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We develop diagram techniques for proving confluence in abstract 
reductions systems. The underlying theory gives a systematic and uniform 
framework in which a number of known results, widely scattered throughout 
the literature, can be understood. These results include Newman's lemma, 
Lemma 3.1 of Winkler and Buchberger, the Hindley-Rosen lemma, the 
Request lemmas of Staples, the Strong Confluence lemma of Huet, the 
lemma of De Bruijn. ,,, 1998 Academic Press 

1. INTRODUCTION 

The concept of a term rewriting system (TRS) is paradigmatic for the study of 
computational procedures. TRSs play an important role in various areas, such as 
abstract data type specifications, implementations of functional programming 
languages, and automated deduction. Rewriting is concerned with syntactical objects 
like terms, strings, and term graphs, but also with equivalence classes of terms or 
other structured objects. Terms may be first-order or higher-order, such as )Aerms 
or proofs in some deduction system. Many of the basic definitions and facts can 
already be stated on a more abstract level, where the structure of the objects to be 
rewritten is not yet of relevance. To express this level of abstraction we use the 
neutral term "reduction" instead of "rewriting." In the next section we give the 
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necessary elementary definitions and basic facts about abstract reduction systems 
(ARSs). 

We develop diagram techniques for proving confluence in abstract reductions 
systems. The underlying theory gives a systematic and uniform framework in which 
a number of standard proof techniques for cont1uence. widely scattered throughout 
the literature, can be understood. These results include Newman's lemma ( 1942), 
Lemma 3.1 of Winkler and Buchberger ( 1985 ), the Hindley-Rosen lemma ( 1964 ), 
the Request lemmas of Staples ( 1975 ), the Strong Cont1 uence lemma of Huct 
( 1980 ), and the lemma of De Bruijn ( 1978 ), which served as a starting point of this 
research. The notions of ''diagram technique" and ''standard proof technique" are 
essentially open-ended. We certainly do not claim to cover or subsume them all. 
For example, Proposition 4.1 is a simple confluence result obtained by a diagram 
technique that is not a special case of the Theorem 4.28, the strongest theorem we 
obtain with decreasing diagrams. The completeness results at the end of Section 4 
are rather weak and do not want to suggest some: kind of completeness with respect 
to standard proof techniques. However, we do claim ease in the use of our method 
as compared to standard proof techniques. For all results stated above to be 
generalized by diagram techniques we found the diagram technique more intuitive 
and easier to use. 

The present paper extends Van Oostrom ( l 994a, J 994b) in the following ways: 
all results about reduction diagrams are new, and the concept of a trace-decreasing 
diagram refining the concept of a decreasing diagram has a clearer visualization and 
yields a new proof of the main theorem. With over 30 tigures the approach here 
is more geometric, as opposed to the more algebraic approach of van Oostrom 
( l994a). 

We will assume that the reader is familiar with the terminology and notation of' 
elementary set theory and logic, such as sers, boolean operators, quanti/i'cation, 
relations and jimctions, im,erse, reflexive, symmetric, transitive and equivalence 
relations. closure operations such as the reflexive, symmetric, and transitive closure 
(also simultaneously). and so on. Moreover, we assume the definitions of (partial) 
order, strict 1mll'r, totally or linl.'arly orcil'red set (chain), well~/(mnded order and 
11·ell~fimnded induction. 

For (finite) multisets, denoted by [s0 ,.1· 1 , ... ,sn--tJ, we refer to the appendix, 
where the basic definitions and the necessary results arc stated. The empty 1nultiset 
is denoted by [ ]. The set of finite multisets over S is denoted by S #. 

A.finite sequence of' length n in Sis a functions: { 0, l, ... , n - l}-> S(n:;;, OJ, also 
denoted by <s0 ,s 1 , ... ,sn_ 1 ) or .1· 0 s 1 · ··.1·n--l· The empty sequence is denoted by 
< ). The set of finite sequences in S is denoted by S*. Concatenation of finite 
sequences <J and r is denoted by <J • r. 

2. ABSTRACT REDUCTION SYSTEMS 

2. l. DEFINITION. An abstract reduction system is a structure ,cl= (A, { ->a I a En ) 
consisting of a set A and a set of binary relations ->a on A, indexed by a set I. We 
write (A, ->1 • -+2 ) instead of (A.{-+,, lo:E {I, 2}} ). For o:E/, the relations -+a are 
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calkd rt·duci ion or re11Tile relations. Sometimes we will refer to ___,"' as rx. In the case 
,ir just t)ne redu..:tinn relation. we simply write --->. We write -"1 for the union 
: I l -., I "J. E 1:. 
~ In the folkiwing. wc will consider several cquivalence relations on the set A. One 
of them is identit~· on A. As the elements of A will often have a syntactic nature. we 
will use = to dei;ote identitv on A. conforming to the convention that = expresses 
svntactical identitv. The usu:11 svmbol = to denote identity now becomes available 
1:) dennte anothe; important e~uivalence relation. namely convertibility, the equiv­
alence relation generated by ___,. Similarly. ="' denotes the equivalence relation 
generated by ___.,. for every rx EI. 

Let d=i.-L{--+,i"J.E/li be an ARS and let ex.El. If for a.bEA we have 
1a.h)E--+1 . we write a--+1 b and call b a one-step (cx-)reduct of a. A reduction 
sel/llt'llt'I.' with respect to --->, is a (finite or infinite) sequence a0 ->" a 1 -"a ctz -"a···. 

Every reduction sequence has a first element. and finite reduction sequences also 
haw a last element. Whenever we want to stipulate these elements we use the 
following terminology: a reduction sequence starting from a is called a reduction 
sequence of a. and if such a reduction sequence ends in b, then it is called a 
reduction sequence ji-0111 a to b. The element b is called an (ex- )reduct of a in this 
case. Reduction sequences are also called reduction paths. A reduction step is a 
specific occurrence of --+, in a reduction sequence. A reduction step from a to b is 
a specific occurrence of a-., b. The leng1h of a finite reduction sequence is the 
number of reduction steps occurring in this reduction sequence (one less than the 
number of elements! I. An indexed reduction sequence is a finite or infinite sequence 
of the form a--+, h -+11 c --+;· • · · with a, h, c . ... EA and ex, /i. y, ... E /. Thus an indexed 
n:duction sequence is a reduction sequence with respect to U l ->a I ex EI}, with the 
reduction steps marked with the index of the reduction relation to which the step 
belongs. We write a -+1 h if we do not wish to specify the index of the reduction step. 

The transitive reflexive closure of-+, is written as __,_.,According to the definition 
of transitive retlexive closure, we have a --+->" b if and only if there is a finite 
reduction sequence a= a 0 --->,a 1 --+" · · · ->1 an = b( n?: 0 ). If we write u: a _,_." h, then 
a denotes an arbitrary reduction sequence from a to b. We write a: a ->"a 1 

...... , · · · --+'-' h whenever we want to stipulate a specific reduction sequence u from a 
to h. Similarly. finite indexed reduction sequences will be denoted by u: a _,_. 1 h. 

The reflexive closure of --."- is ___, =. The symmetric closure of --+ is ,._. The 
transitive ck1sure of ....... , is ___,;.The i~verse relation of-",_ is -+; 1 , als~ deno~~d by 
-.,. let _,/I also be a reduction relation on A. The union ->au ->p is denoted by 
->,11· The composition --+, and ->p is denoted by --+" . -"p· We have a_, a . -"fJ c if 
and only if a_., h--+ 11 c !i.)r some b EA. 

ARSs are also called fahe!ed transition systems in the modal literature, see for 
example Popkorn ( 1994 ). An ARS with just one reduction relation -" is called a 
replaceme111 system in Staples ( 1975) and transf'onnation ~ystem in Jantzen ( 1988 ). 
Below we will define a number of properties of the reduction relation -". If this 
reduction relation ha~ a certain property, then we will attribute this property also 
to the ARS m question and vice versa. Most of the properties are first defined 
element-wise. that is. as a property of elements of the ARS. 
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2.2. DEFINITION (confluence). Let .c/ = (A. { -+, I ci. E Ij ) be an ARS. o:, Ji EI and 
let -+ = -->,. 

( i) ci. commutes it'eak/y with Ji if the diagram of Fig. la holds, i.e., if Ya. h. 
c EA 3d EA ( c +-11 a-+, b = c --+->, d <+-11 h ). In a shorter notation: +-11 • -+, <:; --+->, · +-+-11 • 

Furthermore, ex commutes with fJ if --+->x and -++11 commute weakly. or, equivalently: 

H--fi ' -++:i: s;; -Hx · ~/J• 

(ii) a EA is weakly con.fluent if Yb, c EA 3d EA ( c +-a--> b = c -++ d <+- b ). 
The reduction relation -+ is ll'eakly con.fluent or weakly Church-Rosser ( WCR) if 
every a EA is weakly confluent. Alternative characterizations are: +- . --> <:;--+-> · +-+-, 

or -+ is weakly self-commuting (see Fig. 1 b ). 

(iii) aEA is confluent if Yh,cEA3dEA (c<+-a-++h=c-++d+-+-h). 
The reduction relation --> is cm~fluent or Church-Rosser or has the Church-Rosser 
property (CR). if every a EA is confluent. Alternative characterizations are: <+- · -++ 

s:; --+-> • <+- , or ---+ is self-commuting (see Fig. 1 d ). 

The property WCR is often called "local confluence." e.g., in Jantzen ( 1988). In 
the following we will use the terms conf1uent and Church-Rosser (CR) without 
preference. Likewise for weakly confluent and WCR. The following proposition 
follows immediately from the definitions. Note especially the equivalence of ( i) 
and ( v ). Some authors call Definition 2.2( iii) confluent and Proposition 2.3( v) 
Church· Rosser. 

2.3. PROPOSITION. For every ARS (A,-->), the fiJ/lowing are equivalent: 

(i) -+ is confluent 

(ii) -++ is il'eakly cm~fluent 

(iii) -++ is self-commuring 

(a) (b) 

"· .... 

