A Parallel, State-of-the-Art,
Least-Squares Spectral Element Solver
for Incompressible Flow Problems *

Margreet Nool' and Michael M. J. Proot?

L CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Margreet.Nool@cwi.nl
2 Delft University of Technology, Kluyverweg 1, Delft, The Netherlands.
m.m. j.proot@lr.tudelft.nl

Abstract. The paper deals with the efficient parallelization of least-
squares spectral element methods for incompressible flows. The paral-
lelization of this sort of problems requires two different strategies. On the
one hand, the spectral element discretization benefits from an element-
by-element parallelization strategy. On the other hand, an efficient strat-
egy to solve the large sparse global systems benefits from a row-wise dis-
tribution of data. This requires two different kinds of data distributions
and the conversion between them is rather complicated. In the present
paper, the different strategies together with its conversion are discussed.
Moreover, some results obtained on a distributed memory machine (Cray
T3E) are presented.

1 Introduction

Least-squares spectral element methods are based on two important and suc-
cessful numerical methods: spectral/hp element methods and least-squares fi-
nite element methods. Least-squares methods lead to symmetric and positive
definite algebraic systems which circumvent the Ladyzhenskaya-Babuska-Brezzi
stability condition and consequently allow the use of equal order interpolation
polynomials for all variables. The accuracy of a least-squares spectral element
discretization of the Stokes problem (cast in velocity-vorticity-pressure form)
has been reported in [5, 6] for different boundary conditions. The present paper
deals with the efficient parallelization of this solver.

Parallelization of the least-squares spectral element method (LSQSEM) re-
quires two different kinds of distribution of data and the conversion is rather
complicated. The spectral element structure enables one to calculate the local
matrices corresponding to each spectral element (also called cells), simultane-
ously. After the (parallel) calculation of the local systems, we have to switch

* Funding for this work was provided by the National Computing Facilities Foundation
(NCF), under project numbers NRG-2000.07 and MP-068. Computing time was also
provided by HPaC, Centre for High Performance Applied Computing at the Delft
University of Technology.

from a local numbering to a global numbering to complete the gathering proce-
dure. When this has been completed, one obtains a global Compressed Sparse
Row (CSR) formatted matrix which can be easily distributed along an arbitrary
number of processors. Each processor has to send data from one cell to a few
other processors or possibly to itself, a very unbalanced task due to the chosen
numbering. However, if this task is completed, each processor contains a part of
the global assembled matrix, and the data per processor will be balanced again.

Since the global system is symmetric and positive definite, the robust precon-
ditioned conjugate gradient method (PCG) can be applied directly. In this paper,
we describe results obtained with the simple, easy to parallelize, Jacobi or diago-
nal preconditioning. In the future, we plan to test the efficiency of other precon-
ditioning methods: block-Jacobi, FEM-matrix and Additive Schwarz methods [3,
4,7]. The results will be discussed in forthcoming work.

The parallelization of the complete algorithm, including the important con-
version of a spectral element-by-element distribution to a row-wise CSR-format
distribution, and numerical results of large-scale problems arising in scientific
computing are also discussed in the present paper.

2 The least-squares spectral element formulation of the
Stokes problem

In order to obtain a bona fide least-squares formulation, the Stokes problem is
first transformed into a system of first order partial differential equations by
introducing the vorticity as an auxiliary variable. By using the identity

VxVxu=—-Au+V(V-u)

and by using the incompressibility constraint V -u = 0, the governing equations
subsequently read

Vp+vVxw=f in (2, (1)

w—Vxu=0 in £, (2)

V-u=0 in 2, (3)

where, in the particular case of the two-dimensional problem, u’ = [ul,uQ]T

represents the velocity vector, p the pressure, w the vorticity fT = [fi, f2] the
forcing term (if applicable) and v the kinematic viscosity. For simplicity it is
further assumed that the density equals p = 1. In two dimensions, system (1)-
(3), consists of four equations and four unknowns and is uniformly elliptic of
order four. The velocity boundary condition (u given) is used to supplement the
governing equations (1)-(3). The linear Stokes operator and its right-hand-side
read:

