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Complementarity Modeling of Hybrid Systems 
A. J. van der Schaft, Member, IEEE, and J.M. Schumacher, Senior Member, IEEE 

Abstract-A complementarity framework is described for the 
?1odeling of certain classes of mixed continuous/discrete dynam
ical systems. The use of such a framework is well known for 
mechanical systems with inequality constraints, but we give a 
m~re ~eneral formulation which also applies, for instance, to 
switchmg control systems. The main theoretical results in the 
paper are concerned with uniqueness of smooth continuations· 
the solution of this problem requires the construction of a ma~ 
from the continuous state to the discrete state. A crucial technical 
tool is the so-called linear complementarity problem (LCP) from 
mathematical programming; we introduce various generaliza
tions of this problem. 

Index. Te~ms-Hybrid s~stems, linear complementarity prob
lem, sw1tchmg control, unilateral constraints, well-posedness. 

I. INTRODUCTION 

T HE general description of hybrid systems as systems 
incorporating both continuous and discrete components 

leaves room for a bewildering multitude of dynamical systems, 
of which many are cumbersome to specify and difficult to an
alyze. In this paper we shall be concerned with a special class 
of hybrid systems, which we call complementarity systems, for 
which both specification and analysis should be considerably 
easier than for the general case. In particular, we shall be 
concerned with well-posedness of complementarity systems. 

The study of well-posedness (existence and uniqueness of 
solutions) is particularly relevant in connection with hybrid 
systems. As is well known, hybrid dynamical systems of
ten arise by the application of (idealized) switching control 
schemes. When such switching schemes are considered, well
posedness of the resulting closed-loop system may easily fail, 
quite in contrast to the situation when smooth control is 
applied; see Section III for an example. Also, well-posedness 
is a crucial issue in checking the validity of mathematical 
models of physical hybrid systems and in setting up simulation 
algorithms for such systems (cf. [2] and [18]). 

Necessary and sufficient conditions for the well-posedness 
of complementarity systems were given in [18], but only for 
the case of complementarity systems with just two discrete 
states ("bimodal systems"). Here we extend this discussion to 
complementarity systems with an arbitrary number of discrete 
states, limiting ourselves however, to sufficient conditions for 
uniqueness of smooth continuations. Another advance with 
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respect to [ 18] in this paper is that we identify a number 
of algebraic problems that can be used to settle uniqueness 
questions. All these problems are related to the so-called 
linear complementarity problem (LCP) from mathematical 
programming [4]. 

We begin in Section II with an introduction on complemen
tarity modeling, in which we aim to show how the class of 
complementarity systems fits into the general class of hybrid 
systems. Section III contains the main results of the paper 
on uniqueness of smooth continuations. Special techniques 
for linear systems are briefly mentioned in Section IV, and 
conclusions follow in Section V. 

II. COMPLEMENTARITY MODELING 

Let us start with a fairly general hybrid system description, 
such as the one given by Alur et al. in [I]. A hybrid system 
is specified in that paper as a graph whose edges represent 
discrete transitions and whose vertices represent continuous 
activities. The vertices are called locations. The continuous 
activities consist of sets of time functions which may be 
specified, for instance, by differential equations; thus, there 
is a dynamical system associated to each location. Under 
some conditions transitions may occur from one location to 
another. In particular, transitions are forced when the activity 
at a certain location would take the associated continuous state 
outside a designated region of the state space; this region is 
called the invariant associated with the location. 

The description given by Alur et al. is very general and at 
the same time rather amorphous. In many situations, the set 
of discrete states (locations) will actually be a product space 
obtained by combining several switches. Also, in many cases, 
the dynamical systems associated to different locations will not 
be completely independent but will rather have many equations 
in common. A combination of these two observations gives 
rise to what might be called a product decomposition of hybrid 
systems. 

Such a decomposition imposes the following additional 
structure on the general scheme indicated above. There is 
a "core dynamics" of the form F ( z, i) = O which fonns 
part of the dynamics at each location; the vector z(t) E !RN 
contains all continuous variables in the system. There are k 
switches, with a finite set S; of possible positions associated 
to each switch i E { 1, · · · , k}. Each combination of switch 
positions gives rise to a different discrete state, so the set of 
locations is the product Ilf=1 S;. Associated to each position 
s of the ith switch, there are additional dynamic equations 
Gi(z, z) = 0 as well as invariants that may be written as 
Ht(z) :?'. 0. The dynamic equations corresponding to the 
various switch positions together with the core dynamics form 
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the description of the dynamics at a given location, and the 
invariant corresponding to the location is obtained by taking 
all inequalities corresponding to the switch positions together. 