(e) 

· ... 
·. 

· ... 

( f) 

( c) 
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.... ··· 

.. 

FIG. I. Various cunllucnce patterns. 
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(iv) <-·--++ c;: -H·++-, or Va,b,cEA 3dEA (c+-a_,_.b=:-c_,_.d++-b), 
that is, the diagram in Fig. le holds. 

(v) =S --++·++-,or Va,beA3cEA(a=h=*a......,..c++-b), \\'here= is 
convertibility, the equivalence relation generated by --+, or the smallest equivalence 
relation containing ->. See the diagram in Fig. If 

PrO(~f The equivalence of ( i )-(iii) follows immediately from the definitions, 
using that --++ is reflexive and transitive itself. Obviously, ( v) implies ( i). and ( i) 
implies (iv) in turn. It remains to prove that (iv) implies (v). Assume (iv) and let 
a= b. Recall that = is the equivalence generated by ->. Hence there exist a0 , ... an EA 
(n;?: 0) such that a= a0 +-T .. · +-Tan = b, where +-T is the symmetric closure of ->. 
We argue by induction on n. If n = 0, then we trivially have a -+> c ++- b by taking 

c =a= b. Assume (v) has been proved for n and let a= a0 +-T · · · +-Tan +-Tan+ 1 =b. 
By the induction hypothesis there exists c EA such that a -+> c ++- an' If an+ 1 --+an, 
then we are done. If an ->an+ 1 , then we can apply (iv) to an+ 1 <-an --++ c and we 
are also done. This completes the proof of ( v ). I 

2.4. DEFINITION (normalization). Let d =(A,->) be an ARS. 

( i) a EA is a normal form if there exists no b EA such that a --+b. 

(ii) a EA is weakly normali:ing (WN) if a--++ b for some normal form b EA. 
The reduction relation --+ is 11·eakly normali:ing if every a EA is weakly normalizing. 

(iii) a EA is strongly normali:ing (SN) if every reduction sequence starting 
from a is finite. The reduction relation --+ is strongly normali::.ing if every a EA is 
strongly normalizing. Alternative characterization: <- is well founded ( WF ). Obviously, 
SN implies WN and +- is SN if and only if -> is WF. 

(iv) Let a EA. The reduction graph ~(a) of a is the ARS with all reducts of 
a as elements and the reduction relation --+ restricted to this set of reducts. Let 
B s A. Then B is o~final in .sl if Va EA 3b E Ba --++ b. We say that --+ has the 
co.finality property (CP) if in every reduction graph ~(a), a EA, there is a (finite or 
infinite) reduction sequence a= a0 -> a 1 --+ .. • such that {an In;;:,: 0} is co final in 
~(a). 

(v) Let a EA. The component <{;(a) of a with respect to conversion is the ARS 
with {a' EA I a= a'} as set of elements and the reduction relation -> restricted to 
this convertibility class. Now define the property CP = for ,<;/ to hold if every 
component ',f( a), a EA, contains a reduction sequence a= a0 -> a 1 -+ ... such that 
{an In;?: O} is cofinal in 'iS'(a). 

LEMMA (Kl op ( 1980) ). For every ARS we have: 

(i) CP=>CR 

(ii) CR= CP, provided the set of elements is countable. 

(iii) CP~cp=, due to Mano (1993). 

Proof Let sf= (A,->) be an ARS. 
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( i) Assume CP and let h ....-- a --+-> c for some a, b, c EA. Let a0 -+a 1 · • · be 
a reduction sequence such that {an In~ O} is cofinal in ~4(a). We have b, c E ~o/(a), 

so by the cofinality there exist i, j ~ 0 such that b --+-> a; and c _,... a1 . If i < j, then 
a1 is the desired common reduct, otherwise a;. 

(ii) Assume CR, A countable, and let ao=a 0 , ah ... be an enumeration of 
ro/(a). Define recursively b0 =a and hn+ 1 as a common reduct of bn and an+ 1 . Then 
b0 --+-> b 1 ... yields a reduction sequence and {hn ln~O} is cofinal in ~§(a). 

(iii) CP ~ trivially implies CP since any cofinal reduction sequence a= a 0 -+ 

a 1 -+ · · · in r,1, (a) is also a co final reduction sequence in ~(a). For the converse, 
assume CP. By (i) we have CR in the formulation of Proposition 2.3( v ). Let a EA 
and a= a0 ---7a 1 -+ · · · be co!inal in ~4(a). lf a' Er& (a), then a'= a, so by CR we have 
a' --+-> a" for some a" E r<J( a), hence a' -++ a i for suitable i ~ 0. It follows that 
{an I n ;:, 0} is co final in <6( a). I 

2.6. Lemma (Newman's lemma). For every ARS 1i·e have SN /\ WCR =!>CR. 

Proof Let .d =(A,-+) be an ARS. Short proofs of Newman's lemma can be 
found in H uet ( 1980) and in Barendregt ( 1984 ). One can also obtain proofs of 
Newman's lemma from more general results on reduction diagrams, see Corollary 3.9 
and Example 4.20 in Section 4. We list two proofs below. The first proof is the 
canonical one by well-founded induction and anticipates the proof of the main 
theorem on trace-decreasing diagrams, Theorem 4.19. The second proof using multisets 
is also important, since this argument will play a role in Proposition 4.1. Assume 
.c/ has the properties SN and WCR. 

(i) As -+ is SN, +--- is WF, and hence +--- + is well-founded. Thus we can apply 
well-founded induction, with respect to .._+, We prove Va EA cjJ(a), with </>(a) 
expressing that a is conl1uent. We have to show that r/; is +-+-inductive. Let a EA 
and assume we have proved cjJ( a') for all a' EA with a'+-+ a. Let c ....-- a --+-> h. If 
a= b or a= c, then we are done. Otherwise, c ++- c' +---a-+ b' --+-> b for some c', 
b' EA. Apply WCR to c' +---a-+ h' in order to find d' such that c' --+-> d' ....-- b'. We 
have h' +-a and c' +-a, so by the induction hypothesis </;( b') and </i( c' ). The first 
gives us e EA such that d' __,_. e ++- h, so c ....-- c' --+-> d' --+-> e. The second gives us 
d EA such that c--+-> d....-- e, so c --+-> d ++- h. Making a picture can now be helpful 
to see that we have proved <p(a). 

(ii) Recall that = is the equivalence generated by -+. Let a =b, then there 
exist a 0 , ... an EA ( n ?= 0) such that a= a 0 <---> • • · <--->an = h, where +--> is the symmetric 
closure of --+. We view a0 <---> · · • <-->a,, as a landscape with peaks a;_ 1 +---a;+--- ll;+ l • 

Pcilley.1· a;_ 1 -+a;+--- a;+ 1 and slopes a,.-+ · · · --?a;+k or a;+--- · · · -+ai+k• for some 
k > 0. If a 0 <--> · · · <-->an contains no peaks, then it is either one (maximal) slope, two 
(maximal) slopes with one valley, or one single point. In all these cases we can 
easily find c EA with a--+-> c....-- h. If a 0 <---> · · · <--->an does contain a peak, say a;_ 1 

+---a;-+ a;+ i, then we can eliminate this peak by applying WCR: for some d EA we 
have a;_ i -+-> d ++- a;+ 1 . By the definition of transitive closure, there exist c i, .. ., c n, 

c'1 , ... , c~. EA (n, 11 1 ?= 0) such that a;_ 1-+ c 1 ---7 ···--+en= d= c~. +--- • · · +---c11 +---a1+ 1. 
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I J Thi.:n thi.: landscape becl1me~ u 11 +-> · · · +->a; 1 +-> c 1 +-> · · · +-> c, +-> · · · +-+ c 1 +-+a;+ 1 

......... +-+ u"" This does not seem to help very much. However, we shall argue that 
this procedure L)f eliminating peaks must terminate, so that we necessarily end up 
with a landscape bct\\een a" and a,, containing no peaks. Then we will have proved 
CR as ab(we. The argument uses multisets as defined in the Appendix. To a landscape 

......... ...-. d,, we can associate the multiset [ d0 , .. ., d11 ]. As --> is SN, +- is WF, and 
hence .- • is a wdl-founded l)rder. By Lemma A.3(ii), the corresponding multiset 
L)rder <-- ~ is also well founded. Now we observe that in the procedure of eliminating 
peaks the multisets associated to landscapes descend in the sense of this multiset 
order. FL1r example. [a0 , ••• ,a; 1.c 1 , •••• d, ... ,c'1 ,a;+t•··-.a11 ] originates from 
[a,, ..... u11 J by replacing a, by the multiset [ c 1 ,. •• , d, ... , c'1] of strictly smaller 
elements. It folll)WS that the procedure of eliminating peaks must terminate. I 

3. REDUCTION DIAGRAMS 

Cunsider the A RS c/ = (A. l --.x I Cl EI} ), which will be fixed throughout this 
section. A geumetric tool for finding a common reduct of the end points or two 
diverging indexed reduction sequences is the use of reduction diagrams. Reduction 
diagrams are built up from so-called elementary diagrams, see the examples in 
Fig. 2. A rnmpleted reduction diagram contains the desired common reduct. 

An elementary diagram is a scalable rectangle with vertices representing elements 
of A and edges representing indexed reduction sequences. The upper edge represents 
zero or lllle reduction steps from left to right. The left edge represents zero or one 
reductil1n steps downwards. The lower edge represents an indexed reduction 

/'l 
b 

(3 /3 a a b a b 

1, 
"1 

..).. 

al 1 
n ..).. 

1 ~ 
c d c d c--+ --+ -+'td I 

(i) (ii) (iii) 

a (3 
b a a a a 

"1 1a 
c c a b 

/3 
a· a 

(iv) (v) (vi) 

FIG. 2. Elementary diagrams. 
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sequence of zero or more steps from left to right. The right edge represents an 
indexed reduction sequence of zero or more steps downwards. Not all combinations 
are allowed. As a general rule we require that if the left and/or the upper edge 
represent zero reductions steps, then the opposite edge( s) must also represent zero 
reductions steps and the adjacent edges must represent at most one step. 

