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Abstra
t. The paper deals with the eÆ
ient parallelization of least-squares spe
tral element methods for in
ompressible 
ows. The paral-lelization of this sort of problems requires two di�erent strategies. On theone hand, the spe
tral element dis
retization bene�ts from an element-by-element parallelization strategy. On the other hand, an eÆ
ient strat-egy to solve the large sparse global systems bene�ts from a row-wise dis-tribution of data. This requires two di�erent kinds of data distributionsand the 
onversion between them is rather 
ompli
ated. In the presentpaper, the di�erent strategies together with its 
onversion are dis
ussed.Moreover, some results obtained on a distributed memory ma
hine (CrayT3E) are presented.
1 Introdu
tionLeast-squares spe
tral element methods are based on two important and su
-
essful numeri
al methods: spe
tral/hp element methods and least-squares �-nite element methods. Least-squares methods lead to symmetri
 and positivede�nite algebrai
 systems whi
h 
ir
umvent the Ladyzhenskaya-Babu�ska-Brezzistability 
ondition and 
onsequently allow the use of equal order interpolationpolynomials for all variables. The a

ura
y of a least-squares spe
tral elementdis
retization of the Stokes problem (
ast in velo
ity-vorti
ity-pressure form)has been reported in [5, 6℄ for di�erent boundary 
onditions. The present paperdeals with the eÆ
ient parallelization of this solver.Parallelization of the least-squares spe
tral element method (LSQSEM) re-quires two di�erent kinds of distribution of data and the 
onversion is rather
ompli
ated. The spe
tral element stru
ture enables one to 
al
ulate the lo
almatri
es 
orresponding to ea
h spe
tral element (also 
alled 
ells), simultane-ously. After the (parallel) 
al
ulation of the lo
al systems, we have to swit
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from a lo
al numbering to a global numbering to 
omplete the gathering pro
e-dure. When this has been 
ompleted, one obtains a global Compressed SparseRow (CSR) formatted matrix whi
h 
an be easily distributed along an arbitrarynumber of pro
essors. Ea
h pro
essor has to send data from one 
ell to a fewother pro
essors or possibly to itself, a very unbalan
ed task due to the 
hosennumbering. However, if this task is 
ompleted, ea
h pro
essor 
ontains a part ofthe global assembled matrix, and the data per pro
essor will be balan
ed again.Sin
e the global system is symmetri
 and positive de�nite, the robust pre
on-ditioned 
onjugate gradient method (PCG) 
an be applied dire
tly. In this paper,we des
ribe results obtained with the simple, easy to parallelize, Ja
obi or diago-nal pre
onditioning. In the future, we plan to test the eÆ
ien
y of other pre
on-ditioning methods: blo
k-Ja
obi, FEM-matrix and Additive S
hwarz methods [3,4, 7℄. The results will be dis
ussed in forth
oming work.The parallelization of the 
omplete algorithm, in
luding the important 
on-version of a spe
tral element-by-element distribution to a row-wise CSR-formatdistribution, and numeri
al results of large-s
ale problems arising in s
ienti�

omputing are also dis
ussed in the present paper.2 The least-squares spe
tral element formulation of theStokes problemIn order to obtain a bona �de least-squares formulation, the Stokes problem is�rst transformed into a system of �rst order partial di�erential equations byintrodu
ing the vorti
ity as an auxiliary variable. By using the identityr�r� u = ��u+r(r � u)and by using the in
ompressibility 
onstraint r�u = 0, the governing equationssubsequently read rp+ �r� ! = f in 
; (1)! �r� u = 0 in 
; (2)r � u = 0 in 
; (3)where, in the parti
ular 
ase of the two-dimensional problem, uT = [u1; u2℄Trepresents the velo
ity ve
tor, p the pressure, ! the vorti
ity fT = [f1; f2℄ thefor
ing term (if appli
able) and � the kinemati
 vis
osity. For simpli
ity it isfurther assumed that the density equals � = 1. In two dimensions, system (1)-(3), 
onsists of four equations and four unknowns and is uniformly ellipti
 oforder four. The velo
ity boundary 
ondition (u given) is used to supplement thegoverning equations (1)-(3). The linear Stokes operator and its right-hand-sideread:
L (U) = F () 2664 0 0 � ��x2 ��x10 0 �� ��x1 ��x2��x2 � ��x1 1 0��x1 ��x2 0 0

