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Preface 

The name of R.A. Bradley ( together with that of M.E. Terry ) is associ

ated with a model that is widely employed in paired comparisons. Therefore, it 

seems appropriate to begin this book with a quotation from Bradley (1976). 

Consulting statisticians are familiar with the consultee who, after describ

ing his proposed experiment in several sentences has only one question: 

"How many observations do I need ?". 

In particular the consultee might be tempted to ask this question when paired 

comparisons are involved. In paired comparison experiments observations are 

made by presenting pairs of objects to one or more judges. This method is used 

extensively in experimental situations where objects can be judged only subjec

tively, that is to say, when it is impossible or impracticable to make relevant 

measurements in order to decide which of two objects is preferable. When all 

pairs are presented to each of n judges (round robin), then the number of paired 

comparisons is n (~),where t is the number of objects. This number is often too 

large for practical purposes. Bradley and Terry postulate the existence of param

eters, 'TT; for T;, where T; is the i -th object or treatment. In many cases these 

parameters are functions of quantities determining the objects and a linear 

model can be formulated. The information from this model can be used to con

struct designs, that are more efficient than the round robin design, i.e., less com

parisons are needed to measure the parameters of the linear model with the same 

accuracy as the round robin design. The aim of this book is to construct such 

designs. 

The method of paired comparisons provides a simple experimental tech

nique. However, many models have been formulated for paired comparison 

experiments. Some of these models and procedures are discussed in section 1. 

These procedures yield covariance matrices of the estimators for the unknown 

parameters. These covariance matrices are in particular important with regard to 

the construction of optimal designs, because many criteria depend on the covari

ance matrix of the estimators. However, these matrices depend in general on the 

unknown parameters. Therefore, the assumption of no differences in treatment is 

made in order to construct optimal designs. In section 1 it is shown that in this 

case an ordinary linear model can be applied for constructing optimal designs. 

In section 2 a general approach for the construction of D-optimal designs for 

paired comparisons is given. This approach assumes an underlying structure. It 

uses the equivalence of the D-criterion and the G-criterion,, when adapted to the 

situation of paired comparisons. This approach is more general than the above 

approach, where the objects are fixed. Now they may be chosen in a given experi

mental region. The concept of exact and discrete designs is introduced. The 

latter designs are useful in constructing optimal designs. A discrete design con

sists of, say, N pairs with weights p;, such that p 1 + · · · + PN = 1 . Exact 

designs can be used in practical applications. They can be defined as discrete 

designs with 1 'itional p; . 
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Applications are given in sections 3, 4 and 5. 
Section 3 deals with a factorial model with main effects and first-order interac
tions. Exact D-optimal designs are given both for the case of a hypersphere as 
experimental region and for the case of a hypercube as experimental region. 
Some of these results are known in the literature. Sections 4 and 5 deal with a 
quadratic model, in section 4 with a hypersphere as experimental region, in sec
tion 5 with a hypercube as experimental region. In both sections discrete D
optimal designs are presented. Some of these designs have a large number of 
pairs, in particular in the case of a hypercube of high dimension. Therefore 
discrete D-optimal designs are given for which the number of pairs is reduced 
considerably. Using these discrete designs we construct exact designs with a high 
efficiency and with a relatively small number of pairs. The robustness of the 
discrete designs is investigated, i.e. we discuss the efficiency of the designs when 
the assumption of no differences in treatment does not hold. 
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1. Formulation of models for paired comparisons 

1.1. Introduction 

In paired comparison experiments observations are made by presenting 

objects in pairs to one or more judges. The word "object" may stand for item, 

treatment, stimulus, and the like. The judge has to declare which object of the 

pair presented he prefers. In the simplest situation the observations are 0 or 1, 

indicating the preference for one of the two objects. More generally the prefer

ence may be recorded on some finer scale, for example a 7-points scale 

(-3,-2,-1, 0, 1, 2, 3 ), implicitly allowing ties to be declared. The method of 

paired comparisons may be used in cases where objects can be judged only sub

jectively. So, applications have been to taste testing, consumer tests, psychophy

sical analysis, and more generally to situations where quantification through 

measurement is difficult. 

Many models have been formulated with regard to paired comparison experi

ments. Some of these will be discussed in the following sections. 

1.2. The Bradley-Terry model 

A model, which is widely employed, is the model provided by Bradley 

and Terry(1952). The paired comparison experiment hast objects, Ti. .... Tt, 

with nij judgements or comparisons of T; and Ti, nij ;;:::-. 0, n;; = 0, nj; = nii, 

i ,j = 1, ... , t. Let n; .ij be the number of times T; has been preferred to Ti 

when T; and Ti were compared, n; . ii = n;. ji, n;. ii + n i. ij = nij (i :;%: j ). So in 

the model it is not allowed to declare ties. 

Bradley and Terry postulate the existence of parameters, 1T; for T;, 1T; > 0, 

such that the probability 1T; .ij of selecting T; when compared with Ti is 

1T; .ij = 1T; 

1T;+1Tj 
' (i :;%: j ). (1.2.1) 

Since (1.2.1) is not dependent on parameter scale, convenient scale-determining 

constraints are formulated like 

or 

t r. 1T; = 1 ' 
i=l 

t 

L. log 1T; = 0 . 
1=1 

(1.2.2) 

(1.2.3) 

Likelihood methods can be used to estimate these parameters. On the assump

tion of independent selections, the likelihood function is 

II a. 
1T· l 

l 

rrrr (7T; + 1T j )nij 
i<j 

(1.2.4) 



2 

where 

and 

a; L n;,;j 
j 

1T' = ('TT'i. ••• ,'TT't)'. 

Maximizing (1.2.4), subject to (1.2.2), gives the likelihood equations 

!!:..!.._ - " nij - ·-L. --- - 0 '1- l, ... 't ' 
Pi 1.c1 p; + Pj 

(1.2.5) 

t 

L Pi= 1 ' (1.2.6) 
i=l 

where p; is the likelihood estimate of 'TT';. 

Ford (1957) describes an iterative solution of the likelihood equations. Brad
ley ( 1955) gives large sample results and the asymptotic distribution of the 
maximum likelihood estimators. These results will be discussed later. 

1.3. Generalizations of the Bradley-Terry model 

There are many generalizations of the Bradley-Terry model. Rao and 
Kupper (1967) generalize the model by introducing a threshold parameter 
'Tio ~ 0. This parameter is interpreted as the threshold of sensory perception for 
the judge. They model the probabilities of preference and no preference as 

1T' i 
'TT';,;j= 

'TT';+ 91T'j 

'TT'O.ij = 1T' i 1T' j < e 2- 1) 
(1.3.1) 

'TT'j.ij 
1T' j + 91T'; ' 

where 

e = e lJo. ( 1.3.2) 

For e = 1 the Rao-Kupper model coincides with the Bradley-Terry model. Rao 
and Kupper show that the maximum likelihood estimates p; (i = 1, ... , t) and e of 'TT'; (i = 1, ... 't) and e are the solutions of the equations 

(1.3.3) 

b; 
L no .ij + n1 .iJ L 

(n O.ij + n i )e ] . ] 

p; j ... i PI + epj j ... i PJ + 9p1 

O,i=l, ... ,t, 

where 
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bi L (no·· • I} + ni .ij) ' 

and 

t 

LP; 1 . 
i=l 

Beaver and Gokhale (1975) generalize the model in order to incorporate within
pair order effects. They assume the existence of parameters 
oii, i ,j = 1, ... , t, oii = oi i, associated with the pair (i ,j) such that the 
preference probabilities for the ordered pair (i ,j ) are 

1Ti + oij 
1Ti .ij = 

1Ti + 1T j 

1T; - O;j 
1T j .ij 

1T; + 1T j 
(1.3.4) 

where 

I oii I ~ min {1Ti , 1T i} . 

In this model the likelihood equations are rather complicated. We refer to 
Beaver and Gokhale (1975) who also describe an iterative technique to find solu
tions. 

1.4. Weighted least squares approach 

Beaver (1977) presents a general approach to the models defined above. His 
results concerning the covariance matrix of the estimators are used later on. 
Therefore, some results are given here. Beaver uses a method described by Griz
zle, Starmer and Koch (1969), who present a unified approach to the analysis of 
data resulting from an experiment involving s multinomial populations, each 
having r categories. 
Let mi 1, mi 2, , ••• , m;r be the observed cell counts for the i -th multinomial 

r 

population resulting from mi . = L m;i observations, i = 1, ... , s. 
j=l 

Let 

Pi = ( Pi •.••• Pi )' ' 1 r 

be the sample estimate of the cell probabilities 

ff; = ( 7Tz , ••• ''TTi )' , 
1 r 

(1.4.1) 

(1.4.2) 

and let V(fii) be the usual sample estimate of the covariance matrix of 
iii (i = 1, ...• s ). 
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Define 

p 

V(Ji) 

Im (7T) 

F(7T) 

H 

s 

(7T1' .... ,7T.')', 

(Ji1' ... .. ji.' )' , 
block diagonal matrix of dimension rs x rs having 
V (j>i ) as the i -th diagonal block, 

= any function of the elements of 7T having continuous 
partial derivatives up to second order with respect to 
theelementsof7T,m = 1, .. .,u,withu ~ (r-l)s , 

= (I 1<m. ·.·.I u (1T) )' , 
= a matrix of dimension u x rs with 

ah (7T) h Hk1 = , w ere and j are such that 
;)1T;j 

l = j (mod r) , 0 ~ j < r , i = (l- j )/r + 1 , 

= H V(ji) H' of dimension u x u . 

(1.4.3) 

When the u parametric and possibly nonlinear functions f m are functionally 
r 

independent of one another and of the sums r 1T;j (i = 1, .... s)' then 
j=l 

both H and S are of rank u . 

Let 

F(1T)= X/3, (1.4.4) 

where X is a known matrix of dimension u x v and of rank v , and /3 is a vector 
of unknown parameters. As Beaver(1977) points out, weighted regression pro
duces the best asymptotic normal estimate of f3 given by 

~ = (X' s- 1 x)- 1 x· s-1 F(ji) . ( 1.4.5) 

The elements of S are stochastic. If they are not stochastic, then the covariance 
matrix of ~ is equal to 

var~ = (X' s- 1 X)- 1 . (1.4.6) 

Therefore, one can expect that equation ( 1.4.6) is asymptotically correct if the 
elements of S are stochastic. An important special case of F(7T) involves a 
loglinear function of 7T. For a positive matrix A of dimension k x l we define 
logA by (logA)ij = log(Aij), for all i=l, ... ,k,j=l, ... ,l. When 
F(7T) = K log(A 7T) with K of dimension t x u and of rank t < u, then 

H = K Da- 1 A , 

and 
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where Da is a diagonal matrix with the elements of A p on the diagonal. The 
use of log 'TT"; instead of 'TT"t will be discussed later. 
The model of Beaver specializes to the Bradley-Terry model as follows. 

Let 

where 

r = 2, 

7f = (7T"1.12,7T"2.12,7T"1.13,7T"3,13, ••• ,7T"t-1.t-1t.7T"t.t-1t)'' 

P = (p1.12.P2.12.P1.13,p3,13, • • • ·Pt-1.i-1t.Pt.t-1t)' , 

Pt .tJ = n; .tJ / nti , an estimate of 'TT"t .tJ ; 

I Ii (7f) = log <'TT" 1. tj I 'TT" j. 11 ) , 

F(7f) = (/12,/13, •••• /1t./23, ••• ,fi-u)' 

Now, V(p) is a block diagonal matrix of dimension 2q) x 2(i) having as blocks 

the matrices 

1 I Pt.liPJ.ij -p;,;JPJ.ij I 
n11 -p; .IJPJ .IJ Pt .tJP i .tJ ' 

and S is a diagonal matrix with diagonal elements (n1i Pt. 11 pi. ii )- 1 

Let, according to the Bradley-Terry model, 

log ( 7r t • tJ / 7r i .11) = log 7r t - log 7r J , 

and so 

F(7f) = K log 7r , 

with 

1 -1 0 0 0 0 

0 0 1 -1 0 0 

K= 

0 0 0 0 1 -1 

If we write or:; = log 77"1 - log 'TT"i (i=l, ... ,t-1) 
then 
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F(ff) = 

1 -1 0 
1 0 -1 

1 0 0 
1 0 0 
0 1 -1 

0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

CX1 

CX2 

-1 

0 

0 

CXt-1 

1 

Now, the Ot.; can be estimated by use of (1.4.5), and the estimates of the 'TT; are 
easily obtained from the estimates of the <x.; with the constraint (1.2.6). 

1.5. Response surface fitting 

Springall(1973) assumes that the 'TT; (i = 1, ... , t) are functions of con
tinuous independent variables x 1 , ••• , Xs. As in the classical regression situa
tion, the most useful functions are those that are linear in the unknown parame
ters, i.e. 

s 

log 'TT; = L xlk f3k (1.5.1) 
k=l 

Using a method similar to that of Rao and Kupper (1967), Springall obtains 
results concerning the covariance matrix (Vzr )-l of his estimators B of IJ .and li 
of g;, where 

t:,.=ef3; (·-1 ) ~ l- •••• ,s ' 

and 

e as defined in ( 1.3.1) . 

His results are listed as 

where 

e2 + 1 
voo = 2no <e 2 _ 1)2 - I:I: nij <Pi~ e-1 , 

i <j 

Vrq l: ll: LL n;j cp;~ (xir -xjr)(X;q -xjq) r,q=l, ... ,s,(1.5.2) 
5r 5q i<J 
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These results contain some mistakes, even when the random variable n 0 is 
replaced by its expectation. They should read 

I e 2 + 3 • 4TT l TT J J 
lloo = ~<~ n;j 62(62- 1) cf>u +(TT+ 6TTj)2(TTj + 6TT;)2 ' 

(1.5.3) 

llrq as above. 

In deriving the covariance matrix (Arq )- 1 of the estimators of {3 Springall uses 

Aor = ll0r/gor , 

This is not correct, it should be 

Arq = g, gq llrq • 

When the Bradley-Terry model is used without the threshold parameter T/o the 
results concerning the covariance matrix (Arq )- 1 of the estimators ~; of f3 are 

(1.5.4) 

where 

(1.5.5) 

1.6. The covariance matrices of the estimators 

For convenience we formulate (1.5.4) in a different fashion. Let X be a 
matrix of dimension t x s, the elements of which are the xik from (1.5.1). This 
matrix plays the role of design matrix in the standard experimental situation 
with log TT; as observations. 
Define 

G 

1 -1 0 

1 0 -1 

1 0 0 
0 1 -1 

0 0 0 

0 0 
0 0 

0 -1 

0 0 

1 -1 

(1.6.1) 
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a matrix of dimension (~) x t having one +1, one -1, and t-2 zeroes in each 

row, such that 

-1 ,if ;Z: j 

(G 'G );j 

t -1 ,if j 

The matrix G corresponds to a design where every two items are compared just 
once (n;j = 1; i ,j = 1, ... , t , i ;Z: j ). 
Define 

D=GX, ( 1.6.2) 

<I>( 7T) = diag(n 121/>12,n 131{> 13, • • • , n It If> It ,n 231/> 23, • • • , nt -It .Pt -It ),( 1.6.3) 

a matrix of dimension(~) x Ci). It is easily verified that (1.5.4) may be rewrit

ten as follows: 

Hence 

L L x;, (- nij If> ij )x jq + L x;, ( L n;j I/> ij )x;9 
; "'j j"' i 

L L X;r (G '<I>( 7T )G );j X jq + LX;r (G '<I>( 7T )G ); ; X;q 
i"' j 

(1.6.4) 

The methods of Beaver and Bradley-Terry can also be used to estimate the 
parameters of the model (1.5.1). Actually, El-Helbawy and Bradley(l978) 
analyse factorial models and give large-sample results. Asymptotically, the 
covariance matrix of the estimators of the parameters coincides with the matrix 
given in (1.6.4). This is to be expected since the methods are based on maximum 
likelihood estimation of the parameters. It may also be verified as follows. 

n 
Let n be the number of factors, the i -th factor has b; levels, so that t = II b;. 

i=I 
The general problem in the model of El-Helbawy and Bradley is to estimate the 
parametersµ; ,i = 1, ... , t under the conditions 

(1.6.5) 

where 



µ; log 'IT; , 

li ( 1, ... ' 1 )' 

li 'µ is the constraint (1.2.3), 

Bm µ 0 means that m specified orthonormal contrasts are 

zero. 

9 

This problem is solved by estimating the other t -m - 1 orthonormal contrasts; 

these can be written as linear combinations of theµ; 

01 = B! µ , 

where B! is a (t -m -1) x t matrix, and 

li'/.Jt [ li/.Jt Bm' B~' ]=I 
Bm 
B! 

It follows that 

The result is 

(1.6.6) 

Asymptotically (0 1 - 0 1 ) has the asymptotic (t-m-1) variate (1.6.7) 

normal distribution with zero expectations and covariance matrix 

(B! A(?T) B! ')- 1 , where 

-nij cp;j ,if ;C j 
' A(?T) = 1: n;k cf>ik ,if = j 

k ,,,.; 

We can reformulate these results as follows. 
If 

X = .Jt B!' , 
then X can be regarded as the design matrix in the standard experimental situa

tion with an appropriate model of type (1.5.1). Hence (1.6.6) is equivalent to 

µ=X/3' 

and the estimator of f3 is ~ = e ii .Jt . 
Now 

var <e1/.Jt) = (tB! A(?T) B! ')-l = (X I G I <1>(17') G x )- 1 . 

So, (1.6.7) may be rewritten as 

var ~ = (D ' <I>( 1T) D )- 1 , 

which coincides with (1.6.4). 

(1.6.8) 

The estimation procedure of Beaver is asymptotically equivalent to maximum 
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likelihood, so we may expect both procedures to lead to the same asymptotic 
covariance matrix when applied to the parameters of model (1.5.1). It can be 
shown that the results given in (1.4.3) and (1.4.6) can be rewritten as follows. 

F(ff) = G log 1T = G X /3 = D /3 . (1.6.9) 

In section 1.4 we have seen that 

s- 1 = «1>(.fi-), 

where cl>(rr) is the matrix cl>(7T) in which the 7T; .ij have been replaced by the 
estimates p; . ;1 . Substituting this in ( 1.4.6) we find 

var ~ = (D ' cl>( rr) D >- 1 • ( 1.6.10) 

1. i. Generalized linear models 

Generalized linear models provide a unified approach and computational 
framework for analysing data. McCullagh and Nelder (1983) give an extensive 
account of the applications generalized linear models have. Computer packages 
have been designed for analysing data by means of generalized linear models. 
One of them, GLIM, is widely used now. 
McCullagh and Nelder formulate the generalized linear model in the following 
tripartite form. 

i) The random component: a vector of observations y of lenght N is 
assumed to be a realization of a random vector Y with stochasti
cally independent components. The components of Y have a dis
tribution of an exponential family. These distributions are of the 
same form (e.g. all normal, or all binomial, etc.). The vector of 
expectations is m = (mi. ... , mN )' . 

ii) The systematic component: the independent variables (or covari
ates) x i. x 2 , ••• , Xs produce a linear predictor TJ given by 

TJ=X/3, 
where X is the design matrix with elements Xij • 

. iii) The link function between the random component and the sys
tematic component 

TJ; = g(m;). 
This link function g may be any monotonic differentiable func
tion. 

(1. 7.1) 

The Bradley-Terry model may be formulated as a generalized linear model. Let 
N be the number of pairs for which n 1j > 0. Let N be the i -th row of the 
matrix X be denoted by x; •' and the k -th column of X by x* k. An object can 
be characterized by its row in the design matrix. Let Yi be the observation 
related to the pair characterized by x; 1• and x; 2*. Now, the observation Yi is a 
realization of a random variable Yi, having a binomial distribution with param
eters ni 1 ; 2 and 7T; 1 .1 1; 2 • We choose the logit function g (x) = log (x /(1-x )) as 



11 

the link function. This function maps the unit interval (0,1) onto the real line 
(-oo, oo). So, we have 

1); g (7T· · · ) = log 1 1. 1 11 2 

7T;l 7T;l 
---/( 1 - ----) 
7T;l + 1T;2 1T;l + 1T;2 

or 

1); = log 7T; 1 - log 1T; 2 • 

The independent variables produce the 1); given by 

where 

s 

1); = L Z; I /31 ' 
l=l 

Substituting this in (1.7.2), we obtain 

s 

log 7T; - log 7T; = L (x; 1 - x; 1) /31 , 
1 2 l=l 1 2 

in which we can recognize the model (1.5.1). 

(1.7.2) 

(1.7.3) 

Now, the advantage of using log 7T; instead of 7T; is becoming clear. The use of 
log 7T; will be discussed also when dealing with Thurstone's model in section 
1.9. 

Fienberg and Larntz(l976) give a log linear representation for paired comparis
ons (and for multiple comparisons). They reformulate the model and show that 
it coincides with a log linear model of quasisymmetry for a t x t ronti~cy 
tabel. The likelihood equations for this model can be solved using a version of 
the general iterative scaling technique described by Darrock and Ratcliff (1972). 

1.8. Ordinary linear model 

It is possible to formulate an ordinary linear model by choosing an 
appropriate distribution and link function in ( 1. 7 .1 ). 
If the assumption is made that 

i) The Y1 in (1.7.1) are independent and normally distributed with 
constant variance a 2 and expectation m1 , 

ii) The link function is the identity function, 

then the generalized linear model coincides with an ordinary model. 
We have 

Y = D* {3 + e , 

where 

(1.8.1) 

(1.8.2) 
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Y (Yi. Y2 .... ,YN/, 

yi a random variable indicating difference or preference, 

Ni LL nu , 

D* 

/3 
e 

the design matrix of dimension N 1 x s , 

(/3i.•••,f3s)', 
the disturbance vector with Ee = 0 , var e = a 2 I. 

In general the assumption var e = a 2 I does not hold when paired comparisons 
are made. The matrix D* may be written as follows 

D* = G* X , (1.8.3) 

where X is the usual design matrix in a classical experiment, G • is a matrix 
analogous to G. It has in each row one +1, one -1 and t-2 zeroes; a row is 
repeated nu times, when the objects Ti and Ti are compared nu times. 
The least squares estimator for /3 is 

~ = (D*' D* )- 1 D*' Y , 

and 

var /3 = (D'' D' )- 1 a 2 • (1.8.4) 

This may be rewritten as: 

n• · n• = x ·a•· a* x 4(X' G' «I>( li) G X) = 4D' «I>(li) D . 

Hence 

var ~ = 1-a 2 (D' «l>(li) D )- 1 • 
4 

The matrix (1.8.5) is proportional to the matrix in (1.6.4), if 

7T = (1, .... l)'. 

(1.8.5) 

(1.8.6) 

Quenouille and John (1971) use the ordinary linear model when constructing 
designs for 2n -factorials. However, if one uses the generalized linear model when 
constructing optimal designs, then the covariance matrix depends on the unk
nown parameters. In general there are no estimates of the parameters, since the 
parameters should be estimated from the experiment which is being designed. 
Therefore, assumption (1.8.6) is made very often. But in that case the general
ized linear model coincides with the ordinary linear model. Actually the designs 
given by Springall(1973) and El-Helbawy and Bradley(1978) for 2n-factorials 
may be found by using the method developed by Quenouille and John. Hence, 
the ordinary linear model is very useful in constructing optimal designs for 
paired comparison experiments. 
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1.9. Thurstone's model 

The method of paired comparisons has applications in the fields of psycho
physics and its use has been stimulated especially by the work of L.L.Thurstone. 
The method of paired comparisons is very useful in these fields, since the objects 
or the effect of stimuli can be judged only subjectively. A problem which has 
attracted much attention in phychophysics is: how is the subjective sensation in 
the consciousness of the subject related to the intensity of a continuously vary
ing stimulus. Thurstone (192 7) called the processes by which the subject 
discriminates or reacts to stimuli "discriminal processes", and he formulated the 
following model. 
Each stimulus gives rise to a subjective value in a so-called sensory continuum. 
This subjective value is interpreted as the realization of a random variable which 
is real-valued and normally distributed. Following Bock and Jones (1968) in 
formulating this, one may represent the discriminal process associated with a 
stimulus T; as a random variable v1 : 

(1.9.1) 

where µ 1 is the fixed component and e1 is the random component. For TJ we 
have VJ = µJ + eJ , so 

(1.9.2) 

The joint distribution of e1 and e J is assumed to be bivariate normal with expec
tations 0, variances al and a J , and correlation coefficient Pii 

The probability that T; will be preferred to Ti is given by 

P(T; > TJ) = exp --( )2 dy, 1 oof I 1 y - µ ij I 
J21T<T I) 2 <T ij 

( 1.9.3) 

where 

and 

So 

(1.9.4) 

where <1> 0 is the standardnormal distribution function. Usually, the following 
assumption is made 

a iJ = 1 , i ,j = 1, ... , t (Thurstone's case 5). (1.9.5) 

Then the model coincides with the generalized linear model of (1.7.1) with the 
observations coming from a binomial distribution and the probit function as the 
link function. Note that there is only one difference with the Bradley-Terry 
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model: the link function. The relation between the Bradley-Terry model and 
Thurstone's model can also be formulated as follows. If we substitute the "logis
tic" density function for the normal density function, then we have 

P (T; > T j ) = _!_ J sech 2 .!:... dz . 
4 -µ.. 2 

I} 

(1.9.6) 

This yields 

1 + (1.9.7) 

If we define µ 1 = log 7T;, then eµij = 7T1 /7T j and (1.9. 7) gives 

P(T; > Tj) = 7T;/7TJ 7T; 
1+1T;/7Tj 7T; + 7Tj 

(1.9.8) 

which we recogninize as the Bradley-Terry model. So values log 7T; correspond 
to values µ; on a subjective continuum. This yields another argument in favour 
of model (1.5.1). 
Bock and Jones ( 1968) discuss procedures for estimating the parameters in the 
Thurstonian model. The results concerning the covariance matrix of the estima
tors are analogous to the results of section 1.6. When, analogous to (1.8.6), the 
assumption is made that the µ 1 have the same value, then the covariance matrix 
coincides with the matrix given in (1.8.5). Hence the designs constructed under 
this assumption are also useful in the Thurstonian concept. 

Remark 
The models discussed in this chapter assume a unidimensional continuum. 
Davidson and Bradley (1969) derive a model for multivariate paired comparis
ons. In this model t objects are to be compared on p attributes. However, it is 
not always possible to examine a priori whether a certain attribute is unidimen
sional or not. Gokhale, Beaver and Sirotnik (1983) provide a model-robust 
approach to the analysis of paired comparison experiments. Their approach 
makes it possible to examine the assumption of unidimensionality. 
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2. A method to construct optimal designs and an adapted cri terium 

2.1. Introduction 

In chapter 1 we have seen that the design of a paired comparison experi
ment may be indicated by its t objects and the n;i, where nii is the number of 
comparisons of the i -th and j -th object. When n;i is constant for all i and j , 
the experiment is called a balanced paired comparison experiment. It is also 
called a round robin design. This name refers to a round robin tournament as 
used in many sports where each of the t teams plays every other team a fixed 
number of times. The experiment may also be seen as an experiment designed for 
the standard experimental situation, since the problem of design is the same 
whether we have for two objects an expression of preference or two separate 
values. In the standard experimental situation the experiment is known as a bal
anced incomplete block design (BIB), the block size being two. A balanced 
incomplete block design is a design with the properties: 

i) all objects occur equally frequently, 

ii) all pairs of objects occur in each block equally frequently. 

The number of observations of a round robin design depends on the number of 
objects. When the number of the objects is 50 and all objects are compared once, 

the number of observations amounts to (5~), or 1225. This gives a practical 

difficulty in paired comparison experiments. Therefore many incomplete paired 
comparison designs have been constructed. These are designs in which not all 
possible pairs occur. There is a relation between these designs and designs in the 
standard experimental situation. The partially balanced incomplete block 
designs (PBIB) of the standard experimental situation can be used to design 
experiments in the situation of paired comparisons. David (1963) gives a survey 
of the results obtained in this area and gives references. 

2.2. The use of underlying information on the objects when constructing 
optimal designs; some results in the literature 

In the design of experiments discussed above one does not use any informa
tion on the underlying structure of the objects. Sometimes there is no informa
tion available. However, if a model of type (1.5.1) can be formulated, then it 
gives information on the objects. This information can be used in the design of 
experiments. Using this information it is possible to design experiments which 
are more efficient, according to some criterion, in estimating the parameters of 
the model than the round robin design. In this area only a few results are avail
able. The results obtained are by Quenouille and John (1971), Springall (1973) 
and El-Helbawy and Bradley(1978). These results will be discussed in the next 
sections. 
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2.2.1. The results of Quenouille and John for 2n -factorials 

Quenouille and John(1971) present 2n-factorial paired comparison designs, 
which can be constructed in order to reduce the number of pairs required by 
ignoring information on higher-order interactions. Following Quenouille and 
John we illustrate the method by considering designs for 22-experiments. In a 
22-experiment there are four objects (1), a , band ab in the usual notation. In a 
round robin design we have 6 comparisons or blocks in terms of the standard 
experimental situation. These 6 blocks can be broken up into three sets of blocks 

(a): ((l),ab), (a, b); 
(b) : ((1), a) , ( b,ab); 
(c): ((1), b), ( a,ab). 

If one is not interested in the interaction AB, then it is better to use the set (a) 
only. Set (a) measures the main effects A and B, but gives no information on the 
interaction AB. Sets (b) and (c) both measure the interaction AB and a main 
effect. So, in a round robin a main effect is measured in 4 out of 6 blocks. In the 
design consisting of set (a) a main effect is measured in 2 out of 2 blocks. There
fore, the set (a) gives 50 percent more information on A and B than the round 
robin design. Now, in a 2n-experiment the {2n(2n-1) paired comparisons can 

be broken up into 2n-1 sets of 2n-l blocks. Each set may be generated from an 
initial block consisting of object (1) and another object. Now, depending on the 
effects on which information may be ignored, a design can be composed of one or 
more of these sets. When considering the efficiency, Quenouille and John compare 
the new design with a round robin design for each effect to be estimated. For a 
specified effect the efficiency is defined to be the ratio of the accuracy with which 
the same effect is measured in a round robin design. Some of the designs con
structed by Quenouille and John will be given in chapter 3 where these designs 
will be discussed in a more general context. In computing the accuracy with 
which an effect is measured Quenouille and John assume that the observations in 
the paired comparison experiment have the same variance. Their analysis of 
paired comparison experiments can be described by the ordinary linear model 
(1.8.2). A drawback of the criterion Quenouille and John use is that the design 
constructed is compared with the round robin design. Therefore, it is only pos
sible to give relative efficiencies. When a more efficient design is found, it only 
may be claimed that the new design is better than the round robin design. 
However, there might be a design which is better than the new design. Another 
disadvantage of the criterion is that the efficiency of the design must be given for 
each effect separately. In the 22-factorial mentioned above the efficiency of a 
main effect for the design consisting of the pairs ((1),ab) and (a, b) is 1.5, 
whereas the efficiency of the interaction is zero. 
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2.2.2. Analogue designs 

Springall ( 197 3) obtained some results in the design of paired comparison 
experiments. As we have seen in section 1.5 Springall uses model (1.5.1). When 
constructing designs Springall considers properties based on the elements of the 
covariance matrix of the estimators of the regression coefficients. He introduces 
the concept of analogue designs. Analogue designs are designs for which the 
covariance matrix of the estimators is proportional to the covariance matrix in 
the standard experimental situation with the same designpoints. Without men
tioning it explicitly, Springall uses in this context a slightly adapted model for 
the standard experimental situation: 

s 

log 1T; = /30 + L x;k /3k • 
k=I 

(2.2.1) 

Compared to the model (1.5.1) the parameter /3 0 has been added. If one does not 
assume the model (2.2.1) for the standard experiment, then the results of 
Springall are not correct. However, there seems to be no clear argument for com
paring the paired comparison experiment in the case of model (1.5.1) with the 
standard experiment in the case of model (2.2.1). 
The main result is 

Theorem 2.2.1 
An -approximate- analogue design may be found by choosing 

nu = [N <</>;~ .L.L --\--)- 1 + o.51 , 
k<l </>kl 

where [x] denotes the integral part of x and N 

in advance), and </>tj as defined in ( 1.5.2). 