To keep the diagrams orthogonal, opposite edges can be scaled to any convenient 
length, irrespective of the number of reduction steps represented by that edge. In 
particular edges representing zero reduction steps have positive length, but they will 
be depicted by dotted lines for clarity. In indexed reduction sequences, such "empty 
steps" will be made visible by ->0 with e ~I. Recall that finite indexed reduction 
sequences are denoted by a -+->1 h. Now it is time for a formal definition. 

3.1. DEFIN!TION (elementary diagrams). 

( i) A proper elementary diagram is a configuration as depicted in Fig. 2 
under (i), which includes the cases (ii) and (iii). 

(ii) A trivial elementary diagram is a configuration as depicted in Fig. 2 
under (iv), ( v ), or ( vi ). 

(iii) A splitting elementary diagram is a proper elementary diagram with at 
least one edge representing at least two reduction steps, that is, a configuration as 
depicted in Fig. 2 under (ii) or (iii). The reduction steps on edges representing at 
least two reduction steps are called splitting steps, and the intermediate points are 
called :;plitting points. 

The origin of an elementary diagram is the upper left corner point. The diagonal 
of an elementary diagram is the diagonal through the origin. 

Elementary diagrams are used as tiles to construct diagrams by adjoining elemen­
tary diagrams in inner corners of the borderline, see Fig. 3. Sometimes we will 
abstract from the elements labeling the corner points, from the indices of the 
reduction relations labeling the edges, and from the direction of the arrows: the 
arrows are always pointing from left to right or downward. The abstracted diagrams 
are also called diagrams or tilings. The rightmost diagrams in Fig. 3 and 6 are 
tilings as well as the three elementary tilings in Fig. 4. A beautiful example of a 
tiling is provided by the fractal-like Fig. 5, constructed from the elementary tilings 
in Fig. 4 (filling in all edges for aesthetic reasons). Interestingly, Fig. 5 can already 

a 
a' 

a' 
a" a 

~1 l~' 
b ''' '' ,,, b 

11 
c 

FIG. 3. A diagram with borderline c +-: b--+ ,. h +- /1' 11' --+ ,. a" and inner corners c +-; b--> ,, b and 
b +- 1r a' --+" a", and the corresponding tiling, 
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FIG. 4. Three elementary tilings used in Fig. 5. 

be obtained with the leftmost elementary diagram (suitably filling in right and 
lower edges). The middle and rightmost elementary diagrams in Fig. 4 are sufficient 
for the upper (and the left) part of Fig. 5, both with one limit point, whereas the 
whole diagram has a borderline of limit points. The upper (and the left) part play 
a role in the sequel as they are the graphical representation of the classical counter­
example against WCR =>CR in Example 4.4. Figure 5 also serves as an example of 
how diagrams are scaled to accomodate adjoining. Of course, when depicting a 
tiling we always tacitly assume that it has been obtained by abstraction from a 
reduction diagram which is correct in the sense of Definition 3.2. The aim of the 
construction process is to obtain a completed reduction diagram as in Fig. 6. 

3.2. DEFINITION. Let O': a -->-'>1 b and r: a ---++ / c be two indexed reduction 
sequences of a. Then O' and r are the spanning edges of a class of O', r-red uction 

FIG. 5. Fractal- or Escher-like figure. 



DIAGRAM TECHNIQUES FOR CONFLUENCE 181 

a a' 
a -----+a' -----+a" 

pl P'l 1~· 
b . .. ·········· ······b--+ b'---+ b" 

71 o'l o"l 
c .. ·· ······ c --+ c' --+ c" 

FIG. 6. A completed diagram and the corresponding tiling. 

diagrams, simply called diagrams when a and r are clear from the context. The 
corner point a will be called the origin of these diagrams. The class of a, r-reduction 
diagrams will be inductively defined. Along the way we will also define the notions 
borderline and inner corner of a diagram, see Fig. 3. 

( i) The empty diagram with spanning edges c ++-1 a --+->1 b is a diagram with 
the spanning edges themselves as borderline. 

(ii) If D is a diagram with borderline c = d0 +-+ · · • +-+ d 11 = b having inner 
corner d;_ 1 +- d;-+ d;+ 1 , then we distinguish the following four cases. Every 
extension of D obtained in any of the applicable cases is also a diagram. Here and 
below .fitting means that the spanning edges of the elementary diagram that is 
adjoined to the diagram are identical to the inner corner and that the elementary 
diagram is scaled to the right size. 

(1) Ifd;_ 1 +-,_d;-+11 d;+i with tx, fJel, then we extend D with a fitting 
elementary diagram of type (i) from Fig. 2 and change the borderline by replacing 
d; _ 1 +-:x d; -+Ii d; + 1 by d; _ 1 --+->1 d; ++-1 d; + 1 ; that is, the reduction steps represented 
by the left and upper edges are replaced by the indexed reduction sequences 
represented by the lower and right edges of the elementary diagram. 

( 2) If d; _ 1 +- :x d; -+,, d; + 1 with tx e I, then d; + 1 = d; and we extend D with 
a fitting elementary diagram of type (iv) from Fig. 2 and change the borderline 
accordingly. 

( 3) If d;1 ..--,, d; ->r1 cl;+ 1 with fJ e I. then d; _ 1 = d; and we extend D with a 

fitting elementary diagram of type ( v) from Fig. 2 and change the borderline 
accordingly. 

( 4) If d; _ 1 +-" d; -+" d; + 1 , then d; _ 1 = d; = d; + 1 and we extend D with a 
fitting elementary diagram of type ( vi) from Fig. 2 and change the borderline 
accordingly. 

A proper inner corner is an inner corner of two nonempty steps, that is case (ii 1 ) 
above. A diagram is completed if the borderline is of the form c --+-> / d ++-1 h for 
suitable d; that is, without inner corners. The lower edge c --+->1 d and the right edge 
b --+->1 d are called the completing edges. 

Intuitively, infinite diagrams are obtained by applying the generating rules 
( l H 4) under (ii) in Definition 3.2 infinitely many times. Any inductive definition 
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onlv allows for finite successive application of the generating rules, so that Definition 
3.2. gives us only finite diagrams. It is well known that infinite sequences can_ be 
obtained as limits of converging sequences of finite sequences, using an appropnate 
metric for finite sequences: d( s, s') = z-k, where k is the maximum length of a 
common initial subsequence of s and s'. The resulting metric space of (finite or 
infinite) sequences is the metric completion of the metric space of finite sequences. 
See Sutherland ( 1976) for general information on metric spaces. In a similar way 
we can obtain infinite a, r-diagrams as limits of converging sequences of finite a, 

r-diagrams. the metric being d( D. D') = 2 -k, where k is the minimal length of a 

reduction sequence from the origin to an elementary diagram on which D and D' 
differ. (This is analogous to the maximum length of a common initial subsequence 
above.) Here we also count empty steps, and we take d( D. D') = 0 if D and D' 
coincide. As a converging sequence of finite diagrams whose limit is an infinite 
diagram one can take the successive stages in the construction of the infinite 
diagram. We stress the fact that infinite diagrams thus defined have finite spanning 
edges. We could have defined a larger class of infinite diagrams including those with 
infinite spanning edges, but the latter are less relevant for confluence. From now on 
we will work with finite as well as with infinite diagrams. We will always stipulate 
when a diagram is infinite and reserve the term "diagram" for finite diagrams. We 
shall now develop some theory about diagrams which seems to be of independent 
interest. 

3.3. DEFINITION. Let ED be a set of elementary diagrams. We will always 
assume that ED contains all trivial elementary diagrams. Moreover, ED is full if for 
every proper inner corner there exists a fitting elementary diagram in ED. 

3.4. EXAMPLE. Assume -+1 is WCR. Let ED consist of all possible proper 
elementary diagrams and all trivial elementary diagrams. Then ED is full. 

3.5. DEFINITION. Diagrams can be ordered as follows. Let D and D' be finite or 
infinite diagrams. Then D ~ D' if and only if Dis an initial subdiagram of D', that 
is, D fits on D' with coinciding origins. If D ~ D', then D' is called an extension 
of D. Obviously, ~ is a partial order. 

3.6. LEMMA. Let ED he a set <f elementary diagrams and consider finite or 
i!~{inite a. r-diagra111s built .fi'om these. Every diagram has a maximal extension with 
respect to ~. 

Proc!( Let S be the set of finite or infinite a, r-diagrams and consider DE S. Let 
D = { D' E S I D ~ D'} and let C be a chain in !5. Since C is totally ordered by c , 
all diagrams in C fit when they are laid over each other with coinciding origins. 
Consider the figure F that arises when all diagrams from Care laid over each other 
with coinciding origins. If Fis a finite or infinite diagram, then F is obviously an 
upper bound of C in D. Now D contains a maximal element by Zorn's Lemma, 
which is the desired maximal extension of D. So it remains to prove that Fis a finite 
or infinite diagram. Consider the empty diagram with spanning edges a, r. If there 
is one e.lement in C with an elementary diagram in the inner corner at the origin, 
then this elementary diagram is unique since C is totally ordered. Adjoin this 
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elementary diagram to the empty diagram, then the new diagram has two inner 
corners, which are treated in a similar way as above. This process yields a sequence 
of finite diagrams of which F is the limit. I 

3.7. LEMMA. Let ED be a full set of elementary diagrams and consider finite or 
infinite diagrams built from these. If a maximal diagram is finite, then it is completed. 

Proof Since ED is full, any maximal finite diagram with spanning edges 
c ++-1 a ---1 b has a borderline without inner corners of the form c --->-+1 d ++-1 b for 
suitable d. I 

3.8. LEMMA. Every infinite diagram contains a reduction sequence with infinitely 
many horbmta/ splitting steps and infinitely many vertical splitting steps, in particular 
with infinitely many nonempty steps. 

