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Given an undirected graph G = ( V, E) and a partition { S, T} of V, an S - T 
connector is a set of edges F£ E such that every component of the subgraph ( V, F) 
intersects both S and T. We show that G has k edge-disjoint S-T connectors if and 
only if J6 0 ( V1 ) u · · · u 60 ( V,ll;:;. kt for every collection { V1 , ... , V1} of disjoint non
empty subsets of S and for every such collection of subsets of T. This is a common 
generalization of a theorem of Tutte and Nash-Williams on disjoint spanning trees 
and a theorem of Kiinig on disjoint edge covers in a bipartite graph. © 1998 

Academic Press 

I. INTRODUCTION 

Let G = ( V, E) be an undirected graph, S a subset of its vertices, and T 
the complement of S in V. An S-T connector in G is a set F of edges such 
that every component of the subgraph ( V, F) intersects both S and T. Let 
k be a nonnegative integer. In this note, we prove the following theorem on 
packing S-T connectors. 

THEOREM 1. G contains k edge-di.1joint S- T connectors (f and only if 
J6( W)I;;:: k I WJ for every suhpartition W of Sor T. 

A subpartition W of a set X is a collection of pairwise disjoint nonempty 
subsets of X If W = { U1o ... , U,} is a subpartition of S or T, then o( W) 
denotes the set of edges with one end in U; and one end in V\U; for some 
index i. 

Theorem 1 has two well-known special cases. First, if G is bipartite with 
colour classes Sand T, then an S-T connector is an edge cover of G (a set 
of edges covering all vertices), and Theorem 1 specializes to a theorem of 
Konig [5] and Gupta [2], saying that the maximum number of edge
disjoint edge covers of a bipartite graph is equal to the minimum vertex 
degree. Second, if either S or T is a singleton, then an S-T connector is a 
connected spanning subgraph of G, and Theorem 1 specializes to a result 
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of Tutte [9] and Nash-Williams [6], giving a necessary and sufficient 
condition for a graph to have k disjoint spanning trees. We state this result 
here as a lemma, since we will use it in the proof of Theorem 1. 

LEMMA 1. Let G = ( V, E) be an undirected graph. Then G contains k 
edge-disjoint spanning trees if and only if 16( P) I ~ k( I PI - 1 ) for every 
partition P of V into nonempty subsets. 

Lemma 1 is a special case of the matroid base packing theorem. 
At this point, observe that an S-T connector is a common spanning set 

of two matroids on E, namely the cycle matroids of the graphs Gs and GT, 
respectively. Here, G s is the graph obtained from G by shrinking the set S 
into a single vertex s (if an edge of G connects two vertices in S, then in 
G 8 there is a loop corresponding to this edge), and GT, t are defined 
similarly. Therefore, matroid intersection provides a min-max relation for 
the minimum cardinality (or weight) of an S-T connector in G. However, 
no general theorem is known for the packing of common spanning sets of 
two matroids. Thus, our theorem gives a case where a min-max relation 
for packing common spanning sets of two matroids is possible (although 
graphic matroids generally axe not "strongly base orderable"). (For 
matroid theory we refer to [ I 0].) 

The concept of an S-T connector in an undirected graph is related to the 
concept of a bibranching in a directed graph. Given a directed graph 
D = ( V, A) and a set S £ V (with T := V\S), an S-T bihranching is a set of 
arcs B £ A containing a directed v - T path for every v ES and a directed 
S - v path for every v E T. 

With respect to packing bibranchings, Schrijver [ 7] proved the following 
result, which is the second constituent of the proof of Theorem I. 

LEMMA 2. Let D = ( V, A) be a digraph, let Sc V, and let T = V\S. Then 
D contains k arc-di.1joint S-T hibranchings (f and only if 16;( U)I ~k for 
every nonempty U £ S and I c5 i) ( U) I ~ k for euery nvnempty U £ T. 

Here, 6 ii ( U) denotes the set of arcs leaving U and 6 i) ( U) denotes the set 
of arcs entering U in D. 

