
Faster Sannerless GLR Parsing
Giorgios Eonomopoulos, Paul Klint, Jurgen VinjuCentrum voor Wiskunde en Informatia (CWI), Kruislaan 413, 1098 SJ Amsterdam,The Netherlands

Abstrat. Analysis and renovation of large software portfolios requiressyntax analysis of multiple, usually embedded, languages and this is be-yond the apabilities of many standard parsing tehniques. The tradi-tional separation between lexer and parser falls short due to the limita-tions of tokenization based on regular expressions when handling multiplelexial grammars. In suh ases sannerless parsing provides a viable so-lution. It uses the power of ontext-free grammars to be able to deal witha wide variety of issues in parsing lexial syntax. However, it omes at theprie of less eÆieny. The struture of tokens is obtained using a morepowerful but more time and memory intensive parsing algorithm. San-nerless grammars are also more non-deterministi than their tokenizedounterparts, inreasing the burden on the parsing algorithm even fur-ther.In this paper we investigate the appliation of the Right-Nulled Gener-alized LR parsing algorithm (RNGLR) to sannerless parsing. We adaptthe Sannerless Generalized LR parsing and �ltering algorithm (SGLR)to implement the optimizations of RNGLR. We present an updated pars-ing and �ltering algorithm, alled SRNGLR, and analyze its performanein omparison to SGLR on ambiguous grammars for the programminglanguages C, Java, Python, SASL, and C++. Measurements show thatSRNGLR is on average 33% faster than SGLR, but is 95% faster onthe highly ambiguous SASL grammar. For the mainstream languages C,C++, Java and Python the average speedup is 16%.
1 IntrodutionFor the preise analysis and transformation of soure ode we �rst need to parsethe soure ode and onstrut a syntax tree. Appliation areas like reverse en-gineering, web engineering and model driven engineering spei�ally deal withmany di�erent languages, dialets and embeddings of languages into other lan-guages. We are interested in the onstrution of parsing tehnology that anservie suh diversity; to allow a language engineer to experiment with and eÆ-iently implement parsers for real and omplex language onstellations.A parser is a tool, de�ned for a spei� grammar, that onstruts a synta-ti representation (usually in the form of a parse tree) of an input string anddetermines if the string is syntatially orret or not. Parsing often inludes asanning phase whih �rst splits the input string into a list of words or \tokens".This list is then further analyzed using a more powerful parsing algorithm. This

sanning/parsing dihotomy is not always appropriate, espeially when parsinglegay languages or embedded languages. Sanners are often too simplisti tobe able to deal with the atual syntax of a language and they prohibit modularimplementation of parsers. \Sannerless parsing" [20, 21, 29℄ is a tehnique thatavoids suh issues that would be introdued by having a separate sanner [7℄.Intuitively, a sannerless parser uses the power of ontext-free grammars insteadof regular expressions to tokenize an input string.The following Fortran statement is a notorious example of sanning issues [1℄:DO 5 I = 1.25 . This statement supposedly has resulted in the rash of theNASA Mariner 1.1 It is not until the deimal point that it beomes lear thatwe are dealing here with an assignment to the variable DO5I.2 However, in theslightly di�erent statement: DO 5 I = 1,25 , DO is a keyword and the statementas a whole is a loop onstrut. This example highlights that tokenization usingregular expressions, without a parsing ontext, an easily be non-deterministiand even ambiguous. In order to restrit the number of possibilities, sannersusually apply several impliit rules like, e.g., Prefer Longest Math, Prefer Key-words, Prefer First Appliable Rule. The downside of suh disambiguation is thatthe sanner ommits itself to one hoie of tokens and bloks other interpreta-tions of the input by the parser. A sannerless parser with enough lookaheaddoes not have this problem.Another example is the embedding of Java ode in AspetJ de�nitions andvie versa. If a sanner is needed for the ombination of the two languages,you may end up with reserving the new AspetJ keywords from the Java ode.However, existing Java ode may easily ontain suh identi�ers, resulting inparsing errors for ode that was initially parsed orretly. One approah thatould avoid this problem would be to use two separate sanners: one that isative while parsing pure AspetJ ode and another that is ative while parsingpure Java ode. One again, the parsing ontext would be used to deide whihsanner is used in the tokenization. This problem does not exist when using asannerless parser [8℄.In a lassial sanner/parser approah the sanner makes many deisionsregarding tokenization. In a sannerless parser these deisions are postponedand have to be made by the parser. Consequently, sannerless parsers generallyhave to deal with more non-determinism than before, so the deterministi LRparsing algorithms an no longer be used. However, it turns out that the non-determinism introdued by the removal of the sanner an be graefully handledby Generalized LR (GLR) parsing algorithms [24, 16, 19℄.Sannerless parsing remains a ounter-intuitive notion, whih is partly due toour eduation in ompiler onstrution where sanner optimization was a entralpoint of interest. So we emphasize its bene�ts here one more:{ Computational power: lexial ambiguity is a non-issue and full de�nition oflexial syntax for real languages is possible.1 Various (non-authoritative) soures mention that writing a \." in instead of ","aused the loss of the Mariner 1.2 Reall that Fortran treats spaes as insigni�ant, also inside identi�ers.2

