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PREFACE 

The present volume is one of the two tracts which are based on my 

dissertation 'Foundations and applications of Montague grammar'. Volume 

consists of the chapters 1,2,3 and 10 of that dissertation, and volume 2 of 

the chapters 4-9. Only minor corrections are made in the text. I would like 

to thank here again everyone who I acknowledged in my dissertation, in par

ticular my promoter P. van Emde Boas, co-promoter R. Bartsch, and coreferent 

J. van Benthem. For attending me on several (printing-)errors in my disser

tation I thank Martin van de Berg, Cor Baayen, Biep Durieux, Joe Goguen, 

Fred Landman and Michael Moortgat, but in particular Herman Hendriks, who 

suggested hundreds of corrections. The illustrations are made by Tobias 

Baanders. 

The two volumes present an interdisciplinary study between mathematics, 

philosophy, computer science, logic and linguistics. No knowledge of speci

fic results in these fields is presupposed, although occasionally terminology 

or results from them are mentioned. Throughout the text it is assumed that 

the reader is acquainted with fundamental principles of logic, in particu

lar of model theory, and that he is used to a mathematical kind of argumen

tation. The contents of the volumes have a lineair structure: first the 

approach is motivated, next the theory is developed, and finally it is ap

plied. Volume l contains an application to programming languages, whereas 

volume 2 is devoted completely to the consequences of the approach for 

natural languages. 

The volumes deal with many facets of syntax and semantics, discussing 

rather different kinds of subjects from this interdisciplinary field. They 

range from abstract universal algebra to linguistic observations, from the 

history of philosophy to formal language theory, and from idealized com

puters to human psychology. Hence not all readers might be interested to 

read everything. Readers only interested in applications to computer science 

might restrict them selves to volume I, but then they will miss many argu

ments in volume 2 which are taken from computer science. Readers only in

terested in applications to natural language might read chapters 1-3 of 

volume I, and all of volume 2, but they will miss several remarks about the 

connection between the study of the semantics of programming languages and 

of the semantics of natural languages. Readers familiar with Montague grammar, 

and mainly interested in practical consequences of the approach, might read 

chapters I and 2 in volume 1 and chapters 6-10 in volume 2, but they will 
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miss new arguments and results concerning many aspects of Montague grammar. 

Each chapter starts with an abstract. Units like theorems etc. are 

numbered (eg 2.3 Theorem). Such a unit ends where the next numbered unit 

starts, or where the end of the unit is announced (2.3 end). References to 

collected works are made by naming the first editor. Page numbers given in 

the text refer to the reprint last mentioned in the list of references, 

except in case of some of Frege's publications (when the reprint gives the 

original numbering). 
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CHAPTER I 

THE PRINCIPLE OF COMPOSITIONALITY OF MEANING 

ABSTRACT . 

This chapter deals with various aspects of the principle of composi

tionali ty of meaning. The role of the principle in tqe literature is inves

tigated, and the relation of the principle to·Frege's works is discussed. A 

formalization of the principle is outlined, and several arguments are given 

in support of this formalization. 
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l. AN ATTRACTIVE PRINCIPLE 

The starting point of the investigations in this book is the principle 

of compositionality of meaning. This principle says: 

The meaning of a compound expression 

is built up from the meanings of its parts. 

This is an attractive principle which pops up at a diversity of places in 

the literature. The principle can be applied to a variety of languages: 

natural, logical and prograTimJing languages. I would not know of a competing 

principle. In this section the attractiveness of the principle will be il

lustrated by means of many quotations. 

In the philosophical literature the principle is well known, and gener

ally attributed to the mathematician and philosopher Gottlob Frege. An ex

ample is the following quotation. It gives a fonnulation of the principle 

which is about the same as the fonnulation given above. THOMASON (1974,p.55) 

says: 

Sentences[ .. ] such as 'The square root of two is irrational', and 
'Two is even', r. ,] ought to be substitutable salva veritate in all 
contexts obey·ing Frege 's principle that the meaning of a phrase is a 
function of the meanings of its parts. 

Another illustration of the fame of the principle is given by DAVIDSON 

( 196 7' p • 306) : 

If we want a theory that gives the meaning (as distinct from refer
ence) of each sentence, we must start w·ith the meaning (as distinct 
from reference) of the parts. 

Next he says: 

Up to here we have been following Frege's footsteps; thanks to him the 
path is well known and even well worn. 

Popper mentions a version of the principle which applies to whole theories 

(POPPER 1976, p.22): 

[ .• J the meaning of a theory [ .. ] is a function of the meanings of the 
words in which the theory is formulated. 

Thereafter he says (ibid. p.22): 

This view of the meaning of a theory seems almost obvious; it is wide
ly held, and often unconsciously taken for granted. 

(For completeness of information: there is, according to Popper, hardly any 

truth in the principle). Concerning the origin of the principle, Popper 

remarks in a footnote (ibid. p.198): 

Not even Gottlob Frege states it quite explicitly, though this doctrine 
is certainly implicit in his 'Binn und Bedeutung ', and he even p1°oduces 
there arguments in its support. 
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In the field of semantics of natural languages, the principle is found 

implicitly in the works of Katz and Fodor concerning the treatment of se

mantics in transformational grammars. An explicit statement of the principle 

is KATZ (1966, p. 152) : 

The hypothesis on which we win base our model of the semanUc compo
nent is that the process by which a speaker interprets each of the in
finitely many sentences is a compositional process in which the meaning 
of any syntactically compound constituent of a sentence is obtained as 
a function of the meanings of the parts of the constituent. 

Katz does not attribute the principle to Frege; his motivation is of a tech

nical nature (ibid. p.152): 

Accordingly, we again face the task of formulating an hypothesis about 
the nature of a finite mechanism with an infinite output. 

The principle is mentioned explicitly in important work on the seman

tics of natural languages by logicians, and it is related there with Frege. 

Cresswell develops a mathematical framework for dealing with semantics, and 

having presented his framework he says (CRESSWELL 1973, p.19): 

These rules reflect an important general principle which we shall dis
cuss later under the name 'Frege's principle', that the meaning of the 
whole sentence is a function of the meanings of it parts. 

For another logician, Montague, the principle seems to be a line of conduct 

(MONTAGUE 1970 a, p. 217): 

Like Frege, we seek to do this [ .• ] in such a ·way that [ .. J the as
signment to a compound will be a function of the entities assigned to 
its components[ .. ]. 

The principle is implicitly followed by all logic textbooks when they 

define, for instance, the truth value of E. A .5l as a function of the truth

values of E. and of .51.· In logic the enormous technical advantages of treat

ing semantics in accordance with the principle are demonstrated frequently. 

For instance, one may use the power of induction: theorems with a semantic 

content can be proven by using induction on the construction of the expres

sion under consideration. Logic textbooks usually do not say much about the 

motivation for their approach or about the principles of logic. In any case, 

I have not succeeded in finding a quotation in logic textbooks concerning 

the background of their compositional approach. Therefore, here is one from 

another source. In a remark concerning the work of Montague, Partee says 

the following about the role of compositionality in logic (PARTEE 1975, 

p.203): 

A central working premise of Montague 's theory [ .. J is that the syn
tactic rules that determine how a sentence is buiU up out of smaner 
syntactic parts should correspond one-to-one with the semantic rules 
that ten how the meaning of a sentence is a function of the meanings 
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of its parts. This idea is not new in either linguistics or philosophy; 
in philosophy it has its basis in the work of Frege, Tarski, and Carnap, 
and it is standard in the treatment of formalized languages [ .. ]. 

Since almost all semantic work in mathematical logic is based upon Tarski, 

mathematical logic is indirectly based upon this principle of composition

ality of meaning. 

In the field of semantics of programming languages compositionality is 

implicit in most of the publications, but it is mentioned explicitly only by 

few authors. In a standard work for the approach called 'denotational se

mantics', the author says (STOY 1977, pp.12-13): 

We give 'semanUc valuation functions 1 which map syntactic constructs 
in the program to the abstract values (numbers, truth values, functions 
etc.) which they denote. These valuation functions are usually recur
sively defined: the value denoted by a construct is specified in terms 
of the values denoted by its syntactic subcorrrponents [ .. ]. 

It becomes clear that this aspect is a basic principle of this approach 

from a remark of Tennent in a discussion of some proposals concerning the 

semantics of procedures. Tennent states about a certain proposal the fol

lowing (NEUHOLD 1978,p.163). 

Your first -two semantics are not 'denotational' in the sense of Scott/ 
Strachey/Milner because the meaning of the procedure call construct is 
not defined in terms of the meanings of its corrrponents; they are thus 
partly operational in nature. 

Milner explicitly mentions compositionality as basic principle (MILNER 1975, 

p. l tii7) : 

If we accept that any abstract semantics should give a way of corrrposing 
the meanings of parts into the meaning of the whole [ .. J. 

As motivation for this approach, he gives a very practical argument (ibid. 

p. 158): 

The designer of a corrrputing system should be able to think of his 
system as a corrrposite of behaviours, in order that he may factor his 
design problem into smaller problems [ .. ]. 

Mazurkiewics mentions naturalness as a motivation for following the prin

ciple (MAZURKIEWICS 1975, p.75). 

One of the most natural methods of assigning meanings to programs 1:s to 
define the meaning of the whole program by the meanings of its con
stituents [ .. J. 

We observe that the principle arises in connection with semantics in 

many fields. In the philosophical literature the principle is &lmost always 

attributed to Frege, whereas in the fields of programming and natural lan

guage semantics this is not the case. Authors in these fields give a prac

tical motivation for obeying the principle: one whishes to deal with an 
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and (therefore) finite way. 

2. FREGE AND THE PRINCIPLE 

2.1. Introduction 
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In the previous section we observed that several philosophers attribute 

the principle of compositionality to Frege. But it is not made clear what 

the relationship is of the principle to Frege, and especially on what grounds 

the principle is attributed to him. 

In his standard work on Frege, Dummett devotes a chapter to 'Some 

theses of Frege on sense and reference'. The first thesis he considers is 

(DUMMETT 1973, p.152): 

The sense of a corrrplex is compounded out of the senses of the consti
tuents. 

Since sense is about the same as meaning (this will be explained later), 

the thesis expresses the principle of compositionality of meaning. Unfor

tunately, Dunmett does not relate this thesis to statements in the work of 

Frege, so it remains unclear on what writings the claim is based that it is 

a thesis of Frege. The authors quoted in the previous section who attribute 

the principle to Frege, do not refer to his writings either. 

In the previous section we met a remark by Popper stating that the 

principle is not explicit in Frege's work, but that it is certainly impli

cit. The connection with Frege is, according to Cresswell, even looser. He 

says (CRESSWELL 1973, p.75): 

For historical reasons we call this Friege's principle. This name must 
not be taken to irrrply that the principle is explicitly stated in F:t>ege. 

And in a footnote he adds to this: 

The ascription to F:t>ege is mo:t>e a tribute to the general tenor of his 
views on the analysis of language. 

However, Creswell does not explain these remarks any further. So we 

have to conclude that the literature gives no decisive answer to the ques

tion what the relationship is of the principle to Frege. I will try to 

answer the question by considering Frege's publications and investigating 

what he explicitly says about this subject. 
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2.2. Grundlagen 

The study of Frege's publications brings us to the point of terminolo
gy. Frege has introduced some notions associated with meaning, but his ter

minology is not the same in all his papers. Dummett says about 'Die Grund

lagen der Arithmetik' (FREGE 1884) the following (DUMMETT 1973, p.193): 

When Frege wrote 1Grundlagen 1, he had not yet formulated his distin.e
Uon between sense and referen.ee, and so it is quite possible that the 
words 'BedEutung' and 'bedEuten', as they occur in the various state
ments[ .. ] have the more general senses of 'meaning' and 'mean' [ .. J. 
This means that in 'Grundlagen' we have to look for Frege's remarks 

concerning the 'Bedeutung' of parts. He is quite decided on the role of 

their Bedeutung (FREGE 1884, p.XXII): 

Als Grundsatze habe ich in dieser Untersuchung folgendE festgehalten: 
[ .. ~ nach der BeJeutung der ;v'orteY' muss in Satzzusammenhange, nicht 
in ihrer Vereinze lunq qef1°aqt uJerden [ .. J 

He also says (FREGE 1884, p.73): 

Nur im Zusammenhange eines Satzes bedEuten die Worter e twas. 
Remarks like these ones are repeated, heavily underlined, several times in 

'Grundlagen' (e.g. on p.71 and p.116). The idea expressed by them is some

times called the principle of contextuality. Contextuality seems to be in 

conflict with compositionality for the following reason. The principle of 

compositionality requires that words in isolation have a meaning, since 

otherwise there is nothing from which the meaning of a compound expression 

can be built. A principle of contextuality would deny that words in isola

tion have a meaning. 

Dummett discusses the remarks from 'Grundlagen', and he provides an 

interpretation in which they are not in conflict with compositionality 
(DUMMETT 1973, pp.192-196). A summary of his interpretation is as follows. 

The statements express that it has no significance to consider first the 

meaning of a word in isolation, and next some unrelated other question. 

Speaking about the meaning of a word makes only significance as preparation 

for considering the meaning of a sentence. The meaning of a word is deter

mined by the role it plays in the meaning of the sentence. 

Following Dummett's interpretation, the remarks from Grundlagen have 

not to be considered as being in conflict with the principle of composi

tionality. It is quite well possible to build the meaning of a sentence 

from the meanings of its parts, and to base at the same time the judge

ments about the meanings of these parts on the role they play in the sen

tences in which they may occur. As a matter of fact, this approach is often 
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followed (for instance in the field of Montague grammar). In this way a 

bridge is laid between compositionality and contextuality. But even with his 

interpretation, the statements formulated in Grundlagen cannot be considered 

as propagating compositionality: nothing is said about building meanings of 

sentences from meanings of words. 

Dummett's interpretation weakens the statements from 'Grundlagen' con

siderably. Unfortunately, Dummett hardly explains on which grounds he thinks 

that his interpretation coincides with Frege's intentions when writing 

'Grundlagen'. He provides, for instance, no references to writings of Frege. 

I tried to do so, but did not find passages supporting Dummett's opinion. 

Dummett makes the remark that statements like the ones from 'Grundlagen' 

make no subsequent appearence in Frege's works. This is probably correct 

with respect to Frege's published works, but I found some statements which 

are close to those 'Grundlagen' in Frege's correspondence and in his posthu

mous writings. They do not express the whole context principle, but repeat 

the relevant aspect: that expressions outside the context of a sentence have 

no meaning. In a letter to E.V. Huntington, probably dating from 1902, Frege 

says the following (GABRIEL 1976, p.90). 

Solche Zeichenverbindungen wie "a+b", "f(a,b)" bedeuten also nichts, 
und haben filr sich allein keinen Sinn[ .. ] 

In 'Einleitung in die Logik', dating from 1906, he says (HERMES 1969, 

p.204): 

Durch Zerlegung der singularen Gedanken erhalt man Bestandteile der 
abge.schlossenen und der ungesiittigten Art, die freilich abgesondeiot 
m'.cht v01'kommen. 

In an earlier paper (from 1880), called 'Booles rechnende Logik und die 

Begriffsschrift', he compares the situation with the behaviour of atoms 

(HERMES 1969, p .19). 

Ich mochte dies mit dem Verhal ten der A tome vergleichen, von denen man 
annimmt, dass nie eins allein vorkommt, sondern nur in einer Verbin
dung mit andern, die es nur verlasst, um .sofort in eine andere ein
zugehen. 

The formulation of the statements from 'Grundlagen' is evidently in 

conflict with the principle of compositionality. From our investigations it 

appears that related remarks occur in other writings of Frege. This shows 

that the formulation used in 'Grundlagen' is not just an accidental, and 

maybe unfelicitous expression of his thoughts. For this reason, and for the 

lack of evidence for Dummett's interpretation, I am not convinced that 

Frege's clear statements have to be understood in a weakened way. I think 

that they should be understood as they are formulated. Therefore I conclude 
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that in the days of 'Grundlagen' Frege probably would have rejected the 

principle of compositionality, and, in any case, the formulation we use. 

2.3. Sinn und Bedeutung 

In 'Ueber Sinn und Bedeutung' (FREGE 1892) the notions 'Sinn' and 'Be

deutung' are introduced. Frege uses these two already existing German words 

to name two notions he wished to discriminate. The subtle differences in 

the original meaning of these two words do not cover the different use Frege 

makes of them. For instance, it is very difficult to account for their dif

ferences in meaning in a translation. Frege himself has been confronted with 

these problems as appears from a letter to Peano (GABRIEL 1976, p.196): 

[ .. ] Sie [ .. ] sagen, dass zwei deutschen Wortern, die ich verschieden 
gebrauche, dasselbe italienische nach den Worterbuchern entspreche. 
Am niichsten scheint mir dem Worte 'Sinn' das italienische 'senso' und 
dem Worte 'Bedeutung' das italienische 'significazione' zu kommen. 

Concerning the terminology DUMMETT (1973, p.84) gives the following infor

mation. The term 'Bedeutung' has come to be conventionally translated as 

'reference'. Since 'Bedeutung' is simply the German word for 'meaning', one 

cannot render 'Bedeutung' as it occurs in Frege by 'meaning', without a 

special warning. The word 'reference' does not belie Frege's intention, 

though it gives it a much more explicit expression. Concerning 'Sinn', which 

is always translated 'sense', Dummett says that to the sense of a word or 

expression only those features of meaning belong which are relevant to the 

truth-value of some sentence in which it may occur. Differences in meaning 

which are not relevant in this way, are relegated by Frege to the 'tone' 

of the word or expression. In this way Dummett has given an indication what 

Frege intended with sense. It is not possible to be more precise about the 

meaning of 'Sinn'. As van Heyenoort says (Van HEYENOORT 1977, p.93): 

As for the 'Sinn' Frege gives examples, but never presents a precise 
definition. 

And Thiel states (THIEL 1965, p.165): 

What Frege understood as the 'sense' of an expression is a problem 
that is so difficult that one generally weakens ?'.t to the quesUon 
of when in Frege 's semantics two expressions are identical ·in sense 
(synonymous) . 

I will not try to give a definition; it suffices for our purposes to con

clude that the notion 'Sinn' is very close to the notion 'meaning'. There

fore we have to investigate Frege's publications after 1892 to see what he 

says about the compositionality of Sinn. What he says about compositionali

ty of 'Bedeutung' is a different story (as illustration: he explicitly 



rejected that in 1919 (HERMES !969, p.275), but this is not the case for 

compositionality of 'Sinn', as will appear in the sequel). 

In 'Ueber Sinn und Bedeutung', I found one remark concerning the rela

tion between the senses of parts and the sense of the whole sentence. Frege 

discusses the question whether a sentence has a reference, and, as an ex

ample, he considers the sentence Odysseus wurde tief schlafend in Ithaka 
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ans Land gesetzt. Frege says that if someone considers this sentence as true 

or false, he assigns the name Odysseus a reference (Bedeutung). Next he 

says (FREGE 1892, p.33). 

Nun ware ciber das Vordringen bis zur Bedeutimg des Namens iiherflUssig: 
man konnte sich mit dem Sinne begn:Ugen, wenn man beim Gedanken stehen
bleiben wollte. K&ne es nur auf den Sinn des Satzes, den Gedanken, an, 
so ware es unn8tig sich um die Bedeutung eines Satzteils zu kiJmmern; 
fii.r den Sinn des Satzes kann ja nur der Sinn, nicht die Bedeutung 
dieses ~'eils in Betracht kommen. 

So Frege states that there is a connection between the sense of the whole 

sentence, and the senses of the parts. He does, however, not say anything 

about a compositional way of building the sense of the sentence. More in 

particular, the quotation is neither in conflict with the compositionality 

principle, nor with the statements from 'Grundlagen'.Therefore I agree with 

BARTSCH (1978), who says that,, in 'Ueber Sinn und Bedeutung', Frege does 

not speak, as is often supposed, about the contribution of the senses of 

parts to the senses of the compound expression. 

2.4. The principle 

Up till now we have not found any statement expressing the principle 

of compositionality. But there are such fragments. The most impressive one 

is from 'Logik in der Mathematik', an unpublished manuscript from 191~ 

(HERMES 1969, p.243). 

Die Leistungen der Sprache sind wunderbar. Mittels weniger Laute und 
Lautverb·indungen ist sie imstande, ungeheue1' vie le Gedanken auszud1~Uek
en, und zu,ar auch solche, die noch nle vorher von ei"nem Menschen qefasst 
und ausgedrUcla worden S'lnd. rlodurch weraen diese Leistungen moglich? 
Dadurch, dass die Gedanken aus Gedankenbausteinen aufgebaut wer•den. 
Und diese Bausteine entsprechen Lautgruppen, aus denen der Satz aufge
baut wird, der den Gedanken ausdY'Uckt, sodass dem Aufbau des Satzes 
aus Satzteilen der Aufbau d,es Gedankens aus Gedankenteilen entsrcricht. 
Und den Gedankenteil l<ann man den Sinn des entsprechendes Satzteils 
nennen, so uie man den Gedanken als Sinn des Satzes aufassen wird. 

This fragment expresses the compositionality principle. However, the frag

ment is not presented as a fragment expressing a basic principle. It is 

used as argument in a discussion, and does not get any special attention. 



10 

The quotation from 'Logik in der Mathematik', presented above, is con

sidered very remarkable by the editors of Frege's posthumous works. They 

have added the following footnote in which they call attention to other 

statements of Frege which seem to conflict with the quotation in considera

tion (HERMES 1969, p.243) 

An anderen Stellen schrankt Frege diesen Gedanken-Atomismus aZlerdings 
in dem Sinne ein, dass man sich die Gedanketeile nicht als van den Ge
danken, in denen sie vorkommen, unahhangige Bausteine vorstelZen dUrfe. 

They give two references to such statements in Frege's posthumous writings 

(i.e. the book they are editors of). One is from 'Booles rechnende Logik .. ' 

(1880), the other from 'Einlei tung in die Logik' ( 1906) . I have quoted these 

fragments in the discussion of 'Grundlagen'. In this way the editors suggest 

that the fragment from 'Logik in der Mathematik' is a slip of the pen, and 

a rather incomplete formulation of Frege's opinion concerning these matters. 

The fragment under discussion does, however, not stand on its own. Al

most the same fragment can be found in 'Gedankenfiige' (FREGE 1923). I present 

the fragment here in its English translation from 'Compound thoughts' by 

Geach and Stoothoff (p.55). 

It is astonishing what lar.z.guage can do. With a few syZZahZes it can ex
press an incaleuiable numbe1• of thoughts, so that ei'en a thought grasped 
by a terrestrial being for the very first time can be put into a fornz of 
words which will be understood by someone to whom the thought is en
tirely new. This would be impossible, were we not ahle to distinguish 
parts in the thought corresponding to the parts of a sentence, so that 
the structure of the sentence serves as an image of the structure of 
the thought. 

Moreover, in a letter to Jourdain, written about 1914, Frege says (GABRIEL 

1976, p.127): 

Die MogZichkeit fur uns, Satze zu verstehen, die wir noch nie gehort 
hahen, beruht offenbar darauf, dass wir den Sinn eines Satzes aufbauen 
aus Teilen, die den Wortern entsprechen. 

It is a remarkable fact that all quotations propagating compositionali

ty are written after 1910: 'Gedankenfuge' (1923), 'Logik in der Mathematik' 

(1914), letter to Jourdain (1914). I have not succeeded in finding such 

quotations in earlier papers. But the statements which seem to conflict 

with compositionality are from an earlier period: 'Booles rechnende Logik 

..•. ' ( 1880), 'Grundlagen' (I 884), letter to Huntington ( l 902), 'Einlei tung 

in die Logik' (1906). This shows that, say after 1910, Frege has written 

about these matters in a completely different way than before. From this I 

conclude that his opinion concerning these matters changed. On the other 

hand, Frege never put forward the idea of compositionality as a principle. 



It was rather an argument, although an important one, in his discussions. 

I would therefore not conclude to a break in his thoughts; rather it seems 

me to be a shift in conception concerning a detail. 

11 

In the light of this change, the following information appears relevant. 

In 1902 Frege received a letter from Russell in which the discovery was 

mentioned of the famous contradiction in naive set theory, and, in parti

cular, in the theory of classes in Frege's 'Grundgesetze'. About the in

fluence of this discovery on Frege,Dummett says the following (DUMMETT 1973, 

p.657): 

It thus seems highly probable that Frege came quickly to regard his 
whole programme of deriving arithmetic from logic as having failed. 
Such a supposition is not only probable in itself: it is in corrrplete 
harmony with what we know of his subsequent carreer. The fourth period 
of his life ma:y be regarded as running from 1905 to 1913, and it was 
almost entirely unproductive. 

For this reason I consider it as very likely that in this period Frege was 

not concerned with issues related to compositionality. Then it is under

standable that after this period he writes in a different way about the de

tail of compositionality (recall that it never was a principle, but just an 

argument). 

2.5. Conclusion 

My conclusions are as follows. Before 1910, and in any case especially 

in the years when he wrote his most important and influential works, Frege 

would probably have rejected the compositionality principle, in any case 

the formulation we use nowadays. After 1910 his opinion appears to have 

changed, and he would probably have accepted the principle, in any case the 

basic idea expressed in it. However, Frege never put forward such an idea 

as a basic principle, it is rather an argument in his discussions. There

fore, calling the compositionality principle 'Frege's principle' is above 

all, honouring his contributions to the study of semantics. But it is also 

an expression of his final opinion on these matters. 

3. TOWARDS A FORMALIZATION 

In this section, I will give the motivation for a formalized version 

of the compositionality principle. It is not my purpose to formalize what 

Frege or other authors might have intended to say when uttering something 

like the principle. I rather take the principle in the given formulation 
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as a starting point and proceed along the following line; the (formalized 

version of) the principle should have as much content as possible. _This 

means that the principle should make it possible to derive interesting con

sequences about those grannnars which are in accordance with the principle, 

and at the same time it should be sufficiently abstract and universal to be 

applicable to a wide variety of languages. From the formalization it must be 

possible to obtain necessary and sufficient conditions for a grannnar to be 

in agreement with the compositionality principle. 

Consider a language L which is to be interpreted in some domain D of 

meanings. The kind of objects D consists of depends on the language under 

consideration, and the use one wishes to make of the semantics. In this sec

tion such aspects are left unspecified. Defining the semantics of a lan

guage consists in defining a suitable relation between expressions in L and 

semantic objects in D. Then the compositionality principle says something 

about the way in which this relation between L and D has to be defined 

properly. 

In the formulation of the principle given in section I, we encounter 

the phrase 'its parts'. Clearly we should not allow the expressions of L to 

be split in some random way. In the light of the standard priority conven

tions, the expression y+8 is not to be considered as a pa:Pt of the expres

sion 7.y + 8.x; so the meaning of 7.y + 8.x. does not have to be built up 

from the meaning of y + 8. It would also be pointless to try to build the 

meaning of some compound expression directly from the meanings of its atomic 

symbols (the terminal symbols of the alphabet used to represent the lan

guage). Since distinct expressions consist of distinct strings of symbols, 

there is always some dependence of the meanings of the basic symbols. Con~ 

sequently such an interpretation would trivialize the principle. Another 

trivialization results by taking all expressions of the language to be 

'basic', and interpreting them individually. The principle is interesting 

only in case the 'parts' are not trivial parts. Traditionally, the true de

composition of an expression into parts is described in the syntax for the 

language. Thus a language, the semantics of which is defined in accordance 

with the principle, should have a syntax which clearly expresses what the 

parts of the compound expressions are. 

Let the language L, together with the set of expressions we wish to 

consider as parts, be denoted by~· In order to give the principle a non

trivial content, we assume that the syntax of the language consists of 

rules of the following form: 



If one has expressions E1, ••• ,En then one can build the compound ex
pression S.(E 1, ••• ,E ). 

J n 
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Here S. is some operation on expressions, and S.(E 1, ••• ,E) denotes the re-
J J n 

sult of application of Sj to the arg1.1111ents E1 , ••• ,En. If the rules have the 

above format, we define the notion 'parts of' as follows. 

If expression Eis built by a rule S. from arguments E1, ••• ,En' then 
the parts of E are the expressions Ei, ••• ,En. 

It often is the case that a rule does not apply to all expressions in 

E, and that certain groups of expressions behave the same in this respect. 

Therefore the set of expressions is divided into subsets. The names of these 

subsets are called types or sorts in logic, categories in linguistics, and 

types or modes in programming languages. Often the name of a set and the 

set itself are identified and I will follow this practice. Instead of speak

ing about elements of the subset of a certain type, I will speak about the 

elements of a certain type, etc. The use of names for subsets allows us to 

specify in each rule from which category its arguments have to be taken, 

and to which category the resulting expression belongs. Thus, a syntactic 

rule S. has the following form: 
J 

If one has expressions E1, ••• ,En of the categories e 1, ••• ,en respec-
tively, then one can form the expression Sj(E 1, ••• ,En) of category 
en+)' 

An equivalent fonnulation is: 

Rules. isafunctionfrom ·c 1x ••• xcn to en+I; 
J 

i.e. sj: c, x ... x en-+ en+!' 

Suppose that a certain rule S. is defined as follows: 
]_ 

S.: 
]_ 

(' 
~I x c2 -+ c3 , where Si(E 1,E2) = E1E2 . 

This means that Si concatenates its arguments. Then our interpretation of 

the principle says that the meaning of E1E2 has to be built up from the 

meanings of E1 and E2 • A case like this constitutes the most elementary 

version of the principle. A compound expression is divided into real sub-

expressions, and the meaning of the compound expression is built up from 

the meanings of these subexpressions. In such a case the formalization 

coincides with the simplest, most intuitive conception of the principle: 

parts are visible as parts. But in some situations one might wish to con

sider as part an expression which is not visible as a part. We will meet 

several examples in later chapters. One example is the phenomenon of dis

continuous constituents. The phrase take {])J)ay is not a subphrase of take 

the apple away; it is not visible as a part. Nevertheless, one might here 
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wish to consider it as a unit which contributes to the meaning of take the 
apple away_, i.e. as a part in the sense of the principle. The above defini
tion of 'part' gives the possibility to do so. If the phrase take the apple 
away is produced by means of a rule which takes as arguments the phrases 
the apple and take away, then take away is indeed a part in the sense of the 
definition. The definition generalizes the principle for rules which are 
not just a concatenation operation, and consequently the parts need not be 
visible in the expression itself. 

There are no restrictions on the possible effect of the rules S .• They 
J 

may concatenate, insert, permute, delete, or alter (sub)expressions of their 
arguments in an arbitrary way. A rule may even introduce symbols which do 
not occur in its arguments. Such symbols are called syncatego.rematic sym
bols. These are not considered as parts of the resulting expression in the 
sense of the principle, and therefore they do not contribute a meaning from 
which the meaning of the compound can be formed. I will assume in general 
that the rules are total (i.e. they are defined for all expressions of the 
required categories). In chapter 6 partial rules will be discussed. 

