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Abstrat. The paper deals with the eÆient parallelization of least-squares spetral element methods for inompressible ows. The paral-lelization of this sort of problems requires two di�erent strategies. On theone hand, the spetral element disretization bene�ts from an element-by-element parallelization strategy. On the other hand, an eÆient strat-egy to solve the large sparse global systems bene�ts from a row-wise dis-tribution of data. This requires two di�erent kinds of data distributionsand the onversion between them is rather ompliated. In the presentpaper, the di�erent strategies together with its onversion are disussed.Moreover, some results obtained on a distributed memory mahine (CrayT3E) are presented.
1 IntrodutionLeast-squares spetral element methods are based on two important and su-essful numerial methods: spetral/hp element methods and least-squares �-nite element methods. Least-squares methods lead to symmetri and positivede�nite algebrai systems whih irumvent the Ladyzhenskaya-Babu�ska-Brezzistability ondition and onsequently allow the use of equal order interpolationpolynomials for all variables. The auray of a least-squares spetral elementdisretization of the Stokes problem (ast in veloity-vortiity-pressure form)has been reported in [5, 6℄ for di�erent boundary onditions. The present paperdeals with the eÆient parallelization of this solver.Parallelization of the least-squares spetral element method (LSQSEM) re-quires two di�erent kinds of distribution of data and the onversion is ratherompliated. The spetral element struture enables one to alulate the loalmatries orresponding to eah spetral element (also alled ells), simultane-ously. After the (parallel) alulation of the loal systems, we have to swith? Funding for this work was provided by the National Computing Failities Foundation(NCF), under projet numbers NRG-2000.07 and MP-068. Computing time was alsoprovided by HP�C, Centre for High Performane Applied Computing at the DelftUniversity of Tehnology.



from a loal numbering to a global numbering to omplete the gathering proe-dure. When this has been ompleted, one obtains a global Compressed SparseRow (CSR) formatted matrix whih an be easily distributed along an arbitrarynumber of proessors. Eah proessor has to send data from one ell to a fewother proessors or possibly to itself, a very unbalaned task due to the hosennumbering. However, if this task is ompleted, eah proessor ontains a part ofthe global assembled matrix, and the data per proessor will be balaned again.Sine the global system is symmetri and positive de�nite, the robust preon-ditioned onjugate gradient method (PCG) an be applied diretly. In this paper,we desribe results obtained with the simple, easy to parallelize, Jaobi or diago-nal preonditioning. In the future, we plan to test the eÆieny of other preon-ditioning methods: blok-Jaobi, FEM-matrix and Additive Shwarz methods [3,4, 7℄. The results will be disussed in forthoming work.The parallelization of the omplete algorithm, inluding the important on-version of a spetral element-by-element distribution to a row-wise CSR-formatdistribution, and numerial results of large-sale problems arising in sienti�omputing are also disussed in the present paper.2 The least-squares spetral element formulation of theStokes problemIn order to obtain a bona �de least-squares formulation, the Stokes problem is�rst transformed into a system of �rst order partial di�erential equations byintroduing the vortiity as an auxiliary variable. By using the identityr�r� u = ��u+r(r � u)and by using the inompressibility onstraint r�u = 0, the governing equationssubsequently read rp+ �r� ! = f in 
; (1)! �r� u = 0 in 
; (2)r � u = 0 in 
; (3)where, in the partiular ase of the two-dimensional problem, uT = [u1; u2℄Trepresents the veloity vetor, p the pressure, ! the vortiity fT = [f1; f2℄ theforing term (if appliable) and � the kinemati visosity. For simpliity it isfurther assumed that the density equals � = 1. In two dimensions, system (1)-(3), onsists of four equations and four unknowns and is uniformly ellipti oforder four. The veloity boundary ondition (u given) is used to supplement thegoverning equations (1)-(3). The linear Stokes operator and its right-hand-sideread:
L (U) = F () 2664 0 0 � ��x2 ��x10 0 �� ��x1 ��x2��x2 � ��x1 1 0��x1 ��x2 0 0

