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INTRODUC'.l'ION 

A generalized ordered topological space (abbreviated GO-space) is a sub­
space of a linearly ordered topological space (abbreviated LOTS). 

The first part of this treatise (Chapters I - III) deals with characteriza­
tions for GO-spaces of various topological properties, (for instance metri­
zability, paracompactness, perfect normality etc.), ma.king use of the 
order-structure. Many of our results will be formulated in terms of (the 
occurrence of) "gaps", "jumps", pseudo-gaps" or "pseudo-jumps" and (the 

occurrence of) specific relatively discrete subsets and a-discrete subsets. 
In the subjoined scheme we list several characterizations (represented by 
"-") which will be proven in the following, and some implications (repre­
sented by an arrow"+"). 

Let X = (X,<,T) be a GO-space. Then 

X is hereditarily separable 

0 
3D c x B = x, IDI ~ ~o 

3D c X: D = X, D a-discr., l ~gaps, 3 (at most) two 
and x € D if x defines a jump ps-gaps D 
or a ps-jum}:. in X 

fAI l} VP c X (P relat.discr.=>IPI ~ ~0 ) 

X is metrizable 0 X is compact 

L---~~~1 
X is perfectly normal X is Lindelof 

D D 
VP c X (P relat.discr.=> P a-discr.) (i) vP c X : (P discr.=>IPI ~ ~0 ) 

(ii)V (A,B): 3 . L,R: gap or ps-gap discr. 
L c:::y A and R c:::;=: B 

~oorn. 

V (A B): 3 . L,R: gap or ps-gap ' discr. 

L= AandR~ B 
cof. D coin. 

X is paracompact 
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In the first two chapters of this tract the necessary apparatus is 
developed and the basic theorems (except for the equivalence @ of the above 
diagram) are proved. Chapter III, concerning the metrizability of GO­
spaces, contains the characterization @ from the diagram and, moreover, a 
theorem which says that a GO-space, which allows a countable sequence of 
open covers such that the family of stars (of each point) forms a local 
pseudo-base at that point, is metrizable if and only if the set of points, 
for which the system of stars is not a local base, is a-discrete. 

In chapter IV, the behaviour of several topological properties is investi­
gated when lexicographically ordered products of LOTS's are taken. Here the 
notions of l(e~)-discreteness and r(ight)-discreteness are fundamental. 
One of the specific results, obtained in this context, is the following: 
If Xa is a LOTS (for each a< w0 ), possessing a right endpoint and coinitial 
with w0*, then the lexicographically ordered product space~ X is me-a w0 a 
trizable if and only if all X 's are cr-r-discrete. Thus, for instance, the a w 
lexicographic product (w~ + w1 + 1) 0 is a metrizable LOTS. 

From the results of chapter III we will derive, in chapter V, necessary and 
sufficient conditions in order that a GO-space, which is the inverse image 
of a metric space under a continuous mapping, be metrizable. As corollaries, 
some generalizations of already well-known results are obtained. 



SYMBOLS AND NOTATIONS 

1. If X is a set, then IXI denotes the cardinal number of X. 
~O is the cardinality of a countable set. 

2. In the class of ordinal numbers w. denotes the initial number with 
1 

ordinal index i; so w0 = w, w1 = ~. 
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A symbol µ may denote a single ordinal number, but also the linearly 
ordered set of all ordinals less than the given ordinal number µ, In all 
cases, it will be clear from the context which meaning is used. 
If a is an ordinal number, then a* denotes the inverse order-type. 

3. Let X = (X,<) be a linearly ordered set, and Ac X. 
If we write: 

A is cofinal in (or with) X, or 

A is coinitial in (or with) X, respectively, 

then we mean that 

x 
x 

{x E X 

{x E X 

3a € A 

3a € A 

x ~a}, or 

a~ x}, respectively. 

Furthermore, ifµ is an ordinal then both 

(µis cofinal in (or with) X) and (X is cofinal withµ), 

will say that X contains a well-ordered subset A, with ordinal number µ, 
such that A is cofinal in X. 

Analogously for 

(µ*is coinitial in (or with) X) and (X is coinitial withµ*). 

4. If, for instance, we write: 

p is the left (right) endpoint of a linearly ordered set X, 

then we mean that p is the left, or the right endpoint, respectively, of 
X. Likewise, if.A is a subset of a GO-space X, we say 
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A is cr-(cr-t-;cr-r-)discrete in X 

instead of A is a-, or cr-t-, or o-r-discrete, respectively, in X. 

5. By lR, Q, Z or JN we denote the reals, the rationals, the integers or the 

positive integers, respectively. 

6. Symbols like [K.1] or [L.2] refer to the references. 

7, For all undefined terms and unproved statements in this treatise we 

refer to well-known textbooks as Dugundji [D.1], Engelking [E.1], 

Kelley [K.1] and Nagata [N.1]. 

Convention 

All spaces are considered to be T1. 

Also, frequently we suppose that a space has at least two points, without 
explicitly saying so. 
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CHAPTER I 

FUNDAMENTAL NOTIONS AND PROPERTIES 

1.1 LINEARLY ORDERED SETS 

A ZinearZy ordered set is a pair (X,<), where X is a set,. and< is a subset 

of X x X, with the properties 

(i) vx € X (x,x) (. < 

(ii) Vx,y,z e: X ((x,y) e: < and (y,z) e: <) * (x,z) e: < 

(iii) Vx,y e: X x = y or (x,y) e: < or (y,x) e: <. 

< is called the ordering of (X,<). 

In the sequel the linearly ordered set (X,<) will mostly be denoted by X; 

and instead of (x,y) e: < we shall always write x < y. 

If X is a linearly ordered set, and Ac X, then by < an ordering <A is in­

duced in A. 

For definitions and properties of the notions "supremum (infimum) of A", 

"A is bounded", "X is complete" etc., see for instance Kelley [K.1]. 

A subset C of a linearly ordered set X is called a aonvex subset of X, 

whenever p,q e: C and p s q imply that 

{x e: x I p s x s q} c c. 

Let A c X. Then a convex subset C of X which is contained in A, is called a 

aonvexity-aomponent of A, when C' c C for every convex subset C' of X such 

that C' c A and C' n C ~ ~. Clearly, every convex subset C of X such that 

C c A is contained in a (uniquely determined) convexity-component of A. 

If p,q e: X, then convex subsets of X of the type 

]p ,q[ = {x E x p < x < q}' 

]p,q] {x E x p < x s q}, 

[p,q[ {x E x p s x < q}, or 

[p,q] {x E x p s x s q} 

are called intervals of X; and convex subsets of X of the type 
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]p,+[ 

[p,+[ 

]+,p[ 

J+,p] 

{x E X p < x}, 

{x EX p s x}, 

{x EX x < p}, or 

{x E X x s p} 

are called half-lines of X. 

If X is a linearly ordered set and p,q E X and p < q, then p and q are 

called neighbours in X if ]p,q[ = ~. A point p E X is said to be a neigh­

bour (point) of X if there exists a point q E X such that p and q are 

neighbours in X. If p and q are neighbours in X and p < q then p is called 

the left neighbour of q and q is called the right neighbour of p. 

If A is a subset of a linearly ordered set X then a point p E A is called 

a left endpoint of A if p s x for each point x E A; and p E A is called a 

right endpoint of A if x s p for each point x E A. A point of A is called 

an endpoint of A, if it is a left or a right endpoint of A. When p is an 

endpoint of a convex subset C of X then, clearly, C \ {p} is again a convex 

(possibly empty) subset of X. 

1.2. LEXICOGRAPHICALLY ORDERED PRODUCTS 

For definitions and properties of the notions "order type", "well-ordered 

set", "ordinal number" etc., see for instance Hausdorff [H. 1]. 

For each ordinal a from a certain non-empty set M (of ordinals), let 

X = (X ,< ) be a non-empty linearly ordered set. 
a a a L 

Then the lexiaographiaally ordered produat aEM Xa is defined as the 

cartesian product nM X supplied with the lexicographic ordering<; i.e.: aE a 
if x = (x ) M and y = (y ) M E n X then a aE a aE a€'M a 

In particular, if µ is an ordinal > O, and if 

M = {a I a is an ordinal < µ} 

then we write ~ Xa instead of~ Xa. If, moreover,Xa = X for all a< µ, 

then we write Xµ instead of ll__< Xa· Furthermore, for two linearly ordered 
a µ 



sets X and Y we write 

x • Y = k-2- {Xa I x0 = X and x1 = Y}. 

If v < µ, then it is clear that 

LxN~n xN a<v ~ \iSci<li ~ 

is canonically isomorphic to L Xa. a<µ 
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PROPOSITION 1.2.1. Let M be a set of ordinal numbers. Let Xa be a linearly 
ordered set, for each a E M. If x,y E u__M Xa and x < y, then 

- Cl€ 

x and y are neighbours in u__M X .,.. the smallest ordinal S E M such that (l€ (l 

x6 ~ Ys satisfies: 

(i) x6 and Ys are neighbours in x6 , and 
(ii) Va E M : a > S ,. (xa is the right endpoint of Xa and y a is the 

left endpoint of Xa) 

PROOF. Obvious. 0 
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CHAPTER II 

LOTS's AND GO-SPACES 

2.1. DEFINITIONS AND SOME FUNDAMENTAL PROPERTIES 

A linearoly ordered topological space (abbreviated LOTS) is a triple 
(X,<,A(<)), where (X,<) is a linearly ordered set on which a topology A(<) 
is defined by the subbase of all sets 

{x € X I x < a} and {x € X I a< x}, 

with a € X. 

A topological space (X,T) is said to be orderable if there exists an 
ordering < on X such that A(<) = T. 

Let (X,<,A(<)) be a LOTS, and let Ac X. If A(<)A denotes the relative to­
pology on A induced by A(<), then in general A(<)A ! A(<A). However, it is 
clear that A(<A) c A(<)A. 

A generalized ordered space (abbreviated GO-space) is a triple (X,<,T), 
where (X,<) is a linearly ordered set supplied with a topology T such that 
one of the following equivalent conditions is satisfied: 

{
A(<) c T 

(i) 
T has a base consisting of convex subsets of X 

{
T is a T1-topology 

(ii) 
T has a base consisting of convex subsets of X. 

In the sequel a GO-space (X,<,T) will mostly be denoted by X. 

The following proposition is obvious. 

PROPOSITION 2.1.1. Every subspace of a LOTS is a GO-space. 

The converse also holds true: 

Let X = (X,<,T) be a GO-space. We define a subspace x* of the LOTS X•Z by 
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x* = (X•{O}) u {(x,n)l[x,+[ET\A(<);n < O} u {(x,n)IJ+,x]ET\A(<);n > O}. 
** } Furthermore, we define a subspace X of the LOTS X • {-1 ,0,1 , where 

{-1 ,o, 1} c !l. Let 

x** = (X•{O}) u {(x,-1)l[x,,+[ET\A(<)} u {(x,1)IJ+,x]ET\A(<)}. 
Observe that p E x* (p E x**) is an endpoint of x* (x**) if and only if 

p = (x,O) where x is an endpoint of X. 

PROPOSITION 2.1.2. (Cech [C.1]) 

(i) x* is a LOTS (with respect to the induced ordering) and X is homeomor­
phic to the closed suhset X • {O} of x*. 

(ii) x** is a LOTS (with respect to the induced ordering) and X is homeomor­
** phic to the dense suhset X • {O} of X . 

PROOF. Obvious. 0 

CONVENTION. Except in situations where clarity requires that we distinguish 
between X and X • {O}, we shall identify X with X • {O}. 

From 2.1.1 and 2.1.2 it now follows that 

PROPOSITION 2.1.3. The class of GO-spaces and the class of suhspaces of 
LOTS' s coincide. 

PROPOSITION 2.1.4. Let X = (X,<,T) be a GO-space. Then 

T = A(<) ... x = x* = x** 

PROOF. Obvious. 0 

Finally we mention 

PROPOSITION 2.1.5. Let Y = (Y,<,A(<)) be a LOTS. Let X be a dense suhset 

of Y. Then 

A(<)X = A(<X) ~each neighbourpoint of Y belongs to X if and 
only if its left and/or right neighbour in Y belong(s) to X. 
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PROOF. As a subspace of a LOTS, X = (X,<X,A.(<)X) is a GO-space. So 
A.(<x) c A.(<)x. 
==-Suppose p,q E Y, p < q and ]p,q[ = 0. When p E X, then 
~.pJ n X E A.(<)X. Since A.(<)X = A.(<x) and X is a dense subset of Y, it 
follows that q must be the right neighbour of p in X. Hence also q E X. 
-=Choose p E X such that p is not an endpoint of X. We assume that 
J+,p] n X E A.(<)X. From Y is a LOTS and X is a dense subset of Y it follows 
that p has a right neighbour q in Y. But then q E X; and consequently 
]+,p] n X E A.(<X). Hence A.(<)x = A.(<x)• i.e. x is a LOTS. D 

2.2. ON a-; a-~- AND a-r-DISCRETENESS OF SUBSETS OF GO-SPACES 

In this section we examine some notions, (namely a-; a-~- and a-r-dis­
creteness), which will be frequently used in the following. The notions 
a-~- and a-r-discreteness will be applied especially in lexicographically 
ordered product spaces. 

Recall that a family A of subsets of a topological space T is discrete 
(in T) if each t E T has a neighbourhood meeting at most one A E A. A sub­
set D c T is discrete (in T) if its one-point subsets form a discrete fa­
mily. D c T is relatively discrete (in T) if it is discrete in the subspace 
D of T. Clearly, D is discrete if and only if it is relatively discrete and 
closed in T. A subset D c T is a-discrete (in T) if it is the union of 
countably many discrete subsets of T. (For these definitions, see for in­
stance Stone [Sto.1] and [Sto.2]). 

Let X = (X,<,T) be a GO-space. 

A subset A c X is said to be a-discrete (in X) if A = nQ 1 An' where for 
each x E X and each k E 1'1 there exists a convex open neighbourhood O(x;k) 
of x such that O(x;k) n (~\{x}) = ~. 

REMARK. Trivially, this definition of "a-discrete" is equivalent to the 
previous one, mentioned above. With respect to the following definitions, 
we reformulate it here for the sake of analogy. 

A subset A c X is said to be a-~-disarete (in X) if A = u1 A , where for 
n= n 

each x E X and each k E :N there exists a convex open neighbourhood O(x;k) 
of x such that O(x;k) n (~\{x}) n J+,x] = 0. 
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A subset A c X is said to be a-r-disoPete (in X) if A = U1 A , where for_ 
n= n 

each x € X and each k € E there exists a convex open neighbourhood O(x;k) 

of x such that ot~) n (~\{x}) n [x,~[ = 0. 

REMARK. (i) Without loss of generality, we always may assume that, for each 

n € E, An c An+i. 
(ii) In the case of a-discreteness, each A is automatically closed. 

n 
In the case of a-t- or a-r-discreteness; we always may assume that each An 

is closed, (together with A also A satisfies the required condition). 
n n 

Moreover this assumption may be combined with assumption (i). Observe, how-

ever, that, by taking A instead of A , the original set A may be properly 
00 n n 

contained in n~ 1 An. 

The next example shows that a a-1- or a-r-discrete subset of a GO-space 

may be neither a countable union of closed subsets nor a countable union 

of relatively discrete subsets. 

EXAMPLE 1 • Let 

x = ]0,1[ • [0,1[, 

supplied with the order-topology. ( ]0, 1[, [0, 1[ c :R). 

Let 

A= {(x,y) € X I x € ]0,1[ \ Q, y € [0,1[ n Q}. 

Putting 

(~ :f 0) 

we define 

A0 = {(x,O) I x € ]0,1[ \ Q} 

and 

An= {(x,~) Ix€ ]0,1[ \ Q} (n €E). 
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Clearly A = U0 A • Moreover n= n 
1) A is a-r-discrete (in X). 

Indeed, choose (x,y) € X and k €:Nu {O}. Then there is a convex open 

neighbourhood U((x,y);k),of (x,y} in the subspace {x} • [0,1[such that 

U((x,y);k) n (~\{(x,y)}} = ~. Further, let 

{
U( (x,y) ;k) if y :/= 0 

0( (x,y) ;k) = 
U((x,y};k) u l+·,(x,y)J if y = o. 

Then O((x,y);k) is a· convex open neighbourhood of (x,y) in X such that 

O((x,y);k) n (~\{(x,y}}) n [(x,y},-+[ = ~. 

2) If A = u1 B then at least one set B cannot be closed in X. n= n n 
For, suppose B = B for every n € :N. The subspace 

n n 

s = {(x,o} € x I x € Jo,1[} 

of X is homeomorphic to the well-known Sorgenfrey-line (see 2.3 example 

1, or Kelley [K.1]). Now 

{(x,O) € X I x € J0,1[ \ Q} = n~1 (Bn n S). 

Since each B n S is a closed subset of S with an empty interior, and, 
n 

moreover, the complement of nQ1 (Bn n S) is a countable set, it follows 

that S is a space of the first category. Contradiction. 

3) If A = n~ 1 Bn theri at least one set Bn cannot be relatively discrete in 

X. Indeed, there is an integer k € :N such that 

l{(x,O) € x I x € Jo,1[} n Bkl > ~0 . 

Hence {(x,O) € X I (x,O) € Bk} contains a condensationpoint (p,O) in 

S = {(x,O) € X I x € ]0,1[}. (Observe that the Sorgenfrey-line is a 

hereditarily Lindelof space). But then (p,O) € ~ and for each convex 

open neighbourhood O(p,O) of (p,O) in X we have: IO(p,O) n Bkl > ~0 . 

PROPOSITION 2.2.1. Let x = (X,<,T) be a GO-spaae. Let Ac x. Then 

A is a-disa"Pete .,..A is a-t- and a-r-disaPete. 
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PROOF. 

~Obvious . 

..,.... A is o-i-discrete, so A= u1 A where, for each x € X and each k € N, n= n 
there exists a convex open ~eighbourhood O(x;k) of x such that 

O(x;k) n (~ \{x}) n J+,xJ = 0. 

00 

Also, A is cr-r-discrete, so A = U1 B where, for each x € X and each k € 11!, n= n 
there exists a convex open neighbourhood U(x;k) of x such that 

U(x;k) n (Bk \{x}) n [x,+[ = 0. 

For all n € N, we may assume that An c An+ 1 and Bn c Bn+ 1. Now, for each 
n € N, put C =A n B • Then A= IT1 C . Furthermore, for x E X and n € N, n n n n= n 
put V(x;n) = O(x;n) n U(x;n). Then, for each x € X and each k €JN it follows 
that V(x;k) is a convex open neighbourhood.of x such that 
V(x;k) n (Ck\{x}) = 0. Hence A is a-discrete. D 

PROPOSITION 2.2.2. Let X = (X,<,<) be a GO-space. Let B c Ac X. Then 
(i) A is a-(a-i-;a-r-)discrete (in X)~ Bis a-(a-i-;a-r-)discrete 

(in X). 

(ii) Bis a-(a-i-;a-r-)discrete (in X)~ Bis a-(a-i-;a-r-)discrete 
(in A). 

PROOF. Obvious. 0 

In general a subset B c X might be cr-(cr-i-;cr-r-)discrete (in A), where 
B c Ac X, while B fails to be cr-(o-i-;cr-r-)discrete (in X), as the fol­
lowing example shows. 

* EXAMPLE 2. Let X be the subset of (w1+1) • w0 defined by 

* X = ((w1+1) • {O}) u {(a.,B) I a. is a limit ordinal< w1 , BE w0 } 

If <X is the induced ordering on X, then we consider the LOTS 
X = (X,<X,A(<X)). Now, let 

A= B (w 1•{0}) u {(a.,B) I a. is a limit ordinal< w1, B € w~} = 

X \ {(w1,o)}. 
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Then 

1) Bis a-discrete (in A). 

Indeed, Bis relatively discrete (in X). Thus, since B A, Bis even 

discrete (in A). 

2) Bis not a-discrete (in X). 

For (w 1,o) E X is an accumulation of each uncountable subset of B. Con­

sequently, B is not a-~-discrete (in X). 

PROPOSITION 2.2.3. Let X = (X,<,T) be a GO-spaae. Let AcX. If A is a dense 
and a-disarete subset of X, then X is a CI-spaae. 

PROOF. A is a-discrete, so A= u1 A where, for each x E X and each k EN, n= n 
there exists a convex open neighbourhood O(x;k) of x such that 

O(x;k) n (~\{x}) = 0. Choose p EX. We distinguish between four cases: 
1) J+,p] ET and [p,+[ ET. 

Then, obviously, there is a countable local base at p. 

2) ]+,p] € T and [p, [ r/. T. 

We claim that {O(p;n) n ]+,p] I n E :N} is a countable local base at p. 

Indeed, let U be any open convex neighbourhood of p. From A is dense in 
X it follows that A n U n J+,p[ ~ 0. Hence there is an integer k E Ji 

such that ~ n U n ]+,p[ ~ 0. Consequently O(p;k) n ]+,p] c U. 
3) J+,p] r/. T and [p,+[ E T. 

Then, similarly, {O(p;n) n [p,+[ I n E JJ} is a countable local base 

at p. 

4) ]+,p] r/. T and [p,+[ r/. T. 

Clearly, now {O(p;n) J n E JN} is a countable local base at p. D 

COROLLARY. A separable GO-spaae satisfies the first a.xiom of aountability. 

For later purposes (chaper IV) we introduce the following notions. 

A GO-space X = (X,<,T) is called a left-CI-spaae if for each x E X the sub-
space ]+,x] of X has a countable local base at x. 

A GO-space X = (X,<,T) lS called a right-Cr-spaae if for each x E X the 
subspace [x,+[ of X has a countable local base at x. 
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Clearly, a GO-space is a CI-space if and only if it is a left- and a right­

er-space. Furthermore, the LOTS w1+1 is aright-CI-space but not a CI-space. 

PROPOSITION 2.2.4. Let X = (X,<,T) be a GO-space. Let Ac X. 

If A is a dense subset of X, then 

( i) A is a-£-discrete (in xJ~ X is a left-er-space. 
(ii) A is a-r-discrete (in XJ==- X is a right-er-space. 

PROOF. Analogous to the proof of 2.2.3. D 

PROPOSITION 2.2.5. Let X = (X,<,T) be a GO-space. Let Ac X. 

If X satisfies the countable chain condition, and if A is a-discrete (in X), 

then JAI ~ H0 • 

PROOF. A is a-discrete, so A= U A where each A is discrete (in X). n=1 n n 
Suppose IAI > H0• Then l~I > H0 for some k EN. As a subspace of a LOTS, 

X is collectionwise normal (Steen [St.1]).Therefore,from ~is discrete and 

l~I > H0, it follows that there is an uncountable disjoint family in X of 

non-empty open subsets. This, however, is impossible. D 

COROLLARY. In a separable GO-space, every a-discrete subset is countable. 

PROPOSITION 2.2.6. Let X = (X,<,A(<)) be a LOTS. Let Ac X. 

If X satisfies the countable chain condition, and if A is a-£-(a-r-) 

discrete (in xJ. then IAI ~ Ho. 

PROOF. We assume that A is a-£-discrete. The other case can be treated 

similarly. So, A = u1 A where for each x E X and each k E :N,there exists n= n 
a convex open neighbourhood O(x;k) of x such that 

O(x;k) n (~\ x) n ]+,x] = 0. Now, suppose IAI > H0. Then there is an in­

teger i e: N such that !Ai I > H0. For all x e: X such that [x,+[ e: A(<) and 

J+,x[ # 0, we denote the left neighbour of x bij x-. Observe that ali such 

points x e: X do have a left neighbour, because X is a J,OTS. Let 
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F { 0 (a; i ) n ]+,a[ I a E A. ; [a,+[ t/. A. ( < )} u 
1 

u {O(a-;i) n ]+,a[ I a EA. 
1 

[a~+[ E A.(<) a.nd ]+,a[ :f 0}. 

Then F is a family containing uncountably many mutually disjoint non-empty 
open subsets of X. Contradiction. D 

COROLLARY. In a sepa.:roahle LOTS, every a-(a-i-;a-r-)disarete subset is 
aountahle. 

REMARK. Observe that the Sorgenfrey-line shows that the previous proposi­
tion does not hold for GO-spaces, in general. 

PROPOSITION 2.2.7. Let X 

Then 

(X,<,T) be a GO-spaae without isolated points. 

X is a-disarete (in X)==> X is of the first aategory. 

PROOF. Obvious. 0 

PROPOSITION 2.2.8. Let X 

Then 

(X,<,A.(<)) be a LOTS without isolated points. 

X is a-i-(a-r-)disarete (in X)~ X is of the first aategory. 

PROOF. Let X be cr-i-discrete. So X = u1 A where,for each x E X and each n= n 
k E N,there exists a convex open neighbourhood O(x;k) of x such that 
O(x;k) n (A \{x}) n ]+,x] = 0. We may assume that A =A for all n EN. Now, -11: n n 
suppose there is an integer i EN such that Int A. :f 0. Since X has no iso-

1 
lated points, there exists a non-empty interval ]p,q[ c Int A. c A .. 