37752664u1u2!p
3775 = 2664f1f200

3775 in 
: (4)



3 General implementation aspe
ts3.1 Dis
retizationThe domain is dis
retized with a mesh of K non-overlapping 
onforming quadri-lateral spe
tral elements of the same order N . Ea
h quadrilateral spe
tral ele-ment is mapped on the parent spe
tral element 
e by using an iso-parametri
mapping to the bi-unitsquare [�1; 1℄ � [�1; 1℄ with lo
al 
oordinates �1 and �2.In the parent element all variables, lo
ated at the Gauss-Legendre-Lobatto 
ollo-
ation (GLL) points, 
an be approximated by the same Lagrangian interpolant,sin
e the least-squares formulation is not 
onstrained by the Ladyzhenskaya-Babu�ska-Brezzi stability 
ondition. Most spe
tral element methods are based onthe GLL numeri
al integration for reason of a

ura
y. For the two-dimensionalStokes problem, the dis
rete spe
tral element approximation yields
Uh = N2Xj=0 N1Xi=0 hi (�1)hj (�2)

2664 û1û2̂!̂p
3775i;j , (5)

where hi (�1) with 0 � i � N1 and hj (�2) with 0 � j � N2 represent the La-grange interpolants in the �1 and �2-dire
tion through the GLL points, respe
-tively. The ve
tor [û1; û2; !̂; p̂℄T is the ve
tor of unknown 
oeÆ
ients, evaluatedat the GLL 
ollo
ation point. Hen
e, ea
h spe
tral element gives rise to a lo
alsystem of the form: Ai zi = fi; with i = 1; � � � ;K (6)where the matri
es Ai and right-hand side ve
tors fi are given byAi = Z
e [L ( 0;0) ; � � � ;L ( N;N )℄T [L ( 0;0) ; � � � ;L ( N;N )℄ d
; (7)
and fi = Z
e [L ( 0;0) ; � � � ;L ( N;N )℄T F d
; (8)
respe
tively and where  i;j = hi (�1)hj (�2).3.2 Lo
al numbering versus global numberingDue to the 
ontinuity requirements between the C0-spe
tral elements, some ofthe variables zi 
orresponding to internal boundary will belong to more thanone lo
al system whi
h ne
essitates the introdu
tion of a global numbering.In Fig. 1 an example is given of a domain dis
retized with a mesh of fourspe
tral elements. Ea
h spe
tral element 
ontains nine lo
al nodes, numberedfrom 1 to 9 (small-size digits). In the same �gure, also a global numbering
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Fig. 1. Example of lo
al and global numbering. The domain has been divided into four
ells: I, II,III, IV. Ea
h 
ell 
ontains 9 nodes, denoted by a Æ.
(normal-size digits) is shown. First, the internal nodes or variables are num-bered (1; � � � ; 9), then the knowns (10; � � � ; 25) given by the boundary 
onditions.Sin
e ea
h lo
al variable 
orresponds to a global variable, one 
an establish thelo
al-global mapping operator gm for ea
h spe
tral element. For the given ex-ample, we have gmI = [ 10; 11; 13; 12; 1; 2; 17; 4; 6 ℄;gmII = [ 13; 14; 15; 2; 3; 16; 6; 7; 21 ℄;gmIII = [ 17; 4; 6; 18; 5; 8; 19; 20; 24 ℄;gmIV = [ 6; 7; 21; 8; 9; 22; 24; 25; 23 ℄: (9)
The lo
al-global mapping operator gmI 
an also be expressed by the sparsegathering matrix Gi whi
h has nonzero entries a

ording to Gi(i; gmI (i)) =1; I = I; � � � ; IV. The global assembly of the K lo
al systems (6) 
an now readilybe obtained with: KU = F , " KXi=1 GTi AiGi#U = KXi=1 GTi fi; (10)
where the matrix K represents the symmetri
al, globally gathered matrix of fullbandwidth and the ve
tors U and F represent the global nodes (e.g., variablesand knowns) and the global right-hand side fun
tion, respe
tively.Sin
e the known nodes are numbered last, one 
an subdivide the ve
tor Uinto an unknown 
omponent U1 and a known 
omponent U2. Consequently, thematrix K 
an be fa
tored into submatri
es K1;1, K1;2, KT1;2 and K2;2. Also thethe right-hand side ve
tor F 
an be fa
tored into the submatri
es F1 and F2.