(2.2.2) 

L L nij ( N should be chosen 
1<j 

Of course, the nij depend on the </>;~ , which are unknown. The nij give an exact 
analogue design, if all n,j are integers before the integerization stage. The covari
ance matrix of the estimators is, when the nij from (2.2.2) are chosen, propor
tional to the matrix in (1.8.5). It can easily be seen that this matrix is propor
tional to the covariance matrix in the standard experimental situation in the case 
of model (2.2.1). It follows that, when (1.8.6) holds, the round robin design is 
an analogue design. The analogue design obtained by use of (2.2.2) is -as 
Springall points out- one out of many and does not necessarily yield the covari
ance matrix with the smallest elements. Therefore, linear programming methods 
are used to obtain analogue designs with the smallest elements. However, the 
objective functions in this linear programming problem depend on the </>;*j and 
when giving an example Springall makes the assumption (1.8.6). 
The concept of analogue designs has the advantage that it enables certain desir
able properties -for example rotatibility- to be readily reproduced. However, 
other properties are not reproduced, for example D-optimality, a criterion which 
will be defined in the next section. Actually, these designs are in general not 
efficient with regard to D-optimality. Starting from a more general concept in 
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the design of paired comparison experiments D-optimal designs can be con
structed. This concept will be given in section 2.3. 

2.2.3. Results of El-Helbawy and Bradley 

El-Helbawy and Bradley(1978) consider some optimality criteria for 
designs and some applications to factorials. First, they consider the situation 
where some specified null hypothesis is tested. They construct designs for which 
the asymptotic power of the test is maximized. The asymptotic power depends 
on rr, and assumption (1.8.6) is made. This assumption is -as they point out
consistent with the null hypothesis that some specified effects are zero and the 
concept that any other effects present are of the same order of magnitude rela
tive to N as the factorial effects or interactions under test. They give three 
examples of a null hypothesis for a 2 3-factorial and construct the appropriate 
designs. The designs found can also be constructed by the method of Quenouille 
and John. 
They further discuss a method to construct D- , A- and E-optimal designs for 
factorials. D-optimal designs minimize the generalized variance or the deter
minant of the covariance matrix, A-optimal designs minimize the average vari
ance, E-optimal designs minimize the largest eigenvalue of the covariance matrix. 
They give results for one example: a 2 3-factorial, where one is interested only in 
the three interactions involving a specified factor. The criteria mentioned above 
depend on the covariance matrix, which is a function of the unknown parame
ters. Again, assumption (1.8.6) is made, and El-Helbawy and Bradley find a 
design which is A-, D- and E-optimal. The design coincides with the design they 
obtained before when maximizing the asymptotic power in testing the null 
hypothesis that the three interactions are zero. This idea can be used in a more 
general context, as will be seen in section 2.3. 

2.3. A general concept for the design of paired comparison experiments 
For convenience we reformulate model (1.5.1): 

where 

log 1T = f 1(x )f31 + · · · + fk(x )f31c , 

x EX, 
X c Rn 

f i : X -+ R , continuous on the experimental region X . 

(2.3.1) 

In Fedorov's (1972) notation for designs in the standard experimental situation, 
the design of a paired comparison experiment may be written as a collection of 
variables 

(ui,v1) ,(u2,v2) , ... , (um,vm), 
ni n2 , ••• , nm ,N, (2.3.2) 

where 



m 

I: n 1 = N , and u1 ,v1 E X . 
1=1 
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The design should be interpreted as follows. In a pair (u1 ,v1 ) n 1 comparisons 
are made. Now a design may be constructed by choosing both the (u1 ,v1 ) and the 
n1 • This is a more general viewpoint. Mostly the objects have been specified and 
so the pairs (u1 ,v; ) are fixed. In that case only the n 1 can be chosen. This was the 
situation in the previous section, where results in the literature were discussed. 
In the construction of a design as defined in (2.3.2) both the pairs -and therefore 
the objects- and the n 1 have to be chosen. In the notation of Fedorov (1972) the 

design (2.3.2) is denoted by € (N) or just €. In the standard experimental 
situation several criteria have been formulated for constructing optimal designs 
and many results have been obtained. A main result is a theorem about the 
equivalence of some criteria. Since the same criteria are applicable in paired com
parison experiments, we like to formulate analogous theorems in this case. 
Therefore we give some well-known results for the standard experimental situa
tion. Three criteria are mentioned in section 2.2.3 : A-, D- and E-optimality. 
Another important criterion is G-optimality. A G-optimal design minimizes the 
maximum variance (over X) of the estimated response function. All four cri
teria depend on the covariance matrix, or on its inverse, called the information 
matrix. In the standard experimental situation the collection of variables 

U1, U2, •••'Um 
n i. n 2 •••• , nm , N, (2.3.3) 

where 

m 

L n1 N , 
i=l 

is called the design of an experiment E (N ). If we assume model (2.3.1) and an 

ordinary least squares method, then the information matrix M ( E) may be 
written as 

m 
M(E) = L n 1 f (u1 )(/ (u;))' , (2.3.4) 

1=1 

where 

(2.3.5) 

Fedorov (1972) discusses the concept of a loss function A(x ), x E X . This 
function can, for example, take into account the losses in time, money or 
material that come about and it will be used later on. Assuming this loss func
tion A (x ), we may generalize the information matrix as follows 

m 
M(E)= L n1 A(u;)f (u;)(f (u1))'. (2.3.6) 

1=1 
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The information matrix in (2.3.6) coincides with that in (2.3.4) when A.(x) = 1 
for all x E X. A normalized design e(N) is a collection of variables 

where 

and 

Ut, U2, •••,Um' 

Pi.P2·····Pm, 

Pt n;/N, 

m 

:L p; = 1. 
i=l 

(2.3. 7) 

(2.3.8) 

The design (2.3. 7) is called an exact normalized design as distinct from a discrete 
normalized design, in which the p 1 can take on any nonnegative value, satisfying 
(2.3.8). In a more general case a continuous normalized design will be character
ized by a probability measure g on the region X. Continuous designs have no 
practical interest, but they are very useful in proving theorems concerning the 
optimality of designs. The information matrix of a continuous normalized 
design can be expressed by 

M(e)= [A.(x)f (x)(/(x))'d{(x), (2.3.9) 

or in the case of an absolutely continuous measure 

M(e)= [A.(x)p(x)f(x)(f (x))'dx , (2.3.10) 

where 

f p (x) dx 1 . (2.3.11) 

Remark 
In Fedorov(1972) exact designs are called discrete and both discrete and con
tinuous designs are called continuous. In Kiefer (1961) both exact and discrete 
designs are called discrete (or exact). D 

Now, it is possible to formulate some theorems about D- and G-optimality. A 
design Eis called D-optimal when 

det (M(e)) = max det (M(e)). 
e 

• A design Eis called G-optimal when 

max d (x ,E) = min max d (x ,E) , 
:XEX E XEX 

where 

d (x ,E) = (/ (x ))' M-1(e) f (x) , 

(2.3.12) 

(2.3.13) 

(2.3.14) 



the variance of the estimated response at a point x E X. 
The main theorem is 

Theorem 2.3.1 

a) The following assertions are equivalent: 

* ( J) the design E maximizes det (M (e)), 

* (2) the design E minimizes max ft.(x) d (x ,E), 
XEX 
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(3) max ft.(x) d (x ,e) = k. (2.3.15) 
XEX 

where k is the number of parameters. 

b) The information matrices of all designs satisfying ( 1)-(3) coincide. 

c) A linear combination of designs that satisfy ( 1)-{3) satisfies ( 1 )-( 3). 

This theorem plays an important role in constructing D-optimal designs. In par
ticular it follows that if ft.(x) = 1 for all x, the continuous G-optimal designs 
are equivalent to continuous D-optimal designs. In the situation of paired com
parisons theorem 2.3.1 does not apply. In general a D-optimal design is not G
optimal. Example 4.2.12 in chapter 4 will show this. But also statement 
(2.3.15) of theorem 2.3.1 does not apply. This can easily be seen as follows. 
Consider the situation where the model is defined by 

y=/31X1,-l~XJ~1. 

The design E that is concentrated at the pair ( (1),(-1)) is D-optimal. Now 
M (e) = 4 if ft.(x) = 1 for -1 ~ x ~ 1 . 
But 

maxft.(x)d(x,e)= max.!.x 2 = .!. < 1 
x x 4 4 

Moreover, one can question the usefulness of the G-criterion, because in paired 
comparison experiments one is interested in differences between objects. There
fore we define 

d(x,y,e)= (/(x)-f(y))'M- 1(e)(/(x)-f(y)), (2.3.16) 

the variance of an estimated response difference between the points x and y. 
Now, a design Eis called G-optimal if 

max d (x ,y ,E) = min max d (x ,y ,E) . (2.3.17) 
x ,yEx e x ,yEX 

If the concept of a loss function is also introduced in the case of paired com
parisons, then the information matrix can be generalized as follows 

m 

M(E) = L ft.(u; ,v;) n; (/ (u;) - f (v;)) (/ (u;) - f (v; ))' , (2.3.18) 
i= 1 
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where A(u; ,v;) is the loss function. Note that if we take 

() 1Tu1Tv 
A u ,v = ( )2 , 

1Tu + 1Tv 
(2.3.19) 

where 

(2.3.20) 

then the information matrix of (2.3.18) coincides with the inverse of the covari
ance matrix in (1.6.4). This can easily be seen by using the expression of (1.5.4). 
A discrete normalized paired comparison design can be introduced by defining 
the p; analogous to (2.3.8). A continuous normalized design will be character
ized by a measure, or in the case of an absolutely continuous measure by a den
sity function. In the latter case the information matrix takes the form 

where 

(2.3.21) 

M ( E) = [ [ p (x ,y ) A (x ,y ) (f (x ) - f (y ) ) (f (x ) - f (y ) )' dxdy , 

[ [ p (x ,y ) dxdy = 1 . 

Now many theorems, analogous to theorems in the standard experimental situa
tion, apply. We mention a few of them. 

Theorem 2.3.2 
For any design E the matrix M (E) can be represented in the form 

m 

M(E) = L p; A(u; ,v;) (f (u;) - f (v;)) (/ (u;) - f (v; ))' , (2.3.22) 
i=l 

where 

m ~ -}le (k + 1) + 1 , 

m 

0 ~ p; ~ 1 ' L Pi = 1 . 
i=l 
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Theorem 2.3.3 
The weighted sum of the variance of the estimated response differences, taken over 
all pairs of the design E is equal to the number of unknown parameters k 

m 

L p; >..(u; ,v;) d (u; ,v; ,E) = k , 
i=l 

(2.3.23) 

or in the case of a continuous normalized design with an absolutely continuous 
measure 

ff p (x ,y) >..(x ,y) d (x ,y ,E) dxdy k . 

Theorem 2.3.4 
The minimal value of max A (x ,y ) d (x ,y ,E) is at least k . 

x,y 

max >..(x ,y) d (x ,y ,e) ~ k 
x,y 

Theorem 2.3.5 

a) The following assertions are equivalent: 
t 

( J) the design E maximizes det (M(e)), 

* (2) the design E minimizes max A(x ,y) d (x ,y ,E), 
x ,yEX 

( 3) max >.. (x ,y ) d (x ,y ,e) = k • 
X ,yEX 

where k is the number of parameters. 

b) The information matrices of all designs satisfying ( 1)-(3) coincide. 

c) A linear combination of designs that satisfy ( 1)-(3) satisfies ( 1)-(3). 

Theorem 2.3.6 

(2.3.24) 

(2.3.25) 

If X is compact and the functions >..(x ,y) and f (x) are continuous, then a 
discrete D-optimal design exists with a number of pairs m ~ }k (k + 1) . 

Theorem 2.3. 7 
At the pairs of a discrete D-optimal design e the function A (x ,y) d (x ,y ,E) at
tains its maximal value k . 

The proofs of these theorems are analogous to the proofs of Fedorov(l972). We 
only give the proof of theorem 2.3.4 for a continuous normalized design with an 
absolutely continuous measure. 
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Proof of theorem 2.3.4 

max A.(u ,v) d (u ,v ,e) = max A.(u ,v) d (u ,v ,e) [[P (x ,y) dxdy 
u ,v u,v 

~ [ [A (x ,y ) p (x ,y ) d (x ,y ,e) dxdy 

= [ [ A(x ,y) p (x ,y) (/ (x) - f (y ))'M- 1(e) (/ (x) - f (y )) dxdy 

= tr I M- 1(e) [ [A(x ,y )p (x ,y )(f (x) - f (y )) (/ (x) - f (y ))' dxdy 

= tr I M- 1(e) M(e) ] = tr I = k . 

The theorems 2.3.2 - 2.3. 7 can be used to find procedures to construct D-optimal 
designs. It is possible to show that the following iterative procedure converges 
and that its limit design is D-optimal. The steps of the procedure are as fol
lows. 

Iterative procedure 2.3.8 

(1) Let e0 be nondegenerate and not D-optimal. We compute its information 
matrix 

m 
M(eo) = L p; A.(u; ,v;) (/ (u;) - f (v; )) (/ (u;) - f (v; ))'. 

i=l 

(2) A pair (u 0 ,v 0 ) is found at which A(x ,y) d (x ,y ,e0 ) is maximal. The design 
consisting of the pair (u 0,v 0 ) is called e((u 0,v 0)). 

(3) The design €1 = (1 - o: 0 ) Eo + o: 0 e((u 0,v 0)) is constructed for some value 
o:o , 0 < o: 0 < 1 . The value of o: 0 can be chosen such that 

det (M(e 1)) > det (M(eo)). 

The increase in the determinant of the information matrix is maximal if 

<Xo = Oo/[oo + (m - 1)) m , where 

Oo = A(uo,vo) d(uo,vo,E 0 )- m. 

(4) The information matrix M (e 1) of the design e1 is constructed. 

Now operations ( 2)-( 4) are repeated with e0 replaced by Ei. and e1 replaced by e2 , 

etc. 
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Theorem 2.3. 7 is very useful in checking the D-optimality of a design. An 
advantage of the criteria and the method discussed above is that it is possible to 
define the D-efficiency and G-efficiency of any design E : 

I 11/k , 
D -efficiency = det (M (e ))/ det (M <€)) 

where E is a D-optimal design; 

G-efficiency = k /( max A(x ,y) d (x ,y ,E)). 
x,y 

(2.3.26) 

(2.3.27) 

These efficiencies do not have the disadvantages of a relative efficiency, as is the 
case with the efficiency defined in section 2.2.1. These efficiencies are absolute. If 
the efficiency equals one, then the design is D-optimal. The method discussed 
above will be used in the next chapters to construct D-optimal designs. Some
times the computation of max det (M (e)) is cumbersome. Then it is not easy to 

E 

compute the D-efficiency. However, the G-efficiency can be used to obtain a 
lower bound for the D-efficiency. 

Theorem 2.3. 9 
For any design E 

D-eff(e) ~exp 11 - a=:ff(e)] (2.3.28) 

This theorem can be proved in the same way as the analogous theorem in the 
standard experimental situation. 
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3. D-optimal designs in the case of a factorial model with main effects and 
:first-order interactions 

3.1. The model 

In this chapter D-optimal designs will be constructed for factorial models 
with n factors. Some of the designs constructed in this chapter have been found 
by Quenouille and John(l971) and by El-Helbawy and Bradley(1978) (see 
also section 2.2 ). We will compare their results with the results of this chapter 
at the end of section 3.2. The model considered is model (2.3.1) where 

/ (x ) = (x i. ... , Xn ,x 1X 2, ••. , x 1Xn ,x 2X 3, ••• , Xn-1Xn )' , (3.1.1) 

where 
x E X , the experimental region , X C Rn , 

so 

log TI'= /31x1 + · · · + /3nXn + /312X1X2 + '· · + f3n-1nXn-1Xn • (3.1.2) 

When constructing optimal designs, we make the assumption (1.8.6), or 
-equivalently- when dealing with a loss function 

A (x ,y ) = 1 for all x ,y E X . (3.1.3) 

In section 3.2 the experimental region X is chosen to be a hypercube, in section 
3.3 X is a hypersphere. 

The number of parameters k equals n + (~) , so k = -}n (n + 1) and according 

to theorem 2.3.6 the following holds. 
A discrete, D-optimal design exists with m pairs, where 

m ~ -} n (n + 1) (n 2 + n + 2). (3.1.4) 

· For reasons of symmetry and in analogy to the standard experimental situation 
• ·one may expect that the information matrix of a D-optimal design E has the fol-

lowing structure 

pi 
M(e) = (3.1.5) 

zl 

where pi is related to the main effects and has dimension n x n, 

and zl is related to the first-order interactions and has dimension (~) x (~). 

The covariance matrix M-1(€) is denoted by 

yl 

(3.1.6) 

The function d (x ,y ,E) given in (2.3.16) plays an important role in the 
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construction of D-optimal designs and will be used many times. The function 
d (x ,y ,E) is an expression for the variance of an estimated response difference 
between the points x and y . It will be called variance function. The variance 
function depends on the covariance matrix. The definition of the variance func
tion implies the following statement. 

If a design E has a covariance matrix of type (3.1.6),then 

n 

d(x ,y,E) = Y L (x1 - Y1)2 + 8 LL (x1x1 - Y1Y1)2 , (3.1.7) 
1=1 l<J 

and consequently, 

d ((x 1. • • • , X1, • • • , Xn ),(y1, • • · , YI,• · · , Yn ),E) (3.1.8) 

= d((x1, ••• ,-x1, ... ,xn),(y1, .•• ,-y1, ••. ,yn),E) , 

and (3.1.9) 

d ((x 1· • • • 'X1' • • • 'Xj' • • • 'Xn ),(y1, .. •'YI'••• 'YJ' •. • 'Yn ),E) 

= d((x1, .•. ,XJ, ••• ,x1 •... ,xn),(y1, ...• YJ• ... ,y1, •.. ,yn),E), 

where 1 ~ i ~ n , 1 ~ j ~ n . 

In order to construct D-optimal designs we must find pairs (:;,y) E X 2, such 
that d (i,y,E) is maximal. 

3.2. A hypercube as experimental region 

The experimental region is defined by 

x E X if and only if -1 ~ x 1 ~ 1 for all 1 ~ ~ n , 

where 

x = (x 1 •••• , Xn )' • 

(3.2.1) 

The following lemma is useful in finding pairs where the variance function 
attains its maximum. 

Lemma 3.2.1 
Let E be a design with covariance matrix of type (3.1.6), and let X be as in 
(3.2.J). For a pair (u ,v) E X 2, where the variance function d ( . , . ,E) attains its 
maximum , one has 

I u; I = I v1 I = 1 /or all 1 ~ i ~ n . (3.2.2) 
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Proof 
Suppose that for some i we have I u; I < 1 or Iv; I < 1. 
Without loss of generality we may assume lu 1 1 < 1 (see (3.1.9) ). 
Defined l = d (( l,u2, ... , Un ),(v i. ... , Vn ),E) , 

d2 = d ((- l,u2, ... , Un ),(v1, ... , Vn ),E). 
Since d (x ,y ,E) is maximal at the pair (u ,v ), we have 

d 1 - d (u ,v ,E) ~ 0 , 
d 2 - d (u ,v ,E) ~ 0 . 

So, 

di - d(u ,v,E) = 
n 

y [(l-v1)2 - (u1 - v1)2] + 0 L [(uj - V1Vj )2 - (u tUj - V1Vj )2] 
j=2 

n 

y (1 - u[ - 2v1(l-u1)) + 0 I: [ u/(1-u[ )- 2v1vjuj(l-u1)] 
j=2 

(l-u1)1y(l+u1-2v1)+0 £, [(l+u1)u/- 2v1ujvj]I ~ 0. (i) 
}=2 

and similarly 

d2-d(u,v,E)= 

= (l+u1) I y (l-u1+2v1) + 0 j~2 [(l-u1)u/ + 2v1ujvj]I ~ 0. (ii) 

From (i) and (ii) it follows that 

Hence 

n 

y (l+ui-2v1) + 0 I: [(l+u1)u/- 2v1ujvj] ~ 0 , 
}=2 

n 

y (l-u1+2v1) + 0 I: [(l-u1)u/ + 2viu1 v 1 ] ~ 0 
}=2 

n 

2y + (j I: u / ~ 0. 
)=2 

(iii) 

Note that y ~ 0 and o ~ 0 since M-1(E) is a covariance matrix of a nondegen
erate design. So (iii) yields a contradiction and the proof is completed. 0 

From lemma 3.2.1 it follows that the elements of all pairs of a D-optimal design 
are vertices of the hypercube X. So the objects of the pairs of a D-optimal 
design are objects in a 2n -factorial. 
It is useful to define the following sets 
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Definition 3.2.2 
S (k i,k 2) is the set of all pairs with k 1 factors at the same level, k 1 + k 2 = n . 

It can easily be seen that each object is compared with (/:1) other objects. A set 

S (k i,k 2 ) can be broken up into (/:1 ) blocks of 2n-l pairs, in which all 2n objects 

occur. So the set S(k 1,k 2 ) contains <f:1)2n-l pairs. 

The set S (0,3), for example, contains the pairs 

(( 1, 1, l),(-1,-1,-l)), 
((-1, 1, 1),( l,-1,-1)), 
(( 1,-1, 1),(-1, 1,-1)), 
(( 1, 1,-l),(-1,-l, 1)). 

The set S(ki,k 2 ) can be seen as a design with, in the notation of (2.3.2), n; = 1, 

1 ~ i ~ m , and m = N = (kn1)2n-l. 

The information matrix of this design is denoted by M (k i,k 2). 

Lemma 3.2.3 

pi I 
-~ 

(3.2.3) 

where 

p (3.2.4) 

Outline of the proof 
This lemma can be proved by using the expression (4.2.20). Some of the argu-

ments are given here. The set S(ki,k 2 ) can be broken up into (kn1) blocks of 2n-l 

pairs. One set of 2n-l pairs measures k 2 main effects and k 1k 2 first-order 
interactions. The information matrix of one set of 2n-l pairs is a diagonal 
matrix with diagonal elements 4 2n-l or zero. A diagonal element is 4 2n-l if the 
particular main effect or first-order interaction, to which it relates , is measured 

by that particular block of 2n -l pairs. There are (/:1) of these blocks. For rea

sons of symmetry we have 
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The normalized design SN (k i,k 2 ) is a design with the same pairs but with 

weights 1/N, where N = (kn1 ) 2n-l. The information matrix of this normalized 

design is denoted by MN (k i.k 2). In view of (3.2.3) the information matrix of 
this normalized design can be expressed by 

where 

p 

z 

4~ 
n 

8k 1k2 

n (n-1) 

pi I 
-~ (3.2.5) 

(3.2.6) 

The value of the variance function is the same for all pairs of the set S (k i.k 2 ). 

This can be seen by using (3.1.8) and (3.1.9). Therefore, we may describe this 
value as follows: 

d (k 1,k 2,E) is the value of d (x ,y ,E) where E is a design with (3.2. 7) 
information matrix of type (3.1.6) and (x ,y) is a pair of the 
set S (k 1,k 2). 

From (3.1. 7) it follows that 

d (k i,k 2,E) = 4k 2 y + 4k 1k 2 f> . (3.2.8) 

A D-optimal design is composed of pairs where the function d (x ,y ,E) is maxi
mal. According to lemma 3.2.1 and the fact that the variance function has the 
same value for all pairs of a set S (k i,k 2 ) a D-optimal design exists which is the 
union of some S (k 1,k 2 ). To give such D-optimal designs we have to distinguish 
between two cases: n is even and n is odd. Some D-optimal designs are given in 
the following theorem. 

Theorem 3.2.4 

a) The following design E is D-optimal 

i) Let n be odd. 

Choose 

- the pairs of S (.!.(n -1),.!.(n + 1)), 
2 2 

- the same weights for all pairs: 1/ N, 

where N is the number of pairs; 

N ( n ) 2n-1 
.!.(n-1) · 
2 

So, 



n +1 
where p = z = 2-

n 

pi I -r:-, 
and in the notation of ( 3.J.6) y = 8 = 1 n 

2 n +1 
iiJ Let n be even. 

Choose 

- the pairs of S (.!_n -1,.!_n + 1) and the pairs of S (.!_n ,.!_n ), 
2 2 2 2 

- the same weight for all pairs: 1/ N 

where N is the number of pairs; 

N (n1+1) 2n-1. 

2n 

So, 

M(e) = v MN(jn ,jn) + (1-v) MN(}n-1,jn +1), 

where v = n +2 
2(n +1) · 

So, 

M(e) = 
pi I 
-r:-

withp=z=2n+ 2 
n +1 ' 

and in the notation of ( 3.1.6) y = 8 = _!_ n + 1 . 
2 n +2 

b) The set of pairs of any D-optimal design is contained 

in the set of pairs of the design E • 

Proof 
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(3.2.9) 

(3.2.10) 

a) The expression for M (e) can be found by using (3.2.3) and (3.2.5). Accord
ing to theorem 2.3.5 the proof of the D-optimality of E is complete if it is 
shown that d (x ,y ,E) ~ }n (n + 1) for all x ,y EX. So we have to find the 

maximal value of d(x ,y,E). From lemma 3.2.1 and (3.2.7) it follows that 
the maximal . value is obtained by maximizing d (k i,k 2,e) over k i, 
0 ~ k 1 ~ n -1 ; k 2 = n -k 1• So, according to (3.2.8), we have to maximize 
[4(n-k 1) + 4k 1(n-k 1)] y. If k 1 can take all values in j 0,1, ... , n-1 f, 
then this function is maximal fork = _!_(n -1) . 

2 

i) n is odd. 
Now Yn -1) is an integer, so the maximal value of d (x ,y ,€) equals 

2 

d(..!.h.-1),_!_(n+l),e)= !n(n+l). 
2 2 2 
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ii) n is even. 
Now _!_(n -1) is not an integer, so the maximal value of d (x ,y ,E) is one 2 

of the values dqn,}n,E) and d(}n-1,}n+l,E). Using (3.2.8) and the 

expression for M (E) we find 
d <}n ,}n ,E) = d (}n-1,}n +l,E) = }n (n +1). 

and the proof of the D-optimality of the design E is complete. 

b) The information matrix of any D-optimal design coincides with the matrix 
of the design mentioned in a). Therefore, the set of pairs where the variance 
function is maximal coincides with the set of pairs of the design E . D 

The D-efficiency and G-efficiency ,as defined in (2.3.26) and (2.3.27), of the 
round robin design are given in the following theorem. 

Theorem 3.2.5 
The D-efficiency and the d-e!ficiency of the round robin design have the same 
value: 

n +1 2n -----
n +2 2n-l 

,if n even , 

D -elf= G-eft = (3.2.11) 
n 2n -----

n+l 2n-1 
,if n odd. 

The information matrix M of a round robin design can be expressed by 

pi 

~ M= (3.2.12) 

where p 
2n+l 

z 
2n-1 

Proof 
The number of pairs N of the round robin design is N _!_2n(2n-1). 

2 
So, according to lemma 3.2.3 we find 

n-1 
1 (nki1) 2n+l= 

2n+I 
p = I: _!_2n(2n-1) 2n - 1 k 1=0 2 

and 

n-1 
1 (n-2) 2 n+2 = 2n+I 

z - I: _!_2n(2n-l) k 1= I k 1- l 2n-1 
2 

Now the expression for the D-efficiency can be computed (see definition 
(2.3.26)). In order to compute the G-efficiency, we need the maximal value of the 
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variance function. From the expression (3.2.12) it follows that the maximum of 
the variance function of the round robin design E1 has the value 
d <j(n -1),}(n + 1 ),e 1) if n is odd and the value d (}n ,}n ,E 1 ) if n is even. 

Using (3.2.8) we find 

d (_21 (n -1),_21 (n +1),E 1 ) = (n + 1)2 2n-l 
2n+l ' 

and 

( 1 1 ) _ ( 2 ) 2n -1 
d 2 n ,2 n ,E1 - n n + 2n+l • 

Substitution into (2.3.27) completes the proof. 0 

In table 3.2.6 some results of theorems 3.2.4 and 3.2.5 are given for 2 ~ n ~ 7. 
In this table a value m is listed defined by m = jn (n + 1 )(n 2+ n + 2 ). This 

value is important because according to (3.1.4) a discrete D-optimal design can 
be found with a number of pairs N 1 , where N 1 ~ m . In section 5.4 a method 
will be given to reduce the number of pairs in designs. Some of the results will 
be used in this section. These results are given between brackets in table 3.2.6. 
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Table 3.2.6 
Values of quantities related to D-optimal designs 

n 2 3 4 5 6 7 

Number of pairs of 
-s e.n -1,..!..n + 1) 2 

2 2 32 480 

(240) 

-S(..!..n ,..!..n) 
2 2 4 48 640 

(24) (320) 

-S (..!..(n -1),..!..(n + 1)) 
2 2 

12 160 2240 

(80) (560) 

-the D-optimal design 6 12 80 160 1120 2240 
given in theorem 3.2.4. (56) (80) (560) (560) 

m= jn (n + l)(n 2+n + 2) 6 21 55 120 231 406 

y,8 3/8 3/8 5/12 5/12 7/16 7/16 

Round robin: 
-number of pairs 6 28 120 496 2016 8128 
- D- efficiency 1 0.86 0.89 0.86 0.89 0.88 

It is also possible to construct designs having a considerably smaller number of 
pairs than the D-optimal designs given in theorem 3.2.4 and with a relative high 
D-efliciency. Such designs may be attractive for practical applications. In table 
3.2.8 the D-efliciency and G-efliciency are given of some designs SN (k i.k 2) • The 
values given in the table can be computed by use of the following lemma . 

Lemma 3.2.7 

Let E "be the design constructed by choosing 

-the pairs of S (k i,k 2) 

-equal weights for all pairs . 

Then the following holds: 

k 2 I 2k 1 I ~~! D-ef/ = 4- -- y , 
n n-1 

where 

(3.2.13) 
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{ n ~ 1 ,if n odd , 

'Y = 
1 n +1 
"2n+ 2 ,if n even. 

The d-e!ficiency of E can be found by minimizing 

jn (n +1) 
----= 
d (Z i.Z2,E) 

(3.2.14) 

over l 2 ,1 ~ Z2 ~ n, Z2 is integer-valued. 

If the restriction that l 2 is an integer is dropped, then the variance function 
k 

d (Z i,Z 2,E) is maximal for l2 = jn + n ~ 1 

Proof 
From the definition of the D-efficiency and (3.2.5) we have 

I 1 1 12/n(n+l) 
D-eff= (4k2)n ( ~k1k~))2nCn-1) /(pnz"2n(n-1» ' 

n n n-

where p and z have the value given in theorem 3.2.4. 
So, 

1 4k2 I 2k.1 1:~! D-eff= - -- ---
p n n-1 

The statement concerning the G-efficiency is proven by lemma 3.2.1 and the fact 
that 

a 
In table 3.2.8 the numbers between brackets can be found by using results of 
chapter 5 concerning the reduction of the numbers of pairs of a design. 
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Table 3.2.8 
Exact designs and values of quantities related to these designs 

Number 
n Design of pairs y 8 D-eff G-eff 

2 SN(l,1) 4 1/2 1/4 0.94 0.75 

4 SN(2,2) 48 112 318 0.99 0.95 
(24) 

SN (1,3) 32 1/3 1/2 0.98 0.94 

5 SN (1,4) 80 5/16 518 0.84 0.80 
(40) 

6 SN(3,3) 640 112 5/12 0.997 0.98 
(320) 

SN(2,4) 480 318 15/32 0.995 0.98 
(240) 

SN (1,5) 192 3/10 3/4 0.76 0.69 
(96) 

7 SN(2,5) 1344 7/20 21140 0.92 0.91 
(336) 

SN (1,6) 448 7/24 7/8 0.66 0.60 
(124) 

Some of the designs mentioned in tables 3.2.6 and 3.2.8 are known in the litera
ture. As we have seen in section 2.2.1 Quenouille and John(l971) present 2n
factorial paired comparison designs. They give a table of designs and their 
efficiencies for 2 ~ n ~ 8 . Among these designs are the D-optimal designs of 
theorem 3.2.3 for 2 ~ n ~ 5 . The designs of table 3.2. 7 can be found in the 
table of Quenouille and John but the efficiency they give is the efficiency of the 
design compared with the round robin design for each effect to be estimated. 