37752664u1u2!p
3775 = 2664f1f200

3775 in 
: (4)



3 General implementation aspets3.1 DisretizationThe domain is disretized with a mesh of K non-overlapping onforming quadri-lateral spetral elements of the same order N . Eah quadrilateral spetral ele-ment is mapped on the parent spetral element 
e by using an iso-parametrimapping to the bi-unitsquare [�1; 1℄ � [�1; 1℄ with loal oordinates �1 and �2.In the parent element all variables, loated at the Gauss-Legendre-Lobatto ollo-ation (GLL) points, an be approximated by the same Lagrangian interpolant,sine the least-squares formulation is not onstrained by the Ladyzhenskaya-Babu�ska-Brezzi stability ondition. Most spetral element methods are based onthe GLL numerial integration for reason of auray. For the two-dimensionalStokes problem, the disrete spetral element approximation yields
Uh = N2Xj=0 N1Xi=0 hi (�1)hj (�2)

2664 û1û2̂!̂p
3775i;j , (5)

where hi (�1) with 0 � i � N1 and hj (�2) with 0 � j � N2 represent the La-grange interpolants in the �1 and �2-diretion through the GLL points, respe-tively. The vetor [û1; û2; !̂; p̂℄T is the vetor of unknown oeÆients, evaluatedat the GLL olloation point. Hene, eah spetral element gives rise to a loalsystem of the form: Ai zi = fi; with i = 1; � � � ;K (6)where the matries Ai and right-hand side vetors fi are given byAi = Z
e [L ( 0;0) ; � � � ;L ( N;N )℄T [L ( 0;0) ; � � � ;L ( N;N )℄ d
; (7)
and fi = Z
e [L ( 0;0) ; � � � ;L ( N;N )℄T F d
; (8)
respetively and where  i;j = hi (�1)hj (�2).3.2 Loal numbering versus global numberingDue to the ontinuity requirements between the C0-spetral elements, some ofthe variables zi orresponding to internal boundary will belong to more thanone loal system whih neessitates the introdution of a global numbering.In Fig. 1 an example is given of a domain disretized with a mesh of fourspetral elements. Eah spetral element ontains nine loal nodes, numberedfrom 1 to 9 (small-size digits). In the same �gure, also a global numbering
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Fig. 1. Example of loal and global numbering. The domain has been divided into fourells: I, II,III, IV. Eah ell ontains 9 nodes, denoted by a Æ.
(normal-size digits) is shown. First, the internal nodes or variables are num-bered (1; � � � ; 9), then the knowns (10; � � � ; 25) given by the boundary onditions.Sine eah loal variable orresponds to a global variable, one an establish theloal-global mapping operator gm for eah spetral element. For the given ex-ample, we have gmI = [ 10; 11; 13; 12; 1; 2; 17; 4; 6 ℄;gmII = [ 13; 14; 15; 2; 3; 16; 6; 7; 21 ℄;gmIII = [ 17; 4; 6; 18; 5; 8; 19; 20; 24 ℄;gmIV = [ 6; 7; 21; 8; 9; 22; 24; 25; 23 ℄: (9)
The loal-global mapping operator gmI an also be expressed by the sparsegathering matrix Gi whih has nonzero entries aording to Gi(i; gmI (i)) =1; I = I; � � � ; IV. The global assembly of the K loal systems (6) an now readilybe obtained with: KU = F , " KXi=1 GTi AiGi#U = KXi=1 GTi fi; (10)
where the matrix K represents the symmetrial, globally gathered matrix of fullbandwidth and the vetors U and F represent the global nodes (e.g., variablesand knowns) and the global right-hand side funtion, respetively.Sine the known nodes are numbered last, one an subdivide the vetor Uinto an unknown omponent U1 and a known omponent U2. Consequently, thematrix K an be fatored into submatries K1;1, K1;2, KT1;2 and K2;2. Also thethe right-hand side vetor F an be fatored into the submatries F1 and F2.