Hen
e, system (10) has the following matrix stru
ture�K1;1 K1;2KT1;2 K2;2 � �U1U2 � = �F1F2 � ; (11)whi
h readily allows \stati
 
ondensation" of the knowns, leading to the followingsparse symmetri
 and positive de�nite systemK1;1U1 = F1 �K1;2U2 , (12)whi
h 
an be solved eÆ
iently in parallel with the Ja
obi pre
onditioned 
onju-gate gradient method [2℄.The results in [2℄ revealed that it is ne
essary to 
onstru
t the global system(12) in parallel to obtain a good s
alable solver. To this end, the matri
es Ai, theve
tors fi, the lo
al-global mapping operator gmI and the gathering pro
edure,must be performed in parallel.
3.3 Investigation of the gridIn order to 
onstru
t the matri
es Ai and ve
tors fi, one only needs the 
oordi-nates of the 
orners of the 
ells and its GLL orders in �1- and �2 dire
tion, beginN1 and N2, respe
tively. For the 
al
ulation of the lo
al-global mapping operatorgmI , detailed grid information regarding the neighbouring 
ells is required toobtain the global numbering in parallel. Hen
e, the 
oordinates of the 
orners,the neighbouring 
ells and the GLL order together with a unique global number(see Se
tion 3.4) are the minimal information needed to 
onstru
t the global sys-tem (12) in parallel. These data will be 
olle
ted on one pro
essor when the gridis investigated and broad
asted from the root pro
essor to N
 � 1 pro
essors.This information 
an be 
olle
ted the following way. The order of the spe
tralelements N = N1 = N2 is an input variable. When the grid �le is read, the nodes,the nodal 
oordinates and the 
orners of the spe
tral element mesh be
omeavailable. The neighbors of the spe
tral elements 
an be obtained by investigatingthe mesh. This 
an be done the following way. The 
orners of a spe
tral elementare given in �xed order, see Fig. 2. In 
ase two elements share the same node,their position with respe
t to ea
h other is known. E.g., if node 0 of element S5equals node 3 of element S2 then S2 must be the South-neighbor of S5. If node 2of S5 equals node 3 of S6 then S6 will be the East-neighbor of S5, and so on. Ifa spe
tral element has less than four neighbors it must be a boundary element.For the parallel global numbering of the nodes, it is ne
essary to assignthe global GLL 
ollo
ation points to one parti
ular 
ell. For the inner nodesthis is trivial, but the situation is more 
ompli
ated for the nodes lo
ated atthe boundaries. Indeed, internal boundaries are shared by at least two spe
tralelements and internal nodes by at most four spe
tral elements. Therefore, wemust de�ne to whi
h spe
tral element the 
orners and GLL 
ollo
ation pointsbelong. There are several possibilities, with the same 
omplexity, and we 
hooseone of them:
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Fig. 2. Ordering of 
orners, The 
orners are numbered in �xed order, su
h that it iseasy to re
ognize whi
h spe
tral elements are neighbors
{ a spe
tral element 
onsists of all its internal GLL-points, the lower-left 
or-ner, the 
ollo
ation points at the South and West boundary, without the
orner nodes.{ if a spe
tral element has an external boundary, the set is extended with theboundary points and possibly by 
orners that do not belong to other spe
tralelements.
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Fig. 3. An example of a grid dis
retized into four spe
tral elements. The nodes num-bered 1 belong to spe
tral element 1, those numbered 2 belong to spe
tral element 2,and so on. The solid line 
orresponds to an external boundary
Fig. 3 displays a mesh of four spe
tral elements and the numbers 1 to 4elu
idate to whi
h spe
tral element the nodes belong.Communi
ation is required to obtain the missing values on the internal(North and East interfa
es: �rst boundary data are sent from North to South.Subsequently, boundary data are sent from East to West. After these steps, alsothe right-upper 
orner has got its 
orre
t 
omponent values.