As long as no further statements are made concerning, for 
instance, the size of the core dynamics and the number of 
switch positions, the above format for specifying dynamics 
and invariants at each location is still quite general. Suppose 
now, however, that the following additional requirements are 
imposed. 

1) All switches are binary, i.e., Si = { 0, 1} for all ·i. 
2) All additional dynamic equations corresponding to 

switch positions are algebraic and scalar, i.e., they are 
of the form gf (z) = 0 where g.'! is a function from 
~N to~. 

3) Also, the invariants corresponding to switch positions 
are scalar, so they are of the form hi(z) ;:::: 0 where hi 
is a function from ~N to IR. 

4) The functions defining the additional dynamics and the 
invariants associated with each switch position change 
roles when the switch is turned; i.e., gp = h} and 
g} = h? for all ·i. 

We call the final condition of this list the complementarity 
condition, and systems that can be described according to the 
above rules will be called complementarity systems. The com
plementarity condition implies that the additional dynamics 
and invariants at each switch position are specified by two 
functions rather than by four. The two functions create two 
variables that are associated with the vector z(t) of continuous 
variables and that may be denoted by y.;(t) = gp(z(t)) and 
u;(t) = h?(z(t)); we call these variables complementary 
variables. Note that one switch position corresponds to the 
pair of conditions y; ( t) = 0 and it; ( t) ;:::: 0, whereas the other 
position corresponds to ui(t) = 0 and y;(t) ;:::: 0. 

The above setting, limited as it may seem from a general 
hybrid system perspective, in fact applies to many systems 
of interest. The reader may have already recognized the 
complementarity conditions as essentially the characteristics 
of an ideal diode; so, electrical networks with diodes may 
be looked at as complementarity systems, with the diodes as 
switches and the voltage across and the current through the 
diodes as complementary variables. Other physical examples 
include mechanical systems with unilateral constraints, with 
distance to contact point and reaction force as complementary 
variables, and hydraulic systems with one-way valves, where 
pressure and flow can be taken as complementary variables. 
Outside physics, complementarity systems arise naturally in 
the necessary conditions obtained from the maximum princi
ple for optimal control problems with inequality constraints. 
Furthermore, it follows from results on the representation of 
piecewise linear sets [8], [19] that systems with elements 
having arbitrary piecewise linear characteristics can be written 
as complementarity systems. 

An example of how a complementarity system may arise in 
a control application can be given as follows. Consider some 
control system described by equations of the form x(t) = 
.ffr(/.), u(t)) where u(t) is the scalar control input. Suppose 
that a switching control scheme is employed which uses a state 
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feedback Jaw u(t) = q'.i 1 (x(t)) when the scalar variable y(t) 
defined by y(t) = h(x(t)) is positive and a feedback n(t) = 
ef.i2(x(t)) when y(t) is negative. Writing f;(:r) = .f(a:,cp;(x)) 
for ·i = 1, 2, we obtain a dynamical system that follows the 
equation :i:(t) = .fi(x(t)) on the subset of the state space 
where h(x) is positive, and that follows :i:(t) = h(:z:(t)) on 
the subset where h(:z:) is negative. Such a system is sometimes 
called a variable-structure system. To write the system as a 
complementarity system, introduce new variables u;(t) and 
y;(t) (i = 1, 2) and pose the following "core dynamics" of 
the form F(z,i) = 0, with z := (:i:,u1,u2,y1,Y2) 

x(t) =u1(t).fi(:i:(t)) + u2(t)f2(:r(t)) (1) 

u1(t) + u2(t) = 1 (2) 

Y1 (t) - Y2(t) = h(a:(t)). (3) 

The variables u; ( t) and y; ( t) are taken as complementary vari
ables, and so the complementarity conditions can be written 
as follows: 

u;(t) ;:::: 0, y;(t) ;:::: 0 ('i = 1, 2) (4) 

Y1(t)u1(t) + Y2(t)u2(t) =0 for all t. (5) 

Since we have two binary switches, the complementarity 
system above has four locations. One of the locations, how
ever, combines the equations u 1 = 0 and 1t2 = 0 with 
u1 + u2 = 1 and so it is not feasible. Two other locations 
correspond to the dynamics :i: = ft (a:) and :i: = h ( :t) which 
are valid for h(x) > 0 and h(a:) < 0, respectively. Finally, 
there is a location which combines the dynamic equation 
:i:( t) = tt1 (t) ft (x( t)) + ( 1- u1 ( t) )h(:i:(t)) with the constraint 
h(:z:(t)) = 0 and the inequality constraints 0 s iti(t) ::;: 1. 
Conditions may be given under which this combination defines 
a unique solution; whether this solution is "correct" in the 
sense that it describes in good approximation the behavior 
of the actual control system depends on the implementation 
chosen for the switching controller. It should be noted that 
a complementarity system as described above is not always 
well-posed in the sense that solutions are unique, as shown by 
a simple example in the next section. 