Hene, system (10) has the following matrix struture�K1;1 K1;2KT1;2 K2;2 � �U1U2 � = �F1F2 � ; (11)whih readily allows \stati ondensation" of the knowns, leading to the followingsparse symmetri and positive de�nite systemK1;1U1 = F1 �K1;2U2 , (12)whih an be solved eÆiently in parallel with the Jaobi preonditioned onju-gate gradient method [2℄.The results in [2℄ revealed that it is neessary to onstrut the global system(12) in parallel to obtain a good salable solver. To this end, the matries Ai, thevetors fi, the loal-global mapping operator gmI and the gathering proedure,must be performed in parallel.
3.3 Investigation of the gridIn order to onstrut the matries Ai and vetors fi, one only needs the oordi-nates of the orners of the ells and its GLL orders in �1- and �2 diretion, beginN1 and N2, respetively. For the alulation of the loal-global mapping operatorgmI , detailed grid information regarding the neighbouring ells is required toobtain the global numbering in parallel. Hene, the oordinates of the orners,the neighbouring ells and the GLL order together with a unique global number(see Setion 3.4) are the minimal information needed to onstrut the global sys-tem (12) in parallel. These data will be olleted on one proessor when the gridis investigated and broadasted from the root proessor to N � 1 proessors.This information an be olleted the following way. The order of the spetralelements N = N1 = N2 is an input variable. When the grid �le is read, the nodes,the nodal oordinates and the orners of the spetral element mesh beomeavailable. The neighbors of the spetral elements an be obtained by investigatingthe mesh. This an be done the following way. The orners of a spetral elementare given in �xed order, see Fig. 2. In ase two elements share the same node,their position with respet to eah other is known. E.g., if node 0 of element S5equals node 3 of element S2 then S2 must be the South-neighbor of S5. If node 2of S5 equals node 3 of S6 then S6 will be the East-neighbor of S5, and so on. Ifa spetral element has less than four neighbors it must be a boundary element.For the parallel global numbering of the nodes, it is neessary to assignthe global GLL olloation points to one partiular ell. For the inner nodesthis is trivial, but the situation is more ompliated for the nodes loated atthe boundaries. Indeed, internal boundaries are shared by at least two spetralelements and internal nodes by at most four spetral elements. Therefore, wemust de�ne to whih spetral element the orners and GLL olloation pointsbelong. There are several possibilities, with the same omplexity, and we hooseone of them:
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Fig. 2. Ordering of orners, The orners are numbered in �xed order, suh that it iseasy to reognize whih spetral elements are neighbors
{ a spetral element onsists of all its internal GLL-points, the lower-left or-ner, the olloation points at the South and West boundary, without theorner nodes.{ if a spetral element has an external boundary, the set is extended with theboundary points and possibly by orners that do not belong to other spetralelements.
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Fig. 3. An example of a grid disretized into four spetral elements. The nodes num-bered 1 belong to spetral element 1, those numbered 2 belong to spetral element 2,and so on. The solid line orresponds to an external boundary
Fig. 3 displays a mesh of four spetral elements and the numbers 1 to 4eluidate to whih spetral element the nodes belong.Communiation is required to obtain the missing values on the internal(North and East interfaes: �rst boundary data are sent from North to South.Subsequently, boundary data are sent from East to West. After these steps, alsothe right-upper orner has got its orret omponent values.



