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SUMMARY 

This monograph contains the material presented in 1973 in the Colloquium 

on Probability Theory organized jointly by the Mathematical Centre and the 

Institute for Applications of Mathematics of the University of Amsterdam. 

The central theme is the investigation of the existence of optimal 

policies or optimal strategies in various discrete time dynamic pro­

gramming problems. 

In section 2 some well-known theorems in Markov potential theory are 

generalized to collections of Markov chains. Most of the definitions and 

results in this section also play an important role in the sequel. 

In sections 3 and 4 a discrete time optimal control problem is in­

vestigated. It is proved that the value function is the minimum of the 

cp - excessive functions that majorize the reward function. Further it is 

shown that a strategy is optimal if and only if it is thri~y and equal­

izing. 

Section 5 deals with a semi-Markov decision process having at least 

one state for which the expected cost until the system enters this state 

is uniformly bounded over all policies. Using results from the foregoing 

sections, we obtain a rather general condition guaranteeing the existence 

of optimal policies with respect to the average return criterion. 

In section 6 some theorems on dynamic programming problems with total 

return criterion are collected. 

Using results from section 6, we answer in section 7 some questions 

raised in connection with the notions introduced in section 2. The section 

is concluded with a theorem on the existence of optimal strategies for 

problems with a finite state space. 

In section 8 the notions communicating and recurrent system are in­

troduced. Similar to the notions communicating and recurrent class for one 

Markov chain, they play a basic role in Markov decision processes. 

It is proved in section 9 for a wide class of sequential decision 

problems that the optimal stopping time is exponentially bounded under the 

optimal policy. 

In section 10 we investigate again the discrete time dynamic program­

ming problem with the supremum of the expected return per unit time as op-



timality criterion. If the invariant probability measures depend continu­

ously on the decision rule or if they form a tight collection and the sys­

tem is recurrent then there exists a stationary optimal policy. 

A simultaneous Doeblincondition is investigated in section 11. 

In section 12 it is pointed out that this notion provides the connec­

tion between conditions given in the literature and those of the sections 

10 and 11. 

In section 13 we collect several results announced in the foregoing 

sections. It is proved there that randomization does not increase the value 

function. Finally some theorems on the existence of weak and strong nearly 

optimal policies are given. 



1 . INTRODUCTION 

In this monograph we are mainly concerned with a dynamic system which 

at times t = O, 1, ..• is observed to be in one of a possible number of' 

states. Let E denote the countable space of all possible states. If at time 

t the system is observed in state i then a decision must be chosen from a 

given set P(i). The probability that the system moves to a new state j (the 

so-called transition probability) is a function only of the last observed 

state i and the subsequently taken decision. In order to avoid an over­

burdened notation we shall identify the decision to be taken with the prob­

ability measure on E that is induced by it. Thus for each i E E the set 

P(i) consists of probability measures p(i,.).*) Let P be the set of all 

stochastic matrices P with p(i,.) E P(i) for each i EE. Hence P has the 

product property: with Pi E P, i E E the set P contains also P with 

p(i,j) = p.(i,j) for all i,j EE. 
l. 

A policy R for controlling the s;initem .Lti "' sequence of decision rules 

for the times t 0,1, ..• , where the decision rule for time t is the in-
struction at time t which prescribes the decision to be taken. This in­

struction may depend on the history i.e. the states and decisions at times 

0,1, ..• ,t-1 and the state at time t. When the decision rule is independent 

of the past history except for the present state then it can be identified 

with a PEP. A memoryless or Markov policy Risa sequence P0,P1, .•• E P, 
where Pt denotes the decision rule at time t. Pt also gives the transition 

probabilities at time t. 

In this monograph there are only a few places where non-memoryless 

policies are used. We need them to show that the value function is cp-super­

harmonic (see theorem 3.1). Theorem 13.2 implies that when P contains all 

randomizations then the supremum over all memoryless policies equals the 

supremum over all policies. Hence in this case the value function may be 

defined as the supremum over the memoryless policies. 

Since the law of motion of the dynamic system can be described by a 

non-stationary Markov chain when a memoryless policy is used, we prefer to 

*) We allow that with positive probability the system 
"disappears", so p(i,j) :2' O, i,j EE and p(i,E) := 

"breaks down" or 
I p(i,jJ::; 1, i 

jEE 
E E. 
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introduce a decision process as a collection of non-stationary Markov 

chains (for a more general foundation of decision processes see 

[Hinderer]). A memoryless policy which takes at all times the same decision 

rule i.e. P00 := (P,P, ••. ), PEP is called a stationary policy and induces 

.a stationary Markov chain. 

One of the features of this monograph is the generalization of well­

known. results for one Markov chain to a collection of Markov chains .. We 

give some examples. In theorem 8.6 it is proved that the maximal average 

expected reward does not depend on the initial state given that the system 

is recurrent. This is a direct generalization of the well-known theorem 

that each excessive function on a recurrent chain is constant. 

The main assumption in theorem 5.1 (relation 5.1.1) is nothing else 

than a condition guaranteeing that all Markov chains are uniformly positive 

recurrent. This condition is a direct generalization to a collection of 

Markov chains of a so-called Foster criterion or a Liapunov function crite­

rion as it is called elsewhere (see subsection 2.7). 

Finally the simultaneous Doeblin condition (see section 11) is a 

straightforward extension to a collection of Markov chains of the well­

known Doeblin condition. 

Nowadays potential theory for Markov chains is well developed. A 

systematic treatment of potential theory for dynamic systems would in our 

opinion be desirable. Although the second part of the title of this mono­

graph suggests more, our contribution to potential theory for dynamic sys­

tems consists only ih the introduction of some useful terminology and the 

derivation of some interesting results (sections 2 and 7). The reason is 

that we were mainly interested in dynamic programming. It seems that many 

interesting questions were left untouched. 

When in state i decision p(i,.) is taken then an immediate cost de­

pending on i and p(i,.) is incurred*). Let cp(i) be the immediate cost 

when taking decision p(i,.) (the ith row of matrix P) in state i and write 

cp for the vector with ith component cp(i). Note that if P,Q E P with 

p(i,.) q(i,.) then cp(i) = cQ(i). 

The expectation of the cost at time n when starting in state i at time 

* ) It i· s t . . . h ak. f t W h 11 common o minimize w en spe ing o cos s. e s a 
mize. The reason is that along with a cost structure also 
function shall be used (see section 3). 

always maxi­
a reward 



zero and using policy R = (P0 ,P1, ... ) will be denoted byJEi,R c(~), where 

x *) is the state at time n. JER c(x ) denotes the vector with ith compo-
~ ~ 00 

nent JE. R c(x) (for stationary policy P we writeJEP[ ..• J instead of 
i, ~ 

Epoo[ .•• J). It is easily seen that 

3 

In some of the following sections it is assumed that the cost function 

is a charge structure (see definition 2.12). In dynamic programming a 

weaker assumption like "all relevant expectations do not attain the value 

plus infinity" could be used. Our gain is a greater simplicity in the 

statements of the results. Also a nice implication is that the well-known 

theorem in optimal stopping remains valid: the value function is the mini­

mum of the excessive functions that majorize the reward function. 

The basic reason for taking the state space a countable set was that 

many of the problems which arise in general state spaces already appear in 

the countable state space. The countable state space does not have the 

"compactness" properties of the finite state space and with the countable 

state space one avoids the "measurability" questions of more general state 

spaces. As to the generalization of the results of this monograph, some can 

be generalized in a straightforward way, some results cannot be generalized 

and for the other results we do not know. 

In an important part of the literature on Markovian decision processes 

it is assumed that for each state the set of available decisions in that 

state is a finite set. Usually randomized decisions i.e. convex combina­

tions of the available decisions with a corresponding convex combination of 

the costs as the immediate cost, are allowed. We prefer to start with gen­

eral sets of decisions P(i), i E E, which may contain all randomizations. 

As long as there are no constraints introduced the distinction between 

randomized and non-randomized decisions is in our opinion not very im­

portant (cf. section 13). 

In several places we need a notion of convergence on P. A sequence 

*) . . 
Random variables are underlined. 
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Pn' n = 1,2, ••. is convergent to 

j. In this case, we shall say that 

metric space (see section 13). 

P if limp (i,j) = p(i,j) for all i and 
n~ n 

lim P = P. P with this topology is a 
n~ n 

The identification of the set of actions with the set of probability 

measures and several notations are adopted from [Bather]. 

The number of papers on dynamic programming is overwhelming. Only 

those books or papers referred to in this monograph, or those that proved 

important for the author's study of these topics are included in the 

bibliography. 

It is Q.ifficuit '66 ;Provia:e a :t'eadahie a.nd. consequent notation foli' 'the 

topics studied. 'J1he 1ist of notations may be l;llelpful to overcome possi'ble 

notatio?;lal shortcomings, 
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2. POTENTIALS AND EXCESSIVE FUNCTIONS 

The aim of this section is twofold. First to generalize some well­

known theorems in Markov potential theory (theorems 2.9 and 2.20 to 2.23). 

The second intention of this section is to introduce notions which, in our 

opinion, are basic in the study of discrete time dynamic programming prob­

lems. Further we collect in this section definitions and results which play 

an important role throughout this monograph. 

Each function used in this monograph is assumed to be a finite and 

real valued function. Moreover when writinglEP f(~) or Pnf it is tacitly 

assumed that 

l pn(i,j)lf(j)I < 00 for all i EE. 
j 

2.1. DEFINITION. Function w is a charge with respect to P if 

00 

~l 
n=O 

lw(x )J 
-n 

2.2. DEFINITION. Function f is a potential w.r.t. P if there exists a 

charge w w.r.t. P such that 

So function w is called a charge if the sum l:=o Pnw is well-defined. This 

sum is then a potential. 

2.3. DEFINITION. Function f is a 

c - super 

c - harmonic function w.r.t. P if f c + Pf. 

c - sub 

2.4. DEFINITION. Function f is a c -excessive function w.r.t. P if 

(2.4.1) 

(2.4.2) 

(2.4.3) 

c is a charge w.r.t. P 

'
00 Pnc '.!> f ln=O 

c + Pf :!> f. 

So a c-superharmonic flliiction with c a charge satisfying relation (2.4.2) 
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is a c-excessive function. To see that c-excessive functions form an in­

teresting class one should realize that when f is the value function of a 

stopping problem for a Markov chain with matrix of transition probabilities 

P and "cost" function c then relations (2.4.2) and (2.4.3) are fulfilled. 

This can.be seen by noting that the left-hand side of (2.4.2) denotes the 

"return" in case we will never stop which is less than the value function. 

The left-hand side of (2.4.3) denotes the "return" if we wait one period 

and then continue in an optimal way. This may be a sub-optimal policy. 

2.5. THEOREM. Function f is a potential w.r.t. P iff wp := f-Pf is a 
charge w.r:t. P and lim Pnf = o. 

n->oo 

PROOF. Suppose w is a charge such that f = l:=O Pnw. Then by interchanging 

the order of summation (w is a charge) it follows that 

f-Pf l n n+1 
(P w-P w) = w. 

n=O 

Hence wp w and consequently wp is a charge. By iterating the equality 

N times we find the equality 

(2.5.1) f. 

S. f \ 00 pn . . n ince = l _0 wp• it then follows that lim P f n- n->oo 
*) o. 

To show the converse, we note that l:=o Pnwp is a potential since wp 

is a charge. Moreover, it follows from ( 2. 5. 1) and lim" Pnf = O that this 
~ n->oo 

potential equals f. 0 

It can be seen from the above proof that a potential uniquely deter­

mines its charge (if f is a potential then f-Pf is its charge). 

*) For fn, n=l,2, ••. 

lim f (i) = 0 for 
n n->oo 

a sequence of functions, we write lim f 
n->oo n 

0 if 

all i E E. 
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2. 6. THEOREM. If to c ~ 0 the1'e e:r:ists a nonnegative c - supe1'haX'monia 

f: . h . h d'"' n unat~on v w.1'.t. Pt enc ~s a a aPge w.1'.t. Pan ~n=O Pc s v. 

PROOF. The definition of a c-superharmonic function gives 

c + Pv ~· v. 

By iterating this inequality N times we find 

Since v ~ 0 it follows then 

and consequently c is a charge. D 

As an illustration of theorem 2.6 we shall prove that relation (2.7.1) 
is sufficient for a Markov chain to be positive recurrent. In this way we 

recover the condition for positive recurrence as can be found in [Foster, 

theorem 2]. For a countable state space a condition similar to (2.7.1) can 

be found in [Kushner, theorem 8.6.5.7, p. 211]. There the condition is 

called a Liapunov function criterion. 

2.7. FOSTER CRITERION - LIAPUNOV FUNCTION CRITERION 

The i1'1'eduaibte Mapkov ahain with t1'ansition matl'ix P is positive 1'e­

OU1'1'ent if thel'B e:r:ists a state i 0 and a nonnegative solution y of the 

inequalities 

e + Py s y, 

whel'B e is defined by e(i) 

of P to E\{i0} i.e. 

p(i,j) := 

1 fol' aii i and P is the aoiumn-1'Bst1'iation 

0 for j 

p(i,j) for j , i 0 . 
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PROOF. Let!.. denote the reentry time of {i0}, i.e. !_is the least n > O 
if any with~ = i 0 , and!..= 00 if there is no such n. Then it is an easy 
check that 

(2.7.2) -n . JP.h > nJ = P e(i). 
J. -

According to a well-known lemma 

00 

(2.7.3) JE.[TJ 
J. -

\ JP.h > nJ. l J. -
n=O 

By (2.7.2) and (2.7.3) we have 

00 

(2.7.4) JE.h] 
J. -

\ -n l Pe(i). 
n=O 

The irreducible Markov chain is a positive recurrent class ([Chung, p. 31]) 
if 

(2.7.5) JE.[T] < oo for all i E E. J. -

~o prove this it is by (2.7.4) sufficient to show that L:=o 'F1e < 00 (i.e. 
all components are finite). Now theorem 2.6 sa:ys that relation (2.7.1) 
implies that e is a charge w.r.t. P. 0 

A Liapunov function criterion for the existence of an invariant prob­
ability measure in the case of a Markov process with a metric state space 
is given in [Hordijk and Van GoethemJ. 

2.8. THEOREM. If there exists a c -superharmonic function f w.r. t. P, for 
c a majorant of a charge then 

a. 

b. 

c. 

h := lim Pnf exists and - 00 ~ h(i) < 00 for all i E E 
n~ 

if h(i) > - 00 for all i EE then c is a charge w.r.t. P 

if h ~ O *) then f is c - excessive w. r. t. P. 

*) We write x ~ y if x(i) ~ y(i) for all i and denote O for the vector with each component equal to O. 



PROOF. a. Let w be a charge such that w s c. For wp := f-Pf it holds that 

(2. 8.1) w + cp + Pf = f. 

By iterating this equality N times we find 

(2.8.2) 
N 
l Pn(w+cp) + PN+1f = f, 

n=O 

w is a charge and cp ~ 0 so lim LN-o Pn(w+cp)(i) exists (and cannot be - 00 ) 

N+o:> n-

9 

and consequently also lim PNf(i) exists (and cannot be +oo), for each i E E. 
N-+oo 

b. If i!! PNf(i) is finite for all i E E then l:=o Pncp < 00 and it follows 

that the nonnegative function cp is a charge and so is wp. Let 

c+ max(c,O) and c - min(c,O). 

Since w, wp are charges and w s c s wp, we have 

(2.8.3) l Pnc- $ l n -Pw < 00 

n=O n=O 

00 00 

(2.8.4) l Pnc+ l n + 
$ P wp < oo, 

n=O n=O 

Relations (2.8.3) and (2.8.4) together imply that l:=o PnJcJ < 00 and hence 

c is a charge. 

c. By iterating the inequality c + Pf s f we find 

N 
l Pnc + PN+ 1f s f. 

n=O 

If lim Pnf ~ 0 then we have that 
n+o:> 

00 

Consequently c and f satisfy the relations (2.4.1), (2.4.2), (2.4.3) and 

f is a c - excessive function w.r.t. P. D 
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With c = O, the following theorem is similar to a theorem in classical 
potential theory due to M. Riesz (see [Helms, theorem 6.18]). 

2. 9. THEOREM. A c - exaessive funation w. r. t. P is the swn of a potential 
w.r.t. P with aharge not less than c and a nonnegative ha!'171onia funation 
w.r. t. P. 

PROOF. Let wp := f-Pf for f a c - excessive function w.r.t. P. Then f is 
a wp-harmonic function and wp ~ c. Relation (2.4.2) implies that 

n=O n=N 

This yields 

lim PNf 

that (theorem 2.8 shows the existence of the limit) 

N-+<><> 
wp+Pf 

~ 0 and we conclude by theorem 2.8 that wp is a charge. From 

fit follows by iteration f = l:=o Pnwp + h, with h = lim PNf. 
N-+<><> Since 

f - l 
n=O 

\ n -
l P wp ' 

n=O 

it follows by the dominated convergence theorem that Ph 

ly h is a harmonic function. D 
h and consequent-

We note that the above representation of a c - excessive function as 
the sum of a potential and a harmonic function is unique. Indeed, if 

f = l:=o Pnw + h, with w a charge and h a harmonic function. Then 
\oo n 

Pf = ln= 1 P w + Ph = f-w. 

uniquely determined by f. 

\oo n Hence w f-Pf and the potential ln=O P w is 
And so is h = f - \ 00 Pnw. 

ln=O 

2. 1 O. THEOREM. If c is a aharge and f is a c -superha!'171onia funation w. r. t. 
P then the following assertions are equivalent 

a. 

b. 

c. 

lim Pnf ~ O 
n-+<><> 
lim Pnf- = 0 
n-+<><> 

f is a c - exaessive funation. 

PROOF. According to theorem 2.8 we have that condition a implies condition 

c. If l:=o Pnc s f then -f s l:=o Pn(-c). Hence 
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n=O n=O n=O 

+ Using that for arbitrary function g it holds that (-g) -= g we have 

"' 

n=O 

n -p c • 

Since c is a charge it follows then 

"' 
lim Pnf- s lim Pn l 
zr+co zr+co k=O 

k -p c = lim l 
zr+co k=n 

k -p c = o. 

Hence c implies b. 

To conclude we note that according to theorem 2.8 lim Pnf exists and 
+ n-+<><> 

d" · · l" 1° Pnf 1° Pnf O hence con ition b imp ies n~ = n~ ~ • 

2 .11. THEOREM. If f is a c - superha:I'Trlonia function with c a charge '/JJ. r. t. 

P then the following assertions are equivalent 

a. lim Pnf = 0 
zr+co 

b. lim Pnl f! 0 
n+co 

c. f is a potential. 

PROOF. According to theorem 2.8 lim Pnf does exist and lim Pnf = 0 implies 
n-+oo n-+oo n -

that f is a c-excessive function. Theorem 2.10 then gives lim P f = o. 
. . n . n( + -) . . . n~ Pn + Together with lim P f = lim P f -f = O this implies that lim f = O. 

n-+<>o n-+<>o n+<x> 

Consequently lim Pnlfl = lim Pn(f++f-) = O and so condition a implies con-
n-+<><> n-+<>o 

dition b. Since f is ~lso a (f-Pf)-superharmonic function and c s f-Pf it 

follows from theorem 2.8 that condition a implies that f-Pf is a charge. 

By theorem 2.5 it then follows that f is a potential. As b implies a, we now 

have that b implies c. Also from theorem 2.5 we have that condition c im­

plies condition a. D 

In the following sections we want to study Markov decision processes. 

Since each stationary policy corresponds to a Markov chain we will extend 

the notions charge, potential and excessivity to collections of Markov 

chains. 
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2.12. DEFINITION. When for each P element of a collection of Markov ma­
*) trices P we have a function cp we wiU speak of a cost structUPe Cp· The 

cost structUPe cp is a charge structUPe if 

< "' 

2.13. DEFINITION. Fol' cp a cost structUPe we caU function f a 

Cp - super ~ 

Cp - harmonic function if f = cp + Pf for all P E P. 

cp - sub $ 

2. 14. DEFINITION. Function f is a cp - excessive function if 

(2.14.1) 

(2.14.2) 

(2.14.3) 

cp is a charge structUPe 

JER I:=o c(~) s f for all R 

for aU P. 

2.15. DEFINITION. Function f is a potential w.r.t. P if there exists a 

charge structUPe cp such that 

"' 
f = JER l c(~) for aU R. 

n=O 

At first sight this definition looks very restrictive. In section 7 
(theorem 7.3) it is shown that there are natural examples of potentials 

w.r.t. P. 

2.16. THEOREM. Function fis apotentialw.r.t. Piffwp:=f-Pf, PEP, 

defines a charge structUPe and lim JER f(~) = O for each R. 
n-roo 

PROOF. Suppose c p is a charge structure such that f = JER L:=o c (~) for all 

*) 
In the following sections cp(i) will denote the cost when choosing the 
action or decision p(i,.) in state i. 



R. In particular for R = (P,P,. •. ) it then follows that f = I:=o Pncp and 

consequently (cf. theorem 2.5) cp = f-Pf. Hence wp = cp for all P E P and 

therefore wp is a charge structure w.r.t. P. By definition we have 

wp + Pf = f for all P E P. By iterating this equality we find 

N 
(2.16.1) l P 0 • · • P n-1 wp + p O · · • p Nf = f • 

n=O n 

For arbitrary policy R = (P0,P1, ..• ) we conclude from (2.16.1) that 

00 

(2.16.2) 

iff 

2 .17. THEOREM. If cp is a cha:r>ge structure OY!d f is a cp - superha1'171onic 

function then the following assertions a:r>e equivalent 

a. lim JER f(x ) :?: 0 for all R 
-n n+oo 

b. lim JER f-(x ) = O for all R 
-n n+oo 

c. f is a cp - excessive function. 

PROOF. Let wp := f-Pf-cp then wp ~ 0 and 

cp + wp + Pf = f for all P. 

By iterating this equality we find 

N 
(2.17.1) l Po ... Pn-1(cp +wp) +Po 

n=O n n 

13 

Since cp is a charge structure and wp :?: 0 for all P the first term in re­

lation (2.17.1) has a limit. This implies that for policy R = (P0 ,P1, ... ) 

~~ JER f(~) = ~~ P 0 • . . P n-1 f exists. Hence we conclude that ;~ JER f(~) 

exists for all policies R. If moreover condition a is satisfied then we 

have 

(2.17 .2) 
00 

l Po··· Pn-1 cp ~ 
n=O 
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and consequently ]ER r:=o c (~) :5 f for arbitrary R = (PO ,P 1, •.• ) . By defi­

tion it follows that f is a cp - excessive function. 

Assume c, then:JER r:=O c(~) :5 f for all R. Rewriting this for 

R = (PN,PN+1 ' ••• ) we have 

Similar to the proof of theorem 2.10 we conclude from this 

Since cp is a charge structure we have that the right-hand side of this in­

equality tends to zero as N tends to infinity. From this it follows that 

condition b is satisfied. It is obvious that condition b implies condition 

a. D 

Theorems 2.16 and 2.17 are similar to theorems 2.5 and 2.10. Also a 

theorem similar to theorem 2.11 can be proved. 

The remaining theorems of this section for the case of a cost struc­

ture identically zero and a collection P consisting of one Markov matrix 

(so in the case of a Markov process) are well-known in Markov potential 

theory (see [Blumenthal and Getoor], [Dynkin and Juschkewitsch], [Hunt]). 

2.18. THEOREM. If f is a potential w.r.t. P and.!. is a Markov time then 
for arbitrary R 

(2.18.1) f-Pf, 

PROOF. For arbitrary policy R = (P0 ,P 1, .•. ) we write Rn 

Since !. is a Markov time we have that 

(2.18.2) 

P c: P. 