Proof Recall that infinite diagrams have finite spanning edges by definition. 
The lemma would be false if infinite spanning edges would be allowed (for example, 
if all steps are empty). Let D be an infinite reduction diagram with origin o. We 
shall prove that D contains an infinite subdiagram whose origin can be reached 
from a via a reduction sequence containing at least one vertical splitting step. 
This suffices for the lemma, since we can obtain the same result with a horizontal 
splitting step instead of a vertical splitting step by symmetry, and we can alternate 
the two versions infinitely many times to obtain the desired "meandering" reduction 
sequence. In the sequel we treat empty steps in the diagram just as any other 
nonsplitting step. 

Observe first that, with the infinite diagram D as depicted in Fig. 7 (left), at least 
one of the points o' and a" is origin of an infinite subdiagram of D, since the areas 
H and V, separated by the dotted line, cannot both be finite. More precisely, area 
H has finite spanning edges and is hence a (finite or infinite) subdiagram with 
origin o'. If the dotted line is infinite, then area H is an infinite subdiagram with 
origin o'. Otherwise, if the dotted line is finite, then it can be used as a spanning 
edge and the area V is also a (finite or infinite) subdiagram with origin o". As H 

0 
I o------ -----------

l 
1 

H 

1 
o''-* ---+ 

v 

H H I H 
==············ 

I llv 
v I ... I ... I ... llv 

FIG. 7. Infinite subdiagrams and projection of V-steps. 
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and V cannot both be finite diagrams. at least one of them is an infinite subdiagram 
of D. Let us indicate the two possibilities (not necessarily excluding each other) of 
moving from o to the origin of an infinite subdiagram by H( orizontal) and V( ertical). 
So o-> o' is an H-stcp if o' is the origin of an infinite subdiagram, and o -> o" is a 
V-step if 11" is the origin of an infinite subdiagram. By the argument above sequences 
of H- and V-steps can always be extended and come together with sequences of 
nested infinite subdiagrams. See Fig. 7 (right), for an example, where we represent 

the successive H- and V-steps by double lines. 
Let rr be an infinite sequence of H- and V-steps in D as above, so every point 

on rr is the origin of an infinite subdiagrarn. Since infinite diagrams have finite 
spanning edges. n does not contain an infinite sequence of H-steps (nor of V-steps, 
but we do not need this). We must prove that D contains an infinite subdiagram 
whose origin can be reached from o via a reduction sequence containing at least 
one vertical splitting step. We claim that n contains such an origin, and prove this 
by contradiction: assume no point on rr can be reached from o via a reduction 
sequence containing at least one vertical splitting step. By this assumption of every 
succession in rr of an H-step immediately followed by a V-step, the H-step forms the 
upper and the V-step forms the right (non splitting) edge of an elementary diagram 
in the original infinite diagram, whose left edge is again non splitting (see Fig. 7 

(right), the lower edge of this elementary diagram may contain splitting steps, but 
this does no harm). Starting with the first HV-succession in rr, we can iterate this 
argument until we arrive at the vertical spanning edge of the original infinite 
diagram (see Fig. 7 (right)). So the V-step of the first HV-succession is, so to say, 
projected on the vertical spanning edge of the original infinite diagram. All V-steps 
can be projected in this way, in order of their appearance in rr. As the original 
infinite diagram has finite spanning edges, rr can only contain finitely many V-steps. 
This conflicts with rr being infinite and not containing an infinite sequence of 
H-steps. I 

3.9. COROLLARY. ~/' ->1 is SN, then all reduction diagrams are finite. Moreover 
we lu!l'e Ne11·11um's lemma 2.6: {l ->1 is SN and WCR, then ->1 is CR. 

Pr()(!( The first statement follows by contraposition of Lemma 3.8. For the 
second, assume -+1 is SN and WCR. By WCR the set ED of all possible elementary 
diagrams is full (see Example 3.4 ). Let D be the empty diagram with spanning edges 
c <-<-1 a -+-+1 h. By Lemma 3.6, D has a maximal extension D' which is finite by SN. 
By Lemma 3.7, D' is completed. So every empty diagram can be completed, or, in 
other words, -+1 is CR. I 

4. CONFLUENCE BY DECREASING DIAGRAMS 

In this section we present a powerful criterion for confluence of ARSs. The method, 
developed by van Oostrom ( 1994a, I 994b) and called "cont1uence by decreasing 
diagrams," generalizes several well-known confluence criteria such as Newman's 
Lemma 2.6, Lemma 3.1 of Winkler and Buchberger, which we generalized to 
Lemma 4.3, the lemma of Hindley and Rosen (Lemma 4.21 ), the Request lemmas 
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of Staples (Lemma 4.22), and Huefs Strong Conl1uence lemma I Lemma 4.29). 

Actually, van Oostrom's method has been prepared by an unpublished note of De 

Bruijn (1978 ), containing a slightly weaker result with a complicated inductive 

proof, see Lemma 4.30. The notion of decreasing diagrams was not yet present in 

that note. 

To illustrate the use of diagrams for confluence, we start with the following 

proposition, which is proved by a generalization of the multiset argument (ii\ for 

Newman's Lemma 2.6. Observe that the role of the elements there is taken over by 

the indices of the reduction steps here. 

4.1. Proposition. Let .e>/ = (A, { ->.x I ex EI) ) be an ARS with the index set I 

equipped with a well-jinmded order <. Let ED he u .fi11/ set (f elementary diagrams 

and assume that every proper elementary diagram ji"om ED has the property that the 

multiset <d' indices along the tivo completing edges is smaller than the multiset 

consisting of the two indices along the spanning edges. Then every diagram can be 

completed. In particular, ->1 is confluent. 

Proof Consider a configuration as in Fig. 8 (left). with ex, f3 EI. Under the 

conditions of the proposition, the multiset of indices along the edges a', r' is smaller 

than [ex, f3]. Generally, the multiset of indices along the borderline of the diagram 

decreases when a proper elementary diagram is adjoined. For reasons of space 

(surface), at most finitely many trivial elementary diagrams can be adjoined one 

after the other, during which the multiset stays the same. Thereafter the diagram 

must either be completed or a proper elementary diagram can be adjoined since ED 

is full. As the multiset order < # is well founded by Lemma A.3( ii), it follows that 

this procedure terminates with a completed diagram. I 

4.2. Remark. In fact the proposition above holds irrespective of the direction of 

reduction steps in the completing edges of elementary diagrams; that is, we can 

allow those steps to be in ._.1 instead of ->1 . Such diagrams can tentatively be called 

elementary conversion diagrams, depicted in Fig. 8 (right). 

The proposition can be further sharpened by allowing nonsplitting elemen­

tary diagrams in ED which are stationary, that is, corresponding to reductions 

(J 

(3 (3 

a' 

T T 

FIG. 8. Adjoining an elementary (conversion I diagram. 



186 BEZEM ET AL. 

d +-- :· c +--"'a-> 11 b-> ,1 d with [ oc, /J] = [ y, o]. The surface argument handling the tri­
vial diagrams can also handle stationary nonsplitting elementary diagrams. 

4.3. LEMMA (Lemma 3.1 of Winkler and Buchberger (1985), generalized). Let 
.w =(A, ->)be an ARS, Ba set with wellfounded order -< and f: A-> Ba function. 
We say that a and b are connected below c ( w.r.t. B, -<, /), denoted by a:..+ b, !f 
there is a conversion a= a0 +-+ • · · +-->an = b such that f( a;)-< f( c) for all 0 < i < n. 

Furthermore, d is called connected if Va, b, c EA (a+-- c-> b =a..::_. b ). We call s/ 
weakly connected if, for all a, b, c e A, a+-- c-> b implies either a..::_. b or there exists 
de A such that a -> d +-- b and j( d) ~ j( c ). Then we have: 

(i) Every connected ARS is corifluent. 

(ii) EPery weakly connected ARS is confluent. 

Proof The idea is to assign as index to any reduction step a-> b the multiset 
[j(a), /(b)] and to use Proposition 4.1, sharpened by Remark 4.2. Consider the 
ARS s1 #=(A, {->"'I oc EI}), with reduction relations ->"' defined by a->, b if and 
only if a-> b and oc = [f(a),j(b)]. Then -> = U {->"I oc El} = --1 • 

(i) Since .rd is connected it follows that we have a full set of elementary 
diagrams. Moreover, the decreasing condition in Proposition 8 in the version with 
completing steps in +-->1 is satisfied since the multiset associated to a0 ......, · · • .._..an, 

is smaller than [[/(a0 ),/(c)], [f(c),/(a,,)]] when j(a;)-<f(c) for all O<i<n. 
This can be seen by either using the nested multiset order or simply by omitting the 
inner square brackets and using the ordinary multiset order. In both cases the order 
is well founded, see Lemma A.3( ii}. 

(ii) By Remark 4.2, in particular the second paragraph. I 

4.4. EXAMPLE. The classical counterexample to WCR =CR, the ARS with 
reductions a +-- b ~ c _. d, leads to a full set of elementary diagrams such that not 
every diagram can be completed. Let ED be the set consisting of the two proper 
elementary diagrams depicted in Fig. 9 plus their mirror images with respect to the 
diagonal. Then ED is full. However, the diagram from Fig. 10 cannot be completed, 
since subdiagrams continue to arise with exactly the same spanning edges as the 
original diagram. See also the upper (and the left} part of Fig. 5. 

b c c b 

1 
l 

1 
l 

b c 

l l 
a ....... ................ a d" d 

FIG. 9. Elementary diagrams not giving conlluence. 
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b ------4 c ------4 d 

1 
b -----> c --4 d 

1 
a· .... ·················a 

FIG. 10. A diagram which cannot be completed. 

4.5. Notation. In the sequel we will consider a fixed ARS s:I = (A, {-+,I :x E /} ), 

with the index set I equipped with a well-founded order <. In the examples, we will 
take for I the set of natural numbers N with the usual order <, unless explicitly 
stated otherwise. For a, b EA and o: E /, let a -++ <, h express that there is an indexed 
reduction sequence from a to b, each reduction step having index less than o:. 
Analogously, a -++ ~, b is defined. 