3.3. A hypersphere as experimental region 

The experimental region X is defined by 

n 

X = j X E Rn I L X; 2 ~ 1 I . 
i= 1 

(3.3.1) 

The following lemma is useful for finding pairs at which the variance function 
attains its maximum . 
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Lemma 3.3.1 
Let Ebe a design with covariance matrix of type (3.1.6). For a pair (u ,v) E X 2 

where the variance function d ( . , . ,E) is maximal the following holds: 

n n 

L u/ = L v/ = 1 . (3.3.2) 
i =I i= I 

Proof 
The proof is analogous to the proof of lemma 3.2.1. Suppose that statement 

n 

(3.3.2) is not true and assume without loss of generality that L u/ < 1 . 

Consider d 1 = d (~,v ,E), where~= (u\ ,u 2, •• • , Un), with 

u\ = Ji -(u} + · · · +un2 ), so zl1 > Ui, 

and d 2 = d (u ,v ,E), where u = (-u\ ,u 2 , . •• , Un). 

Since d (x ,y ,E) is maximal at (u ,v) we have 
d I - d (u ,v ,E) ~ 0, 
d 2 - d (u ,v ,E) ~ 0. 

i=l 

These expressions yield a contradiction similar to the one found in the proof of 
lemma 3.2.1, and this completes the proof. D 

Lemma 3.3.2 
Let E be a design with covariance matrix of type ( 3.1.6). For a pair (x ,y) with 

n n 

L x/ = L y/ = 1 the variance function takes the form 
i= I i =I 

n n 

d(x ,y,E) = 2y (1 - L X;Y;) + 0 (1 - (L x;y;)2) (3.3.3) 
i= I i=l 

n 

- !o L (x/ - y/)2 . 
2 

i =I 

An upper bound for d (x ,y ,E) is given by d (u ,v ,E) where (u ,v) is a pair, such 
that 

n n n 
L u;2 = L v;2 = 1 , and L u; V; 
i=l i=l i=l 

Proof 

_ _y_ 
0 . 

The expression (3.3.3) can be found by using (3.1. 7): 

n 

d(x ,y,E) = y L (x; - y;)2 + O LL (x,xj - y;yj)2 
i =I i < j 

n 

2y - 2y L X;Y; + O LL (x/x/ + y/y/- 2x;XjYiYi) 
i= I i< j 

n n n 
2y <1 - E x;y;) + -}o [ <E x/)2 + <E y/) 2 1 

i=l i=l i=l 

(3.3.4) 
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n n n n 
- _!_o <L X; 4 + L y;4)- 0 <L x;y;)2 + 0 L x/y; 2 

2 i=l i=l i=l i=l 

n n n 
= 2y (1 - L x;y;) + o [1-(_E x;y; )2]-_!_o L (x;2- y/)2 • 

i=l i=l 2 i=l 

The statement concerning the maximal value of the variance function can be 
proved by using the fact that 

n n 
d(x ,y,E) ~ 2y (1 - L x 1 y;) + O (1-(_E x 1 y;)2 ) , 

i=l i=l 

and the fact that the right-hand side of this inequality attains is maximum for 
n 
L X1Y1 - _:t_ 
i=l - 0 . 

Many D-optimal designs can be found by use of (3.3.4). We just give one of the 
D-optimal designs for which the number of pairs is small. 
Consider the pairs 

(ui.v 1 ) = (( sin<f>, cos<f>,O, ... ,0),( sin<,t>,-cos<f>,O, ... ,0)), 
(u 2 ,v 2 ) =((-sin</>, cos<f>,O, ... ,0),(-sin<f>,-cos<f>,O, ... ,0)), 
(u 3,v 3 ) = (( cos</>, sin<f>,O, ... , 0),(-cos<f>, sin<f>,O, ... , 0)), 
(u 4 ,v 4 ) = (( cos<,t>,-sin<f>,O, ... ,0),(-cos<,t>,-sin<f>,O, ... ,O)). 

n-1 .!_ 
where sin</> = _!_ ·J2I--J2 , cos<f> = 

2 n 

1 

_!_.J2[n+l]2 and(u;,v;)E X 2 • 
2 n 

Let S be the set defined by 

S = J(p(u; ),p(v1 )) I 1 ~ ~ 4, pis a permutation of order n I . (3.3.5) 

The set S contains 4(~) pairs. 

Theorem 3.3.3 
The design E constructed by choosing 
-the pairs of the set S which is defined in (3.3.5) 
-equal weights for all pairs: 1/ N, where N is the number of pairs 
is D-optimal. 

pi 
M(e) = (3.3.6) 

zl 

where p 2 n+l _ 2 n+l 
~,z- n3. 
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Proof 
The expression (3.3.6) can be found as follows. 

The set S can be broken up into (~) blocks of 4 pairs. Consider the block E 1 

consisting of the pairs (u; ,v,) , 1 ~ i ~ n . Then 

M(E1) = diag(2cos2cp,2cos2cp,O, ... ,0,4sin2cpcos2cp,O, ... ,0). 

The information matrices of the other blocks are diagonal matrices, where the 
diagonal elements are a permutation of those of M (E). For reasons of symmetry 
we find 

p 
2(n -1) cos2 '.f!. 2 n +1 

(n) n2 
2 

and 

z - 4sin2'.f!.cos2'.f!. 2 n +1 
3 . 

(n) n 
2 

The D-optimality can be proved by computing the maximal value of d (x ,y ,E) . 
The pairs (u ,v) of the design E satisfy the conditions mentioned in (3.3.4) in 
lemma 3.3.2. So, an upper bound for the variance function is the value 
d (u i,Vi,E) and this is the maximal value of d (x ,y ,E). 

The fact that d (u i,v i,E) = -}n (n + 1) completes the proof. 0 

In table 3.3.4 some results are s)J.own. 

Table 3.3.4 
Values of quantities related to D-optimal designs 

n 2 3 4 5 6 7 

Number of pairs of 4 12 24 40 60 84 
the D-optimal design (6) (20) (42) 
of theorem 3.3.3 

{-n (n + l)(n 2+n +2) 6 21 55 120 231 406 

y 213 918 815 25/12 18/7 49/16 

8 413 27/8 3215 125/12 128/7 343/16 

Between brackets a reduction of the number of pairs is given. This is a result of 
section 4.3. 
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4. D-optimal designs in the case of a quadratic model with a hypersphere 
as experimental region 

4.1. The model 

In this chapter the design for quadratic models will be discussed. The 
model (2.3.1) will be considered, where 

f (x ) = (x l • ••• 'Xn ,x f ' ... 'Xn2 ,x ix 2 •••• 'Xn -1Xn )' ' (4.1.1) 

where X is defined by 

n 
X = j x E Rn .L x/ ~ 11 . (4.1.2) 

i= 1 

So 

log 1T = f31x1 + · · · + f3nXn + f311xf + · · · + f3nnXn2 (4.1.3) 

When constructing optimal designs we make the assumption 1T = (1, ... , 1)' 
(1.8.6). In section 4.2 we will give the necessary conditions for a design to be 
D-optimal and we compute the information matrix of such a design. In section 
4.3 discrete D-optimal designs are given having a relatively small number of 
pairs. In section 4.4 exact designs are constructed. In section 4.5 the efficiency of 
the designs is discussed when the assumption (1.8.6) does not hold. The number 

of parameters equals 2n + (~), i.e. k = }n (n + 3) and according to theorem 

2.3.6 the following holds: 
A discrete D-optimal design exists with m pairs, where 

m ~ jn(n+l)(n+2)(n+3). (4.1.4) 

For reasons of symmetry and in analogy to the standard experimental situation 
one may expect that the information matrix of a D-optimal design E has the fol
lowing structure: 

pi 

M(E) = sl+tJ 

zl 

where pi is related to the main effects, 
sf + tJ is related to the quadratic effects, 
zl is related to the interactions; 
J is a matrix with Jii = 1 for all i ,j 

The covariance matrix M- 1(E) is denoted by 

(4.1.5) 
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yl 

(4.1.6) 

81 
The parameters in (4.1.5) and (4.1.6) are related by 

1 1 1 1 
p=-y,s=-;; s+nt= a+nt" ,z=B (4.1.7) 

Again the variance function plays an important role in the construction of D
optimal designs. It can be expressed as follows. 
If E is a design with covariance matrix of type (4.1.6), then 

n n 
d (x ,y ,e) = y L (x; - Y; )2 + a L (x; 2 - y;2)2 (4.1.8) 

i=l i=l 

n 

+ t" O:: (x;2-y;2))2 + 8 LL (x;Xj - YiYi)2 
i=l i<j 

4.2. Conditions to be satisfied by D-optimal designs 

We shall investigate the variance function. If the variance function can be 
expressed by (4.1.8), then (3.1.8) and (3.1.9) hold. Due to the fact that the 
experimental region is a hypersphere and in analogy to the standard experimen
tal situation one might expect that a D-optimal design is rotatable in the sense 
that the variance function d (x ,y ,e) only depends on 

n n 

rl=I:xl,rf L y;2 and on the angle between the position vectors of x 
i=l i=l 

andy. 
We formulate this property as follows. 

Definition 4.2.1 
A design e is called strongly rotatable if the variance functian d (x ,y ,e) only 
depends on r l • r 2 and e' where 

r[ 
n 

't" 2 2 
,£., X; ,r2 
i=l 

and (4.2.1) 
n 

e is such that r1r2cose = L X;Y; 
i=l 

This property is called strong rotatibility as distinct from rotatability which is 
defined as follows. 
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A design E is called rotatable if the function d (x ,E) only depends on 
r 1 , with d (x ,E) as defined in ( 2.3.14) . 

(4.2.2) 

Strong rotatability implies rotatability. In the following lemma a relation is 
given between strong rotatibility and the structure of the information matrix. 

Lemma 4.2.2 
Let E be a design with covariance matrix of type ( 4.1.6). Then the following holds. 
The design E is strongly rotatable if and only if 

2cx = 8 (4.2.3) 

Proof 
According to (4.1.8) we have 

n n n 

d(x ,y,E) = y rf + y rl - 2y I. X;Y; + (X I. x; 4 + (X r. y, 4 

i=l i= 1 ; = 1 

n 

-2cx L xh;2 + g (r[-rl) 2 + (8- 2cx) LL (x;xj - Y;Yi)2 
i=l ;<j 

+2cx LL x;2x/ + 2cx LL y; 2y/- 2cx.L.L x;XjYiYi 
i<j i<j i-j 

n n n 

Y (r f + rJ ) - 2y L X; Y; + <X ( L y;2 ) 2 + ex ( L x/)2 

i= 1 i=l i = 1 

n 

-2cx (L X;Y;)2 + g (r[-rf )2 + (8- 2cx) LL (x;Xj - Y;Y) 2 . 
i= 1 

Now it is obvious that if 2o: = 8 then the function d (x ,y ,E) only depends on 
n 

ri, r2 and L x;y; . 
i=l 

Let the design E be strongly rotatable. Then d (w 1,w 2,E) = d ( w 3,w 4,E), where 
W1 = (1,0,0, ... , 0) , 
W2 = q.J3,-},0, ... , 0), 

W3 = q.J3,-},0, ... , 0) , 

W4= q,-}.J3,0, ... ,0). 

A simple computation yields 2o: = 8. D 

It will be proved in theorem 4.2.11 that a D-optimal design is strongly rotat
able. Therefore, assumption (4.2.3) will be made very often in this chapter. If E 

is a design with covariance matrix of type (4.1.6) for which the assumption 
(4.2.3) holds, then the varianoe function can be expressed by 

d(x ,y,E) = y rf + y rf - 2y r1r2 case+ o: rt + o: ri_ 

-2o: rl rl cos2e + g (r[ - rl )2 , 

(4.2.4) 
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n 

rf = L x;2, r1 
i=l 

and e is such that 

n 

r1r2 cose = L X;Y; • 
i= 1 
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n 

.E y/ 
i=l 

This is easily seen by using the expression given in the proof of lemma 4.2.2. 
The following lemma is useful in finding the maximal value of the variance 
function. 

Lemma 4.2.3 
Let E be a design for which the variance function can be expressed by ( 4.2.4). If 
the variance function is maximal at (u ,v ), then 

n n 

r 1 = L u; 2 = 1 , or r 2 = L v;2 = 1 . 
1=1 i=l 

Proof 

n 
Suppose that r 1 < 1 and r 2 < 1. 

Consider d 1 = d (u ,v ,e), where ii = ...!... u 
rl 

"t" _2 
, SO ~ U1 

• • 1 
d 2 = d (u,v ,E), where u = - - u , 

rl 

d 3 = d (u ,v ,E), where v = ...!._ v , 
r2 

• * 1 andd 4 = d(u,v,e) ,wherev= -- v. 
r2 

i= 1 

Since the variance function is maximal at (u ,v) we have d; 
So 

d 1-d (u ,v ,E) = 

= y(l-rf) - 2y r2 cos9(1-r 1) +a (1-r 14 ) 

1 . 
' 

- d (u ,v ,E) ~ 0 . 

-2a r1 cos26 (1-rf) + f, (1-rt) - 2f, (1-rf )r:j 

= (l-r1) [y (l+r1) - 2y r2 cose + (a+f,)(l+r1+rl +rn 

-2a (l+r 1) r:j cos26 - 2f, rl (l+r 1)] ~ 0, 

and similarly 

d 2-d(u ,v,e) = 

= (l+r1) [y (l-r1) + 2y r 2 cose + (a+f,)0-r 1+rl-r[) 

-2a r:j cos26 (l-r 1) - 2f, (1-r 1) r:j ] ~ 0 . 

(i) 

(ii) 
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From (i) and (ii) it follows that 

2y + 2(ex+g)(l+rl) - 4ex r} cos2e - 4g r} ~ 0. 

Using d 3 - d (u ,v ,E) ~ 0 and d 4 - d (u ,v ,E) ~ 0 it can be seen that 

2y + 2(ex+g)(l+r} )- 4ex r[ cos20 - 4g r[ ~ 0. 

So with (iii) and (iv) we have 

(iii) 

(iv) 

4y + 2fo+g)(2+r l +r}) - 4ex (r l +r}) cos20 - 4g (r [ +r}) ~ 0. 

However, 

4y + 2(ex+g)(2+r[ +r}) - 4ex (r[ +r}) cos20 - 4g (r[ +r}) 

~ 4y + 2(ex+g)(2+r f +rf) - 4ex (r[ +rf) -4g (r[ +rf) 

4y + 2(ex+g)(2-r[-r}) > 0. 

This is a contradiction and completes the proof. 

Corollary 4.2.4 
If the variance function of a design E can be expressed by ( 4.2.4), then the max
imum of the variance function is equal to the maximum of 

d = y + y r 2 - 2y rcose +ex+ ex r 4 - 2ex r 2 cos2e + g (1-r 2) 2 , (4.2.6) 

where 

0 ~ e ~ 27r , 0 ~ r ~ 1 . 

Lemma 4.2.5 
Let E be a design for which the variance function can be expressed by ( 4.2.4). Let 
(u ,v) be a pair where the variance function is maximal and such that 

and 

n n 

I: u/ = r f , I: v/ = r l , 
i= I i=l 

n 

0 = such that r 1r 2COS0 = r. U; V; 
i=l 

Then the following holds 

. I 

e = 7r and rb r 2 have the values 1 and.!. - .!. [1-~F 
2 2 ex+g ' 

or 

e = arccos (-~) and r 1 = r 2 = 1 . 
2ex 

(4.2.7) 

(4.2.8) 
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Proof 
Assume without loss of generality r 1 = 1. According to corollary 4.2.4 we have 
to maximize 

f (r ,e) = y + y r 2 - 2y r cose + 0:: + 0:: r 4 - 20:: r 2 cos2e + g (1- r 2)2 , 

where 0 ~ e ~ 21T , 0 ~ r ~ 1 . We have 

of (r ,e) 
ae 2y r sine + 40:: r 2 cose sine 

40:: r 2 sine (cos e + _l_ ) . 
2a::r 

(i) 

Consider the region defined by 0 ~ r < l and 0 ~ e ~ 21T . Using (i) we 
20:: 

find that the function f (r ,e) is maximal when e = 1T. Substituting this in 
2 I 

f (re) we find r = .!- .! [1-..-=.:r_F 
• 2 2 0:: +g 

Consider the region defined by l ~ r ~ 1 , and 0 ~ e ~ 21T . 
20:: 

For fixed r the function f (r ,e) is maximal when 

e = arccos - _l_ . 
2a::r 

Substituting this we find 

2 
f (r,e) = y +a::+ L + y r2 +a:: r4 + g (l-r2)2. 

20:: 

This function is maximal when r = 1 . This completes the proof. 

Corollary 4.2.6 

a 

The maximum of a variance function of type ( 4.2.4) equals one of the values 

2 
2y + 20:: + L, 

20:: 

~y + -}(a:: + 0 - 4(z:o +[-}<a:: + 0 - y] [1- :;g ri. 
(4.2.9) 

(4.2.10) 

If one assumes that a D-optimal design has a covariance matrix that satisfies 
(4.1.6), and (4.2.3), which means that it is strongly rotatable, then a D-optimal 
design consists of pairs of the type mentioned in lemma 4.2.5. Therefore, it is 
useful to consider pairs (x ,y) and ( w , - rw ) for which 

n n n 

L x/ = L Y; 2 = L w/ = 1 . (4.2.11) 
i=l i= I i =I 

We define the following sets of pairs. 
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Definition 4.2.7 
S ((u ,v)) is the set containing all 2n pairs that can be found by TIWltiplying pairs 
of coordinates (u; ,v;) of (u ,v ) by - 1 or + 1 . 

SP((u,v)) is the union over all permutations p of the sets S( (p(u),p(v)) ), 
where p is a perTIWtation of order n . In general the set SP((u ,v )) contains 
2n n ! pairs. The information matrix of SP((u ,v )) is denoted by MP((u ,v )). 

The design matrix in the case of a 2n -factorial can be used to compute the infor
mation matrices M((u ,v)) and MP((u ,v )). This design matrix contains only 
+1 'sand -1 's. 
Define 

where 

X 1(n) = ( X u(n) I K I X 13(n) ) , 

X 11(n)= 

Xu(n-1) u 
, X u(l) = 1- ~ J , 

Xu(n-1) -u 

u = (1, ... '1)' ' 

K is a matrix with K;j = 1 for all i and j , 

X13(n-l) -X11(n-l) 

X 13(n) = ' x 13(1) = 0 . 
X 13(n - 1) X 11 (n - 1) 

X 11 (n ) is the notation for the main effects of a 2n -factorial, 
K is related to the quadratic effects, 
X 13(n ) is related to the first-order interactions. 

It is easy to prove that 

I 

J 

I 

Now the design matrix D of S((u ,v )) can be expressed by 

D = X 1(n) (U - V), 

where 

U = diag (u I• ••• , Un 

V = diag (v1, ... ,Vn 

ul, .. . , u/ 
V l, • • • , Vn2 

U1U2, • • •, Un-tUn)' 

V1V2, • • • ,Vn-IVn) • 

(4.2.12) 

(4.2.13) 

(4.2.14) 

(4.2.15) 

(4.2.16) 

(4.2.17) 
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So, the information matrix M ((u ,v)) is 

I 

M((u,v))= 2n (U-V) J (U - V) .(4.2.18) 

I 

If M ((u ,v)) is denoted by 

Mu 

M((u ,v )) = 

(4.2.19) 

M 11 = 2n diag ((u i-v1)2, ••• , (un-vn )2) , 

(M22)1J = 2n (u1 2-v12) (uJ-vJ), 

M33 = 2n diag ((u1u2-v1v2)2 ,. •. ,(Un-1Un-Vn-1Vn)2). 

The information matrices MP((u ,v )) can be written as 

where 

MP((u ,v)) = 

po/ 

---1 
· 1 sol +toJ 

I 
---1 

I 

n 

Po = 2n (n -1 )! L, (u1 - v1 ) 2 , 
1=1 

n 

so+ to= 2n (n-1)! L, (u; 2 - v12) 2 , 
1=1 

zol 

to = 2n+l (n-2)! L,L, (ui2- v12)(u/- v/), 
l<J 

Zo = 2n+l (n-2)! L,L, (u1uJ - v1vj)2 . 
t<J 

(4.2.20) 

As will be seen in theorem 4.2.11 a D-optimal design E can be constructed by 
choosing the pairs of SP((x ,y )) and SP((w ,-rw )) ,0 ~ r < 1 , with suitable 
weights 11 1 and11 2 and suitable x, y and w that satisfy (4.2.11). 
The weights must satisfy 

(4.2.21) 
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The information matrix M(E) of such a design E can be computed by using 
(4.2.20). 

(4.2.22) 

with 

p;l 

M; s;l +t;J ( i 1, 2 ), 

Z;f 

where 

n 

P1 =Vi 2n (n-1)! 2(1- L X;Y;) , 
i= 1 

n 

s1 + t1 = V1 2n (n-1)! L (x;2- y;2)2 , 
i= 1 

t1 = V1 2n+l (n-2)! LL (x; 2 - y;2)(x/- y/), 
i<j 

Z1 = V1 2n+l (n-2)! LL (x;Xj - y;yj)2 , 
i<j 

(4.2.23) 

P2 = V22n (n-l)!(l+r)2 , 

n 

S2 + t2 = V2 2n (n-1)! (l-r 2) 2 L w; 4 , 

i=l 

t2 = V2 2n+l (n-2)! (l-r 2 ) 2 LL w/wl ~ 
i<j 

Z2 = V2 2n+l (n-2)! (1-r 2 ) 2 LL w;2w/. 
i<j 

With the notation of (4.1.6) we find 
(4.2.24) 

1 
y= 

PI+ P2 

1 

(j = 1 

From lemma 4.2.5 and theorem 2.3. 7 it follows that, if 2o: = () then x , y and r 
must satisfy the conditions 
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n 
L X;Y; = _ _L =. coseo 
;=1 2a . ' 

(4.2.25) 

2 1 
r = .!_ - .!_ [1-~F =: ro. 

2 2 o:+~ 
(4.2.26) 

A condition equivalent to 2a = 5 is given in the following lemma. 

Lemma 4.2.8 
Let x ,y and w satisfy ( 4.2.11 ). 
Let E be a normalized design consisting of the pairs of SP ( (x ,y)) with weights 1J 1 

and of the pairs of SP((w ,-rw )) with weights v 2 • The condition 2o: = 5 is 
equivalent to 

where 

2v1 (n +2) LL (x;Xj - y;yj)2 + 2v2 (n +2)(1-r 2)2 LL w;2w/ 
1<j i<J 

n 

cose = L X;Y; 
i=l 

(4.2.27) 

If ( 4.2.27) holds, then 

where 

Proof 

z = - 1- 2n+l n v 1 (n-2)! sin20 + - 1- 2n v 2 (n-1)! (l-r 2)2 , 
n +2 n +2 

p = 2v 1 2n (n-1)! (l-cos0) + v 2 (n-1)! (l+r)2 , 

s + nt = 2n 1J2 (n-1)! (1-r 2)2 , 

z - z1 + z2, p = Pl + P2, s = s1 + s2 and t 

(4.2.28) 

The condition 2a = 5 is equivalent to s 1 - 2z 1 = -(s 2 - 2z 2) . 
From (4.2.23) we have 

n 

= 2nv1(n-2)! [(n-1),L (x;4 + y;4 - 2x/y/)- 4LL (x;Xj - y;yj)2 

i=l l<j 

-2LL (x/x/ + y/y/- x12y/- x/y/)] 
i<j 

= 2nv1(n-2)! [2(n-1)- 2(n-l)LL x;2x/- 2(n-0LL y/y/ 
i<j i<j 

n 

-2(n-1),L x; 2y;2 -4.L.L (x;Xj - YiYJ)2 
i= 1 i<j 
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n 

-21:,L, x;2x/- 21:,L, y;2y/ + 2 - 21:, xh;2 ] 
i<i i<i i=i 

n 
= 2n Vi (n-2)! [2n - 2(n +2) LL (x;xi - Yi Yi )2 - 2n ( L X;Y; )2 ]. 

i<i i=i 

n 
= 2n V2 (n-2)! (1-r 2 ) 2 [(n-1)1:, w;4 - 61:,L, w;2w/] 

i=i t<J 

2n V2 (n-2)! (1-r 2)2 [(n-1)- 2(n-1) LL w;2w/- 61:,L, w;2w/] 
i<i i<i 

= 2n V2 (n-2)! (1-r 2)2 [(n-1)- 2(n +2) LL w;2w/]. 
i<i 

Substituting these expressions in s i - 2z i = -(s 2 - 2z 2) completes the first 
part of the proof. The correctness of expressions (4.2.28) can be verified by sub
stituting (4.2.27) in (4.2.23). a 
The weights Vi and v 2 may be found by use of the following lemma. 

Lemma 4.2.9 
Let E 1>e a design of the type defined in lemma 4.2.8 and let ( 4.2.27) 1>e satisfied. 
The determinant of the information matrix det (M ( E)) satisfies 

where 

(n}!-(n -i) 
det(M(e))= C v 2 (av 2 +b)n (cv 2 +d) 2 , 

C is a constant not depending on v i and v 2 , 

a = (1 + r )2 - 2( 1- cos0 ) , 

b = 2(1-cos0) - 1-
2n n ! ' 

c = (n-1)(1-r 2)2 -2nsin20, 

d 

(4.2.29) 

The value of v 2 at which det (M ( E)) is maximal is a solution of the equation: 

vl.!..n(n+3)ac + V2(n+l)(ad + .!..n bc)+bd = 0 2 2 

Proof 
From (4.2.28) we have 

det (M(e)) = Cv 2 ,v 2(1+r )2 + 2(1-cos0)(-1--v2)1n 
2nn ! 

(4.2.30) 
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This gives the expression (4.2.29). Differentiation of this expression with respect 

to v 2 gives the second part of the theorem. a 

It is possible to construct a D-optimal design E of the type defined in lemma 

4.2.8. Then x, y, w and r must satisfy the conditions (4.2.25), (4.2.26) and 

(4.2.27). Since the covariance matrices of D-optimal designs coincide, cos0 0 and 

r 0 are fixed. By a procedure similar to procedure 2.3.8 the values of cos0 0 and r 0 

can be computed as follows. Choose 0 0,0 and r 0 ,0 , for example 0 0,0 = }'1T and 

ro,o = 0. Let Eo be a design of the type defined in lemma 4.2.8 with 0 = 0o,o, 

r = r 0,0 , satisfying (4.2.27) and let v 2 be as given in lemma 4.2.9. The infor

mation matrix M (e 0) can be computed and the variance function can be 

expressed by (4.2.4). Use of lemma 4.2.5 yields pairs where the variance func

tion attains its maximum. This gives new values 00,1 and r 0,1 • Now this pro

cedure is repeated with Et , cos0 0,1 and r 0,1 , etc. 

This process converges and the values of cos0 0 and r 0 can be computed. A priori 

it is not obvious that this procedure converges. The condition 2a = o is used, 

which will be proved to hold for D-optimal designs in theorem 4.2.11. This 

knowledge enables us to prove the convergence. Note that it is not necessary to 

give the designs E; explicitly. When computing the information matrix M(E1 ), 

one only needs the values of cos0 0,1 and r 0,1 • Some results are given in table 

4.2.10; the condition 2a = o is satisfied there. As can be seen from this table, r 0 

and 0 0 are decreasing functions of n, and a, o, y, g and det (M- 1(e)) are all 

increasing with n. The design consists for 68% of pairs of SP((x ,y )) when 

n = 2, and for 95% when n = 7 . 
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Table 4.2.10 
Values of constants determining the information matrix 
of a D-optimal design 

n 2 3 4 5 

()( 1.4475 2.9972 5.0307 7.5558 
0 2.8950 5.9944 10.0613 15.1115 
y 0.9096 1.3507 1.8071 2.2733 
g 2.5241 4.5181 7.0152 10.0133 

To 0.1319 0.0998 0.08168 0.06953 
0o 108.3° 103.0° 100.3° 98.7° 

2n n ! IJ1 0.6811 0.8151 0.8775 0.9124 
det (M- 1(e)) 22.5 7.89 104 4.66 1010 7.08 1018 

Now the following theorem can be formulated. 

Theorem 4.2.11 

a) Let x , y , w and r be such that they satisfy the conditions 
n n n r x,2 = r y,2 = r w,2 = 1 ' 

i = 1 i = 1 
n 

L X;Y; = cos0o, 
i=l 

i= 1 

2 1 
r = _!_- ![1-___£L_]2 = ro, 

2 2 a+{ 

6 

10.576 
21.151 

2.7462 
13.5119 

0.06069 
97.5° 

0.9340 
3.95 1029 

2v1(n +2)LL (x;Xj - YiYj) 2 + 2v2(n +2)(1-r 2) 2LL w,2w/ 
i<j i<j 

= 2n v 1sin28 + v 2(n-1)(1-r 2 ) 2 , 

where r 0 and 00 have the value given in table 4.2.10. The design E 

consisting of the pairs of SP((x ,y )) with weights Vi. and of the 
pairs of SP((w, -rw )) with weights v 2 , that satisfy (4.2.21) and 
( 4.2.30) is D-optimal. The design is strongly rotatable. 

n 
b) Let (u ,v) be a pair of a D-optimal design, and let r U; 2 = 1 . 

i=l 

Now v satisfies 

v=-r 0 u, 

or 

7 

14.092 
28.183 

3.224 
17.5108 

0.05392 
96.6° 

0.9485 
0.914 1044 

(4.2.11) 

(4.2.25) 

(4.2.26) 

(4.2.27) 
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n n 

.L, v; 2 = 1 and .L, u; v; cos9 0 • 

i= 1 i = 1 

Proof 
From lemma 4.2.5 it follows that the variance function attains its maximum at 

the pairs of the design. According to corollary 4.2.6 this maximum is one of the 

values given in (4.2.9) and (4.2.10). Computation of these values completes the 

first part of the proof. Part b) of the theorem is proved by applying lemma 4.2.5 

and theorem 2.3.7. D 

When discussing theorem 2.3.1 in chapter 2, we mentioned that in the case of 

paired comparisons D-optimality and G-optimality are not equivalent. Now we 

can give an example that shows this. 

Example 4.2.12 
Let n = 2 and consider the information matrix of a D-optimal design E. To 
consider the G-efficiency of such a design, one has to compute the maximum of 

the variance function d (x ,E). We have 

d (x ,E) = y (x[ + xf) + (cx+g) (x 14 + xt) + (2{+8) x[xf 

= y r 2 + (cx+g) r 4 • 

So 

max d (x ,E) = y + ex + g = 4.88 
x EX 

It is easy to show that a D-optimal design is not G-optimal by constructing a 

design E1 for which 

max d (x ,E1) < 4.88 . 
x 

Let E 1 be the normalized design consisting of the pairs of SP (( w, - rw ) ) with 

w = (coscf>, sine/>), cf> = 22.5° and r 1 = {. 
Then 

p1I 

MP((w, -rw)) = s1J +t 1J 

z1J 

with 
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This yields 

So, 

max d (x ,E1) = 2 + 3 = 4.64 , 
x (l+r1)2 (l-rl)2 

which shows that a D-optimal design is not G-optimal in this case. a 
4.3. Some discrete D-optimal designs 

In general a design of the type given in theorem 4.2.11 consists of 2 2n n ! 
pairs. If we choose suitable x, y and w, a discrete D-optimal design can be con
structed for which the number of pairs is considerably smaller than 2n+l n ! . In 
this section cos0 0, r 0, v1 and v 2 are fixed and have the value given in table 
4.2.10. 
Choose 

w = (1,0, ... ,O)' , 

x - (coscf>i.sincf> 1,0, ... ,O)' 

y (coscf> 2,sincf> 2,0, ... ,O)' 

(4.3.1) 

(4.3.2) 

Now SP ((x ,y ) ) contains 4n (n - 1) pairs and SP (( w , - r 0w ) ) contains 2n 
pairs. The points x, y and w must satisfy the conditions (4.2.11), (4.2.25), 
(4.2.27). Using these conditions we find 

and 

coscf> 1coscf> 2 + sincf>1sincf> 2 = cos0 0 , 

cos(cf>1 - cf> 2) = cos0o , 

cf>1 - cf>2 = 00 ' (4.3.3) 

2v1(n +2)(coscf> 1sincf> 1 - coscf> 2sincf> 2)2 = 2n v1sin200 + v 2(n -1)(1-rJ )2 , 

2v1(n +2)sin2(cf> 1 - cf> 2) cos2(cf> 1 +cf> 2) = 2n v1sin200 + v2(n-l)(l-rJ )2 . 

