
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Using the meta-environment for domain specific
language engineering

T. van der Storm, J.J. Vinju

REPORT SEN-R0805 OCTOBER 2008

Software Engineering

Centrum Wiskunde & Informatica (CWI) is the national research institute for Mathematics and Computer
Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2008, Centrum Wiskunde & Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Using the meta-environment for domain specific
language engineering

ABSTRACT
The development of a domain specific language (DSL) can be a difficult and costly undertaking.
Language workbenches aim to provide integrated development support to ease this process.
The Meta-Environment is a language workbench providing parsing, analysis, transformation,
syntax highlighting and formatting support for the development of programming languages. In
this paper we elaborate on the suitability of it for DSL engineering by reporting on our
experience in developing a little language for markup generation.

1998 ACM Computing Classification System: D.2.6; D.3.4
Keywords and Phrases: Domain Specific Languages; Language Workbenches; Markup Generation

Using The Meta-Environment for Domain Specific Language
Engineering

Tijs van der Storm
CWI

Kruislaan 413, 1098 SJ
Amsterdam, The Netherlands

storm@cwi.nl

Jurgen Vinju
CWI

Kruislaan 413, 1098 SJ
Amsterdam, The Netherlands

jurgenv@cwi.nl

Abstract

The development of a domain specific language
(DSL) can be a difficult and costly undertaking.
Language workbenches aim to provide integrated
development support to ease this process. The Meta-
Environment is a language workbench providing
parsing, analysis, transformation, syntax highlight-
ing and formatting support for the development of
programming languages. In this paper we elaborate
on the suitability of it for DSL engineering by report-
ing on our experience in developing a little language
for markup generation.

Categories and Subject Descriptors

D.2.6 [Software Engineering] Programming
Environments—Integrated & Interactive
Environments
D.3.4 [Programming Languages]
Processors—code generation, interpreters, parsing

General Terms

Languages, Design.

Keywords

Domain Specific Languages, Language Work-
benches, Markup Generation

1 Introduction

Domain Specific Language (DSL) development can
be a daunting task. Whereas tool support for DSLs
traditionally has concentrated on syntax definition
and code generation, language workbenches aim to
provide integrateddevelopment support. A ques-
tion remains, however, whether these “IDEs for lan-
guages” live up to their promise. In this paper
we report on our experience of developing a DSL
for markup generation in one such language work-
bench: the ASF+SDF Meta-Environment [7, 11].

Recently, Martin Fowler has called “language
workbenches” the “killer apps for domain specific
languages” [4]. In that article Fowler describes his
experience of building a simple DSL using the Jet-
Brains Meta-Programming System [3]. JetBrains
MPS is just one of many language workbenches,
some of which are developed in the context of re-
search. Moreover, some of these have been around
for a long time. For instance, Heering et al. mention
at least 21 language development systems and tool
kits that have been used for DSL development [9].

More recently a number of projects explicitly tar-
geting IDE support for language development have
gained some attention. ANTLRWorks is an IDE
built around the ANTLR parser generator by Ter-
ence Parr [10]. This environment allows editing,
testing and debugging of ANTLR language defini-
tions using advanced visual features.

Another approach to IDE support for language
development is the Spoofax environment, which is
built on top of Eclipse [5]. Within this environment
the language developer can edit SDF syntax defini-
tions and Stratego transformation specifications [1].

Building on top of an existing IDE such as Eclipse
is attractive since it presents the opportunity to reuse
components, such as outline, navigation, error re-
porting views and the integration with version con-

1

trol. In the context of Eclipse there is one project
which focuses in particular on providing not only
IDE support for language development (meta level),
but also for the language implementations them-
selves (object level). The Eclipse IDE Meta-tooling
Platform (IMP) aims to provide a platform for high-
quality language-specific IDEs [2]. SDF2IMP [6] is
a collection of tools that bridge SDF syntax defini-
tions to IMP and offers other declarative configura-
tion languages to interface with the IDE features of
IMP.

In this paper we describe our experience of de-
veloping a small DSL for generating (X)HTML
markup, WÆBRIC. This language is complex
enough to exercise many aspects of the ASF+SDF

Meta-Environment. The Meta-Environment has
been used before for DSL development in the con-
text of financial products [13]. It was used to proto-
type the parser, type checker and compiler for a DSL
called RISLA. However, the Meta-Environment has
seen substantial changes since then. In fact, the cur-
rent version is the third incarnation, featuring a mod-
ern GUI, automatic syntax highlighting, extensible
error reporting and data visualization.