1 1 
Furthermore O(q;i) n (A.\{q}) n J+,q] = 0. Therefore, since X is a LOTS, q 1 

must have a le~ neighbour q E X. Since clearly q- E ]p,q[ and since q-
is not isolated, ]p,q-[ is a non-empty interval contained in A .. Repeating 

1 
the same arguments we find that q- has a left neighbour q-- in x. This con-
tradicts the fact that q- must be a non-isolated point of x. (If x is 
cr-r-discrete then we can argue analogously). D 



REMARK. A GO-space without isolated points may be a-~- (or a-r-)discrete and 

of the second category; for instance the Sorgenfrey-line (2.3, example 1) 

is a-~-discrete and of the second category. 

PROPOSITION 2.2.9. Let X = (X,<,T) be a GO-spaae. Let Ac X. Then 

A is a-(a-~-;a-r-)disarete (in X)==- A is a totally disaonneated suhspaae 
of x. 

PROOF. Suppose S is a non-degenerated connected subspace of A. Then there 

are points a,b € X, a < b, such that [a,b] c S c Ac X. First, it follows 

that [a,b] is a compact and connected LOTS which, hence, is of the second 

category. Secondly, from 2.2.2 (i) it follows that [a,b] is a-(a-~-;a-r-) 

discrete (in X) and then, from 2.2.2 (ii), that [a,b] is a-(a-~-;a-r-)dis­

crete (in [a,b]). Now, from 2.2.8 we conclude that [a,b] is of the first 

category. This is a contradiction. D 

It seems worthwhile to notice that of the following three properties of a 

GO-space X, no two imply the third one, even in the case that X is a LOTS. 

(i) X is a-discrete (in X) 

(ii) X is of the first category 

(iii) X does not have condensationpoints. 

(i) + (ii)==!- {iii). 

EXAMPLE 3. Let 

x = { ( x ,y) € co, 1 J • ( Q n co , H ) I x = 1 .,.. y = o} , 

supplied with the order-topology. ([0,1], [0,1[ c E). Denote 

Q n J0,1[ {q1 ·~' • '· '· ,qn' • • • • ·} 

1) X is .a-discrete (in X). 
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Indeed, for each n E JN, define 

An= {(x,<\i) EX Ix E [0,1[}. 

Next, for each n EE, put 

A 
n 

Finally, let 

n ~ n 1 .u A1• n {(x,y) E [0,1[ • (Q n ]0,1[) I x !> -n-}. 
1=1 

A0 { ( 1 ,O )}. 

Then X = U A and each A is discrete (in X). n=O n n 
2) X is of the first category. (see 2.2.8). 
3) The point ( 1 ,O) E X clearly is a condensationpoint. 

(i) + (iii) ==fq (ii). 

EXAMPLE 4. Let X be a discrete topological space. Then X is orderable (cf. 
Herrlich [He.1]). Evidently, X is a-discrete (in X), X does not have con­
densationpoints and X is of the second category. 

(ii) + (iii)~ (i). 

EXAMPLE 5. Let 

x = w1 • (Q n [0,1]), 

supplied with the order-topology ( [O, 1 J c R). Put 

1) X is not a-discrete (in X). 

By 2.2.1 it is sufficient to show that X is not a-i-discrete. Now, w1 
is isomorphically and topologically contained in X; i.e. w1 is homeo­
morphic to {(a,O) EX I a< w1}. Furthermore, when w1 = n~l An then at 
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least one set, say'\:• will be an uncountable subset of w1• Since w1 is 

an order-complete LOTS, it follows that '\: has an accumulationpoint 

S < w1 , which is, of course, a limit ordinal. Consequently, for each 

convex open neighbourhoo,d 0( S ;k) of S (in w1) we have that 

O(S;k) n (Ak\{S}) n ]+,S] # 0. Thus, w1 is not o-i-discrete. Therefore, 

from 2.2.2, it follows that X is not o-i-discrete. 

2) X is of the first category. 

Indeed, for each n E JN, let 

Then X = nQ 1 Pn and Int Pn = 0 for all n E JN. 

3) Clearly, X does not have condensationpoints. 

The rest of this section will be used to show that all GO-spaces X, con­

taining a dense LOTS Y, of type Y = ll____ Y (whereµ is a limit ordinal 
a.<µ a. 

and I Ya. I <>: 2 for each a. < µ), are neither a-discrete nor of the first 

category and, moreover, consist of merely condensationpoints. We note that 
* WO 

:R = WO • WO ; many well-known spaces belong to this class; for instance: 
* WO WO WO 

ll \ Q = (w0+w0 ) ; [o,1] =Cl w0 ; Cantorset = {o,1} ; 

Long line = w1 • w0w0. (see chapter IV). 

In the rest of this paragraph, µ is a limit ordinal and, for each a. < µ, 

Ya is a LOTS containing at least two points. 

We denote:Y = (Y ,<,A(<}) and ll__< Ya.= (Li__< Ya.,<,A(<)). 
a a. a. a a. µ a. µ 

PROPOSITION 2.2.10. Each point of IJ__ Y is a condensationpoint. 
a<µ a. 

PROOF. If y E ~ Ya then it is easily verified that for each convex open 

neighbourhood 0 of y there exists and ordinal v < µ such that 

LI_____ Ya c o. Etc. O 
v<a<µ 

PROPOSITION 2.2.11. IL__ Ya is not a-discrete. 
a.<µ 

The proof of 2.2.11 is based on the following lemmata. 

LEMMA 1. Suppose thatµ is not cofinal with w0. Then no point of ll___ Y a<µ a. 
has a countable local base. 
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PROOF. Let y = (y ) < E L< Ya. We may assume, for each a < µ,that there aaµ aµ 
exists an ordinal 13 > a such that y13 is not the left endpoint of Y13 . 
(Otherwise this statement is satisfied with respect to right endpoints). 
Then y is not a right neighbourpoint in IL_< Y . Now, suppose there exists , aµ a 
a countable local base at y. Then we can find a strictly increasing se-
quence { s(n)}00 1 ={(s(n))< }00 

1 inL< Y suchthaty=lims(n). For n= a a µ n= a µ a n->oo 
each k EN, let 13(k) be the first ordinal less thanµ such that 
(k) 

sl3(k) <l3(k) Yl3(k)" Put 13 = sup{l3(k) I k EN}. Then 13 < µ, sinceµ is not 
cofinal with w0 . By assumption there exists an ordinal y > 13 and a point 
u E Y with u < y . Finally, choose z = ( za )a<µ E L Y in such a way y y y a<µ a(n) 
that za = ya if a< y, and z = u. Then, for all n EN, s < z < y. How-
ever, this contradicts y = llm s(n). D 

n-+<>o 

w 
LEMMA 2. Suppose thatµ is cofinal with w0. Then the Cantorspace {0,1} O is 
a subspace of L< Y . 

Cl µ Cl 

PROOF. Since µ is cofinal 

able~sequence {13n}:= 1 ~ of 
put Y = II Y and Y = 

with w0 , there exists a strictly increasing count­

ordinals less thanµ, which is cofinal inµ. We 

O asB 1 a n 13n<a~l3n+1 
Y , n EN. Then, clearly lL__ Y is 

a ~ ~ n<wo n 
homeomorphic to Lµ Y . For n < w0 , a< a we denote:Y = (Y ,< ,\(< )) and n n n n 
l__ Y = (ll__ Y ,<,\(<)). Next, for each n < w0 , choose two points p and n<wo ~n n<wo n n 
~ e: Yn such that pn <n ~. Further, let 

c {y 

Now the proof is complete once we have shown that \(<C) = \(<)C. Since 
certainly \(<c) c \(<)C it is sufficient to prove that, for all subbasic­
open sets ]s,+[ and ]+,t[ E lL__ Y , the intersections Js,+[ n C and n<w0 n 
J+,t[ n C E \(<cl· Consider, for instance, the set ] s ,+[ n C, where 
s = (s ) E lL__ Y. Choose a pointy n n<w0 n<w0 n 
it follows that there is a first ordinal k 

(y ) E Js,+[ n C. From s < y n n<w0 
< w0 such that sk <k yk. We dis-

tinguish between two cases: 

1) There exists an ordinal t < w0 such that k < t and Yt qt. 
Let z (z ) n n<w0 

be defined by 

{ 
z yn if n < t n 

z pn if n ;<; i. n 
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Then z E C, and s < z < y. Thus y E ] z ,+ [ n C c J s ,+[ n C, and 
]z,+[ n CE A.(<c). 

2) There exists an ordinal t s k such that 

n > t . Then y is a right neighbourpoint 

[y,+[ n C E A.(<C). Moreover y E [y,+[ n 

Yt =qt and yn = pn for all 
of (C,<C). Hence, clearly 

c c J s ,+[ n c. 
(Observe that the remaining case, ((y )n< = (pn) < ), is obvious). D 

n WO n WO 

PROOF OF 2.2.11. From 2.2.3 it follows that a a-discrete GO-space is a 
c1-space. Furthermore, 2.2.2 states that a-discreteness is a hereditary 
property. The Cantorspace { O, 1}wo is a LOTS without isolated points and, 

w 
moreover, of the second category. Hence, by 2.2.8, { O, 1} O is not a-dis-
crete. Thus, lemma 1 or lemma 2 yields that IL_ Y is not a-discrete. D a<µ a 

REMARK. If µ is not cofinal 

it follows also that ll__ Y a<µ a 

with w0 , then comparing the proof of lemma 1, 

is neither a le~-

as above, it can be shown that, for each limit 
a-£- nor a-r-discrete (use 2.2.4). 

nor a right-C1-space. Now, 

ordinalµ, [j___ Y is neither a<µ a 

PROPOSITION 2.2.12. LI__ Y is a Baire-space (and hence of the second a<µ a 
category). 

We need two simple lemmata. 

LEMMA 1. Let T be a regular topological space. Then Tisa Baire space if 
there exists an open base B in T such that 

n {N I N E N} f 0 

for every nest N c B. 

PROOF. Let {O} ]I be a countable family of dense and open subsets of T. n nE 
We have to show that D = n {o I n E ]!} is again a dense subset of T. Let n 
U be any non-empty open subset of T. We define a nest N = { N.} . ]I in B as 

J. J.€ 
follows: Choose N1 E B such that N1 c N1 c Un o1. Next, suppose the sets 
N. have been defined 

J. 

Nn c Nn c Nn-l n On. 
since n {N. I i € ]!} 

J. 

for all i < n, (n > 1). Then, choose N E B such that 
n 

Thus, we have:n {N. I i E :N} c D n U. Consequently, 
J. 

f 0, D is a dense subset of T. D 
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LEMMA 2. Let T be a topological space. Then T is a Baire space if there 
exists a dense subspace D in T such that D is a Baire space. 

PROOF. Let 

F U {F F F , Int F n n n n 
r/J; n E ::N} , 

Then D n F = U {D n F 
n 

n E JN}. For each n E JN we have: 

IntD(D n F ) c Int F • (Indeed, IntD(D n F ) = D n n n n O, for some open set 0 

in T. Since D = T it follows that 0 c 5 = 0 

Hence IntD(D n F ) c Int F ). Consequently, n n 
So, since D is a Baire space, also IntD(D n 

Int F = r/I. Thus T is a Baire space. D 

PROOF OF 2.2.12. Let 

n D c F • 
n 

for each n E JN, IntD ( D n F n) = r/J. 

F) = r/J, But then, since D = T, 

D {y - (y ) E l_ Y I Va < µ : 38,y > a: - a a<µ a<µ a 

(so, y8 is not the left endpoint of Y8 and Yy is not the right endpoint of 
Y ). For each y = (y ) < E IL___< Y and each v <µ,let y a a µ a µ a 

B(y;v) {z ( z ) E D I zN = yN if a < v}. a a<µ ~ ~ 

Next, for each v < µ, let 

Finally, put 

B = u {Bv I v < µ} 

Observe that, for any two sets B(y;v) and B(y';v) E Bv, whenever 

B(y;v) n B(y' ;v) :f r/J then B(y;v) = B(y' ;v). 

1) Bis an open base for D. 

First we show that each set B(y;v) E B is open in D. 

Choose z = (za)a<µ E B(y;v). Then there is an ordinal 8 > v and a point 



us € Ya such that us <a 

point v € Y such that. 

zS. Moreover, there is an ordinal y > v and a 

z < v • Now, let r = (r ) and y y 
s = (sa)a<µ € 

y y y a a<µ 
ll.._ Y be such that a<µ a 

Then z € Jr,s[ n D <:B(y;v). 
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Secondly we prove that B is a base for D. Let ]p,q[ be a (non-empty) 

open interval in L< y and suppose that z = ( z ) < € D n ]p,q[. Let a a µ a a a µ 
be the first ordinal such that Pa <S za· Let y be the first ordinal such 

that z < Q .• Put v = max(S,y). Then z € B(z;v+1) c Jp,q[ n D. 
y y I L 

2) D is a dense subset of a<µ Ya. 

We have to show that any non-empty open interval of the type Jp,q[ in 

~ Ya meets D. (Observe that an endpoint of~ Ya cannot be isolated). 

Let S be the first ordinal such that Pa <S qS. Since ]p,q[ ~ 0, p and q 

cannot be neighbours in ~ Ya. Therefore, when JpS,qS[ = 0 in Ya then 

we may assume that, for some y > S, Py is not the right endpoint of YY. 

So, if we take a point z = (za)a<µ € D such that 

then z € D n Jp,q[. On the other hand, when JpS,qS[ ~ 0 in Ya• then let 

z = (za)a<µ € D be such that 

Clearly again z € D n Jp,q[. 

3) Each nest N c B has a non-empty intersection. 

First we notice that any two members of B are either disjoint or com­

parable by inclusion. So, B consists of open and closed subsets of D. 

Now, let N be a nest in B. Let 

A = sup{v < µ I 3B(y;v) € N}. 

Then A:;;µ. Next, observethat,wheneverB(z;p) and B(z';T) € N and p:;; T, 
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then z = z' for all a. < p. Hence it follows that there are uniquely 
Cl. Cl. 

defined points ua. E Yu. for a. < A such that whenever B(y;v) E N then 

Ya. = ua. for all a. < v. Thus, it is clear that each point z = (za.)a.<µ' 

with z = u for a.< )., belongs ton N. 
Cl. Cl. 

Finally, from 1), 3) and Lemma 1 it follows that Dis a Baire space. Con-

sequently, from 2) and lemma 2 it follows that ~ Ya. is a Baire space. D 

The following proposition is obvious now. 

PROPOSITION 2.2.13. Let X = (X,<,T) be a GO-spaae. Let Y be a dense sUbset 

of X. If (Y,T)Y) is orderable in suah a way that Y aan be represented by 

Y = u__ Y , where µ is a limit ordinal and !Ya.I ~ 2 for all a. < µ, then 
a.<µ Cl. 

(i) EVe'PJj point of X is a aondensationpoint. 

(ii) X is not a-disarete (in X}, 

(iii) X is a Baire-spaae. 

2.3. GO-SPACES WHICH INHERIT PROPERTIES FROM THE CORRESPONDING LOTS's 

In this section we want to investigate the conditions under which a GO­

space (X,<,T) inherits some specific properties from the corresponding 

LOTS (X,<,).(<)). 

a) Compactness, connectedness and total disconnectedness. 

THEOREM 2.3.1. Let X = (X,<,T) be a GO-spaae. Then 

( i ) ( X, < , T ) is aompaat =- T = ). ( < ) • 

(ii) (X,<,T) is aonneated=- T = ).(<). 

(iii) (X,<,).(<)) is totally d:isaonneated=- (X,<,T) is totally dis­

aonneated. 

PROOF. 

(i) The identity map id: (X,<,T) + (X,<,).(<)) is continuous. Since 

(X,<,T) is compact, id is a homeomorphism. Hence T = ).(<). 

(ii) Since (X,<,T) is connected, all proper subsets of X of the types 

[x,+[ and J+,x], x E X, cannot be open subsets of X. Hence T = ).(<). 

(iii) Obvious. D 

b) Metrizability, separability, the hereditarily Lindelof property, perfect 

normality and hereditary paracompactness. 



We first recall that for the indicated types of topological spaces the 

following implications hold true 

metrizable 

(in all spaces) --~ 

separable 

!-------- (in GO-spaces) 
(2.1.2(ii)and Lutzer and 

Bennett [LB.1]) 

hereditarily Lindelof 

~----- (in regular spaces) 

perfectly normal 

!------- (in GO-spaces) 
(Lutzer [L.1]) 

hereditarily paracompact 

Let X = (X,<,T) be a GO-space. 

We define the following subsets of X 

E(X) 

I(X) 

N(X) 

E((X,<,T)) 

I((X,<,T)) 

N((X,<,T)) 

{x e: X [x,+[ e: T or J+,x] e: T} 

{x e: X [x,+[ e: T and ]+,x] e: T} 

{x e: E(X) \ I(X) I 3y e: E(X) \ I(X) 

x and y are neighbours in X} 

It is clear that I(X) is the set of all isolated points of X, and N(X) is 
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the set of all non-isolated neighbourpoints of X which do have a non-isolated 
neighbour in X. When, furthermore B(X) denotes the set of all neighbour­

points of X, then N(X) c B(X) c E(X). Moreover, in the case T =A(<), 

N{X) u I(X) c B(X) c E(X) while E(X) = B(X) plus possible endpoints of X. 

Now, let N be an arbitrary subset of N(X). Then we define an equivalence 

relation - (relative to N) by: 

x - y..,. (x=y) or (x,y e: N and x and y are neighbours in X). 

Let X I - denote the corresponding quotientspace, and let 

JP X--> x I -
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be the canonical (quotient) mapping. 

Obviously the set X I~ is linearly ordered in a natural way (induced by 
the ordering on X), and the quotient topology on X /~is a GO-topology 
with respect to this ordering. 

We start by proving some lemmata. 

LEMMA 1 . Let X (X,<,T) be a GO-spaae. Then 

PROOF. Obvious. 0 

LEMMA 2. Let X (X,<,T) be a GO-spaae. Then 

JP x~x;~ 

is a pe:r>feat map. 

PROOF. Since lP is a continuous and finite-to-one mapping, we only have to 
show that P is a closed map. Let F be a closed subset of X and suppose that 
p f. lP[F]. Then JP- 1 [ {p}] is a convex subset of X which satisfies: 
1=-1 -1 
µ. [{p}JI ~ 2 andJP [{p}] n F 0. Hence we can find a convex open set 0 

in X such that JP- 1 [ {p} J c O and 0 n F = 0. (Observe that, in the case 
IIP- 1[{p}JI = 2, no point ofJP-1[{p}] can be an endpoint of 0). Now 
p E Int JP[O] and Int P[O] n JP[F] = 0. ThereforelP[F] is a closed subset of 
x I ~. D 

LEMMA 3. Let X = (X,<,T) be a GO-spaae. 

(i) If X I ~ is a heredita:r>ily Lindelof spaae, so also is X. 
(ii) If X I ~ is a pe:r>featly no:r>mal spaae, so also is X. 

(iii) If X I ~is a he:r>edita:r>iZy pa:r>aaompact spaae, so also is X. 

PROOF. Let 0 be an arbitrary open subset of X. Let 

C {C I C is a convexity-component of O}. 

Now, every C E C is an open subset of X and 0 U C. Moreover, 
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lP I c c-+ n cJ 

is a perfect map. (lemma 2). It is well-known that the Lindelof property 

and paracompactness are pre.served under inverse images of perfect mappings 

(cf. Dugundji [Du.1]). 

(i) It is sufficient to show that 0 is a Lindelof-space. SincelP I C is 

a perfect map, every C E C is a Lindelof-space. Further Int JP[cJ # 0 
for each (non-empty) C EC. Moreover Int JP[C] n Int JP[c•J = 0 when­

ever C, C' EC and C # C'. So, since X I~ is hereditarily Lindelof, 

{Int lP[C] I C E C} 

has to be a countable collection. Consequently C is a countable 

family consisting of, mutually disjoint, Lindelof-spaces. Thus O is 

a Lindelof-space. 

(ii) We have to prove that 0 is an Fcr-set in X. From X I ~ is perfectly 

normal it follows that 

Int lP[O] U {F I F is a closed subset of X I~; n E JN}. n n 

For all non-empty sets:P-1[F Jn C, we define the set G (C) to be the n n 
union of lP-1 [F J n C with the possible endpoints of C; ( C E C, n E lN) • n 
Next, we put 

G = u {G (C) I c E C}. 
n n 

Then, for each n E JN, G is a closed subset of X. Moreover, since 
n 

Int P[C] # 0 whenever C # 0, 

0 U {G I n E lN}. 
n 

(iii) It is sufficient to show that 0 is paracompact. But this follows, 

sincelP IC is a perfect map, from the fact that every C EC is a 

paracompact space; and thus 0 = U C is paracompact. D 

The next theorem also follows easily from theorem 3.1 of chapter III. It is 

mentioned here (with an independent proof) for systematic reasons. 
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THEOREM 2.3.2. Let (X,<,A(<)) be a metrizable LOTS. Let T be a GO-topology 
on (X,<), Then 

(X,<,T) is metrizable.,. 

E = {x € E((X,<,T)) I [x,+[ € T \ A(<) or J+,x] € T \ A(<)} 

is a-disarete (in (X,<,T)). 

PROOF. Put 

E(1) {x € E((X,<,T)) I [x,+[ € T \A(<)} 

and 

E(2) {x € E((X,<,T)) I ]+,x] € T \A(<)}. 

It is clear that E = E(1) u E(2). 

==-Let B be a a-discrete open base for (X,<,T). For each x € Ewe choose 
an element B(x) € B such that 

if x € E(1), then x € B(x) c [x,+[ 

if x € E(2), then x € B(x) c ]+,x]. 

(If x E E(1) n E(2) this means that we choose B(x) = {x}). 
Now B(x) # B(y) whenever x and y belong to the same E(i), i = 1,2, and 
x # y. Since Bis a a-discrete collection in (X,<,T) it follows that each 

B(i) {B(x) I x E E(i)} (i 1 ,2) 

is also a a-discrete family in (X,<,T). Consequently, each set E(i), 
i = 1,2, is a-discrete (in (X,<,T)). Thus, Eis a-discrete (in (X,<,T)). 
-=Each set E(i), i = 1,2, is a-discrete (in (X,<,T)). So, 

E(i) = U {E(i) I E(i) is discrete (in (X,<,T)); n EJNL n n 

Furthermore, by lemma 1, Tisa c1-topology. Now, for each non-isolated 
(in T) point x € E(i)n, we select a monotone sequence {~}:. 1 in (X,<,T) 
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lim ~ = x 
k-+«> 
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if i = 1, then x <~and [x,~[ n [y,yk[ = 0 for all non-iso-

lated y € E(1) such that x ~ y; and 
n 

if i = 2, then~< x and J~,x] n ]yk,y] = 0 for all non-iso-

lated y € E(2) such that x ~ y. 
n 

Next, for all integers n,k €JN, put 

F(1)nk = {[x,~[ I x € E(1)n and x is non-isolated (in t)} 

and 

F(2)nk = {]~,x] I x € E(2)n and x is non-isolated (in t)}. 

Then F(i)nk, i = 1,2, is a discrete family in (X,<,t) consi~ting of open 

sets. Further, let 

I = {{x} I x is isolated (in t); x € E}. 

If, finally, Bis a a-discrete open base for (X,<,A(<)), then 

u {F(i)nk I i = 1,2; n,k €JN} u I u B 

constitutes a a-discrete open base for (X,<,t). This completes the proof. D 

REMARK. If (X,<,t) is metrizable, then it can be shown, completely 

analogous to the proof of 2.3.2 •,that E((X,<,t)) is a-discrete (in 

(X,<,t)). When, moreover,(X,<,t) is separable, then it follows, from the 

corollary to 2.2.5, that E((X,<,t)) is a countable subset of (X,<,t). 

For the next theorem we notice that in GO-spaces separability is a here­

ditary notion ( 2. 1 • 2 (ii) and Lutzer and Bennett [LB. 1]). 

THEOREM 2.3.3. Let (X,<,A(<)) be a sepal'able LOTS. Let t be a GO-topology 

on (X,<). Then 



30 

(X,<, T) is separable -

I = { x E I ( ( X, <, T) ) I [ x ,.+[ E T \ A ( <) Ol' ]+ ,x] E T \ A ( <)} 

is a aountable suhset of (X,<,T). 

PROOF. 

===> This follows immediately from the above-mentioned fact, that a sepa­

rable GO-space is hereditarily separable. 

