \) is unique up to isomorphism. \(\Box \)

3.12. **Remark.** Let \(G \) and \(P \) be as in Example 3.6. We shall show in section below, that \(G/P \cong S_P^G \), i.e. \(G/P \) is the universal strongly proximal minimal G-space. For the proof we need, however, more knowledge about strongly proximal T-spaces; in particular, we need to know the relationship between strong proximality and (the non-existence of) invariant measures.

*) The cardinality of a minimal T-space \(X \) is at most \(2^{2|T|} \) because each point of \(X \) determines a filter in \(T \) (for given \(x \in X \)), namely, the trace of the neighbourhood filter of that point in \(T \). On a set of cardinality \(\leq \kappa \), there are no more than \(2^{2\kappa} \) topological structures, and no more than \(|T| \times \kappa^2 \) possible actions of \(T \).
4. AFFINE T-SPACES; FIXED-POINT THEOREMS

4.1. Let E be a (real) locally convex topological vector space, Q a non-empty compact convex subset of E and σ an action of T on Q. Then the T-space $Q := \langle Q, \sigma \rangle$ is called affine whenever each homeomorphism $\sigma^t : Q \to Q$ ($t \in T$) is an affine mapping, i.e. $\sigma^t(ax + (1-a)y) = a\sigma^t(x) + (1-a)\sigma^t(y)$ for $x, y \in Q$ and $0 \leq a \leq 1$.

It is clear, that for every T-space X (on a compact space X) the corresponding T-space on $M(X)$ is affine (cf.3.2).

Note, that non-trivial affine T-space Q cannot be minimal: it is obvious that $\text{ex } Q$ is invariant, so $\text{ex } Q$ is invariant as well. By the Krein-Milman theorem, $\text{ex } Q \neq \emptyset$, and also $\text{ex } Q \neq Q$, unless $\text{ex } Q$ consists of just one point, in which case Q also consists of one point. In the study of affine T-spaces it is, therefore, not the notion of minimality which is important, but the notion of irreducibility. A non-empty, closed invariant convex subset A of an affine T-space Q is called irreducible whenever the only closed, invariant convex subsets of A are \emptyset and A. Similar to theorem 1.4 it follows from ZORN's lemma, that

4.2. **Theorem.** Every affine T-space Q contains an irreducible subset. □

For our purposes, the most important result is the following theorem. For a part of its proof, we refer to appendix A2.

4.3. **Theorem.** Let Q be an affine T-space. The following conditions are equivalent:

(i) Q is irreducible
(ii) Q is strongly proximal and $\text{ex } Q$ is minimal.
(iii) $\text{ex } Q$ is strongly proximal and minimal.

Proof.

(i) \Rightarrow (ii): Let Y be a closed invariant subset of Q. Then $\overline{\text{co } Y}$ is invariant as well, hence by irreducibility of Q, $\overline{\text{co } Y} = Q$. Now A1.3 (second part) implies, that $\overline{\text{ex } Q} \subseteq Y$. Since this holds for every closed invariant subset Y of Q, it follows, that $\overline{\text{ex } Q}$ is minimal (in fact, it follows, that $\overline{\text{ex } Q}$ is the unique minimal subset of Q).

In order to prove, that Q is strongly proximal, it is sufficient to show, that $\overline{\text{ex } Q}$ is the unique minimal subset of $M(Q)$: indeed, if this is true, then every orbit closure in $M(X)$, since it contains by 1.4 a
minimal subset, contains the set \(\delta(Q)\overline{[Q]} \). As \(\delta(Q)\overline{[Q]} \subseteq \delta(Q)[Q] \), it follows, that every orbit closure in \(M(Q) \) meets \(\delta(Q)[Q] \). But then the result follows from 3.5.

So consider a closed, invariant subset \(Y' \) of \(M(Q) \). By A2.7, the barycenter map \(b(Q) : M(Q) \to Q \) is a morphism of T-spaces, so \(b(Q)[Y'] \) is a closed, invariant subset of \(Q \). By the first part of our proof, \(\overline{ex \ Q} \subseteq b(Q)[Y'] \). Then it follows from A2.4, that \(\delta(Q)[Q] \subseteq Y' \), and this implies, that \(\delta(Q)\overline{[Q]} \subseteq Y' = Y' \). Since this holds for every closed invariant subset \(Y' \), this shows, indeed, that \(\delta(Q)[Q] \) is the unique minimal subset of \(M(Q) \).

(ii)\(\Rightarrow\)(iii): Clear from 3.8.

(iii)\(\Rightarrow\)(i): Let \(A \) be a non-empty compact convex invariant subset of \(Q \). If we put \(X := \overline{ex \ Q} \) and \(b(X) : M(X) \to Q \) the corresponding barycenter mapping, then the pre-image \(B := b(X)^{-1}[A] \) of \(A \) is a non-empty compact convex invariant (cf. A2.7) subset of \(M(X) \). Now \(X \) is given to be minimal and strongly proximal, so \(M(X) \) is proximal, and \(\delta(X)[X] \) is a minimal subset of \(M(X) \). If \(x \in B \) and \(y \in \delta(X)[X] \), then by proximality, their orbit closures intersect each other. Since \(\overline{tx} \subseteq B \) and \(\overline{ty} = \delta(X)[X] \), it follows that \(B \cap \delta(X)[X] \neq \emptyset \), and as \(\delta(X)[X] \) is minimal, this implies that \(B = \delta(X)[X] \). Hence \(M(X) - \overline{co \delta(X)[X]} \subseteq B \) (cf. A1.4), so that \(A = Q \). This shows, that \(Q \) is irreducible. \(\square \)

4.4. A topological group \(T \) is said to have the fixed point property whenever every affine T-space \(Q \) has a fixed point (= invariant point). A topological group \(T \) is said to be amenable whenever condition (ii) in the following theorem is satisfied**.

4.5. THEOREM. The following properties are equivalent for a topological group \(T \):

(i) \(T \) has the fixed point property;
(ii) Every T-space \(X \) (on a compact Hausdorff space!) has an invariant measure***, i.e. \(T \) is amenable;
(iii) Every minimal strongly proximal T-space \(X \) is trivial (i.e. \(X \) consists of one point);
(iv) \(Sp_T \) is trivial.

*) Formally, the definition of amenable is different from, but equivalent to, condition (ii). See [5].

**) i.e. \(\exists u \in M(X) : tu = u \) for all \(t \in T \).
PROOF.

(i)⇒(ii): If X is a T-space, then (i) implies that the induced affine T-space $M(X)$ has an invariant point μ.

(ii)⇒(iii): If μ is an invariant point in $M(X)$ and X is strongly proximal, then by 3.5 there exists $x \in X$ such that $T_x \mu = \{\mu\}$. Consequently, $\delta_x = \mu$, hence x is an invariant point in X. If X is also minimal, this implies that $X = \{x\}$.

(iii)⇒(iv): obvious.

(iii)⇒(i): Suppose Q is an affine T-space. Let Q_0 be an irreducible subset of Q (cf.4.2). Then the T-space $\text{ex} Q_0$ is strongly proximal and minimal by 4.3, hence $\text{ex} Q_0 = \{x\}$ by the assumption. Then x is an invariant point in Q. □

4.6. COROLLARY. If T is strongly amenable, then T is amenable.

PROOF. Cf. 2.8 (definition of strong amenability), 3.4 and 4.5. □

In our next theorem we indicate some amenable groups. It contains the Markov-Kakutani fixed point theorem (cf. [2]). First a lemma:

4.7. LEMMA. Let S be a closed normal subgroup of T and suppose that both S and T/S are amenable. Then T is amenable.

PROOF. We show, that T has the fixed point property. Consider an affine T-space Q, and let

$$Q_1 := \{x \in Q : sx = x \text{ for all } s \in S\}.$$

Since S is amenable, $Q_1 \neq \emptyset$. Moreover, it is easy to see that Q_1 is convex and closed in Q, hence compact. In addition, Q_1 is invariant under T (indeed: if $t \in T$, then for every $s \in S$ there exists $s' \in S$ such that $st = ts'$, so that $s(tx) = t(s'x) = tx$ for all $x \in Q_1$, i.e. $tx \in Q_1$ for all $x \in Q_1$. So Q_1 is a T-space, and because S is included in the stabilizer $\{t \in T : tx = x \text{ for all } x \in Q_1\}$ of Q_1, there exists an action $\bar{\pi}$ of T/S on Q_1, defined by

$$\bar{\pi}(t) := t^s \text{ for all } t \in T$$

(here $q:T \to T/S$ is the quotient map; as q is an open mapping, it is not difficult to show that the action $\bar{\pi}$ of T/S on Q_1 is continuous as a map-
ping from \((T/S) \times Q_i\) into \(Q_i\). However, \(T/S\) is amenable, so there exists \(x_1 \in Q_i\) such that \(t^u x_1 = x_1\) for all \(u \in T/S\), hence \(\pi^t x_1 = x_1\) for all \(t \in T\) (cf. the definition of \(\pi\)). So \(x_1\) is a fixed point for \(T\) in \(Q_i\). □

4.8. **Theorem.** The following groups are amenable:

(i) all abelian groups;
(ii) all compact groups;
(iii) all solvable groups;
(iv) all compact extensions of solvable groups, i.e. groups \(T\) which contain a closed normal subgroup \(S\) such that \(T/S\) is compact and \(S\) is solvable.

Proof. All abelian and compact groups are strongly amenable (cf. 2.8), hence amenable (cf. 4.6). This proves (i) and (ii).

(iii) If \(T\) is solvable, then we have subgroups \(T_i\) of \(T\) \((i = 1, \ldots, n)\) such that \(\{e\} = T_0 \subset T_1 \subset \cdots \subset T_n = T\), and, in addition, \(T_{i-1}\) is a normal subgroup of \(T_i\) and \(T_i/T_{i-1}\) is abelian for \(i = 1, \ldots, n\). Then also

\[
\{e\} = T_0 \subset T_1 \subset \cdots \subset T_n = T,
\]

where each \(T_{i-1}\) is a normal subgroup in \(T_i\) and \(T_i/T_{i-1}\) is abelian\(^\star\) (the proof is a straightforward consequence of the principle that the relations which have to be checked hold on a dense subset of the set in question, hence, by continuity, on the whole set). Now lemma 4.7 and case (i) above imply by induction that \(T_1, T_2, \ldots, T_n = T\) are amenable.

(iv) Follows from (ii), (iii) and lemma 4.7. □

5. **Boundaries of Connected Lie Groups**

For the results from integration theory which we need in this section, we refer to appendix A3.

\(^\star\) We could do without taking closures. Let \(T_i\) denote the group \(T\) with its discrete topology. Then the proof, indicated here, shows that \(T_i\) is amenable (using the original sequence \(\{e\} = T_0 \subset T_1 \subset \cdots \subset T_n\), without taking closures), and this obviously implies that \(T\) is amenable. Notice, that the fact that we need a closed subgroup in lemma 4.7 comes merely from our agreement to consider only topological Hausdorff groups (\(T/S\) is Hausdorff if and only if \(S\) is closed in \(T\)). However, we could do equally well without this condition.
5.1. By the original definition in [3], a boundary of a (Lie) group G is a compact homogeneous space M such that for every probability measure μ on M there exists a sequence $\{t_n\}_{n \in \mathbb{N}}$ in G such that the sequence $\{t_n \mu\}_{n \in \mathbb{N}}$ converges to a point measure. Here a homogeneous space M for G is a quotient space of the form $M := G/H$ for some closed subgroup H of G; we shall always require M to be compact. By 1.2(i), an action of G on M is defined by $t(sH) := tsH$ for $s \in G, t \in G$.

In the case of a Lie group G, G is metrizable, hence every homogeneous space M is matrizable [cf. [6], 8.14]. Now by A1.6, if M is a compact metric space, then $M(M)$ is first countable. Hence for $\nu, \nu' \in M(M)$, $\nu \in \mathcal{M}$ and only if there exists a sequence $\{t_n\}_{n \in \mathbb{N}}$ in G such that $\nu = \lim_{n \to \infty} t_n \nu'$.

Keeping this in mind, we may restate the definition of a boundary as follows: a boundary of a Lie group G is a compact homogeneous space M which is, under the natural action of G, strongly proximal (cf. lemma 3.5).

5.2. Let G be a connected semisimple Lie group with finite center, and let $G = KAN$ be an Iwasawa decomposition. As G has finite center, K is compact (cf. Theorem II.3.1). Recall from chapter V, that if we put $S := AN$, N is a normal subgroup of S. In addition, let

$$ P := N_G(N), \quad M := Z_K(A). $$

Then $P = MAN$ (cf. Theorem III 1.17(viii)), hence obviously

$$ P \subseteq H := N_G(S). $$

In fact, it follows from Lemma III.1.5. that $P = H$; this result will again be obtained as a by-product of the main result of this section, namely, that the universal minimal strongly proximal G-space SP_G (cf. 3.11) is isomorphic with the homogeneous G-space G/P.

5.3. \textbf{Lemma.} The space SP_G contains a point z which is invariant under the actions of S and of H on SP_G.

\textbf{Proof.} Clearly, the groups S and H, being subgroups of G, act on SP_G. Since S is solvable, there exists an S-invariant measure $\mu \in M(TP)^G$ (cf. 4.8). Notice, that the action of G on $M(SP_G)$ is proximal - just by the definition of strong proximality, - and as $G = KS$ with K compact, proposition 2.10 implies, that $M(SP_G)$ is also proximal under the action of S, i.e. SP_G as an
S-space is strongly proximal. So by 3.5, there exists a point \(z \in SP_G \) such that \(\delta_z \in Su. \) Since \(u \) is \(S \)-invariant, it follows, that \(\delta_z = u, \) whence \(z \) is an \(S \)-invariant point in \(SP_G. \)

In order to prove that \(z \) is \(H \)-invariant, consider \(t \in H. \) By the definition of \(H, \) for every \(s \in S \) there exists \(s' \in S \) such that \(st = ts', \) hence \(s(tz) = t(s'z) = tz. \) This shows, that \(tz \) is an \(S \)-invariant point for every \(t \in H. \) However, \(S \) acts proximally on \(SP_G \) (even strongly proximally, see above), so the \(S \)-orbit closures \(Sz \) and \(S(tz) \) meet each other. As \(z \) and \(tz \) are \(S \)-invariant, it follows, that \(z = tz. \) This shows, that \(z \) is \(H \)-invariant.

5.4. COROLLARY. Let \(L := \{ t \in G : tz = z \} \) be the stabilizer of the point \(z \in SP_G, \) considered in 5.3. Then \(H \subseteq L, \) and the \(G \)-space \(SP_G \) is isomorphic with the \(G \)-space \(G/L. \)

PROOF. The only theory, which is not yet completely obvious from lemma 5.3 is, that \(SP_G \) is isomorphic to \(G/L. \) To prove this, observe, that \(L \supseteq H \supseteq S. \) Hence \(G/L \) is the continuous image of \(G/S \) under the mapping \(tS \mapsto tl: G/S \to GL. \)

But \(G/S \) is compact, hence \(G/L \) is compact.