= (P ,P 1, ..• ). n n+ 

Summing this for k 

(2.16.2), we find 

Oto oo and using theorem 2.16, in particular relation 



00 

(2.18.3) l JER [w(~+k) I~ =j • .:E_=n] f(j) • 
k=O - -

Now 

00 ( 1 ) 

JER [ l w(x )] = l ~ JPR [~=j. .:E_=n] ~ c l: w(~+kl I~ =j. .:E_=n] 
-n n=.:E_ n=O J k=O - -

(2) 
= l ~ JPR [x =j .:E_=n] l JER [w(~+k) J~=j, .:E_=n] 

n=O J 
--:!:. • 

k=O - -

(3) 
= l ~ JPR [~=j' .:E.=J f( j) = 

n=O J 

where equality (1) comes from taking the expectation of the conditional 

expectation w.r.t. (x ,T), equality (2) follows from Fubini's theorem on 
-r -

15 

interchanging the order integration (or summation), equality (3) is direct 

from relation (2.18.3). D 

From relation (2.18.1) it follows for f a potential w.r.t. P and 

T s T* Markov times that for arbitrary R and charge structure Cp 

* T-1 T -1 
(2.18.4) Cl: c(x) + f(x )] -JER Cl: c(x) + f(x *)] = 

JER n=O -n --:!:. n = 0 -n -r 

* T -1 
= JE Cl: 

R n=T 
(w(x )-c(x ))J, 

-n -n 

For the case that f is cp - superharmonic we have w(x )-c(x ) ~ O. Sub-
--n -n 

stituting this in (2.18.4) we find that the second term on the le~-hand 

side of (2.18.4) is less than the first term. This important property will 

be proved for excessive functions in the next theorem. 

2. 19 • LEMMA. For eaah policy R and bounded Markov time ,;:_ *) we have for an 

*) We call a Markov time .!. bounded when there exists an integer N such 
that T s N. 
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arbitrary funation r 

T-1 
(2.19.1) [-~ w(x ) + r(x )], r = JER n;O --n -"::!:. 

where wp = r-Pr for all P E P. 

PROOF. The proof is given by induction on the upper bound of the Markov 
times. Suppose (2.19.1) is valid for all policies Rand all Markov times 
l.. with l.. ~ N. Now let .I.~ N+1 and R = (P0 ,P1, ••• ) and R1 = (P1,P2 , .•• ). We 
prove (2.19.1) for arbitrary state i. Since l.. is a Markov time we have on 
the event .!cJ = i whether T = 0 or l.. > 0. When l.. = 0 then relation (2.19.1) 
is obvious for starting state i. When.!.> 0 on .!cJ = i, we define a new 
stochastic variable 

(2.19.2) 

* * It is easy to check that T is a Markov time and T ~ N. By the induction 
hypothesis we then have 

(2 .19.3) 

Now 

* T -1 
CI 
n=O 

T-1 

w(x ) + r(x *)]. -n -r 

JE. R [-l w(x ) + r(x )J 
1 ' n=O --n -r 

= wp (i) + I p0(i,j) JE. R 
0 j J. 1 

* T -1 
CI 
n=O 

w(x ) + r(x *)] --n -r 

where the first equation follows from (2.19.2) with the Markov property, 
the second from (2.19.3) and the third from the definition of wp. D 

0 

* 2. 20. THEOREM. If r is a cp - exaessive funation and .!.• T are Markov times 
with T ~ T* then 



(2.20.1) c(x ) + r(x *)], 
-n -r 

for eaah poliay R. 

* * * PROOF. For any integer N let ~ = .!. A N and~ = T A N. Then ~ and .!.N are 

bounded Markov times. Lemma 2.19 yields 

* ~-1 ~-1 

[ l w(x ) + r(x )J = JER 
n=O -n ~ 

[ l 
n=O 

w(x ) + r(x *)], 
-n ~ 

where wp = r-Pr for all P E P. Rearranging this equation, writingT _1 

r(x ) x(TSN) + r(~) x(_!.>N) for r(~ ) and inserting sums like Ln-!o 
-:!:.N - -'111" 

on both sides we find 

* ~-1 

c(x ) 
-n 

(2.20.2) 

~-1 

JER [ l c(x ) + r(x ) x(l_SN) 
-n ~ 

l c(x ) 
-n 

* r ( x *) X (_!. SN) ] 
-:!:.N n=O n=O 

(w(x )-c(x )) + r(lS-_)(X(:!:_*>N) - x(_!.>N))J. 
-n -n -1~ 

The limit as N + 00 of the first half of this equation is just the differ­

ence of the first and second term of (2.20.1). Hence we have to prove that 

this limit is nonnegative. Since r is Cp; superharmonic we have that 

wp-cp ~ O for all P E P and this implies that the first term of the right­

hand side of (2.20.2) has a nonnegative lim inf as N + 00 • According to 

theorem 2.17 it follows with T* ~ T that 

lim infJER [r(.2fN)(x(.:!:_*>N) - x(.:!:_>N))J~ - limJER r-(~) = o. 
N+oo N--

Consequently both terms on the right-hand side have a nonnegati ve lim inf 

and the proof is- complete. D 

We state a direct consequence of this theorem. 

2. 21. THEOREM. If r is a cp - exaessive funation then for eaah Markov time.!. 

T-1 
r ~ supJER [~ c(~) + r(~)J 

R n=O 
(2.21.1) 
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PROOF. Substitute~= O in (2.20.1) then 

* T -· 1 
r <= JER CI 

n=O 
c(x)+r(x*)J, -n --'[ 

* for each policy R and Markov time ~ . Upon taking the supremum over all R 
the above inequality is relation (2.21.1). D 

2.22. THEOREM. If r is a cp-excessive function then for w.>bitrary entry 
time T 

T-1 
f := sup JER C1 

R n=O 
c(x ) + r(x )J -n --'[ 

is aZso a cp - excessive function. 

PROOF. To prove that f is a cp - excessive function we have to check the 
relations (2.14.1), (2.14.2) and (2.14.3). The proof of (2.14.3), i.e. the 
proof that f is a cp - superharmonic function, is postponed to the proof of 
theorem 3.1. There a slightly more general result has to be proved. By 

definition Cp is a charge structure and hence relation (2.14.1) is satis-
* fied. To prove relation (2.14.2) substitute T - 00 in (2.20.1) then 

c(x) + r(x )J <=JE [ L c(x )J for all R. D 
-n --r R n=O -n 

2.23, THEOREM. Let lA be the entry time of set A, i.e. l is the least 
n <= O if any with ~ € A, and lA = 00 if there is no such n. If r is a 
cp - excessive function then 

lA-1 

f : = sup JER [ l 
R n = 0 

c ( x ) + r( x ) J 
-n ~A 

is the minimwn of the cp - excessive functions that majorize r on A. 

PROOF. According to theorem 2.22 f is a cp - excessive function. From the 
definition of lA it follows immediately that f = r on A. Suppose g is a 
cp - excessive function that majorizes r on A. Then for each policy R we 
have JER g(x ) <= JER r( x ) . Since g is Cp - excessive it follows from 

~A --:!.A 
theorem 2.21 that 



T -1 -A 
[ l 
n=O 

T -1 -A 
[ l 
n=O 

c(x ) + g(x )] ~ 
-n -:!..A 

c(x ) + r(x )J = f. 
-n -:!..A 

Hence f is the minimum of the cp - excessive functions that majorize r on 

A. 0 

19 
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3. ON THE VALUE FUNCTION OF AN OPTIMAL CONTROL PROBLEM 

In the sections 3 and 4 we deal with the optimal control problem: 

given a cost structure cp which is a charge structure and given a reward 

function r with JER I r(~) I < co for all R and .!_, find a policy R and stop­
ping time.!.. (.!_ = co with-positive probability is admissible, with zero re­

ward) such that 

is maximized. In this section we investigate properties of the value func­

tion 

( 3. o. 1) v := sup JER 
R,.!_ 

T-1 
Cl: 

n=O 
c(x ) + r(x )J. -n -'[" 

We assume that _co< v(i) <+co and P!v!(i) <+co for all i EE and all 
P E P. In section 13 we give some conditions implying these assumptions 
(cf. lemma 13.4). 

As far as the author knows this general problem has not been studied 
previously. Related work can be found in [Bellman], [Blackwell (1967)] 
[Dubins and Savage], [Dynkin and Juschkewitsch], [Hinderer] and [Strauch]. 
The sections 3 and 4 extend the work of Dynkin and others on optimal stop­
ping problems to allow for control of the transitions of the Markov process 
as well as its stopping time. They extend the work of Dubins and Savage 
and others on gambling models to allow for a cost structure along with a 

reward function. 

3.1. THEOREM. The function v is the minimum of the cp - excessive functions 
that majorize r. 

PROOF. We first prove that v is a cp - excessive function by verifying that 

the relations (2.14.1), (2.14.2) and (2.14.3) are satisfied. Relation 
(2.14.1) is true by definition. Relation (2.14.2) follows upon substituting 

.!.. = co from ( 3. O. 1). To prove that v is a cp - superharmonic function we 

choose an £ > 0. Then there exist policies Ri and stopping times ..!.i, i E E, 
such that 

(3.1.1) 
T.-1 
-i 

[ l 
n=O 

c(x ) + r(x )] ~ v(i) - £. -n --r. 
-i 
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Define 

then !.. is a Markov time. For P an arbitrary element of P let R be the 

policy that chooses decision rule P at time 0 and uses policy Ri from time 

1 when the state at time 1 is i. For a more formal definition of R let 

R. = (P. 0 ,P. 1, •.• ), i EE, then the decision rule at time n+1 given the 
1 1 1 

history~= i 0 , -2£1 i 1 , ••• , ~+ 1 = in+ 1 is Pi 1n. It is important to 

realize that R is not a memoryless policy and as such rather unique in this 

monograph. Now by t~e definition of v, the Markov property and relation 

(3.1.1) we have 

1."-1 
v(i) ~ JE:. .R C1 c(x ) + r(x )J = 

1 ' n=O -n -'!" 

cp(i) +I p(i,j) E. R 
j J, j 

1." .-1 
-J 

c I 
n=O 

~ cp(i) +I p(i,j) v{j) - c, 
j 

c(x ) + r(x )J ~ 
-n -'!". 

-J 

since Ijp(i,j) ~ 1. Because E and P were arbitrarily chosen, this means 

that v is a cp - superharmonic function. 

Substituting.:!:_= 0 in (3.0.1) gives v ~rand hence v majorizes r. 

To prove that v is the minimum of the Cp - excessive functions that majorize 

r we suppose that a certain function g is cp - excessive and majorizes r. 

Then according to theorem 2.21 and the fact that g ~ r 

1."-1 
CI 

n=O 
c(x ) + g(x )] ~ v. D 

-n -1," 

We call a policy R together with a stopping time .:!:_ a strategy. In many 

cases an optimal strategy, i.e. a strategy (R,!_) such that 

v =ER [~!..-01 c(x ) + r(x )], can be determined when the value function v 
ln= -n _,,. 

is known. So it is important to characterize the function v. We gave in the 

above theorem a characterization. Some more theorems which may be helpful 

in computing v will be given below. 
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3.2. DEFINITION. Let T x + Tx be the operator defined by 

Tx := r v sup (cp+Px).*) 
p 

3.3. DEFINITION. The optimal control problem is stable w.r.t. x if 

v. 

3.4. THEOREM. Suppose the problem is stable w.r.t. x. If v:?: x then vis 
the minimwn of the cp-superharmonic functions that majorize x v r. 

PROOF. Suppose g :?: x v r and is cp - superharmoni c. Then g :?: Tg :?: Tx whi eh 
• • . . . . . N implies by iterating these inequalities that g :?: T x for all N. Thus 
g :?: v = lim TNx. Since v majorizes x v r if v :?: x this proves the theorem. D 

N+co 

3.5 •. THEOREM. The .. value function v is a solution to Bellman's optimality 
.equation 

(3.5.1) v = r v sup (cp+Pv). 
p 

REMARK. The above assertion can also be stated as: vis a fixed point of T. 

PROOF. Since v is a cp - excessive function and v majorizes r (see theorem 
3. 1) we have by relation (2.14.3) that 

(3.5.2) v:?: r v sup (cp+Pv). 
p 

To prove the reverse inequality, note that given any £ > 0 and any state i 
there exists a strategy (R,_l) with R = (P0 ,P1 ,. •. ) such that 

T-1 
(3.5.3) :IEi,R [:Io c(~) + r(~)J :?: v(i) - E. 

*) .th For vectors x and y the vector x v y resp. x A y has i component 
max (x(i),y(i)) resp. min (x(i), y(i)). 



Since .!. is a Markov time we have on the event .!o = i whether .!. = O or 

.!. > O. When.!.= 0 then from (3,5,3) r(i) :i:: v(i)-e:. When.!.> 0 on .!o = i 

we define a new stochastic variable 

Then .!.* is a Markov time and it follows from the Markov property and the 

definition of v when R1 := (P1,P2 , ... ) that 

T*-1 
v(i)-e: S cp (i) + l p0(i,j) E. R Cl c(x ) + r(x *)] s 

0 j J, 1 n=O -n --r 

s cp (i) + 4 p0(i,j) v(j). 
0 J 

Hence we conclude that 

v(i) s r(i) v sup (cp+Pv)(i) + e: 
p 

Since e; and i were arbitrarily chosen it follows that 

(3,5,4) v s r v sup (cp+Pv). 
p 

The relations (3,5.2) and (3,5.4) together prove the theorem. D 

The next theorem gives conditions under which the supremum of 

cp+Pv, P E P, is actually attained. 
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3.6. THEOREM. Suppose P is aompaat and cp is uppe!' semiaontinuous (i.e. 

cp(i) is an uppe!' semiaontinuous funation of P foT' aU i E E). Fo!' v to be 

a solution of the funational .equation 

(3.6.1) v = r v max (cp+Pv), 
p 

eaah of the following foul' aonditions is suffiaient 

a. cp + Pv is an uppe!' semiaontinuous funation of P 

b. lim sup Pv+ s P0v+ foT' aU P0 E P 
P+PO 
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c. Exaept for at most a finite nwriber of states the fwzation vis non­

positive 

d. lim Pe = P0e for all .Po E P and vis bounded from above or v+ is uni­
p+po 

formly integrable w.r.t. P(i), where 

(3.6.2) . p ( i) : = { p ( i,. ) : p € P} ' i E E. 

PROOF. Let w := s~p (cp+Pv). A well-known theorem says that an upper semi­

continuous function attains its supremum over a compact set. Hence condi­

tion a implies the existence of a Q with cQ+Qv = w. The proof proceeds now 

·by proving that the other three conditions imply the upper semicontinuity 

of Pv and hence of cp+Pv. 

There is also a well-known theorem which says that the limit of a 

nonincreasing sequence of upper semicontinuous functions is again upper­

semicontinuous. For any state j is p(i,j) v(j) a continuous function of P . 

. Hence P(-v-) is uppersemicontinuous. By assumption b then also Pv+ is upper 

semicontinuous and consequently so is Pv. 

It is easily seen that condition c implies condition b. According to 

a theorem due to [Scheffe] (see also lemma 4.11) 

lim l p(i,j) 
P+PO j 

implies that the convergence of p(i,j) to p0(i,j) is uniformly in j EE. 
+ Hence v bounded or uniformly integrable w.r.t. P., i EE, is sufficient for 

l 

condition b. D 

3,7, DEFINITION. Fwzation f has the property anne (asymptotia nonnegative 

expeatation) if 

(3,7.1) lim inf lER f(~) :>: 0 for all R. 
n-+oo 

We proved in theorem 2.17 that if f is a cp-superharmonic function 

then for all R 

(3,7.2) lim lER f(~) 
n-+co 
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exists. Moreover, relation (3.7.1) is equivalent to the Cp-excessivity of 

f. Thus we have the following theorem. 

3.8. THEOREM. Let f be a cp - superharmonia function. The function f has the 

property anne if and only if f is a cp -excessive function. 

3,9, THEOREM. The value function vis the minimum of the cp-superharmonic 

functions that ma;jorize r and have the property anne. The value function v 

is the minimum of the solutions of Bellman's optimality equation that have 

the property anne. 

PROOF. Since vis according to theorem 3.1 the minimum of the cp-excessive 

functions that majorize r, the first assertion follows from theorem 3.8. 

Since a solution of ( 3. 5. 1) is a cp - superharmonic function that majorizes 

r, the class of solutions of the optimality equation is a subset of the 

Cp-superharmonic functions that majorize r. Hence the second assertion is 

a consequence of the first assertion and theorem 3,5, D 

It may be difficult to check whether a solution of the optimality 

equation has property anne. In the case one knows that v ~ 0 it is perhaps 

easier to use the following consequence of theorem 3,9: v is the smallest 

nonnegative solution of the optimality equation. 

3.10. THEOREM. Suppose the problem is stable w.r.t. x. If v ~ x then vis 

the unique solution of the optimality equation that minorizes x and has the 

property anne. 

PROOF. Suppose g ~ x and Tg = g and g has property anne. We will show that 

g = v. Indeed, according to theorem 3,9 we have v ~ g. To prove the reverse 

inequality we use the fact that T is a monotone operator, i.e. if x ~ y 
. N lim TNx the last equality is from then Tx ~ Ty. Hence g = lim T g ~ = v, 

N..- N..-
the stability w.r.t. x. D 

The discounted dynamic programming problem (see section 6) with bound­

ed cost structure is stable w.r.t. x for each bounded function x. Moreover, 

each bounded function has the property anne. This means that according to 

theorem 3.10 the value function vis the only bounded solution of the op­

timality equation. 
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It follows from a result of [Schal] that the negative dynamic program­

ming problem (see section 6) is stable w.r.t. 0 when P is compact and cp is 

continuous (i.e. cp(i) is a continuous function of P, for all i E E). In 

view of theorem 3 •. 10 we then have that v is the only nonposi ti ve solution 

of the optimality equation with the property anne. 

3.11. THEOREM. Suppose the value function vis a bounded solution of 
(3.6.1). If each PEP is absorbing (i.e. lim Pne = O for each PEP) then n-roo 
v is the unique bounded solution to (3,6.1). 

PROOF. Suppose w is another bounded solution of (3.6.1), then v-w is bound­

ed. Hence there exists a constant b with lv-wl s be. Let v = r v (cp +P 1v) 
1 and w = 

(3.11.1) 

r v (cp +P2w). 
2 

Since w is a solution of (3.6.1) we have 

(cp +P1w). Hence it 
1 

v-w s P 1 I v-w I . 

follows 

Similarly we have 

(3.11.2) 

From the fact that P has the product property it follows that there exists 

a matrix Q E P such that 

(3.11.3) 

The relations (3.11.1), (3.11.2) and (3.11.3) together imply 

Iterating this inequality and using lv-wl s be yields 

lv-wl 
N s Q be for N = 1,2, ... 

We assumed that Q is absorbing and hence 
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Consequently v = w and the theorem follows. D 
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4. EXISTENCE OF OPTIMAL STRATEGIES 

In this section we investigate the existence of optimal strategies of 
the optimal control problem introduced in section 3. The notions 
"to conserve", "to equalize" and "thrifty" are adapted from [Dubins and 
Savage]. The relation with previous work is indicated in the introduction 
of section 3. 

As in section 3 we assume that Cp is a charge structure and 
ER lr(~)I < 00 for all policies Rand all Markov times l· In this section 
we assume for the value function v that JER lv(~)I < oo for each strategy 
(R,!_). In section 13 we give some conditions implying this assumption (cf. 
lemma 13.4). 

We shall systematically use the notation 

wp := v-Pv, PE P, 

where v is the value function. 

To make certain that expectations and sums are well-defined when using 
wp as cost structure, we show that wp is a charge structure. According to 
the theorems 3.1 and 2.17 and relation 2.17.1 we have that 

(4.0.1) w(x ) s v. 
-n 

Since v is cp - superharmonic, it follows that wp 

Hence wp s c; for all P E P, which implies 

(4.0.2) 

v-Pv ~ cp, P E P. 

Because v < 00 and cp 1s a charge structure we obtain 

< 00 and JER l 
n=O 

According to definition 2.12 wp 1s a charge structure. 
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4.1. THEOREM. Suppose Q E P is such that 

(4.1.1) cQ(i) + Qv(i) = v(i) 

when it r := {i : r(i) = v(i)}. Let Q00 be the poliC!!f (Q,Q, .•• ) and ~r 

the entry time of set r. Each of the following two conditions is sufficient 

for strategy (Q00 ,ir) to be optimal 

a. value function vis a potential w.r.t. Q 

b. there exists a constant c such that .!..r :o; c, JPQ almost surely. 

PROOF. Let us first show that conditions a and b both imply 

(4.1.2) 
.!..r-1 

v = ]EQ [ l 
n=O 

w(x ) + v(x )J. 
-n -:E..r 

As to condition b relation (4.1.2) is direct from lemma 2.19. If we assume 

a and take for collection Pin theorem 2.18 the set {Q} then relation 

(4.1.2) follows from relation (2.18.1). 
By the definition of r we have 

lEQ [ r ( x ) J = lEQ [ v( x ) J • 
-:E..r -.!.r 

From relation (4.1.1) it follows that wQ(i) = cQ(i) as ii r. Hence 

.!..r-1 .!..r-1 
lEQ [ l c (~) J = lEQ [ L w(~) J. 

n=O n=O 

Substituting the above equalities in (4.1.2) yields 

v = lE 
Q 

.!..r-1 
[ l 
n=O 

c(x ) + r(x )J. 
-n -:E..r 

Thus strategy (Q00 ,J:.r) is optimal. D 

In order to make a more thorough investigation of the existence of 

optimal strategies we introduce the following notions. 

4.2. DEFINITION. P conserves v if cp = v-Pv. Strategy (R,.!_), where 

R = (P0 ,P1, ... ), conserves v if i E Em implies cPm(i) = v(i) - Pmv(i), 

where Em := {j : JPi,R [~=j, .!_>m] > 0 for some i EE}. 

When the policy maker (or gambler or manager) chooses decision rule 

P at time 0 and proceeds optimally thereafter then the expectation of his 
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earnings is cp+Pv. It is clear that this can not be larger than the maxi­

mum of the expected return, i.e. v (in mathematical terms v is cp - super­

harmonic). When cp+Pv < v then the decision rule P cannot be a part of an 

optimal strategy. The decision maker made an irremediable mistake. 

Strategies not containing such mistakes are v conserving. 

4.3. DEFINITION. Strategy (R,.!_) is thrifty if (R,.!_) is v conserving and 

ER r(~) = :IER v(~) . 

In a state where r(i) < v(i) it is suboptimal to choose the stopping 

decision, because stopping gives r(i) and one might expect to receive v(i). 

So a strategy for which the policy R does not make irremediable decisions 

and for which the stopping time .!_ does not give irremediable losses is 

called thri~y. Intuitively it is clear that an optimal strategy must 

have this property. As we shall show the following converse is true. If 

(R,.!_) is thri~y and.:!:_ is bounded then (R,.:!:_) is optimal. In the case of an 

. unbounded stopping time T we also need that the amount we actually receive 

in the time period up to time N has limit v as N tends to infinity. One 

might say that here the "actually received" and the "promised" earnings 

equalize. This property can be formalized in the following way. 

4.4. DEFINITION. Strategy (R,.:!:_) is equalizing if lim:IER [v(~) X(.:!:_>n)J O. 
n-+oo 

4.5. THEOREM. Strategy (R,.:!:_) is thrifty if and only if 

T-1 T-1 
(4.5.1) ]ER CI 

n=O 
c(x ) + r(x )] = :IE 

--n -:E. R 
c1 

n=O 
w(x ) + v(x )]. 

--n --r 

PROOF. The value function vis cp-superharmonic and majorizes r. Hence 

wp = v-Pv ~ cp, PE P,and v ~ r. These inequalities imply that relation 

(4.5.1) is equivalent to the following relations (4.5.2) and (4.5.3) to­

gether 

(4.5.2) (w(x )-c(x ))J = O 
--n --n 

(4.5.3) o. 

Relation (4.5.2) is equivalent to the assertion that (R,.:!:_) conserves v and 

the theorem is proved. D 



4.6. THEOREM. Strategy (R,1_) is optimal if and only if (R,.!_) is thrifty 

and equalizing. 

PROOF. For N = 1,2, ..• let~ denote.!.. AN. Given any strategy R we have 

(4.6.1) c(x ) + r(x )] 
-n --r 

~-1 

lim JER [ /, 
N+oo n=O 

c(x ) + r(x ) x(<SN)J. 
-n -:!:. -

We rewrite the right-hand side of this equality. Using relation (2.19.1) 

with function v instead of r, i.e. 

and using the relation 

we obtain for the second part of equality (4.6.1) 

.!_N-1 

lim { v - JER [ l 
N+oo n=O 

(w(x )-c(x ))] + 
-n -n 

This limit equals 

T-1 
(4.6.2) v - JER C""1 (w(x )-c(x ))] - JER [v(x )-r(x )J + 

n=O -n -n -:!:. -:!:. 