3.4 Unique global numberingTo obtain a unique global numbering, �rst the internal (boundary) points arenumbered whih belong to a single spetral element: this loal numbering startswith 1. Then we know exatly how muh variables Nkvar are present per elementand transfer this information along the proessors, suh that we an omputeMi Mi = i�1Xk=1Nkvar; (13)being the sum of the number of variables on preeding spetral elements k; k < i.The value Mi will be added to the loal number. The knowns are numberedanalogously. The numbering starts with MN +NK + 1. Hene, one obtains theglobal node numbering disussed in Setion 3.2.3.5 The onstrution of matrix KThe parallel global assembly of the K loal systems an now be performed result-ing in the sparse symmetri positive de�nite global matrix K. Sine the solutionof equation (12) is by far the most time onsuming part, it must be optimallyperformed. Therefore, K will be distributed along the proessors into balanedparts of rows. The sparsity of K desires a CSR-formatted storage approah.The symmetry is not exploited: all nonzero elements of K are stored. However,the CG method an only be applied suessfully if K is symmetri and positivede�nite.The onversion of the loal systems Ai into the global system K is om-pliated and requires ommuniation. Beforehand, it is diÆult to say whihproessors will ommuniate with eah other and how long the messages will be.The global number determines to whih proessor the data will be sent. There-fore, a type gambit has been de�ned whih ouples the global number with theproessor number and the row number on that partiular proessor:TYPE :: gambitINTEGER :: globalnrINTEGER :: pronrINTEGER :: rownrEND TYPELet Nvar denote the number of variables. Beause only the �rst Nvar rows ofmatrixK are desired, the value pronr is not important when the global numberwill be larger than Nvar: to avoid onfusion a negative value is added to pronr.For eah nonzero element of Ai it is then easy to determine whether it on-tributes to K1;1, to K1;2, or whether it an be negleted (row number > Nvar).In the worst ase, a single ell ontains data whih must be sent to all availableproessors.All nonzero elements of Ai are onsidered and on aount of its global num-ber it is known to whih proessor it has to be sent. Before suh an element



and orresponding information about olumn number in K is sent, all data aregathered and put into one message intended for a partiular proessor. Threedi�erent ases an our:1. The message must be sent to the proessor on whih it is already present.In that ase, a send instrution is superuous and the data an be proessedimmediately, or after the other messages have been sent.2. The message is empty: no ommuniation will take plae, exept that amessage will be sent to the reeiving proessor that no ontribution of thesend proessor an be expeted.3. The message is not empty and the send and reeive proessors are unequal.In that ase ommuniation is neessary.
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Fig. 4. Example of mapping of loal matries Ai into the global matrix K, partitionedinto matrix parts Kj of onseutive rows
The order in whih the messages will be reeived is not known, and also notimportant. If nonzero elements are already present (see ase 1 above) the �rstvery sparsematrix Li an be built up. This matrix Lj ontains the nonzero valuesof an Ai desendent of a spetral element stored in CSR-format. Contributionsof other proessors will be added to Lj - i.e. eah step the sum of two sparsematries, stored in CSR-format, is alulated with a SPARSKIT [9℄ subroutine.In ase no data are present, e.g., the rank of the proessor is larger than thenumber of ells, the �rst data reeived will be used to build up the basis matrixLj . In the worst ase, to reate Kj , data from N spetral elements are needed.In pratie, this number will be less. We do not investigate to �nd for all (N; p)ombinations a favorite global numbering.We observe that two steps are required to onstrut the matrix K of (11)ompletely: one to onstrut K1;1 and one to onstrut K1;2 of equation (12).The distribution of K1;1 and K1;2 along the proessors is similar.



4 Parallel platform and implementation toolsThe alulations have been performed on{ Cray T3E system Vermeer (named after the Duth painter) at HP�C with128 user proessing elements (PE's) interonneted by the fast 3D torusnetwork with a peak performane of 76.8 Gigaop/s. The T3E uses the DECAlpha 21164 for its omputational tasks. Eah node in the system ontainsone PE whih in turn ontains a CPU, memory, and a ommuniation enginethat takes are of ommuniation between PE's. The bandwidth betweennodes is quite high: 325 MB/s, bi-diretional. Eah PE is on�gured with128 Mbytes of loal memory, providing more than 16 Gbytes of globallyaddressable distributed memory.For more information about the Cray T3E used, we refer to [10℄.To get good portable programs whih may run on distributed-memory multi-proessors, networks of workstations as well as shared-memory mahines we useMPI, Message Passing Interfae. Standard or bloking ommuniation modeis used: a send all does not return until the message data have been safelystored away so that the sender is free to aess and overwrite the send bu�er.Besides the standard ommuniation mode, it appears to be neessary to usethe bu�ered-mode send operation MPI BSEND (see e.g., [8℄). This operation anbe started whether or not a mathing reeive has been posted. Its ompletiondoes not depend on the ourrene of a mathing reeive. In this way a deadloksituation, in whih all proesses are bloked is prevented. The exeution of thesend-reeive proess demonstrated in Fig. 4 pro�ts of the bu�ered-mode sendoperation.All routines have been implemented in FORTRAN 90, making frequently useof dynami alloation of memory and derived types. As desribed in Set. 3.5the onversion of the ell-wise distribution into the row-wise CSR-format storageis diÆult to implement and asks for a high level of exibility. On fore hand itis not lear whih proessing elements will ommuniate and how muh datawill atually transferred. An upper bound for the number of proessors whihmay need data of ell i an be N, the number of ells involved1s, whereasan upperbound of data from ell i to PE j an be the whole ontents of thatpartiular ell i. Apparently, multipliation of these two upperbounds leads to astorage demand per proessor whih grows with the number of proessors usedin the exeution. The solution an be found in the usage of data strutures withpointers to variable array sizes.
5 Numerial results5.1 The h- and p-re�nement approah and its aurayIn (least-squares) spetral element appliations, two di�erent kinds of re�nementstrategies are ommonly used: h-re�nement and p-re�nement. The purpose of the