Next, consider the mapping

\[
\phi: tL \mapsto tz: G/L \to SP_G.
\]

It is easily checked, that this is a morphism of \(G \)-spaces. In addition, it is clear from the definition of \(L, \) that this mapping is injective. However, the image of \(G/L \) in \(SP_G \) under this mapping is compact, hence closed, hence it contains the orbit closure of \(z. \) As \(SP_G \) is minimal, it follows that \(\phi \) is surjective. So \(\phi \) is the desired isomorphism of \(G \)-spaces (continuity of \(\phi ^* \) follows from the fact that \(\phi \) is bijective, \(G/L \) is compact, and \(TP_G \) is Hausdorff). \(\square \)

5.5. THEOREM. (FURSTENBERG-MOORE). Let \(G \) be a connected semisimple Lie group with finite center. Then the \(G \)-space \(SP_G \) is isomorphic to the \(G \)-space \(G/P, \) which is a boundary. Moreover, for any closed subgroup \(G' \) of \(G, \) the homogeneous \(G \)-space \(G/G' \) is a boundary iff \(G' \) contains some conjugate of \(P. \)

PROOF. By the result of C.C. Moore, the \(G \)-space \(G/P \) is a boundary, that is, \(G/P \) is strongly proximal (cf. 4.11 below). By the universality of \(SP_G, \) there exists a (unique) morphism of \(G \)-spaces from \(SP_G \) onto \(G/P. \) Using 5.4 it follows that there is a morphism of \(G \)-spaces \(\phi: G/L \to G/P. \) For clarity, let
us denote the elements of G/L by $\bar{t} (= tL)$ and those of G/P by $\bar{t} (= tP)$, $t \in G$. If $\phi(\bar{e}) = \bar{t}_0$, then for all $t \in L$ we have $te = \bar{e}$, hence

$$tt_0 = t\phi(\bar{e}) = \phi(te) = \phi(\bar{e}) = t_0.$$

So L leaves t_0 invariant, hence $Lt_0P \subset t_0P$, so

$$L \subset t_0Pt_0^{-1}.$$

Using the inclusions obtained in 5.2 and 5.5, we have

$$P \leq H \leq L \leq t_0Pt_0^{-1}.$$

This implies, that $P = t_0Pt_0^{-1}$, hence $P = H = L$. So the first part of our theorem follows from 5.4.

As to the last assertion of the theorem, the universality of G/P implies that there exists a morphism of G-spaces $\psi: G/P \rightarrow G/G'$, and similar to the argument, used above, this implies that there exists $t_1 \in G$ such that $Pt_1G' \leq t_1G'$, that is, $t_1^{-1}Pt_1 \leq G'$. □

5.6. COROLLARY. (See also Cor. II. 3.7, Theor. I.4.2, Lemma II. 5.4). If $G = KAN$ and $G = K'A'N'$ are two Iwasawa-decompositions, and $P := N_G(N)$, $P' := N_G(N')$, then P and P' are conjugate.

PROOF. By theorem 4.4 (which applies also with P replaced by P'), each of the groups P and P' contains a conjugate of the other. □

5.7. COROLLARY. Every minimal strongly proximal G-space is a boundary.

PROOF. Let X denote an arbitrary minimal strongly proximal G-space. Then X is a homomorphic image of G/P. This implies, that X consists of one orbit, and similar to the proof of 5.4 one shows, that $X \cong G/G'$ for some closed subgroup of G. So X is a boundary. □

5.8. We close this section with a proof, that G/P is strongly proximal. For

*) This is, because in this situation P and $t_0Pt_0^{-1}$ have the same Lie algebras, P being a closed subgroup with finitely many components.
background knowledge, see the Appendices.

In appendix A3.4 we show, that in order to prove that G/P is strongly proximal, it is sufficient to prove, that there exists one quasi-invariant measure μ_0 on G/P and a sequence $\{t_n\}_{n \in \mathbb{N}}$ in G such that the sequence $\{t_n \mu_0\}_{n \in \mathbb{N}}$ converges in $\hat{M}(G/P)$ to a point measure.

Now we need the following facts concerning the structure of G/P:

- there exists an open and dense subset Q in G/P such that the set $G \setminus Q$ has (left) Haar-measure zero; hence $Q = Q = Q \subseteq G/P$ is the canonical projection (in order to see this, recall from Lemma III.1.11 that $G = \bigcup_{w \in W} U_w wP$; then $Q = q[\{w_0 \mid w_0 \text{ such that } w \neq w_0, U_w wP \text{ has lower dimension, hence Haar measure zero}.$)

- the set Q has the structure of a vector space and the action of A on Q (induced by the action of G on G/P) can be diagonalized with respect to a certain basis. With coordinates with respect to this basis, put for $r > 0$:

$$B_r := \{x = (\xi_1, \ldots, \xi_n) : Q : |\xi_i| < r \text{ for } i = 1, \ldots, r\}.$$

Now $t_0 \in A$ can be chosen such that

$$t_0^{n+1} B_r \supseteq t_0^n B_r; \bigcup_{n \in \mathbb{N}} t_0^n B_r = Q,$$

(take $t_0 := \exp Z$, Z in the positive Weyl chamber).

Let $\mu_0 \in \mathcal{M}(G/P)$ be quasi-invariant. Then for every $r > 0$ and $n \in \mathbb{N}$ we have

$$t_0^{-n} \mu_0(B_r) = \mu_0(t_0^n B_r) \leq \mu_0(Q),$$

hence by (**):

$$\lim_{n \to \infty} t_0^{-n} \mu_0(B_r) = \mu_0(Q).$$

Let λ_G denote left Haar measure on G. Then by $\nu(B) := \lambda_G(q[B])$ for a Borel-subset B of G/P, a measure on G/P is defined, which is easily seen to be quasi-invariant. Hence by one of the results, quoted in A3.1, ν and μ_0 have the same null-sets (both measures are quasi-invariant).

One might object that A3.1 concerns only measures in $\hat{M}(G/P)$, i.e. measures ν with $\|\nu\| \leq 1$. However, since G/P is compact, all (Borel-)measures on G/P are bounded. In particular, for a suitable constant $c > 0$ the measure ν defined above satisfies $c\nu \in \hat{M}(G/P)$.
Since $\lambda_G(G\setminus q^*(Q)) = 0$, it follows that $\mu_0((G/P)\setminus Q) = 0$, hence $\mu_0(Q) = 1$. The sequence $\{t_0^{-n}\mu_0\}_{n \in \mathbb{N}}$ has in the compact, first countable space $\mathcal{M}(Q/P)$ a convergent subsequence, say with limit ν_1. Now condition (**) implies, that

$$\nu_1(B_r) = \nu_0(Q) = 1.$$

Since B_r is closed for every $r > 0$, it follows, that the support of ν_1 is included in $\bigcap_{r > 0} B_r = 0$ (zero-vector of Q), hence $\nu_1 = \delta_0$. This shows, that some subsequence of $\{t_0^{-n}\mu_0\}_{n \in \mathbb{N}}$ converges to a point measure.
For proofs of results in this appendix, we refer to [1], [8] and [10].

A1.1. Let X be a compact Hausdorff space, and $C(X)$ the set of all continuous, real-valued functions on X. With the usual pointwise defined operations and the supremum norm, $C(X)$ is a Banach space. Its (topological) dual will be denoted $C(X)'$; it is the space of all continuous linear mappings $\mu : C(X) \to \mathbb{R}$. We shall consider two topologies on $C(X)'$: the topology, induced by the norm $\| \mu \|_\infty := \sup \{|\mu(f)| : f \in C(X) \text{ and } \|f\| \leq 1\}$ for $\mu \in C(X)'$, and, in addition, the w^*-topology (also denoted as the $\sigma(C(X)',C(X))$-topology), which is the weakest topology on $C(X)'$ for which all mappings $\mu \mapsto \mu(f) : C(X) \to \mathbb{R}$ for $f \in C(X)$ are continuous. Thus, the w^*-topology is the relative topology of $C(X)'$ in $C(X)$. It is important for our purposes to observe, that $C(X)'$ with the w^*-topology is a locally convex topological vector space.\(^*)

Let $S' := \{ \mu \in C(X)' : \| \mu \|_\infty \leq 1 \}$, the unit ball in $C(X)'$. By Alaoglu's theorem, S' is a compact Hausdorff space when endowed with the w^*-topology. Consequently,

$$M(X) := \{ \mu \in C(X)' : \mu \geq 0 \text{ and } \mu(1) = 1 \}$$

is compact in the w^*-topology\(^1\). To prove this, it is sufficient to show that $M(X)$ is closed in $C(X)'$, and that $M(X) \subseteq S'$.

1) $M(X)$ is w^*-closed in $C(X)'$, because $M(X)$ can be written as an intersection of w^*-closed sets, as follows:

$$M(X) = \bigcap_{f \in C(X)} \{ \mu \in C(X)' : \mu(f) \geq 0 \} \cap \{ \mu \in C(X)' : \mu(1) = 1 \}.$$

\(^*)\text{ A base for the neighbourhood system of } \mu \in C(X)' \text{ is formed by the collection of all sets}

$$U_{\mu}(F,e) := \{ v \in C(X)' : \forall f \in F : |\mu(f) - v(f)| < e \}$$

\text{with } e > 0 \text{ and } F \text{ a finite subset of } C(X).
(2) If \(\mu \in M(X) \), then by monotonicity we have for every \(f \in C(X) \) that
\[
-\mu(|f|) = \mu(-|f|) \leq \mu(f) \leq \mu(|f|),
\]
that is,
\[
|\mu(f)| \leq \mu(|f|) \quad \text{for } f \in C(X).
\]
Clearly, \(|f| \leq \|f\| \) (recall, that \(|f|(x) := |f(x)| \)) and, consequently,
\[
|\mu(f)| \leq \mu(\|f\|) = \|f\| \quad \mu(1) = \|1\|.
\]
Thus, \(\|\mu\| \leq 1 \) for \(\mu \in M(X) \).

(3) It is easy to see, that \(M(X) \) is a convex subset of \(C(X)' \), that is, if \(\mu, \nu \in M(X) \) and \(0 \leq a \leq 1 \), then \(a\mu + (1-a)\nu \in M(X) \).

Resuming, we have shown that \(M(X) \) is a compact, convex subset of the locally convex tvs \(C(X)' \) with its \(\sigma^* \)-topology.

Al.2. By Riesz’s representation theorem there is a \(1,1 \)-correspondence between \(M(X) \) and the set of all regular probability measures on \(X \), as follows: if \(\mu \in M(X) \), then there exists a unique regular Borel measure \(m_\mu \) on \(X \) such that
\[
\mu(f) = \int_X fdm_\mu \quad \text{for all } f \in C(X).
\]
As \(m_\mu(X) = \mu(1) = 1 \), it follows that \(m_\mu \) is a probability measure.

Conversely, it is clear that every regular Borel probability measure \(m \) on \(X \) induces an element \(\mu_m : f \mapsto \int_X fdm \) of \(M(X) \). As \(\nu_m = \mu \) for every \(\nu \in M(X) \) and \(m_\mu m = m \) for every regular probability measure, we shall just identify \(\mu \in M(X) \) with the corresponding measure. So we may write
\[
\mu(f) = \int_X fd\mu \quad \text{for } f \in C(X), \quad \mu \in M(X).
\]

Al.3. Let \(E \) be a locally convex topological vector space. The following result is the famous theorem of Krein and Milman: Let \(Q \) be a compact, convex subset of \(E \), \(Q \neq \emptyset \). Then the set \(\text{ex } Q \) of all extreme points \(^*) \) in \(Q \) is non-empty, and \(\text{co}(\text{ex } Q) = Q \).

\(^*) \) and \(^\circ \) : see footnotes at next page.
Conversely, if B is any closed subset of the compact, convex subset Q of E such that $\text{co}(B) = Q$, then $\text{ex}(Q) \subseteq B$.

(It should be observed, that usually, $\text{ex} Q$ is not closed in Q; in this respect the next example is an exception.)

A1.4. Let X be a compact Hausdorff space. For $x \in X$, let $\delta_x : \mathcal{C}(X) \to \mathbb{R}$ be defined by $\delta_x(f) := f(x)$ for $f \in \mathcal{C}(X)$. Then for all $x \in X$, $\delta_x \in M(X)$. The mapping $\delta : x \mapsto \delta_x : X \to M(X)$ has the following properties:

1. $\delta : X \to M(X)$ is injective, because $\mathcal{C}(X)$ separates the points of X.
2. $\delta : X \to M(X)$ is continuous ($M(X)$ being endowed with the w^*-topology), because $x \mapsto \delta_x(f) : X \to \mathbb{R}$ is continuous for every $f \in \mathcal{C}(X)$.
3. As X is compact and $M(X)$ is Hausdorff (and compact), then $\delta : X \to M(X)$ is a topological embedding. Its range $\delta[X]$ coincides with $\text{ex} M(X)$ — which is therefore a closed subset of $M(X)$. In fact, for $\mu \in \mathcal{C}(X)'$ the following equivalent:
 1. $\mu \in \text{ex} M(X)$
 2. $\exists x \in X : \mu = \delta_x$

4. By (3) and A1.3(3), we have $M(X) = \text{co}(\delta[X])$.

A1.5. If X and Y are compact Hausdorff spaces and $\phi : X \to Y$ is a continuous mapping, then ϕ induces a continuous (norm decreasing) linear mapping

$$\bar{\phi} : f \mapsto f \circ \phi : \mathcal{C}(Y) \to \mathcal{C}(X),$$

and this induces a continuous linear mapping

$$(\bar{\phi})' : \mu \mapsto \mu \circ \bar{\phi} : \mathcal{C}(X)' \to \mathcal{C}(Y)'.$$
It is easy to see, that $(\tilde{\phi})'$ is w-continuous and that $(\tilde{\phi})'$ maps $M(X)$ into $M(Y)$. Call the restriction of $(\tilde{\phi})'$ to $M(X)$ and $M(Y)$: $M(\phi)$. Thus, we have the continuous mapping

$$M(\phi) : M(X) \to M(Y).$$

If, for simplicity, we denote $M(\phi)(\mu) =: \tilde{\mu} \in M(Y)$ for $\mu \in M(X)$, then, by definition, we have

$$\tilde{\mu}(f) = u(f \circ \phi) \quad \text{for } f \in C(Y)$$

or, in a different notation,

$$\int_Y \tilde{\mu} f = \int_X f \circ \phi \mu \quad \text{for } f \in C(Y).$$

A straightforward computation shows, that the following diagram commutes:

$$\begin{array}{ccc}
X & \xrightarrow{\phi} & Y \\
\downarrow{\delta^X} & & \downarrow{\delta^Y} \\
M(X) & \xrightarrow{M(\phi)} & M(Y)
\end{array}$$

where δ^X and δ^Y are the canonical embeddings of X into $M(X)$ and Y into $M(Y)$ (according to Al.4). Using this and Al.4(4) it follows easily, that $M(\phi)$ is a surjection if and only if ϕ is a surjection.