The abstraction just illustrated implies that we have lost the most in

tuitive conception of the principle. But it is not unlikely that several 
authors who mention Frege's principle only have the most intuitive version 
in mind. In order to avoid confusion, I will call the more abstract version 
not 'Frege's principle', but 'the compositionality principle'. As for the 
simple rules, where only concatenation is used, our interpretation of the 
principle coincides with the most intuitive interpretation. In more complex 
cases, where it might not be intuitively clear what the parts are, our in
terpretation can be applied as well. If one wishes to stick to the most in
tuitive interpretation of the principle, one must use only concatenation 
rules. In that way one would restrict considerably the applicability of 
grammars satisfying the framework (see chapter 2, section 5). 

So far we have not considered the possibility of ambiguities. It is 
not excluded that some expression E can be obtained both as E = Si(E 1, ... ,En) 
and as E = S.(E'1, ... ,E'). In practice such ambiguities frequently arise. In J rn 
a programming language (e. g. in Algal 68), the procedure identifier X'andom 
can be used to denote the process of randomly selecting a number, as well as 
to denote the number thus obtained. The information needed to decide which 
interpretation is intended, is present in the production tree of the program, 
where the expression random is either of type 'real' or not. In natural 

languages ambiguities arise even among expressions of the same category. 



l 5 

Consider for instance the sentence John runs or walks and talks. Its meaning 

depends on whether talks is combined with walks, or with runs or walks. Al

so here, the information needed to solve the ambiguity is hidden in the pro

duction tree. In the light of such ambiguities, we cannot speak in general 

of the meaning of some expression, but only of its meaning with respect to 

a certain derivational history. If we want to apply the compositionality 

principle to some language with ambiguities, we should not apply it to the 

language itself, but to the corresponding language of derivational histories. 

In computer science it is generally accepted that the derivational 

histories form the real input for the semantical interpretation. SCHWARTZ 

(1972, p.2) states: 

fie have sufficient confidence in our understanding of syntactic anal14sis 
to be willing to make the outcome of syntactic analysis, namely the ~yn
tax tree representation of the TJl'OC/i'am, into a standard start1'.ng pcn:nt 
for 01£1' thinking on program semantics. Therefore we may take the se
mantic problem to be that of associating a value [ .. J with each ab
stract program, i.e. parse tr•ee. 

In the field of semantics of natural languages, it is also common practice 

not to take the expressions of the language themselves as input to the se

mantical interpretation, but structured versions of them. KATZ & FODOR 

(1963, p.503) write: 

Fig. 6 shows the input to a semantic theory to be a sentence S together 
with a structural description consisting of the n derivations of S, 
d1,d?.,···•dn, one for each of then ways that Sis grammatically ambi
guous. 

The book of Katz and Fodor is one of the early publications about the posi

tion of semantics in transformational grammars. There has been a lot of 

discussion in that field concerning the part of the derivational history 

which may actually be used for the semantic interpretation. In the so-called 

'standard theory' only a small part of the information is used: the 'deep 

structure'. In the 'extended standard theory', one also uses the informa

tion which 'transformations' are applied, and what the final outcome, the 

~surface structure', is. In the most recent proposals, the view on syntax 

and its relation with semantics is rather different. 

As a matter of fact, neither Schwartz, nor Katz and Fodor use the same 

(semantic) framework we have. They are quoted here to illustrate that the 

idea of using information from the derivational history as input to the 

semantic component is not unusual. 

Let us now turn to the phrase 'composed from the meanings of its 

parts'. Consider again a rule Si which allows us to form the compound 
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expression S.(E , ... ,E) from the expressions E1, ... ,En. Assume moreover 
i. I n 

that the meanings of the Ek are the semantical objects Dk. According to the 

principle, the information we are allowed to use for building the meaning of 

the compound expression consists in the meanings of the parts of the expres

sion and the information which rule was applied. As usual, 'rule' is inten

ded to take into account the order of its arguments. So the meaning of a 

compound expression is determined by an n-tuple of meanings (of its parts) 

and the information of the identity of the rule. This is in fact the only 
information which may be used. If one would be allowed to use other informa-

tion (e.g. syntactic information concerning the parts), the principle would 

not express the whole truth, and not provide a sufficient condition. Thus 

the principle would tend to become a hollow phrase. 

As argued for above, I interpret the compositionality principle as 

stating that the meaning of a compound expression is determined completely 
by the meanings of its parts and the information which syntactic rule is 

used. This means that for each syntactic rule there is a function on meanings 

which yields the meaning of a compound expression when it is applied to the 

meanings of the parts of that expression. So for each syntactic rule there 

is a corresponding semantic operation. Such a correspondence is not unusual; 

it can be found everywhere in mathematics and computer science. If one en

counters for instance a definition of the style 'the function f*g is defined 
by performing the following calculations using f and g .•. ', then one sees 

in fact a syntactic and a semantic rule. The syntactic rule introduces the 

operator * between functions and states that the result is again a function, 

whereas the semantic rule tells us how the function should be evaluated 

If we use the freedom allowed by the principle at most, we may asso

ciate with each syntactic rule Si a distinct semantic operation Ti. So the 

most general description of the situation is as follows. The meaning of an 

expression formed by application of Si to (E 1, ... ,En) can be obtained by 

application of operator T. to (D 1, •.. ,D ), where D. is the meaning of E .. 
I. n J J 

These semantic operators Ti may be partially defined functions on the set D 

of meanings, since Ti has to be defined only for those tuples from D which 

may arise as argument of T .. These are those tuples which can arise as 
l. 

meanings of arguments of the syntactic rule Si which corresponds with Ti. 
In this way the set E leaves a trace in the set D. The set of meanings of 

the expressions of some category forms a subset of D which becomes the set 

of possible arguments for some semantic rule. Thus the domain D obtains a 

structure which is closely related to the structure of the syntactic domain 
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~· Our formaZization of the compositionality principle may at this stage be 

sunnnarized as follows. 

Let S.: C x ... x C -+ C 1 be a syntactic ruZe, and M: E-+ D be a func
tion bhicA assignsna meR~~ng to an expression with given derivationaZ 
history. Then there i~ a function T.: M(C 1) x ••• x M(Cn)-+ M(Cn+l) such 
that M(S.(E 1, ••• ,E ))-T.(M(E 1), ••• ,R(E )). 

i n i n 
In the process of formalizing the principle of compositionality we have 

now obtained a special framework. The form of the syntactic rules and the 

use of sorts give the syntax the structure of, what is called, a 'many

sorted algebra'. The correspondence between syntax and semantics implicates 

that the semantic domain is a many-sorted algebra of the same kind as the 

syntactic algebra. The meaning assignment is not based upon the syntactic 

algebra itself, but on the associated algebra of derivational histories. The 

principle of compositionality requires that meaning assignment is a homo

morphism from that algebra to the semantic algebra. Note that the principle, 

which is formulated as a principle for semantics, has important consequences 

not only for the semantics, but also for the syntax. 

The approach described here, is closely related to the framework devel

oped by the logician Richard Montague for the treatment of syntax and se

mantics of natural languages (MONTAGUE 1970b). It is also closely related 

to the approach propagated by the group called 'Adj' for the treatment of 

syntax and semantics of programming languages (ADJ 1977, 1979). Consequent

ly frameworks related to the one described here can be found in the publi

cations of authors following Adj (for references see ADJ 1979), or follow

ing Montague (for references see DOWTY, WALL & PETERS 1981, or the present 

book). The conclusion that the principle of compositionality requires an 

algebraic approach is also given by MAZURKIEWICS (1975) and MILNER (1975), 

without, however, developing some framework. The observation that there is 

a close relationship between the frameworks of Adj and Montague, was in

dependently made by MARKUSZ & SZOTS (1981), ANDREKA & SAIN (1981), and 

Van EMDE BOAS & JANSSEN (1979). 

4. AN ALGEBRAIC FRAMEWORK 

In this section I will develop the framework sketched in section 3, and 

arguments concerning the practical use of the framework will influence this 

further development. The mathematical theory of the framework will be in

vestigated in chapter 2. 

The central notions in our formalization of the principle of 
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compositionality are 'many-sorted ale,ebra' and 'homomorphism'. An algebra 

consists of some set (:the elements of the algebra); and a set of operations 

defined on those elements. A many-sorted algebra is a generalization of this. 

It consists of a non-empty set S of sorts (types, modes, or categories), for 

each sort s E S a set As of elements of that sort (As is called the carrier 

of sorts), and a collection (F) r of operations which are mappings from y YE 
cartesian products of specified carriers to a specified carrier. So in order 

to determine a many-sorted algebra, one has to determine a 'sorted' family 

of sets and a collection of operators. This should explain the following 

definition. 

4.1. DEFINITION. A many-sorted algebra A is a pair <(As)sES'!'.?' where 

1. Sis a non-empty set, its elements are called the sorts of A. 
2. As is a set (for each SES), the carrier of sorts. 

3. Fis a collection of operators defined on certain n-tuples of sets As' 

where n>O. 

4.1. END. 

Structures of this kind have been defined by several authors, using differ

ent names; the name 'many-sorted algebra' is borrowed from ADJ(J977). Notice 

that in the above definition there are hardly any restrictions on the sets 

and operators. The carriers may be non-disjunct, the operators may perform 

any action, and the sets involved (except for S) may be empty. 
In order to illustrate the notion 'nan;r--sorted algebra', I will pre

sent three examples in an informal way. I assume that these examples are 

familiar, and I will, therefore, not describe them in detail. The main in

terest of these examples is that they illustrate the notion of a many-sorted 

algebra. The examples are of a divergent nature, thus illustrating the 

generality of this notion. 

4. 2. EXAMPLE: Real numbers. 

Let us consider the set of real numbers as consisting of two sorts. 

Neg and Pos. The carrier R. of sort Neg consists of the negative real Neg 
numbers, the carrier R_ of sort Pos of the positive real numbers, zero Pos 
included. An example of an operation is sqrt: ~os -+ ~os' where sqrt yields 
the square root of a positive number. For R there is no corresponding neg 
operation. Since we consider (in this example) the real numbers as a two-

sorted algebra, there are two operations for squaring a number. One for 

squaring a positive number (sqpos: RP -+ RP ) and one for squaring a 
OS . OS 



19 

negative number (sqneg: R_ + R_ ). Since these two operations are close-
-Neg Pos 2 

ly related, we may use the same symbol for both operations: ( ) • 

4.3. EXAMPLE: Monadic Predicate Logic 

Sorts are Atom, Fred and Form. The carrier AAtom of sort Atom consists 

of the symbols a 1 ,a2,, ••• and the carrier ~red of the sort Pred consists of 

the predicate letters P1 ,P2 , ... The carrier AForm consists of formulas 

like ·P,1(a 1), •P 1Ca 1), and P 1(a2)vP2 (a3). Two examples of operators are as 

follows. 

I. The operation Apl: A_ x A + A__ • Anl assigns to predicate P and 
---Pred Atom -"Form ' 

atom -~ the formula where P is applied to a; viz. P(a). 

2. The operation Disj: A__ x A__ +A • Disj assigns to two formulas~ 
-'Form -"Form -"Form 

and w their disjunction ~ v W• 
Notice that (in the present algebraization) the brackets (,); and the disjunc

tion symbol v are syncategorematic symbols. 

4.4. EXAMPLE: English 

Examples of sorts are Sentence, Verb phrase, and Noun phrase. The car

rier of sort Sentence consists of the analysis trees of English sentences, 

and the carriers of other sorts of trees for expressions of other sorts. 

An example of an operator is TNeg Sentence+ Sentence. The operator TNeg 

assigns to an analysis tree of an English sentence the analysis tree of the 

negated version of that sentence. An explicit and complete description of 

this algebra I cannot provide. This example is mentioned to illustrate that 

complex objects like trees can be elements of an algebra. 

4.4. END. 

As explained in the previous section, we do not assign meanings to the 

elements of the syntactic algebra itself, but to the derivational histories 

associated with that algebra. These derivational histories form an algebra: 

if expressions E1 and E2 can be combined to expression E3 , then the deri

vational histories of E1 and E2 can be combined to a derivational history 

of E3 . So the derivational histories constitute a (many-sorted) set in 

which certain operations are defined. Hence it is an algebra. The nature 

of the operations of this algebra will become evident when we consider be

low representations of derivational histories. 

Suppose that a certain derivational history consists of first an ap

plication of operator s 1 to basic expressions E1 and E2 , and of next an 
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application of s2 to E3 and the result of the first step. A description 

like this of a derivational history is not suited to be used in practice 

(e.g. because of its verbosity). Therefore formal representations for deri

vational histories will be used (certain trees or certain mathematical ex

pressions) . 

In Montague grammar one usually finds trees as representation of a de

rivational history. The history described above is represented in figure 1. 

Variants of such trees are used as well. Often the names of the rules are 

not mentioned (e.g. s1,s 2), -but their indices (viz. 1,2). Sometimes the rule, 

or its index is not mentioned, but the category of the resulting expression. 

Even the resulting expressions are some.times left out, especially when the 

rules are concatenation rules (figure 2). The relation between the repre

sentations of derivational histories and the expressions of the languages 

is obvious. In figure I one has to take the expression labelling the root 

of the tree, and in figure 2 one has to perform the mentioned operations. 

(For this kind of trees, it usually amounts to a concatenation of the ex

pressions mentioned at the leaves (i.e. end-nodes)). 

Figure l, Representation of· a 

derivational history 

Figure 2. Another representation 

of the same derivational 
history 

An alternative representation originates from the field of algebra. 

Derivational histories are represented by a compound expressions, consisting 

of basic expressions, symbols for the operators, and brackets. The deriva

tional history from figure I is represented by the exnression: 

S 2 ( S l (EI 'E 2) 'E 3) . 

Such expressions are called terms. The algebra of terms corresponding with 

algebra A is called the term algebra TA. From a term one obtaines an ex

pression of the actual language by evaluating the term, i.e. by applica
tion of the operators (corresponding with the operator symbols) to the men

tioned arguments. The sorts of the term algebra TA are identical to the sorts 

of A, the operators are concatenation operators on terms. Note that all these 
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different representations mathematically are equivalent. 

MONTAGUE (1970b) introduced the name 'disambiguated language' for the 

algebra of derivational histories. The relation between the disambiguated 

language and the language under consideration (he calls it R) is completely 

arbitrary in his approach. The only information he provides is that it is a 

binary relation with domain included in the disambiguated language (MONTAGUE 

J970b, p.226). From an algebraic viewpoint this arbitrariness is very un

natural, and therefore I restrict this relation in the way described above 

(evaluating the term, or taking the expression mentioned at the root). This 

is a restriction on the framework, but not on the class of languages that 

can be described by the framework (see chapter 2). 

The tree representations are the most suggestive representations, and 

they are most suitable to show complex derivational histories. The term 

representations take less space and are suitable for simple histories and 

in theoretical discussions. In the first chapters I will mainly use terms, 

in later chapters trees. According to the framework we have to speak about 

the meaning of an expression relative to a derivational history. In prac

tice one often is sloppy and speaks about the meaning of an expression 

(when the history is clear from the context, or when there is only one). 

After this description of the notion of a many-sorted algebra, I will 

introduce the other central notion in our formalization of the principle of 

compositionality: the notion 'homomorphism'. It is a special kind of mapping 

between algebras, and therefore first mappings are introduced. 

4.5. DEFINITION. By a mapping m from an algebra A to an algebra B is under

stood a mapping from the carriers of A to the carriers of B. Thus: 

m: u 
SESA 

4.5. END. 

A 
s 

B • 
s 

A mapping is called a homomorphism if it respects the s true tures of the al

gebras involved. This is only possible if the two algebras have a similar 

structure. By this is understood that there is a one-one correspondence be

tween the sorts in the one algebra and in the other algebra, and between 

the operators in the one algebra and in the other algebra. The latter means 

that if an operator is defined for certain sorts in the one algebra, then 

the corresponding operator is defined for the corresponding sorts in the 

other algebra. This should describe the essential aspects of the technical 
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notion of 'similarity' of two algebras; a formal definition will be given 

in chapter 2. Then the definition of a homomorphism given below, will be 

adapted accordingly, and the slight differences with the definitions in the 

literature (Montague, Adj) will be discussed. 

4.6. DEFINITION. Let A= <(As)sES'!> and B = <(Bt)tET'~> be similar algebras. 

A mapping h from A to B is called a homomorphism if the following two con

ditions are satisfied 

I. h respects the sorts, i.e. h(As) c Bt, where t is the sort of B which 

corresponds to sort $ of A. 

2. h respects the operators, i.e. h(F(a 1, ... ,an)) = G(h(a 1), ... ,h(an)) where 

GE G is the operator of B which corresponds to FE F. 

4.6. END 

Now that the notions of a many sorted algebra and of a homomorphism 

are introduced, I will present two detailed examples. 

4.7. EXAMPLE: Fragment of English. 

Syntactic Algebra 

The syntactic algebra E consists of some English words and sentences 

I. Sorts 

SE= {Sent,Subj,Verb} 

II. Carriers 

ESubj 

EVerb 

ESent 

{John, Mary, Bil Z} 

{runs, talks} 

{John runs, Mary runs, Bill runs, John talks, Mary talks, Bill 

talks} 

III. Operations 

C: ESubj " EVerb -> ESent 
defined by C(a,S) = aS 

So C(John, runs) is obtained by concatenating John and runs, thus 

yielding John runs. 

Semantic Algebra 

The semantic Algebra M consists of model-theoretic entities, such as 

truth values and functions. 
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I. Sorts 

SM= {e,t,<e,t>} 

So there are three sorts: two sorts being simple symbols (e ~entity, 

t ~ truthvalue), and the compound symbol <e,t> (function from e tot). 

II. Carriers 

Mt {true,false} The carrier Mt consists of two elements, the truth

values true and false. 

M 
e 

M <e, t> 

III. Operations 

The set Me consists of three elements: e 1,e2 and e 3 • 

The carrier M t consists of all functions from <e, > 
Me to Mt. This set has 8 elements. 

There is one operation in M: the operation F of function application. 

F: M x M -+- M e <e, t> t' 
where F(a,S) is the result of application of S to argument a. 

The algebras E and Mare similar. The correspondence of sorts is 

Subj ~ e, Verb~ <e,t>, Sent~ t, and operation C corresponds to F. Although 

the algebras F. and Mare similar, they are not the same. For instance, the 

number of elements in Everb differs from the number of elements in E<e,t> 

There are a lot of homorphisms from TE (the derivational histories in 

E), to M. An example is as follows. 

Let h be defined by 

h(John) = e 1, h(Bill) = e 2, h(Mary) = e 3 
h(runs) is the function f 1 which has value true for all e E Me 

h(taZks) is the function f 2 which has value false for all e E Me 

Furthermore we define h for the compound terms. 

h(C(John,runs)) = h(C(Mary,runs)) = h(C(Bill,runs)) = true 

h(C(John,talks)) = h(C(Mary,talks)) = h(C(Bill,talks)) =false 

The function h, thus defined, is a homomorphism because 

I. h(TE,Subj) c Me' h(TE,Verb) c M<e,t>' h(TE,sent) c ~ 

2. h(C(a,S)) = F(h(a),h(S)) for all subjects a and verbs a. 

It is easy to define other homomorphisms from TE to M. ~fotice that once 

h is defined for TE,Subj and for TE,Verb' then there is no choice left for 

the definition of h for TE S (provided that we want h to be a homo-
' ent 

morphism). 
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4. 8 • EXAMPLE : Nurriber denotations 

Syntactic Algebra 

The algebra Den of natural number denotations is defined as follows 

I. Sorts 

SDen = {digit,num} 

II. Carriers 

D •• digit {0,1, 2, 3,4,5,6, 7, 8,9} 

{O, 1, 2, 3, .• • 10, 11, .•. 01, 02, .• 010, •• 001, .• 007, ..••. } D num 
So Dnum is the set of all number denotations, including denotations 

with leading zero's. Notice that Dd .. c D ig1t num 
III. Operators 

There is one operation. 

C:D. xDd .. -.n num 1g1t rtum 
where C is defined by C(a,S) = aS. 

So C concatenates a number with a digit. 

Semantic Algebra 

The algebra Nat of natural numbers is defined as follows 

I. Sorts 

SNat = {d,n}. 

II. Carriers 

Nd consists of the natural numbers up to nine (zero and nine included) 

N consists of all natural numbers. 
n 

III. Operations 

There is one operation: 

F: Nn x Nd + Nn 

where F is defined as multiplication of the element from Nn by ten, 

followed by addition of the element from Nd. ' 

A natural homomorphism h from TDen to Nat is the mapping which associates 

with the derivational history of a digit or number denotation the correspond

ing number. Then h(C(0,7)) and h(?) are both mapped onto the number seven. 

That this h is a homomorphism follows from the fact that F describes the 

semantic effect of C, e.g. h(C(2,7)) = F(h(2),h(7)). 

4.8. END 



25 

Syntax is an algebra, semantics is an algebra, and meaning assignment 

is a homomorphism; that is the aim of our enterprise. But much work has to 

be done in order to proceed in this way. Consider the two examples given 

above. The carriers were defined by specifying all their elements, the ho

momorphisms were defined by specifying the image of each element, and the 

operations in the semantic algebra were described by means of full English 

sentences. For larger, more complicated algebras this approach will be very 

impractical. Therefore a lot of technical tools will have to be introduced 

before we can deal with an interesting fragment of natural language or pro

gramming language. Consider again the first example (i.e. 4.7). The semantic 

operation corresponding to the concatenation of a Subj and a Verb was de

scribed as the application of the function corresponding to the verb to the 

element corresponding to the subject. One would like to use standard nota

tion from logic and write something like Verb(Subj). Thus one is tempted to 

use some already known language in order to describe a semantic operation. 

This is precisely the method we will employ. If we wish to define the 

meaning of some fragment of a natural language, or of a programming language, 

we will not describe the semantic operations in the meta-language (for in

stance a mathematical dialect of English), but use some formal language, the 

meaning of which has already been defined somehow: we will use some formal 

or logical language. Thus the meaning of an expression is defined in two 

steps: by translating first, and next interpreting, see figure 3. 

I Natural or Programming Language 

l translation 

I Logical or Formal Language 

1 interpretation 

Meanings for the natural or programming language 

Figure 3 Meaning assignment in two steps. 

Figure 3 illustrates that the semantics of the fragment of English is 

defined in a process with two stages. But is this approach in accordance 

with our algebraic aim? Is the mapping from the term algebra corresponding 
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with the syntax of English to the algebra of meanings indeed a homomorphism? 

The answer is that we have to obey certain restrictions, in order to be sure 

that the two-stage process indeed determines a homomorphism. The translation 

should be a homomorphism from the term algebra for English to the logical 

language and the interpretation of the logical language should be a homo

morphism as well. Then, as is expressed in the theorem below, the composi

tion of these two mappings is a homomorphism. 

4.9. TIIEOREM. Let A,B, and C be similar algebras, and h: A+ Band g: B + C 

homomorphisms. Define the mapping hog: A+Cby (hog)(a) = g(h(a)). Then 

h 0 g is a homomorphism. 

PROOF. 

1. (h 0 g)(As) c g(h(A6 )) c g(Bs,) c Cs'" where s' and s" are the sorts in B 

and C corresponding with s. 

2. Let G , H be the operators in Band C corresponding with F . Then y y y 
(hog)(F (a 1, ••• ,a )) = g(h(F (a 1, ••• ,a ))) = g(G (h(a 1) , •• .,h(a ))) y n y n y n 

H ( p, (h (a 1) , ••• , g (h (a ) ) ) = H ( (hog) (a 1 ) , • , • , (hog) (a ) ) y · · n y n 
4.9. END. 

The semantical language does not always contain basic operators which 

correspond to the operators in the syntax. In the example concerning natu

ral number denotations there is no basic arithmetical operator which cor

responds to the syntactic operation of concatenation with a digit. I de

scribed the semantic operator by means of the phrase 'multiplication of the 

element from Nn with ten; followed by an addition with the element of Nd. 
One is tempted to indicate this operation not with this compound phrase, 

but with something like 'JO x number+ digit'. One wishes to use a compound 

expression from the language of arithmetic for the semantic operation which 

corresponds to the concatenation operation, i.e. to build new operations 

from old ones. 

The situation I have just described, is the one which almost always 

arises in practice. One wishes to define the semantics of some language. 

The set of semantic objects has some 'natural' structure of its own, and 

a 'natural' semantical language which reflects this structure. So this 

'natural' semantical language has not the same algebraic structure as the 

language for which we wish to describe the semantics. Therefore we use the 

sernantical language (usually some kind of formal or logical language) to 

build a new algebra, called a derived algebra. We make new operations by 
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forming compound expressions which correspond with the syntactic operations 

of the language for which we wish to describe the semantics. This situation 

is presented in figure 4; the closed arrows denote mappings, the dotted ar

rows indicate the construction of a new algebra by means of the introduction 

of new operations (built from old ones). 

Syntactic algebra of 

logical language 

l interpretation homo
morphism 

Heanings for logical 

language 

------+ 

------+ 

Syntactic Term-algebra of the lan-j 

guage under consideration 1 

l translation homomorphism 

Derived syntactic algebra of the 

adapted logical language 

l interpretation homomor
phism 

Derived meanings for logical lan- J 

guage (and for language under con

sideration) 

Figure 4. Meaning assignment using derived algebras 

In this way, we have derived a new syntactic algebra from the syntac

tic algebra of the logical language. The syntactic algebra of which we wish 

to define the semantics is translated into this derived algebra. Now the 

question arises whether this approach is in accordance with our aim of de

fining some homomorphism from the syntactic algebra to the collection of 

meanings. The theorem that will be mentioned below guarantees that under 

certain conditions this is the case. The interpretation of the logical lan

guage has to be a homomorphism, and the method by which we obtain the de

rived algebra is restricted to the introduction of new operators by compo

sition of old operators. Such operators are called polynomials; for a for

mal description see chapter 2. If these conditions are satisfied, then the 

interpretation homomorphism for the logical language is also an interpre

tation homomorphism of the derived algebra (when restricted to this algebra) . 

Composition of this interpretation homomorphism with the translation homo

morphism gives the desired homomorphism from the language under considera

tion to its meanings. The theorem is based upon MONTAGUE (1970b), for its 

proof see chapter 2. 
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4 .10. THEOREM. Let A and B be similar algebras and h: A -+ B a homomorphism 
onto B. Let A' be an algebra obtained from A by means of introduction of 

polynomially defined operators over A. 

Then there is a unique algebra B' such that h is a homomorphism fPom A' on

to B'. 

4.10. END 

Finally I wish to make some remarks about the translation into some 

logical language. As I explained when introducing this intermediate step, 

it is used as a tool for defining the homomorphism from the syntactic al

gebra to the semantic one. If we would appreciate complicated definitions in 

the meta language, we might omit the level of a translation. It plays no es

sential role in the system, it is there for convenience only. If convenient, 

we may replace a translation by another translation which gets the same in

terpretation. We might even use another logical language. So in a Montague 

grammar there is nothing which deserves the name of the logical form of an 

expression. The obtained translation is just one representation of a seman

tical object, and might freely be interchanged with some other representa

tion. KEENAN & FALTZ (1978), in criticizing the logical form obtained in a 

Montague grammar, criticize a notion which does not exist in Montague gram

mar. 

5. MEANINGS 

5.1. Introduction 

In this section some consequences are considered of the requirement of 

a homomorphic mapping from the syntactic term algebra to the semantic al

gebra. These consequences are considered for three kinds of language: na

tural languages, programming languages and logical languages. It will ap

pear that the requirement of associating a single meaning with each expres

sion of the language helps us, in all three cases, to find a suitable for

malization of the notion of meaning. Furthermore, an example will be con

sidered of an approach where the requirement of a homomorphic relation be

tween syntax and semantics is not obeyed. 
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5.2. Natural Language 

Consider the phrase the queen of Holland, and assume that it is used 

to denote some person (and not an institution). Which person is denoted, de

pends on the moment of time one is speaking about. This information can 

usually be derived from the linguistic context in which the expression oc

curs. In 

(I) The queen of Holland is ma,rried to Prince Claus. 

Queen Beatrix is meant, since she is the present queen. But in 

(2) In 1910 the queen of Holland was ma,rried to Prince Hendrik. 

Queen Wilhelmina is meant, since she was the queen in the year mentioned. 

So one is tempted to say that the meaning of the phrase the queen of Holland 

varies with the time one is speaking about. Such an opinion is, however, 

not in accordance with our algebraic (compositional) framework. The approach 

which leads to a single meaning for the phrase under discussion is to in

corporate the source of variation into the notion of meaning. In this way 

we arrive at the conception that the meaning of the phrase the queen of 

Holland is a function from moments of time to persons. For other expressions 

(and probably also for this one) there are more factors of influence (place 

of utterance, speaker, •. ). Such factors are called indices; a function with 

the indices as domain is called an intension. So the meaning of an expres

sion is formalized by an intension: our framework leads to an intensional 

conception of meaning for natural language. For a more detailed discussion 

concerning this conception, see LEWIS 1970. A logical language for dealing 

with intensions is the language of 'intensional logic'. This language will 

be considered in detail in chapter 3. 

5.3. Programming Language 

Consider the expression x+l. This kind of expressions occurs in almost 

every programming language. It is used to denote some number. Which number 

is denoted depends on the internal situation in the computer at the moment 

of consideration. For instance, in case the internal situation of the com

puter associates with x the value seven, then x+l denotes the number eight. 

So one is tempted to say that the meaning of x+l varies. But this is not 

in accordance with the framework. As in example 1, the conflict is resolved 

by incorporating. the source of variation into the notion of meaning. As 

the meaning of an expression like x+l we take a function from computer 

states to numbers. On the basis of this conception a compositional. treatment 
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can be given of meanings of computer languages (See chapter 10). States of 

the computer can be considered as an example of an index, so also in this 

case we use an intensional approach to meaning. In the publications of Adj 

a related conception of the meaning of such expressions is given, although 

without calling it an intension (see e.g. ADJ 1977, 1979). 

Interesting in the light of the present approach is a discussion in 

PRATT 1979. Pratt discusses two notions of meaning: a static notion (an ex

pression obtains once and for all a meaning), and a dynamic notion (the 

meaning of an expression varies). He argues that (what he takes as) a static 

notion of meaning has no practical purpose because we frequently use expres

pression obtains once and for all a meaning), and a dynamic notion (the 

of time. Therefore he develops a special logic for the treatment of seman

tics of programming languages, called 'dynamic logic'. But on the basis of 

our framework, we have to take a 'static' notion of meaning. By means of 

intensions we can incorporate all dynamics into such a framework. Pratt's 

dynamic meanings might be considered as a non-static version of intensional 

logic. 

5.4. Predicate logic 

It is probably not immediately clear how predicate logic fits into the 

algebraic framework. PRATT (1979,p.55) even says that 'there is no function 

F such that the meaning of Vxp can be specified with a constraint of the 

form µ(Vxp) = F(µ(p))'. In our algebraic approach we have to provide for 

such a meaning functionµ and operator F. 