- limJER [v(~) x(.!_>N)J. 
N.._ 

If (R,.:E_) is thri~y then the second and third term of expression (4.6.2) 

are zero. If (R,.:E_) is in addition equalizing then also the fourth term of 

(4.6.2) is zero and the expression equals v. Hence (R,.!_) is optimal. To 

prove the converse we note that according to the theorems 3.1 and 2.17 

limJER [v(~) x(.!_>N)l ~ - limJER [v-(~)l = O. 
N.._ N.._ 

31 
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This means that the fourth term in relation (4.6.2) is nonnegative. It is 

easy to verify that the second and third term are also nonnegative. If 

(R,I) is optimal then the sum of the last three terms is zero and conse­

quently they are all three zero. Hence (R,!_) is thri~y and equalizing. D 

Using the above theorem it is rather easy to deduce sufficient con­

ditions for (Q00 ,!r) as introduced in relation (4.1.1) to be an optimal 

strategy. These are given in the next two theorems. 

4.7. THEOREM. St:r>ategy (Q00 ,!r) is optimal if and only if lim QNv = o, with - ~ 
Q the :r>estr'iation of Q to the aomplement of r, i.e. 

(4. 7 .1) 
_ . . { q{ i ,j) if i i r and j i r 
q{i,J) := 

0 otheruise. 

PROOF. From (4.1.1) we see that Q conserves v outside of r. Thus (Q00 ,!.rl 
conserves v. Since v = r on r it follows then that (Q00 ,!.rl is thri~y. 
Hence (Q00 ,ir) is optimal if and only if (Q00 ,!.r) is equalizing. 

From the definition of entry time !.r (!.r is the least n ~ 0 if any 

with~ Er, and !.r = 00 if none) and relation (4.7.1) we have for 

N = 1,2, ••• 

-N 
EQ [v(~) x(i>N)J = Q v. 

From this relation the theorem is obvious. D 

4.8. THEOREM. Each of the following two conditions ensu:r>es that (Q00 ,irl 
is optimal 

a. the value function vis bounded and lPi,Q Cir < 00J = 1 for> aU i i r 

b. the value function v is bounded and Q is abso:r>bing. 

-N 
PROOF. According to theorem 4.7 it is sufficient to show that lim Q v = O. 

N...--N 
Since v is bounded it is sufficient to show that lim Q e = O. 

b. Because Q is absorbing we have 



a. From 

~N 

JPQ [.!.r > N] = Q e, 

the s.econd part of condition a and JP i ,Q [.l-r=O] = 1 if i E r, we find 

lim {e -JPQ [.!.r::; NJ} 
N.-

o. D 
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In most cases it is difficult to determine the value function. Some­

times one can make a guess at the optimal strategy and one is able to com­

pute the expected reward for that strategy. In such a case one can use the 

following theorem with f the expected return. If the conditions of the 

theorem are satisfied then the theorem guarantees that the guess was 

correct and one knows the optimal strategy and the value function. 

4. 9. THEOREM. Suppose f is a cp - superha!'171onic function that majorizes r 

and has property anne. Suppose Q E P is such that 

cQ(i) + Qf(i) = f(i) if i i r := {i : r(i) = f(i)} 

and lim QNf = O with Q the restriction of Q to the complement of r (see 
N+<><> 

4.7.1). Then f = v and (Q00 ,.!.rl is an optimal strategy. 

PROOF. According to the theorems 3.8 and 3.1 we have that f ~ v. Similarly 

as in the proof of theorem 4.6 one can show that 

( 4.9.1) f = JE 
Q 

lr-1 

c I 
n=O 

c(x ) + r(x )]. 
-n --:!.r 

Hence f::; v, since vis not less than the expected return of (Q00 ,.I.r). We 

conclude that f = v and then it follows with (4.9.1) that (Q00 ,.I_r) is op­

timal. D 

Throughout the sections 3 and 4 we assumed that cp is a charge struc­

ture andJER lr(.!Tll < 00 for all Rand all.!.· These assumptions are super­

fluous in the next theorem because they follow from the assumptions of the 

theorem. 
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4.10. THEOREM. Suppose P is compact and cp is cont~nuous. If there exists 

a function y ~ lrl such that 

(4.10.1) 

(4.10.2) 

(4.10.3) 

lcpl +Py~ y, 

lim PNy = O for all P E P and 
N-+<><> 

lim Py= P0y for all P0 E P 
P+PO 

then cp is a charge structure and there is a strategy (Q00 ,.I.r) as in 
(4.1.1) which is optimal. 

In the proof of this theorem we need the following result: if 

O ~ x ~ y then (4.10.3) implies lim Px = P0x. In order to prove this we 

first state three lemmas. P+PO 

4.11. LEMMA. If a (i) ~ o, i=1,2 •. and n=1,2, ... , lim a (i) 
n n 

i=1,2, ... and lim l:=1 an(i) l:=1 a00 (i) < oo then n+oo 
n+oo 

llm l 
n+oo iEB 

a (1) 
n 

uniformly for each subset B of the positive integers. 

PROOF. The assertion of this lemma is equivalent to 

(4.11.1) lim l lan(i)-a00 (1)I 
n+oo i=1 

o. 

Suppose (4.11.1) is false. Then 

(4.11.2) c := lim sup l la (i)-a00 (i)I > O. 
n+oo i=1 n 

Take N such that 

l aJi) 
c <-3· 

i=N 

Since 

lim l a ( i) = n n+oo i=N 

there exists an no such that 

N-1 
lim [ l. a ( i) l. n n+oo i=1 i=1 

for n ~ no 

a ( i) J n = l 
i=N 

a ( 1), 
00 

a00 ( i ) , 



l 
i=N 

a (i) 
n 

and 

Hence, for n ~ n0 , 

c 
< -

3 
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N-1 
l I a ( i )-a00 ( i) I s l 

i=1 n i=1 
la (i)-a (i)I + l 

n "' 
(a (i)+a (i)) < c. 

n "' i=N 

This is in contradiction with (4.11.2). D 

4.12. LEMMA. If 0 s b (i) s a (i), i=1,2, ••• and n=1,2, ••• ; 
n n 

a00 ( i) : = lim a ( i) and b ( i) : = lim b ( i) ; 
n-+oo n "' n-+oo n 

and 

lim l a (i) l a00 ( i) < "' 
n-+oo i=1 n i=1 

then 

lim l b (i) = l b"'( i). n n-+oo i=1 i=1 

PROOF. Given any E > O, let N be such that l:=N a00(i) s ~E. From lemma 4.11 

it follows that there is an M such that l~ N a (i) s E for n ~ M. Since 
i= n 

0 s b (i) s a (i) we have then n n 

(4.12.1) ./. bn(i) s E for n = M,M+1, •.• ,"'. 
i=N 

Since lim l~ 1 b (i) lNi'=l b00 (i) the relation (4.12.1) implies that the 
n-+"' i= n 

limitpoints of {/,~= 1 bn(i)}:=l differ at most E from l.~= 1 b00 (i). 

Hence 

lim /. 
n-+oo i=1 

b (i) 
n /. 

i=1 

The following lemma is for future reference stated slightly more 

general than we need here. 
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4.13. LEMMA. If 0 S ~ S Yp• 

then lim P~ = P00~ • 

~·Yp continuous in P and lim Pyp 
P+Poo 

P+P oo 
"" 

PROOF. It is sufficient to prove that lim 2, 
n.._ j 

= Lj p00 (i,j) xp (j) for an arbitrary state i 
00 

pn(i,j) ~ (j) = 
n 

and an arbitrary sequence 

Pn-+ P00 • Now substitute bn(j) := pn(i,j) xp (j) and an(j) := pn(i,j) Yp (j ), 

j=l,2, ... and n=l,2, ..• , 00 in lemma 4.12. D n n 

The above lemma is a discrete analogue of theorem 1 in [Pratt]. 

PROOF OF THEOREM 4.10. From relation (4.10.1) we have that the nonnegative 

function y is !cpl -superharmonic. Hence by theorem 3.8 

JER l I c (~) I s y for all R 
n=O 

and so cp is a charge structure. Since also y ~ Jrl, it follows by (2.21.1) 

T-1 
Iv! s supJER [~ !c(x JI + !r(x )jJ s y. 

R ,.!_ n=O --n -:!. 

Now according to lemma 4.13 relation (4.10.3) implies lim Pv+ 

view of theorem 3,6 we then have that P+PO 

v = r v max (cp+Pv). 
p 

+ 
P 0v . In 

Consequently strategy 
. NI I . N lim Q v s lim Q y 

N-+oo N-+oo 

(Q00 ,.!_r) as in (4.1.1) exists. Moreover from (4.10.2) 

0 and according to theorem 4.7 the strategy (Q00 ,~r) 
is optimal. D 

In section 5 we need the following corollary of theorem 4.10. 

4.14. COROLLARY. Suppose P is compact and cp is continuous. If there 

exists a function y ~ o such that relations (4.10.1), (4.10.2) and (4.10.3) 

hold, then there exists a stationary policy Q00 such that 

(4.14.1) c(x )] 
--n 

y 
n=O 

c(x )]. 
--n 



PROOF. In order to make it possible to apply theorem 4.10 we introduce a 

reward function r such that r :=sup JER cf' 0 c(x )J - e. By theorem 4.10 
• R n=. --n 

the cost structure is a charge structure. Given any policy (R,.!_) we have 
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according to theorem 2.20 with v the value function of the optimal control 

problem 

T-1 
CI 

n=O 
c(x ) + v(x )] <! 

--n --r 

Hence, 

v = sup JER [ l 
R n=O 

c(x )] . 
--n 

Moreover, since r ~ it follows that !r = 00 and according to the proof 

of theorem 4.10 Q00 as in (4.1.1) satisfies (4.14.1). D 
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5, SEMI-MARKOV DECISION PROCESSES WITH AVERAGE RETURN CRITERION 

In this section we are concerned with sequential decision processes 

for which the times between transitions are random. Earlier (in section 1) 

if at time t the system had been observed in state i and action p(i,.) had 

been chosen, the system transferred to a state j at time t+1 with prob­

ability p(i,j). Now this transition takes place at random time t+1_, where 

the random time .l only depends on i,j and P and not on the past history of 

the process. Let FP(.[i,j) where P is an element of P with ith row p(i,.), 

denote the distribution of the random time T • At time t+.!._ again an action 

p(j,.) E P(j) has to be chosen, etc. 

When using a stationary policy this decision process is a semi-Markov 

process. 

Let~· n=0,1, ... , denote the state after the nth transition. We write 

cp(i) for the expectation of the cost incurred between the nth and the 

(n+1)th transition when x = i and the action taken after the nth transition 
.th --:1 . is the i row of P. We obtain for the expected duration of this transition 

interval 

It is assumed that for some positive constant a, 

a ~ tp(i) < 00 , for all i and all P 

(cf. [Ross (1970), condition 1, p. 157]). 

The optimality criterion we use in this section is the long-run 

average return per unit time. Actually we take 

N 
JER l c(x ) 

n=O -n 
(5.0.1) lim sup N N--roo 

JER l t(x ) 
n=O -n 

This is the largest limit point as N + 00 of the expected cost over the 

first N + 

first N + 

transition intervals divided by the expected duration of the 

transition intervals (see [Ross (1970), p. 1591 for a dis-

cussion of this criterion). The question we are mainly concerned with in 
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this section is the question whether there exists an optimal policy. We 

give conditions that guarantee the existence of a stationary optimal policy. 

In our opinion these conditions are easy to verify. To illustrate this we 

solve a waiting line problem. 

5 . 1 • THEOREM. Suppose P is aompaat, cp is aontinuous and p( i, E) = 1 for 

all i and P. If there is some state i 0 and a funation y ~ O suah that 

(5.1.1) lcpl + tp + Py s; y, 

(5.1.2) lim pNY = O for all P E P and 
N+oo 

(5.1.3) lim Py = P0y for all P0 E P 
P+-PO 

where P denotes the aolwrrn-restriation of P to E\{i0} (see 2.7). Then there 

exists a stationar>y optimal poliay. 

For the proof of this theorem we have to establish several results 

which are interesting on their own and will be given as lemmas. In 5. 3 to 

5.7 the conditions of 5.1 are assumed to hold. 

5.2. LEMMA. If for PE P, l:=o pn P !cpl (i0 ) < 00 or l:=o pn P tp(i0 ) < 00 

then 

N 00 

E. p l I c(x ) I l pn P I cpl (io) 
1 0• n=1 --n n=O 

lim N 
exists and equals 

N-+oo JE: l t(x ) l pn P tP(i0 ) 
i 0 ,P 

n=1 
--n n=O 

PROOF. Let f ~ O. Since Pk Pf(i0 ) is the restricted expectation of f(~+ 1 ) 

when visits to state i 0 at times 1,2, ..• k are excluded; we find by applying 

the "last exit decomposition" of state i 0 (cf. [Chung. p. 46]) 

Summing over n 0 to N and changing the order of summation gives 

(5.2.1) 
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. N( .. )(IN k( .. ))-1 
that ~ p 10 ,10 lk=O p 10 ,10 

larity property of the Norlund-means 

(5.2.1) that 

(5.2.2) 

N 
l Pn+1 f(io) 

1 . _n __ =_o _____ _ 
1m N 

N-><x> l 
k=O 

To complete the proof we write 

= 0. As an application of the regu­

(see [Hardy, p. 64]) it follows from 

N N-1 
pn+1 

N-1 
JE. l I c (x l I I. I cpl (i0 ) l l(io,io) 10 ,P n=1 -n n=O k=O 

N N-1 N-1 
JE. p I. t(x ) I l(i0 ,i0 ) l Pn+1 tp(io) 

10' n=1 -n k=O n=O 

Next we apply relation (5.2.2) once with f = lcpl and once with f = tp. D 

The above lemma is called a mean ergodic theorem. It says that the 

average expected absolute cost per unit time when starting in state i 0 

equals the expected absolute cost divided by the expected length of the 

time until the first return to state zero. In most proofs of this lemma it 

is assumed that both expectations are finite. 

5.3. LEMMA. For each stationary policy the corresponding Markov chain has 

positive recurrent state i 0 • 

PROOF. From tp ~ ae for some a> O and (5.1.1) it follows that 

ae + Py :S y. 

* -1 Hence for y := a y 

~ * * e + Py !> y . 

So according to 2.7, the Markov chain with matrix of transition probabil­

ities P has positive recurrent state i 0 • D 
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5.4. LEMMA. For f ~ 0 

°' 
(5.4.1) }. pm f(i 0 ). 

m=O 

Moreover,cp a:nd tp are aharge struatu:r>es with respeat to~= {P PEP}. 

~ 

PROOF. By the definition of P we have 

(5.4.2) L pm P f = I pm+1 f + L ? pn1(.,j) p(j,io)(f(io)). 
m=O m=O m=O J 

As p(i,E) = 1 for all i E E, we can write for the second term on the right­

hand side L:=o pm(e-Pe) f(i 0). According to lemma 5.3 and 2.7 we have that 

L:=o pm e < 00 and hence this term equals f(i 0 ). Herewith relation (5.4.1) 

is proved. 

Similar to theorem 4.10 the second assertion follows directly from 

relation (5.1.1). D 

Define 

(5.4.3) g0 := sup 00 

r I pn tp(iol 
n=O 

Then in view of the lemmas 5.2 (by writing cp = c;- c;) and 5.4 we have 

that g0 is the supremum of the long-run average return per unit time over 

the stationary policies when the system starts in state i 0• 

As in theorem 2.6 it follows from (5.1.1) that 

°' 
(5.4.4) 

~ ~n 

~ y and l P tp ~ y for all P. 
n=O 

°' ~n 
Since tp ~ ae we have that L n=O P tp ~ ae. Consequently 

-1 (. ) . O ~ g0 ~ a y i 0 < 00 • Define 

(5.4.5) 
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It is easy to verify that 

(5.4.6) 

From (5.4.4) it follows that 

l F1llcpl+lg0 ltp] :> (Jg0 J+1)y for all P. 
n=O 

Moreover, for y* := (jg0 1+1)y, 

It is rather straightforward to verify that relations (5.1.2), (5.1.3) and 

(5.4.7) imply that the conditions of corollary 4.14 are satisfied. Together 

with (5.4.6) the corollary 4.14 implies the existence of a policy Q00 with 

(5.4.8) 

In view of (5.4.3) we now have that Q00 is average-optimal in the class of 

stationary policies if we start in state i 0 . 

5.5. LEMMA. There exists a stationary poliey Q00 such that Q00 is optimal 
with respect to the average return criterion in the class of all stationary 
policies. 

PROOF. It follows directly from (5.4.8) and the definition of g0 that Q00 is 

optimal in the class of all stationary policies when the system starts in 

state i 0 . Since for each P E P the state i 0 is reached with probability 

one from each state we obtain that the associated Markov chain does not 

have disjoint closed sets. This implies, as is well-known, that the 

average expected return per unit time does not depend on the starting 

state from which the lemma follows. D 

The rest of the proof of theorem 5.1 consists of proving that the 

policy Q00 is average-optimal in the class of all policies. The essential 

part is to show that the scalar g0 in combination with the function v is a 

solution of the optimality equation for the average return criterion which 

satisfies an auxiliary condition. 
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5.6. LEMMA. For (g0,v) we hcrve 

Thus (g0 ,v) is a solution of the optimality equation for the crverage return 

criterion. Moreover, Q satisfies 

(5.6.2) 

PROOF. We found that v is the value function of the optimal control problem 

with cost function cP-gOtP. Since r = v-e (cf. 4.14) it follows from 

( 3. 5. 1 ) that 

In view of relation (5.4.6) we may write Pv instead of Pv and hence 

relation (5.6.1) follows. For Q00
, the optimal policy for the control pro­

blem, we have 

v = l Qil(cQ-gOtQ). 
n=O 

Hence 

5.7. LEMMA. Let f be such that f(i0 ) = 1 and f(i) = o for i ~ i 0 then 

N 1 
limE. Rlv(.2£N)I {E. R }, f(x )}- = 0 for all i and all R. 
N-+<><> 1 ' 1 ' n=O -n 

(5.7.1) 

PROOF. We first show that for each i E E 

(5.7.2) 

uniformly in R = (P0,P1, ..• ). Define 

= sup Px 
p n 

for n o, 1,. ... 
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* Since by relation (5.1.1) and the definition of y 

it follows that x 1 $ x0 . 

Now suppose xn $~xn_ 1 then Pxn $ Pxn-l for all P E P and hence 

xn+ 1 = s~p Pxn $ spp Pxn-l = xn. Thus by induction xn' n=0,1, ... , is a 

decreasing sequence of functions. Consequently x := lim x exists. It is 
rr+<» n 

easy to see that 0 $ x $ y*, n=0,1, .... Using dominated convergence we 
n 

find x ~ Px for all P E P. Thus 

x ~ sup Px. 
p 

Next we prove the reverse inequality. Let Pn be such that 

$ p 
n 

-1 
x + n e. 

n 

Now choose a converging subsequence of Pn' say P + P0 ask+ 00 (P is com­
nk 

pact by the assumptions of theorem 5.1). Since lim P y* 
~ Ilk 

0 $ x $ y*, according to lemma 4.13, we have 
n 

Consequently 

(5.7,3) x = max Px 
p 

Relation (5,7.3) implies 

~N ~N * 
x = lim P0 x $ lim P0 y o, 

N+oo N+oo 

* P 0y and 

by relation ( 5. 1. 2). By induction it is straightforward to establish that 

(use lvl $ y*) 

(5.7.4) 



for all N and all R = (P0,P1, .•• ). But then assertion (5.7.2) follows. 

Using again the "last exist decomposition" of state i 0 (see lemma 5. 2) 

and recalling that v(i0 ) = O, we find with (5.7.4) 

N 
= l IP0 ... Pn_1J(i,i0 ) [Pn ... PNJvJ J(i 0 ) $; 

n=O 

As a second application of the regularity property of the Norlund-means it 

follows then 

o, 

which is relation (5.7.1) in a different notation. D 

PROOF OF THEOREM 5.1. From relation (5.6.1) we have 

Iterating this inequality we obtain 

By rewriting this we find 

N 
l. Po.· .Pn-1 cp (i) 

n=O n !':: 
N 
l p 0 •.• Pn-1 tp ( i) 

n=O n 

$; go + { N 
v( i) Po ... PNv(i) 

N 
l. po· .. Pn-1 tp (i) l Po.· .Pn-1 tp (i) 

n=O n n=O n 

for all i E E. 
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In order to prove that the largest limit point as N + 00 of the le~­
hand side does not increase g0 we show that the term between brackets has 
limit zero. Indeed, since r:=o P0 •.. Pn_1 tp (i) + 00 as N + 00 the first term 
tends to zero. By lemma 5.7 the second termnconverges to zero. Consequently 
g0e is an upper bound of the average expected return per unit time. More­
over, since cQ-gOtQ+Qv = v it can be proved in a similar way that the 
average expected return corresponding to policy Q00 actually equals g0e. The 
latter was already shown in lemma 5.5. D 

5.8. WAITING LINE MODEL WITH CONTROLLABLE INPUT 

The idea of "reduction of queues through the use of price" comes from 
[Leeman]. Here we shall restrict ourselves to show the applicability of our 
conditions (5.1.1), (5.1.2) and (5.1.3), A more detailed study of this type 
of control problems can be found in [Low]. 

Assume that the arrival process is a Poisson process with expected num­
ber of arrivals per unit time A where p denotes the service price. Thus p 
the input process can be controlled by the service price. It seems reason-
able to assume that A decreases as,p increases. Let us assume further that p 
the price p lies between the bounds a and b, i.e. a ~ p ~b. Let F be the 
distribution of the service time ~· The times at which a decision on the 
price has to be taken are the times a person completes service. The state 
at that time is the number of people the departing customer leaves behind. 
We assume that the service time is independent of p. 

The transition probabilities corresponding to price p equal 

for j < i-1, 

( 5. 8. 1) p(i,j) 

for j <! i-1, 

where k (p) denotes the probability of r people arriving during a service r 
period, i.e. 

(5,8.2) k (p) = e P (A s)r (r!)- 1 dF(s). Joo -A s 

r 0 p 

For future reference we state that (5.8.2) implies 

(5.8,3) l 
r=k 

r(r-1) ... (r-k+1) k (p) 
r 



where it is assumed that JE sk exists. Since k (p), r=0,1, ..• , is a 
- r 

tinuous function of A it follows directly that P is compact if A 
p p 

continuous function of p. 

The following assumptions are made: 

(5.8.4) 

(5.8.5) 

(5.8.6) 

-1 
p := 1 - Aa JE ~ > 0, 

A is a continuous function of p for a s p s b, 
p 

cp(i) is a continuous function of P for all i E E. 

5.9. BOUNDED COSTS 

con-

is a 

Suppose constant dis such that lcpl s de for all PEP. In view of 

condition (5.1.1) we need a nonnegative function y such that 

( 5 .9 .1) 

with P the column-restriction to E\{i0}. Since tp(i) =JE ~ < 00 for all 

i EE and lcpJ s de it is sufficient to find a y with 

(5.9.2) e + Py s y, 

because in that case y* := (d +JE ~)y will satisfy (5,9.1). 
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A funtion y satisfying (5,9.2) with state 0 for i 0 is an upper bound 

of the expected number of transitions to the state zero (cf. 2.6 and 2.7), 

Hence y(i) is equal to some constant times the number of steps to the 

point zero (i.e. equal to i) seems a good candidate. We try y(i) = i, then 

for service price p and i ~ 1 

(5,9,3) l. p(i,j )j = 
j#O 

l k .. 1 (p) j 
j=i-1 J.-i+ 

l 
r=O 

k (p)(r+i-1) 
r 

i - (1 - A JE s). 
p -
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From assumption (5.8.4) it follows that p(1 - A JE s) ~ 1 for all p. 
p -

Hence 

(5.9.4) 1 + L p(i,j)pj 5 pi for i ~ 
j;to 

and y(O) := 1 + Lj;to p(O,j)pj, y(i) :=pi for i ~ 1 satisfies (5.9.2). 