Using the fact that every continuous function on a closed subset of Y can be extended to a continuous function on Y, (Y is a normal space, since Y is compact Hausdorff) it follows that, if ϕ is injective, then $\tilde{\phi} : C(Y) \to C(X)$ is surjective. This implies that $(\tilde{\phi})'$, hence $M(\phi)$, is injective. Since the converse follows easily from the diagram above, we have, that $M(\phi)$ is injective if and only if ϕ is injective.

Al.6. If X is a compact, metrizable space, then $M(X)$ is first countable, i.e. each point in $M(X)$ has a countable neighbourhood base. The proof is as follow:

First, observe, that the space $C(X)$ is separable, i.e. $C(X)$ has a countable subset D which is dense (in the topology of uniform convergence, of
course). This is a consequence of the Stone-Weierstrass theorem. We claim, that for \(\mu \in \mathcal{M}(X) \) the family of all sets

\[
U_{\mu}(F', \frac{1}{k}) := \{ v \in \mathcal{M}(X) \mid |v(f) - \mu(f)| < \frac{1}{k} \text{ for all } f \in F' \},
\]

\(k \in \mathbb{N} \), \(F' \) a finite subset of \(D \), forms a local base at \(\mu \). This will prove our statement, since the cardinality of the set of all finite subsets of the countable set \(D \) is countable. So consider an arbitrary basical neighbourhood \(U_{\mu}(F, \epsilon) \) of \(\mu \) (\(\epsilon > 0 \), \(F \) a finite subset of \(C(X) \)). Let \(k \in \mathbb{N} \) be such that \(\frac{3}{k} < \epsilon \). Select for each \(f \in F \) an element \(f' \in D \) such that \(\|f - f'\| < \frac{1}{k} \), and let \(F' := \{ f' \mid f \in F \} \). Then for each \(v \in \mathcal{M}(X) \) and \(f \in F \) we have

\[
|v(f) - v(f')| = |v(f) - f' + f' - f| \leq \|v\| \cdot \|f - f'\| < \frac{1}{k}.
\]

Hence for every \(f \in F \) we have

\[
|v(f) - \mu(f)| \leq |v(f) - v(f')| + |v(f') - \mu(f')| + |\mu(f') - \mu(f)| < \frac{2}{k} + |v(f') - \mu(f')|.
\]

This implies, that \(U_{\mu}(F', 1/k) \subseteq U_{\mu}(F, \epsilon) \), which proves our claim.
APPENDIX A2: THE BARYCENTER MAP

A2.1. If \(X \) is a non-empty compact subset of a locally convex topological vector space \(E \), and \(\mu \in \mathcal{M}(X) \), then we say that a point \(x \in E \) is represented by \(\mu \), or that \(\mu \) has barycenter \(x \), whenever

\[
\phi(x) = \int_X \phi \, d\mu
\]

for every \(\phi \in E' \). As \(E' \) separates the points of \(E \) (a consequence of the Hahn-Banach theorem), the barycenter of \(\mu \), if it exists, is unique. In our next theorem it is stated, among others, that such a barycenter always exists; it will be denoted by \(b(\mu) \).

A2.2. **Theorem.** Let \(X \) be a compact non-empty subset of a locally convex topological vector space \(E \) such that \(Q := \text{co} X \) is compact. Then there exists a unique mapping \(b : \mathcal{M}(X) \to Q \) with the following properties:

(i) For every \(\mu \in \mathcal{M}(X) \), \(b(\mu) \) is the barycenter of \(\mu \).

(ii) \(b : \mathcal{M}(X) \to Q \) is surjective, i.e. every point of \(Q \) is the barycenter of some probability measure on \(X \).

(iii) \(b : \mathcal{M}(X) \to Q \) is affine, and continuous with respect to the \(w^* \)-topology on \(\mathcal{M}(X) \).

Proof. Cf. [10], Chapter I. \(\square \)

The mapping \(b : \mathcal{M}(X) \to Q \) (sometimes to be denoted by \(b(X) \)) will be called the **barycenter map**. The two cases which will interest us most are the following ones: (a) \(X = \text{ex} Q \) for a given compact convex set \(Q \) and (b) \(X = \text{co} X \) for such a \(Q \).

\(\text{Compactness of} \ Q \text{ follows from compactness of} \ X \text{ if} \ E \text{ is complete or if} \ E = F', \ F \text{ a Banach space and} \ E \text{ having the} w^*\text{-topology}; \text{ also, if we start with} \ \text{compact} \ Q \text{ and put} \ X := \text{ex} Q \text{, the conditions are fulfilled (by Al.3,} \ Q = \text{co} X \text{ in this case).} \)
A2.3. **EXAMPLE.** Let Q be a compact convex subset in a locally convex topological vector space E, $Q \neq \emptyset$, and let $X \subseteq Q$ be closed such that $Q = \text{co} X$ (particular cases are: $X = \text{ex} Q$ and $X = Q$). For every $x \in X$ we have $\delta_x(x) \in M(X)$. We claim, that $x = b(\delta_x(x))$. Indeed, for every $\phi \in E'$ we have

$$
\phi(x) = \delta_x(x)(\phi) = \int_X \phi \, d\delta_x(x).
$$

Thus, we have $b = \delta_x(x) =$ identity mapping of X.

The following result states, that extreme points of Q can be the barycenter only of the corresponding point measures:

A2.4. **THEOREM.** Let Q be as above. If $\mu \in M(X)$ and $\delta b(\mu) \in \text{ex} Q$, then $\mu = \delta b(\mu)$.

PROOF. Cf. [10], Prop. 1.4. □

The final result in this appendix will be, that in the case of an affine T-space Q and an invariant compact subset X of Q such that $Q = \overline{\text{co}} (X)$, the barycenter map $b_X : M(X) \to Q$ is a morphism of T-spaces. Again, this result applies to the cases $X = \overline{\text{ex}} Q$ (indeed, ex Q is invariant under an affine action of T on Q, hence its closure is invariant as well) and $X = Q$. For this we need the following lemma and its corollary:

A2.5. **LEMMA.** Let Q be as above. Then the set

$$
\{ \phi \bigg|_Q + r \cdot 1 : \phi \in E' \land r \in \mathbb{R} \}
$$

is dense in the space $A(Q)$ of all affine continuous real-valued functions* on Q endowed with the topology of uniform convergence on Q.

PROOF. Cf. [10], Prop. 4.5. □

A2.6. **COROLLARY.** Let X and Q be as in Theorem A2.2. Then the barycenter map $b : M(X) \to Q$ has the property

$$
\forall f \in A(Q) : f(b(\mu)) = \int_X f \, d\mu \quad (\mu \in M(X))
$$

*) $f \in C(Q)$ is called affine whenever $f(ax+(1-a)y) = af(x)+(1-a)f(y)$ for all $x,y \in Q$ and $0 \leq a \leq 1$.
PROOF. By the definition of barycenter, the formula holds if $f = \phi \big|_Q$ for $\phi \in E'$. It holds also, if $f = r \cdot l$ for $r \in \mathbb{R}$, hence it holds for all mappings f of the form $\phi \big|_Q + r \cdot l$ with $\phi \in E'$ and $r \in \mathbb{R}$. Now observe, that the mappings $f \mapsto \int_X f \, d\mu$ and $f \mapsto f(b(\mu))$ from $C(Q)$ to \mathbb{R} are both continuous with respect to the topology of uniform convergence on Q. Since these mappings are equal to each other on a dense subset of $A(Q)$, they are equal on $A(Q)$. □

A2.7. THEOREM. Let Q be an affine T-space and let X be a closed invariant subset of Q such that $\overline{X} = Q$. Then the barycenter map $b : M(X) \to Q$ is an affine morphism of T-spaces.

PROOF. We need only to show that b satisfies the condition $b \circ \sigma^t = \sigma^t \circ b$ for all $t \in T$ (cf. A2.2 (iii) for the other properties). Since for all $\phi \in E'$ and $t \in T$ we have $\phi \circ \sigma^t \in A(Q)$, it is clear that

$$b(\phi(\sigma^t \mu)) = \int_X \phi \, d(\sigma^t \mu) = \int_X (\phi \circ \sigma^t) \, d\mu \quad \text{(A2.6)}$$

$$= (\phi \circ \sigma^t)(b(\mu)) = \phi(\sigma^t(b(\mu)))$$

($\mu \in M(X)$). Since E' separates the points of E, it follows that $b(\sigma^t \mu) = \sigma^t b(\mu)$ for all $\mu \in M(X)$, hence $b \circ \sigma^t = \sigma^t \circ b$. □
APPENDIX A3: QUASI INVARIANT MEASURES

A3.1. Let G and P be as in section 4. Although we shall formulate the results here in the context of G/P (which is compact), all results about quasi-invariant measures and convolution of measures are valid in the context of an arbitrary homogeneous space G/H (H a closed subgroup of G) for arbitrary locally compact G, satisfying the second axiom of countability (i.e. separable and metrizable). Of course, in the general case one should consider $K(G/H)$ (= space of continuous real-valued functions with compact support) instead of $C(G/P)$.

First, recall that in an arbitrary set X with σ-field \mathcal{B} for two finite measures μ and ν on \mathcal{B} the following properties are equivalent:

(i) $\forall B \in \mathcal{B} : \mu(B) = 0 \Rightarrow \nu(B) = 0$
(ii) $\forall \varepsilon > 0 \exists \delta > 0 : \forall B \in \mathcal{B} \ (\mu(B) < \delta \Rightarrow \nu(B) < \varepsilon)$

If these conditions are fulfilled, then we write $\nu << \mu$ and we say that ν is absolutely continuous with respect to μ.

Now an arbitrary measure μ on G/H is called quasi-invariant whenever for every $t \in G$ we have

$$tu << \mu \text{ and also } \mu << tu$$

(i.e. μ and tu have exactly the same sets of measure zero). The following facts can be shown (cf. [9], Ch.IX):

- if $\mu \in M(G/H)$ then μ is quasi-invariant iff
 $$\forall \text{ Borelset } B \subseteq G/P : \mu(B) = 0 \iff \lambda_G(q^{-1}(B)) = 0$$

Here $q : G \to G/H$ is the quotient map, and λ_G is left Haar measure on G.
- if $\mu_1, \mu_2 \in \mathcal{M}(G/H)$ are both quasi-invariant, then $\mu_1 << \mu_2$ and $\mu_2 << \mu_1$.

*) this is an easy consequence of the Radon-Nikodym theorem, but can also be proved easily in a straightforward way.
there exists $\mu \in M(G/H)$ which is quasi-invariant.
(Note, that these results also hold for $G = G/\{e\};$ thus there exists $\lambda \in \mathcal{U}(G)$,
λ quasi-invariant.)

A3.2. If $\nu \in M(G)$ and $\mu \in M(G/P)$, then an element $\nu \ast \mu$ of $M(G/P)$ is defined by

$$\nu \ast \mu(f) = \int_{G/P} \int_{G} f(tx) \, d\nu(t) \, d\mu(x) \quad (f \in C(G/P)).$$

(In order to prove that this makes sense, one has to show that the mapping
$$x \mapsto \int_{G} f(tx) \, d\nu(t) : G/P \rightarrow \mathbb{R}$$
is continuous. This is not difficult, once one knows that for all $c > 0$ there exists a compact subset C of G such that
$$\nu(G \setminus C) < \varepsilon/2.$$

Some elementary computations (using FUBINI's theorem) show, that

$$\delta_{t} \ast \mu = t \mu \quad \text{for } t \in G, \mu \in M(G/P)$$

and

$$t(\nu \ast \mu) = \delta_{t} \ast (\nu \ast \mu) = t\nu \ast \mu \quad \text{for } t \in G, \nu \in M(G), \mu \in M(G/P).$$

Moreover, for any Borel subset of G/P we have, if $\nu \in M(G)$ and $\mu \in M(G/P)$:

$$\nu \ast \mu(B) = \int_{G/P} \int_{G} \chi_{B}(tx) \, d\nu(t) \, d\mu(x)$$

$$= \int_{G} \left(\int_{G/P} \chi_{B}(tx) \, d\mu(x) \right) \, d\nu(t).$$

So we have

$$\nu \ast \mu(B) = \int_{G} (t\mu)(B) \, d\nu(t).$$

A3.3. **Lemma.** If $\mu \in M(G/P)$, and if $\lambda \in M(G)$ is quasi-invariant, then $\lambda \ast \mu$ is a quasi-invariant.

Proof. For a Borel set B in G/P we have, by (4)

$$\lambda \ast \mu(B) = \int_{G} (t\mu)(B) \, d\lambda(t).$$
This implies, that $\lambda \ast \mu(B) = 0$ iff $(t_\mu)(B) = 0$ for λ-a.e. t in G.

For $s \in G$ we have, by (3), $s(\lambda \ast \mu) = s\lambda \ast \mu$, so we obtain

$$(s(\lambda \ast \mu))(B) = 0 \iff (s\lambda \ast \mu)(B) = 0 \iff (t_\mu)(B) = 0$$

for $s\lambda$-a.e. t in G.

However, λ and $s\lambda$ have the same nullsets in G, so the phrases "λ-a.e. t in G" and "$s\lambda$-a.e. t in G" have exactly the same meaning. Consequently $\lambda \ast \mu(B) = 0$ iff $s(\lambda \ast \mu)(B) = 0$. So by definition, $\lambda \ast \mu$ is quasi-invariant. □

A3.4. LEMMA. If there exists $\mu_0 \in M(G/P)$, μ_0 quasi-invariant, such that

$$\{ t_n \mu_0 \} _{n \in \mathbb{N}}$$

converges for some sequence $\{ t_n \} _{n \in \mathbb{N}}$ in G to a point measure δ_x in $M(G/P)$ ($x \in G/P$), then G/P is strongly proximal.

PROOF. Consider $\mu \in M(G/P)$. We have to show that for some sequence $\{ s_k \} _{k \in \mathbb{N}}$ in G the sequence $\{ s_k \mu \} _{k \in \mathbb{N}}$ converges to δ_x.