2]
0 0 vy o] [wm fi
0 0 _,/ii Us s
LO)=F<=| o o ™%, =02 (4)
w0 ollel Lo

3 General implementation aspects

3.1 Discretization

The domain is discretized with a mesh of L non-overlapping conforming quadri-
lateral spectral elements of the same order N. Each quadrilateral spectral ele-
ment is mapped on the parent spectral element (2° by using an iso-parametric
mapping to the bi-unitsquare [—1,1] x [—1, 1] with local coordinates £; and &.
In the parent element all variables, located at the Gauss-Legendre-Lobatto collo-
cation (GLL) points, can be approximated by the same Lagrangian interpolant,
since the least-squares formulation is not constrained by the Ladyzhenskaya-
Babuska-Brezzi stability condition. Most spectral element methods are based on
the GLL numerical integration for reason of accuracy. For the two-dimensional
Stokes problem, the discrete spectral element approximation yields

N» N i

U =N he b€ | (5)
=0 i=0 N
p

(2]

where h; (§1) with 0 < ¢ < Ny and h; (§2) with 0 < j < N, represent the La-
grange interpolants in the &; and £;-direction through the GLL points, respec-
tively. The vector [i, U2, D, ﬁ]T is the vector of unknown coefficients, evaluated
at the GLL collocation point. Hence, each spectral element gives rise to a local
system of the form:

where the matrices A; and right-hand side vectors f; are given by

mz/wwwn~xwmmfwwmn~JWMMdm (7)

2

and

fi :/[ﬁ (Wo,0) -+, L (¥n,n)])" F d2, (8)

‘QE

respectively and where v; ; = h; (§1) hj (€2).

3.2 Local numbering versus global numbering

Due to the continuity requirements between the C°-spectral elements, some of
the variables z; corresponding to internal boundary will belong to more than
one local system which necessitates the introduction of a global numbering.

In Fig. 1 an example is given of a domain discretized with a mesh of four
spectral elements. Each spectral element contains nine local nodes, numbered
from 1 to 9 (small-size digits). In the same figure, also a global numbering

19T 207 P/ 25T
T T 23
7 8 of7 18 9|
; varitbles ! | ;
H | [I T H |
sl 4l _ | L _ieh22
A s et & Rl i i X
Lo v o
| i w Lol
7)1 b2 ! A
ST g 97 7 8 19 |
1 4 6 r 1
| oo o 3
1244 _ L5 _ _ep4 _._ _bs_ _i616
| R 2 13 |
P e i
i [[
17T |2 31T - 3
10 11 13 14 15

Fig. 1. Example of local and global numbering. The domain has been divided into four
cells: I, ILIII, IV. Each cell contains 9 nodes, denoted by a o.

(normal-size digits) is shown. First, the internal nodes or variables are num-
bered (1,---,9), then the knowns (10, - - -, 25) given by the boundary conditions.
Since each local variable corresponds to a global variable, one can establish the
local-global mapping operator gm for each spectral element. For the given ex-
ample, we have

gmy =1[10,11,13,12,1, 2,17, 4, 6],
gmr =[13,14,15, 2,3,16, 6, 7,21], (9)
gmir =17, 4, 6,18,5, 8,19,20,24],
gmwy =[6, 7,21, 8,9,22 24,25 23].

The local-global mapping operator gmz can also be expressed by the sparse
gathering matriz G; which has nonzero entries according to G;(i,gmz (1)) =
1,7 =1,---,IV. The global assembly of the K local systems (6) can now readily
be obtained with:

K

Z Gl AiG;

i=1

K
U=>67Fs (10)

i=1

KU=F <&

where the matrix K represents the symmetrical, globally gathered matrix of full
bandwidth and the vectors U and F represent the global nodes (e.g., variables
and knowns) and the global right-hand side function, respectively.

Since the known nodes are numbered last, one can subdivide the vector U
into an unknown component U; and a known component Us. Consequently, the
matrix K can be factored into submatrices Ky 1, K2, KEQ and Kjo. Also the
the right-hand side vector F' can be factored into the submatrices F; and Fs.

Hence, system (10) has the following matrix structure
Kig Ko | (U] _ | Fy (11)
KTy Koo | |Us R

which readily allows “static condensation” of the knowns, leading to the following
sparse symmetric and positive definite system

KU = F — KU, , (12)

which can be solved efficiently in parallel with the Jacobi preconditioned conju-
gate gradient method [2].

The results in [2] revealed that it is necessary to construct the global system
(12) in parallel to obtain a good scalable solver. To this end, the matrices A4;, the
vectors f;, the local-global mapping operator gmz and the gathering procedure,
must be performed in parallel.

