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O. INTRODUCTION. 

This monograph concerns the probabilistic analysis of a variety of one­

product production-inventory models in which the central problem is to 

coordinate the production rate with the inventory level in order to cope 

with random fluctuations in demand. Here the main goal is to meet service 

level constraints corresponding to service measures such as the average 

number of stockouts per unit time and the long-run fraction of demand to 

be met directly from stock on hand, while keeping an appropriate balance 

between the average on-hand inventory and the frequency of changes in the 

production rate. Our analysis will be guided by the desire to obtain 

tractable results that are suited for use in practice. 

In achieving this goal, we rely heavily upon random walk theory and 

asymptotic methods from renewal theory as given in Feller [1971). 

The control of inventories is one of the major problems in today's 

industry. Since inventories tie up capital and require storage space one 

typically wishes to keep inventories low. On the other hand, because of 

the random nature of the demand process for the product, low inventories 

will increase the probability of stockout occurrences. Shortages will 

involve costs as well as loss of goodwill. In practical inventory 

applications a suitable compromise must be sought between the conflicting 

alternatives involved when controlling the production rate and inventory 

level. 

In choosing a control rule for replenishing inventories one often 

tries to minimize certain costs. The costs considered consist of costs of 

ordering and receiving supplies, costs of holding stocks, costs of 

manufacturing stocks and costs of running out of stock. The first three 

types of costs can often be specified. Unfortunately, in many practical 

situations it is hardly possible to specify the costs of running out of 

stock. How can the loss of goodwill be quantified? What costs should be 

associated with future losses and decrease in business because of customers 

being rejected now? In practice the stockout costs are often introduced 

indirectly by the use of some service level constraint. Then the 

corresponding service measure should reflect the manner in which the 

shortage costs are incurred. For instance, when the shortage costs are 

proportional to the demand not being met a proper service measure is the 

fraction of demand that is met directly from stock on hand. When fixed 

costs are incurred each time demand is not met directly from stock on hand 
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the average number of unsatisfied demands per unit time might be an 

appropriate service measure; cf. also Schneider [1981]. 

There exists an extensive literature on pure inventory models, see 

e.g. Hadley and Whitin [1963], and Peterson and Silver [1979]. In pure 

inventory models the main questions to be answered are "when to order" and 

"how much to order". The replenishment order is received instantaneously 

or after some lead time. It is important to point out that in pure inventory 

models the inventory replenishments occur in batches at discrete points in 

time, whereas in the production-inventory models dealt with in this 

monograph the inventory replenishments are occurring continually. The 

literature on the latter models is rather limited. The analysis of the 

production-inventory models with continuous production is usually more 

intricate than the analysis of pure inventory models. 

In the production-inventory models a control rule specifies the 

production rate at any point in time. A production rate larger than the 

average demand rate will cause a net increase of the on-hand inventory, 

and thus may induce high holding costs. A production rate smaller than the 

average demand rate will cause a net decrease of the on-hand inventory, and 

thus may induce high shortage costs. An easily implementable control rule 

achieving a suitable compromise between these two extremes is the so-called 

(m,M)-rule. Assuming that there are two possible production rates (slow 

and fast), an (m,M)-rule operates as follows. The production rate is 

switched from the high value to the low value as soon as the inventory 

level is at least M, and the production rate is switched back to the high 

value as soon as the inventory level is less than m. 

An important characteristic of the production-inventory control system 

is the way excess demand is handled. There are two extreme procedures. 

In the lost-sales case any demand in excess of current inventory is lost, 

whereas in the backlog case any demand is backordered until inventory 

becomes available by production. In practice a combination of these two 

extreme cases is sometimes used. It will be seen in this monograph that, as 

opposed to pure inventory models (cf. Tijms and Groenevelt [ 1984]), for 

production-inventory problems with continuous production the lost-sales 

model and the backlog model are essentially different models. 

A first attempt to analyse production-inventory models controlled by 

an (m,M)-rule was made by Gaver [1961], who considered the special model 

in which the demand process is a compound Poisson process with 
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exponentially distributed demand and the production is either on or off. 

For the particular (m,M)-rule with m=O, he derives explicit expressions for 

several measures of system performance including the long-run average costs. 

His analysis is based on results from queueing theory. The results of 

Gaver [1961] were extended considerably in Doshi et al [1978] who presented 

a renewal-theoretic analysis of Gaver's model for an arbitrary (m,M)-rule, 

generally distributed demand sizes, and two possible production rates 

where the slow production rate is not necessarily zero. However, the results 

obtained in Doshi et al [1978] are computationally tractable only for the 

special case of exponential demands. For this particular case similar 

results to those in Doshi et al were obtained by Graves and Keilson [1981] 

by using a quite different approach. Related results on perishable 

inventories can be found in Graves [1982], who actually deals with a lost­

sales production-inventory model controlled by an (m,M)-rule with m=M, 

where the demand distribution is either exponential or deterministic. In 

De Leve et al [1976] a Markov decision method is described for obtaining an 

average-cost optimal policy for a lost-sales production-inventory model with 

compound Poisson demand and several production rates. We also mention here 

the work of Gavish and Graves [1980] and of Tijms [1980], which deals with 

production-inventory models with a Poisson demand process, and where the 

items are produced one at a time rather than continuously, cf. also Sobel 

[1970] for a proof of the optimality of an (m,M)-rule for these models. 

In most of the references above the analysis concerns the minimization 

of the long-run average costs per unit time when assuming a cost structure 

consisting of fixed costs for switching from one production rate to 

another and linear holding and shortage costs. The objective of the long­

run average costs is also used in the studies of Bather [1966], Doshi 

[1978] and Vickson [1982], who assume that the demand process is described 

by a diffusion process rather than by a compound Poisson process. These 

studies deal not only with the computation of the average costs of a given 

(m,M)-rule, but also address the question whether an (m,M)-rule is 

average-cost optimal among all possible control rules. 

This monograph studies a variety of production-inventory models with 

a compound Poisson demand process and two possible production rates, and 

distinguishes from earlier studies by concentrating on service measures 

rather than on costs. For a wide class of production-inventory models 

it will be shown that for the case of generally distributed demand sizes 

tractable results may be obtained by using fundamental results from 
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random walk theory and asymptotic methods from renewal theory. The lack 
of memory of the Poisson process generating the demand epochs runs through 

the analysis like a continuous thread. 

Roughly sketched, our approach is as follows. Firstly, we derive 

tractable expressions for the service levels associated with the service 

measures under a given (m,M)-rule. Secondly, we determine the "order 

quantity" M-m by using holding and switching costs considerations only. 

Thirdly, we determine the switching level m by invoking the service level 

requirement. 

The sequential approach of separately determining the "order quantity" 

M-m and the "order-level" m is often followed in practice. For justification 

of this approach in pure inventory models, see e.g. Peterson and Silver 

[1979] and Tijms [1986]. These references show that the service level 

requirement (or the shortage costs) influence the order quantity only to 

a slight degree in most practical cases. Moreover, these references 

indicate that choosing the order quantity equal to the well-known economic 

lot size formula yields a policy that is only short of the optiilR.lm in costs. 

It is clear that a sequential approach of determining M-m and m dramatically 
reduces the computational effort. So far little attention has been paid to 

the validity of such an approach for production-inventory problems. We 

will show that the "economic production quantity" resulting from a 

deterministic equivalent of our model is in general a good choice for M-m 

with respect to the minimization of holding and switching costs. In 

addition we will obtain an improvement of this economic production quantity. 
It will be seen that this improved quantity leads to an approximately 

average-cost optimal rule, and is independent of the service level 

requirement provided the required service level is sufficiently high. 

Moreover, this quantity turns out to be the same for each of several 

commonly used service measures. If shortage costs can be specified, and 

these are linear in one of the service measures considered, then the same 

quantity is approximately optimal, especially when the shortage costs are 

large. 

The expressions derived for the service levels are in general 

approximations, since tractable exact results can only be obtained for 

special cases. Much effort is put into the validation of these 

approximations. An exhaustive numerical study is performed to indicate 

where and under what circumstances the various approximations are accurate, 

or to elucidate the difficulties to which one might be led by uncritical 



use of the approximations. Computer simulation is used to validate the 

approximations. The numerical study yields some rules of thumb for the 

application of the approximations, including some conclusions about 

applicability of asymptotic results from renewal theory, which conclusions 

are of general interest. We find that the approximations show an excellent 

performance for all cases of practical interest. Then we can use the 

approximations to do some sensitivity analysis of which results we report. 

The organization of this monograph is as follows. 

In chapter 1 we study the basic model in which excess demand is 

backlogged. We express the service levels under a given (m,M)-rule in 

terms of so-called basic functions for which approximations are derived. 
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Our main tools are asymptotic results from renewal theory, and results for 

ladder height distributions in a random walk where the underlying jump 

distribution has an exponential tail, cf. also appendix A. Numerical results 

are presented showing the accuracy of the approximations. We investigate the 

sensitivity of the switching level m to the underlying demand distribution 

when keeping the difference M-m fixed and assuming a given service level 

constraint. 

In chapter 2 we analyse the other "extreme" production-inventory model 

in which excess demand is lost. We derive exact relations between the basic 

functions associated with the lost-sales model, and those associated with 

the backlog model. Using these exact relations and the approximations given 

in chapter 1, we can obtain tractable expressions for the service levels in 

the lost-sales model. Again the accuracy of the approximations is tested. 

We also make some comments on the sensitivity of the switching level m to 

the arrival rate A when keeping the first and second moment of the demand 

per unit time fixed and assuming a given service level constraint. 

In chapter 3 we consider the model studied in Doshi et al [1978], in 

which excess demand can be backlogged up to a given amount, and demand 

in excess of this is lost. Or, equivalently, this model assumes that 

customers whose demands are backlogged are willing to wait only a fixed 

amount of time, and leave with the amount that has been produced on their 

behalf during this waiting time. Using the Markov property of the 

exponential interarrival times we derive exact relations between this 

model and the models discussed in the chapters 1 and 2. From these 

relations approximations can be derived for the operating characteristics 

of the system. 
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Chapter 4 deals with another instance of customer impatience. Customers 

arriving at the production facility wait until their demand is satisfied 

completely, unless the backlog at the time of arrival exceeds some fixed 

constant. In the latter case they leave immediately. Equivalently, this 

model assumes that customers whose demands cannot be met directly from 

stock on hand leave the system after a fixed amount of time if by that time 

the production facility has not yet started to produce on their behalf. 

Hence in this model demand is either completely satisfied or completely 

lost. For this model we arrive at tractable expressions for the service 

levels by deriving relations between the basic functions associated with 

this model and those associated with the models discussed in the chapters 

and 3. 

In chapter 5 we derive accurate and tractable approximations to the 

average costs per unit time under the cost structure consisting of linear 

holding costs and fixed switching costs. Using these results we calculate 

an approximately average-cost optimal (m,M)-rule within the class of 

(m,M)-rules satisfying a given service level constraint. Next, we 

numerically verify that the average costs of the (m,M)-rule with M-m equal 

to the economic production quantity are within 5% of the optimal average 

costs. The numerical results reveal that the optimal difference M-m 

becomes insensitive to the service level constraint when the required 

service level gets high. Using an asymptotic estimate of the average 

costs under a given (m,M)-rule we derive an approximate expression for 

the optimal difference M-m. This approximately optimal value of M-m, say 
'""* ~ , is independent of the service measure considered and, moreover, 

independent of the way excess demand is handled. Further, the average 
~* 

costs of the (m,M)-rule having M-m=~ and satisfying the service level 

constraint are within 1% of the optimal average costs. Thus our results 

show that the sequential determination of M-m and m leads to satisfactory 

results that are usually close to the optimal results. 

In the models considered in the chapters 1 to 4 it is assumed that 

the time to switch from one production rate to another is negligible. In 

chapter 6 we study the backlog and lost-sales models with intermittent 

production (i.e. the slow production rate is zero), where it takes a 

positive setup time to turn the production on. Using the approximations 

derived in the chapters 1 and 2 for the backlog and lost-sales model, and 

applying a two-moment approximation for the distribution of the demand in 

the setup time, we end up with tractable expressions for the service levels. 
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Expressions for the average holding and switching costs are given. Numerical 

results are presented to indicate the accuracy of the approximations, the 

sensitivity of the switching level m to the underlying demand size 

distribution, and the sensitivity of the approximately average-cost optimal 

(m,M)-rule to the setup time. 

The production-inventory models discussed in the chapters 1 to 6 assume 

an infinite storage capacity. Using results from chapter 7 an analogous 

discussion can be given for finite storage capacity production-inventory 

models. In chapter 7 we consider a different but related inventory control 

100del. A dam model is discussed in which the content is released at one out 

of two possible release rates. Inputs occur at epochs generated by a Poisson 

process. The input sizes have a general probability distribution function. 

Expressions are derived for service levels of service measures such as 

the fraction of input that is lost by overflows and the fraction of time 

that the dam is empty, as well as for the average content of the dam. Both 

the infinite and the finite capacity dam model are dealt with. The 

approximations are validated by computer simulation. 

In this 100nograph we restrict our attention to production-inventory 

models in which the inventory is controlled by an (m,M)-rule. A rule of 

this simple form is easy to implement in practical situations. A question 

that remains is whether such a simple rule is optimal among the class 

of all possible control rules. To our knowledge this problem is in its 

generality still open, although some results have been obtained in Doshi 

[ 19·7.8] and Vickson [ 1982). 

To conclude this introduction we hope that our analysis of the basic 

models for production-inventory problems with continuous production 

may provide helpful tools for further research on challenging problems 

such as production-inventory problems with perishable goods or with 

lllllltiple products. 
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1. ANALYSIS OF THE BASIC MODEL WITH BACKORDERING OF EXCESS DEMAND. 

In this chapter we will consider the single-product production­

inventory model where excess demand is backlogged. We develop the basic 

tools to attack the problem of finding computationally tractable results 

for this model and its extensions. These extensions are further analyzed 

in subsequent chapters. 

We focus on service measures. As we derive expressions for these 

service measures we make use of the fact that the inventory process under 

consideration is regenerative. Throughout this monograph we freely quote 

standard results from the theory of regenerative processes; see ~inlar 

[1971], Ross [1970] and Stidham [1972]. Also, to find computationally 

tractable results we will exploit asymptotic methods for random walks and 

renewal processes; see Feller [1971]. These methods are summarized in 

Appendix A. 

1.1. The model and preliminaries. 

The single-product production-inventory problem to be considered is 

characterized by a compound Poisson demand process and two possible 

production rates. The production is continually added to inventory. 

Customers arrive according to a Poisson process with rate A and their 

demands for the single product are independent random variables having a 

cornmon probability distribution function F with F(O)=O. Let the generic 

random variable D denote the size of a single demand, i.e. 

P{D~x} F(x), x ~ 0. 

The demands are independent of the arrival process. We assume that excess 

demand is backlogged. 

At any point in time items are continually added to the inventory 

atoneout of two possible rates TI 1 and TI 2 with TI 1<TI 2 . The rates TI 1 and TI 2 
must be interpreted as the differences of a low, respectively high 

production rate and a constant, possibly zero, demand rate. If this 

constant demand rate is positive, then the demand process is the sum of a 

deterministic process and a compound Poisson process. In the seqvel TI 1 and 

TI 2 will be called production rates. The inventory level decreases with jumps 

at the arrival epochs of customers and between arrival epochs it increases 



or decreases linearly with a slope depending on the production rate used. 

As stated in the introduction we only consider control policies of the 

following simple structure: 

1. The production rate is switched from rr 1 to rr 2 as soon as the 

inventory level becomes smaller than a critical value m~O. 

2. The production rate is switched from rr 2 to rr 1 only when the 

inventory reaches the critical value M~m. 

9 

Such a control rule will be referred to as an (m,M)-rule. It is assumed that 

it takes no time to switch from one production rate to the other. For the 

case of a positive switch time we refer to Chapter 6. We note that for the 

case of rr 1 ~o the production rate is switched from rr 1 to rr 2 at arrival 

epochs only. For the case of rr 1<0 the production rate may also be switched 

from rr 1 to rr 2 between arrival epochs if the inventory level decreases 

linearly to the level m. 

We assume that the system has an infinite storage capacity. Results for 

the finite capacity case can be deduced from the results in Chapter 7 where 

a related dam model is studied. Note that for the case of rr 1 ~o the inventory 

level cannot exceed the value M. 

Our object is to study the long-run behaviour of the inventory process. 

This requires that the system is "stable". On the one hand the production 

facility should be able to keep pace with demand sufficiently to prevent 

excessive shortages, on the other hand inventory should not pile up too much 

causing high holding costs. Therefore we impose 

CONDITION 1.1.1. 

Condition 1.1.1 ensures that under the (m,M)-control rule the inventory 

process cannot drift to 00 or - 00 • This can be proved using the results on 

random walk theory in Feller [1971], p. 395. Finally we assume for the case 

of rr 1=0 that the probability distribution function F of the random variable 

Dis non-arithmetic (i.e. Fis not concentrated on a set {O,d,2d, ..• } for 

some d>O). 

The restriction to (m,M)-rules may be motivated as follows: Firstly, 

from a practical point of view, these (m,M)-rules are easy to implement. 
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Secondly, though no proof of optimality of these (m,M)-rules with respect 
to some cost structure exists for the present model, such proofs do exist 
if the inventory process is a diffusion process; see Doshi [1978] and 
Vickson [1982] amongst others. 

An exact analysis of the general production-inventory model was given 
in Doshi et al [1978], cf. also Graves and Keilson [1981]. In these papers 
the criterion was to evaluate the long-run average cost per unit time for a 
cost structure consisting of fixed setup costs, linear holding costs for 
inventory, and linear penalty costs for shortages. However, this exact 
analysis leads to tractable results only for the special case of 
exponentially distributed demand sizes. In order to obtain practically 
useful results we should seek a compromise between mathematical and practice­
oriented approaches. 

Unlike the above studies dealing only with the minimization of costs, 
we focus on commonly used service measures like the fraction of demand to 
be met directly from stock on hand. This is motivated by the fact that in 
practice it is often hard to specify costs associated with shortages. By a 
probabilistic analysis of the behaviour of the inventory process under a 
given (m,M)-rule we obtain tractable expressions for a number of service 
measures of interest. In addition this analysis yields expressions for the 
average number of switchings of production rate per unit time and for the 
average on-hand inventory (see chapter 5). These results will enable us to 
determine the switching levels for the general problem of the minimization 
of the average switching and holding costs subject to some constraint on 
the customer service. In particular, when M-m is given, we can determine 
the switching level m in order to satisfy some service level constraint. 
It will appear from our results that a sequential determination of M-m and 
m gives nearly optimal results in practical applications. Here M-m is 
first determined on the basis of cost considerations only and next the 
level m is determined on the basis of the service level constraint. 

This chapter is further organized as follows. In section 1.2 we give 
a general outline of the way we use results from the theory of regenerative 
processes to derive expressions for the service measures. In section 1.3 
and 1.4 we derive approximations for the various basic quantities involved 
by using asymptotic results from renewal theory and random walk theory. 
In section 1.5 we present the numerical validation of our results. Also 
we test the sensitivity of the switching level m to the underlying demand 
distribution for a given value of M-m and a given service level constraint. 



1.2. The service measures. 

In this section we use the theory of regenerative processes to derive 

general relations for a number of widely used service measures. Fix an 

(m,M)-rule with 0$m$M. We shall analyse the inventory process under the 

given policy. Define for any t~O, 

N(t) ·= the number of customers that arrive in (O,t]. 

V(t) := the total demand in (O,t]. 

X(t) := the inventory level at time t. 

B (t) := the amount of demand in (O,t] that cannot be met 

directly from stock on hand. 

Q(t) ·=the number of stockouts that occur in (O,t]. 

S(t) := the number of customers arriving in (O,t] whose total 

demands cannot be met directly from stock on hand. 

J(t) ·= the amount of time in (O,t] that the inventory is 

negative. 

t 

C(t) := - f X(s) 1{X(s)<O}ds. 
0 

11 

Here 1{X(s)<O} is the usual notation for a random variable whose value is 1 

if X(s)<O and is 0 otherwise. We say that a stockout occurs if the inventory 

level drops from a positive value to a non-positive value. The definition 

of C(t) can be clarified as follows. Imagine that a penalty cost at rate x 

is incurred when a shortage of x exists. Then C(t) equals the total penalty 

cost incurred up to time t. In what follows C(t) will be referred to as 

the cwnulative backlog at time t. 

The above defined stochastic processes underly the following service 

measures. 

(i) a-service measure. 

the long-run average number of stockouts per unit time, 

1 . Q (t) 
im-t-. 

t-roo 
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(ii) S-service measure. 

the long-run fraction of demand that cannot be met directly from stock 
on hand, 

(iii) y-service measure. 

the long-run fraction of customers whose demands cannot be met directly 
from stock on hand, 

1 . s (t) 
i.m N(t) 

t-+«> 

(iv) a-service measure. 

the long-run average backlog at an arbitrary point in time, 

lim C(t) 
t t-+«> 

By an application of well-known ergodic results from the theory of 
regenerative processes we show that each of the above limits exists with 
probability 1 (w.p. 1). 

We define 

a cycle := the time elapsed between two consecutive epochs at 
which the inventory level reaches M and the 
production rate is switched from TI 2 to TI 1. 

Unless stated otherwise we assume that at epoch 0 such a cycle starts. 
Define for a given (m,M)-rule 

Also, let 

T ·= the next epoch at which the production rate is switched 
from TI 2 to TI 1• 

N ·= N(T), V := V(T), B := B(T), Q ·= Q(T), S ·= S(T), 
J ·= J(T), C := C(T). 
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Condition 1.1.1 ensures that these random variables have finite 

expectations. It is easily seen that due to our assumptions on the demand 

process the inventoI'Y process is regenerative and hence all the other 

processes defined above are regenerative. The cycle (O,T] is a regeneration 

cycle of the inventory process {X(t), t~O}. Thus we obtain 

(1.2.1) 1. Q(t) - E[Q] 1. 1m-- - E1TT w.p. 
t+oo t 

( 1.2 .2) . B(t) E[B] 
1. lim V(t) = ETVr w.p. 

t+oo 

(1.2.3) 
. S(t) E[S] 

1. lim N"(t")" = E[NJ w. p • 
t+<><> 

(1.2.4) 
. C(t) E[C] 

1. 11m -t- = EfTT w.p. 
t+oo 

( 1.2 .5) 
l; J(t) _ E[J] 

1. 1m -t- - Er.IT w.p. 
t+oo 

Equation (1.2.5) gives an expression for the long-run fraction of time the 

inventory is negative. Also, E[J]/E[T] equals the steady-state probability 

that the inventory is negative at an arrival epoch. This follows from the 

property "Poisson arrivals see time averages"; see Wolff [ 1982]. 

The service measure (1.2.5) can be related to the 8-service measure 

through 

(1.2.6) 
E[B] 7T2 

ETVr = IE1DT 
E[J] 
Effi 

To see this, note that for the compound Poisson demand process the average 

demand per unit time equals AE[D]. On the other hand we have that 

limt+<><>V(t)/t = E[V]/E[T]w.p. 1. This yields the relation AE[D] E[V]/E[T]. 

The relation E[B] = 7T 2E[J] follows by noting that any shortage occurring 

during a cycle will be gotten quit of at rate 7T 2 in the same cycle. These 

relations imply (1.2.6). 

We can also express the y-service measure in terms of the a- and 

8-service measures. The event that the demand of an arriving customer cannot 

be met from stock on hand occurs either when he causes a stockout or when 

the inventory is negative at the time of his arrival. Since E[Q]/E[N] is the 

long-run fraction of customers, who cause a stockout and E[J]/E[T] is the 

long-run fraction of customers, who arrive at an epoch at which the 

inventory is negative, we obtain 
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E[S] _ E[Q] + E[J] 
ETNT - ETNT ETTT 

Using (1.2.6) and the fact that the property "Poisson arrivals see time 
averages" implies E[N] = >..E[T], we obtain 

(1.2.7) E[Q] >..E[D] --+---E[T] 1! 2 
E[B] 
ETVT 

The relations (1.2.1) (1.2.7) show that we need tractable expressions 
for E[T], E[Q], E[B] and E[C]. To evaluate these key elements for the 
(m,M)-rule we introduce a number of basic functions. We first define the 
basic functions associated with production rate 1! 1 and thereafter the basic 
functions associated with production rate 1! 2 • 

We assume that at epoch 0 the inventory level equals x+m, x~O, and 
production rate 1! 1 is used. We define 

t 1(x) :=the expected time until the inventory level decreases 
below m for the first time. 

p(x,u) := the probability of having an undershoot greater than u 
of the level m at the first time the inventory level 
decreases below m. 

U(x) := the undershoot of mat the first time the inventory 
level decreases below m. 

The undershoot of level m is defined as the difference between m and the 
inventory level immediately after the inventory decreases below m for the 
first time. It is important to point out that the basic functions t 1(x) and 
p(x,u) and the random variable U(x) are independent of the switching levels 
m and M. Note that 

p(x,u) P{U(x)>u}, u ~ o. 

We adopt the convention 

t 1(0) = 0 and U(O) = 0 for the case of 1! 1 < 0. 

Next we define the functions associated with the system while 
production rate TI 2 is used. Assuming that at epoch 0 the inventory level 
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equals x:>M and the production rate n2 is used, we define 

t 2 (x) := the expected time until the inventory reaches the 

level M. 

b(x) := the expected amount of demand that is backlogged until 

the inventory reaches the level M (excluding any 

shortage existing at epoch 0). 

c(x) := the expected cumulative backlog at the time at which 

the inventory reaches the level M. 

q(x) := the probability that the inventory level decreases 

from a positive to a non-positive value before the 

inventory reaches the level M. 

The basic functions t 2 (x), b(x), c(x) and q(x) satisfy the boundary 

conditions t 2 (M) = b(M) = c(M) = q(M) = O. Note that as contrasted with 

t 1(x) and p(x,u) the functions t 2(x), b(x), c(x) and q(x) depend on M. For 

ease of notation we suppress the dependency of these functions on M. 

The following step is to express the quantities E[T), E[B], E[Q] and 

E[C] in terms of the basic functions. Using the fact that at the beginning 

of each cycle the inventory equals M and the production rate is switched 

from n2 to n1 and by conditioning on the undershoot of m, we obtain 

( 1 .2 .8) E[T] t 1(M-m) + J t 2 (m-u)d (1-p(M-m,u)). 
0 u 

( 1.2.9) E[B] J b(m-u)d (1-p(M-m,u)) + J (u-m)d (1-p(M-m,u)). 
0 u 0 u 

( 1. 2. 10) E[C] J c(m-u)d (1-p(M-m,u)). 
0 u 

The second term on the right-hand-side of (1.2.9) accounts for the expected 

shortage occurring when the inventory decreases below m for the first time. 

To obtain an expression for E[Q] we make the following observations. Since 

n2>AE[D] we have that under production rate n2 the inventory will reach the 

level 0 with probability 1 for any negative starting value of the inventory. 

Because of the lack of memory of the exponential interarrival time 

distribution the past of the system is not relevant when the inventory level 

reaches the value 0. In other words, the process starts anew each time the 

inventory level reaches the value 0 and rate n2 is used. Thus if the current 

inventory is 0 and n2 is used then the number of stockouts until the level M 
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is reached has a geometrical distribution with parameter 1-q(O). Then by 
conditioning on the undershoot of m we find 

P{Q=n} 
m 

f q(m-u).q(O)n- 1(1-q(O))d (1-p(M-m,u)) 0 u 

n-1 + q(O) (1-q(O))p(M-m,m), 

implying 

( 1. 2. 11) E[Q] 
m 

(1-q(0))- 1{p(M-m,m) + ! q(m-u)d (1-p(M-m,u))}. 0 u 

It remains to find tractable expressions for the basic functions t 1(x), 
p(x,u), t 2 (x), b(x), c(x) and q(x). 

1.3. Expressions for p(x,u), E[U(x)] and t 1(x). 

In this section we study the inventory process under production rate 
TT 1 and derive tractable expressions for p(x,u), E[U(x)] and t 1(x). Recall 
that by their definitions these functions do not depend on the particular 
values m and M of the control rule. The expressions for E[U(x)], p(x,u) and 
t 1 (x) will be obtained by applying the theory of hitting probabilities for 
random walks and by using asymptotic results from renewal theory. These 
results from Feller [1971) are summarized in Appendix A. We first define a 
random walk associated with the inventory process when always rate TT 1 is 
used and state some general results for this random walk. Next we separately 
analyze the cases TT 1 ~o and TT 1<0 to obtain approximations for p(x,u), E[U(x)] 
and t 1(x). 

Let us define 

T1 :=the epoch at which the first customer arrives. 

T := the time that elapses between the arrival of the (n-1)-th n 
and n-th customer, n~2. 

Dn :=the demand of the n-th arriving customer, n~1. 

Note that {Tn}:=1 and {Dn}:=1 are independent sequences of independent 
identically distributed random variables with 



Ph ;;;t} 1-e -At t ;;:; o, ;;:; 1 ' ' 
n 

n 

P{D ;;;x} F(x), x ;;:; o, n ;;:; 1. 
n 

Next we define the following random walk {S } on lR, 
n 

n 
so ·= o, s := i:: x.' n <'. 1 ' n i=1 l. 

where 

n ;;:; 1. 

Note that since rate TI 1 is always used Xn is the net decrease of the 

inventory between the arrival of the (n-1)-th and n-th customer. Also, 

define the sequence of ladder points (r;k,Zk) by 

r;o := 0, r;k := min{nln>r;k_1,s >S }, k ;;:; 
n r;k-1 

and 

zk := s 
~· 

k ;;:; 0. 
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We can interprete r;k as the k-th arrival epoch at which the inventory level 

falls below the smallest value attained so far, while X(O)-Zk is the new 

smallest value of the inventory level attained at epoch r;k. These 

interpretations are only valid because of the fact that production rate 

TI 1 is always used. 

Since TI 1<AE[D] we have that O<E[X 1]<00 , implying that the sequences 

{r;k} and {Zk} are renewal processes having a proper probability distribution 

for the "inter arrival times" r;k -r;k-l and Zk-zk_1, kf:: 1. Also (cf. Appendix A), 

E[r; 1] and E[Z 1] are finite and 

(1.3.1) 

Define 

N(x) := min{nls >x}, 
n 

x ;;:; o, 
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* . N (x) := min{kiZk>x}, x ;;: 0. 

It follows from these definitions that 

* N (x) 
l: (z;.-z;. 1), 

i=1 l. i-
(1.3.2) N(x) x;;: 0. 

* Since N (x) is a stopping time for the sequence {z;k}' an application of 

Wald's equation yields 

(1.3.3) E[N(x)] * E[N (x)] E[z;; 1J, x;;: o. 

* Note that M (x), defined by 

* * M (x) := E[N (x)], 

is the renewal function associated with the renewal process {Zk}. Now a 

well-known result from renewal theory states that 

(1.3 .4) 
1 

lim P{Z * -x>u} = E1Z:""T f P{Z 1>y}dy. 
x-+«> N (x) 1 u 

We can interprete ZN*(x)-x as the "residual life at epoch x" for the 

renewal process {Zk}. 

The above results enable us to analyse the inventory process assuming 

that production rate rr 1 is used. Before applying these results we first 

give a general relation between t 1(x) and E[U(x)]. Towards this end we 

define for x;;:O 

T 1 (x) the time until the inventory level decreases below m, 

when the initial inventory is x+m. 

Then it is immediately clear that 

(1.3.S) 

Since at epoch T1(x) the inventory level is undershot by an amount U(x) 

we have 



(1.3.6) m-U(x). 

On the other hand we note that the net decrease of the inventory level in 

(O,T 1(x)] equals the total amount of demand in (O,T 1(x)] minus the total 

production in (O,T 1(x)], 

Using X(O) x+m equations (1.3.5)-(1.3.7) together imply 

(1.3.8) x+m - (m-E.[U(x)]) = E[V(T 1(x))] - rr 1t 1(x). 

Next we use the property "Poisson arrivals see time averages" to obtain 

(1.3.9) 

By combining (1.3.8) and (1.3.9) we obtain 

( 1.3.10) 
x+E[U(x)] 

t1(x) = AE[D]-rr 1 • 

Noting that 

(1.3.11) E[U(x)] f p(x,u)du 
0 

it follows that it suffices to find a tractable expression for p(x,u). We 

distinguish between the case of rr 1GO and the case of rr 1<0. 

Case 1. rr 1GO: 
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We first note that for the case of rr 1GO the level m can be downcrossed 

only at arrival epochs. We further observe that the inventory level 

immediately after the n-th arrival equals x+m-S, 1~n~N(x). Using this and 
n 

the definition of p(x,u) we find 

p(x,u) P{ SN (x) -x>u}, x G 0, u G 0. 

Clearly we have that SN(x)-x ZN*(x)-x and hence 
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(1.3.12) p(x,u) = P{ZN*(x)-x>u}, xf;0,uf;0. 

Equation (1.3.12) implies that p(x,u) is completely determined by the 
* renewal process {Zk}. We first observe that N (0)=1 with probability 1 

and hence 

(1.3.13) p(O,u) = P{Z 1>u}. 

By applying the asymptotic result (1.3.4) we obtain 

(1.3.14) 
1 co 

lim p(x,u) = ETZ-:-T ! P{Z 1>y}dy. 
x->co 1 u 

Equations (1.3.13) and (1.3.14) hold because of the lack of memory of the 
Poisson arrival process: It is not relevant how long the current inter­
arrival time at epoch 0 is already in progress. The results (1.3.13) and 
(1.3.14) would also hold for an arbitrary interarrival time distribution, 
when it is assumed that an arrival occurs at epoch 0 and X(O)=x+m. 

We finally wish to express (1.3.13) and (1.3.14) in terms of the 
demand size distribution function F. At this point we have to distinguish 
between the cases of rr 1=0 and rr 1>0. 

Case 1 (i). rr 1=0: 

Then the random walk {Sn} is a renewal process and Zk=Sk' kf;O. Hence 
it follows that 

P{Z 1>u} = 1-F(u), u f; o. 

Consequently, it follows from (1.3.11), (1.3.13) and (1.3.14) that 

(1.3.15) p(O,u) 1-F(u), u f; o, 

(1.3.16) E[U(O)] E[D], 

and 
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(1.3.17) lim p(x,u) = E[~] f (1-F(y))dy, u ~ 0, 
x-+<» u 

(1.3.18) lim E[U(x)) = E[D2)(2E[D))- 1• 
x-+<» 

Case (ii). 11 1 >O: 

In this case {S } is not a renewal process. It is immediately verified 
n 

from the definition of x1 that the distribution of x1 has the special form, 

(1.3.19) 

x 

;\ 
--y 

11 1 
f e dF(y), 

0 /.. (y-x) 
/.. 11 1 

f F(y) - e 
11 1 

x < 0 

dy, x ;;; 0 

We observe that P{X 1 ~x} has an exponential left tail. This enables us to 

apply the results in Feller [1971), p. 405 (cf. Appendix A), for this 

special type of random walk. We have 

* 
(1.3.20) P{Z >x} = J:__ f e-s y(1-F(y+x))dy. 

1 11 1 0 

* Here s is defined as the unique positive root of 

(1.3.21) s - l:__ (1 - f e-sydF(y)) = 0. 
11 1 0 

From (1.3.20) we find 

(1.3.22) 

(1.3.23) 

Substituting (1.3.20), (1.3.22) and (1.3.23) into (1.3.11), (1.3.13) and 

(1.3.14) we obtain 

* 
( 1 . 3. 24) 

/.. -s y 
p(O,u) = - f e (1-F(y+u))dy, 

11 1 0 
u ;;; o, 

(1.3.25) E[U(O)] 
/..E[D)-11 1 
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and 

(1.3.26) 

(1.3.27) 

lim p(x,u) = 
x-+<x> 

lim E[U(x)] 
x-+<x> 

* A J (1-e-s Y)(1-F(y+u)dy, AE[D]-'IT l O 

AE[D2] 1 
AE(D]-rr - i< 

1 s 

We now turn our attention to the case of rr 1<0. 

Case 2. '11 1<0: 

u ;;;; o, 

In this case the equalities (1.3.13) and (1.3.14) do not hold, since 
the level m can be downcrossed between two arrival epochs. Therefore we 
take a closer look at the possible events in the interval 
N(x)-1 N(x) 

( E Tn' E T ], being the interval in which the level m is downcrossed. n=1 n=1 n 
We first note that, as in the case of '11 1=0, the random walk {Sn} is 

again a renewal process with Zk=Sk' k!::O. As stated in section 1.2 we have 
U(O)=o, implying 

( 1. 3. 28) p(O,u) 0 for all u !:: O. 

Hence to avoid trivialities we now assume that X(O)=x+m with x>O. It 
easily follows that if x-SN(x)-l<-rr 1TN(x) then the level m is downcrossed 

N(x)-1 N(x) 
in the interval ( E Tn' E T ) and the undershoot U(x) equals O. Thus, 

n=1 n=1 n 
for x>O, 

(1.3.29) U(x) = lo 
SN(x)-x 

We adopt the convention that U(x)=O if the null-event {x-SN(x)-l=-rr 1TN(x)} 
occurs. Applying the same arguments as in Feller [1971], p. 369, we find 

P{U(x)>u} 

where we used E[N(x)] 

obtain 

x (x-y)/(-rr 1) -Az * 
J J [1-F(x+u-(y-'IT 1z))]Ae azdM (y), µ;;;Q, 

0 0 

* E[N (x)] * M (x). After a change of variable we 



P{U(x)>u} 

with H(y) defined by 

y 
H(y) := f 

0 

x 
* f H(x-y)dM (y), u ;;;; o, x > o, 

0 

>-- -w 
I- 71 1 

(1-F(y+u-w))- e dw. 
71 1 

By applying the Key Renewal Theorem (cf. Feller [1971], p. 363) and using 

(1.3.29) we find the asymptotic result 

(1.3.30) lim p(x,u) 
x-+«> l-E[DJ-71 1 u 

Letting u+O in (1.3.30) we arrive at 

(1.3.31) lim P{U(x)=O} 
x-+«> l-E[D)-71, 

I 

It follows from (1.3.30) that 

l-E[D2] 

f (1-F(y))dy, 

(1.3.32) lim E[U(x)] 
x-+«> 2(1-E[DJ-71 1) " 

u ;;;; o. 

Concluding, for each of the three cases 71 1>0, 71 1<0 and 71 1=0 we have 

found exact expressions for p(O,u) and E[U(O)] and asymptotic expansions 

for p(x,u) and E[U(x)] as x-+«>. It is a matter of some algebra to verify 

that for 71 1+0 the results for either of the cases 71 1>0 and 71 1<0 coincide 

* * indeed with those for the case of 71 1=0. To do so use that 71 1s +I- and s-+«> 

as 71 1+0 and rewrite (1.3.24) as 

p(O,u) 
I-

= --* 
71 1 s 

co * 
f (1-e-s (y-u))dF(y), 

u 

u :;; 0. 

We now turn to the specifications of the above results for a given 

(m,M)-rule. First we define the random variable U, 

U := U(M-m). 

Now we distinguish between the cases m=M and m<M. 

23 
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Case M=m: 

In this case we can apply the exact results derived for p(O,u) and 
E[U(O)]. It follows from (1.3.10), (1.3.15), (1.3.16), (1.3.24), (1.3.25), 
(1.3.29) and U(O)=o for TI 1<0 that we can summarize the following results. 

r when TI 1 < 0 
( 1. 3. 33) t1(0) 1/:\ when TI 1 0 

1/(TI 1s*) when TI 1 > 0 

For any u ;:; o, 

• r-F(u)" 
when TI 1 < 0 

( 1.3.34) p(O,u) 
* when TI 1 0 

(A/TI 1 J e-s Y(1-F(y+u))dy when TI 1 > 0 
0 

r when TI 1 < 0 
(1.3.35) E[U] E[D] when TI 1 0 

(:\E[D)-TI 1)/(TI 1s*) when TI 1 > 0 

Case M>m: 

In this case we need expressions for t 1(M-m) and p(M-m,u). In general 
we can only give approximate expressions for these quantities. These 
approximations are based on .the asymptotic expressions for p(x,u) and 
E[U(x)] as x-+<». 

Let us consider the case of TI 1;:;o. The asymptotic expressions for p(x,u) 
and E[U(x)] have been derived from equation (1.3.4). Now we address 
ourselves to the following problem. Given a renewal process {Zk} determine 
empirically an estimate for that value of x0 yielding a good approximation 

1 - EfZ:T J P{Z 1>y}dy 
1 u 

* with N (x)=min{kiZk>x}. To estimate x0 we used as criterion when the first 
two moments of the above two distributions were sufficiently close to one 
another, where we estimated the first two moments of the distribution on 
the left-hand side of the above relation by computer simulation. From our 
extensive numerical investigations we found that an appropriate choice 
for x0 is given by 



(1.3.36) 

when 2 ;;; cz 
1 

when 2 
cz > 

1 

2 
where cz denotes the squared coefficient of variation of z 1• 

1 

We noted before that the sequence {Zk} of ladder heights associated 

with the random walk {S } constitutes a renewal process. Then it follows 
n 

from (1.3.14) and the above discussion that for the case of n 1 ~o 
-1 00 

p(M-m,u)~(E[Z 1 ]) J (1-P{Z 1>y})dy if M-m~x0 with x0 given by (1.3.36) 
u 

For the case of n 1<0 we cannot apply the results of the above 
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discussion, since, as opposed to the case of n 1 ~o, the level m can be 

downcrossed between arrival epochs. However, numerical results indicated that the 

first two moments of p(x0 ,u) are reasonably well approximated by the first 

two moments of the asymptotic undershoot distribution given by the right­

hand side of (1.3.30) when 

when 2 ;;; CD 

when 2 
CD > 

Hence for the case of M-m>O we restrict ourselves to (m,M)-policies 

satisfying 

Condition 1.3.1. 

For the case of TI 1 ;;; 0, 

and for the case of n 1 > 0, 

when 

when 

2 
when cD ;;; 

2 
when cD > 1 

2 
cz ;;; 

1 

2 
cz > 

1 
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2 2 2 2 2 . where cz (E[Z 1]-(E[z1J) )/(E[z 1J) and E[z 1J and E[z 1J are given by 1 
by (1.3.22) and (1.3.23) respectively. This restriction is reasonable for 
applications where switching costs are involved. 

Then, using (1.3.10), (1.3.17), (1.3.18), (1.3.26), (1.3.27), (1.3.30), 
(1.3.31) and (1.3.32), we find the following approximations, 

Approximation 1.3.1. 

when 7T 1 :;; 0 
t 1 (M-m) 

when 7T 1 > 0 

Approximation 1.3.2. 

p(M-m,u) 
- 1A/(AE[D]-7T 1) u! (1-F(y))dy 

co * A/(AE[D)-7T 1) ! (1-F(y))(l-e-s (y-u)dy 

when 11 1 :;; 0 

when 11 1 > 0 
u 

Approximation 1.3.3. 

E[U) 

when 7T 1 > 0 

* The constant s is determined by (1.3.21). 
In table 1.3.1 we give for E[U] and c~ the approximate values and the 
1 1 b . d b . 1 . 2 . h d 

actua va ues o taine y computer simu ation. Here cU is t e square 
coefficient of variation of U, 

E[U2J is computed from approximation 1.3.2. The value of M-m is set equal 
to the lower bound in condition 1.3.1. We considered the following demand 
distributions: 



(i) deterministic demand (c~ = O). 

(ii) Erlang-2 demand (c~ = 0.5). 
2 

(iii) hyperexponential demand with balanced means (cD = 2), i.e. 

F(x) 

2 
Here cD denotes the squared coefficient of variation of the demand D. In 
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all examples we have chosen A=1, E[D]=1 and 11 1 has the four values -2, -0.5, 

o, 0.5. 

Table 1.3.1. Accuracy of approximations for E[U] and cu. 

2 0 2 0.5 
2 2 CD = CD = CD = 

11 1 E[U] ap E[U] act E[U] ap E[U] act E[U] ap 
E[U] act 

-2 0.17 0.17 0.25 0.25 0.50 0.51 

-0.5 0.33 0.32 0.50 0.51 1.00 0.98 

0 - - 0.75 0.76 1.50 1.43 

0.5 0.37 0.32 0.69 o. 70 1. 78 1. 77 

11 1 cU,ap cU,act cU,ap cU,act cU,ap cU,act 

-2 1. 73 1. 73 2.08 2.07 2.65 2.65 

-0.5 1. 00 1. 12 1.29 1.28 1. 73 1. 75 

0 - - 0.88 0.88 1.29 1.32 

0.5 0.66 0.70 0.92 0.91 1. 19 1.22 

In table 1.3.1 we omitted the values of E[U] and cU for the case of 11 1=0 
2 

and cD=O, since for this case it is trivial to compute the exact undershoot 

distribution. 