III. WELL-POSEDNESS OF COMPLEMENTARITY SYSTEMS 

As already noted in [18], it is not difficult to find examples 
of complementarity systems that exhibit nonuniqueness of 
smooth continuations. For a simple example of this phenome
non within a switching control framework, consider the plant 

:i:i =x2 + u, 

:i:2 =-:z:2 (6) 

in closed loop with a switching control scheme of relay type 

u(t) =l, ify(t)>O 

-1 ::;: u(t):::; 1, if y(t) = 0 

u(t) = -1, if y(t) < 0. (7) 

It was shown in the previous section that such a variable
structure system can be modeled as a complementarity sys
tem. Note that from any initial (continuous) state :z:(O) = 
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(:r 1 (0).;r 2 (0)) = (O,c). with !cl:::; 1. there are three possible 
smooth continuations for t 2 0 that are allowed by the 
equations and inequalities above 

I) .r1(t) = O,:i: 2(t) = ce-t,·n(t) = -ce-t, -1 :S 1i(t) :S 
1.y(t) = .r1(t) = 0 

2) :ri(t) = c(l - e- 1 ) + t,:r2 (t) = ce-1,n(t) = l.y(t) = 
:i:1(f)>O 

3) .r1 (t) = c(l-e-1)-t.:r2 (t) = c:e-t,n(t) = -1,y(t) = 
:1:1 (t) < 0. 

So the above closed-loop system is not well-posed as a 
dynamical system. If the sign of the feedback coupling is 
reversed, however, there is only one smooth continuation from 
each initial state. This shows that well-posedness is a nontrivial 
issue to decide upon in a hybrid system, and in particular is 
a meaningful performance characteristic for hybrid systems 
arising from switching control schemes. Depending on the 
actual implementation of the controller that is represented in 
idealized form in (7), lack of well-posedness may manifest 
itself in some form of instability. 

For simplicity we shall assume throughout that there are no 
external (continuous or discrete) inputs applied to the system. 
In the context of switching control schemes this assumption is 
natural, since we consider a closed-loop configuration. 

Recall that a general complementarity system has been 
represented by a "core dynamics" having pairs of external 
variables 'II; and U; (functions of z), in "closed loop with" or 
"terminated by" the complementarity conditions y; 2 0, n; 2 
0. Yi'lli = 0. This "closed-loop" point of view will turn 
out to be very fruitful in the analysis of complementarity 
systems. This becomes especially clear for the semi-explicit 
complementarity systems, which will be treated in the rest of 
this paper. These systems can be written as an "input-output 
system" 

:i:(t) = .f(:z:(t), 11,(t)). 

y(t) = h(:r(t). u(t)). 

:i: E IR", 

y E IFilk 

with the additional complementarity conditions 

y(t) 2 o. 1l(t) 2 0. 

(8) 

(9) 

The inequalities here are taken in the componentwise sense. 
Because of the nonnegativity constraints, the vanishing of the 
inner product means that for each index -i. and each time t we 
must have either y;(t) = 0 or ·u;(t) = 0 (or both). The vectors 
u( t) and u( t) denote complementary variables, rather than 
outputs and inputs. Nevertheless, we keep the symbols that 
are customarily used for outputs and inputs, because we will 
extensively use tools from the theory of input-output systems 
(8). The functions .f and h will always be assumed to be 
smooth. 

The complementarity conditions (9) imply that for some 
index set I c { 1. · · · , k} one has the algebraic constraints 

y;(t) = 0 ('i EI). 1L;(t) = 0 ('i 'f./). (10) 

Note that (10) always represents k constraints which are to be 
taken in conjunction with the system of n differential equations 
in n+k variables appearing in (8). The problem of determining 
which index set I has the property that the solution of (8)-(10) 

coincides with that of (8) and (9) is called the mode selection 
problem; the index set I represents the mode (location) of the 
system. 

One approach to solving the mode selection problem would 
simply be to try all possibilities: solve (8) together with 
( 10) for some chosen candidate index set I and see whether 
the computed solution is such that the inequality constraints 
:v(t) 2 0 and u(t) 2: 0 are satisfied on some interval [O, r]. 
Under the assumption that smooth continuation is possible 
from :r0 , there must at least be one index set for which 
the constraints will indeed be satisfied. This method requires 
in the worst case the integration of 2'' systems of n + k 
differential/algebraic equations in n + k unknowns. 