2 The Meta-Environment

The Meta-Environment1 is organized around two
formalisms: the Syntax Definition Formalism (SDF)
and the Algebraic Specification Formalism (ASF).
We briefly describe both formalisms.

2.1 All Data Has Syntax

SDF allows the modular specification of arbitrary
context-free grammars. In the Meta-Environment it
is used to define the presentation ofall data, not just
the syntax of programming languages. For instance,
when specifying an interpreter, one often needs an
environment structure to hold values that have been
bound to variables. Such data structures are also
defined using context-free grammars. The ASF+-
SDF standard library provides numerous “standard”
grammars for common data structures, such as list,
sets, integers, strings, identifiers etc. Additionally,
it contains definitions for a number of environment
specific data formats: errors, pretty printer expres-
sions, source locations, relation stores, and parse
trees.

1http://www.meta-environment.org

2.2 Computation is Transformation

Whereas all data representations are defined in SDF,
all computation is expressed in ASF. The units of
computation in ASF are conditional rewrite rules,
called “equations”. An ASF equation consists of
a left-hand side and a right-hand side, and zero or
more condition clauses. Left-hand sides and all
condition parameters are patterns over arbitrary lan-
guage constructs - in concrete syntax - defined in
SDF. We will provide more details of ASFas we go.

2.3 Integration is Transformation

The Meta-Environment IDE contains a number of
programmable features such as editors with syn-
tax highlighting, error panes, project browsers, fact
browsers and graph and chart visualizations. Some
features infer language properties directly from (an-
notated) SDF syntax definitions, such as the syntax
highlighter, other features require some transforma-
tion code.

The general principle is that each IDE feature has
a data or configuration language as its interface. Af-
ter the language engineer provides a transformation
from a DSL to this language, the Meta-Environment
automatically integrates the transformation into the
IDE. The transformation is scheduled when appro-
priate and the IDE will display the result appropri-
ately.

For example, when we provide a translation from
WÆBRIC to the “error language”, the error pane
will be filled with static WÆBRIC errors while edit-
ing a program, including clickable source locations.
Another example, to visualize the import structure
of WÆBRIC programs, the user may translate each
WÆBRIC program to records in the “relation store”
language for fact representation. As a result, the
IDE user will be able to see an import graph of a
WÆBRIC program.

3 Case-study: Markup Genera-
tion

WÆBRIC is a small language for generating
XHTML markup. Its design is motivated by the
lack of programmer friendly abstraction facilities in
existing markup languages. Typing markup is not
for humans and WYSIWYG editors have their own
issues like generating totally inaccessible and un-
maintainable XHTML code. WÆBRIC instead, pro-
vides a user-friendly syntax to factor Web pages
in self-contained functional building-blocks. We

2

Figure 1: Screen shot of the ASF+SDF Meta-
Enviroment displaying a snippet of a WÆBRIC pro-
gram

choose not to provide related work in the area of
markup generation since that is incompatible with
the object of this paper.

The basic WÆBRIC program consists of a num-
ber function definitions, possibly partitioned over
a number of modules, together with a site defini-
tion which maps WÆBRIC markup expressions to
XHTML files. A simple WÆBRIC example is dis-
played below:

def main
layout(”Hello”) {

h1 ”Hello World!”;
p ”Home”;

}
end

def layout(title)
html { head titletitle; bodyyield; }

end

Running this program produces a single XHTML
document which consists of the markup generated
by the function main. The main function calls
another function, called layout, which receives an
string argument “Hello”. Additionally, a block (en-
closed in curly braces) is passed to layout. This
block will be evaluated wherever the statementyield
occurs within the implementation body of layout.
The block itself consists of two “function calls”, to
h1 and p. Since no definition exists for h1, this
will produce a XHTML “h1” element with the string
“Hello World!” as content. Subsequently a para-
graph is rendered containing the string “Home”.

The layout function defines a skeleton page

def menu(menu)
echomenu.title;
ul {

each(kid: menu.kids)
menu-item(kid);}

end

def menu-item(item)
if (item.kids) li menu(item);
elseli a(href=item.link) item.title;

end

Figure 2: Recursive menus in WÆBRIC and the pos-
sible output

framework that can be reused across different pages.
In the example it sets up a basic XHTML document
with header and title; the body of a page is obtained
from the block passed into it. Note how nesting of
elements along a single spine in the document tree
requires no curly braces (as can be seen from how
the title element is included in the head element).