4== If Dis a countable dense subset of (X,<,).(<)), then Du I is a count­

able dense subset of (X,<,T). Indeed, T has a base B consisting of convex 

sets. Each BE B such that IBI ~ 3, contains a non-empty ).(<)-open-inter­

val and hence a point of D and, clearly, each B E B such that IBI ~ 2 con­

sists of points from D u I. D 

THEOREM 2.3.4. Let (X,<,).(<)) be a hereditarily Lindelof LOTS. Let T be a 

GO-topology on (X,<). Then 

(X,<,T) is hereditarily Lindelof -

I= {x E I((X,<,T)) I [x,+[ ET\).(<) or J+,x] ET\ A(<)} 

is a aountable suhset of (X,< ,T). 

PROOF. 

- Obvious. 

4==Let T' be the GO-topology on (X,<) which is obtained from T by removing 

all sets with left (right) endpoint x for which x E I and 

[x,+[ i ).(<) (J+,x] i ).(<)).So, T is constructed from T1 by declaring open 

at most countably many points of X. Now, we consider the GO-space (X,<,T') 
as a (dense) subspace of the LOTS x** (2.1.2 (ii)). Let 

N = N(x**)\N((X,<,).(<))). From the definition of T1 it follows that x**; ~. 
where~ is defined (relative to N), is homeomorphic to (X,<,).(<)). Therefore, 

by lemma 3, x** and consequently (X,<,T 1 ) are hereditarily Lindelof spaces. 

But then (X,<,T) is a hereditarily Lindelof space. D 

THEOREM 2.3.5. Let (X,<,).(<)) be a perfeatly normal LOTS. Let< be a GO­

topo logy on ( X , < ) • Then 



PROOF. 

=- Obvious. 

( X, < ;r ) is perfectly normal -

I= {x E I((X,<;r)) I [x,+[ ET\ A(<) or J"",xJ ET\ A(<)} 

is a-discrete (in (X,<,T)). 
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~Define T 1 as in the proof of 2.3.4. Then T is obtained from T1 by de­

claring open the points of a subset of X which is a-discrete (in (X,<,T)). 

As in the proof of 2.3.4 it can be shown that (X,<,T') is perfectly normal. 

But then it is easily verified that also (X,<,T) is perfectly normal. D 

THEOREM 2.3.6. Let (X,<,A(<)) be a hereditarily paracompact LOTS. Let T be 

a GO-topology on (X,<), Then 

(X,<,T) is hereditarily paracompact. 

PROOF. Again analogous to the proof of 2.3.4. (Here we use the fact that 

declaring open the points of any subset does not influence hereditary 

paracompactness of a topological space). D 

REMARK. Lutzer [L.1] proved in a direct way that, for a linearly ordered 

set (X,<), the following properties are equivalent 

1. (X,<,A(<)) is hereditarily paracompact. 

2. For each GO-topology Ton (X,<), (X,<,T) is hereditarily paracompact. 

3. For each GO-topology Ton (X,<), (X,<,T) is paracompact. 

At the end of this section we apply the above results to two (well-known) 

examples. 

EXAMPLE 1. The Sorgenfrey-line S. 

Let T be the topology on I\· generated by the base, consisting of all sets of 

type [a,b[, a,b EE. The GO-space S = (IR,<,T) is called the Sorgenfrey-line 

(Sorgenfrey [S.1]). Now 

E {x E E(S) I [x,+[ E T \A(<) or J+,xJ E T \A(<)} s 

and 
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I {x E I(S) I [x,+[ E T \ A(<) or ]+,x] E T \ A(<)} 

Furthermore (:R,<,A(<)) is a separable metrizable space. So, by 2.3.3, we 

have that S is separable and hence hereditarily Lindelof, perfectly normal 

and hereditarily paracompact. However, S is not metrizable, since 

E = E(S) = S is an uncountable subset of a separable space. (compare the 
remark a~er 2.3.2). 

EXAMPLE 2. The Michael-line M. 

Let T be the topology on :R obtained from A(<) by declaring open each irra­

tional. The GO-space M = (:R,<,T) is called the Michael-line. (Michael 
[Mi.1]). Now, 

E {x E E(M) I [x,+[ ET\ A(<) or J+,x] ET\ A(<)} =:R \ Q 

and 

I {x E I(M) I Cx,+[ ET\ A(<) or ]+,x] ET\ A(<)} =:R \ Q. 

E and I cannot be a-discrete subsets (in M). For, otherwise, R \ Q would 

be an F0-set in (:R,<,A(<)), which is impossible. Since (E,<,A(<)) is a (se­

parable) metrizable space, we conclude, by 2.3.6, that M is hereditarily 

paracompact, and, by 2.3.5, that M is not perfectly normal and hence not 

metrizable, separable or hereditarily Lindelof. 

Finally we note that all indicated properties under b. are hereditary 

not~Qns for GO-spaces. A non-hereditary topological property, like for in­

stance paracompactness, can get lost, already by isolating one point of a 
(paracompact) LOTS. (Example: isolate the point w1 of the LOTS w1+1). 

2.4. CHARACTERIZATIONS FOR GO-SPACES OF THE PROPERTIES COMPACTNESS, 

CONNECTEDNESS, THE LINDELOF PROPERTY, THE HEREDITARILY LINDELOF 

PROPERTY, PERFECT NORMALITY, PARACOMPACTNESS AND HEREDITARY PARACOM­

PACTNESS 

In this section we will establish characterizations of various properties 

of GO-spaces in terms of the orderstructure and in terms of 0-)discreteness 
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of (specific) subsets. 

We want to emphasize that, in our investigations of GO-spaces, we deal with 
a given ordering and, consequently, our characterizations of compactness 
etc. are in terms of that fixed ordering. Questions like for instance 
whether or not a topological space is orderable, or whether a GO-space is 
a LOTS (with a different ordering) are not considered. 

In the next chapter we will give special attention to characteriza­
tions of metrizability in GO-spaces. 

Let X = (X,<,T) be a GO-space. 

A gap in X is an ordered pair (A,B) of subsets of X such that 

(i) X = A u B, (ii) a < b for all a E A and b E B, (iii) A has no right 
endpoint and B has no left endpoint, (iv) A ,B E T. 

Clearly, (i) + (ii) + (iii)- (iv). 

If one of the sets A or B is empty, then we will speak of an end.gap. In 

particular, we say that (A,B) is a Zeft (right) endgap if A(B) = $. 

A jump in X is an ordered pair (A,B) of subsets of X such that 
(i) X = A u B, (ii) a < b for all a E A and b E B, (iii) A has a right end­
point and B has a left endpoint, (iv) A,B E T. 

Clearly, (i) + (ii)+ (iii)~ (iv). 

For each jump (A,B) in X, the right endpoint p of A and the left endpoint 
q of Bare neighbours in X and, conversely, each pair of neighbours (p,q), 
p < q, defines a jump (A,B) in X, where A = {x E X I x ~ p} and 
B {x E X I q ~ x}. 

A pseudo-gap or a pseudo-jump in X is an ordered pair (A,B) of subsets of 
X such that (i) X =A u B, (ii) a< b for all a E A and b E B, (iii) (A has 
no right endpoint and B has a left endpoint) or (A has a right endpoint and 
B has no left endpoint), (iv) A,B E T. 

A Zeft-(right-)pseudo-gap or a right-(Zeft-)pseudo-jump is a pseudo-gap 
(A,B) such that A(B) has no right (left) endpoint. A pseudo-end.gap is a 
pseudo-gap (A,B) such that either A = ~ or B = ~. (This latter term will be 
used just occasionally for streamlining the terminology. Of course, a 
pseudo-endgap determines just an endpoint). 

a. Compactness. 

The following theorem is well-known. 
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THEOREM 2.4.1. Let X (X,<,T) be a GO-space. Then 

PROOF. 

X is compact .,.. X has neither gaps nor pseudo-gaps, 

,except for two pseudo-endgaps. 

~By 2.3.1, T =A(<). So X has no pseudo-gaps except for possible pseudo­

endgaps. Now, suppose (A,B) is a gap in X such that A# ~. Choose a strict­

ly increasing sequence, say {x} , (whereµ is an ordinal number), in A, a a<µ 
which is cofinal in A. Clearly, µ is a limit number. However, now 

{J+,x [} is an open cover of the closed set A without a finite subcover. a a<µ 
Contradiction. In particular, it follows also that X has no endgaps, and 

hence X has two endpoints • 

....,..Since X has no pseudo-gaps except for two pseudo-endgaps it follows 

that T =A(<) and, moreover, that X has both a le~ and a right endpoint. 

Furthermore, if P is a subset of X which is bounded above and 

A {x € x I 3p € P x s p} 

then (A,X \ A) is neither a gap nor a pseudo-gap in X. Consequently, P has 

a supremum in X. Thus, see for instance Kelley [K.1], X is compact. D 

b. Connectedness. 

The following theorem is well-known. 

THEOREM 2.4.2. Let X = (X,<,T) be a GO-space. Then 

PROOF. 

x is connected.,. X has neither jumps, nor gaps, nor 
pseudo-gaps, except for possible endgaps and 

pseudo-endgaps. 

===+By 2.3.1, T =A(<). So X has no pseudo-gaps except for possible pseudo­

endgaps. Since a gap (A,B) or a jump (A,B) in X consists of T-open sets A 

and B, it follows that X has neither gaps nor jumps, except for possible 

endgaps . 

.....,_Since X has no pseudo-gaps, T = A(<). Furthermore, analogous to the 

proof of 2.4.1, each subset of X which is bounded above has a supremum in 



X. Hence, since moreover X has· no jumps, X is connected (cf. Kelley 

[K.1]).D 

c. The Lindelof-property. 
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If 0 is an open cover of a GO-space X, consisting of convex sets, then we 

say that a gap (A,B) in X is aoVel'ed by 0 -whenever there exists an element 

0 € 0 such that one of the following conditions is satisfied 

1. 0 n A~ 0 and 0 n B ~ 0. 
2. B = 0 and 0 is cofinal in A. 

3, A = 0 and O is coinitial in B. 

THEOREM 2.4.3. Let X = (~,<,T) be a GO-space. Then 

X is a LindeWf-space if and only if the following two pro­

per-ties hold 

(i) for- each gap and each pseudo-gap (A,B) in X, there exist (count­

able, see (ii}) discrete sUbsets L c A and R c B such that Lis 

cofinal in A and R is cof-nitial in B. 

(We may assume, of course, that L is well-ordered and R is in­

versely well-ordered). 

(ii) each discrete subset of X contains at most aountab ly many points. 

PROOF. 

"only if". Clearly (ii) is satisfied, since the Lindelof property is here­

ditary for closed subsets. Next suppose, for instance, that (A,B) is a 

le~-pseudo-gap in X with A ~ 0 and such that no countable sequence in A is 

cofinal in A. Choose a strictly increasing sequence {x } , where µ is an 
a a<µ 

ordinal number, in A, which is cofinal in A. Clearly, µ is a limit ordinal 

and w0 is not cofinal with µ. However, now {]+,x [} is an open cover of 
a a<µ 

the closed subset A of X without a countable subcover. Contradiction. Hence, 

there is a sequence L(c A) of type w0 which is cofinal in A. 

"if". First we show that, without loss of generality, we may assume that 

T =A(<). Indeed, X may be considered as a closed subset of x* (2.1.2 (i)). 

( * *) . . * ( * * ) . . Now, when A ,B is a gap in X , then A n X, B n X is either a gap or a 

pseudo-gap in X. Hence there are discrete subsets L c A* n X and R c B* n X 

which are, respectively, cofinal in A* n X and coinitial in B* n X. Next, 
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define 

L* { (x,n) e: x* I x (x,O) e: L} 

and 

R* { (x,n) e: x* I x (x,O) e: R}. 

Then L* c A* and R* c B* are discrete subsets of x* which are, respectively, 
cofinal in A* and coinitial in B*. Furthermore, if p* is a discrete subset 

* of X , then 

{x (x,O) e: x c x* I 3n e: z (x,n) e: p*} 

is a discrete subset of X, which hence is at most countable. But then also 
p* is at most countable. Therefore, x* satisfies the properties (i) and 
(ii) whenever X does. Thus, we may assume X to be a LOTS. 

Let 0 be an open cover of the LOTS X consisting of convex sets. Let F 
denote the set of all gaps in X that are not covered by 0. Let X+ denote 
the Dedekind compactification of X. Clearly, every limitpoint in X+ of non­
covered gaps of X is a non-covered gap of X. Hence Fis closed in X+. Now 
X+ \ F = u C, where C is the collection of convexity-components of 
X+ \ F (in X+). Then C n X = {C n X I C e: C} consists of mutually disjoint 
open and closed convex subsets of X. Furthermore, for each C n X all gaps, 
apart from the endgaps, are covered by 0. Now, by (ii), C n X contains at 
most countably many distinct elements. Further it follows from (i), that 

each C e: C can be written as C = kM1 Ik(C), where Ik(C) is a closed inter­
val in X+ with a left and a right endpoint both belonging to X. Then, in an 

obvious way, 0 may be considered as an open cover of each Ik(C). [To be 
precise, taking any C e: C, it is the collection 01 which covers Ik(C). Here, 
a typical element of 01 is a set which one obtains by taking the union of 
an 0 e: 0 with those points of X+ which correspond to gaps in X "covered by 
O"]. Hence, the compact space Ik(C) can be covered by finitely many members 
of 0. Consequently C n X = k~ 1 Ik(C) n X is covered by countably many mem­
bers of 0. Finally, also X, as the union of at most countably many sets 
C n X, it covered by a countable subfamily of 0. D 



d. The hereditarily Lindelof property. 

THEOREM 2.4.4. Let X (X,<,T) be a GO-space. Then 

PROOF. 

'""""*Obvious. 

X is hereditarily Lindelof.,. Each relatively discrete subset 
of X contains at most countahly 

many points. 
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-==We have to show that each open subset O of X is a Lindelof-space. Now, 
0 = U C where 

C {C c X I C is a convexity-component of O}. 

Clearly, each C € C is open and hence C consists of at most countably many 
members. So, it suffices to prove that C E C is a Lindelof-space. Since 
every relatively discrete subset of X contains at most countably many 
points, it follows that X+ (the Dedekind compactification of X) does not 
contain a transfinite sequence of type w1• But then, from 2.4.3, it is 
easily verified that X is a Lindelof-space, while, moreover, for each C € C 
there exists an increasing and a decreasing (countable or finite) sequence 
(in C), which is cofinal, respectively coinitial in C. Hence, C = k~1 Ik(C) 
where Ik(C) is a closed convex subset of X. Thus, since closed subsets of a 
Lindelof space are again Lindelof, also c is a Lindelof space. D 

In the case of a LOTS, the next corollary was proved before (in a different 
way) by Lutzer and Bennett [LB.1]. 

COROLLARY. A GO-space is hereditarily LindelOf if and only if it satisfies 
the countahle chain condition. 

PROOF. 

"only if". Obvious. 

"if". Let P be a relatively discrete subset of a GO-space X. Since X is 
hereditarily collectionwise normal (Steen [St.1J), there exists a disjoint 
collection 0 of open sets in X, such that lo n PI $ 1 for each 0 E 0. 
(Mc.Auley [McA.1]). However, since X satisfies the countable chain condi-
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tion, 0 has to be a countable or finite family. Thus P contains at most 
countably many points. Hence, by 2.4.4, X is a hereditarily Lindelof­
space. D 

e. Perfect normality. 

Let S be an index set. Let U = {U 
s 

s E S} be a family of subsets of a 
given set X. If J is a convex subset of Z, then the subcollection 

K = {Us(j) I s(j) ES, j E J} 

of U is called a chain in U, whenever 

us(i) n us(j) ~ ~.,.. li-jl s (i,j E J), 

A mazimaZ chain in U is a chain which is not a proper subcollection of any 
other chain in U. Obviously, each chain in U is contained in a maximal 
chain. 

THEOREM 2.4.5. Let X = (X,<,T) be a GO-space. Then the foZZowing properties 
are equivaZent 

1) X is perfectZy normaZ. 
2) Every coZZection of mutuaZZy disjoint convex open subsets of X 

constitutes a a-discrete famiZy in X. 
3) Each reZativeZy discrete subset of X is a-discrete (in X). 

PROOF. 

,......,. 2 (For any family F of subsets of X, the family {F I FE F} will be 
denoted by F). Let C be a disjoint collection of convex open subsets of X. 
If K c C is such that K is a chain in C, then we can decompose K like 
K = K(1) u K(2), (taking the elements of Kin K(1) or K(2) alternately), 
such that K = K(1) u K(2) where K(1) and K(2) each consist of mutually dis­
joint elements. Furthermore, we have 

c u {K I K is a maximal chain in cl. 

Now, two maximal chains in~ either coincide or are disjoint. Thus, we may 
write C = C(1) u C(2), where for i = 1,2, 
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C(i) U {K(i) 1 Risa maximal chain in C}. 

Put 0 U C. Since X is perfectly normal 

k € :N}. 

Next, for each k € :N, define 

Since Fk is closed in X, it follows that Ck is a locally finite family in 
X. In fact, each point of X has an open neighbourhood which meets at most 
two members of Ck. (If, for some p € X, each neighbourhood of p intersects 
more than two elements of ck, then p € Fk = Fk c o. Hence p € c for some 
C € C. However, C intersects no other element of C). But then 

i 1,2, is a discrete family in x. Hence 

c = u { ck ( i ) I k € :m i 1,2} 

constitutes a a-discrete family in X. 

2 =- 3 Let A be a relatively discrete subset of X. Since X is heredi tarily 
collectionwise normal (Steen [St.lJ), there exists a disjoint family 

C {C I a € A} 
a 

of convex open subsets of X, such that a € C for all a € A, (McAuley a 
[McA.1]). Consequently C is a a-discrete family in X. But then A is a 

a-discrete subset of X. 

3 ===- 1 Let 0 be an open subset of X. Then 0 = U C, where 

C {C I C is a convexity-component of O}. 

Clearly, each C € C is T-open. First, we show that each C € C is an Fa-set 
in X. Let, for instance, C be such that C \ C = {p}, where p € X is the 



4o 

right endpoint of c. (The other cases can be treated similarly). Choose 
p0 € C. The ordered set C is cofinal with a well-ordered set P c C, 
starting from p0 . By omitting those points which have limit-index it then 
easily follows that C is cofinal with a strictly increasing subset 
P = {p ta<µ}., for some ordinal numberµ, which is relatively discrete a 
in X. Hence, by assumption, Pisa-discrete (in X). So P nYl Pn' where 

be cofinal in C. each P is discrete (in X). n Since C \ C = {p}, no P can 
n 

Therefore, we may assume that Pn 

~+l € Pn+l \ Pn for each n €JN. 

00 

c P 1 , for all n €E. Now, pick 
" n+ 
Then clearly ~.i.m qn+l = p. Hence 

C = U (C n ]+,~+ 1 J). 
n=1 

Thus, C is an Fa-set. Secondly, for every C € C, choose one point x(C) € C. 
Since 

{ x( c) I c € C} 

is a relatively discrete subset of X, it is also a-discrete (in X). Conse-
quently C is a a-discrete family in x. 
Summarizing we have that 0 = u c' c is a a-discrete family in X and every 
c € c is an Fa-set in X. But then 0 is an Fa-set in x. D 

COROLLARY (van Dalen [D.1]). 

A LOTS without gaps, exaept for possible endgaps, (i.e.: an order-aomplete 
LOTS) is perfeatZy normal if and only if it satisfies the aountable ahain 
aondition. 

PROOF. Let X be a LOTS without gaps, except for possible endgaps. 
"if". Any collection of mutually disjoint convex open subsets of X is 
countable and hence forms a a-discrete family in X. 
"only if". Suppose there exists an uncountable collection C of mutually 
disjoint (non-empty) open subsets of X. Without loss of generality C con­
sists of convex sets. From 2.4.5 it follows that 

C u {Ck I k € :N} 

where each Ck is a discrete family in X. Since C is supposed to be uncount-
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able, there is an integer n E 1l' such that C is an uncountable collection. 
n 

However, then X contains a bounded countable sequence without a limit 

point. But then X has a gap which is not an endgap. Contradiction. D 

REMARK. GO-spaces, without gaps, may be perfectly normal without satisfying 

the countable chain condition. (Example: the unit interval supplied with 

the usual ordering and the discrete topology). 

Finally, we give two examples. The first one deals with a metrizable LOTS 

in which one can construct a non-a-discrete, disjoint family of open sets. 

Note that, by 2.4.5, such a family necessarily cannot consist of convex 

sets. The second example gives a non-perfectly-normal LOTS. 

EXAMPLE 1. Let Y1 and Y2 be LOTS's defined as follows: 

y = {l E 1l I n EE} u {O} 
1 n 

supplied with the usual order-topology; and 

Y2 is an uncountable discrete LOTS with a le~ endpoint ~ 

and a right endpoint r. 
Now, put 

Then the relative topology on X, induced by the order-topology on Y1 • Y2 , 

coincides with the order-topology on X, induced by the relative ordering. 
Hence X is a LOTS. Moreover, it is easily verified that X is metrizable. 
Next, for each y2 E Y2, define 

O(y2) 
1 

{(-;-.y2) € x I n E :N}. 

Then O(y2 ) is an open subset of X, and 

is a disjoint family. However, it is clear that 0 cannot be a a-discrete 
family in X. 
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EXAMPLE 2. Let X c [0,1] • [0,1] be defined by 

X {(x,y) E [0,1J • (Q n [0,1[) I x E [0,1] \ Q=- y f: o}. 

Let X be supplied with the order-topology. (Observe that X is a dense sub­
set of the LOTS [0,1] • [0,1] while [0,1] • [0,1] does not possess neigh­

bourpoints. So, by 2.1.5, the order-topology on X coincides with the relati­
ve topology). The LOTS X is cr-r-discrete and of the first category. Further­
more, X is not perfectly normal. For, chooser E Q n ]0,1[ and put 

P = {(x,r) EX I x E [0,1]}. 

Then P is a relatively discrete subset of X. Let 

f X--+[0,1] 

be defined by f((x,y)) = x, for each (x,y) EX. Now, suppose P = nQ 1 Pn. 
Then f[P] = [0,1] = nQ1 f[Pn]. Since [0,1] is of the second category, there 
is an integer n E :N, such that Int f[P ] f: ~. Take a point 

n 
p E Int f[P ] n Q with p f: O. Then each open neighbourhood of (p,O) E X n 
contains elements of P distinct from (p,O). Consequently P is not dis-n n 
crete (in X). Thus, X is not perfectly normal. 

f. Paracompactness. 

The following lemma is well-known. 

LEMMA. Let X be a LOTS. Then the following properties are equivalent 
1 ) X is paracompact. 

2) For each gap and each pseudo-gap (A,B) in X, there exist discrete 
subsets L c A and R c B which are, respectively, cofinal in A and 
coinitial in B. 

PROOF. See Gillman and Henriksen [GH.1]. D 

THEOREM 2.4.6. Let X 

are equivalent 

(X,<,T) be a GO-space. Then the following properties 



1) X is paracompact. 

2) For each gap and each pseudo-gap (A,B) in X, there exist discrete 

subsets L c A and R c B which are, respectively, cofinaZ in A and 
coinitiaZ in B. 

(For a similar result, see also Lutzer [L.2]). 

PROOF. 

1===- 2 Suppose (A,B) is a le:rt-pseudo-gap in X. (The other cases can be 

treated similarly). Clearly, the le:rt endpoint of Bis a discrete subset 
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of X which is coinitial in B. So, it remains to show that A contains a dis­

crete and cofinal subset L. Now X is a closed subset of x* (2.1.2 (i)). 

Put 

and 

* A 

* B 

{ (x,n) E x* I (x,O) x E A} 

{(x,n) E x* I (x,O) X E B}. 

Then (A*,B*) is a gap in x*. Since A is cofinal in A*, it suffices to prove 

that A* contains a discrete (in x*) and cofinal (in A*) subset L*. [Indeed, 

afterwards an interlacing argument (taking L* well-ordered) yields that 

also A contains a (well-ordered) discrete (in X) and cofinal (in A) subset 

L]. But this means, that the proof is done once we have shown that x* is a 

paracompact space. So, let 0 be an open cover of x*. Then 0 is also an open 

cover of X. Hence there exists an open refinement V of 0 such that 

{V n x I V E V} 

is a locally finite family in X. Now, for each V E V, let C(v) be the col­
. * lection of all convexity-components of V (in X ). Next, put 

V' = v \ {(x,n) E x* \ x I 3C E C(v) (x,O) i C and (x,n) E C} 

and, let 

v• {v' 1 v E V}. 
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Then V' is a locally finite open family in U V'. Finally, put 

U V' U {{(x,n)} I (x,n) i UV'}. 

Then U is a locally finite open refinement of 0. Thus x* is paracompact. 