Using (4.3.3) we obtain 

cos2' = _n_ + V2 n-1 
n +2 v 1 2(n +2) 

(4.3.4) 

where 

'= cf>1 + cf>2. 
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According to (4.2.23) p1 , s1, t 1 and z1 (i = 1,2) have the following values, where 
p 1 , s1, t 1 and z1 are such as in (4.2.22). 

p 1 = V1 2n (n -1)! 2 (1-cos9o) , 

s1 + ti = 2v1 2n (n-1)! sin29osin2t, 
t 1 = - 2v 1 2n (n - 2)! sin29osin2t , 
z 1 = 2v1 2n (n -2)! sin290sin2t , 

P2 = V2 2n (n-1)! (l+ro)2 , 

s2= V22n (n-l)!(l-rl)2 , 

Z2 = 0. 

(4.3.5) 

(4.3.6) 

When n is odd, the number of pairs of SP((x ,y)) can be even more reduced. 
SP ((x ,y)) is the union of n (n -1) sets of 4 pairs. In every set one interaction is 

measured. So, (~) sets of 4 pairs are needed to measure all interactions with the 

same accuracy. In every set two main effects (and two quadratic effects) are 

measured, but not with the same accuracy. So, in general 2(~) sets are needed. 

When n is odd (~) sets can be chosen such that the main effects (and quadratic 

effects) are measured with the same accuracy. 
Example in the case n = 3 . 

Choose 

and 

S ((coscf>i.sincf>i. 0 ),(coscf> 2,sincf> 2 

S ((sincf> i. 0 ,coscf> 1 ),(sincf> 2 , 0 
S (( 0 ,coscf> i. sincf> 1),( 0 ,coscf> 2 

When n is even, this reduction is not possible. 

' 0 )) ' 
,coscf> 2)) , 

,sincp2)) • 

Now the number, say N, of pairs of the design is given by 

2n (2n -1) ,if n even , 
N= 

2n 2 ,if n odd . 

The following theorem is a special case of theorem 4.2.11. 
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Theorem 4.3.1 
Let x, y and w be such as defined in ( 4.3.J) and ( 4.3.2), satisfying the conditions 
( 4.3.3) and ( 4.3.4). The following design is D-optimal. 
Choose 

• • 1 - the pairs of SP ((w, -row)) with weights V2, where V2 = 2n- (n -1)! V2. 

- the pairs of SP ( (x ,y)) as described above; so all 4n (n - 1) pairs if n is even, 
• and 2n (n -1) pairs if n is odd; the pairs have weight v 1 , where 

2n- 2 (n-1)! V1 ,ifneven, 
• 

V1 = 
2n-l (n -2)! v 1 ,if n odd 

Some results are given in table 4.3.2. 

Table 4.3.2 
Values of constants determining the design given in theorem 4.3.1 

n 2 3 4 5 6 

N 12 18 56 50 132 
m 15 45 105 210 378 

"'1 74.85° 69.74° 66.71° 64.59° 62.98° 
</>2 -33.46° -33.28° -33.64° -34.07° -34.48° 

In this table m = {n (n +l)(n +2)(n +3) (see (4.1.4)). 

We give a few more D-optimal designs for the case n = 2. 
Choose 

x - (cosef>i.sin</> 1), 

y (cos</> 2,sinef> 2) , 

w = (cosw ,sinw) . 

The conditions (4.2.25) and (4.2.27) yield 

</>1 - </>2 = eo' 

and 

7 

98 
630 

61.71° 
-34.86° 

8v1 (cosef>1sin</>1- cos</> 2sin</> 2 ) 2 + 8v 2 (1-rJ)2cos2w sin2w 

= 4v1 sin200 + v 2 (1-rJ )2 , 

This last equation can be rewritten as 

(4.3.7) 

(4.3.8) 

(4.3.9) 



or 

From this we find 

-0.1254 ~ cos 2t ~ 0.1254 . 

Some choices of cu and t are listed in table 4.3.3. 

Table 4.33 
Choices of cu and <f> 1 in the D-optimal design 
defined by (4.3. 7) and (4.3.8) 

CU cos2t </>1 

0°,90° 0.125 74.86° 
50,850 0.117 74.96° 
10°,80° 0.096 75.28° 
15°,75° 0.063 75.76° 
20°,70° 0.022 76.34° 

22.5°,67.5° 0 76.66° 
25°,65° -0.022 76.97° 
30°,60° -0.063 77.55° 
35°,55° -0.096 78.03° 
40°,50° -0.117 78.35° 

45° -0.125 78.46° 
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(4.3.10) 

(4.3.11) 

As an illustration two choices are given in the pictures below. The arrows in the 
pictures indicate the pairs. 
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Picture 4.3.4 
The pairs of some exact designs in the case n = 2 
a)w = 22.5° 

</>1 = 76.66° 
w = 67.5° 

w = 22.5° 

b)w = 0° 

w = '90° <<1>1 = 74.9°) 

~w = 67.5° (c/> 1 = 76.7°) 

~ w = 45° (c/>1 = 78.5°) 

w = 22.5° (c/>1 = 76.7°) 

w = 0° (c/>1 = 74.9°) 
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4.4. Exact designs 

It is possible to construct exact designs with efficiency 1 - T/ for any small 

positive value of T/ (see theorem 3.1.1 of Fedorov (1972)). For such a design, 

since the product of the weights and the number of pairs must be an integer, in 

general a large number of observations has to be chosen. Such designs are not 

very useful for practical applications. In this section exact designs are con

structed for which the efficiency is high and the number of pairs is relatively 

small. 
In section 4.4.1 designs are given that consist of pairs of SP (( w , - rw ) ) for 

some r and w . In section 4.4.2 designs are given that consist of pairs of 
SP((x ,y)) and of pairs of SP((w, -rw)) for some x, y, w and r, satisfying 

(4.2.11). Note that the covariance matrix of a design consisting only of pairs of 
SP ((x ,y)) is singular. 

4.4.1. Exact designs consisting of pairs of SP<(w, -rw)) 

We choose an exact normalized design consisting of the pairs of 
SP((w, -rw )) with weights v = rn /n ! , where 

n r. W; 2 = 1. 
i=l 

From the second half of (4.2.23) it follows that 

pi 

MP((w, -rw )) = sl+tJ 

where 

p l. (l+r )2 
n 

n 

Z - t = l (1-r 2 ) 2 (1 - r. W; 4) 
n (n-1) i= 1 

s = 
n 

1 (1-r2)2 (n I:. w14 - 1) 
n(n-1) i=l 

(4.4.1) 

zl 

(4.4.2) 

Now r and w have to be chosen. The D-criterion can be used in choosing r and 

w . This gives conditions for r and w which are given in the following lemma. 
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Lemma 4.4.1 
The determinant of MP((w, -rw )) has a unique maximum at 

and 

Proof 

1 
r = 

n +2 ' 

n 

L W;4= 
i=l 

3 
n+2 

For det (MP((w, -rw ))) we have 

where C is a constant and 

n 
- ~ 4 Wo-.L.,W;. 

i = 1 

So, det (MP((w, -rw ))) equals 

_!_n(n-1) 
C (l+r )n(n+3) (1-r )n(n+l) (nwo-l)n-1 (1-wo)2 

This function has a unique maximum at 

(r, wo) = (1/(n +2), 3/(n +2) ). 

Corollary 4.4.2 

(4.4.3) 

(4.4.4) 

Let E be a design consisting of the pairs of SP (( w , - rw ) ) with weights 

v = 1 , and let r and w satisfy the conditions ( 4.4.3) and ( 4.4.4). Then 2n n ! 

p 

t = z 

s 

s + nt 

(n + 3)2 

n (n + 2)2 ' 

(n + 1)2(n + 3)2 

n (n + 2)5 

2z 

(n + 1)2(n + 3)2 

n (n + 2)4 

y = p-1 ' 

8 = z- 1 , 

2a = 8 , 

(4.4.5) 



61 

-n (n + 2)'4 
2(n + 1)2(n + 3)2 

From (4.4.5) the D-efficiency of a design SP((w, -rw )) can be computed. We 
wish to compute the G-emciency as well. The function d (x ,y ,e) attains its max
imum at the pair (u ,v) satisfying 

n n 

r u;2 = r v;2 = 1 ' 
i=l i=l 

and 

n 

L U;V; =-f.. 
i=l u 

The maximal value of d (x ,y ,e) is given by 

2 

max d (x ,y ,e) = 2y + S + T . 
:IC ,y 

Now the G-emciency can be computed: 

d-eff(e) = (n +3)3 (n +2) (n +1)2 

4(n +2)3 (n +1)2 + 2(n +2)6 + 2(n +1)4 

(4.4.6) 

(4.4.7) 

(4.4.8) 

Some results are given in table 4.4.4. The D-efficiency is 68% when n = 2, and 
even less when n > 2. Therefore the results are not satisfactory, although the 
number of pairs is rather small. 
Another criterion to choose r and w is the G.criterion. In order to use this cri
terion, the function d (u ,v ,e) has to be evaluated. 

According to (4.1.8) we have 

n 

d(u ,v,e) = 'Y (rt +rl )- 2y r U1V1 + E (r{-rl>2 (4.4.9) 
i=l 

n 

+o: (rt+rf )-2o: er U1V;)2 + (5-20:) LL (u;Uj - V1Vj)2 , 
i=l t<J 

or 

n 

d(u,v,e) = 'Y (r{+rn- 2y r U1V1 + E (r{-rl)2 (4.4.10) 
i=l 

n n 

+}S (rt +rt>- s <I: U;V; ) 2 - } (5-20:) r (u;2- v;2)2. 
1=1 i=l 

The expressions (4.4.9) and (4.4.10) can be used in proving the following 
lemma. 
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Lemma 4.4.3 
Let E be the design consisting of the pairs of SP ( ( w , - rw ) ) with weights 
V = 1/(2n n !) . 
If rand ware such that max d (u ,v ,E) is minimized, then rand w satisfy 

u,v 

n 3 r wz'~= -- , 
i=l n +2 

(4.4.4) 

r = _!__ n + 2 - _!__ .Jn 2 + 8n + 12 . 2 2 (4.4.11) 

Proof 
We shall prove that 2o: = 8, which is equivalent to (4.4.4), by showing that 
2o: ~ 8 implies 2o: = 8 and that 2o: ~ 8 also implies 2o: = 8. The values of 
p, z, t and s are given by (4.4.2). 

n 3 
Suppose 2o: ~ 8, so r w; 4 ~ -- • From (4.4.10) it can be seen that 

i=l n +2 

where 

d (u ,v ,E) ~ d 1(u ,v ,E) , 

n 

di(u,v,E)= y (rf+rn- 2y L U;V; + g (rf-ri) 2 

i= 1 

n 

+ _!_8 (rt + r n - 8 ( L U; V; ) 2 ; 
2 i= 1 

d 1(u ,v ,E) attains its maximal value if u and v satisfy (4.4.6), and the maximal 
value of d (u ,v ,E) is given in (4.4.7). So, 

2 
d (u ,v ,E) ~ 2y + 8 + T . 

According to (4.4.2) we have 8 > y . 
Therefore, it is possible to choose 

1 1 2..±2'._ - .b'._ -
(( 28 )2,( 28 )2,0, ... ,O)' uo= 

and 

Vo= 
I 1 

( (2..±2'._)2 (.b'._)2 )' - 28 ' 28 ,O, ... ' 0 

and it is easily seen that 

2 
d(uo,vo,E) = 2y + 8 + T. 

So, we have to minimize the expression 



2n n (n -1) __ 1_ + n (1-r 2) 2 ( ) 
--- + nwo-1 
(l+r)2 (1-r 2 ) 2 1-wo (n-l)(l+r)4 

n 

with respect to r and w 0 , where w 0 = L w; 4 • 
i= 1 
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This is an increasing function of w 0 for all values of r . Therefore w o has to be 

chosen as small as possible, so w 0 = - 3- and 2a = o . 
n +2 

n 

Now suppose 2a ~ o , so L w; 4 ~ 
i=l 

From (4.4.9) it follows that 

d (u ,v ,E) ~ di{u ,v ,E), 

where 

3 
n +2 

n 
d 2(u,v,E) = y (r{+rl)- 2y L. u;v; + g (r{-rf)2 

i=l 

n 

+ cx (r 14 +ri)- 2cx <L. u;v;)2. 
i= 1 

In a similar way it can be seen that d(u,v,E) is maximal at the pair (ui,v 1) 

where 

2 211 2 211 
([•+•(4cx-y )2]2 [1-l(4cx-y )2]2 0 

2 2 40'.2 , 2 2 40'.2 , ' ..• 

and that 

This last function is decreasing in w 0 , and therefore we find 

Hence 

and 

wo= 3 ---,and 2cx - o. 
n +2 

n 
y= 

(1 +r )2 ' 

0 = 20'. = n(n +2) 
(1-r2)2 , 

2y + 0 + _:f.= 2n + n (n +2) + n 2(1-r 2 ) 2 

u (l+r )2 (1-r 2 ) 2 n (n +2)(1+r )4 

This last fu'1ction has a unique maximum at 

O)' , 

O)' , 
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r = }n + 2-}.Jn 2+8n +12 

This completes the proof. a 

The D- and G-efficiencies of the exact designs given in lemma 4.4.3 are listed in 
table 4.4.4. Again, the results are not satisfactory, since the G-efficiency has a 
value between 40% and 50%. As could be expected, the G-efficiency is higher 
than the value found when using the D-criterion to determine r and w . The 
value of the D-efficiency, of course, is lower. 
In general the number of pairs of the designs given in corollary 4.4.2 and lemma 
4.4.3 equals 2n n !. This number can be reduced by choosing w in a suitable 
way. 
Choose 

W = (w1,W2,0, ... ,0)'. 

Now w must satisfy the conditions w l + w l 
tion being equivalent to 

4 + 4 - 3 
Wt W2 - n +2 • 

The only relevant solution of these equations is 

1 1 
[.! + .!( 4-n )2 J2 

2 2 n +2 ' 
1 1 

W 2 = [_!_ _ _!_( 4-n )2 ]2. 
2 2 n +2 

1 and (4.4.4), the latter condi-

This choice is possible if n ~ 4 . The results are given in table 4.4.4, where <P is 
such that 

w (cosrp , sin<fo , 0, ... , O)' . 

Now we consider the case n ~ 5 . 
We choose 

W = ( W 1 , W 2 , ••• , Wn )' , 

where 

Now w 1 and w 2 must satisfy the conditions 

wf + (n-1) wf 1 ' 

3 
n+2 



The only relevant solution of these equations is 

1 
_!_+ n-1 (-n-)2, w[ 
n n n+2 

and 

1 

w} = _!_ _ _!_ (-n- )2. 
n n n+2 

65 

In general the number of pairs of these designs equals n 2n again. We give 

some further results in the case n = 5 . The number of pairs of the design given 

above is 160. With a method to be discussed in section 5.4.2 the number of pairs 

can be reduced to 80. In the following we construct a design that does not satis

fy conditon (4.4.4). Therefore the D-efficiency and G-efficiency is less than the 

efficiencies of the designs given above. However, the number of pairs equals 40. 
Choose 

w = <}5. }-J2 ,0, ... , O)' . 

This choice of z gives 

y= 

o= 

ex = 

5 
(l+r )2 ' 

40 
(1-r2)2 ' 

40 
3(1-r 2 ) 2 ' 

ex+ 5g = 5 
(l-r2)2 

The maximal value of the variance function equals 

2 + 0 + r = 80( 1- r )2 + 320 + 5(1- r )4 

y 0 8(1-r 2 ) 2 

Minimizing this function with respect to r yields the condition 

r 4 - 12r 3 + 30r 2 - 92r + 9 = 0 

or 

r = 5- 2-./6= 0.1010. 

Maximizing the determinant of the information matrix leads to the same value 

of r as given in the condition (4.4.3), so r = ~ . 

The results of section 4.4.1 are given in table 4.4.4. In this table is 

w the choice made above to reduce the number of pairs of the design, 
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cf> is such that w = (coscf>i.sinc/> 1 ,0, ... , O)' , and 

N is the number of pairs of the design. 

Table 4.4.4 
Values of constants determining the exact desi~ns SP((w, -rw)) given in 
section 4.4.1 , and found by using the D- and G-criteria. 

n 2 3 4 

Criterion D 6 D 6 D 6 

r 0.25 0.1716 0.20 0.1459 0.1667 0.1270 
n 

L W;4 0.75 0.75 0.60 0.60 0.50 0.50 
i=l 

OI. 4.5511 4.2463 8.1380 7.8298 12.6955 12.3968 
0 9.1022 8.4926 16.2760 15.6596 25.3910 24.7935 
y 1.2800 1.4571 2.0833 2.2847 2.9388 3.1492 
g -1.1378 -1.0616 -1.6276 -1.5660 -2.1159 -2.0661 

det (M- 1(E)) 154.44 162.56 8.41 106 8.79 106 1.73 1014 1.79 1014 

D-eff 68.04% 67.35% 59.53% 59.23% 55.59% 55.44% 
d-eff 42.22% 42.89% 43.46% 43.77% 44.29% 44.46% 

w (wi.w2) (wi,w2,0) (wi,W2,0,0) 

Wf ! + !-J2 ! + J_-J2 1 
2 4 2 10 2 

w} ! - !-J2 _!__ - J_-J2 1 
2 4 2 10 2 

cf> 22.5° 31. 72° 45° 

N 8 24 24 
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n 5 

Criterion D o only with respect to r 
D c 

r 0.1429 0.1125 0.1429 0.1010 
n 

L w;'' 0.4286 0.4286 0.50 0.50 
i=l 

0: 18.2368 17.9517 13.8947 13.6097 
s 36.4735 35.9033 41.6840 40.8291 
'Y 3.8281 4.0398 3.8281 4.1246 
g -2.6053 -2.5645 -1.7368 -1.7012 

det (M- 1(e)) 1.974 1024 2.04 1024 2.53 10 24 2.69 1024 
D-eff 53.42% 53.34% 52.77% 52.61% 
G-eff 44.91% 45.01% 40.25% 40.41% 

w ( w i,w 2,w 2,w 2,w 2) (w i,W2,0,0,0) 
w{ -} + ~-A 1 

2 
wj .!_ - .!_-A- 1 

s s 7 2 

N 80 40 

4.4.2. Exact designs consisting of pairs of SP<(w, -rw)) and pairs of 
SP<(x,y)) 

Let x, y and w be points for which condition (4.2.11) holds and let e be 
such that 

n 

cose = I: X; Y; 
i=l 

(4.4.12) 

Consider the sets SP((x ,y)) and SP((w, -rw )), where 0 ~ r < 1. In this 
section we construct exact designs consisting of pairs of SP((x ,y)) and of pairs 
of SP ( ( w , - rw ) ) . In general we choose m 1 pairs of SP ( (x ,y)) and m 2 pairs of 
SP (( w , - rw )) . The values of m 1 and m 2 must be chosen such that the infor
mation matrix of the design has the structure of (4.1.5). Then, in view of 
(4.2.20) and (4.2.23) the information matrix of the normalized design can be 
expressed by (4.2.22), where 

PI 
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s 1 +nt 1 = 0, 

t 1 
2m 1 1 LL (x;2_ y/)(x/- y/)' 

m1+m2 n (n-1) i<j 
2m1 1 LL (x;Xj - Y; Yj )2 , Z1 

m1+m2 n (n -1) i <j 

(4.4.13) 

P2 m2 _.!_ (l+r )2 ' 
m1+m 2 n 

m2 _.!_ (1-r2)2, 
m1+m 2 n 

n 
m2 ( 1 ) (l-r2)2 (1- L w;4), 

m1+m2 n n-1 i=l 

t2 =z2. 

From this it follows that 

(4.4.14) 

Now r and w have to be chosen according to some criterion. First we consider 
the D-criterion. In lemma 4.4.5 conditions for r and w are given. 

Lemma 4.4.5 
Let E be the design defined above and let 0 and r be fixed; det (M (E )) is maxim
ized if 2o: = 0, or equivalently 

n m 1 n sin20 3 L W;4= -2- -- + --
i=l m2 n +2 (1-r 2)2 n +2 

(4.4.15) 

+2~ 1 LL (x;xj - Y;Yj)2 · 
m2 (l-r 2 ) 2 ;<j 

If the condition (4.4.15) is satisfied, then 

(4.4.16) 

z = 

s = 2z , 

p 
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Proof 
As can be seen by investigating the expressions given in (4.4.13) the quantities 
Pi. p 2, s 1 +nt 1 and s 2 + nt 2 only depend on 8 and r. So det (M(e)) is maxi
mal when the expression 

n 

is maximal. This expression only depends on .E w14 and r . This leads to 
i=l 

where 

n 

Wo = L W; 4 

i=l 

Solving for w 0 we obtain 

m1 (1-r 2) 2 

-s1 + 2z1 + 3 m1+m2 n(n-1) 

(n +2) m2 (1-r2)2 

m1+m2 n (n-1) 

wo= 

Using (4.4.14) we find condition (4.4.15) and the expressions (4.4.16). U 

Lemma 4.4.5 shows that under condition (4.4.15) the determinant of the infor
mation matrix depends only on 8 and r • We maximize the determinant of the 
information matrix with respect to 8 and r . Now it is not clear that 8 and r 

should satisfy the conditions 

and 

cos9 = - ..J:'.._ , 
2a 

1 

r = .!.- .!.[1-~]2 . 
2 2 a+~ 

(4.4.17) 

(4.4.18) 

For discrete D-optimal designs this has been proved by use of the fact that a D
optimal design is G-optimal as well. A computerprogram has been written that 
determines the values of cos0 and r for which the determinant of the informa
tion matrix is maximal . This program uses the procedure MINIFUN, described 
in THE-RC38859a(1980). MINIFUN has been designed for non-linear optimali
zation with non-linear constraints. 
Results are given in table 4.4.6. Note that 0 and r do satisfy the equations 
(4.4.17) and (4.4.18). 
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Let us now consider the G-criterion . We have to choose r and w such that the 
maximal value of the variance function is minimized. Again the condition 
2cx = o plays an important role as can be seen intuitively as follows. We have 

where 

and 

max d (u ,v ,E) = maxj d1>d2!, 
u,v 

n n 

d1= max d (ui,vi,E) with .E uf,; L Vf,; = 1' 
u l•vl i=l i= 1 

n 

d2= max d (u 2,v 2,E) with .E ul,; 1 ' 
U2,V2 

max d (u ,v ,E) = 
u ,v 

i=l 

2 

2y + 0 + f- ,if 2cx ~ o, 

2 
2y + 2cx + .L ,if 2cx > o . 

2cx 

Now the same argument as given in the proof of lemma 4.4.3 suggests 2cx = o . 
An argument analogous to this can be given in the case d 2 > d 1 • 

Assuming 2cx = o, and using lemma 4.2.5 we find, 

where 

2 
max d(u ,v,E) = max j 2y + 2cx + .L, y (l+r 2)2 +(ex+ g)(l-r} )2 1 , 

2cx u ,v 

1 

T2 = .!_ - .!_ [1-__ly_l2 
2 2 cx+g 

A computerprogram has been written that determines the values of r and cose 
for which the maximal value of the variance function is minimized, given m 1 

and m 2 • 

Results are given in table 4.4.6. Note that e and r do not satisfy the equations 
(4.4.17) and (4.4.18). The two equations above are given for fixed m 1 and m 2• 

To construct exact designs we have to specify x , y, w , m 1 and m 2 • The values 
of m 1 and m 2 have to be chosen such that the matrix can be expressed by 
(4.2.22). For practical reasons it is useful to choose m 1 and m 2 as small as 
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possible. Moreover, m 1 and m 2 have to be chosen so that the efficiency of the 
designs is high. The design constructed is D-optimal if it satisfies the conditions 
(4.4.15), (4.4.17), (4.4.18) and m 1/m 2 = v 1/v 2• This can be seen as follows. If 
one wants to compute the efficiency of such a design, one has to consider the nor
malized design. Expressions for its information matrix are given in (4.4.13). 

. I I m1 Usmg m1 m2 = V1 V2 , one finds = v 1 2n n ! and 
m1+m2 

m 2 = v 2 2n n ! Substitution of this in (4.4.13) and verification of the con
m1+m2 . 

ditions (4.4.15), (4.4.17), (4.4.18) shows that such a design is D-optimal. As 
can be seen from table 4.2.10 the values of the ratio of v1 and v 2 are: 

n 2 3 4 5 

V1/V2 2.316 4.408 7.163 10.413 

If we choose x, y and w as below, m 2 is small relative to m 1 • 

Choose w = (1,0, ... , O)' , 

so m 2 = q 2 2n with q 2 E N ; 

x = (coscf>.,sincf>.,O, ... , O)' , 

y = (coscf>2,sincf>2,0, ... , O)' , 

so m 1 = q 1 N with q 1 E N and 

4n (n-1) ,if n even, 
N 

2n (n-1) ,if n odd. 

Condition (4.4.15) gives 

cos2(cf>1+cf>2) = _n_ + n-1 m2 (l-r2)2 
(4.4.19) 

n+2 2(n +2) m1 sin29 

It is useful to consider another choice of w . If w is chosen as 

w = } (1,1, ... , 1)' , then the ratio of m 1 and m 2 differs from the ratio of 

m 1 and m 2 of the design mentioned a hove. Therefore the designs with 

w = } (1,1, ... , l)' might have a higher efficiency than the designs men-

tioned above. However, the number of pairs is larger. Choo!le 

x , y as above , 

·and 

w } (1,1, ... , l)' 
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so 

m2 = q2 2n with q2 E N. 

Condition (4.4.15) now gives 

2 n (n-1) m2 (1-r 2 ) 2 
cos (</>1+</>2) = -- -

n+2 n(n+2) m 1 sin20 

Results are given in table 4.4.6. 
In this table r 0 , d 1 andd 2 are defined by 

1 
1 - .![1-~]2 ro = 
2 2 o:+g 

n n 
d 1 = max d (u ,v ,E) with .E u;2 = .E v;2 = 1 , 

u,v i=l i= 1 

n 

d2= maxd(w,-rw,E) with 0 ~ r < 1 ,and .E w; 2 = 1. 
r ,w i=l 

(4.4.20) 

The results are satisfactory. The efficiency of tht designs is good and the number 
of pairs is relatively small, although the number of pairs is larger than the 
number of pairs of the designs given in table 4.4.4. 



Table 4.4.6 
Values of constants, determining the designs given in 
section 4.4.2, and found by using the D- and ~criteria 

n 2 4 

Criterion D a D 
w (1,0) wl) (1,0) wl) (l,0,0,0) 

m1 8 8 8 8 48 

m2 4 4 4 4 8 

m1+m2 12 12 12 12 56 

r 0.1381 0.2026 0.0918 
cos(c/> 1-c/>2) -0.3125 -0.3046 -0.1790 

cos2(c/>1+c/>2) 0.5666 0.4334 0.5666 0.4334 0.7090 

c/> 1 74.69° 78.52° 74.45° 78.28° 66.48° 

c/>2 -33.52° -29.69° -33.28° -29.45° -33.83° 

a 1.4668 1.4675 5.0999 
8 2.9336 2.9350 10.1999 
y 0.9167 0.9003 1.8253 
g 2.3844 2.5285 5.8446 

y /2a 0.3125 0.3067 0.1790 

ro 0.1381 0.1294 0.0918 

di 5.0535 5.0116 14.1772 

d2 4.8931 5.0116 12.9367 
det (M- 1(e)) 22.548 22.776 4.72 1010 

D-eff 99.98% 99.78% 99.91% 

~eff 98.94% 99.77% 98.75% 

73 

a 
(1,0,0,0) 

48 
8 

56 

0.2918 
-0.1700 
0.7090 
66.22° 

-33.57° 

5.1300 
10.2600 

1. 7824 
7.0812 

0.1737 
0.0793 

14.1344 
14.1344 

5.32 1010 

99.06% 
99.05% 



74 

n 3 

Criterion D D D 6 6 6 
w (1,0,0) (1,0,0) wl) (1,0,0) (1,0,0) w i) 

mi 12 24 36 12 24 36 
m2 6 6 8 6 6 8 

mi+m2 18 30 44 18 30 44 

r 0.1596 0.1068 0.0984 0.4098 0.2269 0.0580 
cos(c/>i-<"2) -0.2151 -0.2245 -0.2255 -0.1613 -0.2289 -0.2626 
cos2(</>i +cp 2 ) 0.6996 0.6515 0.5694 0.6999 0.6517 0.5688 

<Pi 67.83° 69.58° 72.02° 66.25° 69.70° 73.14° 
</>2 -34.59° -33.40° -31.01° -33.03° -33.54° -32.09° 

0: 3.3722 3.0309 2.9903 3.4424 3.0560 3.0416 
8 6.7444 6.0619 5.9807 6.8848 6.1121 6.0832 
y 1.4505 1.3610 1.3485 1.3569 1.3231 1.3218 
g 2.0348 4.1056 4.6112 3.1861 4.5387 4.5234 

y/2o: 0.2151 0.2245 0.2255 0.1971 0.2165 0.2173 
ro 0.1596 0.1068 0.0984 0.1158 0.0964 0.0967 

di 9.9573 9.0895 8.9818 9.8660 9.0448 9.0139 
d2 7.0855 8.6420 9.0820 8.1412 9.0448 9.0139 

det (M-i(e)) 1.01105 7.92 104 7.89 104 1.26 105 8.24 104 7.99 104 

D-eff 97.31% 99.96% 99.998% 94.97% 99.53% 99.86% 
G..eff 90.39% 99.02% 99.10% 91.22% 99.50% 99.85% 

1) w = }-J3(1,1,l) . 
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n 5 

Criterion D 

w (1,0,0,0,0) 1}-J5<1,o,o,o,o) I 

m1 40 80 120 160 

m2 10 10 10 16 

m1+m2 50 90 130 176 

r 0.1165 0.0821 0.0632 0.0714 
cos(c/>1-c/> 2) -0.1474 -0.1499 -0.1506 -0.1504 
cos2(c/> 1+c/> 2) 0.7853 0.7503 0.7384 0.7027 

c/>1 63.04° 64.30° 64.71° 65.84° 

c/>2 -35.22° -34.32° -33.95° -32.81° 

<X 8.1351 7.6691 7.5055 7.5714 
0 16.2703 15.3381 15.0109 15.1428 
y 2.3979 2.2995 2.2612 2.2769 
g 3.5116 7.5887 11.6032 9.5987 

y/2a 0.1474 0.1499 0.1506 0.1504 
ro 0.1165 0.0821 0.0632 0.0714 

di 21.4195 20.2818 19.8740 20.0391 
d2 14.3219 17.7454 21.5124 19.6092 

det (M- 1(e)) 1.16 1019 7.311018 7.14 1018 7.09 1018 

D-eff 97.56% 99.84% 99.96% 99.996% 
G-eff 93.37% 98.61% 92.97% 99.81% 
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n 5 

Criterion 

w < 1,0,0,o,o) 1}-J5<1,o,o,o,o) I 
m1 40 80 120 160 
m2 10 10 10 16 

m1+m2 50 90 130 176 

r 0.2196 0.2338 0.0037 0.1539 
cos(cp 1-</>2) -0.1370 -0.1433 -0.1731 -0.1511 
cos2(</J1+</>2) 0.7853 0.7503 0.7386 0.7027 

<P 1 62.74° 64.11° 65.35° 65.87° 
<P2 -35.14° -34.13° -34.61° -32.82° 

(X 8.1638 7.6893 7.5579 7.5840 
0 16.3275 15.3786 15.1159 15.1681 

'Y 2.3621 2.2710 2.2289 2.2584 
g 3.8868 8.5330 11.4888 10.0235 

'Y /2o: 0.1447 0.1477 0.1475 0.1489 
ro 0.1101 0.0757 0.0624 0.0689 

di 21.3935 20.2560 19.9023 20.0211 
d2 14.6710 18.6647 21.4144 20.0211 

det (M- 1(e)) 1.21 1019 7.87 1018 7.27 1018 7.23 1018 

D-eff 97.34% 99.47% 99.87% 99.90% 
G-eff 93.49% 98.74% 93.40% 99.89% 
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4.5. Robustness of the designs 

In this section we discuss the robustness of the designs given in section 4.3 

against violation of the condition /3 = 0. In general condition (1.8.6) is not 

satisfied and the designs, that are D-optimal in the case /3 = 0 are not D-optimal 

when /3 ;r: 0. However, /3 is the vector of parameters which should be 

estimated from the experiment which is being designed. Results given in this 

section concerning the robustness of these designs are satisfactory. Therefore, 

the D-optimal designs in the case /3 = 0 are useful in practical applications. We 

shall discuss the D-efficiency of some of these designs for several values of /3 . 
Let Eo be a design and /3 = /3 0. The information matrix is denoted by 

M (Eo I /3 = /3 0 ) • The D-efficiency of this design equals 

I 

det (M (E 0 I /3 = /3 0)) 7' 

max det (M (E I /3 = /3 0)) 
E 

In order to compute the value 

max det (M (E I /3 = /3 0)) 
E 

(4.5.1) 

D-optimal designs have to be constructed in the case /3 = {3 0 • This is a rather 

cumbersome task and it seems that it can only be done by maximizing 

det (M (E I /3 = {3 0)) numerically. But then one cannot be sure that the absolute 

maximum has been found; the procedure may lead to a local maximum. It is 

easy, however, to compute a lower bound for the D-efficiency by using the fol

lowing lemma. 