3.3 Investigation of the grid

In order to construct the matrices A; and vectors f;, one only needs the coordi-
nates of the corners of the cells and its GLL orders in &1- and &2 direction, begin
N; and Ns, respectively. For the calculation of the local-global mapping operator
gmz, detailed grid information regarding the neighbouring cells is required to
obtain the global numbering in parallel. Hence, the coordinates of the corners,
the neighbouring cells and the GLL order together with a unique global number
(see Section 3.4) are the minimal information needed to construct the global sys-
tem (12) in parallel. These data will be collected on one processor when the grid
is investigated and broadcasted from the root processor to N, — 1 processors.

This information can be collected the following way. The order of the spectral
elements N = N; = N5 is an input variable. When the grid file is read, the nodes,
the nodal coordinates and the corners of the spectral element mesh become
available. The neighbors of the spectral elements can be obtained by investigating
the mesh. This can be done the following way. The corners of a spectral element
are given in fixed order, see Fig. 2. In case two elements share the same node,
their position with respect to each other is known. E.g., if node 0 of element Sy
equals node 3 of element Sy then Sy must be the South-neighbor of Ss. If node 2
of S5 equals node 3 of Sg then Sg will be the East-neighbor of S5, and so on. If
a spectral element has less than four neighbors it must be a boundary element.

For the parallel global numbering of the nodes, it is necessary to assign
the global GLL collocation points to one particular cell. For the inner nodes
this is trivial, but the situation is more complicated for the nodes located at
the boundaries. Indeed, internal boundaries are shared by at least two spectral
elements and internal nodes by at most four spectral elements. Therefore, we
must define to which spectral element the corners and GLL collocation points
belong. There are several possibilities, with the same complexity, and we choose
one of them:

Fig. 2. Ordering of corners, The corners are numbered in fixed order, such that it is
easy to recognize which spectral elements are neighbors

— a spectral element consists of all its internal GLL-points, the lower-left cor-
ner, the collocation points at the South and West boundary, without the
corner nodes.

— if a spectral element has an external boundary, the set is extended with the
boundary points and possibly by corners that do not belong to other spectral
elements.

GOy

Fig. 3. An example of a grid discretized into four spectral elements. The nodes num-
bered 1 belong to spectral element 1, those numbered 2 belong to spectral element 2,
and so on. The solid line corresponds to an external boundary

Fig. 3 displays a mesh of four spectral elements and the numbers 1 to 4
elucidate to which spectral element the nodes belong.

Communication is required to obtain the missing values on the internal
(North and East interfaces: first boundary data are sent from North to South.
Subsequently, boundary data are sent from FEast to West. After these steps, also
the right-upper corner has got its correct component values.

3.4 Unique global numbering

To obtain a unique global numbering, first the internal (boundary) points are
numbered which belong to a single spectral element: this local numbering starts
with 1. Then we know exactly how much variables N¥,, are present per element
and transfer this information along the processors, such that we can compute

M;
1—1
M; = ZNzlfara (13)
k=1

being the sum of the number of variables on preceding spectral elements k, k < 1.
The value M; will be added to the local number. The knowns are numbered
analogously. The numbering starts with My, + Nx + 1. Hence, one obtains the
global node numbering discussed in Section 3.2.

3.5 The construction of matrix K

The parallel global assembly of the K local systems can now be performed result-
ing in the sparse symmetric positive definite global matrix K. Since the solution
of equation (12) is by far the most time consuming part, it must be optimally
performed. Therefore, K will be distributed along the processors into balanced
parts of rows. The sparsity of K desires a CSR-formatted storage approach.
The symmetry is not exploited: all nonzero elements of K are stored. However,
the CG method can only be applied successfully if K is symmetric and positive
definite.

The conversion of the local systems A; into the global system K is com-
plicated and requires communication. Beforehand, it is difficult to say which
processors will communicate with each other and how long the messages will be.
The global number determines to which processor the data will be sent. There-
fore, a type gambit has been defined which couples the global number with the
processor number and the row number on that particular processor:

TYPE :: gambit

INTEGER :: globalnr

INTEGER :: procnr

INTEGER :: rownr
END TYPE

Let Nyq- denote the number of variables. Because only the first IV, rows of
matrix K are desired, the value procnr is not important when the global number
will be larger than N,,,: to avoid confusion a negative value is added to procnr.
For each nonzero element of A; it is then easy to determine whether it con-
tributes to K 1, to K 2, or whether it can be neglected (row number > N4,).
In the worst case, a single cell contains data which must be sent to all available
processors.