2. PACKING CONNECTORS 

In this section we prove Theorem 1 by combining Lemma 1 and Lemma 2. 

Prol!f l!f Theorem 1. Necessity is straightforward. To see sufficiency, let 
G be such that 16( W) I ~ k I WI for every subpartition W of S or T. Then 
G s satisfies the condition of Lemma I (if P is a partition of the vertex set 
of G 8 , omit the class of P that contains s to obtain a subpartition W of T 
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with \6( W)I = \6(P)\ and \ W\ =\PI - I). Therefore, it contains k disjoint 
spanning trees. The same holds for Gr. Now orient the edges of the span
ning trees in Gs away from s and orient the edges of the spanning trees in 
Gr towards t. Note that there is no conflict for edges that are both in a 
spanning tree of G s and in a spanning tree of GT• since these edges connect 
S and T. Orienting the remaining edges of G arbitrarily, we obtain an 
orientation D of G. Clearly, \6.Q(UJI ~k for every Ur;;. Tand l6_t(U)i~k 
for every U £ S. Therefore, by Lemma 2 D contains k arc-disjoint S-T 
bibranchings. Since each bibranching in D gives an S-T connector in G, 
this implies the theorem. I 

The above proof gives rise to a polynomial algorithm for packing S-T 
connectors. Indeed, packing spanning trees can be done with any matroid 
partition algorithm (or alternatively, Barahona [ 1] reduces the problem to 
maximum flow computations). Moreover, disjoint bibranchings can be 
found in polynomial time, using the ellipsoid method (see [ 7] ). A direct 
combinatorial algorithm for packing connectors is described in a sub
sequent paper [ 3]. An extension of the method used in that paper also 
yields a combinatorial algorithm for packing bibranchings. 

For the problem of finding a minimum-weight bibranching a com
binatorial algorithm is described in [ 4]. 

3. POLYHEDRAL INTERPRETATION 

In this section we show that Theorem 1 implies the integer rounding 
property for a set of linear inequalities associated with packing S-T 
connectors. (For background, see [ 8].) 

Assume that G contains an S-T connector. Equivalently, both G sand Gr 
are connected. Because an S-T-connector is a common spanning set of two 
matroids, the convex hull of all incidence vectors of S-T connectors in G 
can be derived from the theory of matroid polytopes: 

conv.hull{xFI FE~} 

= {xE !REI 0 ::;;;x~ 1, x(6( W)) ~I WI for each WE if'}. 

Here, xF denotes the incidence vector of a set F £ E, and .? the set of all 
S-T connectors of G. Moreover, "#'' denotes the set of all subpartitions of 
Sand T. Finally, if XE IR 8 and F£E, x(F) is short for LeEFx(e). 

It follows that the polyhedra 

P := conv.hull{xFI FE.~}+ IR! 
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and 

Q:=conv.hull{x0(Wl/IWI IWE :tf'} +IR! 

form a blocking pair. In other words, P = {:: E IR ! I x T:: ): 1 V x E Q} and 

Q={xEIR!l::Tx): lV::EP}. 
Now, let M be the /F x E matrix with rows the incidence vectors of all 

S-T connectors of G. Then the fact that P and Q form a blocking pair 

implies: 

min{ wrx"1 WJ/I WI I WE if} = min{ wrx Ix): 0, Mx): 1} 

=max{yTlly?:O,yTM~iv}. (1) 

The last equality is linear programming duality. 
Theorem 1 has the following polyhedral formulation: 

THEOREM 2. For every w: E-+ Z + 

Proof: This follows from Theorem 1 by replacing every edge e of G by 

H'( e) parallel edges. I 

COROLLARY 1. The set of' linear inequalities x): 0, Mx): 1 has the 

integer rounding property. That is, f(1r every iv: E-+ Z + 

Proof Directly from Theorem 2 with (I). I 

Corollary 1 is equivalent to: the polyhedron P has the integer decom

position property; that is, for each k, any integer vector in k · P is the sum 

of k integer vectors in P. 
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