Lemma 4.5.1 
A lower bound for the D-efficiency of the design Eo in the case /3 = /3 0 is given by 

det M(E 0 I /3 = /3 0 )) 7' 

max det (M (e I /3 = 0)) 
(4.5.2) 

E 

Proof 
We prove that 

max det (M (E I /3 = /3 0)) ~ max det (M (E I /3 = O)) . 
E E 

Let E1 , consisting of the pairs (u; ,v;) with weight p (u; ,v;) , i = 1, ... , N, be a 

design where det (M (E I /3 = /3 0)) is maximal. Let A.(u ,v) be as defined in 

(2.3.19) and (2.3.20). Now it is easy to see that 

A.(u ,v) ~ { , 

and 
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Define 

and 

;\(u ,v) = _!_ for all u ,v if and only if /3 = 0. 
4 

p(u; ,v;) = 4p (u; ,v;) ;\ (u; ,v;) , 

N 

ji(u; ,v;) = p(u; ,v; )/( r p(u; ,v; )) . 
i = 1 

Now we have 

det (M(E1 I /3 = /30)) 

N 

det ( r p (u; ,V;) ;\(u; ,v; )(/ (u;) - I (v; )) (/ (u;) - I (v; ))') 
i=l 

n 

det (i~l p(u; ,v;) {(f (u;) - f (v; )) (/ (u;) - f (v; ))') 

N 

~ det (I: ji(u; ,v;) i<t (u;) - t (v;)) (/ (u;) - f (v; ))') 
i= 1 

= det (M(E 2 I f3 = 0)) ~ max det (M(E I /3 = 0)) , 
E 

where E 2 is a design consisting of the pairs (u; ,v;) with weight ji(u; ,v;) , 
i=l, ... ,N. 0 

In table 4.5.2 lower bounds for the D-efficiency of some designs are given for 
several values of f3 . The designs considered are designs which are D-optimal 
when f3 = 0 . For n = 2 three designs are given for each value of f3 . The lower 
bounds for the D-efficiency of these designs are approximately the same. There
fore only one design has been chosen in the cases n = 3, 4, 5 . It is the design 
for which 

w = );- (1, ... 'l)' . 

In this table the smallest value of 'TT;. ij is listed. This is the smallest value of 

where 

log rr, = (/ (x ))' /3 0 

and (u ,v) is a pair of the design. 
It is also possible to compute lower bounds for the D-efficiency by using 
theorem 2.3.9. Doing so, one has to compute max ;\(u ,v) d (u ,v ,E). This is not 

u,v 
easy, though it is not as difficult as computing max det (M (E )) . For n = 2 

E 
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lower bounds are computed by means of theorem 2.3.9 and the procedure MINI
FUN to determine the maximal value of A(u ,v) d (u ,v ,E). 

Results are given in table 4.5.2. The lower bounds found by this method are 
approximately the same as the lower bounds found with lemma 4.5.1. In view 
of this, lemma 4.5.1 is used to find lower bounds in the cases n = 3, 4, 5 . 

Table 4.5.2 
Lower bounds for the D-efficiency of some designs 

11 n = 2 I !smallest I lower bounds I 
I /30 I value I using(4.5.2) 1<2.3.28) I 

/31 /32 /311 /312 /312 of 'TT'; .iJ w=o· 22.5° 45• w=o· 

0.05 0.05 0.05 0.05 0.05 0.4650 0.998 0.998 0.998 0.997 
-0.05 0.05 0.05 0.05 0.05 0.4650 0.998 0.998 0.998 0.997 

0.05 0.05 -0.05 0.05 0.05 0.4495 0.998 0.998 0.998 0.997 
0.1 0.1 0.1 0.1 0.1 0.4304 0.993 0.993 0.993 0.993 

-0.1 0.1 0.1 0.1 0.1 0.4304 0.993 0.993 0.993 0.993 
0.1 0.1 -0.1 0.1 0.1 0.3999 0.990 0.990 0.990 0.991 
0.3 0.3 0.3 0.3 0.3 0.3014 0.940 0.940 0.941 0.935 

-0.3 0.3 0.3 0.3 0.3 0.3014 0.940 0.940 0.940 0.938 
0.3 0.3 -0.3 0.3 0.3 0.2284 0.921 0.921 0.921 0.927 
0.5 0.5 0.5 0.5 0.5 0.1977 0.851 0.853 0.854 0.824 

-0.5 0.5 0.5 0.5 0.5 0.1977 0.851 0.851 0.850 0.844 
0.5 0.5 -0.5 0.5 0.5 0.1162 0.813 0.814 0.815 0.813 
1 1 1 1 1 0.0572 0.597 0.608 0.616 0.410 

-1 1 1 1 1 0.0572 0.602 0.596 0.587 0.595 
1 1 -1 1 1 0.0170 0.546 0.554 0.558 0.45.3 

0.1 0 0 0 0 0.4622 0.997 0.997 0.997 0.997 
0.3 0 0 0 0 0.3882 0.976 0.976 0.976 0.980 
0.5 0 0 0 0 0.3190 0.936 0.936 0.935 0.945 
1 0 0 0 0 0.1800 0.786 0.784 0.782 0.801 
0 0 0.1 0 0 0.4755 0.999 0.999 0.999 0.992 
0 0 0.3 0 0 0.4268 0.991 0.991 0.991 0.990 
0 0 0.5 0 0 0.3796 0.974 0.974 0.974 0.972 
0 0 1 0 0 0.2724 0.903 0.903 0.902 0.892 
0 0 0 0 0.1 0.4822 0.999 0.999 0.999 0.999 
0 0 0 0 0.3 0.4468 0.992 0.992 0.992 0.991 
0 0 0 0 0.5 0.4119 0.979 0.979 0.979 0.975 
0 0 0 0 1 0.3291 0.920 0.919 0.918 0.903 
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I n=3 ~mallest j I 
f3o value I lower I 

f31 {3 2 {33 f311 f322 {333 f312 {313 {3 23 of1T;.;J bound 

0.05 0.4817 0.9995 
0.1 0.4634 0.9982 
0.2 0.4272 0.9927 
0.3 0.3918 0.9837 
0.5 0.3245 0.9560 
1 0.1875 0.8467 

0.05 0.4920 0.9999 
0.1 0.4840 0.9994 
0.2 0.4681 0.9976 
0.3 0.4522 0.9946 
0.5 0.4207 0.9850 
1 0.3453 0.9424 

0.05 0.4908 0.9999 
0.1 0.4816 0.9996 
0.2 0.4633 0.9983 
0.3 0.4451 0.9963 
0.5 0.4092 0.9897 
1 0.3241 0.9604 

0.05 0.05 0.05 0.4748 0.9986 
0.1 0.1 0.1 0.4498 0.9948 
0.2 0.2 0.2 0.4006 0.9782 
0.3 0.3 0.3 0.3533 0.9522 
0.5 0.5 0.5 0.2675 0.8765 
1 1 1 0.1176 0.6296 

0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.4516 0.9982 
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4041 0.9928 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3150 0.9720 
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2377 0.9394 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.1254 0.8505 
1 1 1 1 1 1 1 1 1 0.0201 0.5980 

-0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3047 0.9388 
-0.3 0.3 0.3 0.3 0.3 -0.3 0.3 0.3 0.3 0.3047 0.9272 
-0.3 0.3 0.3 -0.3 0.3 0.3 -0.3 0.3 0.3 0.3169 0.9241 

The entries that are not given in this table are zero. 
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II n=4 I 
/30 value of the smallest 

non zero non zero value lower 

parameters parameters of 7T; • ;j bound 

/31 0.05 0.4818 0.9996 
0.1 0.4636 0.9986 
0.2 0.4275 0.9945 
0.3 0.3923 0.9878 
0.5 0.3253 0.9673 
1 0.1886 0.8878 

/311 0.05 0.4927 0.9999 
0.1 0.4854 0.9996 
0.2 0.4709 0.9984 
0.3 0.4564 0.9965 
0.5 0.4276 0.9903 
1 0.3583 0.9624 

/312 0.05 0.4901 0.9999 
0.1 0.4802 0.9998 
0.2 0.4605 0.9990 
0.3 0.4408 0.9978 
0.5 0.4022 0.9939 
1 0.3166 0.9766 

/3; ,1 ~ i ~ 4 0.1 0.4461 0.9945 
0.3 0.3432 0.9524 
0.5 0.2532 0.8776 
1 0.1031 0.6364 

/3u ,1 ~ i ~ 4 0.1 0.4752 0.9997 
0.3 0.4260 0.9973 
0.5 0.3783 0.9926 
1 0.2703 0.9726 

/3u ,1 ~ i < j ~ 4 0.1 0.4628 0.9985 
0.3 0.3901 0.9867 
0.5 0.3219 0.9638 
1 0.1839 0.8664 

/3; ./3u ,1 ~ i ~ j ~ 4 0.05 0.4422 0.9982 
0.1 0.3859 0.9927 
0.2 0.2831 0.9718 
0.3 0.1988 0.9393 
0.5 0.0892 0.8515 
1 0.0095 0.6117 
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II n=5 

I f3o 

,, 
I value of the smallest 

non zero non zero value lower 
parameters parameters of TT; . ij bound 

f31 0.05 0.4818 0.9989 
0.1 0.4637 0.9973 
0.2 0.4278 0.9956 
0.3 0.3926 0.9903 
0.5 0.3258 0.9736 
1 0.1893 0.9060 
1.5 0.1014 0.8202 
2 0.0517 0.7345 

f311 0.05 0.4933 0.9999 
0.1 0.4865 0.9997 
0.2 0.4731 0.9990 
0.3 0.4597 0.9976 
0.5 0.4331 0.9932 
1 0.3685 0.9735 
1.5 0.3083 0.9425 
2 0.2540 0.9028 

f312 0.05 0.4896 0.99996 
0.1 0.4793 0.9998 
0.2 0.4586 0.9993 
0.3 0.4381 0.9985 
0.5 0.3978 0.9959 
1 0.3039 0.9844 
1.5 0.2238 0.9672 
2 0.1600 0.9469 
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/3; ,1 .::::; i .::::; 5 0.05 0.4701 0.9986 
0.1 0.4405 0.9945 
0.2 0.3827 0.9784 
0.3 0.3280 0.9525 
0.5 0.2322 0.8767 
1 0.0838 0.6243 
1.5 0.0269 0.3988 
2 0.0083 0.2446 

/3;; ,1 .::::; i .::::; 5 0.05 0.4876 0.99995 
0.1 0.4751 0.9998 
0.2 0.4504 0.9991 
0.3 0.4259 0.9981 
0.5 0.3781 0.9947 
1 0.2699 0.9803 
1.5 0.1835 0.9600 
2 0.1202 0.9370 

/3ij ,1 .::::; i < j.::::; 5 0.05 0.4751 0.9996 
0.1 0.4504 0.9984 
0.2 0.4018 0.9934 
0.3 0.3550 0.9853 
0.5 0.2699 0.9599 
1 0.1202 0.8531 
1.5 0.0481 0.7093 
2 0.0183 0.5590 

/3; ./3ij ,1 .::::; i .::::; j .::::; 5 0.05 0.4332 0.9982 
0.1 0.3687 0.9927 
0.2 0.2544 0.9715 
0.3 0.1662 0.9385 
0.5 0.0637 0.8482 
1 0.0046 0.5946 
1.5 0.0003 0.4052 
2 0.0000 0.2830 
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5. Designs in the case of a quadratic model with a hypercube as experi
mental region 

5.1. Introduction 

In this chapter the parameters of the model are the same as in chapter 4, 
but the experimental region is now a hypercube. So, we have 

where 

f(x)= (x1, ... ,Xn,xl, ... ,Xn2,X1X2,····Xn-1Xn)', 

x E X , X C Rn ,x = (x i. ... , Xn )' , 

X = j x E Rn I -1 ~ x; ~ 1 for all i f . 

(5.1.1) 

(5.1.2) 

For the construction of optimal designs the assumption 7T1 = ( 1, ... , 1 )' is 
made. In section 5.2 D-optimal designs are given. The D-optimality is proved in 
section 5.3. Discrete D-optimal designs with a relatively small number of pairs 
are given in section 5.4. Exact designs are considered in section 5.5 and in sec
tion 5.6 we will discuss the robustness of the discrete designs constructed in sec
tion 5.2 against violation of the assumption 7T1 = (1, ... , l)' . 

Again (4.1.4) holds and the assumptions (4.1.5) and (4.1.6) concerning the 
structure of the covariance matrix are made. The variance function can be 
expressed by (4.1.8). 

5.2. Discrete D-optimal designs 

Again it is important to investigate the variance function. If the variance 
function d (x ,y ,E) of a design E can be expressed by (4.1.8), then d (x ,y ,E) 
satisfies (3.1.8) and (3.1.9). In chapter 4 D-optimal designs were proved to be 
strongly rotatable. In the case of a hypercube as experimental region D-optimal 
designs have the following property. 

d ( (x lo · · · , x, , · · · , Xn ),(y 1, · · · , Y; , · · · , Yn ),E) (5.2.1) 

= d ((x i.,,. 'Y;' ... 'Xn ),(ylo ... 'X;' •.. 'Yn ),E) 

for all x , y and 1 ~ i ~ n . 

In the next lemma a condition equivalent to property (5.2.1) is given. 

Lemma 5.2.1 
Let E be a design with covariance matrix of type ( 4.1.6). The design E has proper
ty ( 5.2.1) if and only if 

( 5.2.2) 



Proof 
Let d 1 andd2 be defined by d 1 = d (x ,y ,E) and 

d2= d((xi. ... ,y;, ... ,xn),(y1, ... ,X;, ••• ,yn),E). 

Then, using (4.1.8) we find 

d1-d2= 
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0 L (x;2x/ + y;2y/ - y; 2x/ - x;2y/) +4 g (x;2 - y;2) L (x/- y/) 

(o + 40 (x; 2 - y/) .L (x/ - y/). 
j"' i 

The last expression vanishes for all x , y E X if and only if O = - 4g . 0 

The lemmas 5.2.2 and 5.2.3 are useful in finding pairs where the variance func

tion is maximal. The proofs of these lemmas are given in section 5.3, because 

they can be regarded as part of the proof of the D-optimality of the designs con

sidered in this section. 

Lemma 5.2.2 
Let E be a design with covariance matrix of type ( 4.1.6). If d (x ,y ,E) is maximal 

at (x ,y) = (u ,v ), then for all 1 ~ i ~ n 

I u; I = 1 or IV; I = 1 . 

According to lemma 3.2.1 we have I u; I = IV; I = 1 for all 1 ~ i ~ n . This 

does not hold in the case of a quadratic model as can be seen as follows. Suppose 

that it holds, then a D-optimal design consists of pairs of this type. However, 

such a design does not measure the quadratic effects, since u;2 = v;2 = 1 for all 

l~i~n. 
Having obtained one pair where the variance function is maximal, one can find 

more pairs having this property. This might be useful in the construction of 

optimal designs. Let (u ,v) be a pair where the variance function is maximal and 

let k 1 be the number of pairs of coordinates (u; ,v;) for which u; = v; , and k 2 

the number of pairs (u; ,v;) for which u; = -v; . Now, using (3.1.8), (3.1.9) 

and -if it holds- (5.2.1), other pairs can be found where the variance function is 

maximal; for example the pair (u,v) with 

u = (1, ... '1)' ' 

v; 1 for 1 ~ i ~ k 1 , 

and 

- 1 < Vj < 1 for k I + k 2 < i ~ k 2 . 

This will be used in the next lemma and definition. 
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Lemma 5.2.3 
Let E be a design with covariance matrix of type ( 4.J.6) and 8 = -4g . Let (u ,v) 
be a pair where the variance function is maximal and assume (without loss of gen
erality) that 

u - (1, .... 1)' , 

where 

k 1 is the TUJ.mber of l's in v , 

k 2 is the TUJ.mber of - 1 's in v , 

and 

- 1 < V; < 1 /or k 1 + k 2 < ~ n . 

Then 

V; = vi for all i ,j with k 1 + k 2 < i ,j ~ n . 

In the light of these lemmas it is useful to define the following sets of pairs. 
Definition 5.2.4 
Let the pair (u ,v) be as defined in lemma 5.2.3 , with v; = w for 
k 1 + k 2 < i ~ n if k 1 + k 2 < n , and let v = ( 1, .... 1, - 1, .... - 1) if 
k i + k 2 = n . Let k 3 = n - k 1 - k 2 • Now define 

S (k i.k 2.k 3; w ):= S ((u ,v)) , 

SP(ki.k2,k3;w):= SP((u,v)), 

and 

SP1 (0,0,n; w) is the set containing the pairs of SP (0,0,n; w) and all pairs that 
can be obtained by replacing l pairs of coordinates (u; ,v;) by (v; ,u;) as is done in 
(5.2.J). 

The information matrices of these sets are denoted by replacing the letter S by the 
letter M, so MP (k i,k 2,k 3; w ) is the information matrix of SP (k i,k 2 ,k 3; w ) . 

The number of pairs of the above sets is as follows 

2n pairs ,if k3 ~ 0, 

2n-l pairs ,if k3 = 0. 

SP (k i,k 2 ,k 3 ; w ) contains 



SP1 (O,O,n; w) contains 

,if l ~ .!n 
2 

( n )2n-I pairs if l = .!n 
.!n ' 2 
2 
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The set SP (k i,k 2 ,0; w ) coincides with the set S (k 1,k 2) given in definition 3.2.2. 

Expressions for the information matrices of the sets given in definition 5.2.4 are 
presented in lemma 5.2.5. 

Lemma 5.2.5 
Let 

with 

g (1-w )2 , h 

Then 

and 

Let 

P2 

(5.2.3) 

(l+w )2. 

,if k3 > 0, 

(5.2.4) 

,if k3 = 0. 

(5.2.5) 
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Then 

and 

Proof 

s2+t2 = <7)gh 2n, 

t2 [ (7)- 4(7~;)] gh 2n 

Z2 [ (7) - 2(7~f)) gh 2n 

MP1(0,0,n; w) = 

1 MP 1 (0,0,n;w)= 2 2n 

,if l ;r: _!_n 
2 

(5.2.6) 

It is easy to prove these results by applying the general expression for 
MP((u ,v )) given in (4.2.20). Note that the results of (4.2.20) are related to the 
case where MP((u ,v )) contains n !2n pairs. 0 

Let e be a design for which the variance function can be expressed by (4.1.8). 
For all pairs (x ,y ) belonging to SP (k i,k 2 ,k 3; w ) the variance function d (x ,y ,E) 
has the same value. The value that is attained by the variance function at the 
pairs of SP (k i,k 2 ,k 3 ; w ) is denoted by d (k i,k 2 ,k 3 ; w ) and can be expressed by 

(5.2.7) 

where 

g = ( 1-w ) 2 , and h = ( 1 + w )2 . 

Moreover, if E is a design of type (4.1.6), and if 8 = -4g holds, then -by 
lemma 5.2.1- the value of the variance function is the same for all pairs belong
ing to SP1 (0,0,n; w ). This value can be expressed by 

d (0,0,n; w) = n g y + (~)gh 8 + n gh a + n 2 gh g . (5.2.8) 



If k 3 = 0, then d (k i.k 2,k 3; w) is denoted by d (k 1,k 2), and we have 

d (k i.k 2) = 4k 2 y + 4k 1k 2 s . 
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(5.2.9) 

Note that contrary to (3.2.7) in (5.2.7)-(5.2.9) reference to the design E has been 
suppressed. Whenever the above notations are used, it will be clear to what 
design E they are related. It will appear that a D-optimal discrete design can be 
found by choosing a combination of sets as defined in definition 5.2.4 and suit
able weights. Such a combination can be obtained by using a procedure similar to 
procedure 2.3.8. Start with some combination of sets and compute weights by 
maximizing the determinant of the information matrix. Leave out those sets for 
which the weights are not positive. Compute the maximal value of the variance 
function using lemma 5.2.3 and add the sets that contain pairs where d (x ,y ,e) 

is maximal. Now a new combination has been found, and this step is repeated 
with the new combination. This process converges and a D-optimal discrete 
design can be found. Again it is not a priori obvious that this procedue con
verges, because the condition S = -4f is used. In section 5.3 it will be proved 
that S = -4f . Then, it is clear that the procedure converges in the same way as 
procedure 2.3.8. In the following sections D-optimal designs will be presented. A 
method to prove the D-optimality of these designs will be given in section 5.3. 
In this section some remarks are made about computing the information 
matrices of these D-optimal designs. We distinguish between three cases: 

i) n ~ 6 , n even, 

ii) n ~ 3 , n odd , 

iii) n = 2 or n = 4 . 

The information matrix and covariance matrix of the designs given in section 
5.2.1, 5.2.2 and 5.2.3 are given by (4.1.5) and (4.1.6). 

5.2.1. Discrete D-optimal designs in the case n ~ 6 , n even. 

We shall present a D-optimal design e that consists of 4 sets of the type 
given in definition 5.2.4. The information matrices of these sets are denoted by 
M; , i = 1, 2, 3, 4, where 

p;l 

S; I +t;l 

z;J 

Consider the design, consisting of 

i) the pairs of sqn-1,jn+l) with weights JJ1; 

the number of these pairs is (.!.nn_ 1)2n-I, 
2 

(5.2.10) 
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n-1 
P 1 = 2( _!_n - 1 )2n ' 

2 

s1=t1=0, 
n-2 

Z1 = 4(.!_n- 2 )2n , 
2 

d (_!_n-1,.!_n +1) = (2n +4) y + (n-2)(n +2) 8, 
2 2 

ii) the pairs of S <{n .{n ) with weights v 2 ; 

the number of these pairs is ( 1n )2n-l, 
2n 

iii) the pairs of SP (0,0,n; w 1) with weights µ ; 

the number of these pairs is 2n , 

p3 = g1 2n , 

S3 = 0, 

t3=g1h12n, 

Z3=g1h12n, 

with g1 = (l-w1)2 , h1 = (l+w1)2 • 

iv) the pairs of SP 1 (0,0,n; w 1 ) with weights A 
Y' 

the number of these pairs is ( t )2n-l , 
2n 

p4= ( n) 2n-l 
_!_n g1 ' 
2 

n-2 
2(.!_n-l) g1h1 2n , 

2 

S4+t4= (1n)g1h12n-l, 
2n 

Z4 = [(_fn)- 2 (_fn-=-_21)] g1h1 2n-l 
2 2 

the value of the variance function in the pairs of this set equals 

(5.2.11) 

(5.2.12) 



d (0,0,n; w 1) if and only if o = -4E . 

The total number of pairs of the design E equals 

N = [l + 3n +4 ( n )]2n 
2n .!_n-1 

2 
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(5.2.14) 

If one assumes that the design E is D-optimal then the information matrix M (E) 

can be derived without computing the weights of the pairs of the design. The 
variance function is maximal at the pairs of the design and the maximal value 
equals }n (n +3). Using (5.2.11), (5.2.12), (5.2.13) and lemma 5.2.1 , we find 

(2n +4) y + (n-2)(n +2) O =} n(n +3), 

4 y + 2n O = n + 3 , 

gi Y + }(n-1) g1h1 0 + g1h1 o: + n gih1 E = }(n +3), 

o = -4E 

(5.2.15) 

(5.2.16) 

(5.2.17) 

(5.2.18) 

The function d (0,0,n; v) considered as a function of v is maximal at v = w 1; 

this yields 

i 
- - i + i [1- 2y ]2 w i - - - t i ( \S:, • 

2 2 o:+n 5 +_ n-lJU 
2 

Solving the equations (5.2.15)-(5.2.19) we obtain 

..., = 0 = n +3 
I 2n +4 ' 

(l-wi)3 + 2(n +2)w1 = 0; 

the value of o: can be computed by means of (5.2.17). 

(5.2.19) 

(5.2.20) 

(5.2.21) 

Now, the weights Vi, v 2, µ and,\ can be computed from the equation 

M(e) = vi M1 + v2 M2 + µ M3 + .\ M4. 

This yields 

p 2(n- l) 2(n-l) gi (n- l)gi 

s 0 0 0 n gihi 

t =b 0 0 gih1 -g1hi 

z 2(n-2) 2n g1h1 }(n-2)g1h1 

where 

Vi 

V2 

(5.2.22) 

* (5.2.23) 
µ 
.\ 
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and 

b 2n+1_!_ ( n-2) 
n _!_n-1 ' 

2 

Solving for v i. v 2, A and µ. we find 

1 n+2 + _!_s l11 = 
b 2(n-l)(n+3) 8 

1 n+2 _!_s l12 = 
b 2(n -l)(n +3) 8 

A.= s 

µ. = 
n g1h1 2n 

+ 

Results for n = 6 are given in table 5.2.7. 

_!_t (s +t )n 1 (5.2.24) 
4 4(n -1) h 1 

_!_t + 
(s+t)(n-2) 1 I 4 4(n -1) hi 

, 

In section 5.3 it will be shown that the set of pairs of any discrete D-optimal 
design is contained in the union of the sets S ( jn -1,jn + 1 ), S ({n ,jn ) and all 

SP1(0,0,n;w 1 ) with 0 ~ l < n . The design E is not D-optimal in the case 
n = 2 or n = 4. Solving the equations (5.2.24) in the case n = 2 yields a 
negative value for v 1 . The results in the case n = 4 are 

a 2.5580 
8 0.5833 
y 0.5833 
g -0.1458 

It can be shown that the variance function is maximal at the pairs of the set 
SP(l,2,1; 0) and that the maximal value is equal to 14.079. Therefore, the 
design is not D-optimal. 

5.2.2. Discrete D-optimal designs in the case n ~ 3 , n odd. 

We will give a D-optimal design consisting of 3 sets of the type given in 
definition 5.2.4. The information matrices of these sets are again given by 
(5.2.10). Consider the design consisting of 

i) the pairs of S <{(n -1),j(n + 1)) with weights v 1; 

the number of these pairs is ( 1 n 1 )2n-l, 
2n-2 

_ 2( n-1 )2 n 
Pi - _!_n-_!_ , 

2 2 

St= t1 = 0, 



_ 4 ( n-2 )2 n 
Z1 - 1 3 ' 

2n-2 

d(j(n-1),j(n+l))= (2n+2)y + (n-l)(n+1)8, 

ii) the pairs of SP(O,O,n; w 1) with weightsµ; 

the information matrix of this design has been given in section 5.2.1. 

iii) the pairs of SP!...(n-l)(O,O,n; w 1) with weights A; 
2 

the number of these pairs is ( 1 n 1 )2n , 
2n-2 

p3 = (.!.n~.!.) g1 2n , 
2 2 

n-2 
s3= 4(1 3)g1h12n, _n-_ 

2 2 

s 3 + t 3 = ( 1 n 1) g 1h 1 2n , 
2n-2 

z3= [(1n1)-2(1n- 23)]g1h12n 
2n-2 2n-2 

The total number of pairs of the design equals 

N = [ 1 + ~ ( 1 n 1 ) ] 2n 
2 2n-2 

Recalling the fact that a D-optimal design is G-optimal, we find 

2(n +2) y + (n-l)(n +l) 8 = j n (n +3), 

4 y + 2n 8 = n + 3 , 

8 = -4 g 

2 .!. 
W - - 1 + 1 [1- ] 2 

1 - - - {; 1 ( )s;, • 
2 2 cx+n~+- n-1 u 

2 
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(5.2.25) 

(5.2.26) 

(5.2.27) 

(5.2.28) 

(5.2.29) 

These are four equations with five unknown variables. As a fifth equation we 

use 

M(E) = Vi M1 + µ M2 +'A M3, (5.2.30) 

i.e., 

p PI P2 p3 

s 0 0 S3 v 
• 

t 0 t2 t3 
µ 

'A 

(5.2.31) 

z Z1 Z2 Z3 
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This yields 

-z3t2+z2t3 Z2 1 
Z 1t 2S3 z 1t 2 Zt 

v s 
t3 1 

0 µ t 

A. t 2S3 t2 
z 

1 
0 0 

S3 

Substituting this inp = p 1 v 1 + p 2 µ + p3 A, we obtain 

p = z + (-1- - 1) t + (-1- - _21) s , 
hi hi 

or 

_!_ = ..!_ - ( _!_ - 1) g + ( _!_ - .!_) _!_ . 
y O h 1 o:(o: + n g) h 1 2 a: 

(5.2.32) 

(5.2.33) 

(5.2.34) 

The five equations (5.2.26)-(5.2.29), and (5.2.34) can be solved numerically. 
The weights can be computed by means of (5.2.30). The set of pairs of any 
discrete D-optimal design is contained in the union of the sets S (-}n -1,-}n + 1) 

and all SP1(0,0,n; w 1) with 0 ~ l < n . Some results are given in table 5.2.7. 