2.......,. 1 Since x* satisfies condition 2 whenever X does (compare the proof 

of 2.4.3), it follows from lemma 1, that x* is a paracompact space. But X 

is a closed subset of x*. So, also X is paracompact. D 

REMARK. During the proof of the previous theorem it was shown that a GO­
space X is paracompact if and only if the corresponding LOTS x* is a para­
compact space (see also Lutzer [L.1]). In general, a similar assertion does 

** not hold with respect to the LOTS X , (2.1.2 (ii)). For instance, let 

supplied with the relative ordering and the relative topology of the LOTS 

w1 + 2. The GO-space X cannot be a paracompact space, since it contains 
w1 as a closed subset (note that w1 does not satisfy property 2. of 2.4.6). 

** . However, X = w1 + 2 is a compact, and hence paracompact LOTS. On the 

other hand, the subset 

X = w1 \ {A I A is a limit ordinal< w1} 

of w1, supplied with the relative ordering and the relative topology of the 
LOTS w1 , is a relatively discrete subspace of w1 , and hence it is paracom­

** pact. But X = w1 is a non-paracompact space. 

g. Hereditary paracompactness. 

THEOREM 2.4.7. Let X = (X,<,T) be a GO-space. Then 

PROOF. 

=Obvious. 

X is hereditarily paracompact ..- X \ {x} is paracompact3 for 

every point x E x. 

-=-Let Y be a subspace of X. Suppose that (A,B) is a gap in Y. (The other 



cases follow similarly). Put 

p {x E X I 3a E A x < aL 

We distinguish three cases. First, suppose P \ P ¥ 0. Then, there exists a 
point z EX\ Y such that P \ P = {z}. Now, (P,X \ P) is a gap or a le~­
pseudo-gap in X \ {z}. Secondly, suppose P P and, moreover, X \ P ¥ 0. 
Choose z EX\ P. Then (P, X \ P \ {z}) is a gap or a le~-pseudo-gap in 
X \ {z}. Thirdly, suppose P = X. Choose z E P. Now, (P \ {z},0) is a gap 
in X \ {z}. Hence, in all three cases, there is a discrete (in X \ {z}) 
subset L' c P which is cofinal in P. Moreover, in the third case we may 
assume that z < x for all x EL'. Since A is cofinal in P, an interlacing 
argument now yields that A contains a discrete (in X \ {z} and consequently 
also in Y) subset L which is cofinal in A. Similarly, it can be shown that 
B contains a discrete (in Y) subset R which is coinitial in B. D 

COROLLARY 1. (Lutzer [L.1]) 

A perfeatly normal GO-spaae is hereditarily paraaompaat. 

PROOF. Let X = (X,<,T) be a GO-space. Since perfect normality is a here­
ditary property, it suffices to show that X is paracompact. Now, let 
(A,B) be a le~-pseudo-gap in X. (The other cases can be treated analogous­
ly). Put 

L {L c A I L is discrete (in X)}. 

If none of the elements L E L is cofinal in A, then also no countable union 
of members of L can be cofinal in A either. However, this contradicts the 
existence of a relatively discrete subset in A which is cofinal in A. D 

COROLLARY 2. 

( i ) A GO-spaae is heredi tari ly paraaompaat if it is a paraaompaat 
c1-spaae. 

(ii) A GO-spaae X = (X,<,T) is hereditarily paraaompaat, if the LOTS 
(X,<,A(<)) is a paraaompaat c1 -spaae. 
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PROOF. (i) follows from 2.4.6 and 2.4.7. And (ii) follows from (i) and 
2.3.6. 0 

REMARK. 1. It is well-known that the lexicographically ordered unit-square 
[0,1] • [0,1], supplied with the order-topology, is hereditarily paracom­
pact but not perfectly normal. These facts, of course, follow immediately 
from corollary 2 (i) and the corollary to 2.4.5. 

2. A hereditarily paracompact LOTS may fail to be a c1-space. This 
can be illustrated by example 2 of section 2.2. 



CHAPTER III 

METRIZABILITY IN GO-SPACES 

Classical theorems of Bing [B.1] state that in a regular T1-space R the 
following properties are equivalent: ( 1) R is metrizable; ( 2) R has a a -
discrete open base; (3) R is a collectionwise normal Moore-space. Using 
Bing's results we shall prove that in a GO-space metrizability is comple­
tely characterized by the statement that there exists a dense, a-discrete 
subset containing all points by which a jump or a pseudo-jump is deter­
mined, (so, in particular, all neighbourpoints). 
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Furthermore, we observe that a LOTS X is a Moore-space whenever there 
exists a sequence {U }00 

1 of open covers of X, such that for every point n n= 
p € X, the family {St(p;Un)}:=i of stars constitutes a ZoaaZ pseudo-base 
at p; i.e. n1 St(p;U ) = {p}. In general, as can be illustrated by the n= n 
Sorgenfrey-line, this does not hold for arbitrary GO-spaces. However, we 
shall prove that a GO-space X is metrizable (or, equivalently, a Moore­
space) if there exists a sequence {U }00 

1 of open covers of X, such that n n= 
for each point p € X, the stars {St(p;Un)}:=i form a local base at p, except 
for a a-discrete subset of X where is it only required that the stars form 
a local pseudo-base. 

Finally, we prove that every metric GO-space has a a-discrete base 
consisting of convex open sets, but that, in general, even a metric LOTS 
does not have a a-discrete base consisting of open intervals. 

The chapters IV and V are mainly used to illustrate the applicability 
of the results of this chapter. 

First, we recall some definitions. 

If U is an open cover of a topological space R, and p € R, then the star of 
p relative to U is defined by 

St(p;U) u {U € u I p € U}. 

A Moore-space is a regular topological space R, which possesses a countable 
sequence {U }00 

1 of open covers such that, for every p € R, the family n n= 
{St(p;Un)}:=i constitutes a local base at p. 
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Finally, we recall that for a GO-space X 
following subsets (see 2.3) 

(X,<,T) we have introduced the 

E(X) 

I(X) 

N(X) 

E((X,<,T)) 

I((X,<,T)) 

N( (X,< ,T)) 

{x E X [x,+[ E T or J+,x] E T} 

{x E X [x,+[ E T and ]+,x] E T} 

{x E E(X) \ I(X) J 3y E E(X) \ I(X) 

x and y are neighbours in X}. 

THEOREM 3.1. Let X (X,<,T) be a GO-spaae. Then the following properties 
are equi va lent 

1) X is metrizable 

2) The~e exists a subset D c X suah that: 
(i) i5 = X; (ii) E(X) c D; (iii) Dis a-disarete (in X). 

If T: A. ( <), then these properties are also equivalent to 
3) There exists a subset D c X suah that: 

(i) i5 = X; (ii) N(X) c D; (iii) D is a-disarete (in X). 

PROOF. 

1"""""'°' 2. X is metrizable; therefore X has a a-discrete open base B 
where each B is a discrete family in X. Taken E :N. From each B E B we n n 
select one or two points as follows: if B contains one or two endpoints then 
we choose that, respectively, those endpoint(s) from B, and, if B contains 
neither a left nor a right endpoint, then we choose one arbitrary point 
from B. Let D be the set of points, thus selected from all B E B . Put n n 00 

D = ng1 Dn. Then, it is easily verified, that D satisfies all properties 
required. 

Now we assume that T =A.(<); so, X is a LOTS. Then 
2 ==- 3. Obvious. And 

3~ 1. Since a GO-space is hereditarily collectionwise normal (Steen 
[St.1]), it suffices to show that X is a Moore-space. Let D = u1 D, where n= n each D is discrete (in X). Then, for all n E JN and x EX there is a convex n 
open neighbourhood I(x;n) of x, such that I(x;n) n (D \{x}) = ~. Without n 
loss of generality.I(x;n) may be supposed to satisfy the following condi-
tions: I(x;n) => I(x;n+1) for all n E :N; I(x;n) = {x} if x is isolated in X; 
I(x;n) c [x,+[ if x is a (non-isolated) point of X having a left neighbour 
in X; and I(x;n) c J+,x] if x is a (non-isolated) point of X having a right 
neighbour in X. 



Now, for every n E l'l, put 

LJ {I(x;n) I x E X}. 
n 

Clearly, each LJ is an open cover of X and hence the proof is complete n 
once we have shown that, for every x EX, the family {St(x;Un)}:=i forms a 
local base at x. For that purpose, choose x E X and let 0 be an arbitrary 
convex open neighbourhood of x. 

a) Suppose, x is an isolated point of X. 

Since D = X, there is an integer i E l'l such that x E Di. We claim that 
St(x;U.) c O. For, if x E I(y;i) for some y EX, then from 

l 

I(y;i) n (D.\{y}) =~and x E I(y;i) n D. it follows that x y. Hence 
l l 

x E St(x;U.) = I(x;i) = {x} c 0. 
l 

b) Suppose, x has a le~ neighbour x- E X, and suppose that x is not iso-

lated. Certainly x ED and so x E Di' for some i E :N. Since x is a 
non-isolated point of X, there are integers j ,k E :N and points 
a E Dj n 0 and b E Dk n 0 such that i < j < k and x < b < a. We claim 

that St(x;Uk) c 0. Indeed, if x E I(y;k) for some y E X, then from 

I(y;k) n (Dk\{y}) =~and b E Dk it follows that y ~ b(<a). Further 
since I(y;i) n (D.\{y}) = ~. x- ED. and x E (I(y;k) c )I(y;i) we have 

l l 

that x- ~ y, while, moreover, since x f. I(x-;k), even x-· < y. Now, from 
I(y;j) n (D.\ {y}) =~and y <a it follows that a f. I(y;j), and from 

J 
I(y;i) n (D.\{y}) =~and x- < y it follows that x- f. I(y;i). Thus, 

l 

since I(y;k) is a convex subset, both of I(y;j) and of I(y;i), and since 
x E I(y;k) while x- < x < a, it follows that x E I(y;k) c 0. Hence 

x E St(x;Uk) c 0. 

The case, where x has a right neighbour x+ E X while, moreover, x is not 

isolated, can be treated similarly. 
c) Suppose x is an endpoint of X, which is not isolated. 

The proof of this case is an easy modification of the proof of case b). 
d) Suppose x has neither a le~ nor a right neighbour in X. 

We consider the LOTS's [x,+[ and ]+,x]. From the previous case we may 
conclude that there are integers m and n E :N such that 

St(x;U ) n [x,+[ c 0 n [x,+[ and St(x;U ) n m n 
Then St(x;U ) c St(x;U ). Consequently, x E n m 

We return to the general case, where A(<) c T. 

1+,x] c O n J+,x]. Let m ~ n. 

St(x,U ) c 0. 
n 

2 ===> 1. Consider X as a (closed) subspace of the LOTS x*, ( 2. 1. 2 (i)). For 
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each n E :N, define 

n* {(x,n) E x* I x E ~ }. 
n n 

Since D is discrete (in X), it follows easily that n* is discrete (in x*J. n n 
Put 

D * u 
n=1 

* D • 
n 

Then E(X) c D c n* yields that n* is a dense subset of x* Moreover, 

N(X*)(=N(X) c E(X) c D) c n*. Consequently, since 3.,... 1 for LOTS's, it 

follows that x* is metrizable. Thus X is metrizable. 0 

REMARK. Lutzer [L.1] showed that the metrizability of a GO-space X is equi­

valent to the metrizabili ty of the corresponding LOTS x*. The proof of the 

theorem above includes (see 2......,. 1) another proof of this equivalency. 

COROLLARY. A a-discrete GO-space is metrizahZe. 

PROOF. Obvious. 0 

In 2.2.T we noticed that a a-discrete GO-space, without isolated points, 

is of the first category. Moreover, by the previous corollary, it is me­

trizable. So, one might wonder, whether or not a metrizable and first ca­

tegory GO-space is a-discrete. 

The next example shows that the answer to this question is negative. 

EXAMPLE. If a,b E :R, a < b, then [a,b] contains a Cantor-space, which 

geometrically can be obtained by deleting a sequence of mutually disjoint 

open intervals, known as the middle thirds, from [a,b]. In the sequel we 

shall denote the Cantor-space, contained in [a,b],by C[a,b]' 

Now, by induction on n, (n E JN), we define LOTS's X c [0,1] such that 
n 

( i) X is 
n 

(ii) [0,1] \ 

{]~,b~[}== 1 1s a 

homeomorphic to the Cantor-space. 
n ~ n n 

.U X. = k~ 1 Ja ,bk[, where 1=1 1 - k 
sequence of mutually disjoint (non-empty) open intervals 

in :R. 



51 

As follows: For n = 1, let X1 = C[O 1]. 

Trivially, the conditions (i) and (ii) are satisfied. 

Next, suppose X. is defined for i = 1,2, ••• ,n-1; n ~ 2. Then 
[ J n-1 1 00 ] n-1 n-1[ {] n-1 n-1[}00 

0,1 \ i~ 1 Xi = k~ 1 ~ ,,bk ,where ak , bk k= 1 is a sequence of 
mutually disjoint (non-empty) open intervals. 

Now, define 

x 
n 

Again, it is easily checked that the conditions (i) and (ii) are satisfied. 

Finally, put 

x 
00 

u 
n=1 

x . 
n 

Then X has the following properties 

1. X is a LOTS; for X is a LOTS without neighbourpoints (see 2.1.5). 
00 

2. X is of the first category; for X = n~ 1 Xn and, for each n E JN, 

Int X = Int X 0. 
n n 

3. X is metrizable; for X c [0,1]. 

4. X is not a-discrete; for C[0, 1] c X (see 2.2.2 and 2.2.7). 

The metrizability or non-metrizability of various types of GO-spaces, 

easily follows from the above theorem, (of course several other (o~en 

easy) arguments can be used); for instance, the Sorgenfrey-line (see 2.3, 

example 1); the Michael-line (see 2.3, example 2); the Urysohn-space 

U = ([0,1] • {0,1}) \ {(0,0),(1,1)} (note that IN(U)I >. H0 while U is se­

parable, and remember that any a-discrete subset of a separable GO-space 

is countable); and the ordinal-space w1 (E(w1) = w1 is not a-discrete, 

since no infinite subset of w1 is discrete (in w1)), clearly are non-metri­

zable GO-spaces. (Observe that the Sorgenfrey-line is a-i-discrete and the 

ordinal-space w1 is a-r-discrete). 

Finally, we want to notice that a GO-space, containing a dense and a-dis­

crete subset, is perfectly normal. Indeed, let X be a GO-space. Let D c X 

be such that D = X and D = U D where each D is discrete (in X). Then, n=1 n' n 
for any collection C of mutually disjoint (non-empty) convex open subsets 

of X, we can write C u1 C , with C = {C E C I C n D ~ 0}. And, clearly n= n n n 
each C is a discrete family in X. Hence, by 2.4.5, X is perfectly normal. n 
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In general, it can not be shown that a perfectly normal GO-space contains 
a dense a-discrete subset. For, otherwise, a perfectly normal, connected 
LOTS would be metrizable (3.1)) and hence separable. (see the corollary 
to 2.4.5), However, as can be easily shown, if there exists a Souslin­
space (i.e. a non-separable LOTS which satisfies the countable chain con­
dition), then there exists also a (compact), connected Souslin-space. 

THEOREM 3.2. Let X = (X,<,T) be a GO-space. If there exists a sequence 
{Un}:=l of open covers of X such that 

(i) nQ 1 St(p;Un) = {p} for every p E X; (i.e.{St(p;Un)}:=l is a 
ZocaZ pseudo-base at p), and 

(ii) X \ {p E X I {St(p;Un)}:=l is a ZocaZ base at p} is a-discrete 
(in X), 

then X is metrizabZe. 

PROOF. For each n E JN, we may assume that 

U {I(x;n) I x E X} n 

where x E I(x;n) and, 

I(x;n) 

{x}, if {x} E T, 

[x,p[ for some p EX, if [x,+[ E T and ]+,x] ( T, 
]p,x] for some p EX, if [x,+[ ( T and ]+,x] ET, 
]p,q[ for some p,q EX, if [x,+[ ( T and ]+,x] ( T, 

From (i) it follows that for each x EX, n I(x·n) = {x}· and because of n=1 ' ' 
the special form of the sets I(x;n), the system {I(x;n)}:=l is a countable 
local base at x. Furthermore, we may assume that I(x;n) ~ I(x;n+1) for all 
n E JN and x E X. Now, define 

L {p E X I {St(p;Un)}:=l is a local base at p} 

and let 

K {x E X \ L I x is isolated in X} 

K is contained in X \Land hence, by (ii), K is a-discrete (in X). 



Moreover K is an open subset of X and so X \ K is closed in X. Thus, by 

3.1, the metrizability of X follows immediately once we have shown that 

X \ K is metrizable. (Observe that 

E((X,<,T)) c E((X \ K, <(X \ K)' T I (X \ K))) u K). 

Now, for every x e: X \ K and n e: JN, we define a convex open subset J ( x ;n) 

of X by 

J(x;n) = I(x;n) \ {p e: X \LI p is an endpoint of I(x;n)}. 

Then, for each n e: :N, the family 

V = {J(x;n) I x e: X \ K} 
n 

is an open cover of X \ K. Indeed, let x e: X \ K be such that x 1 J(x;n). 

Then x e: X \ L, x is an endpoint of I(x;n), and x is non-isolated in X. 

Consequently there exists a point p e: X with x ~ p and x e: I(p;n). (If 
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x t I(p;n) then also x t I(p;m) for m ~ n. If this holds true for all p ~ x, 

then St(x,Um) = I(x;m) for al~ m ~ n, which is impossible since x e: X \ L). 

Clearly p e: X \ K. (For I(p;n) = {p} if p e: K). Moreover x is not an end­

point of I(p;n). (Observe that x e: X \ Lhasa countable system of convex 

open neighbourhoods, which constitutes a local pseudo-base, but not a local 

base, at x. Hence x cannot be a neighbourpoint unless x is isolated. Now, 

if x is, for instance, the left endpoint of I(p;n), then x < p and I(p;n) 

is of the prescribed form I(p;n) = Js,r[ or I(p;n) = Js,pJ, s,r e: X. So, it 

would follow that sis the left neighbour of x.) Consequently, x e: J(p;n). 

I. We claim that the family 

B = {St(x;V ) n (X \ K) I x e: X \ K ; n e: :JN} 
n 

of convex subsets of (X \ K, <(X \ K)) defines a base for a topology P 

on the linearly ordered set (X \ K, <(X \ K)) = X \ K. Then, obviously 

p is coarser than T I (X \ K). 

Let x1 ,x2 e: X \ K; let n,m e: :JN and take 



First, suppose x is neith~r an endpoint of St(x1 ;Vn) nor an endpoint 

of St(x2 ;Vm). Then, there are points p,q EX such that 

From (i) it follows that there is an integer k E JN such that 

x E St(x;Uk) c ]p,q[. 

Hence 

Secondly, suppose x is an endpoint of at least one of the sets 

St(x1;Vn) and St(x2 ;Vm). For instance, let x be a right endpoint of 

St(x1 ;V n). So, there exists a point q E X \ K such that x,x1 e: J(q;n), 

while x is the right endpoint of J(q;n). Then, clearly J+,x] e: T, It 

follows that x e: 1. (For, suppose x e: X \ L. Then certainly q < x, be­

cause of the definition of I(q;n) and J(q;n) and the fact that 

x E J(q;n). Furthermore, since x E (X \ L) n (X \ K) it is non-iso­

lated. So x cannot be a neighbourpoint of X -cf. the observation be­

tween parentheses just above I.-. But this contradicts the fact that 

I(q;n) is of the form I(q;n) = ]s,r[ or I(q;n) [q,r[, s,r e: X). Now 

we distinguish two possibilities: 

(*) x is neither the left endpoint of St(x1;Vn) nor of St(x2 ;Vm). 

Then there is a point p E X such that 

while ]p,x] e: T, 

(**) x is the le~ endpoint of St(x1;Vn) or of St(x2 ;Vm). 

Then also [x,~[ e: T and consequently 

If(*) holds true then, since x EL, it follows from (i) that, for 

some k E JN, 

x e: St(x;Uk) c ]p,x]. 
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Hence 

If (**) holds true then, since x E L, for almost every k E JN 

{x} = St(x;Uk). 

Hence, for almost every k E JN, 

This completes the proof of I. Moreover we have shown that 
II. For every x E X \ K, the family 

{St ( x; V ) n ( X \ K) I n E JN} 
n 

defines a local p-base at x, consisting of convex subsets of 

(X \ K, <(X \ K)). 
III. We claim that (X \ K, <(X \ K)' p) is a GO-space. 

We have to show that A(<(X \ K)) c p. Take p E X \ Kand choose 

x E ]+,p[ n (X \ K). 

From (i) it follows that there exists an integer k E JN satisfying 

x E St(x;Vk) n (X \ K) c St(x;Uk) n (X \ K) c ]+,p[ n (X \ K). 

Therefore 

J+,p[ n (X \ K) E p. 

Similarly 

] p , +[ n ( X \ K) E p • 

Thus l.(<(X \ K)) is coarser than p. Together with I this yields that 

(X \ K, <(X \ K)' p) is a GO-space. 
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IV. Next, we show that (X \ K1 <(X \ K)' p) is metrizable. 
Since every GO-space is collectionwise normal, we only have to prove 

that (X \ K, <(X \ K)' p) is a Moore-space. Now, for every p EX\ K 

and every n E JN, 

J(p;n) n (X \ K) E p. 

Indeed, choose 

x E J(p;n) n (X \ K). 

If x is not an endpoint of J(p;n) then, clearly, there is an integer 

k E JN such that 

x E St(x;Vk) n (X \ K) c St(x;Uk) n (X \ K) c J(p;n) n (X \ K). 

However, the same is true if x is an endpoint of J(p;n). (As above: 

observe that ]+,x] (or [x,+[) is T-open and that x EL.) 

Hence, for all n E JN, the family 

W = {J(x;n) n (X \ K) I x E X \ K} n 

is an open cover of (X \ K, <(X \ K)' p). Moreover, by II, the system 

{St(x;W ) I n E JN} = {St(x;V ) n (X \ K) I n E IN} n n 

constitutes a local p-base at x E X \ K, for each x E X \ K. 

Consequently (X \ K, <(X \ K)' p) is a Moore-space. (Thus, by intro­
duction of a GO-topology p we have closed the "bad" pseudo-gaps of the 

GO-topology T I (X \ K)). 

V. Finally, we show that (X \ K, <(X \ K)' T I (X \ K)) is metrizable. 

Let D be a dense, a-discrete subset of (X \ K, <(X \ K)' p), containing 

E((X \ K, <(X \ K)' p)). By 3.1, such a set D exists. Then 

E( (X \ K, < (X \ K), T I (X \ K))) n L c 

c E((X \ K, <(X \ K)' ~)) c D. 



For, choose 

x E E( (X \ K, < (X \ K), T I (X \ K))) n L. · 

We may assume that 

J+,x] n (X\ K) ET I (X\ K). 

Since {I(x;n)}:=l is a local T-base at x, 

x E I(x;n) n (X \ K) c J+,x] n (X \ K) 

for sufficiently large n E JN. Certainly x E J(x;n), because x E L. 

Consequently, for almost every n E JN, 

]+,x] n (X \ K) = (J+,x[ u J(x;n)) n (X \ K) E P. 

Hence 

x E E( (X \ K, <(X \ K), p )) c D. 

Further, since the family 

{I(x;n) n (X \ K) I x E X \ K n E JN} 

forms a base for the topology T I (X \ K) on X \ K; and, since for 

each n E JN and each x E L c X \ K 

I(x;n) n (X \ K) n D => J(x;n) n (X \ K) n D ~ 0, 

the set 

Du ((X \ L) n (X \ K)) 

is a dense subset of (X \ K, <(X \ K)' T I (X \ K)). Moreover, 
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E((X \ K, <(X \ K)' T I (X \ K))) = 

(E( (X \ K, <(X \ K), T I (X \ K))) n L) u 

( (X \ K) n (X \ 'L)) c D u ( (X \ L) n (X \ K)). 

Finally, since p c T I (X \ K), it follows that D u ( (X \ L) n (X \ K)) is 
a-discrete (in (X \ K, <(X \ K)' TI (X \ K))). By3.1, this completes the 
proof. D 

REMARK. For a LOTS (X,<,A(<)), which allows a sequence {Un}:=1 of open 
covers such that {St(p,Un)}:=1 is a local pseudo-base at p, for every 
p E X, it follows, since no generality is lost if we assume that each Un 
consists of convex sets, that {St(p,U )} 00 

1 is also a local base at p. So, n n= 
theorem 3.2 is only of interest in the case of a GO-space X, which is not 
a LOTS (with the same topology) with respect to any given ordering on the 
set X. We note that there are very trivial examples of GO-spaces which are 
not orderable; for instance the subspace ]0,1[ u [2,3] of:R. 

It is well-known that in c11-spaces, every open base possesses a countable 
subcollection which is again a base for the topology. 
One might conjecture that, analogously, in metric spaces every open base 
possesses a a-discrete subcollection which is again a base for the topology. 
However this conjecture turns out to be false; the next results show that 
a metrix GO-space always has a a-discrete open base consisting of convex 
sets, but on the other hand, there exists a metric LOTS without a a-dis­
crete open base consisting of open intervals. 