In order to develop an alternative approach which leads to 
an algebraic problem formulation, let us note first that we can 
derive from (8) a number of relations between the successive 
time derivatives of y(·), evaluated at t = 0, and the same 
quantities derived from ·n( ·). By differentiating the second line 
of (8) and using the first line, we get 

:lJ(t) = h(:z:(t),u(t)) 
uh DI 

:if(t) = -i) (:i:(t),u(t))f(:r(t),u(t)) + "'\r(t),n(t))1i.(t) 
X u1l 

=: F1(:i:(t), ·n(t).1i.(t)) 

and in general 

:l/Ul(t) = FJ(:i:(t). ·n(t), · · ·, vUl(t)) (11) 

where FJ is a function that can be specified explicitly in 
terms off and h. From the complementarity conditions (9), it 
follows, moreover, that for each index ·i either 

(y;(O), :iJ;(O), · · ·) = 0 and (n;(O). u;(O), · · ·) :S 0 (Vi 

or 

(y;(O), Yi(O), · · ·) :S 0 and (n;(O), 1i,i(O), · · ·) = 0 (13) 

(or both), where we use the symbol ::S to denote lexicographic 
nonnegativity. (A sequence ( ao, a1, · · ·) of real numbers is 
said to be lexicographically nonnegative if either all a.; are 
zero or the first nonzero element is positive.) This suggests 
the formulation of the following "dynamic complementarity 
problem" (DCP). 

Problem DCP: Given smooth functions F/ lfil"+(J+l)k _, 

!Fil'' (j = 0, 1, .. · . ) that are constructed from smooth functions 
f: IR" --+ IR" and h: IR" --+ IFilk via (11 ), find, for given 
:i:0 E R", sequences (:1/, y 1, · · ·) and (n°. ·u 1. · · ·) of k-vectors 
such that for all j we have 

(14) 

and for each index i E { 1, · · · . k} at least one of the following 
is true: 

(y?,y[, · .. ) =0 and ('tl?,u}, · · ·) ::S 0 (15) 

( ·1;0 • ·u1 . · · ·) -< O and (u0. u 1 . · · ·) = 0 (16) ~ I dt · ~ 'i l l ~ ' 

We shall also consider truncated versions where j only 
takes on the values from zero up to some integer f; the 
corresponding problem will be denoted by DCP(f). It 
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follows from the triangular structure of the equations that 
if ((y0, · · · ,:1/), ('n°, · · ·, 1/)) is a solution of DCP(£), then, 

for any _f_' < £, ( (:1/1. · · · , y11 ), (n°, · · · , ·1/)) is a solution of 
DCP(t). We call this the nesting property of solutions. We 
define the active index set at stage £, denoted by ft, as the 

set of indexes i for which ( n?. · · · , u.~) >- O in all solutions of 
DCP( £), so that necessarily y{ = 0 for all j in any solution 
of DCP (if one exists). Likewise, we define the inactive index 
set at stage f, denoted by 11 , as the set of indexes i for which 
(yp, · · · , yf) >- 0 in all solutions of DCP( £), so that necessarily 

n{ = 0 for all j in any solution of DCP. Finally, we define 

Ke as the complementary index set { L · · · , A:}\ (If U .l1). It 
follows from the nesting property of solutions that the index 
sets It and .lt are nondecreasing as functions of£. Since both 
sequences are obviously bounded above, there must exist an 
index f* such that ft = Ii and .fF = Je, for all £ 2: f*. We 
finally note that all index sets defined here of course depend 
on :i:0 ; we suppress this dependence, however, to alleviate 
the notation. 

The problem DCP is a generalization of the nonlinear com
plementarity problem (NCP) (see for instance [4]), which can 
be formulated as follows: given a smooth function F: [Rk --+ 

!Rk, find k-vectors y and ·u such that y = F(:r:, ·u.), y 2': 0, 'li 2: 
0. and yTn = 0. For this reason the term "dynamic comple
mentarity problem" as used above seems natural. Apologies 
are due, however, to Chen and Mandelbaum who have used 
the same term in [3] to denote a different although related 
problem. 

Computational methods for the NCP form a highly active 
research subject (see [ 10] for a survey), due to the many 
applications in particular in equilibrium programming. The 
DCP is a generalized and parameterized form of the NCP, and 
given the fact that the latter problem is already considered a 
major computational challenge, one may wonder whether the 
approach taken in the previous paragraphs can be viewed as 
promising from a computational point of view. Fortunately, 
it turns out that under fairly mild assumptions the DCP can 
be reduced to a series of linear complementarity problems. In 
the context of mechanical systems this idea was first used by 
Lotstedt [12]. The LCP can be formulated as follows. 