3.4 Unique global numberingTo obtain a unique global numbering, �rst the internal (boundary) points arenumbered whi
h belong to a single spe
tral element: this lo
al numbering startswith 1. Then we know exa
tly how mu
h variables Nkvar are present per elementand transfer this information along the pro
essors, su
h that we 
an 
omputeMi Mi = i�1Xk=1Nkvar; (13)being the sum of the number of variables on pre
eding spe
tral elements k; k < i.The value Mi will be added to the lo
al number. The knowns are numberedanalogously. The numbering starts with MN
 +NK + 1. Hen
e, one obtains theglobal node numbering dis
ussed in Se
tion 3.2.3.5 The 
onstru
tion of matrix KThe parallel global assembly of the K lo
al systems 
an now be performed result-ing in the sparse symmetri
 positive de�nite global matrix K. Sin
e the solutionof equation (12) is by far the most time 
onsuming part, it must be optimallyperformed. Therefore, K will be distributed along the pro
essors into balan
edparts of rows. The sparsity of K desires a CSR-formatted storage approa
h.The symmetry is not exploited: all nonzero elements of K are stored. However,the CG method 
an only be applied su

essfully if K is symmetri
 and positivede�nite.The 
onversion of the lo
al systems Ai into the global system K is 
om-pli
ated and requires 
ommuni
ation. Beforehand, it is diÆ
ult to say whi
hpro
essors will 
ommuni
ate with ea
h other and how long the messages will be.The global number determines to whi
h pro
essor the data will be sent. There-fore, a type gambit has been de�ned whi
h 
ouples the global number with thepro
essor number and the row number on that parti
ular pro
essor:TYPE :: gambitINTEGER :: globalnrINTEGER :: pro
nrINTEGER :: rownrEND TYPELet Nvar denote the number of variables. Be
ause only the �rst Nvar rows ofmatrixK are desired, the value pro
nr is not important when the global numberwill be larger than Nvar: to avoid 
onfusion a negative value is added to pro
nr.For ea
h nonzero element of Ai it is then easy to determine whether it 
on-tributes to K1;1, to K1;2, or whether it 
an be negle
ted (row number > Nvar).In the worst 
ase, a single 
ell 
ontains data whi
h must be sent to all availablepro
essors.All nonzero elements of Ai are 
onsidered and on a

ount of its global num-ber it is known to whi
h pro
essor it has to be sent. Before su
h an element



and 
orresponding information about 
olumn number in K is sent, all data aregathered and put into one message intended for a parti
ular pro
essor. Threedi�erent 
ases 
an o

ur:1. The message must be sent to the pro
essor on whi
h it is already present.In that 
ase, a send instru
tion is super
uous and the data 
an be pro
essedimmediately, or after the other messages have been sent.2. The message is empty: no 
ommuni
ation will take pla
e, ex
ept that amessage will be sent to the re
eiving pro
essor that no 
ontribution of thesend pro
essor 
an be expe
ted.3. The message is not empty and the send and re
eive pro
essors are unequal.In that 
ase 
ommuni
ation is ne
essary.
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Fig. 4. Example of mapping of lo
al matri
es Ai into the global matrix K, partitionedinto matrix parts Kj of 
onse
utive rows
The order in whi
h the messages will be re
eived is not known, and also notimportant. If nonzero elements are already present (see 
ase 1 above) the �rstvery sparsematrix Li 
an be built up. This matrix Lj 
ontains the nonzero valuesof an Ai des
endent of a spe
tral element stored in CSR-format. Contributionsof other pro
essors will be added to Lj - i.e. ea
h step the sum of two sparsematri
es, stored in CSR-format, is 
al
ulated with a SPARSKIT [9℄ subroutine.In 
ase no data are present, e.g., the rank of the pro
essor is larger than thenumber of 
ells, the �rst data re
eived will be used to build up the basis matrixLj . In the worst 
ase, to 
reate Kj , data from N
 spe
tral elements are needed.In pra
ti
e, this number will be less. We do not investigate to �nd for all (N
; p)
ombinations a favorite global numbering.We observe that two steps are required to 
onstru
t the matrix K of (11)
ompletely: one to 
onstru
t K1;1 and one to 
onstru
t K1;2 of equation (12).The distribution of K1;1 and K1;2 along the pro
essors is similar.