4.6. DISCUSSION. The argument in the proof of Proposition 4.1 is prototypical 
for this section: the construction of completed diagrams is driven by a full set of 
elementary diagrams, and terminates since the elementary diagrams have an extra 
property, which ensures a decrease with respect to a well-founded order. 

To be able to state what a decreasing diagram is, we need the notion of norm 
of a finite reduction sequence in the ARS .r:i with indexed reduction relations. This 
will be a multiset of indices. but (surprise!) not all indices along the reduction 
sequence. These multisets are obtained from indexed reduction sequences by three 
successive operations, called index, filter, multiset, in order of application. 

The first operation extracts the sequence of indices from a given reduction sequence. 
If CJ is an indexed reduction sequence, index( CJ) is the sequence of the indexes of the 
consecutive nonempty reduction steps in CJ. For example, 

Recall that we use the natural numbers as a running example, but everything will 
be generalized to an arbitrary well-founded partial order < on /. We will allow 
ourselves a slight abuse of notation, by denoting both finite sequences of indices 
and finite reduction sequences with a, r. Often, we identify a reduction step with 
its index. Also, < :x > . CJ is used for a reduction sequence starting with an :x-step 
followed by the reduction sequence a. If ex> :x', then we say that ex majori:es a.'. 

Given a finite sequence CJ of natural numbers, jilter{ CJ) is the finite sequence 
obtained by processing CJ from left-to-right, removing the elements from CJ that are 
majorized by some previous element. For example, 

filter(< 3, 2, 4, 4, 3, l, 2, 6, 2, 8, 7, 8, 4, 2, 5 >) = ( 3, 4, 4, 6, 8, 8 >. 

Thus jilter( CJ) is always a nondecreasing finite sequence. 
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The last operation on finite sequences is multiset, yielding the multiset corre­
sponding to the finite sequence. For example, 

mult iset( (3. 4, 4, 6. 8. 8)) = [ 3. 4, 4. 6. 8, 8, ]. 

In the following we are especially interested in multiset(filter(index( a))). Now we 
give the formal definitions of index, flit er, and multiset. 

4.7. DEFINITION. Let R be the set of finite indexed reduction sequences. The 
mapping index: R --. I* is defined by index( a--+, a) = ( ) , and, for IX i= t, 

index( a -+oc b) = <IX), index( a· r) =index( a)· index( r ). 

The mapping .filter: I* --+I* is defined by filter( ( ) ) = ( ) and 

{
lifter( a) 

li/ter(a·<IX))= ·1 .. 1 ( ) · .1ter(a)· IX 

if filter( a) contains an element 1X 1 >ix 
otherwise. 

The mapping multiset: I*--+ J# is defined by 

mu!tiset( ( IX0 , ... , ak- I))= [ IXo, ... , ak-1 ]. 

The following observation is important: filter does not distribute over concatena­
tion of finite sequences. For example, we have 

jilter( (I)· (0. 2)) =filter( (I, O. 2)) = (I, 2) 

i= ( I ) · ( 0, 2) =jilter( ( I ) ) ·filter( ( 0, 2) ). 

4.8. DEFINITION (norm). (i) The norm !al of an indexed reduction sequence rJ 
is 

I al = multiset( filter( index( a))). 

(ii) The norm ID! 4 a diagram Dis !DI= la! it!# lrl. where a and rare the 
spanning edges of D. 

4.9. DEFINITION (decreasing diagram). Let D be a completed diagram with 
spanning edges (j and r, right edge r', and lower edge (J 1 (see Fig. 11 ). Then D is 
a decreasing diagram, if 

I a · r' I ::::; # \ D \ and \r ·a'\::::;# \DI. 

Here ~ # denotes the reflexive closure of the multiset extension < # of < on /. 

4.10. Discussion. The main line of the argumentation will be as follows. First 
prove that completed diagrams that are built from decreasing elementary diagrams 
are decreasing. Then prove that, given an empty diagram, the procedure of 
completing the diagram terminates, using the fact that all completed diagrams 
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T 

a ----0---- b 

c-------d 
I a 

T' 

FIG. 11. A Jecreasing diagram. 

involved are decreasing. It may come as a surprise that the inequalities in Fig. 11 

are not strict and yet termination is guaranteed. The reason is that the norm 

according to Proposition 4. 18 nevertheless strictly decreases 'vvhen a decreasing 

elementary diagram is adjoined. 

Decreasing diagrams arc a useful technical device. but they have some properties 

that make them hard to understand. For example. the prnperty l)f being decreasing 

is not preserved under extension of the order. Figure 12 prc:sents an example uf a 

diagram which is decreasing with respect to the empty order (then I DI = [ 0. 2. l] = 

I< 2. I, 0) I = I< 0. l. 2) I). but not decreasing with respect to the usual order < on 

natural numbers (then IDI = [O. 2] and 1(0. 1. 2) I= [O. I. 2]. so IDI < [O. I. 2] ). 

Also. this diagram cannot be built up from elementary diagrams that are decreasing 

with respect to the empty order. 

W c therefore define a slightly stronger notion of decreasing. which we will call 

tracc-dccrc:asing. Lemma 4.14 states that trace-decreasing implies decreasing. but 

not vice versa. The property l)f hcing trace-decreasing is preserved under extension 

of the order. Moreover. if the order is total. then the two notions coincide. sec 

Lemma 4.15. Also, the two notions coincide for elementary diagrams. see 

Lemma 4.16. The notion of trace-decreasing may be more cumbersome to formulate 

than that of decreasing. but it has a clearer visualization (sec for example Fig. 13, 

with the usual order on N and n < 8 ). 

4.11. DEFINITION (trace-decreasing). Let D be a completed diagram with 

spanning edges a and r and right edge r' and lower edge (J' (see Fig. 11 ). The edges 

r' and a' arc dealt with symmetrically. so we restrict attention to the first. only 

indicating the symmetrical case between parentheses. D is a trncc-dccrmsing diagra111 

if there exists a tracing map I (tracing map .1· I mapping every nonernpty step in r' 

(a') to a nonempty step in a or r such that the conditions ( i l (iii) below hold. Steps 

that arc related by the tracing maps arc connected by traces. A trnce is a full line 

or a dashed line. Traces li·om r' to r (from rr' to a) are called fwri:::o111ul I rcrr irn/ ). 

2 1 

1 2 

FIG. 12. A diagram which is not decreasing ''hen 0 < I < 2. 
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Traces from r' to 17 (or from 17' to r) are called diagonal. We say that every step 
rx.' in r' rrnces hack to the step rx. = t( rx.' ). In that case rx. is called the ancesror of a.'. 
If a step x' in r' traces back to a step x = r( Y.') in 17 or in r, then it is required that 
index( x' ) ~ index( x ). If index( Y.') < index( x ), then Y.' and rx. are connected by a 
dashed line. If index( x') = index( x ), then rx.' and rx. are connected by a full line. 
Symmetrically for s. 

( i) Any horizontal or vertical trace can be either a full or a dashed line. 
Diagonal traces can only be dashed lines. 

(ii) Horiwntal full lines do not cross or split. In other words, if rx' and /5' are 
steps in r' tracing back to x = t( x') and f3 = t( /3') in r by full lines, and x' occurs 
(strictly) before /1' in r', then x occurs (strictly) before ff in r. Symmetrically for the 
vertical case. 

(iii) Horizontal full lines do not cross or split from left below to right up by 
a dashed line. In other words, if x' and /J' are steps in r' tracing back to ex= t( x') 
and f3 = r( fJ') in r by a dashed line and a full line, respectively, and rx.' occurs 
(strictly) before /J' in r'. then rx. occurs (strictly) before fJ in r. Symmetrically for the 
vertical case. 

See Fig. 13 for an example of a trace-decreasing diagram. Omitting the trivial 
parallel cases, the notion of a trace-decreasing diagram can conveniently be described 
by distinguishing between allowed and forbidden configurations of the traces, 
namely those in Fig. 14 and 15. respectively. 

4.12. Remarks. The intuition behind the forbidden and allowed configurations 
can be guided by the multiset inequalities in Fig. 11, providing necessary but not 
sufficient conditions according to Lemma 4.14. Splitting full lines is forbidden since 
one step on the left edge cannot be used to cancel two steps on the right edge. 
A splitting full line and a dashed line as in Fig. 15c is also forbidden since the point 
on the left edge would become overloaded. Similarly for diagonal full lines. The 
forbidden crossing situations can be explained by observing that they could give 
rise to forbidden splitting configurations when diagrams are adjoined. Note that 

6 8 8 

3 

2 

4 n 

4 

3 

1 2 6 2 8 7 8 4 2 5 

FIG. 13. Example of a trace-decreasing diagram (11<8 ). 
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i L__ ____ __.J 

(a) (h) (c) (rl) 

FIG. 14. Allowed conligurations I clnC symmetrical half). 
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·-----·: 
i 

I ~~: 
v~- ! 
L _____ j 

(e) 

configurations as in Fig. I 4a, c (and also their vertical variants) are allowed. The 

reason is that the majorized element on the right edge is filtered out. 

Decreasing diagrams could also be visualized along the above lines. Crossing 

configurations are allowed in the case of decreasing diagrams. Forbidden splitting 

configurations that could arise when diagrams are adjoined are avoided by requir­

ing that all steps on the left (upper) edge that are endpoints of traces belong to lrl 
( lal) instead of r(a). This is exactly the reason why the diagram in Fig. 12 is not 

decreasing when 0 < 1 < 2: the I on the upper edge is filtered out and therefore can 

not be used. 

One easily verifies in the definition above that trace-decreasing is preserved under 

extension of the order, since fllrer is avoided. 

