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Abstrat. We present a new method for prediting the sieving e�ortfor the number �eld sieve (NFS) in pratie. This method takes relationsfrom a short sieving test as input and simulates relations aording tothis test. After removing singletons, we deide how many relations weneed for the fatorization aording to the simulation and this gives agood estimate for the real sieving. Experiments show that our estimateis within 2% of the real data.
1 IntrodutionOne of the most popular methods for fatoring large numbers is the number �eldsieve [4℄, as this is the fastest algorithm known so far. In order to estimate themost time-onsuming step of this method, namely the sieving step in whih theso-alled relations are generated, one looks at atual sieving times for numbersof omparable size. If these are not available, one ould try to extrapolate atualsieving times for smaller numbers, using the formula for the running time L(N)of this method, where N is the number to be fatored. We haveL(N) = exp(((64=9)1=3 + o(1))(logN)1=3(log logN)2=3); as N !1 ;where the logarithms are natural. These estimates an be 10{30% o�.In this paper we present a method for prediting the number of relationsneeded for fatoring a given number in pratie within 2% of the atual numberof relations needed. With `in pratie' we mean: on a given omputer, for a givenimplementation, and for a given hoie of the parameters in the NFS. This allowsus to predit the atually required sieving time within 2%. Our method is basedon a short sieving test and a very heap simulation of the relations needed for thefatorization. By applying this method for various hoies of the parameters ofthe number �eld sieve, it is possible to �nd an optimal hoie of the parameters,e.g., in terms of minimal sieving time or in terms of minimizing the size of theresulting matrix. Before going into details we give a short overview of the NFSin order to show where our method �ts in.The NFS onsists of the following four steps. First we selet two irreduiblepolynomials f1(x) and f2(x), f1; f2 2 ZZ[x℄, and an integer m < N , suh thatf1(m) � f2(m) � 0 (mod N) :



2 Willemien EkkelkampPolynomials with `small' integer oeÆients are preferred, beause the values ofthese polynomials are smaller on average and smoother (i.e. having smaller primefators on average) than the values of polynomials with large integer oeÆients.Usually f1(x) is a linear polynomial and f2(x) a higher degree polynomial, re-ferred to as rational side and algebrai side, respetively. If N is of a speial form(e.g., n � 1) then we an use this to get a polynomial f2(x) with very smalloeÆients. In that ase we talk about the speial number �eld sieve (SNFS),else we talk about the general number �eld sieve (GNFS). By �1 and �2 wedenote roots of f1(x) and f2(x), respetively.The seond step is the relation olletion. We hoose a fatorbase FB ofprimes below the bound F and a large primes bound L; for ease of exposi-tion we take the same bounds on both the rational side and the algebrai side.Then we searh for pairs (a; b) suh that gd(a; b) = 1, and suh that bothF1(a; b) = bdeg(f1)f1(a=b) and F2(a; b) = bdeg(f2)f2(a=b) have all their prime fa-tors below F and at most two prime fators between F and L, the so-alled largeprimes. These pairs (a; b) are referred to below as relations (ai; bi).There are many possibilities for the relation olletion, the fastest of whihare based on sieving. Two sieving methods in partiular are widely used, namelyline sieving and lattie sieving. For line sieving we selet a retangular sieve areaof points (a; b) and the sieving is done per horizontal line. For lattie sieving weselet an interval of so-alled speial primes and for eah speial prime we onlysieve those pairs (a; b) for whih this speial prime divides bdeg(f2)f2(a=b); foreah speial prime these pairs form a lattie in the sieving area. In ase of SNFSthe speial prime is hosen on the rational side.The third step onsists of linear algebra to onstrut a set S of indies i suhthat the two produts Qi2S(ai � bi�1) and Qi2S(ai � bi�2) are both squares ofproduts of prime ideals. This produt omes from the fat that bdeg(f1)f1(a=b) isthe norm of the algebrai number a�b�1, multiplied with the leading oeÆientof f1(x). The prinipal ideal (a � b�1) fators into the produt of prime idealsin the number �eld Q(�1). The situation is similar for f2.The last step is the square root step. We determine algebrai numbers �01 2Q(�1) and �02 2 Q(�2) suh that (�01)2 =Qi2S(ai�bi�1) and (�02)2 =Qi2S(ai�bi�2). Then we use the homomorphisms ��1 : Q(�1) ! ZZ=NZZ and ��2 :Q(�2)! ZZ=NZZ with ��1(�1) = ��2(�2) = m to get ��1(�01)2 = ��1 �(�01)2� =��1 �Qi2S(ai � bi�1)� � Qi2S((ai � bim) � ��2(�02)2(mod N): Now omputegd(��1(�01) � ��2(�02); N) to obtain a fator of N. If this gives the trivial fa-torization, ontinue with the next set of indies, otherwise we have found anontrivial fatorization of N . For more details of the NFS, see e.g., [3℄, [4℄, or[5℄. Our method works as follows. After hoosing polynomials, bounds F and L,and a sieve area, we perform a sieve test for a relatively short period of time.For a 120-digit N one ould sieve for ten minutes or so, but for larger numbersone may spend onsiderably more time on the sieve test. Based on the relationsin this sieve test we simulate as many relations as are neessary for fatoringthe number. The simulation uses a random number generator and funtions that