All nonzero elements of A; are considered and on account of its global num-
ber it is known to which processor it has to be sent. Before such an element

and corresponding information about column number in K is sent, all data are
gathered and put into one message intended for a particular processor. Three
different cases can occur:

1. The message must be sent to the processor on which it is already present.
In that case, a send instruction is superfluous and the data can be processed
immediately, or after the other messages have been sent.

2. The message is empty: no communication will take place, except that a
message will be sent to the receiving processor that no contribution of the
send processor can be expected.

3. The message is not empty and the send and receive processors are unequal.
In that case communication is necessary.

A A, A, A,
Po Pl FE P3
O [O] o1l Send
[T 111 111 [T 7] CIIT1 CICIT1 Receve
Po 1 Pz 3 Py Ps
1 K2 Ky K4 K5 Ke

Fig. 4. Example of mapping of local matrices A; into the global matrix K, partitioned
into matrix parts K; of consecutive rows

The order in which the messages will be received is not known, and also not
important. If nonzero elements are already present (see case 1 above) the first
very sparse matrix L; can be built up. This matrix L; contains the nonzero values
of an A; descendent of a spectral element stored in CSR-format. Contributions
of other processors will be added to L; - i.e. each step the sum of two sparse
matrices, stored in CSR-format, is calculated with a SPARSKIT [9] subroutine.
In case no data are present, e.g., the rank of the processor is larger than the
number of cells, the first data received will be used to build up the basis matrix
L;. In the worst case, to create K, data from NN, spectral elements are needed.
In practice, this number will be less. We do not investigate to find for all (N, p)
combinations a favorite global numbering.

We observe that two steps are required to construct the matrix K of (11)
completely: one to construct K;; and one to construct Ko of equation (12).
The distribution of K; ; and K, 7 along the processors is similar.

4 Parallel platform and implementation tools

The calculations have been performed on

— Cray T3E system Vermeer (named after the Dutch painter) at HPaC with
128 user processing elements (PE’s) interconnected by the fast 3D torus
network with a peak performance of 76.8 Gigaflop/s. The T3E uses the DEC
Alpha 21164 for its computational tasks. Each node in the system contains
one PE which in turn contains a CPU, memory, and a communication engine
that takes care of communication between PE’s. The bandwidth between
nodes is quite high: 325 MB/s, bi-directional. Each PE is configured with
128 Mbytes of local memory, providing more than 16 Gbytes of globally
addressable distributed memory.

For more information about the Cray T3E used, we refer to [10].

To get good portable programs which may run on distributed-memory multi-
processors, networks of workstations as well as shared-memory machines we use
MPI, Message Passing Interface. Standard or blocking communication mode
is used: a send call does not return until the message data have been safely
stored away so that the sender is free to access and overwrite the send buffer.
Besides the standard communication mode, it appears to be necessary to use
the buffered-mode send operation MPI_BSEND (see e.g., [8]). This operation can
be started whether or not a matching receive has been posted. Its completion
does not depend on the occurrence of a matching receive. In this way a deadlock
situation, in which all processes are blocked is prevented. The execution of the
send-receive process demonstrated in Fig. 4 profits of the buffered-mode send
operation.

All routines have been implemented in FORTRAN 90, making frequently use
of dynamic allocation of memory and derived types. As described in Sect. 3.5
the conversion of the cell-wise distribution into the row-wise CSR-format storage
is difficult to implement and asks for a high level of flexibility. On fore hand it
is not clear which processing elements will communicate and how much data
will actually transferred. An upper bound for the number of processors which
may need data of cell ¢ can be N., the number of cells involvedls, whereas
an upperbound of data from cell 7 to PE j can be the whole contents of that
particular cell i. Apparently, multiplication of these two upperbounds leads to a
storage demand per processor which grows with the number of processors used
in the execution. The solution can be found in the usage of data structures with
pointers to variable array sizes.