Problem LCP: Given a vector q E IR"' and a matrix M E 
x k, find k-vectors y and 'll such that 

y = q + Jvfo, 1! 2': 0, '(/, 2: o. :iJT'U = 0. (17) 

The LCP has been studied extensively, in particular because 
of its applications in game theory and mathematical pro
gramming. A wealth of theoretical results and computational 
methods has been collected in [4]. The main result that will be 
used here is the following: the LCP (17) has a unique solution 
(y, n) for all q if and only if all principal minors of the matrix 
M are positive [16], [4, Th. 3.3.7]. (Given a matrix M of 

size A: x A: and two nonempty subsets I and J of { 1, · · · , k} 
of equal cardinality, the (1, J)-minor of M 'is the determinant 

of the square submatrix MIJ := (mij)iEI.jE.l· The principal 
minors are those with 1 = .J [9, p. 2].) 
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To get a reduction to a sequence of LCP' s, assume that the 
dynamics (8) can be written in the affine form 

"' 
:i:(t) = .f(:r(t)) + ~ g;(:r(t))u;(t) 

i=l 

y(t) = h(:r(t)). (18) 

Extensive information on systems of this type is given for 
instance in [15]. In particular, we need the following termi
nology. The relative degree of the 'ith output y; is the number 
of times one has to differentiate y; to get a result that depends 
explicitly on the inputs ·n. The system is said to have uniform 
relative degree if the relative degrees of all outputs are the 
same. 

Theorem 3. J: Consider the system of equations ( 18) to
gether with the complementarity conditions (9), and suppose 
that (18) has uniform relative degree p. Let :r0 E R" be such 
that 

(19) 

(with componentwise interpretation of the lexicographic in
equality) and such that all principal minors of the decoupling 
matrix L9 Lj- 1h(:c0 ) at :i:0 are positive. For such :r0 , the 

dynamic complementarity problem DCP( P) has for each f a 
solution ( (y 0 , · .. , yf), (u0 , · .. , ur)) which can be found by 
solving a sequence of LCP's. Moreover, this solution is unique, 

except for the values of 'u.f with i ft .J, and j > f - p. 

Proof It follows from the special form of ( 18) and the 
uniform relative degree assumption that the equations of the 
DCP will take the following form, in which the rf; j 's denote 
functions that can be computed explicitly [cf. (11 )] from the 
given functions f, g;. and h: 

yj = L~fh(:ro) (j = 0, · · ·, p - 1) 

yr+j = c/>j(:r(i,u0 , · · ·, uj-l) + L 9Lj- 1h(:r0 )vj (.j 2: 0). 

(20) 

From this and ( 19) it is already obvious that the claim of 
the theorem holds for P = 0, · · ·, p - 1. We now continue 
by induction and so we carry out the proof assuming that 
£ 2: p and that the claim in the theorem holds for DCP( £ -
1). A solution ((y0, .. ·,:1/),(v.0, ... ,uf)) ofDCP(f) can be 
constructed as follows. The components y1 for j = 0, · · ·, £-1 
and nj for j = 0, · · · , £ - p-1 must be taken from the solution 
for DCP( £-1) by the nesting property. In this way one satisfies 
automatically all equations of DCP( £) except for the last one, 

which is 

, f _ ,1. (" o , t-p-1) L Lp-1 1 (" )' t-p Y - Y'f-p .i.o, n , · · ·, u. + 9 1 i .to IL • 

To simplify the notation, we abbreviate this as 

yt = zt + IJ-1/-p. 

(21) 

(22) 

Note that the vector z 1 depends only on the components of 
the solution of DCP( f - 1) that are uniquely determined; the 
matrix D is the decoupling matrix at :r:0 . In addition to (22), 
the complementarity conditions of DCP( £) have to be satisfied; 
after eliminating all conditions that are satisfied automatically 
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by building the solution from the one that was obtained from 
DCP( fi - 1), this leaves us with the conditions 

yf =0 
uf-p = 0 

/. 

and 

(i E lt-1) 

('i E Jp_i) (23) 

yf 2:: 0, P-p > Q u,, - , ('i E Kt-1). 

(24) 

Dividing up (22) in three parts corresponding to the index 
sets .lt-1, lt-1, and Kt-1, and dropping all indexes and 
subindexes that depend on fi to further alleviate the notational 
burden, we get 

[ YI l [ZI l [Dn YJ = Z.] + DJ/ 
YK ZJ( DJ\1 

By (23), we have to take YI = 0 and it.I = 0. We see that 
the remaining components have to be chosen such that the 
following equations are satisfied: 

O=z1+Dn'1t1+D1I\UJ< (25) 

YJ = Z.] + D JI7lJ + DJJ\U/( (26) 

YI\ =zl\ + DK1'1t1 + Df\K1lJ.,:. (27) 

Moreover, the complementarity conditions that follow from 
(24) must hold 

'll]\ 2:: u, Yk'llf\ = 0. (28) 