4 Parallel platform and implementation toolsThe 
al
ulations have been performed on{ Cray T3E system Vermeer (named after the Dut
h painter) at HP�C with128 user pro
essing elements (PE's) inter
onne
ted by the fast 3D torusnetwork with a peak performan
e of 76.8 Giga
op/s. The T3E uses the DECAlpha 21164 for its 
omputational tasks. Ea
h node in the system 
ontainsone PE whi
h in turn 
ontains a CPU, memory, and a 
ommuni
ation enginethat takes 
are of 
ommuni
ation between PE's. The bandwidth betweennodes is quite high: 325 MB/s, bi-dire
tional. Ea
h PE is 
on�gured with128 Mbytes of lo
al memory, providing more than 16 Gbytes of globallyaddressable distributed memory.For more information about the Cray T3E used, we refer to [10℄.To get good portable programs whi
h may run on distributed-memory multi-pro
essors, networks of workstations as well as shared-memory ma
hines we useMPI, Message Passing Interfa
e. Standard or blo
king 
ommuni
ation modeis used: a send 
all does not return until the message data have been safelystored away so that the sender is free to a

ess and overwrite the send bu�er.Besides the standard 
ommuni
ation mode, it appears to be ne
essary to usethe bu�ered-mode send operation MPI BSEND (see e.g., [8℄). This operation 
anbe started whether or not a mat
hing re
eive has been posted. Its 
ompletiondoes not depend on the o

urren
e of a mat
hing re
eive. In this way a deadlo
ksituation, in whi
h all pro
esses are blo
ked is prevented. The exe
ution of thesend-re
eive pro
ess demonstrated in Fig. 4 pro�ts of the bu�ered-mode sendoperation.All routines have been implemented in FORTRAN 90, making frequently useof dynami
 allo
ation of memory and derived types. As des
ribed in Se
t. 3.5the 
onversion of the 
ell-wise distribution into the row-wise CSR-format storageis diÆ
ult to implement and asks for a high level of 
exibility. On fore hand itis not 
lear whi
h pro
essing elements will 
ommuni
ate and how mu
h datawill a
tually transferred. An upper bound for the number of pro
essors whi
hmay need data of 
ell i 
an be N
, the number of 
ells involved1s, whereasan upperbound of data from 
ell i to PE j 
an be the whole 
ontents of thatparti
ular 
ell i. Apparently, multipli
ation of these two upperbounds leads to astorage demand per pro
essor whi
h grows with the number of pro
essors usedin the exe
ution. The solution 
an be found in the usage of data stru
tures withpointers to variable array sizes.
5 Numeri
al results5.1 The h- and p-re�nement approa
h and its a

ura
yIn (least-squares) spe
tral element appli
ations, two di�erent kinds of re�nementstrategies are 
ommonly used: h-re�nement and p-re�nement. The purpose of the



numeri
al simulations is to 
he
k the a

ura
y performan
e for both re�nementstrategies. To this end, the least-squares spe
tral element formulation of thevelo
ity-vorti
ity-pressure formulation of the Stokes problem is demonstratedby means of the smooth model problem of Gerritsma-Phillips [1℄ with v = 1.This model problem involves an exa
t periodi
 solution of the Stokes problemde�ned on the unit-square ([0; 1℄ � [0; 1℄). The velo
ity boundary 
ondition isused for all the numeri
al simulations. The pressure 
onstant is set at the point(0; 0).Six di�erent grids are used to 
he
k the a

ura
y of the h-re�nement. As 
anbe observed in Table 1, the polynomial order of all the spe
tral elements equals4, whi
h means that ea
h dire
tion has four Gauss-Legendre-Lobatto(GLL) 
ol-lo
ation points, and the number of spe
tral elements is varied from 4 to 144.In the middle 
olumn of Tables 1 and 2 the order of the large sparse global
Table 1. The di�erent grids used for the investigation of the h�re�nements