4.13. EXAMPLES. In Figs. 16 and 17, where 0 < 1, we give examples of decreas­

ing and nondecreasing elementary diagrams. respectively. We leave it as an exercise 

to the reader to reconstruct in the diagrams of Fig. 16 tracing maps according to 

Definition 4.11; there is often more than one such tracing map. The general form 

of a trace-decreasing elementary diagram is depicted in Fig. 18, whose justification 

can be drawn from the proof of Lemma 4.16. 

4.14. LEM:vtA. Et'ery trace-decreasing diagram is decreasing. but not com•ersely. 

Proof Let D be a trace-decreasing diagram. We have to prove that the edges 

of D satisfy the multiset inequalities as given Fig. 11. The edges r' and a' are dealt 

with symmetrically, so we restrict our attention to the first. We have la· r'I = 

lal 1±1# lr' I - # M, where M consists of all elements from lr'I that are majorized by 

some element from a. To prove that la· r'I ~ # lal \!..!# lrl. we first cancel left and 

right lal using Lemma A.3(v). It remains to prove that lr'I - # M ~,. lrl. This will 

be done in the proof of Proposition 4.18. in the form of the inequality M:" ~ # I rl. 
A counterexample to the converse is provided in Fig. 12. As argued in Remark 

4.12, this diagram is decreasing with the empty order. It is not trace-decreasing 

since the traces must cross. I 

(a) 

FIG. 15. Forbidden wnfiguratinns (one symmetrical hair). 
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0 1 

10 

1 1 0 0 1 10 

11 

0 0 1 0 0 1 

FIG. 16. (Trace- )decreasing dcrnentary diagrams. 

4.15. LEMMA. Et'l'l'J' decreasing diagram i.1· trace-decreasing i( the order is total. 

Proof Assume < is total and let D be a decreasing diagram as depicted in 
Fig. 11. The edges r' and rJ 1 are dealt with symmetrically, so we restrict attention 
to the first. We have lrI · r'I = lrII \1:1 .. lr'I - .. M, where M consists of all elements 
from lr'I that are majorized by some element from rI. From lrI · r'I ::s; # lal t±.1# lrl 
then follows lr'I- .. M::s; # lrl by canceling left and right lal using Lemma A.3(v). 
In the rest of this proof we will use that jilter yields weakly increasing sequences as 
the order is total. We assume that this sorting is maintained in the multisets lrl and 
lr'I. Then Mis an initial segment of lr'I. If M = lr'I, then we are done by connecting 
all steps in r' to majorizing steps in rI by dashed lines. Otherwise. let F be the 
largest common final segment of lrl and lr'I - # M. Then either lr'I - .. M = lrl =F. 
or there exist multisets I, I' and elements m. m' with m' < m such that 
lrl =Iti:! .. [m] \!:!# F and lr'I -# M=I' \V#[m'] ti:!# F, where the right hand sides 
are again assumed to be sorted as weakly increasing sequences. In both cases we 
give the traces in the obvious way: connect corresponding elements of F by 
horizontal full lines (of course avoiding crossings) and, in the second case, let every 
element of !' 1±1# [ 111'] trace back by a dashed line to m. Finally we must take care 
of the steps in r' that do not occur in I r' I - .. M. These steps fall apart into steps 
that are majorized by some step in a (and connected accordingly by a dashed line) 
and steps that are not majorized by some step in a, but are rnajorized by some 
previous step in I r' I. The latter steps are connected by a dashed line to the step in 
a or r to which the nearest previous majorizing step in lr' I traces back. One easily 
checks that no forbidden configurations are introduced. This completes the proof 
that D is trace-decreasing. 

4.16. LE'VIMA. Et•ery decreasing elementary diagram is trace-decreasing. 

0 0 

1 0 0 0 

1 0 0 

FIG. 17. Elementary diagrams which are not I trace- )decreasing. 
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<a f3 or c 

la or c: 

l <a or <(3 

-----7'd 
<a or <f3 

FIG. 18. General form of a (tracc-)decreasing elementary diagram. 
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Pro<!f Consider a decreasing elementary diagram D as depicted below. Note 

that IDl=lal~# l/i'l=[a,fi]. 

fJ 

\(et)· a'I ~#[a, fJ] r' I< /3) · r' I ~ # [ oc, /3] 

a' 

The edges r' and rr' are dealt with symmetrically. so we restrict attention to the 

first. The multiset l(/J) · r'I extends the multiset [/3] with elements at most :x, as 

I< /J) · r' I ~ # [/I, :x]. If one of the elements of I< fJ) · r' I -- * [/i} equals a, then r' 

contains exactly one :x-step. In this case the steps in r' before C( are majorized by 

fJ (and connected by a dashed line with /1), the step C( in r' is connected by a full 

line with the left edge :x, and the steps in r' after the step :x are majorized by either 

fJ or a (and are connected by a dashed line with either fJ or x ). In the case that all 

elements of l((J) · r'I - * [fi] are less than :x, the steps in r' are majorized by either 

rx or fJ (and are connected by a dashed line with either :x or fi ). In both cases we 

have proved that the elementary diagram is trace-decreasing. I 

Now we will establish the two important properties of trace-decreasing diagrams 

that give confluence. The first states that trace-decreasing is preserved under 

adjoining along fitting edges. The second ensures that adjoining of trace-decreasing 

diagrams terminates. 

4.17. PROPOSITION. Let D 1 , D 2 , D3 be three trace-decreasing diagrams as in 

Fig. 19. Then the diagrams which result from adjoining D 1 and D 2 along the jitting 

edge r', andfi·om adjoining D 1 and D, along the fitting edge a', are I race-decreasing. 

Pro<?f The proof is simply by checking that no forbidden trace configurations 

arise by adjoining two trace-decreasing diagrams as indicated. The traces are conca­

tenated in the obvious way: two full lines combine into a full line, two dashed lines 
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p a I 
b e c d a-----b 

T T' 
I D2 T 

II p D3 p' T 

d f g h 
p' II a 

c-----d 
a' 

FIG. 19. Diagrams with fitting edges. 

as well as a full line and a dashed line combine into a dashed line. In this way, 
allowed configurations can only yield allowed configurations; see Fig 14. I 

The second important property is indicated in Fig. 20: adjoining a decreasing 
diagram to an empty diagram with spanning edges a· p and r · p' yields diagrams 
with spanning edges r'. p and a', p', respectively, having smaller nom1s. 

4.18. PROPOSITION. Let the trace-decreasing diagram D ll'ith .1panning edges a, r 

and completing edges a', r' be adjoined to an empty diagram as in Fig. 20. Asswne that 
a and r contain both at least one nonempty step. Let D0 be the empty diagram H'ith 
spanning edges a· p and r · p'. Then IPI \'.:!# lr'I < # ID0 I and la'! \:!:I# IP'I < # \D'0 I. 

Proof Both cases are dealt with symmetrically, so we restrict our attention to 
one. Since lrl:::;# \r·p'I. it suffices to prove lr'\\'.:1# IPI<# lrl\!:1# la·p\. Observe 
that elements of lal may majorize elements in IPI as well as elements in lr'I. It is 
convenient to single out these elements. We write IPI =M;',"1:0# M,~" and lr'I = 
M:" \!:!# M ,": ", where M 1~'" ( resp. M ,: "') is the multi set consisting of all occurren­
ces of elements from IPI (resp. lr'\) that are majorized by some element from Irr!. 
It follows that \a · p I = \al \!:I# M ;<-;". Hence we have to prove 

We obviously have M,°':"t+J# M 1~" <#la!. Using Lemma A.3, it suffices to prove 
that M:"::;;;# \rl. 

In order to prove M;":::; # lrl, we take into account the traces in D. Each step 
in r' traces back either to a (a diagonal trace) or to the opposite edge r (a 
horizontal trace). Diagonal traces are by definition dashed lines, which expresses 
that the step in r' traces back to a majorizing step in a. It follows that all steps 
from M 1" trace back to r; in other words. all traces with endpoints in M:" are 
horizontal. 

a P 

D 

a' 

D~ 

FIG. 20. Adjoining a trace-decreasing diagram. 
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Now consider the horizontal traces between steps in M:" and steps in r. We 

compare the endpoints in M:" with the endpoints in r as multisets. For this 

comparison we consider all possibilities for splitting traces in Fig. 21. Configurations 

(a) and (b) can be excluded by the definition of trace-decreasing. Configuration ( c) 

does not occur in lr'I due to .fl!ter. Configuration (d) is unproblematic. However, 

we cannot yet conclude to M:":::; # I r I with Lemma A.3( iv). since the endpoints in 

r may be filtered out in lr\. Fortunately, if such an endpoint in r is filtered out, then 

there is always a majorizing previous step in r which is not filtered out. For the 

purpose of the multiset inequality M :":::; # lrl. we can redirect all horizontal traces 

that have an endpoint in r which is filtered out in lrl to the nearest previous 

majorizing step which is not filtered out. We must check that there are no 

problematic splitting configurations introduced by this redirection (crossing is 

irrelevant for multiset inequality). We first argue that majorizing steps in I r\ that 

were already used as endpoints of a line do not occur. In Fig. 22 we list all possible 

configurations, assuming always that a is the majorizing step, so index(rx) > index(jJ). 

Now configurations (a) and ( b) can be excluded by the definition of trace-decreasing, 

and configurations ( c) and ( d) do not occur in \r'I due to filter. Hence all majorizing 

steps in I r\ are either used as endpoints of dashed lines, or were not used as endpoints 

before redirection. Hence redirection can only give rise to unproblematic splitting 

configurations of type ( d) in Fig. 21. This completes the proof of M: a:::;# I r\ and 

hence of the proposition. I 

Finally, we can combine the two previous properties of trace-decreasing diagrams 

to prove the main theorem. 

4.19. THEOREM (Main theorem on trace-decreasing diagrams). Let .c-1 be the 

ARS (A, { -., I a EI} ), irith the index set I equipped ll'ith a 1rell~finmded order <. 
Let ED be a fiill set !!{" (trace- )decreasing elementary diagrams. Then every diar;ram 

built ff·om elements of' ED can he completed into a trace-dccreasinr; diagram. As a 

consequence we have that ->1 is cm~fluent. 