By assumption, the determinant of Du is positive and hence 
nonzero so that 'U.J can be solved in terms of z1 and 'if.I\ from 
(25). Inserting the result in (27) leads to the equation 

The above equation together with the complementary condi
tions (28) constitutes a standard LCP. From our assumption 
that all principal minors of D are positive, it follows that the 
same property is true for D 1-.: I\ - D I\I D [/ D II\ , since this 
matrix is a Schur complement of a principal submatrix of D 
[17]. From [4, Th. 3.3.7] (as quoted above), it then follows that 
the LCP (28) and (29) has a unique solution. This determines 
YI\ and ·ng; then finally 'U.J and YJ follow from (25) and (26). 
The components uf for j > fi - p must vanish for indexes ·i 
such that (y~J, · · ·, yf) >- 0. So the uniqueness of solutions is 
as described in the theorem statement. 0 

The result above is algebraic in nature. We now return to 
differential equations. 

Theorem 3.2: Assume that the functions f, g.;, and h 
appearing in (18) are analytic. Under the conditions of 
Theorem 3. I, there exists an E > 0 such that (18) and (19) 
has a smooth solution with initial condition ;i:u on [O, f]. 
Moreover, this solution is unique and corresponds to any 
mode 1 such that lt-· c 1 c 1,. U Kt· . 

Proof' Let W be a neighborhood of x 0 such that all 

principal minors of the matrix D(;i:) := L9 L't 1h(:r) are 

nonzero for all :r E W, and consider for any index set I 
the equations 

:i: = f(;i:) + Lg;(:z:)u.i 
iEJ 

0 = h;(:r), ·i EI (30) 

describing the dynamics in mode I. Since the submatrix 

Dn(:z:) is invertible on W, it follows (see for instance [15, 

Ch. 11]) that (30) has a unique solution on W starting from 

any initial condition in W n Vi, where 

Vi= {:i:ILjh;(.1:) = 0,j = O,··· ,p- 1,i EI} (31) 

is the "consistent manifold" of mode I. As a consequence of 

the analyticity assumptions, these solutions on W are real

analytic [14, Corollary 1.8.11]. 

For indexes i E J,, we must have L~h;(:i:0 ) = 0 for 

.i = 0, L · · · , p - 1; so :i:0 E Vi, ... . Denote the solution in mode 
h· starting from :1: 0 by (:z:( ·), y( ·), u( ·) ). From the uniqueness 

properties of solutions of DCP (see Theorem 3.1 ), it follows 

that 

i E 11 => { yjJl(O) = O for all .f 2:: 0 
(n;(O).-it;(O), · .. ) >- 0 

1. E .ft· => ' -. { u(Jl(o) = 0 for all J. > 0 
(y;(0),7j;(O), · · ·) >- 0 

i E Kt. =>uYl(o) = 0, yjJl(O) = 0 for all.f 2:: 0. 

So, by analyticity, there exists an f > 0 (taken small enough 

to guarantee that :i:(t) E W for t E [O, Ej) such that 

·i E 1 t . => y; ( t) = Cl and n; ( t) 2:: n for t E [ O, f], 

·n;(t) > 0 fort E (0, f) 

i E .11 => n;(t) = 0 and y;(I) 2:: 0 fort E [O. f]. 
Yi (t) > 0 fort E (0, f) 

i E K1 => y;(t) = 0 and n;(f) = 0 for f. E [O, f]. 

Hence (18) and (19) have a smooth solution which is unique 

in mode 11. and in fact takes place in every mode 1 such that 

ft c I c 11 U K1·. 
Now suppose there is another smooth solution 

(:i:(·)Jt(·),:D(·)) (in some mode I) with initial condition 
:i:0 . As noted above, the solution is real-analytic. From the 

uniqueness property of solutions of DCP it follows that 
:1/J)(O) = :1/Jl(O) and ·ii.U)(O) = ·uUl(O) for all j, and 

therefore by analyticity ;ij(t) = y(t) and ·11.(t) = n(t) for 

t E [O, f]. It also follows that 11 C I C h· U Kt·. 
Example 3.3-Mechanical Systems with Unilateral Con

straints: Mechanical systems with unilateral constraints can 

be represented as semi-explicit complementarity systems (cf. 
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[18]) 

. 8H 
q = op (q,p), q E IR", p E IR" 

. DH &R . JCT 
p = - -[) (q,p) - --;;J7"(q) + ~(q)n, 

q uq uq 

Y = C(q), y E IR'' 
y ?_ 0, 1£ ?_ 0, 

(32) 

(33) 

where (oH/op), (8H/8q), etc., denote column vectors of 
partial derivatives. The vectors q and p contain position and 
momentum variables respectively, the Hamiltonian H (CJ, p) is 
the total energy, and R is a Rayleigh dissipation function. 
Furthermore, C(q) ?_ 0 is the column vector of unilat
eral (geometric) constraints, and v. ?_ 0 is the vector of 
Lagrange multipliers producing the constraint force vector 
( 8C7' / [)q) ( q )n. The condition yT n = 0 corresponds to the 
fact that the ith component of the constraint force vector can be 
only nonzero if the ·ith constraint is active, that is if C; (CJ) = 0. 