Remark 1 • 3 • 1 • 

Consider the special case of exponentially distributed demand size 

with mean 1/µ, i.e. 

-µx 
F (x) = 1-e , x f; o. 



28 

It follows from (1.3.15), (1.3.21) and (1.3.24) that for the case of n 1 ~o 

p(O,u) -µu 
e ' u G 0. 

This implies that the renewal process {Zk} is a Poisson process with rate µ. 
So by the lack of memory of the Poisson process, 

p(x,u) P{ZN*(x)-x>u} 
-µu 

e ' u ;;;; o, x ;;;; o. 

This result together with (1.3.10) and (1.3.11) implies 

x G O. 

Using the above results it can be seen that for the case of n 1Go the 
approximations 1.3.1-1.3.3 are exact when the demand has an exponential 
distribution. 

1.4. Expressions for t 2(x), q(x), b(x) and c(x). 

In this section we derive approximations for the basic functions 
associated with the evolution of the process {X(t) , tGO} during the time 
that production rate TI 2 is used. The Key Renewal Theorem plays again a major 
part in the analysis. We also use some results from queueing theory. 

There is a fundamental difference between the approximations given in 
section 1.3 and those to be derived in this section. In section 1.3 we could 
justify condition 1.3.1 since M-m is typically large in practical 
applications when switching costs are involved. This observation provided 
solid ground for the application of asymptotic results. However, in this 
section we have to find approximations for functions associated with the 
inventory level immediately after the switching level m has been downcrossed. 
This inventory level can have any value less than m, so that useful 
approximations have to be found for all starting levels x~m when using rate 

Throughout this section we assume that at epoch 0 the inventory level 
equals x~M, i.e. X(O)=x, and production rate TI 2 is used. We first derive 
an exact expression for t 2 (x). Let us define 
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T2 (x) :=the time until the inventory level reaches the value M, 

x :;;; M. 

Then we have by definition that t 2 (x)=E[T2(x)]. Since excess demand is 

backlogged it can be seen that the process {M-X(t), O:;;;t:;;;T2 (x)} corresponds 

to the workload process in the following M/G/ 1-type queueing system. Jobs 

arrive according to a Poisson process with rate A and the job sizes are 

independent random variables with common distribution function F. Work is 

processed at a constant rate rr 2 whenever the system is non-empty. The 

initial workload is M-x. Then it follows from a well-known result (see e.g. 

Tijms [1977]) that 

(1.4.1) x:;;; M. 

An alternative derivation of (1.4.1) follows the lines of the derivation 

of (1.3.10), based on the conservation of flow and the lack of memory of 

the Poisson arrival process. 

Next we focus on the hitting probability q(x). We recall that q(x) 

depends on M. Let us assume for the moment that M=oo. This is equivalent to 

assuming that production rate 7T 2 is always used. Let 

q00 (x) := the probability that the inventory level will ever 

decrease from a positive to a non-positive value when 

production rate 71 2 is always used, x ~ 0, 

be the corresponding hitting probability. We will prove the following 

relation between q(x) and q00 (x), 

(1.4.2) q(x) 
qoo(x)-qoo(M) 

1-q00 (M) 

Towards this end we note that 

0 :;;; x :;;; M. 

~(x) = P{X(t0 ):;;;o for some t 0>0JX(O)=x}, x ~ o. 

If Q:;;;X(O)<M and if there exists a t 0 such that X(t0):;;;Q and X(t)>O for 

O<t<t0 then there are two mutually exclusive possibilities: 
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(i) X(t)<M for O < t < t 0 . 
(ii) X(t 1)=M for some 0 < t 1 < t 0 • 

This implies that 

(1.4.3) + P{X(t0 )~0 for some t 0>0 and X(t)>O for O<t<t0 

0 ~ x < M. 

By definition the first term on the right-hand side of (1.4.3) equals q(x) 
corresponding to M<00 • The second term on the right-hand side of (1.4.3) can 
be rewritten as follows. By conditioning on the event of reaching M before 
emptiness we find for all O~x<M 

(1.4.4) 

P{X(t0 )~0 for some t 0>0 and X(t)>O for O<t~t0 
and X(t 1)=M for some O<t 1<t0 iX(O)=x} 

P{X(t0 )~0 for some t 0>t 1 and X(t)>O for t 1<t<t0 i 
X(t 1)=M for some t 1>0 and O<X(t)<M for 0<t<t 1 and X(O)=x} 

x P{X(t 1)=M for some t 1>0 and O<X(t)<M for O<t<t 1iX(O)=x}. 

Due to the compound Poisson demand process it follows that the evolution 
of the inventory process from any time t onward depends on the history of 
the inventory process up to time t only through X(t). Hence we have for 
all O~x<M 

P{X(t0 )~0 for some t 0>t and X(t)>O for t 1<t<t 0 1 

X(t 1)=M for some t 1>0 and O<X(t)<M for O<t<t 1 and X(O)=x} 

q (M). 
00 



The last equality follows by taking epoch t 1 as the new time origin. The 

second term on the right-hand side of (1.4.4) is 1-q(x). Substituting 

these results in the equations (1.4.3) and (1.4.4) yields 

<Iro(x) q(x) + (1-q(x))q00 (M), 0 ~ x < M. 

This equation and q(M)=O together imply equation (1.4.2). 
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So it suffices to find an approximation for'q00 (x) corresponding to the 

case of M=00 • For this purpose we note that q00 (x) is the classical ruin 

probability which is extensively studied in the literature. From pp. 

377-378 in Feller [1971] (cf. also Cohen [1976], p. 79) we have 

(1.4.5) q00 (0) = AE[D]/n 2 

(1.4.6) 
n2-AE[D] 

where o is defined as the unique positive root of 

(1.4.7) 1 -
00 oy A f e ~ (1-F(y))dy 

Q TI2 
0 

and v is given by 

(1.4.8) v = 
00 oy A f ye ~ (1-F(y))dy. 

Q TI 2 

However, the transcendental equation (1.4.7) has not always a 

positive root. For instance for the lognormal distribution function and 

distribution functions with regularly varying tails (i.e. 

limt-roo(1-F(tx))/(1-F(t))=xp, pElR, xElR+) the integral on the left-hand 

side of (1.4.7) diverges for all o>O. Fortunately, the equation (1.4.7) is 

solvable when F has an exponentially fast decreasing tail. Therefore we 

make the following 

Distribution Assumption DA 

( 1.4. 9) -Kx 1-F(x) = O(e ) for some K > 0 (x-+«>). 
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In fact, this assumption is necessary and sufficient to ensure that equation 
(1.4.7) has a unique positive root. Then also v< 00 • This assumption is 
satisfied for many distributions of practical interest, including 
distributions with a finite support and mixtures of Erlangian distributions. 
Note that any distribution function with support on [0,00 ) can arbitrarily 
closely be approximated by a finite mixture of Erlangian distributions, cf. 
Cox [1955] and Schassberger [1972]. We further note that DA implies that 
E[Dk]<oo for all k~1. 

Now the key idea to all approximations of this section is to find a 
function of a simple form that couples the behaviour of the basic function 
under consideration near the origin and its asymptotic behaviour near 
infinity. There are several coupling possibilities, but our choice will be 
guided by the simple form of an exact solution for q00 (x) when the demand 
has a so-called K2-distribution to be discussed below. 

Equation (1 .4.6) provides some information about the behaviour of q00 (x) 
near the origin. But it is possible to obtain ITXJre detailed information. As 
stated above q00 (x) corresponds to the classical ruin probability. It 
follows from the results derived in Feller [1971], pp. 194-198, that the ruin 
probability is identical to the waiting time probability in a single-server 
queueing system with service in order of arrival. More precisely, 

(1.4.10) q (x) 
00 

1 - W(x), 

where W(x) denotes the probability that the actual waiting time of an 
arbitrary customer is less than x/n2 in the M/G/1-queue with arrival rate A, 
service requirement D and processing rate n2 . Using "Poisson arrivals see 
time averages" it follows that W(x) equals the probability that at an 
arbitrary point in time the workload is less than x in this M/G/1-queueing 
system. Hence 

(1.4.11) ! (1-W(y))dy 
0 

the expected amount of work at an arbitrary 
point in time in the M/G/1-queueing system with 
arrival rate A, service requirement D and 
processing rate n2 • 

It is well-known (see e.g. Tijms [1977]) that the average workload in the 
M/G/1-queue equals !AE[D2](n2-AE[D])- 1. Hence 



(1.4.12) J qco (y)dy 
0 

Equations (1.4.5) and (1.4.12) describe the behaviour of qco(x) near (at) 

the origin, while the equation (1.4.6) describes the asymptotic behaviour 

of qco(x) as x-+«>. 

Next we determine the exact solution of qco(x) for the class of K2-

distributions. A probability distribution function Fis called a K2-

distribution function if the Laplace-Stieltjes transform 

F'<s) := 
-sx f e dF(x), s ~ 0' 

0 

of F can be written as 

2 
1+a 1s+a2s 

F'<s) 

for some constants a0 , a 1 and a2 . The class of K2-distributions contains 

hyperexponential distributions and mixtures of Erlang-1 and Erlang-2 

distributions with the same scale parameters. We now show that qco(x) is 

of a simple form when F is a K2-distribution. 
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Consider the time interval (0,6x/n2) with 6x small. In this time 

interval a demand occurs with probability A6x/n 2+o(6x), since the customers 

arrive according to a Poisson process with rate A. Hence, for each x such 

that x is a continuity point of the demand size distribution F, we have 

A6X x A6X 
qco(x) = - { f q (x-y)dF(y)+1-F(x)}+(1- -)q (x+6x)+o(6x), 

n2 o co n2 co 

x ~ 0. 

Dividing both sides of this relation by 6x, rearranging terms, letting 

6xi0 and noting that F has at most a countable number of discontinuity 

points, we find for almost all x~O, 

( 1.4.13) 
A A 

(1-F(x)) + ~ q (x) 
n2 n2 co 

We define 

s > 0' 
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so q (s) is the ordinary Laplace transform of q (x). Taking the Laplace-oo 00 

transform on both sides of (1.4.13) it readily follows, using q00 (0) = 
.h.E[D]/112 , that 

( 1.4.14) q (s) 
00 

.h.E[D]-.h.(1-F(s))/s 

11 2s-;.. < 1-'F (s)) 
s > 0. 

In case F is a K2-distribution function we find 

b 1s+b0 
2 s +c 1s+c0 

s > o, 

for some constants b0 , b 1, c0 , c 1• Except for the case of exponential demand 
the equation s 2+c 1s+c0=0 has two positive roots. By a simple inversion we 
obtain for some a, S and y 

(1.4.15) -Sx -ox 
= ae + ye x _, o, 

when Fis a K2-distribution. The constant o is defined by equation (1.4.7). 
Also, it must be true that o<S in view of the asymptotic expansion (1.4.6). 

The exact result (1.4.15) for the K2-distribution function suggests 
to approximate q00 (x) by 

(1.4.16) q (x) 
00 

-sx - ae + 
-ox 

e x ;:; o, 

where o and v are eiven by (1.4.7) and (1.4.8). The equation (1.4.16) 
encompasses the asymptotic behaviour of q00 (x) given by (1.4.6). Using 
(1.4.5), (1.4.6) and (1.4.12) we can solve for the unknown constants a and S, 
yielding 

(1.4.17) AE[D] a=----
112 

(1.4.18) 

The following two conditions are required for the constants a, S, y 
and o. 

(i) s > 6. 

(ii) aS + y6 ;:; O. 
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Condition (i) should hold in view of (1.4.6), while condition (ii) should 

hold since <Io,(x) is a non-increasing function. Except for the class of K2-

distributions, we were not able to characterize further distributions for 

which (i) and (ii) hold. Therefore we numerically tested many practical 

distributions satisfying DA. For mixtures of Erlangian distributions we 

always found that (i) was satisfied. Occasionally we found for such mixtures 

that condition (ii) was violated. But in these cases the right-hand side 

of (1.4.16) is slightly increasing only close to the origin, where the 

maximum is very close to q00 (0)=AE[D]/rr2 . This phenomenon apparently does not 

affect the quality of the approximations as may be concluded from the 

numerical results in section 1.5. Hence we propose 

Approximation 1.4.1. For all O~x~M 

with 

q (x) - q (M) 

q(x) = oo 1-q (M) 
00 

-Sx - ae + 
-ox 

e x ;;; 0' 

where a and Sare given by (1.4.17) and (1.4.18). 

Next we derive an approximation for the basic function b(x). First 

consider the case x~O. Let us define 

T0 (x) := the time until the inventory level reaches the value 0, 

x ~ o. 

By the same arguments as used to derive (1.4.1) we have 

-x 
E[To(x)] =TI -AE[D] ' 

2 
x ~ o. 

By definition b(x)=E[B(T2 (x))]. Writing B(T2 (x))=B(T0 (x))+[B(T2 (x))-B(T0 (x))] 

we can again use the fact that {X(t), tf'.T0 (x)} depends on {X(t), O~t~T0 (x)} 

only through X(T0 (x))=O. Then we find, using the definition of b(x), 

b(x) E[B(To(x))] + b(O), x ~ 0. 
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Now we express B(T0 (x)) and r 0 (x) in terms of {D } n 
and {T } , 

n 

B(r0 (x)) 
N(r0 (x)) 

Dn' l: 
n=1 

r 0 (x) 
N(T0 (x))+1 N(T0 (x))+1 

- r 0 (x)). l: T - ( L Tn 
n=1 n 

n=1 

It easily follows that N(T0 (x)) is a stopping time for {Dn} and N(T0 (x))+1 
is a stopping time for {Tn}. It follows from the Markov property of the 
exponential interarrival times that 

N(r0 (x))+1 
E[ l: Tn - To(x)] = 1/A. 

n=1 

Applying Wald's equation twice yields 

and hence 

(1.4.19) 

E[B(To(x))] 

b (x) _-_A E_[_D_,,]_x + b ( O) ' 
11 2- E[D] x ::;; 0. 

We emphasize the fact that the shortage -x at epoch 0 is not included in 
b(x). 

By applying the same arguments as used to derive (1.4.13) and invoking 
(1.4.19) we obtain for almost all O<x<M, 

(1.4.20) b' (x) -A f (y-x)dF(y) - __..?:_ b(0)(1-F(x)) + __..?:_ b(x) 11 2-AE[D] x 11 2 11 2 
:\ x 

- ~ f b(x-y)dF(y). 
11 2 0 

Let us again consider the special case of M=oo. We define 

b00 (x) := E[B(00 ) I X(O)=x], X E JR 

i.e. b00 (x) equals the expected amount of demand that will go short during 
the interval (O,oo) when X(O)=x and always rate 112 is used. Fix x<M. Now it 
obviously holds that 
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(1.4.21) E[B(00 )jX(O)=x] = E[B(T2(x))jX(O)=x] + E[B(00)-B(T2(x))jX(O)=x]. 

By definition we have 

(1.4.22) b(x) = E[B(T2(x))jX(O)=x]. 

We further note that X(T2(x)) = M with probability 1. 

Conditioning on T2 (x)=tM and noting that the proces {X(t), t~tM} depends on 

its history {X(t), O~t~tM} only through X(tM) we find 

(1.4.23) 

Taking the expectation with respect to T2 (x) in (1.4.23) we find 

( 1. 4. 24) 

By combining the relations (1.4.21), (1.4.22) and (1.4.24) we get a similar 

result as (1.4.2), 

(1.4.25) 

Since under production rate rr 2 the inventory process has a positive 

drift to infinity, it is intuitively clear that 

(1.4.26) 

This result can be proved rigorously by using arguments based on results 

for terminating renewal processes induced by ladder heights. But there is 

more to say about the asymptotic behaviour of b00 (x). From equation (1.4.20) 

we derive by integration that 

x y 
b (x) = w(x) 

00 
f {b00 (y) - f b (y-z)dF(z)}dy, 

0 0 00 

x ~ o, 

where 
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(1.4.27) 

Using 

A x oo A x w(x) = b00 (0)- 71 -AE(D] f f (1-F(z))dzdy- 7f b00 (0) J (1-F(y))dy, 
2 0 y 2 0 

d x 
~d { J f(x-y)(1-F(y))dy} 

x 0 

x "" 0. 

x 
f(x)- J f(x-y)dF(y) 

0 

for any continuous function f, we find 

x 
( 1.4 .28) b (x) 

00 
w(x) J b (x-y)(1-F(y))dy, 

0 00 
x "" 0. 

Equation (1.4.28) is a so-called defective renewal equation since AE[D]/n2<1 
and thus (seep. 375 in Feller [1971]), 

(1.4.29) w(x) lim b00 (x) = lim ~~~~ 
1_ J-E[D) 

71 2 
The equations (1.4.26), (1.4.27) and (1.4.29) together imply that 

(1.4.30) 
2 A71 2E[D ] 

b (0) = ----~ 
00 2(712-J-E[DJ) 2 

The asymptotic behaviour of b00 (x) as x-+oo can be obtained by using the 
Key Renewal Theorem. By the definition of o and v we have that 

x 
G(x) := J e0Y ~ (1-F(y))dy, 

0 71 2 

is a proper distribution function, while 

v J ydG(y) 
0 

x "" o, 

is the first moment of the distribution function G. By multiplying both 
sides of (1.4.28) by e0x and using the definition of G we obtain the proper 
renewal equation, 

e0xb (x) 
00 

ox x o(x-y) e w(x) + J e b (x-y)dG(y), x ;>; O. 0 00 

Applying the Key Renewal Theorem yields 



(1.4.31) J
00

e0Yw(y)dy. 
v 0 
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To evaluate the integral in (1.4.31), we first rewrite w(x) in a more 

convenient form. Writing b00 (0)=(1-AE(D]/rr2)b00 (0)+AE[D]/rr 2b00 (0) and using 
k 00 k-1 . (1.4.30) and E[D ]=k J y (1-F(y)]dy for k=1,2,we obtain after some 

0 
straightforward algebra 

w(x) rr 2-AE[DJ 
x y 

oo oo A 
f J (1-F(z))dzdy + ~ b (0) 

rr 2 oo 
J (1-F(y))dy. 

x 

Next, using the defining equation (1.4.7) for o it is readily verified that 

and hence 

(1.4.32) 

This result could alternatively be obtained from the asymptotic 

behaviour of q00 (x) given by (1.4.6). We first note that equations (1.4.13) 

and (1.4.20) with b00 (x) substituted for b(x) have unique solutions. This 

holds because of the fact that either of these two equations can be 

rewritten into a defective renewal equation. Differentiating equation 

(1.4.20) yields 

(1.4.33) b00
11 (x) =rr -A~[D] (1-F(x)) +~b '(x) 

2 rr2 oo 

x 
A J b ' (x-y) dF (y) . 

rr2 0 oo 

By comparing equation (1.4.33) with equation (1.4.13) we find that 

-rr 2q00 (x)/(rr 2-AE[D]) is a solution of (1.4.33). This solution must be unique. 

Since (1.4.33) is obtained by differentiation of (1.4.20) we find 

( 1.4. 34) 

is the unique solution of (1.4.20). Then the equations (1.4.26), (1.4.30) 

and (1.4.32) follow from (1.4.6), (1.4.12) and (1.4.34). 

Equation (1.4.34) suggests to use again an approximating function that 

is a mixture of two exponentials. We choose this mixture such that the 
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conditions given by (1.4.30), (1.4.32) and b00
1 (0)=-1'E[D]/(1T2-1'E[D]) are met. 

Hence we propose the following 

Approximation 1.4.2. For all O~x~M 

with 

-Sx e x £ o, 

where the constants a and f3 are given by (1.4.17) and (1.4.18) respectively. 
The equation (1.4.19) and approximation 1.4.2 together yield the desired 
expressions for b(x). 

It remains to find an approximation for c(x), i.e. the expected total 
cumulative backlog at the epoch at which the inventory level reaches the 
value M, given X(O)=x~M. Again we first consider the case x~O. By using 
the lack of memory of the Poisson arrival process we find 

(1.4.35) c(x) = E[C(T0 (x))] + c(O), x ~ 0. 

It is easy to see that {-X(t), O~t~T0 (x)} corresponds to the workload 
process in the following M/G/1-type queueing system. Jobs arrive according 
to a Poisson process with rate A and the amounts of work involved by the 
jobs are independent random variables with common distribution function F. 
Also, work is processed at a constant rate of 1T 2 per unit time whenever 
there is work in the system. Here we assume that the initial workload 
equals -x and we only observe the process until the first epoch at which 
the system becomes empty. If we assume that a holding cost at rate w is 
incurred if the workload equals wit follows from results in Tijms (1977] 
that 

expected holding cost incurred until the system is empty 

2 E(D ] (-x) 
2 ' 2(1T 2-1'E(D]) 

(-x) £ 0. 

Using the cost interpretation of the cumulative backlog given in section 
1.2 we thus obtain 



(-x)2 
E[C(To(x))] = 2(TI -AE[D]) + 

2 

Hence it follows from (1.4.35) that 

(1.4.36) c(x) 
2 

x 
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2 AE[D ](-x) 

2(n 2-AE[D]) 2 ' 
x ;:; o. 

x;:; o. 

Using the lack of memory of the Poisson arrival process as done in the 

derivation of (1.4.25) and defining c00 (x) in the obvious way, we obtain 

(1.4.37) c(x) x;:; M. 

By conditioning on the possible events in the interval (O,nx/TI 2) where nx 

is small we derive the following integro-differential equation, 

J 
x 

x 

00 A A A x 
f (y-x)dF(y)- ~ c (0)(1-F(x))+ ~ c (x)- ~ f c (x-y)dF(y), 

n2 00 TI2 00 TI2 o 
(1.4.38) 

x f;; o. 

Differentiation of (1.4.38) yields an equation that equals -1/n 2 times 

equation (1.4.20). Using the fact that (1.4.38) has a unique solution we 

obtain 

(1.4.39) A f b (y)dy. 
TI2x oo 

In principle we are now able to give an approximation for c(x), xf;;O, 

based on the equations (1.4.37) and (1.4.39) and using approximation (1.4.2). 

However, by doing so, it appears that in general c00 (0) is not exactly 

matched. By integration of both sides of (1.4.38) we obtain 

( 1.4.40) v(x) + 
x A 

f c00 (x-y) (1-F(y))dy 
0 TI 2 

with 
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(1.4.41) v(x) 

00 2 ;\ . f (y-x) dF(y) + - c (O) f (1-F(y))dy. 
x 1T2 00 x 

The equation (1.4.40) is again a defective renewal equation. Hence 

( 1.4.42) 

lim v(x)/(1-;\E[D]/1T2) and using lim c00 (x)=O we find from (1.4.41) x-+oo x-+oo 

;\E[D3] -----.,,-+ 
6(1T2-;\E[D]) 2 

;\2(E[D2])2 

4(1T2-;\E[D]) 3 

+ It is easy to show that for all acJR and for any f 

b ~ lim eax f f(y)dy b 
a 

x 

Hence it follows from (1.4.32) and (1.4.39) that 

( 1.4 .43) lim e0xcoo(x) = --3-
x-+oo 1T20 v 

This result could alternatively be derived by multiplying equation (1.4.40) 
by e0x and applying the Key Renewal Theorem. 

Invoking (1.4.42) and (1.4.43) the approximation resulting from 
equation (1.4.37) and approximation 1.4.2 yields an exact expression for 
c00 (0) only if 

;\E[D3 ] 
-----~+ 

6(1T 2-AE[D]) 2 

;\2(E[D2])2 

4(1T2-;\E[D]) 3 
Cl 1 ------ + --3-

s 2 ( 1T 2 -;\E [D]) 1T 2o v 

This equation is not true in general. Therefore we determine new constants 
a' and S' acting as a and S, respectively, such that the resulting 
approximation holds exactly for x=O. Thus we propose 

Approximation 1.4.3. For all O~x~M 



with 

-S'x 1 -ox _ a'e + ~~3- e 
1T20 \) 

x :;; 0 

and 

( 1. 4. 44) a' :.X.E[D3] 
+ 

/..2(E[D2])2 
:= 

6 (TI 2-:.X.E[D]) 2 4(TI 2-:.X.E[D]) 3 
---3-

1T20 \) 

S' f /..E[D2] - _1_2-] /a I• := 
L2(1T2-AE[D])2 1T20 \) 

(1.4.45) 

The equation (1.4.36) and approximation 1.4.3 together determine the 

desired expression for c(x). 

As for approximation 1.4.1 we need that S'>o, otherwise equation 

(1.4.43) would be violated by the approximate c00 (x). It turns out that 

there are cases where S'~o, whereas S>o. Therefore we suggest the 

following rule of thumb, 

If S'~o then replace S' by S in approximation 1.4.3. 

This recipe proved to give satisfactory results with regard to the 

accuracy of the approximation for c(x). 

We conclude this section by a number of remarks. 
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Remark 1.4.1. All approximations in this section are exact in case Fis a 

K2-distribution. This follows by combining the relations (1.4.2), (1.4.25), 

(1.4.34), (1.4.37) and (1.4.39) with the fact that the approximation for 

q00 (x) is exact. 

Remark 1.4.2. We have given approximations that are sums of two exponential 

functions. The coefficients involved were carefully chosen to match both 

the asymptotic behaviour at infinity and the behaviour near the origin in a 

simple way. We mentioned that there are several other possible ways to 

achieve the same. In the paper by De Kok et al [1984] the following 

coupling idea is used which yields very good approximations as well. Suppose 

we want to approximate an unknown function f. We know the following 

properties of f: 
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f(O) lim e0X f (x) 
x--;<Q 

Then the approximation f off suggested in De Kok et al [1984] is determined 
by choosing some positive number x0 and defining f by 

~ -Sx 0 ;:;; ;:;; aoe x XO 
f(x) 

l -ox x <': a e 
' XO 00 

where 

1 o + - ln [a0/ a ] . 
XO 00 

The choice of S is based on the continuity of fat x0 . Because we are 
free to choose x0 we can try to find that value of x0 yielding a robust 
approximation. For the functions q00 (x), b00 (x) and c00 (x) De Kok et al [1984] 
propose 

XO E[D]. 

The advantage of this method is that it is always possible to choose x0 such 
that q00 (x), b00 (x) and c00 (x) are strictly decreasing for x~O. This 
approximation is exact only for the case of exponential demand. 

Remark 1.4.3. A consequence of the assumptions for the model discussed in 
this chapter is that the arrival process is not influenced by the inventory 
level. In practical situations it may happen that some customers are 
discouraged because of a negative inventory level or equivalently because 
of having to wait for the fulfillment of demand. This phenomenon can be 
modelled in the following way. Customers arrive according to a Poisson 
process with rate 

\( .\ 

>:' while X(t) < 0 

while X(t) ~ 0 
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with >:'<A. The demands of customers are independent random variables with 

collllllOn distribution function F. Excess demand is backlogged. IJe again 

assume that the inventory is controlled by an (m,M)-rule. 

It is obvious that the analysis for this model only differs with 

respect to the basic functions associated with production rate TI 2 • Partly 

we can proceed along the same lines as in this section, partly the analysis 

is based on ideas that will be clarified in subsequent chapters. 

Yet we think it appropriate to summarize the results here. We use a ""'°' to 

mark the basic functions and the random variables associated with the new 

model. Then we have the following results. 

( 1. 4. 46) 

( 1.4.47) 

( 1.4 .48) 

(1.4.49) 

( 1.4.50) 

(1.4.51) 

(1.4.52) 

q(x) = q(x) 

{ - -1 (TI 2-AE[D])(TI2-AE[D]) b(x) 

b(x) 

= ->:'E[D](TI 2->:'E[D])- 1x + (TI 2-AE[D])(TI2->:'E[D])- 1b(O), 

{ _, - - _, 
~ (M-x)(TI 2-AE[D]) -(A-A)E[D][TI2 (TI 2-AE[D])] b(x) 

t 2 (x) = 
~ -1 -1 

(-x)/TI2-AE[D]) +M(TI2-AE[D]) 

-(A-t)E[D][TI2 (TI 2-AE[D])]- 1b(O) 

c(x) = c (x) 
00 

- c (M), 
00 

x ;;; M. 

c 00 (0) 
AE[D3] + A}:'• (E[D2]) 2 

~ 2 
6(TI 2->:'E[D])(TI 2-AE[D]) 4(TI 2-AE[D]) (TI 2-AE[D]) 

2 ~ 2 
c<X>(x) 

x + AE[D ](-x) 
+ c (0)' ;;; o. 

2 (TI 2->:'E [D]) 2 
x 

2{TI 2->:'E[D}) 
00 

o~ 
lim e c00 (x) 

1 TI 2-AE [D] 
------{----
vo2(TI2-'rE[D]) TI2o 

(A->:' 1 )E[D2J}. 
2(TI 2-'>:'E[D]) x-+<><> 

x ~ 

x ~ 

x ;;; 

x ~ 

x ;;; 

The equations (1.4.50) and (1.4.52) can be used to find an approximation 

for c 00 (x), x~O, that is a mixture of two exponentials. Again the equations 

(1.2.8)-(1.2.10) carry through for this model. 

0. 

0 

0 

0 

0 
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So we can compute expressions for E[T], E[B], E[Q] and E[C] from the 
results derived in section 1.3 and (1.4.46)-(1.4.52). An expression for E[S] 
can be derived from 

(1.4.53) E[S] E[Q] 
+ 

E ['.J] 
E[N] E[N] E(T] 

( 1. 4. 54) E['J] E[B]/112, 

(1.4.55) E(N] A.(E[T]-ErJ]) + 'rE['.J]. 

A special case of this model is that in which customers arrive 
according to a Poisson process and a customer, who has to wait for the 
fulfillment of his demand leaves directly with probability O<p~1 without 
taking any inventory. This situation can be modelled by taking I=A.(1-p). 
In particular the case of 't=O, corresponding to the model in which 
customers renege if they have to wait for the fulfillment of their demand, 
is a special case of the model that is discussed in chapter 4. 

1.5. Numerical results and conclusions. 

In this section we give numerical results validating the accuracy of 
the approximations and we discuss the sensitivity of the switch-over level 
m to more than the first two moments of the demand distribution. Our 
extensive numerical investigations indicate that in general the 
approximations are quite accurate and thus are suited for use in practice. 
Also, it turns out that in general two-moment approximations for the 
switching level m are justified provided the coefficient of variation of 
the individual demand is not too large. Some rules of thumb for the use of 
the approximations are given at the end of this section. 

As stated in section 1.1 we sequentially determine M-m and m. We first 
determine the value of M-m by using cost considerations only and next we 
determine the value of m by invoking the service level constraint. The 
value of M-m is determined as follows. We assume that a switch-over cost K 
is incurred each time the production rate is switched from 11 1 to 11 2 . Also, 
a holding cost at rate h.x is incurred when the on-hand inventory equals 
x~O. The constants Kand h are positive. Under this cost-structure we 
suggest the following formula for M-m, 
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(1.5.1) M-m 
2K(TI 2-AE[D])(AE[D]-TI 1) ! 

{ h(TI 2-TI 1) } • 

This formula generalizes the classical economic order quantity formula from 

inventory theory with instantaneous delivery of ordered items, cf. Hadley 

and Whitin [1963]. To motivate the formula (1.5.1), we note that it is 

empirically known that the uncertainty of demand mainly influences the 

reorder point rather than the order quantity. Thus a reasonable 

approximation for the order quantity may be obtained by replacing the 

stochastic demand process by its average value and thereby considering a 

deterministic inventory system. Therefore consider now the deterministic 

production-inventory problem in which the demand occurs at a constant rate 

AE[D]. In this deterministic system it follows that under the (m,M)-rule the 

length of a cycle equals (M-m)/(AE[D]-TI 1)+(M-m)/(TI 2-AE[D]) and the average 

on-hand inventory equals m+!(M-m) so that the average holding and switch­

over costs per unit time are given by 

(1.5.2) 

By minimizing this expression with respect to M-m, we get the formula 

(1.5.1). 

In chapter 5 it is shown that the performance of the production­

quantity formula (1.5.1) is indeed very good with respect to the 

minimization of the long-run average costs per unit time. However, the 

expression (1.5.2) may predict rather unsatisfactorily the actual average 

costs. 

In testing the accuracy of the approximations we consider the S-service 

measure, associated with the fraction of demand satisfied directly from 

stock on hand, and the y-service measure associated with the fraction of 

customers, whose demands are met directly from stock on hand. In the 

sensitivity analysis we present results only for the S-service measure, 

but the conclusions for the other service measures are very much the same. 

In all examples considered in tables 1.5.1-1.5.3 M-m is predetermined 

by the formula (1.5.1), in which h=1 and K=25. We do not consider the case 

of M=m (i.e. K=O), since in that case we have an exact expression for 

p(x,u). Hence accuracy for the case of M=m is implied by accuracy for the 

case of M>m. Conclusions drawn concerning sensitivity for the case of M>m 

also apply to the case of M=m. Next, using our approximate results obtained 
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in sections 1.3 and 1.4, we determine the switch-over level m such that the 
required service level is achieved. The parameters are varied as follows. 
The production rate n 1 has the three values -0.5, 0 and 0.5, the production 
rate n 2 has the three values 1.25, 2 and 5. The service levels Sandy are 
varied as 0.95 and 0.99. In all examples we take A=1 and E[D]=1. Let 
cD=o(D)/E[D] denote the coefficient of variation of the demand size D. 

In tables 1.5.1 and 1.5.2 we vary c~ as 0, 1/3, 2/3 and 2. We consider 
the following demand distributions, 

(i) deterministic demand (c~=O) 
2 (ii) gamma demand (cD=1/3, 2/3, 2). 

In practical inventory applications the gamma distribution gives very 
often an excellent fit to the empirical demand distribution. The gamma 
distribution is completely specified by its first two moments and it can 
achieve any positive value of the coefficient of variation cD of the demand 
size D. 

In tables 1.5.1 and 1.5.2 we give the approximate (m,M)-rules and 
their actual values S t and y , respectively, of the achieved service ac act2 
levels. For the cases with both cD=O and n 1=0 we cannot apply our 
approximations for p(M-m,u) and t 1(M-m), because the demand Dis arithmetic. 
For these cases we have used the exact formulas for p(M-m,u) and t 1(M-m), 
which are trivial to derive. The actual service levels Sact and yact are 
determined by computer simulation. In each example we have simulated 
250,000 customers. The notation 0.953(2) for S t means that the 95% ac 
confidence interval of the simulated value is given by 0.951-0.955. If the 
demand is deterministic then the fraction of customers, whose demands 
cannot be met directly from stock on hand, is a discontinuous function of 
the switching level m with fixed M-m. Hence some service levels cannot 
be achieved. We found that for the case of n 1=0 and n2=5 they-service 
level 0.95 could not be achieved. 

In table 1.5.3 we deal with the sensitivity of the switch-over level 
m to more than the first two moments of the demand distribution. As stated 
above the gamma distribution is of great importance for practical 
applications. Unfortunately the computations of the approximate (m,M)-rules 
require some special numerical procedures for computing incomplete gamma 
integrals and numerical integration. However, it is always possible to find 
a distribution which has the same first or three moments as the gamma 
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Table 1.5.1. The approximate (m,M)-rules and their actual S-service levels. 

c2=0 
2 

D cD=l/3 

'IT 1 '1!2 s m M sact m M sact 

-0.5 1.25 0.95 5.57 8.84 0.950(6) 8.09 11. 37 0.953(4) 
-0.5 2 0.95 1.02 6.49 0.950(3) 1.82 7.30 0.950(3) 
-0.5 5 0.95 0.26 7.65 0.950(1) 0.57 7 .96 0.950(2) 

0 1.25 0.95 5.74 8.90 0.952(5) 8.05 11. 21 0.947(6) 
0 2 0.95 1.44 6.44 0.949(2) 1.87 6.87 0.951 (3) 
0 5 0.95 0.45 6.78 0.950(1) 0.65 6.98 0.950(2) 
0.5 1.25 0.95 5. 15 8.03 0.952(5) 7.52 10. 41 0.952(6) 
0.5 2 0.95 0.76 4.84 0.948(2) 1. 51 5.59 0.949(3) 
0.5 5 0.95 0.04 4.75 0.950(1) 0.33 5.05 0.950(1) 

-0.5 1.25 0.99 9.31 12.58 0.991 (3) 13.26 16.54 0.991 (3) 
-0.5 2 0.99 2.30 7.78 0.991(2) 3.74 9.22 0.990(2) 
-0.5 5 0.99 0.86 8.24 0.990(1) 1.65 9.04 0.990(1) 

0 1.25 0.99 9.47 12.64 0. 991 (2) 13.22 16.38 0.990(3) 
0 2 0.99 2.73 7.73 0.990(1) 3.79 8.79 0.989(2) 
0 5 0.99 0.96 7.28 0.989(1) 1. 72 8.05 0.990(1) 
0.5 1.25 0.99 8.88 11. 77 0.992(3) 12.69 15.58 0.990(4) 
0.5 2 0.99 2.05 6. 13 0.990(2) 3.43 7.51 0.990(2) 
0.5 5 0.99 0.66 5.37 0.989(1) 1.41 6.12 0.990(1) 

2 c2=2 cD=2/3 D 

'IT 1 '1!2 s m M sact m M sact 

-0.5 1.25 0.95 10.65 13.92 0.953(7) 21. 02 24.29 0.951(8) 
-0.5 2 0.95 2. 72 8. 19 0. 950 (3) 6.71 12. 19 0.949 (4) 
-0.5 5 0.95 0.96 8.35 0.949(2) 3.01 10.40 0.948(3) 

0 1.25 0.95 10.58 13. 74 0.947(8) 20.85 24.01 0.958(9) 
0 2 0.95 2. 77 7. 77 0.949(3) 6. 71 11. 71 0.949(4) 
0 5 0.95 1.06 7.39 0.949(2) 3.16 9.49 0.949(2) 
0.5 1.25 0.95 9.92 12.81 0.950(7) 19.68 22.56 0.954(9) 
0.5 2 0.95 2.33 6.41 0.950(3) 5.88 9.96 0.950(5) 
0.5 5 0.95 0.69 5.41 0.949(2) 2.53 7.25 0.949(2) 

-0.5 1.25 0.99 17.26 20.53 0.988(6) 33.39 36.67 0.992(4) 
-0.5 2 0.99 5.28 10.76 0.990(1) 11. 91 17.39 0. 990 (3) 
-0.5 5 0.99 2.51 9.89 0.990(1) 6.43 13.82 0.990(2) 

0 1.25 0.99 17. 19 20.35 0.990(4) 33.23 36.39 0.988(6) 
0 2 0.99 5.33 10.33 0.989(2) 11.92 16.92 0.989(3) 
0 5 0.99 2.61 8.93 0.990(1) 6.58 12.91 0.990(2) 
0.5 1.25 0.99 16.53 19.42 0.993(3) 32.05 34.94 0.992(4) 
0.5 2 0.99 4.89 8.97 0.989(2) 11 .08 15. 17 0.989(2) 
0.5 5 0.99 2.23 6.95 0. 990 ( 1) 5.95 10.67 0.989(2) 
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Table 1.5.2. The approximate (m,M)-rules and their actual y-service levels. 

c2=0 2 
D cn=1/3 

1T 1 1T 2 y m M Yact m M yact 
-0.5 1.25 0.95 6.05 9.33 0.950(6) 8.43 11. 71 0.955(6) -0.5 2 0.95 1.47 6.95 0.950(3) 2. 17 7.65 0.949(2) -0.5 5 0.95 o. 73 8.12 0.950(2) 0.93 8.32 0.950(2) 0 1.25 0.95 6.22 9.38 0.952(6) 8.39 11 .55 0.951(5) 0 2 0.95 1.89 6.89 0.949(2) 2.22 7.22 0.948(3) 0 5 0.95 0.68 7.00 0.963(2) 1. 01 7.34 0.950(2) 0.5 1.25 0.95 5.63 8.51 0.952(6) 7.86 10. 75 0.952(7) 0.5 2 0.95 1. 21 5.29 0.948(2) 1.86 5.94 0.952(3) 0.5 5 0.95 0.50 5.21 0.951(2) 0.69 5.40 0.951(2) -0.5 1. 25 0.99 9.79 13.06 0.991(3) 13.60 16.88 0.991(3) -0.5 2 0.99 2.75 8.23 0.991(2) 4.09 9.56 0.990(2) -0.5 5 0.99 1.42 8.63 0.990(1) 2.01 9.40 0.989(1) 0 1.25 0.99 9.96 13. 12 0.991(3) 13.56 16. 72 0.991(3) 0 2 0.99 3.18 8. 18 0. 990( 1) 4.14 9. 14 0.989(2) 0 5 0.99 1. 3 7 7.69 0.987(1) 2.08 8.41 0.990(1) 0.5 1.25 0.99 9.36 12.25 0.992(2) 13.03 15.92 0.993(3) 0.5 2 0.99 2.50 6.58 0.990(2) 3.78 7.86 0.990(2) 0.5 5 0.99 1.01 5.73 0.989(1) 1. 77 6.48 0. 990 ( 1) 

2 
c2=2 cD=2/3 
D 

1T 1 1T 2 y m M yact m M yact 
-0.5 1.25 0.95 10.82 14.07 0.952(6) 20.46 23.74 0.955(7) -0.5 2 0.95 2.91 8.39 0.949(4) 8.03 11 . 51 0.950(4) -0.5 5 0.95 1. 17 8.55 0.950(2) 2.22 9.61 0.949(2) 0 1.25 0.95 10. 75 13.92 0.948(8) 20.30 23.46 0.945(7) 0 2 0.95 2.96 7 .96 0.947(3) 6.03 11.03 0.951(4) 0 5 0.95 1. 27 7.59 0.950(2) 2.36 8.69 0.950(2) 0.5 1.25 0.95 10. 10 12.99 0.950(8) 19. 12 22.01 0.944(7) 0.5 2 0.95 2.52 6.60 0.950(3) 5.20 9.28 0.950(4) 0.5 5 0.95 0.90 5.61 0.950(2) 1. 73 6.44 0.950(2) -0.5 1.25 0.99 17.43 20.70 0.991(4) 32.84 36. 11 0.993(3) -0.5 2 0.99 5.47 10.95 0.990(2) 11.23 16.71 0.990(2) -0.5 5 0.99 2. 72 10.11 0. 990 ( 1) 5.56 12.95 0.989(1) 0 1.25 0.99 17.36 20.52 0.989(4) 32.67 35.83 0.990(4) 0 2 0.99 5.52 10.52 0.990(2) 11. 23 16.23 0.990(2) 0 5 0.99 2.82 9 .14 0.990(1) 5. 72 12.04 0.990(2) 0.5 1. 25 0.99 16.71 19.59 0.992(4) 31.49 34.38 0.990(4) 0.5 2 0.99 5.08 9. 16 0.989(2) 10.40 14.48 0.990(3) 0.5 5 0.99 2.45 7. 16 0. 990 ( 1) 5.09 9.80 0.990(1) 
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distribution and which is easy to use from a computational point of view. 
2 2 

If O<cD<l and so 1/k~cD<l/(k-1) for some integer k~2, then we can match 

the first two moments of the demand D by a unique mixture 

f(x) k-1 pµ 
k-2 

x e-µx + 
(k-2)! 

k Xk-1 -µx 
(1-p)µ (k-1)! e ' x ;;; 0 

of Ek-l and Ek demand densities with the same scale parameters, where 

2 2 2 2 ! 
p - --2 [kcD-{k(l+cD)-k cD} ] , 

l+cD 

- k-p 
µ - E[D]" 

This mixture of Ek-l and Ek densities has always a unimodal shape like the 

gamma density. We note that this is not true for a mixture of E1 and Ek 

densities with the same scale parameters which mixtures can be used also 

to match the first two moments of D. 
2 For the case of cD>! _ a useful class of demand distributions is the 

class of K2-distributions, which has already been described in section 1.4. 