There exists a quasi-invariant $\lambda \in M(G)$. By A3.3, $\lambda \ast \mu$ is quasi-invariant in $M(G/P)$, hence $\lambda \ast \mu \ll \mu_0$ (cf. A3.1). So

$$(5) \quad \forall \epsilon > 0 \ \exists \delta > 0 \ \forall \text{Borel set } B \in G/P : \mu_0(B) < \delta \Rightarrow \lambda \ast \mu(B) < \epsilon.$$

Let $\{ U_k \} _{k \in \mathbb{N}}$ be a nested local base at x, and put $B_k := (G/P) \setminus U_k$. Then B_k is closed, and $x \not\in B_k$. Hence

$$0 = \delta_x(B_k) = \lim_{n \to \infty} t_{-n} \mu_0(B_k) = \lim_{n \to \infty} \mu_0(t_{-n} B_k).$$

Using (5), this implies, that for every $k \in \mathbb{N}$ there exists $n_k \in \mathbb{N}$ such that for all $n \geq n_k$:

$$(6) \quad t_n \lambda \ast \mu(B_k) = t_n (\lambda \ast \mu)(B_k) = \lambda \ast \mu(t_{-n} B_k) < \frac{1}{k}.$$

However, by formula (4),

$$(7) \quad t_n \lambda \ast \mu(B_k) = \int_G s\mu(B_k) d(t_n \lambda)(s) = \int_G (t_{-n} s\mu)(B_k) d\lambda(s)$$

Now (6) and (7) clearly imply that there exists $s_k \in G$ such that

$$(8) \quad s_k \mu(B_k) < \frac{2}{k}.$$
Now the sequence \(\{ s_k \}_{k \in \mathbb{N}} \) has (in \(M(G/P) \), which is a compact, first countable space) a convergent subsequence, say with limit \(v \). In passing to this subsequence, we may assume, that \(v = \lim_{k \to \infty} s_k u \). For any closed subset \(K \) of \(G/P \), this implies that \(v(K) = \lim_{k \to \infty} s_k u(K) \). However, if \(x \notin K \), then \(U_k \cap K = \emptyset \) for almost all \(k \in \mathbb{N} \), that is \(K \subseteq B_k \). Then, by (8),

\[
s_k u(K) \leq s_k u(B_k) < \frac{2}{k},
\]

hence \(v(K) = 0 \). Since this holds for every closed subset \(K \) of \(G/P \) with \(x \notin K \), this implies, that \(v = \delta_x \). Therefore, \(\lim_{k \to \infty} s_k u = \delta_x \).

REFERENCES

Chapter V

CLASSIFICATION OF REAL SEMISIMPLE LIE ALGEBRAS

A.G. HELMINCK

This chapter gives a sketch of the classification of real forms of a complex semi-simple Lie algebra. The approach given here is close to that of ARAKI and SUGIURA (cf. [Satake], Appendix). Different treatments can be found f.i. in CARTAN, GANTMACHER (simplified by MURAKAMI) and HELGASON.

1. NORMALLY RELATED REAL FORMS

Let g_c be a complex Lie algebra and let $(g_c)_\mathbb{R}$ denote g_c considered as a real Lie algebra. Put Γ for $\text{Gal}(\mathbb{C},\mathbb{R}) = \{1, \gamma_0\}$. If one has an action of Γ on $(g_c)_\mathbb{R}$, then we denote the action of γ_0 by σ. σ is called a conjugation of g_c if it satisfies

$$\sigma(\lambda X) = \lambda \sigma(X) \quad \text{for } \lambda \in \mathbb{C}, \quad X \in (g_c)_\mathbb{R}.$$

We will use the notation g_c for the fixed point set of a conjugation σ. It is a real form of g.

From now on assume that g_c is semi-simple. Let g_0 be a non-compact real form of g_c. We know from (Ch.I, Proposition 3.1) that there exists a compact real form g_0 of g_c so that $\sigma \circ \tau = \tau \circ \sigma$; it is called the Cartan involution of g_0. Put $k = g_0 \cap g_\tau$ and $p = g_0 \cap i.g_\tau$, then $g_0 = k + p$ is a Cartan decomposition of g_0 in the sense of (Ch.I, Definition 3.2).

For a subalgebra h of g_0 let $\text{Int}(g_0)(h)$ denote the analytic subgroup of $\text{Int}(g_0)$ with Lie algebra $\text{ad}_{g_0}(h)$.

DEFINITION 1.1. An Iwasawa C.S.A. h of g_0 is a Cartan subalgebra (C.S.A) satisfying $h \supset a$, with a a maximal abelian subalgebra contained in p.

They are obtained in the following way:
PROPOSITION 1.2. Let a be a maximal abelian subalgebra contained in p and $h \supset a$ a maximal abelian subalgebra of g_o. Then h is an Iwasawa C.S.A. of g_o. Furthermore all Iwasawa C.S.A.'s of g_o are conjugate under $\text{Int}_{g_o}(k)$.

PROOF. In order to prove that h is a C.S.A. of g_o it suffices to show that h is θ-stable, since all elements of k resp. p are ad-semisimple.

Denote the centralizer of a in g_0 by $g_o(a)$. Since a is θ-stable and maximal abelian in p we have:

$$\xi_{g_o}(a) = \xi_{g_o}(a) \cap k + a.$$

Let $H \subset k \subset \xi_{g_o}(a)$, $H = X + Y$, $X \in \xi_{g_o}(a) \cap k$, $Y \in a$. Then $X = H - Y \in h$ and the first assertion has been proved.

Since all maximal abelian subalgebras in p are conjugate under $\text{Int}_{g_0}(k)$ (Ch.I, Theorem 4.2) it suffices to show that two C.S.A.'s h_1, h_2 of g_o, containing a, are conjugate under $\text{Int}_{g_0}(k \cap \xi_{g_o}(a))$. This result follows from the fact that $h_1 = h_2 \cap k + a$ (i.e., $i=1,2$), with $h_1 \cap k$ maximal abelian subalgebras of the compact Lie algebra $\xi_{g_0}(a) \cap k$ and that all C.S.A.'s of a compact Lie algebra are conjugate. (cf. [He, Ch.V Theorem 6.4 and Ch.VII Corollary 2.7]). Q.E.D.

Remark. If g_o is related to (u, ξ) and $k = g_o \cap u$, then $g_o = k + p_1$ is a Cartan decomposition of g_o with Cartan involution $\theta = \varphi \circ \tau$. If moreover g_o is normally related to (u, ξ) then $a = \xi \cap g_o$ is maximal abelian in p and $h = \xi_+ \cap g_o$ is an Iwasawa C.S.A. of g_o.

Since all C.S.A.'s resp. compact real forms of g_c are conjugate under the group of inner automorphisms of g_c, we have:

PROPOSITION 1.4. Every real form of g_c is conjugate with one, normally related to (u, ξ).
2. ACTION OF Γ ON THE ROOT SYSTEM

Let $\Phi \subset \mathfrak{k}_c^*$ be the root system of \mathfrak{g}_c w.r.t. the C.S.A. \mathfrak{k}_c, X_Γ the root lattice of Φ, W the Weyl group, $T_\alpha \in \mathfrak{k}_c$ the vector corresponding to $\alpha \in \Phi$, $\mathfrak{h}_R = \sum_{\alpha \in \Phi} \mathfrak{h}_R \cdot T_\alpha$ (See Ch.I, (2.5)) and $\mathfrak{g}_c = \mathfrak{k}_c + \sum_{\alpha \in \Phi} \mathfrak{g}_\alpha$ the root space decomposition of \mathfrak{g}_c.

If \mathfrak{g}_η is a real form of \mathfrak{g}_c s.t. $\eta(\mathfrak{k}_c) = \mathfrak{k}_c$, then η induces an anti-involution η^* of \mathfrak{k}_c^* defined by:

$$(\eta^*(\lambda))(\eta) = \lambda(\eta(\eta)) \text{ for all } \eta \in \mathfrak{k}_c, \lambda \in \mathfrak{k}_c^*.$$

For $\alpha \in X_\Gamma$ denote $\eta^*(\alpha)$ by α^η.

In the following way one sees that $\eta^*(\Phi) = \Phi$, $\eta(T_\alpha) = T_{\alpha^\eta}$ for all $\alpha \in \Phi$ and $\eta(\mathfrak{h}_R) = \mathfrak{h}_R$; if $\alpha \in \Phi$, $H \in \mathfrak{k}_c$, $Y \in \mathfrak{g}_\alpha$, then:

$$[H, \eta(Y)] = \eta[N(\eta), Y] = \alpha(\eta(\eta)) \eta(Y) = \alpha^\eta(\eta) \eta(Y)$$

Hence $\alpha^\eta \in \Phi$. Furthermore:

$$B(\eta(T_{\alpha}), H) = B(T_{\alpha^\eta} \eta(H)) = \overline{\alpha(\eta(H))} = \alpha^\eta(H) = B(T_{\alpha^\eta}, H)$$

so that $\eta(T_{\alpha^\eta}) T_{\alpha^\eta}$ and $\eta(\mathfrak{h}_R) = \mathfrak{h}_R$.

By means of η^* one can define an action of Γ on (X_Γ, Φ) and we denote the action of $\gamma \in \Gamma$ by $: \alpha^\gamma:$.

REMARK 2.1. If one takes η equal to τ where \mathfrak{g}_τ is a compact real form then we get for $\alpha \in \Phi$:

$$(2.2) \quad \alpha^\tau = - \alpha$$

because if $H \neq 0 \in \mathfrak{h}_R$ with $\tau(H) = H$, then $B(H, H) = B(H, \tau(H)) < 0$ which contradicts the fact that B is strictly positive definite on $\mathfrak{h}_R \times \mathfrak{h}_R$, hence $\tau(H) = - H$ for every $H \in \mathfrak{h}_R$. Similarly if \mathfrak{g}_σ is related to (μ, τ) then $\sigma(\mathfrak{h}_R) = \tau(\mathfrak{h}_R)$ and the fact that $B|_{\mathfrak{h}_R \times \mathfrak{h}_R}$ is positive definite imply that
\((2.3) \quad h_R = i k + p. \)

The action of \(\Gamma \) on \((X_r, \Phi) \) gives rise to an important \(\Gamma \)-stable \(\mathbb{Z} \)-module of \(X_r \), namely

\[(2.4) \quad X_0 = \{ \lambda \in X_r \mid \sum_{\gamma \in \Gamma} \lambda^\gamma = 0 \} = \{ \lambda \in X_r \mid \lambda + \lambda^\theta = 0 \}. \]

Let \(\pi \) be the natural projection : \(X_r \to X_r / X_0 \) and \(\Phi_0 = \Phi \cap X_0 \); \(\Phi_0 \) is a closed subsystem of \(\Phi \) (i.e. if \(\alpha, \beta \in \Phi_0 \), \(\alpha + \beta \in \Phi \) then \(-\alpha \in \Phi_0 \) and \(\alpha + \beta \in \Phi_0 \)). Denote \(\pi(\Phi \setminus \Phi_0) \) by \(\Sigma_0 \).

Let \(g_0 \) be normally related to \((u, t) \), \(a = it \cap g_0 \) and \(\Sigma \) the set of restricted roots of the pair \((g_0, a) \) in the sense of (Ch.I, section 4).

Then we have:

Lemma 2.2. Let \(g_0, a, \Sigma \) and \(\Sigma_0 \) be as above. Then \(\Sigma = \Sigma_0 \).

Proof. Since \(\Sigma \cup \{0\} \) is precisely the set of restrictions to \(a \) of the elements in \(\Phi \), the assertion is clear.

3. \(\Gamma \)-Order

In this section let \(\Phi \) be a not necessarily reduced root system, \(X_r \) the root lattice of \(\Phi \) with an action of \(\Gamma \) denoted by \(\alpha \to \alpha^\gamma \) for \(\gamma \in \Gamma \) and \(X_0, \Phi_0 \) defined as in (2.4).

Recall that a linear order \(> \) on a \(\mathbb{Z} \)-module \(X \) is a partial order satisfying: i) for all \(\chi \neq 0 \) in \(X \): \(\chi > 0 \) or \(-\chi > 0 \).

ii) if \(\chi_1 > \chi_2 \) then \(\chi_1 + \chi > \chi_2 + \chi \) for all \(\chi \in X \).

Definition 3.1. A linear order \(> \) of \(X_r \) which satisfies the condition:

\[(3.1) \quad \text{if } \chi > 0 \text{ and } \chi \not\in X_0, \text{ then } \chi^\gamma > 0 \text{ for all } \gamma \in \Gamma \]

is called a \(\Gamma \)-order.

An equivalent condition for (3.1) is:

Lemma 3.2. A linear order \(> \) on \(X_r \) is a \(\Gamma \)-order if and only if the following condition is satisfied:
if \(X \neq 0 \), \(X > 0 \) and \(X' \equiv X \pmod{X_0} \) then \(X' > 0 \).

Proof. Suppose (3.1) is satisfied and \(X > 0 \), \(X \neq X_0 \) and \(X' \equiv X \pmod{X_0} \). Then \(X' = X + x_0 \) for some \(x_0 \in X_0 \). As \(\sum_{X \in \Lambda} X_0 = 0 \) we have by (3.1): \(\sum_{X \in \Lambda} X' = \sum_{X \in \Lambda} X > 0 \) hence \(X' > 0 \). Conversely assuming (3.2), then by the definition of \(X_0 \), \(X' \equiv X \pmod{X_0} \) for all \(X \in \Lambda \). Q.E.D.

A typical way to obtain a \(\Gamma \)-order is to take the lexicographic order on \(X_r \) relative to the following basis of \(X_r \): Choose a basis \(a_1, \ldots, a_r \), a typical way to obtain a \(\Gamma \)-order is to take the lexicographic order on \(X_r \) relative to the following basis of \(X_r \):Choose a basis \(a_1, \ldots, a_r \), extend these with \(a_{r+1}, \ldots, a_n \) to a basis of \(X \pmod{X_r} \). Define then for \(X \in X_r \):

\[
X > 0 \iff X = \sum_{i=1}^s \nu_i a_i \text{ with } \nu_s > 0.
\]

This order satisfies condition (3.2).

Note that a \(\Gamma \)-order on \(X_r \) induces a linear order on \(X_0 \) and \(X_r/X_0 \).

Fix a \(\Gamma \)-linear order on \(X_r \) and let \(\Lambda \) be a fundamental system of \(\Phi \) w.r.t. this order, a so-called \(\Gamma \)-fundamental system of \(\Phi \). Write \(\Lambda_0 \) for \(\Lambda \cap \Phi_0 \) and \(\bar{\Lambda} \) for \(\pi(\Lambda \setminus \Lambda_0) \). \(\bar{\Lambda} \) is called a restricted fundamental system of \(\Phi \) w.r.t. \(\Phi_0 \).

Let \(W_0 \) be the subgroup of \(W \) generated by the reflections \(s_a, a \in \Phi_0 \). Write \(W_0 \) for \(\{ w \in W \mid w(X_0) = X_0 \} \) then \(W_0 \) is a normal subgroup of \(W \). Namely if \(w \in W_0 \), \(a \in \Phi_0 \), then \(w s_a w^{-1} = s_{w(a)} \in W_0 \) \((w(a) \in \Phi \cap X_0 = \Phi_0) \). Every \(w \in W_0 \) induces an automorphism of \(Y = X_r/X_0 \) which we denote by \(\pi(w) \). We have now the relation:

\[
\pi(wy) = \pi(w) \pi(x) \quad \text{for } x \in X_r, w \in W_0.
\]

Proposition 3.3. Notations being as above, then the following properties hold:

i) \(\Lambda_0 \) is a fundamental system of \(\Phi_0 \) w.r.t. the induced order on \(X_0 \).

ii) If \(\Lambda' \) is another \(\Gamma \)-fundamental system of \(\Phi \), \(\Lambda'_0 = \Lambda' \cap \Phi_0 \) and \(\bar{\Lambda}' = \pi(\Lambda' \setminus \Lambda'_0) \), then \(\bar{\Lambda} = \bar{\Lambda}' \) iff \(\Lambda_0 = \Lambda'_0 \) and \(\bar{\Lambda} = \bar{\Lambda}' \).

iii) If \(w \in W_0 \), then \(w(\Lambda) \) is also a \(\Gamma \)-fundamental system and the subsequent statements are equivalent:

a) \(w \in W_0 \)

b) \(\pi(w) = 1 \)

c) \(\pi(w)(\bar{\Lambda}) = \bar{\Lambda} \).
PROOF. i) Assume $a \in \Phi_0$, $a > 0$.