Running this example will produce the following
(XHTML) markup:

<html> <head> <title> Hello </title>
</head> <body> <h1>Hello World!</h1>
<p>Home</p> </body> </html>

In addition to the basic markup generating func-
tion calls, as illustrated by the example, WÆBRIC

contains an if-then-else statement, an each state-
ment, for iterating over sequences of values, a let
construct for the introduction of local variables and
local redefinition of functions and string interpola-
tion syntax (for embedding markup directly in text).

The example in Figure 2 shows how recursive
menus could be defined in WÆBRIC. The first func-
tion, menu, receives a data object (menu) contain-
ing the labels, URLs and sub-menus that should be
rendered in XHTML. The next statement just ren-
ders the title of the (current) menu using the built in
statement echo. After the title follows an unordered
list containing the items of this menu. For each ele-
ment in the “kids” property ofmenuthe menu-item
function is called.

The menu-item function first checks whether this
itemhas any children (sub-menus). If so, it produces
a li(st) element containing the output of a recursive
call to menu. If there are no sub-menus, the result
is a list element with an anchor tag which links the
title of item to its URL. The result of an invocation
(with the appropriate data for themenuparameter)
of menu could look like the screen shot next to the
source code.

3

4 Implementation of WÆBRIC

4.1 Syntax

The syntax of WÆBRIC is defined in SDF. The
grammar rules are divided over 12 modules accord-
ing to non-terminal symbol. For instance, the syntax
for Statements is defined in a single module, for Ex-
pressions in another, and so on. A snippet of the
Statement grammar is displayed in Figure 1. The
example shows the syntax of the if-then-else state-
ment, block-statements, the each iteration construct,
and the primitive echo statement. Note that the di-
rection of the productions is reversed, compared to
(E)BNF.

Since SDF supports the definition of arbitrary
context-free grammar there is a risk of writing am-
biguous grammars. SDF provides disambiguation
rules to amend such situations. The example con-
tains an advanced disambiguation construct. The
last line of Figure 1 defines that an if-statement with-
out an else may not immediately be followed by the
keyword “else”. The definition uses an empty non-
terminal (NoElseMayFollow) to indicate the posi-
tion in the grammar where this rule needs to be
applied. This declaratively prevents the “dangling
else” ambiguity for WÆBRIC. We come back to the
topic of disambiguation in Section 6.

4.2 Import Resolving

Parsers derived from SDF grammars only parse one
file at the time. This poses a problem for modular
DSLs that involve a multiplicity of files. There are
basically two approaches to circumvent this limita-
tion:

Preprocessing the source codeCombine all mod-
ules in one file by textual concatenation. Use,
for instance, regular expressions in some gen-
eral purpose language to find all imported mod-
ules.

Loading and parsing from within A SF It is cur-
rently possible to load and parse files in ASF

using I/O functions from the standard library.

The first option has two disadvantages: the reg-
ular expressions repeat knowledge from the syntax
definition and it does not integrate directly with the
Meta-Environment. Since the Meta-Environment is
actively used for debugging, testing and IDE proto-
typing this would seriously hamper the development
process. We therefore have chosen for the second
approach.

context-free syntax
”if” ”(” Predicate ”)” Stm NoElseMayFollow → Stm
”if” ”(” Predicate ”)” Stm ”else” Stm → Stm
”{” Stm* ” }” → Stm
”each” ”(” Var ”:” Expression ”)” Stm → Stm
”let” Assignments ”in” Stm* ”end” → Stm
”echo” Expression ”;” → Stm

context-free syntax
→ NoElseMayFollow

context-free restrictions
NoElseMayFollow -/- [e].[l].[s].[e]

Table 1: Statement syntax of WÆBRIC in SDF

The process of resolving imports starts with a top
module. For this module the set of imported mod-
ules is determined. These are then loaded, parsed,
and added to the list of current modules. Then for
each of the new modules, the process repeats itself,
until no new modules get added.

4.3 Well-formedness Checking

The Wæbric implementation contains a well-
formedness checker developed in ASF. When run,
this tool returns a (possibly empty) list of “errors”.
The syntax of Errors is defined in the standard li-
brary of ASF+SDF and forms the interface to the
error pane in the GUI of the Meta-Environment.
This way, user defined checkers are seamlessly
integrated,—an instance of “integration is transfor-
mation”. When an error is detected, it will be visu-
ally presented to the user. Furthermore, each error
is linked to its source origin so that when the user
clicks on an error, the cursor jumps to the location
of the offending construct.