We recall that the Laplace-Stieltjes transform of a K2-distribution has the 

form (1+a0s)/(1+a 1s+a2s 2). If the demand size Dis gamma distributed with 
2 

cD>!, then there exists a unique K2-distribution having the same first three 

moments as D. This can be verified by using that a gamma distributed random 

variable D has the property E[D3 ]E[D];;;(~)1!(E[D2 ]) 2 if c~f;(~)l; see Whitt 

[1982] for further details. The parameters a0 , a 1 and a 2 of the K2-

distribution having the same first three moments as the gamma distributed 

demand size D with c2>! are given by 
D 

To give the probability density f(x) of this K2-distribution (cf. also 

Cox [1955]), let 

and 
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Table 1.5.3. Sensitivity analysis for the switch-over level m. 

2 
CD=0.4 2 

cD=0.8 

'1T 1 '1!2 s garrnna E2 3 El 3 garrnna El 2 E 1 3 ' ' ' ' 
-0.5 1.25 0.95 8.603 8.594 8.580 11. 6 76 11. 634 11.564 -0.5 2 0.95 1.996 1. 989 1.978 3.092 3.058 2.999 -0.5 5 0.95 0.645 0.643 0.639 1. 13 7 1. 124 1.102 0 1.25 0.95 8.552 8.543 8.528 11.596 11 .553 11.483 0 2 0.95 2.047 2.040 2.029 3.139 3. 104 3.044 0 5 0.95 o. 729 0. 727 0. 722 1. 245 1.230 1.204 0.5 1.25 0.95 8.001 7.991 7.974 10.891 10.843 10. 763 0.5 2 0.95 1.671 1.663 1.649 2.665 2.625 2.556 0.5 5 0.95 0.398 0.395 0.387 0.852 0.829 0. 792 -0.5 1.25 0.99 14.059 14.043 14.017 18.859 18.782 18.655 -0.5 2 0.99 4.040 4.024 4.000 5.917 5.836 5.703 -0.5 5 0.99 1.815 1.801 1. 780 2.869 2.799 2.678 0 1. 25 0.99 14.008 13.992 13.966 18.779 18.701 18 .573 0 2 0.99 4.091 4 .075 4.050 5.964 5.882 5.749 0 5 0.99 1 .895 1.879 1 .857 2.975 2.902 2. 774 0.5 1.25 0.99 13.457 13.440 13.411 18.074 17.991 17 .854 0.5 2 0.99 3.715 3.698 3.671 5.489 5.403 5.261 0.5 5 0.99 1.566 1 .549 1 .525 2.581 2.501 2.363 

2 
c2=3 cD=1.5 
D 

'1T 1 '1!2 s garrnna 2-mom. 3-mom. gamma 2-mom. 3-mom. 

-0.5 1.25 0.95 17. 110 17.502 17 .105 28.894 30.460 28.859 -0.5 2 0.95 5. 162 5.502 5.162 9.906 11.376 9.896 -0.5 5 0.95 2. 178 2.370 2. 195 4.836 6. 121 4.915 0 1.25 0.95 16. 979 17.382 16.974 28.649 30.264 28.612 0 2 0.95 5. 187 5.534 5. 187 9.852 11.353 9.840 0 5 0.95 2.314 2.526 2.329 4.989 6.305 5.044 0.5 1.25 0.95 16.001 16.452 15.996 27.080 28 .887 27.040 0.5 2 0.95 4.511 4.900 4.512 8.695 10 .344 8.683 0.5 5 0.95 1. 790 2.058 1.803 4.130 5.582 4.161 -0.5 1.25 0.99 27.319 28.036 27.305 45.597 48.323 45.508 -0.5 2 0.99 9.372 10. 139 9.340 1 7. 111 19.803 16.915 -0.5 5 0.99 4.892 5.609 4.877 9.654 12.319 9.545 0 1.25 0.99 27 .189 27.915 27.174 45.352 48.127 45.261 0 2 0.99 9.397 10.172 9.365 17.056 19.780 16.858 0 5 0.99 5.031 5. 773 5.011 9.812 12 .503 9.675 0.5 1.25 0.99 26.210 26.986 26 .197 43.783 46.750 43.689 0.5 2 0.99 8. 720 9.537 8.690 15.897 18. 771 15.702 0.5 5 0.99 4.508 5.308 4.485 8.958 11. 780 8.791 



Note that O~q~1 if c~G1 and q<O otherwise. The associated density f (x) has 

the form 

f(x) 
-µ 1x -µzx 

p1µ1e + Pzµze 
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with p 1=q, Pz=1-q, µ 1=b 1 and µz=bz. Since O~q~1 for c~G1, we have that for 

c~G1 the Kz-density belongs to the well-known class of hyperexponential 

densities of order two (Hz-density). The Hz-density is always unimodal with 

a maximum at x=O. The Hz-density is not uniquely determined by its first two 

moments. We have seen above that a unique Hz-density can be found having 
. . . z 

the same first three moments as a gamma density with cDG1. Another Hz-

density that is often used in practice is the Hz density with balanced 

means, i.e. p 1/µ 1=pz/µz (cf. table 1.3.1). The parameters of this Hz 

density are given by 

H1 
cz-1 ! 

D 
+{-z-} ], 

cD+1 
Pz 

In table 1.5.3 we give the switch-over level m for several demand 

distributions having the same first two or three moments. We assume gamma 

distributed demand D with c~=0.4, 0.8, 1.5 and 3. For c~=0.4 and 0.8 we also 

consider both unimodal mixtures of Ek-l and ~demand densities (Ek_ 1 k) with 
' 

the same scale parameters and mixture~ of E1 and Ek derr.and densities (E 1 ,k) 

with the same scale parameters. For c;= 1. 5 and 3 we also consider both the Hz­

density with balanced means and having the same first two moments as the E;amma 

demand D and the H2-density having the same first three moments as the gamma demand D. 

Conclusions. 

From our numerical investigations we draw some conclusions concerning 

the accuracy of the approximations and the sensitivity of the level m. 

(i) Accuracy. In general the approximations yield excellent results 

provided M-m=O or M-m satisfies condition 1.3.1. Some care should be taken 

in applying the approximations when both AE[D]/nz is small and the required 

service level is low. It is a well-known phenomenon that the performance of 

many approximations deteriorates for very light traffic, i.e. when AE[D]/nz 

gets small. To give some indication as to when the approximations can be 

applied, we claim that a sufficient accuracy is guaranteed when 
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AE[D]/11 2 ~ 0.1 and the required service level~ 0.9. 

This condition holds obviously in practical applications. 

(ii) Sensitivity. As might be expected, the switch-over level m becomes 

increasingly sensitive to more than the first two moments of the demand 
2 

when cD gets larger. However, for the practically important case of 
2 

O<cD;<;;1 we found that the m-value depends on the demand distribution F 

mainly through the first two moments. Here we add the condition that the 

demand density should satisfy a "reasonable" shape constraint. It is always 

possible to construct extremal two-point distributions (cf. Whitt [1984]) 

such that the switch-over level m is quite sensitive to more than the first 

two moments of these distributions. 

As AE[D]/11 2 gets close to 1, then them-value gets less sensitive to 

more than the first two moments. This finding is also familiar from 

queueing theory (heavy-traffic results). 

We recall that a necessary condition for applying the approximations 

1.4.1-1.4.3 is that F has an exponentially decreasing tail. This condition 

is not satisfied if F is a lognormal distribution. Nevertheless the 

approximate (m,M)-rules obtained by fitting as above a mixture of Ek-l and 

Ek distributions to the demand D yield acceptable results when the actual 

demand Dis lognormal provided O<c~;<;;1, AE[D]/11 2~0.S and the required 

service level is not higher than 99%. A similar conclusion was found in a 

related study of De Kok and Tijms [198Sa]. 

Another interesting result we found from our numerical investigations 

is the approximate relation 

2 2 m - (1-cD)m(det)+ cDm(exp), 

2 provided O<cD;<;;1, where m(det) and m(exp) denote them-value for the 

respective cases of deterministic and exponential demands. Here we remind 

that for M-m :o; E[D] and 11 1=0 the switching level m(det) should be computed 

from the approximations 1.3.1, 1.3.2 and 1.3.3 rather than from the exact 

expressions for t 1(M-m), p(M-m,u) and E[U]. The above relationship has 

been exploited in related models in which approximations like those derived 

in section 1.4 are not available; see De Kok and Tijms [198Sa,b]. 
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2. THE LOST-SALES MODEL. 

In this chapter we assume that excess demand is lost rather than 

backlogged as in chapter 1. Then any customer, whose total demand cannot be 

met directly from stock on hand, is satisfied with the amount of inventory 

available, while the excess demand is lost. 

We focus again on finding tractable expressions for a number of service 

measures of interest, such as the long-run fraction of demand that is lost 

and the average number of stockout occurrences per unit time. Towards this 

end we derive relations between the lost-sales model and the backlog model 

studied in chapter 1. 

2.1. Description of the model and service measures. 

In this section we describe the model and define the service measures 

that will be considered. Though the assumptions for this model are almost 

identical to those for the backlog model, we think it is appropriate to 

refresh the reader's memory. 

Customers arrive according to a Poisson process with rate A. The 

demands of the customers are independent random variables having a common 

distribution function F with F(O)=O. The demands are independent of the 

arrival process. Excess demand is lost. 

The production is governed by one out of two production rates rr 1 and rr 2 

such that 

(2.1. 1) 

where the generic random variable D denotes the demand of a customer. The 

inventory is controlled by an (m,M)-rule. We assume an infinite storage 

capacity. 

An exact renewal-theoretic analysis of this model is contained in 

Doshi et al [1978], but the results obtained there are in general 

computationally intractable. 

The lost-sales model also arises if we want to describe inventories 

of a perishable item. The item perishes after a fixed time T. On the other 

hand the item is continually added to the inventory at rate rr 2 • Demands 

for the item occur according to a compound Poisson process. Examples of 

perishable items are chemical supplies in a continuously processing plant 
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and blood stored in a bloodbank. The perishable inventory system is 
considered by Graves [1982] for both exponential and deterministic demand. 
It is easy to see that Graves deals with the lost-sales model with rr 1=0 and 
a (rr 2T, rr 2T)-rule for controlling the inventory. This rule reflects the 
finite life-time of the items. 

In the lost-sales model the condition rr 2>AE[D] is not necessary to 
assure the existence of an equilibrium distribution for the inventory level. 
Nevertheless, in practical situations, where a high level of customer 
service is required, the production rate rr 2 must be greater than the demand 
rate. 

Now we fix an (m,M)-rule and define for t~O, 

N(t) :=the number of customers that arrive in (O,t]. 

V(t) ·=the total demand in (O,t]. 

X(t) ·= the inventory level at time t. 

B(t) := the amount of demand in (O,t] that is lost. 

Q(t) :=the number of stockouts that occur in (O,t]. 

S(t) := the number of customers arriving in (O,t] whose 

demands are partially lost. 

It is immediately clear that 

(2.1.2) Q(t) s (t)' t ~ o. 

Next we define the service measures. 

(i) a-service measure. 

the long-run average number of stockouts per unit time, 

1. Q(t) 
im-t-. 

t-+oo 
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(ii) S-service measure. 

the long-run fraction of demand that is not met directly from stock 

on hand (and is lost) 

(iii) y-service measure. 

the long-run fraction of arriving customers, whose demands are not 

met directly from stock on hand (and are partially lost), 

1 . S(t) 
1m N(t)• 

t-ro:> 

Through the assumptions the inventory process is again regenerative. 

We define: 

a cycle := the time elapsed between two consecutive epochs at 

which the production rate is switched from n2 to n 1. 

Assuming that at epoch 0 a cycle starts, define for the given (m,M)-rule 

T := the next epoch at which the production rate is switched 

from n 2 to TI 1 , 

N := N(T), V := V(T), B := B(T), Q := Q(T), S := S(T). 

Then it follows that with probability 1 

(2.1.3) 1 . Q(t) _ E[Q] 
im -t- - Effi' 

t+oo 

1 . B(t) _ E[B] 
im V(t) - 'iITVT' 

t-ro:> 

1 . S(t) _ E[S] 
im N(t) - ETNT" 

t-ro:> 

It follows from (2.1.2) and the relations E[N]= E[T] and E[V]=AE[D]E[T] 

that it suffices to find expressions for E[T], E[B] and E[Q]. 

As in chapter 1 we express E[T], E[B] and E[Q] in terms of a number of 

basic functions. Under the condition that at epoch 0 the inventory level 

equals x+m, x~O, and production rate n 1 is used, we define 

t 1(x) := the expected time until the inventory level decreases 

below m. 



58 

p(x,u) := 

the probability of an undershoot greater than u of 
the level m when the inventory decreases below m 
for the first time, 0 ;;; u;;; m 

the probability of a lost demand greater than u-m 
when the inventory decreases below m for the first 
time, u;;; m. 

Note that the definition of p(x,u) for the lost-sales model slightly differs from 
the one given in section 1.3 for the backlog model. As before t 1(x) and 
p(x,u) are independent of the switching levels m and M. 

Next, assuming that at epoch 0 the inventory equals O;i;x;i;M and the 
production rate n2 is used, we define 

t 2 (x) := the expected time until the inventory reaches the 
level M. 

b(x) ·= the expected amount of demand that is lost until the 
inventory reaches the level M. 

q(x) := the probability that a stockout occurs before the 
inventory reaches the level M. 

For ease of notation we have suppressed the dependency on M of the functions 
t 2 (x), b(x) and q(x). 

As in section 1.2 we can find expressions for E[T], E[B] and E[Q] in 
terms of t 1(x), p(x,u), t 2 (x), q(x) and b(x), 

(2.1.4) E[T] 

(2.1.S) E[Q] 

(2.1.6) E [B] 

m 
t 1(M-m) + 

0
J t 2 (m-u)du(1-p(M-m,u)) + t 2 (0)(1-p(M-m,m)) 

-1 (1-q(O)) {p(M-m,m) + 
m 

f q(m-u)du(1-p(M-m,u))} 
0 

m 
f [u-m+b(O)]d (1-p(M-m,u)) + f b(m-u)d (1-p(M-m,u)). m u 0 u 

To derive the relations (2.1.4)-(2.1.6) we conditioned on the undershoot of 
the inventory level m when this level is downcrossed. In case the undershoot 



is less than m the inventory drops to a positive level between 0 and m. 

Otherwise the inventory on hand is exceeded by the demand of a customer 

and the inventory level drops to zero. 

It remains to find expressions for the basic functions. This will be 

achieved by the derivation of relations between the basic functions for 

the present model and those for the backlog model of chapter 1. In the 

sequel we distinguish between the two sets of basic functions by indexing 

the latter basic functions by a "B". Once the relations have been 

established we can invoke the results obtained in the sections 1.3 and 1.4 

to obtain the desired expressions for the basic functions for the lost­

sales model. 
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This chapter is further organized as follows. In section 2.2 we will 

consider the functions t 1(x) and p(x,u). In section 2.3 we focus on the 

functions t 2 (x), q(x) and b(x). In section 2.4 we validate the approximations 

by computer simulation and study the sensitivity of the switching level m to 

more than the first two moments of the demand per unit time. 

2.2. Expressions for t 1(x) and p(x,u). 

We assume that at epoch 0 the inventory level equals x+m, x~O and 

production rate n 1 is used. Define 

, 1 :=the first arrival epoch after epoch O. 

'n := the time that elapses between the arrival of the (n-1)-th 

and n-th customer, n ~ 2. 

Dn := the demand of the n-th arriving customer. 

We again consider the random-walk {Sn}:= 1 defined by 

where 

s 
n 

n 
:= l: x.' 

i=1 l. 

n ~ 1. 

n ~ 1, 

We further recall the definition of N(x), 
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N(x) := min{nls >x}, 
n 

x ;;: o, 

i.e. the N(x)-th customer is the first one causing an undershoot of level m. 
It then follows from the redefinition of p(x,u) that 

(2.2.1) p(x,u) = P{SN(x)-x>u}, x ;;: o. 

The sequences {D } and {T } are exogeneous to the inventory process. n n 
This implies that the random walk {Sn} is not affected by the way excess 
demand is lost. Thus the process {Sn} defined above is identical to the 
corresponding random walk defined in section 1.3. Therefore we find 

(2.2.2) p(x,u) = pB(x,u), x ;;: o, 

where pB(x,u) denotes the counterpart of p(x,u) in the backlog model. 
By using the principle of conservation of flow we obtain in exactly 

the same way as we derived (1.3.10), 

(2.2.3) t ( ) _ x+E[U(x)] 
1 x - :\E[DJ-rr 1 ' x ~ o, 

where E[U(x)] is defined by 

E[U(x)] := J p(x,u)du. 
0 

Hence it follows from (1.3.10), (1.3.11) and (2.2.2) that 

(2.2.4) x ~ o, 

where t 1 B(x) is the counterpart of t 1(x) for the backlog model. 
' Now we are in a position to give approximations for t 1(M-m) and 

p(M-m,u), u;;:O. We distinguish between the cases M=m and M>m. 

Case M=m: 

It follows from (1.3.33), (1.3.34), (2.2.2) and (2.2.4) that 



(2. 2. 5) 

and, for any u ~ 0, 

(2.2.6) p(O,u) 

Case M>m: 

when 1T 1 < 0 

when 1T 1 0, 

when 1T 1 > 0 

lo 
1-F(u) "' * 
A/1T 1 J e-s Y(1-F(y+u))dy 

0 

when 1T 1 < 0 

when 1T 1 0. 

when 1T 1 > 0 

To use the approximations 1.3.1 and 1.3.2 we have to restrict 

ourselves to (m,M)-policies satisfying 

Condition 2.2.1. 

For the case of 1T 1 ;:;; 0 

and for the case of 1T 1 > 0 

when 

when 

2 when c2 ;:;; 
1 

2 
CD 

2 
CD 

2 when c2 > 1 
1 

;:;; 

> 1 

2 2 2 2 2 . 
where c 2 =(E[Z 1]-(E[z 1]) )/(E[z 1]) and E[Z ] and E[Z 1] are given by 

(1.3.22) 1and (1.3.23), respectively. Then it follows from approximations 

1.3.1 and 1.3.2 and the equations (2.2.2) and (2.2.4) that 

Approximation 2.2.1. 
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when 1T 1 ;:;; 0 

t 1 (M-m) 

when 1T 1 > 0 
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Approximation 2.2.2. For any u ~ 0 

{"[~I-• 1 

! ( 1-F (y)dy 

p(M-m,u) u -
* ! (1-F(y))(l-e-s (y-u)dy, AE[D)-11 1 u 

when 11 1 $ 0 

when 11 1 > 0 

* The constant s is the unique positive root of 

(2.2. 7) 0. 

2.3. Expressions for t 2(x), b(x) and q(x). 

Throughout this section we assume that production rate 11 2 is used and 
at epoch 0 the inventory level equals 0$x$M. We must find expressions for 
t 2 (x), b(x) and q(x). We first derive relations between these functions and 
the corresponding basic functions t 2 B(x), bB(x) and qB(x) in the backlog 
model. The functions t 2 B(x) and qB(~) are defined analogously to t 2 (x) and 

' q(x), while the function bB(x) is defined by 

bB(x) ·= the expected amount of demand that is backlogged until 
the inventory level reaches M, 0 $ x $ M. 

In section 1.4 we derived tractable expressions for t 2 B(x), qB(x) and 
' bB(x). 

First we turn our attention to the hitting probability q(x). Once we 
have fixed an (m,M)-policy the evaluation of the inventory process is 
completely determined by the sequences {Dn} and {Tn}. Given a positive 
initial inventory and a realization of the sequences {Dn} and {Tn} it then 
follows that the induced sample paths for the backlog model and the lost­
sales model are identical as long as the inventory is positive. Hence, given 
a realization of the sequences {D } and {T } and a positive initial n n 
inventory x$M we have the following result: 

A stockout occurs before the inventory level reaches the value 
M in the lost-sales model if and only if a stockout occurs 
before the inventory level reaches the value M in the backlog 
model. 



This implies that for all x~O, 

(2.3.1) 

The equations (1.2.11), (2.1.S), (2.2.2) and (2.3.1) together imply that 

(2.3.2) 

Here QB denotes the number of stockout occurences in a cycle for the 

backlog model. 
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To derive approximations for t 2 (x) and b(x) we derive an exact 

relation between these two functions by using the principle of conservation 

of flow. Recall the definition of T2 (x), 

T2 (x) :=the time until the inventory level reaches the 

value M, 0 ;;; x ;;; M. 

Then, by its very definition, 

(2.3.3) 

Clearly, the production in (O,T2(x)] is equal to rr2T2 (x). The demand in 

(O,T2 (x)] is equal to V(T2 (x)) and the amount of demand that is lost in 

this time interval is equal to B(T2 (x)). Now, by the priniple of 

conservation of flow, we have that at any time t>O the inventory position 

X(t) equals the sum of the initial inventory X(O) and the amount produced 

in (O,t] minus the amount of demand that is not lost during (O,t]. Using 

X(O)=x and X(T2 (x))=M this implies that 

(2.3.4) 0 ;;; x ;;; M. 

We also have that 

(2.3.5) b(x) E(B(T2(x))], 

and 

(2.3.6) 
N(T2 (x)) 

l: Dn' 
n=1 

0 ;;; x ;;; M. 
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Though N(T2 (x)) is not a stopping time for the sequence {Tn} it can be 
verified that N(T2 (x)) is indeed a stopping time for {Dn}. Application of 
Wald's equation yields 

(2.3.7) E[V(T2 (x))] = E[N(T2 (x))].E[D], 0 ~ x ~ M. 

The Markov property of the exponential distribution implies that after the 
inventory level has reached the value M an exponentially distributed time 
with mean 1/A elapses until the next customer arrives. Hence 

(2.3.8) 0 ~ x ~ M. 

The fact that N(T2 (x))+1 is a stopping time for {Tn} allows for the 
application of Wald's equation, yielding 

(2.3.9) 

where we used (2.3.3) and (2.3.8). Combining the equations (2.3.7) and 
(2.3.9) we obtain 

(2.3.10) 

Taking expectations in (2.3.4) and using (2.3.3), (2.3.5) and (2.3.10) we 
find 

which implies 

(2.3.11) 

To find another relation for t 2 (x) we will express t 2 (x) in terms of 
basic functions for the backlog model. Let us define for the backlog model 

t~(x) := the expected time during which the inventory is 
negative until the inventory reaches the level M for 
the first time, 0 ~ x ~ M. 



The following result holds, 

(2.3.12) 

We shall give a rough outline of a proof of this result. 

We first define for the lost-sales model 

Q(x) := the number of stockouts until the inventory level 

reaches the value M, when the initial inventory is x, 

0 :> x :> M. 

Also, for the backlog model let 

QB(x) := the number of stockouts until the inventory level 

reaches the value M, when the initial inventory is x, 

0 ~ x :> M. 

By the same arguments as used to derive (1.2.11) and using (2.3.1) we find 

(2.3.13) 0 :> x :> M, 

where the notation X ~ Y means that P{X:>z}=P{Y::iz}, for all z. 
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Next we define for the lost-sales model the random variables cri and vi' 

VQ := 0, a. := inf{ t :t>v. 1 , X(t) :>O}, 
]. i-

v. := inf{t:t~cr., X(t)~O}, 
]. ]. 

i ~ 1. 

Similarly, we define the random variables crB . and vB . for the backlog 
th ,J. ,J. 

model. In words cr. is the i epoch at which a stockout occurs, v. is the 
]. ]. 

first epoch beyond the ith stockout at which the inventory level equals O. 

For ease of notation we suppress the dependency on X(O)=x. For the lost­

sales model we have 

(2.3.14) v. 
]. 

i ~ 1, with probability 1. 

Then, using the above definitions, it follows after some reflections that 

for the backlog model, 
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(2.3.15) 

and 

(2.3.16) B 
t 2 (x) 

0 ;:;; x;:;; M 

QB(x) 
tB-(x) + E[ l: (crB .-vB ._ 1)+T2 (x)-vB Q ( )] , 0 ~ x;:;; M, 

i= 1 'l. 'l. ,B ' B x 

where T2 ,B(x) is defined analogously to T2 (x). For the lost-sales model we 

find 

(2.3.17) 

where we used relation (2.1.14). 

Using the lack of memory of the Poisson arrival process it can be 

shown that the respective inventory processes {X(t), t;;;O} and {~ (t), t;;;O} 

for the lost-sales and backlog model behave probabilistically the same if 
we only observe the process {XB(t), t;;;O} at times when the inventory is 

non-negative. Then it can be shown that 

(2.3.18) 

(2.3.19) 

(2.3.20) 

Combining (2.3.13), (2.3.15)-(2.3.20) we finally obtain equation (2.3.12). 

In section 1.2 we argued that E[B]=rr 2E[J]. Using the same arguments we 

obtain 

(2.3.21) 

Note that equation (2.3.21) does not hold for x<O because of the initial 

backlog. The equations (1.4.1), (2.3.12) and (2.3.21) together imply 

(2. 3. 22) M-x 
t 2 (x) = -rr-2 --f.-E~(-D~) - -rr-2-

0 ~ x ;;; M. 



An expression for b(x) in terms of bB(x) can be deduced from (2.3.11) and 

(2.3.22)' 

(2.3.23) b(x) 0 ;::; x;::; M. 

Now we are in a position to give approximations for q(x), b(x) and 

t 2 (x). In view of relations (2.3.1), (2.3.22) and (2.3.23) we want to use 

approximations 1.4.1 and 1.4.2. Therefore we must assume that the 

distribution assumption DA holds, i.e. 

(2.3.24) 1-F(x) -Kx 
O(e ), (x-+«>), for some K > O. 

Under this assumption we can define the number o as the unique positive 

solution to the equation 

(2.3.25) 
00 oy ;\ 

f e - (1-F(y))dy 
0 11 2 

1. 

Also, because of (2.3.24), the number v defined by 

(2.3.26) 

is finite. 

Thus we find 

v := 
00 oy ;\ 

!ye -(1-F(y))dy 
0 11 2 

Approximation 2.3.1. For all 0;::; x;::; M, 

with 

and 

(2.3 .27) 

q(x) 
qoo(x)-qoo(M) 

1-q00 (M) 

q (x) 
00 

AE[D] a=---
11 2 

s 
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Approximation 2.3.2. For all 0 ~ x ~ M, 

b(x) b (x)-b (M) 
00 00 

with 

(2.3.28) -ox e 

and the constants a and Sare given by (2.3.27). 

Approximation 2.3.3. For all 0 ~ x ~ M 

M-x (b00 (x)-b00 (M) 

TI2-AE[D] 

and b00 (x) is approximated by the right-hand side of (2.3.28) 

In the next section we present numerical results, showing the accuracy 
of the approximations. We also consider the sensitivity of the service 
level m to more than the first two moments of the demand per unit time. 

2.4. Numerical results and conclusions. 

In this chapter we analysed the lost-sales model by establishing first 
exact relations between this model and the backlog model and by invoking 
next the approximations derived in chapter 1 for the backlog model. In view 
of this analysis we may expect that the resulting approximations for the 
lost-sales model show a similar performance of a good quality as the 
approximations for the backlog model. Our numerical investigations indeed 
support this claim and also show that concerning insensitivity issues the 
same conclusions can be made as for the backlog model. 

In the tables 2.4.1 and 2.4.2 we give numerical results showing the 
accuracy of the approximations in the lost-sales model for both the 
S-service measure and the y-service measure. The parameters of the model 
are varied as follows. The production rate TI 1 has the three values -0.5, 
0 and 0.5, the production rate TI 2 has the three values 1.25, 2 and 5. The 
service levels S and y are varied as 0.95 and 0.99. In all examples we have 
chosen A=1 and E[D]=1. As before cD denotes the coefficient of variation 
of the demand size D. We vary cii as 0, 1/3, 2/3 and 2 and consider the 
following demand distributions, 



(i) deterministic demand 

(ii) gannna demand 
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The value of M-m is predetermined from the formula (1.5.1) with K=25 

and h=1. Next, by applying the approximations given in sections 2.2 and 2.3, 

we compute the switching level m such that the (m,M)-rule meets the 

S-service level requirement or the y-service level requirement. As in 

section 1.5 we used the exact expression for p(M-m,u) and t 1(M-m) when the 

demand D is deterministic. For the approximate (m,M)-rules the actual 

service levels Sact and yact were obtained by computer simulation, where in 

each example 250,000 customer demands were simulated. As before, the 

notation 0.950(4) for the actual service level means that the 95% confidence 

interval of the simulated value is given by 0.946-0.954. 

It is noteworthy from the tables 2.4.1 and 2.4.2 and the tables 1.5.1 

and 1.5.2 that the values of the switching level m in the lost-sales model 

differ significantly from the corresponding values in the backlog model. 

This phenomenon is peculiar to the production-inventory model with 

continuously occurring inventory replenishments; for the pure inventory 

model with discrete replenishments the lost-sales model and the backlog 

model are nearly the same when the required service level is high, see 

Tijms and Groenevelt [1984). 

Finally we make the following remarks on the results in the tables 
2 

2.4.1 and 2.4.2. In table 2.4.1 the case of cD=O, rr 1=0.5, rr 2=5 and S=0.95 

is marked with an asterisk. In this particular case it turned out that the 

(m,M)-rules with M-m predetermined by (1.5.1) provide a service level 

S>0.95 for all ~O. The approximate S-service level of the (0.00,4.71)-rule 

is 0.956. In table 2.4.2 the case of c~=O, rr 1=0, rr 2=5 and y=0.95 is marked 

with a double asterisk. For this case the prespecified level y=0.95 cannot 

be achieved. This results from the fact that for deterministic demand and 

rr 1=0 the fraction of customers whose demand is met directly from stock on 

hand is a discontinuous function of m when M-m is fixed. The approximate 

y-service level of the (0.68,7.00)-rule is 0.971. 
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Table 2.4.1. The approximate (m,M)-rules and their actual 13-service levels. 

c2=0 2 
D cD=1/3 

TT 1 TT 2 13 m M 13act m M 13act 

-0.5 1.25 0.95 2.26 5.53 0.949(2) 3.51 6.78 0. 951(2) 
-0.5 2 0.95 0.52 5.99 0.950(1) 1.06 6.53 0.950(2) 
-0.5 5 0.95 0.16 7.54 0.950(1) 0.42 7.81 0.951 (1) 

0 1.25 0.95 2.43 5.59 0.951 (2) 3.46 6.63 0.950(2) 
0 2 0.95 0.93 5.93 0.950(2) 1. 11 6.11 0.950(2) 
0 5 0.95 0.37 6.69 0.950(1) 0.50 6.83 0.951 (2) 
0.5 1.25 0.95 1.83 4. 72 0.950(2) 2.94 5.82 0.950(2) 
0.5 2 0.95 0.26 4.34 0.949(1)* 0.74 4.83 0.951(2) 
0.5 5 0.95 o.oo 4.71 o. 956( 1) 0.18 4.90 0.951 (2) 

-0.5 1.25 0.99 5.66 8.93 o. 990( 1) 8.22 11.49 0.991(2) 
-0.5 2 0.99 1. 76 7.24 0.990(1) 2.93 8.40 0.990(1) 
-0.5 5 0.99 0.79 8.17 o. 990( 1) 1.51 8.89 0.990(1) 

0 1.25 0.99 5.83 8.99 0.989(2) 8.17 11 .34 0.991(2) 
0 2 0.99 2.18 7 .18 0.990(1) 2.98 7.98 0.990(1) 
0 5 0.99 0.86 7 .19 0. 990 ( 1) 1.58 7.90 0.990(1) 
0.5 1.25 0.99 5.24 8.12 0.990(2) 7 .65 10.53 0.991(2) 
0.5 2 0.99 1.51 5.59 0.990(1) 2.61 6.70 0.990(1) 
0.5 5 0.99 0.58 5.30 0.989(1) 1.26 5.98 0.990(1) 

2 
c2=2 cD=2/3 D 

TT 1 TT2 13 m M 13act m M 13act 

-0.5 1.25 0.95 4.79 8.06 0.951(3) 10.05 13.32 0.951(3) 
-0.5 2 0.95 1.69 7 .17 0.950(2) 4.63 10. 11 0.950(3) 
-0.5 5 0.95 0.76 8.14 0.949(2) 2.57 9.96 0.948(3) 

0 1. 25 0.95 4. 72 7.88 0.949(2) 9.88 13.04 0.949(4) 
0 2 0.95 1. 74 6.74 0.949(2) 4.63 9.63 0.950(3) 
0 5 0.95 0.86 7 .18 0.950(2) 2. 72 9.05 0.949(2) 
0.5 1.25 0.95 4.07 6.95 0.951(3) 8.71 11. 59 0.953(3) 
0.5 2 0.95 1.30 5.38 0.950(2) 3.80 7 .89 0.950(2) 
0.5 5 0.95 0.49 5.20 0.950(2) 2.09 6.81 0.949(3) 

-0.5 1.25 0.99 10.81 14.08 0.990(2) 21.32 24.59 0.991(2) 
-0.5 2 0.99 4.19 9.67 0. 990 ( 1) 9.70 15.18 0.990(2) 
-0.5 5 0.99 2.30 9.68 0. 990 ( 1) 5.96 13.34 0.989(2) 

0 1.25 0.99 10.74 13.90 0.990(2) 21.15 24.32 0.990(2) 
0 2 0.99 4.24 9.24 0. 990 ( 1) 9.71 14.71 0.990(2) 
0 5 0.99 2.40 8. 72 0.990(1) 6.11 12.43 0.991 (2) 
0.5 1.25 0.99 10.09 12.97 0.991(2) 19.98 22.87 0.989(2) 
0.5 2 0.99 3.80 7.88 0. 989 ( 1) 8.87 12.96 0.989(2) 
0.5 5 0.99 2.02 6.74 0.990(1) 5.48 10.20 0.990(2) 
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Table 2.4.2. The approximate (m,M)-rules and their actual y-service levels. 

c2=0 
2 

D cD=1/3 

1T 1 1T2 y m M yact m M yact 

-0.5 1.25 0.95 3.82 7 .10 0.949(3) 4.73 8.01 0.951(2) 
-0.5 2 0.95 1.21 6.68 0.950(2) 1.65 7. 13 0.950(2) 
-0.5 5 0.95 0.71 8.09 0.950(2) 0.84 8.23 0. 950 (2) 

0 1.25 0.95 3.99 7 .15 0.951(3) 4.69 7 .85 0.950(2) 
0 2 0.95 1.64 6.64 0.946(2)** 1. 70 6.70 0.950(2) 
0 5 0.95 0.68 7.00 0.968(2) 0.93 7.25 0.950(2) 
0.5 1.25 0.95 3.40 6.28 0.951(3) 4.16 7.05 0.951(2) 
0.5 2 0.95 0.94 5.02 0.948(2) 1.34 5.42 0.951 (2) 
0.5 5 0.95 0.47 5.18 0.951( 1) 0.60 5.32 0.951 (2) 

-0.5 1.25 0.99 7.39 10.67 0.990(2) 9.60 12.87 0.990(2) 
-0.5 2 0.99 2.49 7.97 0.990(1) 3.54 9.02 0.990(1) 
-0.5 5 0.99 1.21 8.60 0.990(1) 1.93 9.32 0.989(1) 

0 1.25 0.99 7.56 10. 72 0.991 (2) 9.55 12.71 0.991 (1) 
0 2 0.99 2.91 7.91 0.990(1) 3.59 8.59 0.990(1) 
0 5 0.99 1.34 7.66 0.988(1) 2.01 8.33 0.990(1) 
0.5 1.25 0.99 6.97 9.86 0.991 (2) 9.02 11.91 0.991(2) 
0.5 2 0.99 2.24 6.32 0.990( 1) 3.23 7.31 0.990(1) 
0.5 5 0.99 0.98 5.69 0.989(1) 1.69 6.40 0.990( 1) 

2 c2=2 cD=2/3 D 

111 112 y m M yact m M y act 

-0.5 1. 25 0.95 5.47 8.75 0.951 (3) 7.40 10.67 0.951 (2) 
-0.5 2 0.95 2.03 7.51 0.950(2) 3.22 8.70 0.950(2) 
-0.5 5 0.95 1.00 8.38 0.950(2) 1.58 8.96 0.950(2) 

0 1.25 0.95 5.40 8.57 0.949(2) 7.23 10.39 0.949(3) 
0 2 0.95 2.08 7.08 0.949(2) 3.22 8.22 0.950(2) 
0 5 0.95 1.10 7.43 0.950(2) 1. 71 8.04 0.950(2) 
0.5 1.25 0.95 4.75 7.64 0.952(3) 6.06 8.94 0.952(2) 
0.5 2 0.95 1.64 5.73 0.950(2) 2.40 6.48 0.950(2) 
0.5 5 0.95 o. 73 5.44 0. 950 ( 1) 1.07 5.79 0.950(2) 

-0.5 1.25 0.99 11.59 14.86 0.990(2) 18.17 21.44 0.991(1) 
-0.5 2 0.99 4.55 10.03 0. 990 ( 1) 8 .17 13.65 0.990(2) 
-0.5 5 0.99 2.56 9.94 0.990(1) 4.83 12.21 0. 990 ( 1) 

0 1.25 0.99 11.52 14.68 0.990(2) 18.00 21.17 0.990(2) 
0 2 0.99 4.60 9.60 0.990(1) 8. 17 13.17 0.990(1) 
0 5 0.99 2.66 8.98 0.990(1) 4.97 11.30 0. 990 ( 1) 

0.5 1.25 0.99 10.87 13.75 0.991(2) 16.83 19. 72 0.990(2) 
0.5 2 0.99 4.16 8.24 0.989(1) 7.34 11.42 0.989(2) 
0.5 5 0.99 2.28 7.00 0.990(1) 4.35 9.06 0.990(1) 
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Our numerical results 1ndicate that, concerning the sensitivy of the 
switching level m to more than the first two moments of the customer demand 
D, the same conclusions can be made as for the backlog model (see section 
1.5). A different, but related sensitivity study concerns the influence of 
the arrival rate A on the switching level m while fixing the first two 
moments of the demand per unit time. Such a sensitivity analysis may be 
important in situations in which only limited information is available 
about the demand process, e.g. we know only the first two moments of the 
demand during a given time interval (O,t]. 

Assuming that the process {V(t), t~O} with 

V(t) ·= the total demand in (O,t] 

is a compound Poisson process with arrival rate A and individual demand 
size D, it follows that 

(2 .4. 1) E[V(t)) AE[D]t, 

Then E[V(t)] and E[V2(t)] are completely determined by AE[D] and AE[D2]. 
Let us define 

V·=V(1), 

i.e. Vis the total demand during one unit of time. From (2.4.1) we obtain 

(2.4.2) E[ V] = AE[D], A- 1(c;+1). 

2 -1 2 Note that A~(cV) Suppose we have estimated E[V(t)] and E[V (t)]. Then 
we can determine E[V] and et. The question arises whether this information 
is sufficient to determine an (m,M)-rule that satisfies a given S-service 
level constraint. To answer this question we fix the values of E[V] and 

2 . . cV and we determine the switch-over level m for several values of the 
arrival rate A. In all examples we have chosen E[V)=1. The production rate 
rr 1 has the two values 0 and 0.5, the production rate rr 2 has the three 
values 1.25, 2 and 5. The service level Sis varied as 0.95 and 0.99. We 

2 2 4 . . vary cV as 1, , and 8. For each combination of these model parameters 
we vary A as 1, 2 and 4. For given values of A, E[V] and c~ we compute 
from (2.4.2) the values of E[D] and c;. We fit to the demand D a 
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deterministic distribution when c~=O and a gamma distribution when c~>O, 

Then we compute the switch-over level m that satisfies the given S-service 

level constraint. 

Table 2.4.3. Sensitivity of m to the first two moments of the demand per 

unit time. 

c2=1 v c 2=2 v 

711 712 s !.=1 f.=2 !.=4 t.=1 f.=2 t.=4 

0 1.25 0.95 2.43 2.33 2.37 5.99 6. 10 6.15 
0 2 0.95 0.93 0.64 0.68 2.42 2.57 2.64 
0 5 0.95 0.37 0.25 0.26 1.27 1.40 1.45 
0.5 1. 25 0.95 1.83 1.98 2.05 5.21 5.37 5.45 
0.5 2 0.95 0.26 0.42 0.49 1.89 2.10 2. 19 
0.5 5 0.95 0.00 0.05 0.10 0.84 1.04 1.13 
0 1.25 0.99 5.83 5.99 6. 17 13.32 13. 71 13.90 
0 2 0.99 2.18 2.21 2.41 5.56 6.07 6.31 
0 5 0.99 0.86 1.25 1.41 3.27 3.75 3.95 
0.5 1.25 0.99 5.24 5.65 5.85 12.54 12.98 13 .20 
0.5 2 0.99 1.51 1. 99 2.22 5.03 5.59 5.85 
0.5 5 0.99 0.58 1.05 1.26 2.84 3.40 3.66 

c2=4 v c2=8 v 

711 712 s !.=1 f.=2 f.=4 !.=1 t.=2 f.=4 

0 1.25 0.95 13.84 13.97 14.04 30.01 30.18 30.26 
0 2 0.95 6.99 7 .18 7.27 17.00 17.24 17.36 
0 5 0.95 4.37 4.58 4.68 11.90 12.19 12.34 
0.5 1. 25 0.95 12.27 12.45 12.55 26.82 27.04 27 .15 
0.5 2 0.95 5.83 6.08 6.19 14.46 14. 74 14.89 
0.5 5 0.95 3.51 3. 79 3.92 9 .92 10. 27 10.44 
0 1.25 0.99 29.06 29.48 29.69 61.02 61.48 61. 72 
0 2 0.99 13.99 14.55 14.82 31. 78 32.40 32.70 
0 5 0.99 9 .14 9.67 9.91 22.20 22.80 23.09 
0.5 1.25 0.99 27.49 27 .96 28 .20 57 .84 58.35 58.61 
0.5 2 0.99 12.84 13.44 13.73 29.22 29.86 30.18 
0.5 5 0.99 8.29 8.91 9.20 20.26 20.94 21.28 

The results displayed in table 2.4.3 are quite surprising. We observe 

that as c~ increases the switching level m increases, but the differences 

between the three switching levels for the cases of f.=1, 2 and 4 increase 

only very slightly. Exceptions to this finding are the cases of 71 1=0, 

S=0.95 and rr 2=2 and 5, where the difference between the m-values for !.=1 
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and 2 decreases as et increases from 1 to 2. This is due to the fact that 
2 for the case of A=1 and cv=1 the demand D is deterministic. The above 

insensitivity result is surprising, since the values of c~ corresponding 
to A=1, 2 and 4 differ significantly and the switching level m is known 
to be rather sensitive to more than the first two moments of the demand D 

2 when cD gets large. An intuitive explanation for the insensitivity result 
is as follows. Keeping E[V] and et fixed, an increase of A causes both the 
decrease of E[D] and an increase of c~. These opposed effects neutralize 
each other in the following sense: The expected undershoot and the expected 
lost demand per dissatisfied customer remain approximately the same. Also, 
when M is sufficiently large the number of stockouts per cycle remains 
approximately the same. 

We conclude that, knowing the type of demand distribution, the 
2 switch-over level m becomes less sensitive to A as cV increases with E[V] 

kept fixed under a given $-service level constraint. 
2 In practical situations, where ~e have estimates only for E[V] and cV, 

it is unlikely that we can specify the type of demand distribution. In view 
of the sensitivity results given in section 1.5.1 the type of demand 
distribution is irrelevant when the demand is non-erratic i.e. c;~1. Thus 

2 2 we see that when cD~1 and cV large the switching level m is insensitive 
to the value of A. However, for the case of c;~1 it follows from (2.4.2) 
that 

(2.4.3) 

and hence for the case of c~~1 and et large we have that A is small and, 
moreover, (2.4.3) provides a rather narrow range for A. 

2 Concluding, in situations where only estimates of E[V] and cV are 
known, an (m,M)-rule satisfying a given $-service level constraint can be 
given without having an estimate of the arrival rate A when the demand is 
non-erratic and the arrival rate is small. This corresponds to the case of 
slow moving items for which the demand is non-erratic. In all other cases it 
is necessary to estimate A. The same conclusions hold with respect to the 
a-service level. However, with respect to the y-service level the switching 
level m is very sensitive to A when keeping E[V] and et fixed under a given 
y-service level constraint. 
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3. THE SINGLE PRODUCT PRODUCTION-INVENTORY MODEL WITH MIXED BACKLOGGING 

AND PARTIAL LOST-SALES. 