In order to verify the condition (5.1.2) we note that for.:!:_ the busy 

period, i.e. the return time to {O}, the inequality ]E. p [T] ~ i JE s holds. 
l, 

Moreover, in view of (2./.4) and Wald's equation 

]Ep[.:!:_]=JEs l re. 
n=O 

Hence 

l 
~k 
p e. 

k=O 

Since the right-hand side tends to zero as n + 00 for each P E P we find 

that also condition ( 5. 1 . 2) is true. 

To check that Py depends continuously on price p it is in view of 

(5.9.3) sufficient to verify that A JE s is a continuous function of p. p -
This is a direct consequence of assumption (5.8.5). We conclude that 

theorem 5.1 can be applied. 

Before we treat the case of unbounded costs we state a lemma which 

does not depend on any previous assumption made in this section. 

5.10. LEMMA. If c ~ O and x ~Oare such that 

(5.10.1) 

with HQ the 

(5.10.2) 

then 

(5.10.3) 

coZwrrn-restriction to a certain subset H, i.e. 

{ 
q ( i, j ) for j E H, 

Hq( i 'j) 
0 for j i H, 

y 
n=O 

Qn c ( i) 5 x ( i) + \ \ k ( · · ) ( · ) ~ Z Z · !. !. q i, J x J J or a i 

k=1 jEHc 
E E. 



PROOF. From ( 5. 10. 1 ) it follows that 

N N 
l Qn c s: l Qn(x-HQx) s: 

n=O n=O 

s x + 

But Qx - Qx = Qx* where x*(j) = x(j) if j E He and x*(j) = 0 otherwise. 
H 

Hence 

N N 
l Qn c s: x + l 

n=O n=1 
n * \ Qx:S:x+l 

n=1 

This completes the proof of the lemma. 0 

5.11. COSTS BOUNDED BY A LINEAR FUNCTION 

n * Q x for all N. 

Suppose for some constant d we have that Jcp(i)J S di for all 
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i E {1,2, ••• } and all P € P. It is now sufficient to find a function y ~ 0 

such that 

(5.11.1) i + l p(i,j) y(j) s y(i) for all i. 
j,io 

We try y(i) = i(i+1), then for service price p and i ~ 

(5.11.2) l p(i,j) j(j+1) 
j,io 

co 

I k (p)(r+i-1)(r+i). 
r=O r 

Since (r+i-1)(r+i) = r(r-1) + 2ir + i 2-i we find, when using (5.8.3), that 

· . •2 2 2i" ' . . "2 R "t" the right-hand side equals A JE s + A JE s - 2i + i + i • ewri ing 
p - p -

this we find 

(5.11.3) i(i+1) - i{2(1 - ;\ JE s) - i-1 ;i.2 JE s2}. 
p - p -

According to assumption (5.8.4) we can find an integer i 0 such that 

(5.11.4) 
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Then 

(5.11.5) i + l p(i,j) p j{j+1) s p i(i+1) for i ~ i 0• 
j~O 

In order to find a function which satisfies (5.11.1) for all i ~ 1 we 

apply lemma 5. 10 with 

He := {0,1, ... ,i0-1}, c(i) := i, Q := P, 

i.e. the colUJIIIl-restriction of P to E\{O} for P an arbitrary element of P, 

where 

x(i) 
for i ~ i , 

0 •= {: i(i+1) 

for i=o,1, ... ,i0-1, 

m := max {i + l q(i,j) p j(j+1) 
jEH 

i=O, 1, ... ,i0-1}. 

It can be verified that 

c + HQx s x on E\{O}. 

Hence according to (5.10.3) 

00 

(5.11.6) l l pr1(i,j) j s 
n=O j 

x(i) + l l 
n=1 jEHC 

By relation (5.9.4) (cf. 2.6) we have l:=o lj pr1(i,j) s Pi. Using this 

inequality it follows from (5.11.6) that there is some constant p* such 

that 

(5.11.7) 

Define 

(5.11.8) 

l l pr1(i,j) j s p* i(i+1) for i ~ 1. 
n=O j 

y(i) :=sup l l. pr1(i,j) j. 
P n=O j 

It follows from theorem 13. 6 that the supremum in ( 5. 11 . 8) equals the 
' ! . I i 

supremum over all policies. According to theorem 2.22 with l = 00 we then 



have that y is superharmonic, i.e. 

(5.11.9) i +). p(i,j) y{j) s y(i) for all i and all P. 
j 
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Thus y is a function that satisfies (5.11.1). Moreover, since (5.11.7) was 

deduced for an arbitrary P we have by (5.11.7) 

(5.11.10) y(i) s p* i(i+1) for i ~ 1. 

To check condition (5.1.2) we note that 

l ). pn(i,j) j ~ ~i(i+1), 
n=O j 

since the system must pass the states i,i-1, ••• ,1 to reach state 0 from 
1. ti 1·c· ) . ** state and ik=1 k = 21 1+1 • Hence for 1 ~ 1 and some constant p 

y(i) s p** l l pn(i,j) j. 
n=O j 

Since the series on the right-hand side converges we have 

l pn(i,j) y(j) s p** 
j 

00 

l l Pn(i,j) j 
k=n j 

and this tends to zero as n + oo, Finally by (5.11.2), (5.11.3) and condi­

tion (5.8.5) 

). p(i,j) j(j+1) 
j 

is a continuous function of the price p. By lemma 4.13 also 

l p(i,j) y{j) 
j 

depends in a continuous way on p. Herewith the conditions (5.1.1), (5.1.2) 

and (5.1,3) are verified and theorem 5,1 can be applied, 

5 . 12 . REMARKS 

As in section 5. 11 i't can be proved that for a quadratic cost function 

we can apply theorem 5.1 if the third moment of the service time exists. 
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Thus JE/~/ 3 < 00 implies the existence of a stationary optimal policy with 

respect to the average return per unit time. In general it seems that in 

addition to the assumptions already made in this section the finiteness of 

the (k+1)th absolute moment of~ implies the existence of an optimal 

stationary policy when the cost function is bounded by a polynomial of 

degree k. 

Condition ( 5. 1 . 1) for bounded costs and tp = e, P E P, is equivalent to: 

There is some state i 0 and a function O $ y < 00 such that for all P E P 

(5.12.1) e + Py $ y, 

with P the column-restriction to E\{i0}. 

In the case that P consists of one element, say P, this condition re­

duces to the Foster or Liapunov function criterion of section 2. It turns 

out that in waiting time models when the embedded Markov chain approach is 

used, the Foster criterion is very useful in proving ergodicity. In many 

cases however one needs a weaker condition than given by [Foster]. Such 

conditions can be found in several places in the literature: [Moustafa, 
theorem 2.I], [Crabill, theorem 1], [Fakes, theorem 1 and theorem 2], 

[Cohen, ii, p. 25], [Kushner, theorem 7, p. 211]. The weakest form can al­
ready be found in [Moustafa], in our notation: 

If for some £ > O there exist a function y ?: O and a state i 0 such that 

and 

l p(i,j) y(j) $ y(i) - £for i > i 0 
j=O 

l p(i,j) y(j) < 00 for i $ i 0 , 
j=O 

then the irreducible Markov chain is positive recurrent. 

With the use of [Chung, theorem 3, p. 47] and our lemma 5.10 the above 
condition can be slightly weakened to: 

If for some £ > O and some finite set H there exists a function y ?: O such 
that 



l p(i,j) y{j) s y{i) - E for all i, 
#H 

then the irreduaible Markov ahain is positive reaurrent. 

Indeed by lemma 5.10 we have for P the column-restriction to E\{i0} 

(cf. 2.7) 

00 00 

E l ~· pr1(i0 ,j) s l l pr1(i0 ,j) y{j). 
n=O J n=O jEH 

....... a-..._ His finite and l:=o pi1(i,j) < 00 for each j (cf. [Chung, p. 47]) we 

have that the right-hand side of this inequality is finite. Hence the ex­

pectation of the return time to {i0} is finite (cf. 2.7) and the chain is 

positive recurrent. 
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In lemma 5,3 we proved that condition (5.12.1) implies the Markov 

chain is positive recurrent for each P E P. Since state i 0 can be reached 

under each P we have (when we forget about transient states) that for each 

P € P the Markov chain consists of one positive recurrent class. The 

question then is whether the converse of the above assertion is also true, 

i.e. if P is compact and each P € P consists of one positive recurrent 

class then there exists a function y satisfying (5.12.1). [Fisher] showed 

by an ingenious proof that the answer is "yes" when in each state there is 

only a finite number of possible decisions. In general the answer is "no" 

which is shown by the following counterexample. 

COUNTEREXAMPLE. 

E {0,1,2,. .. }; 

pk(n+1,n) = 1 fork€ {1,2, ••• , 00 } and n € {0,1, ••• }; 

for k € {1,2,. .. }, 

{ :~: ( 4' -k)-1 

for 1 s n s k, 

pk(O,n) = 

for k+1 s n s 4k; 

p00 (0,n) -n € {1,2,. .. }. = 2 for all n 
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The expectation of the return time to 0 under Pk (notation µk(O,O)) equals 

µk(o,o) 1 + l pk(O,n) n 
n=1 

k 
2-n n + 2-k(4k-k)- 1 

4k 
1 + l /, n. 

n=1 n=k+1 

Since the third term on the right-hand side goes to infinity as k ~ 00 

we have lim µk(o,o) # µ (o,o) which is the sum of the first two terms 
k+oo oo 

a~er the equality sign. Finally it is easily checked that lim Pk P and 
k~ 00 

thus P is compact. Since condition (5.12.1) should imply 

µk(O,O) ~ y for all k € {0,1, .•. ,oo} 

we find that such a function y does not exist. 

In verifying the conditions (5.1.1), (5.1.2) and (5.1.3) for the 

waiting line model it turned out that conditions (5.1.2) and (5.1.3) were 

relatively easily checked. Condition ( 5. 1. 1) seems to be the most important 

one. May the other two conditions be omitted in theorem 5.1? A counter­

example of [Fisher and Ross] and the result of [Fisher] show that the 

answer is negative. 

Ergodic theorems have been known for a long time in probability theory. 

The use of an ergodic theorem to convert a Markov decision problem with 

average return criterion into one with total return criterion, the author 

learned from [Breiman]. In [Lippman] the same technique is used. The re­

sults in this section are related to those of [Lippman]. There the state 

space is a Borel subset of a metric space. For the case of a countable 

state space our conditions are more general. 



6. DISCOUNTED AND NON-DISCOUNTED DYNAMIC PROGRAMMING 

In this section we return to the optimal control model of sections 3 

and 4. Again it is assumed that cp is a charge structure. In this section 

we focus on strategies with stopping.time~ equal to infinity. So the de­

cision-maker is not allowed to stop the system. Hence the value function 

becomes 

(6.0.1) v : = sup JER [ I 
R n=O 

c(x )] • 
-n 
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In order to make it possible to use results from the sections 3 and 4 we 

introduce a reward function r with r := v-e. Then v equals the value func­

tion of the optimal control problem with cost structure cp and reward 

function r (cf. the proof of 4.14). Moreover, the interesting stopping 

times will automatically be equal to infinity. The results of this section 

are direct consequences of theorems in the sections 3 and 4. 

As for the cases of discounted dynamic programming, positive dynamic 

programming and negative dynamic programming they are known (see 

[Blackwell (1965)], [Blackwell (1967)], [Hinderer] and [Strauch]). The 

other results seem to be new. 

As a consequence of 3.1 and 2.17 we have that for all policies 

lim JER v(~) exists and, moreover, this limit is nonnegative. 
N-+<x> 

6.1. THEOREM. The value function vis a solution to Bellman's optimality 

equation 

(6.1.1) v = sup (cp+Pv). 
p 

Moreover, if P is compact, cp is upper semicontinuous and 

+ lim sup Pv 
P+P0 

then v satisfies 

(6.1.2) v max ( cp+Pv). 
p 

PROOF. Since v > r relation (6.1.1) follows immediately from (3.5.1). 

Relation (6.1.2) is an implication of theorem 3.6. 0 



Next we introduce some useful terminology. The above model will be 
called: 

discounted dynamic progra:mning (d.d.p.) with discount factor O <a< 1 if 
p(i,E) = a for all i and all P; 

positive dynamic progra:mning (p.d.p.) if cp(i) ~ O for all i and P; 
negative dynamic progra:mning (n.d.p.) if cp(i) ~ O for all i and P. 

6.2. THEOREM. In d.d.p. with bounded cost structure, i.e. for some con­
stant b 

( 6. 2. 1) /cp(i)/ ~ b for all i and P, 

if P is compact and cp is upper semicontinuous then the value function v is 
the unique bounded solution of (6.1.2)'. 

PROOF. If a is the discountfactor then from (6.0.1) and (6.2.1) we have 
/v/ ~ be(1-a)-1,thus vis bounded. Since Pne = ane we have, moreover, that 
each P € P is absorbing and the assertion is an implication of theorem 3.11 
and theorem 6.1. D 

We note that using a well-known result on contraction mappings the 
following generalization of theorem 6.2 can be proved. 
In d.d.p. with bounded cost structure the value function is the unique 
bounded solution of (6.1.1) (see [Denardo]). 

If for some Q E P it holds that cQ +Q v = v then we say that Q satisfies 
the optimality equation. We remark that in view of theorem 3.6 for n.d.p. with 
P compact and cp upper semicontinuous such a Q always exists. By the fol­
lowing theorem then Q00 is optimal. 

6.3. THEOREM. If Q satisfies the optimality equation then each of the 
following assumptions imply that policy Q00 is optimal: 

. N 
a. llm Q v ,,:; O 

N-+<» 
b. d.d.p. with bounded cost structure 

c. value function v is nonpositive 

d. n.d.p. 
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PROOF. At the beginning of this section we noted that limJER v(x) always 
n-+<><> -n 

exists and, moreover, is nonnegative. Since Q satisfies the optimality 

equation it follows with v > r that Q in combination with stopping time 

.lo, := 00 satisfies relation (4.1.1). According to theorem 4.7 we have that 

policy Q00 is optimal if and only if lim QNv = O. Since lim QNv ~ 0 it fol-
N-+<><> N->= 

lows that 

(6.3.1) 

is a criterion for the optimality of Q00
• It is straightforward that assump­

tions a, c and d (in n.d.p. we have v ~ 0) imply relation (6.3.1). 

In the proof of theorem 6.2 we showed that in d.d.p. with bounded cost 

structure the function v is bounded and each P is absorbing. Hence 

lim QNv = 0 which is stronger than relation (6.3.1). D 
N+oo 

As a consequence of the above ~heorem we have 

6.4. THEOREM. In d.d.p. with bounded cost structure and in n.d.p. there 

exists an optimal s-tationary policy if P is compact and cp is upper 

semicontinuous. 

PROOF. By the theorems 6. 2 and 6. 1 the value function v satisfies 

v = max (cp+Pv). 
p 

Since P has the product property it follows now that there is a Q such that 

v = cQ+Qv. According to theorem 6.3 policy Q00 is optimal. D 

In [Hordijk and Tijms (1972)] it is shown by means of a counterexample 

that the boundedness condition in the above theorem cannot be omitted. 

The following notation is introduced 

l 
n=O 

6.5. THEOREM. PoliC!Y Q00 is optimal if and only if vQ has the property anne 

(definition 3,7) and, moreover, satisfies 

(6.5.1) 
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PROOF. Suppose Q00 is optimal. Then v = vQ = cQ+QvQ and hence with (6.1.1) 

it follows that vQ satisfies relation (6.5.1). Moreover, by the theorems 

3.1 and 3.8 the function vQ = v has the property anne. To prove the con­

verse we note that (6.5.1) implies that vQ is a _cp - superharmonic function. 

If vQ has in addition the property anne then in view of theorem 3,8 vQ is 

cp - excessive. By the definition of the value function we have vQ ::; v. 

Hence according to theorem 3.1 we conclude that vQ = v and consequently 

Q00 is optimal. D 

6.6. THEOREM. In d.d.p. with bounded cost stPUcture and in p.d.p. the 
stationary policy Q00 is optimal if and only if vQ satisfies relation 
(6.5.1). 

PROOF. This assert.ion follows immediately from theorem 6. 5 if we show that 

vQ has the property anne. Now in p.d.p. this is obvious. In order to show 

it for d.d.p. with bounded cost structure, let Jcp(i)J ::; b for all i and 

_all P and some constant b, then JvQI ::; (1-a)- 1 be and hence 

ER lvQ(~)J ::; an(1-a)- 1 be when a is the discountfactor. Thus 

limJER vQ(~) 0 and vQ has the property anne. D 
f&OO 

6.7. THEOREM. If for some function f with the property anne and some 
• 00 

pol~cy Q we have that 

(6.7.1) 

and if in addition ~ Qnf ::; O, then f v = vQ and Q00 is optimal. 

PROOF. Relation (6.7.1) implies that f is ~p-superharmonic. Since f has 

the property anne it follows by theorem 3. 8 that f is Cp - excessive. Con­

sequently, according to theorem 3.1 we have v::; f. Iterating the equality 

cQ+Qf = f we obtain 

N n ··· N+1 l Q CQ + Q f = f, 
n=O 

With lim Qnf ::; 0 we find 
n-+oo 



Hence f v 

00 

v ~ vQ = l QncQ ~ f ~ v. 
n=O 

vQ and Q00 is optimal. 0 
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7. ON POTENTIALS, ABSORBING POLICIES AND CHARGE STRUCTURES 

In section 2 we defined a potential w.r.t. P. By introducing this 
analogue of a well-known notion a natural question is raised. If f is a 
potential w.r.t. P for each P E P is it then true that f is a potential 
w.r.t. P? Only for a particular case we are able to answer this question 
(theorem 7.1). Similar results for absorbing and transient policies are 
obtained in the theorems 7,3 and 7.4. Together with the two corollaries 
7,5 and 7.6 they generalize results of [Veinott (1969)]. 

In this section we assume that P is compact. 

7.1. THEOREM. If f is a potential with nonnegative charge w.r.t. P for 
each P E P and li~ P Pf = P0f then f is a potential w.r.t. P. 

-+ 0 

PROOF. Define wp := f-Pf, P E P, then since wp is the charge of f w.r.t. P 
we have that wp ~ O for all P E P f,nd f ~ O. Iterating the equality 

. 1N p p wp+Pf = f we find that ln=O 0 ... n- 1 wp + P0 •.. PN f = f for all N, 
n 

P0, .. .,PN and hence s~p JER L:=o w(~1 
structure and so is -wp. Let us study 

~i. Consequently Wp is a charge 

the n.d.p. problem with cost struc-
ture -wp, then the value function is defined as 

v:=supJER l 
R n=O 

-w(x ). 
--n 

Since f ~ 0 it holds that Pf is a lower semicontinuous function and hence 
wp is upper semicontinuous. According to section 6 there is a Q00 which is 
optimal. 

Now since f is a.potential with charge 

v =-f. As a consequence of theorem 2.17 we 

= ii1! JER f(~) = 0 and by theorem 2.16 f is 

wQ w.r.t. Q we conclude 

obtain lim JER v -(x.J = 
N+oo -1~ 

a potential w.r.t. P. D 

that 

7.2. DEFINITION. Poliay R = (Po,P1•···) is absorbing if~~ po···PNe O; 
it is transient if l:=o P0 .•. Pn(i,j) < 00 for all i,j. 

7,3. THEOREM. If each stationary policy is absorbing and if limp 
+P 

Pe = P0e then each policy is absorbing and e is potential w.r.t. P. o 
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PROOF. For each P E P we have that the function e is an excessive function 

w.r.t. P. Since in addition lim Pne = 0 it follows that e is a potential 
rr>= 

w.r.t. P. Thus we can apply theorem 7. 1 and find that e l.S a potential 

w.r.t. P. By theorem 2.16 we obtain limJER e(x ) = 0 for each policy R. D 
n+«> -n 

It is well-known that if a stationary Markov chain is absorbing then 

it is transient. We do not know whether this is also true for non-station­

ary policies. 

7.4. THEOREM. If eaah stationaY']j poZiay is absorbing and if lim Pe P0e 

for aZZ P0 E P then eaah poZiay is transient. P+PO 

PROOF. As in the first part of the proof of lemma 5.7 it can be shown that 

for each i E E 

(7 .4.1) lim JE. R e(~) = O, 
N-- i, 

uniformly in R. Hence for arbitrary state j there is an integer m such that 

(7.4.2) JE. R e(x ) ~ a, 
J' -m 

for some a < 1 and all policies R. 

Let (P0 ,P1, ... ) be an arbitrary policy, then for wn := e-Pne' 

n=0,1, ... , we have 

(7.4.3) 
m 

l pn+1···Pn+k-1 wn+k 
k=1 

From (7.4.2) and (7.4.3) we find 

(7 .4.4) 
m 

l Pn+1···pn+k-1 wn+k(j) ~ 1-a > 0 for all n. 
k=1 

The probability that the system "breaks down" before time t+1 when at time 

t decision p(i,.) is taken in state i equals 1 - Lj p(i,j). The probability 

that the system is in state j at time n and "breaks down" between times 

n+1 and m is not larger than the probability that the system "breaks down" 

between times n+1 and m. Hence 
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(7.4.5) 

From (7.4.4) and (7.4.5) we obtain 

m 
Po ... P (i,j) $ (1-a)-1 l Po ... P k 1 w k(i). 

n k= 1 n+ - n+ 

Consequently 

m 
(7.4.6) l. I Po .•• P k 1 w k(i). 

n=O k=1 n+ - n+ 

Since l:=o P0 ... Pn+k-1 wn+k(i) denotes the probability that the system 

"breaks down" after time k, we find from (7.4.6) 

l, P0 ••. Pn(i,j) $ m(1-a)- 1 < oo 

n=O 

This proves the assertion. D 

7.5. THEOREM. If E has a finite number of states and if each stationary 

policy is transient then each policy is transient. 

PROOF. We use a well-known argument. If E is finite and P is transient then 
\oo n(. ") ln=O p i,J < 00 for 
lim PN e = O and thus 
N+oo 
theorem 7.4. D 

all j and hence l:=o Pne < 00 • It follows that 

P is absorbing. The rest of the proof follows from 

As a direct consequence we state the following theorem. 

7.6. THEOREM. If E has a finite number of states and if each stationary 

policy is transient then each bounded cost structure is a charge structure. 

Moreover, for each upper semicontinuous cost structure there is a stationary 
optimal policy (strategy). 

PROOF. According to theorem 7.5 we have that l:=o P0 ... Pn(i,j) < 00 for all 

i,j. Hence l:=o P0 ... PnJcp J < 00 from which the first assertion follows. 
n+1 
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To prove the second statement we note that automatically the value function 

v is bounded and each P is absorbing. Thus lim PNv = O and according to 
N--

th e theorems 6.1 and 6.3 there exists a stationary optimal policy 

(strategy). D 
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8. RECURRENCE FOR A DECISION PROCESS 

In this section we generalize the notion of recurrence for one Markov 

chain to a collection of Markov chains. It seems to us that the extension 

of well-known theorems for one Markov chain to a collection of Markov 

chains has important implications in the theory of Markov decision pro-

cesses. 

The term communicating system stems from [Bather]. His paper makes it 

clear that similar to the minimal closed sets in a Markov chain the notion 

of communicating system plays a basic role in Markov decision processes es­

pecially when the average return criterion is used. 

In [Hordijk (1972)] an earlier version of several theorems of this 

section can be found. There the less striking name C-minimal closed set 

instead of communicating system was used. Theorem 8.6 for finite E was ob­

tained independently in [Bather]. 

8.1. DEFINITION. For Ac E let fp(i,A) denote the probahilit;y of reaching 

subset A from state i for the Markov chain with matrix of transition prob­

abilities P. We take for all PE P, fp(i,A) = 1 if i E A and write fp(i,i) 

for fp(i,{i}). 

if 

Subset Ac Eis called a communicating class w.r.t. P 

O for all i E A, all P E P 

for each pair of states i,j E A there is a matrix P E P and a 

nonnegative integer n such that pn(i,j) > o. 

If state space Eis a communicating class w.r.t. P then we speak of 

the communicating system (E,P). 

State j is recurrent w.r.t. P if for each i EE with fp(j,i) > O for 

some PEP, it holds that sup fp(i,j) = 1. 
p 

If A is a communicating class w.r.t. P and if each element of A is a 



recurrent state w. r. ·t. P then we call A a recurrent cfoss w. r. t. P. 