Then $\alpha = \sum_{i=1}^{n} m_i a_i$, $m_i > 0$, $a_i \in \Delta$. Put $\beta = \sum_{j} a_i \delta_0 \delta_j$. The assumption: $\beta \neq 0$, gives $\beta \in X_0$ and $\beta = m_k \alpha_k + \gamma$ with $m_k > 0$, $\gamma \geq 0$. Since $m_k \alpha_k \notin X_0$ also $\gamma \notin X_0$, consequently

$$0 < \pi(m_k a_k) = \pi(-\gamma) < 0.$$

This contradicts the assumption.

(ii) "\text{"w"}" Denote the linear order of Δ' by \preceq. Take any $a_0 \in \Delta$. If $a_0 \in \Delta_0 = \Delta_0'$, then $a \succ 0$ (a is positive w.r.t. the order defining Δ'). If $a \notin \Delta_0$, then $a_0 \in \tilde{\Delta} = \tilde{\Delta}'$, hence in both cases $a \succ 0$. Since Δ determines $\Phi^+ = \{a \in \Phi | a > 0\}$, one may conclude $\Phi^+ = \Phi'^+$ and $\Delta = \Delta'$.

(iii) Since $w(X_0) = X_0$, $w(X^+)$ defines a Γ-order on X with $w(\Delta)$ as Γ-fundamental system of Φ (see Lemma 3.1). The inclusions a) \Rightarrow b) and b) \Rightarrow c) being obvious, we are left to prove c) \Rightarrow a). Since $\pi(w)\tilde{\Delta} = \pi(w(\Delta))$, it is a consequence of the next lemma:

Lemma 3.4. If Δ, Δ' are Γ-fundamental systems of Φ s.t. $\Delta = \Delta'$, then there exists an unique $w_0 \in W_0$ s.t. $\Delta' = w_0 \Delta$.

Proof. Δ_0 and Δ'_0 are fundamental systems of Φ_0, thus there exists a unique $w_0 \in W_0$ such that $w_0 \Delta_0 = \Delta'_0$. Now $(w_0 \Delta) \cap \Delta_0 = \Delta'_0$ and $w(\Delta) = \tilde{\Delta} = \tilde{\Delta}'$ so that $\Delta' = w_0 \Delta$.

Put W'_Δ for $(\pi(w)|w \in W_0)$, then the foregoing proposition implies

Corollary 3.5. $W'_{\Delta} = W_0 / W_0'$.

Using similar arguments one can derive the following useful results, which we won't need however for the classification.

Lemma 3.6. If $\pi(a_i) = \delta_j$ (where $a_i \in \Delta$, $\delta_j \in \tilde{\Delta}$) and $\gamma \in \Gamma$, then

$$a_i^\gamma = a_i + \sum_{k} c_{ik} a_k$$

for some $a_i \in \pi^{-1}(\delta_j), c_{ik} \in \mathbb{Z} \geq 0$

See [Satake, 2.1.6] or [Warner, Lemma 1.1.3.2].

Proposition 3.7. Let $\tilde{\Delta} = \{\delta_1, \ldots, \delta_r\}$ (the δ_i mutually distinct). Then the elements $\delta_1, \ldots, \delta_r$ are linearly independent.

Corollary 3.8. Every $\delta \in \Sigma_0$ can be expressed uniquely in the form:
\[\delta = \pm \sum_{i=1}^{r} m_i \delta_i \text{ with } m_i \in \mathbb{Z} \geq 0. \]

REMARK. The notion of \(\Gamma \)-order can be introduced in a more general context. Namely one can replace \(\mathbb{R} \) by a perfect field \(k \), \(\mathbb{C} \) by a finite extension of \(k \) and \(X_r \) by the character group of a maximal torus of a connected semi-simple algebraic group \(G \), defined over \(k \).

Results analogous to the ones derived here are valid there. They play a role in the classification of \(K/k \) forms of \(G \). More details can be found in [Satake, Ch.II]. The same remark holds for the notion of \(\Gamma \)-diagrams, to be introduced in the next paragraph.

4. \(\Gamma \)-DIAGRAMS

We keep to the notations of the previous section.

\(\Gamma \) acts on the \(\Gamma \)-fundamental systems of \(\Phi \). Namely if \(\gamma \in \Gamma \) and \(\Delta \) a \(\Gamma \)-fundamental system of \(\Phi \), then \(\Delta^\gamma = \{a^\gamma | a \in \Delta\} \) is a \(\Gamma \)-fundamental system of \(\Phi \) corresponding to the set of positive elements: \(X_r^\gamma = \{x^\gamma | x \in X_r\} \) of \(X_r \). (w.r.t. a new \(\Gamma \)-linear order).

Since \(\alpha_i = \alpha_i^\gamma \mod X_0 \), for \(\alpha_i \in \Delta, \gamma \in \Gamma \), it follows that \(\Delta^\gamma = \Delta_0 \), hence there is a unique element \(w_\gamma \in W_0 \) s.t. \(\Delta^\gamma = w_\gamma \Delta \) (lemma 3.4) (Since \(\Delta_0 = -\Delta_0 \), \(w_\gamma \) is the opposition automorphism of \(W_0 \)). Using this, one can define a new action of \(\Gamma \) on \(X_r \) by:

\[
(4.1) \quad x^{[\gamma]} = w_\gamma^{-1} x^\gamma.
\]

In particular \(x \mapsto x^{[\gamma]} \) is an involutive automorphism of the triple \((X_r, \Phi, \Delta) \).

DEFINITION 4.1. A quadruple \((\Phi, \Delta, \Delta_0, [\gamma]) \) as defined above is called a \(\Gamma \)-

A \(\Gamma \)-diagram can be illustrated by giving the vertices of \(\Delta_0 \) in the Dynkin diagram of \((\Phi, \Delta) \) a black colour, and indicating the action \([\gamma] \) of \(\Gamma \) on \((\Phi, \Delta) \) by arrows; for example:

\[
\begin{align*}
[\gamma] \\
\gamma E_6 : \\
\end{align*}
\]
Note that a Γ-diagram is characterized by Λ_0 and a diagram automorphism of order 2 of Λ, leaving Λ_0 invariant.

DEFINITION 4.2. An isomorphism of Γ-diagrams $S_1 = (\phi, \Delta, \Lambda_0, [\gamma])$ and $S_2 = (\phi', \Delta', \Lambda_0', [\gamma'])$ is a linear bijection ρ between $(\phi, \Delta, \Lambda_0)$ and $(\phi', \Delta', \Lambda_0')$ satisfying

$$[\gamma]' = \rho \circ [\gamma] \circ \rho^{-1}.$$

PROPOSITION 4.3. Assume Γ acts on Φ. Let Λ and Λ' be Γ-fundamental bases of Φ and let $S = (\phi, \Delta, \Lambda_0, [\gamma])$ resp. $S' = (\phi, \Delta', \Lambda_0', [\gamma'])$ be the corresponding Γ-diagrams. Then S is isomorphic to S'.

PROOF. Let $W_0 < W$ be the Weyl group of Φ_0.

Since the opposition automorphism of W_0 w.r.t. Λ_0 is conjugate to the opposition automorphism of W_0 w.r.t. Λ_0' (by the same $w \in W_0$ conjugating Λ_0 and Λ_0') we may assume:

$$\Delta_0 = \Delta_0' \text{ and } [\gamma_0] = [\gamma_0]'.$$

But $\chi_{\gamma_0} = y_{\gamma_0} \chi_{[\gamma_0]} = w_{\gamma_0} \chi_{[\gamma_0]}'$ (where $w_{\gamma_0} \in W_0$ s.t. $w_{\gamma_0}(\Lambda_0) = -\Lambda_0$) hence $[\gamma_0]' = [\gamma_0]$. Since the action of $[\gamma_0]$ on Φ is involutive, it leaves an irreducible component of Φ stable, or it permutes two of the irreducible components of Φ. In both cases the diagrams of S and S' are the same, what induces again an isomorphism $\Lambda \rightarrow \Lambda'$ according to the diagram. Q.E.D.

We use notations as in section 1 and 2.

If g_{c_1} is related to (u, t), then the induced Γ-action on (X_r, Φ) determines a Γ-diagram $S = (\phi, \Delta, \Lambda_0, [\gamma_0])$ for every Γ-fundamental basis Λ of Φ.

The above result implies:

PROPOSITION 4.4. The pair (g_{c_1}, t_c) as defined above, determines the Γ-diagram S up to isomorphism.

In general real forms g_{c_1} and g_{c_2} of g_c, related to (u, t), are not necessarily isomorphic by means of an element of $\text{Aut}(g_c)$, if their Γ-diagrams are so (f.i. if $t \in g_{c_1} \cap g_{c_2}$ and $t \in g_{c_2} \cap g_{c_1}$). However:

THEOREM 4.5. Assume g_{c_1} and g_{c_2} to be normally related to (u, t) and S_1 resp. S_2 are the corresponding Γ-diagrams. Then g_{c_1} is isomorphic to g_{c_2} if and
only if \(S_1 \) is isomorphic to \(S_2 \).

The proof requires a bit more technique than we developed so far and can be found in [ARAKI, Theorem 2.10, 2.11] and [SATAKE, Theorem 2.4.1]. I want to pay more attention to the determination of the \(\Gamma \)-diagrams.

For compact real forms the above correspondence is obvious since they are all isomorphic. In particular take \((u,t)\) as in section 1. Since \(\tau \) acts as \(-id\) on \(X_r \) we get: \(\Lambda_0 = \Lambda \) and \(\Lambda^0 = \tau^*(\Lambda) = -\Lambda = \omega_{\Lambda_0}(\Delta) \) with \(\omega_{\Lambda_0} \in W = W_0 \) s.t. \(\omega_{\Delta_0}(\Delta) = -\Delta \). Consequently \(\omega_{\Lambda_0} \) is the opposition automorphism of \(\Lambda \) (i.e. the longest element of \(W \) w.r.t. \(\Delta \)),

\[
\chi_{\Lambda}^{-1} \circ \tau^*(\chi) = -\omega_{\Lambda_0}(\chi) \quad \text{for } \chi \in X_r
\]

and the \(\Gamma \)-diagram is: \(S = (\Phi, \Delta, \Lambda, -\omega_{\Lambda_0}) \). The different possibilities are listed in:

PROPOSITION 4.6. The \(\Gamma \)-diagram of a compact real simple Lie algebra belongs to one of the following types:

1. \(\mathfrak{h} \) where \(\mathfrak{n} \neq \mathfrak{h} \) (\(\ell \geq 2 \)), \(\mathfrak{d}_\ell \) (\(\ell \) odd) and \(\mathfrak{e}_6 \) or \(\mathfrak{e}_7 \) (i)

2. \[
\begin{align*}
\mathfrak{a}_\ell (\ell \geq 2): & \quad \begin{array}{c}
\cdots \cdots \cdots \\
\cdot \\
\cdots \cdots \\
\end{array} \\ \\
\mathfrak{d}_\ell (\ell \text{ odd}): & \quad \begin{array}{c}
\cdots \cdots \cdots \\
\cdot \\
\cdots \cdots \\
\end{array} \\
\mathfrak{e}_6: & \quad \begin{array}{c}
\cdots \cdots \cdots \\
\cdot \\
\cdots \cdots \\
\end{array}
\end{align*}
\]

(4.2) (ii)

PROOF. The opposition automorphism of \(\Lambda \) is nontrivial iff \(\Phi \) belongs to one of the following types: \(\mathfrak{a}_\ell \) (\(\ell \geq 2 \)), \(\mathfrak{d}_\ell \) (\(\ell \) odd) or \(\mathfrak{e}_6 \). Therefore in these cases we get the diagrams (4.2). Q.E.D.

Denote the group of automorphisms of \(X_r \), which leave \(\Delta \) and \(\Delta_0 \) invariant by \(\text{Aut}(X_r, \Lambda, \Lambda_0) \).

Whether an arbitrary diagram is a \(\Gamma \)-diagram can be decided with:

PROPOSITION 4.7. If \(\Phi \) is a root system, \(\Lambda \) a fundamental system of \(\Theta \), \(\Lambda_0 \) a subset of \(\Delta \) and \([.]\) a homomorphism: \(\Gamma \to \text{Aut}(X_r, \Lambda, \Lambda_0) \), then the quadruple \(S = (\Phi, \Lambda, \Lambda_0, [\gamma]) \) is a \(\Gamma \)-diagram of some action of \(\Gamma \) on \((X_r, \Phi) \) iff \((\Phi_0, \Lambda_0, \Lambda_0', [\gamma]) \) is the \(\Gamma \)-diagram of the action \(\chi_{\Lambda_0}' = -\chi \) of \(\Gamma \) on \((X_0, \Theta_0) \), where \(\chi_{\Lambda_0}' = \Phi \cap X_0 \). Furthermore the action of \(\Gamma \) on \((X_r, \Theta) \) is in that case completely determined by the corresponding \(\Gamma \)-diagram \((\Phi, \Lambda, \Lambda_0, [\gamma]) \).
PROOF. The assertion "\(\omega \)" being obvious, we assume that \((\Phi_0', \Lambda_0', \Lambda_0', [\gamma]/X'_0)\) satisfies the above conditions. Let \(w_0 \) be the unique element in \(W_0 = W(\Lambda_0) < W \) satisfying \(w_0(\Lambda_0) = -\Lambda_0 \). Define an action of \(\Gamma \) on \((X_r, \phi)\) by:

\[
\chi^0 = w_0 \chi_{[\gamma_0]}.
\]

Since \((X'_0)_{\Phi}^1\) and \((X'_0)_{\Phi}^1\) are eigenspaces of both \([\gamma_0]\) and \(w_0 \), they commute with each other.

Therefore \(\chi^0 = \chi_0 \) and \(\chi = \chi^0 \) defines an action of \(\Gamma \) on \(X_r \). It is easy to see that \((\Phi, \Lambda, \Lambda_0, [\gamma])\) is the \(\Gamma \)-diagram of this action. As the definition of \(\chi^0 \) given above is the only possible way to define an action of \(\Gamma \) on \((X_r, \phi)\) giving rise to the given \(\Gamma \)-diagram, the last assertion is clear. Q.E.D.

By combining proposition 4.6 and 4.7 we get a result that will be useful at the classification of the \(\Gamma \)-diagrams:

Lemma 4.8. The following conditions for a quadruple \(S_0 = (\Phi_0', \Lambda_0', \Lambda_0', [\gamma]) \) are mutually equivalent:

i) \(S_0 \) is the \(\Gamma \)-diagram of the action \(\chi^0 = -\chi \) of \(\Gamma \) on \((X'_0, \Phi'_0)\)

ii) \([\gamma_0]\) is the opposition automorphism of \(\Lambda_0 \)

iii) \(-[\gamma_0] \in W_0 \)

iv) The quadruple \(S_0 \) is the \(\Gamma \)-diagram of a compact real Lie algebra.

v) If \(\Lambda_1 \) is an irreducible component of \(\Lambda_0 \) then \([\gamma_0]\) leaves \(\Lambda_1 \) invariant and \((\Phi_1, \Lambda_1, \Lambda_1, [\gamma]/\Lambda_1)\) is the \(\Gamma \)-diagram of one of the compact real Lie algebras of proposition 4.4.