Let us consider the standard (Tarskian) way of interpreting logic. It 

roughly proceeds as follows. Let@ be a model and g be an @-assignment. The 

interpretation in @ of a formula ~with respect to g, denoted ~g' is then 

recursively defined. One clause of this definition is as follows (here I 

denotes the truth value for truth) . 

[~A wJg is l, if ~g is I and Wg is l. 

This suggest that the meaning of ~ A w is a truth value, which is obtained 

out of the truth values for ~ and for w. Another clause of the standard way 

of interpretation is not compatible with this idea. 
g a' 

[3x~(x)] is I, if there is a g' ; g such that [Hx) Jb is !. • 

(Here g' '; g means that g' is the same assignment as g except for the 

possible difference that g' (x) f g(x)). 

This clause shows that the concept of meaning being a truth value is too 

simple for our algebraic framework. One cannot obtain the truth value of 
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3xcji(x) (for a certain value of g) out of the truth value of cp(x) (for the 

same g).If we wish to treat predicate logic in our framework, we have to 

find a more sophisticated notion of meaning for it. 

Note that there is not a single truth value in the semantic domain which 

corresponds with cji(x). Its interpretation depends on the interpretation of 

x, and in general on the interpretation of the free variables in cji, and 

therefore on g. In analogy with the previous examples, we incorporate the 

variable assignment into the conception of meaning. The meaning of a formula 

is a function from variable assignments to truthvalues, namely the function 

which yields I for an assignment in case the expression is true for that 

assignment. With this conception, we can easily build the meaning of cp A 1jJ 

out of the meaning of cp and of ijJ: a function which yields I for an assign

ment iff both the meanings of cp and of 1jJ yield I for that assignment. The 

formulation becomes simpler by adopting a different view of the same si

tuation. A function from assignments to truthvalues can be considered as 

the characteristic function of a set of assignments. Using this, we may 

formulate an alternative definition: the meaning of a formula is a set of 

variable assignments (namely those for which the formula gets the truth 

value I). Let M denote the meaning assignment function. Then we have: 

For the other connectives there are related set theoretical operations. 

Thus this part of the semantic domain gets the structure of a Boolean al

gebra. 

For quantified formulas we have the following formulation. 

M(3x'!i) = {h I h x g and g E M(cji)}. 

Let C 
x 

denote the semantical operation described at the right hand side of 

the =sign, i.e. C is the operation 'extend the set of assignments with all 
x 

x variants'. The syntactic operation of writing 3x in front of a formula 

now has a semantic interpretation: namely apply Cx to the meaning of cji. 

M(3xcji) = M(3x) (M(cji)) = C M(<ji). 
x 

In this algebraization there are infinitely many operations which introduce 

the existential quantifier. One might wish to go one step further and pro

duce 3x from 3 and x. This would require that given the meaning of a vari

able (being a function from assignments to values) we are able to deter

mine of which variable it is a meaning. This is not an attractive algebraic 

operation, and therefore this last step is not made. I conclude that we have 

obtained a compositional interpretation of predicate logic: a homomorphism 

to some semantic algebra. One might say that it shows how we have to look 
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at the Tarskian interpretation of logic in order to give it a compositional 

perspective. 

The view on the semantics of predicate logic presented here is not new. 

Some logic books are based on this approach in which the meaning of a quan

tified formula is a set of assignments (MONK 1976, p.196, KREISEL & 

KRIVINE 1976, p,17). The investigations on the algebraic structure of pre

dicate logic constitute a special branch of logic: the theory of cylindric 

algebras. It requires a shift of terminology to see that the kinds of struc

tures studied there is the same as those introduced here. An assignment can 

be considered as an infinite tuple of elements in the model: the first ele

ment of the tuple is the value for the first variable, etcetera. Thus an 

assignment, can be considered as a point in an infinite dimensional space. 

So if ~holds for a set of assignments, then ~ is interpreted as the set of 

corresponding points in this universe. The operator Cx applied to a point p 

causes that all points are added which differ from p only in their x-coor

dinate. Geometrically speaking, a single point extends to an infinite stick. 

If C is applied to a set consisting of a circle area, then this is extended 
x 

to a cylinder. Because of this effect, ex is called a cylindrification oper-

ator, and in particular, the x-th cylindrification. (see fig'.5) The alge

braic structure obtained in connection with predicate logic is called a 

cylindric set-algebra. These algebras and their connection with logic are 

studied in the theory of cylindric algebras (see HENKIN, MONK & TARSKI 1971). 

The original motivation for studying cylindric algebras was a technical 

one. Cylindric algebras were introduced to make the application of the power

ful tools of algebra possible in studying logics, as can be read in HENKIN, 

MONK & TARSKI (1971, p.I): 

This theory[ .. ] was originally designed to provide an apparatus for 
an algebraic study of first order, predicate logic. 

New in the above discussion was the motivation which led us towards cylin

dric algebras. In my opinion, the compositional approach gives rise to a 

more direct introduction to this field than the existing one. Moreover, on 

the basis of the approach given above, it is not too difficult to find al

gebras for other order logics, such as intensional logic. 

It cannot be said that the theory of cylindric algebras itself is a 

flourishing branch of logic nowadays. But the use of algebra is widespread 

in model theory (i.e. the branch of logic which deals with interpretations). 

Often one uses the terminology and techniques from universal algebra, as is 

evidenced by the amount of universal algebra in 'Model theory' by CHANG & 
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KEISLER (1973), and by the amount of model theory in 'Universal algebra' by 

GRAETZER (1968). Results from one field are proven using methods from the 
other field in Van BENTHEN (1979b). Algebraic interpretations of several non

classical logics are given by RASIOWA (1974). Important results concerning 

modal logics are obtained, using algebraic techniques, by Blok (e.g. BLOK 

1980). 

/ 
/ 

/ 

// 
/ 

-- - - ------- - ---- 7-!'"'"----

Figure 5. A cylindrification 

The present discussion should not be understood as claiming that the 

only legitimate way of studying (predicate) logic is by means of (cylindric) 

algebras. There are a lot of topics concerning logic that can be studied, 

and each has a natural viewpoint. For instance, if one is studying deduc

tion systems, a syntactic point of view is the natural approach. One should 

take that view which is the best for one's current aims. What I claim is 

that, if one is studying semantics, then there has to be an algebraic 
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interpretation existing in the background, and one should take care that 

this interpretation is not violated by what one is doing. 

5 .5. Strategy 

In all three examples discussed above, we followed the strategy of 

first investigating what a meaning should do, and then defining such an en

tity as the formalized notion of meaning which does that and which satis

fies the compositionality principle. In all examples such an entity was ob

tained by giving the notion of meaning a sufficient degree of abstraction. 

By proceeding in this way (first investigating, then defining) we follow 

the advice of LEWIS (1970,p.5) 

In order to say what a meaning is, we may first ask what a meaning does 
and then find something that does that. 

5.6. Substitutional Interpretation 

Next I will discuss an approach to the semantics of predicate logic 

which is not compositional with respect to the interpretation of quanti

fiers. For the interpretation of 3x[~(x)] an alternative has been proposed 

which is called the 'substitutional interpretation'. It says: 

3x ql(x) is true iff there is some substitution a for x such that ~(a) 
is true. 

Whether this definition is semantically equivalent to the Tarskian defini

tion depends, of course, on whether the logical language contains a name 

for every element of the semantic domain or not. A definition like the 

above one can be found in two rather divergent branches of logic: in philo

sophical logic, and in proof theory. 

In philosphical logic the substitutional interpretation has been put 

forward by R. Marcus (e.g. MARCUS 1962). Her motivation was of an ontologi

cal nature. Consider sentence (3). 

(3) Pegasus is a winged horse. 

According to standard logic, (4) is a consequence of (3), and Marcus ac

cepts this consequence. 

(4) 3x(x is a winged horse) . 

She argues, however, that one might believe (3), without believing (5). 

(5) There exists at least one thing which is a winged horse. 

This opinion has as a consequence that the quantification used in (4) can

not be considered as an existential quantification in the ontological sense. 

The substitutional interpretation of quantifiers allows her to have (4) as 
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a consequence of (3), without being forced to accept (5) as a consequence. 

KRIPKE (1976) discusses this approach in a more formal way. As syntax 

for the logic he gives the traditional syntax: 3x~(x) is produced from ~(x) 

by placing 3x in front of it. According to such a grammar Ha) .certainly is 

not a part of 3x.~(x). This means that the substitution interpretation is 

not a compositional interpretation (this was noticed by Tarski, as appears 

from a footnote in PARTEE (1973,p.74)). 

In proof theory the substitutional interpretation is given e.g. in 

SCHUETTE 1977. In his syntax he constructs Vx~(x) from ~(a), where a is ar-

bitrary. So the formula Vx~(x) is syntactically rather ambiguous: It has as 

many derivations as there are expressions of the form ~(a). Given one such 

production, it is impossible to define the interpretation of Vx~(x) on the 

basis of the interpretation of the formula ~(a) from which Vx~(x) was built 

in the parse under consideration. It may be the case that Vx~(x) is false, 

and ~(a) is true for some a, but false for another one. So we see that the 

truth value of Vx~(x) cannot depend on the truth value of ~(a) for any single 

a. Hence in this case the substitutional interpretation does not satisfy the 

compositionality principle. 

If one wishes to define the semantics in a compositional way, and to 

follow at the same time the substitutional interpretation of quantifiers, 

then the syntax has to contain an infinitistic rule which says that all ex

pressions of the form ~(a) are part of Vx~(x). Such an infinitistic rule 

has not been proposed by authors which follow the substitutional interpre

tation. 

6. MOTIVATION 

In this section I will give several arguments for accepting the com

positionality principle and the formalization given for it. I will give 

three kinds of arguments. The first kind is very general and argues for 

working within some mathematically defined framework. The second kind of 

arguments lists benefits of working with the present framework, and is 

based upon the properties of the framework. The third kind concerns the 

principle itself. As a matter of fact, this entire book is intended as a 

support for the algebraic formalization of the compositionality principle, 

and many of the arguments wi 11 be worked out in the remainder of this book. 

Regarding the f1.'.rst kind of argvJ1lents: it is very useful to work with-
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in some mathematically well defined framework. Such a standard framework 

gives rise to a language in which one can formulate observations, relations 

and generalizations. It is a point of departure for formulating extensions, 

restrictions and deviations. If one has no standard framework, then when

ever one considers a new proposal, one has to start anew in obtaining in

tuitions concerning properties of the system, and to check whether old 

knowledge still holds. It is then difficult to see whether the proposals 

within some framework are in accordance with those in other frameworks, and 

whether they can be combined into a coherent treatment. If one wishes to 

design a computer program for Montague grammars, then one has to design for 

each proposed extension or variant a completely new program, unless all 

proposals fit into a single framework. This experience was my original mo

tivation for the whole research presented in this book. But the final result 

is independent of this motivation: only at a few places programming con

siderations are mentioned (viz. here and in chapters 7 and 8). 

The second kind of arguments is based upon the qualit:y of the frame-

work. 

a) Elegance 

The framework presented here is mathematically rather elegant. This is 

apparent especially from the fact that it is based upon two simple mathe

matical notions: many-sorted algebra and homomorphism. The important tool 

of a logical language is combined in an elegant way with these algebraic 

notions. One should, however, not confuse the notion of 'elegant' with 'ele

mentary' or 'easy to understand'. That the system is elegant, is due to its 

abstractness, and this abstractness might be a source of difficulties in 

understanding the system. The insight obtained from the abstract view on the 

framework led to an answer to a question of PARTEE 1973 concerning restric

tions on relative clause formation, see chapter 9 or JANSSEN 198Ja. It also 

led to an application in a rather different direction by providing a seman

tics for Dik's functional grammar, see JANSSEN 198lb. 

b) Generalit:y 

The framework can be applied to a wide variety of languages: natural, 

programming and logical languages. See chapter 3 for an application to logic, 

chapter JO for an application to programming languages, and the other chap

ters of this book for applications to natural languages. 

c) Restrictiveness 

The framework gives rise to rather strong restrictions concerning the 

organization of syntax and semantics, and their mutual relation. The use 
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striction. For a discussion of several deviations from the present frame

work, see chapters 5 and 6. 

d) Comprehensibility 

37 

The argument given by Milner (see section 1) for designers of computing 

systems can be generalized to: 'if someone describes the semantics of some 

language, he should be able to think of the description as a composite of 

descriptions, in order that he may factor a semantic problem into smaller 

problems'. And what is said here for the designer of a system, holds at 

least as much for someone trying to understand the system. This property of 

the system is employed in the presentation of the fragment in chapter 4. 

e) Power 

The recursive definitions used in the framework allow us to apply the 

technique of induction. Statements concerning structures and expressions 

can be proved by using induction to the complexity of the elements involved. 

Especially in chapters 2 and 3 this power is employed. 

f) Heuristic tool 

A most valuable argument in favor of the principle and its formaliza

tion is its benefit for the practice of describing semantics of languages. 

Examples of this benefit, however, would require a detailed knowledge of 

certain proposals. Therefore some quotations have to suffice. 

ADJ 1979 (p.85) say about the algebraic approach: 

The belief that the iikas presented here are key3 comes from our ex
perience over the last eight years in ikveZoping and applying these 
concepts. 

Furthermore they say (op.cit.p.88): 

When one becomes familiar with such concepts (and the results concern
ing them) they provide a guiik as to what one should Zook for, and as 
to how to formulate one's ikfinitions and results. 

Van EMDE BOAS & JANSSEN 1979 (p.112) claim: 

It wiZZ turn out that quite often some complicated description in a 
semantic treatment actually hides a deviation from the principle. Con
fronted with such a violation the principle sometimes suggests an al
ternative approach to the problematic situation which does obey the 
principle and solves the problem easier than thought to be possible. 
Such cases establish the value of the principle as a heuristic tool. 

Both papers contain a lot of evidence for their claims. I will present 

several examples supporting them: concerning programming languages in 

chapter 10, and concerning natural languages in the other chapters. 

The last kind of arguments concerns the principle itself. 
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g) No alternative 

An important argument in favor of the principle is that there is no 

competing principle. Authors not working in accordance with the principle 

do not, as far as I know, put forward an alternative general principle with 

a mathematical formalization. The principles one finds in the literature 

are language-specific, or specific for a certain theory of languages, but 

never principles concerning a framework. 

h) Widespread 

As demonstrated in section J, the principle of compositionality is 

widespread in sciences dealing with semantics; it arises in philosophy, 

linguistics, logic and computer science. 

i) Psychology 

An argument sometimes put forward is that the principle reflects some

thing of the way in which human beings understand natural language. The 

principle explains how it is possible that a human being, with his finite 

brain, can understand a potentially infinite set of sentences. Or to say 

it in Frege's words (as translated by Geach & Stoothof (FREGE 1923, p.35)): 

[ .. ]even a thought grasped by a terrestrial being for the first time 
can be put into a form of words which will be understood by someone to 
whom the thought is entirely new. This would be impossible, were we 
not abZe to distinguish parts in the thought corresponding to the parts 
of a sentence[ .. ]. 

The last two arguments I do not consider as very strong. As for argu

ment h), I think that the principle is so popular because it is so vague. 

There are many undefined words in the formulation of the principle, so that 

everybody can find his own interpretation in it. As for argument i), we 

know so little about the process in the human brain associated with learning 

or understanding natural language, that arguments concerning psychological 

relevance are no more than speculations. I would not like to have the mathe

matical attractiveness of the framework disturbed by further speculations 

of this nature. The most valuable arguments are, in my opinion, those con

cerning the elegance and power of the framework, its heuristic value, and 

the lack of a mathematically well defined alternative. So I adhere to the 

principle for the technical qualities of its formalization. 

An argument not found above is the truth of the principle: a statement 

like 'The semantics of English is compositional'. Such an argument would 

not be convincing since it is circular. In section 5, I gave examples which 

illustrated that the principle, and especially the requirement of similarity, 

may lead us to a certain conception of meaning. And in section 3 I gave a 
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definition of the notion 'parts' which made it possible to have 'abstract 

parts'. So there is a large freedom: we may choose what the parts are of an 

expression, and what the meanings are of those parts. In such a situation 

it is not surprising that there is some choice which gives rise to a compo

sitional treatment of the semantics. In the next chapter I will prove that 

it is possible within this framework to generate every recursively enumerable 

language, and to relate with every sentence any meaning we would like. If 

someone wishes to doubt the principle, this only seems possible if he has 

some judgements at forehand about what the parts of an expression are, and 

what their meanings are. In the light of the power and flexibility of the 

framework, it cannot be refuted by pointing out in some language a phenome

non which requires a non-compositional treatment. I expect that problematic 

cases can always be dealt with by means of another organization of the syn

tax, resulting in more abstract parts, or by means of a more abstract con

ception of meaning. The principle only has to be abandoned if it leads too 

often to unnecessarily complicated treatments. 

As appears from this discussion, the principle of compositionality is 

not a principle about languages. It is a principle concerning the organiza

tion of grammars dealing both with syntax and semantics. The arguments given 

above for adhering to the principle, are not based on phenomena in languages, 

but on properties of grannnars satisfying the framework. If one is not pleased 

with the power of the grammars, one might formulate severe restrictions 

within the framework. In the light of the examples to be given in chapter 5, 

it seems that the framework as it is, gives, from a practical viewpoint, 

already more than enough restrictions. 





CHAPTER II 

THE ALGEBRAIC FRAMEWORK 

ABSTRACT 

In this chapter a formal framework is defined for the description of 
the syntax and semantics of languages. The theory of many-sorted algebra 

which is needed for this framework is explained, and special attention is 

paid to the motivation and mathematical justification of the framework. The 

framework is a synthesis of the approaches of Montague and Adj and it con

stitutes a formalization of the principle of compositionality of meaning. 
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I . INTRODUCTION 

The aim of this chapter is to present a mathematical description of a 

framework for the description of syntax and semantics of a language. The 

framework is a formalization of the principle of compositionality of meaning. 

The framework is based upon universal algebra: a branch of mathematics which 

is concerned with the general theory of algebraic structures (the standard 

work in this field is GRl\ETZER 1968). Universal algebra deals with the gen

eral structures we need, and it provides a language which allows us to speak 

with precision about such abstract structures. The most important contribu

tion of universal algebra to this book consists of the concepts it provides. 

I will hardly use any deep mathematical results from universal algebra, but 

mainly rather elementary notions such as 'subalgebra', 'homomorphism' and 

'polynomial' (here generalized to the case of many sorted algebras). 

The framework I will present is designed with two predecessors in mind: 

'Universal Grammar' (MONTAGUE 1970b), and 'Initial algebra semantics' (ADJ 

1977). Montague did not use many sorted algebras, although it is the natural 

mathematical notion for his purposes. The group Adj was not primarily in

terested in developing a general framework, but in its practical applica

tions. The present framework is based upon the ideas of Montague, and on 

the techniques of Adj, and as such it is new. In a few cases, a definition 

or theorem concerning this framework deviates considerably from what can be 

found in the literature. The present framework is developed for practical 

purposes, and I constantly kept PTQ (MONTAGUE 1973) and its successors in 

mind. As often happens in applying mathematics, the available theory was 

not applicable in its original form. I had to invent definitions myself, 

with the literature as a source of analogous notions (this point is also 

made in Van BENTREM 1979a,p.17). In the presentation much attention is paid 

to the motivation of the definitions: if one understands why definitions 

are the way they are, then it is possible to predict what happens when the 

conditions in the definitions are violated. The insights developed in this 

chapter will also be useful in the discussion of several deviations from 

the framework (see chapter 5). My aim is to give a comprehensible descrip

tion of an elegant, very abstract mathematical system. In one respect this 

attempt probably has not been successful: the description of how to obtain 

new algebras out of old ones. There is no general theory which I could use 

here, and I had to apply 'ad hoe' methods (see sections 6 and 7). 
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2 . ALGEBRAS AND SUBALGEBRAS 

In chapter l it was explained that the key notions in our formalization 

of the compositionality principle are the notions 'many-sorted algebra' and 

'homomorphism'. For several reasons these definitions have to be refined. 

The definition of 'many sorted algebra' is given below; the definition of 

'homomorphism' will be given in section 6. 

2.1. DEFINITION. A many-sorted algebra of signature (S,f,T) is a pair 

<(A) 8 ,(F) r> such that 
S SE Y YE 

a) S is a non-empty set; its elements are called sorts. 

b) (As)sES is an indexed family of sets. The set As is called the carrier 

of sort s. 

c) r is a set; its elements are called operator indices. 

d) T is a function such that 

T: r + U Sn x s where n E JN and n > 0. 
n 

Thus the function T assigns to each operator index y a pair <w,s>, where 

sis a sort, and w = <s 1 , ••• ,sn> is an n-tuple of sorts. Such a pair de

notes the type of the operator with index y. Therefore the pair is called 

an operator type, and the function T is called a type assigning funi:Jtion. 

e) (F ) r is an indexed family of operators such that if 
Y YE 

T(y) = <<s 1, ••• ,sn>'sn+l> then Fy: As 1x ... xAsn->- Asn+l 
2.1. END 

The definition given above is due to J. Zucker (pers.cornm.); it is 

very close to the one given in ADJ 1977. The main difference is that we 

have no restrictions on the carriers: they may have an overlap, be included 

in each other or some may be equal. Another, minor, difference is that we 

have no nullary operators (i.e. it is not allowed in clause d) that n=O). 

For a motivation and discussion of these differences, see sections 8 and 9. 

Structures like many sorted algebras are introduced, under different names, 

in BIRKHOFF & LIPSON 1970 (heterogeneous algebras) and HIGGINS 1963 (alge

bras with a scheme of operators). 

The different components of the above definition are illustrated in 

the following example 

2.2. EXAMPLE. I describe an algebra E consisting of some English words and 

sentences. 
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a) The set of sorts S {Sent, Term, Verb} 

b) The carriers are 

ETerm {John, Mary} 

EVerb {run} 

ESent {John runs, Mary runs} 

c) The set of operator indices r = {I} 

d) The type assigning function T is defined by T(l) = <<Term,Verb>,Sent>. 

e) The set of operators is {F 1}. This operator consists of first adding an 

s to its second argument, followed by a concatenation of its first argu-

ment with its thus changed second argument. So 

FI (et,S) = et Ss 

2.2. END 

(e.g. F 1(John, run) =John runs) 

In this example I have followed the definition in order to illustrate 

the definition. It is, however, not the most efficient way to represent the 

required information. There are several conventions which facilitate these 

matters. The sorts may be used to denote the carriers as well: we will write 

a E s instead of a E AS. We often will write A when (A ) S or U (A ) is 
S SE SES S 

meant, but we will use A for the algebra itself as well. By a L-algebra we 

understand an algebra with signature L. We will avoid to mention s,r and T 

when they become clear from the context (or are arbitrary). These conven

tions are employed in the example which will be given below. A final remark 

about the notation in MONTAGUE l970b. There an algebra is denoted as 

<A F > . I agree with LINK & VARGA (1975) that this is not a correct 
s' y sES,yEf 

notation for what is intended: an algebra is not a collection of pairs, but 

a pair consisting of two collections (the carriers and the operators). 

2.3. EXAMPLE. The algebra <A,£.> is defined as follows. 

Its sorts are 

Nat= {O,l,2,3 .. } 

Bool = {true,false} 

Its operators are 

F<: Nat x Nat~ Bool 

F : Nat x Nat ~ Bool 
> 

(the natural numbers) 

(the truth values) 

where F(a,13) ={true 
false 

where F(a,13) ={true 

false 

if Cl < s 
otherwise 

if Cl > s 
otherwise 

So <A ,F > is a two sorted algebra with two operators of the same type. 
s y 

S,r and Tare implicitly defined by the above description. 

2.3. END 
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It is useful to have some methods to define a new algebra out of an 

old one. An important method is by means of subalgebras. A subalgebra is, 

roughly, a collection of subsets of the carriers of an algebra which are 

closed under the operations of the original algebra. The theorems and defi

nitions which follow, are generalizations of those for the one-sorted case 

in GRAETZER 1968. 

2.4. DEFINITION. Let A <(A) S' (F ) r> be an algebra. A suhalgebra of 
S SE y YE 

A is an algebra 

B = <(Bs)sES' (F~)yEf> 
such that 

1) for each s E S it holds 

2) for each y E r it holds 

F to B). y 
2.4. END 

that B 
s 

that F' 
y 

c A 
s 

F y rB. (i.e. F' is the restriction of 
y 

Note that from the requirement that B is an algebra, it immediately 

follows that F'(b 1, ••• ,b) E B. In the sequel we will not distinguish y n 
operators of the original algebra and operators of its subalgebras (e.g. 

we will not use primes to distinguish them). The next example illustrates 

this. 

2.5. EXAMPLES. Let E be the algebra from example 2.2. Hence E is defined by: 

E <(E ) {F }> 
s SE:{Term,Verb,Sent}' 1 

where {John,Mary}, EVerb = {run}, 

ESent = {John runs, Mary runs} 

is defined by F(a,S) =a Ss. 

Some examples of subalgebras are: 

I. E itself is a subalgebra of E. 

II. Let BT ={John}, BV b ={run}, and Bs ={John runs}. erm er ent 
Then B = <(Bs)sES'{F 1}> is a subalgebra of E. 

III. Let CT ={Mary}, CV b ={run}, and CS = 0. errn er ent 
Then C = <(Cs)sES'{F 1}> is not a subalgebra of E. 
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IV. Let DT ={John}, DV b = ~. and D8 t ={Mary runs}. erm er en 
Then D = <(D) 8 ,{F 1}> is a subalgebra of E, although a rather strange 

S SE 

one. 

2.5. END 

A sorted collection of subsets of an algebra may be contained in sever

al subalgebras. There is a smallest one among them, namely the intersection 

of these subalgebras. This is proven in the next theorem, this probably cor

responds with the mysterious 'theorem due to Perry Smith' mentioned in 

MONTAGUE 1973 (p.253). 

2.6. TIIEOREM. Let <(B(i)) 8 ,(F) r>. I be a collection sUbalgebras of the 
S SE y YE 1-E ( • , 

algebra <(A) 8 ,(F) r>. For each s we define, C = n. I(B 1-J). 'Then 
S SE y YE S 1-E S 

<C ,F > is a sUbalgebra of A. s y 

PROOF. We have to prove that <C F > is closed under the operations F . s, y y 

Let T(y) = <<s]'"'''sk>,sk+J> and cl E Cs , ... ,ck E csk 
. (i) (i) 

Then for all i EI: c 1 E Bs , .•. ,ck E Bs · 
I (i) k 

So for all i: Fy(c 1, ••• ,ck) E Bs , and consequently 

B (i) c k+l 
Fy(c 1, ••• ,ck) E niEI 

sk+I sk+I 
2.6. END 

We will often be interested in the smallest algebra containing a given 

collection of subsets. Then the following terminology is used. 

2.7. DEFINITIONS. Let <A,!_> be an algebra, and Ha sorted collection of 

subsets of A. The smallest subalgebra of A containing H is called the sUb

algebra generated by H. This algebra is denoted by <[H],!_>, and its ele

ments are denoted by [HJ. A sorted collection Hof subsets of an algebra 

<A,E:_> is called a generating set if <[H],!_> 

sets in H are called generato1°s. 

2.7. END 

<A,K_>. The elements of the 

Theorem 2 .6. characterizes the algebra <[G] ,!_> as the intersection of 

all subalgebras containing G. Another characterization will be given in 

section 4. 

An important consequence of theorem 2.6 is that it allows us to use 

the power of induction. A property P can be proved to hold for all elements 

of an algebra <A,F> by proving that: 



I) Property P holds for a generating set G of A 

2) The set B = {a E A P(a)} is closed under all F E F. 
y 
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(i.e. if b 1, ••• ·,bn E B and F is defined for them, then F (b 1, ••• ,b ) E B). 
Y Y n 

From 2) it follows that <B,_!> is a subalgebra of <A,_!>. From !) it follows 

that G c B, hence <[G], F> is a subalgebra of <B,E:_>. Since A 

follows that A= <B,_!>. So for all a E A property P holds. 

<[G],E:_> it 

Theorem 2.6 provides us an easier way to present subalgebras than the 

method used in example 2.5. The theorem shows that it is sufficient to give 

a set of generators. 

2.8. EXAMPLES. The subalgebra mentioned in example 2.5, case II, can be de

noted as: 

<[{John}Term' {run}Verb], {Fl}> 
where F1: Term x Verb+ Sent is defined by F1(a,S) =a Ss. 
Note that the sorts of the generators are mentioned in the subscripts. 

The subalgebra mentioned in example 2.5, case III, can be denoted as: 

<[{John}T , {Mary runs}s ]>. erm ent 

This algebra is 'generated' in the formal sense; it is however intuitively 

strange to have a compound expression (Mary runs) as generator. 

2.8 END 

If the 'super' algebra within which we define a subalgebra is clear 

from the context, we need not to mention this algebra explicitly. This 

gives a simplification of the presentation of the subalgebra. Such a situa

tion arises when we wish to define some language, i.e. a subset of all 

strings over some alphabet. In this situation one may conclude from the 

generators what the elements of the alphabet are, and the 'super' algebra 

is the algebra with as carrier all finite strings over this alphabet. An 

example is given below. 

2.9. EXAMPLE. We define an algebra N; the carrier of this algebra consists 

of denotations for numbers. Leading zero's are not accepted, so 700 is an 

element of N, whereas 007 is not. This algebra is described by: 
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N <[{0,1, .•• ,9}Num],{F}> 

where F: Num x Num + Num is defined by 

F(a.,13) if Cl. = (J 

otherwise. 

Now it is implicitly assumed that N determines a subalgebra of 

A * <{O, 1, •• • ,9} Num'{F}> 

. { }* . where Fis as just defined, and 0,1, ..• ,9 is the set of 

all strings formed of symbols in the set {0,1, ... ,9}. 

The difference bet.Ween A and N is that A contains all strings (007 included), 

whereas this is n©t the case for N. Notice that N is highly ambiguous in the 

sense that its elements can be obtained from the generators in several ways 

e.g. F(l, 7) 17 but also F(O,F(l,7)) 17. 

2.9. END 

The above example concerns an algebra with only one sort. In 2.2 and 

2.5 we defined algebras with several sorts, and when we consider a subalge

bra of such algebras, we can also avoid writing explicitly the 'super' al

gebra. In that case the most simple algebra we may take as the 'super' al

gebra, is the one in which all carriers consist of all possible finite 

strings. 

An example as illustration: 

2.10 EXAMPLE. We define an algebra M for number denotations, in which lead

ing zero's are accepted, and in which each element can be obtained from the 

generators in only one way. 

where F1: dig+ num is defined by F1(a.) =a. 

and F 2 : num x dig + num is defined by_ F 2 (a._, 8) a.13. 
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So FI says that all digits are number denotations, and F2 says that one ob

tains a new denotation by concatenating the old denotation with a digit (in 

this order) . 

and 007. 

The implicit 'super' algebra is 

* * <{{0,1, ... ,9}d. ,{0,1, . .. ,9} },{F 1,F 2}> 
ig num 

2.11. EXAMPLE. Another algebra for number denotations is one which differs 

from the above one in only one respect. Digits are concatenated with numbers 

for obtaining new numbers (and not in the opposite order as in 2.10). 