Pro!J{ It suffices to prove the theorem for empty diagrams. We use well-founded 

induction with respect to the multiset order < #, which is well-founded according 

to Lemma A.3( ii). The proof follows the pattern of proof ( i) of Newman's Lemma 2.6. 

Let D 0 be an empty diagram. Assume the theorem has been proved for all empty 

diagrams with norm smaller than ID 125 \. If one of the spanning edges of D is 

empty, then we are done. Otherwise, we may assume without loss of generality that 

both spanning edges start with a nonempty step since possible initial empty steps 

can be dealt with by trivial elementary diagrams. So let the spanning edges of Du 

FIG. 21. Splitting conligurations. 
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(a) (h) (c) (d) 

FIG. 22. Configurations to be excluded for redirection. 

be of the form (oc) -a and (/J) ·T for suitable oc, /JEI and indexed reduction 
sequences O", T, see Fig. 23( i ). Since ED is a full set of trace-decreasing elementary 
diagrams, there exists a proper trace-decreasing elementary diagram D with spanning 
edges oc and /J. We adjoin this elementary diagram to the origin a of D0 and arrive 
at a situation as in Fig. 23(ii). By Proposition 4.18, ID0 I<# ID d. Hence D0 
can be completed according to the induction hypothesis, say by a diagram D'. 
By Proposition 4.17, adjoining D' to D yields a trace-decreasing diagram, see 
Fig.24(iii). Again by Proposition 4.18, ID01 <# ID0 j. Now D0 can be completed 
by applying the induction hypothesis to D'0, see Fig. 24(iv). I 

4.20. EXAMPLE (Alternative proof of Newman's Lemma 2.6). Let s# =(A,--+) 
satisfy WCR and SN. We can recast d as the ARS (A, {-+a I a EA} ), with 
--+" = {(a, b) I a--+ b}. By SN we have that +- + is a well-founded order on A. The 
set of elementary diagrams is full by WCR, and all elementary diagrams are 
trace-decreasing by the definition of the order. By Theorem 4.19 it follows that --+ 
is CR. 

4.21. Lemma (Hindley ( 1964) ). Let (A, { --+" I oc EI}) be an ARS such that for all 
oc, fJ EI, --+" commutes with -+11 • (In particular, -+" commutes with itself.) Then the 
union --+ = U {--+"'I oc EI} is confluent. (This proposition is usually referred to as the 
lemma of Hindley-Rosen; see, e.g., Barendregt ( 1984), Proposition 3.3.5.) 

Proof Consider the ARS d =(A, { ....._"' I a EI}), that is, with reduction 
relations -+>" instead of-+"'. Put -+1 = U { ....._"I a: EI}. By Proposition 2.3 we have 
that -+(-+1 ) is confluent if and, only if -+> ( -----1 ) is confluent. As ....._ = ....._h it 

Oi a a 

f3 f3 D -r' D~ 

a' 

T T 

(i) (ii) 

FIG. 23. First two stages in the completion procedure. 
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a 

(J D r' D' r" f3 D r' D' r" 

CT' CT" (J' 
I 

CT" 

T D~ T D" 

(iii) (iv) 

FIG. 24. last two st•tges in the Cllmpktion procedure. 

suf1ices to prove that ->1 is confluent. Since ->, and _.,, commute for all x. f3 E /, we 
immediately get a full set of decreasing elementary diagrams of the form Fig. 25a for 
.cl: opposite edges have identical indices. Here the order on I is irrelevant. The 
confluence follows from Theorem 4.19. I 

4.22. LEMMA (Rosen ( 1973), Staples ( 1975)). Let (A, -> 1, ->2) be an ARS. 
Define ->1 requests ->2 if Va, b, c E A 3d, e EA ( b ++--1 a -+>2 c = b -++2 d ++--1 e ++-1 c ). 

( i) Suppose -> 1 requests ->2 and ->2 is con.fluent. Suppose moreoL'er that 
'Va,h,cEA 3dEA (h++-- 1a-++1c=b-> 3d+- 3 c), ll'here ->3 =-++1 ·-+>2 is the 
composition <!l -++ 1 and -++1 • Then -> 12 is c01?f'luent. 

(ii) fl -> 1, ->2 are con.fluent and -> 1 requests ->2 , then -> 11 is con.fluent. 

Pro<!l As in the previous proof we shift to the ARS with reduction relations 
-++ 1 and -++2 • 

( i) The confluence of ->2 yields elementary diagrams with all edges consisting 
of one reduction step -++2 , hence obviously decreasing. The request property gives 
elementary diagrams of the form Fig. 25b and their mirror images with respect to 
the diagonal, which are decreasing if we take I > 2. The other given property 
gives elementary diagrams of the form Fig. 25c, which are also decreasing when 
1 > 2. The total set of decreasing diagrams is full. The confluence follows from 
Theorem 4.19. 

(ii) By the previous case, since ->1 is conf1uent and -+> 1 £ -> 3 • I 

f3 2 i 
Ii Ii 

(a) i (b) i (c) 

12 12 

f3 2 1 2 

FIG. 25. Fkmentary diagrams. 
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4.23. Lemma (Barthe). Let (A, -+1 • ->2 ) be an ARS such that ->1 is confluent and 
-i- 1 and _,,2 commute. Assume, 1noreover. that \:/a, b, c EA 3h', c', d EA (b <+-2 a -++2 c 
= b -+->2 b' --+>-1 d ++- 1 c' ++-2 c). Altematively, ++-2 · -+->2 S -++2 · --+>-1 · <-<-1 · ++-2. 

Then _,, 12 is conflw:nt. 

Proo/ As in the previous lemmas we shift to the ARS with reduction relations 
-+->1 and -++2 • From the fact that ->1 is confluent and _,, 1 and _,,2 commute we get 
decreasing diagrams with any order. The third property gives us elementary 
diagrams of the form in Fig. 25c, with l and 2 interchanged, thus decreasing with 
I < 2. The total set of decreasing diagrams is full. The confluence follows from 
Theorem 4.19. I 

For some applications, we need a slightly stronger version of Theorem 4.19. It 
aims at commutation of reduction relations rather than at confluence. It is stronger 
since confluence is equivalent to self-commuting, see Definition 2.2. 

4.24. Definition. Let s/ be the ARS (A, {-+a I a El}). Let l = 10 u11 and let ED 
be a set of elementary diagrams. We say that ED is commuting:full, if for every 
proper inner corner c <- "'o a -i. ,, 1 b with 0:'.0 E / 0 , a 1 E 11 • there exists a fitting 

elementary diagram in ED with completing edges c -++r1 d ++-r0 b. In other words. 

opposite edges in the elementary diagram represent reduction steps with indices 
from the same index subset. 

4.25. Theorem (Commuting version of Theorem 4.19 ). let .cl he then ARS 
(A, { ..... "'I rx E Jl ), irith the index set I equipped irith a ivell~lounded order <. let 
I= 10 u 11 and let ED he a cmnmuring:fzdl set of' (trace- )decreasing elementary 
diagrams. Then el'ery diagram \\'ith spanning edges a: a -++r0 c and r: a -++r1 h and 

built .fi'om elements of ED. can he completed into a trace-decreasing diagram irith 
completing edges c -+->11 d ++-r0 h. As a consequence use have that -+r0 and ->11 , 

commute. 

Proof: Analogous to the proof of Theorem 4.19, loading the induction as 
follows: every empty diagram with spanning edges a: a _,_.l c and r: a -tt1 h can be 

U I 

completed with completing edges r': c -+->r1d and Cf 1
: b -+>11/ I 

4.26. LEMMA. let (A, -> 1 , ->2 ) he an ARS such that ->1 and ->2 co1nnn11e H'eakly 
and -+12 is SN. then _,,1 and ->2 commute. (The condition -.12 is SN cannor he 
weakened to -> 1 is SN and ->2 is SN.) 

Pro()/: Analogous to the proof of Newman's lemma in Example 4.20. but with 
Theorem 4.25 instead of 4.19. I 

4.27. LEMMA (Hindley ( 1964)). let (A. -+ 1 , -+2 ) he an ARS and suppose 
\:/a, h, c EA 3d EA ( h <- 1 a-> 2 c = h -+->2 d <- ;" c ). Then -i-1 and ->2 commute. 

Pnwl Write l = { I } u { 2} and put I > 2. The elementary diagrams are decreas­
ing smce 1(1,2, .... 2)1=[1]<"'[1,2] and 1<2.1)1=[1,2], 1(2)1=[2] 
< # [I. 2]. The set of elementary diagrams is commuting-full, so we can apply 
Theorem 4.25. I 
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4.28. THEOREM (Strong cont1uence theorem). Let .cl= (A, 1 -., [ rx E /] ) he an 

ARS, ivith the index set I equipped ivith a \\'ell~finmdcd order <. Assw11e that .cl is 

strongly confluent, that is, there exists a .fii/1 set of' elemenlary diagrams as specified 

in Fir;. 26. Then -, is confluent. 