Prediting the Sieving E�ort 3desribe the underlying distribution of the large primes, and this an be donefast. During the simulation of the relations, we regularly remove the singletonsfrom all the relations simulated so far. As soon as the number of relations leftafter singleton removal exeeds the number of primes in the relations we stopand it turns out that the total number of relations simulated so far gives usa good estimate of the atual number of relations that we need to fator ournumber.The number of useful relations after singleton removal grows in a hard-to-predit fashion as a funtion of the number of relations found. This growthbehaviour di�ers from number to number, whih makes it hard to predit theoverall sieving time: for instane, even estimates based on fatoring times ofnumbers of omparable size an easily be 10% o�. Our method, however, whihis purely based on the individual behavior of the relations found for the numberto be fatored, allows us to predit how the number of useful relations will be-have as a funtion of the number of relations found, thereby giving us a tool toaurately predit the overall sieving time.The simulations in this paper were arried out on a Intel r CoreTM2 Duowith 2 GB of memory. The line sieving data sets were generated with the NFSsoftware pakage of CWI. The lattie sieving data sets were given by Brue Dod-son and Thorsten Kleinjung.In Setion 2 we desribe how we simulate the relations. Setion 3 is about thesingleton removal and about how to deide when we have enough relations tofator the given number. In Setion 4 we ompare results of the simulation withreal fatorizations and Setion 5 ontains the onlusions and our intentions forfuture work.
2 Simulating RelationsBefore we start with the simulation, we run a short sieving test. In order to geta representative seletion of the atual relations, we ensure that the points weare sieving in this test are spread over the entire sieving area. The parametersfor the sieving are set in suh a way that we have at most two large primes bothon the rational side and on the algebrai side. In the ase of lattie sieving wehave one additional speial prime on one of the sides. In this setion we desribethe proess of simulating relations both for line sieving and for lattie sieving.Note that we only simulate the large primes; for the primes in the fatorbase weuse a orretion as will be explained in Setion 3.The �rst step after the sieving test onsists of splitting the relations aordingto the number of large primes. The set of relations with i large primes on therational side and j large primes on the algebrai side is denoted by riaj fori; j 2 f0; 1; 2g. This leads to nine di�erent sets and the mutual ratios of theirardinalities determine the ratios by whih we will simulate the relations. In thease of lattie sieving we split the relations in the same way, ignoring the speialprime.Next we take a loser look at the relations in eah set and speify a model



4 Willemien Ekkelkampthat �ts the distribution of the large primes in these sets as losely as we anaomplish. To larify this, we explain for eah set how to simulate the relationsin that set, for the ase of line sieving.r0a0: We ount the number of relations in this set.r1a0: We started with sorting all the large primes and put them in an array. Our�rst experiments with simulating the large primes (and removing singletons)onentrated on the large primes at hand. We tried linear interpolation betweentwo onseutive large primes, Lagrange polynomials, and splines, but all theseloal approahes did not give a satisfying result; the result after singleton removalwas too far from the real data. We then tried a more global approah, lookingat all the large primes and see if we ould �nd a distribution for them. Wefound that an exponential distribution simulates best the distribution of theselarge primes over the interval [F;L℄ (f. [2℄, Ch. 6) and the result after singletonremoval was satisfatory. The inverse of this distribution funtion is given by
G(x) = F � a log �1� x�1� eF�La �� ; 0 � x � 1 ; (1)