Spe
tral GLL- size of # L2 normelements order global system iterations Velo
ity Vorti
ity Pressure2� 2 4 259 132 9.2 10�4 4.8 10�2 1.8 10�24� 4 4 1027 232 5.0 10�5 1.6 10�3 7.1 10�46� 6 4 2307 326 5.2 10�6 2.8 10�4 6.9 10�58� 8 4 4099 431 1.1 10�6 8.7 10�5 1.3 10�510� 10 4 6403 569 3.2 10�7 3.5 10�5 3.6 10�612� 12 4 9219 707 1.2 10�7 1.7 10�5 1.3 10�6
Table 2. The di�erent grids used for the investigation of the p�re�nements

Spe
tral GLL- size of # L2 normelements order global system iterations Velo
ity Vorti
ity Pressure2� 2 4 259 132 9.2 10�4 4.8 10�2 1.8 10�22� 2 6 579 224 8.7 10�6 7.5 10�4 1.9 10�32� 2 8 1027 305 6.5 10�8 7.1 10�6 1.6 10�62� 2 10 1603 388 4.4 10�10 4.5 10�8 7.6 10�9
system is given together with the number of iterations required to solve this sys-tem using CG. The right 
olumn in the tables lists the L2 norm of the di�erent
omponents, like the velo
ity (L2 norm of x� and y�
omponents agree), thevorti
ity and pressure.Only four di�erent grids have been used to 
he
k the a

ura
y in 
ase ofthe p-re�nement (see Table 2). Ea
h grid 
ontains four spe
tral elements. The



order of the approximating polynomial varies from 4 to 10 and is the same inall the variables. A growth of the polynomial order in the p-re�nement 
ase willin
rease the number of nodes per 
ell and likewise the amount of 
omputationale�ort per 
ell.5.2 The parallel performan
eThe least-squares spe
tral element solver (LSQSEM) 
ode allows for the follow-ing situations:N
 � p : At least several pro
essors 
ontain more than one spe
tral element. Itis not required that p is a true divisor of N
, or put it another way, thenumber of spe
tral elements per PE may di�er.N
 < p : A less plausible possibility. As we may 
on
lude from Tables 1 and2 that in order to in
rease the a

ura
y of the solution it is to preferred toenlarge the GLL order rather than to add more spe
tral elements. The lattergives rise to mu
h larger global systems and a

ordingly more exe
ution time.Indeed, during the 
onstru
tion of the lo
al systems p � N
 pro
essors areidle, but for the same a

ura
y, the wall-
lo
k time 
an be less. We remark,that MPI gives the opportunity to de�ne an intra
ommuni
ator, whi
h isused for 
ommuni
ating within a group, for instan
e within the group ofPE's whi
h 
orrespond to a spe
tral element.In the 
ode we may 
onsider several phases in the parallelization. The phasesdes
ribed 
orrespond to the parts shown in Table 3:{ The de
omposition of the domain, or the investigation of the grid (
f. Se
t. 3.3).In this phase, information is read from �le: the number of spe
tral elements,the 
oordinates of the 
orners of the spe
tral elements, and of ea
h spe
tralelement its 
orners are listed on �le. Further the position of the spe
tral ele-ments with respe
t to its neighbors is derived. This phase will be performedon a single pro
essor.{ the se
ond phase 
alled GAMBIT, performs the 
omputation on the internalGLL nodes and the boundary points. Also the lo
al-global mapping (
f.equation (10) is 
al
ulated. Communi
ation is required for internal boundarypoints.{ The third phase 
omputes the lo
al systems and the right hand side values.This part is the most time-
onsuming part of the 
al
ulations on spe
tralelements and as 
an be 
on
lude from Table 3, it is well s
alable.{ The fourth and �fth phases 
onsider the 
onversion of the lo
al systemsinto the global systems. In SUM the 
ontribution of the lo
al systems to the
onstru
tion of matrix K is gathered. CSR performs the a
tual 
onstru
tionof K1;1 and K1;2 of equation (11) by means of 
omputing the sum of sparsematri
es. Also the 
ommuni
ation as des
ribed by Fig. 4 is in
luded in CSR.{ In the last phase of the program PCG is used to solve the global system.In [2℄ it is des
ribed how the matrix-ve
tor produ
t in PCG are 
omputedin parallel and gives pi
tures of speed-ups of this part of the 
ode a
hieved