5 Numerical results

5.1 The h- and p-refinement approach and its accuracy

In (least-squares) spectral element applications, two different kinds of refinement
strategies are commonly used: A-refinement and p-refinement. The purpose of the

numerical simulations is to check the accuracy performance for both refinement
strategies. To this end, the least-squares spectral element formulation of the
velocity-vorticity-pressure formulation of the Stokes problem is demonstrated
by means of the smooth model problem of Gerritsma-Phillips [1] with v = 1.
This model problem involves an exact periodic solution of the Stokes problem
defined on the unit-square ([0,1] x [0,1]). The velocity boundary condition is
used for all the numerical simulations. The pressure constant is set at the point
(0,0).

Six different grids are used to check the accuracy of the h-refinement. As can
be observed in Table 1, the polynomial order of all the spectral elements equals
4, which means that each direction has four Gauss-Legendre-Lobatto(GLL) col-
location points, and the number of spectral elements is varied from 4 to 144.

In the middle column of Tables 1 and 2 the order of the large sparse global

Table 1. The different grids used for the investigation of the h—refinements

Spectral GLL- size of # Ly norm

elements order |global system iterations| Velocity Vorticity Pressure
2x2 4 259 132 [9.210°% 48102 1810 °
4x4 1027 232 (5.0107° 16107 7.1107*

4
6 x 6 4 2307 326 |5.210°°% 2810°* 6910°°
8 x 8 4 4099 431 [1.1107% 87107° 1.310°°

10x10 4 6403 569 (3.21077 35107° 3.610°°

12x12 4 9219 707 (121077 1.7107° 1.310°°

Table 2. The different grids used for the investigation of the p—refinements

Spectral GLL- size of # L2 norm

elements order |global system iterations| Velocity Vorticity Pressure
2 %2 4 259 132 [9.2107% 4810 2 1.810 2
2x 2 6 579 224 (8.7107% 75107* 19103
2x2 8 1027 305 (6.5107% 7.1107¢ 1.610°°
2x2 10 1603 388 [4.4107° 4510°% 7.610°°

system is given together with the number of iterations required to solve this sys-
tem using CG. The right column in the tables lists the Ly norm of the different
components, like the velocity (L norm of z— and y—components agree), the
vorticity and pressure.

Only four different grids have been used to check the accuracy in case of
the p-refinement (see Table 2). Each grid contains four spectral elements. The

order of the approximating polynomial varies from 4 to 10 and is the same in
all the variables. A growth of the polynomial order in the p-refinement case will
increase the number of nodes per cell and likewise the amount of computational
effort per cell.

5.2 The parallel performance

The least-squares spectral element solver (LSQSEM) code allows for the follow-
ing situations:

Ne

Ne

> p: At least several processors contain more than one spectral element. It
is not required that p is a true divisor of N, or put it another way, the
number of spectral elements per PE may differ.

< p: A less plausible possibility. As we may conclude from Tables 1 and
2 that in order to increase the accuracy of the solution it is to preferred to
enlarge the GLL order rather than to add more spectral elements. The latter
gives rise to much larger global systems and accordingly more execution time.
Indeed, during the construction of the local systems p — N, processors are
idle, but for the same accuracy, the wall-clock time can be less. We remark,
that MPI gives the opportunity to define an intracommunicator, which is
used for communicating within a group, for instance within the group of
PE’s which correspond to a spectral element.

In the code we may consider several phases in the parallelization. The phases

described correspond to the parts shown in Table 3:

The decomposition of the domain, or the investigation of the grid (cf. Sect. 3.3).
In this phase, information is read from file: the number of spectral elements,
the coordinates of the corners of the spectral elements, and of each spectral
element its corners are listed on file. Further the position of the spectral ele-
ments with respect to its neighbors is derived. This phase will be performed
on a single processor.

the second phase called GAMBIT, performs the computation on the internal
GLL nodes and the boundary points. Also the local-global mapping (cf.
equation (10) is calculated. Communication is required for internal boundary
points.

The third phase computes the local systems and the right hand side values.
This part is the most time-consuming part of the calculations on spectral
elements and as can be conclude from Table 3, it is well scalable.

The fourth and fifth phases consider the conversion of the local systems
into the global systems. In SUM the contribution of the local systems to the
construction of matrix K is gathered. CSR performs the actual construction
of K1 and K 5 of equation (11) by means of computing the sum of sparse
matrices. Also the communication as described by Fig. 4 is included in CSR.
In the last phase of the program PCG is used to solve the global system.
In [2] it is described how the matrix-vector product in PCG are computed
in parallel and gives pictures of speed-ups of this part of the code achieved

on the TERAS, an SGI Origin 3800 platform with 1024 processors, located
at SARA, Amsterdam and the Vermeer, the platform used for the results of
the present paper.