Assume that (32) is real-analytic and that the unilateral 
constraints are independent, that is 

acT 
rank OCJ (CJ)= k, for all q with C(q) ?_ 0. (34) 

Since the Hamiltonian is of the form (kinetic energy plus 
potential energy) 

H(q,p) =~PT M-l(q)p + V(q) 

M(q)=l\P(q)>O (35) 

where lv[ ( q) is the generalized mass matrix, it follows that the 
system (32) has uniform relative degree two with decoupling 
matrix 

[ 
f)CT ] T i]CT 

D(q) = Dq (q) M-1 (q) [)q (CJ). (36) 

Hence, from M ( q) > 0 and (35) it follows that D( q) is positive 
definite for all q with C(q) ?_ 0. Since the principal minors 
of a positive definite matrix are all positive, all conditions 
of Theorems 3.1 and 3.2 are satisfied, and we establish well
posedness as in [12]. 

Example 3.4-Passive Systems: System (18) is called pas
sive (see [20]) if there exists a function V ( :c) ?_ 0 (a storage 
function) such that 

L1V(:c) $0 

L 9 ; V(.r) = h;(:c), ·i = 1, ... 'k. (37) 

Let us assume the following nondegeneracy condition on the 
storage function V: 

rank[Ly; Lg; V(x )]·i,j=l,- .. ,1 .. =I.•, 

for all x with h(:c) ?_ 0. (38) 

Since Ly, h; = Ly1 Lg; V it follows that the system has uniform 
relative degree one, with decoupling matrix D(:r:) given by 
the matrix in (38). If the principal minors of D(:i:) are all 
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positive, then well-posedness follows. Note that the condition 
of D(:r:) having positive principal minors corresponds to an 
additional positivity condition on the storage function \/. In 
fact, it can be checked that for a linear system with quadratic 
storage function V(:c), the decoupling matrix D(:r:) will be 
positive definite if V(.T) > 0 for a· =I= 0. Hence, a linear 
passive electrical network containing ideal diodes is always 
well-posed. 

IV. A FREQUENCY-DOMAIN METHOD 

In this section we shall consider the case in which we 
have linear dynamics in (18). We shall, moreover, allow a 
feedthrough term Du( t), so that (18) is replaced by 

:i:(t) = A:r(t) + Bit(t) 

y(t) = C:r:(t) + Du(t). (39) 

Linear complementarity modeling applies, for instance, to 
electrical networks with linear elements and diodes to certain 
mechanical systems made up of masses and linear springs 
(or rotational inertias and corresponding elasticity) and to 
the Hamiltonian equations for linear-quadratic optimal control 
problems with linear inequality constraints (cf. also [18] and 
[11]). In the linear case, the equations of the DCP become 

j-1 

YJ = CA.J:co + L CA.J-l-iBu; + Dui 
i=O 

(j ?_ 0). (40) 

The dynamic complementarity problem with these equations 
will be denoted by LDCP and the truncated versions by 
LDCP( f). It has been shown in [7] that LDCP( f) can be 
looked at as a special case of the Generalized Linear Com
plementarity Problem (GLCP) [5] and of the Extended Linear 
Complementarity Problem (ELCP) [6]. 

A special feature of the linear setting is that it allows a 
frequency-domain approach to the mode selection problem. To 
see this, note that to a strictly proper rational vector function 
y( s) we can associate the coefficients yj of its power series 
expansion around infinity 

01 l') ')'l y(s) = y s- + y ;;-- + :1rs-· + · · · 

and, as is easily verified, the lexicographic nonnegativity 
condition (y0 , y 1 , · · ·) ~ 0 is equivalent to the condition 

y(s) ?_ 0 for all sufficiently large s. (41) 

Moreover, when two strictly proper functions y( s) and ·u( s) 
are related via 

y(s) = C(sl - A)- 1:r0 + (D + C(sI - A.)- 1 B)'n(s) (42) 

then, as is again easily verified, the corresponding coefficients 
(y0 , y 1 , ... ) and (u0 , 1t 1. · · ·) are related in exactly the same 
way as in the LDCP. We are therefore motivated to con
sider the following problem, which we shall call the rational 
complementarity problem (RCP). 
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Problem RCP: Let matrices A, B, C, D of sizes n x n, n x 
k, k x n. and k x k, respectively, be given. Define rational 
matrix functions T ( s) of size k x n and G ( s) of size k x k 
by T(s) = C(sl - A)- 1 and G(s) = C(sl - A)- 1 B +D. 
For given :1:0. find strictly proper rational functions y( s) and 
u( .s) such that the equality 

y(s) = T(s):i.:o + G(s)u(s) (43) 

holds, and there exists an s0 E IR such that for all s 2': so 
we have 

y(s) 2': 0, u(s) 2': 0, (44) 