where a is the average of the large primes in the set r1a0. Note that G(0) = Fand G(1) = L. In order to generate primes aording to the atual distributionof the large primes, we generate a random number between 0 and 1, substitutethis number in G(x), round the number G(x) to the nearest prime, and repeatthis for eah prime that we want to generate.To avoid expensive prime tests, we work with the index of the primes p,de�ned as ip = �(p), rather than with the prime itself. This index an be foundby using a look-up table or the approximation ip � plog p + plog2 p + 2plog3 p [6℄.Experiments showed that this third order approximation gives almost the sameresults as looking up indies in a table. It is espeially more eÆient to use thisapproximation when L is large. For working with indies, we have to adjust (1);we write iF for the index of the �rst prime above F , and iL for the index of theprime just below L, and a0 for the average of the indies of the large primes inthe set r1a0. Then the formula beomes
G(x) = iF � a0 log �1� x�1� e iF�iLa0 �� : (2)

To illustrate that the distribution of the large primes is approximated wellby (2) we have generated the following graph, whih onsists of two sorted sets.One set onsists of the indies of the primes of the original sieving data andthe other set onsists of the indies simulated with help of (2). The line of thesimulated data is the one whih lies below the other line (of the original data)around position 7000.
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Fig. 1. Comparing original and simulated data
The neessary number of relations in the set r1a0 depends on how manyrelations we have to generate in total.r0a1: We would like to use the same idea as we used for r1a0, but now we have todeal with algebrai primes. This means that not all primes an our, and thateah prime that does our an have up to d di�erent roots, where d is the degreeof the polynomial f2(x). This yields pairs of a prime and a root whih we denoteby (prime; root). Lukily, (heuristially) the amount of pairs (prime; root) withF < prime < L is about equal to the amount of primes between F and L. Thisimplies that we do not have to simulate pairs with a ertain subset of indies,as we may assume that all indies an our in the simulation. We found thatan exponential distribution �ts here as well, so here we use the same approahas we did for r1a0.r1a1: We know now how to simulate r1a0 and r0a1, and we assume that thevalue of the index on the rational side is independent of the value of the indexon the algebrai side. We ombine both approahes: using (2), generate a randomnumber and ompute the orresponding rational index, generate a new randomnumber (do not use the �rst random number as input for the random numbergenerator) and ompute the algebrai index.r2a0: Here we have to deal with two large primes on the rational side, denotedby q1 and q2 with q1 > q2. We started with sorting the list with q1 and (toour surprise) we found that a linear distribution �ts these data well. So thedistribution funtion of the index iq1 of q1 is given byH1(x) = iF + x(iL � iF ) ;



6 Willemien Ekkelkampwhere x is a number between 0 and 1.We ontinued with q2 and sorted them. Here, an exponential distribution �tsthe data, but now we have to take into aount that q2 < q1. Remember thatwe need an average value for the exponential distribution, but we annot use allq2-values. Instead of using one average value, we make a list of averages aq2 ofthe sorted q2-indies, where aq2 [j℄ ontains the average of the �rst j q2-indies.Now we desribe how to simulate elements of r2a0. We begin with a randomnumber between 0 and 1 and ompute H1(x), whih gives us an index iq1 of q1.We look up this index in the sorted list of q2-indies and the orrespondingposition j tells us whih average we should use for omputing the index iq2 of q2.We generate a new random number between 0 and 1 and substitute it for x inthe following formula H2(x), whih is an adjusted form of G(x):H2(x) = iF � aq2 [j℄ log�1� x�1� e iF�iq1aq2 [j℄ �� :This gives us an index iq2 of q2 that is smaller than the index we generatedfor q1.Our observation of a linear distribution of the largest prime and an expo-nential distribution of the seond prime may not be as one would expet theo-retially, but this might very well be a onsequene of sieving in pratie. Forexample, produts of size approximately L2 fator most of the time as one primebelow L and one prime above L and are disarded. Thus most sievers do notspend muh time on fators of this size. It may turn out to be the ase that asiever with di�erent implementation hoies gives rise to di�erent distributions,whih needs to be investigated further.To illustrate the distribution of the produts of the two large primes for thedataset of 13; 220+ (f. Setion 4) found by our implementation of the siever,we added for eah relation in r2a0 the indies of the two large primes and splitthe interval [2iF ; 2iL℄ in ten equal subintervals (labeled s = 1; : : : ; 10). For eahsubinterval we ounted the number of relations for whih the sum of the twoindies of the two large primes lies in this subinterval: see Table 1.
Table 1. Distribution of the sum of the indies (13; 220+)s 1 2 3 4 5 6 7 8 9 10# relations 120780 161735 148757 133845 121967 78725 39253 20710 8107 0

The zero in the last olumn is due to one of the bounds in the siever, whih wasset at F 0:1L1:9 instead of L2.r0a2: We know how to deal with r2a0 and we apply the same approah to r0a2,as we an make the same transition as we made from r1a0 to r0a1.Sorting the list with q1 showed that we ould indeed use a linear distributionand the sorted list with q2 showed that an exponential distribution �tted here.