numerial simulations is to hek the auray performane for both re�nementstrategies. To this end, the least-squares spetral element formulation of theveloity-vortiity-pressure formulation of the Stokes problem is demonstratedby means of the smooth model problem of Gerritsma-Phillips [1℄ with v = 1.This model problem involves an exat periodi solution of the Stokes problemde�ned on the unit-square ([0; 1℄ � [0; 1℄). The veloity boundary ondition isused for all the numerial simulations. The pressure onstant is set at the point(0; 0).Six di�erent grids are used to hek the auray of the h-re�nement. As anbe observed in Table 1, the polynomial order of all the spetral elements equals4, whih means that eah diretion has four Gauss-Legendre-Lobatto(GLL) ol-loation points, and the number of spetral elements is varied from 4 to 144.In the middle olumn of Tables 1 and 2 the order of the large sparse global
Table 1. The di�erent grids used for the investigation of the h�re�nements

Spetral GLL- size of # L2 normelements order global system iterations Veloity Vortiity Pressure2� 2 4 259 132 9.2 10�4 4.8 10�2 1.8 10�24� 4 4 1027 232 5.0 10�5 1.6 10�3 7.1 10�46� 6 4 2307 326 5.2 10�6 2.8 10�4 6.9 10�58� 8 4 4099 431 1.1 10�6 8.7 10�5 1.3 10�510� 10 4 6403 569 3.2 10�7 3.5 10�5 3.6 10�612� 12 4 9219 707 1.2 10�7 1.7 10�5 1.3 10�6
Table 2. The di�erent grids used for the investigation of the p�re�nements

Spetral GLL- size of # L2 normelements order global system iterations Veloity Vortiity Pressure2� 2 4 259 132 9.2 10�4 4.8 10�2 1.8 10�22� 2 6 579 224 8.7 10�6 7.5 10�4 1.9 10�32� 2 8 1027 305 6.5 10�8 7.1 10�6 1.6 10�62� 2 10 1603 388 4.4 10�10 4.5 10�8 7.6 10�9
system is given together with the number of iterations required to solve this sys-tem using CG. The right olumn in the tables lists the L2 norm of the di�erentomponents, like the veloity (L2 norm of x� and y�omponents agree), thevortiity and pressure.Only four di�erent grids have been used to hek the auray in ase ofthe p-re�nement (see Table 2). Eah grid ontains four spetral elements. The