If state space Eis a recurrent class w.r.t. P then we speak of the 

recurrent system (E,P). 
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The following two theorems are generalizations to collections of 

Markov chains of the theorems l.7.5 and l.7.6 in [Chung]. Note that an ex­

cessive function is a cp- excessive function with cp = O. 

8.2. THEOREM. a) If u is an excessive function w.r.t. P and if u(j) > O 

then 

(8.2.1) 

b) If 

(8.2.2) 

then 

(8.2.3) 

and 

(8.2.4) 

u(i)/u(j) ~ sup fp(i,j). 
p 

w(i) :=sup fp(i,j) for all i EE. 
p 

w(i) sup Pw(i) for i # j 
p 

w(j) ~ sup Pw(j). 
p 

Hence w is an excessive function w.r.t. P. 

PROOF. a) Define 

u*(i) := u(i)/u(j) for i EE; 

then clearly u* is also an excessive function w.r.t. P, moreover u*(j) = 1. 

Now let us focus on the optimal control problem as introduced in section 3, 

with cost structure Cp = O and r(i) = o(i,j).*) 

*) The Kronecker delta function is defined by 

0 (i,j) := {
o for 

1 for i 

i # j' 

j. 
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Then the value function of this problem equals 

v(i) =sup fR(i,j) for all i, 
R 

where fR(i,j) denotes the probability that state j is ever reached from 
state i when policy R is used (fR(i,i) = 1 for all i and all R). According 
to theorem 3.1 we have that vis the least excessive function with v(j) ~ 1 

and hence v s u*. From this relation (8.2.1) follows. 

b) We again consider the above introduced optimal control problem. By 

theorem 13.6 it follows that spp fp(i,j) = s~p fR(i,j). Hence function w 
of (8.2.2) equals the value function v. Since r(i) = O for i ~ j it follows 
by theorem 3.5 that relation (8.2.3) holds. Relation (8.2.4) follows from 
the fact that v is an excessive function. D 

In the following two theorems it is assumed that (E,P) is a communi­

cating system. 

8.3. THEOREM. a) If Eis a recurrent system w.r.t. P, then every excessive 
funtion w.r.t. P is a constant function. 
b) If Eis a nonrecurrent system w.r.t. P, and contains more than one state 
then there exists a nonnegative, nonconstant, bounded function w satisfying 
the relations (8.2.3) and (8.2.4). 

PROOF. a) Suppose u is an excessive function, then u ~ O. If u t 0 then 
there is some state j with u(j) > O. By (8.2.1) and the definition of re­
currence we obtain 

u(i)/u(j) ~sup fp(i,j) = 1 
p 

and hence u(i) ~ u(j) for all i. Consequently u(i) > 0 for all i, and by 
interchanging i and j we get u(i) = u(j) for all i. Hence u is a constant 
function. 

b) If E is a nonrecurrent system then by definition there is a pair of 
states (i,j) such that 

(8.3.1) sup fp(i,j) < 1. 
p 
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Now we consider again the optimal control problem with cp s O and 

r(i) = o(i,j). As shown in the proof of theorem 8.2.b we then have that the 

value function v equals the function w defined in (8.2.2). In virtue of 

(8.3.1) then v(i) < v(j) = 1 and thus vis a nonconstant, bounded excessive 

function. Moreover, as in the proof of theorem 8.2 the function v satisfies 

( 8 • 2 . 3 ) and ( 8. 2 . 4) . D 

As a consequence of theorem 8.3 we state the following theorem, which 

provides a criterion for recurrence w.r.t. P. It generalizes theorem 6 of 

[Foster]. We note that the adjective bounded may be inserted in the crite­

rion. 

8.4. THEOREM. E is a nonrecurrent system w.r.t. P if and only if there 

exists a nonconstant (bounded) excessive function w.r.t. P. 

The next theorem is an application of theorem 8.3 to optimal control 

problems. 

8.5. THEOREM. If E is a reaurrent system then for the optimal control 

problem with cp = O and r ~ O the value function v is a constant function 

with 

v(i) sup r(j) for all i. 
j 

PROOF. The value function is by theorem 3.1 the least excessive function 

that majorizes r. According to theorem 8.3 we conclude that vis a constant 

function. Consequently v is the least constant function that majorizes r 

and hence v(i) =sup r(j) for all i. D 
j 

The above theorem remains valid for cp nonnegative. However, when 

cp(i) > O for some i and P, it follows that v = 00 • 

In Markov decision problems with average return criterion it is o~en 

desirable that the "maximal" average return does not depend on the starting 

state, i.e. the function 

(8.5.1) g( i) 
. 1 N 

:= sup lim rnf N+ 1 l JEi R c(x ) 
R N-+oo n=O ' -n 

is a constant function. The next theorem provides a condition guaranteeing 

this. Although it is not uncommon to define the "maximal" average expected 
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return as in (8.5.1) one might prefer to take the largest limit points, 

i.e. limes superior instead of limes inferior (cf. 5.0.1). Actually we are 

forced to take the lim inf in the next proof. 

8.6. THEOREM. If E is a re<fUrrent system and if cp is bounded from below 

then gas defined in (8.5.1) is a constant function. 

PROOF. Since cp is bounded from below there is some constant c such that 

g* := g+ce is nonnegative. The proof proceeds now by showing that g is 

superharmonic. Then g* is a superharmonic function and hence g* is ex­

cessive. Acc~rding to theorem 8.3a then g* is a constant function and so is 

g. 

Given any £ > O there is for each i E E a policy Ri such that 

. . 1 N 
llm inf N1 L lE. R c(x ) ~ g(i)-£, 

N+a> + n=O i' i --n 

For P an arbitrary element of P let R be the policy that chooses decision 

rule P at time O and uses policy R. from time 1 when the state at time 1 is 
l 

i (as in theorem 3.1 we use here non-memoryless policies to show that g is 

superharmonic). 

We have for R and arbitrary i E E 

g( i) 
. . 1 N 

~ llm mf N+ 1 l lE. R c(x ) = 
N-+<o n=O i ' --n 

cp(i) N-1 
lim inf {N+l + 4 p(i,j} [N:1 l lE. R. c(x )J}. 

N-+<o J m=O J, J -m 

From Fatou' s lemma 

g( i) 
N-1 

~ l p(i,j} [lim inf N:1 l lE. R. c(x )] ~ 
j N->= m=O J, J -m 

~ l p(i,j} (g(j)-£), 
j 

Since £and P were arbitrarily chosen we conclude that g is superharmonic. 

D 
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As a generalization of the notation introduced in definition 8.1 let 

fR(i,A) denote the probability that subset A is ever reached from state i 

when policy R is used (fR(i,A) = 1 for i € A and all R; we write fp(i,A) 

for f Poo( i ,A)). 

8.7. THEOREM. If p(i,E) = 1 for a?.:l i a:nd P a:nd if for some subset A 

inf sup fR(i,A) > O. 
i R 

then there exists a Q € P with 

fQ(i,A) = 1 for all i. 

PROOF. We consider the optimal control problem with cp = 0 and r = x(A), 

i.e. r(i) 1 if i € A, r(i) = 0 otherwise. For the value function v we 

have v(i) sup fR(i,A) > 0 for all i. According to theorem 13.7 there is 
oo R i 

a policy Q 8Jld an entry time in some subset B c E, say .!.B• such that 

(8.7.1) vQ :=:IEQ[r(x )] <: (1-e:)v, 
--:!.B 

for O < e: < 1. Since r = O outside A and v(i) > O for all i it follows from 

(8.7.1) that B c A. Indeed, if i E B\A then vQ(i) =:IE. Q [r(x )J 
i ' --:!.B 

=:IEi,Q [r(~)J r(i) = 0 < (1~e:) v(i). 

Suppose inf sup fR(i,A) = a > O then v(i) <: a for all i. Let Q be the 
i R 

column-restriction 01· Q to the complement of B ( cf. 5. 1 O); then for arbi-

trary i € Bc 

(8.7.2) 

a- 1 (1-e:)- 1 :IE. Q [r(x ) x(.!.B > n)J. 
i • --:!.B 

Since 

:IE. Q [r(x ) ] = :IE. Q [r(x ) X (.!.B 
i ' --:!.B i ' --:!.B 

~ n)] + :IE. Q [r(x ) x(.!.B > n) J 
i ' --:!.B 
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and because the first term on the right-hand side tends tolE. Q [r{x )] as 
i, -:!.B 

n tends to infinity, we find that the second term tends to zero as n 

tends to infinity. In virtue of (8.7.2) we obtain 

lim:JP. Q [!_B > nJ = o. 
~ l, 

Since q{j,E) = 1 for all j EE we have that 

tends to one as n tends to infinity. Hence fQ(i,B) = 1 and a fortiori 

fQ(i,A) = 1. Since by definition fQ(i,A) = 1 for i €A, this completes the 

proof. 0 

The above theorem can be seen as a generalization of theorem in 

[Chung and Derman] . 

In the sequel of this section it is assumed that p(i,E) = 1 for all 

i € E and all P € P. 

The next theorem shows that recurrence w.r.t. P is a class property. 

8.8. THEOREM. * * Let E be a aorrorruniaating alass w.P.t. P. If foP some j € E 

inf* sup fR(i,j) > 0 
i€E R 

then E* is a PecnaTent alass w.P.t. P. 

PROOF. Let i 0 be an arbitrary element of E* Since E* is a communicating 

class there exists a matrix Panda subset B = {j,i1,i2 , •.. ,in,i0} such 

that p{j,i1) p(i 1,i2 ) .•• p(in,i0 ) =a for some positive constant a. Since 

E* is a communicating class we can apply theorem 8.7 with E* for E and {j} 

for A and we find a matrix Q with fQ(i,j) = 1 for all i € E*. 

Define matrix Q* as follows 

t B 
{ 

q{ i ,j) for i 

p(i,j) for i € B. 



Then 

The first factor on the right-hand side equals 1 and the second factor is 

not less than a. Hence 

i~f fQ*(i,i 0 ) ~ a. 
1 

71 

Now we apply theorem 8.7 with E* for E, {i0 } for A and with {Q*} for the 

collection of Markov matrices P and find that fQ*(i,i 0 ) = 1 for all i EE*. 

Hence the theorem follows. D 

The remaining theorems of this section are corollaries of the fore­

going results. They assert the existence of optimal strategies under 

various conditions. 

8.9. THEOREM. If E is a recurrent system then there exists a stationary 

optimal strategy for the optimal control problem with cp = O and r such 

that r(i) ~ r(i0 ) for some state i 0 E E and all i E E. 

PROOF. By the definition of recurrence and theorem 8.7 there exists a 

matrix Q with fQ(i,i 0 ) = 1 for all i E E. The stationary policy Q00 in com­

bination with the entry time of {i0} provides a stationary optimal strate­

gy. D 

8.10. THEOREM. If E has a finite number of states and is a communicating 

system then every optimal control problem with cp = o has a stationary op­

timal strategy. 

PROOF. When E is finite and a communicating system then 

min sup fR(i,j) > 0. 
i,j R 

As a consequence of theorem 8.8 we have that E is a recurrent system. Now 

we can apply theorem 8.9 and the assertion is proved. D 
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The following theorem can be found in [ Dubins and Savage, theorem 

3.8.5, p. 56). 

8.11. THEOREM. If for some optimal control problem we have that cp = O and 
r = x(A) for a subset A and inf v(i) > O then there exists a station<JI'Y op­

i 
timal strategy with finite stopping time. 

PROOF. The value function of the optimal control problem with cp - O and 
r = x(A) equals 

v(i) sup fR(i,A) for all i E E. 
R 

Since i~f v(i) > 0 it follows from theorem 8.7 that there exists a policy 
co :L 

Q such that fQ(i,A) = 1 for all i E E. Hence policy Q00 in combination with 
the entry time of A is optimal. 0 

The last theorem provides a sufficient condition in the case that the 
cost structure is not identically zero. 

8.12. THEOREM. For the optimal control problem with charge structure cp, 
reward function r and bounded value function v let 

and 

If 

r := {i 

p* := {P 

r(i)=v(i)} 

cp(i) + l p(i,j) v(j) 
j 

inf sup fp(i,r) > o 
i p* 

v(i) for i i r and P E P}. 

then there exists a stationary optimal policy with finite stopping time. 

We note that the strategies (R,.:r.r) with R = (P0 ,P1, ..• ), Pn E p* for 
n ~ O and .!.r the entry time of r are thrifty strategies. 



PROOF. It is easy to verif'y that p* has the product property. By applying 

theorem 8.7 with p* we find a Q E p* with
00
fQ(i,r) 1 for all i E E. In 

view of theorem 4.8.a we conclude that (Q •lr) is optimal. 0 
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9. EXPONENTIALLY BOUNDED STOPPING TIMES 

A property that holds for most of the sequential decision problems is 

that the infimum of the sampling costs over the various experiments is 

positive. This property, in combination with a boundedness condition on the 

loss function (in our terminology the reward function) implies that the op­

timal stopping time !. (or the random number of observations) is exponen­

tially bounded, i.e. there are positive constants a and b such that for 

stopping time !. 

(9.0.1) :JP [T > nJ s a exp(-bn) for all n E {0,1, ... }. 

The "sequential probability ratio test" as introduced by [Wald] can be 

identified with the optimal strategy in an optimal control problem 

(cf. [Lehmann, p. 104]). Thus the well-known property that the number of 

observations in Wald's test is expor~ntially bounded follows also from the 

results in this section. In fact there is a wide class of problems for 

which the assumptions of this section are satisfied. They all have optimal 

stopping times with the nice property (9.0.1). A result related to theorem 

9.5 can be found in [Ross (1970), theorem 6.13, p. 136]. 

In this section we make the assumption 

(9.0.2) c0 := infimum - cp(i) > o. 
iEE,PEP 

If p(i,E) = 1 for all i E E, then the above assumption implies that 

l:=o Pncp = _m and cp is not a charge w.r.t. P. So in this section we do 

not assume that cp is a charge structure. 

9.1. THEOREM. If a stationary str>ategy (Qm,:s_A) with !.A the entcy time of 

A, is suah that 

( 9. 1. 1) JE. Q 
]. . 

T -1 -A 
[ l 
n=O 

c(x ) + r(x )J ~ r(i) for> aZZ i E Ac 
-n -:!.A 

and if in addition r is bound.ed fr>om below and JEQ [r(x ) J is bound.ed fr>om 
-:E.A 

above on Ac, then !.A is e:cponentiaUy bounded und.er> poZiay Qm. 



PROOF. Assumption (9.0.2) and relation (9.1.1) together imply 

(9.1.2) 

lA-1 

lE. Q l 
i, n = O 

The right-hand side is bounded from above on Ac; let constant c1 be an 

upper bound. The left-hand side equals constant c0 multiplied by 

(9.1.3) 

By the Markov inequality or alternatively directly from (9.1.3), since 

Pi,Q [~ > n] is monotone nonincreasing in n, we have that 

(9.1.4) JP [ ~ > n] < j_ lE [_~A] . 
l.",Q _;_A - • Q ' n i, 

Let N be such that 

-1 -1 
a := N c0 c 1 < 1; 

then we obtain from the relations (9.1.2), (9.1.4) and (9.1.5) 

(9.1.6) 

Let Q denote the restriction of Q to Ac; then by rewriting the left-hand 

side of (9.1.6) we get 

Because 

~N 
Q e s ae. 

~kN 
Q e 

it is immediate from (9.1.7) that (recall that iA=O when ~EA) 

(9.1.8) 
[nN- 1] 

JP C-r > n] = Q1'1 e s a Q -

where [x] denotes the largest integer not exceeding x. 
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Let a 
-1/N 

.- a and b .- then from (9.1.8) we have that 

(9.1.9) JPQ C::A > n] s; a exp(-bn). D 

The reward for stopping immediately in state i equals the right-hand 

side of relation (9.1.1), whereas the left-hand side denotes the value of 

strategy (Q00 ,'J_A). Thus each strategy which does at least as well as 

stopping immediately satisfies relation (9.1.1). 
Section 4 suggests, that (Q00 ,}_r) is a good candidate for an optimal 

strategy, if lr is the entry time of the stopping set 

(9.1.10) r {i r(i)=v(i)} 

and Q satisfies 

(9.1.11) cQ(i) + Qv(i) = v(i) fer all i Ere, 

where v stands for the value function of the optimal control problem. In 

particular this strategy (Q00 ,ir) will satisfy relation (9.1.1) if it is 

optimal. 

9.2. THEOREM. 

above and r is 
and, moreover, 

the stationary 

If the value function v andJEQ [r(x )J are bounded from 
-:I.r 

bounded from below on re then strategy (Q00 ,.:I.r) is optimal 

the optimal stopping time 2:..r is exponentially bounded under 

optimal policy Q00
• 

PROOF. As we argued above the only thing we have to prove in order that we 

can apply theorem 9.1 is that (Q00 ,.:r.r) is optimal. 

Denoting -!w := .!.r AN, we have according to lemma 2.19 and the 

relations (9.1.10) and (9.1.11) 

(9.2.1) v = JE Q 

l'_N-1 

[ l 
n=O 

c(x ) + v(x )]. 
-n -:I.N 
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Hence 

.!r-1 ~-1 

(9.2.2) JE l c(x ) = lim JEQ l c(x ) = 
Q n=O -n N-> n=O -n 

Since v = r on r the second term on the right-hand side equals JEQ [r(x )]. . -r 
It is assumed that this expectation is finite. Further it is assumed -r 
that v is bounded from above on re and hence the third term has a lim sup 

which is less than plus infinity. Consequently, because of cQ s 0 

'[ -1 "" -r 
l QllcQ=JEQ l c(~), 

n=O n = O 

with Q as in 9.1, is finite. With assumption (9.0.2) we then obtain 

lim QI1 e = o. 
n+oo 

Since v is bounded on re then also 

lim Qn v = limJEQ [v(x ) x(-rr>n)J = o. 
n+oo n-+oo -n -

In virtue of the relations (9.2.2) and (9.2.3) we then have 

.!.r-1 

JEQ [ l c(x ) + v(x )] = v 
n = o -n -:!:.r 

Since v = r on r we find that (Q00 ,.!_r) is optimal. D 

9.3. DEFINITION. Let vN denote the supremum over the e:r:peated values of 

the strategies (R,.I) with.! s N, i.e. 

An important tool in computing the value function is the approximation 

of v by vN for N sufficiently large. This can only work if lim vN = v. 
N-+oo 
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9.4. DEFINITION. An optimal control problem is stable if 

In section 3 we defined stability w.r.t. x. 

It can be proved that (cf. [Ross (1970), p. 136]; for the definition 

of T see 3.2) 

From this relation it follows easily that a stable problem is at least 

stable w.r.t. all x such that 

sup (cp+Px) s x and x s r. 
p 

Verbally, the problem is stable for all x that are cp - superharmonic and 

minorize r. 

In [Starr] the rate of convergence of vN to v for a special problem is 

numerically analyzed. It is noticed that the convergence is quite rapid. 

The following theorem asserts that it is exponentially fast. 

9.5. THEOREM. Under the assumptions of theorem 9.2 the optimal control 

problem is stable. Moreover, vN tends exponentially fast to v as N + 00 • 

PROOF. For (Q00 ,_I.r) as in theorem 9.2 we have with .I.N = .I.r AN by definition 

of vN that 

c(x ) + r(x )]. 
-n -:Iw 

Using the fact that cp s 0 for all P E P and .I.r ~ .I.N we find by rewriting 

the right-hand side of this inequality 

(9.5.1) 
.I.r-1 

VN ~ JEQ [ l 
n=O 

c(x ) + r(x )J + 
-n -.:E.r 



Since the first term on the right-hand side is by theorem 9.2 equal to v 

and since by definition v ~ vN it is sufficient to prove that the second 

term on the right-hand side has a nonpositive lim sup and the third term 

has a nonnegative lim inf. 

Indeed in view of the Markov property the second term equals 

(9.5.2) QN ]E [r(x )J, 
Q -:Lr 

with the same notation as in theorem 9.2. The expectation ]EQ [r(~ )] is 
N -r 

bounded from above and by the relations (9.1.8) and (9.1.9) Q e tends ex-
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ponentially fast to zero. Hence the positive part of (9.5.2) tends exponen­

tially fast to zero. In a similar way it can be proved that the negative 

part of the third term on the right-hand side of inequality (9.5.1) tends 

exponentially fast to zero. Consequently vN tends to v as N + 00 and the 

rate of convergence is at least exponential. D 

We note that in the case of a bounded reward function all boundedness 

conditions in the foregoing theorems are satisfied. This section is con­

cluded with a theorem about the uniqueness of the value function v as so­

lution of the optimality equation. 

9.6. THEOREM. If the nonnegative function w satisfies 

(9.6.1) 

and 

(9.6.2) 

w max (r,cQ +Q0w) for some Q0 E P 
0 

and if in addition the funations w and w-v are bounded from above on the 

aomplement of r0 := {i : r(i)=w(i)}, then w is equal to v and (Q~•lr ) is 
0 

optimal. 

PROOF. If cp is a charge structure then it follows from the theorems 3.1 

and 3.8 that w ~ v. Since w ~ 0 this inequality is true in general, Indeed, 

proceeding in a similar way as in lemma 2.19 one can prove that for each 

policy R and bounded Markov time l 
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T-1 
JER [l 

n=O 
c(x ) + w(x )] s w. -n -r 

Hence we have for arbitrary Markov time .!. with ~ := T A N in view of w ~ r 
and w ~ O, that 

Letting N tend to infinity we find that w majorizes the expected value of 
an arbitrary strategy. Hence by definition of v we have v s w and conse­
quently r 0 c r = {i : r(i)=v(i)}. Let Q0 be the restriction of Q tor~; 
then as in the proof of theorem 9.2 it can be shown that 

(9.6.3) lim Qll e = O. 
n-+oo 0 

From v s w, ro c r, CQO+Qov s v and the relations (9.6.1) and (9.6.2) it 
follows that 

(9.6.4) 

By assumption w-v is bounded on r~ and therefore by (9.6.3) 
equals w. Since lim ~ v = 0 we have as in theorem 9.2 that 

n-+oo optimal. D 

and (9.6.4) v 

(Q~•.I.r ) is 
0 
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WITH RESPECT TO THE AVERAGE RETURN CRITERION 
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In this section we investigate the existence of optimal policies with 

respect to the average return criterion. A policy will be called optimal·if 

it maximizes 

(10.0.1) 
N 

l . . 1 E [ \ ( )] im inf N+ 1 R l c x • 
N-+co n=O -n 

The limes inferior rather than the limes superior is chosen, in order to be 

able to prove relation (10.6.1). In section 12 we will show that under 

rather general conditions the two criteria lead to the same supremum. 

This section uaes results from [Hordijk (1971)] and[Hordijk (1972)]. 

It is assumed in this section that cp is continuous and bounded, i.e. 

(10.0.2) lcp(i)I ~ b for all i € E and all P € P. 

Furthermore it is assumed that P is compact and p(i,E) = 1 for all i € E 

and P € P. In this section a probability measure p(.) on Eis alw~s a 

proper probability measure, i.e. p(E) = 1. 

Let g denote the supremum over all policies of the average expected 

return 

N 
(10.0.3) g(i) := sup lim inf N1

1 E. R [ l c(x )] for i € E. 
R N-+co + 1 ' n=O -n 

In the following subsection we state several assumptions we need in 

the sequel. These assumptions will be discussed a~erwards. 

10.1. ASSUMPI'IONS 

A. np(i,j), defined by 

N 
( . ") 1 . 1 \ n(. ') np i,J := im N+1 l p J.,J 

N-+co n=O 

is a (proper) probability measure~ i.e. np(i,E) = 1 for all i € E 

and all P € P. 
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B. The Cesa:roo-Umit np depends aontinuousZy on P, i.e. 

(i.e. lim np(i,j) 
P+PO 

c. For eaah i € E 

= np (i,j) for all i,j E E and all P0 E P). 
0 

is a tight aoZZeation of probability measures. 

D. The system (E,P) is reaurrent. 

E. For edah P € P the associated Ma:rokov ahain does not have disjoint 

aZosed sets. 