M' 

2. I l .END 

<[{0,1, ... ,9}dig],{F 1,F3 }> 

where F 1 : dig 7 num 

and F3 : num x dig 7 num 

defined by FI (a) =a 

defined by F3 (a,B) Ba. 

In the examples 2.8/2.11 subalgebras are defined by mentioning a 

generating set. In all these examples this was a special set: one which was 

minimal in the sense that none of the generators can be obtained from the 

other generators. The following terminology can be used to describe this 

situation. 

2.12. DEFINITIONS. A collection B of generators of algebra <A,!> is called 

A-independent if for all b E B holds that b i <[B-{b}],!>. 

An algebra <A,!> is called finitely generated if A = <[BJ,!> where B is some 

finite A-independent generating set of A. 

An algebra is called infinitely generated if it is not finitely generated. 

A collection of generators G is called the generating set of the algebra 

if the algebra is generated by that set and if all generating collections 

contain G as subcollection. 

2.12. END 
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3 • ALGEBRAS FOR SYNTAX 

In most examples we have considered, the carriers consisted of strings 

of symbols. Such algebras can be used to describe languages, and in fact we 

did so in the previous section. The set we were interested in was the car

rier of a certain sort. This should explain the following definition (the 

epithet 'general' will be dropped in a more restrictive variant). 

3.1. DEFINITION. A general algebraic grammar G is a pair <A,s>, where A is a 

many-sorted algebra, s is a sort of A, and all carriers of A consist of 

strings over some alphabet. The sort s is called the distinguished sort, 

and the carrier of sort s is called the language generated by G, denoted 

L(G). 

3.2. EXAMPLE. Let E be the algebra <[{Mary, John}T ,{run}V b],{F 1}>, erm er 
where F1: Term x Verb+ Sent is defined by F 1(a,S) =a Ss. 

Then the general algebraic grannnar <E,Sent> generates the language 

{Mary runs, John runs}; and the general algebraic grammar <E,Verb> generates 

the language {run}. 

3.2. END 

First a warning. In the French literature one finds the notion 'gram

maire algebraique'. This notion has nothing to do with the algebraic gram

mars we will consider here: 'grammaire algebraique' means the same as 'con

text free grammar'. In the definition above, I have not used the name al

gebraic grammar because I will use it for a subclass of the general alge

braic grammars. Most general algebraic grannnars are not interesting be

cause they do not provide the information needed to generate expressions of 

the language. This is illustrated by the trivial proof of the statement 

that there is for any language L (even for non-recursively enumerable ones) 

a general algebraic grammar generating L. Take the grammar which has as al

gebra the one with no operators, one sort and L as carrier of that sort. 

This is an uninteresting grammar. It is not sufficient to add the require

ment 'finitely generated'; this is illustrated by the following example. 

3.3. EXAMPLE. Let L be some nonempty language over some finite vocabulary 

V. Let w be an arbitrary element of L. Consider now algebra A 
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where F 1 : s 1 x s 1 + s 1 

and F 2 : s 1 + s 2 

defined by F 1(a,B) = aB 

defined by F2(a) = {: 
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if a E L 

otherwise. 

So F 1 generates all strings over V, whereas F2 selects those strings which 

belong to L. The definition of an algebra requires that F2 be a function, 

so that F2 delivers some element of sort s 2 even in case its argument is 

not in L. For this purpose we use the expression w from L. Now <A,s 2> is a 

finitely generated algebraic grammar with generated language L. 

3.3. END 

In case L is empty, then we may take a grammar with an empty generating 

set: <<[0s 1 ],{F 1,F2}>,s 1>. 

The crux of the above example lies in the operation F2 . There is no al

gorithm which for every argument yields its image under F2 . So the general 

algebraic grammar does not provide us with the information which allows us 

to generate expressions of the language. The absurdity of such a grammar 

becomes evident if we replace F2 by the function F3 : 

F3 (a) =a if a is an English sentence, and F 3(a) w otherwise. 

The above example shows that for certain generalized algebraic gram

mars there exists no algorithm which produces the expressions of the lan

guage defined by the grammar. The example also illustrates that such gram

mars are uninteresting for practical purposes. Therefore we will restrict 

our attention to those algebraic grammars for which there is an algorithm 

for producing the expressions of the grammar. For this purpose I require 

that the operators of the grammars be recursive (the notion 'recursive' is 

the formal counterpart of the intuitive notion 'constructive', see e.g. 

ROGERS 1967). But this requirement is not sufficient: a grammar might have 

only recursive operators, whereas the definition of the set of operators 

is not recursive. Then we would not know of an arbitrary operator whether 

it is an operator of the grammar, i.e. we do not effectively have the tools 

to produce the expressions of the language of that granmar, although the 

tools themselves are recursive. Therefore I also require that there exists 

some recursive function which decides whether any given operator belongs 
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to the set of operators of the grannnar, in other words, that the set of 

operators be recursive. For similar reasons it is required that the sets of 

sorts and generators be recursive. In section 5 it will be proven that for 

such grammars there indeed exists an algorithm generating the expressions 

of the language defined by the grammar. A more liberal notion is 'enumerable 

algebraic grammar'. Also for these grammars there exists a generating algo

rithm, but they have some unattractive properties (e.g. it is undecidable 

whether a given derivational history is one from a given grammar. Formal 

definitions concerning;·recursivity and algebras are given in e.g. RABIN 1960, 

but the intuitive explication given above is sufficient for our purposes. 

3.4. DEFINITION. An aZgebraic grarrnnar is a general algebraic grammar such 

that 

l. its set of operators and its set of sorts are recursive, and it has a 

recursive generating set 

2. all its operators are recursive. 

3.5. DEFINITION. An enumerabZe aZgebraic grammar is a general algebraic 

grammar such that 

1. its set of operators and its set of sorts are recursively enumerable, 

and it has a recursively enumerable generating set 

2. all its operators are recursive. 

3.6. DEFINITION. A finite aZgebraic grammar is an algebraic grammar such 

that 

I. its set of operators, and its set of sorts are finite, and it has a 

finite generating set 

2. all its operators are recursive. 

3.6. END 

I have formally described what kind of language definition device we 

will use. Next it will be investigated whether our device restricts the 

class of languages which can be dealt with. The theorem below is of great 

theoretical impact. It says that, even when using finite algebraic grammars 

we can deal with the same class of languages as can be generated by the 

most powerful language definition devices (Turing machines, Chomsky type 

0 languages, van Wijngaarden grammars, recursive functions). This means 

that the requirement of using an algebraic grammar, which was one of the 

consequences of the compositionality principle, is a restriction only on 
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the organisation of the syntax, but not on the class of languages which can 

be described by means of an algebraic grammar. The theorem, however, is, 

from a practical point of view not useful because it does not help us in 

any way to find a grannnar for a given language; this appears from the fact 

that the proof neglects all insights one might have about the structure of 

the language: the sorts in the proof have nothing to do with intrinsic 

properties of the language under consideration. 

3.7. THEOREM. For each recursively enumerable language over some finite 

alphabeth there exists a finite algebraic grammar that generates the same 

language. 

PROOF. Let G be a type-0 grammar. So, following the definition in HOPCROFT 

& ULLMAN (1979, p. 79) we have 

where VN,VT,P, and S are respectively the non-terminal symbols of the grammar, 

the terminal symbols, the production rules and the start symbol. The set P 

consists of a finite list of rules p 1, ••• ,pn of the formµ+ v where 
+ * µ E (VNuVT) and v E (VNuVT) ; so µ is a nonempty string of symbols over 

VN u VT, and v is a possibly empty string over this set. 

We have to prove that there is a finite algebraic grammar A such that 

L(A) = L(G). I distinguish two cases. I) L(G) =~and II) L(G) j ~-In case 

I we take an algebra with an empty set of generators, and that gives us a 

finite algebraic grannnar. In case II we know that there is at least one ex

pression in L(G). Let e E L(G). Then the finite algebraic grammar A for L(G) 

is defined below. 

There are three sorts in A: 

In : the sort which contains the only generator of the algebra: the symbol S. 

Mid: the sort of intermediate expressions 

Out: the sort of resulting expressions; i.e. the sort of the generated lan

guage. 

The operations of the algebra will simulate derivations of G. The sym

bol $ is used to focus our attention on that part of the string on which an 

operator of algebra A is applied which simulates some rule of G. If a is some 

string, we understand by a' the result of deleting from a all occurrences 

of $. 
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The algebra A is defined as follows: 

A <<[SI ],(F) r>,Out> 
n y YE 

where r = {1,2,3,4} u P. 

The operators are defined as follows: 

FI: In -+ Mid 

F 1 (a) = $a 

F 2 : Mid -+ Mid 

F 2 (a 1$va 2) 

F2 (a) = a 

F3 : Mid -+Mid 

F 3 (a 1v$a2) 

F3 (a) = a 

F4 : Mid-+Out 

F4(a) =a' 

F p. 
]_ 

F4 (a) = e 

Mid -+ Mid 

FPi (al$µa2) 

FPi (a) = a 

* where a 1,a2 E (VNuVT) and v EVN u VT 

if a is not of the form a 1$va2 

* where a 1,a2 E (VNuVT) and v EVN u VT 

if a is not of the form a 1v$a2 

~f ~ ~ (VTu{$})*, ~ ~ ~ so F4 deletes the occurrences 

in a of $ 

* if a 4 (VTu{$}) ; remember that e E L(G) 

where pi is µ -+ v 

if a is not of the form just mentioned. 

Note that FPi is a function since the $-mark indicates to which expression 

pi is applied. 

The proof that L(G) is generated by this grarrnnar follows from the two 

lemmas below. But first some definitions. 

W is the set of all finite strings over VN u VT u {$} in which at most 

one $ symbol occurs 

W$ is the subset of W of strings in which precisely one $ symbol occurs 

a A B iff B Fy(a) for some y E r 

a G B iff a * oµ F:, B = OVE: and µ -+ v E P , where o, E: c (V N U VT) 

* A is the transitive and reflexive closure of A 
* G is the transitive and reflexive closure of G 

Recall that we defined a' as the result of deleting all $ marks from a. 

LEMMA. L(G) c L(A). 
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* PROOF. First we prove that a' GS' implies a AS for all a,S E W$. 

Consider the following three cases: 

I. a' s. and a = s. Then * a 'As. 
2. a' s I and a 'f s. Then a contains a $ in a different position than 

in S. By repeated application of F2 or F3 the 

sign can be moved to that position. 

3. a' oµE and s I ' * OVE and µ + \) E pi' where o, EE (VN u VT) 

So a i o$µE (using F2 or F3); o$µE A o$VE 

(using FPi) and o$v£ f S (using F3 or F2 . 

* So a A S. 

* Suppose now that w E L (G), so S :.;. w. 
G 

Hence ($S)' ! ($w)'. Repeated appli
G * cation of the argumentation given above shows that $SA $w. Since SA $S 

and $w Aw, it follows that w E L(A). 

LEMMA. L(A) c L(G). 

PROOF. We first prove that a AS implies a' i S' for all a,S E W\{e}. 

Consider the following five cases 

hence a' * S' I. s FI (a). Then a = s, s $S so a' s I ... 
G 

2. s F2 (a). Then a' s'. 
3. s F 3 (a) . Then a' s I• 

4. s F4(a). Since s 'f e we have a' = s I• 

5. s F (a) p for p µ + \), Then either a S, or a 0$µ£ and 

s 0$\!£. So a' G S'. 

* Suppose now that w E L (A), so S A w. By repeated application of the above 

$ 

argumentation we find that S ~ w. Hence L(A)\{e} c L(G)\{e}. Since e E L(G) 

it follows that L(A) c L(G). 

LEMMA END 

From the above two lemmas it follows that L(A) L(G) . 

3.7. END 

Note that the proof of this theorem does not provide an algorithm for 

making a finite algebraic grammar for a given type-0 grammar G. The deci-

sion whether we are in case I (L(G) 0), or in case II (L(G) 'f 0), is not 

an effective decision because there exists no algorithm which decides 

whether a given type-0 grammar produces an empty language (HOPCROFT & 
ULLMAN 1979, p. 218 and p. 189). This non-constructive aspect of the proof 
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is unavoidable, as will be proved in the next section. 

We aim at a kind of grammar which produces only recursively enumerable 

languages. The theorem has as a consequence that in all cases a finite 

grammar is sufficient for the syntax. Nevertheless, we will, in the follow

ing chapters, frequently use infinite grammars. Such a decision is motivated 

mainly by semantic considerations. 

4. POLYNOMIALS 

In this section a method will be presented for describing new opera

tors: polynomials. I will first present an example that is based upon high 

school algebra. Consider the polynomial 7y+1. This polynomial is a compound 

symbol that defines a certain function. The value of this function for a 

given argument is obtained by substituting the argument in the polynomial 

for the variable y and calculating the outcome. So its value for argument 2 

is 7,2+1, being 15, and for argument 1 it is 8. From the basic operations of 

multiplication and addition we have built in this way a new operation. The 

fact that the polynomial contains a multiplication operation is not evident 

from the notation; it might be emphasized by writing the polynomial as 

7.y+l. In less familiar algebras the operation symbols are not written be

tween their arguments, but in front. Using this function-argument notation 

the polynomial gets the form+(. (7,y),1). Functions with several arguments 

are obtained from polynomials with several variables. An example is the 

polynomial 7y1+5y2, or equivalently +(.(7,y1J,.(5,y 2JJ. It represents a 

function which has for y1=1 and y 2=2 the value 17. In order to let the po

lynomial denote a unique function on pairs of integers, we need a conven

tion which determines what the first argument is and what the second. The 

convention is that this corresponds with the indices of the variables. For 

the last example this means that the value for the pair (0,4) is 20 and not 

28. 

The notions discussed above are defined abstractly for the one sorted 

algebras in GRAETZER 1968. Below I will generalize them to the case of many

sorted algebras. The definitions are somewhat more complicated than in the 

one sorted case because it is not evident what the first argument and what 

the second argument is of a polynomial like P1 (y 1J. The definition is based 

upon a suggestion of Jim Thatcher (pers.comm.). 



4.1. DEFINITIONS. Let A= <(A) s•(F) r> be a many sorted algebra. For 
S SE y ye: 

each s e: S we introduce a set VAR consisting of countably many variables: 
s 

VAR = {x1 ,x2 , ••• } 
s , s 's 

VAR 

For each element a of A we introduce a symbol ~ 

CONA = {~ I a e: A } 
s s cotf = s~s co~. 

For each operator F of type <w,s> e: Sn x S we introduce a symbol F 
y y 

0 A 
p<w,s> T(y) <w,s>} 
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4.2. DEFINITIONS. Let A be a many-sorted algebra. By POLA< >we understand w,s 
the set of polynomial symbols over A of type <w,s>. These sets are induc-

tively defined as follows: 

I. 

II. 

If x. e: Xw, then x. e: POLA 
J,S J,S <w,s> 

If c 
s e: co~, 

s 
then c 

s 
e: POLA 

<w,s> 

- A 
then Fy(p 1, ••• ,p1,) E POL<w s > 

"' ' k+l 

The set POLA of polynomial symbols over A is defined by 

POLA= {POL!w,s> I we: Sn,s e: S}. The symbols cs are called the parameters 

of the polynomial symbols. 

4.2. END 

Definition 4.2 differs from the standard definition by clause II. The 

clause is required here since our definition of an algebra does not allow 

for nullary operators (they are used in the same way, to denote a specific 

element of the algebra). In the sequel I will omit the bar when no confusion 
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is likely; so I will write c and F 
y 

superscript A will often be omitted. 

instead of c and F 
y 

Furthermore the 

A measure for the complexity of a polynomial symbol is its height. 

(Other names for the same notion are complexity or depth) . 

4.3. DEFINITION. The height h of a polynomial symbol p is defined by the 

following clauses 

I. h(x) 

II. h(c) 

0 

0 

if x is a variable 

if c is a constant 

III. h(Fy(p 1, ... ,pk)) =I+ max(h(p 1), ... ,h(pk)). 

4.3. END 

A polynomial symbol p E POLA determines uniquely a (polynomial) opera-
<w,s> 

tor pA of type <w,s> in the following way. 

4.4. DEFINITION. Suppose w = <s 1, •.. ,sk> and a 1 E As! .•. ask E Ask' Then 

pA(a 1, ••• ,ak) is defined by 

I. if p 

II. If p 

III. if p 

then 

4.4. END 

xj,s then pA(a 1, ••• ,~) = aj. 

cs then pA(a 1, ••• ,~) 

F <P1·· .. ,p ) y m 

pA(al, ... ,~) = Fy,A(P1,A(al'''"~) ••• ,pm,A(al, .. .,ak)) 

The interpretation of a polynomial does not depend on arguments of 

which the corresponding variable does not occur in the polynomial. 

4. 5. THEOREM. If x. E Xw does not occur in p then for all as. and 
i,si <w,s> i 

bs· from As· we have p(as ,. .• ,as·•'".,as) = p(as ,. . .,bs., ... ,a6 ). 
i i I i n l i n 

PROOF. By induction on the height of p. 

4.5. END 

The following theorem says that the polynomially definable operations 

give rise to a new algebra over the elements of the old algebra. The opera

tors of the new algebra are the (interpretations of) the polynomial symbols. 

4 .6. THEOREM. Let A = <(A ) S' (F ) r> be an algebra and (G,<) s , the 
S SE y YE u uEu 

collection polynomial symbols over A. Then B = <(A5 ) 8 E 5 ,(G0 A)oEL> is an al-, 
gebra. 
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PROOF. Each G0 defines a function, and (As)sES is closed under such func

tions since 

I. The polynomials of the form x. yield one of the arguments as result. 
l., s 

II. The polynomials of the form c yield an element of A as result. s s 
III. The collection (AS) SES is closed under the operations F y 
4.6. END 

Note that for each operator Fy from A there is a corresponding polynomial 
symbol Gin B such that Fy = GA. Let T(y) = <<w 1, ... ,wn>,wn+I>. Then the po-

lynomial symbol corresponding to F is F (x1 ,x2 , ••• ,x ). 
y y ,w 1 ,w2 n,wn 

4.7. EXAMPLE Formulas from propositional logic 

In this example several algebras are presented, of which the last one 

is an algebra defining formulas of propositional logic. 

Let V = {p,q,r} u {l,v,A,+,(,)}. 

Consider 

A= <[Vt],C>, where C is the two-place concatenation operator; so 

C(p,+) = p+. Let a,S,y be x 1 ,x2 ,x3 respectively. Then we define 
,s 's ,s 

where c2 and c3 are the 2-place and 3-place concatenation operators: 

C(a,S)<<t t> t> and c3 
' ' 

C(C(a,S),y)<<t t t> t>" 
' ' ' 

Out of this algebra we define a new one: 

where the R's are polynomial symbols over A': 

so &-,(a) = l(a) 

(a)A(S) 

and analogously for RV and R+. 

The expressions of B are the formulas from propositional logic with propo

sition letters p,q and r. One observes that B is step by step defined out 
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of a very simple algebra: the algebra of all strings over the vocabulary 

with concatenation as operator. Only on the final level does the algebra 

provide interesting information concerning the structures of logical expres

sions. On the final level we may define the meanings of the formulas. Usual

ly one will present only the final algebra, the step by step construction 

out of the basic algebra is omitted, and the concatenation operators c2 and 

c3 are written as concatenations. An algebra like B will in the sequel be 

defined as follows: 

B <[{p,q,r}t],{l(a),(a)A(B),(a)v(B),(a)-+(6)}>. 

4.8. EXAMPLE: Non-polynomially defined operators 

In example 2.9 we have met an operator which is not a polynomial one. I 

repeat the relevant aspects of that example. The algebra considered there 

is one of strings of digits: 

N = <[{0,1, • •• ,9}Num]' {F}> 

where F: Num x Num -+ Num is defined by F(a, B) 
{

13 if a. :; 0 

a.B otherwise. 

The operator Fis not defined using some polynomial symbol, i.e. it is not 

a polynomial operator. By using the if-then-else construction, well known 

from programming languages, we obtain something of the format of a poly

nomial: 

F if a 0 then B else aB. 

This is a convenient way to write the definition in one line, and I will 

use that notation in the sequel. One might be tempted to think that it be

comes a polynomial if one rewrites it in the function argument notation: 

F if-then-else (a=O,B,a.B). 

This is, however, not the case. The if-then-else operator requires as first 
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argument a truthvalue. So an algebra over which if-then-else can be an op

erator, has to contain the sort of truth values, ·and operations yielding 

truth values (e.g. the two-place predicate=). Since the algebra N of number 

denotations does not contain these, F cannot be a polynomial operator over 

N. Nevertlireless, F is a fully legitimately defined operator in N. 

Some other examples of non-polynomial operators are 

G1: take the reversed sequence of symbols, so G1(792) = 297 

G2 : take the digits in even position and concatenate them, so G(2345) 35 

G3 : substitute 7 for each occurrence of 3, so G3(3723) = 7727. 

4.8. END 

5. TERM ALGEBRAS 

In this section the notion 'term algebra' will be introduced. The car

riers of a term algebra consist of polynomial symbols which can be consider

ed as representations of the productions of a generated algebra. Term alge

bras play an important role in the formalization of the compositionality 

principle. In chapter I, section 3, it was explained that the meaning of an 

expression depends on its derivational history. A term algebra represents 

derivational histories, therefore the meanings of the elements of 

A= <[(B ) S],(F ) r> will be defined on the elements of the correspond-
s SE Y YE 

ing term algebra. Another important aspect of the notion term algebra is 

that it allows us to describe generated algebras in a way that is more con

structive than the description given in section 2 (there they are defined 

by means of the intersection of a - possibly infinite - number of algebras). 

The new description will be used to obtain an algorithm generating the 

elements of an algebra, thus justifying the name 'generated algebra'. 

Two arguments are mentioned above for considering generated algebras: 

semantic interpretation and syntactic production. This means that, in this 

context, we do not deal with algebras as such, but with algebras with a 

specified set of generators. Therefore we introduce the notion of a E,X

algebra, being a E-algebra with as collection of generators the sorted collec-

tion X. The term algebra TE X consists of polynomial symbols which contain 
' no variables and which have only parameters that correspond with elements 

in X. 

5.1. DEFINITIONS. A E,X-algebra A is a E-algebra such that A= <[X],!_>. 

Let us assume that X = (Xs) sES and F (F ) r· Then we define the term 
Y YE 

' 
" 
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algebra TL X as the algebra: 
' 

<(T ) (FT) > 
L,X,A,s sES' y yEf 

where 

I. T 
L,X,A,s 

{p E POLA 
<w,s> p contains no variables and for all con

stants c in p holds c E X} 

and 

II. If T(y) = <<s , •· •. ,s >,s > and 
l n n+I 

T -
then F ( t l , ... , t ) = F ( t I , ... , t ) . y n y n 

5.1. END 

tl ET~ x A , ..• ,t 
"• , ,sl n 

E T 
L:,X,A,sn 

In the sequel we will often simplify the notation for the term algebra. 

We will attach to T a subscript which identifies the intended term algebra 

sufficiently. For instance, if in the context the algebra A is given with 

a specified collection of generators, we may write TA. 

5.2. EXAMPLE. Consider the algebra from example 2.11: 

Then examples of elements in the term algebra TM are 0,1, F 1(0), F2 CF 1(0),1), 

F2 (F2(F 1(1),2),3)). 

5. 2. END 

The above example shows that each element of TM represents a way of 

producing an element of M from the generators by means of successive appli

cation of the operators. The following theorem says that all elements of 

an algebra can be obtained from expressions in the corresponding term al

gebra, and that only elements of the algebra are obtained in this way (for 

the definition of tA' see def.4.4). 

5.3. THEOREM. Let A= <[(B ) ],(F) >be an algebra. Then a EA iff s SES y yEf s 
there is some t E TA such that tA = a. 

PROOF. Let K 
s {a E As! there is some t ETA such that tA =a}. 

Since {b. J b. A E B } c T , we have B c K • Hence (K5 ) 8 ES con-i,s i,s, s A,s s s 
tains all generators of A. 
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Next we prove that K = <(K) S,(F) r> is a subalgebra of A. It suf-
s SE y YE 

fices to show that (K) S is closed under (F) r· Let 
S SE Y YE 

T(y) = <<s 1, ••• ,sn>'sn+l> and let a 1 E Ks 1 , ••• ,an E Ksn· By definition of 

K we know that there are t 1 ETA , •.. ,t ETA such that 
s ,s 1 _ n ,sn 

t 1 A= a 1, ••• ,t A= a. Define t 1 as F (t 1, ••• ,t ). Then 
, n, n n+ y n 

t 1 A= F A(a 1, ••• ,a), so t 1 E Ks . Hence K is a subalgebra of A. 
n+ , y, n n+ n+l 

Since <[(B) S],(F) r> is the smallest algebra containing B , it 
S SE y YE S 

follows that K =A, and in particular Ks As. 

5 .3. END 

This theorem gives the justification for the algorithm used in the next 

theorem. 

5.4. THEOREM. Let A be an enumerable algebraic grammar. Then there is an al

gorithm that produces j'or each sort s of' A the elements of' As. 

PROOF. Since the grammar is enumerable, there is an algorithm that produces 

the operators of A, and an algorithm that produces the generators of A. Let 

Alg and Alg be two such algorithms. The algorithm generating the sets 
op gen 

As uses these two algorithms. 

The algorithm that produces for each sort s of A the elements of As can 

be considered as consisting of a sequence of stages, numbered 1,2, ... 

Stage N is described as follows. 

Perform the first N steps of the algorithm Alg , thus obtaining a 
op 

sorted collection of operators, called FN. Perform the first N steps of the 

algorithm Alg , thus obtaining a sorted collection of generators, called 
(O) gen 

BN . Since we performed a finite number of steps of Alg and Alg , there 
(O) op gen 

are finitely many elements in FN and BN . So for an f E FN there are finite-

ly many possible arguments in B~O) . Perform all these applications of op

erators in FN to arguments in B~O). In this way finitely many elements are 

produced. By addition of these elements to B~O) we obtain B~I). Next we 

apply each f E FN to all possible arguments in B~I), add the new elements 

(I) Th" . ·1 h . d (N) Th' 
to BN , etc. is process is repeated unti we ave obtaine BN . is 

completes the description of stage N, next stage N+l has to be performed. 

Notice that N is used three times as a bound: 

for the height of the produced polynomials. 

for Alg , for Alg and 
op gen 

The algorithm is rather inefficient: in stage N+l all elements are 

produced again which were already produced in stage N. A more efficient 
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algorithm might be designed as a variant of the above algorithm. Our aim, 

however, was to prove the existence of a generating algorithm, and not to 

design an efficient one. From the description of the algorithm it should be 

clear that only elements of the algebra are produced. 

It remains to be proven that the algorithm produces all elements of A. 

Theorem 5.3 says that for each a EA there is a term tin the corresponding 

term algebra such that tA = a. For each term t there is a stage in the above 

algorithm in which tA is produced for the first time. This appears from 

considering the following two cases. 

I. t is a generator: 

Since Alg produces all generators of A, there is a number Nt such 
gen 

that after Nt steps tA is produced. 

II. t = F (t 1, ... ,t ). 
y n 

Assume that tl,A' .•• ,tn,A are produced for the first time in stages 

Nt , ..• ,Nt respectively, and 
I n 

that F is produced 
y 

tA is produced in stage 

5.4. END 

max(NF ,N , .. .,Nt ) +I. 
Y tl n 

in stage NF . Then 
y 

Theorem 5.4 says that an enumerable grammar produces a recursively 

enumerable language. In theorem 3.7 it is proven that every·recursively 

enumerable language over a finite alphabet can be produced by a finite al

gebraic grammar. So every enumerable algebraic grammar (and every algebraic 

grammar) over a finite alphabet can be 'replaced' by a finite algebraic 

grammar (this observation is due to Johan van Benthem) . As has been said, 

our choice of a grammar depends also on semantic considerations, and these 

might lead us to the use of an enumerable grammar instead of a finite one. 

The proof of theorem 3.7 contains a non-constructive step. This can

not be avoided, as follows from the next theorem. 

5.5. THEOREM. Let A be a finite Z,X-grammar. Then for each sorts of A it 

is decidable whether A = ~. 
s 

PROOF. The algorithm proceeds as follows: 

stage 1: 

For all sorts s check whether there is a generator of sorts, i.e. whether 

Xs = ~. If there are no generators at all, then all carriers are empty, 

and the algorithm halts here. If generators are found, then it follows 

that the corresponding sorts have non-empty carriers. 
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stage 2N: 

For all operators F we check whether they give us about new sorts the in
y 

formation that they are non-empty. Assume T(y) = <<s 1, .•• ,sn>'sn+I>. If it 

was shown in a previous stage that A , ••• ,A are non-empty, then it fol
s I Sn 

lows that A is non-empty as well. 
Sn+J 

stage 2N+1: 

If with the results of the previous stage all carriers are shown to be non

empty, then the algorithm halts here. If in the previous stage no new sort 

was found with a non-empty carrier, then it follows that all remaining car

riers are empty, and the algorithm halts here. If in the previous stage 

some new sort was found with a non-empty carrier, then go to stage 2N+2 

(which is described above). 

S.S. END 

In theorem 3.7 it is stated that every recursively enumerable language 

over some finite alphabet can be produced by means of a finite algebraic 

grammar. The proof was based upon the construction of a finite algebraic 

grammar simulating a type-0 grammar. That construction was not effective: 

the construction depends on the question whether the type-0 grammar pro

duces an empty language or not, which question is undecidable (HOPCROFT & 

ULLMAN 1979, p.281). Every constructive version of theorem 3.7 would re

duce emptyness of type-0 languages to emptyness of algebraic grammars. 

Since the emptyness of algebraic grammars is decidable (th.S.S), such a 

reduction is impossible. 

In chapter I an interpretation of Frege's principle was mentioned which 

I described as the 'most intuitive' interpretation. It says that the parts 

of a compound expression have to be visible parts of the compound expres

sion and that a syntactic rule concatenates these parts. The following 

theorem concerns such grammars. It is shown that we get such grammars as a 

special case of our framework. 

S.6. THEOREM. Let A be a finite algebraic grammar with generating set B. 

Suppose that all operations A are of the form 

F(a 1, •. ,.a) 
Y n 

w0 a 1w1 a2w2, .•• a w 
,y ,y ,y n n,y 

where w. is some possibly empty string of 
i.Y 

symboZs. 

Then L(A) is a context free language. 
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PROOF. We define a context free grammar Gas follows: 

The set VN of non-terminal symbols of G consists of symbols correspond
ing with sorts of A: 

VN {s J s is a sort of A}. 

The start symbol of the grammar G is the symbol corresponding with the 
distinguished sort s (i.e. the sort such that L(A) =A ) . 

s 
The set VT of terminal symbols of G consists of symbols corresponding 

with the generators of A: 

The collection of rules of G consists of two subcollections 

R { s + b I b E B } u { s + w0 s w 62w2 .•. s w s n+ I , y l I , y , y n n, y 

T(y) = <<s 1,s 2 , ••• ,sn>'sn+I>}. 