Since not every \(\Gamma \)-diagram comes from a real form, normally related to \((u, t)\), we define:

Definition 4.9. A \(\Gamma \)-diagram \(S = (\Phi, \Lambda, \Lambda_0, [\gamma]) \), where \(\Phi \) is a reduced root system, is called admissible if there exist a complex semisimple Lie algebra \(g_c \), a compact real form \(\alpha \) of \(g_c \), a C.S.A. \(t \) of \(u \) and a real form \(g_0 \) of \(h_c \) normally related to \((u, t)\) s.t. the induced \(\Gamma \)-diagram is isomorphic to \(S \).

We like to find necessary and sufficient conditions for a \(\Gamma \)-diagram to be admissible. Since the action of \(\Gamma \) on \(\Phi \) is characterized by an involution of \(\Phi \), we are left to determine when an involution of \(\Phi \) can be lifted to a conjugation of \(g_c \).
5. LIFTING CONDITIONS

To lift an automorphism \(\rho \) of \(\Phi \) to an automorphism of \(g_c \), one uses a Chevalley basis [Hu, 14.2]. To lift \(\rho \) to an automorphism of a compact real form of \(g_c \), we make use of the Weyl basis:

DEFINITION 5.1. A Weyl basis of \(g_c \) w.r.t. \((u, t) \) is a basis \(\{X^\alpha | \alpha \in \Phi \} \) of \(g_c \) mod \(t_c \) with the properties:

i) \(X^\alpha \in g_c \), \([X^\alpha , X^-\alpha] = H^\alpha \) for each \(\alpha \in \Phi \).

ii) \([X^\alpha , X^\beta] = C_{\alpha, \beta} X^{\alpha+\beta} \) where \(\alpha, \beta, \alpha+\beta \in \Phi \) and the constants \(C_{\alpha, \beta} \) satisfy:

\[C_{\alpha, \beta} = c_{\alpha,-\beta} \quad (c \in \mathbb{R}). \]

iii) \(X^\alpha - X^-\alpha \) and \(i(X^\alpha + X^-\alpha) \in u \) for each \(\alpha \in \Phi \).

The existence of such a basis is clear from the construction of a compact real form from a given C.S.A. (cf., Ch. I, Corollary 2.4) and the fact that two compact real forms are conjugate under \(\text{Int}(g_c) \).

Note that iii) implies:

\[\tau(X^\alpha) = -X^-\alpha \quad (\alpha \in \Phi). \]

Fix a Weyl basis of \(g_c \) w.r.t. \((u, t) \). If \(g_\sigma \) is a real form of \(g_c \) with \(\sigma(t_c) = t_c \), then \(\sigma \) acts on \(\Phi \) as in (2.1). In particular: \(\sigma(g_c) = g_c^{\sigma} \). Put \(\sigma(X^\alpha) = K^\alpha X^\alpha(\sigma) \) for \(K^\alpha \in \mathbb{C}, \alpha \in \Phi \). From 5.1 i) and ii) follows:

\[\kappa^\alpha \cdot \kappa^-\alpha = 1 \quad \text{for every } \alpha, \beta, \alpha+\beta \in \Phi \]

\[\kappa^{\alpha+\beta} = \kappa^\alpha \cdot \kappa^\beta \cdot C_{\alpha, \beta} \sigma \cdot \sigma. \]

Hence \(\{\kappa^\alpha | \alpha \in \Delta, \Delta \text{ a fundamental basis of } \Phi \} \) determines \(\{\kappa^\alpha | \alpha \in \Phi \} \).

If \(\sigma \) and \(\tau \) commute, then:

\[\kappa^\alpha = \kappa^-\alpha \quad (\alpha \in \Phi) \]

and that is equivalent to (see (5.2)):

\[|\kappa^\alpha| = 1 \quad \text{for any } \alpha \in \Phi. \]

Moreover the fact that \(\sigma \) is an anti-involution of \(g_c \) implies:

\[\bar{\kappa^\alpha} \cdot \kappa^-\alpha = 1. \]
Whether a C.S.A. of a real form g_0 is an Iwasawa C.S.A. is determined by a property of the coefficients $\{\kappa_a\}_{\alpha \in \Phi}$. From (5.2), (5.3) and (5.5) follows for $\alpha \in \Phi_0$:

(5.6) $\kappa_\alpha = \kappa_{-\alpha} = \pm 1$.

In particular:

(5.7) $\kappa_\alpha = 1 \iff \sigma(X_\alpha) = X_{-\alpha} = -\tau(X_\alpha) \iff \theta(X_\alpha) = -X_\alpha \iff X_\alpha \in p_c$

(5.8) $\kappa_\alpha = -1 \iff \sigma(X_\alpha) = X_{-\alpha} = \tau(X_\alpha) \iff \theta(X_\alpha) = X_\alpha \iff X_\alpha \in k_c$.

On the other hand if $\alpha \in \Phi \setminus \Phi_0$ then we have:

$$X_\alpha + \sigma(X_{-\alpha}) \in p_c, \quad X_\alpha - \sigma(X_{-\alpha}) \in k_c$$

thus: $g^\alpha + g^{-\alpha} = \mathcal{C}(X_\alpha + \sigma(X_{-\alpha})) + \mathcal{C}(X_\alpha - \sigma(X_{-\alpha}))$.

Write $\mathcal{t}_c = \mathcal{t}_c^+ + \mathcal{t}_c^-$ with $\mathcal{t}_c^+ = \mathcal{t}_c \cap k_c$, $\mathcal{t}_c^- = \mathcal{t}_c \cap p_c$, then we get the following decompositions:

(5.9) $k_c = \mathcal{t}_c^+ + \sum_{\alpha \in \Phi_0} g^\alpha + \sum_{\alpha \in \Phi \setminus \Phi_0} \mathcal{C}(X_\alpha - \sigma(X_{-\alpha}))$

(5.10) $p_c = \mathcal{t}_c^- + \sum_{\alpha \in \Phi_0} g^\alpha + \sum_{\alpha \in \Phi \setminus \Phi_0} \mathcal{C}(X_\alpha + \sigma(X_{-\alpha}))$

where $\Phi_+^\alpha = \{\alpha \in \Phi_0 | \kappa_\alpha = 1\}$, $\Phi^-_0 = \{\alpha \in \Phi_0 | \kappa_\alpha = -1\}$.

Furthermore (5.10) implies:

PROPOSITION 5.2. Let g_0 be related to (u, \mathfrak{t}). The following properties are equivalent:

i) g_0 is normally related to (u, \mathfrak{t})

ii) \mathcal{t}_c^+ is maximal abelian in p_c

iii) $\kappa_\alpha = -1$ for all $\alpha \in \Phi_0$.

REMARK 5.3. Let ϕ be an automorphism of \mathfrak{t}_c^+ such that $\phi(\Phi) = \Phi$. Assume moreover that one has for every $\alpha_i \in \Delta = \{a_1, \ldots, a_n\}$ an isomorphism τ_i:

$g^{a_i} \to g^{\phi(a_i)}$. Then we know from [HU, 14.2] that there exists a $\psi \in \text{Aut}(g_c)$ such that:

i) $\psi(X_{a_i}) = a_{\alpha_i} X_{\phi(a_i)}$, $a_{\alpha_i} \in \mathcal{C}$.

ii) $\psi|_{\mathcal{t}_c^+} = \phi$

iii) $\psi|_{\mathcal{t}_c^-} = \tau_i$.

One verifies that its proof can be modified such that if all \(\pi_i \) commute with \(\tau \), then the same can be organized for \(\psi \).

Note that the condition \(\pi_i \circ \tau = \tau \circ \pi_i \) \((i = 1, \ldots, n) \) is equivalent to:

\[
(5.11) \quad \bar{a}_{\alpha_i} = a_{-\alpha_i} \quad (i = 1, \ldots, n).
\]

and because of \(a_{\alpha} a_{-\alpha} = 1 \) this is equivalent to:

\[
(5.12) \quad |a_{\alpha_i}| = 1 \quad (i = 1, \ldots, n).
\]

By using relation (5.2) the \(\{ a_{\alpha} \}_{\alpha \in \Phi} \) can be extended uniquely to a tuple \(\{ a_{\alpha} \}_{\alpha \in \Phi} \) with \(a_{\alpha} \in \mathfrak{c} \) and \(|a_{\alpha}| = 1 \) for all \(\alpha \in \Phi \). We will prove now:

PROPOSITION 5.4. Assume \(\Gamma \) acts on \(\Phi \) and let \(S = (\Phi, \Delta, \Delta_0, \gamma) \) be the corresponding \(\Gamma \)-diagram. Then \(S \) is admissible iff there exists a tuple \(\{ \kappa_{\alpha_i} \}_{\alpha_i \in \Delta} \) s.t. \(|\kappa_{\alpha_i}| = 1; \kappa_{\alpha_i} = -1 \) for \(\alpha_i \in \Delta_0 \) and if \(\{ \kappa_{\alpha} \}_{\alpha \in \Phi} \) is the unique extension satisfying (5.2) (exists by [HU., Theorem 14.2]) then \(\kappa_{\alpha_i} \kappa_{\gamma} \gamma_0 = 1 \) for \(\alpha_i \in \Delta \setminus \Delta_0 \).

PROOF. That those conditions are necessary is a consequence of (5.4), (5.5) and proposition 5.2.

As for the sufficiency, let \(\Theta \), \(\mu, \xi, \phi \) be as before. Fix a Weyl basis of \(\mathfrak{g}_c \) w.r.t. \((\mu, \xi, \phi) \) and let \((\Phi)_{\mathfrak{R}} \) be the real span of \(\Phi \) in \(\xi^* \). Extend the action of \(\gamma_0 \in \Gamma \) on \(\phi \) to \((\Phi)_{\mathfrak{R}} \) and denote it also by \(\gamma_0 \). Write \(\phi \) for \(\gamma_0 \circ \tau \) and define for \(\alpha_i \in \Delta \); \(\xi_i: \alpha_i \rightarrow \gamma_i(\alpha_i) \) by: \(\xi_i(\alpha_i) = a_{\alpha_i} X_{\phi}(\xi_i(\alpha_i)) \) with \(a_{\alpha_i} = -\alpha_i \) \(\alpha_i \) (See (5.11)). According to remark 5.3 there exists a \(\psi \in \text{Aut}(\mathfrak{g}_c) \) s.t. \(\psi|_{\mathfrak{g}_c} = \pi_i \) \((\alpha_i \in \Delta) \) and \(\psi^* = \phi \) on \(\xi^* \). Since \(a_{\alpha_i} = -\alpha_i \) we have:

\[
\psi \circ \tau = \tau \circ \psi
\]

and by ii): \(a_{\alpha_i} a_{-\alpha_i} \gamma_0 = 1 \), hence \(\psi^2 = \text{id} \).

The conjugation \(\sigma = \psi \circ \tau \) gives us the desired normally related real form \(\mathfrak{g}_c \) of \(\mathfrak{h}_c \).
6. NORMAL ROOT SYSTEMS

To simplify the notations we denote from now on the action of $\gamma_0 \neq 1 \in \Gamma$ on a root system Φ by a bar and its extension to a conjugation of g_c (if it exists) by σ.

DEFINITION 6.1. A reduced root system Φ equipped with an action of Γ is said to be normal iff

$$\bar{\alpha} - \alpha \notin \Phi \text{ for any } \alpha \in \Phi.$$

The corresponding Γ-diagram is also called normal.

PROPOSITION 6.2. If $S = (\Phi, \Lambda, \Lambda_0, [\omega])$ is admissible then S is normal.

PROOF. Since S is admissible the action of Γ on Φ can be extended to a conjugation σ of g_c as in definition 4.9.

Let $\{\kappa_a\}_{a \in \Phi}$ be the corresponding tuple of scalars, according to proposition 5.4. If $\bar{a} = -a$ then $\bar{a} - a = -2a \notin \Phi$. Assume that $\bar{\alpha} \neq -a$ and $\beta = = \bar{a} - a \in \Phi$. Then $\beta \in \Phi_0$, hence $\sigma(X_\beta) = X_\beta$.

By applying σ on both sides of $[X_a, \sigma(X_{-a})] = \kappa_{-a} c_a, -a X_\beta$ we get since $\beta \in \Phi_0$,

$$[\sigma(X_a), X_{-a}] = \kappa_{-a} c_a, -a X_\beta.$$

On the other hand we have:

$$[\sigma(X_a), X_{-a}] = K_a c_a, -a X_\beta.$$

Therefore $\bar{\kappa}_{-a} = -\kappa_a$. Since $\bar{\kappa}_{-a} = \kappa_a$ this would imply $\kappa_a = 0$ and we have arrived at a contradiction. Q.E.D.

For a normal root system Σ_0 appears to be a root system:

PROPOSITION 6.3. Let Φ be a normal root system and $\Sigma_0 = \pi(\Phi \setminus \Phi_0)$ as in section 2. Then Σ_0 is a root system itself. [WARNER, page 21].

Araki constructed first the possible normal root systems and determined later the admissible ones. It is however easier to determine first the Γ-drawings, the normal Γ-drawings follow then easily from them.
7. REDUCTION TO THE CASE OF REAL RANK ONE

The real rank of a real semisimple Lie algebra \(g_0 = k + p \), related to \((u,t)\) is defined as the dimension of a maximal abelian subspace of \(p \) (cf. Ch. I, Definition 4.3). If \(S = (\phi, \Delta, \Delta_0, \gamma) \) is the corresponding \(\Gamma \)-diagram, then proposition 3.7 gives that the real-rank is equal to \(|\tilde{\Delta}| \). Call \(|\tilde{\Delta}| \) the real rank of \(\Gamma \)-diagram. (So the real rank equals the number of \([\gamma_0] \)-equivalent classes of the not-coloured vertices in the \(\Gamma \)-diagram).

We want to reduce the problem of the classification of admissible \(\Gamma \)-diagrams to the case of \(\Gamma \)-diagrams of real rank equal to one.

If \(S = (\phi, \Delta, \Delta_0, \gamma) \) is a \(\Gamma \)-diagram and \(\Delta' \) a \([\gamma]\)-stable subset of \(\Delta \) then one can form the subsystem \(S_{\Delta'} = (\phi', \Delta', \Delta_0', \gamma') \) of \(S \). Here \(\phi' \) is the intersection of the \(\mathbb{Z} \)-span of \(\Delta' \) with \(\phi \), \(\Delta_0' = \Delta_0 \cap \Delta \) and \([\gamma]' = [\gamma] \gamma_0 \).