Prediting the Sieving E�ort 7Now we simulate elements of r2a0 in the same way as elements of r0a2.r1a2: As with r1a1, we assume that the rational side and the algebrai sideare independent. Here we ombine the approahes of r1a0 and r0a2 to get theelements of r1a2.r2a1: Combine the approahes of r2a0 and r0a1 to get the elements of r2a1.r2a2: As in the previous two sets, we ombine two approahes, this time r2a0and r0a2.Summarizing, our simulation model onsists of four assumptions:{ the rational side and the algebrai side are independent,{ the rational side and the algebrai side are equivalent,{ a model for one large prime (desribed in r1a0),{ a model for two large primes (desribed in r2a0).In ase of lattie sieving, we simulate the relations in the same way andadd a speial prime to all the relations in the following way. We ompute theaverage number of relations per pair (speial prime; root) in the sieving test.Then we divide the number of relations we want to simulate by this average andthis gives the total number of speial primes in our simulation. Then we seletan appropriate interval from whih the speial primes are hosen. Divide thisinterval in a (small) number of setions: per setion selet randomly the speialprimes and add eah of these speial primes to a relation. By dividing in setions(and simulating the same amount of relations per setion) we make sure thatthe entire interval of speial primes is overed, but by hoosing randomly in eahsetion, we get enough variation in the amount of relations per speial prime.If the interval of the speial primes is very large, it might beome neessary toderease the number of relations per setion. In our example this was not thease, but a well-hosen sieve test will give this information.It is possible to use di�erent fatorbase bounds for the rational primes andthe algebrai primes, bound the produt of the two large primes on the sameside, et. All these details in the sieving inuene the relations, but one thegeneral model is known, it is relatively easy to adjust it to math the details.
3 The Stop CriterionWe now know how to simulate relations, but how many should we simulate?In order to fator the number N we have to �nd dependenies in a matrix,whih is determined by the relations, as mentioned in the introdution in thethird step of the NFS. Every olumn is identi�ed with a prime � L (rational andalgebrai primes). Suppose eah row represents a relation. If a prime ours anodd number of times in that relation, we put a one in the olumn of that primeand a zero otherwise. After representing all relations in this matrix, we removethose relations with a 1 that is the only 1 in the entire olumn, the so-alledsingletons. This may generate new singletons, so this singleton removal step isrepeated until all primes our at least twie. In pratie, this is done before



8 Willemien Ekkelkampatually building a matrix.For our stop riterion it is enough to know when we have enough relations,i.e. when the number of relations after singleton removal exeeds the number ofdi�erent primes that our in the remaining relations.After the singleton removal, we ount how many relations are left and howmany di�erent large primes our in these relations. We de�ne the perentageoversquareness Or after singleton removal (s.r.) asOr := nrnl + nF � nf � 100 ;where nr is the number of relations after singleton removal, nl is the number ofdi�erent large primes after singleton removal, nF is the number of primes in thefatorbase, approximated by �(Frat) + �(Falg), and nf is the number of freerelations from fatorbase elements. We have ([3℄, Ch. 3):nf = 1g�(min(Frat; Falg)) ;where g is the order of the Galois group of f1(x)f2(x). If Or � 100% we mayexpet to �nd a dependeny in the matrix, and we may stop with simulatingrelations. To make pratially sure to �nd a dependeny, we may stop at 102%.Even a larger perentage is allowed if one would like to have more hoie in therelations that an form a dependeny and subsequently form a smaller matrixin the linear algebra step.One �nal point onerns lattie sieving. It is well known that lattie sievingprodues lots of dupliates, espeially when it involves many speial primes. Wetreat our relations as if there are no dupliates, but that implies that in the aseof lattie sieving we have to add a ertain number of relations to the relationsthat we should ollet in the sieving stage. This number an be omputed asin [1℄. The basi idea in [1℄ is to run a small sieve test and �nd out whihrelations have more than one prime in the speial primes interval. If suh arelation would be found by more than one lattie in the sieving area (rememberthat eah speial prime gives rise to a lattie in the sieving area), than this givesa dupliate relation.
4 ExperimentsWe have applied our method to several real data sets (oming from fatorednumbers) and show that this gives good results. We have arried out two typesof experiments.First we assumed that the omplete data set is given and we wanted to knowif the simulation gave the same oversquareness when simulating the same numberof relations as is ontained in the original data set. For the simulation we used0:1% of the original data.Seondly we assumed that only a small perentage (0:1%) of the original