5.2.3. Discrete D-optimal designs in the case n = 2, 4 

We give a D-optimal design consisting of 4 sets of the type given in section 
5.2.4. The information matrix of these sets are denoted by (5.2.10). Consider 
the design consisting of 

i) the pairs of S C-}n ,jn) with weights V2 , 

ii) the pairs of SP ( 0,0,n ; w 1) with weights µ , 
iii) the pairs of SP 1 ( 0,0,n ; w 1 ) with weights A 

2n 

results concerning the information matrices of these sets are given in section 
5.2.1 and 5.2.2 , 

iv) the pairs of SP <-}n -1,-}n ,1; w 2) with weights p ; 

the number of these pairs, say N 4, equals 

8 ,if n 2 , 

192 ,ifn 4, 
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(16+4g2)/ 

------1 
I 4g2h2I , if n 2, 

I ______ I ___ _ 

I 

(384+ 48g 2)/ 

I , if n 4' 
__________ ! _________ _ 

: (256 + 32g 2+ 64h 2)1 

where 

g2 = (l-w2)2 , h2 = (l+w2)2 , 

d(-}n-l,-}n,l;w2)= 2n y + g2Y + n(n-2)8 +q.n-l)g28 

+ }n h 2 8 + a g 2h 2 + g g 2h 2 . (5.2.35) 

Using similar arguments as in section 5.2.1 and 5.2.2 we find the equations 

2 y + n 8 = } (n +3) , 

g 1 y + }(n - 1) g 1h 1 8 + g 1h 1 <X + n g 1h 1 g = j(n + 3) , 

8 = -4 g' 
2n y + g 2 y + n ( n - 2) 8 + C }n - 1 )g 2 8 

(5.2.36) 

(5.2.37) 

(5.2.38) 

+ }n h2 8 + OI. g2h2 + g g2h2 = }n (n +3), (5.2.39) 

1 
- 1 1 [ 2 ]2 ( ) WI - - "2 + "2 1- /: I ( )~ , 5.2.40 

a+n~+ 2 n-1 u 

2(a + 0 w] + [(n-1) 8 + y - 2(a + g)]w2 + 8 - y = 0. (5.2.41) 

The equations (5.2.36)-(5.2.41) can be solved numerically. Results are given in 
table 5.2.7, and for n = 2 in figure 5.2.6; the arrows indicate the pairs. In table 
5.2. 7 NP denotes the number of pairs of the corresponding subset of E. In the 
row marked with % the total weights of the subsets are given as percentages. 
ND denotes the number of pairs of the design E, and ND equals 
}n (n +l)(n +2)(n +3)(n +4), the number given in (4.1.4). 
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Figure 5.2.6 n = 2 
. · the case AD-optimal design m 

s ( 1,1) 

v 2 = 0.02480 

DI 
SP(0,0,2; w1) 

w 1 = -0.15029 

µ = 0.04621 

A= 0.02975 

W 2 = -0.12002 

p = 0.07462 

Pairs 
((l,l),(1,-1)) 

((1,1),(-1,1)) 

((1,1),(-1,1)) 

((1,1),(1,-1)) 

((1,1),(w i,w1)) 

((-1,1),(-w i,W 1)) 

(( l,-1),(w 1,-w I)) 

((1,1),(-w 1,-w 1)) 

((1,w i),(w i,l)) 

((- l,w1),(-wi,l)) 

((1,-w 1),(w i.- l)) 

((-1,-w i),(-w i.-1 )) 

((1,1),(-1,w 2)) 

((- l,-1),(1,-w 2)) 

((-1,1),(1,w 2)) 

((l ,-1),(-1,-w 2)) 

((l,l),(w2,-l)) 

((-1,-1),(-w 2,1)) 

((1,-1),(w 2,1)) 

((-1,1),(-w 2,-1)) 
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Table 5.2.7 
Values of constants determining discrete D-optimal designs 
and the information matrices of these designs 

n 2 3 4 5 6 7 

a: 1.933 2.279 2.589 3.015 3.331 3.760 
0 0.756 0.618 0.599 0.578 0.563 0.559 
y 0.494 0.507 0.553 0.510 0.563 0.510 
g -0.189 -0.155 -0.150 -0.145 -0.141 -0.140 

W1 -0.150 -0.118 -0.107 -0.080 -0.078 -0.061 
W2 0.120 0.018 

det1) 0.5541 0.2901 0.1484 0.2737 10- 1 0.5771 10- 2 0.352210- 3 

V1 0.425 10- 1 0.402 10-2 0.146 10-3 0.32110-3 

NP 12 160 480 2240 
% 51.0% 64.3% 7.0% 71.9% 

V2 P.248 10-1 0.11110-2 0.952 10-3 

NP 4 48 640 
% 9.9% 34.1% 60.9% 

µ D.462 10-1 0.18910- 1 0.678 10-2 0.24110- 2 0.106 10- 2 0.516 10-6 

NP 4 8 16 32 64 128 
% 18.5% 15.1% 10.8% 7.7% 6.8% 0.007% 

A D.298 10-1 0.141 10- 1 0.492 10-2 0.875 10-3 0.396 10-3 0.105 10-3 

NP 4 24 48 320 640 4480 
% 11.9% 33.8% 23.6% 28.0% 25.3% 28.1% 

p D.74ti 10- 1 0.164 10-2 

NP B 192 
% 59.7% 31.4% 

ND 20 44 304 512 1824 6848 

ND 15 45 105 210 378 630 

1) det = det (M- 1(e)) 
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5.3. A method to prove the D-optimality of the designs given in section 5.2 

There are two reasons for calling this section "A method to prove the · · · " 
and not "Proof of the · · · ". 

1. The D-optimality of a design is proved by computing the maximum of the 
variance function. In this section it is proved that this maximum can be found 
by determining the maximum element of a set of .!_(n +2)(n +l) numbers. It 

2 

seems not possible to give a general expression for these values. Therefore for 
given n it is necessary to compute all these values. This has been done for all 
n ~ 20. 

2. The values of a, 8, y and g determining the covariance matrix are computed 
numerically. Therefore statements concerning the proof of the D-optimality 
for given n are numerical results. 

Throughout this section E is a design with covariance matrix of type 4.1.6 and 
(u ,v) denotes a pair where the variance function d (x ,y ,E) is maximal. A neces
sary and sufficient condition for D-optimality is 

d (u ,v ,E) = .!_n (n + 3) . 
2 

(5.3.1) 

When giving the method to prove the D-optimality of the designs of section 5.2, 
we do not use the condition 8 = -4g until the very end of this section. In that 
way results are achieved that can also be used for the construction of exact 
designs. Using 8 = -4g from the beginning would have made the proof of the 
D-optimality slightly shorter. 
We recall lemma 5.2.2, which we did not prove. 

Lemma 5.2.2 
Let E and (u ,v) be as defined above. Then 

I u; I = 1 or IV; I = 1 (1 ~ i ~ n) . 

Proof 
Assume that lu; I < 1 and IV; I < 1 for some i. Using (3.1.8) and (3.1.9) we 
suppose without loss of generality that i = 1. 
Consider 

di= d((l,u2, ... ,un),v,E), 
d2 = d((-l,u2, ... ,un),v,E), 
d3 = d((u,(l,v2 . ... ,vn),E), 

d-i = d((u,(-l,v 2, .... vn),e). 

Since d (x ,y ,E) is maximal at (u ,v) we have 

d; - d(u,v,E) ~ 0. 



So, 

n 

= y [(1-v 1) 2 -(u 1-v1)2]+o I:C<ui-v 1vi)2 -(u1ui-vtvi)2] 
j=2 

+a [(l-v{)2-(ul-v{)2] 
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+g 1(1-vl )2-(ul-vl )2 +2 E [(1-vl )(u/-v/)-(ul-vl )(u/-v/)]I 
;=2 

n 
= y [1-ul-2v10-u1)] + 0 L [u/(1-ul )- 2v1vjuj(l-u1)] 

j=2 

+a [O-u14 )-2vl (1-ul )] 

n 

+g [(1-ut)-2vl (1-ul )+2(1-u{) r (u/-v/)] ~ o. 
j=2 

This yields 

n 

'Y (l+u1-2v1) + 0 L [(l+u1)u/-2VtUjVj] 
j=2 

n 

+g [l+u1+ul +u[-2vl0+u1)+2(l+u1) r (u/- v/)] ~ o. (i) 
j=2 

Similarly we fi.nd using d 2 - d (u ,v ,E) ~ 0 

n 

'Y (l-u1+2v1) + 0 L [(l-u1)u/+2VtUjVj] 
j=2 

n 

+g [l-u1+ul-u[-2vl(l-u1H2(1-u1) I: <ul- v/)] ~ o. (ii) 
j=2 

From (i) and (ii) it follows that 

or 

n n 

2y + 20 r u/ + 2(a + g)(l+ul-2vl) + 4g r (u/-v/) ~ 0' 
j=2 j=2 

n 

2(a + g)(l+ul-2vl) + 4g r (u/-v/) ~ 0. 
j=2 

Since d 3-d (x ,y ,E) ~ 0 and d cd (x ,y ,E) ~ 0 we have 

n 

2(a + g)(l+vl-2ul )- 4g r (u/-v/) ~ 0. 
j=2 

(iii) 

(iv) 
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From (iii) and (iv) it follows that 

2(o: + g)(2-ul-vi2) ~ 0, 

Since o: + g > 0 this contradicts our assumptions. D 

We have to find a pair (u ,v) where the variance function is maximal. Using 
(3.1.8), (3.1.9) and lemma 5.2.2 we can assume without loss of generality that 
u and v are such that 

U; 1 

-1 < U; < 
Vi 1 

Vj -1 

-] < V; < 
V; 1 

for 

1 for 

for 

for 

1 for 

for 

1~ i ~ k1+k2+l2, 

k1+k2+l2< i ~ n, 

l~i~k1, 

k1 < i ~ k,+k2, 

k I + k 2 < i ~ k I + k 2 + l2, 

k1+k2+l2< i ~ k1+k2+l2+l1, 

for some k i. k 2. l 1 and l 2 , with k 1 + k 2 + l 1 + l 2 = n . 
We define 

L, := 

L2 := 

k1 + k2 + l2 < i ~ n I, 
k1+k2<i~k1+k2+z2I 

K 3 := L1 U L2. 

(5.3.2) 

Throughout the rest of this section (u ,v) denotes a pair as defined in (5.3.2). If 
we write v; = w; for all i E L 2 , 

and u; = w; for all i E L 1 , then u and v can be expressed by 

(5.3.3) 

We give some further results 

Lemma 5.3.1 Let (u ,v) be as in (5.3.3). Then 

d(u,v,e)= 4k2Y +y L (l-w;)2 +4k1k2o+k10 L (1-w;)2 
iEK 3 iEK 3 

+ k2o L <i+w;)2 + oLL o-w;w1 ) 2 + o: L 0-w/)2 
iEK 3 i,JEK 3 iEK 3 

i<j 

+ g [ r (l-w;2 )J2- (o + 40 r r (l-w; 2)(1-w/). (5.3.4) 
iEK 3 iEL 1 JEL 2 
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Proof 
Using (4.1.8) we obtain 

d(u,v,E)=4k2y+y L (l-w;)2 +y L (w;-1)2 +4k1k25 
iEL 2 iEL 1 

+k15 L (l-w;)2 +k25 L (l+w;)2 +k15 L (w;-1)2 
iEL 1 IEL 2 iEL 1 

+ k2 5 L (w1 +1)2 + 5 L L (w1-w1 )2 
iEL 1 iEL 1 iEL 2 

+ 5 LL (w;w1-1)2 + 5 LL (l-w1w1)2 +a L (w;2-1)2 
i ,jE L l i ,) EL 2 I EL l 

i<J t<J 

+a L (l-w12)2 + f [Z2+ L w/- (Z1+ L w/)]2 · (i) 
iEL 2 IEL 1 iEL 2 

We have 

5 L L [(l-w;w1)2 - (l-w/)(1-w/)], (ii) 
iEL 1 )EL 2 

and 

f [ L (l-w;2)]2-4f L L (l-w/)(1-w/). (iii) 
iEK 3 IEL 1 JEL 2 

Substitution of (ii) and (iii) in (i) completes the proof. a 
Remark 5.3.2 
From lemma 5.3.1 we conclude that 

if 5 + 4f > 0 , then L 1 = 0 or L 2 = 0 , 

if 5 + 4f = 0 , then L 1 = 0 without loss of generality . 

Lemma 5.3.3 
Let (x ,y) have the same structure as (u ,v) in ( 5.5.3) and let k E L 1 , l E L 1 • 

Consider d (x ,y ,E) as function of w,, and w1 • Then 

gd(x ,y,E) = -2y + 2(k 2-k1>5 + [2y+25 (k1+k2)-4(o: + 4k3f}]w,, 
()w,, 

+ 4(o: + f)w,,3- 25 L w 1 + 2(5 + 2f) w,, L w/ (5.3.5) 
JEK 3 JEK 3 
j~k j~k 

+.2(5+4f)w,, L (1-w/), 
iEL 2 
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where 

Proof 

gd (x ,;y,E) 

QWk 

gd (x ,y ,E) 
QWz 

(5.3.6) 

g(wk ,wz) = y + (k 1+k2+l) 0 - 2(o: + k30 + l2<0 + 40 

+ (wl+wk Wz +wz 2)(2o: - O) + (O + 20 L w/ - (0 + 40 L w/ 
iEK 3 iEL 2 

The first part follows immediately from (5.3.4). Using (5.3.5) we obtain 

qd(x,y,e) - qd(x,y,E) = (wk-w1 )[2y+2(k1+k2)0-4(o:+k30] 
QWk QWz 

+ 4(wl-wz3) (o: + 0 - 20 (wz-wk) + 2(0 + 20(wk-w1) L w/ 
JEK3 

- 2<0 + 20(wk3-w1 3) + 2l2(0 + 40(wk-wl) 

- 2(0 + 40(wk-w1) L w/. 
J EL 2 

This yields (5.3.6). D 

Lemma 5.3.3 
Let (u ,v) be as defined in ( 5.3.3) and l 2 ~ 1 . Then for all i with 
k1 + k2 < i ~ k1 + k2 + l2' 

y + (k1+k2)0 + 2g- 2k3g + Z2<0 + 40 (5.3.7) 

+ (o: + 0(3w;2+21w; 1-1) + (o + 20 I: w/- (0 + 40 I: w/ ~ 0. 
JEK3 JEL2 
j"" i 

If O + 2g ~ 0 and g ~ 0 , then I w; I < -} . (5.3.8) 

Proof 
Without loss of generality we choose i = k 1 + k 2 + 1 and wk 1+k 2+1 is denoted 

by w. Consider d2= d(u,v,E), where v is defined by vk 1+k 2+1 = 1 and 

vi = v1 for j ;C k 1+k 2+1. Using (5.3.4) we get 

d2=4(k2+l)y+y I: (l-wi)2 +4k1(k2+l)o+k10 I: (l-w1 ) 2 
jEK3 JEK 3 
j;Ci j;Ci 

+ (k2+l) 0 I: (l+wi)2 + O 
iEK3 

j ""i 

LL (1-wjwk )2 + o: I: (1-w/)2 

jEK 3kEK 3 JEK3 
j ""i ,k ""i ,} <k j ""i 

+ g [ I: (1-w/) P - (o + 40 I: I: (1-w/)(l-wk2), 
}EK 3 }EL 1 kEL 2 

j ,Cl j"" i k ""i 
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and therefore 

d 2 - d(u ,v,e) = 4y - y(l-w )2 + 4k 1 o - k 1o (1-w )2 - k 2 o(l+w )2 

+ O L (l+wj)2 - O L (l-w;wj)2 - (a+ 0(1-w 2)2 
jEK 3 jEK 3 

j ""i j ""i 

+ (o + 40(1-w 2) L (1-w/) - 2{(1-w 2) L (1-w/). 
JEL 2 HK 3 

j"" i 

Using d 2 - d(u ,v ,e) ~ 0 and l+w > 0 we obtain 

y (3-w) + ki 0 (3-w )- k2 0 (l+w) - O'. (1-w )(l-w 2) 

- g [(1-w )(1-w 2) + 2(k 3-1)(1-w )] + 0 L [(1-w )w/ + 2wi] 
j EK 3 
j"" i 

+ 2{ (1-w) L w/ + (0 + 4{)(1-w) L (1-w/) ~ 0. 
JEK 3 JEL 2 

j ""i 

Using the fact that (u ,v) is a pair where d (x ,y ,e) is maximal, we may add 

I qd (x ,y ,e) 1 

QW l(x ,y) = (u ,v) 

to the left side of the last inequality. It follows that 

Y + y w + (k1+k2)0 + (k 1+k 2)o w +(ex+ 0(-l-3w+w 2+3w 3 ) 

-2(k 3-l) g (l+w) + [o (1-w) + 2g (1-w) + 2(o + 20w] L w/ 
HK 3 
j"" i 

+ [(o + 40(1-w) + 2(o + 40w] L (1-w/) ~ o. 
HL 2 

This yields, again using 1 + w > 0 , 

y + (k1+k2) O +(a+ 0(3w 2-2w-1)-2(k3-l) g + Z2(0 + 40 

+ <0 + 20 1: w / - <o + 40 1: w l ~ o . 
jEK 3 HL 2 
j ""i 

Consider d 1 = d (u ,v ,e) , where u is defined by 

ui = 1 for 1 ~ j ~ k 1 + 1 , 

uj = - 1 for k 1 + 1 < j ~ k 1 + k 2 + 1 , 

and 

(i) 
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Analogously we find 

y + (k1+k2) & +(a+ g)(3w 2+2w-l)- 2(k3-l) g + li(& + 40 

+ (& + 20 .E w l - (& + 40 .E w l :::::; 0 . 
iEK 3 iEL 2 

) ;a!: i 

(ii) 

Use of expressions (i) and (ii) and of the conditions & + 2g ~ 0 and g :::::; 0 
completes the proof of (5.3. 7). Now it follows that 

because 

(a+ 0(3w 2+21w 1-1):::::; - y - (k1+k2) & + 2(k3-l)g - l2 (& + 40 

- (& + 20 .E w l + (& + 40 .E w l 
iEK 3 jEL 2 

j;C i 

= - y - (k1+k2) & +2(k3-l2-I) g - li{& + 2g) - (f, + 20 L w/ 
jEK 3 
j"' i 

& + 2g ~ 0 , y > 0 , g :::::; 0 and & > 0 . 

Since a + g > 0 we have 

3w 2 + 2 I w I - 1 < 0 , 

( 3 I w I - 1 )( I w I + 1) < 0 , 

lw I <-}. 

Now we can prove a theorem that is important in proving the D-optimality of 
the designs of section 5.2. 

Theorem 5.3.4 
Let e be a design with covariance matrix of type ( 4.1.6) and let (u ,v) be a pair 
where the variance function is maximal, having the structure of ( 5.3.2). 
If 

& + 2g ~ 0 , g :::::; 0 and O'. - 2& ~ 0 , 

then 

u; = u i for all k 1 + k 2 + l 2 < i ,j :::::; n , 

vk = vz for all k 1 + k 2 < k ,l :::::; k 1 + k 2 + l i . 
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Proof 
Let O + 2f ~ 0 , f ~ 0 and a - 20 ~ 0 . We prove that u; = Uj for all 
k 1 + k 2 + l 2 < i,j ~ n, or in the notation of (5.3.3) that w; = wj for all 
i ,j E L 1. Consider the function g (w; ,wj) defined in (5.3.6). Using (5.3.7) we 
find 

g(w;,wj) ~ y + (k 1+k 2+1) o- 2(a + k 3 g) + l 2(o + 4g) 

+ <w?+w;wj+wl)<2a - o) +co+ 2fJ .L w, 2 - co+ 40 .L w,2 
IEK 3 IEL 2 

- y - (k1+k2) o + 2(k3-l) f - l2 (o + 4f)- (a+ f)(3w;3+21w; 1-1) 

- <o + 20 .L wz2 + co + 4t} .L w, 2 

IEK 3 IEL 2 
l .. i 

= 0 - (a + f) - (a + f) w;2 - 2(a + f) I W; I + (2a - o) W; w j 

+ (2a - o) w/ =:h(w;,wj). 

Using (5.3.8) we obtain lw; I~} and lwj I~}. The function h(w;,wj) is 

maximal for w; = 0 and w j = { . This yields 

g (w; ,wj) ~ 0 - (a+ 0 + .!._ (2a - o) = -.7..a + !o - g 
9 9 9 

= - .!..[7(a - 20) + !. <O + 2f) + ~o] < o. 
9 2 2 

From (5.3.6) and the fact that 

I ()d(x,y,e) _ ()d(x,;y,e) I = O, 
QW; ()w j (x ,y) = (u ,v) 

it follows that 

w; = w J for all i, j E L 1 • 

Use of (3.1.8) and (3.1.9) proves that 

wk = w1 for all k , l E L 2 • a 
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Lemma 5.3.5 
Let (x ,y) have the same structure as (u ,v) in (5.3.3) and let 

x; = w 1 for all i with k 1 + k 2 + l 2 < i ~ n , (5.3.9) 

Yi = w 2 for all i with k 1 + k 2 < i ~ k 1 + k 2 + l 2 . 

Then 

d(x,y,E) = 4k2y + l1 y (l-w1)2 + l2y (l-w2)2 + 4k1k20 

+ k1l1 0 (l-w1)2 + k1l2 0 (l-w2)2 + k2l1 0 (l+w1)2+ k2l2 0 (l+w2)2 

+ l1l2 0 (wi-w2)2 + (l~) O (1-w[ )2+ <ll) O (1-w} )2 + l 1 a (1-w[ )2 

(5.3.10) 

If w 1 and w 2 are such that the function given in ( 5.3.10) is maximal at w 1 and 
W2, then 

(5.3.11) 

·Proof 

l + W; [2Z; y + 2(k1+k2)l; 0 + 2l1lj 0 - 4(2) 0 - 4l; a - 4l;2 g 

+ 4l;lj g (1-w/)]- 2l; 'Y - 2k1l; 0 + 2k2l; O - 2l;lj 0 Wj = Q, 

for (i ,j) = (1,2) and (i ,j) = (2,1) . 

It is easy to show that (5.3.9) holds by using (5.3.4). Equation (5.3.11) can be 
proved by using the fact that (u ,v) is a pair where d (x ,y ,E) is maximal. So 

I qd (x ,y,E) I 

ow1 l(x ,y )= (u ,v) 

I ()d (x ,y ,E) I 

QW2 l(x ,y )= (u ,v) 

In view of lemma 5.3.5 it is useful to give the following definition. 

Definition 53.6 

0. a 

Let k 1, k 2, l 1 and l 2 be fixed. The maximal value of the functions given in 
(5.3.JO) is denoted by d (k i,k 2.li,l2; E). 

Now it is possible to prove that the designs E given in section 5.2 are D-optimal. 
The procedure is as follows. It is sufficient to prove that d (x ,y ,E) ~ -}n (n +3). 
If the conditions o + 2g ~ 0 , g ~ 0 , and a - 2o ~ 0 are satisfied, then one 
just has to consider the pairs (u ,v) as defined in theorem 5.3.4. The values 
d(ki,k 2,li,l 2 ; E) can be computed by use of lemma 5.3.5. The maximal value of 
d (x ,y ,E) can be found by computing these values for all combinations 
(ki,k 2,l 1,l 2) with k 1 + k 2 + l 1 + l 2 = n . This seems a rather cumbersome 
task. 
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However, many combinations can be omitted using trivial arguments. If 
8 = -4g, then the combinations (k I> k 2 , 0, k 3) have to be investigated. In that 
case w 2 satisfies the equation 

wi [2(k3-l) 8 + 4(a + k3 OJ 
+ w2 [2y + 2(k 1 +k 2 )8 - 2(k3-l) 8 -4(a + k3 OJ 
- 2y + 2(k 2-k 1) 0 = 0 . 

If k 1 = k 2 = 0, then 

1 

w 2 = - _I_ + 1 [ 1- 2 J2 
2 2 a+ng+_t_(n-l)o 

2 

Theorem 5.3. 7 
The designs E given in section 5.2 in table 5.2.7 are D-optimal. 

Proof 

(5.3.12) 

(5.3.13) 

The procedure given above is used. The conditions O + 2g :;?l:. 0 , g ~ 0 and 
a - 20 :;?l:. 0 hold. Moreover O = -4g . This means that the maximal value of 
d(x ,y,E) is equal to one of the values d(k 1,k 2,0,k 3; E). By computing these 
values one finds that the variance function is maximal at the pairs of the design 
E and that the maximal value is equal to .!.n (n + 3). 0 

2 

5.4. Reduction of the number of pairs of discrete D-optimal designs 

The number of pairs ND. of the design given in table 5.2. 7 is large com
pared to the number ND given in that table. We recall these numbers here 

Table 5.4.1 
Number of pairs of the D-optimal designs given in section 5.2 

n 2 3 4 5 6 7 

ND 20 44 304 512 1824 6848 
ND 15 45 105 210 378 630 

• According to theorem 2.3.6 ND is such that a D-optimal design exists with m 
pairs and such that m ~ ND. As can be seen in table 5.4.1 it is possible to 
reduce considerably the number of pairs of the designs given in section 5.2 , 
especially when n is large. When n = 3 the number of pairs is smaller than 
ND. Therefore we will exclude this case. In section 5.4.1 a D-optimal design for 
n = 2 is given with 15 pairs. Section 5.4.2 contains some general remarks and 
results. In section 5.4.3 and 5.4.4 we discuss the cases n = 5 and n = 4. 
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5.4.1. A discrete D-optimal design with 15 pairs when n = 2 

As a result of the proof of the D-optimality of the design given in section 
5 .2, the set of pairs of any discrete D-optimal design is contained in the set of 
20 pairs of the D-optimal design given in that section. These 20 pairs are given 
in figure 5.2.6. The information matrix M of a discrete D-optimal design is 
denoted by (4.1.5). We shall construct a D-optimal design with 15 pairs by 
choosing new weights T;, 1 ~ i ~ 20 in such a way that five of them are zero, 
whereas 0 ~ T; ~ 1 for all i with 1 ~ i ~ 20. 
Further 

and 

20 

LT; 
i=l 

20 

1 ' 

L T;M(E;) = M, 
i=l 

(5.4.1) 

(5.4.2) 

where M (E;) is the information matrix of the i -th pair of the design. The pairs 
are numbered in the order in which they are given in figure 5.2.6. So the pair 
((l,l),(1,-1)) is given number 1 and weight Ti, and the pair 
((- 1,1),(- w 2,-1 )) is given number 20 and weight r 20 , etc. We define 

(5.4.3) 

so 

M = (p ,p ,z ,s +t ,s +t ,t ,0,0,0,0,0,0,0,0,0)' , (5.4.4) 

and 

(5.4.5) 

Now the equation (5.4.2) can be rewritten as the following system of 15 equa
tions 

M =BT' (5.4.6) 

where 
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D 4 4 0 a[ (1 1 1 1 1 1 1 1) 4(1 1 1 1) af ( 1 1 1 1) 

~ 0 0 4 a f (1 1 1 1 1 1 1 1) af (1 1 1 1) 4( 1 1 1 1) 

~ 4 4 4 a [bf ( 1 1 1 1 0 0 0 0) bf (1 1 1 1) bf ( 1 1 1 1) 

a [bf (1 1 1 1 1 1 1 1) 0 afbf ( 1 1 1 1) 

a [bf (1 1 1 1 1 1 1 1) µfbf (1 1 1 1) 0 

a [bf (1 1 1 1 -1 -1 -1 -1) 0 0 

a[ (0 0 0 0 -1 1 1 -1) 2a2(1 1 -1 -1) 2ai{-1 -1 1 1) 

B= a fb1(l -1 1 -1 1 -1 1 -1) 0 afbi 1 -1 1 -1) 

a[b1(1 -1 1 -1 -1 1 -1 1) l2a2b2(1 -1 -1 1) 0 

afb1(1 -1 -1 1 -1 -1 1 1) 0 2a2b2(-l 1 1 -1) 

a [b1(l -1 -1 1 1 1 -1 -1) afbil -1 1 -1) 0 

0 4 -4 0 2b2(1 -1 1 -1) a 2bi{-1 1 1 -1) 

4 0 0 -4 a2bil -1 1 -1) 2b2( 1 -1 1 -1) 

a [bf (1 1 -1 -1 0 0 0 0) 0 apf (-1 -1 1 1) 

a [bf (1 1 -1 -1 0 0 0 0) a2bf (1 1 -1 -1) 0 

with a; = ( 1-w; ) and b; = (1 + w;) , i = 1,2 . By investigating the structure of 

the information matrix, one can show that the first 6 of these 15 equations are 

equivalent with the following 6: 

T1 + T 4 = 2V , 

T2 + T3 = 2V , 

T 5 + T 6 + T 7 + T 8 = 4µ , (5.4. 7) 

T 9 + T 10 + T 11 + T 12 = 4)\ , 

T 13 + T 14 + T 15 + T 16 = 4p , 

T 17 + T 18 + T 19 + T 20 = 4p , 

where v, µ, )\ and p are the weights corresponding to the discrete D-optimal 

design given in section 5.2. From this it follows that for any D-optimal design 

at least one of the pairs of each of the 6 subsets, defined by the 6 equations 

above, has a positive weight. From (5.4. 7) it is clear that condition (5.4.2) is 

satisfied. Now we have a set of 15 equations -the 6 equations of (5.4.7) and the 

last 9 equations of (5.4.6)- in 20 variables T; • 
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We choose T 3 = T 4 = T 6 = T10 = Tu = 0. Then we obtain 

Ti= 2V = 0.04960 , 

T2 = 2V = 0.04960 , 

11-1 = 0.04673 ' 

_ (l+v1)2 _1 _ 
Ts- µ+A [4( )2 - 1] - 0.06906 , l+v 2 

8v(l-v2)2 
----------~- µ (1-v 1)(1-v 1)2(3-v2)(l + v 2) 

(1 +v )2 
+ ,\ [2 + (4 1 - 1)-11 = 0.07850 ' 

(l+v 2)2 

T10 = Tu= 0 , 

Ti2 = -8v(l-v 2)2 
----------~+ µ (1-v 1)(1- v1)2(3-v 2)( 1 +v2) 

(1 +v )2 
+ ,\ [2 - (4 1 - 1)-11 = 0.04050 

(l+v2)2 ' 

2v (l-v1)(l-v1>2 
Tis = Ti9 = p -

(l+v2)2 + µ 20-v2)2 

- ,\ 
(l-v1)(l-v1)2 

2(1-v2) 
1 

2v (1- v 1)(1- v 1) 2 
Ti6 = T20 = p + - µ ------( l +v 2)2 2(1-v 2)2 

_ ,\ (l-v1)0-v1)2 1 
2(1-v2) 2(l+v1)+0+v2) 

2v (1- v 1)( 1- v 1)2 
T11 = T13 = p - (l+v2)2 - µ 2(1-v2)2 

+ ,\ 
(1-v 1)(1-v 1)2 1 

2(1-v2) 2(1+v1)-(l+v2) 

Ti4 = p + 
2v 

+µ 
(1-v 1)(1- v 1)2 

T18 = 
(l+v2)2 2(1-v2)2 

+ ,\ 
(l-v1)0-v1)2 1 

2(1-v2) 2(l+v1)+(l+v2) 

0.02864 , 

0.08106 ' 

= 0.06569 , 

0.12309 
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All weights are between 0 and 1. So, we have found a discrete D-optimal design 

with 15 pairs. However, this design is not very useful for the construction of 

exact designs: the weights have 9 different values, whereas in an exact design 

consisting of these 15 pairs all these pairs have the same weights. The informa

tion matrix of such a design does not have the structure given in (4.1.5). 

5.4.2. Half-replicates and quarter-replicates of S ((u ,v )) . 

In this section some general remarks are made concerning the reduction of 

the number of pairs of the designs of the type given in section 5.2. We shall con

sider the reduction of the number of pairs of the set S ((u ,v)) in general and of 

the set S (k i,k 2 ) in particular. As we have seen in (4.2.16), there is a relation 

between the design matrix of the set S ((u ,v )) and the design matrix of a 2n -

factorial experiment, where all interactions between three or more factors are 

assumed negligible. The method to construct fractional factorial experiments can 

be used to reduce the numbers of pairs of S ((u ,v )) as follows. Let a half

replicate of a 2n -factorial experiment exists, for which all main effects and all 

two-factor interactions are clear of one another. Now, by using the expressions 

(4.2.16) and (4.2.18) it is easy to see that a design can be constructed consisting 

of 2n-l pairs of S((u ,v )) and having an information matrix equal to 

}M ( (u ,v ) ) . The design matrix i5 of this set of 2n - l pairs is 

i5 = X1(n) (U - V) . (5.4.8) 

Here U and V are as defined in (4.2.17) and X1(n) consists of the rows of 

X 1 (n ) which are related to the pairs chosen in the half-replicate of the 2n -

factorial. A method to construct fractional factorial experiments is given in 

chapter 10 of Davies (1963). As is pointed out there a relation exists between 

fractional factorial experiments and confounding. When a design is confounded 

in blocks, any block constitutes a fractional factorial design and any block can 

be obtained by applying a set of defining contrasts. So, when a design is con

founded in four blocks any block constitutes a quarter-replicate. However, some 

effects and (higher-order) interactions are confounded. To construct a half

replicate of S ((u ,v )) it is necessary to construct a half-replicate for which all 

main effects and all two-factor interactions, which are measured in the set 

S ((u ,v )), are clear of one another. A half-replicate of a 2n -factorial experiment 

for which all main effects and (~) two-factor interactions are clear of one 

another can be found for n ~ 5 . We give the defining contrast of the principal 

block of the corresponding confounded design for n = 5, 6, 7 . See also chapter 

10 of Davies (1963). 
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Table 5.4.2 
Defining contrast of a half-replicate of a 2n -factorial,for which all 
main effects and all two-factor interactions are clear of one another 

n Defining Number Principal block 
contrast of pairs 

5 I,-ABCDE 16 All treatment combinations for 
6 I, ABCDEF 32 which the number of letters con-
7 I,-ABCDEFG 64 stituting that combination is even. 