In this chapter we consider the single product production-inventory 

model in which the backlog at any time must not exceed a given amount L0 • 

If a customer arrives by whose demand the backlog would exceed this critical 

level, then the inventory drops just to the level -L0 and that part of the 

demand by which the level -L0 would be undershot is lost. The backlog and 

lost-sales model discussed in the chapters 1 and 2 are special cases of 

this model with L0== and L0=0, respectively. We will show below that the 

service measures associated with this model can be expressed in terms of 

the basic functions that determine the service measures in the backlog and 

lost-sales model. Once these relations have been established, the 

approximations given in the chapters and 2 can be used to find tractable 

expressions for the service measures of the more general model considered 

in this section. 

3.1. Model and service measures. 

We consider a single product production-inventory system in which the 

customers arrive according to a Poisson process with rate \. The demands of 

arriving customers are independent random variables with common distribution 

function F. The demand sizes are independent of the arrival process. 

The production facility continually adds the product to the inventory 

by using one out of two production rates n 1 and n 2 such that 

(3.1.1) n 1 < \E[D] < n2 . 

The generic random variable D denotes the demand of a single customer. The 

inventory is controlled by an (m,M)-rule with O~~M. The system has an 

infinite storage capacity. The maximum backlog at an arbitrary point in time 

must not exceed a given amount L0 • 

To describe precisely the way excess demand is handled, consider a 

customer arriving when the inventory equals x. Let D denote the demand of 

this customer. The inventory is decreased by an amount of min(D,x+L0) and 

an amount of max(O,D-x-L0) of the excess demand is lost. 
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As in the lost-sales model we note that the inequality TI 2>\E[D] in 
(3.1.1) is not necessary, since the inventory level cannot drift to 
because of the boundary -L0. However, in case of a service measure, one 
typically needs that i 2>\E[D] indeed holds when a sufficiently high service 
level is required. 

This model was analysed in the paper by Doshi et al . [ l978] for both 
finite and infinite storage capacity (for the finite capacity case see 
remark 7.5.2). Using a renewal-theoretic approach expressions were given 
for the long-run average costs. However, these expressions lead to 
tractable results only for the special case of exponentially distributed 
demand. 

Fix an (m,M)-rule with Q~m;;;M. Define for t~O. 

N(t) ·=the number of customers arriving in (O,t]. 

V(t) :=the total demand in (O,t]. 

X(t) := the inventory level at time t. 

B(t) ·= the amount of demand in (O,t] that cannot be met 

directly from stock on hand. 

B1 (t) :=the amount of excess demand in (O,t] that is backlogged. 

B2 (t) :=the amount of excess demand in (O,t] that is lost. 

S(t) :=the number of customers arriving in (O,t], whose 

demands cannot be met directly from stock on hand. 

s 1(t) :=the number of customers arriving in (O,t), whose d.emands 
cannot be met directly from stock on hand, but are 

ultimately satisfied completely. 

s2 (t) :=the number of customers arriving in (O,t], whose demands 
are not ultimately satisfied. 

Q(t) :=the number of stockout occurrences in (O,t]. 
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t 

C(t) := - f X(s) 1{X(s)<O}ds 
0 

the cumulative backlog at time t. 

J(t) :=the amount of time in (O,t], during which the inventory 

is negative. 

We first note that the backlog at an arbitrary point in time never 

exceeds L0 , 

(3.1.2) X(t) <: -L0 , Vt <: O. 

Obviously, 

(3.1.3) B(t) S(t) 

We define the following service measures. 

(i) a-service measure. 

the long-run average number of stockouts per unit time, 

1 . Q(t) 
i.m--

t-700 t 

(ii) s-service measure. 

the long-run fraction of demand that cannot be met directly from 

stock on hand, 

1 . B(t) 

t.: V(t) 

(iii) _.§. 1-service measure. 

the long-run fraction of demand that is backlogged, 

B1 (t) 

lim~ 
t+oo 
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(iv) _§.2-service measure. 

the long-run fraction of demand that is lost, 

B2 (t) 

lim V(t) 
t->= 

(v) y-service measure 

the long-run fraction of customers whose demands cannot be met 
directly from stock on hand, 

1 . S(t) 
im NITT 

t->= 

(vi) .:r.1-service measure 

the long-run fraction of customers whose demands cannot be met 
directly from stock on hand, but are ultimately satisfied completely, 

s 1 (t) 
lim "ITTtJ 
t->= 

(vii) .:r.2-service measure. 

the long-run fraction of customers whose demands are not ultimately 
satisfied, 

s2 (t) 
lim 'ITTt) 
t->= 

(viii) o-service measure. 

the long-run average backlog at an arbitrary point in time, 

lim C(t) 
t 

t->= 

From the point of view of the customers all service measures are of 
interest. However, from the point of view of the production facility 
especially the s2- and y2-service measures are crucial, since these measures 
reflect the real losses of the system. 

As in chapter 1 and 2 we define 

a cycle := the time that elapses between two consecutive epochs 
at which the production rate is switched from rr 2 to 

rr 1· 
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Assuming that at epoch 0 such a regeneration cycle starts, define 

T := the time until the production rate is switched from 11 2 

to 11 1 , 

N := N(T), v := V(T), B := B(T), B1 := B1(T), B2 := B2 (T), 

s := S(T), s1 := S l (T) , sz := s2(T), Q := Q(T)' J := J(T), 

c := C(T). 

Using the theory of regenerative processes we have with probability 1, 

(3.1.4) 

1 . Q(t) _ E[Q] 
i.m -t- - E[T] ' 

t--
. BI (t) E[Bl] 

lim V(t) = fil"VJ' 
t--

1 . S(t) _ E[S] 
im N(t) - filNJ 

t--
. s2(t) E[S2J 

lim N(t) = E[N] ' 
t--

1 . C(t) E[C] 
im -t- = E[T] 

t--

. B(t) E[B] 
lim V(t) = E[V] ' 
t--

. B2(t) E[B2J 
lim V(t) = filV1 
t--
. s1(t) E[S 1J 

lim N(t) = E[N] ' 
t--

1 . J(t) _ E[J] 
im -t- - E[T] 

t--

Using the familiar relations E[N] = AE[T], E[V] = AE[D].E[T] and E[J] 

E[B 1]/112, it remains to find tractable expressions for E[T], E[Q], E[B 1], 

E[B2], E[S 1], E[S2] and E[CJ. 

Towards this end we define as in the chapters 1 and 2 a number of basic 

functions. First we define the basic functions associated with production 

rate 11 1• Assume that at epoch 0 the inventory level equals x+m, x~O, and 

production rate 11 1 is used. Then we define 

t 1(x) :=the expected time until the inventory level decreases 

below m. 
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p(x,u) := 

the probability that the undershoot of level m is 

greater than u when the inventory level decreases 

below m for the first time, 0 ~ u ~ m+L0 • 

the probability that an amount of demand greater than 

u-m-L0 is lost when the inventory leve 1 decreases below m 

for the first time, u > m+L0 

Through the definition of p(x,u) we again have that 

(3.1.5) p(x,u) = pB(x,u), x ~ o, u ~ o, 

where pB(x,u) denotes the distribution of the undershoot of level m in the 

backlog model. Also, using the p~inciple of conservation of flow, we obtain 

x + /'' p (x, u) du 

(3.1.6) t 1 (x) 0 

Thus we find exact expressions for t 1(o) and p(O,u) and approximations for 

t 1(x) and p(x,u) for x sufficiently large. 

Now we assume that at epoch 0 the inventory equals x, -L0~x~M, and 

production rate n 2 is used. Then we define the random variable 

T2 (x;M) :=the time until the inventory reaches the level M, 

and the basic functions 

q(x;M) :=the probability that a stockout occurs in (O,T2 (x;M)]. 

n(x;M) := the expected number of stockout occurrences in 

(O,T2 (x;M) J. 

b 1(x;M) :=the expected amount of excess demand in (O,T2(x;U)]. 

that is backlogged. 



b2 (x;M) := the expected amount of excess demand in (O,T2 (x;~)] 

that is lost. 

s 1(x;M) := the expected number of customers arriving in 
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(0, T2 (x.;M)] whose demands cannot be met directly from 

stock on hand, but are ultimately satisfied 

completely. 

s 2 (x;M) :=the expected number of customers arriving in 

(O,T2(x;M.)] whose demands are not ultimately satisfied. 

c(x;M) := the cumulative backlog at time T2(x;M). 

Note that now we explicitly express that these basic functions depend on the 

value of M. 

Then we find the following relations 

(3.1. 7) 

(3.1.8) 

(3. 1.9) 

(3.1.10) 

(3.1.11) 

(3.1.12) 

(3.1.13) 

E[T] 
m+L0 

t 1(M-m)+0J t 2(m-u;M)du(1-p(M-m,u))+t 2(-L0 ;M)p(M-m,m+L0). 

m 
E[Q] = J n(m-u;M)d (1-p(M-m,u))+(1+n(O;M))p(M-m,m). 

0 u 

m+L0 m+L0 
E[B 1] = J b 1(m-u;M)d (1-p(M-m,u))+ J (u-m)d (1-p(M-m,u)) 

0 u m u 

+ (L0+b 1(-L0 ;M))p(M-m,m+L0). 

m+L0 ~ 

J b2 (m-u;M)d (1-p(M-m,u))+ J (u-m-L0)d (1-p(M-m,u)) 
o u m+LO u 

+ b2(-L0;M)p(M-m,m+L0). 

m+L0 
0J s 1(m-u;M)du(1-p(M-m,u))+p(M-m,m)-p(M-m,m+L0) 

+ s 1(-L0 ;M)p(M-m,m+L0). 

m+L0 
E[S2] = 0J s2 (m-u;M)du(1-p(M-m,u))+(1+s2 (-L0 ;M))p(M-m,m+L0). 

E[C) 
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Thus the computation of E[T], E[Q], E[B 1], E[B2], E[S 1], E[S2] and E[C] 
can be reduced to the derivation of expressions for the above defined basic 
functions. We first note that we only need expressions for t 1(x) and p(x,u) 
for x=M-m. We distinguish between the cases M=m and M>m. In view of (3.1.5) 
and (3.1.6) we can state the following results. 

Case M=m. In this case we can use the exact results given in section 1.3. 
Expressions for t 1(0) and p(O,u) are given by the equations (1.3.33) and 
(1.3.34) respectively. 

Case M>m. In this case we use the approximations 1.3.1 and 1.3.2 for 
t 1(M-m) and p(M-m,u) respectively. To ensure the accuracy of these 
approximate expressions we assume that M-m satisfies condition 1.3.1. 

In the next section we express t 2 (x;M), q(x;M), n(x;M), b 1(x;M), 
b2 (x;M), s 1(x;M), s 2 (x;M) and c(x;M) in terms of the basic functions for 
the backlog and lost-sales models. For the latter basic functions we 
derived expressions in chapter 1 and 2. Thus we obtain expressions for the 
basic functions associated with the present model with mixed backlogging 
and lost-sales. 

3.2. The key relations. 

In this section we give a number of exact relations between the basic 
functions of the present model and the basic functions of the backlog and 
lost-sales models. Throughout this section we assume that at epoch 0 
production rate ~ 2 is used and, unless stated otherwise, the inventory 
X(O)=x with -L0~x~. 

We define for the backlog model 

bB(x;M) := the expected amount of demand backlogged until the 
inventory reaches the level M. 

qB(x;M) := the probability that a stockout occurs before the 
inventory reaches the level M. 

cB(x;M) := the cumulative backlog at the epoch at which the 
inventory reaches the level M for the first time. 
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We define for the lost-sales model, for all Q;:;x;:;M 

t 2 1 (x;M) :=the expected time until the inventory reaches the 
' level M. 

b1 (x;M) :=the expected amount of demand lost until the 

inventory reaches the level M. 

~(x;M) :=the expected number of stockout occurrences until 

the inventory reaches the level M. 

We note that the basic function ~(x;M) has not been defined in chapter 2. 

However, using the equation (2.3.1), which states that the probability of a 

stockout-occurrence before the inventory reaches the level M is the same 

for the backlog and lost-sales models, we can express n1 (x;M) in terms of 

qB(x;M). We condition on the event of a stockout occurrence before the 

inventory reaches the level M. Then we obtain 

(3.2.1) 

Setting x equal to 0 we can solve for ~(O;M), 

Substituting this result into (3.2.1), we find 

(3.2.2) -1 
~(x;M) = qB(x;M)(1-qB(O;M)) • 

Hence we obtain an approximation for ~(x;M) from equation (3.2.2) and 

approximation 1.4.1. 

Now we can give the following set of key relations 

(3 .2.3) q(x;M) qB(x;M), 0 ;:; x;:; M. 
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(3.2.4) 
f'1 (x;M), 0 ;'i x ;'i M 

n(x;M) 

nL(O;M), -LO ;'i x < 0 

(3.2.5) t 2 (x;M) t 2 L(x+L0;M+L0), -Lo ;'i x ;'i M. 
' 

(3.2.6) b2(x;M) bL(x+L0 ;M+L0), -Lo ;'ix ;'i M. 

(3.2. 7) s2 (x;M) nL(x+L0 ;M+L0), -L 0 
;'i x ;'i M. 

(3.2.8) b 1(x;M) = bB(x;M)-bB(x+L0 ;M+L0), -L 0 
;'i x ;'i M. 

(3.2.9) s 1 (x;M) = n(x;M)+ 
t.b 1 (x;M) 

-s2 (x;M), -L ;'ix ;'i M. 
7f2 0 

(3.2.10) c(x;M) 

Using these key relations in the right order we have indeed expressed the 
basic functions for the current model in terms of basic functions, for 
which tractable expressions are available. We shall only give an outline 
of the intuitive ideas behind the proof of the above relations. 

Let us first consider the relations (3.2.3) and (3.2.4). Relation 
(3.2.3) follows from the fact that given X(O)~O the sample paths in the 
present model and the backlog model are identical as long as the inventory 
level is non-negative. By the same arguments as used to derive (3.2.2) 
relation (3.2.4) then follows from (3.2.3). Here we also use that given 
X(O)<O the inventory will eventually reach the level 0 when production 
rate 7f 2 is used. 

To justify relations (3.2.5) to (3.2.7) we shall use a sample path 
argument. Let us define the random variables 
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T 1 :=the arrival epoch of the first customer. 

T := the time that elapses between the arrival of the (n-1)-th n 
and n-th customer, n :?: 2. 

D := the demand of the n-th arriving customer, n n :?: 1. 

sequences {T } and {D } are defined on some common probability space. n n 
w be an element of the underlying sample space and {T (w)} and {D (w)} n n 
realizations of {T } and {D } for this w. From the sequences {T (w)} and n n n 

{Dn(w)} we construct the sample path for two models: 

model I. X(O)=x, production rate 11 2 is used, switch level Mand a maximum 
backlog of L0 . 

model II. X(O)=x+L0 , production rate 112 is used, switch level M+L 0 and no 
backlog allowed. 

The model I corresponds to the mixed backlogging and lost-sales model, while 
model II is a lost-sales model as studied in chapter 2. Let us define 

XI(t)(w)(XII(t)(w» =the inventory level at time t in model 

I (II) for the given sample point w. 

Then it is immediately clear that 

II x (t)(w)-L0 , 

Here T~(x)(w) is the realization of T~(x) for the sample point wand T~(x) 
is defined analogously to T2 (x;M) in section 3.1. Hence for all sample 
points w in the sample space the time until the inventory reaches the level 
M in model I equals the time until the inventory reaches the level M+L0 
in model II. There are similar equalities for the amount of demand lost in 
the models I and II and for the number of customers whose demands are 
partially lost in the models I and II, yielding the equations (3.2.5)­
(3.2. 7). 
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Next we motivate equation (3.2.8). Let us consider the backlog model of 
chapter 1. Given that at epoch 0 the inventory level equals -L0~x~ and 
production rate n 2 is used, we define the random variables 

T2 B(x) := the time until the inventory level reaches the 
' value M, 

:=the amount of demand backlogged during (O,T2(x)] 
(excluding shortages existing at epoch 0), 

NB(T2 B(x)) 
' i:: 

n=1 

n 
- XB( l: T.)J, 

j= 1 J 

B~(x) := BB(x) - BB(x). 

Here NB(t) and XB(t) for the backlog model are defined analogously to 
N(t) and X(t) for the present model. Also, XB(t) is right-continuous. 

To elucidate the definition of BB(x) and B~(x) we consider figure 
3.2. 1. 

FIGURE 3. 2 • 1 • 

M 

0 
/ 

-Lo 



Figure 3.2.1 shows a typical sample path for the backlog model. Now BB(x) 

equals the total length of the dotted lines, while B~(x) equals the total 

length of the solid lines. 

By definition, we have that 

(3.2.11) 

By the same sample path argument as we used to proof equations (3.2.5)­

(3.2. 7) we now obtain 

(3.2.12) 
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To determine E[B~(x)] we note that when in the backlog model the 

inventory drops below -L0 then with probability 1 the inventory will reach 

the level -L0 from below, Now it follows from the Markov property of the 

exponential interarrival times that each time the level -L0 is reached an 

exponentially distributed time elapses until the next customer arrives. 

This special property is the key to the following statement: 

By deleting the time intervals during which the inventory level is 

below -L0, we construct a new process, whose probabilistic behaviour 

is identical to the inventory process in the model with a maximum 

backlog of L0 • 

It will now be clear that 

(3.2.13) 

This result can be proved rigorously by sample path arguments. Combining the 

definitions of BB(x), BB(x) and B~(x) with equations (3.2.11)-(3.2.13) we 
obtain equation (3.2.8). 

The equation (3.2.9) can be derived as follows. We want to find an 

expression for s 1(x;M). We observe that 
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(3.2.14) (the expected number of customers arriving in 
(O,T2 (x;M)] whose demands cannot be met directly 
from stock on hand, but are ultimately satisfied 
completely) 

(the expected number of customers arriving in 
(O,T2(x;M)] whose demands cannot be met directly 
from stock on hand) 

- (the expected number of customers arriving in 
(O,T2(x;M)] whose demands are partially lost). 

The second term on the right-hand side of (3.2.14) equals s 2 (x;M). The first 
term on the right-hand side of (3.2.14) can be written as the sum of two 
expressions, 

(3.2.15) (the expected number of customers arriving in (O,T2(x;M)] 
whose demands cannot be met directly from stock on hand) 

(the expected number of customers arriving in (O,T2 (x;M)] 
that cause a stockout) 

+ (the expected number of customers arriving in (O,T2(x;M)] 
while the inventory is negative). 

The first term on the right-hand side of (3.2.15) equals n(x;M). An 
expression for the second term on the right-hand side of (3.2.15) can be 
found as follows. Since every backlog is produced at rate n 2 it follows 
that 

(the expected time during (O,T2(x;M)] that the inventory is 
negative) 

b 1 (x;M) /n 2 • 

Using "Poisson arrivals see time averages" it can be cerived that 

(3.2.16) (the expected number of customers arriving in (O,T2(x;M)], 
while the inventory is negative) 

].. = - b 1(x;M). 
n2 
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Thus equations (3.2.14)-(3.2.16) together yield (3.2.9). 

Finally we want to proof relation (3.2.10). As noted in chapter 1 it 

is helpful to give the cumulative backlog a cost interpretation by imagining 

that a penalty cost at rate z is incurred when a shortage of size z exists. 

Theh 

c(x;M) the expected penalty cost incurred in (O,T2 (x;M], 

-L0 ~ x ~ M. 

We shall express c(x;M) in terms of basic functions associated with the 

backlog model. 

It is useful to consider figure 3.2.2 in which a typical sample path 

for the backlog model is drawn. 

FIGURE 3.2.2. 

M 

0 

-Lo 

We have hatched 3 areas in figure 3.2.2. By introducing an appropriate cost 

structure we can easily compute the expected values of these areas. 

We first consider the shaded area 1 . Let us assume that a cost at 

rate z is incurred if a shortage of size z with O~z~L0 exists, otherwise 

no cost is incurred. For this particular cost structure, let 

c, B (x ;M) := the expected cost incurred in (0, T2 B (x)], 
I ' ' -L0 ~ x ~ M. 
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Then c 1 B(x;M) is the expected value of area 1 • By the same arguments as 
' we used to proof (3.2.13) we now find 

(3 .2. 17) c 1 B(x;M) = c(x;M), 
' 

Next we introduce another cost structure. We assume that a cost at rate 

L0 is incurred if a shortage of size z:;;-L0 exists, otherwise no cost is 

incurred. Under this cost structure, let 

c 2 B(x;M) :=the expected shortage cost incurred in (O,T2 B(x)], 
' ' -L0 :> x :;; M. 

Then c2 B(x;M) equals the expected value of area 2 . It easily follows that 
' for all -L0:;;x:;;M 

(3.2.18) L0 x (the expected time during (O,T2 B(x)] that the 

inventory level is below -L0). ' 

By the sample path argument that was used to derive (3.2.5)-(3.2.7) and 

using the fact that every backlog is produced at rate TI 2 , we obtain for all 

-L0:;;x:;;M 

(3.2.19) (the expected time during (O,T2 B(x)], that the inventory 
' is below -L0) 

A combination of (3.2.18) and (3.2.19) yields 

(3.2.20) 

Now we introduce the following cost structure. A shortage cost at rate 

z-L0 is incurred if a shortage of z exists with z~L0 , otherwise no cost is 

incurred. Under this cost structure, let 

expected cost incurred in (O,T2 B(x)], 
' 
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As before we have chosen the cost structure such that c3 ,B(x;M) equals the 
expected value of area 3 • The sample path argument used to derive 

(3.2.19) now implies that 

(3. 2. 21) 

We have determined the expected values of area 1 , 2 and 3 • It is 
immediately clear that the sum of these areas corresponds to the cost 

incurred under the following cost structure: A cost is incurred at rate z 
if a backlog of size z exists. This is equivalent to assuming that the 

three particular costs considered above are incurred simultaneously. It 
follows from the cost interpretation of the cumulative backlog that 

cB(x;M) = the expected cost incurred in (O,T2 B(x)] if the three 
' particular costs are incurred simultaneously 

or equivalently 

(3.2.22) 

Thus it follows from (3.2.17), (3.2.20), (3.2.21) and (3.2.22) that 

cB(x;M) 
LO 

c(x;M)+ rr; b 1(x+L0 ,M+L0)+cB(x+L0 ,M+L0), 

-L0 ;;; x ;;; M. 

Rearranging terms leads to equation (3.2.10). 

We have now expressed the basic functions associated with the 

production rates 11 1 and 11 2 in terms of basic functions for the backlog and 
lost-sales model. It is now a matter of combining the relations (3.1.5)­

(3.1.13) and (3.2.3)-(3.2.10) with the approximations 1.3.1, 1.3.2, 1.4.1-
1.4.3 and 2.3.1-2.3.3 to obtain expressions for the service measures 

defined in section 3.1. 

Because of the fact that the relations (3.1.5), (3.2.2)-(3.2.10) are 
exact, the accuracy of the approximations for the model considered in this 

chapter follows from the established accuracy of the approximations in the 

chapters 1 and 2. We refer to sections 1.5 and 2.4 for further comments. 
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Remark 3.2.1. For the case of exponential demand the explicit and implicit 
approximations given in this chapter are exact. This follows from the fact 
that the approximations obtained in chapters 1 and 2 are exact for 
exponential demand and from the exact relations (3.1.5), (3.2.2)-(3.2.10). 

Remark 3.2.2. When production rate rr 1=0, and the inventory is controlled 
by an (m,M)-rule with M=m=O then the process {-X(t), t~O} corresponds to the 
workload process in an M/G/1-dam model with processing rate rr 2 • From the 
results obtained in this chapter we can derive approximations for the 
fraction of work that is lost, the fraction of customers whose workloads 
are not processed completely and the average workload. 
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In chapter 3 we assumed that the backlog at any point in time cannot be 

larger than a given amount L0 so that customer demands by which the backlog 

would exceed this level are partially lost. In this chapter we allow 

backlogs larger than L0 but we now make the stipulation that any demand 

occurring while a backlog larger than L0 exists is completely lost. A demand 

occurring, when no backlog exists or the backlog is not larger than L0 , is 

ultimately satisfied completely. Note that a demand occurring in the latter 

situation may cause the backlog to exceed L0 • 

As in ahapter 3 we will derive expressions for a number of service 

measures, where we use results that have been derived in earlier chapters. 

In particular we will find exact relations between basic functions for the 

model described here and the model discussed in chapter 3. 

4.1. Model and preliminaries. 

At a production facility manufacturing a single commodity customers 

arrive according to a Poisson process with rate A. The demands of these 

customers for the commodity are independent random variables having a 

common distribution function F with F(O)=O and 1-F(x)=O(e-Kx) as x...- for 

some K>O. The demand sizes are independent of the arrival process. 

The commodity is continually produced by using one out of two rates 

TI 1 and TI 2 , such that 

(4.1.1) 

The generic random variable D denotes the demand of a single customer. 

Control on the inventory is exercized according to an (m,M)-rule with O~m~M. 

The system has an infinite storage capacity. 

Any customer finding upon arrival a backlog larger than a given amount 

L0~o leaves immediately and the demand of such a reneging customer is 

completely lost. Otherwise the demand of an arriving customer is ultimately 

satisfied completely immediately and/or by later production. Then a customer 

arrving, when no backlog exists or the backlog is not larger than L0 , may cause the 

backlog to exceed L0• 
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As before we focus on service measures like the long-run fraction of 
demand lost. We will express these service measures in terms of a number of 
basic functions. We will derive exact relations between these basic functions 
and the basic functions associated with the model discussed in chapter 3. 

The random variables and basic functions we use below are defined as in 
section 3.1. We derive relations between the following two models, 

model I: the current production-inventory model where customers 
immediately leave the system, if at the time of their arrival 
the backlog exceeds L0 • 

model II: the previous production-inventory model with mixed backlogging 
and lost-sales. The maximal backlog is L0 • 

To distinguish between the random variables and basic functions of these two 
models we use the superscripts I and II. 

First of all we will make the following important observation. When 
the inventory level is not below -L0 the inventory processes behave 
probabilistically identically in the models I and II. As usual, this 
observation together with the lack of memory of the Poisson arrival process 
will be essential in our analysis. The results to be presented below will 
be derived in a somewhat informal way in order not to obscure the ideas 
behind the proofs. However, the proofs can be made rigorously by using 
rather well-known sample path arguments. 

The inventory process in model I is regenerative. Therefore we can 
express the service measures describing the long-run behaviour of the 
system in terms of expected values of random variables corresponding to 
the behaviour of the system during one cycle. We again consider the 
following service measures. 

(i) a-service measure. 

the long-run average number of stockouts per unit time, 

1 . QI(t) - E[QI] 
im~-t~ - ~~I- with probability 1. 

t-+<><> E[T ] 



(ii) S-service measure. 

the long-run fraction of demand that cannot be met directly from 

stock on hand, 

I I 
lim B (t) =~with probability 1. 
t-><x> V1 (t) E[V1] 

(iii) ..@_1-service measure. 

the long-run fraction of demand that is backlogged, 

. B;(t) E[B;] . 
lim --- = --- with probability 1. 
t->oo V1 (t) E[V1 ] 

(iv) ~2-service measure. 

the long-run fraction of demand that is lost, 

E[B~] . 
=·---with 

E[V1] 
probability 1. 

(v) y-service measure. 

the long-run fraction of customers whose demands cannot be met 

directly from stock on hand, 

I I 
lim ~=~with probability 1. 
t-><x> N1 (t) E[N1 ] 

(vi) r_1-service measure. 
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the long-run fraction of customers whose demands cannot be met 

directly from stock on hand, but are ultimately satisfied completely, 

(vii) 

s;(t) 

!!: N1 (t) 

E[S~] . 
= --- with 

E[N1 ] 

1 2-service measure. 

probability 1. 

the long-run fraction of customers whose demands are not ultimately 

satisfied and are completely lost, 

S~(t) 
lim--­
t-><x> N1 ( t) 

E[ S~] . 
= --- with 

E[N1 ] 
probability 1. 
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(viii) o-service measure. 

the long-run average backlog at an arbitrary point in time, 

I I 
lim £i.E2. = E[C ] with probability 1. 
t-+<x> t E[T1 ] 

Using the relations E[N1 ]=AE[T1 ] and E[V1]=AE[D]E[T1 ] it follows that we 
I I I I I I I must find expressions for E[T ], E[Q ], E[B 1], E[B2], E[S 1], E[S2] andE[C ]. 

We express these quantities in terms of basic functions. These basic 
functions are defined as in section 3.1, with exception of 

I p (x,u) := the probability that the undershoot of level m is 
greater than u when the inventory level decreases 
below m for the first time, given X(O)=x+m and at 
epoch 0 production rate n 1 is used. 

Also, we note that for the present model the backlog at an arbitrary 
point in time is unbounded. This implies that the basic functions associated 
with production rate n2 have to be defined for any initial inventory X(O)=x 
with x:;>M. We obtain the following relations. 

(4. 1 .2) 

(4.1.3) 

(4.1.4) 

(4.1.5) 

(4.1.6) 

(4.1.7) 

(4. 1.8) 

I 00 I I t 1(M-m) + f t 2 (m-u;M)du(1-p (M--m,u)). 
0 

m I I I I f n (m-u;M)d (1-p (M-m,u)) + (1+n (O;M))p (M-m,m). 0 u 
00 

I I f b 1(m-u;M)d (1-p (M-m,u)) + 
0 u 

00 

f b21 (m-u;M)d (1-p1 (M-m,u)). 
0 u 

I f (u-m)d (1-p (M-m,u)). u m 

oo I I I f s 1(m-u;M)d (1-p (M-m,u)) + p (M-m,m). 
0 u 

00 I I f s 2 (m-u;M)du(1-p (M-m,u)). 
0 

00 I I f c (m-u;M)d (1-p (M-m,u)). 
0 u 
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In the next section we will derive a number of exact relations between 

the basic functions associated with model I and those associated with model 

II as well as the backlog model. These relations then yield tractable 

expressions for the above defined service measures. 

4.2. The key relations. 

We can give the following relations between the basic functions 

associated with model I and those associated with model II and the backlog 

model. The basic functions for the backlog model, identifyable by the 

subscript "B", are defined as in section 1.2. 

(4.2.1) 

(4.2.2) 

(4.2.3) 

(4.2.4) 

(4.2.5) 

(4.2.6) 

(4.2. 7) 

(4.2.8) 

(4.2.9) 

(4.2.10) 

I 
t 1 (x) 

I 
p (x,u) 

I 
n (x;M) 

I 
b 1 (x ;M) 

I 
b 1 (x;M) 

I 
s 1 (x ;M) 

I 
t 2 (x;M) 

I 
s 2 (x;M) 

II 
n (x;M), 

II II b 1 (x;M) + b2 (x;M), 

II II 
s 1 (x ;M) + s 2 (x ;M) , 

lt~I(x;M) + b~I(x;M)/w2 

II II (-L0-x+b2 (-L0 ;M))/w2 + t 2 (-L0 ;M), 

II b2 (x;M) 

x ;;; 0 

x;;;O,u;;;o 

-L 
0 

x < 

x < 

-L 
0 

x < 

~ x ~ M 

-L 
0 

-L 
0 

-L ~ x ~ M 
0 

x < -L 
0 
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(4.2.11) 
I 

c (x ;M) cII(x;M) + ~~ b~I(x;M) + (1- AE;~])cB(x+L0 ;M+L0 ) 
AE[D2] 

- --2- bB (x+Lo ;M+Lo)' 
211 2 

2 2 
(x -Lo) I 

2112 + c (-LO;M), (4.2.12) I c (x;M) 

Let us consider equations (4.2.1) and (4.2.2). If XI(O)=XB(O)=x+m with 
x~O and at epoch 0 a production rate 11 1 is used then sample paths for model 
I and the backlog model are identical until the inventory becomes negative 
for the first time. In particular the inventory position immediately after 
an undershoot of the level m and the epoch at which this is occurring are 

thesameinbothmodels. Thus equations (4.2.1) and (4.2.2) hold. 

From now on we assume that XI(O)=x~M and at epoch 0 a production rate 
11 2 is used. 

Equation (4.2.3) immediately follows from the observation made in 
section 4.1 that model I and model II are probabilistically identical if 

these processes are observed only at time intervals at which the inventory 

is above level -L0. 
I II Next we consider equations (4.2.4) and (4.2.S). Let X (O)=X (O)=x 

with -L0~x~M. Then it is immediately clear that 

(4.2.13) (the expected amount of demand backlogged, during the 

time that the inventory level is above -L0 until the 

inventory reaches the level M) 

+ (the expected amount of demand backlogged during the 

time that the inventory level is below -L0 until the 

inventory reaches the level M). 

Since the models I and II behave identically when the inventory is not below 
-L0 it follows that the first expression between brackets on the right-hand 
side of (4.2.13) equals b~I(x;M). Some reflections show that this 

observation also implies that the second term on the right-hand side of 

(4.2.13) equals b~I(x;M). Putting it more precisely, the amounts of lost 
demands of arriving customers in model II correspond to the undershoots of 

the level -L0 in model I. Thus we obtain equation (4.2.4). The same 
arguments can be applied to obtain equation (4.2.5). 
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is used. In 

I assume that X (O)=x<-L0 and at epoch 0 the production rate n 2 

the definition of b~(x) we exclude the existing backlog of -x 

at epoch O. Since customers finding upon arrival the inventory below -L0 
immediately leave the system, it follows that the demands of the customers 

arriving in (O,(-L0-x)/n2] are lost. Then it follows from the lack of 

memory of the Poisson arrival process that the expected amount of demand 

backlogged during ((-L0-x)/n2 ,T~(x;H)) equals bI(-L0 ;M). This implies 

equation (4.2.6) and similarly we obtain equation (4.2.7). 

Now we derive equations (4.2.8)-(4~2.10). First we define 

t-(x;M) :=the expected time that the inventory is below -L0 

until the inventory reaches the level M. 

Then it follows from the important observation that model I and model II 

are probabilistically identical if these processes are observed only at 

times when the inventory is above -L0, that 

(4.2.14) I 
t 2 (x;M) II -t 2 (x;M) + t (x;M), 

As said before, the amount of demand backlogged during the time that the 
II inventory is below the level -L0 equals b2 (x;M). Since any backlog is 

produced at rate n2 we obtain 

(4.2.15) -
(x;M) II -L t b2 (x;M)/n 2, 0 

;:; x ;:; M 

- -(4.2.16) t (x ;M) (-L -x)/n + 0 2 t (-L0 ;M) , x < -Lo. 
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In equation (4.2.16) we also used the lack of memory of the Poisson arrival 

process and the fact that during (O,(-L0-x)/n 2], with x;:;-L 0 , the demands of 

arriving customers are lost. Equations (4.2.14), (4.2.15) and (4.2.16) 

together imply equation (4.2.8). 

Since customers arriving during the time that the inventory is below 

-L0 immediately leave the system and using that the demand process is a 

compound Poisson process, it follows that 

(4.2.17) I 
b2 (x;M) \E[D)t-(x;M) 



I 00 

(4.2.18) I s 2 (x;M) 

Combining equations (4.2.15)-(4.2.18) we obtain the equations (4.2.9) and 
(4.2.10). 

We finally prove equations (4.2.11) and (4.2.12). We recall that I I c (x;M), the expected cumulative backlog at epoch T2 (x;M) has the 
following cost interpretation. Assume that a cost at rate z is incurred when 
a backlog of size z exists. Then we have 

I 
c (x;M) I the expected cost incurred in (O,T2 (x;M)] when the 

initial inventory is x, x ::> M. 

FIGURE 4.2.1. 

M 

0 

T8
1 (z:11> 

-L, 

I Figure 4.2.1 shows a typical sample path of the process {X (T), t~O} 
with O::>t::>T~(x;M) andX1 (0)=xwith-L0;;;x;;;H. The dotted lines correspond to 
lost demands. The penalty cost incurred during (0 ,T~ (x ;M)] for this particular 
sample path equals the sum of areas 1 , 2 and 3 • We will calculate 
each of these areas by using an appropriately chosen cost structure. The 
discussion below assumes that production rate ~ 2 is used. 

Let us first consider the shaded area • Let us assume that a cost 
is incurred at rate z if a shortage of size z exists with o;;;z;;;L0 . Otherwise 
no cost is incurred. Under this cost structure, let 



c~(x;M) :=the expected cost incurred in (O,T~(x;M)l, 
-L0 ~ x ~ M. 
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I Then c 1(x;M) equals the expected value of area 1. On the other hand, since 

the inventory processes in the models I and II behave probabilistically 

identically when the inventory level is not below -L0, it follows that 

(4.2.19) I II c 1(x;M) = c (x;M), 

Next we consider another cost structure. A cost is incurred at rate 

L0 if a backlog exists of size z~L0 , otherwise no cost is incurred. Under 

this cost structure, let 

I the expected penalty cost incurred in (0,~2 (x;M)] 
-L0 ~ x ~ M. 

I It is immediately clear that c2(x;M) equals the expected value of the 

dotted area 2 • Since a cost at rate L0 is incurred during the time that 

the inventory is below -L0, it follows from the definition of t-(x;M) that 

Using equation (4.2.15) we obtain 

(4.2.20) 

To obtain an expression for the expected value of area 3 we 

introduce the following cost structure. A cost is incurred at rate z-L0 if 

a backlog exists of size z>L0 , otherwise no cost is incurred. Under this 

cost structure, let 

c~(x;M) :=the expected cost incurred in (O,T~(x;}l)] 
-L0 ~ x ~ M. 

Shifting each sample path of {XI(t), t~O} vertically upwards by an amount 

L0 we find 
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(4.2.21) 

where 

I c3 (x;M) -L ;::; x;::; M 
0 

I :=the expected cumulative backlog at time r 2 (x;M) when 

L0 = O. 

I Hence it suffices to find an expression for c0 (x;M) for O::;x::;M. 

Let us assume that L0=0. Conditioning on the event of an arrival in 

(0,6x/TI 2] it follows by standard arguments that 

I c0 (x;M) 'A6x) I ( ) (1- -- c0 x+6x;M + 
TI 2 

I + c0 (0;M)(1-F(x)) + f 
x 

x ~ o. 

J 
0 

x 
I c0 (x-y;M)dF(y) 

2 (y-x) /(2TI 2)dF(y)} + o(6x), 

Letting 6x+O we obtain for almost all O::;x::;M 

(4.2.22) d I 
dx cO(x;M) - ~ c1 (0;M) (1-F(x)) - _>.._ f (y-x) 2dF(y) TI 2 0 2 2 

TI 2 X 

A x I 
f c0 (x-y;M)dF(y). 

TI2 o 
A I 

+ - c0 (x;M) 
TI 2 

Equation (4.2.22) holds for all M. Setting M equal to 00 we can rewrite 

(4.2.22) into a defective renewal equation. Thus (4.2.22) has a unique 

solution c~(x; 00 ) with x~O for the case of M=00 • Using the lack of memory 

of the Poisson arrival process, it can be seen that 

I 
c 0 (x;M) 

Using c~(M;M)=O this result and the uniqueness of c~(x; 00 ) imply that 

(4.2.22) has a unique solution c~(x;M) with O::;x::;M. Below we construct 

this solution using integro-differential equations previously derived for 

the backlog model. 

We recall the definitions of the basic functions bB(x;M) and cB(x;M) 

for the backlog model given in section 1.2, Given that at epoch 0 the 

inventory equals Q::;x::;M and production rate TI 2 is used we define 



bB(x;M) := the expected amount of demand backlogged until the 

inventory reaches the level M. 

cB(x;M) := the cumulative backlog at the epoch at which the 

inventory reaches the level M for the first time. 

It follows from equations (1.4.20) and (1.4.38) that 

(4.2.23) d ((1- f.E[D])c (x·M))=- -~- (1- t.E[D])c (O;M) (1-F(x)) 
dx rr 2 B ' rr 2 rr 2 B 

f. 00 2 t. 2E[D2] 
- f (y-x) dF(y)- f (y~x)dF(y) 

2rr; x 2rr2 (rr 2-t.E[D]) x 

f. x AE[D] 
f ( 1- --) cB (x-y; M) dF ( y) , 

rr2 0 rr2 

(4. 2 .24) (y-x)dF(y) 

0 ;;; x ;;; M. 

Subtracting equation (4.2.24) from (4.2.23) we obtain 

(4.2.25) 
2 

..!!..cc1- AE[D])c (x·M) - t.E[D ]b (x·M)) = - -"- f (y-x) 2dF(y) 
dx rr2 B ' 2 B ' 2 2rr 2 2rr 2 x 

2 
f. [(1- t.E!D])cB(O;M)- t.E[~ ]bB(O;M)] (1-F(x)) 

rr2 2 2rr 2 
2 

+ _l:_ [ ( 1- t.E[D])c (x;M)- AE[D ]b (x;M)] 
rr2 rr2 B 2rr; B 
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t.E[D] t.E[D2] 
[(1- -rr-)cB(x-y;M)- --2-bB(x-y;M)]dF(y), 

2 2rr 2 

0 $ x ;;; M. 
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Comparing the equations (4.2.22) and (4.2.25) and using the uniqueness of 
I the solution c0 (x;M) to (4.2.22) we have that 

2 
(4.2.26) I (1- AE~D])cB(x;M)- AE[D2] bB(x;M), 0 ;ii ;ii c0 (x;M) x M. 

2 2n2 

Then the equations (4.2.21) and (4.2.26) together imply 

(4.2.27) I c 3 (x ,M) 

I I I I Using c (x;M)=c 1(x;M)+c2 (x;M)+c3 (x;M) and combining (4.2.19), (4.2.20) and 
(4.2.27) we find equation (4.2.11). 

Finally we prove equation (4.2.12). We assume that X(O)=x<-L0 • In the 
interval (O,(-L0-x)/n2]any newly arriving demand is lost. Hence we have for 
the cu!lllllative backlog at time t=(-L0-x)/n2 , 

(-L0-x) 2 (-L -x) 
cI((-L -x)/n ) = 2 + L O Q 2 Q n 2 2n2 

At time t=(-L0-x)/n2 the inventory level equals -L0. Using the lack of 
memory of the Poisson arrival process we find 

which equation is identical to (4.2.12). 

x < -L O' 

Using equations (4.2.1)-(4.2.12) in the right order we find tractable 
expressions for basic functions associated with the models studied in 
chapter 1, 2 and 3. 

Remark 4.2.1. Since each of the approximations given in chapter 1 and 2 is 
exact for exponentially distributed demand, and since the relations derived 
in chapter 3 and this chapter are exact, the resulting approximations for 
the present model are also exact for exponential demand. 

Remark 4.2.2. In chis chapter we have considered a production-inventory 
model with complete lost-sales. In the paper by De Kok and Tijms [1985b] 
another production-inventory model with complete lost-sales is studied. 
There it is assumed that any demand that cannot be met directly from stock 
on hand is completely lost. It is not possible to derive approximations for 
this model using the analysis developed in the first four chapters of this 



monograph. In their paper De Kok and Tijms [1985b] resort to two-moment 

approximations (cf. section 1.5). 
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Remark 4.2.3. If production rate n 1=0 and the inventory is controlled by an 

(m,M)-rule with M=m=O, the process {-X(t), t~O} corresponds to the workload 

process in an M/G/ 1-queue with impatient customers where the workload is 

processed at a constant rate of n2 per unit time. The customer's impatience 

should be interpreted as follows. If a customer arrives at the queue and his 

waiting time exceeds a time T then the customer leaves the system 

immediately. Using the results obtained in sections 4.1 and 4.2 

approximations can be given for the fraction of work that is lost, the 

fraction of customers that is lost and the average workload; see De Kok and 

Tijms [1985c] for a more detailed study. 
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5. APPROXIMATIONS FOR THE AVERAGE HOLDING AND SWITCHING COSTS; THE OPTIMAL 

PRODUCTION QUANTITY. 

In the previous chapters we focussed on deriving expressions for 

service measures. We motivated the use of service measures by the fact that 

in practice it is often hard to specify shortage costs. For a given (m,M)­

rule we were able to give all wanted results. There it was assumed that the 

difference M-m was predetermined and the only goal was to find the unique 

level m such that the service level constraint was met. The choice of 

M-m was based on linear holding costs and a fixed switching cost. In 

section 1.5 we derived for M-m an EOQ-formula by using the deterministic 

version of the production-inventory model. Putting M-m equal to the EOQ­

quantity we determined m. This sequential approach of determining M-m and m 

was motivated by the empirical finding that a good choice of M-m is 

typically rather insensitive to the required service level. 

In this chapter we try to answer a few apparent questions: 

1. Is it possible to find a tractable expression for the average 

holding and switching costs? 

2. Does the (m,M)-rule, with M-m obtained from the EOQ-formula, show a 

good performance compared with the optimal (m,M)-rule with respect 

to average costs? 