The last column of Table 3 gives the wall-clock time for a complete run. We
emphasize that the conversion part may not be neglected, especially the man
power that was needed to give the code the flexibility for allowing an arbitrary
number of spectral elements with respect to the number of processors involved,
but for 32 processors it takes about 1.2 % of the total wall clock time.

Table 3. Wall-clock timings in seconds for the different parts in the parallel LSQSEM
code obtained for the grid of 12 x 12 spectral elements and GLL order=6

p Spectral elements Conversion PCG |Execution
read GAMBIT Stokes SUM CSR time time

4 0.19 0.38 118.95 3.01 21.94 584.57 729.19

8 0.20 0.30 59.44 1.56 741 308.55 377.65

16 0.18 0.23 29.70 0.85 2.65 176.34 210.15

32 0.19 0.21 16.54 0.59 1.11 121.67 140.77

Finally, Fig. 5 shows the overall performance of the code on p = 4, 8,12, 16, 24, 32
processors. Here we do not show speedup pictures, because it is not possible to
run the largest problem on a single processor. We remark, that not in all cases
the number of cells is a multiple of p, e.g., the 10 x 10 grid has only p =4 as a
true divisor. The speedup obtained when eight times more processors are used,
(viz. from p = 4 to p = 32) is more than 5.2 and for the 8 x 8 is nearly 7.

6 Conclusions and outlook

Least-squares spectral element methods result in symmetric and positive definite
systems of linear equations which can be efficiently solved in parallel by PCG.
The parallelization of this sort of problems requires two different strategies.
Indeed, the spectral element discretization benefits from an element-by-element
parallelization strategy whereas an efficient strategy to solve the large sparse
global systems benefits from a row-wise distribution of data.

The numerical results, obtained with a simple model problem, confirm the
good parallel properties of the element-by-element parallelization strategy. The
combination of this strategy with the parallel JCG solver resulted in a good
parallizable code to solve incompressible flow problems. In the future, more ef-
fective preconditioning methods for least-squares spectral element methods will
be developed.

Vermeer,GLL=6

700

600 -

@
=}
3

Wall clock time

200

12x12
100

10x10

L L L L
4 8 12 16 24 32

processors

Fig. 5. Wall-clock timings achieved for a grid decomposed into 8 X8, 10x 10 and 12x 12
spectral elements

References

1.

10.

M. I. Gerritsma and T. N. Phillips. Discontinuous spectral element approximations
for the velocity-pressure-stress formulation of the Stokes problem. Int. J. Numer.
Meth. Eng., 43:1401-1419, 1998.

M. Nool and M. M. J. Proot. Parallel implementation of a least-squares spectral
element solver for incompressible flow problems. Submitted to J. Supercomput.,
2002.

L. F. Pavarino and O. B. Widlund. Iterative substructuring methods for spectral
element discretizations of elliptic systems. I: compressible linear elasticity. SIAM
J. NUMER. ANAL., 37(2):353-374, 1999.

L. F. Pavarino and O. B. Widlund. Iterative substructuring methods for spectral
element discretizations of elliptic systems. II: Mixed methods for linear elasticity
and Stokes flow. SIAM J. NUMER. ANAL., 37(2):375-402, 1999.

M. M. J. Proot and M. I. Gerritsma. A least-squares spectral element formulation
for the Stokes problem. J. Sci. Comp., 17(1-3):311-322, 2002.

M. M. J. Proot and M. I. Gerritsma. Least-squares spectral elements applied to
the Stokes problem. submitted.

A. Quateroni and A. Valli. Domain Decomposition Methods for Partial Differential
equations. Oxford University Press, 1999.

. Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack

Dongarra. MPI: The Complete Reference. MIT Press, Cambridge, Massachusetts,
1996.

Yousef Saad. SPARSKIT: a basic tool-kit for sparse matrix computations (Ver-
sion 2) http://www.cs.umn.edu/research/arpa/SPARSKIT/sparskit.html

Aad J. van der Steen. Overview of recent supercomputers, Issue 2001 National
Computing Facilities Foundation, Den Haag, 2001.