THEOREM 3.3. Each met:r>izdble GO-space X 
consisting of convex open sets. 

(X,<,T) has a a-discrete base 

PROOF. Like we noticed already (just above 3.2), when a GO-space X contains 
a dense, a-discrete subset, then every disjoint collection C of convex open 
subsets of X constitutes a a-discrete family in X. (Of 
this follows also immediately from 2.4.5).Now, let B = 

course, in our case 

u B be a a-dis­n=1 n 
crete open base for X, where each B 

n 
is a discrete family in X. For all 

n E Ji!, put 

8 
n 

{C I 3B E B 
n 

C is a convexity-component of B}. 
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Then B forms a disjoint collection of convex open subsets of X and hence 
...., n ...., oo -
Bn constitutes a a-discrete family in X. Consequently, also B = ng 1 Bn is 

a a-discrete family in X. Obviously, B is a base for X. Thus, the proof is 

complete. D 

THEOREM 3.4. There exists a metria LOTS X, suah that no a-disjoint aollea­

tion 

I - · U In 
n=1 

(In is a disjoint aolleation) 

of open intervals aovers X. 

In partiaular, X does not have a a-disarete open base aonsisting of inter­
vals. 

PROOF. For all k < w0 , let ~be the LOTS 

Put 

L * WO 
X = x_ = (w 1+w 1 ) • k<w 0 -K 

We will show that the LOTS X satisfies the required property of our theorem. 

Throughout the proof we use the following notations: 

hence 

x x x x • x(m) · = O • 1 • • • • • m-1 ' 

and if p (p.). E X, then we write i i<w0 

(x.). EX Ix.= p. for all i ~ n}. i i<w0 i i 

Clearly, each X(m) and each X( ) is homeomorphic to X. 
Po P1 •• ·Pn 
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Now, for each n E IJ', the family 

p. E X. for i $ n} 
]. ]. 

consists of mutually disjoint convex open and closed subsets of X, while 
U B = x. Hence B is a discrete family in X. Moreover, it is easily check-n 

00 
n 

ed that B = u B is a base for the order-topology on X. So, X is metri-n=1 n 
zable. 

Next, 'for all k < w0 , let 

~ = {~ E ~ I ~ is a limit ordinal} 

and let 

L: = {X: E ~ I ~ is a limit ordinal} 

* (~denotes the inverse order-type of the ordinal~). 
By induction on k (<w0 ) we will define points 

zk E Lk (k even) and zk E r.i: (k odd) 

such that the point 

is not covered by I. As follows: 

k = 0: Consider the collection con of those intervals Ji,r[ E In' which 
overlap the le~-endgap of X(po) in X, for some p0 E L0 ; i.e. 

(Observe that each interval of I may be described by Ji ,r[, where 
i = (i. ) . < and r = ( r. ) . E X) . Let i i w0 i i<w0 



Since two different intervals in x0 of the type 

are disjoint ([t0,r0J and [t~,r~J may have a common endpoint, however), 

I 
I 

L~~~,~~L'J 
t' r' = t" r" 0 0 0 0 

it follows that each increasing sequence 

(1) (1) (2) (2) (k) (k) Ho ,ro [,Ho ,ro [, ..... , Jto ,ro [, ..•.. 
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(H(k) r(k)[ E 1 · k E :N) in X has a limit point which does not belong to ' n' 0 
U Lon· Consequently the set 

contains a cofinal set of limit ordinals. Furthermore, each set Pon (n E JN) 
is closed in the order-topology of x0 • Also L0 is closed in the order-topo­
logy of x0 . Moreover, the family 

has the finite intersection property, which follows from an interlacing 
argument. So, since x0 is countably compact (in its order-topology), there 
exists a point 

We conclude that the left-endgap of X(zo) in X is not overlapped by any 
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interval of 1 

( ) 

it.___such intervals do not occur in 1 

k=1: First observe that at most countably many intervals of 1 can overlap 

the right-endgap of X( )' Therefore there exist uncountably many elements 
* * zo x 1 E 1 1 such that X( *) is not overlapped by any interval from 1 which 

. zo ,x1 
overlaps the right-endgap of X(zo)' 

We consider the collection C1n of those intervals J~,r[ E In which overlap 
* * the right-endgap of X( *)in X, for some p1 E 1 1; i.e. 

zo,P1 

* Proceeding on "in X( zo)" we can determine a point z 1 E 1 1 ( c x1 ) such that 

there do not occur intervals in 1 which overlap the right-endgap of 

x(zo z1) in x (or: in x(zo)). 

x 

~ 

i 
such intervals do not occur in 1 

And so on. Clearly 

* wo REMARK. 1. As can be easily seen, (w 1+w 1) is a nowhere locally separable, 

homogeneous and completely metrizable LOTS. 

2. In an analogous way it can be shown that no a-locally finite 
( * )wO collection of open intervals covers w1+w 1 . 
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CHAPTER IV 

LEXICOGRAPHICALLY ORDERED PRODUCTS 

In this chapter we will investigate how some properties of LOTS's behave 
under taking lexicographically ordered products. It will come out that 
compactness and paracompactness are preserved under forming of lexico­
graphic products. (Observe, however, that the factors in general are not 
contained topologically in the resulting product, except for the last one 
if it occurs). Further, we mention necessary and sufficient conditions for 
a lexicographically ordered product space to be second countable, separable 
or hereditarily Lindelof. Our main attention in this chapter is focussed 
on the characterization of metrizability of lexicographic products in terms 
of the structures of the factors. It turns out, afterwards, that for a 
LOTS's of the type~ Xa (where µ is cofinal with w0 and Xa is a non­
trivial LOTS), metrizability is equivalent to perfect normality. 
For sake of completeness and to get a better idea how lexicographic pro­
ducts look like, we start by giving necessary and sufficient conditions for 
the connectivity. 

We may restrict ourselves to lexicographic products of the following types: 

Lx a<µ a and L_x 
v~a<µ a 

where for each a less than a given ordinal number µ, X = (X ,< ) is a non-a a a 
trivial linearly ordered set, and v is an arbitrary ordinal < µ, The order-
ing on IL_ X and ll___< X will be denoted by <. Furthermore, a point x of a<µ a V-a<µ a 
the product is denoted by x = (x ) < or x = (x )< , respectively. a a µ a V-a<µ 

4.1. CONNECTIVITY IN ll.__ 

From 2.4.2 it follows that a LOTS is connected if an only if it has no 
jumps and no gaps, except for possible endgaps. 

LEMMA. 

(i) 
Let X 

(Va > 

lL__ XN be a aonneated LOTS. Then a<µ ~ 

O : X has a left endpoint) or (Va > O a 
endpoint). 

X has a right a 

(ii) Va ~ w0 : Xa possesses both a left and a right endpoint. 
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(iii) Va. < µ 

(iv) Va. < µ 

( v) Va. < µ 

( vi) Va. < µ 

Xa. has no gaps, except for possible end.gaps. 
if x6 possesses both a left and a right endpoint, for 
all S > a., then Xa. has no jumps. 

if x6 d?es not have a left endpoint for some S > a., 

then each bounded strictly increasing sequence in Xa. is 
finite. 

(i.e.: Xa. is a subset of the ordered union of an in­

versely well-ordered set and w0 ). 

if x6 does not have a right endpoint for some S > a., 

then eaeh bounded strictly decreasing sequence in Xa. is 

finite. 

(i.e.: X is a subset of the ordered union of a well-
a. * 

ordered set and w0 ). 

PROOF. 

(i) Suppose there exist ordinals a. > O and a.' > O such that X has no 

left and Xa., has no right endpoint. Then ~ Xa. has nei~her a left 

nor a right endpoint. Now, choose u E x0 such that u is not the right 

endpoint of x0 • Let 

A {x = (x ) < E X I x0 ~ u} a. a. µ 

Lx 
O<a.<µ a. A----1 

u or u 

-----------, 
I 

I 

I 

I 
I 

- - -- - - - - - - _I 

Then A # 0, X \ A # 0 and (A,X \ A) is a gap in X. Contradiction. 

(ii) Suppose there exists an ordinal S ~ w0 such that (for instance) x6 
does not have a right endpoint. Assume S to be the first ordinal with 

these properties. So, for each ordinal a., with w0 ~a. < S, Xa. has a 

right endpoint ra.. Next, for all a. < w0 , choose ua. E Xa. such that ua. 

is not the right endpoint of Xa.. Let 



A' = {x = ( xa) a<µ € x I x u if a < WO x r if WO :S a < f3} 
a a 

, a a 

and, put 

A = {x E x I 3a E A' x ~ a}. 

Then A # 0, X \ A # 0 and (A,X \ A) defines a gap in X. Contradiction. 

(iii) Suppose the assertion does not hold true. Let f3 < µbe the first 

ordinal such that Xf3 has a gap (Af3,Xf3 \AS) which is not an endgap. 

For each a < f3, choose ua E Xa. Let 

A' {x 

and, put 

A= {x E X I 3a E A' x ~ a}. 

Then A # 0, X \ A # 0 and (A,X \ A) is a gap in X. Contradiction. 

(iv) Follows immediately from the characterization of neighbours in 

( v) 

II X given in 1.2.1, and the fact that each pair of neighbours '&<µ a, 
defines a jump and conversely. 

Assume, X (y > 0) does not have a left endpoint, for some y < µ. Let 
y 

f3 < y. Now, suppose {xf3(i)}:= 1 is a bounded, strictly increasing 

sequence in Xf3. For each a < f3, choose ua E Xa. Let 

A' - {x 

and, put 

A {x E X I 3a E A' x ~ a}. 

Then A # 0, X \ A # 0 and (A,X \ A) defines a gap in X. Contradiction. 

IL_ x 
f3<a<µ a A' 3 EA'~ r/..A' 
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(vi) Analogous to (v). 0 

THEOREM 4.1.1. The LOTS X = Jj___ X is aonnected.,. At least one of the a<µ a 
following two collections of conditions is satisfied 

( i) 

(ii) 

I (iii) 

(iv) 

(v) 

( i) 

(ii) 

II (iii) 

(iv) 

( v) 

Va > O : X has a left endpoint. a 
Va ~ w0 : Xa possesses both a left and a right endpoint. 
Va < µ X has no gaps, except for possible endgaps. a 
Va < µ if x8 possesses both a left and a right endpoint for all 

8 > a, then X has no jumps. a 
Va < µ if x8 does not have a right endpoint for some 8 > a, then 

each bounded strictly decreasing sequence in Xa is finite. 

Va > O : X has a right endpoint. a 
Va ~ w0 : Xa possesses both a left and a right endpoint. 
Va < µ X has no gaps, except for possible endgaps. a 
Va < µ if x8 possesses both a left and a right endpoint for 

all 8 > a, then Xa has no jumps. 
Va < µ if x8 does not have a left endpoint for some S > a, then 

eaah bounded strictly increasing sequence in X is finite. a 

(REMARK: Because of (ii), it is clear that (v) applies only in the case 
that a < w0 ) 

PROOF. 

,...... lemma. 

-===Suppose that condition I holds. (The other case follows similarly). 
From (iv) and 1.2.1 it follows that X = tL_ X does not have jumps. So, it a<µ a 
remains to show that X has no gaps (A,B), with A#~ and B # ~. Now, let 
(A,B) be an ordered pair of non-empty subsets of X, such that X = A u B 
and a < b for all a E A and b E B. We have to prove the existence of a 
points (sa)a<µ EX such that An B = {s}. By transfinite induction 
(on a) we shall define s, as follows: 

1. Let 



and let 

Clearly, x0 = A0 u B0 , A0 # ~. B0 # ~. IA0 n B0 1 ~ 1 and a0 ~0 b0 for 

all a0 € A0 and b0 € B0• 

s 

A - B 

2- - - --- --

A B 

s 

------1+--­
Ao "/J s0 E B0 

3 
i-+ B 

A +-
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First consider the case that A0 n B0 = ~. Since, by (iii), (A0 ,B0 ) is 

not a gap in x0 , it follows that A0 has a right endpoint in x0 or B0 has 

a le~ endpoint in x0• If s0 € x0 is the right endpoint of A0 (figure 1) 

and, moreover, each X (a > 0) has a right endpoint r , then we define a a 
s = (s ) € X by s 0 = s0• and s = r if a > O. Since X has no jumps, a a<µ a a 
it follows that A n B = {s}. If s0 € x0 is the le~ endpoint of B0 
(figure 2), then we defines= (s ) € X by s0 = s0• and s = £ if a a<µ a a 
a> O, where£ is the le~ endpoint of X , (by (i), X has a left end-a a a 
point for ell a> 0). Again, since X has no jumps, An B = {s}. Finally, 

if for some a> O, Xa does not have a right endpoint then, by (v), B0 
must have a le~ endpoint s0 in x0 . Hence, the previous case applies. 

Secondly, assume that A0 n B0 # ~. Then, there exists a point s0 € x0 
such that A0 n B0 = {s0}. (figure 3). 

Put s0 = s;. 
2. Let sa € Xa, Aa and Ba c Xa be defined for all a < w0 , such that 

Aa n Ba = {sa}. Put 

X I 3a € A 
WO 
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and let 

Then, ~ = A u Bw and aw sw b for all a € A and b € B o wo o . o o wo wo wo wo wo 
Observe, however, that (in distinction with the "finite" case) 
~ or Bw may be empty. If~ = Xw and, by (ii), 

0 0 0 0 
point of Xa for all a ~ w0 , then we define sa = r a 
clearly, s = (s ) €An B. If, on the other a a«µ hand, 

put sa = ia 

true that s 

!Aw n Bw I 

if a ~ w0 , where ia is the le~ endpoint 

= (s ) € A n B. Finally, when Aw # 0 a a<µ o 
s 1, and we can proceed in a similar way 

ra is the right end­

for a ~ w0 . Now, 

Bw = Xw , then we 
0 0 

of Xa. Again, it is 

and Bw # 0, then 
o. . 

as we did in case 
0 0 

before. Now, the definition of s = (s ) can easily a a<µ be completed by 
transfinite induction. It is clear that s € A n B. D 

We note that from the previous theorem it can be easily derived whether or 
not a lexicographically ordered product space is totally disconnected. In­
deed, if µ is a non-limit ordinal then, certainly, "X 1 is totally dis-

µ-
connected" will be a necessary and sufficient condition on L X to be a<µ a 
totally disconnected itself. And, for a limit ordinal µ, clearly, 11__ X a<µ a 
is not totally disconnected whenever there exists an ordinal S < µ, such 
that ll____< X is connected for each y ~ S, and conversely. y<a µ a 

WO 
REMARK. By 4.1.1, all lexicographic products of type a where a is a 
well-ordered or inversely well-ordered set with precisely one endpoint, are 

w w w connected LOTS's. In particular, w0 0 =JN 0 and w1 0 are connected (see 
also Miller [Mil.1]). 

4.2. COMPACTNESS AND PARACOMPACTNESS IN ~ 

From 2.4.1 it follows that a LOTS is compact if and only if it has no gaps. 

THEOREM 4.2.1. The LOTS X = L X is compact - Va < µ: X is a compact a<µ a a 
LOTS. 

PROOF. 

==-+Since X = IL_ X has no endgaps, X has both a le~ and a right end­a<µ a 
point. Therefore, also each Xa' a < µ, possesses a left and a right end-
point. Now, suppose (AS,BS) is a gap in XS, for some S < µ. Then AS # 0 



and BS # ~. For all a < S, choose ua E Xa arbitrarily. Next, define 

and put 

A' = {x x 
a 

A= {x = (x ) E X I 3a E A' a a<µ x ~a}. 

Then, ·clearly, (A,X\A) defines a gap in X. Contradiction. 
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-==Since, for every a<µ, Xa has no gaps, the conditions (i), (ii), 
(iii) and (v) (of both I and II) of theorem 4.1.1 are satisfied. Further, 
condition (iv) only plays a role in the proof of 4.1.1 by warranting that 
the lexicographic product has no jumps; however this does not apply in the 
present theorem. Thus, if we assume that (A,B) is an ordered pair of non­
empty subsets of X, such that X = A u B and a < b for all a E A and b E B 
then, argueing in a similar way as was done in the proof of 4.1.1, we may 
conclude that (A,B) is not a gap in X. D 

REMARK. Novak:. already obtained a result which combines 4.1.1 and 4.2.1. 
He showed [No.1]: Any lexicographically ordered product of compact and 
connected LOTS's is again a compact, connected LOTS. 

Recall that.a LOTS X is paracompact if and only if for each gap (A,B) in X, 
there exist discrete (in X) subsets L c A and R c B, such that L is cofinal 
in A and R is coinitial in B (2.4, f, lemma). 

THEOREM 4.2.2. If, foP each a < µ, X is a paPacompact LOTS, then also a 
X = IL__ X is a paPacompact LOTS. a<µ a 

PROOF. Let (A,B) be a gap in X. We assume that both A and B are non-empty. 
(The other cases can be treated similarly). Now, put 

3a E A 
and put 

a = x } 0 0 

Then x0 = A0 u B0 , A0 # ~. B0 # ~ and a0 ~0 b0 for all a0 E A0 and b0 E B0 , 
while JA0 n B0 J ~ 1. 

1. Suppose A0 n B0 =~.We distinguish three cases: 
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(i) Let (A0 ,B0 ) be a gap in x0 . Then there are discrete (in x0 ) subsets 
L c A and R c B such that L is cofinal in A and R0 is coinitial 0 0 0 0 0 0 
· B F h > O hoos u € X arbitrarily. Next, define in 0 • or eac a , c e a a 

L {x ( x ) € x I x0 € L0 , x a a<µ a 

and 

R = {x = ( x ) e x I x0 € R0 , x a a<µ a 

.., ,, 
I I 

I I 
I 

lL__ x L L O<a<µ a 
~ ---+-

(ua)O<a<µ T 
I ' I 

I 
I 

' '· _: ' I ' ' ' ' ' I 

,•e >'E * ) E )IE >'E * ) - --+ 

LO LO 

L 

-+ 

u if a > O} 
a 

u 
a 

if a > O}. 

I 'I' 
A B 

_., 

R 

'­
""" 

R 

T 
I I 

' I 
I ' * >'E 

Then L and R are discrete subsets of X; moreover, L(c A) is cofinal 
in A and R(c B) is coinitial in B. 

(ii) Let A0 n B0 = {s0} (s0 € x0 ) [or, similarly, A0 n B0 = {s0}J. 
Since (A,B) is a gap in X, it follows that 01l.-=-. X does not have a <a<µ a 
right endpoint and hence there is a first ordinal 6 > 0 such that x6 
do.es not have a right endpoint. Let L6 c x6 be a discrete and cofinal 

subset in x6 • Further, let R0 be a (transfinite) decreasing sequence 
in B0 which is coinitial in B0 . Of course, R(i need not be discrete in 
X0 • Now, for each a> O, choose u € X arbitrarily. And, furthermore, a a 
let r a denote the right endpoint of Xa for each a with o < a < 6. 
Then, define 

L = {x 

and 

(x ) € X I x0 a a<µ = r if 0 < a < 6; a 



71 

R = {x = (x) < EX I x0 E R01 ; x = u if a> o}. a a µ a a 

Clearly, L(c A) is discrete in X and cofinal in A. But also R is 

discrete in X, since OIL____< X has no right endpoint. Moreover, since <a µ a 
B0 does not have a le~ endpoint in x0 , R is coinitial in B. 

(iii) Let (A0 ,B0 ) be a jump in x0• Let s 0 denote the right endpoint of A0 
and t 0 the le~ endpoint of B0 . Since (A,B) is a gap, ~ Xa 

neither has a first nor a last element and hence there exists a 

first ordinal a < µ such that Xa does not have a right endpoint, and, 

also, there is a first ordinal y < µ such that X does not have a y 
left endpoint. Let La be a discrete and cofinal subset in Xa; and 

let R be a discrete and coinitial subset in X . Furthermore, choose y y 
ua E Xa' for a> min(a,y). Next, for 0 <a< a, let ra be the right 

endpoint of X · and, for 0 <a< y, let iN be the le~ endpoint of a' ~ 
Xa. Now, define 

L = {x (xa)a<µ E X I x = so; x = r if 0 < a < a; 0 a a 

xa E La; x u if a > a} a a 

and 

R = {x (x ) < E X I XO to; x i if 0 < a < Y; a a µ a a 

x E R . x u if a > y}. y y' a a 

Then L(c A) is discrete in X and cofinal in A, and R(c B) is discrete 

in X and coinitial in B. 

2. Suppose A0 n B0 f: ~. Then A0 n B0 {so}, for some s0 E x0 . 

Let 

{x1 E x1 I 3a E A 

and let 

Clearly, x1 
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( i) 

over, A1 :f 0 and B1 :f 0. Now, if A1 n B1 = 0 then case 1. applies. And, 

if A1 n B1 :f 0, then A1 n B1 = {s 1} for some s 1 E x1. In the latter 

case we proceed by transfinite induction, as follows: if, for a < S, 

sa E Xa' Aa and Ba c Xa are defined such that Aa n Ba= {sa}' then put 

and 

a 
a 

Since (A,B) is a gap in X, there exists a first ordinal y < µ, such that 

Ay n By = 0. This y certainly is a limit ordinal. We distinguish between 

two cases: 

Let A· = 0 [or, similarly, B = 0J. y y 
From (A,B) is a gap it follows that there is a first ordinal o ~ y, 

such that X0 has no le~ endpoint, Let.R0 c X0 be a discrete and 

coinitial subset of X0. Further, for each v < y, choose a point 

p(v) E A, such that p(v) = s if a < v. (We may assume that a a 
p(v 1 ) s p(v2 ) if v1 < v2 ). Next, for each a> o, choose ua E Xa ar-

bitrarily. Let ta' y s a < o, denote the le~ endpoint of Xa. Now, 

define 

L {p(v) E x I v < y} 

and 

R {x (x ) < € x I x a a µ a s if a < y · x = t if y s a < o; a ' a a 

x~ € R · x = u if a > o}. 
u o' a a 

Then L c A is discrete in X, because~ X has no left endpoint. y-a<µ a 
Moreover, since y is the first ordinal with Ay = 0, L is also cofinal 

in A. Obviously, R c B is discrete in X and coinitial in B. 

(ii) A :f 0 and B :f 0. 
y y 

Now, again case 1. applies. This completes the proof. D 
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REMARK. For the special case µ 

ly by Ostazewski [0.1]. 

2, the previous theorem was proved recent-

The converse assertion of the previous result cannot be stated, for if a 

lexicographic product X = ~ Xa is a paracompact (even completely 

metrizable) LOTS, then none of the factorspaces Xa (a < µ) need be para­

compact. 

EXAMPLE. Let X 

Then XwO = (w* 
1 

a completely metrizable LOTS. Indeed the complete 

metric 

p 

defined by p(x,y) = 0 if x = y, and p(x,y) =.!.if n-1 is the first ordinal 
n 

(x.) '< , y = (y.) '< e: lo), is compatible i < w0 for which x. f. y., (x = 
1 1 

with the order-topology. [p is 
1 1 wo 1 1 wo w 

called the Baire-metric on X 0J. Clearly, X 

is a non-paracompact LOTS. 

Hereditary paracompactness is not preserved, in general, by taking lexico­
w1 

graphic products. For instance, [0,1] is a compact, but not hereditarily 
w 

paracompact LOTS. (Observe that no point of [0,1] 1 has a countable local 

base (lemma 1 to 2.2.11) and apply 2.4.7), Also [0,1]w1+1 is a compact, but 

not hereditarily paracompact LOTS. For, [0,1]w1+1 contains a non-empty sub­

set of points without a countable local base. 

However, under some special condition on µ, a lexicographic product of 

hereditarily paracompact LOTS's is again hereditarily paracompact. To show 

this, we need a following lemma. 

For i = 1,2, let Y. c IL_ X = X be defined by 
1 a<µ a 

{x 

(so, x8 is not the left endpoint of x8), and 

Y2 = {x = (x ) e: X I Va < µ a a<µ 

38 > a 

(so, x8 is not the right endpoint of x8). It is easily verified, that for 

any limit numberµ, X = Y1 u Y2 and, moreover, that Y = Y1 n Y2 is a dense 
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subset of the LOTS X, (see also the proof of 2.2.12). 

LEMMA. Let X = l__< X be a LOTS. Let w0 be aofinaZ in µ. Then the subspaae 
(l µ (l 

Y1 c X is a Zeft-c1-spaae, and the subspaae Y2 c X is a right-c1-spaae. 

Henae, in partiauZar, Y c X is a c1-spaae. 

PROOF. We show that Y1 is a le~-c1-space. The other case follows similar­

ly. Choose x = (x) E Y1. Then x is neither a le~ endpoint nor a right a a<µ 
neighbourpoint of X. Let {B.}. be an increasing sequence of ordinals_ 

1 i<w0 
less thanµ, such that {B.}. is cofinal inµ. Now, for all i < w0 , we 

1 i<wo 
can find a point p(i) EX such that p(i) < x and p(i) = x if a< B .• But 

(l a; 1 

then, iim p(i) = x. Consequently, Y1 is a left-C1-space, (see 2.2). D 
i<wo 

WO 
REMARK. If X is a LOTS, then X is not necessarily a c1-space. Example: --x = w1 + 1, (in p = w1 ... w1 00 •.• there is no countable local base). 