It should be clear that L(G) 

5.6. END 

L(A). This means that L(A) is context free. 

The above theorem could easily be generalized to the case that the ar
guments of an operation are not concatenated in the given order, but are 
permuted first. Theorem 5.6 shows that the most intuitive interpretation of 
Frege's principle (all parts have to be visible parts) is a special case of 
our framework. It shows moreover that with this interpretation one either 
has to accept an infinite number of operators, or to conclude that the 
principle can only be applied to context free languages. A restriction to 
context free languages is not attractive because that would exclude a large 
class of interesting languages (e.g. ALGOL 68 and predicate logic), further-
more it has been claimed that natural languages are not context free (for 
a discussion see PULLUM & GAZDAR 1982). An attempt to use only context 
free rules for the treatment of natural language, but an infinite num-
ber of them, is made by GAZDAR (1982). 

In our approach the generation of a context-free language is only a 
special case of the framework. The group Adj, which works in a similar 
framework, seems to have another opinion about context-freedom. They give 
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no explicit definition of the notion 'algebraic grammar' nor of its 'gener

ated language', but the definition they implicitly use, seems similar to 

ours. They suggest, however, that by using algebraic grammars, one can ob

tain only context-free languages. Evidence for this is that they construct 

an algebraic grammar for a context-free language and next state that that 

is 'the most important and general example' (ADJ 1977, p.75). Another state

ment suggesting this arises when they discuss SCOTT & STRACHEY 1971. Those 

autkors say (p.29): 

Our language .. is no longer context free. But if we may say so, who 
cares? .. The last thing we want to be dogmatic about is language. 

As a reaction to this, they say (ADJ 1977, p.76)): 

'But their sema.ntics does depend on the context free character of the 
source language, because the meaning of a phrase is a function of the 
meanings of its constituent phrases'. 

So again they take for granted that an algebraic grammar generates a con

text-free language. The difference of opinion in these matters might be 

explained by the fact that they consider only a very special relation be

tween the syntactic algebra and the corresponding term algebra (but see al

so the discussion in section 9). 

6. HOMOMORPHISMS 

A homomorphism from algebra A to B is a mapping from the carriers of 

A to the carriers of B such that the structure of A and B is respected. 

This is only possible if A and B have about the same structure, although it 

is not needed that A and Bare identical or isomorph. For instance, it is 

not needed that the two algebras have the same sorts, but there has to be 

a one-one correspondence of the sorts. It is not necessary that the opera

tors perform the same action, but there has to be a one-one correspondence 

between the operators such that if an operator in A is defined for certain 

sorts, then the corresponding operator in B is defined for the correspond

ing sorts in B. These considerations are expressed formally in the follow

ing definitions (they are due to J. Zucker, pers. comm.). 

6.1. DEFINITION. Let A be an algebra with signature LA= (SA,rA,TA), and B 

an algebra with signature LB= (SB,rB,TB). Let a: SA+ SB and p: rA + rB 

be bijections (i.e. mappings which are one-one and onto). Then two algebras 

A and Bare called (a,p)-similar if the following holds: 
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if and only if 

If a and p are fixed in a certain context, we will omit them and say that 
the algebras A and B are similar. 

6.2. DEFINITIONS. Let A and B be (a,p)-similar algebras. By a (a,p)-homo

-r U S (B ) morphism h from A to B we understand a mapping h: U S (A ) 
SE A s 

from the carriers of A to the carriers of B such that 

I) h(As) c Bcr(s)" 

2) If TA(y) = <<s 1, ... ,sn>'sn+J> and a 1 EA , •.• ,a E s 1 n 

then h(F (a 1, ••. ,a ))= F ( )(h(a 1),. .. ,h(a )). y n p y n 

A 
s 

n 

SE B s 

The collection of (a,p)-homomorphisms from A to B, where A and B are 
(o,p)-similar algebras, is denoted Hom(A,B,a,p). When a and pare clear 
from the context, or are arbitrary (but fixed), then we will simply speak 
of a homomorphism h; the collection is then denoted by Hom(A,B). 

In case h is surjective, it is called a homomorphism onto, or an epi
morphism. The collection of epimorphisms is denoted Epi(a,B,a,p), or simpli
fied Epi(A,B). In case his bijective (one-one and onto), it is called an 
isomorphism (note that in category theory this term is used with a different 
meaning). 

6 .2. END 

The definition of 'homomorphism' given in 6.2 differs from the one 
given by Adj (see e.g. ADJ 1977). One difference is that our definition 
can be used in more circumstances: we do not require, for instance, that 
the collections of operator indices and sorts are identical. I prefer, in 
this respect, our definition for practical reasons. Sometimes algebras have 
'natural' sorts, e.g. an algebra generating a language may have a carrier 
of the sort sentence, whereas a semantical algebra may have a sort of truth
values, or of propositions. Then one might wish to define a homomorphism 
between these two algebras, although the sorts are not identical. Our de
finition allows to do so directly, whereas according Adj's definition re
naming of the sorts has to be done first. This difference in the definitions 
is, in theoretical respect, not important, and does not give rise to inter
esting theoretical consequences. In the following theoretical investigations 
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I will assume, for the ease of discussion, that similar a18ebras do have 

the same sorts and operator indices; then o and p are assumed to be the 

identity mapping. A more fundamental difference of the definitions is that 

Adj defines a homomorphism as a sorted collection of mappings (hs)sES' where 

h : A + B , and where these operations respect, in a certain sense, the s s s 
structure of the algebras involved. Since, according to our definition of a 

many sorted algebra, the carriers need not be disjoint, it would under Adj's 

definition of homomorphism be possible for an element occurring in two car

riers to have two different images under h. In section 9 it will be explain

ed why Adj's definition is not suitable for us in this respect. 

A homomorphism respects structure. Therefore it is not surprising that 

the homomorphic image of an algebra is a (similar) algebra. This is ex

pressed in the following theorem. 

6.3. THEOREM. Let A= <<A) 8 ,(F) r> and B = <(B) 5 ,(G) r> be similar 
s SE y YE S SE y YE 

algebras, and h E Hom(A,B). Then <(h(A )) 8 ,(G) r> is a suhalgebra of 
S SE Y YE 

<(B ) s(G) r>. 
S SE y YE 

PROOF. We prove the theorem by proving that the sets h(A) n are closed 
S SE:'.> 

under G. Let 'r(Y) = «s.1,s 2, ... ,s >,s 1> and let b. E h(A ). This means 
y n n+ 1 Si 

that there are ai E Asi such that bi = h(ai). Consequently 

G (b l , ..• , b ) 
y n 

G (h (a 1 ) , ••• , h (a ) ) = h (F (a 1 , ••• , a ) ) . 
y n y n 

It is clear from the last expression that it denotes an element of h(A8 ), 

n+l so of Bs 1 • 
n+ 

6.3. END 

In chapter l we discussed the way in which the set E of expressions 

of the language should be related to the set D of semantic objects. We con

cluded that, in order to obey the compositionality principle, the syntax 

has to be a many sorted algebra and that the meaning of an expression has 

in the following way. For each syntactic operator F , there 
y 

to be obtained 

G on D, where G is defined for the images of the arguments y y 
is an operator 

mapping M which yields the corresponding meaning it is re-of F For the y 
quired that: 
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We concluded that these requirements have the consequence that D gets the 

same structure as the syntactic algebra. More formally this is stated in 

the following theorem. 

6.4. THEOREM. Let E = <(E) 8,(F) r> be an algebra, D a set and Ma 
S SE y YE 

mapping from E to D. Let (G ) r be operators defined on the subsets M(E ) 
Y YE s 

of D. 

Suppose 

for ally Er and for all arguments e 1, ••• ,ek for which FY is defined. 

Then D' <(M(E )) 8 ,(G ) r> is an algebra similar to E. 
S SE y YE 

PROOF. 

I. 

II. 

(D~)sES is a collection of sets closed under the operations Gy since 

Gy<m1, ••• ,~) = Gy(M(e 1), ••• ,M(ek))= M(Fy<e 1, •• .,ek)) ED~+. 
. . . . k I, . 

D is similar to E since the sorts are the same, the operator indices 

are the same and 

if F : E x E x E + E 
y sl s2 sn sn+I 

then G : D' x D' x • • • D' + D' 
SI sz Sn Sn+] 

III.Mis a mapping onto UsD~ satisfying the conditions for homomorphisms. 

6.4. END 

Having introduced the notion 'homomorphism', we may formalize the com

positionality principle as follows: the syntax is a many sorted algebra A, 

the semantic domain is a similar algebra M, and the meaning assignment is 

a homomorphism from the term algebra TA to M. 

A first consequence of this formalization is the following theorem 

concerning the replacement of expressions with the same meaning. 

6.5. THEOREM. Let e,e' EA, with M(e) = M(e'). Suppose F ( .•. ,e, ... ) to 
s y 

be defined. Then M(F ( •• ,e, .. ) = M(F ( •• ,e',..)). 
y y 

PROOF. M(F ( . .,e,..) = G ( •• ,M(e), .. ) = G ( •• ,M(e'), .. ) = M(F ( .. ,e',..)). 
-- y y y y 
The equalities hold since M is a homomorphism and F is defined for all 

y 
elements of A . 

s 
6.5. END 
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The theorem states that in case two expressions of the same category 

have the same meaning, they can be interchanged in all contexts without 

changing the resulting meaning. The reverse is not true, interchangeable in 

all contexts without changing the meaning does not imply that the meanings 

are identical, since the language might be too poor to provide for contexts 

where the difference becomes visible. 

The above theorem is related to the well known principle of Leibniz 

concerning substitutions (GERHARDT, 1890, p.228). 

Eadem sunt, quorum unum potest siibstitui alteri, salva veritate. 

This principle is sloppy formulated: it confuses the thing itself with the 

name refering to it (CHURCH 1956, p.300, QUINE 1960, p.!16). It should 

be read as saying that two expressions refer to the same object if and only 

if in all contexts the expressions can be interchanged without changing the 

truthvalue. Let us generalize the principle to all expressions, instead of 

only referring ones, thus reading 'Eadem sunt' as 'have the same meaning'. 

Then the above theorem gives us a formalisation of one direction of Leibniz' 

principle. The other direction can then be considered as a restriction on 

the selection of a semantical domain. The semantical domain may only give 

rise to differences in meaning that are expressible in the language. 

An important, although very elementary, property concerning homo

morphisms is that the compositions of two homomorphisms h and g is a homo

morphism again. As defined in chapter!, the composition which consists in 

first applying h and next g is denoted hog. This has as a consequence that 

(h 0 g)(x) = g(h(x)), note that the order is reversed here. For this reason 

one sometimes defines hog as first applying g and next h. Adj follows the 

standard definition, but in order to avoid the change of the order, they 

have, in some of their papers the convention to write the argument in front 

of the operator (so (x)(hog) = ((x)h)g)!). I will use the standard defini

tion (hog means first applying h).The announced theorem concerning compo

sition of homomorphisms is as follows. 

6.6. THEOREM. Let A,B and C be similar algebras and let h E Hom(A,B) and 

g E Hom(B,C). Then hog E Hom(A,C). 

PROOF. Let F ,G and H denote operators in A,B and C respectively. Then y y y 

6.6. END 

hog(Fy<a 1, .•• ,~)) = g(h(G/a 1, ... ,ak))) = g(G/h(a1), •• .,h(~)))= 

Hy(g(h(a 1)), ... ,g(h(~))) = H/hog(a 1), ••. ,hog(ak)). 
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In general, it is not necessary to define a homomorphism by stating its 

values for all possible arguments, since (as I will now show) in the same way 

as a subalgebra is completely determined by its generators, a homomorphism 

is completely determined by its values on these generators. 

6.7. THEOREM. Let h,g E Hom(<[A],(F) r» <B,(G) r>). 
Y YE Y YE 

Suppose that h(a) = g(a) holds for all generators a E A. Then h(e) g(e) 
' holds for all elements e of <[A],(F) r>. 

y YE 

PROOF. Let K ={a E [A] I h(a) = g(a)}. Now K is closed under the opera-

tions (F ) • y yd· 

Let k 1, ••• ,kn EK. Then: 

h(F (k 1, ••• ,k )) = F (h(k 1), ••• ,h(k )) 
y n y n 

F (g(k 1), ••• ,h(k) = g(F (k 1, ••• ,k )). 
y n y n 

So K is a subalgebra with A c K. Since [A] is the smallest subalgebra with 

this property, it follows that K = [A]. 

6. 7. END 

Suppose that we have defined a mapping from the generators of algebra 

A to those of algebra B. Then the above theorem says that there is at most 

one extension of this mapping to a homomorphism. But not in all cases such 

an extension exists. Suppose that in A two different operators yield for-

different arguments the same result (i.e. Fi(a 1, ••• ,an) = Fj(aj, ••• ,a~)), 

whereas this is not the case in B for the corresponding operators. Then 

there is no homomorphism from A to B. But for the algebras we will work 

with, (viz. termalgebras) this situation cannot arise. In a termalgebra an 

operator (e.g.s 1) leaves the corresponding symbol as a trace in the result

ing expression (e.g. the symbol s 1 in s 1 (E 1 ,E 2)). Hence in a termalgebra dif

ferent operators always yield different results. Therefore we may define a 

meaning assigning homomorphism by providing I. meanings for the generators 

of the syntactic algebra and 2. semantic operators corresponding to the 

syntactic operators. 

6.8. EXAMPLE. Let M be as in example 2.10, so 

M= <[{0,1,2, . •• ,9}dig]' {F 1,F2}> 

where F1: dig+ num 

and F2 : num x dig+ num 

F 1 (a) = a 

F2 (a,13) al3. 
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This algebra produces strings of symbols. The meaning of such a string has 

to be some natural number. Let us denote natural numbers by symbols such 

as 7, 70 etc. The reader should be aware of the fact that there is (in this 

example~ a great difference between strings such as 1 and 7 for which e.g. 

concatenation is defined, but not addition or multiplication, and numbers 

such as ! and 7 for which addition and multiplication are defined, but not 

concatenation. Another difference is that 7,07, and 007 are distinct strings 

all corresponding to the same number 7. The meaning algebra N corresponding 

to M, consists of numbers and is defined as follows. 

N <[{O,l, ••• ,9}dig],{G 1,G2}> 

where G1: dig+ num 

and G2 : num x dig+ num 

The meaning homomorphism h is defined by h(O) 

So 

and 

defined by G1(a) =a 

defined by G2(a,f3) JOxa+f3. 

0 ... h(9) 9. 

6. 9. EXAMPLE. In example 2. 11 we considered an algebra which was the same 

as the above one, with the difference that the digits are written in front 

of the numbers: 

F3 : num x dig+ num defined by F3 (a,f3) Ba. 

In this situation it is impossible to find a semantic operation G3 corre

sponding with F3 • For suppose there were such an operation G3 . Then, since 

e.g. h(7) = h(007) = 7, we would have that on the one hand G3(7,h(2)) = 
= G3(h(7),h(2)) = h(F3 (7,2)) = h(27) = 27, but on the other hand G3(7,h(2)) = 
= G3 (h(007),h(2)) = h(F3 (007,2)) = h(2007) 2007, which is a contradiction. 

So whereas in example 6.8 it was rather easy to find a semantic operation, 

it here is impossible since on the level of semantics there is no difference 

between the meanings of 7 and 007. 

6 .9. END 
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The last example is a formal illustration of a statement of Montague's 

concerning the syntax of natural languages (MONTAGUE 1970b, p.223, fn.2): 

It is to be expected, then, that the aim of syntax can be realized in 
many different ways, only some of which would provide a suitable basis 
for semantics. 

Next I will prove a theorem that is important from a theoretical point 

of view. The theorem implies that the framework allows for assigning any 

meaning to any language. This means that working in accordance with the 

framework gives rise to no restriction: neither on the produced languages, 

nor on the assigned meanings. Notice that there is no conflict between the 

theorem and the example above. The example shows that not every syntax can 

be used, whereas the theorem states that there is at least one syntax. The 
theorem is, however, not useful. frorn'a practical point of view, since it is 

based upon the syntax developed in theorem 3.7: the construction does not 

reflect the structure of the language. The proof of the theorem just says 

that if you know what the intended meanings of the expressions of the lan

guage are, then this knowledge defines some algebraic operation. 

6.10. THEOREM. Let L be a recursively enumerable language over a finite 
alphabet, and Ma set of meanings for elements of L. Let f: L ~ M be a func
tion. Then there is a finite algebraic grammar A and an.algebra B such that 
I) L(A) = L. 

2) A and B are similar. 

3) There is an h E Epi(A,B) such that h(w) = f(w) for all w E L. 

PROOF. For the case L = 0 the theorem is trivial. For the case L # 0 consider 

the algebraic grammar defined in theorem 3.7. 

Let A be the algebraic grammar obtained in this way for L. 

Recall that the last operation of this algebra gives for some strings 

as output the same string, but with $ deleted. For other strings it gives 

a special string as output. The semantic algebra will differ from the syn

tactic one only in this last operation: the function f will be incorporated. 

More formally, let A be the syntactic algebra from theorem 3.7. 

So A= <<[S. ], (F) p {I 2 3 4 S}>,in>, where SA= {in,mid,out}. This al-in y YE u , , , , 
gebra is transformed into a semantic algebra Bas follows: 

where B. 
in 

B 

M and 



G F if y f S, 
y y 

and 

The homomorphism h is defined by 

h(w) 

6 .10. END 

7 • A SAFE DERIVER 

for w E: B 
out 
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In chapter I, section 4, I have sketched the framework in which we will 

work, and I will repeat here some relevant aspects. The syntax of the lan

guage of which we wish to define the semantics is an algebra A, and the 

function which assigns meanings is an homomorphism defined on TA. In order 

to define this homomorphism we use a logical algebra L which is interpreted 

by homomorphism h in model M. From the algebra L a new algebra L' is de

fined, using deriver D, where L' is similar with A. The interpretation h 

for L should determine uniquely an interpretation h' for L'. This situation 

is represented in figure 1. We will return to this framework in section 8. 

TA 

1 
L - !::! - -+ LI 

lh lh' 
M 

D M' - _,_ 

Figure l. The framework 

In this and in the next section I will investigate some methods for 

building new algebras out of old ones, in such a way that an interpreta

tion homomorphism defined on the old algebra determines a unique inter-
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pretation for the new algebra. Such a method will be called safe. We will 
meet several examples of methods to obtain new algebras from old ones; as 
neutral name for such methods I will use deriver. 

7.1. DEFINITION. A deriver is called safe if for algebras A and Band 
all h E Epi(A,B) there is a unique algebra B' such that for the restriction 

h' of h to D(A) it holds that h' E Epi(D(A),B'). 

7. I. END 

The requirement that h' is an epimorphism is important. If we would 
not require this, B' would in most cases not be unique. An extreme example 
arises when D(A) is an empty algebra. Then there are infinitely many al
gebras B' such that h' E Hom(D(A),B'), but only one such that 

h' E Epi(D(A),B'). 

In this section I will consider the aspect of the introduction of new 
operators. MONTAGUE (1970b) claims that polynomially defined operators are 
safe. A proof that for many-sorted algebras polynomial extensions are safe, 
will be given below. 

7.2. DEFINITION. Let A= <A,F> be an algebra and Ga collection of operator 

symbols such that for all g E G there are s 1, ... ,sn,sn+l E SA such that 

gA: As(" .x A8 n->- Asn+l Then the algebra <A,FuG> is denoted AddopG (<A,F>). 

7.3. THEOREM. If Pisa coZZection of poZynomiaZ syrriboZs, then Addopp is 
safe. 

PROOF. Let A= <(A) S,(F) r> and B = <(B) S,(G) r> be similar al-s SE y YE S SE Y YE A B 
gebras. Suppose that h E Epi(A,B) and P x POLA. We define h: POL ->- POL 
as follows: 

-I. Each operator symbol F is replaced by a symbol G y y 
II. Each constant ~ is replaced by a constant b, where b h (a) • 

Define A' = Addopp(A), B' = Addoph(P) (B). 

We now prove that his an epimorphism from A' onto B'. That his surjec
tive follows from the fact that h E Epi(A,B). Remains to show that 

h E Hom(A' ,B'), so that for all new operators, i.e. for all p E P, holds: 



This is proved by induction on the complexity of p. 

I. p = x. 
J,S 

h(x. A'(a 1, ..• ,a)) 
J ,s, n 

II. p = a 

h(a.) 
J 

x. B'(h(a1), ..• ,h(a )). J,S, n 

III. p F(pl, .. .,p) y m 

h(pA,(al, ..• ,an)) = h(Fy(Pl,A''"""Pm,A')(al, .•• ,an)) 

= h(F (p 1 A'(a1, ••• ,a )), ••• ,p A'(a 1, •• .,a )) = 
y , n m, n 

G (h(p 1 A'(a 1, .•• ,a )), ••• ,h(p A'(a1,. •• ,a ))) y , n m, n 

Gy(Pl,B''""''Pm,B')(h(a1), ••• ,h(an)) = pB 1 (h(a 1), •• .,h(an)). 
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Next we prove that B' is unique in the following sense: if h E Epi(A',B') and 

h E Epi(A',D), then D = B'. This follows from: 

I. the carriers of B' and Dare equal: 

B' 
s 

{h (a) I a E A'} 
s 

D 
s 

2. the operators of B' and Dare identical: 

Let b 1 E B , ... ,b E B • Then there are a 1 EA , ... ,a EA such 
s 1 n sn s 1 n sn 

that h(ai) =bi. Hence pB 1 (b 1, ... ,bn) = pB,(h(a 1), .•. ,h(an)) 

= h(pA 1 (a 1, ..• ,an)) = pD(h(a1), ..• ,h(an)) = pD(b 1, .•• ,bn). 

One observes that uniqueness is a direct consequence of existence. 

7.3. END 

Now the question arises whether the restriction to polynomially de

fined operations is necessary. We cannot generalize theorem 7.3 to opera

tors which are defined in an arbitrary way, as is shown by the next example. 

7.4. EXAMPLE. Consider the following algebra of strings of digits: 

N * <{0,1, •• .,9}d. ,{O, ••• ,9} ,C> ig num 
where C : N . x N + N is defined by C(a,S) = aS. dig num num 
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With these strings we associate a somewhat unusual meaning: their length 
(it is not that unusual if one remembers the system I-one, ll-two, 111-
three). So the semantic algebra M corresponding to N consists of natural 
numbers. Notice that in N we had digits (denoted 0,1, etc.) with concate
nation, but in M we have natural numbers (denoted O,l etc.), with the ope
ration of addition. The interpretation homomorphism h from N to Mis defined 
as follows 

h(O) h(l) •. h(9) I. 

The operation corresponding with C is of course addition of the lengths of 
the strings. So the semantic algebra Mis defined as 

M =<({l}d. ,JN ),+>. ig num 

Now we extend N with a new operator D, defined as follows: 

D: Nd. x N 7 N ig num num 

where D(a,S) = {S 

aS 

if a is the symbol 0 

otherwise. 

This operator is not polynomially defined, and it cannot be defined poly
nomially because there are no truth values in the algebra N (see example 
4.8). Let N' be the algebra obtained from N by adding the operator D. Is 
there a unique algebra M' such that h E Epi(N',M')? 

Suppose that there is such an algebra, called M', with as operator d, 
corresponding with D. What is then the value of d(l, I)? 

On the one hand: d(l,1) = d(h(3),h(7)) h(D(3,7)) = h(37) = 2. 
On the other hand: d(l,l) d(h(O) ,h(7)) = h(D(O,?)) = h(7) = L 

This is a contradiction. So there is no such algebra M'. The source of this 
problem is that we make a distinction at the syntactic level which has no 
influence on the semantic level: the difference between 0 and the other 
digits. 

7.4. END 

This example has shown the dangers of using a non-polynomially defined 
operator. If one introduces an operator which is defined in some arbitrary 
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way, then there is the danger of disturbing the interpretation homomorphism. 

In practice the situation often arises that the meaning of some language is 

defined by translation into a logic. The addition to the logic of an operator 

which is not polynomially defined, could invoke the danger that there is no 

longer an associated semantics: a translation is defined, but there is no 

guarantee of an interpretation for the derived logical algebra (i.e. there 

is, in figure 1, no h'). In chapter 6 (part 2) we will meet several exam

ples of proposals from the literature which are incorrect since there is " 

not such an interpretation. 

The following example shows that in some cases operators which are not 

polynomially definable nevertheless may respect homomorphic interpretations. 

So in theorem 7.3 the condition 'polynomially defined' is not a necessary 

condition. 

7.5. EXAMPLE (W. Peremans, pers. comm.). 

Consider the algebra of natural numbers with as only operation S, the 

successor operation ('add one'). So the algebra we consider is: 

N <]I ,S> 

where S: :N -+ :N is defined as 'addition with one' • We extend N with the 

operator e, defined by the equalities n e 0 = n and n e S(m) = S(nem). This 

means that e is the usual addition operator. This operator is not polyno

mially definable over N. One sees this as follows. All polynomial symbols 

over N are of the form S(S( ••. S(x)). So a polynomial symbol which corre

sponds with an operator which takes two arguments, contains only one vari

able, and is therefore dependent on only one of its arguments. Consequent

ly the two place operation of addition cannot be defined polynomially. 

In spite of the fact that e is not a polynomially definable operator, 

a (variant of) theorem 7.3 holds. For every algebra Mand every 

h E Epi(N,M) there is an unique M' such that h E Epi(AddOp N,M'). e This 

is proved as follows. Let Sn(O) denote then-times repeated 

S to O; so Sn(O) = S(S( ••• S(O) •• )). For all n EN we haven 

application of 

Sn(O). Since 

h E Epi(N,M) this means that for all m E M there is an n such that 

m = Tn(h(O)), where T is the operator in M which corresponds with S. 

We define an o~erator * in·M as follows: 
n1 nz nl+n2 

Assume: m1 "'· T (h(O)) and m2 = T (h(O)). Then m1*m2 = d T (h(O)). 

This definition is independent of the choice of n 1 and n2 as is shown as 
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follows: 
n 

Suppose that m1 Tnl (h(O)) 

Tn2 (h(O)) 

T 3(h(O)), and that 
n 

T 4 (h (O)) • 

Then 

n +n 
T 3 4 (h(O)) 

n n 
T 3(r 4(h(O))) 

n n 
T \r 2 (h(O))) 

n +n 
T 3 2 (h(O)) 

n +n 
T 2 3 (h(O)) 

n +n 
T 2 1(h(O)). 

This shows that the definition of * is a correct definition. 
Now, let M' be AddOp*(M). Then h E Epi(N' ,M') since it is a surjective map
ping and 

n n n +n 
h(n 1en2) = h(S 1(0)eS 2 (0)) = h(S I 2 (0)) 

n +n n 1 n2 n n 
TI 2 (h(O)) = T (h(O))*T (h(O)) = h(S 1(0))*h(S 2 (0)) 

To prove the unicity of M', we only have to prove the unicity of this de
finition of*· Suppose that h E Epi(Add Ope(N),M''), where the operation 
corresponding with e in M'' is a. 

n11 n2 n1 n2 nl m1om2 = T (h(O))oT (h(O)) h(S (O))ah(S (O)) = h(S (O)eS 
n 

2 (0)) 
n +n n +n 

= h(S I 2 (0)) = T I 2 (h(O)) = m1*m2. 
7.5. END 

The characterization of operators which are safe is still an open 
question. But for a class of algebras which is relevant for us, such a 
characterization can be given. In the sequel we will always work with a 
logic which has as syntax a free algebra with infinitely many generators 
(all variables and constants are generators). For such algebras all safe 
operators are polynomially definable. Note that in example 7.5, were there 
was no polynomial definition for e, there is a single generator (viz.O). 
Results related to the above one are given in Van BENTREM (1979b); the proof 
of the above result is given in appendix l of this book. The notion of a 
'safe deriver' is, related to the notions 'enrichment' and 'derivor' used 
in the theory of abstract data types, e.g. in ADJ 1978. 
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8. MONTAGUE GRAMMAR 

The notion 'Montague grammar' is often used to indicate a class of 

grammars which resembles the gramnar used in Montague's most influential 

publication PTQ (MONTAGUE 1973). It is, however, not always made clear what 

is to be understood by 'resembling' in this context. There are a lot of 

proposals which deviate from PTQ in important respects. Some proposals have 

a rather different syntax, other use a different logic or different models. 

The definition of 'Montague grannnar' should make clear, which proposals are 

covered by this notion and which not. 

In my opinion the essentail feature of a Montague grammar consists in 

its algebraic structure. The most pure (and most simple) definition would 

be that a Montague grannnar consists in an algebraic gramnar and a homomorphic 

interpretation. One always uses, in practice, some formal (logical) lan-,. 

guage as auxiliary language, and the language of which one wishes to de

scribe the meanings is translated into this formal language. Thus the 

meaning assignment is performed indirectly. The aspect of translating into 

an auxiliary language is, in my opinion, unavoidable for practical reasons, 

and I therefore wish to incorporate this aspect in the definition of a 

Montague gramnar. This decision includes (by suitable interpretation) gram

mars in which the interpretation is given directly. The most important ex~ 

ample of that kind of grammar is the grammar in 'English as a formal lan

guage' (MONTAGUE 1970a). For such granmars the name simple Montague gram-

mar seems suitable. These considerations should explain the following defi

nitions. 

8.1. DEFINITION. A simple Montague grammax> consists of 

I . an algebraic gramnar A 

2. an algebra M similar to A 

3. a homomorphism h E Hom(A,M). 

8. 2. DEFINITION. A Montague grammax> consists of 

I. an algebraic grammar A (the 'syntactic algebra') 

2. an algebraic grammar L (the 'logical algebra') 

3. an algebra M similar to L (the 'semantic algebra') 

4. a homomorphism h E Hom(L,M) (the 'interpretation of the logic') 

5. an algebra D(L), similar to A derived from L, where Dis a safe deriver. 

6. a homomorphism h E Hom(TA,D(L)) (the 'translation'). 

8.2 END 
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Definition 8.2 is illustrated by figure 2 (cf. figure I.) 

L - -+ D(L) 

M - - - -+ M' 

Figure 2. A Montague grann:nar 

The logical language which we will use is just as in PTQ, the language 

of intensional logic. Its (algebraic) grannnar L and its (homomorphic) in

terpretation will be considered in chapter 3. The grannnar A of the PTQ

fragment and its translation D(L) will be presented in chapter 4. The de

river D that will be used can be considered as being built from more ele

mentary ones. I have found it convenient to define four more elementary 

derivers, but other decisions are possible as well. The most important de

river is AddOp which has been discussed in section 7. The other three 

are introduced below: first an informal discussion; then a formal defini

tion. 