The checker is implemented in two phases. The
first phase consists of extracting all relevant facts
from a WÆBRIC program. These facts are repre-
sented as relations (also defined in the standard li-
brary of ASF+SDF) between relevant source code
artifacts. An example of such a fact could be: the ar-
ity of function “foo” is three. In relational form this
fact could be represented as a tuple〈”foo” ,3〉 in a re-
lation Arity. Other relations that could be extracted
might include: call graphs, use-define relations, im-
port relations etc. Such relations can be considered
semantic projections on source code [8].

In the implementation of WÆBRIC, the extracted
relations are used by the checker. Using relational
calculus the extracted relations can be queried, com-
bined and enriched in arbitrary ways. Thus, for
instance, calls to functions that provide the wrong
number of arguments can be determined as follows.
Given the relationArity ⊆ String×N and a relation

4

Figure 3: Evaluation rules for WÆBRIC if-
statements. Keywords are in bold-face, variables are
italicized and start with “$”.

Calls⊆ Location× (String×N), whereLocationis
a data type for source locations. The set of incorrect
calls are then computed with the following expres-
sion:{〈loc,〈fun,n〉〉 ∈ Calls | 〈fun,n〉 6∈ Arity}.

4.4 Interpreter & Compiler

WÆBRIC programs can be evaluated in two ways:
using an interpreter, for testing and debugging from
within the Meta-Environment, and using a compiler
which generates a Java class which can be deployed
in a web server. Below we briefly review how these
two essential components are implemented.

The interpreter directly implements the opera-
tional semantics of WÆBRIC programs. The evalua-
tion functions receive a WÆBRICprogram, and envi-
ronment, the current block, and the total set of mod-
ules as arguments. Evaluation starts at the “main”
function. The result is an XHTML document.

The rules for evaluating if-statements is displayed
in Figure 3. On the left-hand side of the equals sign,
the “eval-stat” function matches a (concrete) pro-
gram pattern, namely an if-statement. On the right-
hand side the result of evaluating the if-statement
is returned. The result, obviously, depends on the
result of the condition. An auxiliary function, eval-
pred, returns true if a conditional expression is valid
in the current environment.

In order to allow WÆBRIC markup programs to
be used in dynamic contexts (such as, for instance,
Java Servlets), we designed a compiler to Java. This
compiler is a simple transformation of WÆBRIC

function definitions to Java methods, wrapped in a
single Java class. Figure 4 lists three rewrite rules
that compile a WÆBRIC statement to Java state-
ments. Note how the left-hand sides are using
WÆBRIC syntax, while the right-hand sides are us-
ing Java syntax. For example, the WÆBRIC echo
statement corresponds to a Java statement that uses
an OutputWriter object to write a string value.

Figure 4: Rewrite rule defining the transformation
of some WÆBRIC statements to a Java statements.
Meta-variables start with “&”. The$out (Java) vari-
able is a parameter to the method that will contain
these statements.

4.5 Wæbric and XML Formatters

Next to the essential components covering pars-
ing and evaluation, we developed formatters for
WÆBRIC programs and XHTML documents. For-
matters are defined in ASF+SDF by writing a trans-
formation to a layout language, called Box [12].
We do not describe these transformations in more
detail. Suffice it to say they are (almost) isomor-
phic mappings of WÆBRIC/XHTML constructs to
Box expressions. The Meta-Environment then eval-
uates these Box expressions and produces the pretty
printed source code.

5 Results

The sizes of the WÆBRIC components are listed in
Table 2 in SLOC. In total, around 5000 SLOC have
been required to develop this complete tool chain.
All in all, it took the first author 2 weeks to develop
all components, with the exclusion of the Java 1.5
and XML grammars, which could be reused. Note
that more SLOC are spent in SDF. This can be
explained from the fact that “all data has syntax”,
even function signatures and pattern variables used
in ASF equations.

The current implementation of WÆBRIChas been
used in the generation of a small static website2.
Since this site originally was developed using a
WYSIWYG XHTML editor, its pages contained a
lot of duplication. Each page for instance, contained
the same menu and used the same customized head-
ers. Using WÆBRIC the first author was able to fac-
tor out such commonality in function definitions that
were reused in every page definition.