3. Is the optimal value of M-m indeed insensitive to the required 

service level? 

We will show that all questions are more or less answered in the affirmative. 

This chapter is organized as follows. In section 5.1 we express the 

total holding cost incurred during a cycle in terms of two basic functions. 

In section 5.2 we deal with the holding cost function corresponding to a 

production rate 11 1 equal to 0, while in section 5.3 we derive expressions 

for the holding cost function for the cases of 11 1>0 and 11 1<0. The holding 

cost function corresponding to production rate 11 2 is dealt with in section 

5.4. In section 5.5 we give an approximation for the average holding and 

switching costs incurred per unit time. This result enables us to determine 

an approximate (m,M)-rule, which minimizes the average holding 

and switching costs per unit time subject to the requirement 

of a prespecified level for some service measures. Also, in section 5.5 it 

is argued that for the situation of high service the optimal value of M-m 

becomes independent of the specific level of the service measure 

considered. Moreover this constant value of M-m is the same for each of 



the service measures discussed in chapters 1-4. 

In section 5.6 we present numerical results in support of the quality of 

the approximations and the insensitivity of M-m to the required service 

level. Also some attention 'is paid to the diffusion process approach 

studied in Vickson [1982], using shortage costs rather than a service 
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level constraint. All random variables, functions and quantities, which are 

not defined explicitly below, are defined as in the previous chapters. 

5.1. General results for the holding cost per cycle. 

In this section we derive general expressions for the holding cost 

incurred during a regeneration cycle. We recall that a cost at rate h.x 

is incurred when the on-hand-inventory equals x>O. Again we assume that at 

epoch 0 a cycle starts, i.e. X(O)=M. We define 

eh :=the holding cost incurred during (O,T], 

where T>O is the next epoch at which the production rate is switched from 

n 2 to n 1. From the theory of regenerative processes we know that 

(5. 1. 1) 
E[Ch] 

the average holding cost per unit time = ~ 

In order to find. a tractable expression for E[Ch] we define new basic 

functions. Given that X(O)=x+m, x~O, and production rate n 1 is used, let 

k 1(x,m) :=the expected holding cost incurred until the 

inventory level drops below m. 

Given that X(O)=x~M and production rate n 2 is used we define 

k2 (x) := the expected holding cost incurred until the inventory 

reaches the value M. 

Then it immediately follows that under a given (m,M)-rule 

(5.1.2) k 1(M-m,m) + f k2 (m-u)du(1-p(M-m,u)). 
0 
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Next we reduce the problem of deriving an expression for k 1(x,m) to 

the problem of finding an expression for k 1(x,O). To do so imagine that the 

initial inventory x+m is divided into two amounts x and m and the amount 

m is separately kept in inventory during the time T1(x) needed to reduce 

the initial inventory level with at least x. Recalling that t 1(x)=E[T 1(x)], 

we incur an expected holding cost hmt 1(x) for the separate amount m, while 

an expected holding cost of k 1(x,O) is incurred for the other inventory 

during the time T1(x). Thus 

(5.1.3) x ;;:; o. 

Since we already derived an approximation for t 1(x) we can restrict 

ourselves to finding an expression for k 1(x,O). For ease of notation we 

define 

k 1 (x) : = k 1 (x , 0) , x ;;:; 0. 

It follows from (5.1.2) and (5.1.3) that 

(5.1.4) 

Note that by their definitions the functions t 1(x) and k 1(x) are in fact 

strategy-independent. 

So far we have not properly defined the model for which we want to 

derive expressions for the holding costs. It turns out that for any 

(m,M)-rule E[Ch] is independent of the behaviour of arriving customers as 

long as the following two conditions are satisfied: 

where tA is an arrival epoch and DA is the demand of the arriving customer. 

Thus E[Ch] is the same for all models defined in chapters 1-4. We will not 

rigorously prove this statement. The proof is based on the lack of memory 

of the exponential interarrival time distribution. Also, it follows that 

k2 (x), x<£M is independent of the customers behaviour, provided conditions 

(i) and (ii) are satisfied. Since this also holds for k 1(x), t 1(x) and 



p(x,u) the above statement for E[Cb] is in agreement with (5.1.4). Thus, 

in what follows it is no restriction to assume that exeess demand is 

baeklogged. 
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We conclude this section by giving expressions for E[U2]. When M=m 

then an exact expression for E[U2] is computed from equation (1.3.34). When 

M-m is sufficiently large then we can compute an approximation for E[U2] 

from approximation (1.3.2). 

Case M=m: 

r when 1T 1 < 0 

(5.1.5) E[U2] = E[D2] when 1T 1 o. 
~ (E[D2] _ E[D] 1T 1 

+~) when 1T 1 > 0 
1T1 2s* (s*) 2 A. (s ) 

Case M>m: If M-m satisfies condition 1.3.1 then we have 

Approximation 5.1.1. 

l 
A.E[D3] 

3(A.E(DJ-TI 1) 
-

A.E[D3 ] 

when 1T 1 ::£ 0 

3(A.E(DJ-TI 1) -
2A. (E[D2] _ E[D] 1T 1 

A.E[D] * * 2 + --*-2) 
-TI1 2s (s) A.(s) 

when TI 1 > 0. 

5.2. The function k 1(x) for TI 1=0. 

In this section we consider the case of a production rate TI 1=0. We 

derive an exact expression for k 1(x) in terms of E[U(x)] and E[U2(x)], 

where U(x) is defined in section 1.2. Throughout this section we assume 

that at epoch 0 the inventory equals x~O and production rate TI 1=0 is used. 

We first recapitulate some definitions given in section 1.3. We define 

T 1 :=the first arrival epoch after 0. 

T := the interarrival time between the (n-1)-th and n-th 
n 

arrival, n ~ 2. 

Dn :=the demand of the n-th arriving customer, n ~ 1. 
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Letting 

n ~ 1, 

define 

n 
SO := o, s ·= ~ x.' n ~ 1. n j=1 J 

z;:o ·= o, z;:k := min{ n I n>z;:k-l, s >S } ' k ~ 1. n l;k-1 

zk := SI; ' k ;;;; o. 
k 

* N (x) := min{k!Zk>x}, x ~ o. 

We refer to section 1.3 for an interpretation of these random variables. 
The above random variables play also a key role in the next section in 
which we derive expressions for k 1(x) when n 1fo. 

The random variable U(x) represents the undershoot of level 0, given 
that at epoch 0 the inventory equals x and production rate n 1 is used. For 
the present case of n 1=0 it follows that 

U(x) z * -x, 
N (x) 

x ;;;; o. 

Using the fact that for the case of n 1=0, 

x 
n 

n;;;; 1, 

k ~ o, 

it follows that 

(5 .2. 1) U(x) x ;;;; o. 

Next we derive an expression for k 1(x). We define the random variable 
H(x) by 

H(x) ·= the holding cost incurred until the inventory level 
decreases below 0 



and hence 

k 1(x) = E[H(x)], x ~ 0. 

We note that the inventory level is constant between arrival epochs. Then 

it is easy to verify that 

* N (x) 
H(x) = h{x 2: 

n=1 
T 

n 

* N (x) 
2: 

n=1 

n-1 
T L D.}. 

n j=1 J 

* Taking expectations and using the fact that N (x) is a stopping time for 

{Tn}, we obtain 

(5.2.2) 

It follows from (5.2.1) 

* 2 N (x) 2 
U (x) = 2: D 

n=1 n 

* 1 N (x) n-1 
- I E[ L L D.]}. 

that 

* N (x) 
+ 2 2: 

n=1 

n=1 j=1 J 

n-1 
D 2: 

n . 1 
J= 

D. - 2x 
J 

* N (x) 
2: D 

n=1 n 

2 
+ x 

* Taking expectations and using the fact that N (x) is also a stopping time 

for {D }, we find 
n 

(5.2.3) 
N*cx) n-1 

2E[D]E[ 2: 2: 
n= 1 j= 1 

* 2 - 2xE[N (x)]E[D] + x . 

D.] 
J 

A combination of the equations (5.2.2) and (5.2.3) then yields 

(5.2.4) 
2 2 2 

k ( ) = h {~ _ E[U (x)] + E[N*(x)] E[D2 ]}. 
1 x ;\.E[DJ 2 2 

We use again equation (5.2.1) to obtain 

(5.2.5) * E[U(x)] = E[N (x)]E[D] - x. 

Then (5.2.4) and (5.2.5) together imply 

(5.2.6) 
2 2 2 

k ( ) _ h {x E[U (x)] + E[D ] (x + E[U(x)])}. 
1 x - AE[D] T - 2 2ETiIT 

11 I 
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It is important to point out that the lack of memory of the Poisson 

arrival process was only needed in order to have that T1 is distributed as 

Tn' n~2. Hence, in case {Tn} is any sequence of independent and identically 

distributed random variables, we have 

(5.2. 7) 

In the next section equation (5.2.7) will be applied to appropriately 

chosen random variables Tn and Dn, n~1, together with the corresponding 

random variable U(x), x~O. These random variables arise in a natural way 

when analyzing the two cases of n 1>0 and n 1<0 by random walk methods. 

5.3. The function k 1(x) for n 1fO. 

In this section we handle the cases n 1>0 and n 1<0 separately. The 

analysis is similar to that in section 1.3 and uses results there. In 

addition to the definitions given in section 5.2 we define 

t;k 

\)0 := o, \)k := i:; T j' k ~ 1. 
j=1 

In section 1.3 we already introduced the random variables used in section 

5.2 and interpreted these random variables in terms of the inventory 

process. Using these interpretations we observe that vk is the k-th arrival 

epoch·after which the inventory level is strictly below the lowest 

inventory level that has been attained at arrival epochs up to epoch vk. 

Throughout the remainder of this section we assume that at epoch 0 

the starting inventory level X(O)=x with x~O, while production rate n 1 is 

always used. It follows from the definition of H(x) given in section 5.2 

that 

(5. 3. 1) H(x) 

T 1 (x) 

h J X(t)dt, 
0 

x ~ o, 

where T1(x) is the time until the inventory level decreases below O. We 

want to find an expression for k 1(x)=E[H(x)]. First we consider the case 

Of n 1>0. 



Expression for k 1(x) when n 1>0. 

For the case of n 1>0 it can be seen that 

x ;;:; 0. 

We split up the interval [O,T 1(x)) by means of the intervals 
N*(x) 

{[vk_1,vk)}k= 1 Then equation (5.3.1) implies that 

N*(x) vk * N (x) vk 

(5.3.2) H(x) h{ L: f X(vk_1)dt + L: f (X(t)-X(vk_ 1))dt}, 
k=1 k=1 

We define 

Hence 

(5.3.3) 

:= h 

vk-1 

(X(t)-X(vk-l))dt, 

vk-1 

* N (x) 
B(x) := h L: 

k=1 

* N (x) 
H(x) B(x) + L: ~· 

k=1 
x ;,, o. 

vk-1 

x ;;:; o. 

* k 1, ••• ,N (x). 

x ;;:; o. 
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Some reflections show that B(x) can be interpreted as the holding cost 

incurred in the following demand model. Demands for a product occur at 

epochs generated by an arrival process {vk} and the k-th demand is 

distributed as Zk-Zk_ 1• No replenishments of inventory occur so that the 

inventory remains constant between the consecutive arrival epochs. Assuming 

that a holding cost is incurred at a rate being proportional to the on-hand 

inventory, we have that B(x) is the holding cost incurred until depletion 

of the initial inventory x<:;O. Hence we have essentially the same model as 

studied in section 5.2 with the modifications (a) the arrival process of 

customers is given by a renewal process {vk} rather than by a Poisson 

process and (b) the demand of a customer is distributed as z1 rather than 

n1• Here we use the property that {Zk-Zk_ 1} and {vk-vk_ 1} are independent 

sequences of independent and identically distributed random variables, as 

follows from the fact that the original process generating {vk} and {Zk} is 

a compound Poisson process. Thus we obtain an expression for B(x) by 
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replacing Tl and D by v 1 and in (5.2.7). As in the case of rr 1=0, 

we also use that U(x)=Z * -x. This yields 
N (x) 

(5.3.4) 
hE[v 1] x2 

E[B(x:] = ELz:T t-z 
1 

E[U2(x)] E[Z;] 
2 + 2ETZ.]" (x+E[U(x)])}. 

1 

It can be seen that v 1 is distributed as T1(0). Using the fact that 

t 1(0)=E[T 1(0)] by definition, we obtain 

* * From (1.3.33) we know that t 1(0)=1/(rr 1s ), where s is defined by (1.3.21). 

Hence we have that 

(5.3.5) 

* We now focus on the random variables '\c• 1~k~N (x). Again, since the 

process underlying these variables is a compound Poisson process, it follows 

* that the random variables '\c• 1~k~N (x) are independent and identically 

distributed random variables. Then it follows that 

(5.3.6) 
* N (x) 

E[ l: '\c] 
n=1 

* E[N (x)]E[A 1]. 

To find an expression for E[A 1] we proceed along the same lines as in 

the derivation of an expression for k 1(x) in section 5.2. 

It follows from the definitions of Tn• Xn, A1 and s1 that 

n-1 
l: 

j=1 
x.}. 

J 

Because s1 is a stopping time for {Tn} we find 

(5.3.7) 

We also have that 

and hence 

s 1 

l: X. 
n=1 J 

s 1 n-1 -* E[ l: l: X.]}. 
n=1 j=1 J 
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(5.3.8) 

and 

r; 1 n-1 
(5.3.9) + 2E [X 1] E [ L L 

n= 1 j= 1 
x.]' 

J 

where we used that r; 1 is a stopping time for {Xn}. Combining the equations 

(5.3.7)-(5.3.9) and using the expressions for E[Z 1] and E[Z;] given by 

(1.3.22) and (1.3.23), we obtain 

(5.3.10) 
h 

E[A1] = * 2 . 
1T 1 (s ) 

Now we are in a position to give an exact expression for k 1(x). The 

fact that U(x) = z * 
N (x) 

-x implies 

N*(x) 
U(x) L (Zk-zk-1) - x 

n=1 

and by an application of Wald's equation we thus find 

(5.3.11) * E[N (x)] 
x+E[U(x)] 

E(z 1] 

Then the equations (5.3.3)-(5.3.6), (5.3.10) and (5.3.11) together yield 

after some algebra 

(5.3.12) k 1 (x) 
2 2 

h {x E[U (x)] 
J.E[D)-n l Z - 2 

l.E[D2 ] + (x+E[U(x)])}. 2(AE(D]-n 1) 

Again we used the expressions for E[Z 1] and E[Z;] given in section 1.3. 

This concludes the derivation of an exact expression for k 1(x) for 

the case of n 1>0. Next we derive an exact expression for k 1(x) for the case 

of n {o. 

Expression for k 1(x) when n 1..::Q. 

For the case of n 1<0 we proceed along the same lines as for the case 

of n 1>0. We note that 

k f; 0. 
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k :?; o. 

We define for x>O 

R(x) ·= the time that elapses between the downcrossing of 0 and 
the next arrival, when the inital inventory is x. 

We first derive an expression for H(x). To do so we consider realizations 
of the inventory process during the time interval [O,v * ). Let w be an 
element of the underlying sample space Q. For any rand~m(x)variable X define 

Xw := the realization of X corresponding tow. 

Next we split up Q into two disjoint sets, 

w0 := {w I Rw (x)=O} 

We first consider the case of W6W0 . If Rw(x)=O then the level 0 is 
downcrossed for the first time through the arrival of a customer. The 
reader may find it 

(5.3.13) H (x) 
w 

helpful 

* Nw(x) 
h l: 

k=1 

to draw a picture to verify the relation 
* N (x) 
w 

X (vk-l )tk -h(-11 1) l: w ,w ,w k=1 

Next we consider the case of W6W • If R (x)>O then the level 0 is + w 
downcrossed during the time interval (v * ,v * ). Again a picture 

N,,,(x)-1,w ~.,(x),w would help to see that w w 

(5.3.14) H (x) 
w 

* * N (x)-1 N (x)-1 w w 
l: X (vk-l )Tk -h(-11 1) l: k=1 w ,w ,w k=1 

h 

2 + h (-11 1 H (T * -Rw (x)) , 
N (x),w w 

Some reflection shows that 

(5.3.15) R (x) 
w = T * -(x-S * )/(-11 1), 

N (x),w N (x)-1,w w w 

2 
Tk,w 
-z- + 



Using x-S * =X(v * ), we find by substitution of the equation 
N (x)-1 N (x)-1 

(5.3.15) into (5.3.14) that 

N*(x) 
(5.3.16) H (x) 

w h wL X (vk_ 1 )Tk -h(-TI 1) 
k=1 w ,w ,w 

Combining (5.3.13) 

(5.3.17) H(x) 

R2 (x) 
w 

+ h(-TI 1) -2-' 

and (5.3.16) we obtain 

* N (x) 
h L X(vk_ 1)Tk-h(-TI 1) 

k=1 

We again define 

* N (x) 
B(x) := h L X(vk-1)Tk. 

k=1 

* N (x) 
L 

k=1 

* N (x) 
WL 
k=1 

2 
T 
k,w + 
2 

2 2 
Tk + h(-TI ) R (x) 
2 1 2 
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Now B(x) can be interpreted as the holding cost incurred until the 
depletion of an initial inventory x in a pure demand model in which demands 
occur at epochs generated by a Poisson process with rate A. Each demand is 
distributed as the generic random variable 

The demands are independent of the arrival process. Similarly to the 
derivation of (5.3.4) we now use (5.2.7). However, there is an important 
difference with the case of TI 1 ~o. Because the level 0 can be downcrossed 
between arrival epochs we have no longer that U(x) equals Z * -x. 
Therefore we define the random variable U(x) by N (x) 

u(x) := z * -x. 
N (x) 

Then it follows from equation (5.2.7) with E[v 1]=1/A, D replaced by z1 and 
U(x) replaced by U(x) that 

(5.3.18) 
2 ~2 

E[B(x)] _ h { x _ E[U (x)] 
-~ 2 2 

Applying Wald's equation we obtain 

(x+E[U(x)])}. 
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(5.3.19) 
* N (x) 2 2 * 

E[ l: Tk) = z E[N (x)). 
k=1 A 

Analogously to (5.3.11) we find from the definition of U(x) that 

(5.3.20) E[N*( )] =x+E[U(x)] 
x E[z 1 J 

~ ~2 2 
So it remains to find expressions for E[U(x)], E[U (x)] and E[R (x)]. 

We now express U(x) in terms of U(x) and R(x). It follows from the 

definitions of these three random variables that 

u(x) 

JU(x) 

1(-11 1)R(x)+D * 
N (x) 

when U(x) > 0 

when U(x)=O 

or equivalently 

(5.3.21) u(x) 

Then it is easy to see that 

(5.3.22) 

We now make the crucial observation that, given U(x)=O, R(x) and D * 
N (x) 

are independent random variables, and moreover, R(x) is 

exponentially distributed with mean 1/A while D * has distribution 
N (x) 

function F. This follows from the lack of memory of the Poisson arrival 

process and the fact that, given U(x)=O, the first demand occurring after 

the downcrossing of 0 must be D * • Thus we obtain from these observations 
N (x) 

and the equations (5.3.21) and (5.3.22) that 

(5.3.23) E[U(x)] = E[U(x)] + (E[D)-11 1/J..)P{U(x)=O} 

(5.3.24) 
~2 2 2 211 1 11 1 

E[U (x)] = E[U (x)] + (E[D ]- ~A~ (E[D]- ;;---))P{U(x)=O} 

In a similar fashion we obtain 



(5.3.25) 
2 2 . 

E[R (x)] = z P{U(x)=O}. 
/.. 

To find an expression for k 1(x) we substitute (5.3.18)-(5.3.20) and 

(5.3.23)-(5.3.25) into equation (5.3.17). Some straightforward algebra 

then yields 

(5.3.26) /..E[D2 ] 
+ 2(1..E[D]-n )(x+E[U(x)])}. 

1 
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Comparing this result with (5.2.6) and (5.3.12) shows that for each of the 

three cases n 1=0, n 1>0 and n 1<0, k 1(x) is given by the same expression. 

5.4. The function k 2(x). 

In this section we assume that at epoch 0 the inventory level 

X(O)=x::ill and that the production is always governed by rate n2 . We recall 

the definition of T2(x) given in section 1.4, 

T2 (x) :=the time until the inventory level reaches the value M, 

x :> M. 

Then it follows from the definition of k 2(x) that 

(5.4.1) 

Also it is obvious that 

(5.4.2) 
T (x) 

E[ J 2 X(t)dt] + 
0 

But from the definition of c(x) given in section 1.2 we have that 

(5.4.3) c(x) 

We further note that 

(5.4.4) 
T (x) 

E[ J 2 X(t)dt] 
0 

T (x) T (x) 
E[ J 2 Mdt] - E[ J 2 (M-X(t))dt]. 

0 0 
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Combining (5.4.1)-(5.4.4) and using t 2 (x)=E[T2(x)] we obtain 

T2 (x) 
(5.4.5) k2 (x) = h{Mt2 (x)-E[ f (M-X(t))dt] + c(x)} 

0 
T (x) 

It remains to determine E[ J 2 (M-X(t))dt]. In section 1.4 we derived 
equation (1.4.36), which gives 0an expression for c(x), x~O. The arguments 
used there can also be applied here. The process {M-X(t), O~t~T2 (x)} 
corresponds to the workload process in an M/G/1-queue in ~hich jobs arrive 
according to a Poisson process with rate A. The amounts of work involved 
by the jobs are independent random variables with common distribution 
function F and work is processed at rate n2 . The initial workload equals 
M-x. Using again the results in Tijms [1977] we find that 

(5.4.6) 
T (x) 

E[ f 2 (M-X(t))dt] 
0 

x ~ M. 

Thus we can give the following expression for k2 (x), x~M from equations 
(1.4.1), (5.4.5) and (5.4.6), 

(5.4.7) AE[D2](M-x) 

2(n 2-AE[D]) 2 
+ c(x)}, x ~ M. 

Hence we have expressed k2 (x) in terms of c(x) for which function we 
already found approximation 1.4.3. Note that it follows from equations 
(1.4.36) and (5.4.7) that 

x ~ o. 

This also follows directly from the lack of memory of the exponential 
interarrival time distribution. Finally we derive the following result 
from equations (1.2.10), (5.4.7) and the definition of U(x), 

(5.4.8) 
2 2 

f k2(m-u)du(1-p(M-m,u)) h{(M-m) -E[U(M-m)] + 0 2(n 2-AE[D]) 

2 + (m-AE[D ]) (M-m+E[U(M-m)]) E[C]} 
2(n2-AE[D]) (rr2-AE[D]) + . 

In the next section we will combine the results given in sections 5.2-5.4 
to give an expression for E[Ch]. 



5.5. The average holding and switching costs per unit time and 

insensitivity results for M-m. 

In sections 5.2-5.4 we have found exact expressions for k 1(x) and 

k2(x). From these results we can give an exact expression for E[Ch]. From 

this exact result we arrive at a· computationally tractable approximation 

for E[~]. 

From equation (1.3.10) we have that 

(5. 5. 1) t (M-m) = M-m+E[U(M-m)] 
1 AE[DJ-n 1 

It then follows from equations (5.1.4), (5.2.6), (5.3.12), (5.3.26), 

(5.4.8) and (5.5.1) that 

(5.5.2) 

+ m(M-m+E[U(M-m)])] + E[C] 

+ AE~D~(M-m+E[U(M-m)])[ 1 2 
· (AE[D]-n 1) 

+ 

1 ----=2ll. 
(n2-AE[D]) 

Now we recall that the random variable U was defined as 

U := U(M-m). 

For the case of M=m exact expressions for E[U] and E[U2] are given by 

equations (1.3.35) and (5.1.5). If M-m satisfies condition 1.3.1 then 

approximations for E[U] and E[U2] are given by approximations 1.3.3 and 

5.1.1. Letting E [C] denote the approximation for E[C] resulting from app 
equations (1.2.10) and (1.4.36) and approximation 1.4.3, (5.5.2) yields 

Approximation 5.5.1. If M=m or M-m satisfies condition 1.3.1 then 
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1 ------,,.-2] }. 
(n2-AE[D]) 

We define 
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K(n,m) ·= the expected holding and switching costs incurred 

during a cycle in case the inventory is controlled 

by an (m,m+n)-rule. 

Under the assumption that the customer's behaviour satisfies the two 

conditions given in section 5.1, we obtain 

Approximation 5.5.2. If n=O or n satisfies condition 1.3.1, then 

K(n ,m) 
(112-111) n2 E[U2] 

-- K + h{ (AE[D]-11 1)(112-AE[D]) fy - -2- + m(ME[U) )] + 

2 
+ E [C] + AE[D ] (n+E[U]) [-----=-

app 2 (AE[D]-111)2 

1 
-----=-2] .} . 
(11 2-AE[D]) 

Again we emphasize the fact that K(n,m) defined above is the same for all 

models defined in chapters 1-4. Let us consider a particular model. Denote 

by E[T(n,m)] and E[T3 (n)] the expected length of a cycle in the model under 

consideration and the pure backlog model, respectively. Define the random 

variable B2 (n,m) as in section 3.1, 

B2 (n,m) := amount of demand lost during a cycle in the model 

under consideration. 

Then it follows from arguments given in section 2.3 to derive equation 

(2.3.22) that 

E[T(n,m)] 

From equations (1.3.10), (1.3.31), approximation 1.3.3 and equations 

(1.2.8) and (1.4.1), we obtain the following approximation, 

Approximation 5.5.3. If 6=0 or 6 satisfies condition 1.3.1, then 

E[T(6,m)] 
(11 2-11 1)(6+E[U]) E[B2 (n,m)] 

- (AE(D]-11 1)(112-AE(D]) - (11 2-AE[D])• 

Define 

g(n,m) ·= the long-run average cost per unit time. 
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Since by the theory of regenerative processes, 

K(6,m) 
E(T(6,m)) 

we find from approximations 5.5.2 and 5.5.3 and the results given in 

chapter 1-4 an approximation for g(6,m) associated with the particular 

model under consideration. 

Now we are able to find an approximately average-cost optimal 

(m,m+6)-rule such that a prespecified level of some service measure is met. 

Define for a given service measure 

r(6,m) := the service level under an (m,m+6)-rule. 

We are interested in the approximate solution to the following problem. 

Problem Pb 1: 

* * Find (6 ,m ) such that 

* * g(6 ,m) = min{g(6,m)l6G0, ilGO, r(6,m)=a}, 

where a is the prespecif ied level of the service measure under 

consideration. 

Problem Pb 1 can be solved as follows. For each 6G0 there exists at 

most one m(6) such that r(6,m(6))=a. Provided the service level a is 

sufficiently high there is a range of 6-values for which the function 

m(6) is defined. For each 6 in this range m(6) can be determined by 

bisection, where we use the strict monotonicity of r(6,m) in m. Next we 

use a simple line search method to obtain 6* from 

* * g(6 ,m(6 )) = min g(6,m(6)). 
6 

Thus the two-dimensional problem is reduced to two one-dimensional problems, 

which is computationally favourable. 

Our numerical investigations revealed the remarkable result that the 

* value of the approximately optimal 6 became almost independent of the 

required service level a for a sufficiently close to 1, say aG0.99. 
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~* Moreover, it turned out that this constant value 6 (say) of 6 was the same 
for each of the service measures considered and for all models studied in 
chapter 1-4. We found these empirical findings to be surprising at first 
sight, but realized next that they could not be accidental. Indeed these 
findings suggest that the various service measures must have some 
asymptotic behaviour in common. 

To make specific this common asymptotic behaviour let us consider the 
expected amount of demand backlogged during a cycle in the backlog model. 
This quantity is given by 

m 
(5.5.3) E[B(n,m)] f 

0 
b (m-u)d (1-p(n,u)) + b00 (0)p(6,m) 

00 u 

where b00 (x) is defined in section 1.4. Note that we have made explicit the 
dependence of Bon 6 and m. From equation (1.4.32) we know that 

(5.5.4) 

We show below that 

(5.5.5) lim e0m E[B(n,m)] 
m->oo 

= c 

for some c. Thus for m sufficiently large 

E[B(6,m)] -am - ce 

This result is the key to the understanding of the insensitivity of 6 to the 
required service level a when a is sufficiently close to 1. We make our 
point clear after proving (5.5.5). 

Because of the distribution assumption we have that positive constants 
c1, K exist such that 

(5.5.6) 1-F(x) for all x ~ O. 

It is no restriction to assume 

(5.5.7) K > O. 



* In section 1.3 we defined a renewal process {Zk}' a random variable N (x) 
. * * . and the associated renewal function M (x)=E[N (x)]. Equation (1.3.12) 

states that for n 1 ~o 

p(x,u) = P{Z * -x>u}, x ~ 0, u ~ 0. 
N (x) 

Conditioning on the last renewal before "epoch" x we find 

(5.5.8) 
x * p(x,u) = J P{Z 1>u+x-y}dM (y). 

0 

It follows from (1.3.15), (1.3.20) and (5.5.6) that for the case of n 1 ~o 

for some positive constant c2 • Substituting this result into (5.5.8) it 

follows that for the case of n 1 ~o 

(5.5.9) p(x,u) u ~ o, x ~ o. 
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Using the arguments used to obtain (1.3.30) it can be seen that (5.5.9) also 

holds for the case of n 1<0. Using (5.5.7) and (5.5.9) we find for all 

values of n 1 

(5.5.10) 

(5.5.11) 

lim e 15mp(ti,m) 
m+oo 

o. 

lim e 15m f
00

p(ti,u)du 
m+oo m 

0. 

After some algebra we further find from (5.5.4) and (5.5.9) that 

(5.5.12) 
• Om m 1 ~ Ou 

lime J b (m-u)d (1-p(ti,u)) = ~2~ J e d (1-p(ti,u)). 
lit+"" 0 00 u 15 v 0 u 

Since (5.5.4) implies that as m+oo then e15~00 (m+ti)~e-l5ti/(15 2v), we finally 

obtain from (5.5.3) and (5.5.10)-(5.5.12) 

(5.5.13) . 15m... ] 1 [ 00 15u ( -15.ti] lime ~[B(ti,m) = ~2~ J e d 1-p(ti,u))-e . 
m+oo ovO u 

Analogously we find for the expected cumulative backlog during a cycle in 

the backlog model, 
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(5.5.14) ou < -oA1 e d 1-p(A,u))-e • 
u 

lim e 0~[C(A,m)] = --3- [ f 
nr+oo n2o v 0 

In general we can state the following result. For each of the models studied 
in chapter 1-4 and each service measure considered there we have that 

(5.5.15) lim e0m(1-r(A,m))E[T(A,m)] 
m+oo 

where r(A,m) is the level of the service measure considered and er is some 
positive constant also depending on the service measure dealt with. 
Equation (5.5.15) describes the common asymptotic behaviour that we 

mentioned earlier. 

Now we apply the approximation for p(A,u) given in section 1.3. Using 
* the definitions of o and s for the particular case of n 1>0, we obtain for 

all values of n 1 and all A satisfying condition 1.3.1 

(5.5.16) 

Substituting (5.5.14)-(5.5.16) into approximations 5.5.1 and 5.5.3, we 
obtain 

Approximation 5.5.4. For m sufficiently large and A satisfying condition 
1. 3. 1 we have, 

g(A,m) - g(A,m) 

with 

g(A,m) 

and where 

1 
----~2)}] x 

(n 2->.E[D]) 
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ci := lim e01\2 oo(m), 
m+oo ' 

where b2 ,
00

(x) is defined as 

b2 ,00 (x) :=the expected amount of demand lost during the 

interval (0,00 ) in the particular model under 

consideration, given that X(O)=x and production rate 

rr2 is always used. 

For the important pure backlog and pure lost-sales model we have 

for the backlog model 

for the lost-sales model. 

Let us consider a service measure such that the associated level 

r(6,m) for an (m,m+6)-rule satisfies (5.5.15). Define 

where c is given through (5.5.15). Then we solve the following new problem 
r 

being an approximation of problem Pb 1, 

Problem Pb 1: 
,...JI< ,...JI< 

Find (6 ,m ) such that 

,..,,.,....;k,_* "" I ~ 
g(6 ,m ) = min{g(6,m) 6~0, m~O, r(6,m)=a} 

where a is the prespecified level of the service measure under consideration. 

,...JI< ,...JI< 

If both 6 >O and m >O then it follows from the Lagrange multiplier 
• ,Jc 

method that there exists an n such that 
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a [g(t.,m) - n(r(t.,m)-a)J(6 >=<t' ....;1c ....;1c) 0 ae. ,m,n ,m ,n 

a [g(t.,m) - n G<e. ,m)-a)] (ll )=(t' ....J1c ....Jlc) 0 am ,m,n ,m ,n 

"'O: ....;le r 6 ,m ) a. 

Solving this set of equations we find after a lot of tedious algebra that rJk 
6 is a positive root of 

where 

(5.5.17) 

z(t.) 0, 

z(t.) 
2 -06 := M(ME[U]) + h(ll+E[U]) e 

-06 
co-e 

We do not have analytical results concerning the existence and uniqueness 
of 7/'. In all numerical examples tested we found a unique positive solution. 
Also, the value oft' we obtained from solving z(t.)=O is practically equal * to the value of 6 we found by solving Pb 1 when a is sufficiently close 
to 1. We observe that the expression for z(ll) involves neither the model 
constant c~ nor the service measure constant er. Hence we have found the 
following important result. 

Insensitivity result: The optimal value t' that is found by solving Pb 
is independent of the model and service measure under consideration. 

Now we suggest the following approximate solution to Pb 1 when a is 
sufficiently close to 1 (say, a~0.99). 

rJk ,.., * 1. Compute 6 from z(t.) =0 with z(ll) given by (5.5.17). 
* 2. Compute m ~O from 

,..;k * r(ll ,m ) = a. 
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Step 2 can be solved e.g. by bisection, where we use the fact that r(6,m) 

is strictly increasing in m for fixed 6. Step 1 can be solved by the 

standard Newton-Raphson method with either exact or approximate derivative. 

We suggest to start this iterative procedure with 

(5.5.18) 

This suggestion is motivated as follows. For all 6~0 the function z(6) 

satisfies the inequality z(6)>w(6) with 

w(6) 
2 2 

:= h{6(6+E[U])- (6 -E[U ]) -
2 

(ME[U])} 
0 

(AE[DJ-n 1)(n2-AE[D]) 

- K (n2-n1) 

Then we have that 60 is the largest root of w(6)=0. If there exists a 

"'* positive solution 'K* of (5.5.18) then w(6)=0 has two real roots and 6 <60 • 

In the next section we will give numerical results concerning the 

accuracy of the approximation 5.5.1 for the average 

Also, we will plot the approximately optimal values 

the algorithm described below problem Pb 1 and show 
Ni< 

to 6 as a increases. 

holding costs per cycle. 

* * (6 ,m ) obtained from 

* the convergence of 6 

Remark 5.5.1. Consider the case of exponentially distributed demand. Then 

g(6,m) g(6,m) and r(6,m) r(6,m). 

Also g(6,m) and r(6,m) are exact, provided r(6,m) corresponds to one of the 

service measures discussed before. Hence for the exponential demand case 

"'* "'* the solution (6 ,m ) is the true optimal solution. 

Remark 5.5.2. Consider the backlog model in which shortage costs are 

assumed rather than a service level constraint. Suppose that a shortage 

cost at rate p.x is incurred whenever a backlog of x exists. Then, 

similarly as above, we can approximately solve the problem of minimizing 

the average costs, where the costs consist of holding, switching and 

shortage costs. The average shortage cost equals p times the average 

backlog at an arbitrary point in time, the latter being studied in chapter 1. 

* * * The (m ,m +6 )-rule that minimizes the average costs has again the property 
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* ""' * that 6 ~6 , especially when the shortage cost rate p is large, causing m 

to be large. 

Let us define 

v(6,m) := the sum of the average holding, switching and 

shortage costs when the inventory is controlled by 

an (m,m+6)-rule 

and consider the problem 

Problem Pb 2: 

* * Find (6 ,m ) such that 

* * v(6 ,m ) min{v(6,m)j6,~0}. 

We suggest to solve approximately this problem by the following procedure. 
~* ""' 1. Compute 6 from z(6 )=0 with z(6) given by (5.5.17). 
* 2. Compute m from 

a ~ ""' * am v(6 ,m ) o, 

where ~(6,m) is the approximation of v(6,m), that results from the 

approximations given in chapter and approximation 5.5.1. 

Alternatively we can minimize ~(6,m) as a function of 6 and m subject to 

6,~0. This procedure is more computer-time-consuming, but yields more 

accurate results in the case of a small shortage cost rate p. 

In the next section we also give numerical results concerning 

problem Pb 2. The numerical results obtained by our method will be 

compared with those obtained by a diffusion approximation studied in 

Vickson [1982]. 

5.6. Numerical results and conclusions. 

In the introduction to this chapter we posed three questions: Is it 
possible to obtain accurate approximations for the holding and switching 

costs? Is the approximate (m,M)-rule with M-m predetermined by the 

EOQ-formula (1.5.1) a good rule with respect to average costs? Is the 

optimal M-m insensitive to the required service level? In section 5.5 we 
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proved that the last question can be answered in the affirmative provided 

the switching level m is sufficiently large. This answer to the last 

question has an important consequence for the second question. Since it is 
• t"V* • easy to verify that the solution 6 to equation (5.5.17) is not equal to 

the difference 6EOQ resulting from (1.5.1), one may wonder whether the 

second question can have a positive answer. 

Throughout this section we restrict to the backlog model, since the 

approximations 5.5.1-5.5.4 hold for all models discussed in the chapters 

1 to 4. Also, in view of the fact that 7{* is the same for each of the 

service measures considered (see section 5.5), we only consider the 

S-service measure requiring that the fraction of demand being met directly 

from stock on hand equals S. After having discussed the answer to the above 

three questions we compare at the end of this section our approximations 

with a diffusion approximation. 

Let us address the first question. In table 5.6.1 we give the 

approximate and the actual values of the average on-hand inventory for the 

(m,M)-rules that are given in table 1.5.1. In all these examples \=1 and 

E[D]=1, while M-m is determined by formula (1.5.1) with K=25 and h=1. We 

assume deterministic demand (c~=O) and gamma demand with c~=1/3, 2/3 and 2. 

The numerical results allow the conclusion that the approximation to the 

average on-hand inventory shows an excellent performance. 
* ~"' In table 5.6.2 we show the convergence of 6 to ~ as the service level 

* S approaches 1. Here 6 is the approximate optimal difference M-m that is 

computed by using approximation 5.5.2 for the expected total costs per cycle. 

In all examples we have chosen \=1, E[D]=1, h=1 and K=25. 

Again we used deterministic and gamma distributions to represent the 

distribution of the demand D. For deterministic demand and rr 1=0 approximation 

5.5.4 is not valid, since the undershoot is deterministic and depending on 

6. Hence the insensitivity result does not hold for this particular case. 

Still we computed 6* from z(~)=O. As a rule of thumb we state that 6*~7{* 
when the required service level is at least 99%. Of course this does not 

hold when production rate rr 2 is extremely high, causing m to be small. 
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Table 5.6.1. The approximate average inventories and their actual values. 

c2=0 2 
D cD=1/3 

711 712 s m v v m v v act app act app 

-0.5 1.25 0.95 5.57 5.45 5.46 (4) 8.09 7 .37 7.42 (5) 
-0.5 2 0.95 1.02 3.43 3.43 ( 1) 1.82 4.12 4.12 (1) 
-0.5 5 0.95 0.·26 4.00 4.00 ( 1) 0.57 4.31 4.31 ( 1) 

0 1.25 0.95 5.74 5.49 5.50 (5) 8.05 7.39 7.37 (6) 
0 2 0.95 1.44 3.46 3.46 (1) 1.87 4.04 4.05 (2) 
0 5 0.95 0.45 3.65 3.65 (1) 0.65 3.97 3.97 (1) 
0.5 1.25 0.95 5.15 5.49 5.48 (4) 7.52 7 .43 7.44 (8) 
0.5 2 0.95 0. 76 3.13 3.12 (2) 1.51 3.93 3.93 (2) 
0.5 5 0.95 0.04 3.08 3.09 (2) 0.33 3.54 3.54 (2) 

-0.5 1.25 0.99 9.31 9.11 9.13 (5) 13.26 12.44 12.49 (8) 
-0.5 2 0.99 2.30 4. 70 4. 71 (2) 3.74 6.01 6.02 (2) 
-0.5 5 0.99 0.86 4.59 4.59 (1) 1.65 5.38 5.38 ( 1) 

0 1.25 0.99 9.47 9.15 9. 19 (5) 13.22 12.45 12.50 (8) 
0 2 0.99 2.73 4. 73 4. 74 ( 1) 3.79 5.94 5.93 (2) 
0 5 0.99 0.96 4.16 4.16 (2) 1. 72 5.03 5.04 ( 1) 
0.5 1.25 0.99 8.88 9.15 9.18 (5) 12.69 12.50 12.51 (8) 
0.5 2 0.99 2.05 4.40 4.40 (2) 3.43 5.82 5.81 (2) 
0.5 5 0.99 0.66 3. 70 3. 70 (2) 1.41 4.61 4.62 (2) 

2 
c2=2 cD=2/3 D 

711 712 s m v v m v v app act app act 

-0.5 .1.25 0.95 10.65 9.32 9.39(11) 21.02 17. 19 17.21(22) 
-0.5 2 0.95 2. 72 4.89 4.89 (2) 6.71 8.35 8.33 (4) 
-0.5 5 0.95 0.96 4. 70 4. 70 ( 1) 3.01 6.71 6.71 (2) 

0 1.25 0.95 10.58 9.33 9.29(12) 20.85 17.20 17.47(22) 
0 2 0.95 2. 77 4.84 4.84 (2) 6.71 8.33 8.34 (4) 
0 5 0.95 1.06 4.40 4.40 (1) 3.16 6.54 6.54 (2) 
0.5 1.25 0.95 9.92 9.39 9.37(12) 19 .68 17 .30 17.32(25) 
0.5 2 0.95 2.33 4. 78 4. 78 (3) 5.88 8.44 8 .46 (5) 
0.5 5 0.95 0.69 4.07 4.06 (3) 2.53 6.50 6.49 (4) 

-0.5 1.25 0.99 17.26 15.80 15. 79(18) 33.39 29.32 29.45(25) 
-0.5 2 0.99 5.28 7.43 7.43 (2) 11.91 13.49 13 .46 (4) 
-0.5 5 0.99 2.51 6.24 6. 24 ( 1) 6.43 10.11 10.12 (2) 

0 1.25 0.99 17.19 15.81 15.80( 12) 33.23 29.32 29.31(35) 
0 2 0;99 5.33 7.37 7.36 (2) 11. 92 13.47 13.46 (5) 
0 5 0.99 2.61 5.94 5.94 (2) 6.58 9.95 9.95 (2) 
0.5 1.25 0.99 16.53 15.87 15.94(13) 32.05 29.43 29.37(25) 
0.5 2 0.99 4.89 7.32 7.30 (3) 11.08 13.58 13.58 (5) 
0.5 5 0.99 2.23 5.60 5.61 (3) 5.95 9.90 9.87 (4) 



* "'* Table 5.6.2. Convergence of 6 to 6 • 

c2=0 2 
D cD=1/3 

"'* "'* 11 1 112 13=.90 13=.95 13=.99 6 13=.90 13=.95 13=.99 6 

-0.5 1.25 5. 116 5. 116 5.116 5. 116 5.566 5.566 5.566 5.566 
-0.5 2 6.007 5.990 5.985 5.985 6.313 6.300 6.300 6.299 
·O 1.25 4.558 5.000 4.930 5.000 5.202 5.202 5.202 5.202 

0 2 5.015 5.000 5.000 5.000 5.608 5.599 5.599 5.599 
0.5 1.25 4.620 4.620 4.620 4.620 4.926 4.926 4.926 4.926 
0.5 2 4.606 4.544 4.564 4.564 4. 771 4. 757 4.757 4.756 

2 
cn=2/3 c~=2 

"'* ,...Jk 

11 1 11 2 13=.90 13=.95 13=.99 6 13=.90 13=.95 13=.99 6 

0.5 1.25 5.936 5.936 5.936 5.936 7.004 7.004 7 .004 7.004 
-0.5 2 6.614 6.606 6.605 6.605 7.600 7.625 7.638 7.638 

0 1.25 5.505 5.505 5.505 5.505 6.323 6.323 6.323 6.323 
0 2 5.845 5.838 5.837 5.837 6.554 6.579 6.593 6.593 
0.5 1.25 5.163 5. 163 5.163 5. 163 5.766 5. 765 5.765 5.765 
0.5 2 4.938 4.930 4.928 4.928 5.393 5.420 5.438 5.438 

* Table 5.6.2 shows that the optimal difference 6 is indeed 

insensitive to the required service level when this level is sufficiently 

"'* 
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high. Denote by gEOQ and g the average switching and holding costs of the 

(m,M)-rules that are obtained for the 13-service level requirement when using 

"'* (1.5.1) for M-m respectively using 6 for M-m. In table 5.6.3 we compare the 
"'* average costs gEOO and g with the minimal average switching and holding 

* costs g associated with the optimal (m,M)-rule obtained by solving problem 
rJk * Pb 1. The costs gEOQ' g and g are computed from the approximations 5.5.2 

and 5.5.3. In all examples we have chosen A=1, E[D]=1, h=1 and K=25. 