{ Modularity: languages with inompatible lexial syntaxes an be ombinedseemlessly.{ Sope: to generate parsers for more languages, inluding ambiguous, embed-ded and legay languages.{ Simpliity: no hard-wired ommuniation between sanning and parsing.{ Delarativeness: no side-e�ets and no impliit lexial disambiguation rulesneessary.So, on the one hand a language engineer an more easily experiment withand implement more omplex and more diverse languages using a parser gen-erator that is based on Sannerless GLR parsing. On the other hand there is aost. Although it does not have a sanning phase, sannerless parsing is a lotmore expensive than its two-staged ounterpart. The struture of tokens is nowretrieved with a more time and memory intensive parsing algorithm. A olle-tion of grammar rules that reognizes one token type, like an identi�er ouldeasily have 6 rules, inluding reursive ones. Parsing one harater ould there-fore involve several GLR stak operations, searhing for appliable redutionsand exeuting redutions. Consider an average token length of 8 haraters andan average number of stak operations of 4 per harater, a sannerless parserwould do 4 � 8 = 32 times more work per token than a parser that reads a pre-tokenized string. Furthermore, a sannerless parser has to onsider all whitespaeand omment tokens. An average program onsists of more than 50% whites-pae whih again multiplies the work by two, raising the di�erene between thetwo methods to a fator of 64. Moreover, sannerless grammars are more non-deterministi than their tokenized ounterparts, inreasing the burden on theparsing algorithm even more.Fortunately, it has been shown [7℄ that sannerless parsers are not 64 times asslow as other GLR-style parsers. We estimate the fator to be more in the range of3 to 10. In this paper we investigate the implementation of the Sannerless GLR(SGLR) parser provided with SDF [29, 7℄. It makes sannerless parsing feasibleby rigorously limiting the non-determinism that is introdued by sannerlessparsing using \disambiguation �ltering". It is and has been used to parse manydi�erent kinds of legay programming languages and their dialets, experimentaldomain spei� languages and all kinds of embeddings of languages into otherlanguages. The parse trees that SGLR produes are used by a variety of toolsinluding ompilers, stati hekers, arhiteture reonstrution tools, soure-to-soure transformers, refatoring, and editors in IDEs.As SDF is applied to more and more diverse languages, suh as sriptingand embedded web sripting languages, and in an inreasing number of ontextssuh as in plugins for the Elipse IDE, the ost of sannerless parsing has beomemore of a burden. That is our motivation to investigate algorithmi hanges toSGLR that would improve its eÆieny. Note that the eÆieny of SGLR isde�ned by the eÆieny of the intertwined parsing and �ltering algorithms.We have sueeded in replaing the embedded parsing algorithm in SGLR|based on Farshi's version of GLR [16℄|with the faster Right-Nulled GLR algo-rithm [22, 12℄. RNGLR is a reent derivative of Tomita's GLR algorithm that,3

intuitively, limits the ost of non-determinism in GLR parsers. We therefore in-vestigated how muh the RNGLR algorithm would mitigate the ost of sanner-less parsing, whih introdues more non-determinism. The previously publishedresults on RNGLR an not be extrapolated diretly to SGLR beause of (A) themissing sanner, whih may hange trade-o�s between stak traversal and stakonstrution and (B) the fat that SGLR is not a parsing algorithm per se, butrather a parsing and �ltering algorithm.The bene�t of RNGLR may easily beinsigni�ant ompared to the overhead of sannerless parsing and the additionalosts of �ltering.In this paper we show that a Sannerless Right-Nulled GLR parser and �lteris atually signi�antly faster on real appliations than traditional SGLR. Theamalgamated algorithm, alled SRNGLR, requires adaptations in parse tablegeneration, parsing and �ltering, and post-parse �ltering stages of SGLR. InSetion 2 we analyze and ompare the run-time eÆieny of SGLR and the newSRNGLR algorithm. In Setions 3 and 4 we explain what the di�erenes betweenSGLR and SRNGLR are. We onlude the paper with a disussion in Setion 6.
2 Benhmarking SRNGLRIn Setions 3 and 4 we will delve into the tehnial details of our parsing al-gorithms. Before doing so, we �rst present our experimental results. We haveompared the SGLR and SRNGLR algorithms using grammars for an extendedversion of ANSI-C|dubbed C'|, C++, Java, Python, SASL and �1|a smallgrammar that triggers interesting behaviour in both algorithms. Table 1 de-sribes the grammars and input strings used. Table 2 provides statistis on thesizes of the grammars. We onduted the experiments on a 2.13GHz Intel DualCore with 2GB of memory, running Linux 2.6.20.SGLR and SRNGLR are omprised of three di�erent stages: parse tablegeneration, parsing and post-parse �ltering. We fous on the eÆieny of thelatter two, sine parse table generation is a one-time ost. We are not interested inthe runtime of reognition without tree onstrution. Note that between the twoalgorithms the parsing as well as the �ltering hanges and that these inueneeah other. Filters may prevent the need to parse more and hanges in theparsing algorithm may hange the order and shape of the (intermediate) parseforests that are �ltered. EÆieny measurements are also heavily inuened bythe shapes of the grammars used as we will see later on.The SRNGLR version of the parser was tested �rst to output the same parseforests that SGLR does, modulo order of trees in ambiguity lusters.Table 3 and Figure 1 show the arithmeti mean time of �ve runs and Table 4provides statistis on the amount of work that is done. GLR parsers use a GraphStrutured Stak (GSS). The edges of this graph are visited to �nd redutionsand new nodes and edges are reated when parts of the graph an be reduedor the next input harater an be shifted. Eah redution also leads to theonstrution of a new parse tree node and sometimes a new ambiguity luster. Anambiguity luster enapsulates di�erent ambiguous trees for the same substring.4