F. The aoUeation of probabiUty measures 

{p(i •• ) i € E, P € P} 

is tight. 

It is well-known that the Cesare-limit in 10.1.A. always exists. How­

ever, it m~ be that np(i,.) is not a probability measure. A Markov chain 

for which np(i,E) = 1 for all i c::· E is called non-dissipative 

(cf. [Chung]). So assumption A can be stated in the following form: for 

eaah stationa'I'JJ poZi~ the Ma:rokov ahain is non-dissipative. 

It is not difficuit to construct counterexamples for which np is not 

a continuous function of P. The counterexample in 5.12 provides one. 

A collection of probability measures A on a metric space is called 

tight if for each positive e there exists a compact set K such that 

P(K) ~ 1-e for all Pin A (cf. [Billingsley]). It is obvious that the state 

space E can be seen as a discrete topological space. Then each compact set 

has a finite number of elements. A theorem of Prohorov says that in a se­

parable and complete metric space collection A is tight if and only if A 
is relatively compact, i.e. every sequence of elements of A contains a 

weakly convergent subsequence. In the case 10.1.C this implies that if 

P € P for all n € {1,2, ••• } then for each i € E there exists a probability 
n 



measure ll ( i,.) such that for some subsequence ?\, k=1 ,2, ••• , of the posi­

tive integers 

lim ·rrp (i ,j) 
k:+"" ~ 

ll(i,j) for all j EE. 

Although it follows from the general theorem of Prohorov, this is easily 

verified in our discrete state space. 
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It is also easy to check that assumptions A and B imply assumption C. 

Alternatively this follows from the well-known fact that a continuous image 

of a compact set is also a compact set. Hence for each i € E the collection 

in assumption C is compact, so a fortiori relatively compact and thus by 

Prohorov's theorem tight, if assumptions A and B are satisfied. 

Under an additional assumption the converse is also true. By defini­

tion we have that C implies A and, moreover, as a corollary of the follow­

ing lemma we obtain that the assumptions C and E together imply assumption 

B. 

10.2. LEMMA. 

asswrrption C 

If lim P = P and P has no disjoint alosed sets·then under 
n~ :1- oo co 

we have 11m np = np • 
n-+<x> n oo 

PROOF. By assumption C there is for a fixed i € Ea probability measure 

ll(i,.) such that for some sequence of the positive integers~· k=1,2, ••. , 

(10.2.1) lim llk(i,j) = ll(i,j) for all j € E, 
k-+<x> 

where llk(i,j) is just another notation for lip (i,j). It is well-known 

that ~ 

Letting k tend to infinity we find by lemma 4.13 that 

I ll(i,t) poo(l,j) 
I 

ll(i,j.) for all j € E. 

Hence ll(i,.) is an invariant probability measure with respect to P00 • Since 

P00 has no disjoint ~losed sets the probability measure lip (i,.) is the only 

invariant probabilf <;y measure for P and. consequently 00 

00 
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~(i,j) = ~P (i,j) for all j EE. 
00 

The assertion follows now by relation (10.2.1). D 

The above lemma can be strengthened in the following sense. Let I\ 
denote the number of minimal closed sets of Pk. If I\ < oo for all 

k E {1,2, .•. } and 00 > lim inf n.. ~ n then limn.. = n and the lemma JI:+"° K oo k+"° K oo 

remains true. So what one has to prevent is the creation of an extra 

minimal closed set as k + 00 • Related results for finite Markov chains can 

be found in [Schweitzer]. 

Assumption F was introduced because the assumptions B and C are 

awkward to check. We have the following connection between C and F. 

10.3. LEMMA. Assumption F irrrplies assumption c and hence also dssumption A. 

PROOF. Choose any £ > 0. Let K be a finite set such that 

Hence 

p{i,K) ~ 1-£ for all i E E and all PE P. 

l p(i,j) p(j,K) ~ (1-£) p(i,E) ~ 1-£ 
jEE 

for all i £ E and all P E P. Clearly we then have 

Consequently 

pn(i,K) ~ 1-£ for all i EE, all PEP and all n E {1,2, •.• }. 

N 
l l pn(i,j) ~ 1-£ for all N 

jEK N n=l 

and since K is finite also the limit 

l np(i,j) ~ 1-£ for all i E E and all PE P. 
jEK 

This proves the assertion. D 



We next give the main result of this section. Since the proof is 

rather long we divide it into subsections. 

1O.4. THEOREM. Assumptions A a:nd B 01' assumptions C and D imply the 

existence of a stationaPY optimal policy. 

Condition A will be assumed in all subsections. As to the other 

assumptions we will indicate where we need them. 
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10.5. LEMMA. Under' the assumption C, thePe exist a and P with o < a < 1 
n n n 

a:nd P E P fol' n = 1 ,2,. .. such that 
n 

(10.5.1) 

P is a 
n n 

(10.5.2) 

(10.5.3) 

(10.5.4) 

1, 

discounted optimal, i.e. 

v . := 
n I 

k=O 
I a~~ [c(~) J fol' each policy R 

k=O 

lim P = P00 fol' some P00 € P, 
n+oo n 

lim IT 
n n+oo 

IT f 01' some stochastic matPix IT 

with n(i,E) = 1 fol' all i E E and rrn := rrp , 
n 

(10.5.5) lim ( 1-a ) v 
n400 n n 

x f 01' some vector' x. 

PROOF. The proof proceeds by showing that each of the above relations can 

be obtained by choosing an appropriate subsequence. Suppose we have a 

sequence a with lim a = 1. According to theorem 6.4 there are matrices 
n n4<» n oo 

Pn' n=1,2, ••• , such that Pn is an an-discounted optimal policy. Since P is 

compact there is a subsequence of Pn' n=1,2, ••. , which converges to an 

element of P. Now suppose an' Pn' n=1,2, .•• , satisfy the relations (10.5.1), 

(10.5.2) and (10.5.3). We assumed that assumption C holds. Hence by the 

relative compactness there is a subsequence satisfying relation (10.5.4). 

As to relation (10.5.5) we note that by relation (10.0.2) we have 

(10.5.6) (1-a) l ~ [ak c(~)J s (1-a) I ak bes be for all R. 
k=O k=O 
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Hence the sequence (1-a ) v is bounded and by the diagonal procedure we n n 
can choose a subsequence satisfying the relation (10.5.5). 0 

10.6. LEMMA. The supremum over the expected average return does not exceed 
the vector x, i.e. g ~ x. 

PROOF. For R = (P0 ,P1,P2 , ••• ) an arbitrary policy it follows from an 

Abelian theorem or alternatively a Tauberian theorem that (for a proof see 
[Hordijk (1971)]) 

(10.6.1) 
N 

. . 1 \' p ( . ) ll.m inf N+1 l PO ... n-1 cp i ~ 
N-+«> n=O n 

~ lim inf ( 1-a) 
at1 

By definition the right-hand side of this inequality does not exceed 

(1-a ) v (i) when a= an. Hence the supremum over all policies of the n n 
left-hand side term is not larger than x(i). D 

10.7. LEMMA. For IT := 
00 ITP we 

00 

have IT x 
00 

x. 

PROOF. From 

v I ak Pk cp n 
k=O n 

it is readily seen that 

(10.7.1) 

n n 

a v . 
n n 

Letting n tend to infinity we find that the first term of (10.7.1) tends 
to x, the second tends 

bounded, tends to P00x. 
. k obtain P00x = x for all 

to zero and the third term, since (1-a ) v is 
n n 

Hence P x = x and by iterating this equality we 
00 1 N k k E {1,2, ••. }. Consequently also N lk=l P00x = x for 

all NE {1,2, ... } and hence IT00x = x. 0 

10.8. LEMMA. For c00 := cp we have ITc 00 ITx. 
00 



PROOF. Using the well-known relation ITP Pk= ITP for all k € {1,2, ••• } and 

by interchanging the order of summation (this is allowed since all series 

are absolute convergent) we obtain 

\' k k ITP (1-a) /.. a p cp 
k=O 

By substituting a for a we find 
n 

IT (1-a ) v =IT c , where c 
n n n nn n 

From the boundedness of (1-a )v and c and the fact that limn (i,E) = n n n n-+0> n 
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= n(i,E) = 1 for all i €Ewe find in view of lemma 4.13 by letting n tend 

to infinity ITc00 = ITx. D 

10.9. LEMMA. Under the asswrrptions A and B the policy (P00 ,P00 , ••• ) is 

optima i. 

PROOF. The assumptions A and B together imply C. Hence 10.4 to 10.8 are 

valid. Since lim P = P , we have from the assumption n-+<» n co 

and hence by (10.5.4) we obtain IT00 =IT, By using this 

from 10.7 and 10.8 that IT00 c00 = x. Since 

• 1 N 
lim N+1 EP l 
~ 00 n=O 

c(x ) ~ g, 
-n 

B that lim IT = IT n-+<» n oo 

equality we obtain 

we have x = IT00c00 ~ g ~ x, where the last inequality is from 10.6, Hence 

IT00c00 = g and by the definition of g we hav.e that P: is a stationary op­

timal policy. 

10.10. LEMMA. Under A and c we have ITIT00 =IT. 

PROOF. From ITnPn = ITn by letting n tend to infinity we find ITPOO = IT. By 

iterating this equality we find ITP! =IT for all k € {1,2, •.• } and hence 

~1- \N ITPn IT for all N € {1,2, ••• }. By letting N tend to infinity we 
N+1 l..n=O oo 

obtain ITIT IT. D 
00 

10.11. LEMMA. For i € E Zet D. be the support of n(i,.), i.e. 
l. 
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D. = {j : TI(i,j) > O}, then D. is a closed set w.r.t. P and, moreover, 1 1 00 

IT c equals g on D := u D .• 
00 00 • l 

1 

PROOF. The first assertion is immediate from the fact that TI(i,.) is for 
each i € E an invariant probability measure w.r.t. P00 (cf. 10.10). From 

10.8 and 10.10 it follows that IT(x-IT00c00 ) = 0. From Il00 c00 ~ g and g ~ x 

(by 10.6) we have x - IT 00 c00 ~ 0. Hence x equals IT 00c00 on each Di and con­
sequently we have that g equals rroocoo on D. D 

It is clear from 10.9 that theorem 10.4 is true if the assumptions A 
and B hold. We now prove the existence of a stationary optimal policy under 
the assumptions C and D. 

10.12. PROOF OF THE THEOREM. When D = E there is nothing left to prove. By 
00 assumption D we can apply theorem 8.7 to assert that there is a policy Q 

with fQ(i,D) = 1 for all i €E. Define matrix P00 by 

poo(i,j) {
q(i,j) 

poo(i,j) 

for i f. D, 

for i € D. 

Then the states of Dc are all transient states for the Markov chain with 
matrix of transition probabilities P00 • According to theorem 8.6 it follows 
from assumption D that g is a constant function. From these facts together 
with 10.11 we can see that Ilp 

00 

optimal. D 

10.13. REMARKS ON THEOREM 10.4. Under the assumptions A and B or, alternat­
ively, under the assumptions C and D, if in addition the set D contains 
all positive recurrent states w.r.t. P00 , the policy (P00 ,P00 , ••• ) is optimal. 
Hence we obtained an optimal policy as limit of discounted optimal 
policies. This can have nice consequences. For example if there are dis­
counted optimal policies of (s,S) type in an inventory model with a certain 
cost structure, then there exists an (s,S) policy which is optimal with 
respect to the average return criterion if our theorem applies. 

The argument of 10.9 also shows that: If the assumptions A and B (or 
the assumptions C and E irrrplying the assumptions A and BJ are satisfied 
then each Zimit poZi~ obtained from discounted optimal policies with dis-



countfactor tending to one, is an optimal pol~ay with respect to the 

average return criterion. 

For arbitrary i € E the set D. contains at least one positive recur-
1 

rent class w.r.t. P~ because u(i,.) is an invariant probability measure. 

Now let D be such a positive recurrent class. Then from 10.11 we have 
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rr~c~ = g on D. If one proceeds as in subsection 10.12 for D instead of D 

one finds a stationary optimal policy which has no disjoint closed sets. 

Consequently: If the asswrrptions C and D are satisfied then there exists a 

stationary optimal poliay for which the corresponding Markov chain has no 

disjoint closed sets. 

10.14. COROLLARY. Each of the following three colTibinations of asswrrptions 

is also sufficient for the existence of a stationary optimal poliay: (C,E), 

(D,F), (E,F). 

PROOF. In view of the comments on the assumptions and lemmas 10.2 and 10.3 

one easily can show that each of the above combinations implies the as­

sumptions (A,B) and/or (C,D). Hence by theorem 10.4 the assertion follows.D 

10.15. AN INFINITE PERIOD STATIONARY INVENTORY MODEL WITH BACKLOGGING 

We conclude this section by showing that in this model our theorem can 

be applied. 

Let .l.t; denote the level of inventory at time t and let ~ be the 

a.mount ordered after observing X-t;· Assume that delivery of the ordered 

units is instantaneous. Thus a~er the moment of ordering, the inventory 

level is Zt+~. Suppose the sequence of demands£!:,;• t=1,2, ••• , for the 

product during each of the periods is a sequence of independent and iden-

tically distributed random variables with 

lP [.9,;=j] = pJ. for j = 0,1, .•• with l p. = 1. 
j=O J 

' 

We allow negative inventory, i.e. backlogging of demand, and consequently 

have a denumerable state space. 

The decision which has to be made at times t = 0,1, ••• is the amount 

to be ordered. Now let pk(i,j) denote the transition probability to in­

ventory level j when i units are available and k units are ordered. Then 
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pk(i,j) =IP [demand equals i+k-j] 

= { 
p. k . for i+k ~ j 

1+ -J 

0 otherwise. 

In all practical cases there will be a finite storage capacity. Also an in­

finitely large backlogging will not be convenient and so it seems that the 

following condition is natural. The set K(i) of available ordering deci­

sions in state i satisfies 

(10.15.1) K(i) = {k a~ i+k ~ b} for all i E E for some integers a,b. 

This relation implies that the collection of probability measures 

(10.15.2) {pk(i,.) : i € E, k € K(i)} 

is tight, and hence assumption F is satisfied. Indeed, given any.£ > O, let 

n be such that 

then 

a+n 
I p. ~ 1-f;, 

j=O J 

b 
_I Pk ( i ,j) = 
J=-n 

i+k+n 
I 

j=O 
p. ~ 1-E for all i E E and all k E K(i). 

J 

If p. > o, j=0,1, ••• , then each stationary policy has no disjoint 
J 

closed sets and assumption E is satisfied. It follows from this argument 

that corollary 10.14 applies. 

A stationary rule which prescribes no ordering in state i when i ~ s 

and prescribes an order of S-i units when i < s is called an (s,S) policy. 

It is easily seen that under an (s,S) policy the state space does not have 

disjoint closed sets. 

Under certain conditions on the cost function it can be proved that 

there exist optimal (s,S) policies with respect to the expected discounted 

return (see for instance [Johnson],[Tijms] and [Veinott (1966)]). According 

to theorem 10.4, under those conditions there also exists an optimal (s,S) 

policy with respect to the average return criterion. 



11. SIMULTANEOUS DOEBLINCONDITION 

In this section we introduce a condition which can be seen as an ex­

tension of Doeblin's condition (cf. [Doob, p. 192]) to a collection of 

Markov chains. We call it the simultaneous Doeblincondition (sim D). 

It will be shown that the condition sim D implies assumption C of 

section 10 and, moreover, sim D in combination with the condition that 

(E,P) is a communicating system is sufficient for the existence of an op­

timal policy with respect to the average return criterion. 

In the next section it will be pointed out that the condition sim D 

gives the connection between sufficient conditions for existence of aver­

age-optimal policies, which can be found in the literature and the condi­

tions in section 10. 

Although we restrict ourselves also in this section to a countable 

state space E, we shall introduce the Doeblincondition and an equivalent 

one for a general measurable space (E,F). 
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CONDITION D (introduced in [DoeblinJ). There exist a finite measure~. a 

positive integer n and a positive real number E such that, for eaah A E F, 
$(A) ~ E implies pn(x,A) ~ 1-E for all x. 

Actually Doeblin introduced this condition with ~ Lebesgue measure on 

a Borelset with finite measure in a finite dimensional Euclidean space. In 

[Doob] this is generalized to a finite measure on a measurable space. 

For P a transition probability function, the formula 

Pf(x) = f P(x,dy) f(y) defines a positive endomorphism on 

B of bounded measurable functions on (E,F) with llfll = sup 
E 

[Neveu, p. 179]). 

the Banach space 

lf(x)I (cf. 

CONDITION K-B (introduced in [Kryloff and Bogoliouboff]). There exist a 

aorrrpaat endomorphism Q on the Banaah spaae B and a positive integer ~ suah 

that II Pn-Qll <1. 

If this condition is satisfied then P is called quasi-aorrrpaat. 

In [Yosida and Ka.kutani] it is proved that the Doeblincondition with 

~ the Lebesgue measure implies the condition K-B. Moreover, they showed 
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that for a quasi-compact transition probability function P the strong er­

godic theorem holds. In [Neveu, p. 185] it is pointed out that the condi­

tions D and K-B are equivalent. 

It is rather easy to verify that condition D can be given in the fol­

lowing formulation if p(x,E) = 1 for all x E E (cf. [Neveu, p. 185]): There 

exist a probability measureµ on (E,F), a positive integer n, and two real 

numbers O < e < 1 and n > Osuch that, for FE F, µ(F) ~ e irrrplies 

Pn(x,F) ~ n for all x E E. 

When E is a countable set with F the a-algebra of all subsets then 

this can be simplified to: There exist a finite set K, a positive integer 

n, and a positive real number c such that Pn(i,K) ~ c for all i E E. 

Now we return to our collection of Markov matrices P and introduce the 

following condition. 

11.1. SIMULTANEOUS DOEBLINCONDITION (sim D). There exist a finite set K, 

a positive integer n, and a positive real number c such that pn(i,K) ~ c 

for all i E E and all PE P. 

It is easy to see that assumption F (section 10) implies the condition 

sim D. For our discrete state space E it is possible to give a more precise 

assertion. 

11.2. LEMMA. If p(i,E) = 1 for all i EE for a Markov matrix P then the 

collection {p(i,.) : i EE} is tight if and only if P is (strongly) corrrpact. 

PROOF. Assume that {p(i,.) : i EE} is tight. To prove that P is compact 

we have to show (by definition cf. [Neveu, p. 179]) that the unit ball of 

the Banach space B has a relatively compact image under the endomorphism P. 

Since in a 

ficient to 

metric space each sequentially compact set is compact, it is suf­

show that given any sequence of functions with llf II S1 for 
n 

n=1,2, ... , there exists a subsequence f such that Pf converges in norm 
nk nk 

as k + ~. Indeed by the diagonal procedure there is a subsequence fn such 
k 

that lim fn (i) = f(i) for some function f and 
k~ k 

all i E E. Given any £ > 0 

there are a finite set K and an integer N such that 

(11.2.2) p(i,K) > 1-£ for all i EE and max If (j)-f(j)I <£fork> N. 
jEK nk 
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Hence for k > N 

1 L p(i,j) {f (j )-f(j )l I s 
j nk 

s IL p(i,j) f (j) -
j nk 

l: p(i,j) f (j)I + 
jc:K nk 

+ I l: 
jc:K 

p(i,j) {f (j)-f(j)ll + 11: p(i,j) f(j)-l:p(i,j) f(jJI, 
nk jc:K j 

where each of the three terms on the right-hand side of this inequality is 

less than E for all i EE by relation (11.2.2) and the fact that llfll s 

and II f~ll s 1 for k=1,2,... This proves that Pfn converges in norm to Pf. 

To prove the converse let the sequence of finite subsets Kn' n=1,2, •.• , 

be such that 

For 

we have that 

00 

K c Kn+ 1' n=1,2, ... , and u 
n n=1 

L 
for i E K 

n 
f (i) 
n 

for i f. K n 

K 
n 

E. 

lim Pf (i) = lim p(i,K ) = 1 for all i E E. 
n~ n n~ n 

Since P is compact it follows that this convergence is uniform in i E E. 

Consequently, given any E > 0 there exists a finite subset Kn with 

p(i,K) ~ 1-E for all i EE and hence the collection {p(i,.) : i EE} is 
n 

tight. 0 

The infinite period stationary inventory model with backlogging, as 

treated in section 10, satisfies assumption F. Consequently there are non­

trivial Markov decision processes for which sim D holds. The condition 

sim D with the triple (K,n,c) implies that the finite set K can be reached 

in n steps with probability at least c. 



94 

For the wa1ting line model, as introduced in section 5, it is clear 
that to reach state n from state m for n < m takes as least m-n steps. 
Hence for this problem the condition sim D is not satisfied. However it is 
our opinion that for each honest Markovian decision problem there exist a 
subset A and a stationary policy R such that when using policy R outside 
the set A the embedded Markovian decision problem on A satisfies the con­
dition sim D. And moreover, when using policy R outside the set A then each 
(nearly-)optimal policy remains (nea~ly-)optimal. 

In the remainder of this section we will investigate properties of 
condition 11.1. As in section 10 we assume that P is compact and p(i,E) 
for all i € E and all PE P. 

The following results are from [Hordijk (1972)] in which also an 
elementary proof of the strong ergodic theorem for discrete spaces can be 
found. 

It is useful to have available the following notations and relations: 

( 11.2.3) 

(11.2.4) 

(11.2.5) n(. c) n+1(. ) Ap 1,A = Ap 1,E . 

For.!.. the reentry time of subset A (i.e . .!.. is the least n > O, if any, 
with x €A, and _T = 00 if there is no such n) we find withJP. p [T>n] = -n 1, -

Apn(i,AC) and the relations (11.2.5) and (2.7.3) that JEi,P [.!_] = ~(i,A). 

As Apn(i,A) denotes the probability of reaching the set A for the 
first time at the nth step, we have the relation 

(11.2.6) 

11.3. THEOREM. The foZZowing four conditions are equivalent 

a. sirrru.Ztaneous DoebZincondition; 

b. there exist a finite set K, an integer N and a positive reaZ number 
c such that 

N 
l Kpn(i,K) ~ c for aZZ i € E and aZZ P E P; 

n=1 



c. there exist a finite set K and a real nwnber b such that 

~(i,K) ~ b for all i E E and all P E P; 

d. given any E > O there exist a finite set K(E) and an integer N(E) 

such that 

pN(E)(i,K(E)) ~ 1-E for all i E E and all PE P. 

PROOF. Assume condition a is true for the triple (K,N.c). Then 

N N 
(11.3.1) l Kp(i,K) = lP1• p [ u {x EK}] ~ lP. p [x.._EK] ~ c. 

n= 1 ' n= 1 11 1 ' -:N 

Hence the triple (K,N,c) satisfies condition b. 
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Next assume condition bis true for the triple (K,N,c). From relation 

(11.2.6) it then follows: 

N+ 1 (· E) < 1 1 i· Kp i, - -c for a 1 E ~ and all PE P. 

Since 

n+m( . ) \' n ( . . ) m( . ) Kp i,E = L. Kp i,J Kp J,E 
jEKC 

we obtain (cf. relation (9.1.8)) 

(11.3.2) n( ) <_ ( 1-c)[n(N+1)- 1J Kp i,E 

for all i EE, all PEP and all n E {1,2, ... }. Hence 

(11.3.3) ~(i,K) = l Kpn(i,E) ~ (N+1)c-1 for all i EE and all PEP. 
n=1 

Consequently condition c is satisfied for (K,(N+1)c- 1). 

Next assume condition c is true for (K,b). Given any o > 0 there is an 

integer M such that (recall that Kpn(i,E) is nonincreasing in n) 

M+1 (. ) Kp i,E ~ o for all i E E and all P E P. 



In view of relation (11.2.6) then 

(11.3.4) 
M 
l Kpn(i,K) ~ 1-o for all i E E and all PE P. 

n=1 

In the beginning of section 10 we pointed out that as a consequence of the 
compactness of P the collection {p(i,.) : PEP} is tight for each i EE. 
Moreover, since for any integer k and state i the probability measure 
pk(i,.) is a continuous function of P we have that {pk(i,.) : PEP} is 
tight for all i EE and all k E {1,2, ..• }. Because the union of a finite 
number of tight collections 1s again a tight collection, it then follows 
that {pn(i,.) : i EK, 1 s n s Mand PEP} is tight. Consequently there 
exists a finite set A such that 

(11.3.5) pn(i,A) ~ 1-o for all i E K, all n with 1 s n s M and all P E P. 