The description of the site in WÆBRIC caused a

2http://www.lavaliterair.nl

5

Component SDF ASF Total SLOC

Java 1.5 grammar 1583 0 1583
XML grammar (w/o DTDs) 109 0 109
WÆBRIC grammar 248 0 248
Import resolver 106 87 193
Fact extractor 84 119 203
Checker 131 174 305
Evaluator 348 685 1033
Compiler 277 611 888
WÆBRIC formatter 129 43 172
XHTML formatter 50 100 150

Total: 3065 1819 4884

Table 2: Size of WÆBRIC components in Source
Lines of Code (SLOC). The Java and XML gram-
mars have been reused and have not been developed
specifically for WÆBRIC.

reduction in size of approximately 40%, measured
in (non-empty) source lines of code (SLOC). To
measure this in the generated XHTML, the markup
was pretty-printed first. Whatever the specific mean-
ing of such figures may be, in our experience the
pay-off was immediate: change requests for the site
now only involved a single point of change.

6 Evaluation

In this section we reflect on the suitability of
the Meta-Environment IDE and the ASF+SDF for-
malisms for DSL engineering. Do they have all
the necessary features? Most importantly, since the
Meta-Environment is a programmer’s workbench, is
the behavior of these features tractable and debug-
gable?

ASF+SDF focuses on simplicity, modularity and
declarativeness. Design elements such as “all data is
syntax” and “computation is transformation” make
that possible. On the one hand these features sup-
ported development of WÆBRIC directly, since it
is mostly about syntax and transformation. ASF+-
SDF gave us a head start by automatically providing
parsers, pattern matching, tree constructions, tree
traversal and source-to-source transformation.

On the other hand, we observe that DSLs are not
only about implementing a parser and transforma-
tions. Additional data-structures are needed, such
as sets to store WÆBRIC function definitions. Ad-
ditional data-flow is needed to thread this set to its
use sites. These features are easily simulated using
ASF+SDF, but with some disadvantages. The ex-
tra implementation layer diminishes tractability, ef-
ficiency and conciseness. Therefore we propose to

include sets and relations as primitive data-types for
ASF+SDF and to include parametrized function def-
initions and global or dynamically scoped variables
in future versions of ASF+SDF.

The SDF formalism offers highly declarative syn-
tax definition. This left us to focus on the actual
syntax of the language, conveniently ignoring tech-
nical details such as non-determinism, grammar fac-
toring and other parsing boilerplate. We do have a
note on the tractability of SDF: it cannot report if
a grammar is ambiguous or not. SDF reports am-
biguity only after parsing ambiguous WÆBRIC pro-
grams. This introduces uncertainty about the quality
of the grammar. We had to convince ourselves by
studying our grammar, including its non-trivial dis-
ambiguation rules, that it is not ambiguous anymore.
Therefore we propose to add conservative grammar
analyses to SDF that can state with certainty that a
grammar is not ambiguous.

Meta-Environment. On the one hand the Meta-
Environment has the basic features that one expects
from any IDE and advanced features specifically tar-
geted at language engineering. It includes syntax di-
rected editing and syntax highlighting for ASF+SDF

itself as well as for the object language, WÆBRIC,
automatically. It includes static checkers for ASF+-
SDF that help debugging the WÆBRIC implemen-
tation. It includes debugging and inspection facili-
ties, such as stepwise debugging of rewriting steps
and parse tree visualization. It includes libraries of
reusable syntax definitions and data-structures, such
as the XML syntax definition. Most importantly, the
Meta-Environment allowed us to modularly and it-
eratively implement parts of WÆBRIC and immedi-
ately integrate them into the IDE for on-line testing
and debugging.

One the other hand the Meta-Environment misses
a number of standard IDE features, such as integra-
tion with version control, outline and auto-complete.
It’s incremental build feature is sometimes slow
while regenerating parsers for the highly modular
implementation of WÆBRIC. We therefore propose
to build the Meta-Environment on top of the Eclipse
platform and to redesign its incremental build fea-
ture for efficiency.

6.1 Discussion

It is instructive to reflect for a moment on how
our implementation of WÆBRIC using the Meta-
Environment relates to alternatives.

Most other parser generation frameworks require
a language’s grammar to be moulded to fit in spe-
cific subclasses of all context-free grammars, such

6

as LR(1). As indicated above, SDF enabled us to
concentrate much more on the syntax of the lan-
guage itself instead of dealing with parser details.