From table 5.6.2 we found that 7/.* and 6* differ only slightly even for 
0 rJk * 13= .9 and so it is no surprise that g and g 1 t 'd · 1 H "'* are a mos i entica • owever, 

6EOQ and 6 may differ significantly, cf. tables 1.5.1 and 5.6.2. 
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Nevertheless the results in table 5.6.3 show that the (m,m+6EOQ)-rule 
performs quite well. We found that the relative error is usually below 5%, 

"'* * Table 5.6.3. Comparison of gEOQ' g and g • 

c2=0 2 
D cD=1/3 

"'* * "'* * 
7f 1 7f 2 f3 gEOQ g g gEOQ g g 

-0.5 1.25 0.90 5.4206 5.2011 5. 2011 6. 7177 6.4478 6.4478 
-0.5 2 0.90 5.4938 5.4738 5.4738 5.8589 5.8120 6.8119 
-0.5 1.25 0.95 6.9366 6. 7171 6.7171 8.8155 8.5456 8.5456 
-0.5 2 0.95 6.0127 5.9915 5.9915 6.6553 6.6094 6.6094 

0 1.25 0.90 5.2276 5. 1298 5. 1298 6.5930 6 .3875 6.3875 
0 2 0.90 5.0223 5.0223 5.0223 5.4540 5.4285 5.4285 
0 1.25 0.95 6. 7436 6.6458 6.6458 8.6908 8.4853 8.4853 
0 2 0.95 5.5455 5.5455 5.5455 6.2500 6.2250 6.2250 
0.5 1.25 0.90 5.2483 5.0488 5.0488 6.5312 6.3184 6.3184 
0.5 2 0.90 4.4793 4.4556 4.4555 4.9175 4.8805 4.8805 
0.5 1. 25 0.95 6.7643 6.5648 6.5648 8.6290 8.4162 8.4162 
0.5 2 0.95 4.9996 4.9793 4.9793 5.7136 5.6 776 5.6776 

2 
c2=2 cD=2/3 D 

"'* * ~* * 
7f 1 7f 2 f3 gEOQ g g gEOQ g g 

-0.5 1.25 0.90 8.0390 7.7367 7.7367 13.4232 13.0685 13 .0685 
-0.5 2 0.9C 6.3145 6.2359 6.2359 8 .5109 8.3205 8.3205 
-0.5 1.25 0.95 10. 7203 10.4180 10.4180 18.4446 18 .0899 18.0899 
-0.5 2 0.95 7.3802 7.3024 7.3024 10.6643 10.4706 10.4706 

0 1.25 0.90 7.9016 7.6788 7.6788 13.2474 13.0133 13 .0133 
0 2 0.90 5.9154 5.8716 5.8716 8. 1011 8.0022 8.0022 
0 1.25 0.95 10.5829 10.3601 10.3601 18.2688 18.0347 18.0347 
0 2 0.95 6. 9811 6 .9379 6.9379 10.2536 10.1521 10.1521 
0.5 1. 25 0.90 7.8406 7.6257 7.6257 13.2032 13.0118 13.0118 
0.5 2 0.90 5.4275 5.3779 5.3779 7.7527 7.6797 7 .6 796 
0.5 1.25 0.95 10.5219 10.3071 10.3071 18.2247 18.0334 18.0333 
0.5 2 0.95 6.4934 6.4446 6.4446 9.9031 9.8275 9.8275 

cf. also De Kok et al [1984] and De Kok [1985]. This indicates that the cost 
function g(m(6),6) with m(6) uniquely determined by the service level 

constraint, is extremely flat arounds its minimum. Figure 5.6.1 shows a 
typical picture of g(m,6) as a function of both m and 6 and of g(m(6),6) as 
a function of 6. It is interesting to note that the difference between 6EOQ 
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* and 6 is largest when n2 gets close to \E[D]; the same holds for gEOQ and 

* J * g • In contrast with this observation g gets closer to g as n2 decreases 

to \E[D]. The following explanation of this finding can be given. Assuming 

that the service level s is fixed, we first note that the switching level 

m must increase as the production rate n 2 approaches the mean demand per 

unit time. Then the approximation 5.5.4 for the average costs leading to 

"'* 6 is nearly the same as the approximation for the average costs that 

follows from approximations 5.5.2 and * 5.5.3 leading to 6 . Hence in that 

"'* * "'* * case 6 must be close to 6 and so g to g • 

FIGURE 5.6.1. 
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Concluding, the (m,M)-rule using 6EOQ shows a good pe~ormance in 

costs in most cases. Nevertheless we recommend the use of 6 because the 

resulting (m,M)-rules are approximately optimal for the whole range of 

"'* parameter values. The computation of 6 is not more difficult than the 

computation of the number o that has to be computed anyway. 

10 



136 

"'* . . ~ we advocate the use of 6 instead of 6EOQ' it is i~teresting to 
plot 6 as a function of the model parameters n 1, n2 and cD. In table 5.6.4 

"'* we give the values of 6 for a number of combinations of these model 
parameters. As before we have chosen A=1, E[D]=1, h=1 and K=25. In all 
cases we fitted a gamma distribution to the first two moments of the 
demand size distribution. 

"'* 2 Table 5.6.4. The number 6 as a function of n 1~2 and cD. 

TI 1 0.5 2 4 8 16 

0 1.25 5.36 5. 76 6.32 7. 11 8.43 11.51 
0 2 5. 72 6.05 6.59 7.46 9 .16 13.35 
0 5 6.38 6.61 7 .10 8 .17 10. 73 17.21 
0.5 1.25 5.05 5,35 5. 77 6.31 7.27 9.74 
0.5 2 4.85 5.08 5.44 6.04 7.40 11.02 
0.5 5 4.84 5.00 5.35 6.20 8.51 14.44 

"'* "'* We sunnnarize the~following properties of 6 • The value of~ increases 
as c~ increases, as is in fact required by condition 1.3.1. This finding 
provides an additional argument to use 7f' rather than 6EOQ (we found that 

"'* "'* usually 6EOQ~6 ). The value of 6 is, like 6EOQ' monotonically decreasing 
in n 1• As opposed to this :!nding we have that 6EOQ is monotonically 
increasing in n2 , whereas 6 is not monotonic in n2 • It is intuitively 

"'* clear that 6 should be increasing in K and decreasing in h. This is 
indeed true as can be verified from (5.5.17). 

Finally in tables 5.6.5 and 5.6.6 we compare our approximate results 
for the compound Poisson process with the results for a diffusion 
approximation. We note that the diffusion process approximation is 
completely determined by the first two moments of the demand per unit time. 
Assuming that the inventory is controlled by an (m,M)-rule and the 
production is governed by one out of two production rates n 1 and n2 , it 
follows that the diffusion demand process induces a two-mode diffusion 
inventory process. Using results from Vickson [1982] for the backlog model 
it is easy to find expressions for the average length of a regeneration 
cycle, the average on-hand inventory and the average backlog at an 
arbitrary point in time. 

Now we address the question whether a diffusion process approximation 
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to the compound Poisson demand process yields acceptable results for the 

average on-hand inventory. Therefore we consider a number of examples 

with A=1, E[D]=1, h=1 and K=25. It follows from the results in table 5.6.5 

that the diffusion process approximation yields an overestimate of the 

value of the average on-hand inventory. This is probably caused by the 

fact that the undershoot of the switching level m is zero for the 

diffusion process approximation. 

Table 5.6.5. Average inventories for compound Poisson and diffusion demand. 

2 
cD=0.5 c2=2 

D 

1T 1 1T 2 m M VPois vdiff m M VPois vdiff 

0 1.25 9.31 12 .4 7 8.36 8.71 20.85 24.01 17.20 18.05 
0 2 2.31 7.31 4.43 4.82 6.71 11. 71 8.33 9.21 
0 5 0.85 7. 17 4.18 4.57 3. 16 9.49 6.54 7.45 
0.5 1.25 8. 72 11.61 8 .41 8.73 19.68 22.56 17.30 18.24 
0.5 2 1. 91 6.00 4.35 4.71 5.88 9.96 8.44 9;42 
0.5 5 0.50 5.22 3.80 4.17 2.53 7.25 6.50 7.51 
0 1.25 15.20 18 .3.6 14. 13 14.54 33.23 36.39 29.32 30.32 
0 2 4.55 9.55 6.64 7.05 11.92 16.92 13.47 14 .42 
0 5 2. 16 8.48 5.48 5.88 6.58 12.91 9.95 10.87 
0.5 1. 25 14 .61 17 .50 14. 18 14.56 32.05 34.94 29.43 30.51 
0.5 2 4.15 8.23 6.56 6.94 11 .08 15. 17 13 .58 14.63 
0.5 5 1.81 6.53 5.10 5.48 5.95 10.67 9.90 10.94 

Next we assume that a fixed cost K~O is incurred each time the 

production rate is switched from TI 1 to1!2 • Also, a holding cost at rate h.x 

is incurred when the stock on hand equals x~O .and a penalty cost at rate 

p.z is incurred when the backlog equals z~O. For this cost structure and a 

diffusion demand process Vickson [1982] shows that an (m,M)-rule is 
average-cost optimal among all reasonable policies. Also, he gives a 

numerical procedure to determine the optimal (m,M)-policy when considering 

the switching, holding and penalty costs only. This numerical procedure 

may be simplified considerably. By deriving directly an explicit 

expression for the average cost of a given (m,M)-rule, it is easy to find 

the optimal values of m and M. Moreover, it follows that the optimal value 

of 6=M-m is independent of the penalty cost rate p. Using this result, the 

optimal (m,m+6)-rule can be computed by using the two-step-procedure 

described below problem Pb 2. We note that the optimal value of m may be 

negative. The approximations given in this monograph for the compound 
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Poisson demand case are valid only when m~O. The results from table 5.6.6 

reveal that a diffusion process approximation to the compound Poisson 

demand process may lead to policies being quite different to those obtained 

by our renewal-theoretic approach, where the diffusion process approximation 

for the minimal average costs may underestimate rather dramatically the 

actual minimum costs. For the compound Poisson demand case the optimal 

(m,m+6)-rule is determined by the algorithm described below Pb 1. 

Table 5.6.6. Optimal (m,m+6)-rule for compound Poisson and diffusion demand. 

2 
cD=0.5 compound Poisson diffusion 

TT 2 p m 6 g(m,6) m 6 g(m,6) 

1.25 12 6.04 5.36 10.54 4.59 5.76 9.09 
2 12 0.58 5.73 6.36 -0. 13 5.80 5.67 
1. 25 16 7.02 5.36 11.52 5.40 5.76 9.90 
2 16 0.96 5. 72 6. 74 0.07 5.80 5.88 

c2=2 compound Poisson diffusion D 

TT 2 p m 6 g(m,6) m 6 g(m,6) 

1.25 12 14.33 6.32 20.39 10.82 7. 17 16.60 
2 12 2.56 6.56 9.69 0.56 6.62 7.26 
1.25 16 16.39 6.32 22.45 12.43 7. 17 18.21 
2 16 3 .41 6.57 10.55 0.97 6.62 7.66 
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6. A PRODUCTION-INVENTORY MODEL WITH POSITIVE SETUP TIME. 

So far we have assumed that it takes no time to switch from one 

production rate to another. In some practical applications it may be more 

appropriate to assume that a positive switch time is needed to adjust the 

production rate, especially when switching from a low to a high production 

rate. 

In this chapter we restrict to the case that the low production rate is 

equal to zero. In other words, the production facility is either on or off. 

As before the inventory is controlled by an (m,M)-rule with O~m~M with the 

only difference that as soon as the inventory level drops below m then the 

production facility is reactivated and production continues after a positive 

(possibly stochastic) setup time. 

We consider both the backlog and the lost-sales model. Again we focus 

on the derivation of approximations for service levels with respect to some 

given service measure. We sequentially determine M-m and m such that a 

prespecified service level is achieved. 

The chapter is organized as follows. In section 6. 1 we describe the model 

in detail and derive expressions for the service measures in terms of a 

number of basic functions. Most of these basic functions are already known 

from chapters 1 and 2. In section 6.2 we derive two-moment approximations 

based on practical distributions. The behaviour of the inventory process 

during the setup time is studied in section 6.3. Combining the results 

obtained in the sections 6.1-6.3, we obtain the desired approximations for 

the service measures. In section 6.4 we derive approximations for holding 

and switching costs under some cost structure. Section 6.5 concludes this 

chapter with the presentation and discussion of numerical results. 

6.1. Model and service measures. 

In this section we first give a detailed description of the models 

to be considered. We assume that customers arrive according to a Poisson 

process with rate A, The demands of the customers are independent random 

variables with common distribution function F with F(O)=O. The demands are 

independent of the arrival process itself. We deal with both the model in 

which excess demand is backlogged and the model in which excess demand is 

lost. 

At any point in time the production is either on or off. If production 
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is on then items are continually added to inventory at rate TI 2 • Letting D 

denote the demand of a single customer we assume that 

(6.1.1) TI2 > \E[D]. 

The inventory is controlled by an (m,M)-rule. If the inventory level 

becomes as high as M, the production is innnediately stopped and the 

production facility is shut down. The production facility is reactivated 

again as soon as the inventory level drops below m. After a setup time T 
the production continues at rate TI 2 . We assume that the random variable T 
is independent of the demand process and the current inventory. 

We recapitulate a number of definitions given in the chapters 1 and 2. 

Define for any t~O, 

N(t) :=the number of customers that arrive in (O,t]. 

V(t) :=the total demand in (O,t]. 

X(t) := the inventory level at time t. 

B(t) := the amount of demand in (O,t] that cannot be met 

directly from stock on hand. 

Q(t) :=the number of stockout occurrences in (O,t]. 

S(t) := the number of customers arriving in (O,t] whose demands 

cannot be met directly from stock on hand. 

t 

C(t) := - J X(s)1{X(s)<O}ds =the cumulative backlogattimet. 
0 

We say that a stockout occurs if the inventory level drops from a positive 

value to a non-positive value. Then we consider the following service 

measures. 

(i) a-service measure. 

the long-run average number of sto'ckout occurrences per unit time, 

lim Q(t) 
t-+«> t 



(ii) S-service measure. 

the long-run fraction of demand that cannot be met directly from 

stock on hand, 

1 . B(t) 
t.: V(t) 

(iii) y-service measure. 

141 

the long-run fraction of customers whose demand cannot be met directly 

from stock on hand, 

. S(t) 
lim N(t) 
t--

(iv) a-service measure. 

the long-run averaee backlog at an arbitrary point in time, 

1 . C(t) 
im-t-

t.-

Since the inventory is controlled by an (m,M)-rule the inventory 

process is regenerative. We take as regeneration epochs the epochs at which 

the level M is reached from below. Unless stated otherwise we assume that 

epoch 0 is a regeneration epoch. Next we define the following random 

variables, 

T ·= the next epoch at which the level M is reached from below. 

Also, we associate with the cycle (O,T] the random variables 

N := N(T), V := V(T), B := B(T), Q := Q(T), S := S(T), 

C ·= C(T). 

It follows from the theory of regenerative processes that the following 

equalities hold with probability 1, 

(6.1.2) 

1 . Q(t) _ E[Q] 
im -t- - ETTT' 

t--

1 . S(t) E[S] 
im NltT = EDIT' 

t--

1 . B(t) _ E[B] t_: VITT - ETVT 

1 . C(t) _ E[C] 
t_:-t- - ETTT' 
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Due to the compound Poisson demand process we have that 

(6. 1 .3) E[N) \E[T], E[V] AE[D]E[T]. 

Hence it suffices to find expressions for E[T], E[Q], E[B], E[S] and E[C). 
Towards this end we introduce a number of basic functions. We distinguish 
between three types of basic functions. Those associated with the 
production facility being shut down and not yet reactivated, those 
associated with the inventory process during the setup time and those 
associated with the production being on. 

First we define the basic functions associated with the production 
facility being shut down and not yet reactivated. Under the condition that 
at epoch 0 the inventory level equals x+m, x~O,and the production is off, 
let 

t 1(x) :=the expected time until the inventory level drops below 

m and the production facility is reactivated. 

p(x,u) P{U(x)>u}, u ~ 0, 

where the random variable U(x) is defined by 

U(x) := the undershoot (included any shortage) of the inventory 

level m at the demand epoch at which the inventory 

level drops below m and the production facility is 

reactivated. 

Expressions for t 1(x), p(x,u) and E[U(x)] are given by (1.3.33)-(1.3.35) 
for the case of x=O and by approximations 1.3.1-1.3.3 when x satisfies 
condition 1.3.1. 

Next we define the basic functions associated with the inventory 
process during the setup time. Let a "dissatisfied" customer be a customer 
whose demand cannot be met directly from stock on hand. Then we define 

s(T) := the expected number of dissatisfied customers arriving 

during the setup time (including the customer initiating 

the setup time if this customer is a dissatisfied one). 
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c(T) := the expected amount by which the cumulative backlog is 

augmented during the setup time T. 

For ease of notation we suppressed in the above defined basic functions the 

dependency on m and M. Expressions for these basic functions will be derived 

in section 6.3. 

Finally we define the basic functions associated with the production 

being on. Assuming that at epoch 0 the inventory level equals x~M and the 

production rate TI 2 is used, we define 

t 2 (x) := the expected time until the inventory reaches the 

level M. 

b(x) := the expected amount of demand that is not met directly 

from stock on hand until the inventory reaches the 

level M (excluding any shortage existing at epoch 0). 

q(x) := the probability that the inventory level becomes non­

positive before the inventory reaches the level M. 

c(x) := the expected cumulative backlog at the time at which 

the inventory reaches the level M. 

Expressions for these basic functions are given in the chapters 1 and 2 by 

the approximations 1.4.1-1.4.3 for the backlog model and the approximations 

2.3.1-2.3.3 for the lost-sales model. It follows from equations (1.4.1), 

(2.3.1), (2.3.22) and (2.3.23) that 

(6.1.4) t2 L(x) = t2 B(x) 
bB(x) 

0 ~ x ~ M· ----
' ' TI 2 

(6.1.5) b1 (x) 
TI2-A.E[D] 

bB (x) , 0 ~ ~ M. x 
TI 2 

(6.1.6) qL (x) = qB (x)' 0 ~ x ~ M· 

Here the subscripts B and L ref er to the backlog and lost-sales model 

respectively. 

Now we define the following random variables, 
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~ := the total demand during the setup time T 

n := ~ + U(M-m). 

Hence n is the sum of the total demand during the setup time and the 
undershoot of level m (including any shortage). We also note that~ is 
independent of m and M. We further define 

F (x) 
n 

x ?; 0 

P{n::>x}, x ?; o. 

Again for ease of notation we have suppressed the dependency of n on M-m. 
Proceeding along the same lines as in the derivation of 

relations (1.2.8)-(1.2.11) and (2.1.4)-(2.1.6) we obtain 

(6. 1. 7) 

(6.1.8) 

(6.1.9) 

(6.1.10) 

(6.1.11) 

(6.1.12) 

(6.1.13) 

(6.1.14) 

(6. 1. 15) 

t 1(M-m) + E[T] + f t 2 B(m-y)dF (y) 
o ' n 

J bB(m-y)dF (y) + J (y-m)dF (y) o n o n 

-1 m 
(1-qB(O)) {1-Fn(m) + f qB(m-y)dF (y)} o n 

s(T) + ~ E[B ] + E[QB] - (1-F (m)) rr 2 B n 

c(T) + J cB(m-y)dFn(y) 
0 

t 1(M-m) + E[T] + f t 2 1 (m-y)dF (y) 
o ' n 

m 
f b1 (m-y)dF (y) + b1 (0)(1-F (m)) + f (y-m)dF (y) 

0 n n m n 

The expressions for E[SB] and E[S1 ] need some more explanation. Let us 
consider the backlog model. The number of dissatisfied customers in a cycle 
equals the sum of the number of dissatisfied customers arriving in the setup 
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time and the number of dissatisfied customers arriving while the production 

is on. The expected number of dissatisfied customers arriving in the setup 

time is by definition equal to s(T). The expected number of dissatisfied 

customers arriving while production is on equals the expected number of 

stockout occurrences while production is on plus the expected number of 

customers arriving while the inventory is negative and production is on. 

Since any shortage is produced at rate n2 it follows that the expected time 

that the inventory is negative while production is on equals E[BB]/n 2• Using 

"Poisson arrivals see time averages" it follows that the expected number 

customers arriving while the inventory is negative and production is on 

equals AE[BB]/n 2• The expected number of stockout occurrences while 

production is on equals the number of stockout occurrences during a cycle 

minus the expected number of stockout occurrences during the setup time. 

The latter number equals (1-F (m)) since during the setup time T the 
n 

of 

inventory decreases with jumps and if n~m then the inventory has crossed the 

level 0 exactly once. A combination of the above arguments yields (6.1.10). 

Analogously we derived (6.1.15). 

Next we express E[T1 ], E[B1 ], E[Q1 ] and E[S1 ] in terms of E[TB], E[BB]' 

E[QB] and E[SB]. Equation (1.4.19) states that 

(6.1.16) x ;;; o. 

Then equations (6.1.4)-(6.1.10) and equations (6.1.12)-(6.1.16) together 

imply'the following exact relations 

(6.1.17) E[T1 ] E[TB] - E[BB]/n 2 

(6.1.18) E[B1 ] 
n2-AE[D} 

E[BB] 
n2 

(6.1.19) E[QL] E[QB] 

(6.1.20) E[S1 ] = E[SB] 
A 

- - E[B ] • n2 B 

It is important to note that, unlike in the case of no setup time, E[Q1 ] f 

E[s1 ], since in the lost-sales model at most one stockout can occur during 

the setup time. If a stockout has occurred during the setup time all 

customers arriving after this stockout occurrence, but before production is 

on again, are dissatisfied. Their demand is totally lost. However, their 
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arrivals do not cause a stockout. 

Due to relations (6.1.17)-(6.1.20) we may restrict further attention 
to the backlog model. Still we need (approximate) expressions for F (x), n 
s(T) and c(T). Also, an approximation for Fs(x) must be found. Section 6.2 
deals with approximations for Fn(x) and Fs(x), whereas s(T) and c(T) are 
approximated in section 6.3. 

6.2. Approximations for Fs(x) and F (x). 

In this section we propose approximations for the distribution function 
of the demand in the setup time s and the distribution function of n, being 
the sum of the undershoot U(M-m) of m (including any shortage) and the 
demand in the setup time. These approximations are based on the first two 
moments of s and n. The reason for this rather crude approach is that in 
general it is impossible to obtain tractable exact expressions for Fs(x) 
F (x). Fortunately, numerical investigations show that the approximations n 

and 

based on only the first two moments perform satisfactorily. 
It is well-known (cf. Ross [1970]) that the first two moments of s are 

given by 

(6 .2. 1) E[s] ;\E[D]E[T] 

(6.2.2) 

We also define the squared coefficient of variation of s, 

The value of c~ determines whether the demand in the setup time is non­
erratic (c~~1) or erratic (c~>1). In approximating Fs(x) we also distinguish 
between these two cases. 

We approximate Fs(x) by Fs(x), which is defined by 

p (1-
1 

r 
l: 

j=O 

-S x (S x)j 
e 1 ----i-.--)+ (1-p )(1-

J. 1 

n -S x (S x)j 
2 2 

l: e --.-,-), 
j=O J. 

x f; o. 

In the determination of the constants n, r; p 1, s 1 and s2 , we distinguish 
b h 2<1 d 2 1 etween t e cases CS~ an CS> • 



Case (i): c~ ~ 1. 

The integers n and r are uniquely determined by 

1 2 < _1_ n < CS - n-1' 

while 

1 2 
P1 := --2[ncs 

1+ci;; 

f:3 1 
n-p1 

:=~· 

2 
Case (ii): cs > 1. 

r = n-1, 

2 - n2c2}!] - {n(1+c) 
s s 

f:32 := f:3 1 . 

The constants n, r, p 1, s1 and s2 are now defined by 

n := 1, r := 

2 
s1 :=EITT [l + 

2 
c -! ! s {-2-} ], 

cs+1 

S1 (S 2E[s]-1) 

S2-S 1 

147 

In the case of c~~1 we approximate Fs(x) by a mixture of an Erlang-n 

and an Erlang-(n-1) distribution function with the same scale parameter. In 
2 

the case of cs>1 we fit a hyperexponential distribution function with the 

same first three moments as the gamma distribution. It is easily verified that the 

constants n, r, p 1, s1 

moments as Fs(x). 

The approximation 

and s2 are such that Fs(x) has the same first two 

F (x) of F (x) is obtained in exactly the same way. 
n n 

Since n=U(M-m)+s we obtain 

(6.2.3) E[n] E[U(H-m)] + E[S] 

(6.2.4) 
2 2 2 

E[n ] = E[U (M-m)] + 2E[s]E[U(M-m)] + E[s ]. 

2 
Letting c denote the squared coefficient of variation of n, 

n 
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2 E[n2]-(E[n])2 
en := 2 

(E[n]) .. 

we replace E[~] and c; by E[n] and c2 , respectively, in the above given 
"' n -formulae for n, r, p 1, 81 and 82 to obtain Fn(x), which also is a two-

moment approximation of F (x). 
11 

Due to the form of the distribution function F (x) and the 
n 

approximations given for t 2 B(x), bB(x), qB(x) and cB(x) in chapter 1, it is , 
now an easy matter to obtain expressions for the integrals on the right-

hand side of (6.1.7)-(6.1.11). It remains to find expressions for s(T) and 

c(T). In the computation of these expressions we apply the approximation 

F~(x) of F~(x). 

6.3. The basic functions associated with setup time T. 

As said before the basic functions s(T) and c(T) depend on both m and 

M. More precisely, they depend on m and M-m. The dependence on M-m is 

induced by the undershoot distribution p(M-m,u). We assumed that T is 

independent of the compound Poisson demand process. Therefore our approach 

will be as follows. We first derive expressions for s(T) and c(T) 

conditional on the event {T=t} for some t~O. Using these expressions we 

derive the unconditional expressions for s(T) and c(T). 

Let us assume that T=t for some t~O. Let us further assume that 

production is always off and at epoch 0 the inventory equals x. Define 

s(x,t) := the expected number of customers iarriving in (O,t] 

whose demands cannot be met directly from stock on 

hand. 

c(x,t) := the expected cumulative backlog at epoch t. 

First we derive an expression for s(x,t). It follows from "Poisson 

arrivals see time averages" that 

(6.3. 1) s (x, t) A.t, x ~ o. 

So let us assume x>O. Then we define the following random variables. 

T(x) := the time until the inventory drops below 0. 
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T-(x,t) :=the time that the inventory is negative during (O,t]. 

s(t) :=the demand during (O,t]. 

Note that P{s(t)~x} = P{s~xlT=t}. Analogously to (6.3.1) we have that 

(6.3.2) s(x,t) AE[T-(x,t)] + P{s(t)>x}, x > 0. 

Therefore we need an expression for E[T-(x,t)]. 

We observe that the inventory levels i1ID1ediately after an arrival 

correspond to a renewal process induced by F, the demand distribution. Then 

it follows that 

E[T(x)] 

with 

M(x) ·= 

M(x) 
=-A-, x > 0' 

l: 
n=O 

n* 
F (x), x ;;:; 0' 

the renewal function associated with F (cf. also the analysis in section 

1.3). On the other hand we have 

x 

E[T(x)] =of E[T(x)is(t)=y]dFs(t)(y) + XJ E[T(x)js(t)=y]dFs(t)(y) 

with Fs(t)(x) = P{s(t)~x}. Analogously we obtain 

E[T-(x,t)] = J E[T-(x,t)ls(t)=y]dFs(t)(y). 
x 

Here we used that E[T-(x,t)ls(t)=y]=O for O~y~x. It follows from the 

definitions of T(x) and T-(x,t) that 

E[T(x)js{t)=y] + E[T-(x,t)ls(t)=y] t, y > x. 

From the lack of memory of the Poisson arrival process we find 

E[T(x)js(t)=y] t + E[T(x-y)], 0 ~ y ~ x. 
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Combining the above relations we obtain 

E[T-(x,t)] 
M(x) x M(x-y) 

t - -A-+ f --A- dFE;(t)(y), 
0 

x > 0. 

Thus it follows from (6.3.2) that 

(6.3.3) s (x, t) 
x 

At - M(x) + f M(x-y)dFE;(t)(y) + 1-FE;(tfx), 
0 

x > o. 

Next we derive an expression for c(x,t). Define the random variable 

C(x,t) by 

C(x,t) := the cumulative backlog at epoch t, given X(O)=x. 

By definition we have 

C(x,t) 
t 

f - X(s)1{X(s)<O}ds. 
0 

This can be rewritten as 

t t 

C(x,t) f (X(O)-X(s))ds - xt + f X(s)1{X(s)>O}ds. 
0 0 

Using c(x,t) E[C(x,t)] we obtain 

t t 

(6.3.4) c(x,t) E[0J (X(O)-X(s))ds]-xt+E[ 0J X(s)1{X(s)>O}ds]. 

Let us first consider the first term on the right-hand side of (6.3.4). It 

is easy to see that this term is only a function of t. Therefore we define 

t 
k(t) ·= E[ f (X(O)-X(s))ds], 

0 
t G 0. 

We can interprete k(t) as follows. Assume that at epoch s a cost is 

incurred at rate x-z if X(s)=z. Then k(t) equals the expected cost incurred 

in (O,t]. Conditioning on the first interarrival time and noting that the 

cost incurred up to that time is zero, we obtain 

k(t) 
t -As 

f {E[D](t-s)+k(t-s)}Ae ds, t G 0, 
0 



which can be rewritten as 

(6.3.5) k(t) 

Differentiation of equation (6.3.5) leads to 

(6.3.6) 
t 

k'(t) = E[D](1-e-At)+Ak(t) - A J k(s)Ae-A(t-s)ds. 
0 

Substitution of (6.3.5) into (6.3.6) yields 

k I (t) = AE[D]t' 

Using k(O)=O we thus find 

(6.3. 7) 
2 

k(t) = AE[D)t 
2 

t <: o. 
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Next we want to find an expression for the last term in (6.3.4). This 

term depends on both x and t. Therefore we define for all x and all t<:O 

t 

K(x,t) := 0J X(s)1{X(s)>O}ds. 

It is obvious that 

(6.3.8) K(x,t) O, x:>O,t<:O. 

So let x>O. Assume that at epoch s a cost at rate z is incurred if X(s)=z 

with z>O. Otherwise no cost is incurred at epoch s. Then K(x,t) can be 

interpreted as the cost incurred in (O,t]. Analogously to the derivation of 

an expression for s(x,t) we condition on the demand in the setup time t. 

This yields 

E[K(x,t)) 
x 

J E[K(x,t)i~(t)=y]dF~(t)(y) + 
0 

+ J E[K(x,t)i~(t)=y]dF~(t)(y). 
x 

By the same conditioning arguments we have, 
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x 
E[K(x,T(x))] J E[K(x,T(x))is(t)=y]dFs(t)(y) 

0 

+ J E[K(x,T(x))is(t)=y]dFs(t)(y). 
x 

An expression for E[K(x,T(x))] is given by equation (5.2.6) with h=1. 

However, for our present purpose it is 11XJre convenient to use the following 

expression for E[K(x,T(x))], 

E[K(x,T(x))] = Jx (x~y) dM(y), x ~ 0. 
0 

This expression is derived as follows. Conditioning on the first arrival 

after epoch 0, we obtain 

x 
E[K(x,T(x))] = ~ + J E[K(x-y,T(x-y))]dF(y), x ~ 0. 

0 

Clearly, the above expression for E[K(x,T(x))] is the unique solution to 

this renewal equation. 

Using the lack of memory of the Poisson arrival process, we obtain 

E[K(x,T(x))is(t)=y] = E[K(x,t)is(t)=y]+E[K(x-y,T(x-y))], 

0 :;; y:;; x. 

Combining the above relations with E[K(x,T(x))is(t)=y]=E[K(x,t)ls<t)=y] 

for all y>x, we find 

(6.3.9) E[K(x,t)] 
x ( ) x x-y (x-y-z) 

J x-y dM(y) - J f A dM(y)dFc(t)(y). 
0 A 0 0 s 

This expression for E[K(x,t)] is also of interest with respect to the 

evaluation of the holding costs when these costs are linear in the stock 

on hand. Equations (6.3.4) and (6.3.7)-(6.3.9) together yield 

(6.3.10) c(x,t) 

2 x IAE[D]t -xt+ J (x-y) dM(y)-
x2 x- 0 A y (x-y-z) 

/ / A dH(z)dFs(t)(y), x > 0. 

AE[D]t2 
2 -xt, x :;; O 
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Now we are in a position to give exact expressions for s(T) and c(T). 

Using the definitions of s(x,t) and c(x,t) and the memorylessness of the 

exponential interarrival times we obtain 

s (T) f J s(m-u,t)d (1-p(M-m,u))dF(t)+p(M-m,m), 
0 0 u 

c(T) = J J c(m-u,t)d (1-p(M-m,u))dF(t), 
0 0 u 

with F(t) p{T~t}. Substituting (6.3.1), (6.3.3) and (6.3.10) into the 

equations above and using the definitions of Fs(t)' Fs and Fn it follows 

after some algebra that 

m 
(6.3.11) s(T) t.E[T] - J M(m-u)d (1-p(M-m,u)) 

0 u 

m m-y 
+ f f M(m-y-u)d (1-p(M-m,u))dF~(y)+1-F (m). 

o o u s n 

(6.3.12) c(T) = /.E~D] E[T2l - (m-E[U(M-m)])E[T] 

m m-u M(m-u-z) 
+ J J A dzd (1-p(M-m,u)) 

0 0 u 

m m-y m-y-u M(m-y-u-z) 
- / / / A dzdu(1-p(M-m,u))dFs(y). 

From equation (1.3.34) we know that for the case of M=m 

p(M-m,u) = 1-F(u), u f: o. 

From the definition of M(x) we have that 

x 
f M(x-y)dF(y) M(x).-1, x ;;, o. 

0 

x x-y x 
J J M(x-y-z)dzdF(y) J M(y)dy-x, x f: o. 

0 0 0 

Substituting these results into (6.3.11) and (6.3.12), we obtain for the 

case of M=m 

m 
(6.3.13) s (T) l.E[T]-M(m)+0J M(m-y)dFs(y)+1-Fs(m)+1-Fn(m). 
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(6.3.14) c(T) = :A.E[D] E[T2 ] - (m-E[D])E[T] 
2 

m m-y m 
J J M\z) dzdFs(y) + f <m;:y) dFs(y). 

0 0 0 

When M-m satisfies condition 1.3.1 we use approximation 1.3.2, 

p(M-m,u) ~ E[~J f (1-F(y))dy, u ;;; o. 
u 

It can easily be verified that 

x 
f M(x-y)(1-F(y))dy x, 

0 
x;;; 0 

x x-y 2 
f f M(x-y-z)dz(1-F(y))dy = x2 , 

0 0 
x ;;,, 0. 

Again we substitute these results into (6.3.11) and (6.3.12) to obtain for 

the case of M-m satisfying condition 1. 3. 1 

(6.3.15) s (T) :A.E[T] m m (m-y) 
+ 1-F (m) - - E [D] + 1 ETDT dF s(y) 

0 n 

:A.E[D]E[T2] E[D2 ] 
2 m 2 

(6.3.16) c(T) E[T] m (m-y) 
s(y). - 2 - ( m- 2ETiIT) + ZAE[D) - f 2AE[D] dF 

0 

Hence for the case of H-m satisfying condition 1.3.1 equations (6.3.15) 

and (6. 3. 16) in combination with F s (x) yield tractable express ions for s (T) and 

c(T). However, for the case of M=m we need to have an expression for M(x). In 

general no computationally tractable expression for M(x) is available. 

Therefore we resort to an approximation of a simple form. From renewal 

theory we know that 

(6.3.17) 
2 

lim [M(x) - <E""fu-r + E [D ] ) ] 
x+00 E D 2(E[D]) 2 

0. 

Assuming that F has a density we obtain 

M' (0) F'(O), 

where we used the fact that F(O)=O. In view of these boundary conditions 

we suggest the following approximation M(x) for M(x). 
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M(x) := x;;; 0 

2 As usual cD denotes the squared coefficient of variation of D. If F is a 

K2-distribution then M(x)=M(x). In order to have that (6.3.17.) holds with 

M(x) replaced by M(x), a necessary condition is that 

2 F'(0)- 1/E[D] 
CD ~ 1 => z > 0. 

cD-1 
(6.3.18) 

A sufficient condition for (6.3.18) to hold is that Fis NBUE (NWUE) and 

F'(0)~1/E[D]. This condition is satisfied for gawna distribution functions 

and for mixtures of Erlang-k and Erlang-(k-1) distributions with the same 

scale parameter, provided c~~1. For a more detailed discussion of the ideas 

that lead to the approximation for M(x) we refer to section (7.4). 

Finally, a combination of (6.3.13)-(6.3.16) with the definitions of 

Fs(x), Fn(x) and M(x) yields the following approximations. 

Approximation 6.3.1. 

m 

{
AE[T]-M(m)+0J M(m-y)dFs(y)+1-Fs(m)+1-Fn(m), 

s (T) ~ 

AE[T]- E~] +0Jm i[;)) dFs(y)+1-Fn(m) 

M = m 

M-m ;;; 110 . 

Approximation 6.3.2. 

fAE[D] E[T2]-(m-E[D])E[T]+ f m M(y) dy- ~ 
. 2 O A A 

m m-y ~( ) ~ m ( 
- J J ~ dzdF (y)+ J m-y) dF (y), M = m 

c (T) - 0 0 A s 0 A s 

[ 2 2 m 2 
AE D] E[T2]-( _ E[D ])E[T]+ m _ J (m-y) dF ( ) 

2 m 2ETiIT 2AE[D] O 2AE[D] s y ' 

M-m ;;; 11 0 

Here the number 110is given by 
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(6.3.19) lE[D], 

H c~.E[D], 

These approximations together with those already obtained in chapter 1 and 

section 6.2 enable us to compute approximations for E[TB], E[BB], E[QB], 

E[SB] and E[CB] from equations (6.1.7)-(6.1.11). In this way we obtain 

approximations for the service measures under a given (m,M)-rule. In 

section 6.5 we discuss the accuracy of these approximations with some 

sensitivity analysis. 

6.4. Average holding and setup costs. 

In the previous sections we have provided the tools to obtain 

approximate expressions for the various service measures. We assumed that 

both m and M were given. It is an important problem to determine an (m,M)­

rule that minimizes long-run average costs subject to some given service 

level constraint. We will approximately solve this problem for the 

following cost structure. Holding costs are incurred at a rate h.x if the 

on-hand inventory equals x>O, otherwise no holding costs are incurred. 

A fixed setup cost K~O is incurred each time the production facility is 

reactivated. 

We define the random variable ~ by 

Ch := the holding cost incurred during a regeneration cycle. 

Then it follows from the theory of regenerative processes that 

(6.4.1) 

(6.4.2) K 
E[T] 

the long-run average holding costs per unit time 

the long-run average setup costs per unit time. 

It remains to determine an expression for E[Ch]. Again it follows from the 

lack of memory of the Poisson arrival process and n2>AE[D] that E[Ch] is 

the same for both the lost-sales and backlog model. So let us consider the 

backlog model. 

We recall the following definitions given in chapter 5. 
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k 1(x,m) :=the expected holding cost incurred until the 

inventory level drops below m, given that at epoch 0 

the inventory level equals x+m, x~O,and production 

is off. 

:= the expected holding cost incurred until the inventory 

reaches the value M, given that at epoch 0 the 

inventory level equals x~ and production is on. 

We also define for a given (m,M)-rule 

k(T) := the expected holding cost incurred during the setup 

time. 

Then it is immediately clear that 

(6.4.3) E[C\i] = k 1(M-m,m) + k(T) + f k2(m-y)dF (y). 
o n 

It follows from equations (1.3.35), (5.1.3), (5.1.5), (5.2.6), (5.5.1) and 

approximations 1.3.3 and 5.1.1 that 

(6.4.4) 
2 2 2 

k1(M-m,m) ;;; >.E~D] [(M-2m) - E[~ ] + <~icn~ +m)(M-m+E[U])], 

with E[U] and E[u2J being given by 

when M = m 

(6.4.5) E[U] 

when M-m ~ ti0 , 

when M = m 

(6.4.6) 

when M-m ~ ti0 , 

where ti0 is given by (6.3.19). 

Equation (5.4.7) gives an exact expression for k2(x), 

(6.4.7) x:;; M. 
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An expression for k(T) has in fact been obtained already in the 

derivation of an expression for c(T). By the definition of K(x,t) given 

in section 6.3, we have 

co co 

(6.4.8) k(T)= h f f E[K(m-u,t)]d (1-p(H,m,u))dF(t). 
0 0 u 

Proceeding as in the derivation of the approximations ~.3.1 and 6.3.2 for 

s(T) and c(T), respectivel~ we obtain from (6.4.8) and the approximation 

for p(M-m,u) for the case of M-m~60 

h[ fm M(y) dy m 
0 A -);"-

(6.4.9) k(T) - M=m 

M-m ~ 60 

The approximation for k(T) given by (6.4.9) is exact for the case of M=m. 

From approximation 1.4.3 and equation (1.4.36) we can find an 

approximation for cB(x). Let ~B(x) denote this approximation for all x~M. 

Then we define 

E [c] := f cB(m-y)dF (y). app 0 n 

Some reflections reveal that E [C] approximates the difference between the app 
cumulative backlog at epoch T and the cumulative backlog at the earlier 

epoch at which the production facility starts producing. To avoid lengthy 

expressions we do not elaborate the expression for E [C]. It can be easily app 
derived from equation (1.4.36), approximation 1.4.3 and the approximation 

for Fn(x). Combining (6.4.3), (6.4.4), (6.4.7) and (6.4.9) with the 

approximations given in section 6.3 for Fn(x), F~(x) and M(x) we obtain 

the following approximation for E[Ch]. 
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Approximation 6.4.1. 

h{ Jm M(y) dy -
0 >. 

m m-y A 

f f M~z) dzdFi;(y)+ fm (m-y) dF ( ) 
>. I; y 

0 0 0 

+ (m-
>.E[D2] E[n] 

2(~ 2-t.E[D]))~ 2-t.E[DJ) 

when M = m 

~2 

h{/.E[DJ(~ 2-t.E[D]) 
2 2 

[(M-m) -~ + m(M-m+E[n])] 
2 2 

+ E [C] + 
app f 

co 2 
(m-y) A 

ZAE[D) dFl;(y) 
m 

2 
+ /.E[~ ] (M-m+E[n])[ 1 2 

(/.E[D]) 

when M-m f: 1'10 . 

Next we define 

g(i'l,m) := the long-run average costs per unit time if the 

inventory is controlled by an (m,nrti'l)-rule. 

Then it is obvious that 

E[Ch]+K 
g(i'I, nil = E[T) 

Approximation 6.4.1 provides a tractable expression for E[Ch]' while an 

expression for E[T] follows from equations (1.4.1), (6.1.7), (6.1.17) and 

approximation 1.4.2. Note that 

(6.4.10) 

Let 

r(i'l,m) := the value of any service measure if the inventory is 

controlled by an (m,nrti'l)-rule, 

where we restrict to the a-, S-, y- and a-service measures. Then we can 

approximately solve the following problem. 
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* * Problem Pb Find (l'i ,m ) such that 

* * g (l'i ,m ) min{g(l'i,m)ll'i~O, ~O, r(l'i,m)=a}, 

where a is the prespecif ied level of the service measure under 

consideration. 