The first deriver I will discuss is Add Sorts. An application has the 

form AddSorts T,cr(A), where Tisa collection of sorts, and cr: T-+ SA a 

function. The effect of this deriver is that a new algebra is formed with 

as sorts T u SA' and with as carrier for T E T the set Acr (T) • So this de-

ri ver introduces new sorts without introducing new elements. This deriver 

will be used when we need to introduce several new sorts which get their 

elements from one single old sort. An example of this as follows. In a 

syntax for English, nouns like man and verbs like run will be in different 

categories because they have different syntactic properties. But semantical

ly both expressions are considered as predicates of the same type. There

fore we have to build from one old carrier (of predicates) two carriers 

(of nouns and of verbs). We may remove from each of these two carriers the 

elements which are not necessary for the translation of English, but in 



principle the carriers may still be non-disjoint (e.g. both may contain 

variables for predicates). 
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The second deriver I will discuss is DelOp. An application of this de

river has the form DelOp6 (A). Here is 6 a subset of the set of operator 

symbols of A. The effect of this deriver is that a new algebra is formed 

which differs from A in the respect that it does not have the operators 

mentioned in 6. This deriver is needed for the following reason. The 

derived algebra D(L), see figure 2, should only have operators which cor

respond with operators in A. Not all operators of the logical algebra L will 

be operators of D(L). For instance, the introduction of the universal quan

tifier might not correspond to any of the operations of the grammar A for 

the natural or programming language under consideration. Therefore we need 

a deriver which removes operators. 

The last deriver is SubAlg. An application of this deriver has the 

form SubA18H(A). Here is Ha sorted collection of elements of A. Its effect 

is that an algebra is formed which has the same operators as A, but which 

has H as a generating set. This deriver is used in the following kind of 

situation. The logical algebra L (see figure 2) has for each sort infinite

ly many generators. The grammar A might not have this property. For instance, 

the sentences of a natural language are all built up from smaller components, 

and hence there are no generators of the sort 'sentence'. SubAlg is then 

used to reduce the carriers of L to those elements which will be images of 

elements in A. 

Below these three methods are defined, and their safeness is proven. 

It is not surprising that these methods are safe. Nevertheless the proofs 

are not elegant, but rather ad-hoe. This is probably due to the fact that 

there is hardly any theory about derivers of many-sorted algebras which I 

could use here. GOGUEN & BURSTALL (1978) present some category-theoretic 

considerations about derivers for many-sorted algebras in the sense of ADJ 

1977. I have already mentioned the work of Van BENTREM ( 1979b) concerning 

the introduction of new operators in one sorted algebras. That there is a 

need for a general theory appears, apart from the present context, in work 

in the field of abstract data types in the theory of programming languages, 

see e.g. EHRIG, KREOWSKI & PADAWITZ 1978 and ADJ 1978. 

8.3. DEFINITION. Let cr: T + S arbitrary. Then cr' 

is defined by 
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l.cr'(s) 

2. a' (t) 

= s for s E S 

cr(t) for t E T 

3. cr'(<<t 1, ... ,tn>tn+I>) = <<cr'(t 1), ... ,cr'(tn)>,cr'(tn+I)>. 

In the sequel we will write a for cr'. 

8.4. THEOREM. Let A= <(A) s,(F) r> be a E-algebra. Let T be some set s SE Y YE 
(SnT=~) and a: T + S some mapping. Then there is an algebra 

A' = <(A~.) tETUS'G> where 

I. A~ = Aa' (t) 

II. The set of operators G is defined as follows: for all y Er and all 

<w,u> € (TuS)nx(TuS) with cr(<w,u>) = T(y) we add a new operator 

g < > of type <w,u>, and define the effect of g to be equal y, w,u y,<w,u> 
to F • y 

(So the operator indices are the compound symbols y,<w,u>). 

PROOF. The elements of A and A' are equal. Since A is closed under F , we 
y 

have that A' is closed under g y,<w,u>' 

8.5. DEFINITION. The algebra introduced in 8.4 is denoted Add Sorts T(A). a, 

8.6. THEOREM. AddSorts is safe. 

PROOF. Let A= <(A) S,(F) r> and B = <(B) S,(G) r> be similar al---- s S€ y YE s S€ y YE 
gebras, and let h € Epi(A,B). Suppose a: T + S. Define A'= Add Sorts T(A) a, 
and 

(up 

B' =Add Sorts T(B). We now prove that h € Epi(A',B'), and that B' is a, 
to isomorphism) the unique algebra with this property. 

Since the elements in B' are the same as in B, the mapping h is sur

jective. Remains to show that h is a homomorphism. In analogy of theorem 

8.4 we denote the operators introduced in AddSorts T(B) by g a, y,<w,u>,B' 
and those introduced in AddSorts T(A) by g A' 

a, y,<w,u>, 
Then 

h(g < > A(a 1, ••• ,a )) = h(F (a 1, ••• ,a )) = y, w,u , n y n 

= G (h(a1), ... ,h(a )) = g < > B(h(a 1), ••• ,h(a )). y n y, w,u , n 

That B' is unique can be proved in the same way as we did in the proof of 

7.3 (if there was another algebra, it should have the same carriers and 

operations). 



8.7. THEOREM. Let A= <(A) S'F> be an algebra and let n c F. Then S SE -
A = <(A ) s,F\n> is an algebra. S SE -

PROOF. A is closed under all F from F\n. 
y 

8.8. DEFINITION. The algebra introduced in 8.7 is denoted 

DelOpn(A). 

8~9. THEOREM. DelOp is safe. 

PROOF. Let A and B be similar algebras and h E Epi(A,B). 
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Define A' = DelOpn(A) and B' = DelOpn(B). We now prove that h E Epi(A',B') 

and that B' is the unique algebra with this property. 

Algebras A' and B' are similar since if F is an operation of A' then G is 
y y 

an operation of B'. That his surjective on B' is evident. Since h respects 

all F from Fit also does for those in !\n. That B' is unique is proved in 
y 

the same way as in 7.3. 

8.10. THEOREM. Let A= <(A) s,(F) r> be an alaebra and H = (H) s a S SE y YE v S SE 
collection sets with H c A . Let B = <[(H) SJ,(F) r>. Define 

S S S SE Y YE 
T = {s I s Es such that H f ~}. Then B' = <(B )t T,(F) r> is an algebra. s t E Y YE 

8.11. DEFINITION. The algebra B' from theorem 8.10 is denoted SubAl~(A). 

8.12. THEOREM. SubAlg is safe. 

PROOF. Let A= <(AS)SES'(Fy)yEf> and B = <(BS)SES'(Gy)yEf> be similar alge

bras and h E Epi(A,B). Suppose that H = (H) Sis a collection such that 
S SE 

Hs c As. Define A'= SubAl~(A) and B' = SubAlgh(H)(B). We now prove that 

for h = h~A' holds that h E Epi(A',B'), and that B' is the unique algebra 

with this property. 

First we proof that h(A') = B'. 
- s s 

I. D =<((h(A')) S'(G) r> is an algebra, see theorem 6.3. Since Hs c As _s SE Y YE 
we have h(H) c h(A ). So the generators of B' are in D, so (B') c h(A'). 

,.. s s s s 
II. That h(A') c (B') is proved by induction: 

s s 

' First note that this is true for the generators of As. 

Suppose T(y)=<<s 1, ... ,sn>' sn+I>. Let a 1 E A~ 1 ,. .. ,an E A~n' and assume that 
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h(a 1) E B' , ••• ,h(a) 
s 1 n 

- - ~ E B' . Then h(F (a 1,,,.,a )) = G (h(a 1), ... ,n(a )) 
Sn y n ~ y n 

because h E Epi(A,B). Since B is an algebra we have h (F (a 1 , ••• , a ) ) E B' 
- Y n sn+l 

From I and II it follows that B' = h(A'), hence h E Epi(A',B'). That 
s 

B' is unique can be proved in the same way as in 7.3. 

8.1. END 

Derivers like the ones defined above are not the only safe derivers. 

Taking a cartesian product or taking a projection from such a product are 

probably safe in some sense. Such derivers could be relevant for linguistic 

purposes. In the treatment of presuppositions (by KARTTUNEN & PETERS 1979) 

a phrase is connected with two formulas: one denoting its meaning, and one 

denoting its presuppositions. If two phrases are combined in the syntax to 

form a new phrase, then the two meanings are combined to form the meaning 

of the new phrase, and the presuppositions are combined to form a new pre

supposition. This situation fits into the framework if the new semantic 

algebra would be considered as the product of two copies of the same seman

tic algebra (however, details of their proposal give rise to complications). 

The derivers described in this section together with AddOp are the on

ly derivers we will use. They constitute the basis for the way in which I 

will introduce derived algebras. A derived algebra will be defined by pro

viding in some way the following information 

0) what the old algebra is 

!) what the sorts of the new algebra are 

2) what the generators of the new algebra are 

3) what the operators of the new algebra are. 

This information can be used in several ways to build a derived alge

bra. One might first add the new sorts and then the new operators, or vice 

versa. One might use the derivers described above, or variants of them. But 

all methods yield the same algebra, as follows from the uniqueness proof 

given in the next theorem. 

8.13. THEOREM. Let A = <(A ) S' (F ) r> and B = <(B ) s '(Gy)yEf> be S SE y YE S SE 
similar algebras and let h E Epi (A,B). Let furthermoi'e be given 

!) a collection of sorts T and a mapping a: T + S, 

2) a collection of new generators (Ht)tET' where Ht c Ao(t) 

3) a fcunily of polynomials P = (p.). I and a type giving function 
i 1E A 

f: (p.). 1 + U Tn x T such that f(p.) = <w,t> only if p. E POL () (t) . 
i iE n i i <o w ,o > 



Then there is a unique algebra D = <(Dt)tET'IT> where 

I) D c A ( ) , i.e. the carrie1°s of D are subsets of the carr1'.ers of A 
t 0 t 

2) IT= {p. D \ p. E (P.). 1 , f(p.) = <w,v> and 
i,<w,v>, i i iE i 

p. D(d 1, ••• ,d) = pA(d 1, ••• ,d )} i,<w,v>, n n 

3) D is generated by the collection (H ) i.e. D <[ (H ) ],IT> t tET' t tET 

Moreover, there is a unique algebra E such that tor h = hfD we have 

h E Epi(D,E). 

PROOF I) Existence of D 
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The derived algebra will be defined in four steps which are indicated 

in figure 3. 

A + A3 - - - -+- A4 D 

l l l 
-+ B3 - - - -r B4 E 

Figure 3. Construction of D 

The algebras mentioned in figure 3 are obtained using the derivers de

fined before. 

A I = AddOpp (A) , 

AddSortsT, 0 (AI) 

De lOp ti (A2) 

so A1 is obtained by adding all polynomial symbols 

mentioned in P. 

so A2 is obtained from AI by adding the sorts of T 

where ti = {6 I f is an operator symbol of A2 and 

6 r/. IT} 

so A3 has only operators symbols given in P with the 

type indicated by f. 

SubAlg(H ) (A3) so A4 is the algebra built from (Ht) tET. 
t tET 

From the previous definitions concerning derivers it follows that A4 

is an algebra which satisfies the three conditions mentioned in the theorem. 

II. Uniqueness of D 

Suppose that Dl and D2 are algebras satisfying the requirements for 

D. Define D3t 

cause 

Dlt n D2t. Then D3 = <(D\)tET'IT> is a subalgebra of DJ be-
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l) D\ c Dlt 

2) (D3t)tET is closed under the operations in IT: 

Let the type of TIE IT be <<t 1, ... ,tn>,tn+l> and suppose 

d 1 E D\ 1, ••• ,dn E D3t. Then TI(d 1,. .. ,dn) E (Dlt +lnD2t +b) 
has the same interpret~tion in DI and DZ, and botR DJ an~ 2 

under~. Hence D3 is closed under TI. 

since TI 

are closed 

Moreover, Ht c D3t. So D3 is a subalgebra of DI oontaining the generators 

of DI, hence DJ= DI. From this follows that D2 =DI. 

III. Existence and unicity of E 

Algebra E is defined by analogy to the definition of D. So 

BI= AddOph(P)(B), B2 = AddSortsT,o(BI), B3 = DelOp6 (B 2) and 

B4 = SubAlg(H) (B3). Here h(P) is defined as in theorem 7.3 and 6 is de-
. t tET . . fined as above. From the previous theorems about derivers it follows that 

h E Epi(Ai,Bi) for i E {J,2,3} and that htA~ E Epi(A4,B4), It also follows 
that each Bi is the unique algebra with this property. In particular B4 

is the unique algebra which satisfies the requirement for E. 

8.14. EXAMPLE. This example consists of the syntax and semantics of a small 

fragment of English. The meanings of the sentences of the fragment are ob

tained by translating them into an algebra derived from predicate logic. 

Its semantics is very primitive: the meaning of a sentence is a truth value. 

This aspect is not important because the purpose of the example is to illu

strate the derivers described in this section. 

The generators of the algebraic syntax are as follows: 

BT {John, Mary} 

BIV {run,waZk} 

BCN {chiZd,professor}. 

The rules of the syntax are as follows 

FI: T x IV+ S 

Fz:TxCN+S 

defined by 

defined by 

F 1 (a,S) a Ss. 

F2 (a,S) =a is as. 
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Examples are: 

F 1 (John, run) = John runs 

F 2 (Mary, professor) = Mary is a professor. 

This information determines the following algebraic grammar 

«[{John, Mary} T' {run, walk} IV' {child, professor} CNJ, {F 1,F2}>,S>. 

The fragment is translated into a derived algebra which is determined 

by the following information. 

The elements of BT are translated respectively into john,Nary which are 

constants of type e. The elements of BIV and BCN are translated into the 

following constants of type <e,t>: run,walk,child,professor. Notice the dif

ferent type face used for English words and logical constants. The applica

tion of operator T1 (corresponding to rule F1) is described by the polyno-

mial symbol x 2 (x 1 ). Consequently, if a' and S' are the translations 
, <e, t> ,e 

of a and S respectively, then the translation of the term F1(a,S) is i3'(a'). 

The operator r 2 <(corresponding with rule F2) is defined by the same polyno

mial symbol. Examples are: 

translation of F 1(John,run) is run(john). 

translation of F2 (Mary,professor) is professor(mary). 

The description of the derived algebra given above has not the form 

used in theorem 8.12. But implicitly all that information is given, asap

pears from the following, 

1. The sorts of the derived algebra are the same as those of the syntax: 

T,IV,CN and S. The mapping a to the old sorts is o(T) = e, o(IV) = <e,t>, 

o(CN) ~ <e,t> and·o(S) = t. 

2. The generators of the derived algebra are the translations of the genera

tors of the syntactic algebra. 

3. The polynomial operator is x 2 (x 1 ), and the type-giving function 
,<e,t> ,t 

f says f((x2 (x 1 )) = {<<T,IV>,S>,<<T,CN>,S>}. 
,<e,t> ,t 

The process of making a derived algebra as is described in the proof 

of theorem 8.12 proceeds as follows. 

step l . The polynomial operator x 2, <e, t> (x 1, t) is added to the algebra of 

predicate logic. 
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step 2. The categories T,CN,IV and S are added. Their carriers consist of 

the expressions of type e, type <e,t>, type <e,t> and type t respectively. 

Moreover, the operators are multiplied. For instance, the operator 

x (x ) gets 12 incarnations. Examples of the types of these incarna-2,<e,t> l ,e 
tions are <<s,e>,e>,t>, <<CN,T>S>, <<s,e>,T>S> and <IV,T>t>. 

step 3. Everything that is not needed will be removed. The carriers of sorts 

CN and IV are reduced, which has the effect that they become disjunct. Sort 

t is removed, and most incarnations of the polynomial are removed, except 

for <<CN,T>S> and <<IV,T>,S>. 

The derived algebra which results from this process is the unique al

gebra guaranteed in theorem 8.13. In the sequel I will present the infor

mation needed to apply theorem 8.11 in the implicit way used here. The pro

cess of forming a derived algebra will not be described explicitly. 

9. DISCUSSION 

The framework defined in this paper is closely related to two proposals 

in the literature. These proposals are developed in two quite different 

fields of semantics. The first one is developed by Richard Montague for the 

treatment of the semantics of natural languages. It is presented in "Uni

versal Grammar" (MONTAGUE 1970b), henceforth UG. The first sentence of 

this article reads 

There is in my op~n~on no important theoretical difference between 
natural languages and the artificial Zarl{Juages of logicians; incleed, 
I consider it possible to comprehend the syntax and semantics of both 
kinds of larl{Juages within a sirl{Jle natural and mathematical precise 
theory. 

It is Striking to discover that this statement also holds for the languages 

of computer scientists. Independent of Montague's work, and independent of 

the philosophical tradition this work was based on, the same ideas were 

developed in the field of semantics of programming languages by the group 

called Adj (Goguen, Thatcher, Wagner, Wright). Their motivation had nothing 

to do with the compositionality principle; they have a practical justifi

cation for their framework. The second sentence of ADJ 1979 reads: 

The belief that the ideas presented here are key, comes from our ex
perience over the last eight years in developing and applying these 
concepts. 

A more detailed comparision between these proposals and the one described 

in this chapter will be given below. 
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The basic difference between Montague's framework and the present one, is 

that Montague did not have the notion 'many sorted algebra' available. He 

worked with a one sorted algebra and his syntax consisted of the descrip

tion of a very special one-sorted algebra: one with much additional struc

ture. I have a much more general algebraic concept of syntax and his one

sorted algebra is a special case. However, the mathematical object Montague 

defines is the same as the object I define. The two frameworks present dif

ferent views of the same mathematical object. These different views have 

some consequences for the details of the framework. 

1. In the present framework operators are typed. In Montague's framework 

operators are typeless, but rules are typed. This has the following con

sequence. If we apply the UG framework to PTQ, then not the syntactic 

rules (i.e. S4,SS, ••• ) are the operators in the algebraic sense, but the 

operations on strings (i.e. F 1,F2 ••. ). The framework requires for each F:a 

single corresponding semantic operation. But this is not for all F's the 

case (e.g. not for F8: conjunction-operation). This illustrates that the 

present framework, in which rules and operators coincide, gives an ap

proach which is closer to practice than the UG framework. 

2. Both frameworks require that the operators be total. In my framework this 

means that an operator has to be defined for the whole carrier of the 

type of its arguments. In Montague's framework it means that the operators 

have to be defined for all elements on the algebra, even for those ele

ments to which it will never be applied. A similar remark holds for homo

morphism. For instance the semantic interpretation has to be defined for 

expressions which are not expressions of logic such as + + p. In practice 

no one actually defines homomorphisms for such arguments. In the present 

framework this practice is sanctioned. 

3. In the present framework, there is a natural relation between the dis

ambiguated and the generated language: from an expression in the term 

algebra one obtains the corresponding expression in the generated lan

guage by evaluating the expression. In UG there is a (further unspeci

fied) relation R relating the disambiguated language with the generated 

language. Such a relation can be used for several purposes: for neat 

ones such as deleting brackets, but also for filtering, completely re

formulating the expression, or building new structures and other obscure 

operations. That R can be any such relation is not good. As far as I 

know, no one working in Montague grammar actually uses this extreme power 

of R. Hence it is attractive to restrict Ras we have done. 
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4. The present framework has some built in restrictions to guarantee that 

the grammar be effective. The restrictions are obeyed by all existing 

proposals. The original, unrestricted definitions allow for too unin

teresting grammars. 

Summarizing, the differences between the present framework and 

Montague's have as a consequence that the present framework is much closer 

to practice, and that unwanted, and unused, facilities are no longer avail

able. 

Next I will consider the relation of our framework to that of Adj. The 

basic idea underlying their approach is formulated in ADJ (1977, p.69). 

In the cases we examine, synta.r is an initial algebra, and any other 
algebra A in the class is a paM,i,ble. dom<Un (or .6 eman:tic. alge.bJW.) ; 
the .6eman:tic. fiunc;t.lon is the uniquely determined homomorphism hA: S +A, 
assigning a mean,£,ng hA(s) in A to each syntactic structure s ins. 

This statement implies that the group Adj works with what we have called 

'simple Montague grammars'. They have, however, not explicitly described 

the framework in which they work. They are interested primarily in practi

cal work concerning the semantics of progrannning languages. It appears that 

their work is in accordance with what we have defined as being a (standard) 

Montague grammar. For instance, a central aspect of the present framework 

is that polynomial operators are used to define complex operations on 

meanings. Adj certainly knew about the benefit of polynomials: their papers 

are full of such operators. But no explicit formulation is given of the 

role of polynomials in their approach. Since a framework is only implicit, 

it is possible, that the algebraic theory developed in this chapter is 

hidden in their works. The most fundamental difference between the two ap

proaches is that they base the semantics on the algebraic grammar for the 

language, whereas we base it on the corresponding term algebra (i.e. on 

derivational histories). However, since the framework of Adj is not made 

explicit, it is difficult to compare their approach with ours. Therefore I 

restrict myself to the general remarks given above. Below I will discuss 

some technical differences in the definition of algebra and homomorphism. 

In the Adj approach it is required that all similar algebras have the 

same operator symbols. I prefer to have the possibility of using different 

operator symbols because that is standard in the field of Montague grammars 

(the operators from the syntactic algebra are usually denoted Si' and those 

of the logical algebra Ti). Furthermore, the Adj definition has as a con

sequence that renaming the sorts gives rise to a completely new algebra: 
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an algebra obtained by renaming the sorts is not isomorphic to the original 

algebra, it is not even similar! For these reasons I prefer the more general 

definition of many sorted algebra and of similar algebras which are used in 

this chapter. 

In the theory of universal algebras one usually allows for nullary ope

rations; i.e. for operations which do not take an argument and which always 

yield the same value. In our definition such operations are not allowed. 

To consider constants as nullary operators is intuitively difficult, and 

practically inconvenient. For, instance, after having presented their de

finition, which allows for nullary operations, ADJ (1977,p.71) says that 

the uniformity is 'mathematically nice', but 'it is often more convenient' 

to separate them out from the more general operators. Another difficulty 

is the following. Let an algebraic grammar be given for a certain fragment. 

Suppose that a new element is added to an existing carrier (a new word is 

added of an already present category). Then one would judge intuitively 

that nothing essential is added. If a new rule is added (i.e. a non-nullary 

operation), then a new type of syntactic constructions is added to the 

fragment. In such a situation one would say that something essentially is 

added. If nullary operations would be allowed for, then these two kinds of 

addition would have the same status, which is not in accordance with prac

tice, However, this difference concerning operators does not give rise 

to essential differences in the algebraic theory (e.g. because I have 

adapted suitably the definition of 'polynomial symbol'). 

In our approach a homomorphism is a mapping with as domain the elements 

of the carriers. In the Adj approach it is a sorted collection of mappings. 

For each sort there is a separate mapping. So in case an element occurs in 

several carriers it is treated as if there are two different elements. The 

images under the homomorphism can be different for the same element in dif

ferent sorts. This is not acceptable in our approach. In the process of 

making a derived algebra we impose a new structure of sorts on the logical 

algebra, and the interpretation homomorphism has to determine uniquely the 

interpretation of the elements of the new sorts (which are also elements of 

the old sorts). If the homomorphism is defined as a sorted collection of 

functions, the interpretation of the new carriers is arbitrary. Hence 

theorem 8.12 would not be valid. In order to guarantee an unique interpre

tation for the derived algebra, the Adj-definition was corrected. 

Summarising, the main difference between our approach and that of Adj 
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is that we base the semantics on the term algebra, whereas Adj does not. 

Another difference is that we have an explicit framework. Differences in 

technical details are a consequence of this framework or of requirements 

from established practice. The present framework might be considered as a 

synthesis of the idea's of Montague with technical tools of Adj. 

Finally, I will mention some afterthoughts about two points made in 

this chapter. The choice not to allow for nullary operators is non-standard 

and has some advantages for the explication. Along this way we came just 

far enough. But this choice has the disadvantage that existing theory can

not be applied directly. More in particular, I did not succeed in obtaining 

a handsome definition of a 'free algebra'. Maybe this is a sign that it 

might be wiser to follow the standard definition and accept the didactic 

difficulties. The second point concerns the discussion in section S(p.67) of 

some remarks of ADJ concerning the context-freeness of the generated lan

guage. Joe Goguen (pers.comm) explained that ADJ's remarks should not be 

understood in literal way. Ind ADJ 1977 the possibility is mentioned that 

the set of operators is infinite. In that way non-context free languages 

can be dealt with. The criticism on their approach should therefore not be 

that ADJ can only deal with context-free languages, but that they can only 

deal with grammars with context free rules, but not with arbitrary syntac

tic operations. 



CHAPTER III 

INTENSIONAL LOGIC 

JIBS TRACT 

In this chapter the language of intensional logic is introduced; this 

language is a useful tool for representing meanings of e.g. English. The 

semantic interpretation of intensional logic is defined by a translation 

into the language Ty2 of two-sorted type theory. Several properties of in

tensional logic are explained using this translation into Ty2. 
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l . TWO FACETS 

I.I. Introduction 

Our aim is to associate in a systematic way the expressions of a lan

guage with their meanings. Hence we need a method to represent meanings. 

The most convenient way to do so, is to use some suitable logical language. 

Once the interpretation of that language has been defined, it can further 

be used to represent meanings. The language we will use in this book, is 

the language of intensional logic, henceforth IL. This language is especial

ly suitable for representing the intended meanings because it 'wears its 

interpretation upon its sleeves' (Van Benthem, pers.comm.). 

In chapter I some consequences of the principle of compositionality 

are discussed. Here I will pay special attention to two of them. 

I) The meanings associated with expressions of a natural language or a pro

gramming language are intensions, i.e. functions on a domain consisting 

of a set of 'indices'. The indices formalize several factors which in

fluence the meaning of an expression. 

II) The meanings form a many sorted algebra which is similar to the syntac

tic algebra. Hence we have for each category in the syntactic algebra a 

corresponding sort in the semantic algebra: the semantic model is 'typed'. 

In the light of the close connection between IL and its models, it is not 

surprising that these two facets of meaning are reflected in IL. This lan

guage contains operators connected with indices (e.g. tense operators), as 

well as operators reflecting the typed structure of the semantic domain 

(e.g. :>. abstraction). This means that IL can be considered as the amalgama

tion of two kinds of languages: type logic and modal tense logic. With this 

characterization in mind, many properties of IL can be explained. This will 

be done in the sequel. 

1.2. Model part I 

The set of indices plays an important role in the formalization of the 

notion 'meaning' since meanings are functions with indices as their domain. 

The definition of the model will not say much about what indices are: they 

are defined as an arbitrary set. This level of abstraction has the advan

tage that the meanings of such different languages as English and Algol can 

be described by them. But one might like to have an intuitive understanding 

of what indices are, what they are a formal counterpart of, and which degree 

of reality they have. Several views on these issues are possible, and I will 
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mention some of them. Thereafter I will give my personal opinion. 

1. Our semantic theory gives a model of how the reality is, or might have 

been. An index represents one of these possibilities. In application to 

natural language this means that an index represents a possible state of 

affairs of the reality. In application to programming languages this 

means that an index represents a possible internal state of the computer. 

2. Our semantical theory gives a model of a psychologically acceptable way 

of dealing with meanings. In this conception an index formalizes a per

ceptually possible state of affairs (cf. PARTEE 1977b). 

3. Languages describe concepts, and users of a language are equipped with a 

battery of identification procedures for such concepts. An index repre

sents a class of possible outcomes of such procedures (cf. TICHY 1971). 

4. Our semantic theory describes how we deal with data. An index represents 

a maximal, non-contradictory set of data (cf. VELTMAN 1981). 

5. 'In order to say what meaning is, we may first ask what a meaning does, 

and then find something that does that.' (LEWIS 1970). We want meanings 

to do certain things (e.g. formalize implication relations among sen

tences), we define meanings in an appropriate way, and indices form a 

technical tool which is useful to this purpose. Indices are not a formal-

ization of something; they are just a tool. 

Conception I is intuitively very appealing, and most widespread in the 

literature. But the interpretations 2,3, and 4 are also intuitively appeal

ing. The reader is invited to choose that conception he likes best. An in

tuitively conceivable interpretation might help him to understand how and 

why everything works. But the reader should only stick to his interpreta

tion as long as it is of use to him. For the simple cases indices can prob-

ably be considered as an adequate formalization of his intuitions. But once 

comes the day that his intuition does not help him any more. Then he should 

switch to conception 5; no interpretation but a technical tool. Such a si

tuation arises, for instance, with the treatment of questions. Do you have 

an idea of what the meaning of a question should be in the light of concep

tion 1,2,3, or 4? For instance the treatment of indirect questions given in 

GROENENDIJK & STOKHOF (1981) cannot be explained on the basis of the first 

four conceptions. They have chosen as meanings those semantic entities 

which do what they wanted them to do: the indices play just a technical 

role. 
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1.3. Model - part II 

In the model theory of type-logic the models are constructed from a 
few basic sets by adding sets of functions between already available sets. 
Two kinds of models can be distinguished, depending on how many functions 
are added. In the so called 'standard models', the addition clause says 
that if A and B are sets in the model, then the set AB of all functions 
from B to A also is a set in the model. In the so called 'generalized mod
els' one needs not to take this whole set, but one may take some subset. 
There is a condition on the construction of models which guarantees that 
not too few elements are added to the model: every object that can be de
scribed in the logic should be incorporated in the model. 

The laws of type logic which hold in standard models are not axioma~ 
tizable. In order to escape this situation, the generalized models were 
introduced (HENKIN 1950). By extending the class of possible models, the 
laws were restricted to an axiomatizable class: the more models the more 
possible counter examples, and therefore the fewer laws. 

What kind of models will be used for the interpretation of intensional 
logic? I mention four options. 

I. the class of all standard models 

2. a subclass of the standard models 

3. the class of all generalized models 

4. a subclass of the generalized models. 

Which choice is made, depends on the application one has in mind, and what 
conception one has about the role of the model (see section 1 .2) • If one 
intends to model certain psychological insights, then one might argue that 
the generalized models with countably many elements are the best choice 
(cf. PARTEE 1977b, and the discussion in chapter 7). If the model is used 
for dealing with the semantics of programming languages then a certain sub
set of the generalized models is required (see chapter 4). In the applica
tion of Montague grammar to natural language, one works with option 2. A 
subclass of the standard models is characterized by means of meaning postu
lates which give restrictions on the interpretation of the constants of the 
logic. I will follow this standard approach in the sequel. 

l .4. Laws 

Most of the proof-theoretic properties of IL can be explained by con
sidering IL as the union of two systems: type logic and modal tense logic. 
The modal laws of IL are the laws of the modal logic SS. Many of the laws 



of type logic are laws of IL, exceptions are variants of the laws which 

are not valid in modal logic. The laws of type logic (i.e. those which 
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hold in all standard models) are not axiomatizable. Since IL has (on sorted) 

type logic as a sublanguage, IL is not axiomatizable either. For modal logic 

there is an axiomatization of the laws which hold in all generalized models. 

This is expressed by saying that type logic has the property of generalized 

completeness. By combining these two completeness results, the generalized 

completeness of IL can be proved (see also section 3). 

I .5. Method 

I have explained that many aspects of IL can be understood by consider

ing IL as the amalgamation of type logic and modal tense logic. Nevertheless, 

the formal introduction of IL will not proceed along this line. I will first 

introduce some other language: Ty2, the language of two sorted type theory. 