Implementing the interpreter in a general purpose
language, such as, for instance, Java in the case of
ANTLR [10], could arguably be easier because of
the availability of many more data structures and li-
braries. Other advantages would include better in-
tegration with the OS (for instance, for dealing with
files) and better performance.

Intuitively, compilers are transformations, and
consequently this is where ASF+SDF shines.
Declarative transformation rules that guarantee syn-
tactic correctness have distinct advantages over the
use ofprintf statements or textual template lan-
guages.

7 Conclusion

We have described our experience using the ASF+-
SDF Meta-Environment for engineering WÆBRIC,
a little language for XHTML markup generation.
It is a non-trivial DSL featuring function abstrac-
tion, conditionals, iteration, local rebinding of vari-
ables and functions, recursion and block closures.
This language has been implemented using ASF+-
SDF. The tool set supporting WÆBRIC, consists of a
well-formedness checker, an interpreter, a compiler
to Java, and two source formatters (WÆBRIC and
XHTML). These tools where integrated into The
Meta-Environment IDE.

Based on our experience we have elaborated upon
the suitability ASF+SDF Meta-Environment for en-
gineering DSLs and formulated possible improve-
ments. We assessed the Meta-Environment on two
accounts: IDE features and formalism features.
All and all we conclude that the ASF+SDF Meta-
Environment is quite suitable for DSL engineering.
There are some rough edges that can be taken care of
by changing both ASF+SDF to improve its suitabil-
ity for DSL features that are not directly serviced by
parsing or rewriting.

References
[1] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and

E. Visser. Stratego/XT 0.17. A language and toolset
for program transformation.Science of Computer
Programming, 72(1-2):52–70, June 2008.

[2] P. Charles, R. M. Fuhrer, and S. M. Sutton Jr.
IMP: a meta-tooling platform for creating language-
specific IDEs in eclipse. In R. E. K. Stirewalt,
A. Egyed, and B. Fischer, editors,Proceedings of the

22nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE’07), pages 485–
488. ACM, 2007.

[3] S. Dmitriev. Language oriented programming:
The next programming paradigm. Online:
http://www.onboard.jetbrains.com/is1/articles/-
04/10/lop/mps.pdf, 2004.

[4] M. Fowler. Language workbenches: The
killer-app for domain specific languages? On-
line: http://martinfowler.com/articles/language-
Workbench.html, June 2005.

[5] K. T. Kalleberg and E. Visser. Spoofax: An interac-
tive development environment for program transfor-
mation with Stratego/XT. In A. Sloane and A. John-
stone, editors,Seventh Workshop on Language De-
scriptions, Tools, and Applications (LDTA07), pages
47–50, Braga, Portugal, March 2007.

[6] L. C. L. Kats, K. T. Kalleberg, and E. Visser. Gen-
erating editors for embedded languages. integrating
SGLR into IMP. In A. Johnstone and J. Vinju, ed-
itors, Proceedings of the Eighth Workshop on Lan-
guage Descriptions, Tools, and Applications (LDTA
2008), Budapest, Hungary, April 2008.

[7] P. Klint. A meta-environment for generating pro-
gramming environments. ACM Transactions on
Software Engineering and Methodology, 2(2):176–
201, April 1993.

[8] P. Klint. How understanding and restructuring differ
from compiling—a rewriting perspective. InPro-
ceedings of the 11th International Workshop on Pro-
gram Comprehension (IWPC03), pages 2–12. IEEE
Computer Society, 2003.

[9] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages.ACM
Comput. Surv., 37(4):316–344, 2005.

[10] T. Parr. The Definitive ANTLR Reference: Building
Domain-Specific Languages. Pragmatic Bookshelf,
2007.

[11] M. van den Brand, M. Bruntink, G. Economopou-
los, H. de Jong, P. Klint, T. Kooiker, T. van der
Storm, and J. Vinju. Using The Meta-environment
for Maintenance and Renovation. InProceedings
of the Conference on Software Maintenance and
Reengineering (CSMR’07), pages 331–332. IEEE
Computer Society Press, 2007.

[12] M. van den Brand, A. Kooiker, J. Vinju, and N. Veer-
man. A Language Independent Framework for
Context-sensitive Formatting. InCSMR ’06: Pro-
ceedings of the Conference on Software Mainte-
nance and Reengineering, pages 103–112, Washing-
ton, DC, USA, 2006. IEEE Computer Society Press.

[13] A. van Deursen and P. Klint. Little languages: Lit-
tle maintenance.Journal of Software Maintenance,
10:75–92, 1998.

7