We approximately solve problem Pb 

in section 5.5. 

by the method described below Pb 1 

In section 5.5 we argued that for the production-inventory model with 
* zero setup time the optimal difference l'i is insensitive to the service 

level constraint provided that the required service level is sufficiently 

high. It is important to note that in the present. model with a positive 

setup time this phenomenon occurs as well. However, it turns out that the 

longer the setup time, the higher the required service level should be 
* before the optimal difference l'i becomes constant. On the other hand we 

* find that the longer the setup time, the smaller the optimal difference l'i 

becomes. To gain insight in these empirical findings we take a closer look 
at approximation 6.4.1 for l'i~l'i 0 • 

Comparing approximation 6.4.1 with approximation 5.5.1 we observe that 
the former approximation can be obtained from the latter by substituting 

n for U and adding the integral with respect to Fs(x). Then we would like 
to have a similar result as approximation 5.5.4, which holds for high 

service requirements. Therefore we proceed along the same lines as in 
section 5.5. 

We recall that to apply the approximations we must have that for all 

x~O 

(6.4.11) 1-F(x) ;:;; Ce-Kx. 

Without loss of generality we assume that K>o, where o is defined by 

(1.4.7). It follows from (6.4.11) that for all positive£, 

where F(s) is the Laplace-Stieltjes transform of F(x). Then it is easily 
established that for all x~O and n~1 
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(6.4.12) 
n* ~ n-1 -(K-e)x 

1-F (x) ~ C[ 1+F(-K+E)] e ' E > 0. 

Let p(M-m,s), r(s), Fs(s), Fn(s) denote the Laplace-Stieltjes transforms 

of p(M-m,u), F(t), F[ x) and Fn(x), respectively. It follows from the 

definition of F(t) and the fact that the demand process is a compound Poisson 

process that 

1-Fs(x) = J { i:: 
0 n=1 

and thus (6.4.12) yields for all x~O 

(6.4.13) 1-F,(x) ~ c [r(->.'?(-K+e))-r(;i..)Je-(k-e)x, 
" 1+F(-K+E) 

E > 0. 

Now it is crucial whether or not F(-;\F(-K+e)) is finite for some positive E 

with c<K-e. If not then (6.4.13) has no meaning and it will follow from the 

* analysis below that we may not expect that 6 converges to some constant as 

the service requirement increases. If r(-;\F(-K+e)) is finite for some 

positive E with c<K-E then Fs(x) has an exponential tail and, moreover, 

lim e0x(1-F,(x))=O. We note that f(-;\F(-K+e)) is finite when F(t) has a 
x-+<x> " 

finite support. 

From now on we assume that there exists a positive e0 such that 

(6.4.14) 

It should be noted that this assumption is rather restrictive. For example, 

if T is exponential then (6.4.14) will be violated as E[T) increases beyond 

1/(>.F(-c)). Equation (5.5.9) states that 

(6.4.15) u ~ o. 

Since n=s+U(6) it follows from (6.4.13)-(6.4.15) that 

(6.4.16) 1-F (x) ~ {C'+ 
n 

Cp (6 ,-K+e0) 

1-F(-K+E ) 
0 

Proceeding along the same lines as in the derivation of equation 

(5.5.13), we obtain from (6.4.13) and (6.4.16), 
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(6.4.17) 

(6.4.18) 

(6.4.19) 

(6.4.20) 

am f c (m-y) dF (y) 
~ -Ob. 

lime =--3- [F (-o)-e ] 
O B n n m+<x> TT20 v 

°' om 2 lime J (ur-y) dFt;(y) 0 
m+<x> m 

a TT2-7-.E[D] ~ -or:,, 
lim e m E[BJ = [F (-o)-e ] 
m+oo TT a2v n 

2 

lim eom (1-r(ti,m))E[T] ~ -Ob. 
c ["' (-o)-e J, r n 

where r(ti,m) is the level of the service measure considered and er is some 

positive constant . also depending on this service measure. 

It follows from the expressions for p(ti,u) and n=t;+U(ti) that 

when 6 0 

when 6 '?,{:,, 0 

We already derived an expression for 1-Ft;(x). Using this expression we find 

an expression for Ft;(s). It is readily seen that 

~ 1F(s)1'(7-.(1-F(s))) 
F (s) = n ~ 

1-F(s) 1'(7-.( 1-F( ))) "SE1D] s 

when 6 0 

Using the definition of o given by equation (1.4.7), we obtain 

TT20 r· -A-)'f'(-TT 26) when 6 0 

(6.4.21) F' <-.s) = n TT 2 mnr 'f'(-TT2o) when 6 '?, 60 

Note that 1'(-TT2o) is finite because of (6.4.14). Combining approximation 

6.4.1 and equations (6.4.17)-(6.4.19) and (6.4.21), we find 

Approximation 6.4.2: Form sufficiently large and 6'?,60 , we have 

g(ti,m) = g(ti,m) 

with 



g (LI ,m) 

and where 

n 2 2 [ 2) 
[K h{ (~ -~ + (• E[ ))) := + AE[D](n2-;>..E[D)) 2 2 m ,_,+ n 

e-om -all 
+ --3- (co (T)-e ) + 

n 2o v 
2 

+ ;>..E[~ ](Ll+E[n])( 1 2 
(;>..E[D]) 

n 2 (Ll+E[n)) 

x[;>..E(D](n 2-;>..E(D]) 

for the backlog model 

for the lost-sales model 

We emphasize the fact that c0 (T) depends on the distribution of T. 

Let r(Ll,m) be the service level of one of the service measures 

in this chapter. Define 

where er is given through (6.4.20). We define the following approximate 

version of problem Pb. 

t"V "'* "'* Problem Pb. Find (LI ,m) such that 

,..Ac ,..Ac 

g(Ll ,m) = min{g(Ll,m)ill~O, ~O, 'i:'(Ll,m)=a} 

where a is the prespecified level of the service measure considered. 

As in section 5.5 we find that 7{* is a positive root of 

z(Ll) 0, 
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where z(n) is defined by 

z(n) 
2 

:= hn(n+E[n]) + h(6+E[n~~n 
co(T)-e 

-06 
e 

h(ME[n]) 
0 

KA.E [D] (11 2-t..E [D]) 

11 2 

As in section 5.5 the function z(6) does not depend on the service measure 
"'* . and the specific model. To obtain the value of 6 for a given set of model 

parameters one can use the algorithm described below (5.5.17). We 

emphasize that the function z(6) is meaningful only when 6~60 , since only 

for these values of 6 our approximations are valid. 

In the next section we present numerical results. Anticipating on these 

results we make some qualitative statements about the relation between the 

* "'* switchtime T and the convergence of 6 to 6 as the required service level 

tends to 1. It follows from (6.4.13) and (6.4.18) that 1-Fs(x)~C~e-(K-£o)x, 
where 

However, the values of x for which this exponential behaviour manifests will 

depend on the magnitude of 

larger the values of x for 

Let us assume that T1 
i.e. 

Cs. One typically sees that the larger Cs' the 

which 1-F~(x) decreases exponentially. 
St '> St 
~ T2 where "~" denotes "stochastically smaller", 

Also, let 1'1, 1'2 denote the Laplace-Stieltjes transform of r 1, T2 • Then we 

have the following result, 

Then it is immediately clear that Cs increases as T stochastically 

increases. This indicates that as T gets stochastically larger, it takes 

"more time" before the tail of Fs(x) becomes exponential. Equation (6.4.16) 

implies that the same holds for the tail of F (x). Thus as T gets larger 
n 
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* the convergence in equations (6.4.17)-(6.4.20) gets slower. Hence b. converges 

* slower to b. as T increases stochastically. We empirically verified this claim 

for the important case of a deterministic setup time TD' We used the method 

* described below problem Pb 1 in section 5. 5 to obtain the value of /:; and solved 

* the equation z(b.)=O to obtain b. • Another noteworthy finding from this 

* numerical experience is that as the value of TD increases, the value of b. 

decreases, where we keep the required service level fixed. 

""' For s~i:e value of TD' say~ we find b. =b.0 • If.TD ~ncreases beyond T0 , 

then b. <l0 . However, when t; <b.0 then our approximations are no longer 

* ""' accurate. Hence we may not expect that the true b. converges to /:; • In 

""' this case we suggest to set b. equal to zero or to D.0 , depending on what 

gives lowest costs. This suggestion is based on the empirically verified 

result that the cost function is usually very flat around its minil!Rlm 

(cf. Peterson and Silver [1979]). 

In the next section we provide additional support to the above 

statements by presenting numerical results. We draw conclusions with 

respect to the accuracy of the approximations. Also, we make further 

collllllents on the sensitivity of the (m,M)-rules to the underlying demand 

distribution and to the value of TD. 

6.5. Numerical results and conclusions. 

In this section we present numerical results to get some idea of the 

performance of the approximations for the case of a positive setup time. 

In this case we need also two-moment approximations for the distribution 

functions Fs(x) and Fn(x) and the renewal function M(x), and thus we may 

not expect that the resulting approximations show the same good performance 

as in the case of no setup time. Nevertheless, it turns out that the 

quality of the approximations is good enough for practical purposes. 

Table 6.5.1 deals with the approximate (m,M)-rules for they-service 

level in the backlog model. We have chosen to consider the y-service level 

since the computation of the approximate y-service level involves most of 

the approximations. L.n all examples \=1, E[D]=1 and we assume a deterministic 

set-up time T equal to 2. The value of M-m is predetermined by formula 

(1.5.1) with h=1 and where K has the two values 0 and 25. For the case of 

K=O we find an (m,M)-rule with m=M. The production rate n2 has the three 
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values 1.25, 2 and 5. The required service level y is varied as 0.95 and 
2 0.99. The coefficient of variation of the demand size D, cD, runs through 

the values 0, 1/3, 2/3 and 2. We consider the following demand 

distributions 

(i) 

(ii) 

. . . ( 2 0) deterministic demand en= • 
2 Erlang-3 demand (cD=1/3). 

(iii) mixture of Erlang-1 and Erlang-2 demand with the same scale 
2 parameters (cD=2/3). 

(iv) 2 hyperexponential demand of order two with balanced means (cD=2). 

For deterministic demand we used the exact undershoot distribution 

The resulting approximation to s(T) for the case of M£m is similar to the 
one given by approximation 6.3.1 for the case of M=m. For the other demand 
distributions the used approximations are as in the sections 6.2 and 6.3. 

The actual y-service levels of the approximate (m,M)-rules have been 

determined by computer simulation. In each example we have simulated 

250,000 individual demands. As before the notation 0.954(6) is used to 

denote that the simulated value is 0.954 with (0.948,0.960) as 95% 

confidence interval. 

From the results in table 6.5.1 we draw the following conclusions. For 
the case of deterministic demand the performance of the approximations 

deteriorates as rr 2 increases. This finding applies also to the other demand 
2 distributions when M=m. If cD>O and M>m, the numerical results show that 

the approximations perform very well for all values of rr 2 • For the other 
service measures we found similar results. 

The sensitivity of the level m to the underlying demand distribution 
is considered in table 6.5.2. The approach to this problem is different 

from the one used in section 1.5 leading to the results given in table 1.5.3. 
There we computed the approximate (m,M)-rules for several demand 

distributions. Here we compute the approximate (m,M)-rule for a mixture of 
Erlang-k and Erlang-(k-1) demand distributions with the same scale 

parameters and for the resulting (m,M)-rule we determine the actual service 
levels for several other demand distributions. Thus the testing of the 

quality of a two-moment approximation is combined with sensitivity analysis. 
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Table 6.5.1. The approximate (m,M)-rules and their actual y-service levels. 

c2=0 
2 

D 
cD=1/3 

1f2 y m M yact m M Yact 

1.25 0.95 9.55 9.55 0.954(6) 11.91 11.91 0.951(6) 
2 0.95 5.96 5.96 0.957(3) 6.81 6.81 0.953(3) 
5 0.95 5.38 5.38 0.967(2) 5.86 5.86 0.956(2) 
1.25 0.99 13.31 13.31 0.991 (3) 17.09 17.09 0.992(3) 
2 0.99 7 .96 7 .96 0.994(1) 9.22 9.22 0.992(2) 
5 0.99 7.30 7.30 0.996(1) 8.04 8.04 0.993(1) 
1.25 0.95 8 .17 11.33 0.953(6) 10.25 13.41 0.952(6) 
2 0.95 4.66 9.66 0.949(3) 4.97 9.97 0. 950(3) 
5 0.95 3.65 9.97 0.937(2) 3.87 10.20 0.950(2) 
1.25 0.99 11.94 15.10 0.992(3) 15.42 18.59 0.990(4) 
2 0.99 6.76 11. 76 0.993(1) 7 .53 12.53 0.992(2) 
5 0.99 5.68 12.00 0.996(1) 6.23 12.55 0.991 ( 1) 

2 c2=2 cD=2/3 D 

1f 2 y m M yact m M yact 

1.25 0.95 14.31 14.31 0.951 (6) 24.49 24.49 0.955(8) 
2 0.95 7. 72 7. 72 0.955(3) 11.25 11.25 0.946(5) 
5 0.95 6.43 6.43 0.954(2) 7 .87 7 .87 0.941(2) 
1.25 0.99 20.89 20.89 0.990(4) 37.47 37 .47 0.989(5) 
2 0.99 11. 70 11. 70 0.991(2) 17.25 17.25 0.988(2) 
5 0.99 9.04 9.04 0.993(2) 12.45 12.45 0.986(1) 
1.25 0.95 12.58 15.74 0.954(9) 22. 79 25.95 0. 950 ( 10) 
2 0.95 5.73 10.73 0.950(3) 9.24 14.24 0.951(4) 
5 0.95 4.28 10.60 0.950(2) 6.04 12.37 0.949(2) 
1.25 0.99 19.16 22.33 0.992(3) 35.78 38.94 0.988(5) 
2 
5 

0.99 8.86 13.86 0. 991 ( 1) 15.29 20.29 0.989(2) 
0.99 7.08 13.40 0.992(1) 10.84 17 .17 0.990(2) 

We deal with the S-service level for both the backlog model and the 

lost-sales model. In each example we have chosen /c=1, E[D]=1, T=2 and 

predetermined M-m by using formula (1.5.1) with h=1 and K=25. The 

production rate 7r2 has the three values 1.25, 2 and 5, S is varied as 0.95 

and 0.99 and c~ has the two values 1/3 and 4/5. We do not consider values 

of c~ that are larger than 1, since we already concluded in sec~ion 1.5 for 

zero setup time that when c~>1 the switching level m is sensitive to the 

underlying demand distribution. The following three demand distributions 

are considered. 
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(i) Weibull distribution. 

(ii) uniform distribution. 

(iii) shifted exponential distribution. 

Each of these distributions is completely determined by specifying the 
first two mo~ents, where the uniform distribution requires that O<c~~1/3 
and the shifted exponential distribution requires O<c~~1. The shifted 
exponential distribution corresponds to the sum of an exponential random 
variable and a positive constant. 

We computed the approximate (m,M)-rules using Erlang-3 demand 
(c~=1/3) and a mixture of Erlang-1 and Erlang-2 demand distributions with 

2 the same scale parameters (cD=4/5). The actual S-service levels SWeib' 
sunif and sshif have been determined by computer simulation, where in each 
example 200,000 customers are simulated. 

Table 6.5.2. The actual S-service levels for various demand distributions. 

backorders 2 
cD=1/3 2 

cD=4/5 

7T 2 s m Sweib sunif sshif m Sweib sshif app app 

1. 25 0.95 9.90 0.951(5) 0.954(6) 0.948(5) 13.41 0.950(6) 0.949(6) 
2 0.95 4.62 0.952(3) 0.954(3) 0.948(3) 5.91 0.949(4) 0.947(4) 
5 0.95 3.52 0.950(2) 0.951(2) 0.950(2) 4.31 0.950(2) 0.949(2) 
1.25 0.99 15.08 0.990(4) 0.991 (4) 0.989(5) 20.56 0.990(5) 0.989(6) 
2 0.99 7. 17 0.992(2) 0.993( 1) 0.990(2) 9.27 0.990(2) 0.989(2) 
5 0.99 5.84 0.992(1) 0.993( 1) 0. 990 ( 1) 7.26 0.990(1) 0. 990 ( 1) 

lost-sales 2 
cD=1/3 2 

cD=4/5 

7f 2 s m SWeib sunif sshif m Sweib sshif app app 

1. 25 0.95 5.21 0.949(2) 0.950(3) 0.948(3) 6.99 0.949(3) 0.949(3) 
2 0.95 3.49 0.950(2) 0.951(2) 0.948(2) 4.45 0.950(2) 0.949(2) 
5 0.95 3.19 0.950(2) 0.951(1) 0.949(2) 3.90 0.950(2) 0.949(2) 
1.25 0.99 10.03 0.990(1) 0.990(2) 0.989(2) '13.58 0.990(2) 0.989(2) 
2 0.99 6.12 0.991(1) 0.992(1) 0.990(1) 7.87 0.990(1) 0.990(2) 
5 0.99 5.53 0.991(1) 0.992(1) 0.990(1) 6.87 0.990(1) 0. 990 ( 1) 
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From the results given in table 6.5.2 we conclude that the approximate 

(m,M)-rules perform quite well. This is in accordance with the conclusion 

drawn above with respect to the accuracy of the approximation for the case 

of c~>O and M-m>O. Also note that, as opposed to the pure-inventory models, 

the production-inventory backlog model and lost-sales model yield quite 

different results (cf. Tijms and Groenevelt [1984) and Tijms [1986)). More 

important is the result that the actual values of the 8-service level for 

the various demand distributions differ only slightly. Hence we conclude 

that for the case of O<c~~1 the service level of the approximate (m,M)-rule 

is fairly insensitive to more than the first two moments of the underlying 

demand distribution. This implies that for the case of positive setup 

times the two-moment approximations, using mixtures of Erlangian 

distributions, yield practically useful results. 

In table 6.5.3 we consider again the (m,M)-rules computed in table 

6.5.1 and compare V and V , respectively the approximate and actual 
app act 

values of the average on-hand inventory. The approximate values of the 

average on-hand inventory are computed from approximation 6.4.1, where 

for the case of deterministic demand we used the exact undershoot 

distribution. The results show an excellent performance of the approximation 
2 

6.4.1, including for deterministic demand and for the case of cD>O and M=m. 

Finally we turn our attention to the solution of problem Pb associated 

with the case of M-m>O. Having established the accuracy of the 

approximations for the service measures and the average on-hand inventory, 

we can use these approximations to find an approximately average-cost 

optimal (m,M)-rule that satisfies a given service level constraint. In 

* section 6.4 we argued that the optimal value n of the difference M-m 
"'* ~* converges to n as the service level approaches 1. Here the quantity n is 

computed as a positive solution of the equation z(n)=O, where z(n) is 

defined in section 6.4. However, in the computation of the approximately 

optimal (m,M)-rules we use the distribution functions F~(x) and Fn(x) 

instead of th: true F~(x) and__!n(x). Therefore we can only hope that the 

approximate n gets close to n • 
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Table 6.5.3. The approximate average inventories and their actual values. 

c2=0 2 
D c0=1/3 

7f 2 i3 K Ill v v Ill v v app act app act 

1. 25 0.95 0 9.55 6.29 6.31(3) 11. 91 8.03 8.03(6) 
2 0.95 0 5.96 4. 16 4.15(1) 6.81 4.84 4.83(1) 
5 0.95 0 5.38 3.95 3.93(1) 5.86 4.39 4.37(1) 
1. 25 0.99 0 13 .31 9.99 10.00(5) 17.09 13. 11 13.10(8) 
2 0.99 0 7. 96 6. 13 6.12(2) 9.22 7.22 7.22(2) 
5 0.99 0 7.30 5.84 5. 84 ( 1) 8.04 6.54 6.54(1) 
1.25 0.95 25 8. 17 6. 74 6.73(5) 10.25 8.35 8.37(7) 
2 0.95 25 4.66 5.56 5.54(2) 4.97 5.98 5.98(2) 
5 0.95 25 3.65 5. 77 5. 75(1) 3.87 6.07 6.07(1) 
1. 25 0.99 25 11.94 10.45 10.49 (5) 15.42 13.44 13.44(8) 
2 0.99 25 6.76 7.64 7.64(2) 7.53 8.51 8.51(2) 
5 0.99 25 5.68 7. 77 7. 76(1) 6.23 8.40 8.38(2) 

2 
c2=2 c0=2/3 
D 

7f 2 i3 K Ill v v Ill v v app act app act 

1.25 0.95 0 14. 31 9.80 9.82(9) 24.49 17.50 17.66(20) 
2 0.95 0 7. 72 5.59 5.60(3) 11 .25 8.51 8.56(4) 
5 0.95 0 6.43 4.92 4.91 (1) 7 .87 6.21 6.27(2) 
1.25 0.99 0 20.89 16.26 16.21(12) 37.47 30.21 30.37(31) 
2 0.99 0 11. 70 8.54 8.53(2) 17.25 14.44 14.42(6) 
5 0.99 0 9.04 7.51 7. 50 ( 1) 12.45 10. 75 10.76(2) 
1.25 0.95 25 12.58 10.07 10.11(12) 22.79 17.74 17.81(23) 
2 0.95 25 5.73 6.60 6.59(2) 9.24 9.50 9.56(4) 
5 0.95 25 4.28 6.46 6.47(2) 6.04 8. 13 8.16(2) 
1.25 0.99 25 19. 16 16.53 16 .58 ( 11) 35.78 30.45 30.57(27) 
2 0.99 25 8.86 9.70 9.69(2) 15 .29 15.48 15.48(6) 
5 0.99 25 7.08 9.24 9.25(2) 10.84 12.89 12 .92(2) 

* In table 6.5.4 we display the approximately optimal values 6 . Also, 
. ~* . we computed the quantity 6 . We assume that excess demand is backlogged. 

In all examples A=E[D]=1, h=1 and K=25. As before we consider a deterministic 
setup time T, which is varied as 0.5, 1, 2 and 4. For the values 0.99, 0.999 
and 0.9999 of the required 13-service level we computed the approximate 
solution to problem Pb by using approximation 6.4.1 for the expected 

holding cost per cycle. We consider Erlang-2 demand (c~=0.5) and 
2 hyperexponential demand of order two with balanced means (c0=2). 
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* "'* Table 6.5.4. Convergence of 6 to 6 • 

2 c2=2 cD=0.5 D 

"'* ~* 
11 2 T .99 .999 .9999 6 .99 .999 .9999 6 

2 0.5 5.22 5. 18 5.17 5. 17 6.48 6.48 6.47 6 .51 
5 0.5 6. 10 6.03 5.99 5.82 7. 11 7. 10 7.09 7.08 
2 1 4.76 4.67 4.64 4.60 6.02 5.99 5.98 5.99 
5 1 5. 76 5.67 5.63 5.26 6.71 6.68 6.66 6.50 
2 2 3.83 3.69 3.61 3.47 4.88 4.82 4.81 4.90 
5 2 4.97 4.83 4. 77 4. 14 5.59 5.46 5.39 5.28 
2 4 1.88 1.65 1.53 1. 16 2.88 2.70 2.6Z 2.55 
5 4 3. 14 2.94 2.83 1.89 3.78 3.57 3.45 2.78 

From the results in table 6.5.4 we can draw a number of conclusions. 

* "'* Firstly, in most cases the value of 6 gets closer to 6 as S increases. 

This was argued in section 6.4 for the true Fs(x) and Fn(x). Since we use 

the approximated distributions Fs(x) and Fn(x) instead of Fs(x) and Fn(x), 

this is another illustration of the power of the two-moment approximations 

"'* suggested in section 6.2. Convergence to 6 is not guaranteed as follows 

from the three cases with c~=2, 11 2=2 and T has either of the values 0.5, 

* and 2. However, we found that in all cases considered 6 converges to some 

constant as S increases. Secondly, the rate of convergence decreases as T 
increases. This was already argued heuristically in the previous section. 

* "'* Thirdly, 6 decreases as T increases; the same holds for 6 • 
~* . . 

Denote by gEOQ and g the average switching and holding costs of the 

(m,M)-rules that are obtained for the S-service level requirement when 

"'* using (1.5.1) for M-m, respectively 6 for M-m. In table 6.5.5 we compare 

"'* gEOQ and g with the minimal average costs * g for the (m,M)-rules obtained 

in table 6.5.4 with 

approximation 6.4.1 

"'* S=0.99. The costs gEOQ' g 

and equation (6.4.10). 

* and g are computed from 

As in table 5.6.3 we observe that the (m,M)-rule with M-m given by formula 

(1.5.1) performs quite well in costs. Our numerical investigations 

* * indicate that the relative error (gEOQ-g )/g is usually belo~5% (see 

also De Kok et al [ 1985)), while for the (M-m)-rule with M-IIF6 the 

relative deviation from the minimal costs is negligible and is typically 

"'* below 1%. Therefore we recommend the use of 6 . 
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"'* * Table 6.5.5. Comparison of gEOQ' g and g . 

c2=0 5 D • c2=2 
D 

"'* * "'* * 
7f 2 T gEOQ g g gEOQ g g 

2 0.5 9.22 9.21 9.21 17.01 16.93 16.93 
5 0.5 9.09 9.09 9.08 14.39 14 .36 14. 36 
2 1 9.63 9.63 9.63 17.33 17.30 17.30 
5 1 9.70 9.70 9.68 14.98 14. 98 14.98 
2 2 10.44 10.38 10.37 17 .80 17 .80 17 .80 
5 2 10. 71 10.67 10 .63 15.82 15 .80 15.80 
2 4 11.89 11. 55 11. 52 19. 20 19.09 19 .09 
5 4 12.33 12.05 11. 97 17.78 17.63 17.60 

We observe that 't* and/',* decrease as the deterministic setup time 
. . "'* "'* . increases. Recommending the use of 6 , we must have 6 ;::60 with 60 defined by 
(6. 3. 19). There exists some T, say T 0 , such that 7:.* =60 • If T increases further a 

positive solution to z (6)=0 is less than 60 or does not exist. However, the function 
z(6) is only meaningful when6;::60 • Thus we suggest the following procedure. 

1. Find a positive solution to z(6)=0. 

"'* "'* "'* 2. If this solution 6 exists and 6 ~6 0 , then set M-m equal to 6 and solve 
for the switching level musing the service level constraint. 

"'* 3. If 6 <60 or there is no positive solution to z(6)=0, then solve for the 
switching level m for each of the cases M-m=O and M-m=60 . Use the (m,M)­
rule which yields the lowest costs. 

The setup time T0 for which '6*=60 can be determined numerically from 
the function z(6). Because of c0 (T), the function z(6) is also a function 
of T. Since T is deterministic we have 

Then T0 can be solved as a positive root of w(T)=O with w(T) defined by 



w(T) ·= h60 (60+E[U]+AE[D]T)- *(60+E[U]+AE[D]T) 

-06 n oT -06 -1 
+ h(60+E[U]+AE[D]T) 2e O(n 2e 2 /(AE[D])-e O) 

with E[UJ and E[U2] given by (6.4.3) and (6.4.4). Hence if T>T0 then we 

need to carry out only step 3 of the above procedure. 

Conclusions. 

The approximations for the service measures show an excellent 

performance for the case of c~>O and M-mf:60 • If c~=O or M=m then the 

performance of the approximations is of an acceptable quality provided 

AE[D]/n 2~0.5. 

For fixed M-m the switching level Ill satisfying a given service level 

constraint is quite insensitive to more than the first two moments of the 
2 

demand size distribution provided O<cD::;;1. A two-moment approach, based on 

fitting a mixture of Erlang-k and Erlang-(k-1) demand distributions with 

the same scale parameters to the first two moments of the demand size, 

leads to practically useful results. 

The approximation for the average on-hand inventory based on 

approximation 6.4.1 shows an overall excellent performance. 
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Assuming linear holding costs and fixed setup costs, the (m,M)-rule 

with M-m determined by the EOQ-formula (1.5.1) and with m determined by 

the service level constraint shows a good performance in costs. Provided a 

positive solution t:' to z(6)=0 exists with r::~60 , an improvement in costs 

"'* results from the use of the (m,M)-policy with M-m equal to 6 . Another 
~* 

reason to prefer the choice 6 for M-m rather than the EOQ-formula (1.5.1) 

"'* not involving T is the fact that 6 decreases as T increases. This 

qualitative behaviour was also found empirically for the optimal value of 

M-m. 
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7. A DAM PROBLEM WITH VARIABLE RELEASE RATE. 

In this chapter we apply results obtained in previous chapters to a 
dam problem, in which the input process is a compound Poisson process and 
the content of the dam can be released at two different rates. For this 
model we want to determine a control rule that gives an appropriate balance 
between the two unfavourable phenomena of overflow and emptiness. Clearly 
these two phenomena are conflicting in the sense that preventing overflows 
may cause the dam to be empty too often, while preventing an empty dam 
may contribute to overflows. In most practical situations it is hard to 
specify costs for emptiness and overflow. Therefore we focus on commonly 
used service measures. The service measures to consider are the probability 
of emptiness, the fraction of input that is lost and the average number of 
upcrossings of a certain critical level per unit time. Such a critical level 
may be relevant in the situation in which the dam has a finite capacity 
and overflows are temporarily stored elsewhere. 

Again we assume that the content is controlled by an (m,M)-rule, which 
is described below. For given values of m and M, we derive tractable 
expressions for the service measures. Assuming that M-m is predetermined 
we can calculate m such that a prespecified service level is satisfied. 

7.1. The model. 

The dam model can be described as follows. The dam has a (possibly 
infinite) capacity C. Inputs into the dam occur at time epochs that form a 
Poisson process with rate A.. ;rhe inputs are independent random variables 
having a common probability distribution function F with F(O)=O and finite 
second moment. The inputs are independent of the arrival process. The 
release of the dam content can be controlled by using one out of two 
possible release rates 0 1 and 02 with 0 1 ~02 ~00. Under release rate 0i the 
content decreases linearly at rate 0i between input epochs as long as the 
content is positive. We assume that the content is controlled by an (m,M)­
rule with O~m~M~C. Under this rule the release rate is switched from 02 to 
0 1 as soon as the content decreases to m. The release rate is switched from 
0 1 to 02 as soon as the content becomes larger than :-1. Pe assume that 

(7.1.1) 
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where the random variable A denotes the size of a single input. For the case 

of o 1=0 we assume that F is non-arithmetic. 

There exists an extensive literature on the dam problem without control. 

For more general release functions first passage time results are derived by 

Yeo [1975], Brockwell and Chung [1975] and Ali Khan [1977] amongst others. 

The stationary distribution of the content was studied by Moran [1969], 

Brockwell [1977] and Smith and Yeo [1981]. In the last paper numerically 

tractable results are obtained. 

The dam problem with controllable release rate will in general not allow 

for an exact analysis that leads to tractable results useful for practical 

applications. Diffusion process approximations are studied in Faddy [1974], 

Zuckermann [ 1977] and Attia and Brockwell [ 1982] for the dam problem with 

o1=0 and m=O. In these papers attention is focussed on the minimization of 

costs. Under a particular cost structure their analysis leads to a simple 

rule for the determination of M. By their continuous nature diffusion 

process approximations cannot adequately deal with service measures whose 

values are intrinsically determined by a jump process. Our approach based 

on renewal and random walk theory enables us to deal with such service 

measures as the average number of overflows per unit time. For the special 

case of exponentially distributed input tractable results for both the 

average holding and switching costs and the service levels of an (m,M)-rule 

can be deduced from Tijms and Van der Duyn Schouten [1978]. 

This chapter is further organized as follows. In section 7.2 we discuss 

the service measures and introduce the basic functions in which the service 

measures can be expressed. Next in section 7.3 we use approximations for the 

backlog and lost-sales model derived in the chapters 1 and 2, respectively, to 

obtain approximations for some of these basic functions. In section 7.4 

approximations are derived for the other basic functions. In section 7.5 we 

derive an expression for the average content of the dam. Section 7.6 

concludes this chapter with the presentation of numerical results. 

7. 2. The servic.e measures. 

As stated in the introduction we focus on several widely used service 

measures. In this section we will use results from the theory of regenerative 

processes to express the service measures in a number of basic functions. For 

these functions asymptotic estimates can be derived. We shall consider the 

following service measures: 



176 

1. the long-run fraction of time that the dam is empty. 
2. the long-run fraction of input that is lost by overflows. 
3. the average number of upcrossings of a critical level U per unit time. 

Here an upcrossing of the level U means that the content reaches or 
exceeds U from below. 

Assuming that the difference M-m is predetermined, the goal is to find 
the switching level m such that a prespecified value is achieved by one of 
these service levels. Our analysis is as follows. We first derive 
approximate expressions for the various service levels under a given (m,M)­
rule. Next these expressions enable us to determine the switching level m 
in order to achieve a prespecified value of the service level. We give a 
unified treatment of the finite and infinite model. 

Now we fix an (m,M)-rule. Also, let the critical level U be such that 
M~U~C. For any t~O, define 

X(t) := the content of the dam at time t. 

V(t) := the total amount of input during (O,t]. 

L(t) := the amount of input that is lost by overflows during 
(O, t]. 

TE(t) ·=the amount of time that the dam is empty during (O,t]. 

NU(t) :=the number of upcrossings of the level U during (O,t]. 

Note that L(t) is identically equal to zero when the capacity C=00 • Due to 
assumption (7.1.1) the process {X(t), t~O} is a regenerative stochastic 
process, so that we can relate the long-run behaviour of the above defined 
random variables to their behaviour during a regeneration cycle. We define 
the regeneration cycle as the time elapsed between two consecutive epochs 
at which the release rate is switched from o2 to o 1• Unless stated otherwise 
we assume that at epoch 0 a cycle starts. Define 

T := the next epoch at which the release rate is switched 
from o2 to o 1• 
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V :=the total amount of input during (O,T]. 

L :~the amount of input that is lqst_by overflows during (O,T]. 

TE:= the amount of time the dam is empty during (O,T]. 

NU:= the number of upcrossings of U during (O,T]. 

By a standard result from the theory of regenerative processes (cf. Cohen 

[1976) and Ross [1970)), we have with probability 1 

(7.2.1) 

(7.2.2) 

(7.2.3) 

Note that the left hand sides of (7.2.1), (7.2.2) and (7.2.3) represent 

respectively the long-run fraction of time the dam is empty, the long-run 

fraction of input that is lost and the average number of upcrossings of U 

per unit time. Also, we have for the average input per unit time 

E[V] 'ETTT = AE [A] • 

Hence it suffices to derive tractable expressions for E[T], E[TE], E[L] 

and E[NU]. Therefore we introduce a number of basic functions. Assuming that 

at epoch 0 the content X(O)=x, O~x~,and release rate o 1 is used, define 

t 1(x) :=the expected time until the first upcrossing of the 

level M by {X(t), tGO}. 

tE(x) := the expected amount of time the dam is empty until 

the first upcrossing of the level M by {X(t), tGO}. 

p(x,u):= the probability that the content just prior to the 

arrival of the input causing the first overshoot of 

the level M plus this input is at least u-M, uGO. 
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The definition for p(x,u) is rather subtle in order to unify the analysis 

for both the infinite and the finite capacity model. In the infinite capacity 

case p(x,u) is just the probability that the switching level M is overshot 

by at least u. Next we define some functions that describe the system under 

release rate cr 2 . Assuming that at epoch 0 the content X(O)=x, M~x~C, and 

release rate cr2 is used, define 

4> (x) 

the expected time until the content decreases to m. 

the expected amount of input that is lost by overflow 

until the content decreases to m. 

the expected number of upcrossings of U until the 

content decreases to m. 

Using the basic functions it is easy to see that the following relations 

hold. In the case of C< 00 we have 

C-M 
(7 .2 .4) E[T] t 1(m) + 

0f t 2(M+u)du(1-p(m,u))+t 2 (C)p(m,C-M). 

(7.2.5) tE(m). 

C-M 
(7.2.6) E[L] f 4>(M+u)d (1-p(m,u))+ f [u+4>(C)]d (1-p(m,u)). 

0 u C-M u 
U-M 

(7.2.7) 
0

f ~(M+u)du(1-p(m,u))+[nU(U)+1]p(m,U-M). 

In the above integrals the integration interval is right-open. In the case 

of C=00 we have E[L)=O and (7.2.4) changes into 

(7.2.8) E[T) = t 1(m) + f t 2 (M+u)du(1-p(m,u)). 
0 

Relations (7.2.5) and (7.2.7) hold in the infinite capacity model too. 

Actually, since U~C it is easily seen that ~(x) does not depend on the 

capacity C of the system. This follows by making the following two 

observations. First, after each upcrossing of U the inventory has to 

decrease to U first before the next upcrossing can occur. Second, since 

customers arrive according to a Poisson process the epoch at which the 

inventory decreases to U can be considered as an epoch immediately after 
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an arrival. In section 7.3 we will give approximations for the functions 

t 2 (x), ~(x) and ~(x). These approximations result from a relation between 

the dam model and the production-inventory models with controllable 

production rate studied in the chapters 1 and 2. In section 7 .4 approximations are 

obtained for t 1(x), tE(x) and p(x,u). 

We end this section with the introduction of some quantities that will 
. * . . be needed in the sequel. As before let s >O be the unique strictly 

positive solution to 

(7.2.9) s - l_ <1-'F<s>> 
cr1 

o, 

where F denotes the Laplace-Stieltjes transform of F. Then we can define 

(7.2.10) G(x) := 
x * 

f e-s Y J_ (1-F(y))dy. 
0 °1 

Because of (7.2.9) G is a proper distribution function. Next we assume 

that the equation in t~O 

00 

(7.2.11) f ety J_ (1-F(y))dy 
0 °2 

has a solution o>O, which is necessarily unique. We noted that a necessary 

and sufficient condition for (7.2.11) to have a solution is 

-Kx 1-F (x) = O(e ) for some K > 0 {x-+<x>). 

Also, we define the finite constant 

" := f 
0 

ye0Y J_ (1-F(y))dy. 
cr2 

Finally, let a, b and ~ be defined by 

~ := a/b 

and the functions h 1(y) and h2 (y) by 
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y ;:; o, 

y ;:;; o. 

7.3. Approximations for t 2 (x), cf>(x) and~· 

In this section we will derive approximations for the basic functions 

that describe the behaviour of the system under release rate o2 . In the chapters 

1 and 2 we analyzed one-product production-inventory IJKJdels in which 

customers arrive according to a Poisson process with rate A. The demands of 

the customers are independent random variables having a common probability 

distribution function F with F(O)=O and the demands are independent of the 

arrival process. The commodity is continuously produced at a rate o2>0. The 

system has an infinite storage capacity. Letting D denote the demand size 

per customer, it is assumed that o2>AE[D). We relate the basic functions 

t 2 (x), cf>(x) and I\J(x) to analogous functions that appear in these production 

inventory models. For the latter functions approximations have been derived 

in chapter 1 and 2. 

Consider first the infinite capacity dam problem and the inventory 

problem with backlogging of excess demand. It is easily seen that the 

expected time t 2 (x) needed to reduce the content from x to m under release 

rate o2 equals the expected time until the inventory has increased by an 

amount of x-m under production rate o2 • From equation (1.4.1) we have for 

the case of C=oo 

(7 .3.1) x;:;; m. 

Next we consider the finite capacity dam problem and the inventory 

problem in which excess demand is lost. For the lost-sales model we define 

for all M;?;O and O~x~, 

iM(x) := the expected amount of demand lost until the inventory 

level increases to M, given that the initial inventory 

equals x. 

It follows after some reflection that 

(7.3.2) et> (x) m ~ x ~ C. 
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The approximation 2.3.2 and the definition of h2 (x) together imply 

Hence, using (7.3.2) we obtain 

(7.3.3) cp(x) = h2 (C-x) - h2 (c-m), m;:::; x ;:::; C. 

Next we apply the principle of conservation of flow to obtain a 

relation between t 2 (x) and cj>(x) for the finite capacity model. The 

conservation of flow states that for all t~O the content X(t) equals the 

sum of the initial content X(O) and the amount of input that does not 

overflow in (O,t] minus the amount released in (O,t]. Using this principle 

and applying Wald's equation we obtain 

m;:::; x ;:::; C. 

Rearranging terms and using (7.3.3) yields 

(7.3.4) 
x-m-[h2(c-x)-h2 (c-m)] 

t2(x) = o -E(A] 
2 

m;:::; x;:::; C. 

Finally we derive an approximation for ~(x). We recall that ~(x) is 

the same for both the finite and infinite capacity model provided u;::;c;::;00 • Let 

us consider the infinite capacity model.Comparing the infinite capacity model 

with the backlog model we observe that nU(x) equals the expected number of 

stockout occurrences until the inventory reaches the level U-m, given that 

the initial inventory equals U-x, m;::;x;::;u. For the latter function we can 

derive an approximation by applying the same arguments as used to derive 

(1.2.11). Combination of approximation 1.4.1 and the definition of h 1(x) 

then yields 

(7.3.5) 
r 1 (U~)-h 1 (U-m) ' m ;:::; x ;:::; u 

~(x) -

h 1 (0)-h 1 (U-m), u < x ;:::; c 

In the next section we derive approximations for the basic functions 

that describe the system under release rate o 1• 
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7.4. Approximations for t 1(x), tE(x) and p(x,u). 

In this section the functions t 1(x), tE(x) and p(x,u) related to the 

use of release rate cr 1 are approximated. Since the content of the dam 

cannot become negative the dam problem under production rate cr 1 corresponds 

to a production inventory problem with finite capacity. For the case of cr 1 ~o 
the infinite capacity model is in fact a finite capacity model, since the 

inventory level cannot exceed the highest switching level. Therefore 

expressions for t 1(x), tE(x) and p(x,u) can be deduced from results in 

chapter 1. Below we will give these results without further explanation. 

However, for the case of cr 1>0 the analysis in chapter 1 essentially uses 

an infinite storage capacity. Thus, in developing approximations for t 1(x), 

tE(x) and p(x,u) for the case of cr 1>0 we cannot simply use existing 

approximations from chapter 1. 

Assuming that at epoch 0 the content equals x and release rate cr 1>0 

is used, we define the following random variables, 

T1(x) := the time until the content upcrosses M. 

TE(x) 

U(x) 

N(x) 

'( 
n 

A 
n 

:= the amount of time the dam is empty during (O,T 1(x)]. 

:= the amount by which the sum of the content just prior 

to time T 1 (x) and the input at time T 1 (x) exceeds M. 

:= the number of inputs during (O,T 1(x)]. 

:=the time elapsed between the (n-1)th and nth input, 

n;;:1 (assume that the Oth input occurs at epoch O). 

:= the size of the nth input. 

We first derive a relation between t 1(x)=E[T 1(x)], E[U(x)] and tE(x)=E[TE(x)]. 

At time T1(x) the {N(x)}th input is stored into the dam and the sum of the 

content just prior to time T1(x) and A__( equals M+U(x). During (O,T 1(x)] 
N(x) -~ x) 

an amount of i: 1 Ai is added to the initial content x, while the total 

amount released during (O,T 1(x)] equals cr 1(T 1(x)-TE(x)). Thus, by the 

principle of conservation of flow, 



(7.4.1) 
N(x) 

M+U(x) = x + l: 
i=1 

By the definition of T1(x), 

(7.4.2) T 1 (x) 
N(x) 

l: 
i=1 

T • • 
]. 
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It is easy to see that the event {N(x)=n} is independent of {T 1,A 1, ... }. n+ n+ 
Applying Wald's equation, we obtain 

(7.4.3) 

and 

(7 .4 .4) 

N(x) 
E[ l: 

i=1 

N(x) 
E[ l: 

i=1 

A.] = E[A]E[N(x)] 
]. 

T.] = (1/A)E[N(x)]. 
]. 

Combining (7.4.1)-(7.4.4) we can express t 1(x) in terms of tE(x) and 

E[U(x)],. 

(7.4.S) 

Note that 

E[U(x)] 

M-x+E[U(x)]-o 1tE(x) 

AE[A]-o 1 

f p(x,u)du. 
0 

Hence it suffices to find approximations for tE(x) and p(x,u). We first 

derive a renewal equation related to tE(x). From an approximate solution 

of this equation we find an approximation for tE(x). 

Conditioning on .the possible events in (0, 6x) with 6x small we derive 

the following relation 
01 

A6 A6x M-x 
(1- ~)t (x-6x) + ~[ f tE(x+y)dF(y)]+o(6x), 

o 1 E o O 

0 < x ;:;i M. 

Rearranging terms and letting 6x approach zero we find an integro­

differential equation for tE(x) 



184 

(7.4.6) 
A A M-x 

tE'(x) = - - t (x) + - f tE(x+y)dF(y), 
o1 E o1 0 

0 < x :;> M. 