Prediting the Sieving E�ort 9data is known. Based on this data we simulated relations until Or � 100%.Then we ompared this with the oversquareness of the same number of originalrelations.This 0:1% is somewhat arbitrary. We ame to it in the following way: westarted a simulation based on 100% real data and lowered this perentage in thenext experiment until results after singleton removal were too far from the realdata. We went down as far as 0:01%, but this perentage did not always givegood results, unless we would have been satis�ed with an estimate within 5%of the real data (although some experiments with 0:01% of the real data wereeven as good as the ones based on 0:1% of the real data).
4.1 Line Sieving
Some relevant parameters for all the real data sets in this setion are given inTable 2, where M stands for million. Numbers are written in the format a; b+ ora; b�, meaning ab + 1 or ab � 1. In the ase of GNFS, some prime fators werealready known and for the remaining fators it was more eÆient to use GNFSinstead of SNFS.

Table 2. Sieving parameters (line sieving)number # de. digits F L g nF � nf13,220+ 117 30M 400M 120 370094126,142+ 124 30M 250M 120 370094119,183� 131 30M 250M 18 361319266,129+ 136 35M 300M 18 417531280,123� 150 55M 450M 18 6383294
The experiments for the �rst two GNFS data sets 13; 220+ and 26; 142+ arein Table 3. Here, O stands for the original data and S for the simulated data.Table 3 shows that the numbers were oversieved, but the simulated data showabout the same oversquareness. In Table 4, we omputed the relative di�erene(S�O)/O � 100% of the entries in the S- and O-olumn of Table 3. We see thatour preditions of the number of relations after s.r., the number of large primesafter s.r., and the oversquareness are lose to the real data to about 1%.



10 Willemien EkkelkampTable 3. Experiments line sievingGNFS 13,220+ O 13,220+ S 26,142+ O 26,142+ S# relations before s.r. 35 496 483 35 496 483 23 580 294 23 580 294# relations after s.r. 21 320 864 21 394 640 15 150 790 15 253 825# large primes after s.r. 13 781 518 13 950 420 9 448 082 9 397 751oversquareness (%) 121.96 121.21 115.22 116.45
Table 4. Relative di�erenes of Table 3 resultsGNFS 13,220+ 26,142+relations after s.r. (%) 0.35 0.68large primes after s.r. (%) 1.22 �0.53oversquareness (%) �0.61 1.07

We give the following timings for these experiments: simulation of the rela-tions, singleton removal, and real sieving time (Table 5). For the atual sievingwe used multiple mahines and added the sieving times of eah mahine. As weused 0:1% data, we have to keep in mind that we need to add 0:1% of the sievingtime to a omplete experiment, whih onsists of generating a small data set,simulate a big data set, and remove singletons. When we hange parameters inthe NFS we have to generate a new data set.Roughly speaking, we an say that one predition of the total sieving time(for a given hoie of the NFS parameters) with our method osts less than oneCPU hour, whereas the atual sieving osts several hundreds of CPU hours.
Table 5. TimingsGNFS 13,220+ 26,142+simulation (se.) 224 156singleton removal (se.) 927 573atual sieving (hrs.) 316 709

Now for our seond type of experiments, we assume that we only have a smallsieve test of the number to be fatored. When are we in the neighbourhood of100% oversquareness aording to our simulation and will the real data agreewith our simulation? We started to simulate 5M, 10M, : : : relations (with inre-ment 5M) and for these numbers we omputed the oversquareness Or; when Orapproahed the 100% bound we dereased the inrement to 1M. Table 6 gives



Prediting the Sieving E�ort 11the number of relations for whih Or is losest to 100% and the next Or (for 1Mmore relations), both for the simulated data and the original data. This may ofourse be re�ned.
Table 6. Around 100% oversquareness (GNFS)# rel. before s.r. Or S (%) Or O (%) rel. di�. (%)28M (13,220+) 99.66 99.87 �0.2129M (13,220+) 103.15 103.29 �0.1420M (26,142+) 100.57 99.24 1.3421M (26,142+) 105.38 104.03 1.30