order of the approximating polynomial varies from 4 to 10 and is the same inall the variables. A growth of the polynomial order in the p-re�nement ase willinrease the number of nodes per ell and likewise the amount of omputationale�ort per ell.5.2 The parallel performaneThe least-squares spetral element solver (LSQSEM) ode allows for the follow-ing situations:N � p : At least several proessors ontain more than one spetral element. Itis not required that p is a true divisor of N, or put it another way, thenumber of spetral elements per PE may di�er.N < p : A less plausible possibility. As we may onlude from Tables 1 and2 that in order to inrease the auray of the solution it is to preferred toenlarge the GLL order rather than to add more spetral elements. The lattergives rise to muh larger global systems and aordingly more exeution time.Indeed, during the onstrution of the loal systems p � N proessors areidle, but for the same auray, the wall-lok time an be less. We remark,that MPI gives the opportunity to de�ne an intraommuniator, whih isused for ommuniating within a group, for instane within the group ofPE's whih orrespond to a spetral element.In the ode we may onsider several phases in the parallelization. The phasesdesribed orrespond to the parts shown in Table 3:{ The deomposition of the domain, or the investigation of the grid (f. Set. 3.3).In this phase, information is read from �le: the number of spetral elements,the oordinates of the orners of the spetral elements, and of eah spetralelement its orners are listed on �le. Further the position of the spetral ele-ments with respet to its neighbors is derived. This phase will be performedon a single proessor.{ the seond phase alled GAMBIT, performs the omputation on the internalGLL nodes and the boundary points. Also the loal-global mapping (f.equation (10) is alulated. Communiation is required for internal boundarypoints.{ The third phase omputes the loal systems and the right hand side values.This part is the most time-onsuming part of the alulations on spetralelements and as an be onlude from Table 3, it is well salable.{ The fourth and �fth phases onsider the onversion of the loal systemsinto the global systems. In SUM the ontribution of the loal systems to theonstrution of matrix K is gathered. CSR performs the atual onstrutionof K1;1 and K1;2 of equation (11) by means of omputing the sum of sparsematries. Also the ommuniation as desribed by Fig. 4 is inluded in CSR.{ In the last phase of the program PCG is used to solve the global system.In [2℄ it is desribed how the matrix-vetor produt in PCG are omputedin parallel and gives pitures of speed-ups of this part of the ode ahieved



on the TERAS, an SGI Origin 3800 platform with 1024 proessors, loatedat SARA, Amsterdam and the Vermeer, the platform used for the results ofthe present paper.The last olumn of Table 3 gives the wall-lok time for a omplete run. Weemphasize that the onversion part may not be negleted, espeially the manpower that was needed to give the ode the exibility for allowing an arbitrarynumber of spetral elements with respet to the number of proessors involved,but for 32 proessors it takes about 1.2 % of the total wall lok time.
Table 3. Wall-lok timings in seonds for the di�erent parts in the parallel LSQSEMode obtained for the grid of 12� 12 spetral elements and GLL order=6p Spetral elements Conversion PCG Exeutionread GAMBIT Stokes SUM CSR time time4 0.19 0.38 118.95 3.01 21.94 584.57 729.198 0.20 0.30 59.44 1.56 7.41 308.55 377.6516 0.18 0.23 29.70 0.85 2.65 176.34 210.1532 0.19 0.21 16.54 0.59 1.11 121.67 140.77

Finally, Fig. 5 shows the overall performane of the ode on p = 4; 8; 12; 16; 24; 32proessors. Here we do not show speedup pitures, beause it is not possible torun the largest problem on a single proessor. We remark, that not in all asesthe number of ells is a multiple of p, e.g., the 10� 10 grid has only p = 4 as atrue divisor. The speedup obtained when eight times more proessors are used,(viz. from p = 4 to p = 32) is more than 5.2 and for the 8� 8 is nearly 7.
6 Conlusions and outlook
Least-squares spetral element methods result in symmetri and positive de�nitesystems of linear equations whih an be eÆiently solved in parallel by PCG.The parallelization of this sort of problems requires two di�erent strategies.Indeed, the spetral element disretization bene�ts from an element-by-elementparallelization strategy whereas an eÆient strategy to solve the large sparseglobal systems bene�ts from a row-wise distribution of data.The numerial results, obtained with a simple model problem, on�rm thegood parallel properties of the element-by-element parallelization strategy. Theombination of this strategy with the parallel JCG solver resulted in a goodparallizable ode to solve inompressible ow problems. In the future, more ef-fetive preonditioning methods for least-squares spetral element methods willbe developed.
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