Lemma 7.1. Let the notations be as above. Assume that \(S \) is admissible and that \(\Delta' \) satisfies

\[
(7.1) \quad \text{if } a \in \Delta', \ b \in \Delta \text{ and } \langle a, b \rangle \neq 0 \text{ then } b \in \Delta'.
\]

Then \(S_{\Delta'} \) is admissible.

Proof. To prove that \(\Gamma \) acts on \(\phi' \) it suffices to show that if \(a_i \in \Delta' \) then \(a_i \in \phi' \). Now \(a_i = w_\gamma a_i [\gamma] \), where \(w_\gamma = w_{ai_1} \ldots w_{ai_k} \), \(a_i \in \Delta_0 \). For \(1 \leq k \leq S \) write \(a_i' \) for \(w_\gamma a_i [\gamma] \) and denote \(a_i' \) by \(a_0' \). We prove by induction that \(a_i' \in \phi' \). Since \(\Delta' \) is \([\gamma]\)-stable: \(a_i' \in \Delta', \) so we may assume \(a_i' \in \phi' \). If \(\langle a_i, a_i' \rangle = 0 \) then \(a_i = a_i' \), because \(a_i = w_{ai} a_i' \). Hence \(a_i \in \phi' \).

If \(\langle a_i, a_i' \rangle \neq 0 \) then by condition (7.1) \(a_i \in \Delta' \) and this implies \(a_i \in \phi' \). Hence \(\phi' \) is stable under the action of \(\Gamma \) on \(\phi \). As \(S \) is admissible it suffices now to show that \(S_{\Delta'} \) is the \(\Gamma \)-diagram for this action of \(\Gamma \) on \(\phi' \). If \(W \) is the Weyl group of \(\phi' \) and \(w_\gamma \in W \) the unique element of \(W \) s.t. \(w_\gamma (\Delta') = \Delta' \), then if \(w_\gamma = \prod w_{ai} \):

\[
\langle a, b \rangle = \prod w_{ai} \langle a_i, b \rangle \quad w_\gamma \in W
\]

Hence for \(a \in \phi' \). \(w_\gamma (a') = w_\gamma \phi (a') = a' \gamma \gamma_0 \). Q.E.D.
PROPOSITION 7.2. Notations as before, assume \(\Delta = \Delta' \cup \Delta'' \) with \(\Delta' \) and \(\Delta'' \) \([\gamma]\)-stable subsets of \(\Delta \) that satisfy both (7.1) and such that \(\Delta' \cap \Delta'' \subset \Delta_0 \). If \(S_{\Delta} \) and \(S_{\Delta''} \) are admissible, then \(S \) is admissible.

PROOF. Let \(\{\kappa_a'\}_{a \in \Delta'} \), resp. \(\{\kappa_a''\}_{a \in \Delta''} \) be the systems of scalars as in proposition 5.4. Since \(\Delta' \cap \Delta'' \subset \Delta_0 \), they coincide for common \(a \). Define now

\[
\kappa_a' = \begin{cases}
\kappa_a' & \text{if } a \in \Delta' \\
\kappa_a'' & \text{if } a \in \Delta''
\end{cases}
\]

The tuple \(\{\kappa_a'\}_{a \in \Delta} \) satisfies the conditions of proposition 5.4, hence \(S \) is admissible. Q.E.D.

REMARK 7.3. Condition (7.1) on \(\Delta' \) and \(\Delta'' \) implies that \(\Delta_0' \) and \(\Delta_0'' \) consist of a number of connected components of \(\Delta_0 \).

EXAMPLE 7.4. As will turn out later the following \(\Gamma \)-diagrams are admissible:

\[
\Delta': \quad \bullet - \bullet - \bullet \quad \Delta'': \quad \bullet - \bullet
\]

By proposition 7.2 the following \(\Gamma \)-diagram for \(E_7 \) is admissible:

\[
\bullet - \bullet - \bullet - \bullet - \bullet - \bullet
\]

REMARK 7.5. In view of the above results, the classification of admissible \(\Gamma \)-diagrams is reduced to the case of real rank equal to one. In fact every admissible \(\Gamma \)-diagram can be "built up" as follows: let \(S = \{\delta, \Delta, \Delta_0, [\gamma]\} \) be an admissible \(\Gamma \)-diagram and put \(\Delta = \pi(\Delta - \Delta_0) = \{\delta_1, \ldots, \delta_r\} \). For each \(\delta_i \), define \(\Delta_i = \delta_i \cup (\pi^{-1}(\delta_i) \cap \Delta) \). Then \(\Delta_i \) satisfies the condition (7.1) and is \([\gamma]\)-stable. \(\pi(\alpha) = \pi(\alpha [\gamma]) = \delta_i \) for all \(\alpha \in \Delta_i - \Delta_0 \). Therefore the canonical subsystem \(S_{\Delta_i} \) is admissible and has real rank one. The decomposition \(\Delta = \Delta_1 \cup \ldots \cup \Delta_r \) satisfies the conditions of proposition 7.2.

8. THE RANK ONE CLASSIFICATION

First a definition of irreducibility for a \(\Gamma \)-diagram:
DEFINITION 8.1. The system \(S = (\Phi, \Delta, \Delta_0, [\gamma_0]) \) is \(\mathbb{R} \)-irreducible if \(\Delta \) is not the union of two mutually orthogonal \([\gamma_0] \)-stable, non-empty, subsystems \(\Delta' \) and \(\Delta'' \). The system \(S \) is absolutely irreducible if \(\Delta \) is connected.

Note that if \(\Delta \) is \(\mathbb{R} \)-irreducible but not absolutely irreducible then \(\Delta = \Delta' \cup \Delta'' \) with \(\Delta' \) and \(\Delta'' \) connected and \(\Delta'[\gamma_0] = \Delta'' \).

Using proposition 4.7 and lemma 4.8 we can state:

PROPOSITION 8.2. There exist twenty types of \(\mathbb{R} \)-irreducible \(\Gamma \)-diagrams with the restricted rank one (See table 1).

PROOF. Assume \(S \) is an absolutely irreducible \(\Gamma \)-diagram of \(\mathbb{R} \)-rank. We give here a proof for the root system \(A_k(\ell' \ell r) \). For other types of root systems the proof can be carried out similarly.

There are two possibilities: a) \([\gamma_0] = I \) and b) \([\gamma_0] \neq I \). In the case a), a \(\Gamma \)-diagram \(S = (\Phi, \Delta, \Delta_0, [\gamma_0]) \) with the restricted rank one has the following form:

\[
\begin{array}{c}
\bullet \bullet \bullet \ldots \bullet \bullet \bullet \\
\Rightarrow \quad \Rightarrow
\end{array}
\]

Hence \(\Phi_0 = A_k \times A_s \). By proposition 4.7 and lemma 4.8, \(S \) corresponds to an action of \(\Gamma \) iff \(r \leq 1 \) and \(s \leq 1 \). This gives the diagrams 2, 3 and 4 in table 1.

In case b), \(\ell = \text{rank } \Phi \geq r \) and \([\gamma_0]\) is the unique element in \(\text{Aut}(X_\ell, \Omega, \lambda) \) of order 2. Hence the \(\Gamma \)-diagram \(S \) has one of the following forms:

\[
\begin{array}{c}
\bullet \bullet \bullet \ldots \bullet \bullet \bullet \\
\Rightarrow \quad \Rightarrow
\end{array}
\]

or

\[
\begin{array}{c}
\bullet \bullet \bullet \ldots \bullet \bullet \bullet \\
\Rightarrow \quad \Rightarrow
\end{array}
\]

Now \(\Phi_0 = A_r \times A_s \times A_r \), but the \(\Gamma \)-diagram of the compact real form of \(A_r \times A_s \times A_r \) looks like (cf. lemma 4.8):

\[
\begin{array}{c}
\bullet \bullet \bullet \ldots \bullet \bullet \bullet \\
\Rightarrow \quad \Rightarrow
\end{array}
\]

By proposition 4.7, the \(\Gamma \)-diagram \(S \) corresponds to an action of \(\Gamma \) if and only if \(r = 0 \), so the \(\Gamma \)-diagram \(S \) must be diagram no. 5 from table 1.

Suppose now that \(S \) is \(\mathbb{R} \)-irreducible but not absolutely irreducible and of restricted rank one. Then \(\Delta_0 = \Phi \), because every \(\mathbb{R} \)-irreducible component of \(S_0 = (\Phi_0, \Delta_0, [\gamma_0]_X) \) is absolutely irreducible. Hence \(S \) can be only
diagram no. 1 from table 1. Q.E.D.

PROPOSITION 8.3. Among the r-diagrams listed in table 1, the diagrams 3, 7, 8, 17, 19, 20 are not normal. All other diagrams are normal.

PROOF. For a non-normal system, we give the action of \(Y_0 \) as an element of \(\text{Aut}(X_r, \phi) \), denoted by \(\phi_0 \), and the root \(\alpha \in \phi \) s.t. \(\alpha - \alpha \in \phi \). We use the notations of roots in [BOURBAKI, Ch. VI, section 4]

no.5: \(s_0 = s_2 s_3 \); \(\alpha = \epsilon_1 - \epsilon_2, \bar{\alpha} - \alpha = \epsilon_2 - \epsilon_3 \)

no.7: \(s_0 = s_1 s_2 s_3 \); \(\alpha = \epsilon_2, \bar{\alpha} - \alpha = \epsilon_1 - \epsilon_2 \)

no.8: \(s_0 = s_2 s_3 \); \(\alpha = \epsilon_1 + \epsilon_2, \bar{\alpha} - \alpha = 2\epsilon_2 \)

no.17: \(s_0 = s_1 s_2 s_3 \); \(\alpha = \epsilon_1, \bar{\alpha} - \alpha = \epsilon_2 - \epsilon_1 \)

no.19: \(s_0 = s_2 s_3 \); \(\alpha = \epsilon_1 - \epsilon_2, \bar{\alpha} - \alpha = \epsilon_2 - \epsilon_1 \)

no.20: \(s_0 = s_2 s_3 \); \(\alpha = \epsilon_1 - \epsilon_2, \bar{\alpha} - \alpha = -2\epsilon_1 + \epsilon_2 + \epsilon_3 \)

To prove that a system is normal, it is sufficient to show:

\[\bar{\alpha} - \alpha \notin \phi \text{ for all } \alpha \in \phi - \phi_0. \]

As an example we prove that the diagrams no.11 and no.13 are normal. The proof for the other types goes analogously.

In no.11 and 13, one has: \((X_0)^\phi = \mathbb{Q}(\epsilon_1 + \epsilon_2) + \sum_{i=3}^{\ell} \mathbb{Q} \epsilon_i \). So:

\[\phi^\phi_0 = \{ \epsilon_1 + \epsilon_2, \epsilon_1 \epsilon_2, \epsilon_1 \epsilon_3, \epsilon_2 \epsilon_3 \} \]. Since \(\epsilon_1 + \epsilon_2 - (\epsilon_1 + \epsilon_2) = 0 \notin \phi \),

\[\epsilon_1 \epsilon_2 - (\epsilon_1 \epsilon_2) = \epsilon_1 \epsilon_2 \notin \phi \] and \(\epsilon_2 \epsilon_1 - (\epsilon_2 \epsilon_1) = \epsilon_1 \epsilon_2 + 2\epsilon_1 \notin \phi \); these diagrams are normal. Q.E.D.

As will appear the normal r-diagrams of real rank one which are not admissible can be determined with the following result:

LEMA 8.4. Let S be an r-irreducible r-diagram of real rank one and let \(\phi_0^1 = \{ a \in \phi | (a, \phi_0) = 0 \} \).

If \(\phi_0^1 \neq \phi \) and \(\phi \) has a subsystem \(\phi' \) of type D_4, then S is not admissible.

PROOF. We may assume that S is absolutely irreducible. Take \(\alpha \in \phi_0^1 \) and let \(\phi_0 = (\beta \in \phi | (\beta, \alpha) = 0) \). Then \(\phi_0 \subset \phi \) and \(\text{rank} \phi_0 \leq \text{rank} \phi \). Since \(\phi_0 = \text{rank} \phi = \text{rank} \phi \) occurs only for \(\phi \) of type A_\ell (\ell \geq 2) which has no subsystem of type D_4, we may assume rank \(\phi_0 = n-1 \), hence \(\phi_0 = \phi_0^1 \). Let \(\phi' \) be a subsystem of type D_4 s.t. \(\alpha \in \phi' \). Choose a fundamental basis \(\alpha_1, \alpha_2, \alpha_3 \) and \(\alpha_4 \) of \(\phi' \).
s.t. α is the highest root of Φ':

\[
\begin{array}{c}
\alpha_1 \\
\alpha_2 \\
\alpha_3 \\
\alpha_4 \\
\end{array}
\]

In particular $\alpha = a_1 + 2a_2 + a_3 + a_4$, a_1, a_3 and $a_4 \in \Phi_0 = \Phi_0$ are mutually orthogonal roots and Φ' is Γ-stable. (One can prove that every $\lambda \in \Phi'$ not equal to $\pm \alpha$, $\pm a_1$ (i=1,3,4) is of the form $\pm a_2 + \pm a_3 + \pm a_4$.) Assume Φ is admissible, hence also Φ' is admissible. We prove now: $\kappa_{a_2} \kappa_{a_2} = -1$ using (5.15) and $5_2 = a_2 + a_3 + a_4$. Since $a_1 + a_2, a_1 + a_3$ and $a_2 = a_1 + a_2 + a_3 + a_4 \in \Phi$ we have:

i) $\kappa_{a_1 + a_2} \kappa_{a_1, a_2} = -\kappa_{a_1, a_2}$

ii) $\kappa_{a_1 + a_2 + a_3, a_3} \kappa_{a_1 + a_2, a_3} = -\kappa_{a_1 + a_2, a_3}$

iii) $\kappa_{a_2, a_1 + a_2 + a_3, a_4} \kappa_{a_2, a_1 + a_2, a_3} = -\kappa_{a_2, a_1 + a_2, a_3}$

What gives:

\[
\kappa_{a_2} \kappa_{a_2} = \frac{-\kappa_{a_1 + a_2, a_3} \kappa_{a_1 + a_2 + a_3, a_4}}{\kappa_{a_3} \kappa_{a_3} \kappa_{a_3} \kappa_{a_3}} = 1.
\]

Using the following lemma one can verify that this amounts to:

\[
\frac{c_{a_1 + a_2, a_3} \kappa_{a_1 + a_2 + a_3, a_4}}{c_{a_1 + a_2, a_3} \kappa_{a_1 + a_2, a_3}} = 1.
\]

Contradiction. Q.E.D.

Lemma 8.5. Let g, ℓ and Φ be as before. The following identities between the structure constants $c_{\alpha, \beta}$ hold:

i) If α, β, γ are roots satisfying $\alpha + \beta + \gamma = 0$, then

\[
c_{\alpha, \beta} = c_{\beta, \gamma} = c_{\gamma, \alpha}
\]

ii) If $\alpha, \beta, \gamma, \delta$ are roots satisfying $\alpha + \beta + \gamma + \delta = 0$, $\beta + \gamma \neq 0$, $\gamma + \delta \neq 0$ and $\delta + \beta \neq 0$, then:

\[
c_{\alpha, \beta} c_{\gamma, \delta} + c_{\alpha, \gamma} c_{\delta, \beta} + c_{\alpha, \delta} c_{\beta, \gamma} = 0.
\]

[HE, lemma 5.1, 5.3].