A boundary condition is obtained for tE(O) by using the fact that customers 

arrive according to a Poisson process with rate A. Hence 

Using a technique given in Feller [1971], we rewrite (7.4.6) into a renewal 

equation. For this purpose we introduce an auxiliary function w, which is 

defined by 

(7.4.7) w(x) := tE(M-x), 0 :;> x :;> M. 

Then we have the following equations for w 

(7.4.8) 
A A x 

w' (x) = - w(x) - - f w(x-y)dF(y), 
0 1 °1 0 

0 :;> x < M. 

1 M 
w(M) = X° + f w(M-y)dF(y). 

0 
(7.4.9) 

Using the differentiation rule for an integral and using partial integration 

with F(O)=O, it is easy to verify that 

x x 
.i._ f w(x-y)(1-F(y))dy = w(x) - f w(x-y)dF(y). 
dx 0 0 

Hence (7.4.8) can be rewritten as 

(7 .4. 10) 
x 

w(x) = w(O) + ~ f w(x-y)(1-F(y))dy, 0 :;> x < M. 
0 1 0 

* 
Multiplying (7.4.10) by e-s x and using (7.2.10) we obtain the renewal 

equation 

* * w(x)e-s x = w(O)e-s x + 
x * 

f w(x-y)e-s (x-y)dG(y), 
0 

This equation has the unique solution 

w(x)e 
* -s x x * 

f w(O)e-s (x-y)dR(y), 0 ~ x < M, 
0 

0 :;> x < M. 
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(7.4.11) R(x) l: 
n=O 

n* G (x), 
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. n* with G (x) denoting the n-fold convolution of G with itself. Thus we find 

(7 .4.12) w(x) = w(O) J 
0 

x * es YdR(y), 0 ;;; x < M. 

Noting that w(x) is continuous at x=M and substituting (7.4.12) into 

(7.4.9), we can solve for w(O). After some algebra we obtain 

M * 
w(O) {;\ f es y (1-F(M-y))dR(y)}-l. 

0 

The expression between brackets on the right-hand side of this equation can 

be simplified further. Using the definition of G(x) given by (7.2.10) we 

find 

M * 
f es y(1-F(M-y))dR(y) 

0 

M 
f G' (M-y)dR(y). 

0 

Here G'(x) denotes the first derivative of G. Since R(x) is the renewal 

function associated with G(x) we have 

x 
f G(x-y)dR(y) 

0 
R(x)-1. 

Taking derivatives on either sides we obtain 

x 
G(O) R'(x) + f G'(x-y)dR(y) 

0 
R' (x). 

Using G(O)=O the above arguments lead to the following equality 

M * 
A J es Yc1-F(M-y))dR(y) 

0 

and thus we find 

* 
(7.4.13) w(O) 

s M_ -1 
{cr le R' (M) } • 

Together, (7.4.7), (7.4.12) and (7.4.13) determine the function tE(x). 
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However, we cannot obtain useful results from (7.4.12) and (7.4.13), since 

a tractable expression for R(x) is in general not available. Therefore we 

derive an approximation for R(x). 

Letting B be a random variable having distribution function G, a well­

known result from renewal theory (cf. Ross [1970]) states that 

(7.4.14) 
2 

lim [R(x) - { x + E[B ] } ] 
x-+-a> 'E[BJ 2(E[B]) 2 

o. 

It follows from (7.2.10) that 

(7.4.15) ~ * * E[B] = (1+AF 1 (s )/o 1)/s ~ * * (-AF"(s )/o 1+2E[B])/s • 

Hence, for x sufficiently large, (7.4.14) provides an approximation for 

R(x). Next we describe the behaviour of R(x) near the origin. We know that 

R(0)=1. We want our approximation R(x) of R(x) to be such that 

(7 .4.16) R(O) 1 • R I (O) R' (0). 

Since G(O)=O, G'(O)=A/o1 and G is (right-)continuously differentiable 

it follows that 

(7.4.17) R' (O) G' (0) 

There are several ways to choose R(x) such that R(x) satisfies (7.4.14) 

and (7.4.16). Our choice is based on the explicit expression for R(x) which 

can be found in case the input distribution function F belongs to the class 

of K2-distribution functions. Recall that the probability distribution 

function F is a K2-distribution if its Laplace-Stieltjes transform F is of 

the following form, 

(7.4.18) 'F<s> = 
1+ (a 1-E[Al) s 

2 1+a1s+a2s 
s 6 0 

for some constants a 1 and a2 with a2>0. In view of (7.4.11) and (7.2.10) the 

Laplace-Stieltjes transform R of R is given by 

(7.4.19) 'R<s> 
* o 1 (s+s ) 

= --- = ---.,..--------,-* ~ * o1(s+s )-A(1-F(s+s )) 1-G'<s> 



187 

Combining (7.4. 18) and (7.4.19) we find for the case of F belonging to the 

class of K2-distributions 

(7.4.20) 

* Using the definition of s we can rewrite (7.4.20) into 

(7.4.21) 'R<s) 

Noting that the denominator in (7.4.21) has two zeroes, we can invert R(s) 

and after some algebra we find 

(7.4.22) 

with 

y 

We take the right side of (7.4.22) as an approximate formula for R(x). 

The constants c 1, c2 and y follow by using (7.4.14) and (7.4.17). Thus, 

we suggest the approximation 

(7.4.23) 
A -yx 
R(x) = 1 + c 1x + c2 (1-e ), x G 0, 

with 

(7 .4. 24) 

(7.4.25) c 1 = 1/E[B], c = 
2 

where cB=cr(B)/E[B] denotes the coefficient of variation of B and E[B] and 

E[B2] are computed from (7.4.15) with the true F. Although this approximation 

ie exact in case (7.4.18) holds, some care should be taken in applying this 
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approximation. The approximation is only consistent with (7.4.14) if the 

constant y is positive. A counter-example can be given showing that y may 

be negative. However, for many practical input distributions we have that 

y>O. The constant y is not only positive for K2-input, but it can also be 

shown that y>O both for deterministic input and for gamma input. In view of 

extensive numerical experiments we conjecture that y>O also holds in case 

the input distribution F is a mixture of Erlang-k and Erlang-(k-1) with the 

same scale parameters. A sufficient condition for y>O to hold is that G 

is NBUE (NWUE) and E[B]FA/cr 1• In general one should numerically verify 

whether y>O. For input distributions with y<O our numerical experiments 

reveal that good approximations for the switch-over levels are obtained 

when we replace y by 0 in (7.4.23). By combining (7.4.7), (7.4.12), (7.4.13), 

(7.4.23), (7.4.24) and (7.4.25) an approximation for tE(x) is found. 

For the case of cr 1>0 we have 

with R(x) given by (7.4.23)-(7.4.25). 

For the case of cr 1<0 we clearly have 

while for the case of cr 1=o 

x = 0 

x > 0 

This leaves us with the problem to give tractable expressions for 

p(m,u). We use results obtained in chapter 1. In order to justify the 

application of these results we rephrase condition 1.3.1 in terms of the 

present dam model. We define 

n 
s ·= min{nj L (A.-a 1T.)>O}. 

i=1 i i 



r; 
z 1 := E (A.-cr 1T.). 

i=1 ]. ]. 

Hence z 1=A 1-cr 1T 1 if cr 1 ~o. For the case of cr 1>0 the distribution of z 1 is 

given by (1.3.20) with n 1=cr 1• Then the (m,M)-rule must satisfy the 

following condition. 

Condition 7.4.1. 

For the case of w1>0 and M=m, 

when 2 
cz ~ 

1 

when 2 
cz > 

1 

For the case of M-m>O, 

t"'l when 
2 

cz ~ 

M-m ;;:; 1 

3 2 when 2 
2czE[Z1] cz > 

1 1 

2 2 
Here c2=var(z 1)/(E[Z 1]) • 
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This condition differs from condition 1.3.1 in that M must be sufficiently 

large_ for the case of M=m and cr 1>0. This difference is illuminated below. 

We noted before that for the case of cr 1 ~o we can apply the results 

obtained in chapter 1 for the basic functions associated with the low 

production rate. From equation (1.3.34) we obtain for any uf::O 

p(M,u) = lo 
1-F(u) 

when a 1 < 0 

when a 1 0 

From approximation 1.3.2 we obtain for the case of cr 1 ~o and M-m satisfying 

condition 7 .4. 1 

p (m,u) - AE[A]-cr 1 
f (1-F(y))dy, u ;;:; o. 

u 
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In case o 1>0 we distinguish between the cases c!~1 and c!>1 with 

cA=o(A)/E[A]. If ci~1 it is intuitively clear that the probability of a zero 

content just prior to the overshoot of M is negligible provided M is 

sufficiently large. In view of this observation we neglect the influence 

of the boundary at zero. Putting this in terms of the corresponding 

production-inventory model this is equivalent to neglecting the finite 

capacity if the difference between the capacity and the lowest switching_ 

level is sufficiently large. Then we use (1.3.20) and approximation 1.3.2, 

which give expressions for the distribution of the undershoot of the lowest 

switching level. Provided that the (m,M)-rule satisfies condition 7.4.1, 

b . f h f 2<1 we o tain or t e case o cA~ , 

* 
(7.4.26) p(M,u) 

A 
f 

-s (y-u)(1-F(y))dy, ~ 0. - e u 
0 1 u 

00 * 
(7.4.27) p(m,u) 

A 
f (1-e-s (y-u))(1-F(y))dy, o. - :\E[A]-o 1 

u ~ 

u 

Numerical experiments reveal that these approximations have an excellent 

performance. However if c!>1 the same numerical experiments show that the 

performance of approximations (7.4.26) and (7.4.27) deteriorates if c! 

increases. If c!>1 we typically have a large number of small inputs and a 

small number of very large inputs. The effect of the small inputs is on the 

average a net decrease of the content, while the large inputs may typically 
2 

cause an overshoot. Roughly stated, in case cA>1 we cannot neglect the 

possibility that an overshoot is caused by an input occurring when the 

content is close to zero. Thus in our anal~sis of p(x,u) we have to 

incorporate the boundary behaviour near x=O. To do this we shall proceed 

along the same lines as for 

By conditioning on the 

the approximation of tE(x). 

possible events in (0, bx) and 
01 

find 

a -;\ A M-x 
ax p(x,u) = - p(x u) + - f p(x+y,u)dF(y) + 

0 1 ' 0 1 0 

A 
+ - ( 1-F(M-xtu)), 

01 
0 < x ~ M. 

The boundary condition at x=O is given by 

(7.4.28) p(O,u) 
M 

1-F(M+u) + f p(y,u)dF(y). 
0 

letting bx-+O we 



We define another auxiliary function 

(7.4.29) q(x,u) = p(M-x,u), 0 ~ x ~ M. 

Applying the same arguments as used to derive (7.4.12) we find 

(7.4.30) 
x * 

q(x,u) = q(O,u) f es YdR(y) 
0 

x * x-y 
- f es Y f A (1-F(z+u))dzdR(y) 

0 0 °1 
0 ~ x ~ M. 

Using (7.4.28)-(7.4.30) we obtain after considerable algebra 

M * -s SM-y) A -1 q(O,u) = f e ~ (1-F(M-y+u))dR(y).{R'(M)} . 
0 °1 

191 

Using the approximation R for R we suggest the following approximation for 
2 p(x,u) for the case of o1>0 and cA>1, 

(7.4.31) 

with 

p(x,u) :o q(O,u) 
M-x s* _ 

f e ydR(y) 
0 

M-x * M-x-y 
- f es Y f A (1-F(z+u))dzdR(y), 

0 0 °1 
0 ~ x ~ M, 

M *< ) ' - - -1 q(O,u) = f e-s M-y ~ (1-F(M-y+u))dR(y).{R'(M)} 
0 °1 

and R(x) given by (7.4.23)-(7.4.25). 

The approximation (7.4.31) for p(x,u) is less tractable than the other 

approximations given above. However, in case F is a hyper-exponential 

distribution function, 

(7.4.32) 
-µ1x -µ2x 

F(x) = 1- pe - (1-p)e , 

then the computations simplify considerably and yield a lengthy but 

tractable expression for p(x,u), 

(7.4.33) 

where 
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r 1 (x) 

with 

2 
q. (M) 

l. 
p. [ l: 

l. j=1 

2 d. 
k 1 (z) l: _J_ 

j=1 n. 
J 

d. 
_J_ (e 
JJ. +n. 

l. J 

n.z 
(e J -1) 

n .M -µ .M 
J -e l. ) 

+ 1 ' 

-µiM 
+ e ], 

* and n2=s -y. 

The equality in (7.4.33) holds, since R(x) is exact for a hyperexponential 

distribution. Note E[B]=(A/cr 1) ~ p./(µ.+s*) 2 in case (7.4.32) holds • 
. -1 l. l. 

In section 7.6 we present 1 numerical results, showing the accuracy of 

the approximations to the levels of the service measures introduced in 

section 7 .2. 

7.5. The average content of the dam. 

Assuming holding costs are incurred at a rate being linear in the 

stock on hand, the average holding cost per unit time follows by deriving 

an expression for the average content of the dam. Using results obtained in 

chapter 5 we derive approximate expressions for the average content. 

Let us assume that a holding cost at rate x is incurred when the 

content level equals x. We define the random variable Z as 

Z :=the holding cost incurred during (0,T]. 

Then it follows from the theory of regenerative processes that 

E[Z) 
the long-run average content of the dam = E[TT" 

To find an expression for E[Z] we define the functions z 1(x) and z2 (x) by 



z 1(x) :=the expected holding costs incurred until the first 

overshoot of level M, when X(O)=x, O~x:>M, and the 

release rate o 1 is used. 
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zz(x) := the expected holding costs incurred until the first 

epoch at which the content decreases to m, when X(O)=x, 

XGm, and the release rate oz is used. 

Then it is easily seen that 

(7 .5 .1) E[Z] 

when C lz 1(m) + / zz(M+u)du(1-p(m,u)) 

C-M 
z 1(m) + J zz(M+u)du(1-p(m,u))+zz(C)p(m,C-M) 

0 

when C < oo 

To obtain expressions for the functions z1 (x) and zz(x) we consider 

again the production-inventory model studied in chapter 1. However, we now 

assume that the storage capacity C is finite. We assume that a holding cost 

at rate x is incurred when the inventory level equals XGO. Then we define 

for the backlog.model 

k 1(x;C) :=the expected holding costs incurred until the first 

epoch at which the inventory decreases below 0, given 

that at epoch 0 the inventory equals x, O~x~C, and 

production rate o 1 is always used. 

kz(x;M) := the expected holding cost incurred until the first 

epoch at which the inventory reaches the level H~C, 

given that at epoch 0 the inventory equals x, x~M, 

and production rate oz is always used. 

We note that kz(x;M) does not depend on C. Moreover, an approximation for 

kz(x;M) is given by equation (5.4.7) together with approximation 1.4.3, 

where we put TIZ equal to oz. 

Some reflection will reveal that 

(7.5.Z) 
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Using the definition of k2 (x;M) and the arguments used to derive (5.4.7) we 

find for all m~x~C 

(x-m) 2 
when C 

(7 .5.3) 

when C < ao 

Because of (7.5.2) it remains to find an expression for k 1(M-m;M). To 

do so let us assume that at epoch 0 the inventory equals x~ and production 

rate o 1 is always used. As stated before the finite capacity model can be 

treated as an infinite capacity model if the production rate o 1 ~o. Then it 

follows from (5.2.6) and (5.3.26) that for the case of o 1 ~o and M-m 

satisfying condition 7.4.1 

(7.5.4) k 1 (M-m;M) 1 [ (M-m) 2 _ 1'E[A3] 
- AE[A]-01 2 6(AE[A]wcr1) 

AE [A 2] 
x (M-m+ 2(1'E[A]-o1))]. 

Clearly, k 1(0;M)=O for the case of o 1 ~o. 
Let us consider the case of o 1>0. Applying the renewal-theoretic 

arguments that were used to derive expressions for the auxiliary functions 

w(x) and q(x,u) we find after some straightforward algebra, 

(7.5.5) 
x * x 2 * 

es YdR(y)- f (x-y) es ydR(y), 0 ~ x ~ M, 
0 201 

with 

(7.5.6) 
M * 

k 1(0;M) = (o 1R'(M))-l f (M-y)e-s (M-y)dR(y). 
0 

Substituting R(x) for R(x) into (7.5.5) and (7.5.6), we obtain a tractable 

approximation for k 1 (x;M), which is exact if the input distribution function 

F is a K2-distribution. However, numerical investigations for deterministic 

input revealed that the accuracy deteriorates dramatically as o 1 gets smaller 

for fixed m and M. Therefore we follow now another approach. 

Equations (7.5.5) and (7.5.6) hold for all O~x~M and for all M~O. 

Letting M+00 we obtain for all x~O 



(7.5.7) kl (x;co) = kl (O;co) J 
0 

x 

Now we observe that the case of M=00 corresponds to the infinite capacity 

model. Thus we can use the results obtained in chapter 5 for the infinite 

capacity model. This leads to 

(7.5.8) 

(7.5.9) 
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provided M-m satisfies condition 7.4.1. The probability distribution function 

of z1 is given by (7.4.26). 

By applying the Key Renewal Theorem to the equation 

we obtain 

(7.5.10) 

x 
f G' (x-y)dR(y) 

0 
R' (x) , 

lim R' (M) 
tt-

* s 
A * . 

1+ - 'F• <s ) 
al 

Incidentally, the result (7.5.8) can be derived from (7.5.10) and the 

application of the Key Renewal Theorem to (7.5.6). 

To obtain an expression for k 1(x;M) we combine (7.5.5), (7.5.7) and 

(7.5.8), yielding 

(7.5.11) 
x 

k 1(x;M) = k 1(x, 00 ) + (k 1(0;M) - * 2) f 
a 1 (s ) 0 

* es YdR(y). 

x * 
It remains to find approximate expressions for k 1(0;M) and f es YdR(y). We 

first focus on the derivation of an approximation to the lgtter integral. 

We recall the definition of tE(z;M), where we now explicitly express 

the dependence on M. 
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tE(z;M) = the expected amount of time that the dam is empty 

until the first overshoot of the level M, given 

that at epoch 0 the content is z and release rate cr 1 
is used. 

It follows from (7.4.7), (7.4.12) and (7.4.13) that 

(7.5.12) 

Letting M+<x>, we obtain by the Key Renewal Theorem and (7.5.10) 

* -s z 
(7.5.13) t (z•oo) = _e__ ··toll ~ 0. 

E , * , 
cr 1s 

0 :;; z :;; M. 

Next we express tE(z;M) in terms of tE(z; 00). By conditioning on the 

overshoot U(z;M) of level M we find 

(7.5.14) tE(z; 00 ) = tE(z;M) + J tE(M+u;oo)dP{U(z;M):;;u}. 
0 

Now it follows from the correspondence between the dam model and the 

production-inventory model and (1.3.26) that 

(7.5.15) lim P{U(z;M)J1u} = A 
M+<x> AE[A]-cr 1 

* J (1-e-s (y-u))(1-F(y))dy. 
u 

A combination of (7.5.13)-(7.5.15) yields 

(7.5.16) 
*M e-s*z -(1 +a\ F' (s*)) 

limes [tE(z;M) - --*-] = -.,-*------
~t- cr 1s s (AE[A]-cr 1) 

Note that (7.5.16) provides an alternative approximation to tE(z;M). 

Substitution of (7.5.12) into (7.5.16) and using (7.5.10) leads to 

x * 
(7.5.17) lim { l es YdR(y) -

x-+<><> 0 

[ e 
* s x 

Assuming M-m satisfies condition 7.4.1, we now find that 

(7.5.18) 
* M-m * es (M-m) 

l es YdR(y) ~ --=---..,. 
A ~ * 0 1+-F'(s) 

cr1 
AE(A]-cr 1 

0. 
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This leaves us with the problem of finding a tractable expression for 

k1(0;M). We define for the production-inventory model with storage 

capacity M, 

v 1 (x;M) the expected amount of time until the inventory level 

drops below 0 for the first time, given that at epoch 

0 the inventory equals x and production rate o 1 is 

used. 

Again we apply the arguments used to derive (7.4.12), yielding 

(7.5.19) 

(7.5.20) 

Analogously to (7.5.11) we have that 

(7.5.21) 
x * 

v 1(x;M) = v 1(x;00 ) + (v1(0;M) - ~) J es YdR(y). 
o1s 0 

It is obvious that v 1(x;oo) equals the function t 1(x) which was defined in 

chapter 1 for the backlog model. Using (1.3.10) and (1.3.27) we find 

(7.5.22) 1 ]} 
* s (AE [A]-o l) 

o. 

The next step is to combine equation (7.5.6), which gives an expression 

for k 1(0;M), with equations (7.5.19)-(7.5.21). This yields 

M * 
J es YdR(y) 

(7 .5.23) 0 

Then it follows from (7.5.10), (7.5.17), (7.5.22) and (7.5.23) that 
A ~ * (1+-F'(s )) 

* limes M {k1(0;M)-[ \ 2 
~ o 1 (s ) 

o 1 . * -s M ----*--- e x 
s 

o. 
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Hence, assuming M satisfies condition 7 .4. 1 we 
>. ~ * ( 1+ - F' (s ) ) 

01 

have 

* -s M (7 .5.24) ------.,*--- e x 
s 

Substitution of the approximate expressions (7.5.9), (7.5.18) and 

(7.5.24) into equation (7.5.11) leads to a tractable expression for 

k 1(M-m;M). Then we use this expression together with (7.5.3) to obtain an 
approximation for the average content from equation (7.5.1). This 

approximation is tested numerically in the next section. 

Remark 7.5.1. One might suggest that the approach outlined in this section 
is also applicable to obtain an alternative approximation to p(m,u) for the 

case of o 1>0. However, the approximation that follows from the arguments 
used to derive (7.5.11) leads to the approximate expression (7.4.27). This 

approximation is applicable when c!~1, but it does not lead to accurate 
results when c!>1. Therefore it is necessary to apply the approximation R(x) 
to R(x) given by (7.4.23). 

Remark 7.5.2. In the chapters 1 to 6 we studied infinite capacity 

production-inventory models. By applying the approximations for t 1(m) and 

p(m,u) obtained in section 7.4 and the approximation for k 1(x;M) obtained 

in this section, we obtain approximations to the service levels and costs 
in the finite capacity production-inventory models with rr 1>0. 

7.6. Numerical results and conclusions. 

In this section we show that the approximations derived in this 

chapter lead to practically useful results. Using the results obtained in 
the sections 7.2-7.4 we derive (m,M)-rules that approximately satisfy one 
of the following service level constraints. 

1. the number of upcrossings of level U per unit time equals 1-a. 

2. the fraction of input lost equals 1-S. 

3. the fraction of time the dam is empty equals 1-£. 
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In all examples we take A=1 and E[A]=1. The small release rate o1 has 

the two values 0.25 and 0.75. We do not consider the case of o 1 ~o, since 

in that case the dam model is equivalent to the production-inventory models 

studied in the chapters 1 and 2 by noting that for o 1 ~o these models are 

in fact finite capacity models. The fast release rate n 2 has the two values 

1.25 and 2. We assume that a switch-over cost of K=25 is incurred each time 

the release rate is switched from o1 to o2 , while a holding cost at rate 

h.x is incurred when the content equals x, where h=1 is chosen. Then we 

predetermine M-m by 

(7.6.1) 

The formula (7.6.1) is derived along the same lines as the EOQ-for111Ula 

(1.5.1). We consider four input distributions, whose squared coefficients 

f . . 2 f 0 2 o varLatLon cA range rom to , 

(i) 
(ii) 

(iii) 

(iv) 

d • . . . ( 2 O) etermLnLstLc Lnput cA= • 

Erlang-2 input (c!=0.5). 

exponential input (c!=1). 

hyperexponential input (c!=2) with F given by (7.4.32) and 

p/µ 1=(1-p)/µ 2 (balanced means). 

Each of the required service levels a, S and E is varied as 0.95 and 0.99. 

In tables 7.6.1, 7.6.2 and 7.6.3 we give the approximate (m,M)-rules 

for the a-, S- and E-service measure. The actual service levels a t' S t ac ac 
and E t are determined by computer si111Ulation. In all examples we have ac 
si111Ulated 250,000 inputs. Again the notation 0.950(3) means that the 95% 

confidence interval of the si111Ulated value is given by 0.947-0.953. 

The results from tables 7.6.1-7.6.3 show that the approximations 

derived in this chapter are quite accurate. For comments on the sensitivity 

of the switching level m to the underlying input distribution we refer to 

section 1.5. 
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Table 7.6.1. The approximate (m,M)-rules and their actual a-service levels. 

c2=0 2 C= 
A cA=0.5 

0 1 0 2 a u m M a-act u m M a-act 

0.25 1.25 0.95 8 1.52 4.58 0.951(3) 10 2.59 5.65 0.950(2) 
0.25 2.00 0.95 8 2.30 6.93 0.949(2) 10 3.69 8.31 0.949(2) 
0.75 1.25 0.95 8 2.73 5.23 0.951 (2) 10 4.25 6.75 0.951 (2) 
0.75 2.00 0.95 8 4.11 7.28 0.951 (2) 10 5.81 8.97 0.950(1) 
0.25 1. 25 0.99 12 1. 78 4.84 0.991(2) 15 1. 70 4.77 0.991(2) 
0.25 2.00 0.99 12 4.99 9.62 0.990( 1) 15 6.45 11.07 0.990(1) 
0. 75 1.25 0.99 12 3.01 5.51 0.990(2) 15 3.28 5.78 0.990(2) 
o. 75 2.00 0.99 12 6.85 10. 01 0. 990 ( 1) 15 8.60 11. 76 0.990(1] 

c2=0 2 C=U 
A cA=0.5 

0 1 0 2 a u m M a.-act u m M a-act 

0.25 1.25 0.95 8 1. 31 4.37 0.951(3) 10 2.09 5. 16 0.950(3) 
0.25 2.00 0.95 8 2.28 6.91 0.950( 1) 10 3.64 8.27 0.950(2) 
o. 75 1.25 0.95 8 2.51 5.01 0.951 (2) 10 3.71 6.21 0.951 (2) 
0.75 2.00 0.95 8 4. 10 7.26 0.949(2) 10 5.76 8.92 0.951(2) 
0.25 1.25 0.99 12 1. 74 4.80 0.991(1) 15 1.60 4.66 0.991(2) 
0.25 2.00 0.99 12 4.99 9.62 0.990( 1) 15 6.44 11.06 0.990(1) 
0.75 1.25 0.99 12 2.97 5.47 0.990(2) 15 3.16 5.66 0.990(1) 
0.75 2.00 0.99 12 6.85 10.01 0.990(1) 15 8.59 11. 75 0.990(1) 

C=oo c2=1 A c2=2 A 
0 1 0 2 a u m M a-act u m M a-act 

0.25 1.25 0.95 10 2.13 5. 19 0.950 10 2.51 5.57 0.951(2) 
0.25 2.00 0.95 10 3.25 7 .87 0.950 10 2.90 7.53 0.951(2) 
0.75 1. 25 0.95 10 4.07 6.57 0.950 10 5.05 7.55 0.949(2) 
0.75 2.00 0.95 10 5.61 8. 77 0.950 10 5.69 8.85 0.950(2) 
0.25 1.25 0.99 20 4.09 7. 15 0.990 25 4.54 7.60 0.990(2) 
0.25 2.00 0.99 20 10.03 14.66 0.990 25 12.07 16.70 0.989(1) 
0.75 1.25 0.99 20 6.22 8. 72 0.990 25 7.43 9.93 0.990(1) 
0.75 2.00 0.99 20 12.52 15.68 0.990 25 15.32 18.48 0.990(1) 

C=U c2=1 
A c2=2 

A 
0 1 0 2 a u m M a-act u m M a-act 

0.25 1. 25 0.95 10 1.22 4.28 0.950 10 0.18 3.24 0.950(2) 
0.25 2.00 0.95 10 3.15 7.78 0.950 10 2.61 7.24 0.950(2) 
o. 75 1.25 0.95 10 2.98 5.48 0.950 10 1.95 4.45 0.951(2) 
0.75 2.00 0.95 10 5.51 8.67 0.950 10 5.38 8.54 0.949(1) 
0.25 1.25 0.99 20 3.89 6.95 0.990 25 4.04 7. 10 0.990(1) 
0.25 2.00 0.99 20 10.01 14.64 0.990 25 12.00 16.63 0.990(1) 
0.75 1.25 0.99 20 6.01 8.51 0.990 25 6.86 9.36 0.990(2) 
o. 75 2.00 0.99 20 12.50 15.66 0.990 25 15. 25 18 .42 0.990(1) 
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Table 7.6.2. The approximate (m,M)-rules and their actual S-service levels. 

C=U cA=O c =O 5 A • 
2 2 

01 02 s u ID M s-act u ID M S-act 

0.25 1.25 0.95 10 4.87 7.94 0.950(2) 10 3.07 6.13 0.950(2) 
0.25 2.00 0.95 10 4.97 9.59 0.950(1) 10 4.12 8. 75 0.950(2) 
0. 75 1.25 0.95 10 6. 18 8.68 0.951(2) 10 4. 76 7.26 0.950(2) 
0. 75 2.00 0.95 10 6.83 9.99 0.950(1) 10 6.25 9.41 0.949(2) 
0.25 1.25 0.99 10 1.4 7 4.53 0.990( 1) 15 2.70 5. 77 0. 991 ( 1) 
0.25 2.00 0.99 10 3. 72 8.35 0.990(1) 15 6.94 11.57 0.990(1) 
0.75 1.25 0.99 10 2.68 5. 18 0. 990 ( 1) 15 4.37 6.87 0.991( 1) 
0. 75 2.00 0.99 10 5.57 8.73 0.990(1) 15 9.09 12.26 0.990(1) 

C=U c2=1 
A 

c2=2 
A 

01 02 s u ID M S-act u ID M S-act 

0.25 1.25 0.95 10 1.22 4.28 0.950 15 2. 19 5.25 0.951(2) 
0.25 2.00 0.95 10 3. 15 7.78 0.950 15 5.56 10. 19 0.950(3) 
0.75 1.25 0.95 10 2.98 5.48 0.950 15 4.69 7. 19 0.950(3) 
0. 75 2.00 0.95 10 5.51 8.67 0.950 15 8.65 11.82 0.950(3) 
0.25 1. 25 0.99 20 3.89 6.95 0.990 25 0.29 3.35 0.989(2) 
0.25 2.00 0.99 20 10.01 14.64 0.990 25 9.78 14.41 0.990(2) 
o. 75 1.25 0.99 20 6.01 8.51 0.990 25 2.10 4.60 0.990(2) 
o. 75 2.00 0.99 20 12.50 15.66 0.990 25 13.00 16 .16 0.990(2) 

In table 7.6.4 we show the accuracy of the approximation to the 

average content, which was derived in section 7.5. For the (m,M)-rules given 

in table 7.6.1 we have given Vapp and Vact' respectively the approximate 

and simulated value of the average content. For the simulated value we 

have given also the 95% confidence interval, using the usual notation. 

For the case of exponential input the approximation to the average content 

V is exact. 
app 

Assuming linear holding costs and fixed switching costs, it is now 

possible to derive expressions for the average holding and switching costs. 

As in chapter 5 and 6 one can determine an approximate (m,M)-rule that 

satisfies some service level constraint with minimal average costs. We omit 

further details. 
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Table 7.6.3. The approximate (m,M)-rules and their actual e-service levels. 

c2=0 2 C=oo 
A cA=0.5 

01 o? E u m M e-act u m M e-act 
0.25 1.25 0.95 8 0.03 3.09 0.950(1) 10 0.04 3. 11 0.949(1) 
0.25 2.00 0.95 8 0. 14 4. 77 0.950(1) 10 0. 18 4.81 0.950(1) 
0. 75 1.25 0.95 8 0.98 3.48 0.951(2) 10 1.69 4. 19 0.952(2) 
o. 75 2.00 0.95 8 1.53 4.69 0.950(2) 10 2.53 5.70 0.950(2) 
0.25 1.25 0.99 8 0.44 3.50 0. 990 ( 1) 10 0.51 3.57 0.990(1) 
0.25 2.00 0.99 8 0.55 5. 18 0.990(1) 10 0.64 5.27 0.990(1) 
0. 75 1.25 0.99 8 3.46 5.96 0.990(1) 10 5. 17 7.67 0.990(1) 
0. 75 2.00 0.99 8 4.01 7. 17 0.990( 1) 10 6.02 9.18 0.989(2) 

C=U c2=0 2 
A cA=0.5 

01 02 E u m M e-act u m M e-act 

0.25 1.25 0.95 8 0.04 3.10 0. 950 ( 1) 10 0.07 3. 13 0.950(1) 
0.25 2.00 0.95 8 0. 15 4.77 0.950( 1) 10 0. 18 4.81 0.949(1) 
o. 75 1.25 0.95 8 1.06 3.56 0.950(2) 10 1.86 4.36 0.952(2) 
0.75 2.00 0.95 8 1.53 4.70 0.950(2) 10 2.54 5. 70 0.951 (2) 
0.25 1.25 0.99 8 0.45 3.51 0.990(1) 10 0.53 3.59 0.990(1) 
0.25 2.00 0.99 8 0.55 5. 18 0.990(1) 10 0.64 5.27 0.990(1) 
0. 75 1.25 0.99 8 3.70 6.20 0.990(1) 10 5.71 8.21 0.990(1) 
o. 75 2.00 0.99 8 4.04 7.20 0.990(1) 10 6.12 9.28 0.991 (1) 

C=oo c2=1 c2=2 A A 
01 02 E u m M e-act u m M e-act 

0.25 1.25 0.95 10 0.07 3.14 0.950 10 0.07 3. 13 0.949(2) 
0.25 2.00 0.95 10 0.25 4.87 0.950 10 0.26 4.89 0.950(1) 
o. 75 1.25 0.95 10 2.39 4.89 0.950 10 3.29 5.79 0.953(2) 
o. 75 2.00 0.95 10 3.55 6.71 0.950 10 4.99 8.15 0.948(2) 
0.25 1.25 0.99 15 0.61 3.67 0.990 15 0.65 3. 71 0.990(1) 
0.25 2.00 0.99 15 o. 77 5.40 0.990 15 0.85 5.47 0.990(1) 
o. 75 1.25 0.99 15 6.88 9.38 0.990 15 9.44 11. 94 0.990(2) 
o. 75 2.00 0.99 15 8.05 11. 21 0.990 15 11 • 13 14.29 0.990(2) 

C=U c2=1 c2=2 A A 
01 02 E u m M e-act u rn M e-act 

0.25 1. 25 0.95 10 0.12 3. 18 0.950 10 0. 17 3.23 0.950(2) 
0.25 2.00 0.95 10 0.25 4.87 0.950 10 0.28 4.91 0.950(2) o. 75 1.25 0.95 10 2.86 5.36 0.950 10 4.63 7 .13 0.949(2) 
0.75 2.00 0.95 10 3.60 6.76 0.950 10 5.29 8.45 0.950(3) 0.25 1.25 0.99 15 0.63 3.69 0.990 15 0. 71 3. 77 0.990( 1) 
0.25 2.00 0.99 15 o. 77 5.40 0.990 15 0.85 5.48 0.991(1) 
0.75 1.25 0.99 15 7.30 9.80 0.990 15 11. 11 13 .61 0.991(2) o. 75 2.00 0.99 15 8.09 11. 25 0.990 15 11. 5 7 14. 73 0.990(2) 
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Table 7.6.4. The approximate average contents and their actual values. 

c2=0 
2 

C=oo c =! 
A A 

01 02 u m v v u m v v 
app act app act 

0.25 1.25 8 1.52 4.60 4.59(4) 10 2.59 6.53 6.51(10) 
0.25 2 8 2.30 4.66 4.66(2) 10 3.69 6. 14 6.15(2) 
0. 75 1.25 8 2.73 4.46 4.46(5) 10 4.25 6.31 6.39(10) 
0. 75 2 8 4. 11 4.56 4. 56 (3) 10 5.81 5.81 5.82(4) 
0. 25 1.25 12 1. 78 4.86 4.85(5) 15 1. 70 5.65 5.63(9) 
0.25 2 12 4.99 7.35 7 .36(2) 15 6.45 8.90 8.91(2) 
o. 75 1.25 12 3.01 4.70 4.67(6) 15 3.28 5.49 5.41(8) 
0. 75 2 12 6.85 7. 16 7.15(4) 15 8.60 8.43 8.47(5) 

C=U c2=0 
A 

c2=! 
A 

01 02 u m v v u m v v act app act app 

0.25 1.25 8 1.31 3.84 3.84(2) 10 2.09 4.92 4.93(2) 
0.25 2 8 2.28 4.55 4.56(1) 10 3.64 5.91 5.91(1) 
0.75 1.25 8 2.51 3.71 3.71(3) 10 3. 71 4.70 4.71(4) 
0. 75 2 8 4.10 4.46 4.46(3) 10 5.76 5.57 5.58(4) 
0.25 1. 25 12 1. 74 4.64 4.64(3); 15 1.60 5. 16 5.17(5) 
0.25 2 12 4.99 7.33 7. 34 ( 1) 15 6.44 8.84 8. 85 ( 1) 
o. 75 1.25 12 2.97 4.48 4.47(3) 15 3. 16 5.00 5.00(5) 
o. 75 2 12 6.85 7. 14 7.13(4) 15 8.59 8.36 8.38(5) 

C=oo c2=1 
A 

c2=2 
A 

01 02 u m v vact u m v v 
app app act 

0.25 1.25 10 2.13 6.95 6.95 10 2.51 9.26 9.08(25 
0.25 2 10 3.25 5.82 5.82 10 2.90 5.85 5.83(4) 
o. 75 1.25 10 4.07 6.76 6.76 10 5.05 9.03 9.08(28 
0.75 2 10 5.61 5.43 5.43 10 5.69 5.43 5.41(6) 
0.25 1.25 20 4.09 8.91 8.91 25 4.54 11.29 11. 34 (38 
0.25 2 20 10.03 12.60 12.60 25 12.07 15.02 15.08(4) 
o. 75 1.25 20 6.22 8.57 8.57 25 7.43 10.95 10.94(27 
0.75 2 20 12.52 11 .82 11.82 25 15.32 14.02 13.98(10 

C=U c2=1 
A 

c2=2 
A 

01 02 u m v v u m v v 
app act app act 

0.25 1.25 10 1.22 4.25 4.25 10 0. 18 3.47 3.45(4) 
0.25 2 10 3.15 5.40 5.40 10 2.61 4.82 4.82(2) 
o. 75 1.25 10 2.98 4. 12 4.12 10 1.95 3.44 3.44(4) 
0.75 2 10 5.51 5.01 5.01 10 5.38 4.44 4.45(4) 
0.25 1.25 20 3.89 8.06 8.06 25 4.04 9.34 9.33(8) 
0.25 2 20 10.01 12.48 12.48 25 12.00 14. 70 14.69(3) 
0.75 1.25 20 6.01 7. 72 7. 72 25 6.86 9.01 8.95(10 
0.75 2 20 12.50 11.70 11 • 70 25 15.25 13.68 13 .6 7 ( 11 
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APPENDIX A. SOHE RESULTS FOR A RANDOM WALK INDUCED BY A DISTRIBUTION 
FUNCTION WITH AN EXPONENTIAL TAIL. 

In Feller [1971], p. 389-406, general results are derived concerning 

the distributions of ladder heights associated with a random walk inlR. 

Feller indicates how these results lead to exact expressions for these 

ladder height distributions when the random walk is induced by a 

distribution function with an exponential tail. For this particular type of 
random walk we provide more detailed information for those results that are 

needed in this monograph. 

Let {D } and {Q } be two sequences of independent and identically n n 
distributed nonnegative random variables. The sequences {D } and {Q } are n n 
also independent of each other. We consider the particular case of 

P{D ~x} ·= F(x), x;;; 0, n;;; 1, 
n 

where F is a general probability distribution function concentrated on 

[0, 00). Define now the random walk {S } by 
n 

with 

s := 
n 

n 

L: x.' 
i=1 ]_ 

n 2: 1. 

n ;;; 1, 

It is easily verified that 

(A.1) 
r(µ)e:x· 

leµx f F(z)µe-µzdz, 
x 

x < 0 

x ;;; 0' 

with F the Laplace-Stieltjes transform of F. Let 

G(x) := P{X 1 ~x}, X E JR. 
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We note that G(x) has an exponential tail. This is crucial in the discussion 

to follow. 

We define the descending ladder points (Wk,Tk) by 

TQ := 0, Tk 

wk := s , 
Tk 

:= min{nls <S , T >T 1}, 
n Tk-l n n-

k ;;; o. 

k ;;; 1. 

The random variable Wk is the k-th descending ladder height and Tk is the 

k-th descending ladder epoch. Note that x1 has a continuous distribution 

function. Thus there is no ambiguity in the definition of the ladder 

points; the weak descending ladder points are at the same time the 

strict descending ladder points. Similarly, we define the ascending ladder 

points (Zk,ok), k;;;1, by 

zk := s , 
crk 

k ;;; o. 

We further define 

H(x) := P{Z 1:$x}, 

p (y) : = P{W 1 :$y}, 

1jJ (x) := l: P{Zk:$x}, 
k=O 

<P (y) := l: P{Wk;;;y}, 
k=O 

k ;;; 1. 

x ;;; 0. 

y ;$ o. 

x ;;; o. 

y ;$ o. 

The functions iji(x) and <P(y) denote respectively the expected number of 

ascending ladder heights in [O,x] and the expected number of descending 

ladder heights in [y,O]. 

Throughout this appendix we assume that E[X1]>0. Then it follows 

from Wald's equation that 

(A.2) 
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Also, the sequences {Zk} and {crk} constitute proper renewal processes, 
whereas {Wk} and {Tk} constitute terminating renewal processes. Hence 

(A.3) H(oo) 1 and p(O) < 1. 

Proceeding as in Feller [1971], p. 398-400, we obtain the following 
general relations 

-0 
(A.4) H(x) G(x)-G(O)- J [G(x-z)-G(-z)]d$(z), x ;;; 0. 

(A.5) p (y) J G(y-z)diji (z), y ;;;; o. 
0 

(A.6) ijJ (x) 1-p (O)+ £ G(x-z)dijJ(z), x ;;; 0. 
0 

0 
(A. 7) $(y) 1-H(oo)+1-G(y)- J [ 1-G(y-z) ]dHz), y ;;;; o. 

It can be shown that these four equations uniquely determine the functions 
H(x), p(y), ijJ(x) and $(y). These relations are the starting point for the 
exact computation of H(x), p(y) and $(y) for the particular random walk 
considered. 

Substituting (A.1) into (A.5) we obtain 

(A.8) p (y) y ;;;; o. 

From general results from renewal theory it follows that the integral in 
(A.8) is finite. Since the renewal process {Wk} is terminating the 
probability distribution function p (y) is defective and there exists 

* * some s with O<s <µ, such that 

(A. 9) y ;;;; o, 

with p'(y) the density of p(y). Using the definition of $(y) and the fact 
that $(y) has a density $'(y), we obtain 

(A. 10) * * s y $'(y) = -(µ-s )e y ;;;; 0. 

Substituting this into (A.4) and using (A.1), we obtain 



* 
(A. 11) H(x) J e-s wµ[F(x+w)-F(w)]dw. 

0 

Next we use (A.3) and (A.11) to find 

* µ J e-s w[1-F(w)]dw, 
0 

which is equivalent to 

(A.12) * s ~ * µ(1-F(s )) • 

* From the transcendental equation (A.12) we determines Knowing the 

* quantity s we obtain the following exact expressions. 

(A. 13) 

(A. 14) 

(A. 15) 

(A. 16) 

p (y) 
* (µ-s ) µy 

=---e 
µ 

y ~ 0. 

cp (y) 
* * + (µ-!) (1-es Y), y ~ o. 

s 

* 1-H(x) = µ f e-s z(1-F(x+z))dz, x;;:: o. 

E [a ] = ....!:'.... 
1 * s 

0 

The results obtained in this appendix have been applied in section 
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1.3 with µ=\/TI 1• A similar approach based on the relations (A.4)-(A.7) can 

be used for an alternative derivation of the expression for q(x) in 

section 1.4. However, where the equation (A.12) has always a unique 

positive solution, we then obtain a transcendental equation that has a 

solution (being necessarily unique) only if the distribution function F has 

an exponentially decreasing tail. 
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