When n = 5, the principal block, for example, consists of (1), ab, ac, be, ad, bd, 
cd, ae, be, ce, de, abcd, abce, abde, acde, bcde. 

Remark 
We did not discuss the matrix K in X 1(n ), which might disturb the ortho
gonality of the design matrix of the half-replicate of S ((u ,v )). However, a 
column of K consists of +l 's, and therefore it is orthogonal to the other 
columns of the design matrix of the half-replicate of the 2n -factorial, each 
column having the same number of +l's and -l's. Actually, a column of the 
matrix K plays the same role as the constant factor in the 2n -factorial experi
ment. D 

One might be tempted to construct a quarter-replicate of a 2 7-factorial experi
ment. Since the number of main effects and two order-interactions is equal to 
28, which is less than 32, a quarter-replicate might be found for which the main 
effects are clear of one another. However, this is not possible. Choose for exam
ple as defining contrasts I, ABCDE, DEFG, ABCFG. Note that the product of 
ABCDE and DEFG is equal to the last defining contrast where D2 = E2 = I , as 
usual. It is clear that we cannot do better than this, because if a letter is added 
to the four-factor interaction the product with one of the other will be a four
factor interaction. So in every set of defining contrasts a four-factor interaction 
is contained. This means that 3 two-factor interactions are confounded with 3 
other two-factor interactions. In this case DE= FG, DF = EG and DG = EF . 
Let us now consider the reduction of the number of pairs of S (k i,k 2). In general 
the number of pairs of a half-replicate of S((u ,v)) is 2n- 1 • However, if 
lu; I = Iv; I = 1 for all i, 1 ~ i ~ n , then the number of pairs of S((u ,v )) 
is equal to 2n-l since all pairs occur twice. So at first sight it seems that nothing 
has been gained. However, by investigating the design more carefully, some 
results can be achieved. We shall discuss this for n = 5, 6 and 7. S (k i.k 2 ) con-

sists of </:) sets of the type S ((u ,v )), where I u; I = Iv; I = 1 for all 

i, 1 ~ i ~ n. We apply the method described above to construct half-replicates 
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of the sets S (k i,k 2 ) • 

i) First we consider the case n = 5. 

We use the defining contrasts given in table 5.4.2 to obtain half-replicates of 

the sets S ((u ,v )) of which S (k i,k 2 ) is composed. By investigating these 

half-replicates of the sets S((u,v)) we see that in the case of S(l,4) and 

S (3,2) all pairs occur twice in these half-replicates, since all treatment com

binations with an even number of letters occur in the principal block. The 

other treatment combinations occur in the second block. The objects of any 

pair of S(l,4) or S(3,2) are elements of the same block. For example (1) and 

ab occur in the principal block and the pair ((1),ab) is a pair of S (3,2). So, 

by the method described above a half-replicate of S(l,4) and of S(3,2) is 

obtained. In the case of S (0,5) , S (2,3) and S (4,1) the objects of the princi

pal block are compared with objects of the second block. Therefore, in these 

cases the number of pairs is not reduced by using this half-replicate. It is 

possible to reduce the number of pairs of S (0,5) by using a quarter-replicate 

of a 25-factorial experiment, defined by the contrasts I, -BCE, -ADE, ABCD. 

In this quarter-replicate all main effects are clear of one another, but they are 

confounded with two-factor interactions. This does not affect the structure 

of the information matrix of the design, because two-factor interactions are 

not measured in S (0,5). It is not possible to reduce the number of pairs of 

S (2,3) by reducing the numbers of pairs of each subset S ((u ,v )) of which it 

is composed without confounding some main effects or two-factor interac

tions, which are measured in this set, with one another. However, it is possi

ble to reduce the number of pairs of the set S (2,3). This will be shown in 

section 5.4.3. 

li) n = 6 
We consider the sets S (k i,k 2 ) and the sets S ((u ,v)) of which is composed. 

Using the defining contrast given in table 5.4.2 one can obtain half-replicates 

of the sets S ((u ,v )). By investigating these half-replicates it can be seen 

that in the cases S(0,6), S(2,4) and S(4,2) pairs occur twice in these half

replicates. The objects of any pair of these sets occur in the same block. This 

does not hold in the cases S(l,5), S(3,3) and S(5,l). In these cases other 

defining contrasts have to be used. Consider the defining contrasts I, -ABCDE. 

All main effects and two-factor interactions are clear of one another. The 

principal block consists of the treatment combinations mentioned in table 

5.4.2, together with all treatment combinations that can be found by multi

plying these combinations by f. Using these defining contrasts to construct 

half-replicates of the set S((u,v)) where u = (-1,-1,-1,-1,-1,-1)' and 

v = (-1,1,1,1,1,1)', we obtain half-replicates in which all pairs occur twice. 

The objects (1) and bcdef, for example, are elements of the principal block, 

and the pair ((l),bcdef) is an element of the set 

S((-l,-1,-l,-l,-1,-l),(-l,l,1,1,1,1)). Similarly, using e.g. I,-ABCDF as 

defining contrasts, one can obtain half-replicates of other subsets S ((u ,v )) of 

S (1,5) in which all pairs occur twice. So, we have found a half-replicate of 
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S (1,5) . The same defining contrasts yield a half-replicate of S (3,3). There
fore, summarizing the results in the case n = 6, we have found half
replicates for all S(ki,k 2 )-cf. table 5.4.3. 

iii)n = 7 
We consider the quarter-replicate of a 27-factorial experiment given at the 
beginning of this section, with defining contrasts I, -ABCDE, DEFG, -ABCFG. 
It consists of the treatment combinations: 
(1), ab, ac, be, de, abde, acde, bcde, adf, bdf, cdf, abcdf, aef, bef, cef, abcef 
and all treatment combinations obtained by multiplying these combinations 
by fg, where f 2 = 1. In this quarter-replicate all main effects are clear of 
two-factor interactions, but three two-factor interactions are confounded 
with three other two-factor interactions: DE=FG, DF=EG and DG=EF. How
ever, the sets S ((u ,v )) of which the set S (k i,k 2) is composed, measure k 1 
main effects and k 1k 2 two-factor interactions. Therefore this quarter
replicate yields a quarter-replicate of the set S ((u ,v )) with 
u = (-l,-1,-1,-1,-1,-1,-1)' and v = (-l,-1,-1,1,1,1,1)', in which all 
main effects and two-factor interactions, that are measured, are clear of one 
another. Moreover, all pairs occur twice in this set. Using similar defining 
contrasts for the other subsets, a quarter-replicate can be obtained of S (3,4 ). 
Similar methods yield quarter-replicates of the sets S (k 1,k 2), the case 
S (3,4) being the most difficult one, because 16 main effects and two-factor 
interactions are measured in this set. 

In table 5.4.3 some results of this section are given. 



Table 5.4.3 
Summary of results concerning the reduction of the 
number of pairs of S ((u ,v)) and S (k i,k 2 ) 

Set Number of pairs 
Number of pairs 
after reduction 

S((u,v)) 2n 2n-l 
with n ~ 5 

s (0,5) 16 8 
s (1,4) 80 40 

s (0,6) 32 16 
s ( 1,5) 192 96 
5(2,4) 480 240 
s (3,3) 640 320 

S(0,7) 64 16 
s (1,6) 448 112 
s (2,5) 1344 336 
s (3,4) 2240 560 
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5.4.3. Reduction of the number of pairs of discrete D-optimal designs for 
n=4 and n=5. 

We consider the discrete D-optimal designs given in section 5.2. First we 

discuss the reduction of the number of pairs when n = 5. 
The design given in section 5.2 consists of 

i) S (2,3) with 10 24 = 160 pairs , 
ii) SP(0,0,5; w 1 ) with 25 = 32 pairs, 
iii) SP2(0,0,5; w 1) with 10 25 = 320 pairs. 

By the method given in section 5.4.2 half-replicates can be found of 

SP(0,0,5; w 1) and SPi(0,0,5; w 1). This yields a D-optimal design with 336 

pairs. But a further reduction of the number of pairs is possible. First we con

sider the set SP 2(0,0,5; w 1). This set consists of the following subsets: 



116 

51 = 5((wi,wi,wi. 1, 1),( 1, 1, l,wi,w1)), 
52 = 5((wi,wi, l,w1, 1),( 1, 1,w 1, l,w1)), 
53 = 5((wi,wi, 1, l,w1),( 1, l,W1,Wi, 1 )) ' 
54 = 5((wi, l,Wi,W1, 1 ),( 1,w 1, 1, l,w1)) , 
5s = 5((wi. 1,wi, l,w1),( l,w1, 1,w 1, 1)) ' 
56 = 5((wi, 1, l,w 1,W 1),( l,W1,W1, 1, 1)) ' 
51 = 5(( l,w i,W i.W l, l),(w 1, 1, 1, l,w1)), 
5s = 5(( l,Wi,Wi, l,w1),(w 1, 1, l,wi, 1 )) ' 
59 = 5(( l,wi, l,w1,w1),(w1, l,w 1, 1, 1 )) ' 
510 = 5(( 1, 1,w i.w 1,w 1),(w 1,w 1, 1, 1, 1 )) ' 

Each set 5; consists of 32 pairs. A quarter-replicate of each set can be found by 
using the defining contrasts I, CDE, ABD, ABCE. The following quarter
replicates of a 25-factorial experiment are obtained by using these defining con
trasts: 

(I): ( 1 ), a b, acd, bed, ce, a bee, ade, bde . 
Defining contrasts I, -CDE, -ABD, ABCE . 

(II): a, b, cd, abcd, ace, bee, de, abde . 
Defining contrasts I, -CDE, ABD, -ABCE . 

(III): c, abc, ad, bd, e, abe, acde, acde, bcde . 
Defining contrasts I, CDE, -ABD, -ABCE . 

(IV): ac, be, d, abd, ae, be, cde, abcde . 
Defining contrasts I, CDE, ABD, ABCE . 

In these blocks <&ome main effects and two-factor interactions are confounded: 
C=DE,D=CE=AB,E=CD,A=BD,B=AD,AC=BE,AE=BC. 
All other main effects and two-factor interactions are clear of one another and 
of the main effects and interactions given above. We compute the information 
matrices M (I), M (II), M (Ill) and M (IV)· If all main effects and two-factor interac
tions would have been clear of one another, then the result would have been 

I 

I+J 

I 

where i = I , II , III, IV. Now, due to the fact that some main effects and 
two-factor interactions are confounded, we have 

I (M (; »k ,1 I = 8 ,for i = I , II , III , IV . 

where 

(k ,l )El (3,20),(4,19),(4,11),(11,19),(5,16),( 1,15) ,(2,14 ),(12,18),(13,1 7) I . 
The signs of (M (; »k ,1 are given in the following table. 
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Table 5.4.4 

Signs of (M (i)) k ,1 

(k,l) i: I II III IV confounded effects 

(13,17) + - - + BC ,AE 
(12,18) + - - + AC ,BE 
(11,19) + - - + AB ,CE 

(4,11) - + - + D,AB 
(2,14) - + - + B,AD 
(1,15) - + - + A,BD 
(5,16) - - + - E,CD 
(4,19) - - + - D ,CE 
(3,20) - - + - C ,DE 

These signs can be found as follows. (M(i))13,17 is related to BC and AE, which 

are confounded. The defining contrasts of (I) are I, -CDE, -ABD, ABCE. There

fore, BC= AE and (M<oh3 ,17 = +8. Similarly we find (Moo)13,17 = -8. Now 

we can compute the information matrices M; of quarter-replicates of S1 • We 

define 

+ 1 ,if the quarter-replicate (i ) or (j ) is chosen , 

8;,j = (5.4.9) 

-1 ,if not (i ) or (j ) is chosen. 

The expression (4.2.16) can be used to compute M;. We find for example for S 1 . 

So 

and 

U = (w1,wi,wi,l,l I w[,w[,w[,1,1 I w12 ,w[,wi,wi,wi,wi,wi,wi,l)', 

V = (1,l,l,w 1,w 1 I 1,1,1,w[ ,w[ I l,l,wi,wi,wi,wi,w1,wi,wf )'. 

1-w[, 1-w[ I w[-1, w[-1, w[-1, 0,0,0,0,0,0,l-w[)', 

(M 1h3,11 = 0, 

(M1)-1,11 = 8(l-w1)(w[-l)811,111, 

(M1h,20 = 8(w1-l)(l-w[)8111,1v. 

In table 5.4.5 the signs are given of the elements of M; which are of interest. 
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Table 5.4.S 
Signs of the important elements of M; 

i (13,17) (12,18) (11,19) (4,11) (2,14) (1,15) (5,16) (4,19) (3,20) 

1 On.Iv Om,Iv 
2 -oI,IV -011,Iv -on.Iv -on.Iv Om,Iv 
3 On,Iv Om,Iv 
4 -OI,IV 011,Iv Om,Iv 
5 On.Iv Om,Iv 
6 -OI,IV On,Iv Om,Iv 
7 -oI,IV 011,Iv Om,Iv 
8 On,Iv Om,Iv 
9 -OI,IV On.Iv Om,Iv 

10 -OI,IV 011,IV -Om,Iv -Om,IV -om,IV 

Now we choose the following quarter-replicate of S; . 

Table5.4.6 
Choice of quarter-replicate of S; 

1 2 3 4 5 6 7 8 9 

quarter-replicate (j) I I I IV III II III 

10 

II 

As can be seen by inspecting table 5.4.5 we have constructed a quarter-replicate 
of SP 2(0,0,5; w 1) for which the information matrix is equal to {MP2(0,0,5;w 1). 

A similar method can be used to reduce the number of pairs of S (2,3) which 
consists of 160 pairs. First we consider the sets 

T1 = S((-1,-1,-1, 1, 1),( 1, 1, 1, 1, 1)) , 
T2 = S((-1,-1, 1,-1, 1),( 1, 1, 1, 1, 1)) , 
T3 = S((-1,-1, 1, 1,-1),( 1, 1, 1, 1, 1)) , 
T4 = S((-1, 1,-1,-1, 1),( 1, 1, 1, 1, 1)) • 
Ts = S((-1, 1,-1, 1,-1),( 1, 1, 1, 1, 1)) , 
T6 = S((-1, 1, 1,-1,-1),( 1, 1, 1, 1, 1 )) • 
T1 = S(( 1,-1,-1,-1, 1 ),( 1, 1, 1, 1, 1)) • 
Ts = S(( 1,-1,-1, 1,-1),( 1, 1, 1, 1, 1)) ' 
T9 = S(( 1,-1, 1,-1,-1),( 1, 1, 1, 1, 1)) ' 
Tio = S(( 1, 1,-1,-1,-1),( 1, 1, 1, 1, 1 )) • 

In each of these sets every pair occurs twice. A quarter-replicate 
(I), (II), (III) or (IV) of each set T; is chosen. In a similar way as in the method 
described above we find for the signs of the important elements of the informa
tion matrices M; of the quarter-replicates: 
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Table 5.4.7 
The signs of the important elements of M 1 

i (13,17) (12,18) (11,19) (4,11) (2,14) (1,15) (5,16) (4,19) (3,20) 

1 On.Iv On.Iv 
2 01,1v 01,1v 
3 011,1v 011,1v 
4 01,1v 01,1v 011,1v 011,1v 0111,1v 0111,1v 

5 0111,1v 0111,1v 

6 Ot,IV 01,1v 011,1v 011,1v 0111,1v 01n,tv 
7 01,1v 01,Iv On,Iv 011,1v Om,1v 0111,1v 

8 0111,1v Om,1v 

9 01,1v 01,1v 011,1v 011,1v 0111,1v 0111,1v 
10 01,1v 01,1v 

Now we choose the following quarter-replicate of T; . 

Table 5.4.8 
Choice of quarter-replicate of T; 

1 2 3 4 5 6 7 8 9 10 

quarter-replicate (j) II III II II I III IV II 

This yields a half-replicate of S (2,3). We have found a discrete D-optimal 

design consisting of 

i) a half-replicate of S (2,3) 80 pairs , 

ii) a half-replicate of SP (0,0,5; w 1) 16 pairs, 

iii) a quarter-replicate of SPi(0,0,5; w 1 ) 80 pairs, 

In total : 1 76 pairs . 

This number is smaller than 210, the number ND given in table 5.4.1. 

Now we consider the case n = 4. 

The design given in section 5.2 consists of 

i) S (2,2) with 6 23 = 48 pairs , 

ii) SP ( 0,0,4; w 1 ) with 24 = 16 pairs , 

iii) SP 2(0,0,4; w 1 ) with 3 24 = 48 pairs, 

iv) SP(l,2,1; w 2) with 12 24 = 192 pairs, 

In total : 304 pairs. 

First we consider the set SP (1,2,1; w 2 ). This set consists of the following sets: 
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S 1 = ((l,l,1,1),( 1,-1,-1, w 2)), 
S 2 = ((l,l,l,1),(-1, 1,-1, w 2)), 
S 3 = ((l,l,l,1),(-1,-1, 1, w 2)), 
S4 = ((1,l,1,1),( 1,-1, W2,-l )), 
Ss = ((l,l,l,1),(-1, 1, w 2,-1 )), 
56 = ((l,l,l,l),(-l,-1, W2, 1 )), 

S1 = ((1,1,1,1),( 1, W2,-l,-l )), 
58 = ((l,l,1,l),(-1, W2, 1,-1 )), 
S9 = ((l,1,1,1),(-1, W2,-l, 1 )), 
S 10 = ((1,1,1,1),( w 2, 1 ,-1,-1 )), 
S 11 = ((1,1,1,1),( w 2,-1, 1,-1 )), 
S12 = ((l,1,1,1),( W2,-l ,-1, 1 )). 

All pairs of SP(l,2,1; w 2) have weights p. It can be shown that the following 
design has the same information matrix: 
-all pairs of S 1 , S 6 , S 8 and S 10 with weights 2p , 
-all pairs of S 2 , S 4 , S 9 and S 11 with weights p , 
This design consists of 128 pairs, but it is not very useful for practical applica
tions for the following reason. If one wants to construct an exact design consist
ing of these pairs and having an information materix of type (4.1.5), then the 
pairs of Si. S 6, S 8 and S 10 must be chosen twice. Therefore no reduction of the 
number of pairs is achieved when constructing exact designs. We will construct 
a half-replicate of SP ( 1,2, 1; w 2 ) using a method similar to the one used in the 
case n = 5. A half-replicate of each set S 1 can be found by using the defining 
contrast ABCD. We find half-replicates of a 24-factorial experiment: 

(I): (1 ),ab,ac,bc,ad,bd,cd,abcd. 
Defining contrasts I, ABCD . 

(II): a,b,c,abc,d,abd,acd,bcd. 
Defining contrasts I, -ABCD . 

The confounded interactions are BC = AD, AC = BD, AB = CD . Therefore, in 
computing the information matrix M (I) and M (II), the following elements are 
important: 

Table 5.4.9 
The signs of (M (; »k ,1 

(k,l) i: I II Confounded interactions 

(11,12) + - AD,BC 
(10,13) + - AC,BD 
( 9,14) + - AB,CD 

We define 

+ 1 ,if the half-replicate I is chosen, 

-1 ,if the half-replicate II is chosen. 
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Table 5.4.10 
The signs of the important elements of M; 

i (11,12) (10.13) (9,14) 

1 01 01 
2 01 01 
3 01 01 
4 01 01 
5 01 01 
6 01 01 
7 01 01 
8 01 01 
9 01 01 
10 01 01 
11 01 01 
12 01 01 

We can choose the following half-replicates of S;: I for i = 1,2,3,4,5,6 and II 

for i = 7,8,9,10,11,12. This gives a half-replicate of SP(l,2,1; w 2), for which 

the information matrix is equal to }MP(l,2,1; w 2). We consider the set 

SP 2(0,0,4; w 1). It is not possible to construct a half-replicate of SP 2(0,0,4; w 2 ) 

having an information matrix of type (4.1.5). Therefore, we consider the fol

lowing D-optimal design. 

i) the pairs of S (2,2) with weights 
ii) the pairs of SP(0,0,4; w 1) with weights 
iii) the pairs of SP 1(0,0,4; w 1) with weights 
iv) the pairs of SP ( 1,2,1; w 2 ) with weights 

V2 = 0.00711 , 
* µ = 0.00186' 

'A = 0.00492' 
p = 0.00162. 

The number of pairs of SP 1(0,0,4; w 1) is equal to 64, which is 16 more than the 

number of pairs of SP 2(0,0,4; w 1). However, it is possible to construct a half

replicate of SP 1(0,0,4; w 1), which consists of the sets 

T1 = S(( 1, 1, l,w1),(w1>W1>W1> 1)), 
T2 = S(( 1, l,wi, l),(w1>w1, l,w1)), 
T3 = S(( l,w1, 1, l),(wl> l,w1>w1)), 
T4 = S((wi, 1, 1, 1),( l,w1>wi.w1)). 

Choosing the half-replicate (I) for each set T; we obtain a half-replicate of 

SP1(0,0,4; w1). 
Finally we consider the set S (2,2). This set consists of 
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V 1 = S((l,1,1,1),(-1,...,-l, 1, 1)), 
V2 = S((l,l,l,1),(-1, 1,-1, 1)), 
V 3 = S((l,l,l,l),(-1, 1, 1,-1)), 
v .. = s ((l,l,1,l),( 1,-1,-1, 1)) ' 
v s = s ((l,l,l,l),( 1,-1, 1,-1)) ' 
Yes= S((l,l,1,1),( 1, 1,-1,-1)), 

In each set V; the pairs occur twice. Therefore, we need a quarter-replicate of v; 

to obtain a half-replicate of S(2,2). Consider the defining contrasts I, D, ABC, 
ABCD . They yield the following quarter-replicates of a 24- factorial experi
ment. 

(I) 
(II) 
(III) 
(IV) 

: (1), ab, ac, be 
a, b, c, abc 
d, abd, acd, bed 

ad, bd, cd, a bed 

Defining contrasts 
I, -D, -ABC, ABCD , 
I, -D, ABC, -ABCD , 
I, D, -ABC, -ABCD , 
I, D, ABC, ABCD . 

By methods similar to the ones above it can be seen that a half-replicate of 
S(2,2) for which the information matrix is equal to }M(2,2), can be found by 

choosing the quarter-replicates given in table 5.4.11. 

Table 5.4.11 
Choice of quarter-replicate of V 1 

1 2 3 4 5 6 

quarter-replicate (j) IV I · II IV II II 

A discrete D-optimal design has been constructed consisting of 

i) a half-replicate of S (2,2) 24 pairs , 
ii) SP (0,0,4; w 1) 16 pairs , 
iii) a half-replicate of SP 1(0,0,4; w 1) 32 pairs, 
iv) a half-replicate of SP(l,2,1; w 2 ) 96 pairs, 

In total : 168 pairs . 

This number is larger than 105, the number ND given in table 5.4.1. Therefore, 
a further reduction can be achieved. However, this seems to entail many 
different weights, which is not attractive for practical applications. 
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5.5. Exact designs when n = 2, 3, 4, 5. 

5.5.1. General remarks 

In this section exact designs are constructed for n = 2, 3, 4, 5 . Let E be a 

discrete D-optimal design. As we have seen in sections 5.2 and 5.3 the following 

holds. 
If n is odd, then the set of pairs of the design E is contained in the union of the 

following sets: 

S <}(n -1),}(n + 1) ), 

SP(O,O,n; w 1), 

all SP1(0,0,n; w 1 ) with 1 ~ l ~ n , 

where w 1 has the value given in table 5.2.7. 
If n = 2, 4, then the set of pairs of the design E is contained in the union of the 

sets 

sqn .}n ), 
SP(O,O,n; w1), 

all SP1(0,0,n; w 1 ) with 1 ~ l ~ n, 

SP(}n-1,}n ,1; w 2), 

where w 1 and w 2 have the values given in table 5.2.7. 

It seems useful to consider exact designs, for which the set of pairs is also con

tained in this union of sets. However, the pairs cannot have the same weights in 

an exact design as in a discrete design. This can be partly compensated by choos

ing other values for w 1 and w 2 than the ones given in table 5.2.7. For this rea

son and in the light of the proof given in section 5 .3 it is useful to define the 

following sets. 

Definition 5.5.1 

S(O,O,Zi.Z2;wi,w 2):= S((x,y)), 

SP((O,O,Z1.£i; w1,w2):= SP((x ,y )) , 

where 

x - (1, ... , l,wi. ... ,w 1)', 

Z 1 is the TUJ.mher of w 1 's in x , 
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SP(O,O,li,l 2;wi,w 2)= SP1 (0,0,n;w 1). The information matrices of the sets 
given in definition 5.5.1 are denoted by 

M(O,O,Z1.Z2; wi,w2) 

and MP1 (O,O,l1.Z2; wi.w2). 

An expression for MP(O,O,l 1,l 2 ; w 1,w 2 ) is given in the following lemma. 

Lemma 5.5.2 

pi 

sl+tJ 

zl 

where (5.5.1) 

n-1 n-1 p = (Z1-l) gi + (Z2- l) g 2 ' 

n-2 n-2 n-2 2 z = <z1-2) g1h1 + (Z2-2) g2h2 + 2(z 1_ 1 ) (w1-w2) , 

t cn-2 
= Zi-2) g1h1 + 

n-2 
(Z2-2) g2h2 

n-2) 2Cz 1_ 1 g12g22, 

s + t n-1 
= (Zi-l) g1h1 + 

n-1 
(Z2-l) g2h2' 

with 

g; = (1-w; )2 , h; (l+w; )2 , g;2 = (1-w/). 

Proof 
The correctness of the equations (5.5.1) can be proved by use of (4.2.20). This 
yields 

p = Ct1) [Z 1 g 1 + l 2 g 2 )/ n , 

z = (G) [(ZI)g1h1 + (lI)g2h2 + Z1Ziw1-w2)2J/ (2), 

t n [ Z1 Z2 ]/ n = <z 1) ( 2 )g1h1 + <2 )g2h2- Z1Z2gug22 ( 2 ), 

s + t = <G) Cz1 g1h1 + z2g2h211 n , 

equivalent to (5.5.1). a 
We choose exact designs for n = 2, 3, 4, 5. If n = 2, we choose exact designs 
with pairs contained in the union of the following sets 
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-S (1,1), 

-SP(0,0,2; W1)' 

-SP(0,0,1,1; w2,w3), 

-SP(0,1,1; w4). 

If n 4, these sets are 

-S (2,2) , 

-SP(0,0,4; W1)' 

-SP(0,0,2,2; w 2,w 3), or SP(0,0,1,3; w 2,w 3), 

-SP(l,2,1; W4). 

If n 3, 5 , these sets are 

-S<-}(n-1),j(n+l)), 

-SP(O,O,n; w 1) , 

-SP(O,O,-}(n-1),-}(n +l); w2,w3). 

The values of w i. w 2 , w 3 and w 4 have to be chosen according to some criterion. 

We choose the G-criterion and the D-criterion. Exact designs are given in section 

5.5.2 for the cases n = 3, 5 and in section 5.5.3 for the cases n = 2, 4 . In this 

section a lemma is given that can be used when the G-criterion is applied. The 

maximal value of the variance function has to be computed. According to the 

discussion in section 5.3 the values d (k i,k 2 ,li,1 2 ) have to be computed. In many 

cases the maximal value is one of the values di. d 2, d 3 if n is odd and one of 

the values di. d 2, d 3, d 4 if n is even, where 

,if n even, 

d <-}(n -1),j(n + 1)) ,if n odd , 

d 2 = d (0,0,0,n), 

d (O,O,jn .-}n) ,if n even, 

d (O,O,-}(n-1),j(n +l)) ,if n odd, 

d 4 = d (jn-1,-}n ,0,1) ,if n even. 

(5.5.2) 

The maximal value has to be minimized. The following lemma is useful in 

achieving this. 
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Lemma 5.5.3 
Let l 1 and l 2 be fixed with l 1 + l 2 = n and let E be a design with covariance ma
trix of type (4.1.6). Let v1 be the value that maximizes d(0,0,0,n), and (v2,v3) 
the pair that maximizes d (O,O,li,l2). 
Then 

if and only if 

o = -4g and v 1 = v 2 = v 3 . 

Proof 

i) Assume o = -4g and v 1 = v 2 = v 3 • By applying lemma 5.2.1 it can be 
shown that d (0,0,0,n) = d (O,O,l 1,li). 

ii) Assume d (0,0,0,n) = d (O,O,li,l 2). Let d (k ,k 2,l 1h; wi,w 2 ) denote the 
function given in (5.3.10). So d(O,O,li,l 2) = d(O,O,li.l 2; v 2,v 3). In the nota
tion of (5.2.8) we have d (0,0,0,n) = d (0,0,n; v 1). We shall show that 
O + 4g = 0 by proving that the statements O + 4g < 0 and O + 4g > 0 are 
both false. 

a) Suppose o + 4g < 0. 
The maximal value of d (0,0, l 1 ,l 2; v 2 ,v 3 ) is d (O,O,l 1,l 2 ). Therefore, 

So, using (5.3.10), we find 

d(O,O,l1,l2; v2,v3) > d(O,O,l1,l2; vi,v1) + l1l2 (0 + 4g)(l-vl)2 

l l = li y (l-v1)2 + l2 y (l-v1)2 + (I) 0 (1-v[ )2 + ( {) 0 (1-v[ )2 

+ li a: (1-vf )2 + l2 o:(l-vf )2 + g [l1(1-v[) - l2(1-v[ ))2 

+ l1l2 O (1-vf )2 +4l1l2 g (1-v[ )2 

= n y (l-v1)2 + (~) 0 (1-v[)2 + n a: (1-vf )2 

+ g [li(l-v[) + l 2(1-v[ )]2 = d (0,0,0,n). 

This contradicts d ( 0,0,0,n ) = d ( 0,0,l i,l 2) . 

b) Suppose o + 4g > 0. 
Similarly we have 

d (0,0,0,n) > d (0,0,0,n )-l 1l 2 (o + 4g)(l-vf)(l-vf) 

~ li Y (l-v2)2 + l2 y (l-v 3)2 + (lI) O (1-v} )2 + (l{) o (1-v} )2 

+ l1l2 0 (l-v2v3)2 + li a: (1-v} )2 + l2 a: (1-v} )2 
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= d(O,O,li.l2; v2,v3). 

This contradicts d (0,0,0,n) = d (0,0,l i.Z 2) and completes the proof. 0 

5.5.2. Exact designs when n = 3, 5. 

Exact designs are constructed as follows. 
If n = 3, we choose 

i) n 1 times the pairs of S(l,2), 
ii) n 2 times the pairs of SP ( 0,0,3; w 1) , 
iii) n 3 times the pairs of SP(0,0,1,2; w 2,w 3). 

The information matrix of this design has the structure of (4.1.5) and is deter
mined by 

(5.5.3) 

p = [32n1 + 8n2 gi + 8n3(g2 + 2g3)] / N , 

s = [ 0 + 0 + Bn 3(g 22 + g 32 )2] / N , 

t = [ 0 + 8n2 g1h1 + 8n3(g~3 - 2g22g32)] / N , 

z = [32n1 + 8n2g1h1 + 8n3(g~3 + 2(w2-w3)2] / N , 

where g1 , h; and g12 are defined as usual and N = 12n 1 + Bn 2 + 24n 3. 