Name Grammar desription Input size(hars/lines) Input desriptionC' ANSI-C plus ambiguous exep-tion handling extension 32M/1M Code for an embedded sys-temC++ Approahes ISO standard, withGNU extensions 2.6M/111K Small lass that inludesmuh of the STLJava Grammar from [8℄ that imple-ments Java 5.0 0.5M/18k Implementation of TheMeta-Environment [5℄Python Derived from the referene man-ual [28℄, ambiguous due to miss-ing o�-side rule implementation 7k/201 spawn.py from Python dis-tributionSASL Taken from [26℄, ambiguous dueto missing o�-side rule implemen-tation 2.5k+/114+ Standard prelude, onate-nated to inreasing sizes�1 S ::= SSS j SS j a; triggersworst-ase behavior [12℄ 1{50/1 Strings of a's of inreasinglengthTable 1. Grammars and input strings used.NNT NP RNP States Shifts Redutions LA RedutionsSGLR SRNGLR SGLR SRNGLRC' 71 93 94 182k 37k 18k 23k 5.9k 6.3kC++ 90 112 102 112k 18k 19k 19k 1.5k 1.5kJava 81 112 116 67k 9.7k 5.9k 6.0k 1.0k 1.1kPython 56 74 85 22k 3.4k 1.7k 1.9k 0 0SASL 16 21 22 4.5k 0.9k 0.5k 0.6k 0 0�1 0 0 0 13 30 13 15 0 0Table 2. Grammar statistis showing nullable non-terminals (NNT), nullable produ-tions (NP), right-nullable produtions (RNP), SLR(1) states, gotos and shifts, Redu-tions and redutions with dynami lookahead restrition (LA Redutions).For both algorithms we ount the number of GSS edge visits, GSS node reations,edge and node visits for garbage olletion, and parse tree node and ambiguityluster visits for post-parse �ltering. Note that garbage olletion of the GSS isan important fator in the memory and run-time eÆieny of GLR.For this benhmark, SRNGLR is on average 33% faster than SGLR with asmallest speedup of 9.8% for C and a largest speedup of 95% for SASL. Appar-ently the speedup is highly dependant on the spei� grammar. If we disregardSASL the improvement is still 20% on average and if we also disregard � 501the average drops to a still respetable 16% improvement for the mainstreamlanguages C, C++, Java and Python. The results show that SRNGLR parsingspeed is higher (up to 95%) for grammars that are highly ambiguous suh asSASL. SRNGLR also performs better on less ambiguous grammars suh as Java(14% faster). The parsing time is always faster, and in most ases the �lteringtime is also slightly faster for SRNGLR but not signi�antly so.The edge visit statistis (Table 4 and Figure 3) explain the ause of theimproved parsing time. Espeially for ambiguous grammars the SGLR algorithmtraverses many more GSS edges. Aording to the time measurements this issigni�ant for real world appliations of sannerless parsing.5

C' C++ Java Python SASL80 �150S SRN S SRN S SRN S SRN S SRN S SRNSpeed (hars/se.) 385k 443k 121k 175k 404k 467k 178 904 78 1k 4.7 24Parse time (se.) 84.2 73.2 21.5 14.9 2.1 1.8 39.2 7.7 4.8k 202.2 10.8 2.1Filter time (se.) 102.9 95.5 5.7 5.6 0.8 0.7 327.3298.8 1.6 1.6 7.7 9.5Total time (se.) 187.2168.8 27.3 20.6 2.9 2.5 366.5306.5 4.8k 203.9 18.5 11.6Speedup (%) 9.8 24.5 13.8 16.4 95 37.6Table 3. Speed (haraters/seond), Parse time (seonds) , Filter time (seonds), Totaltime (seonds) and Speedup (%) of SGLR (S) and SRNGLR (SRN). k = 103.C' C++ Java Python SASL80 � 501S SRN S SRN S SRN S SRN S SRN S SRNET 149M 44M 26M 6.6M 3.2M 0.9M 90M 3.4M 71B 165M 48M 0.7MES 81M 18M 145M 27M 5.0M 0.9M 1.8B 234M 16B 14B 28M 14MNC 141M 143M 19M 20M 3.0M 3.0M 157k 157k 2.4M 2.4M 252 252EC 154M 157M 30M 31M 3.5M 3.4M 962k 962k 44M 44M 3.9k 3.9kGC 13M 13M 6.2M 6.8M 0.7M 0.6M 2.0M 2.0M 88M 88B 14k 14kFAC 30k 30k 5.6k 5.6k 0 0 83k 83k 48k 48k 1.2k 2.1kFNC 241M 241M 13M 13M 1.6M 1.6M 707M 707M 3.1M 3.1M 1.1M 1.3MTable 4. Workload data. Edges traversed searhing redutions (ET), edges traversedsearhing existing edge (ES), GSS nodes reated (NC), GSS edges reated (EC), edgestraversed for garbage olletion (GC), ambiguity nodes reated while �ltering (FAC),and parse tree nodes reated while �ltering (FNC). k = 103, M = 106; B = 109Filtering time is improved in all but the �1 ase, although the improvementis not greater than 10%. The workload statistis show that about the samenumber of nodes are reated during �ltering. The di�erenes are lost in therounding of the numbers, exept for the �1 ase whih shows signi�antly morenode reation at �ltering time. This di�erene is aused by di�erent amounts ofsharing of ambiguity lusters between the two versions. The amount of sharingin ambiguity lusters during parsing, for both versions, depends on the arbitraryordering of redution steps. I.e. it is not relevant for our analysis.Notie that the parse time versus �ltering time ratio an be quite di�erentbetween languages. This highly depends on the shape of the grammar. LR fa-tored grammars have higher �ltering times due to the many additional parsetree nodes for hain rules. The Python grammar is an example of suh a gram-mar, while SASL was not fatored and has a minimum number of non-terminalsfor its expression sub-language. Shorter grammars with less non-terminals havebetter �ltering speed. We expet that by \unfatoring" the Python grammar alot of speed may be gained.Figure 2 depits how SRNGLR improves parsing speed as the input lengthgrows. For �1 it is obvious that the gain is higher when the input gets larger.Note that although �1 does not have any right-nullable produtions (see Table2) there is still a signi�ant gain. The reason for this is that SRNGLR preventswork from being done for all grammars (see Setion 3).From these results we may onlude that SRNGLR learly introdues a stru-tural improvement that inreases the appliability of sannerless GLR parsing to6