THEOREM 4.2.3. Letµ< w1. If, for eaah a<µ, Xa is a hereditariZy para­

aompaat LOTS, then X ll__< X is a hereditariZy paraaompaat LOTS. 
(l µ (l 

PROOF. 

(i) Suppose ~ Xa is a finite lexicographic product of hereditarily pa­

racompact LOTS' s Xa. It suffices to consider the case µ = 2. By 4. 2. 2, 

X = x0 • x1 is a paracompact LOTS. So, by 2.4.7, we have to show fo~ 

each p EX, the existence of discrete (in X\{p}) subsets Land R in 

X\{p}, such that Lis a cofinal subset of {x E X I x < p} and R is a 

coinitial subset of {x EX I p < x}. Let p = (p0 ,p 1) EX= x0 • x1. 

If p1 is not an endpoint of x1, then we are ready, for x1 is a here­

ditarily paracompact LOTS, topologically contained in X as a convex 

subset. Further, if, for instance, p 1 is the le~ endpoint of x1, 

then take a discrete (in x0\{p0}) subset L0 in x0\{p0}, which, also, 

is a cofinal subset of {x0 E x0 I x0 <0 p0}. It follows that 

L 

is cofinal in {x EX I x < p}, while, moreover, Lis discrete in 

X\{p}. Since, clearly, R exists in ({p0} • x1) \ {p}, the proof is 

finished now. 

(ii) Supposeµ is a limit ordinal< w1. 
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(For the sake of convenience, we adopt the following abbreviations: for each 
limit number v ~ µ,we write X(v) = lL_ X and by Y1(v),Y (v) and Y(v) we de-a<v a 2 
note the corresponding (dense) subsets of the LOTS X(v), defined above. Oc-
casionally, we will denote the ordering on X(v) also by<). 

First, consider the caseµ = w0 . We distinguish between 

1. X(w 0 ) \ Y(w 0 ) = 0. Now, by 4.2.2, X(w 0 ) is a paracompact LOTS, and by 
the previous lemma, X(w 0 ) is a c1-space. But then, from corollary 2(i) 
to 2.4,7, it follows that X(w 0 ) is hereditarily paracompact. 

2. X(w 0 ) \ Y(w 0 ) # 0. Choose p E X(w 0). If p E Y(w 0 ) then, since Y(w 0 ) is 

dense in X(w0), it follows (see lemma) that there are discrete (in 
X(w 0 )\{p}) subsets (countable or finite) Land R in X(w 0 )\{p}, which are 
cofinal in {x E X(w0 ) I x < p}, or coinitial in {x E X(w0 ) I p < x}, 
respectively. Next, let p ~ Y(w0). Certainly p E Y1(w0 ) u Y2(w0). Suppose, 
for instance, that p E Y2(w0). Since Y2 (w0 ) is a right-c1-space (lemma) 
which is dense in X(w0), there clearly exists a discrete (in X(w0)\{p}) 
subset R c {x E X(w0 ) I p < x} which is coinitial in {x E X(w0 ) I p < x}. 
Now, let S < w0 be the first ordinal such that for each a > S, pa is the 
left endpoint of Xa. Since p ~ Y 1 (w0 ) such an ordinal S exists. XS is 
hereditarily paracompact, so we can find a discrete (in XS\{pS}) and co­

final subset LS of {xs E XS I xS <S ps}. Then, it follows that 

L = {x E X(wo) I x = p if a # s· x E L } 
a a ' S S 

is discrete (in X(w0 )\{p}) and cofinal in {x E X(w0 ) I x < p}. Thus, 
X(w0 ) is a hereditarily paracompact LOTS. 

Secondly, we proceed by transfinite induction. Assume that, for each 
limit ordinal v < µ, X(v) =II X is a hereditarily paracompact LOTS. Now, a<'V a 
if X(µ) \ Y(µ) = 0 then, sinceµ <w 1, it follows, similarly to 1., that X(µ) 
is hereditarily paracompact. Next, suppose that X(µ) \ Y(µ) # 0. Choose 
p E Y2(µ) \ Y1(µ). We will show the existence of a discrete (in X(µ)\{p}) 
and cofinal subset Lin {x E X(µ) I x < p}. (The other cases follow simi­
larly or are trivial, see 2.). Let S <µbe the first ordinal such that, 
for each a ~ S, p is the left endpoint of X . If S is a limit number, then, a 
by induction hypothesis, X(S) = ~ X a<µ a is hereditarily paracompact. Hence, 
there exists a discrete (in X(S)\{(p ) 0 }) and a a<µ 
{ ( x ) 0 E X( S) I ( x ) 0 < ( p ) 0 }. Now, put a a<µ a a<µ a a<µ 

cofinal subset L(S) in 



76 

L p if tl ;;:: 13}. 
0: 

Then L is a discrete (in X(µ)\{p}) and cofinal subset of {x E X(µ) I x < p}. 
Further, if 13 is a non-limit ordinal, then either 13 = n with n < w0 or 
13 = v+n, where n < w0 and v is the largest limit number less than 13. Hence 
x(13) = L_ X or X(13) = X(v) • II X • By induction hypothesis, X(v) O$a<n o: v$a<v+n a 
is a hereditarily paracompact LOTS. Moreover, by (i), the lexicographic 
product of finitely many hereditarily paracompact LOTS's is again heredi­
tarily paracompact. Consequently, in both cases, X(13) is a hereditarily 
Paracompact LOTS. But then, we can proceed in X(l3) • IL___ X , analogously l3$a<µ o: 
as we did before under the assumption that 13 is a limit number. This com-
pletes the proof. 0 

We end this section with a remark about the Lindelof property in lexico­
graphically ordered product spaces. Recall that a GO-space is a Lindelof 
space if and only if it is paracompact and all its discrete subsets are 
countable or finite (2.4.3), Now, the lexicographic product of even two 
Lindelof-LOTS's need not be a Lindelof space itself. For instance, 
]0,1[ • ]0,1[ clearly cannot be Lindelof. On the other hand, also the con­
verse assertion does not hold in general, for w0 • w1 is a Lindelof LOTS, 
but obviously w1 is not a Lindelof space. 

4.3. THE SECOND COUNTABILITY AXIOM, SEPARABILITY AND THE HEREDITARILY 
LINDELOF PROPERTY IN IL_. 

In this paragraph we summarize some theorems, which give characterizations 
for a lexicographic product to be second countable, separable, or heredi­
tarily Lindelof, respectively. Since the proofs are nearly trivial, after 
reading the following notes, we leave them to the reader. 

A lexicographically ordered product space l__ XN contains uncountably many a<µ ~ 
mutually disjoint convex open sets in each of the following cases: 
(1) µ > w0+1; (2) µ = w0+1 and lxw0 1 > 2; (3) µ = w0 and Jx13 1 > ~0 for some 
13 < µ; (4) O < µ < w0 , IXµ_ 11 > 2 and Jx13 J > ~O for some 13 < µ-1. 
Furthermore, it is well-known (see, for instance, Herrlich [He.1]) and easy 
to see that a separable LOTS with at most countably many neighbourpoints, 
has a countable base. 
Hence, also a separable GO-space with at most countably many jumps and 
pseudo-jumps has a countable base, (use 2.1.2 (ii)). 
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Now, IL_< X contains uncountably many neighbourpoints in each of the fol-
a. JJ a. 

lowing two cases: (1) µ = w0+1 and lxw01=2; (2) O < JJ < w0 , IXµ_ 11=2 

and 1x8 1 > ~0 for some$< JJ-1. 

Finally, in ll__< X , the subset of all 
a. JJ a. 

(i.e.: x8 = xy for sufficiently large 

set whenever µ is a limit number. 

points (x ) < with constant "tail" 
a. a. JJ 

$and y(< µ)) constitutes a dense 

THEOREM 4.3.1. The LOTS X = 11__< X has a countable base if and only if 
a. JJ a. 

µ s w0 and one of the following conditions is satisfied: 

(i) ifµ = w0 then lxa.I s ~0 for each a. < w0 • 

(ii) ifµ < w0 then the LOTS XJJ_ 1 has a countable base and IXa.I s ~0 
for each a.< µ-1. 

THEOREM 4.3.2. The LOTS X = IL__ X is separable if and only ifµ s w0+1 
a.<µ a. 

and one of the following conditions is satisfied: 

(i) if JJ = w0+1 then lxw0 1 = 2 and IXa.1 s ~0 for each a.< w0. 

(ii) if JJ = w0 then IXa.1 s ~0 for each a. < w0 

(iii) if JJ < w0 then ( IXµ_ 1 I = 2, Xµ_ 2 has a countable base and 

IXa.1 s ~0 for each a.< JJ-2) or (Xµ_ 1 is a separable LOTS and 

lxa.1 s ~0 for each a. < JJ-1). 

THEOREM 4.3.3. The LOTS X = ~ Xa. is hereditarily Lindelof if and only if 

µ s w0+1 and one of the following conditions is satisfied: 

(i) ifµ= wo+1 then IXwol =2and IXa.I s~oforeach a.< WO. 

(ii) ifµ= w0 then IXa.I s ~ 0 for each a.< w0. 

(iii) if JJ < w0 then ( Ix 1 I = 2, X 2 is hereditarily LindeWf and 
JJ- JJ-

possesses at most countably many neighbourrpoints, and IXa.I s ~O 

for each a. < µ-2) or (XJJ_1 is a hereditarily Lindelof LOTS and 

IXa.I s~ 0 for each a.< µ-1). 

COROLLARY. In any GO-space, containing a dense subspace of the form~ Xa. 

with µ ~ w0, the notions separable and hereditarily Lindelof are equivalent. 

We end with some examples. 

w WO 
EXAMPLE 1. JN O w0 = [0,1[ (cJR). 

w 
The LOTS w0 0 has a left endpoint but not awright one, is connected (4.1.1) 

and has a countable base (4.3.1). Hence, w0 0 is homeomorphic to [0,1[ (cJR). 
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WO * WO . 
EXAMPLE 2 . E = ( w +w ) = JR \ Q. 

* w 0 0 
The LOTS (w0+w0 ) 0 has no endpoints, does not possess neighbours (1.2.1), 

is totally disconnected (4.1.1 and the notes thereafter), has a countable 

base (4.3.1) and is topologically complete (the Baire-metric is a complete 
* WO * wo metric for (w0+w0 ) ). Hence, (w0+w0 ) is homeomorphic to the space of 

the irrationals, (see, for instance, Kuratowski [Ku. 1 J). 

(Ji, \ :N) 
WO 

* 
WO 

EXAMPLE 3. :N = WO . WO =JR. 
* w The LOTS w0 • w0 O has no endpoints, is connected (4.1.1) and has a count-

* WO 
able base (4.3.1). Hence, WO . WO is homeomorphic to JR. 

EXAMPLE 4. Let Cwbe a compact subset oflR, with 1 < ICI ~ ~0 . 

Then, the LOTS C 0 is compact (4.2.1), is totally disconnected (4.1.1 and 

the notes thereafter), does not contain isolated points and has a countable 
w ~ 

base (4.3.1). Hence CO is homeomorphic to the Cantor-space {0,1} . 

4.4. METRIZABILITY AND PERFECT NORMALITY IN ~ • 

We start by proving some lemmata, concerning cr-(cr-~-;cr-r-)discreteness of 

lexicographic products. 

LEMMA 1. Let X and Y be LOTS's. If Y does not have a Left or a right end­

point, then 

X • Y is a-(a-~-;a-r-)disarete..,. Y is a-(a-~-;a-r-)disarete. 

PROOF. 

==-Y is topologically contained in X • Y. Hence, the assertion follows 

from 2.2.2. 

~For each x E X, {x} • Y (= Y) is an open subset of X • Y. Moreover, 

x . y 
done. D 

U{{x} • Y I x E X}, which is a disjoint union. But then we are 

LEMMA 2. Let X and Y be LOTS's. If Y has both a Left and a right endpoint, 

then 

X • Y is a-(a-~-;a-r-)disarete ..,. X and Y are cr-(cr-~-;cr-r-) 

discrete. 
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PROOF. Let t denote the left endpoint of Y and let r denote the right end­

point of Y. Further, let 

f x • y-r x 

be defined by f((x,y)) = x, for each point (x,y) € X • Y. 

===- We assume X • Y to be cr-t-discrete. The other cases can be treated 

similarly. Since Y is topologically contained in X • Y, by 2.2.2, Y is cr-t­

discrete. Next, since X • Y is cr-t-discrete, we have: X • Y = n~ 1 An' where 

for each (x,y) € X • Y and each n €JN there exists a convex open neighbour­

hood 0( (x,y) ;n) of (x,y) in X • Y, such that 

0( (x,y) ;n) n (A \{ (x,y)}) n J+,(x,y)J 0. 
n 

"' Clearly, X = f[X • Y] 

Define 

n!:l.1 f[An]. Now, choose XO€ x and no E]N, 

Then U(x0 ;n0 ) is a convex open neighbourhood of x0 in X. 

r 

y 

Moreover, 

Hence, X is cr-t-discrete. 

I 
I 

O( (x0 ,r) ;n0 )i 
I 

x 

~ We assume that X and Y are cr-t-discrete. The other cases follow 
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00 

similarly. So, we have, X = n~ 1 An where for each x EX and each n EIN 

there exists a convex open neighbourhood O(x;n) of x in X, such that 

00 

O(x;n) n (A \{x}) n ]+,x] ~. 
n 

and Y = n~ 1 Bn' where for each y E Y and each n E JN there exists a convex 

open neighbourhood U(y;n) of y in Y such that 

U(y;n) n (B \{y}) n ]+,y] = ~. 
n 

Now, for each pair (i,j) of positive integers, put 

Then X 

First, 

C. . = U { {x} • B. I x E A.}. 
]. ,J J ]. 

- L:J y - . ·-1 c. .. ]. ,J- i,J 
suppose that y0 = 

Next, choose (x0 ,y0 ) E x • Y and (i0 ,j 0 ) E JN x JN. 

t, Define 

Then V((x0 ,t);(i0 ,j 0 )) is a convex open neighbourhood of (x0 ,t) in X • Y. 

(Here the fact is used that Y has two endpoints, which implies that f is 

continuous. However, this fact only plays a role when X has neighbour­

points) 

r 

y 

Furthermore, 



Secondly, if y = r, then 
0 

is a convex open neighbourhood of (x0,r) in X • Y, such that 

Finally, if y0 ~ £,r, then {x0} • (Y\{£,r}) is an open neighbourhood of 

(x0Jy0 ) in X • Y. So, 

is a convex open neighbourhood of (x0 ,y0 ) in X • Y, such that 

Thus, X • Y is cr-£-discrete. D 

LEMMA 3. Let X and Y be LOTS's. If Y ha.s a Zeft (right) endpoint, but no 

right (Zeft) one, and 

(i) if X possesses neighbourpoints, then 

81 

X • Y is a-disarete.,. X is a-£-(a-r-)disarete, Y is a-disarete 

and w0(w~) is aofinaZ (aoinitiaZ) in Y. 

(ii) if X does not possess neighbourpoints, then 

X • Y is a-disarete-. X is a-£-(a-r-)disarete and Y is 

a-disarete. 

PROOF. We only prove assertion (i); (ii) follows similarly. Further, we 

consider the case that Y only has a left endpoint £. Let 

f X • Y-+ X 

be defined by f((x,y)) x for each (x,y) E X • Y. (In general, f is not 
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continuous). 

====-Since Y is homeomorphic to {x} • Y, for any x EX, it follows from 

2.2.2 that Y is a-discret~ Now, let a E X be a point which has a right 

neighbour a+ in X. By 2.2.3, a a-discrete LOTS satisfies the first axiom 

of countability. Consequently, there exists a countable increasing sequence 

in {a} • Y, converging to (a+,i) EX• Y. But then w0 is cofinal in Y. 

Finally, we have to show that X is a-i-discrete. Since X Y is a-discrete, 
00 

X • Y = nMl An where for each (x,y) E X • Y and each n E JN there exists a 

convex open neighbourhood O((x,y);n) of (x,y) in X • Y, such that 

O((x,y);n) n (A \{(x,y)}) = ~. 
n 

Clearly, X = f[X • Y] = u f[A ]. Now, choose x0 E X and n0 E JN. n=1 n 
Define 

Then U(x0;n0 ) is a convex open neighbourhood of x0 in X. Moreover, 

Hence X is a-i-discrete. 

--====Since X is a-i-discrete, X = u1 A where for each x E X and each n= n 
n E :N there exists a convex open neighbourhood O(x;n) of x in X, such that 

O(x;n) n (A \{x}) n J+,x] ~. 
n 

Furthermore, since Y is a-discrete, Y = u1 B where for each y E Y and n= n 
each n E :N there exists a convex open neighbourhood U(y;n) of yin Y, such 

that 

U(y;n) n (B \{y}) ~. 
n 

(Moreover, we may assume that B c B 1, for all n). Next, since w0 is co-n n+ 
final in Y, there is a sequence {y.}~ 1 in Y, which is cofinal in Y. There-

1 1= 
fore, without loss of generality 



B n {y E Y I y < y} ~ n n (nEJN), 

Now, for each ( i ,j) € JN x E, put 

C .. = U{{x} B. I x EA.}. i,J J 1 

- \...:._) Then X • Y - .. 1 c ... Next, choose (x0 ,y0 ) E x · Y and (i0 ,j0 ) E JN x JN. 
i ,J= 1J 

First, suppose that y0 = t. There are two possibilities to distinguish: 
1. x0 does not have a left neighbour in X. Define 

V((x0 ,t);(i0 ,j 0 )) = 

(Int f- 1Co(x0 ;i0 )J n J+,(x0 ,t)J) u ({x0 } • U(t;j 0 )). 

Then V((x0 ,t);(i0 ,j 0 )) is a convex open neighbourhood of (x0 ,t) in 
X • Y (Observe, that f need not be continuous). Moreover, 

2. x0 has a le~ neighbour x~ in X. Define 

Then V((x0 ,t);(i0 ,j 0 )) is a convex open neighbourhood of (x0 ,t) in 
X • Y, and 

Secondly, suppose y0 ~ t. Now, {x0} • (Y\{t}) is an open neighbourhood 
of (x0 ,y0 ) in X • Y. Hence 

is an open convex neighbourhood of (x0 ,y0 ) in X • Y, such that 

83 
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Thus, X • Y is a-discrete. D 

LEMMA 4. Let X and Y be LOTS's. If Y has a left (right) endpoint, but no 

right (left) one, and 

(i) if X possesses neighboUl'points, then 

X • Y is a-i-(a-r-)disarete.,. X and Y are a-i-(a-r-)disarete 

and w0 (w~) is aofinat (aoini­

tiat) in Y. 

(ii) if X does not possess neighboUl'points, then 

X • Y is a-i-(a-r-)disarete.,. X and Y are a-i-(a-r-)disarete. 

PROOF. The proof can be based upon the same arguments as the proof of the 

preceding lemma. (In part ((i), .. ) of the proof it is now sufficient to 

notice that X • Y, being o-i-discrete, is a le~-CI-space; cf. 2.2.4). D 

LEMMA 5. Let X and Y be LOTS's. If Y has a Zeft (right) endpoint, but no 

right (left) one, then 

X • Y is a-r-(a-i-)disarete.,. Y is a-r-(a-i-)disarete. 

PROOF. Obvious. 0 

Up to now, we have given necessary and sufficient conditions under which 

~ Xa is o-(o-i-;o-r-)discrete. Hence, in principle, also conditions can 

be formulated under which IL_< X , O < n < w0 , is (precisely) o-(o-i-;o-r-) a n a 
discrete; the relevant results can be easily derived from the above 

lemmata and the fact that L< X = L_< 1 X • Xn_ 1 • a n a a n- a 

LEMMA 6. If µ is a Zimit ordinal, then L X is neither a-i-, nor o-r­a<µ a 
disarete, and henae not a-disarete. 

PROOF. See 2.2.11 and the remark therea~er. D 

Since each ordinal µ can be represented byµ = n or µ A+n, orµ A, 
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where n < w0 and A is a limit ordinal, we are able now to characterize a-, 
a-i-, and a-r-discreteness of a lexicographic product space~ Xa in terms 

of the factorspaces. 

THEOREM 4.4.1. Let X and Y be LOTS's. If Y does not have a left or a right 
endpoint, then 

X • Y is metrizable .- Y is metrizable. 

PROOF. Immediately clear, since Y is topologically contained in X • Y, and, 

on the other hand, X • Y = U{{x} • Y I x E X} is a disjoint union of open 
subsets of X • Y, each homeomorphic to Y. D 

THEOREM 4.4.2. Let X and Y be LOTS's. If Y has both a left and a right end­
point, then 

X • Y is metrizable .- X is a-disarete and Y is metrizable. 

PROOF. Let i denote the left endpoint of Y and let r denote the right end­

point of Y. Furthermore, let 

f X • Y-+ X 

be defined by f((x,y)) = x, for each (x,y) E X • Y. Since Y has two end­

points, f is a continuous surjection. 

===-As a subspace of X • Y, Y is metrizable. Next, since X • Y is me­

trizable, there exists a dense, a-discrete (in X • Y) subset D in X • Y 

such that N(X • Y) c D, (3.1). From D is dense in X • Y and N(X • Y) c D it 
00 

follows, that f[D] = X. Further, since D is a-discrete, D = n~ 1 Dn where 
for each (x,y) E X • Y and each n E JN there exists a convex open neigh­

bourhood O((x,y);n) of (x,y) in X • Y, such that 

Now, X 

O((x,y) ;n) n (D \{(x,y)}) r/J. 
n 

f[D] 
00 

n~ 1 f[Dn]. Choose x0 € X and n0 €JN. Define 
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Then U(x0 ;n0 ) is a convex open neighbourhood of x0 in X, while 

Hence X is a-discrete. 
00 

~Since X is a-discrete, X = n~l An where for each x E X and each n E :N 

there exists a convex open neighbourhood O(x;n) of x in X, such that 

O(x;n) n (A \{x}) = 0. 
n 

Next, since Y is metrizable, there is a dense subset Bin Y such that 
00 

N(Y) c B and B = n~l Bn' where for each y E Y and each n E JN there exists 

a convex open neighbourhood U(y;n) of yin Y, such that 

U(y;n) n (B \{y}) = 0. 
n 

Without loss of generality, we assume that t,r E B. Now, for each pair 

( i , j ) E JN x JN , put 

and let 

D ~ D. i ,j=1 i ,j. 

Clearly, D is a dense subset of X • Y. Also, N(X • Y) c D. So, by 3.1, the 

proof is complete once we have shown that Dis a-discrete (in X • Y). For 

that purpose, choose (x0 ,y0 ) E X • Y and (i0 ,j 0 ) E JN x JN. First, suppose 

that y0 = t (or, similarly, that y0 = r). Define 

V((x0 ,t);(i0 ,j 0 )) 

= (f- 1[o(x0 ;i0 )J n J~,(x0 ,t)J) u (({x0} • U(t;j 0 ))\{(x0 ,r)}). 

Then V((x0 ,t);(i0 ,j 0 )) is a convex open neighbourhood of (x0 ,t) in X. Y. 

Moreover 
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Secondly, suppose that y0 # t,r. Then 

is a convex open neighbourhood of (x0 ,y0 ) in X • Y, and 

Hence, Dis a-discrete (in X • Y). D 

THEOREM 4.4,3, Let X and Y be LOTS's. If Y has a left (right) endpoint, but 

no right (left) one, and 

(i) if X possesses neighbourpoints, then 

X • Y is metrizable _. X is a-t-(a-r-)discrete, Y is metrizable 

and w0(w;) is cofinal (coinitial) in Y. 

(ii) .if X does not possess neighbourpoints, then 

X • Y is metrizable.,. X is a-t-(a-r-)discrete and Y is 

metrizable. 

PROOF. We only prove assertion (i); (ii) follows similarly. Moreover, we 

restrict ourselves to the case that Y only has a left endpoint t. Let 

f X • Y-+ X 

be defined by f((x,y)) 

continuous. 

x, for each (x,y) E X • Y. In general, f is not 

===*Since Y is topologically contained in X • Y, Y is metrizable. Now, 

let a EX be a point which has a right neighbour a+ in X. Since X • Y is a 

c1-space, there is a countable sequence in {a} • Y converging to (a+,t) in 

X • Y. Hence w0 is cofinal in Y. Finally, we show that X is cr-t-discrete. 