For SNFS the higher degree polynomial has small oeÆients. Tables 7{10show the same kind of data as Tables 3{6, but now for SNFS. We start in Table7 with the omplete data set and simulate the same number of relations. Table8 gives the relative di�erenes of the results of the experiments in Table 7. Thetimings are given in Table 9.
Table 7. Experiments line sievingSNFS # rel. before s.r. # rel. after s.r. # l.p. after s.r. oversquareness (%)19,183� O 21 259 569 11 887 312 7 849 531 103.7019,183� S 21 259 569 12 156 537 7 936 726 105.2566,129+ O 26 226 688 15 377 495 10 036 942 108.2066,129+ S 26 226 688 15 656 253 10 123 695 109.4980,123� O 36 552 655 20 288 292 12 810 641 105.7080,123� S 36 552 655 20 648 909 12 973 952 106.67

Table 8. Relative di�erenes of Table 7 resultsSNFS 19,183� 66,129+ 80,123�relations after s.r. (%) 2.26 1.81 1.78large primes after s.r. (%) 1.11 0.86 1.27oversquareness (%) 1.49 1.19 0.92



12 Willemien Ekkelkamp Table 9. TimingsSNFS 19,183� 66,129+ 80,123�simulation (se.) 128 166 223singleton removal (se.) 487 603 771sieving (hrs.) 154 197 200
In Table 10 we simulate the number of relations that leads to an oversquare-ness around 100%. We ompare this number with the real data and give thedi�erenes in oversquareness.

Table 10. Around 100% oversquareness (SNFS)# rel. before s.r. Or S (%) Or O (%) rel. di�. (%)20M (19,183�) 99.22 97.71 1.5521M (19,183�) 104.06 102.51 1.5123M (66,129+) 96.44 95.35 1.1424M (66,129+) 100.72 99.60 1.1234M (80,123�) 99.93 98.66 1.2935M (80,123�) 102.82 101.50 1.30
All these data sets were generated with the NFS software pakage of CWI,and the models for desribing the underlying distributions were the same forSNFS and GNFS, as desribed in Setion 2.

4.2 Lattie SievingFor lattie sieving we used a data set from Brue Dodson (7,333�, SNFS). Be-sides the fatorbase bound and the large primes bound, we have two intervalsfor the speial primes. These are given in Table 11.
Table 11. Sieving parameters (lattie sieving)7,333�# de. digits 177F 16 777 215L 250 000 000speial primes [16 777 333, 29120617℄[60 000 013, 73 747 441℄g 6nF � nf 1 976 740



Prediting the Sieving E�ort 13As we are now dealing with lattie sieving, we have an extra (speial) primeto simulate, in the way desribed in Setion 2. Fortunately, the distribution ofthe other large primes did not hange. The results of our experiments are givenin Table 12, based on 0.023% original data. The last line in this table is thetotal number of relations without dupliates. In total 26 024 921 relations weresieved. Table 12. Oversquareness 7,333�# rel. before s.r. Or S (%) Or O (%) rel. di�. (%)17M (7,333�) 98.34 97.45 0.9118M (7,333�) 103.96 103.08 0.8525 112 543 (7,333�) 135.39 136.64 �0.91
Apart from reeiving a lattie sieving data set from Brue Dodson, we alsoreeived lattie sieving data sets from Thorsten Kleinjung. Unfortunately themodel desribed in this paper for the large primes does not yield satisfatoryresults for the latter data sets.

5 Conlusions and Future WorkOur experiments show that our simulation of the relations works well. Based ona small fration of the sieving data, we obtain a good model of the distributionof the large primes in the relations. Combined with singleton removal, our es-timation of the oversquareness is within 2% of the real data. Thus we heaplyobtain a good estimate of the number of neessary relations for fatoring a givennumber on a given omputer, and hene of the atual omputing time. There-fore, this method is a useful tool for optimizing parameters in the number �eldsieve, and we atually are using it in our pratial fatorization work.Future work will inlude �nding the orret model for the lattie sieve datasets of Kleinjung and hek to whih extent this model depends on the imple-mentation of the siever. A seond objetive is to �nd a theoretial explanationfor the ourrene of the various distributions (linear, exponential, : : :) of thelarge primes. Another objetive will be to �nd the optimal oversquareness forminimizing the resulting matrix. One these issues are properly understood weintend to develop a tool to determine bounds F and L that optimize the overalle�ort for relation olletion and matrix proessing with respet to the availableresoures.
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