If n = 5, we choose 

i) n 1 times the pairs of a half-replicate of S (2,3), 
ii) n 2 times the pairs of a half-replicate of SP(0,0,5; w 1), 

iii) n 3 times the pairs of a quarter-replicate of SP(0,0,2,3; w 2,w 3); 

n i.n 2 and n 3 have to be chosen such that the covariance matrix of the design has 
the structure of (4.1.6). By the results of section 5.4 this implies the following 
inequalities ni ~ 1, n2 ~ 1, n 3 ~ 2 if w2 ;C w3 and n3 ~ 1 if w2 = w3. 
If these conditions are satisfied, then the information matrix is determined by 

(5.5.4) 

p = [192n1 + l6n2 gi + l6n3(2g2 + 3g3)] / N , 

s = [ 0 + 0 + 24n 3(g 22 + g 32)2] / N , 

t = [ 0 + l6n2 g1h1 + 8n3(g2h2 + 3g~3 - 6g22g32)] / N , 

z = [192n1 + l6n2 g1h1 + 8n3(g2h2 + 3g3h3 + 6(w2-w3)2] / N , 

where N = 80n 1 + 16n 2 + 80n 3. 

Let n i. n 2 and n 3 be fixed. Now w i. w 2 and w 3 have to be chosen according to 
the G-criterion or the D-criterion. First we consider the G-criterion. In many 
cases minimizing the maximal value of di. d 2 and d 3 means that w i. w 2 and w 3 
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have to be such that d 1 = d 2 = d 3 • Therefore lemma 5.5.3 can be used. We 
have written a computer program that determines w i. w 2 and w 3 such that 
max I d i,d 2 f is minimized under the restriction 8 = -4g. In some cases it is 
not true that d 1 = d 2 = d 3 • Then lemma 5.5.3 cannot be applied. So, a compu
terprogram has been written to determine w 1 , w 2 and w 3 without the assump
tion 8 = -4g. This program minimizes the maximal value of d 1, d 2 and d 3. In 
some cases the values of w i. w 2 and w 3 are also computed under the restriction 
w 1 = w 2 or w 1 = w 2 = w 3 . This is done for practical applications. In the case 
n = 5 the restriction w 2 = w 3 is useful with respect to the number of pairs of 
the exact design, because now we may choose n 3 = 1 without affecting the 
structure of the information matrix. Moreover, the D-criterion is used to deter
mine the values of wi, w 2 and w 3 • The assumption 8 = -4g cannot be made in 
computing these values, since in general it does not hold as can be seen in table 
5.5.4. Again in some cases we assume w 2 = w 3 or w 1 = w 2 = w 3 when com
puting these values. Results are given in table 5.5.4 for some choices of ni. n 2 
and n 3• These determine the weights of the pairs of the design. An argument 
that can be used when choosing n i. n 2 and n 3 is that these weights should be 
approximately the same as those in the discrete D-optimal designs. These 
weights are given in table 5.2.7. However, the number of pairs of the design 
must be small for practical applications. Some choices are given in table 5.5.4. In 
the rows where the restrictions are given a 1 means that w i. w 2 and w 3 are com
puted under that restriction; a 0 means that no such restriction is made. The 
results are satisfactory. The efficiency of the designs is good. The number of 
pairs is small in the case n = 3. However, when n = 5, some designs have a 
large number of pairs. The choice n 1 = n 2 = n3 = 1 or n 1 = 2, n2 = n3 = 1 
seems to be a good one, both with the restrictions w 2 = w 3 and w 1 = w 2 = w 3 • 

The number of pairs of these designs are comparatively small and the informa
tion matrices of these designs have the structure of (4.1.5). The G-efficiency of 
these designs is more than 80%, the D-efficiency more than 89%. The efficiencies 
of the designs constructed without the restriction 8 + 4g = 0 are approximately 
the same as the efficiencies of the designs constructed under this restriction. 
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Table 5.5.4 
Constants determining exact designs as given in section 5.5.2 

II n = 3 I 
Choice 
of n1= 1 ; n 2 = 1 ; n 3 = 1 ; ( 44) 

n1,n2,n3 1) 

Restrictions 

o+4t°=O 1 0 0 1 0 0 

w2=w3 0 0 0 1 1 1 

w1=w2= W3 0 0 0 0 0 0 

Criterion a a D a a D 

Wt -0.7352 -0.3762 -0.1590 -0.4720 -0.0988 -0.1398 

W2 -0.7194 0.6087 -0.5222 
-0.5944 -0.5904 -0.1987 

W3 0.2333 -0.4324 -0.0425 

ex 2.6970 2.6432 1.8475 3.2875 3.2398 1.4904 

0 0.7947 0.7270 0.8585 1.0951 1.0176 0.9348 

y 0.4936 0.5418 0.5593 0.3988 0.4298 0.5723 
g -0.1987 -0.3088 -0.2049 -0.2738 -0.5353 -0.0152 

di 10.3066 10.1503 11.3417 11.9511 11.5794 12.0566 

di 10.3066 9.1608 8.2145 11.9510 9.3584 9.0933 

d3 10.1503 ll.5794 
G-effi.ciency 87.3 88.7 79.4 75.3 77.7 74.6 
D-efficiency 87.9 90.2 94.9 79.8 83.7 94.3 

1) Between brackets the number of pairs is given. 
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Table 5.5.4 
Constants determining exact designs as given in section 5.5.2 

II n = 3 I 
Choice 
of n1 = 1 ; n2 = 1 ; n2 = 2; n2 = 1 ; 
ni,n 2,n 3 1) n3 = 1 ; (44) n3= 1;(56) 

Restrictions 

o+4g=o 0 0 - 1 0 0 
w2=w3 1 1 - 0 0 0 
w1=w2=w3 1 1 - 0 0 0 

Criterion a D - a a D 

W1 0 -0.4247 -0.3365 -0.1212 
W2 -0.3640 0.1809 0 -0.5431 -0.5473 -0.2114 
W3 0 -0.0043 -0.0200 -0.1238 

a 1.8270 1.4696 1.3750 2.4079 2.4221 1.8599 
0 0.9991 0.9368 0.9167 0.6828 0.6769 0.7031 
'Y 0.4807 0.5742 0.6875 0.4852 0.4908 0.5283 
g 0 0 0 -0.1707 -0.2307 -0.0279 

d1 11.8380 12.0880 12.8333 9.3434 9.3416 9.8512 
d2 10.0551 9.1777 9.3087 9.3434 8.8619 9.2136 
d3 9.3416 

G-efficiency 76.0 74.5 70.1 96.3 96.3 91.4 
D-efficiency 91.0 94.3 91.4 96.5 97.3 99.1 

1) Between brackets the number of pairs is given. 
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Table 5.5.4 
Constants determining exact designs as given in section 5.5.2 

II n = 3 I 
Choice 
of ni= 2; n2= 1; n3= 1;(56) 
ni,n 2,n 3 1) 

Restrictions 

o+4g=o 1 0 0 0 0 -

w2=w3 1 1 1 1 1 -
w1=w2=w3 0 0 0 1 1 -

Criterion a a D c D -

W1 -0.1192 -0.1192 -0.1195 0 

W2 
-0.3989 -0.3989 -0.1509 

-0.2386 -0.1419 0 

W3 0 

Ol 2.4748 1.8325 1.9677 1.8226 1.75 

0 0.7232 0.7052 0.7158 0.7056 0.70 
y 0.4629 0.5292 0.4952 0.5297 0.5833 
g -0.1808 -0.0079 0 0 0 

di 9.4887 9.8751 9.6880 9.8825 10.2666 

d2 9.4887 9.3180 9.6880 9.3612 9.3390 

d3 
G-effi.ciency 94.8 91.1 92.9 91.1 87.7 
D-effi.ciency 95.4 99.1 98.3 99.0 97.5 

1) Between brackets the number of pairs is given. 
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Table 5.5.4 
Constants determining exact designs as given in section 5.5.2 

II n = 5 I 
Choice n1=n2=n3= 1; (176) 
of n1= n2= n3= 2;(352) or 
n1,n2,n3 1) n1=n2=n3= 2; (352) 

Restrictions 

&+4{=0 1 0 0 1 0 0 
w2=w3 0 0 0 1 1 1 
w1=w2=w3 0 0 0 0 0 0 

Criterion a a D a a D 

W1 -0.6165 -0.2309 -0.0951 -0.0888 -0.1083 -0.0926 
W2 -0.6521 -0.6507 -0.2604 

-0.4602 -0.4068 -0.1299 
W3 0.3151 0.3154 -0.0540 

a 3.3687 3.3612 1.9702 2.9511 2.6327 1.8968 
& 0.6637 0.6441 0.7316 0.7732 0.7655 0.7375 
y 0.5121 0.5400 0.5581 0.4613 0.4757 0.5619 
g -0.1659 -0.3524 -0.0381 -0.1933 -0.1323 -0.0053 

di 22.0750 21.9375 24.2557 24.0919 24.0807 24.4417 
d2 22.0750 17.4170 19.2704 20.1229 20.0642 19.7946 
d3 21.9375 18.6622 

G-effi.ciency 90.6 91.2 82.5 83.0 83.1 81.8 
D-effi.ciency 90.7 93.1 95.9 89.7 91.6 95.8 

1) Between brackets the number of pairs is given. 
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Table 5.5.4 
Constants determining exact designs as given in section 5.5.2 

II n = 5 I 
Choice n1 = n2 = n3 = 1; (176) 

of or n1=4;n2=2; 

n 1,n 2,n 3 1) n1=n2=n3= 2; (352) n 3 = 2 ; (412) 

Restrictions 

cS+4g= 0 0 0 - 1 0 0 

w2=w3 1 1 - 0 0 0 

w1=w2=W3 1 1 - 0 0 0 

Criterion a D - a a D 

Wt 0 -0.0930 -0.0051 -0.0715 

W2 -0.3048 -0.1220 0 -0.3892 -0.3891 -0.1008 

W3 0 -0.0059 -0.0028 -0.0814 

0: 2.2281 1.8891 1.8333 3.1218 3.1215 2.7120 

cS 0.7603 0.7377 0.7333 0.5861 0.5859 0.5934 

y 0.4952 0.5626 0.6111 0.5013 0.5018 0.5148 

g 0 0 0 -0.1465 -0.1465 -0.0046 

di 24.1885 24.4555 24. 9333 20.0817 20.0833 20.4204 

d2 21.3947 19.8932 19.8692 20.5040 20.5042 22.1378 

d3 16.9017 20.5042 

G-efficiency 82.7 81.8 80.2 97.5 97.5 90.3 

D-efficiency 93.5 95.8 94.8 98.9 98.9 99.8 

1) Between brackets the number of pairs is given. 
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Table 5.5.4 
Constants determining exact designs as given in section 5.5.2 

II n = 5 I 
Choice ni= 2:n 2 = 1 ; n 3 = 1; ( 206) 
of or 
ni,n 2,n 3 1) ni= 4:n2= 2;n3= 2;(206) 

Restrictions 

5+4g=o 1 0 0 0 0 -
w2=w3 1 1 1 1 1 -
w1=w2=w3 0 0 0 1 1 -

Criterion a a D a D -

W1 -0.0029 -0.0042 -0.0719 0 
W2 

-0.3626 -0.0999 -0.0887 
-0.0223 -0.0100 0 

W3 0 

0: 3.5350 2.7207 2.7092 2.6693 2.7208 2.6667 
5 0.6036 0.5935 0.5935 0.5927 0.5939 0.5926 

'Y 0.4666 0.5152 0.5149 0.5286 0.5118 0.5333 
g -0.1509 -0.0090 -0.00250 0 0 0 

di 20.0853 20.4253 20.4228 20.5666 20.3958 20.6222 
d2 22.4169 22.0731 22.1756 22.1111 22.2821 22.1249 
d3 18.7722 18.6052 

G-efficiency 89.2 90.6 90.2 90.5 89.8 90.4 
D-efficiency 96.0 99.7 99.8 99.6 99.8 99.4 

1) Between brackets the number of pairs is given. 
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Table 5.SA 
Constants determining exact designs as given in section 5.5.2 

I n = 5 I 
Choice ni= n2= 2;n3= 1;(272) 
of n 1 = n 2 = 4; n 3 = 2; (544) or 
n1,n2,n3 1) n 1 = n 2 = 4; n 3 = 2; (544) 

Restrictions 

8+4f=O 1 0 0 1 0 0 
w2=w3 0 0 0 1 1 1 
w1=w2=w3 0 0 0 0 0 0 

Criterion a a D a a D 

Wt -0.4980 -0.2121 -0.1049 -0.4599 .-0.2003 -0.1050 
W2 -0.3267 -0.3122 -0.0798 

-0.2360 -0.2350 -0.0869 
W3 0.0043 -0.1040 -0.0920 

a 3.1619 3.1669 2.8758 3.1775 3.1743 2.8766 
8 0.6214 0.6109 0.6088 0.6290 0.6153 0.6088 
y 0.4860 0.4994 0.5255 0.4735 0.4926 0.5255 

e -0.1554 -0.3987 -0.2591 -0.1576 -0.2984 -0.2595 

di 20.7445 20.6541 20.9164 20.7783 20.6794 20.9163 
d2 20.7445 19.9645 16.8917 20.7783 17.2558 16.8847 
d3 20.6541 20.6794 

G-effi.ciency 96.4 96.8 95.6 96.3 96.7 95.6 
D-effi.ciency 96.5 98.5 99.5 96.5 98.3 99.5 

1) Between brackets the number of pairs is given. 
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Table 5.5.4 
Constants determining exact designs as given in section 5.5.2 

II n = 5 I 
Choice n1 = n2 = 2; n3= 1; (272) 
of or n1=2;n2=l; 
n1>n2,n3 1) n1= n2= 4; n3= 2; (544) n3= 2; (336) 

Restrictions 

8+4g=o 0 0 - 1 0 0 
w2=w3 1 1 - 0 0 0 
w1=w2= w3 1 1 - 0 0 0 

Criterion 6 D - 6 6 D 

WJ 0 -0.4671 -0.1683 -0.0773 
W2 -0.2351 -0.1000 0 -0.6720 -0.6725 -0.4593 
W3 0 0.2911 0.2911 0.0277 

a 3.1746 2.8909 2.8333 3.2677 3.2707 2.1890 
8 0.6166 0.6089 0.6071 0.6365 0.6301 0.6993 
y 0.4902 0.5236 0.5483 0.5204 0.5307 0.5337 
g -0.2886 -0.2628 -0.2576 -0.1591 -0.2411 0.0304 

d1 20.6813 20.8957 21.1521 21.5224 21.4905 23.1875 
d2 17.4970 16.8629 16.8452 21.5224 19.5115 21.5711 

d3 20.6813 19.3326 21.4905 
G-efficiency 96.7 95.7 94.6 92.9 93.1 86.3 
D-efficiency 98.2 99.5 99.0 93.0 93.8 95.8 

1) Between brackets the number of pairs is given. 
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Table 5.5.4 
Constants determining exact designs as given in section 5.5.2 

II n = 5 I 
Choice 
of n1=3;n2=2; n1=3;n2=l; 
n i,n 2,n 3 1) n3=2;(432) n3= 2; (416) 

Restrictions 

S+4g=o 1 0 0 1 0 0 

w2=w3 0 0 0 0 0 0 

w1=w2=w3 0 0 0 0 0 0 

Criterion o a D o a D 

Wt -0.4135 -0.1596 -0.0817 -0.0105 -0.0132 -0.0575 

W2 -0.5341 -0.5673 -0.1318 -0.5907 -0.5909 -0.211 7 

W3 0.1729 0.0311 -0.0905 0.0019 -0.0046 -0.0559 

ex 3.1704 3.1993 2.3087 3.1794 3.1800 2.2744 

8 0.6177 0.6207 0.6444 0.6113 0.6120 0.6336 
y 0.5045 0.4986 0.5336 0.4895 0.4887 0.5233 
g -0.1544 -0.2770 -0.0083 -0.1528 -0.1530 0.2573 

di 20.8802 20.8796 21.8685 20.5451 20.5515 21.4874 

d2 20.8802 17.9946 20.6661 20.8138 20.8148 26.9090 

d3 20.8796 .20.8148 
G-efficiency 95.8 95.8 91.5 96.1 %.1 74.3 
D-efficiency 95.8 97.1 98.9 97.0 97.0 98.2 
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5.5.3. Exact designs when n = 2, 4. 

Exact designs will be constructed as follows. 
If n = 2, we choose 

i) n 1 times the pairs of S(l,l), 
ii) n 2 times the pairs of SP(0,0,2; w 1), 
iii) n 3 times the pairs of a half-replicate ofSP(0,0,1,l; w2,w3) 
iv) n 4 times the pairs of SP(0,1,1; w4). 

The information matrix of this design has the structure given in (4.1.5) if 
nl~ l,n2~ l,n4~ landn3~ lifw2= w3orn3~ 2ifw2;z!: w3. 
If these conditions are satisfied we have 

(5.5.5) 

p = [ 8n1 + 4n2 gl + 2n3(g2 + g3) + 4n4(4 + g4)] / N , 

s = [ 0 + 0 + 2n3(g22 + g32)2 + 4n4(g4 + h4)] / N , 

t =[ O +4n2g1h1- 4n3g22g32 +O]/N, 

z = [l6n1 + 4n2 g1h1 + 4n3(w2-w3)2 + 8n4h4] / N , 

where N = 4n1 + 4n 2 + 4n3 + 8n4. 

If n = 4, we choose 

i) n 1 times the pairs of a half-replicate of S(2,2), 
ii) n 2 times the pairs of SP (0,0,4; w 1), 
iiiA) n 3 times the pairs of a half-replicate of SP(0,0,1,3; w 2,w 3), 

or 
iiiB) n 3 times the pairs of a half-replicate of SP(0,0,2,2; w 2,w 3), 
iv) n 4 times the pairs of a quarter-replicate of SP(l,2,1; w 4). 

The information matrix of this design has the structure given in (4.1.5) if 
nl~ l,n2~ 1,n 4 ~ 2andn3~ lifw2= w3orn3~ 2ifw2;z!: w3. 
If these conditions are satisfied we have 

where 

and 

(S.5.6) 

p =[48n1 + l6n2 g1 + 8n3[(2q4-l)g2 + 3g3] + 12n4(8 + g4)) /N , 
s =[ 0 + 0 + 8n3q4(g22 + g32)2 + 12n4(g4 + h4)] /N , 
t =[ 0 + l6n2g1h1 + 8n3[(q4-l)g2h2+(3-q4)g3h3-2q4g2igs2U/N, 

z =[64n1 + l6n2 g1h1 + 8n3[(q4-l)g2h2+(3-q4)g3h3+2q4(w2-w3)2)] 

+ 8ni8 + g4 + 2h4)] /N , 

{ 
1 , if iiiA ) is chosen , 

q4 = 
2 , if iiiB ) is chosen , 
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Again for fixed n 1 , n 2 , n 3 and n 4 the values of w 1 , w 2 , w 3 and w 4 have been 

computed according to the G-criterion or the D-criterion. When using the (;._ 

criterion we make the assumption o + 4g = 0 , because we did not find better 

results when this assumption was not made in the case n = 3, 5 . Again in 

some cases designs are constructed with w 2 = w 3 or w 1 = w 2 = w 3 • Some 

results are given in table 5.5.5. For both n = 2 and n = 4 designs are found for 

which the number of pairs is comparatively small and which have a high 

efficiency. The designs given in this table for n = 4 are designs with q 4 = 1 . 

Using q 2 = 2 does not lead to better results. 
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Table 5.5.S 
Constants determining exact designs as given in section 5.5.3 

II n = 2 I 
Choice q4 = 1 q4 = 1 
of ni,n2,n3 ni = O; n2 = O; ni=2;n2=2; 
n4 and q4 1) n3 = O; n4 = 1; (8) n3= 2;n4= 2; (40) 

Restrictions 

S+4f=O 0 0 - 1 0 
w2=w3 - - - 0 0 
w1=w2=w3 - - - 0 0 

Criterion o D - o D 

W1 - - - -0.0407 -0.1483 
W2 - - - -0.0558 -0.1826 
W3 - - - -0.5128 -0.1826 
W4 0.0754 0.1279 0 0.0061 0.0741 

0: 2.0229 2.0671 2 1.9975 1.7495 
s 0.864 7 0.6860 1 0.6916 0.6884 

'Y 0.4120 0.4201 0.4 0.5116 0.5222 

' 0 0 0 -0.1729 -0.0133 

di 5.1066 4.8246 5.6 4.8127 4.8423 
d2 5.8103 5.8393 5.8700 5.1706 5.3316 
d3 
d4 5.0230 5.0000 5.1454 5.0877 5.0479 

G-efficiency 86.1 85.6 85.2 96.7 93.8 
D-efficiency 98.4 98.7 97.2 98.5 99.6 

1) Between brackets the number of pairs is given. 
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Table 5.5.5 
Constants determining exact designs as given in section 5.5.3 

II n = 2 I 
Choice q4 = 1 

ofn1,n2,n3 n1 = n2 = n3 = n4 = 1; (20) , or 

n4 and q4 1) n1=n2=n3=n4= 2; (40) . 

Restrictions 

8+4g=o 1 0 0 0 -

w2=w3 1 1 1 1 -

w1=w2= W3 0 0 1 1 -

Criterion c D 6 D -

W1 -0.0343 -0.1483 0 

W2 
-0.3765 -0.1826 

-0.0751 -0.1639 0 

W3 0 

W4 0.0224 0.0741 0.0193 0.0744 0 

()[, ·2.0225 1. 7495 1.6797 1. 7 344 1.666 7 

8 0.7054 0.6884 0.7076 0.6891 0.7143 

y 0.5040 0.5222 0.5392 0.5227 0.5556 
g -0.1 764 -0.0133 0 0 0 

di 4.8377 4.8423 4.9869 4.8472 5.0794 

d2 5.1983 5.3316 5.3124 5.3554 5.3383 

d3 
d4 5.0881 5.0479 5.0966 5.0492 5.1710 

G-efliciency 96.2 93.8 94.1 93.4 93.7 

D-efliciency 98.3 99.6 99.1 99.6 98.0 

1) Between brackets the number of pairs is given. 
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Table 5.5.S 
Constants determining exact designs as given in section 5.5.3 

II n = 2 I 
Choice q4 = 1 
of n 1,n2,n3 n1= 1; n2 = 2; n3 = 1; n4 = 3; (40), or 
n4 and q4 1) n1 = 2;n2= 4;n3= 2; n4 = 6; (80) . 

Restrictions 

8+4g=o 1 0 0 0 -
w2=w3 1 1 1 1 -
w1=w2=w3 0 0 1 1 -

Criterion a D a D -

W1 -0.3182 -0.1567 0 
W2 

-0.0333 -0.1384 
-0.1380 -0.1502 0 

W3 0 
W4 0.0688 0.1138 -0.0369 0.1136 0 

a 2.0132 2.0631 2.0340 2.0687 2 
8 0.8019 0.7493 0.8081 0.7490 0.8333 
y 0.4729 0.4919 0.4838 0.4920 0.5 
g -0.2005 -0.2885 -0.2861 -0.2930 -0.2857 

d1 5.0995 4.9649 5.1676 4.9641 5.3333 
d2 5.0995 4.8575 4.8453 4.8506 4.8496 
d3 5.2447 5.1676 5.2555 5.1446 
d4 5.0261 5.0126 5.0236 5.0135 5.1019 

G-efliciency 98.0 95.3 96.8 95.1 97.2 
D-efliciency 99.0 99.9 99.7 99.9 98.6 

1) Between brackets the number of pairs is given. 
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Table 5.5.S 
Constants determining exact designs as given in section 5.5.3 

II n = 2 I I n = 4 I 
Choice q4 = 1 q4 = 1 

of n 1,n2,n3 ni = 2; n2 = 4; ni = l;n2= O;n3= 2;n4= 0;(88) 

n4 and q4 1) n3= 2;n4= 6;(80) 

Restrictions 

o+4g=o 1 0 1 0 0 -
w2=w3 0 0 0 0 1 -
w1=w2= W3 0 0 0 0 0 -

Criterion a D 6 D D -

Wt -0.3181 -0.1568 - - - -

W2 -0.0317 -0.1384 0.6118 -0.6193 
-0.1802 

0 

W3 -0.0315 -0.1384 -0.5250 -0.0366 0 

W4 0.0689 0.1138 - - - -

a 2.0132 2.0631 3.0171 2.1083 i.-4689 1.375 

0 0.8018 0.7493 0.7205 0.8241 0.9366 0.9167 

y 0.4730 0.4919 0.5431 0.6218 0.6416 0.7857 
g -0.2005 -0.2885 -0.1801 -0.2842 0 0 

di 5.0995 4.9649 15.8724 18.1602 20.1190 20.9524 

d2 5.0995 4.8575 15.8724 11.7319 14.3873 14.6758 

d3 5.2447 

d4 5.0264 5.0126 15.6607 16.5709 17.4248 18.5088 

G-efficiency 98.0 95.3 88.2 77.1 69.6 66.8 
D-efficiency 99.0 99.9 98.9 92.7 91.3 88.6 

1) Between brackets the number of pairs is given. 
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Table 5.5.S 
Constants determining exact designs as given in section 5.5.3 

II n = 4 I 
Choice q4 = 1 q4 = 1 
of n 1,n2,n3 ni = 2; n2 = O; ni= l;n2= O;n3= l;n4= 0;(56),or 
n 4 and q4 1) n3= 2;n4= 0;(112) ni= 2;n2= O;n 3= 2;n4= 0;(112) 

Restrictions 

5+4g=o 1 0 0 0 -
w2=w3 0 0 1 1 -
w1=w2= w3 0 0 0 0 -

Criterion a D a D -

Wt - - - - -
W2 0.5073 -0.3276 

-0.3623 -0.1544 
0 

W3 -0.3808 -0.1062 0 
W4 - - - - -

a 2.7424 1.9775 2.3186 1.8365 1.75 
8 0.6341 0.6963 0.7361 0.7067 0.7 

'Y 0.5852 0.6122 0.5215 0.6178 0.7 
g -0.1586 -0.0873 0 0 0 

di 14.8267 16.0387 15.9496 16.2490 16.8 
d2 14.8264 13.4595 15.9496 14.3546 14.4049 
d3 
d4 14.8261 15.0663 15.1337 15.1786 15.75 

G-efficiency 94.4 87.3 87.8 86.2 83.3 
D-efficiency 94.4 97.8 94.2 97.7 95.9 

1) Between brackets the number of pairs is given. 
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Table 5.5.5 
Constants determining exact designs as given in section 5.5.3 

II n = 4 I 
Choice q4 = 1 
ofn1,n2,n3 ni = 1; n2 = O;n3= 2;n4= 2; (184) ' 
n 4 and q 4 1) 

Restrictions 

8+4£=0 1 0 0 1 -
w2=w3 0 0 1 1 -
w1=w2=w3 0 0 0 0 -

Criterion o D o D -

W1 - - - - -
W2 -0.4105 -0.2044 

-0.0936 -0.1157 
0 

W3 -0.0612 -0.0930 0 
W4 0.4311 0.0757 0.106 0.0771 0 

ex 2.6528 2.1765 2.1519 2.1392 2.0909 
8 0.6167 0.6702 0.6612 0.6718 0.6765 
y 0.5515 0.5395 0.5525 0.5410 0.5610 

l -0.1542 -0.0268 0 0 0 

di 14.2783 15.0393 14.9983 15.0764 15.3113 
d2 14.2784 14.6810 14.9983 14.9560 14.8904 
d3 
d,. 14.2468 14.3883 14.4036 14.4077 14.5893 

G-efficiency 98.1 93.1 93.3 92.9 91.4 
D-efficiency 98.1 99.3 99.2 99.3 98.6 

1) Between brackets the number of pairs is given. 

5.6. Robustness of the designs 

As in section 4.5 we will give some lower bounds for the D-efficiencies of 
the discrete D-optimal designs which are given in section 5.2 when the condition 
(1.8.6) is not satisfied. The arguments given in section 4.5 also hold in the case 
of a hypercube as experimentel region. Lemma 4.5.1 is used to compute the 
lower bounds for some values of 8. The results are similar to the ones given in 
section 4.5 for n = 2, 3, 4 . No lower bounds have been computed for n = 5 . 
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Table 5.6.1 
Lower bounds for the D-effi.ciency of some designs 

11 n = 2 11 smallest I I 

I /30 I value I lower I 
/31 /32 /3 u /312 /312 of 7T; .ij bound 

0.05 0.05 0.05 0.05 0.05 0.435 0.996 
-0.05 0.05 0.05 0.05 0.05 0.450 0.996 

0.05 0.05 -0.05 0.05 0.05 0.438 0.996 
0.1 0.1 0.1 0.1 0.1 0.372 0.984 

-0.1 0.1 0.1 0.1 0.1 0.401 0.984 
0.1 0.1 -0.1 0.1 0.1 0.378 0.984 
0.2 0.2 0.2 0.2 0.2 0.270 0.939 

-0.2 0.2 0.2 0.2 0.2 0.310 0.937 
0.2 0.2 -0.2 0.2 0.2 0.270 0.941 
0.3 0.3 0.3 0.3 0.3 0.172 0.877 

-0.3 0.3 0.3 0.3 0.3 0.232 0.868 
0.3 0.3 -0.3 0.3 0.3 0.183 0.877 
0.5 0.5 0.5 0.5 0.5 0.068 0.737 

-0.5 0.5 0.5 0.5 0.5 0.119 0.699 
0.5 0.5 -0.5 0.5 0.5 0.076 0.727 
1 1 1 1 1 0.005 0.485 

-1 1 1 1 1 0.018 0.359 
1 1 -1 1 1 0.007 0.418 

0.1 0 0 0 0 0.450 0.995 
0.3 0 0 0 0 0.354 0.956 
0.5 0 0 0 0 0.269 0.887 
1 0 0 0 0 0.119 0.657 
0 0 0.1 0 0 0.475 0.999 
0 0 0.3 0 0 0.427 0.987 
0 0 0.5 0 0 0.379 0.965 
0 0 1 0 0 0.272 0.874 
0 0 0 0 0.1 0.450 0.997 
0 0 0 0 0.3 0.354 0.971 
0 0 0 0 0.5 0.269 0.923 
0 0 0 0 1 0.119 0.748 
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I n=3 ~mallest j j 

/30 value I lower I 
/31 /32 {33 /311 /3 22 {333 /312 {313 /3 23 of 1Ti .ij bound 

0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.386 0.992 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.283 0.971 

-0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.310 0.970 

-0.1 -0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.310 0.970 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.135 0.901 

-0.2 0.2 0.2 -0.2 0.2 0.2 0.2 0.2 0.2 0.256 0.895 

-0.2 0.2 0.2 -0.2 0.2 0.2 -0.2 0.2 0.2 0.168 0.895 

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.058 0.820 

-0.3 -0.3 0.3 -0.3 -0.3 0.3 -0.3 0.3 0.3 0.083 0.821 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.009 0.682 

0.5 0.5 0.5 0.119 0.746 

0.5 0.269 0.890 

0.5 0.5 0.259 0.869 

0.5 0.5 0.5 0.176 0.805 

1.0 0.119 0.668 

The entries that are not given in this table are zero. 
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II n=4 

" f3o value of the smallest 

non zero non zero value lower 

parameters parameters of 7T; . ij bound 

f31 0.1 0.4502 0.9955 
1 0.1192 0.7034 

f311 0.1 0.4750 0.9990 

f312 0.1 0.4502 0.9959 
(3; ,1 ~ i ~4 0.1 0.3780 0.9823 

0.2 0.2697 0.9341 
0.5 0.0765 0.7174 
1 0.0068 0.4540 

(3;; ,1 ~ i ~ 4 0.1 0.4024 0.9951 
0.2 0.3120 0.9811 

(3ij ,1 ~ i < j ~ 4 0.1 0.3100 0.9764 
0.2 0.1680 0.9197 

(3; ,(3ij ,1 ~ i ~ j ~4 0.1 0.1929 0.9573 
0.2 0.0540 0.8690 
0.3 0.0135 0.7787 
0.5 0.0008 0.6292 
1 0.0000 0.4169 

f3i. f311, f312 0.2 0.3100 0.9631 

f3i. {33, f312 0.2 0.2315 0.9510 
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