parsingRuntim
e(ses)

�1
2520151050Runtim

e(ses)
�1

2520151050Runtim
e(ses)

�1
2520151050Runtim

e(ses)
SASL

520041603120208010400 �lteringRuntim
e(ses)

SASL
520041603120208010400Runtim

e(ses)
SASL

520041603120208010400Runtim
e(ses)

Python
400320240160800Runtim

e(ses)
Python

400320240160800 otherRuntim
e(ses)

Python
400320240160800

Runtim
e(ses)

Java
3210Runtim

e(ses)
Java

3210Runtim
e(ses)

Java
3210Runtim

e(ses)
C++

3024181260Runtim
e(ses)

C++
3024181260Runtim

e(ses)
C++

3024181260Runtim
e(ses)

C
19015211476380Runtim

e(ses)
C

19015211476380Runtim
e(ses)

C
19015211476380

Fig. 1. Runtime omparison between SGLR (�rst ol.) and SRNGLR (seond ol.).
srnglrsglr

Input string length

Parsing
time(se
onds)

5045403530252015

12
10
8
6
4
2
0

Fig. 2. Comparison of SGLR andSRNGLR parsing time for �1.

SASL
Python �1

Java
C++

C
Redution of edge traversals by RNGLR

Parseti
meimp
rovemen
t

100%95%90%85%80%75%70%

100%
80%
60%
40%
20%
0%

Fig. 3. Correlation between saving ofedge traversals and parsing speedup.large programs written in highly ambiguous sripting languages suh as Pythonand SASL. Also, we may onlude that it introdues a not-insigni�ant improve-ment for less ambiguous or non-ambiguous languages and that the shape of agrammar highly inuenes the �ltering speed.
3 SGLR and RNGLRIn this setion we outline the RNGLR and SGLR algorithms and highlight themain di�erenes between them. There are four main di�erenes between theSGLR and RNGLR algorithms:{ Di�erent parse tables formats are used; SLR(1) [29℄ versus RN [12℄.{ SGLR does more traversals of the GSS during parsing than RNGLR.{ Di�erent parse forest representations are used; maximally shared trees [27℄versus SPPF's [19℄.{ SGLR implements \disambiguation �lters" [7℄ whereas RNGLR does not.