On the basis of Ty2 I will define IL: the algebraic grannnar of IL is an al

gebra derived from the algebraic grammar for Ty2. The reasons for prefer

ring this approach are the following: 

I . Model theoretic 

In Ty2 the indices are treated as elements of a certain type just like all 

elements. This is not the case for IL. In the interpretation of IL indices 

occur only as domains of certain functions, but not as range. Therefore the 

models for IL become structures in which carriers of certain types are de

leted, whereas, from the viewpoint of an elegant construction, these car

riers should be there. In the models for Ty2 they are there. Remarkable 

properties of IL can be explained from the fact that these carriers are not 

incorporated in its models. It appears to be better for understanding, and 

technically more convenient, to describe first the full model, and to re

move next certain sets, instead of to start immediately with the remarkable 

model. 

2. Homomorphisms 

From the viewpoint of our framework, it is essential to demonstrate that 

the interpretation of IL is a homomorphism. It seems, however, rather dif

ficult to show that the interpretation homomorphism for type logic and 

that for modal tense logic can be combined to a single homomorphism for IL. 

Furthermore, we should, in such an approach, consider first the interpre

tations of these two languages separately. It is easier to consider only 

Ty2. 
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3. LCOJJs 

Many of the proof rules for Ty2 are easy to formulate and to understand. 

This is not the case with IL. It is for instance much easier to prove lamb

da conversion first for Ty2, and derive from this the rule for IL, than to 

prove the IL rule directly. 

4. Speculation 

We will use IL for expressing meanings of natural language expressions be

cause it is a suitable language for that purpose. No explicit reference to 

indices is possible in IL, and there is no need to do so for the fragment 

we will consider. But one may expect that for larger fragments it is un

avoidable to have in the logic explicit reference to indices. NEEDHAM 

(1975) has given philosophical arguments for this opinion, Van BENTREM 

(1977) has given technical arguments, and GROENENDIJK & STOKHOF (1981) 

treat a fragment of natural language where the use of Ty2 turned out to be 

required. Furthermore we will consider in chapter 4 ,a kind of semantics 

for programming languages which requires that states can be mentioned ex

plicitly in the logical language, and we will use Ty2 for that purpose. 

2. TWO-SORTED TYPE THEORY 

In this section the language Ty2 will be defined: the language of two 

sorted type theory. The name (due to GALLIN 1975) reflects that the lan

guage has two basic types (besides the type of truth values). It is a gener

alization of one sorted type theory which has (besides the type of truth 

values) one basic type. The language is defined here by means of an alge

braic grammar. 

Since in logic it is customary to speak of types, rather than of sorts, 

I will use this terminology, even in an algebraic context. The collection 

of types of Ty2 is the smallest set Ty such that 

I. {e,s,t} c Ty (e='entity',s='sense',t='truth value'). 

2. if 0 E Ty and T E Ty then <a,T> E Ty. 

This is the standard notation for types which is used in Montague grammar. 

It is, however, not the standard notation in type theory. Following CHURCH 

(1940), the standard notation is (cr)T instead of <a,T>. I agree with LINK 

& VARGA (1975) that if we would adopt that notation and some standard con

ventions from type theory, this would give rise to a simpler notation than 



the one defined above. But I prefer not to confuse readers familiar with 

Montague grammar, and therefore I will use his notation. 

For each type TE Ty we have two denumerable sets of symbols: 

CON: 
T 

{cl ,c2 ' .•• } 
, T ,'L 

the constants of type T 

and 

vAR = { v 1 , v 2 , ••• } 
T ,T ,T 

the variables of type T. 
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So the constants and variables are indexed by a natural number and a type 

symbol. The elements of VAR, are called variables since they will be used 

in Ty2 as variables in the logical sense (they should not be confused with 

variables in the algebraic sense which occur in polynomials over Ty2). 

The generators of type T are the variables and constants of type T. 

The carrier of type T is denoted as ME (meaningful expression of type T). 
T 

An element of the algebra is called a (meaningful) expression. The standard 

convention is to call the meaningful expressions of type t 'formulas', but 

I will call all meaningful expressions 'formulas'. (this gives the possibil

ity to distinguish them easily from expressions in other languages). 

There are denumerable many operators in the algebra of Ty2, because the 

operators defined below are rather schemes of operators, in which the types 

involved occur as parameters. For instance the operator for equalities 

(i.e. R=) corresponds with a whole class of operators: for each type T E Ty 

there is an operator 

R=,,(a,B) is defined 

a whole class with a 

R These operators R all have the same effect: 
=,T =,T 

as being the expression [a~BJ. Therefore we can define 

single scheme. The scheme for R= should contain T as 

a parameter, and other operations should contain two types as parameter. 

These types are not explicitly mentioned as parameter, since they can 

easily be derived from the context. The proliferation of operators just 

sketched is a consequence of the algebraic approach and caused by the fact 

that, if two expressions belong to different sorts for one operation (say 

for function application), they belong to different sorts for all operations 

(so for equality). 

The operators of Ty2 are defined as follows 

]. Equality 

R : ME x ME -+ME where R=(a,S) [a=S J. 
= T T t 

2. Function Application 

R( ) : ME x ME -+ ME where R( ) (a, S) [a(S)J. 
<o,T> a T 
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3. Quantification 

R3v: MEt -+ MEt 

For universal quantification <Rvv) analogously. Recall that in chapter I ar

guments were given for not analyzing 3v any further. 

4. Abstraction 

RAv: ME, -+ ME<cr,<> 

5. Connectives 

RA: MEt x MEt -+ MEt 

Analogously for Rv, R_,., and R+-+ 

Av[o:]. 

where RA(o:,S) [o:Aj3]. 

The (syncategorematic) symbols [ and ] are used to guarantee unique 

readability of the formulas. They will be omitted when no confusion is 

likely. The syncategorematic symbols 3v (existential quantifier), Vv (uni

versal quantifier) and Av (the lambda-abstraction) are called binders. A 

variable is called free when it does not occur within the scope of 3v, Vv, 
or Av. The notions 'scope' and 'free' can be defined rigorously in the 

usual way. 

This completes the definition of the operators of Ty2. For the seman

tics of English, two more operators are needed. They introduce ordering 

symbols between expressions of type s (i.e. between index expressions). 

6. Ordering 

ME XME ->-ME 
s s t 

[a < 13] 

Co:> sJ. 

After having described the sets of sorts, generators and operators of 

Ty2, I will present the algebraic grannnar for Ty2. Let~ be the collection 

of operators introduced in clauses l-5. Then an algebraic grannnar for Ty2 

is 

<< r (CON uVAR) Ty]' R>,t>. 
[ T TTE -

If R is replaced by _g_ u {R<,R>}: then an algebraic grannnar for Ty2< is ob

tained. 
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3. THE INTERPRETATION OF Ty2 

The semantic domain in which Ty2 will be interpreted, consists of a 

large collection of sets, which are built from a few basic ones. These basic 

sets are the set A of entities, the set I of indices, and the set {O,I} of 

truth values. The sets D1 of possible denotations of type t are defined by; 

I. 

2. 

Dt={O,l}, 

D D D0 
<o->r> t 

D 
e 

A, D 
s 

= I 

In order to deal with logical variables, we need functions which assign 

semantical objects to them. The collection AS of variable assignments 

(based on A and I) is defined by 

AS 

Let as, as' E AS. We say that as' ~ as (as' is a v-variant of as) if for 
v 

all w E VAR such that w t v holds that as (w) as' (w). If as' as and 
v 

as'(v) = d then we write [v+d]as for as'. 

Now the necessary preparations are made to say what the elements of 

the semantic domains are. Let A and I be non-empty sets, and let D be de
T 

fined as above. The sets M of meanings of type t (based upon A and I) are: 
T 

By the semantic domain based upon A and I, we understand the collection 

(M1 )tETy. In such domains we will interpret Ty2. For Ty2< additional struc

ture is required. The set I has to be the cartesian product of two sets W 

and T, where T is linearly ordered by a relation<. Here W is called the 

collection of possible worlds, and T the collection of time points. An 

element i E W x T is called a reference point or index. 

As is suggested by the definition of semantic domain, the interpreta

tion homomorphism of Ty2 will assign to an expression of type T some ele

ment of M1 , i.e. the meaning of ~ E ME 1 is some function f: AS+ D1 • In 

chapter one we have formalized the meaning of an expression of predicate 

logic as a function f: AS+ Dt, and here this approach is generalized to 

other types. In the case of predicate logic a geometrical interpretation 

of this process was possible, and this led us towards the cylindric alge

bras. For the case of Ty2 it is not that easy to find a geometrical 
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interpretation. In any case, I will not try to give one. But I consider 

the interpretation of Ty2 given here as a generalization of the interpreta

tion of predicate logic with cylindric algebras. Therefore I will call the 

interpretation of quantifiers of Ty2 'cylindrifications'. 

Analogous to the interpretation of variables, there are functions for 

the interpretation of constants. The collection F (based upon A and I) of 

functions interpreting constants is defined by: 

F n 
TE Ty 

D 
T 

CON 
T 

By a model for Ty2 we understand a pair <M,F> where 

I.Mis a semantic domain (based on A and I). 

2. FE ~hence Fis a function for the interpretation of constants (based 

on the same sets A and I). 

In order to define a homomorphism from Ty2 to some model, the models 

should obtain the structure of an algebra similar to the syntactic algebra 

of Ty2. That means that I have to say what the carriers, the generators, 

and the operators of the models are. The generators and operators will be 

defined below, along with the definition of the interpretation homomorphism 

V (V ='valuation'). The carrier of type T has already been defined; viz. M 
T 

under this interpretation V is a function So the value of an element of ME 
T 

from AS to D,. This function will be defined by saying what its value is 

for an arbitrary assignment as E AS. I will write Vas(a) instead of 

V(a)(as) because the former notation is the standard one. 

The generators of the semantic algebra are the images of. the generators 

of the syntactic algebra. These are defined by 

a) 

b) 

Vas (v,, n) 

V (c ) 
as T,n 

as (v ) 
T,n 

F(c ) • 
T,n 

As for the last clause, one should remember that we are defining the inter

pretation with respect to some model, and that models are defined as con

sisting of a large collection of sets and a function F which interprets 

the constants. 

The interpretation of compound expressions of Ty2 will be defined next. 

Let R be some operator of the syntactic algebra of Ty2. Then the value 

Va8 (R(a)) will be defined in terms of Vas(a). In this way it is determined 

how V(R(a)) is obtained from V(a). Then it is also determined how the 

operator T, which produces V(R(a)) out of V(a) is defined. For each clause 
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in the definition of V (a), I will informally describe which semantic op·
as 

erator T is introduced. 

I. Equality 

V fo=S) = {I 
as 

0 otherwise. 

So V(a=S) is a function from assignments to truth values yielding I if V(a) 

and V(S) get the same interpretation for that assignment. Consequently T 

is the assignment-wise evaluated equality. To be completely correct, I have 

to say that there is a class of semantic operators described here and not 

a single one: for each type T there is an equality operator T=,T 

2. Function application 

v (a(S)) 
as 

V (a)(V (S)). 
as as 

So if V(a) E M<cr 7 >' V(S) E M , then V(a(S)) E M • And T( ) : M xM -+M 
, ~ a T ( <a, T> a T' 

where T( ) is assignment-wise function application of the assignment-wise 

determined function to the assignment-wise determined argument. 

3. Quantification 

if there is an as' as such that V ,(~) 
v as 

1. 

otherwise. 

The element V(3v~) E Mt is obtained from V(~) E Mt by application of T3v. 

This operation T3v is a cylindrification operation like the ones introduced 

i.n chapter 1. Vas(Vv~) is defined analogously. 

4. Abstraction 

Let v E VAR0 and~ E ME,. Then Va8 (Av~) is that function f with domain D0 

such that whenever dis in that domain, then f(d) is V ,(~),where as' = 
as 

[v->-d]as. In the sequel I will symbolize this rather long phrase as 

V (Av~) =Ad V[--'~] (~). as - v-ru. as 

Here A might be considered as an abstraction in the meta language, but its 

role is nothing more than abbreviating the phrase mentioned above: 'that 
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function which ' The semantic operator T;\v corresponding to R;\v is a 

to M where T, associates with an element e E M 
<O,T> AV T 

function from M 
T 

M • This function f assigns to an as E AS the function <o ,T> 
some function f E 

that for argument d has the value e(as'), where as'= [v+d]as. 

5. Connectives 

V (cfiAl)J) as 
otherwise. 

So T is the assignment-wise evaluated conjunction. 

The corresponding operators Tv,T+•I'-i and T++ are defined analogously to 

T/\: assignment-wise evaluated connectives. 

Th.is completes the interpretation of Ty2. For the interpretation of 

Ty2< an additional clause is required. 

6. Ordering 

Vas (a<i3) 

0 

if the world component of Vas(a) equals the 

world component of Vas(i3), and the time com

ponent of Vas(a) is before the time component 

of Vas(S) in the linear ordering of T. 

otherwise. 

Analogously for V (a>S). as 

This definition means that in case the world components of a and 13 are dif

ferent, then Vas(a<S) = O. The relation-symbol < does not correspond with 

a total ordering, and consequently l(a<S) is not equivalent with 

[a>S v a=S]. 

4. PROPERTIES OF Ty2 

In the definition of the language Ty2, we introduced a lot of operators 

(corresponding with connectives and quantifiers). Abstraction was just one 

among them. In a certain sense, however, it is the most important and power

ful operator. The other operators are unnecessary since they can be defined 

in terms of ;\-operators (and=). Also expressions denoting truth values 

can be defined in this way. I will present the definitions (originating 



from HENKIN 1963), without further explications because I will not use 

their details in the sequel. They are presented here for illustrating the 

central role of A-abstraction in this system. 

4.1. EXAMPLE definitions based on A-operators 

Let x,y E VARt and f E VAR<t,t>" Then 

T Dx[x] Ax[x]] 

F [h[x] Ax[T]] 

I [h[F=x]] 

/\ DxAy[Af[f(x) = y] ~f[f(T) ]]] 

-+ [AxAy[[xlly] = x]] 

v DxAy[lx-+y]] 

Let T E: Ty and z E VART; then: 

VzA = DzA = AzT]. 

4. I. END 
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In certain circumstances, we may simplify formulas of the form Av[~](a) 

by substituting the argument a for the free occurrences of v in ~- This 

kind of simplification is called A-reduction or A-conversion. In the theory 

of A-calculi this reduction is known under the name S-reduction (a-reduc

tion is change of the bound variable v) . I described above the central po

sition of A-operators. This implies that the proof theory of Ty2 is essen

tially the prooftheory of A-calculus. Therefore it is of theoretical impor

tance to know under what circumstances A-conversion is allowed. But there 

is also an important practical motivation. In the next chapters we will en

counter frequently formulas with many A-operators. Then, by A-conversion, 

these formulas can be reduced to a manageable size. This practical aspect 

of reducing formulas is the main motivation for considering A-conversion 

here in detail. I start with recalling a theorem which says which kinds of 

reductions are allowed in all contexts. Thereafter some theorems will be 

given concerning the reduction of formulas containing A-operators. 

4.2. THEOREM. Let a,a' E ME and S,S' E ME such that 
0 T 

a) 13 is part of a 

b) 13' is part of a' 

c) a' is obtained from a by substitution of 13' for 13. 



108 

Suppose that for all as E AS holds V (S) = V (S'). as as 
Then for all as E AS holds V (a) V (a') . as as 

PROOF. Recall that S is a part of a if in the production process of a some 

rule is used which has Sas one of its arguments. Hence S is used in a con

struction step R( •• ,S, .• ), where R is an operator from the algebraic gram

mar for Ty2. That Vas(S) = Va8 (S') for all as E AS, means that S' has the 

same meaning as S. This means that the present theorem is a reformulation 

of theorem 6.4 in chapter two (here adapted for the present algebra and the 

present notion of meaning). Hence the same proof applies. 

4 .2. END 

As a consequence of this theorem, two expressions with the same 

meaning may be replaced by each other 'salva veritate'. This is a gener

alization of Leibniz' principle (just as the corresponding theorem in chap

ter 2) since it applies to formulas of any type to be replaced within for

mulas of any (other) type. The theorem provides a foundation for all reduc

tions (simplifications) of IL-formulas we will meet in the sequel. A (sub)

formula may be replaced by a formula with the same meaning. This may even 

be done in case it is not yet known in which larger expression they will 
occur as subformula. The theorem holds due to the fact that we have an al

gebraic interpretation of Ty2 . 

4.3. DEFINITION. Let. E ME , a E ME and v E VAR . Then [a/v]• denotes the cr T T 
formula obtained from • by {;;;ribstitution of a for all free occurrences of v 

in •· This substitution is defined recursively as follows 

4.3. END 

[a/v]v d a, [a/v] w d w (if wt v), [a/v]c d c 

[a/vJ[w nJ d [[a/vJwJ = [[a/vJnJ 

[a/vJ[w(n)J d [[a/vJwJ([a/vJn) 

Jca/v][3w•J d 3w[[a/vJ•J 

l [a/v ]3v• d 3v• 

if W t \T 

analogously for Vw• and for AW• 

[a/vJ[•AwJ d [[a/v]•J A [[a/v]~J 

analogously for the other connectives. 



4.4. THEOREM. Suppose no free va:riabZe in a becomes bound by substi"tution 

of a for v in $. Then )..-c9nversion is aUowed; i.e. for au as E AS: 

V ()..v[$](a)) = V ([a/vH). as as 
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PROOF. The clause concerning function application in the definition of Ty2 

says: 

V (;l.v[$J(a)) = V ()..v[$]) (V (a)). as as as 

By definition V (Av[$]) is that function which for argument d yields value as 
V[v+d]as($). So, writing A for Vas(a), we have 

V ()..v[$]) (V (a)) = V (Av[$]) (A) as as as 

We first will prove, that for all as E AS 

From this equality the proof of theorem easily follows. The proof of the 

equality proceeds with induction to the construction of $. 

l. ~ = c, where c E CONT 

V (c) = V ([a/v]c). as as 

2. ~ _ w, where w E VART. 

2.1.wtv 

V[ v+A]as (w) 

2.2. w - v 

V[ v+A]as (v) 

3. ~-[iJ!=nJ 

V (w) 
as V ([a/v]w). as 

V [a/v]v. 
as 

By induction hypothesis, this is true iff 

vas([a/v]ij!) = vas([a/vJn), 

hence iff vas([a/v][iJ!=nJ) = !. 

V[ v-+A]as (n) • 
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4. cp :: /tWljl 

4.1.w:=v 

4.2.w"f_v. 

V [a/v][ltvijJ]. as 

The conditions of the theorem guarantee that w does not occur in a. This 

fact is used in equality I below. Equality II holds since we may apply the 

induction hypothesis for assigmnent [w+d] as, and equality III follows from 

the definition of substitution. 

I /tdV[w+d]([v+Vr d] (a)]as)(~) 
LW+ as 

The proof for VVljJ and 3VljJ proceeds analogously. 

5. cp :: I~ 

by induction hypothesis we have 

So V[v+A]as(I~) = l. 

Analogously for the other connectives. 

4.4. END 
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From theorem 4.2 it follows that in case A-conversion is allowed on a 

certain formula, it is allowed in whatever context the formula occurs. So, 

given a compound formula with several A-operators, one may first reduce the 

operators with the smallest scope and so further, but one may reduce also 

first the operator with the widest scope, or one may proceed in any other 

sequence. Does this have consequences for the final result? In other words, 

is there a unique A-reduced form ('a A-normal form')? The answer is affir

mative. The only reason which prevents a correct application of the A-con

version is the syntactic constraint that a free variable in a should not 

become bound by substitution in ~. Using a-conversion (renaming of bound 

variables), this obstruction can be eliminated. It can then be shown that 

each formula in Ty 2 can be reduced by use of a- and A-conversion to a A

reduced form which is unique, up to the naming of bound variables (see the 

proof for typed A-calculus in ANDREWS 1971 of PIETRZYKOWSKI 1973, which 

proof can be applied to Ty2 as well). This property of reduction system is 

known under the name 'Church-Rosser property' . 

The theorem we proved concerning A-conversion gives a syntactic de

scription of situations in which A-conversion is allowed. It is, however, 

possible that the condition mentioned in the theorem is not satisfied, but 

that nevertheless A-conversion leads to an equivalent formula. A semantic 

description of situations in which A-conversion is allowed, is given in the 

theorem below. This semantic description is not useful for simplifying Ty2 

formulas, since there are no syntactic properties which correspond with the 

semantic description in the theorem. In applications for the semantics of 

natural languages or programming languages we will have additional infor

mation (for instance from meaning postulates) which makes it possible to 

apply this theorem on the basis of syntactic criteria. 

4.5. THEOREM (JANSSEN 1980). Let AV[~](a) E ME, and suppose that for all 

as,as' E As: Vas(a) = Vas'(a). 

Then for all as E AS: V (Av[~](a)) = V ([a/v]~). 
as as 

PROOF. Consider the proof of theorem 4.4. The only case where is made use 

of the fact that no variable in a becomes bound, is in the equality I in 

case 4. Since the condition for the present theorem requires that the in

terpretation of a does not depend on the choice of as, we have 

Vas (a) v[w+d]as (a). 
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Consequently the proof of 4.4 applies, using this justification for equality 

I. 

4.5. END 

Ty2 contains typed A-calculus as a sub-theory. Since typed A-calculus 

is not axiomatizable, Ty2 is not axiomatizable either. That typed A-calculus 

is not axiomatizable becomes evident if one realizes that its models are 

very rich: they contain models for the natural numbers. The formal proof of 

the non-axiomatizability is based upon standard techniques and seems well 

known. GALLIN (1975) does not give a reference when remarking that typed 

A-calculus is not axiomatizable, and HENKIN (1950) only gives some hints 

concerning a proof. A sketch of a possible proof is as follows. An effective 

translation of Peano arithmetic into typed A-calculus is defined (see below 

for an example). Then it is proven that every formula~ from Peano arith

metic is true in the standard model of natural numbers iff the translation 

of ~ is true in all standard models for Ty2. Since arithmetic truth is not 

axiomatizable, Ty2 cannot be axiomatizable either. 

An example of an effective translation of Peano arithmetic into typed 

A-calculus is given in CHURCH (1940). For curiosity I mention the transla

tions of some numbers and of the successor operator S. Also the Peano-axioms 

can be formulated in typed A-calculus. The formulas translating 0,1,2 and S, 

contain the variables x E VAR , f E VAR , and v E VAR e <e,e> <<<e,e>,e>,e> 
One easily checks that S(O) = l and S(I) = 2. 

arithmetics 

0 

2 

s 

translation 

Hh[x] 

AfAx[f(x)] 

Hh[f(f(x))J 

AVAfAx[f(v(f)(x))]. 

As I already said in section 1, Ty2 is generalized complete: i.e. the 

class of formulas valid in all generalized models is axiomatizable. The 

proof is a simple generalization of the proof for one-sorted type theory 

(HENKIN 1950). I will define below the generalized models and present the 

axioms without further proof. 

The generalized domains of type T E Ty, denoted GD,, are defined by 



I. 

2. GD <a,T> 

GDS = I, 
GD0 

c GD 
T 

GDt = {O, I} 

(0,n:Ty). 

The generalized meanings of type T denoted GM,, are defined by 

GM GD AS where AS is the set of variable assignments. 
T T 

A generalized model is a pair <GM,F>, where 

I. GM=U GD. 
T T 

2. F E F where F is the collection of interpretations of constants 

I I 3 

3. the pair <GM,F> is such that there exists a function V which assigns 

to each formula a meaning, and which satisfies the clauses a,b,1, ... 6 

from the definition of V for Ty2 in section 3. 

Without the last requirement concerning generalized models, there might 

arise difficulties to define V for some model: the interpretation of A 

might fail because the required function may fail to belong to the model. 

The addition of requirement 3 makes that such a situation cannot arise. On 

the other hand, the third condition makes that it is not evident that 

generalized models exist since the given definition is not an inductive 

definition. It can be shown, however, that out of any consistent set of 

formulas such a model can be built. 

The axioms for Ty2 are as follows (GALLIN 1975, p.60): 

Al) g(T) A g(F) = Vx[g(x)J 

A2) x = y + f(x) = f(y) 

x E VARt, g E VAR t <t, > 

x E VAR , f E VAR 
T <T,t> 

A3) Vx[f(x) = g(x)J = [f = g] x E VAR , f,g E VAR 
a <a,T> 

AS4) Ax[A(x)](B) = [B/x](A(x)) where the condition of th.4.4 is satisfied. 

Furtherraore, there is the following rule of inference: 

From A= A' and the formula Bone may infer formula B', where B' comes 

from B by replacing one occurrence of A which is part of B, by the 

formula A' (cf. theorem 4.2). 

S. INTENSIONAL LOGIC 

The language of intensional logic is for the most part the same as the 

language Ty2. The collection of types of IL is a subset of the collection 

types of Ty2. The set T of types of IL (sorts of IL) is defined as the 
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smallest set such that 

I. e ET and t ET 

2. if a,.r E T then <a,.r> € T 

3. if T € T then <s,T> € T. 

The language IL is defined by the following algebra. 

where 

a. CON and VAR are the same as for Ty2 (as far as the types involved 
T T 

belong to T) 

b. R consists of all the operations of Ty2 (as far as the types involved 

belong to T). 

The new operators are as follows 

I. R ME -+ME defined by Ry (a.) [Va.] 
V,T <s,T> T >r 

2. R 
A' T 

ME -+ME T <s,T> defined by R (a.) 
A' T 

[''a. J 

3. Ro= ME -+ ME t t defined by RcJ(<P) [tJcpJ 

4. Rw= MEt -+ MEt defined by Rw<<P) [Wcj>] 

5. 111: MEt -+ MEt defined by 111<cp) [Hep]. 

The symbol vis pronounced as 'extension' or 'down'," as 'intension' or 

'up', Das 'necessarily', and Wand Hare the future tense operator 

(W ~'will'), and the past tense operator respectively (H ~'has'). This 

use of the symbols Hand W follows Montague's PTQ. It should be observed 

that his notation conflicts with the tradition in tense logic, where 

P('past') and F('future') are used for this purpose. The operators W and H 

are used in tense logic for respectively 'it always will be the case' and 

'it has always be the case'. 

The semantics of IL will be defined indirectly: by means of a trans

lation of IL into Ty2<. I will employ the techniques developed in chapter 

2 and design a Montague grammar for IL. This means that a homomorphism Tr 

will be defined from the term algebra T11 associated with IL, to an algebra 

Der(Ty2) which is derived from Ty2< (see figure I). The meaning of an IL 

expression cp is then defined as its image under the composition of this 

translation Tr and the interpretation homomo~phism'V for Ty2 (where V is 

restricted to the derived algebra). This composition TroV will be denoted 
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V as well, since from the context it will be clear whether the interpreta

tion of an IL expression or of a Ty2 expression is meant. 

Ty2< Der ----------> Der(Ty2<) 

M Der ----------> 

Figure I. IL as a Montague grammar 

The translation Tr will introduce the variables v 1 and v 2 , which 
,s ,s 

will play a special role in the interpretation of IL. Following GROENENDIJK 

& STOKHOF 1981, these variables will be written a and a' respectively. The 

translation Tr introduces only variable a as free variable of types. Since 

the expressions of IL contain no variables of type s, this means that the 

interpretation of an IL-expression is determined by the interpretation of 

the IL-variables and the interpretation of a. Hence the meaning of an IL

expression can be considered as a function with as domain the assignments 

to pairs consisting of the value of a, and an assignment to IL-variables. 

Let the collection G of assignments to IL variables be defined by 

G 
VAR 

T n D 
T T 

rxG 
The meaning of an IL-formula ~ E ME, is then an element of D , where the 

component I determines the value assigned to a. The interpretation of a 

with respect to i E I and g E G is denoted by V. (a). i,g 
From chapter 2, I recall a special method for the description of de-

rived algebras. Let the original algebra be A= <(A) (F) r>. Then 
s SES' y YE 

a derived algebra is uniquely determined by the following information (see 

chapter 2, theorem 8.13). 

I) A collection S' of sorts of the derived algebra and a mapping T: S' + S 

which associates new sorts with old sorts. 

2) 

3) 

A collection (H ,) , S' of generators for the new algebra, such that 
S S E 

A 
A collection P c POL of operators of the new algebra, and a typegiving 
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function for these operators which has to satisfy certain requirements. 

The interpretation of IL will be defined by means of an algebra which 

is derived from Ty2 in the just mentioned way. The specification of the 

three components is as follows. 

I) The set T of types of IL is a subset of set of types of Ty2<. Hence the 

set of types of the derived algebra is T. For the mapping T we take the 

identity mapping. 

2) There are two kinds of generators in the derived algebra: those which 

correspond with variables of IL, and those which correspond with the con

stants of IL. As generators corresponding with the IL-variables, the same 

Ty2-variables are taken. For the constants we do not proceed in this way. 

Would we have done so, then a constant of IL would always been associated 

with one and the same semantical object, because the Ty2-constants have 

this property. For applications this is not desirable. For instance, the 

constant walk will be interpreted (at a given index) as a function from en

tities to truth values, thus determining the set of entities walking on 

that index. We desire, however, that for another index this set may be dif

ferent. Therefore it is not attractive to take constants of Ty2< as genera

tors of the derived algebra. We will use the variable a E VARS for indi

cating the current index. The generator corresponding to the IL-constant 

c is the compound formula c (a) . Note that this formula contains n,cr n,<s,cr> 
the constant with the same index, but of one intension level higher. These 

considerations explain the following definition 

VARN, u {c , (a) [ n E JN}. 
v n,<s,cr > 

3) Note first that the type giving function for the polynomials does not 

need to be specified because all types of IL are types of Ty2. There are 

two kinds of operators. Some operators of IL are also operators of Ty2< 

as well. The polynomial symbols for these operators (see chapter 2, remark 

after theorem 4 .6) are incorporated in P. The polynomial symbols correspond

ing with the other operators of IL are as follows 

R : x 1 (a) 
V,T ,T 

R 
A,T 

!\a[x1 J 
,T 

R • 
Cl. Va[x 1 J 

,t 



3a'>a[\a[x1 ](a')] 
,t 

3a'<a[\a[x1 J(a')J 
't 

117 

In the polynomials for R0 and RA a binder for a is introduced. In most cases 

this does not give rise to vacuous quantification or abstraction since the 

variable X will often be replaced by an expression containing a free variable 

a introduced by the translation of some constant. The polynomial for l\v 

might be read as 3a'>a[[a'/aJx1,tJ and for~ analogously (but these expres

sions are not polynomial symbols). 

The information given above completely determines a unique derived 

algebra. Theorems of chapter 2 guarantee that in this indirect way the in

terpretation of IL is defined as the composition of the translation of IL 

into Der(Ty2<) with the imterpretation of this derived algebra. 