X • Y is metrizable, so there exists a dense subset D in X • Y such that 

N(X • Y) c D and D = u1 D , where for each (x,y) € X • Y and each n ElN, 
n= n 

there exists a convex open neighbourhood O((x,y);n) of (x,y) in X • Y, 

such that 

O((x,y);n) n (D \{(x,y)}) 
n 

(see 3. 1 ) • 
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From D is dense in X • Y it follows that f[nJ = X. (Observe that the con­

dition N(X • Y) c D is not required here, in contrast with the proof of 

the previous theorem). So, 

Define 

X = lJ f[D ]. 
n=1 n Now, choose x0 € X and n0 € Ji. 

Then U(x0 ;n0 ) is a convex open neighbourhood of x in X, while 

Hence X is a-i-discrete. 
"' - Since X is a-i-discrete, X = n~ 1 An where for each x € X and n € lN, 

there exists a convex open neighbourhood O(x;n) of x in X, such that 

O(x;n) n (A \{x}) n J+,xJ = 0. 
n 

Further, Y is metrizable. So, by 3.1, there is a dense subset Bin Y such 

that N(Y) c B and B = n~ 1 Bn, where for each y € Y and each n € lN there 

exists a convex open neighbourhood U(y;n) of y in Y such that 

U(y;n) n (B \{y}) = 0. 
n 

Moreover, we may assume ;hat Bn c Bn+1,for all n. Since w0 i~ cofinal in Y, 

there is a sequence {y.}. 1 in Y which is cofinal in Y. Without loss of 
]. i= 

generality, 

B n {y € Y I y < y} 
n n 

Now, for each pair ( i ,j) €JN x lN, put 

and, let 

D .. = U{{x} • B I x €A.} 
l.J j l. 

D = L:J D •• 
i,j=1 J.,J 

(n€lN). 
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Clearly, Dis a dense subset of X • Y. And, also N(X • Y) c D. So, by 3.1, 

the proof is complete once we have shown that Dis a-discrete (in X • Y). 

For that purpose, choose (x0 ,y0 ) E X • Y and (i0 ,j 0 ) E JN x JN. First, sup­

pose y0 =i. We distinguish between two possibilities: 

1. x0 does not have a left neighbour in X. Define 

v((x0 ,i);(i0 ,j0 )) = 

(Int f- 1 Co(x0 ;~ 0 )J n J+,(x0 ,i)J) u ({x0} • U(i;j 0 )). 

Then V((x0 ,i);(i0 ,j 0 )) is a convex open neighbourhood of (x0 ,i) in 

X • Y, and 

2. x0 has a left neighbour x; in X. Define 

v((x0 ,i);(i0 ,j 0 )) = 

= {(x;,y) Ex· Y I y. < y} u ({x0} • u(i;j 0 )). 
Jo 

Then V((x0 ,i);(i0 ,j 0 )) is a convex open neighbourhood of (x0 ,i) in 

X • Y, while 

Secondly, suppose y0 F i. Then 

is a convex open neighbourhood of (x0 ,y0 ) in X • Y, while, moreover 

Thus, it follows that Dis a-discrete (in X • Y). D 

Clearly, thus far, we have obtained theorems characterizing the metriza­

bility of l__ Xci. in terms of the factorspaces, for the case µ < w0 . But ci.<µ 
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then, also for JJ = A. +n, where 0 < n < w0 and A. is a limit ordinal, a characte­
rization is given now. For, L X = L X • t~ A. X and so, as can be a<µ a a<A. a a< +n a 
easily checked, the theorems and lemmata developed up to now yield a cha-
racterization for the metrizabili ty of L< X in terms of the factors. a JJ a 
Therefore, the next theorems deal with the case that µ is a limit ordinal. 

cofinal with w0 , then it However, if JJ is a limit ordinal which is not 

follows from lemma 1 to 2. 2. 11 that L X a<µ a is not a c1-space and hence not 

case where JJ is cofinal with w0 . metrizable. So, it remains to consider the 

We start with JJ = w0 • 

THEOREM 4.4.4. FOP each a < WO' 

Zeft or a right endpoint. Then, 

Zet Xa be a ZinearZy ordered set without a 
the LOTS X = L__ X is metrizabZe. a<w0 a 

PROOF. [Of course, this theorem is well-known, because the so-called Baire­
metric on X induces a topology on X which coincides with the order-topology. 
However, we like to give another proof here, based on the theory developed 
in this treatise]. 

For each a< w0 , choose a point pa€ Xa. Next, for all S < w0 , define 

DS c X by 

D = {x s € x I x 
a 

p if S < a}. 
a 

Furthermore, put 

We show that D satisfies the following properties: 
1. Dis a dense subset of X. 

2. 

Indeed, let Js,t[ be any non-empty open interval in X. Since s < t, 

there is a first ordinal S < w0 such that sS <S tS. Further, since XS+ 1 
does not have a right endpoint, there exists a point u € XS+1 with 

y = (y ) € X be defined by y sN if a ~ S, a a<w0 a ~ 
SS+1 <S+1 u. Now, let 

YS+1 = u and ya = Pa if S+1 < a. Then, y € Js,t[ n D. 
N(X) c D. 

Obvious, since N(X) = 0. (see 1 • 2. 1 ) 

3. Dis a-discrete (in X). 

We prove that each DS (S < w0 ) is discrete (in X). Choose x EX and 
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B < w0 . If x E DB, then take u,v E XB+ 1 such that 

Next, choose y,z E X, such that ya = za = xa for a s B and Ya+l 
za+1 = v. Then x E ]y,z[ while, moreover, 

u and 

]y,z[ n (DB\{x}) = 0. 

If x t/. DB, then for some y > B, x ,,. p • Take, u,v E xy+1 such that y y 
u <y+1 xy+1 < y+1 v. Next, choose y,z E X such that ya = za x if a a 
and Yy+1 = u and z y+1 = v. Then, X E ]y,z[ while, moreover 

]y,z[ n DB = 0. 

Summarizing, we conclude, by 3.1, that X is metrizable. D 

THEOREM 4.4.5. For eaoh a < w0, Zet Xa be a LOTS with a Zeft and a right 
endpoint. Then 

the LOTS X = L X is metrizabZe - X is a-discrete, for a<w0 a a 

PROOF. 

===-Choose B < w0 • Since ~ X L a w0 a 

aU a < w0 • 

= II< x • II< < X , it follows from ~ a ~ a 
LOTS. Furthermore, since, (for B > 0), 4.4.2 that <B X is a a-discrete IL__ a- a 

X =II .. X • XB' lemma 2 yields that X0 is a-discrete. aSB a a<;3 a µ 

s 

<===For each a < w0 , let ia be the left endpoint of Xa and let ra be the 

y 

right endpoint of 

xa E Xa and each n 

xa in Xa such that 

co a 
Xa. Every Xa is a-discrete, so Xa n~ 1 An where for each 

E JN, there exists a convex open neighbourhood U(xa;n) of 

U(x ;n) n (Aa\{x } ) = 0. 
a n a 

Now, for all B < w0 and all points (i0 , •.•.• ,iB) E lNB+l, we define subsets 

D~ . of II< X such that 
1 0 , ... ,iB ~ a 
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while, moreover, for each point (x0 , ••• ,xS) E ~ Xa and for each point 
(i0 , •.• ,iS) € nf+1 there is a convex open neighbourhood 

U((x0 , ... ,xS);(i0 , .. .,iS)) of (x0 , ... ,xS) in \ks Xa, such that 

U((x0 , ..• ,x0 );(i0 , ... ,i0 )) n (D~ . \{(x0 , ••• ,xo)}) 0 
µ µ 10' ... ,is µ 

(in other words: D~ . is discrete in the LOTS~ Xa). As follows: 
0 0 . 1Q•···•1S a 

Let D.= A.; 1 €Ji/, Next, suppose D. . is defined, for each a< S 1 1 · 10 , ..• ,1a 
(S > o), and each (i0 , ... ,ia) € JNa+1, such that all required properties do 

( • • ) "11TS+1 t hold. Now, for each 10 , ... ,16 E ~ , pu 

As. I ( ) s-1 } XO' ••• ,xo 1 € D. . 1S µ- 10'"''1S-1 

Then also D~ . fulfils the required conditions (compare, for in-10, •.. ,is 
stance, the proof of lemma 2). Finally, let 

{x 

and either (Va > S 

and put 

D 

x = t ) or (Va > S a a 

Then D satisfies the following properties: 

1. Dis a dense subset of X. 

Since (t ) < and (r ) < are non-isolated endpoints of X, it suffices a a w0 a a w0 
to show, that D intersects any non-empty open interval of the form Js,t[ 
in X. Now, let S < w0 be the first ordinal such that sS <S tS. First, 
suppose JsS,tS[ ~ 0. Take xS € JsS,tS[. Then 

L_ 
S<a<w 

0 

s · ( ) DS ( . . ) S+ 1 . 1nce so····•so_,,xo €. • ,for some 10, ... ,10 €JN ,1tfol-
µ µ 10, ... ,1s µ 

lows now that 



Hence D n Js,t[ ~ 0. Secondly, suppose Js 8,t8[ = 0. Because Js,t[ ~ 0, 
we may assume that, for some y > 6, s ~ r • (Otherwise, t ~ i for y y y y 
some y > 8). But, then 

{(s0 , ••• ,s 1,r )} • ~y< < X c Js,t[. 
y- y a w0 a 
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. ( ) lNy+1 ( ) y Since, further, for some i 0 , ••• ,iy E , s0 , ••• ,sy_1,ry ED. . , 
io' ••• ,i:y 

it follows that 

Consequently, D n Js,t[ ~ 0. 
2. N(X) c D. 

Immediately clear from 1.2.1 and the definition of D. 

3, Dis a-discrete (in X). 

We prove that each set D. . is discrete (in X). Choose 
io' ••• ,ia 

X = (xa)a<wo € X, 6 < w0 and (i0 , ..• ,i6) € :NS+1• Observe that 

D. . = D~ i· • {(iN).,<N«·• ' (rN).,<N«·• } 
1 0''"'1 8 1 0''"• a ""' "~o ""' "~o 

(r ) 
a 8<a<w0 

x 

x 

Now, if (i )0 < < f (x ) 0 < < ~ (r ) 0 <N< , then define y,z E X by a .., a w0 a .., a w0 a .., " w0 
y = z = x if a ~ 6, y = i if a > 6 and z = r if a > 6. Certainly, a a a a a a a 
x E Jy,z[. Moreover 



Next, if xa =ta for all a > 8 (or, similarly, if xa 

a> 8), then the set 

O(x;(i0 , ... ,i8 )) = 

ra for all 

= (U((x0 , •.• ,x0 );(i0 , ••. ,i 0 )) n J+,(x0 , .•. ,x0 )J) • L_ X ,., ,., ,., 8<a<:w0 a 

is a convex open neighbourhood of x in X, such that 

O(x;(i0 , .. .,i 0 )) n (D. . \{x}) 0. 
" 1 0•· · .,il3 

Finally, from 3.1, it follows now that X is metrizable. D 

THEOREM 4.4.6. For each a < w0, let Xa be a LOTS having a left (right) end­

point, but no right (left) one. Then 

the LOTS X = 11___< X is metrizable...,. X is a-t-(a-r-)disarete 
Cl lll Cl Cl 

for all0a < w0 , and w0(w;) is aofinal (aoinitial) in 

X (a > o) whenever X 1 possesses neighboUPpoints. 
a a-

PROOF. We assume that every Xa only has a left endpoint ta. The other case 

can be treated similarly. 

===-. Ch 13 < S · IL_ X L X L_ X it follows from oose wo. ince a<wo a = a~B a • 13<a<wo a' 
4.4.3 that~ X is a cr-t-discrete LOTS. Furthermore, since, (for 13 > O), 
L ~-" a 
a~l3 Xa = a<B Xa • x8 , lemma 4 yields that x8 is cr-t-discrete, while more-

over w is cofinal in x13 whenever~ Xa possesses neighbourpoints. How­

ever, ~ Xa has neighbours if and only if x8_1 possesses neighbourpoints. 

+===Every X is cr-t-discrete. So, X = ~ 1 Aa where for each x EX and a a n= n a a 
each n E:JN, there exists a convex open neighbourhood U(xa;n) of xa in Xa, 

such that 

U(x ;n) n (Aa\{ x}) n J+,x J 0. a n a a 
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Also, we may assume that A: c A:+1 ' for all n and a. Now, when Xa_ 1 , a> O, 
possesses neighbourpoints for some a< w0 , then w0 is cofinal in Xa. So, 
there is a sequence {aa(i)}:=1 in Xa which is cofinal in Xa. Hence, in this 
case, we may assume that 

Aa n {x E X I a (n) < x} ~. n a a a a a 

1 S . ( . . ) S+ 1 • al < w0 and all points i 0 , ••• ,is E IN we define subsets 

of 6 Xa, such that 

lL x 
a~S a 

( ) L . (. . ) s+1 while for each point x0 , ... ,xS E a~S Xa and each point i 0 , ... ,iS E JN 

there exists a convex open neighbourhood U((x0 , ... ,xS);(i0 , ... ,is)) of 

( x0 ,. •• ,xS) in ~ Xa, such that 

u((x0 ,. •• ,xs);(i0 ,. .. ,is)) n 

s 
n ( D . • \ { ( XO •••• 'xs ) } ) n ]+ • ( XO ' .•. ,xs ) J = ~ io,. •• ,is 

(in other words: D~ . is a cr-i-discrete subset of the LOTS~ Xa). 
olo·····lS a U-

As follows: Let D. = A9; i E JN. Next, suppose D. . is defined for i i +11 0 , ••• ,ia 
each a < S ( S > O) and each ( i 0 , ••• , ia) E lNa , such that all required 

. ( . . ) S+1 properties do hold. Then, for each i 0 , ••• ,iS E JN , put 

} s S-1 } U{{(x0 , ••• ,xs_1 ) • A1.S I (x0 , ••• ,xs_ 1 ) ED. . • 
1 0'· · · •1 s-1 

s Now, also D. . satisfies the required conditions (compare, for in-
10 ' ••. is 

stance, the proof of lemma 3). Finally, let 

D. . 
io' ••• ,1 s {x s (xa)a<w E X I (x0 , ••• ,xS) E D. . ; and 

· o 1 0' · · · •1 s 
x i for all a > S} a a 

and put 



Then D satisfies the following properties 

1. Dis a dense subset of X. 

Since (i ) < is a non-isolated le~ endpoint of X, it is sufficient to a a wo 
show, that D intersects any non-empty open interval Js,t[ in X. Let S be 

the first ordinal such that s 6 <6 t 6 . Take u E x6+1 with s 6+1 <6+1 u. 

Then 
II XN c Js, t[. f3+1<a<w ~ 

0 

F th f ( . · ) ~ JNS+2 , we have that ur ermore, or some 10 , ..• ,16+1 ~ 

S+1 (s0 , ••• ,s 0 ,u) ED. • 
" 1 0' ... ' 1 8+1 

Therefore, 

Hence, D n ]s,t[ # ~. 
2. N(X) c D. 

Obvious, since N(X) =~(see 1.2.1). 

3. D is a-discrete (in X). 

For each s.< WO and each (io·····is) 

discrete in X. Choose x = (xa)a<w E 
0 

f3+1 
E JN we show that D. . is 

10, ... ,1s 
X. Observe that 

s 
D. . • {(iN)D<N<•·• }. 10, ... ,16 ~µ~w0 

If (ia)S<a<wo # (xa)B<a<wo' then 

O(x;(io•···•is)) = {(xo, .•. ,xs)} • (~<a<w xa\ {(ia)S<a<w }) 
0 0 

1s a convex open neighbourhood of x in X, while 

O(x;(i0 , ... ,i 0 )) n D. . ~. 
" 10, .• .,1s 

Further, if xa ia for all a > S, then 
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o(x;(i0 •••• ,is)) = 

= Int [(U((x0 , .. .,xS); (i0 , ... ,iS)) n ]+,(x0 , .•• ,xS)]) 

is a convex open neighbourhood of x in X, such that 

O(x;(i0 , ... ,i0 )) n (D. . \{x}) r/J, 
µ io, ... ,is 

Summarizing, it follows from 3.1 that X is metrizable. D 

From the results obtained so far, one may easily derive theorems for the re­

maining case, not considered up to now, of a product X = L X , where w0 is a<µ a 
cofinal in µ, and, for the sake of completeness, where no special require-

ments are presupposed with respect to the (occurrence of) endpoints of the 

Xa's. For, suppose, firstly, that there 

quence {S.}. inµ, such that none of 
II i i<wo 

exists a cofinal increasing se­

Y0 = ~ X and 
• Ct-µ1 et • 

Yi =s < <s X (i > o) has a left or 
i Cl- i+1 et 

a right endpoint. Then, by 4.4.4 

~µ xa = ~ Y. 
i 0 i 

is a metrizable LOTS. Secondly, suppose there exists an ordinal S < µ such 

that X has a left and a right endpoint 
et 

for each a 2!: s. Let S be the smal-

lest ordinal with this property. Now, 

x L x L x . L_ x a<µ et a< s et s:;;a<µ et 

Hence, a necessary and sufficient condition, in order that X be metrizable, 

is, by 4.4.2, that L<a X is a-discrete and~< X is metrizable. So, in 
et µ et µ-Cl µ et 

that case, by lemma 6, S is a non-limit ordinal and, moreover, by 4.4.2 

applied to~ Xa' µ S+w0 • Now, it is easy to derive from the above 

lemmata and theorems conditions on the factorspaces Xa' which are necessary 

and sufficient for the metrizability of X. Thirdly, suppose (for instance) 

that there exists a (smallest) ordinal S < µ such that, for each et 2!: S, Xa 

has a left endpoint, while, moreover, there is a cofinal 

ce {S.}.< , starting from S (= S0), inµ such that Y. 
i i WO i 

(i < w0), does not have a right endpoint. Now 

x = L XN = [L__ XN a<µ ~ a<S ~ 
L • Y •• i<w0 i 

increasing sequen-
11 
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We argue as follows. In order that X be metrizable it is necessary and 

sufficient, by 4. 4. 3, that [l,, X is a -R.-discrete and !l-- Y. is metrizable 
a<µ [____ i<w 0 i 

and, moreover, w0 is cofinal in . Y. whenever~ X has neighbours. 
i<wo i a<., a 

Hence, in that case by 4.4.6, each factor Yi (i < w0 ) is a-R.-discrete and 

(in case i > 0) cofinal with w0 whenever Y. 1 has neighbours. Further, 
. II i-

1emmata 2, 4 and 6, applied to Y. = S·< <S· 
1 i-a i+1 

$a < f3i+ 1} is finite. Then, ordinals {a I f3. 
1 

Xa, yield that the set of 

from the lemmata 2 and 4 we 

conclude that, for each a ~ S, Xa is a-R.-discrete. Etc. 

Thus, in principle, for all types of lexicographic product spaces 

X = ll___ X , we are able to formulate necessary and sufficient conditions 
a<µ a 

for the metrizability of X in terms of the factorspaces. 

Finally, we examine the notion perfect normality in a LOTS ll___< X • We have 
a µ a 

shown that a GO-space is perfectly normal if and only if each relatively 

discrete subset is also a-discrete (2.4.5). Therefore, in a perfectly 

normal LOTS of type 11__ X , it follows that the collection a<µ a 

{{ (x ) } • L_ X 
a a<v v$a<µ a x E X for a < v} , 

a a 

for all v < µ such that II XN consists of at least three points, has to 
~" 

be a a-discrete family in 11__ XN. Hence, in particular, in this case we 
a<µ " 

have 

if II X has both a le~ and a right endpoint, then u__ X is a ~ a a<v a 
a-discrete LOTS. 

if ll_____< X has a le~ (right) endpoint, but no right (left) one, then 
v-a<µ a 

IL_< X is a a-R.-(a-r-)discrete LOTS. · 
a v a 
Furthermore, a perfectly normal LOTS ll___ X is a c1-space. So, certainly µ a<µ a 
is cofinal with some ordinal$ w0 (see lemma 1 to 2.2.11). 

We now formulate the following theorems; (proofs are only sketched, since 

they are closely similar to those of the metrizability theorems). 

THEOREM 4.4.7. Let X and Y be LOTS's. 

(i) If IYI > 2, and 

1. if Y does not possess a left or a right endpoint, then 

X • Y is perfeatly nomal - Y is perfeatly nomal. 
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2. if Y possesses both a left and a right endpoint, then 

X • Y is perfectly no'l'l7lal - X is cr-discrete and Y is per­

fectly no'l'l7lal. 

3. if Y possesses a left (right) endpoint, but no right (left) 

one, then 

X • Y is perfectly no'l'l7lal - X is r;-~-(r;-r-)discrete, Y is 

perfectly no'l'l7lal and w0(w;) is 

cofinal (coinitial) in Y when­

ever X contains neighbour­

poin ts. 

(ii) If IYI = 2. Then 

PROOF. 

X • Y is perfectly no!'l7lal - X is perfectly no'l'l7lal and N(X) 

is cr-discrete (in X). 

(i) Let P be a relatively discrete subset in X • Y. If Y is perfectly 

normal, then, for each x € X, ({x} • Y) n P is cr-discrete in Y. Put 

P0 = {x € x I 3(p,q} € P x = p}. 

Now, if we assume 2.-==, then P0 is cr-discrete (in X). And, under as­

sumption of 3.<==, P0 is cr-~-(cr-r-)discrete in X. Furthermore, in the 

latter case, certainly P is cr-r-(cr-t-)discrete in X • Y. Etc. 

(compare 4.4.1, 4.4.2 and 4.4.3). 
(ii) ~. Suppose P is a relatively discrete subset of X. Let 

f x. y__.. x 

be defined by f((x,y}} = x for each point (x,y) € X • Y. Now, f is a 

quotient-map. So, f- 1[P] is relatively discrete in X • Y and hence 

also cr-discrete (in X • Y). But then, P is cr-discrete (in X). Next, 

if p,q € N(X) and p and q are neighbours in X, then Int f- 1[{p,q}] ~ 0. 
Consequently 

{f-1[{p,q}] I p,q € N(X) and p and q are neighbours} 

is a cr-discrete family in X • Y. Hence, N(X) is r;-discrete (in X). 
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-=====-. This assertion follows easily from 2.3, lemma 3. (Observe that 
X is (topologically) contained in (X • Y) /~,while ((X • Y) I~) \ X 

is a a-discrete set consisting of isolated points). D 

THEOREM 4.4.8. Let µ be a limit ordinal. Let X be a linearly ordered set, a. 
for all a. < µ. Then 

L X is a metrizable LOTS - L X is a perfeatly normal a.<µ a. a.<µ a. 
LOTS. 

PROOF. See 4.4.4, 4.4.5, 4.4.6, the observations made thereafter and 4.4.7.D 

We finish up with three examples. 

EXAMPLE 1. Let X be a discrete topological space. Then X is orderable (see, 
for instance, Herrlich [He.1]). Clearly, X is (o-)discrete. Now, the LOTS 
w 

X 0 has the following properties: 
1 WO • 4. 1 • 1 WO [ [ ( ) • X is connected -=- X ~ JN - X ~ 0, 1 c 1l 

(X ~n := X is order-isomorphic to:N; Xwo"" [0,1[ := Xwo is homeomorphic 
to [0,1[). 

2 Xwo . t 4. 2. 1 I I ..., wo ,..., { }Ho • is compac .,........ X < "o - X ,..., 0,1 =Cantor-space. 
3. xwO is metrizable _.At least one of the following conditions holds 

(i) X does not have endpoints (4.4.4) 

(ii) X has both a left and a right endpoint (4.4.5) 

(iii) X has a left endpoint and w0 is cofinal in X (4.4.6) 

(iv) X has a right endpoint and w~ is coinitial in X (4.4.6). 

* EXAMPLE 2. Consider the LOTS w0 + wa. + 1, (a.> 0). 
* Clearly, w0 + wa. + 1 is o-r-discrete, but not o-t-discrete. 

Also, for a. > O, w0* + w + 1 is not hereditarily paracompact. Now, for each a. w 
a.> O, the LOTS (w0* + w + 1) 0 satisfies the following properties: 

w a. 
1. (w; + wa. + 1) 0 is nowhere locally separable (4.3.2) 

2. (w~ + wa. + 1)wo is totally disconnected (4.1.1 and the notes thereafter) 
w 

3. (w~ + wa. + 1) 0 is metrizable (4.4.6). 

EXAMPLE 3. 

(1) Let X be the ordered union of w~ • (Q n [0,1[) and w1 + 1. Then X has 
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a right endpoint but no le~ one, X is cr-r-discrete but not coinitial 

with w~, and, finally, X possesses neighbourpoints. Hence, by 4.4.6, 
xwO is not metrizable. 

* ( Q n [ 0, 1[) and Let Y be the ordered union of w1 . 
( ( w1 + 1 ) • ( Q n [O, 1[)) \ ( {w1} (Q n Jo, 1[) ) . Then X is a subspace 

of Y and Y \ X is a cr-discrete LOTS. Now all properties of x, mentioned 

under (1), do hold in Y, except for the last one: i.e. Y does not have 

~eighbourpoints. Hence, by 4.4.6, y°b is metrizable. 
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CHAPTER V 

METRIZABILITY OF GO-SPACES WHICH CAN BE MAPPED ONTO METRIC SPACES 

Let X = (X,<,T) be a GO-space. 