7

The RNGLR algorithm ombines adaptations in the parse table generation al-gorithm with simpli�ations in the parser run-time algorithm. It is based onTomita's algorithm, alled Generalized LR (GLR) [24℄. GLR extends the LRparsing algorithm to work on all ontext-free grammars by replaing the stakof the LR parsing algorithm with a Graph Strutured Stak (GSS). Using theGSS to explore di�erent derivations \in parallel", GLR an parse sentenes forgrammars with parse tables that ontain LR onits rather eÆiently. However,the GLR algorithm fails to terminate on ertain grammars. Farshi's algorithm�xes the issue in a non-eÆient manner, by introduing extra searhing of theGSS [16℄. This algorithm is the basis for SGLR. The RNGLR algorithm �xesthe same issue in a more eÆient manner.RNGLR introdues a modi�ed LR parse table: an \RN table". RN tablesare onstruted in a similar way to anonial LR tables, but in addition to thestandard redutions, redutions on right nullable rules are also inluded. A rightnullable rule is a prodution rule of the form A ::= �� where � �) "3. Byreduing the left part of the right nullable rule (�) early, the RNGLR algorithmavoids the problem that Tomita's algorithms su�ered from and hene does notrequire Farshi's expensive orretion. However, sine the right nullable symbolsof the rule (�) have not been redued yet it is neessary to pre-onstrut theparse trees of those symbols. These nullable trees are alled "-trees and sinethey are onstant for a given grammar, they an be onstruted at parse tablegeneration time and inluded in the RN parse table. The early RN redutionwill onstrut a full derivation simply by inluding the pre-onstruted trees.It is well known that the number of parses of a sentene with an ambiguousgrammar may grow exponentially with the size of the sentene [9℄. To avoidexponential omplexity, GLR-style algorithms build an eÆient representationof all possible parse trees, using subtree sharing and loal ambiguity paking.However, the SGLR and RNGLR algorithms onstrut parse trees in di�erentways and use slightly di�erent representations. RNGLR essentially follows theapproah desribed by Rekers { the reation and sharing of trees is handleddiretly by the parsing algorithm { but does not onstrut the most ompatrepresentation possible. The SGLR algorithm uses the ATerm library [27℄ toonstrut parse trees thereby taking advantage of the maximal sharing it imple-ments. This approah has several onsequenes. The parsing algorithm an besimpli�ed signi�antly by replaing all parse tree reation and manipulation odewith alls to the ATerm library. Although the library takes are of all sharing,the reation of ambiguities and yles requires extra work.As previously mentioned, in addition to the di�erent onstrution approahes,a slightly di�erent representation of parse forests is used. RNGLR labels internalnodes using non-terminal symbols and uses speial paking nodes to representambiguities. SGLR labels internal nodes with produtions and represents am-biguous trees using speial ambiguity lusters labeled by non-terminal symbols.The reason that prodution rules are used to label the internal nodes of the3 �; � are possibly empty lists of terminals and non-terminals, � is the empty stringand �) means \derives in zero or more steps"8

forest is to implement some of the disambiguation �lters that are disussed laterin this setion.The SGLR algorithm is di�erent to RNGLR mainly due to the �lters that aretargeted at solving lexial ambiguity. Its �lters for priority and preferene willbe disussed as well. SGLR introdues the following four types of �lters: re-stritions, rejets, preferenes and priorities. Eah �lter type targets a partiularkind of ambiguity. Eah �lter is derived from a orresponding delarative dis-ambiguation onstrut in the SDF grammar formalism [7℄. Formally, eah �lteris a funtion that removes ertain derivations from parse forests (sets of deriva-tions). Pratially, �lters are implemented as early in the parsing arhitetureas possible, i.e. removing redutions from parse tables or terminating parallelstaks in the GSS.Four �lter types. We now briey de�ne the semantis of the four �lter types forlater referene. A (follow)restrition is intended to implement \longest math"and \�rst math" behavior of lexial syntax. In the following example, the -/-operator de�nes a restrition on the non-terminal I. Its parse trees may not befollowed immediately by any harater in the lass [A-Za-z0-9 ℄, whih e�etivelyresults in longest math behavior for I:I ::= [A-Za-z℄[A-Za-z0-9 ℄ � I -/- [A-Za-z0-9 ℄ (3.1)In general, given a follow restrition A -/- � where A is a non-terminal and �is a harater lass, any parse tree whose root is A ::= will be �ltered if itsyield in the input string is immediately followed by any harater in �. Multipleharater follow restritions, as in A -/- �1:�2 : : : �n, generalize the onept.If eah of the n haraters beyond the yield of A, �t in their orrespondinglass �i the tree with root A is �ltered. Note that the restrition inorporatesinformation from beyond the hierarhial ontext of the derivation for A, i.e. itis not \ontext-free".The rejet �lter is intended to implement \reservation", i.e. keyword reser-vation. In the following example, the frejetg attribute de�nes that the keywordpubli is to be reserved from I:I ::= [A-Za-z℄[A-Za-z0-9 ℄ � I ::= \publi"frejetg (3.2)In general, given a prodution A ::= and a rejet prodution A ::= Æfrejetg,all trees whose roots are labeled A ::= Æfrejetg are �ltered and any tree whoseroot is labeled A ::= is �ltered if its yield is in the language generated byÆ. Rejets give SGLR the ability to parse non-ontext-free languages suh asanbnn [29℄.The preferene �lter is intended to selet one derivation from several al-ternative overlapping (ambiguous) derivations. The following example uses thefpreferg attribute to de�ne that in ase of ambiguity the preferred tree shouldbe the only one that is not �ltered. The dual of fpreferg is favoidg.I ::= [A-Za-z℄[A-Za-z0-9 ℄ � I ::= \publi" fpreferg (3.3)9