Using the "first entrance decomposition" of the set K we find 

M+1 . M+1 . M M 1 P (1,A) = Kp (1,A) + l l Kpn(i,j) p + -n(j,A). 
n=1 jEK 

According to the relations (11.3.4) and (11.3.5) the last term of this 
relation is at least (1-o) 2 • Hence given any£ > O, we choose o > 0 such 
that (1-o) 2 ~ 1-e,then the condition dis satisfied with N(e) M+1 and 
K(e) = A. 

It is evident that the condition d implies the condition a. D 

With the above theorem we can prove that assumption C of section 10 is 
implied by the condition sim D. We can even prove the following stronger 

result. 

11.4. THEOREM. The condition sim D implies that the collection 
{7rp(i,.) : i E E, PE P} is tight. 

PROOF. Given any£> O, there exist by theorem 11.3d a finite set Kand 

an integer N such that 

pN(i,K) ~ 1-£ for all i E E and all P E P. 

Hence (cf. the proof of lemma 10.3) for all n > N the same relation holds. 



Consequently 

1 k N 
np(i,K) = lim k l p +n(i,K) ~ 1-£ 

k-+<x> n=1 

for all i E E and all P E P. D 

The following lemma is related to proposition 6.1 of [Orey, p. 29]. 

11.5. LEMMA. If for some subset A, some positive integer Nanda positive 

nwnber c it holds that 

(11.5.1) 

then 

(11.5.2) 

N 
/, Apn(i,A) ~ c for all i E E and all P E P, 

n=1 

m 
l Apn(i,A) + 1 

n=1 

uniformly in i and P as m + 00 , and 

(11.5.3) 

is uniformly bounded in i and P. 
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PROOF. The proof proceeds similar to the proof of "b implies c" in theorem 

11.3. Indeed, similar to (11.3.2) we have that 

(11.5.4) 
) -1 

Apn(i,E) ,.;; ( 1-c)[n(N+l ] for all i E E and all P E P. 

In view of (11.2.6) we then have 

~1 1 
l Apn(i,A) ~ 1 - (1-c)[m(N+1)- J for all i EE and all PEP. 

n=1 

From this the first assertion follows. 

Similar to (11.3.3) we obtain from (11.5.4) that 

/, Apn(i,E) ,.;; (N+1)c- 1 for all i EE and all PEP, 
n=1 

which proves the second assertion. D 
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As a consequence of the next lemma we have that if for some Markov 
chain with matrix of transition probabilities P, some subset A can be 
reached from each state i then the Doeblincondition implies relation 
(11.5.1) with P {P}. Hence the Markov chain is uniformly ~-recurrent (in 
the terminology of [Orey]) with~ the counting measure if all the states 
are communicating. [Orey, proposition 6.1 (p. 26) and theorem 7.1 (p. 30)] 
provides then another proof of the strong ergodic theorem in this case. 

11.6. LEMMA. If some set A can be reached from each state i under each 
stationa:ry poliC'ff then the condition sim D implies the relation (11.5.1). 

PROOF. Assume that the condition sim D holds with triple (K,n,d). So 

(11.6.1) pn{i,K) ~ d for all i E E and all P E P. 

For i E E and P E P we define 

n ( i , P) : = min {n ~ O 

It can be seen that for each i E E, n(i,P) is an upper semicontinuous 
function of P and hence attains its supremum over the compact set P. For 
i E E let 

n(i) := max n(i,P). 
p 

Since the set A can be reached from each state i under each stationary 
policy we find n(i) < 00 for all i E E. Because the set K is finite we have 

m := max n(i) < oo 

iEK 

The sum ~= 1 Apk(i,A) is a continuous function of P. Moreover, from the 
definition of m it follows that this sum is positive for all i E K and all 
P E P. For i E K define 

di) :=mm 
p 

m k l Ap {i,A). 
k=1 

Then E(i) is positive for all i E K. Hence, so is 



e: := min e:(i). 
iEK 

Using relation (11.6.1) we find for arbitrary state i EE and arbitrary 

matrix P E P 

n+m 
l Apk(i,A) ~ 

k=1 

m k 
l Ap (j,A) ~ 

k=1 
dE:. 

Hence relation (11.5.1) is satisfied with N n+m and c = de:. D 

Using the foregoing lemmas we shall prove in the next theorem that 

the condition sim D guarantees any communicating system to be a recurrent 

system (cf. section 8). 

11.7. THEOREM. If the condition sim Dis satisfied, then the system is 

recU1'rent if a:nd only if it is communicating. 
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PROOF. Since in general the property recurrent is stronger than communi­

cating we have only to prove that the latter implies the former. Assume the 

system is communicating. Let i 0 be an arbitrary state. Using only the as­

sumption that the system is communicating, we shall prove that for some 

stationary policy Q00 state i 0 can be reached from each state i E E. The 

proof proceeds by induction. Let E = {i 0 ,i 1,i 2 , ••• } and assume that i 0 can 

be reached from states i 1, ••• ,im under policy P00
• Hence there are states 

(called j-states) 

( 11. 7 .1) jkn for k 1, ..• ,m and 1 ~ n ~ nk 

such that 

(11.7.2) 

Since the system is communicating the state i 0 can be reacbed from state 

i 1 under some policy P00
• Now there are two possibilities: 

m+ * 

a. Going from state im+l to state i 0 we reach state i 0 without passing 

any of the j-states of (11.7.1). In this case we can take matrix P E P 
** 

(recall that P has the product property ( cf. p. 1 ) ) such that P is equal 
** 

to P in the j-states and is equal to P * in the other states. Then i 0 ca.n be 

reached from states i 1,. .. ,im+l under policy P** 
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b. Going from state im+1 to state i 0 we pass a j-state. Let j* be the 
j-state which is passed first h · f · t · ·* be w en going rom im+ 1 o i 0 • Because J can 
reached from im+1 under policy P: and i 0 can be reached from j* under 

policy P: we have that state i 0 can be reached from state im+ 1 under the 
policy P** as introduced under a. 

This completes the proof that for some policy Q00 state i 0 can be 

reached from each state i EE. Applying the lemmas 11.5 and 11.6 for 

P = {Q} (so P is a collection consisting of one element) we obtain with 

A = {i0 } 

( .. ) \ . qn(i",i"o) fQ i,i0 = l 
n=1 io 

1 for all i E E with i # i 0 • 

Hence the state i 0 is recurrent. D 

We conclude this section by c0llecting some other combinations of con­

ditions which imply the assumptions of theorem 10.4. 

11.8. THEOREM. Eaah of the following two aonditions implies the existenae 

of a stationary optimal poliay with respeat to the average e:x:peated return 

the system is aorrnrruniaating and the aondition sim D holds 

the assumption E of seation 10 and the aondition sim D hold. 

PROOF. The first assertion follows from the theorems 10.4, 11.4 and 11.7. 

The second assertion is a consequence of corollary 10.14 and theorem 

11.4. D 

It is evident that for. a finite state space the condition sim D is al­

ways satisfied. As a consequence of the first part of the above theorem we 

obtain that for a finite state space it is sufficient for the existence of 

a stationary optimal policy that the system is communicating. This result 

was obtained independently in [Bather J. 
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12. CONNECTION WITH THE WORK OF DERMAN, ROSS, TAYLOR AND VEINOTT 

In this section we point out some of the relations between conditions 

introduced in [Derman (1966)], [Derman and VeinottJ, [Taylor] and 

[Ross (1968)] and the assumptions made in section 10. In our opinion the 

condition sim D plays a basic role here. 

In the second part of the section another assumption which implies 

the existence of an average-optimal policy is given. The section concludes 

by answering a question raised in section 10. 

12.1. In the above given references it is assumed that in each state there 

is only a finite number of possible decisions. In our notation we then have 

P(i) := {p(i,.) : Pi:: P} 

is a finite set of probability measures for all i € E. It is now easily 

_deduced that P is compact and cp is continuous. 

Since all results from the literature to be cited in this section can 

be generalized to infinite sets P(i) such that P is compact and Cp is con­

tinuous we use these assumptions from the outset. 

12.2. In [Derman (1966)] it was proved that the following four conditions 

together imply the existence of a constant g and a bounded function v such 

that 

v = max ( cp-ge+Pv). 
p 

In the sequel of this section we shall call the pair (g,v) a (bounded) so­

lution of the optimality equation. 

I. cp is bounded; 

II. E is a positive l'ecurl'ent class for each P E P; 

III. for each P i:: P there exist a constant ~ and bounded function vp such 

that vp = cp-gpe+Pvp; 

IV. thel'e exist constants b1,b2 such that lgpl ~ b 1 and lvp(i)I ~ b2 for 

all i i:: E and all P E P. 
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It can also be found in [Derman (1966)] that a bounded solution of the 

optimality equation implies the existence of a stationary optimal policy. 

Indeed, iterating the inequality 

p € p 

we obtain 

N 
L P0 .•• Pn_ 1 (cp -ge) + P0 •.. PN v ~ v for all P0 ,P1 , ... ,PNE P. 

n=O n 

Hence 

(12.2.1) 

Consequently ge is an upper bound of the set of limitpoints of the first 

term. Moreover, for 

we have by the condition II 

And hence if Q satisfies the optimality equation, i.e. 

then by multiplying with ITQ we obtain 

From which it follows that Q00 is optimal. 

12.3. From theorem 1 in [Derman and Veinott] it follows that conditions I 

and II together with the condition 

v. there exists some state i 0 suah that the expeated number ~(i,i 0 ) of 

steps from state i to state i 0 under poliay P00 is uniformly bounded 
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in i a:nd P, 

imply the conditions III and IV. If in addition to condition II the return­

time from state i 0 to state i 0 has a finite second moment (in [Kemeny, 

Snell and Knapp, p. 274] this is called strong ergodicity) then conversely 

the conditions III and IV for every bounded cost structure imply condition 

V. This can be shown by using theorem 2 of [Derman and VeinottJ. 

12.4. In ['l'aylorJ the following condition is introduced (cf. [Taylor, 

lemma 3.2, p. 1684]). 

VI. v (i) v (j) with v (i) 
Cl Cl Cl 

i,j EE a:nd a E (0,1). 

\' n n 
:= supp l a P cp is uniformly bounded in 

n=O 

As follows from arguments in [Taylor] the condition VI implies the exis­

tence of a bounded solution of the optimality equation (see also [Ross 

(1968)]). Indeed, since (cf. theorem 6.2) 

va(i) = m~x [cp(i) +a~ p(i,j) va(j)J for all i EE, 
J 

we obtain by subtracting v (0) from both sides 
Cl 

v(i)-v(O)= 
Cl Cl 

= max [c (i) - (1-a) v (0) +a l p(i,j) (v~(j)-va(O))J. 
p p Cl j ~ 

From I and VI we have that (1-a) v (0) and v (i) - vN(O) are uniformly 
Cl Cl ~ 

bounded in a and i. The diagonal procedure then provides a sequence 

{a } with O < a < 1, an+ 1 as n + 00 and a constant g together with a 
n n 

bounded function v such that 

n+oo 
lim (1-a ) 

n 

Hence 

v ( 0) 
Cl 

n 
g and lim va (i) 

n+oo n 
v ( 0) 

Cl 
n 

v( i). 

v(i) max [cp(i) - g +? p(i,j) v(j)J for all i EE. 
p J 

12.5. In [Ross (1968)] it is proved that the conditions I and V together 
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imply the condition VI. 

12.6. According to theorem 11.3 we have that condition V implies the con­
dition sim D. Moreover, under the assumption that state i 0 can be reached 
from any state i under any policy P00 we have in view of the lemmas 11.6 
and 11.5 and relation (11.2.4) that the condition Vis equivalent to the 
condition sim D. From lemma 10.2 and theorem 11.4 it follows also that the 
condition V implies the continuity of ITP as a function of P. Thus theorem 
10.4 applies in this case also. However, it follows from the results of 
the sections 10 and 11 that the existence of a state which is always 
accessible (i.e. from each state under each stationary policy) is an un­
necessarily strong assumption. It seems to us that in cases where some 
state i 0 is always accessible, the approach of section 5 is better. Theorem 
5.1 allows unbounded cost structures as well and for bounded cost struc­
tures one does not need to be sure beforehand that state i 0 is positive re­
current. On the contrary, relation (5.1.1) can serve as a criterion for 
uniform positive recurrency (see subsection 5.13). 

If sim D holds and state i 0 is always accessible then the assumptions 
of theorem 5.1 are satisfied for each bounded cost structure. Indeed, 
according to the lemmas 11.6 and 11.5 and relation (11.2.4) we have for some 
constant b 1 and all P E P 

where P denotes the column-restriction of P to E\{i } (cf. subsection 2.7), 
0 

Hence 

y := sup l, 
P n=O 

~n 

p e 

is bounded and satisfies (cf. theorems 6.1 and 13.6) 

(12.6.1) y sup (e+fy). 
p 

Consequently for Jcp(i)J ~ b2 for all i EE and all PEP we have with 
y* = (b +l)y and t = e, PEP, 2 p 

(12.6.2) 



* Since y is bounded it is obvious that the relations (5.1.2) and (5.1.3) 

are also satisfied. 

* The condition sim D implies (12.6.2) for some bounded function y . 
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When Cp is bounded away from zero (i.e. for some constant a J cp ( i) J ~ a > 0 

for all i E E and all P E P) then also the converse is true. In this case 

* (12.6.2) for bounded y implies the condition sim D. Indeed, then the 

function y defined in (12.6.1) is bounded and hence ~(i,i0 ) is uniformly 

bounded in i and P, and according to theorem 11.3 the condition sim Dis 

valid. 

Using the following lemma we obtain in theorem 12.8 another condition 

implying the existence of a stationary optimal policy w.r.t. the average re­

turn criterion. 

12.7. LEMMA. If for some constant b Jcp(i)J Sb for aU i EE and aU 

P E P then 

(12.7.1) v (i) - v (j) ~ -2b inf m_(i,j) for aZZ a E (0,1), 
a a R rt 

where ~(i,j) denotes the expected nwriber of steps from state i to state j 

wider po Ziay R. 

PROOF. This proof is related to the proof in [Ross (1968), theorem 1.4] 

(cf. [Ross (1970), theorem 6.19, p. 148]). According to definition 2.14 
. * the function va is cp - excessive w.r.t. P := {ap : P E P}. It follows then 

from theorem 2.21 that for any Markov time~ and policy R we have 

T-1 
v (i) ~JE. R C""1 an c(x) +al v (x )l. 

a 1, n.;O --n a ~ 

For T the entry time of {j} we can weaken this inequality to 

(12.7.2) v (i) - v (j) ~ - bE T - (1 -JE al) Jv (j)J. 
a a R- R a 

JER ..I x 
By Jensen's inequality ER a}.~ a and also 1 - a s (1-a)x for x ~ 

and 0 <a< 1, thus 

(12.7.3) 
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Because (1-a) Iv (j)j ~ b we then find by substituting (12.7.3) in (12.7.2) a 
the relation (12.7.1). D 

This lemma is used in theorem 12.8 to provide another condition im­
plying the condition VI. 

12.8. THEOREM. If cp is bounded and for some constant a 

( 12 .8.1) inf ~(i,j) ~a for all i,j E E, 
R 

then there exists a bounded solution of the optimality equation and hence a 
stationary optimal policy. 

PROOF. It is evident from lemma 12.7 that the assumptions of the theorem 
imply the condition VI. The rest of the proof proceeds as in 12.4 and 
12.2. D 

12.9. REMARK. If E is a finite set and for some policy R state j can be 
reached from each state i EE then ~(i,j) < 00 for all i E E. Hence for 
a communicating system and finite set E we have (cf. the proof of theorem 
11.7) 

( 12.9.1) max inf ~(i,j) < oo, 

i,jEE R 

Consequently in this case theorem 12.8 applies. 

12.10. REMARK. It can be seen from the subsections 12.2 and 12.4 that under 
the conditions I, II and VI we have for each sequence of discountfactors 
tending to one, a subsequence {a } such that 

n 

lim ( 1-a ) 
n n-roo 

v (i) 
a 

n 

for some Q E P and all i EE. Hence lim (1-a) v (i) exists for all i EE 
at1 a and does not depend on 1. 

In the rest of this section we shall prove 
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(12.10.1) 
1 N 

sup lim inf N+ 1 JE. R[ l c(x )] = lim (1-a) v (i) = 
R N-+oo ]. , n=O -n at 1 CL 

1 N 
sup lim sup N+ 1 lEi R[ l c(x )J 
R N-+oo ' n=O -n 

for all i EE (and lim (1-a) v (i) does not depend on i), under weaker 
at1 CL 

conditions. We assume in the sequel of this section that Cp is bounded. 

12.11. LEMMA. If 

(12.11.1) 

then 

sup inf ~(i,j) < 00 for aii j EE 
iEE R 

N 
(12.11.2) . 1 

sup lim sup N+ 1 JER l c(x )] slim inf (1-a) v. 
-n at 1 CL R N-+oo n=O 

PROOF. Given an arbitrary state j we choose the sequence {a } of discount­
n 

factors such that 

( 12.11.3) lim (1-a ) v (j) = lim inf (1-a) v (j). 
n-+oo n an at 1 a 

According to lemma 12.7 the difference va(i) - va(j) is bounded uniformly 

( ) {N*} { } in a E 0,1 • Consequently, there is a subsequence ~ of a such that 
m n 

for some constant g and some function v 

(12.11.4) lim ( 1-CL * ) V ( j ) 
m+"" _ m m 

g 

and 

(12.11.5) lim {v (i) - v (j)} 
m+"" m m 

v(i) for all i E E, 

where v (i) = va*(i). 
m m 

In view of (12.11.1) and lemma 12.7 we find that vis bounded from 

below. Hence for each P E P we have Pv- < 00 and Pv can be defined as 

Pv+ - Pv- and is possibly +00 • As in 12.4 we obtain that 

(12.11.6) cp-ge+Pv s v for all P E P 
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(hence Pv < 00 ). This relation implies (12.2.1) and hence (recall that vis 
bounded from below) for an arbitrary policy R it holds that 

( 12.11. 7) 
1 N 

lim sup N+1~ [ l c(~)J ~ g. 
N-+<» n=O 

The relations (12.11.3), (12.11.4) and (12.11.7) together imply (12.11.2) 
since state j and policy R were arbitrarily chosen. D 

12.12. COROLLARY. If (E,P) is a communicating system and each PEP satis­
fies the Doeblincondition then the relation (12.11.2) is true. 

PROOF. We shall show that relation (12.11.1) is satisfied. Given any state 
j there is a stationary policy Q00 such that j can be reached from each 
state i EE under policy Q00 (see the proof of theorem 11.7), Since Q satis­
fies the Doeblincondition it follows from the lemmas 11.6 and 11.5 and the 
relation (11.2.4) with P = {Q} and A= {j} that s~p mQ(i,j) < 00 • D 

J. 

12.13. THEOREM. If (E,P) is a communicating system and if the condition 
sim D holds then the relation (12.10.1) is valid. 

PROOF. It is straightforward from lemma 12.7 that 

lim (1-a) [v (i)-v (j)J = O for all i,j EE. 
at1 a a 

Consequently the function x as introduced in theorem 10.4 is a constant 
function. It follows from the proof of theorem 10.4, in particular the sub­
sections 10.10 and 10.11, that (cf. (10.0.3)) 

( 12. 13. 1) 
. 1 N 

sup lim rnf N+1 JER [ I 
R N-+<» n=O 

c(x )J = x. -n 

Because we can start in subsection 10.5 with an arbitrary sequence of dis­
countfactors tending to one, it follows from (12.13.1) that lim (1-a) v 

t1 a 
exists and equals the left-hand side of (12.13.1). In view o~ the relation 
(12.11.2) we obtain that the relation (12.10.1) is valid. D 
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12.14. REMARK. Define for N 0,1, ••• 

1 N 
WN+1 := sup N+1 ~ [ l 

R n=O 
c(x )]. 

--n 

In [Hordijk (1973)] it is proved that if for constants c and a0 

for all i E E and all a 1 ,a2 with a0 < a 1 < a2 < 1, which is certainly satis­

fied if (1-a) vex has a bounded derivative with respect to a, then lim w 
n-><><> n 

exists and, moreover, 

lim w 
n-><><> n 

lim (1-a) 
at 1 

v. 
et 
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13. RANDOMIZATION AND NEARLY OPTIMAL POLICIES 

In this section we will collect several results on various topics 
which were needed in the foregoing sections. 

We write E for the set of all stochastic matrices on state space E. 
Let the function don pairs (P1,P2 ) f Ebe defined by 

' -(i+jl I ( .. l (. "ll .l. 2 P1 1,J -p2 1,J • 
1,J 

where for convenience we have identified the state space E with the set of 
positive integers. It can be seen that this function d defines a metric on 
P and, moreover, that P with this metric is a separable metric space. The 
weak convergence defined in section 1 is convergence with respect to this 
metric. 

As usual, we will call an element of the smallest a-algebra containing 
all open subsets of E, a Borel set. We assume that P is a Borel set. 

For notational convenience we introduce a set A of actions such that 
there is a one-to-one correspondence between A and P. We use the set A to 
index P, i.e. P , a E A, is that P which is in correspondence with a. Then a 
(A,F), with F the Borel subsets of A, is a measurable space and P is a a 
measurable mapping. 

We write M(A) for the set of all probability measures on (A,F). Define 

P = {p : p(i,.) = J p (i,.) du.(a), 
A a 1 

u.(.) E M(A) for all i EE}. 
1 

A 

Verbally P(i) := {p(i,.) : PEP} can be described as the set of all ran-
domizations of the decisions in state i. 

If P(i) is a compact set then using the metric induced by don P(i), 
it can be seen that P(i) is a compact, separable metric space. P(i) is a 
quotient space (cf. [Kelley, p. 97]) of the space of all probability 
measures on P(i), say M(P(i)). It follows from a theorem of Prohorov (cf. 
[Billingsley, p. 37]) that M(P(i)) is relatively compact. By definition, 
M(P(i)) is closed and thus compact. Hence P(i) is compact. Consequently, if 
P is compact then P(i) is compact for all i E E, hence P(i) is compact for 
all i E E and according to a theorem of Tychonoff (cf. [Kelley, p. 143]) 
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P is compact with respect to the metric d. 

In the introduction we have identified the decision to be taken with 

the probability measure on E that is induced by it. In practical problems 

there may be several decisions with the same probability measure but dif­

ferent costs. In order to fit our model we then have to choose an appropri­

ate cost and to assign this cost to the probability measure. Since costs are 

maximized in our model, it is obvious that the supremum over the different 

costs is appropriate here. 

We proceed in a similar way when allowing randomizations. For each 

i E E let cp(i) be the minimum of the concave functions on P thatAmajorize 

cp(i) on P. Then under reasonable regularity conditions for P0 E P (we 

write c (i) resp. c (i) for cp (i) resp. cP ( i)) a a a a 

(13.0.1) cp ( i) sup {I c ( i) dµ (a) )1 E M(A) 
a 

0 A 

and p0(i,.) = I p ( i , • ) dµ ( a) } 
a A 

and 

( 13.0.2) ~p (i) ~ I c (i) dµ(a) 
0 A a 

for allµ E M(A) with p0(i,.) =IA pa{i,.) dµ(a). 

We shall investigate whether the value function of an optimal control 

problem remains the same when allowing randomizations of decision rules. 

13.1. THEOREM. If 

(13.1.1) w := sup JER l 
R n=O 

and f is a cp - excessive function, then f is also a cp - excessive function. 

PROOF. According to definition 2.14 we have to verify that 

(13.1.2) cp• p E P, is a charge structure w.r.t. p. 
' 

(13.1.3) l Po.· .Pn-1 cp ,,; f for all PO,P1''" E P· 
' n=O n 
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(13.1.4) cp + Pf sf for all PEP. 

For an arbitrary function g (with Pi gl < 00 for all P E P) and µ E M(A) it 
holds that 

( 13.1. 5) I c (i) dµ(a) + f l p (i,j) g(j) dµ(a) s 
A a A j a 

for all i EE. Hence with (13.0.1) we obtain 

(13.1.6) cp + Pg s sup (cp+Pg) for all P E P. 
p 

sup (cp(i)+Pg(i)) 
p 

Relation (13.1.4) is a direct consequence of (13.1.6) and the fact that f 
is Cp - superharmonic. 