on the TERAS, an SGI Origin 3800 platform with 1024 pro
essors, lo
atedat SARA, Amsterdam and the Vermeer, the platform used for the results ofthe present paper.The last 
olumn of Table 3 gives the wall-
lo
k time for a 
omplete run. Weemphasize that the 
onversion part may not be negle
ted, espe
ially the manpower that was needed to give the 
ode the 
exibility for allowing an arbitrarynumber of spe
tral elements with respe
t to the number of pro
essors involved,but for 32 pro
essors it takes about 1.2 % of the total wall 
lo
k time.
Table 3. Wall-
lo
k timings in se
onds for the di�erent parts in the parallel LSQSEM
ode obtained for the grid of 12� 12 spe
tral elements and GLL order=6p Spe
tral elements Conversion PCG Exe
utionread GAMBIT Stokes SUM CSR time time4 0.19 0.38 118.95 3.01 21.94 584.57 729.198 0.20 0.30 59.44 1.56 7.41 308.55 377.6516 0.18 0.23 29.70 0.85 2.65 176.34 210.1532 0.19 0.21 16.54 0.59 1.11 121.67 140.77

Finally, Fig. 5 shows the overall performan
e of the 
ode on p = 4; 8; 12; 16; 24; 32pro
essors. Here we do not show speedup pi
tures, be
ause it is not possible torun the largest problem on a single pro
essor. We remark, that not in all 
asesthe number of 
ells is a multiple of p, e.g., the 10� 10 grid has only p = 4 as atrue divisor. The speedup obtained when eight times more pro
essors are used,(viz. from p = 4 to p = 32) is more than 5.2 and for the 8� 8 is nearly 7.
6 Con
lusions and outlook
Least-squares spe
tral element methods result in symmetri
 and positive de�nitesystems of linear equations whi
h 
an be eÆ
iently solved in parallel by PCG.The parallelization of this sort of problems requires two di�erent strategies.Indeed, the spe
tral element dis
retization bene�ts from an element-by-elementparallelization strategy whereas an eÆ
ient strategy to solve the large sparseglobal systems bene�ts from a row-wise distribution of data.The numeri
al results, obtained with a simple model problem, 
on�rm thegood parallel properties of the element-by-element parallelization strategy. The
ombination of this strategy with the parallel JCG solver resulted in a goodparallizable 
ode to solve in
ompressible 
ow problems. In the future, more ef-fe
tive pre
onditioning methods for least-squares spe
tral element methods willbe developed.
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Referen
es1. M. I. Gerritsma and T. N. Phillips. Dis
ontinuous spe
tral element approximationsfor the velo
ity-pressure-stress formulation of the Stokes problem. Int. J. Numer.Meth. Eng., 43:1401{1419, 1998.2. M. Nool and M. M. J. Proot. Parallel implementation of a least-squares spe
tralelement solver for in
ompressible 
ow problems. Submitted to J. Super
omput.,2002.3. L. F. Pavarino and O. B. Widlund. Iterative substru
turing methods for spe
tralelement dis
retizations of ellipti
 systems. I: 
ompressible linear elasti
ity. SIAMJ. NUMER. ANAL., 37(2):353{374, 1999.4. L. F. Pavarino and O. B. Widlund. Iterative substru
turing methods for spe
tralelement dis
retizations of ellipti
 systems. II: Mixed methods for linear elasti
ityand Stokes 
ow. SIAM J. NUMER. ANAL., 37(2):375{402, 1999.5. M. M. J. Proot and M. I. Gerritsma. A least-squares spe
tral element formulationfor the Stokes problem. J. S
i. Comp., 17(1-3):311{322, 2002.6. M. M. J. Proot and M. I. Gerritsma. Least-squares spe
tral elements applied tothe Stokes problem. submitted.7. A. Quateroni and A. Valli. Domain De
omposition Methods for Partial Di�erentialequations. Oxford University Press, 1999.8. Mar
 Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Ja
kDongarra. MPI: The Complete Referen
e. MIT Press, Cambridge, Massa
husetts,1996.9. Yousef Saad. SPARSKIT: a basi
 tool-kit for sparse matrix 
omputations (Ver-sion 2) http://www.
s.umn.edu/resear
h/arpa/SPARSKIT/sparskit.html10. Aad J. van der Steen. Overview of re
ent super
omputers, Issue 2001 NationalComputing Fa
ilities Foundation, Den Haag, 2001.