In general, given n produtions A ::= 1 to A ::= n and a preferred produtionA ::= Æfpreferg, any tree whose root is labeled by any of A ::= 1 to A ::= nwill be �ltered if its yield is in the language generated by Æ. All trees whose rootsare A ::= Æfpreferg remain. Dually, given an avoided prodution A ::= �favoidgany tree whose root is A ::= �favoidg is �ltered when its yield is in one of thelanguages generated by 1 to n. In this ase, all trees with roots A ::= 1 toA ::= n remain. Consequently, the preferene �lter an not be used to reognizenon-ontext-free languages.The priority �lter solves operator preedene and assoiativity. The followingexample uses priority and assoiativity:E ::= E \!" Efrightg > E ::= E \or" Efleftg (3.4)The > de�nes that no tree with the \!" prodution at its root will have a hildtree with the \or" at its root. This e�etively gives the \!" prodution higherpreedene. The frightg attribute de�nes that no tree with the \!" produtionat its root may have a �rst hild with the same prodution at its root. In general,we index the > operator to identify for whih argument a priority holds and mapall priority and assoiativity delarations to sets of indexed priorities. Given anindexed priority delaration A ::= �Bi� >i Bi ::= Æ, where Bi is the ith symbolin �Bi�, then any tree whose root is A ::= �Bi� with a subtree that has Bi ::= Æas its root at index i, is �ltered. The priority �lter is not known to extend thepower of SGLR beyond reognizing ontext-free languages.
4 SRNGLRWe now disuss the amalgamated algorithm SRNGLR that ombines the san-nerless behaviour of SGLR with the faster parsing behaviour of RNGLR. TheSRNGLR algorithm is mainly di�erent in the implementation of SGLR's �ltersat parse table generation time. All of SGLR's �lters need to be applied to thestati onstrution of RNGLR's �-trees. However, there are also some hangesin the other stages, parse-time and post-parse �ltering. The rejet �lter washanged for lari�ation and for improving the preditability of its behavior.Note however that the latter hange was applied to both SGLR and RNGLRbefore measuring performane di�erenes.4.1 Constrution of �-treesThe basi strategy is to �rst onstrut the omplete �-trees for eah RN redutionin a straightforward way, and then apply �lters to them. We ollet all theprodutions for nullable non-terminals from the input grammar, and then foreah non-terminal we simply produe all of its derivations in a top-down reursivefashion. If there are alternative derivations, they are olleted under an ambiguitynode.We use maximally shared ATerms [6℄ to represent parse trees. ATerms aredireted ayli graphs, whih prohibits by de�nition the onstrution of yles.10

However, sine parse trees are not general graphs we may use the following trik.The seond time a prodution is used while generating a nullable tree, a yleis deteted and, instead of looping, we reate a \yle node". This speial nodestores the length of the yle. From this representation a (visual) graph an betrivially reonstruted.Note that this representation of yles need not be minimal, sine a part of theatual yle may be unrolled and we detet yles on twie visited produtions,not non-terminals. The reason for heking on produtions is that the priority�lter is spei� for produtions, suh that after �ltering, yles may still exist,but only through the use of spei� produtions.4.2 RestritionsWe distinguish single harater restritions from multiple lookahead restritions.The �rst are implemented ompletely statially, while the latter have a partialimplementation at parse table generation time and a partial implementationduring parsing.Parse table generation. An RN redution A ::= � �� with nullable tree T� inthe parse table an be removed or limited to ertain haraters on the lookahead.When one of the non-terminals B in T� has a follow restrition B -/- , T� mayhave less ambiguity or be �ltered ompletely when a harater from is on thelookahead for reduing A ::= � � �. Sine there may be multiple non-terminalsin T� , there may be multiple restritions to be onsidered.The implementation of restritions starts when adding the RN redution tothe SLR(1) table. For eah di�erent kind of lookahead harater (token), thenullable tree for T� is �ltered, yielding di�erent instanes of T� for di�erentlookaheads. While �ltering we visit the nodes of T� in a bottom-up fashion. Ateah node in the tree the given lookahead harater is ompared to the appliablerestritions. These are omputed by aggregation. When visiting a node labelledC ::= DE, the restrition lass for C is the union of the restrition lasses ofD and E. This means that C is only aeptable when both restritions aresatis�ed. When visiting an ambiguity node with two hildren labeled F and G,the restritions for this node are the intersetions of the restritions of F andG. This means that the ambiguity node is aeptable when either one of therestritions is satis�ed.If the lookahead harater is in the restrited set, the urrent node is �ltered,if not the urrent node remains. The omputed restritions for the urrent nodeare then propagated up the tree. Note that this algorithm may lead to theomplete removal of T� , and the RN redution for this lookahead will be added.If T� is only partially �ltered, and no restrition applies for the non-terminalA of the RN redution, the RN redution is added to the table, inluding the�ltered �-tree.Parser run-time. Multiple harater restritions annot be �ltered statially.They are olleted and the RN-redutions are added and marked to be on-ditional as \lookahead redutions" in the parsetable. Both the testing of therestrition as well as the �ltering of the �-tree must be done at parse-time.11