By ( 13. 1 . 1) and theorem 2. 22 (with .!:_=00 ) we have that w is cj; - super­
harmonic, i.e. 

(13.1.7) c; + Pw s w for all P E P. 

Since cp s cp for all P E P, 

c; + Pw s w for all P E P. 

Hence from (13.1.5) with w instead of g we find 

cp + Pw s w for all P E P. 

Iterating this inequality we find for each positive integer N 

N 
l P0 .•. Pn_1 cp + P0 •.. PN w s w for all P0 , ••. ,PN E P. 

n=O n 

Consequently for each R = (P0,P1, .•. ) with Pn E P for all n 

00 

( 13.1.8) l Po···Pn-1 cp s w. 
n=O n 

Now assume that relation (13.1.2) does not hold. Then for some (P0 ,P1, ... ) 
with Pn E P for all n and some state i 0 we have in view of (13.1.8) 
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l ~+ 

(io) l Po·· .Pn-1 cP (io). p 0 ... Pn-1 cp ="' 
n=O n n=O n 

Choose N0 such that 

NO 

l p 0 ... Pn-1 cp (io) > f(i 0 ) + w(i0 ). 
n=O n 

Define 

N 
XN sup { l Po.· .Pn-1 cp P0, ... ,PNE P} 

n=O n 

and 

N 

~ sup l Po ... Pn cp P0, ... ,PNE P}. 
n=O n 

It can be shown by induction on N that ~+ 1 = sup (cp+P~) and 
4 (~ ) { } p • A • ~+ 1 = s~p cp+P~ for all NE 1,2, .... Hence with x0 = x0 = 0 and using 

(13.1.6)Pit follows by induction on N that~=~ for all NE {0,1, ... }. 

In particular~ ~ and consequently there are matrices Q0 , ... ,~ E P 

such that O O 

NO 
l Q0 ... Qn_ 1 cQ (i0 ) > f(i0 ) + w(i0 ). 

n=O n 

Given any sequence~ + 1 '~ +2 , ... E P we have by (13.1.1) 
0 0 

l Qo ... Qn-1 cQ (io) > f(io). 
n=O n 

This is in contradiction with the fact that f is a Cp - excessive function. 

Hence relation (13.1.2) is true. 

Define 

v = sup JER [ l c(x )] 
-n 

R n=O 

and 

* l I dx l 1. v = sup JER 
R n=O -n 

Note that the assumptions of this lemma imply -"' < v(i) < +00 and 
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JO< v*(i) < +"". According to the theorems 2.22 (with ~=00 ) and 2.21 and 
the nonnegativity of !cpl we find 

( 13.1 .9) * P ... P v s v* for all n E {0,1,2,. .. } 
ao an 

and all a0 ,a1, ... ,an EA. In order to prove the relation (13.1.3) it is 
according to theorem 2.17 sufficient to show that for each sequence 
P0 ,P1 ,. .. E f> 

( 13.1.10) o. 

Since f is Cp - excessive we have by (2.14.2) v S f and hence f- S v • In­
stead of (13.1.10) we shall prove the stronger relation 

~ 

Choose an arbitrary sequence P0 ,P1, ... E P. In the rest of this proof 
R := (P0,P1, .•. ) is a fixed policy. For n = 0,1,2, ... let Pn be obtained 
from µni' i E E, i.e. 

( 13.1.12) p (i,.) = f p (i,.) dµ .(a) for all i EE. n A a ni 

We introduce the probability product space (cf. [Neveu, proposition V.1.1, 
p. 162]) 

00 

(13.1.13) n At' Q9 Ft'µ), 
t=O t=O 

where (At,Ft)' t = 0,1 , ... , are copies of (A,F) and the restriction of 
µto IT~=O At is determined by the probabilities on rectangles IT~=O Ft. 
These probabilities are given by 

with i 0 some fixed state in E. Next we define a sequence of measurable 
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functions on this product space by 

According to the theorems 2.22 (with .:I.=00 ) and 2.17 we have lim g O for 
, n->= n 

all elements of rr;=O At. Using a bounded convergence theorem on the product 

space we find with v s v* and (13.1.9) 

lim I 
n->= oo 

ITt=OAt 

( 13.1.14) g (w) dµ(w) 
n 

o. 

The relation (13.1.14) in the usual notati~n is 

This completes the proof. D 

In section 3 we proved that the supremum of the expected return over 

all policies including the non-memoryless is a cp - excessive function 

(theorem 3. 1). According to theorem 13. 1 the function v is also a cp - ex­

cessive function when relation (13.1.1) is true. Consequently, including 

all policies defined on P, i.e. all randomized policies, does not increase 

the value function when (13.1.1) is satisfied.*) 

The following theorem, which is adapted from [Derman and Strauch] and 

[Derman (1970)], makes it evident why we focussed attention on memoryless 

policies. 

13.2. THEOREM. Assume that P contains all randomized decision rules (i.e. 

P=P). Given any sequence of policies R1,R2 , ... and any sequence of non­

negative real nurribers a 1,a2 , .•• with li=l ai = 1 there exists for each 

state i 0 € E a memoT'Jjless policy R0 such that 

00 

(13.2.1) JPRo C~=i,Xn€Fl1So=ioJ = kI1 ~:I?~ C~=i,~€Fl1So=ioJ 

for alZ i € E, alZ F € F and all n € {0,1,2, ..• }; ~denotes the decision 

at time n. 
*) Randomization becomes important when constraints are introduced. Cf, 

Neyman-Pearson lemma [Lehmann, p. 63] and [Derman (1970), chapter 7]. 
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PROOF. For any nonnegative integer n and each state i € Ewe define a 

randomized decision by 

(13.2.2) µ .(F) := 
Ill 

when the denominator is positive; otherwise letµ .(.)be an arbitrary 
Ill A 

probability measure on (A ,F). For n € { 0, 1 ,. .. } let P be the associated 
n 

decision rule, i.e. 

(13.2.3) p (i,.) = J p (i,.) dµ .(a) for all l. 
n A a nl 

Define R0 as (P0 ,P1 , .•• ). 

The proof of relation (13.2.1) proceeds by induction on n. For n = 0 

and if i 0 both sides of equality (13.2.1) are equal to zero. If i = i 0 
then 

Assume that relation (13.2.1) holds for n = m, i.e. 

(13.2.4) µ .(F) P0 ••• P 1(i 0 ,i). 
m1 m-

We first prove that 

(13.2.5) 

Since 

for all k € { 1 ,2,. •• } we find (11y conditioning on ~, lm and ( 13. 2. 4)) that 

the left-hand side of (13.2.5) equals 
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l P0 •.• P 1 (i0 ,i) f p (i,j) dµ .(a). 
i m- A a mi 

Hence with (13.2,3) the relation (13.2,5) follows. 

According to relation (13.2.2) we have 

00 

00 

In view of (13.2,5) the second part of this equality can be written as 

This equals 

We call a cost structure Cp concave if for each i € E and µ € M(A) it 

holds that 

(13.2.6) cp (i) ~ f c (i) dµ(a) with p0(i,.) = f p (i,.) dµ(a). 
0 A a A a 

13. 3. COROLLARY. If Cp is a aoncave aharoge st:l'Uatui>e and P aontains a?:l 

randomized deaision rules, then 

00 

(13.3.1) sup~ [ l jc(~)jJ < 00 • 

R n=O 

PROOF. Assume that the relation (13,3,1) does not hold. Then there is a 

* state i 0 and a sequence of policies ~ such that 

( 13.3,2) 

-k * Next we apply theorem 13.2 with'\.= 2 and Rk =~fork= 1,2, ••• and 

we obtain a policy R0 satisfying (13.2.1). In view of (13.2.6) it follows 

that 

00 

lc(x ll 
-n 

~ l 2-kJE. R* lc(x ll for all n € fo,1, ... }. 
k=1 1 0'-k -n 
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Hence with (13.3.2) we have 

I JE. ldx )I = "" n=O i,Ro -n 

This is in contradiction with the assumption that cp is a charge structure.D 

A similar reasoning as in corollary 13.3 shows that the relation 
(13.1.1) is a necessary condition for cp to be a charge structure w.r.t. P. 
Hence the relation (13.1.1) is a necessary and sufficient condition for the 
cp-excessive function f to be Cp-excessive. 

The results of this section are also true for the optimal control 
problem. In section 6 we treated the total return model by introducing an 
auxiliary function r. Here we show that the converse is also true. Each 
optimal control problem can be converted into a total return model by in­
troducing an auxiliary state s and defining p (s,s) = and c (s) = O, a a 
a € A. So s is an absorbing state. Further we introduce a new action or 
,decision <which we identif'y with the stopping decision, i.e. p (i,s) = 

' and c (i) = r(i), i EE. Then a stationary strategy for the optimal control ' model becomes a stationary policy for the total return model. 

13.4. LEMMA. If P contains all randomized decision rules, cp is a concave 
charge structure and slp JER I r(~) I < 00 for all policies R, then 

<-1 
( 13 .4. 1) v* :=sup JER cl: ic(x )I + lr(x )IJ < 00 

R,,l n=O -n ~ 

Moreover, for each policy R and each Markov time < it holds that 

(13.4.2) < 00 

REMARK. There is an asymmetry in the assumptions of this lemma. As to the 
policies we assume that the expectations of the absolute costs are finite 
for all policies, as to the Markov times we assume that the supremum of the 
absolute reward over all Markov times is finite. To get rid of this asym­
metry one can use randomized Markov times. A randomized Markov time (stop­
ping time) is obtained if at each time t one performs an auxiliary random 
experiment depending on ~,2S_1 , ... ,2ft in order to decide whether to stop or 
not. If:JER lr(x )I is finite for all randomized Markov times a then the -.£ 



supremum of JER I r(~) I over all Markov times is finite and conversely. 

PROOF. Converting the optimal control problem into a total return model, 

it is straightforward from corollary 13.3 and the above remark that the 

relation (13.4.1) is true. 

Now suppose l· p(i,j) v*{j) = 00 for some state i and matrix P. Then 
J 

the policy R, as in the proof of theorem 3.1, would have an infinite ab-

solute return, contradicting the relation (13.4.1). Hence 

(13.4.3) Pv* < 00 and wp := v* - Pv* ~ 0 for all P E P. 

With (13.4.3) it can be proved that for each bounded Markov time.!_ (use 

induction on the upper bound of the Markov times and proceed as in lemma 

2. 19) 

( 13.4.4) w{x ) + v*{x )J for all policies R. 
-n -:L 

For arbitrary policy Rand Markov time l we have from (13.4.4) and the 

second part of (13.4.3) 

119 

This section is concluded with an investigation of nearly optimal 

policies. The results collected here are adapted from [Blackwell (1967)], 

[Blackwell (1970)] and [Ornstein]. They are stated for the total return 

model. Using conversion of models it is obvious that analogue results hold 

for the optimal control problem. In the rest of this section we assume 

sup JER [ l 
R n=O 

lc(x llJ < 00 
-n 

(consequently cp is a charge structure). For notational convenience we 

write 

vp := vP"' and v := 

c(x )], 
-n 
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13.5, DEFINITION. Policy R is £-optimal in state i if vR(i) ~ v(i) - e. 
If for any e > O and any state i there is a stationary policy Q00 such that 
vQ(i) ~ v(i) - e, then we say that there exist stationary weak nearly op­
timal policies. 

Policy R is e-optimal if vR(i) ~ v(i) -e for all i E E. If for any 
e > O there is a stationary policy Q00 which is e-optimal, then we say that 
there exist stationary strong nearly optimal policies. 

13.6. THEOREM. Each of the following three conditions is sufficient for 
the existence of stationary weak nearly optimal policies 

a. 

b. 

sup 
p 

\ 00 n n ln=O P e < 00 and lim sup P v s O for all 

sup l 00
_ 0 p n-

n-+oo 
nPnc~ < 00 and cp is bounded; 

c. the cost structure is nonnegative. 

p E P; 

PROOF. Assume condition a is valid. According to theorem 6.1 v satisfies 

Bellman's optimality equation 

v =sup (cp+Pv). 
p 

Now given any e > 0 and any initial state i 0 choose Q such that 

(13.6.1) CQ + QV ~ V - oe, 

with 

( 13.6.2) \ n -1 o := e(sup l. P e(i0 )) . 
P n=O 

By iterating the inequality (13.6.1) we obtain 

(13.6.3) 
N N 
\ Qnc + QN+ 1v > v - o \ Qne for all NE {1,2, ... }. l Q - l 

n=O n=O 

Because of lim sup Qnv s 0, (13.6.2) and (13.6,3) imply 
n-+oo 

Hence Q is £-optimal in state i 0 . 
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Assume condition b is true. Given any E > O and any initial state i 0 
let policy R be such that 

Let 0 < ao < 1 be such that 

JE. [ l n c (x ) J > v(i 0 ) E 
a -4 1 0 ,R · n=O -n 

for all a with ao s a s 1. Let a 1 with 0 < a1 < 1 be such that 

(13.6.4) ( 1-a1) l n -(. ) E sup nP cp 1 0 < 2 . 
p n=O 

Choose an a with max (a0 ,a1) s a< 1. We apply the first part of the 

theorem for the discounted dynamic programming problem with discountfactor 

a. Hence there exists a Q with 

JE. [ l an c(x )] > JE. R [ l an c(x )J - f > v(i0 ) - ~ 
1 o•Q n=O -n 1 0• n=O -n 

Because of (1-an) s (1-a)n for O < a < 1 and n 

(13.6.4) 

1,2, ••. , we have with 

l 
n=O 

( n - n n -) Q CQ - a Q CQ $ ( 1-a) \ n - E 
n~O nQ cQ < 2 

Consequently 

JE. Q [ l c(~)J ~ v(i0 ) - E 
1 0' n=O 

and Q00 is E-optimal in state i 0 . 

Assume condition c is satisfied. Given any E > O and any initial state 

i 0 let R be such that 

.£ 
2 

Let Ek, k = 1,2, •.. , be finite subsets of E with Ek c Ek+1, k = 1,2, ... , 

and u~= 1 Ek= E. For ..!_k the exit time of Ek, k = 1,2, ... , we have that 

Hence 
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and consequently for some k0 we have vR,~ (i0 ) > v(i0 ) - % Let us con-

0 
sider now the total return model with finite state space Ek For this 

problem the cost structure is bounded. Since the cost funct~on is non­

negati ve condition b is satisfied. Hence there exists a Q such that 

Hence 

00 

v (i0 ) > v (i0 ) -2£. 
Q,~ R,~ 

0 0 

vQ(i 0 ) ~ vQ,~ (i0 ) ~ v(i0 ) 

0 

- £ 

and Q is £-optimal in state i 0 . 0 

As noted in the beginning of section 6 lim Pnv with P E P always 

exists and this limit is nonnegative. Hence ~ condition lim sup Pnv s O 
n~ 

for all P E P is not weaker than assuming that lim Pv = 0 for all P E P. 
n~ 

13.7. THEOREM. If cp ~ O for all PE P then given any £ > O there exists 
a stationary poliay Q00 such that 

(13.7.1) vQ(i) ~ (1-£) v(i) for all i EE. 

If v -is bounded then there exist stationary strong nearly optimal policies. 

PROOF. The second assertion is an immediate consequence of the first one. 

Choose an£ with 0 < £ < 1. Let the elements of Ebe indexed by the 

positive integers, i.e. E = {i 1,i2 , ... }. To prove the first assertion we 

show the existence of sets Ek with k = 1,2, ... , and matrices Pk E P with 

k = 1,2, .•• such that ik E Ek fork= 1,2, •.. , 

(13.7.2) p (i,.) = p (i,.) for all i EE n E n m n m 

and for~· the exit time of En' 
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(13.7.3) VP (i ) ~ (1-£ ) v(i ) 
n'~ n n n 

with 

(13.7.4) 

Let us assume for the moment that the relations (13.7.2) and (13.7.3) are 

proved. Define Q as follows 

q ( i , . ) : = p ( i , . ) for n = 1 , 2,. . . . 
n n n 

Then 

for all m E {1,2, .. ,}and consequently, Q00 satisfies relation (13.7.1). The 

proof of (13.7,2) and (13.7.3) proceeds by induction on n. Assume E1, .. ,En 

and P1, .. ,Pn are known and satisfy (13.7.2.) and (13.7.3), Define 

Pn = {p: p(i,.) = pk(i,.) if i E Ek fork= 1,2, .. ,n}, 

let C be the set of policies with decision rules in P and take 
n n 

v = sup vR. 
n REC 

n 

Under the assumption that 

(13.7.5) V ~ ( 1-E ) V, 
n n 

we shall show that relations similar to (13.7.2), (13.7.3) and (13.7,5) 

can be established for n+1. 

According to theorem 13.6 there is a Pn+1 E Pn such that 

with 
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(13,7,7) 0 2-(n+2) 
E:, 

Define 

(13,7,8) B {i v ( i) < ( 1-0) v ( i)} 
Pn+1 n 

and 

(13,7,9) E n+1 E\B. 

Then E 1 and P 1 satisfy (13,7,3) for n+1 as will be proved. Indeed, by n+ n+ 
(13,7,6) we have that the expected return when starting in in+1 and using 
policy P 1 until entering B plus the expected return therea~er together n+ 2 
exceed (1-o ) vn(in+1). Hence with la.+ 1 the exit time of En+ 1 we have 

(13,7.10) VP (i+1)+ l F. p [x =j]vp (j)~ 
n+1 'la.+1 n jt::B 1 n+1' n+1 ~+1 n+1 

~ ( 1-o2 ) v (. i 1). n n+ 

By the definition of En+ 1 we have 

(13,7.11) VP (j) ~ 
n+1 

(1-o) v (j) for all j t:: E 1• n n+ 

Since vn is the value function corresponding to Cn it follows from the 
theorems 3.1 and 2.21 (note that Cp is a charge structure since 
supIB [r_0 jc(x )jJ < 00 ) that for any policy REC and any Markov time .I. R R n- -n n 

Substituting Pn+ 1 and la.+1 in (13,7,12) gives 

(13,7,13) [x =j] v (j). 
~+1 n 

Substituting (1-o) v (j) for vp (j) in the second term of (13.7,10), we 
n n+1 

find with (13,7,8) and (13,7,13) 
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I P. P [x =j] v (j) s ov (i 1). 
jEB 1 n+1' n+1 ~+1 n n n+ 

Since vp s v a similar relation with v instead of v in the le~-
n+1 n pn+1 n 

hand side holds. Together with (13.7.10) this yields 

(13.7.15) v (i + ) ~ (1-20) v (i 1). 
Pn+l'ln+1 n 1 n n+ 

Since 

(13.7.16) (1-20)(1-£ ) ~ (1-£ ) n n+1 

it follows with (13.7.5) that relation (13.7.3) is satisfied for n+1. 

In the remainder of the proof we establish relation (13.7.5) for n+1. 

Define 

Pn+1 {P PE Pn and p(i,.) = pn+1(i,.) for i E En+1}, 

let Cn+ 1 be the policies with decision rules in Pn+1 and take 

v 1 = sup 
n+ REC 

n+1 

By relation (13.7.11) we have that 

v 1(i) ~ (1-o) v (i) for all i EE 1. 
n+ n n+ 

To prove that a similar inequality also holds outside En+ 1 we proceed as 

follows. Given any state i there exists in view of theorem 13.6 a policy 

P E P such that 
n 

Let R be the policy that chooses decisions aacording to P until the entry of 

En+1 and uses decision rule Pn+ 1 thereafter. Then with a the entry time 

of En+l we have 

(13.7.18) ~VP (i) + I P. p [.!So=j] VP (j). 
,E_ . E 1 ' n+1 

JE n+1 
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Using the relations (13.7.11) and (13.7.17) we derive from (13.7.18) 

~ vp (i) +I F. P [!a=j] vp(j) - ov (i) ,.£ j l.' n 

Finally with (13.7.16) and (13.7.17) we obtain 

We conclude this section by proving that in the positive dynamic pro­
gramming case the existence of an optimal policy implies that some sta­
tionary policy is optimal. For the negative dynamic programming problem 
this is almost an immediate consequence of theorem 4.6. Indeed, when policy 
R is optimal then the decision rule for time O, i.e. P0 , conserves v. Hence 
P~ is thrifty; since v ~ 0 we have that each policy is equalizing. Conse­
quently P~ is optimal. 

13.8. THEOREM. If cp ~ O for aZl P E P a:nd there exists an optimal poliay 
then there exists a stationary optimal policy. 

PROOF. According to theorem 4.6 (in fact the analogue of theorem 4.6 for 
the total return model) there is also an optimal policy R such that each 
decision rule of R is v conserving. Hence without loss of generality we 
can assume that P consists of v conserving matrices. According to theorem 
13.7 there exists a Q such that for some a > 0 

Hence 

lim Qnv .:!._ lim Qn I k o. ~ Q CQ a n-><x> n-><x> k=O 
00 

of theorem 4.6 we have that 
00 Thus Q is also equalizing and in view Q l.S 

optimal. D 
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x, y, f, g etc. 

x(i) 

e 

0 

xv y 

X A y 

+ x 

x 

x $ y 

x = y 

x < CX> 

P, P(i) 

p( i ,j) 

p(i •• ) 

p(i,A) 

l · J 

Px 

lim sup xn 
n-+«> 
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real-valued functions (also called vectors) on the 

state space E 

.th i component of vector x 

vector with all components equal to 1 

the real number zero and the vector with all 

components equal to zero 

vector with ith component max (x(i),y(i)) 

vector with ith component min (x(i),y(i)) 

xv 0 

-(xAO) 

x(i) $ y( i) for all i € E 

x s y and y $ x 

x( i) < 00 for all i € E 

see page 

( . . )th . . i,J entry of stochastic matrix P 

ith row-vector of P 

l· Ap(i,j) J€ 

summation over all j € E 

vector with ith component l· p(i,j) x(j) 
J 

matrix with (i,j)th e~try 

Y . • Po(i,R-1) P1 (R-,,R-2) ••• p ( R, ,j) 
n n 

R. 1' · · · ,R. n 

vector with ith component 

sup [cp(i) + l p(i,j) x(j)] 
p j 

vector with ith component lim sup x (i) 
n 

p(i,j) + p0(i,j) for all i,j € E; see page 1 

stationary policy (P,P, •.• ) 
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policy see page 

strategy see page 21 

entry time see page 18 

reentry time see page 8 

cp-excessive, see the definitions in section 2. If cp = 0 for 
cp-superharmonic, etc. all p € P we write excessive, superharmoni c, etc. 

Cp is continuous if lim cp(i) = c ( i) for all i € E and all Po € p 
P+PO Po 

Cp is upper semicontinuous if lim sup cp(i) 
P+P0 

~ cp (i) for all i E E and 
0 allP0 EP 

fR(i,A) 

fp(i,A) 

fp(i,j) 

ER c(~) 

E. R c(x ) 
i, -n 

Ep [ ••. ] 

N 

l Po···Pn-1cP 
n=O n 

.!. 

x ( ... ) 

f(x ) 
-r 

T-1 
E. R C}: c(x. )J 

1 ' k=O -ii: 

the complement of subset A c E 

see page 69 

see page 64 

see page 64 

for R = (P0 ,P1, ••• ) equal to the vector 

P0 •.• Pn_1cp 
.th n 

the i component of the vector JER c (~) , for 

R (P0 ,P 1, •.• ) equal to 

L · po(i,.l!.1) P1 (.1!.1,.1!.2) • • • Pn-1 (.1!.n-1 'Q,n) cp (.1!.n) 
Q,1•···•Q,n n 

abbreviation for JEP00 [ ••• l 

Markov time or stopping time, .!. equal to infinity 
is admissible 

is equal to one on the event ( ... )and equal to 

zero otherwise 

is equal to f(x) for T = n, n E {0,1,2, •.. } and -n -
equal to zero for .!. = 00 , equivalently f(x ) is 

-:L 
equal to f(x ) X(T< 00 ) 

-i -

denotes for R = (P0 ,P1, ..• ) the conditional ex­
T-1 

pectation given .!a ~ i of l: cp (~) under policy R 
k=O k 
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