Proof: Comparing Fig. 26 with Fig. 18 one observes that the elementary 

diagrams in Fig. 26 are not trace-decreasing due to two times ~ft instead of </ion 

the right edge. However, we can exploit the fact that this happens on the right 

edge only and not on both the right and the lower edge. Consider the ARS 

.c1° 1 = (A, { -., I et.EI} u \I --., l rx En ), with ---, = -->~ = --., for everv '.X EI. Put 
!I 1 ' U ·I - _, 

lo= { rxo I rx E /}, I 1 = { rx 1 [ :x EI]. Order / 0 u / 1 lexicographically, that is, rx1 < c( if 

and only if et.< rx' or ex= rx' /\ i = 0 /\ j = 1. The order < on / 0 u / 1 is well founded 

since < on I is so. Every elementary diagram of .cl is transformed into an elemen­

tary diagram of .c/ 01 by giving all indices of horizontal steps subscript l and all 

indices of vertical steps subscript 0. For example, take an elementary diagram as in 

Fig. 26. Every index ff'~ /3 on the right edge becomes p;) ~ /3 0 < /3 1 , rx becomes :x0 , 

and rx' < :x becomes :x~ < et. 0 . On the lower edge, rx' < rx becomes rx'1 < rx0 , /J becomes 

/J 1 , and /J' < fi becomes /3'1 < /3 1 • The result is a trace-decreasing diagram as depicted 

in Fig. 27. Since the set of elementary diagrams of d is full, it follows that the set 

of elementary diagrams of ,c./ 01 is commuting-full. By Theorem 4.25 we have that 

->111 and --. 11 commute. Since -+x11 = - x, = - x for every x EI, it follows that --., is 

confluent. I 

4.29. LE.'11MA (Huet ( 1980)). Let (A,->) he an ARS. If--> is strongly confluent. 

tlw! is, if'v'a, b, cEA 3ciEA (h<-a-+c=>b -- d<-"' c), then-+ is confluent. 

Proof: Take the set I to be a singleton. Interchange h and c to comply with the 

format of possibly many equal step on the right edge and at most one equal step 

on the lower edge. Now apply Theorem 4.28. I 

4.30. LEM'.V!A (De Bruijn ( 1978 ). 4 ). Let (A, { --., I :x EI) ) he an ARS, with < a 
lt'e!l~f'ounded order on I. Recal! tlzat -> <, (--> -~,) is the union of' the reduction relations 

H'ilh index < rx ( ~ 'J.). ll'itlz reflexfre transitive closure -++,, (-->->"', ). 

643/141/2-9 

(3 
a--------------------i-b 

c------+> -------; 
<c~ (3 or c; 

1~{3 

1 a or c; 

l <a or 5:./3 

------+>d 
<a or <{:I 

FIG. 26. Elementary diagrams for strong conl1uence. 
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/31 
a b 

l </31 

no lao or€ 

l <oo or </31 

d c 
/31 or c <ao or </31 <ao 

FIG. 27. Trace-decreasing elementary diagram for commuting. 

Assume 

(i) VrxE /( +-". -->, s; --+-><,. -->-: · --+-><,·+-<---~,),and 

(ii) Vrx. /3El(rx<J3= +-, · -->11 £ --+->q · -->r~ · --+-><fi · <+-<fi). 

Then -->1 is confluent. 

Proo{ The elementary diagrams corresponding to (i) and (ii) are as follows. It 
is important to note that (ii) also allows the mirror image with respect to the 
diagonal of the diagram. 

(i) 

<a a ore: <a 

/3 

(ii) 

<a /3 ore; <{3 

Elementary diagram ( i) complies to the strong confluence format specified in 
Fig. 26. Elementary diagram (ii) and its mirror image are even trace-decreasing and 
hence also comply to the strong confluence format. It follows from the linearity of 
the order that the set of elementary diagrams is full: in each of the three cases, 
x = /~. x <ft, x > fi. there exists a fitting elementary diagram to the inner corner 
c +-,a--> 11 b. Now apply Theorem 4.28 to conclude that -->1 is conl1uent. I 

As shown in van Oostrom ( l 994b ), the result of Geser ( 1990) [ p. 77 J can be 
obtained from Theorem 4.28 along the lines of the proof of Lemma 4.30. We finish 
this section with some results on the completeness of the method. 
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4.31. DEFINITION. Let .c/ = (A, --. ) and .c/ 1 = (A. I--, I :x Er: l be ARSs such 
that -+ = -+1 . Then ,c/1 is called an indexed rersion of ,c/. \Ve say that d has the 
property OCR (decreasing Church-Rosser) if there exists an indexed ,c/1 version d 
and a full set of (trace- )decreasing elementary diagrams for J:/ 1. 

We have proved in Theorem 4.19 that DCR:::. CR: the obvious question is whether 
the converse also holds. Van Oostrom ( l 994b) conjectured that CR:::. OCR does 
not hold in general, but gives a proof in the countable case. This result can be 
viewed as the "completeness" of the method of decreasing diagrams with respect to 
establishing confluence in the countable case. which is a satisfactory state of 
affairs. Recall the cofinality properties CP and CP = in Definition 2.4 and Lemma 2.5. 

4.32. PROPOSITION. For every ARS u·e luwe CP:::. OCR. 

Pro4 Let "oJ =(A,-+) be an ARS. We first define the ren'J'ite distance d(a, b) of 
a EA, b E '§(a) as the minimal length of a reduction sequence from a to b. For a EA 
and X n ~4(a) nonempty we define the distance d(a. X) =min{ d(a, x) Ix EX n ::4(ali. 
Recall Lemma 2.5 for the definition of component and the equivalence CP = ~ CP. 
To prove OCR for s/, it suffices to prove this property for the (disjoint) components 
of .. C'/. Let <e(a) be a component of .ci. By CP we have CP =, so we have a (finite 
or infinite) reduction sequence a: a= a0 --. a 1 -+ · · · which is cofinal in <f/( a). It is an 
easy exercise that we may suppose that a is acyclic. We index reduction steps in 
<6'( a) with natural numbers as: 

(i) b -> 0 c if b--. c occurs in a; i.e. b =a; and c =a,+ 1 for some i ~ 0. 

(ii) b-.,,+ 1 c ifb-+c and n=d(c, {a;li;::;:Oj). 

Obviously, .r:/ 1 = ( r,c( a), { ->,, In E N l ) is an indexed version of .r:/. We will show that 
s/ 1 satisfies OCR. 

Consider c ,__ 111 • d-+ 111 b. If 111' = m = 0, then the steps d-> c and d-+ b occur in O' 

and hence coincide since a is acyclic. So c = b and we can complete the two 
diverging steps by two empty steps into a decreasing diagram. If m. m' > 0, then we 
have the situation in Fig. 28, clearly constituting a decreasing diagram. If /11 = 0, 
m' > O, then we have the situation in Fig. 29, also giving a decreasing diagram. I 

d <m 

m' 

c 

FIG. 28. Elementary diagram in case m. 111' > 0. 
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(f : 

FIG. 29. Elementary diagram in case 111 ~ 0, m' > 0. 

4.33. Remark. The uncountable ARS ( .. r;, < ), with reduction relation ----> = <, 
provides a counterexample to DCR = CP. The property DCR holds in (_- 1;, < ) .. 
since we have a full set of trivial elementary diagrams, by taking the maximum ol 
h and c as common reduct in c +-a-+ h. However, CP fails, as .. i; is a regular 
cardinal, i.e. a cardinal without a cofinal countable subset. 

By combining the previous results we obtain the following theorem. 

4.34. THEOREM. For countable ARSs \\'e have CP ~ DCR ~CR. 

Pro1!f: Follows by combining the results DCR =>CR (Theorem 4.19), CR=> CP 
for countable ARSs (Lemma 2.5(ii) ), and CP => DCR (Proposition 4.32 ). I 

APPENDIX: MULTISETS 

A. I. DEFINITION. Let S be a set. A 11111/tiset M with elements from S is a 
function M: S-+ N such that ls ES I M(s) > 0}, the set of elements of M, is finite. 
Such M is also called a multiset over S and can be described explicitly by 

where the n;=Af(s;)(l ~i~k) give the multiplicities of the elements. In this 
notation it is tacitly assumed that there are no other elements of M than those 
explicitly shown. Moreover, permutations of the occurrences of elements in the 
multiset are allowed and we will often leave the multiplicities implicit or will express 
them by using Af as a function. 

The set of multisets over S will be denoted by S #. We define membership for 
multisets by sE,, M-=A1(s)>0. Multiset inclusion is defined by Ms;# M' if and 
only if l'vf( s) ~At'( s) for all s ES. As usual, c * is the strict (irreflexive) version 
of £ * . The si::.e I 1HI of a multiset Mis the natural number defined by I Ml = .L..1 E.'> M( s ). 

Let Al and M' be multisets over S. We shall define the union, difference, and 
intersection of the multisets Mand M'. Actually, there are two notions of union for 
multisets: one where the two multiplicities of any element are added and one where 
for any element the maximum of the two multiplicities is taken. The first is dual to 
multi set difference, the second is dual to multiset intersection. Given the importance 
of multiplicities when dealing with multisets, we only give the first notion of union, 
which can also be viewed as disjoint union. Let n 8 m = n - m if n?: m and O 
otherwise ( n, nz E N ). Define 
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(Aftb# Af')(sJ=M(sJ+AP(sl 

( M - # }vf' )( s l = m( s) 8 Al' ( s) 

(Mn# M')(s) =minlM(s), Af'(sll. 

Multiset union and intersection are associative and commutative. 

203 

A.2. DEFINITION. Let -< be a strict partial order on a set S. We will extend -< 
to a strict partial order -<# on S #, the set of multisets over S, as follows: -<# is 
the smallest transitive relation satisfying 

if Vx E # M' x-< s, then M tb# M' -<# Mtb#[s] 

for all s ES, and M, M' ES#. The intuition is that a multiset becomes smaller in 
the sense of -<# by replacing one or more of its elements by an arbitrary number 
of smaller elements. In particular we can have Af' = [ ], in which case the element 
s is simply deleted. The ret1exive closure of-<# will be denoted by ~# (and not 
by~#). 

Without proof we mention the following results concerning the multiset order. 

A.3. LEMMA. Let -< he a strict partial order on a set S. Then: 

( i) -<# is a strict order on S #. 

(ii) -<# is well jimncied if and only if -< is well founded. 

(iii) For all M, M' ES# we have Mc;;# lvf' =-M' = (M' -# M) !:±!# Af. 

(iv) Let M, M'ES# and C=Mn# M'. Then ire hcll'e M~# M'=-'rfxE# 
M - # C :Jy E # M' - # Cx-< y. 

( v) Cance/la/ion j(J1· multisets: fiJr all .:r, Y, Z ES# we have X \:!:!# Y 
-< # X\:t!# Z =- Y-< # Z (also f(Jr ~# ). 
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