Before any lookahead RN-redution is applied by the parsing algorithm, the�-tree is �ltered using the restritions and the lookahead information from theinput string. If the �ltering removes the tree ompletely, the redution is notperformed. If it is not removed ompletely, the RN redution is applied and atree node is onstruted with a partially �ltered �-tree.
4.3 PrioritiesParse table generation. There are only hanges in the parse table generationphase. All other phases for priority �ltering remain as in SGLR. The priority�ltering depends on the hosen representation of the �-trees (see also Setion3); eah node holds a prodution rule and yles are unfolded one. Take forexample S ::= SSfleftgj�. The �ltered �-tree for this grammar should representderivations where S ::= SS an be nested on the left, but not on the right. Theyli tree for S must be unfolded one to make one level of nesting expliit.Then the right-most derivations an be �ltered. Suh representation allows astraightforward �ltering of all trees that violate priority onstraints. Note thatpriorities may �lter all of the �-tree, resulting in the removal of the orrespondingRN redution.
4.4 PreferenesParse table generation. The preferene �lter strongly resembles the priority�lter. Preferenes are simply applied to the �-trees, resulting in smaller �-trees.However, preferenes an never lead to the omplete removal of an �-tree.Post-parse �lter. RN redutions labeled with fpreferg or favoidg are proessedin a post-parse �lter. This was already present in SGLR and has not needed anyhanges.
4.5 RejetsParse table generation. If any nullable prodution is labeled with frejetg,then the empty language is not aeptable by that prodution's non-terminal.If suh a prodution ours in an �-tree, we an statially �lter aording to thede�nition of rejets in Setion 3. If no nullable derivation is left after �ltering,we an also remove the entire RN redution.Parser run-time. Note that we have hanged the original algorithm [29℄ for re-jet �ltering at parser run-time for both SGLR and SRNGLR. The ompletenessand preditability of the �lter have been improved. The simplest implementationof rejet is to �lter redundant trees in a post-parse �lter, diretly following thede�nition of its semantis given in Setion 3. However, the goal of the imple-mentation is to prohibit further proessing on GSS staks that an be rejetedas early as possible. This an result in a large gain in eÆieny, sine it makesthe parsing proess more deterministi, i.e. there exist on average less parallelbranhes of the GSS during parsing. 12

The semantis of the rejet �lter is based on syntati overlap, i.e. ambiguity(Setion 3). So, the �lter needs to detet ambiguity between a rejeted produtionA ::= frejetg and a normal prodution for A ::= Æ. The goal is to stop furtherproessing redutions of A. For this to work, the ambiguity must be detetedbefore further redutions on A are done. Suh ordering of the sheduling ofredutions was proposed by Visser [29℄. However, the proposed ordering is notomplete. There are grammars for whih the ordering does not have the desirede�et and rejeted trees do not get �ltered. Espeially nested rejets and rejetsof nullable produtions lead to suh issues. Later alternative implementations ofVisser's algorithm have worked around these issues at the ost of �ltering toomany derivations.Instead we have opted for not trying to order redutions anymore and toimplement an eÆient method for not using rejeted produtions in derivations.The details of this rejet implementation are:{ Edges reated by a redution of a rejeted prodution are stored separatelyin GSS nodes. We prevent other redutions traversing the rejeted edges,thereby preventing possible further redutions on many staks.{ In GLR, edges ollet ambiguous derivations, and if an edge beomes rejetedbeause one of the alternatives is rejeted, it stays rejeted.{ Rejeted derivations that esape are �ltered in a post-parse tree walker. Theymay esape when an alternative, non-rejeted, redution reates an edge andthis edge is traversed by a third redution before the original edge beomesrejeted by a prodution marked with frejetg.Like the original, this algorithm �lters many parallel staks at run-time withthe added bene�t that it is more learly orret. We argue that: (A) we donot �lter trees that should not have been �ltered, (B) we do not depend onthe ompleteness of the �ltering during parse time, and (C) we do not try toorder sheduling of redue ations, whih simpli�es the ode that implementsSRNGLR signi�antly.The Post-parse �lter of rejets simply follows the de�nition of its semantis asdesribed in Setion 3. For the orret handling of nested rejets, it is imperativeto apply the �lter in a bottom-up fashion.
5 Related workThe ost of general parsing as opposed to deterministi parsing or parsing withextended lookahead has been studied in many di�erent ways. Our ontributionis a ontinuation of the RNGLR algorithm applied in a di�erent ontext.Despite the fat that general ontext-free parsing is a mature �eld in Com-puter Siene, its worst ase omplexity is still unknown. The algorithm withthe best asymptoti time omplexity to date is presented by Valiant [25℄. How-ever, beause of the high onstant overheads this approah is unlikely to be usedin pratie. There have been several attempts at speeding the run time of LRparsers that have foused on ahieving speed ups by implementing the handle13

�nding automaton (DFA) in low-level ode, [4, 13, 17, 18℄. A di�erent approahto improving eÆieny is presented in [2, 3℄, the basi ethos of whih is to reduethe reliane on the stak. Although this algorithm fails to terminate in ertainases, the RIGLR algorithm presented in [14℄ has been proven orret for allontext-free grammars.Two other general parsing algorithms that have been used in pratie arethe CYK [10, 15, 30℄ and Earley [11℄ algorithms. Both display ubi worst aseomplexity, although the CYK algorithm requires grammars to be transformedto Chomsky Normal Form before parsing. The BRNGLR [23℄ algorithm ahievesubi worst ase omplexity without needing to transform the grammar.Note however that the SGLR and the SRNGLR algorithm desribed in thispaper is more than a parsing algorithm. Filtering is a major fator too, whihmakes SRNGLR inomparable to other parsing algorithms.
6 ConlusionsWe improved the speed of parsing and �ltering for sannerless grammars signif-iantly by applying the ideas of RNGLR to SGLR. The disambiguation �ltersthat omplement the parsing algorithm at all levels needed to be adapted andextended. Together the implementation of the �lters and the RN tables makesannerless GLR parsing quite a bit faster. The appliation areas in softwarerenovation and embedded language design are diretly servied by this. It allowsexperimentation with more ambiguous grammars, e.g. interesting embeddings ofsripting languages, domain spei� languages and legay languages.Aknowledgements. We are grateful to Arnold Lankamp for helping toimplement the GSS garbage olletion sheme for SRNGLR. The �rst authorwas partially supported by EPSRC grant EP/F052669/1.
Referenes1. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Priniples, Tehniques and Tools.Addison-Wesley, 1986.2. John Ayok and R. Nigel Horspool. Faster generalised LR parsing. In Proeed-ings 8th International Compiler onferene, volume 1575 of LNCS, pages 32{46,Amsterdam, Marh 1999. Springer-Verlag.3. John Ayok, R. Nigel Horspool, Jan Janousek, and Borivoj Melihar. Even fastergeneralised LR parsing. Ata Inform., 37(9):633{651, 2001.4. Ahyutram Bhamidipaty and Todd A. Proebsting. Very fast YACC-ompatibleparsers (for very little e�ort). Softw., Prat. Exper., 28(2):181{190, February 1998.5. M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge,T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Sheerder, J.J. Vinju, E. Visser,and J. Visser. The ASF+SDF Meta-Environment: a Component-Based LanguageDevelopment Environment. In R. Wilhelm, editor, CC'01, volume 2027 of LNCS,pages 365{370. Springer-Verlag, 2001.6. M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. EÆient Anno-tated Terms. Softw., Prat. Exper., 30(3):259{291, 2000.14