A formal proof of the equivalence of RCP and LDCP is given 
in [11]. Here we shall only present an example to illustrate the 
convenience of using RCP. Consider the following equations 
(cf. [18]) in which :r1 and :r2 denote the positions of two unit 
masses connected by springs to each other and to a wall, the 
motion of the first mass being constrained by a stop: 

:i;1(t) = -2:1:1(t) + :i.:2(t) + u(t) 

:i:2(t) = :i:1 (t) - :J.:2(t) 

y(t) =x1(t) 

y(t) 2': 0, u(t) 2': 0, y(t)u.(t) = 0. (45) 

This gives rise to the following equations: 

') 

( s- + 2 ):i.:1 = :i.:2 + ·n + :i.:30 + s:1:10 

(s2 + l):r:2 =:r1 + :i:.rn + s:r20 

in which the vector (:i:1o, :.z:20, :1:30 1 X40) represents an initial 
condition. The variable x2 can be eliminated by multiplying 
the first equation by s2 +1 and then using the second equation. 
Since y = :r1 , we obtain 

(.s4 + 3s2 + l)y 

[
:z:10 l 

? 2 :z:20 
= [8(s- + l),s,s + 1, l] 

X30 

:z:40 

+ (s2 + l)n. (46) 

For each fixed s there is an associated scalar LCP, which 
leads to the following rules for the selection of a mode 
corresponding to the given initial conditions. Since at the 
instant of collision :r10 = 0 always, the selection problem is 
dominated first by the sign of :i:30 . If this sign is positive, then 
the mode with inactive constraint will be selected, whereas 
the mode with active constraint will be selected (and will give 
rise to an impulsive solution) if the sign is negative. If :r30 

vanishes, then the highest power of s is associated with x20 

and so it will be the sign of this quantity that will determine 
which mode is chosen. Again, if the sign of :i:20 is positive, 
then the mode with inactive constraint will be selected, and if 
the sign is negative, then the other mode will be selected. If 
also x 20 = 0, then the sign of a:40 becomes decisive. Finally 
if x40 vanishes as well, then the system is at rest, a situation 
which is in accordance with the constrained mode as well as 
with the unconstrained mode. One may convince oneself that 

this schedule, complicated as it may seem, does correspond to 
physical intuition. In [I I] it is shown that the selec.tion rule 
based on RCP leads for mechanical systems to the same results 
as projection according to the kinetic metric as described in 
[13]. 

V. CONCLUSIONS 

The interaction of discrete and continuous elements can lead 
to extremely complex models. One way of overcoming the 
potential complexity is by the introduction of what one might 
call "formalisms," that is, sets of high-level rules that allow 
a compact specification of the dynamics of a hybrid system. 
The use of formalisms also will help the development of theory 
since it adds structure to the rather wide notion of a "hybrid 
system." 

In this paper we have discussed a formalism which we 
have called the complementarity formalism. In our previous 
paper [18], we have shown that this formalism is suited, e.g., 
for mechanical systems with unilateral constraints, electrical 
networks with diodes, and the Hamiltonian equations for 
optimal control problems with state inequality constraints. In 
the present paper we have also shown that switching control 
schemes can be represented within this formalism. Moreover, 
from results on the representation of piecewise linear sets [8], 
[ 19] it follows that all continuous-time systems with elements 
having arbitrary piecewise linear characteristics can be written 
as complementarity systems. This includes control systems 
with relays and saturation or mechanical systems subject to 
Coulomb friction. 

The central problem considered in this paper is to derive 
conditions for uniqueness of smooth continuations. We have 
solved this problem for complementarity systems in semi
explicit form, using methods from input-output systems theory 
and the theory of the LCP. The extension of these results to 
general complementarity systems is presently under investiga
tion. It should be clear though that the well-posedness issue 
concerns more than just uniqueness of smooth continuations. 
One has to specify reinitialization rules, and one has to 
verify uniqueness of jumps and to guarantee that only a finite 
number of jumps can occur at a given instant. For linear 
complementarity systems these problems are addressed in [ 11]. 
A related basic issue concerns the stability properties of com
plementarity systems and their use in the design of switching 
control schemes. Furthermore, the inclusion of inputs and 
outputs within the formalism and their use for the control of 
complementarity systems calls for investigation. 
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