This result is also used to prove that some of the normal rank one Γ-diagrams are admissible.
THEOREM 8.6. The \mathbb{R}-irreducible admissible Γ-diagrams of real rank one are the diagrams no: 1, 2, 4, 5, 6, 9, 10, 12 and 18 in Table 1.

PROOF. That the diagrams 11, 13, 14, 15, 16 and 17 are not admissible follows with lemma 8.4, hence by the propositions 6.2, 8.2 and 8.3 it suffices to prove that the diagrams no. 1, 2, 4, 5, 6, 9, 10, 12 and 18 are admissible.

We use the notations of roots in [BOURBAKI, Ch. VI]

no.1: Let $\Delta = \{\alpha_1, \alpha_2\}$ and $\kappa_{\alpha_1} = \kappa_{\alpha_2}$ be an arbitrary complex number with the absolute value 1. Since $\alpha_1 = \alpha_2$, $\alpha_2 = \alpha_1$ the conditions in proposition 5.4 are satisfied.

no.2: Let κ_{α_1} be an arbitrary complex number with the absolute value 1. Since $\alpha_1 = \alpha_1$ proposition 5.4 is satisfied.

no.5: Let κ_{α_1} be an arbitrary complex number with the absolute value 1 and put:

$$\kappa_{\alpha_1} = -\kappa_{\alpha_1} \frac{c_{\alpha_1}}{c_{\alpha_1}} \beta$$

where $\beta = \alpha_2^{+} + \alpha_{1}^{-} = c_{2}^{+} c_{\alpha_{1}}^{+} c_{\alpha_{1}}^{-}$

Since $\alpha_1 = \alpha_1^{+} \beta$ and $\beta = -\beta$ we get:

$$-\kappa_{\alpha_1} c_{\alpha_1}^{-} \beta = c_{\alpha_1}^{-} \beta \kappa_{\alpha_1}^{-}$$

by applying the extension of $\gamma_0 \in \Gamma$ to $\gamma_0 \in \Gamma$. So we have $\kappa_{\alpha_1} \kappa_{\alpha_1} = -\kappa_{\alpha_1} \kappa_{\alpha_1} c_{\alpha_1}^{-} \beta / c_{\alpha_1}^{-} \beta = |\kappa_{\alpha_1}|^{2} = 1$.

Similarly we have $-\kappa_{\alpha_1} c_{\alpha_1}^{-} \beta = c_{\alpha_1}^{-} \beta \kappa_{\alpha_1}$ and

$$-\kappa_{\alpha_1} c_{\alpha_1}^{-} \beta = \kappa_{\alpha_1} \kappa_{\alpha_1} c_{\alpha_1}^{-} \beta / c_{\alpha_1}^{-} \beta = 1$$

because $c_{\alpha_1}^{-} \beta = c^{-} \alpha_1 = c_{\alpha_1} \beta$ and $c_{\alpha_1}^{-} \beta = c^{-} \alpha_1 = c_{\alpha_1} \beta$. For the remaining cases we refer to [ARAKI] Q.E.D.

Together with proposition 7.2 we can determine now the admissible \mathbb{R}-irreducible Γ-diagrams. An \mathbb{R}-irreducible and non absolutely irreducible Γ-diagram corresponds to a Lie algebra $(\mathfrak{g}_c^\mathbb{R})$, where \mathfrak{g}_c is a complex simple Lie algebra. So we can restrict to the absolutely irreducible case:

THEOREM 8.7. The non-compact absolutely irreducible admissible Γ-diagrams are the ones given in Table 2.
PROOF. The proof is easily obtained by using remark 7.5 and table 1. As an example we treat the case \(\phi \) of type \(B_k \).

As \(\phi_0 \) corresponds to a compact Lie algebra, \(\phi_0 \) must be of type:

\[(r \times \Lambda_1) \times B_s : \bullet \cdots \bullet \cdots \bullet \cdots \]\[\text{ \[\begin{array}{cc} K \vspace{0.5cm} & s \end{array} \] \}

Let \(\Lambda_1 \) be the irreducible component of \(\Lambda \setminus \Lambda_0 \) connected to \(B_s \).

If \(k = |\Lambda_1| = 1 \) let \(\Lambda_1 = \emptyset \).

Then \(\Delta' = \beta \circ \Lambda_0 \) has an irreducible component of type

\[
\bullet \cdots \bullet \cdots \bullet
\]

which is not admissible.

If \(k = |\Lambda_1| > 1 \), take \(\beta \in \Lambda_1 \) s.t. \((\beta, \Lambda_0) \neq 0 \) and \((\beta, B_s) = 0 \). As before \(\Delta' = \beta \circ \Lambda_0 \) has an irreducible component of the type: \(\bullet \cdots \bullet \) which is not admissible. It follows \(r = 0 \), hence \(\phi_0 \) of type \(B_s \). (1\(\leq s \leq \ell \)). Q.E.D.

REFERENCES

<table>
<thead>
<tr>
<th>no.</th>
<th>Type</th>
<th>Γ-diagram</th>
<th>normal</th>
<th>admissible</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$A_1 \times A_1$</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>A_1</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>A_2</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>A_3</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>A_1</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>B_1</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>B_1</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>C_1</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>C_1</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>D_{21}</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>D_{21}</td>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>D_{21+1}</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td>D_{21+1}</td>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>E_6</td>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>E_7</td>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>E_8</td>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>F_4</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>F_4</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>19</td>
<td>G_2</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>G_2</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Type</td>
<td>Cartan Not.</td>
<td>T-diagram</td>
<td>\mathcal{Y}</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>$1A_\ell$</td>
<td>AI</td>
<td></td>
<td>λ_1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AII</td>
<td></td>
<td>$\lambda_1 - \lambda_2$</td>
<td></td>
</tr>
<tr>
<td>$2A_\ell$</td>
<td>AIII</td>
<td></td>
<td>$\lambda_1 - \lambda_2 + \lambda_3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AIV</td>
<td></td>
<td>$\lambda_1 - \lambda_2 + \lambda_3$</td>
<td></td>
</tr>
<tr>
<td>B_ℓ</td>
<td>BI</td>
<td></td>
<td>$\lambda_1 - \lambda_2 + \lambda_3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BII</td>
<td></td>
<td>$\lambda_1 - \lambda_2 + \lambda_3$</td>
<td></td>
</tr>
<tr>
<td>C_ℓ</td>
<td>CI</td>
<td></td>
<td>$\lambda_1 - \lambda_2 + \lambda_3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CII</td>
<td></td>
<td>$\lambda_1 - \lambda_2 + \lambda_3$</td>
<td></td>
</tr>
<tr>
<td>D_ℓ</td>
<td>DI</td>
<td></td>
<td>$\lambda_1 - \lambda_2 + \lambda_3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DII</td>
<td></td>
<td>$\lambda_1 - \lambda_2 + \lambda_3$</td>
<td></td>
</tr>
<tr>
<td>B_ℓ</td>
<td>DI</td>
<td></td>
<td>$\lambda_1 - \lambda_2 + \lambda_3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DII</td>
<td></td>
<td>$\lambda_1 - \lambda_2 + \lambda_3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DI</td>
<td></td>
<td>$\lambda_1 - \lambda_2 + \lambda_3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIII</td>
<td></td>
<td>$\lambda_1 - \lambda_2 + \lambda_3$</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: non-compact real forms
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolutely continuous</td>
<td>109</td>
</tr>
<tr>
<td>Adjoint group</td>
<td>2</td>
</tr>
<tr>
<td>Affine function</td>
<td>92,107</td>
</tr>
<tr>
<td>Amenable</td>
<td>93</td>
</tr>
<tr>
<td>B,N-pair</td>
<td>41</td>
</tr>
<tr>
<td>Base (of root system)</td>
<td>21</td>
</tr>
<tr>
<td>Barycenter</td>
<td>106</td>
</tr>
<tr>
<td>- map</td>
<td>106</td>
</tr>
<tr>
<td>Borel subgroup</td>
<td>60</td>
</tr>
<tr>
<td>Boundary (of a Lie group)</td>
<td>96</td>
</tr>
<tr>
<td>Bruhat</td>
<td>42</td>
</tr>
<tr>
<td>- decomposition</td>
<td>42</td>
</tr>
<tr>
<td>- 's lemma</td>
<td></td>
</tr>
<tr>
<td>Cartan decomposition</td>
<td>9</td>
</tr>
<tr>
<td>- of real s.s. Lie algebra</td>
<td></td>
</tr>
<tr>
<td>- of real s.s. Lie group</td>
<td>31,40</td>
</tr>
<tr>
<td>Cartan involution (of real s.s. Lie algebra)</td>
<td>9,113</td>
</tr>
<tr>
<td>Cartan subalgebra (CSA)</td>
<td>4</td>
</tr>
<tr>
<td>Collinearity graph</td>
<td>65</td>
</tr>
<tr>
<td>Compact Lie algebra</td>
<td>2</td>
</tr>
<tr>
<td>Compactly imbedded subalgebra</td>
<td>11</td>
</tr>
<tr>
<td>Complexification (of real Lie algebra)</td>
<td>3</td>
</tr>
<tr>
<td>Conjugation (of complex s.s. Lie algebra)</td>
<td>113</td>
</tr>
<tr>
<td>Coxeter</td>
<td>56</td>
</tr>
<tr>
<td>- diagram</td>
<td></td>
</tr>
<tr>
<td>- group of a Coxeter system</td>
<td>56</td>
</tr>
<tr>
<td>- group of a Tits system</td>
<td>55</td>
</tr>
<tr>
<td>- system</td>
<td>56</td>
</tr>
<tr>
<td>Clique</td>
<td>65</td>
</tr>
</tbody>
</table>
138

Duality (between real s.s. Lie algebra and compact real s.s. Lie algebra with involution) 10
Dynkin diagram 21

Exchange condition 57
Extreme point 103

Fixed point property 93
Flow 79
- discrete 80
Fundamental reflections 48
Furstenberg boundary of G 91
- = maximal boundary of G
- = universal minimal strongly proximal G-space 97

Γ-diagram 119
- absolutely irreducible 129
- admissible 122
- isomorphism of 120
- normal 126
- R-irreducible 129
- real rank of 127
Γ-fundamental system 117
Γ-order 116

Homogeneous space 96

Incidence 65
Incidence system 65
- connected 65
- connected component of 65
- linear 66
Invariant 93
- measure
- set 80
Irreducible
- Coxeter group 67
- root system 21

Isomorphic (for compact real s.s. Lie algebras with involution) 10

Iwasawa CSA 113
Iwasawa decomposition
- of $GL(n,\mathbb{R})$ 34
- of real s.s. Lie algebra 14
- of real s.s. Lie group 36

Killing form 1

Length 49, 56

Levi
- decomposition 61
- factor 61

Lie incidence system 66
- type of 66

Linear order 116

Longest element 49

Maximal compact subgroups (conjugacy of) 33
Maximal parabolic subgroups 59
Minimal parabolic subgroups 59
Minimal subset 80
Multiplicity (of a root) 17

Nondegenerate subset 66
Normal real s.s. Lie algebra 18
Normal root system 126
Normally related real forms 114

Opposite involution 49
Ordered vector space 7
Orbit
 - closure
Orthogonal symmetric Lie algebra
 - effective
 - noncompact type
Pair (associated to an orthogonal symmetric Lie algebra)
Parabolic subgroup
Path
Polar decomposition (of GL(n, \mathbb{R}))
Probability measure
Projective plane
Proximal pair
Pseudo-Riemannian
 - manifold
 - structure
 - symmetric space
Quasi-invariant measure
Radical (of Lie algebra)
Rank (of real s.s. Lie algebra)
Real form (of complex Lie algebra)
Real rank (of real s.s. Lie algebra)
Reduced root system
Reductive Lie algebra
Related real forms
Restricted fundamental system
Riemannian
 - manifold
 - structure
 - symmetric pair
 - symmetric space
Root (of real s.s. Lie algebra)
Root lattice
Root space decomposition 13
Root system 6

Semisimple Lie algebra 1
Singular subspace 66
- rank of 66
Standard parabolic subgroup 59
Strongly amenable 85
Strongly proximal 82
Subspace 66
Symmetric pair 26

T-space 79
- affine 92
- extension of 81
- factor of 81
- irreducible 92
- morphism of 81
- proximal 82

Tits geometry 65
Tits system 55
- saturated 56
- split 56

Topological transformation group 79
Toral subalgebra 5

w*-topology 101
Weyl basis 123
Weyl group 17,36
UITGAVEN IN DE SERIE MC SYLLABUS

Onderstaande uitgaven zijn verkrijgbaar bij het Mathematisch Centrum,
Kruislaan 413, 1098 SJ Amsterdam, tel.020-5925333

MCS 1.6a B. DORHOUT & J. KRIENS, Leergang Besliskunde, deel 6a: Wiskundige programmering 1, 1968. ISBN 90 6196 032 0.
MCS 3.1 H.A. LAUWERIER, Randwaardeproblemen, deel 1, 1967. ISBN 90 6196 024 X.

MCS 7.1 Colloquium Moderne rekenmachines, deel 1, 1969. ISBN 90 6196 046 0.

MCS 13 F.E.J. KRUSEMAN ARETZ, Programmeren voor rekenautomaten; De MG ALGOL 80 vertaler voor de EL X8, 1971. ISBN 90 6196 069 X.

J.W. DE ROEVER (red.), Colloquium Onderwerpen uit de biomathematics, deel 1, 1976. ISBN 90 6196 105 X.

MCS 47.1 P.W. HEMKER (ED.), *NUMAL, numerical procedures in ALGOL 60*, Part I: General information and indices, 1981. ISBN 90 6196 217 X.

MCS 47.2 P.W. HEMKER (ED.), *NUMAL, numerical procedures in ALGOL 60*, Part II: Elementary procedures, algebraic evaluations, 1981. ISBN 90 6196 217 X.

MCS 47.3 P.W. HEMKER (ED.), *NUMAL, numerical procedures in ALGOL 60*, Part III: Linear algebra, part I, 1981. ISBN 90 6196 217 X.

MCS 47.4 P.W. HEMKER (ED.), *NUMAL, numerical procedures in ALGOL 60*, Part IV: Linear algebra, part II, 1981. ISBN 90 6196 217 X.

MCS 47.5 P.W. HEMKER (ED.), *NUMAL, numerical procedures in ALGOL 60*, Part V: Analytical evaluations, analytical problems, part I, 1981. ISBN 90 6196 217 X.

MCS 47.7 P.W. HEMKER (ED.), *NUMAL, numerical procedures in ALGOL 60*, Part VII: Special functions and constants, interpolation and approximation, 1981. ISBN 90 6196 217 X.

MCS 49 T.H. KOORWINDER (ED.), The structure of real semisimple Lie groups, 1982. ISBN 90 6196 239 0.

De met een * gemerkte uitgaven moeten nog verschijnen.