7. M.G.J. van den Brand, J. Sheerder, J.J. Vinju, and E. Visser. Disambiguation Fil-ters for Sannerless Generalized LR Parsers. In R. Nigel Horspool, editor, CompilerConstrution, volume 2304 of LNCS, pages 143{158. Springer-Verlag, 2002.8. Martin Bravenboer, �Eri Tanter, and Eelo Visser. Delarative, formal, and exten-sible syntax de�nition for AspetJ. SIGPLAN Not., 41(10):209{228, 2006.9. Keneth Churh and Ramesh Patil. Coping with syntati ambiguity or how to putthe blok in the box on the table. Amerian Journal of Computational Linguistis,8(3{4):139{149, July{Deember 1982.10. John Coke and Jaob T. Shwartz. Programming languages and their ompilers.Tehnial report, Courant Institute of Mathematial Sienes, New York Univer-sity, 1970.11. Jay Earley. An eÆient ontext-free algorithm. Comm. ACM, 13(2):94{102, Feb1970.12. Giorgios Robert Eonomopoulos. Generalised LR parsing algorithms. PhD thesis,Royal Holloway, University of London, August 2006.13. R. Nigel Horspool and Mihael Whitney. Even faster LR parsing. Softw., Prat.Exper., 20(6):515{535, June 1990.14. Adrian Johnstone and Elizabeth Sott. Automati reursion engineering of redu-tion inorporated parsers. Si. Comp. Programming, 68(2):95{110, 2007.15. T. Kasami and K. Torii. A syntax analysis proedure for unambiguous ontext-freegrammars. J. ACM, 16(3):423{431, 1969.16. Rahman Nozohoor-Farshi. GLR parsing for �-grammars. In Masaru Tomita, editor,Generalized LR Parsing, hapter 5, pages 61{75. Kluwer Aademi Publishers,Netherlands, 1991.17. Thomas J. Pennello. Very fast LR parsing. In SIGPLAN Symposium on CompilerConstrution, pages 145{151. ACM Press, 1986.18. Peter Pfahler. Optimizing diretly exeutable LR parsers. In CC, pages 179{192.Springer-Verlag New York, In., 1990.19. J. Rekers. Parser Generation for Interative Environments. PhD thesis, Universityof Amsterdam, 1992.20. D.J. Salomon and G.V. Cormak. Sannerless NSLR(1) parsing of programminglanguages. SIGPLAN Not., 24(7):170{178, 1989.21. D.J. Salomon and G.V. Cormak. The disambiguation and sannerless parsing ofomplete harater-level grammars for programming languages. Tehnial Report95/06, Dept. of Computer Siene, University of Manitoba, 1995.22. Elizabeth Sott and Adrian Johnstone. Right nulled GLR parsers. ACM Trans.Program. Lang. Syst., 28(4):577{618, 2006.23. Elizabeth Sott, Adrian Johnstone, and Rob Eonomopoulos. BRNGLR: a ubiTomita-style GLR parsing algorithm. Ata Inform., 44(6):427{461, 2007.24. M. Tomita. EÆient Parsing for Natural Languages. A Fast Algorithm for Pra-tial Systems. Kluwer Aademi Publishers, 1985.25. L. G. Valiant. General ontext-free reognition in less than ubi time. J. Comput.System Si., 10:308{315, 1975.26. M.G.J. van den Brand. Pregmati, a generator for inremental programming en-vironments. PhD thesis, Katholieke Universiteit Nijmegen, 1992.27. M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. EÆient annotatedterms. Softw., Prat. Exper., 30(3):259{291, 2000.28. Guido van Rossum. Python referene manual. http://dos.python.org/ref/.29. E. Visser. Syntax De�nition for Language Prototyping. PhD thesis, University ofAmsterdam, 1997. 15

30. D. H. Younger. Reognition and parsing of ontext-free languages in time n3.Inform. and ontrol, 10(2):189{208, 1967.

16