Let M = (M,d) be a metric space. By S(r;s), r € M, s > O, we will denote a 
spherical neighbourhood of r; i.e. 

S(r;s) = {t € M I d(r,t) < s}. 

Let 

f x~M 

be a continuous mapping from X onto M. 

For every t € M, the subset f- 1[{t}J of X can be decomposed into a disjoint 
family of convexity-components. Clearly, each convexity-component of 
f- 1[{t}J is a closed subset of X. We denote by C(t) the collection of all 
convexity-components in f- 1[{t}J. Obviously 

X = U{C I C € C(t); t € M}. 

Furthermore, we will say that c(c X) is a aonvexity-aomponent under f, 
whenever C € C(t) for some t € M. Moreover, by C we shall denote the x 
(uniquely determined) convexity-component under f containing x € X; C will x 
be called the aonvexity-aomponent of x under f. Observe that C € C(f(x)). x 

The family 

F = {c I c € C(t); t € M} 

of all convexity-components under f, defines a partition of X. Let X I F 
denote the quotientspace obtained from X by identifying each convexity-com­
ponent C € F to a point; let 

lP x~ x IF 



be the co:responding quotientmap. Then, clearly, X I F is ordered in a 

natural manner, and the quotient topology on X I F is a GO-topology with 

respect to that ordering. [If V is any decomposition of a GO-space into 

closed convex subsets, then it is clear that the corresponding quotient 

space is itself a GO-space]. Thus, X / Fis a GO-space. 

We define the following subsets of X = (X,<,T) 

and 

E(X;f) = E((X,<,T);f) = {p E E(X) I [p,+[ ET and Vn E JN 

3x E X : (x < p and f[[x,p]] c S(f(p) )J )} U 
n 

U{p E E(X) I ]+,p] i;: T and Vn E JN : 3x E X 

: (p < x and f[[p,x]J c S(f(p);l))} 
n 

N(X;f) = N( (X,< ,T) ;f) = {p € N(X) I f(p) = f(q), 

where q is the neighbour of pin x}. 

REMARK. Observe that 

N ( X; f) = N ( ( X, < , T) ; f) = { p E N ( X) I [ p, +[ E T and Vn E JN 

3x EX : (x < p and f[[x,p]] c S(f(p);l))} U 
n 

U{p E N(X) I ]+,p] E T and Vn E JN : 3x E X : 

1 : (p < x and f[[p,x]] c S(f(p);-))}. 
n 

It is immediately clear that 

N(X;f) = E(X;f) n N(X). 
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5.1. GENERAL CHARACTERIZATIONS. 

THEOREM 5.1.1. Let X 

spaae. Let 

(X,<,T) be a GO-spaae. Let M = (M,d) be a metrix 

f X-->- M 

be a aontinuous mapping from X onto M suah that eaah aonvexity-aomponent 

under f is a finite subset of X. 

Then the following properties are equivalent 

1) X is metrizahle. 

2) E(X;f) is a-disarete (in X). 

If T = A(<) and, moreover, eaah aonvexity-aomponent under f aonsists of at 

most two points, then these properties are also equivalent to 

3) N(X;f) is a-disarete (in X). 

PROOF. Since N(X;f) c E(X;f) c E(X), it follows from 3.1 that 1==- 2 and 

1===-* 3 (under the prescribed conditions). To show that 2=- 1 we proceed as 

follows: 

I. Assume that every convexity-component under f consists of precisely one 

point. Since f is a continuous map there exists, for each x E X and 

each n Ell", a convex open neighbourhood I(x;n)(E T) of x such that 

We put 

1 f[I(x;n)J c S(f(x);-). 
n 

U = {I(x;n) I x E X} 
n 

(nEJl"). 

Then {Un}:=l is a sequence of open covers of X. Using the triangle in­

equality in (M,d) it follows that 

2 f[St(x;U )] c S(f(x);-). 
n n 

Thus, since each St(x;U ) is a convex subset of X and every convexity­
n 

component under f consists of precisely one point, 
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St(x;U ) = {x} 
n 

for each x E X. So {St(x;Un)}:=1 is a local pseudo-base at x. Further-
more, when 

L {x E X I {st(x;Un)}:=1 is a local base at x} 

then X \ L c E(X;f). [If pi E(X) then clearly all convex sets 

St(p;Un)' n E JN, form a local base at p; hence p EL. Let 
p E E(X) \ E(X;f). If [p,+[ ET, then there exists an integer n E JN 
such that for each x < p there is a point y E X satisfying x ~ y < p 
and f(y) i S(f(p) ;l). It follows that p is the left endpoint of the n 
convex set St(p;U2n). If J+,p] ET, then similarly p is the right end-
point of the convex set St(p;U2n). Hence, in both cases, p EL]. There­
fore, if E(X;f) is a-discrete (in X), then also X \Lis a-discrete 
(in X). Now 3.2 yields that X is metrizable. 

II. Next, consider the general case in which every convexity-component 
under f is a finite subset of X. The continuous mapping 

foJP- 1 :x/F-+M 

-1 from X I F onto M is such that every convexity-component under f 0 JP 
consists of a single point. SinceJP is a finite-to-one continuous map­
ping and sinceJP- 1[{u}J is a convex subset of X, for each u EX IF, 

JP- 1 [E(X I F;f 0 JP-1) J c E(X;f). 

00 
Now, E(X;f') is a-discrete (in X). So, E(X;f) = n~ 1 An where each An is 
a discrete subset of X. Without loss of generality we may assume that 

JP-1[{u}J is contained in A , for u E JP[E(X;f)J, whenever n 
JP-1[{u}] n A # ~. [Otherwise, let A be the union of A and all n n n 
JP- 1[{u}] which intersect A]. SinceJP is a quotient map, eachJP[A J is n n 
discrete (in X / F). Hence,JP[E(X;f)] is a-discrete (in X / F). 
Consequently also E(X I F;f 0 JP-1) is a-discrete (in X IF). Thus, by 

I, we conclude that X IF is a metrizable GO-space. Therefore, by 3.1, 
X / F contains a dense a-discrete subset D with E(X / F) c D. SinceJP 
is a finite-to-one and continuous mapping, the set JP-1[D] is a-discrete 
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(in X). Hence, since also E(X;f) is a-discrete (in X), 

E(X;f) u JP-1[D] 

is a-discrete (in X). Furthermore, 

E(X) c E(X;f) u JJ:'- 1[D] 

because x E E(X;f) whenever IC I > 1; and P(x) E E(X IF) c D whenever 
x 

x E E(X) and le I= 1. (C denotes the convexity-component of x under f). 
x x 

Finally, it is easily verified that E(X;f) uJP- 1[D] is a dense subset of X. 

Hence, by 3.1, X is metrizable. 

The proof of 3_..... 1, under the prescribed conditions, can be given ana­

logously. (The assumption that every convexity-component under f consists 

of at most two points is needed to show that N(X;f) u JP- 1[D] is a dense 

subset of X). D 

REMARK. For the non-metrizable LOTS X 

M = [0,1] and the continuous map 

f x~ M 

[0,1] • {-1,0,1}, the metric space 

defined by f((x,y)) = x, (x E [0,1], y E {-1,0,1}), it follows that, for 

every (x,y) E X, the convexity-component C( ) of (x,y) under f consists 
x,y 

of precisely three points. Hence, in 5.1.1, the condition: "each convexity-

component under f consists of at most two points", cannot be omitted. Ob­

serve that N(X;f) = ~ in this example. 

In the sequel, let 

F0 {C E F I Int c ~ ~}. 

Next, for each C E F0 , pick one point x(C) E Int C. 

We define 

Y = {x(C) I c E F0} u (X \ u {Int c I c E F0}). 

Note that each convexity-component (in X) under f contains at least one and 
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at most three points of Y. 

LEMMA. Let X (X,<,T) be a GO-space. Let M (M,d) be a metric space. Let 

f x-M 

be a continuous mapping from X onto M such that each convexity-corrrponent 

under f is metrizahle. Then 

Y = (Y,<Y,T I Y) is metrizahle==- X is metrizahle. 

PROOF. Since Y is metrizable, by 3.1, there exists a dense a-~iscrete (in 

Y) subset Din Y, such that E(Y) E((Y,<y,T I Y)) c D. Then Dis also 

a-discrete in X, for Y is a closed subset of X. Further, 

E((X,<,T)) n Y E(X) n Y c E(Y) = E((Y,<y,T I Y)). 

Since 

{x(C) I C E F 0} c E(Y) c D 

the collection F0 constitutes a a-discrete family in X. Now, every C E F0 , 

being a metric GO-space, contains a dense a-discrete (in C) subset D(C) 

such that E(C) = E((C,<C,T I C)) c D(C). As every C E Fis closed in X, 

each D(C) is also a-discrete in X. Consequently, 

u {n(c) I c "- F 0 } u n 

is a dense a-discrete (in X) subset of X. Finally, it is clear that 

E(X) c U {D(C) I C E F 0} u D. 

This completes the proof. D 

THEOREM 5.1.2. Let X 

space. Let 

f x-M 

(X,<,T) be a GO-space. Let M (M,d) be a metric 
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be a continuous mapping from X onto M such that every convexity-corrponent 
under f is metrizable. 
Then the following properties are equivalent 

1) X is metrizable. 
2) F1 = {C E F I Int C ~ 0 or C c E(X;f)} is a a-discrete family in X. 

If T =A(<), then these properties are also equivalent to 
3) F2 {C E F Int C ~ 0 or C c N(X;f)} is a a-discrete family in X. 
4) F3 {C E F !Cl > 1} is a a-discrete family in X. 

PROOF. First we note that Fi= F0 u (Fi\ F0 ) for i = 1,2, while 
F3 c Fo u (F3 \ Fo). 
1==='* 2. Since X is metrizable, also Y is metrizable. So, certainly 
E(Y) = E((Y,<y•' I Y)) is a-discrete in Y and hence also in X. Now, 
{x(C) I C E F0} c E(Y). Consequently F0 is a a-discrete family in X. 
Furthermore, 

u (F1 \ Fo) c E(X;f) n y c E(X) n y c E(Y). 

Moreover, each C E F1 \ F0 consists of at most two non-isolated points from 
X. Thus, since E(Y) is a-discrete, it follows that F1 \ F0 forms a a-dis­
crete family in X. But then F1 = F0 u (F 1 \ F0 ) constitutes a a-discrete 
family in X. 

2 ==- 1 • It suffices to show that Y is metrizable, (see lemma) • Now, 

f I y Y--+ M 

is a continuous mapping from Y onto M of which the convexity-components 
(in Y) are finite (in fact, consists of at most three points). [If 
p < q < r < s are four different points of Y, then p,q,r and s cannot be 
contained in the same convexity-component under fin X. Hence, there are 
three distinct convexity-components c1, c2 and c3 (in X) under f, such that 
C1 "<" C2 "<" C3 , p E C1, s E C3 and f[C2J ~ f(p), f(s). Since, however, 
c2 contains a point of Y0 it follows that p,q,r and s cannot be contained 
in the same convexity-component (in Y) under f I Y.] Becauseof5.1.1, it is 
sufficient to prove that E(Y;f I Y) is a-discrete (in Y). Take 
y E E(Y;f I Y). Then y EC for some C E F0 or y E E(X;f). Hence 
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E(Y;f I Y) c (u F1 ) n Y. 

From F1 is a a-discrete family in X and from the fact that each C n Y, 

C € F 1 , consists of at most three points, it follows now that E(Y;f I Y) is 

a-discrete in Y. 

To complete the proof, we observe that certainly 2 =-- 3 =====> 4. So, it 

remains to show that, in the case T =A(<), 

4 ==- 1 . First, observe that 

F3 {C E F I Int c # 0 and lei > 1} U 

U {C E F I Int C 0 and lcl 2}. 

X is a LOTS, so for each C E F with Int C # 0 and lcl = 1, the point x(C) 

has a left neighbour x- (in case x(C) is not a left endpoint of X) and a 

right neighbour x+ (in case x(C) is not a right endpoint of X). Certainly 
- + 

f(x ) # f(x(C)) # f(x ). Now, the convexity-components ex_ of x- and Cx+ of 

x+ under f (in X), each contain a point of Y. Hence x(C) .~ E(Y;f I Y). 

Consequently, when p E E(Y;f I Y) then either p E C for some C E F0 with 

IC I > 1 or p E N(X;f). (In the latter case IC I = 2). Hence 
p 

E(Y;f I Y) c (u F3) n Y. 

Thus, since F3 is a a-discrete family in X and each C n Y, C E F3, consists 

of at most three points, E(Y;f I Y) is a-discrete (in Y). By 5.1.1 and 

the preceding lemma this completes the proof. 0 

5.2. APPLICATIONS. 

The foregoing theorems of section 5.1 can be used in order to derive some 

generalizations from already well-known results. 

THEOREM 5.2.1. Let X 

spaae. Let 

f X--+M 

(X,<,T) be a GO-spaae. Let M (M,d) be a metria 

be a aontinuous, open and finite-to-one mapping from X onto M. 

Then X is metrizable. 

(This generalizes a result of Mancuso, [M.1]). 
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PROOF. For each k €JN, we put 

and 

Let 

(k €JN). 

Now, we read the following facts: 

(i) For every n € JN, 
n 

n . 
kg1 ~ is a closed subset of M. [Let r be a limit 

that f- 1[{r}J consists of at least n+1 point of kg1 ~· and suppose 
. . . { }n+1 . d" distinct points x 1,x2 , ..• ,xn+1• Let Oi i=1 be a collection of is-

joint open sets such that x. € o., for i = 1,2, .•• ,n+1. Then n+1 i i 
U = ig1 f[O.] is an open neighbourhood of r, which hence contains a 

. ft . 1 1 . "t point t € k~ 1 ~·However, for each i = ,2, .•• ,n+, there is a poin 
y. € 0. such that f(y.) = t. Contradiction]. i i i 
Consequently ~ i_s an_! cr:_set in M. Hence P n is an F 9:-set in X. 

(ii) For every k € :N, fk : Pk---+~ is an open map. [Clearly, for all Uc X: 

f[U n Pk] f[U] n ~]. 

(iii) For every k €JN, fk : Pk--+-~ is a closed map. [Let A be a closed 
subset of Pk and let t € ~be a limitpoint of fk[A]. Then t is the 
image of precisely k different points x1,x2 , •.. ,xk of Pk. If none of 
these is a limitpoint of A, then one can find disjoint open sets 0. 

i 
in Pk such that x. € 0. and 0. n A=~; i = 1,2, .•. ,k. But then k i i i 
ig1 fk [Oi] is an open neighbourhood oft in~ which does not inter-
sect fk[A]. Contradiction]. 

I. Fix k E 1'!. Then 

is a continuous, open, closed and k-to-1 map from the GO-space 

Pk (Pk,<Pk'T I Pk) onto the metric space ~· For all p € Pk, let Cp 
be the convexity-component of p under fk. We claim that 



A= {p E Pkl le I > 1} 
p 

is a-discrete (in Pk). For, consider the set fk[A] c ~· Choose, if 

possible, a point r E fk(A]. Let f~ 1 C{r}J = {ai,a2 , ... ,~}. Then 
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a. # a. if i # j. Now, there clearly exist disjoint convex open neigh-
i J 

bourhoods O(a.) of a., for i = 1,2, ..• ,k, in Pk such that O(a.) u O(a.), 
]. ]. ]. J 

i # j, is again a convex subset of Pk if an only if a. and a. are 
]. J 

neighbours in Pk. Hence, it follows that 

k 
n fk[O(ai)J n fk[AJ {r}. 

i=1 

[Indeed, lets E fk[A] with s # r. Let f~ 1 C{s}J = {b 1,b2 , ••• ,bk}. 

By definition of A, at least one bi must be the neighbour of another 

bj. Since the same holds true for {a1,a2 , ... ,~}it follows that at 

least one of the convex sets O(ai) does not meet {b1,b2 , ... ,bk}. Hence 

s t .~ 1 fk[O(a. )JJ. Now, .~ 1 fk[O(a. )J is an open subset of Q • Conse-
i= ]. i= ]. l( 

quently, fk[A] is a relatively discrete subset of ~· Since, however, 

~ has a a-discrete open base, the relatively discrete set fk[A] is al­

so a a-discrete subset of ~· Thus, since every Cp is a finite subset 

of Pk, it follows that A is a-discrete (in Pk). Furthermore, we claim: 

c = {p}} = \?l. 
p 

For, let Cp = {p} for some p E Pk and suppose, for instance, that 

[p,+[ n Pk E T I Pk while J+,p[ n Pk # \?l. Then there exists a point 

x E Pk such that x < p and 

Therefore, since fk is a closed map, 

Consequently, pt E(Pk;fk). 

Now, it follows that 
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is a-discrete (in Pk), whence, by 5.1.1, Pk is metrizable. 

II. Finally, for each k ell, let Dk be a dense a-discrete (in Pk) subset of 

Pk such that E(Pk) c Dk. By I and 3.1, Dk exists. From (i) it follows 

that Pk= ig1 Fki' where Fki is a closed subset of X. Further, 

X = kg1 Pk and E(X) n Pk c E(Pk). Hence, if we put 

then D is a dense, a-discrete (in X) subset of X and E(X) c D. Thus, 

by 3.1, X is metrizable. D 

One might wonder whether or not a GO-space is metrizable if it is the pre­

image of a metric space under an open, perfect and countable-to-one map­

ping. A negative answer to this question (even when the domain space is a 

LOTS) is .given below. The example constructed there, is due to Pol (see, 

Przymusinski[P.1]) and, from an earlier elate already, to Filippov [F.1]. 

EXAMPLE. Let C = C[0, 1] be the Cantorset in [0,1], which is obtained by 

deleting a sequence 

{Ja(n,i),b(n,i)[ I n = 0,1,2, ••• ; i = 1,2, .•• ,2n} 

of mutually disjoint open intervals (the middle thirds). The collection 

{]a(n,i),b(n,i)[ I i = 1,2, ••• ,2n} 

represents those open intervals of [0,1] which are deleted at the n-th 

step in the construction of C. 

In the sequel, for A,B c [0,1] we will denote A< B whenever a< b for all 

a e A and all be B. For each n = 0,1,2, ••• , and each i = 1,2, ••. ,2n, let 

C(n,i) c ]a(n,i),b(n,i)[ 

be a Cantorset constructed in a closed interval (of [0,1]), contained in 

]a(n,i),b(n,i)[. 
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C( 1•1) C(0,1) C(1,2) 

a(1,1) b(1,1) a(o,1) b(0,1) a(1,2) b(1,2) 

Next, put 

2n 
Y U U C(n,i) u C. 

n=O i=1 

Then Y is a compact LOTS (see 2.4.1 and 2.3.1). Now, the sequence 

{C(n,i) In 0,1,2, •.. ; i 

can be put into a one-to-one correspondence with a sequence 

{ D ( n, i ) I n = 0, 1 , 2, ... ; i = 1 , 2, ... , 2n} 

obtained as follows: 

Let D(0,1) =C. Then, C(0,1) devides D(0,1) into two parts, which we 

denote by D(1,1) and D(1,2), such that D(0,1) = D(1,1) u D(1,2) and 

D(1,1) < C(0,1) < D(1,2). Next, C(1,1) divides D(1 ,1) into two parts, de­

noted by D(2,1) and D(2,2), such that D(1,1) = D(2,1) u D(2,2) and 

D(2,1) < C(1,1) < D(2,2); further C(1,2) divides D(1,2) into two parts, 

denoted by D(2,3) and D(2,4), such that D(1,2) = D(2,3) u D(2,4) and 

D(2,3) < C(1,2) < D(2,4). And so on. Clearly each D(n,i) is again a Cantor­

set. 

D( 2, 1) 

C( 1, 1) 

1EJ1 

D( 1 , 1 ) 

D(2,2) 

For all n = 0,1,2, ..• and i = 1,2, ..• ,2n, let 

C(n,i)---+ D(n,i) 

C(1,2) 

I E:::J1 
D(2,3) D(2,4) 

D(1,2) 
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be an orderpreserving homeomorphism from C(n,i) onto D(n,i). Now, define 

g y-->-C 

by g(y) = y if y EC and g(y) = g( .)(y) if y E C(n,i). Then, it is easily n,i 
verified that g is perfect, open and countable-to-one mapping from Y onto 

C. Next, put 

2n 
p c \ u U {a(n,i),b(n,i)}. 

n=O i=1 

So, P is an uncountable subset of C, containing precisely all non-neigh­

bourpoints of C. Finally, define the set 

x { ( y ,k ) € Y • { o , 1 } I y f. P ==- k o}. 

In other words, X is obtained from Y by replacing each point in P by a 

pair of neighbours. Let X be supplied with the order-topology. Then X be­

comes a non-metrizable compact LOTS. (Observe that X is separable, while 

IN(X)I > ~0 ). Now, if 

f x- c 

is defined by f((y;k)) = g(y), then clearly also f is a perfect, open and 

countable-to-one mapping. 

Hence, we are done. 

During the rest of this paragraph we make use of the following notions. 

If Sand Tare topological spaces, then a map~ : s- T is said to be 

quasi-open, if Int ~[U] ~ ~ for every non-empty open set U in S. 

If X is a GO-space and T a topological space, then a map f : X - T is 

said to be aonvexity-zerodimensional, if each convexity-component under f 

consists of a single point. 

A linearly ordered set (X,<) is said to be order-dense, if (X,<) does not 

contain neighbourpoints. 



THEOREM 5,2.2. Let X = (X,<,T) be a GO-spaae. Let M = (M,d) be a metria 

spaae. Let 

f X--+- M 
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be a aontinuous mapping from X onto M suah that at "least one of the fo"l"low­

ing properties is satisfied: 

then 

(i) f is quasi-open and, for eaah iso"lated point t € M, f- 1[{t}J is 

a metrizab"le subspaae of X, 

(ii) for eaah t € M, f- 1[{t}J is a nowhere dense subset of X, 

(iii) f is aonve:rity-zerodimensiona"l; 

X is metrizab"le..,. E(X;f) is a-disarete (in X). 

(This generalizes a result of Przymusinski [P.1]). 

PROOF. 

==-0> E(X;f) c E(X). (see 3.1). 

~ Suppose, property (i) holds true. Then every convexity-component C 

under f is a metrizable subspace of X. Indeed, if ICI > 2, then from f is 

quasi-open it follows that f[C] is an isolated point of X. Furthermore, 

isolated points of M are members of a a-discrete open base for M. There­

fore, the collection of all convexity-components under f with non-empty 

interiors constitutes a a-discrete family in X. (Observe that convexity­

components under f with non-empty interiors are both open and closed in X). 

Next, since E(X;f) is a-discrete (in X), also 

{C € F I Int C = ~ and C c E(X;f)} 

is a a-discrete family in X. Thus, by 5.1.2, X is metrizable. Finally, 

when one of the properties (ii) or (iii) holds, then each convexity-compo­

nent under f is a finite subset of X, (in fact consisting of at most two 

elements). Hence, the assertion is clear from 5.1.1. D 

COROLLARY 1. A LOTS is metrizab"le if it is the inverse ima{Je of a metria 

spaae under a aonve:rity-zerodimensiona"l mapping. 
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In pa:Ptiaularo3 a LOTS is met!'izab"le if it is the inverse image of a met!'ia 

spaae under a one-to-one mapping (Faber, Maurice and Wattel [FMW.1]). 

PROOF. Let X be a LOTS. Let M be a metric space. Let 

f X---+ M 

be a convexity-zerodimensional mapping from X onto M. Since X is a LOTS, 

each point of E(X) must be a neighbourpoint of X unless it is an endpoint 

of X. But then, since f is convexity-zerodimensional, it follows that 

E(X;f) = (ll. 0 

COROLLARY 2. An order-dense LOTS is met!'izab"le if it is the inverse image 

of a non-t!'ivia"l met!'ia spaae under a quasi-open mapping with aompaat 

aonvexity-aomponents. 

PROOF. Let X be an order-dense LOTS. Let M be a metric space with IMI > 1. 

Let 

f X--+M 

be a quasi-open map from X onto M such that, for each x € X, the convexity-

component Cx of x under f 

dense, either IC I = 1 or x 
some x € X. Then, since f 

is a compact subspace of X. Since X is order-

1 C I > 2 for all x € X. Now, suppose IC I > 2 for x x 
is quasi-open, C = Int C • As a compact subspace 

x x 
of X, 

IMI > 

Cx has to contain a le~ and a right endpoint. But then, since 

1, X cannot be order-dense at the same time. Hence, for every x € X, 

IC I = 1. Consequently f is convexity-zerodimensional. Thus, by the x 
previous corollary, X is metrizable. D 
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