6 • PROPERTIES OF IL 

Below, and in the next section, some theorems concerning IL will be 

presented. The proofs will rely on the way in which the meaning of IL is 

defined: as the composition of the translation homomorphism Tr and the 

meaning homomorphism V for Ty2<. Hence the interpretation V. (cji) of an IL-
i,g 

expression cji equals the interpretation Vas(Tr(cji)) of its translation in 

Ty2<, where as is an assignment to Ty2-variables such that as (a) = i and 

as(v) = g(v) for all IL-variables v. Hence we may prove V. (cji) = V. (1/!) 
i,g i,g 

by proving Vas(Tr(cji)) = Vas(Tr(l/!)) for such a Ty-assignment as. If n is an 

expression of Ty2, then the notation V. (n) will be used for V (n), where 
i,g as 

as is an arbitrary assignment to Ty2 variables such that as(a) = i and 

as(v) g(v) for all IL-variables v. If cji is of type t, we will often write 

i,g f cji instead of V. (cji) = I. When i or g are arbitrary, they will be 
i, g 

omitted. Hence f cji means that for all i and g it is the case that i,g f cji. 

In section 4 we notified the theoretical importance of \-conversion for 

Ty2: all quantifiers and connectives can be defined by means of lambda oper

ators. For Ty2 the same holds, so it is of theoretical importance to know 

under which circumstances \-conversion is allowed. But there also is an 

important practical motivation. We will frequently use \-conversion for 

simplifying formulas. For these reasons I will consider the IL-variants 

of the theorems concerning the substitution of equivalents and concerning 

\-conversion. 
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6.1. THEOREM. Let a,a' E ME and S ,S' E ME suah that 
CJ 'l" 

a) S is part of a 

b) S'is part of a' 

c) a' is obtained from a by suhstitution of S' for s. 
Suppose that for all i E I and g E G 

V. (S) = V. (S'). i,g i,g 

Then for all i E I and g E G 

v. (a) = v. (a'). i,g i,g 

PROOF. This theorem could be proven in the same way as the corresponding 

theorem for Ty2: by reference to theorem 6.4 from chapter 2. I prefer, how

ever, to prove the theorem by means of translation into Ty2 because this 

shows some arguments which will be used (implicitly or explicitly) in the 

other proofs. 

From (I) we may conclude that (2) holds, from which (3) innnediately 

follows: 

(I) for all i E I, g E G: V. (S) = V. (S ') i,g i,g 
(2) for all i E I, g E G: V. (Tr(S)) = V. (Tr ( S') ) i,g l. ,g 
(3) for all as E As: Vas (Tr(S)) = V (Tr (S ')). as 
Recall that S is a part of a if there is in the production of a an applica-

tion R( •• ,s, .. ) of an operator R with S as one of its argument. Since Tr is 

a homomorphism defined on such production processes, it follows that 

Tr(a) = Tr( •• ,R( •• ,S, •• ) •• ) = ••• R' ( •• ,Tr(S), •• ) ••• (here is R' the poly

nomial operator over Ty2 which corresponds with the It-operator R). This 

says that the translation of a part of a is a part of the translation of 

a. Consequently we may apply to (3) theorem 4.2 and conclude that (4) holds. 

(4) For all as E AS: Vas(Tr(a)) = Vas(Tr(a')). 

From this follows 

(5) For all i EI, g E G: v. (a)= V. (a'). i,g i,g 
6. I. END 

An important class of expressions are the expressions which contain 

neither constants, nor the operators x, Hor W. Such expressions are called 

modally closed; a formal definition is as follows. 



6.2. DEFINITION. An expression of IL is called modally closed if it is an 

element of the subalgebra 

<[(VAR) T ], Ru {RA,R_}> 
T TE y - -0 

where R consists of the operators of Ty2. 

6 .2. END 
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The theorem for A-conversion which corresponds with theorem 4.4 reads 

as follows 

6.3. THEOREM. Let Av[~J(a) E ME, and suppose that no free variable in a 
T 

becomes bound by substitution of a for v in~· Suppose that one of the 

following two conditions holds: 
A 

J. no occurrence of v in~ lies within the scope of ,H,W, or D 

2. a is modally closed. 

Then for aU i E. I and g c: G 

i,g f Av[~](a) = [a/vH. 

PROOF • Part 1. 

Suppose condition I is satisfied. 

The translation Tr(a) of a contains the same variables as a, except for the 

possible introduction of variables of type s. The translation Tr(~) of~ 

contains the same binders as~ since only A,H,W, and 0 introduce new 

binders (see the definition of Tr). Since ~ itself does not contain binders 

for variables of type s, we conclude that: 

No free variable in Tr(~) becomes bound by substitution of Tr(a) for 

v in Tr(~). 

Theorem 6.1 allows us to conclude from this that for all as E AS. 
'i/ 

V ([Tr (a) /v]Tr(~)). 
as 

Note that Tr(~) has the same occurrences of v as ~. hence one easily proves 

with induction that 

[Tr(a) /v]Tr(~) Tr ([a/v H). 

Consequently Vas(Tr(J..v[~](a)))= Vas(Tr([a/v]~)). 
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So TroV(Av[~](a)) = TroV([a/v]~). 
From this it follows that for all g E G and i E I 

g,i f Av[~](a) [a/vH. 

Part 2. 

Suppose that condition 2 is satisfied. 

The translation of ~ may introduce binders for variables of type s, but it 

does not introduce binders for variables of other types (see the definition 

of Tr). The expression a does not contain free variables of types, and the 

translation in this case does not introduce such variables since the only 

kind of expressions which give rise to new free variables are constants, 

and the operators v,H, and W. So we may conclude that: 

No free variable in Tr(a) becomes bound by substitution of Tr(a) for 

v in Tr(~). 

From this we can prove the theorem in the same way as we did for the first 
condition. 

6 .3. END 

In theorem 4.5 a semantic description was given of situations in which 

A-conversion is allowed. The IL variant of this theorem reads as follows. 

6.4. THEOREM (IL). Let Av[~](a) E ME and suppose for all i,j EI, and 

g,h E G: vi,g(a) = vj,h(a). Then for all i E I and g E G: 

V. (Av[~](a)) = V. ([a/v]~). i,g i,g 

PROOF. By translation into Ty2 and application of theorem 4.5. 

6.4. END 

In the light of the role of A-conversion, it is interesting to know 

whether A-conversion in IL has the Church-Rosser property, i.e. whether 

there is an unique lambda-reduced normal form for 11. In much practical ex

perience with intensional logic I learned that it does not matter in which 

order a formula containing several A-operators is simplified: first apply

ing A-reduction to the most embedded operators, or first the most outside 

ones, the final result was the same. It was a big surprise that FRIEDMAN 

& WARREN (1980b) found an IL-expression where different reduction sequences 

yield different final results. Their example is 
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hD.y[Ay = u(x) J(x) J(c) 

where x and y are variables of some type T, c a constant of type T, and u a 

variable of type <T,<s,T>>. For each of the A operators the conditions for 

the theorem are satisfied. Reducing first AX yields 

u(c)J(c) 

which cannot be reduced further since the conditions for A-conversion are 

not satisfied. Reducing first Ay yields 

u(x)J(c) 

which cannot be reduced either. We end up with two different, although logi

cal equivalent, formulas; i.e. there is no A-reduced normal form for IL. 

The example depends on the particular form for A-contraction: for all 

occurrences of the variable the substitution takes place in one and the 

same step. FRIEDMAN & WARREN (1980 

is equivalent to 

u (c) . 

This formula is in some sense further reduced. They conjecture that for a 

certain reformulation of A-conversion the Church-Rosser property could be 

provable. 

It is interesting to compare the above discussion with the situation 

in Ty2, where there is a unique A-reduced form. The Ty2-translation of the 

Friedman-Warren formula is (c'ECON ~) 
<s,T> 

h[;\y[Aa [y J u(x) ](x) Jc' (a). 

This reduces to 

Ay[Aa[yJ u(c' (a)) Jc' (a). 

After renaming the bound variable a to i, this reduces further to 
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A.y[Ai[c' (a)] u(c'(a))J. 

Note that this last reduction is possible here (and not in IL) because of 

the explicit abstraction A.i, instead of the implicit abstraction in Ay. 

A lot of laws of IL are variants of well known laws for predicate logic 

and type logic. An exception to this description is formed by alws involving 

constants. The constants of IL are interpreted in a remarkable way: their 

interpretation is state dependent. Invalid is, for instance, the existential 

generalizationDA(a) + 3.ldJA(x), whereas Vy(Oi'l(y) + 3JOA(x)) is valid. In

valid is Vx[x = c +D[x = c]], whereas VxVy[x = y +D[x = y]] is valid. 

Other examples of invalid formulas are 3y!J[y = c] and Vx[O[A(x)J+ OA(a)J, 

where 0 abbreviates I DI. 

Since IL contains type theory as a sublanguage, there is no axiomatiza

tion of IL (see also section 4). But IL is generalized complete as is 

proved by GALLIN (1975). The proof is obtained by combining the proof of 

generalized completeness of type theory (HENKIN 1950), and the completeness 

proof for modal logic (see HUGHES & CRESSWELL 1968). The following axioms 

for IL are due to GALLIN (1975); the formulation is adapted 

Al [g(T) A g(F)J = Vx[g(x)J 

A2 x = y + f(x) = f (y) 

A3 Vx[f(x) = g(x)] = [f = g] 

A4 A.x[a](S) = [S/x]a 

AS 
v v 

D[ f = g] [f = g] 

A6 
VA 

a = a 

The rule of inference is: 

x € VARt' g € VAR<t,t> 

x € VAR , f € VAR 
CJ <CJ,t> 

x € VAR, f,g EVAR 
CJ <CJ,T> 

if the conditions of theorem 5 . 2 • 

satisfied 

f,g E VAR <s,T> 

are 

From A= A' and the formula Bone may infer to formula B', where B' 

comes from B by replacing one occurrence of A, that is part of B, by A' 

Notice that the translation of axiom AS into Ty2, would lead to a 

formula of the form of A3, and that the translation of A6 into Ty2 would be 

of the form of A4. Axiom A6 will be considered in detail in the next sec-

tion. 

I will not consider details of this axiomatization for the following 

three reasons. 
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I) This axiomatization was designed for constituting a basis for the com

pleteness proof, and not for proving theorems in practice. To prove the 

most simple theorems on the basis of the above axioms would be rather dif

ficult. All proofs that will be given in the sequel are semantic proofs 

and not syntactic proofs: i.e. the proofs will be based upon the interpre

tation of formulas and not on axioms. 

2) We will work with models which obey certain postulates. These postulates 

express many important semantic details, and most of the proofs we are in

terested in, are based upon these special properties and not on the general 

properties described by the axioms. 

3) We do not work with generalized models,but with standard models. So the 

axiomatization is not complete in this respect. 

7. EXTENSION AND INTENSION 

In this section special attention is paid to the interaction of the 

extension operator and the intension operator. In this way some insight is 

obtained in these operators and their sometimes remarkable properties. The 

'Bigboss' example, which will be given below, is important since the Bigboss 

will figure as (counter)example on several occasions. 

7.1. THEOREM. For all i,g: V. VA[a] = V. a. 
i,g i,g 

VA A 
PROOF. Tr( a) = Tr( a)(a) Aa[Tr(a)](a) = [a/a]Tr(a) = Tr(a). 

Note that A-conversion is allowed because the condition of theorem 

4.5 is satisfied. 

7.1. END 

It was widely believed that the extension operator should be the right 

inverse of the intension operator as well. This believe is expressed in 

PARTEE (1975,p.250) and in GEBAUER (1978,p.47). It is true, however, only 

in certain cases. In order to clarify the situation, consider the following 

description of the effect of AV. Let I and D be denumerable, so 

D, {d 1,d2, ••. } and I= {i 1,i 2, .•• }. Let a E ME,, hence the meaning of a 

is a function with domain I and range D,. We may represent a as a denumer

able sequence of elements from D,. An example is given in figure 2. 
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arguments i l i2 i3 i4 

V. (a): values for .the respective arguments .:!1 d2 di d3 
i I' g 

V. (a): values for the respective arguments d2 ~2 d3 di l.2,g 

V. (a): values for the respective arguments di di 5!.2 d] l.3' g 

Figure 2. The in terpreation of a E ME 
T 

The interpretation for index i of AV a is some function with domain I and 

range D,. Which function it is does not depend on the choice of i, because 

Tr(Ava) which equals Aa[Tr(a)(a)], contains no free variables of types. 

The function V. (Ava) yields for argument i as value the value of V. (a) 
i,g n in,g 

for argument in. So in the above example for argument i 1 it yields as 

value d 1, for i 2 it yields d2, and for i 3 it yields d2 (the underlined ele-

) AV . . . . AV "11 ments . One observes that a is the diagonalization of a. So a= a wi 

hold for all i,g if for all i,j E I: V. (a) = V. (a). A syntactic descrip-
i, g J, g 

tion of a class of formulas for which the equality holds, is given in the 

following theorem. 

7.2. THEOREM. Suppose a is modally closed. Then for all i,g: V. [Ava] 
i, g 

= V. (a) • 
i, g 

PROOF. The functions Tr(Ava) and Tr(a) denote functions with domain I, and 

their values for an arbitrary argument i are the same: 

Tr(AVa) (i) = Aa[Tr(a) (a)J(i) = U/a]Tr(a) (U/a]a) Tr (a) (i) . 

Notice that U/a]Tr(a) = Tr(a) since a is modally closed. So for all 

as E AS:V Tr(AVa) = V (Tr(a)).which proves the theorem. 
as as ' 

7 .2. END 

The insights obtained from the 'diagonalization' point of view, can be 

used to obtain a counterexample for the case that a is not modally closed. 

It suffices to find an expression a of type T which has at index i 1 as its 

denotation a constant function from I to D,, say with constantly value d 1, 

and at index i 2 as its denotation a constant function yielding some other 

value, say d2 . This situation is represented in figure 3. 
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arguments 

V. (a): values for the respective arzuments .i1 di di di 1.1,g 

V. (a): values for the respective arguments d2 .i2 d2 d2 1.2,g 

Figure 3. A counterexample for 
AV 

a. 

Now V. [Ava](i 1) = d 1 ~ d2 = V. [Ava](i 1). 
1 1'g 1 2'g 
One way to obtain this effect is by means of a constant. I give an ex-

ample of a somewhat artificial nature (due to JANSSEN 1980). Let the valua-

ti6n of the constant Bigboss E CON for index i be the function con-
<s ,e> 

stantly yielding the object d E De to which the predicate 'is the most po-

werful man on earth' applies on that index. A possible variant of this ex-

ample would be the constant Miss-world E CON , to which the predicate 
<s ,e> 

applies 'is elected as most beautiful woman in the world'. 

Assume that for the constant Bigboss holds that for all j E I both 

V. [Bigboss](j) 
i I ,g 

V. [Reagan] 
i I ,g 

and 

V. [Bigboss J(j) 
l.2,g 

V. [Bresnjev]. 
].2' g 

Then 

V. [AVBigboss](i 2) = Ai[V. [Bigboss](i) J(i 2) 
l.l,g - i,g 

V. [Bigboss ](i 2) 
l.2,g 

V. [Bresnjev]. 
l.2,g 

So 

This effect does not depend on the special interpretations for constants. 

Another way to obtain the desired effect is by taking for a the expression 

x where x is a variable of type <s,<s,e>>. Let g(x) be defined such that 

for all j EI: g(x)(j) = V. [Bigboss]. Then AVVx ~ vx: 

because V. (AVVx)(i 2) = ~Lfg(x) (i)(i)](i2) = V. [Bigboss](i 2) 
1 1'g - 1 2'g 

= V. [Bresnev] 
i2,g 

V. [Bigboss](i 2) 
l.l ,g 
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The next example concerns the situation that IL is extended with the if
then-else cons true t. Let 13 be of type t and ~ and ijJ of type T, and define 

V. [if 13 then~ else ijJ]='{ V. (~) 11,g- 11,g 
v. (ijJ) 
1,g 

if v. (13) 
11 'g 

otherwise. 

Let x and y be variables of type <s,e> and assume that g(x) # g(y), but that 

for some i holds that g(x)(i) = g(y)(i). 

Then it is not true that for all i,g 

. L /\V[ V 1,g r if x 
v 

y then x else y] ' v [if x vy then x else y]. -- --

This kind of expression is rather likely to occur in the description of 

semantics of programming languages. 

The last example is due to GROENENDIJK & STOKHOF (1981). They consider 

the semantics of whether-complements. An example is 

John knows whether Ma.ry walks. 

The verb know is analysed as a relation between an individual and a propo

sition. Which proposition is John asserted to know? If it is the case that 

Mary walks, then John is asserted to know that Mary walks. And if Mary does 

not walk, then he is asserted to know that Mary does not walk. So the pro

position John knows appears to be 

if walk(mary)then ~4alk(mary) else 11 [1walk(mary)]. 

This example provides for a rather natural example of a formula ~ for 
h . h /\V w 1c ~ does not reduce. 



CHAPTER IV 

MONTAGUE GRAMMAR AND PROGRAMMING LANGUAGES 

ABSTRACT 

The present chapter starts with an introduction to the semantics of 

programming languages. The semantics of the assignment statement is con

sidered in detail, and the traditional approaches which use predicate 

transformers are shown to give rise to problems. A solution is presented 

according to the algebraic framework defined in the first chapters of this 

book; it uses an extension of intensional logic. 
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I. ASSIGNMENT STATEMENTS 

I.I. Introduction 

Programs are pieces of text, written in some programming language. 

These languages are designed for the special purpose of instructing com

puters. They also are used in colllIJlunication among human beings for telling 

them how to instruct computers or for colllIJlunicating algorithms which are not 

intended for computer execution. So for progralllIJling languages we are in the 

same situation as for natural languages. We have a syntax and we have in

tended meanings, and we wish to relate these two aspects in a systematic 

way. Since we are in the same situation, we may apply the same framework. 

In this chapter we will do so for a certain fragment of the progralllIJling 

language ALGOL 68. 

There exists nowadays several thousands of mutually incompatible pro

gramming languages. They are formal languages with a complete formal defi

nition of the syntax of the language. Such a definition specifies exactly 

when a string of symbols over the alphabet of the language is a program 

and when not. The definition of a progrannning language also specifies how 

a program should be executed on a computer, or, formulated more generally, 

what the program is intended to do. In fact, however, several programming 

languages are not adequately documented in this respect. Each programming 

language has its own set of strange idiosyncracies, design errors, perfect

ly good ideas and clumsy conventions. However, there are a few standard 

types of instructions present in most of the languages. The present chapter 

deals mainly with the semantics of one of those instructions: the assign

ment statement which assigns a value to a name. 

It appears that assignment statements exhibit the same phenomena as 

intensional operators in natural languages. A certain position in the con

text of an assignment statement is transparent (certain substitutions for 

names are allowed), whereas another position is opaque (such substitutions 

are not allowed). The traditional ways of treating the semantics of pro

gramming languages do not provide tools for dealing with intensional pheno

mena. A correct treatment of simple cases of the assignment statement can 

be given, but for the more complex cases the traditional approaches fail. 

I will demonstrate that the treatment of intensional operators in natural 

language, as given in the previous chapters, may also be applied to pro

gramming languages, and that in this way a formalized semantics of 
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assigmnent statements can be given which deals correctly with the more com

plex cases as well. Hence we will use the same logic: intensional logic 

(see chapter 3). The idea to use this logic goes back to JANSSEN & 

Van EMDE BOAS (l977a,b). We will however, not only use the same logic, but 

also the same compositional, algebraic framework. In chapter I the back

ground of this framework was discussed, and in chapter 2 it was defined 

formally and compared with the algebraic approach of Adj. For a biblio

graphy of universal algebraic and logical approaches in computer science 

see ANDREKA & NEMETI 1969. The first sections of the present chapter are a 

revision of JANSSEN & Van EMDE BOAS (1981). 

1.2. Simple assigmnents 

One may think of a computer as a large collection of cells each con

taining a value (usually a number). For some of these cells names are avail

able in the progrannning language. Such names are called identifiers or, 

equivalently, variables. The term 'identifier' is mainly used in contexts 

dealing with syntax, 'variable' in contexts dealing with semantics. The 

connection of a variable with a cell is fixed at the start of the execution 

of a program and remains further unchanged. So in this respect a variable 

does not vary. However, the cell associated with a variable stores a value, 

and this value may be changed several times during the execution of a pro

gram. So in this indirect way a variable can vary. The assignment statement 

is an instruction to change the value stored in a cell. 

An example of an assigmnent statement is: x := 7, read as 'x becomes 

7'. Execution of this assignment has the effect that the value 7 is placed 

in the cell associated with x. Let us assume that initially the cells asso

ciated with x, y and w contain the values 1, 2 and 4 respectively (figure 

la). The execution of x := 7 results in the situation shown in figure lb. 

Execution of y := x has the effect that the value stored in the cell asso

ciated with x is copied in the cell associated with y (figure le). The as

signment w := w + 1 applied in turn to this situation, has the effect that 

the value associated with W is increased by one (figure Id). 

Figure la Figure lb 

Initial Situation After x := 7 

: : rn 
w + ~ 
Figure le 

After y := 7 

: : ~57 
w + ~ 
Figure Id 

After w : = w + 1 
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Now the necessary preparations are made for demonstrating the relation 

with natural language phenomena. Suppose that we are in a situation where 

the identifiers x and y are both associated with value ?. Consider now the 

assignment 

(I) x := y + 1. 

The effect of (1) is that the value associated with x becomes 8. Now replace 

identifier y in (I) by x: 

(2) x := x + 1. 

Again, the effect is that the value associated with x becomes 8. So an iden

tifier on the right hand side of ':=' may be replaced by another which is 

associated with an equal value, without changing the effect of the assign

ment. One may even replace the identifier by (a notation for) its value: 

(3) x := ? + 1. 

Replacing an identifier on the left hand side of ':=' has more drastic con

sequences. Replacing x by y in (I) yields: 

(4) y := y + 1. 

The value of y is increased by one, whereas the value associated with x re

mains unchanged. Assignment (1), on the other hand, had the effect of in

creasing the value of x by one; likewise both (2) and (3). So on the left 

hand side the replacement of one identifier by another having the same 

value is not allowed. ifuile (2) and (3) are in a certain sense equivalent 

with (I), assignment (4) certainly is not. Identifiers (variables) behave 

differently on the two sides of':='. 

It is striking to see the analogy with natural language. I mention an 

example due to QUINE (1960). Suppose that, perhaps as result of a recent ap

pointment, it holds that 

(5) the dean = the chaiPman of the hospital board. 

Consider now the following sentence: 

(6) The corrnnissioner is looking for the chaiPman of the hospital board. 

The meaning of (6) would not be essentially changed if we replaced the com
missioner by another identification of the same person; a thus changed sen

tence would be true in the same situations as the original sentence. But 

consider now (7). 
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(7) The commissior-er is looking for the dean. 

Changing (6) into (7) does make a difference: it is conceivable that the 

commissioner affirms (6) and simultaneously denies (7) because of the fact 

that he has not been informed that (5) recently has become a truth. Sen

tence (7) is true in other situations than sentence (5). Hence they have a 

different meaning. In the terminology for substitution phenomena, the sub

ject position of is looking for is called (referentially) transparent, and 

its object position (referentially) opaque or intensional position. Because 

of the close analogy, we will use the same terminology for programming lan

guages, and call the right hand side of the assignment 'transparent', and 

its left hand side 'opaque' or 'irttensional'. 

The observation concerning substitutions in assignments statements, as 

considered above, is not original. It is, for instance, described in TENNENT 

1976 and STOY 1977 (where the term 'transparent' is used) and in PRATT 1976 

(who used both 'transparent' and 'opaque'). The semantic treatments of these 

phenomena which have been proposed, are, however, far from ideal, and in 

fact not suitable for assignments which are less simple than the ones above. 

The authors just mentioned, like many others, avoid these difficulties by 

considering a language without the more complex constructions. 

1.3. Other assignments 

Above we only considered assignments involving cells which contain an 

integer as value. In this section I will describe two other situations: 

cells containing an identifier as value (pointers) and rows of cells (ar

rays). 

Some programming languages also allow for handling cells which contain 

a variable (identifier) as value (e.g. the languages Pascal and Algol-68). 

Names of such cells are called pointer identifiers or equivalently pointer 

variables, shortly pointers. The situation that pointer p has the identi

fier x as its value, is shown in figure 2a. In this situation, p is indi

rectly related to the value of x, i.e. ?. The assignment p := w has the 

effect that the value stored in p' s cell becomes w (figure 2b). Thus p is in

directly related to the value of w: the integer 5. When next the assignment 

w := 6 is executed, the integer value indirectly associated with p becomes 

6 (figure 2c). So an assignmet can have consequences for pointers which are 

not mentioned in the assignment statement itself: the value of the variable 

associated with the pointer may change. 
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: : ~7 
y ->- 7 

w->- 5 

Figure 2a 

Initial Situation 

::~? ::~? 
y ->- 7 y ->- 7 

w->- 5 w->- 6 

Figure 2b 

After p := w 

Figure 2c 

After w := 6 

In a real computer, a cell does not contain an integer or a variable, 

but rather a code for an integer or an code for a variable. For most real 

computers it is not possible to derive from the contents of a cell, whether 

it should be interpreted as an integer code or a variable code. In order to 

prevent the unintended use of an integer code for a variable code, or vice 

versa, some programming languages (e.g. Pascal) require for each identifier 

a specification of the kind of values to be stored in the corresponding 

cells. The syntax of such a programming language then prevents unintended 

use of an integer code for an identifier code (etc.) by permitting only 

programs in which each identifier is used for a single kind of value. Other 

languages leave it to the discretion of the programmer whether to use an 

identifier for only one kind of value (e.g. Snobol-4). Our examples are 

from a language of the former type: ALGOL 68. 

The programming language ALGOL 68 also allows for higher order pointers, 

such as pointers to pointers to variables for integer values. They are re

lated to cells which contain as value (the code of) a pointer of the kind 

described above. These higher order pointers will be treated analogously to 

the pointers to integer identifiers. 

Several programming languages have names for rows of cells (arrays of 

cells). Names of such rows are called array identifiers, or equivalently 

array variables. An individual cell can be indicated by attaching a sub

script to the array identifier. The element of an array a associated with 

subscript i is indicated by a[i]. The cells of an array contain values of 

a certain kind: the cells of an integer array contain integers (see figure 

3a), and the cells of an array of pointers contain pointers. The execution 

of the assignment a[2] := 2 has the effect that in the cell indicated by 

a[2] the value 2 is stored (see figure 3b). The subscript may be a complex 

integer expression. The effect of the assignment a[a[l ]] := 2 is that the 

value in a[l] is determined, it is checked whether the value obtained 

(i.e. 1) is an acceptable index for the array and the assignment a[1] ·= 2 
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is performed (figure 3c). In the sequel I, will assume that all integers 

are acceptable indices for subscripts for an array, i.e. that all arrays 

are of infinite length (of course an unrealistic assumption; but I am in

terested in formalizing other aspects of arrays) . Other kinds of assignment 

which involve arrays are in the fragment (e.g. the assignment of the whole 

array in a single action), but I will deal primarlily with assignments of 

the form just discussed. 

a { :~~~ : ~1 
a[3] -+- 8 

a[ 4 J -+- 2 

a {:~~~ : ~2 
a[3] -+- 8 

a[4] -+- 2 

a {:~~~ : ~222 
a[3] -+-

a[4J -+-

Figure 3b Figure 3c Figure 3a 

Initial Situation After a[2] := 2 After a[a[l]J := 2 

2. SEMANTICS OF PROGRAMS 

2.1. Why? 

Let us consider, as an example, a program which computes solutions of 

the quadratic equation ax2 + bx + c = 0. The program is based upon the well

known formula 

(8) 

The program reads as follows: 

I. begin real a, b, c, disc, d, xl, x2; 

2. read ((a,b,c)); 

3. disc := b*b - 4*a*C; 

4. d := sqrt (disc); 

5. xl := -b + d; xl := x2/(2*a); 

6. x2 := -b - d; x2 := x2/(2*a); 

7. print ( (a,b, c,xl, x2, newline)) 

8. end. 

The first line of the program says that the identifiers mentioned there, 

will only be used as names of locations containing real numbers as values 

(e.g. 3.14159). The second and seventh line illustrate that the computer 
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may obtain data from outside (input) and communicate results to the outside 

world (output). The program also shows that the mathematical formula looks 

much more compact than the program, but that this compactness is made 

possible by the use of some conventions which have to be made explicit for 

the computer. For example, in the program we must write 4*a*C for 4 times a 

times c, while in the formula 4ac suffices. In the formula we use two di

mensional features, which are eliminated in the program (sqrt( •• ) instead 

of I ... ). This linear character is necessitated by the fact that programs 

have to be communicated by way of a sequential channel; for example, the 

wire connecting the computer with a card reader. The symbol real indicates 

that the identifiers mentioned may only be associated with real values, 

and the symbols begin and {ff!d indicate the begin and the end of the program. 

There exists a considerable confusion among programmers, theoreticians, 

and designers as to what we should understand by the semantics of a program

ming language. There are, however, so'me properties of programs for which 

there is a measure of agreement on the need for a treatment within the 

field of semantics. These properties are: 

coppectness: A program should perform the task it is intended to perform. 

For example the program given above is incorrec·t: it does not account for 

a = 0 or disc < O. 

equivalence: Two different programs may yield the same results in all cir

cumstances. For example, in the program under discussion we may interchange 

the order of the computation of xl and x2, but we cannot compute d before 

we compute disc. 

tel'171ination: If we start the execution of a program, will it ever stop? It 

might be the case that the computer keeps on trying to find the square root 

of -1, and thus for certain values of a, b and c never halts. 

Each of the above properties tells us something about the possible com

putations the program will perform when provided with input data. We want 

to predict what may happen in case ••• ; more specifically, we want to prove 

that our predictions about the capabilities of the program are correct. How 

can we achieve this goal? Clearly it is impossible to try out all possible 

computations of the program, instead one is tempted to run the program on 

a 'representative' set of input data. This activity is known as program 

debugging. This way one may discover errors, but one can never prove the 

program to be correct. Still, in practice, most programs used nowadays have 

been verified only in this way. One might alternatively try to understand 
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the program simply by reading its text. Again this is not of great help, 

since mistakes made by the programmer can be remade by the reader. The only 

way out is the invention of a mathematical theory for proving correctness, 

equivalence, termination etc .. We need a formalized semantics on which such 

a theory can be based. 

2.2. How? 

What does a formal semantics for a program look like? The most common 

approach is a so-called operational semantics. One defines the meaning of 

a program by first describing some abstract machine (a mathematical model 

of an idealized computer) and next specifying how the program is to be 

executed on the abstract machine. Needless to say the problem is transfer

red in this way from the real world to some idealistic world. The possibly 

infinitely many computations of the program remain as complex as before. On 

the other hand, it is by use of an operational semantics that the meaning 

of most of the existing programming languages is specified. Examples are 

the programming languages PL/I in LUCAS & WALK 1971, and, underneath its 

special description method, ALGOL 68 in Van WIJNGAARDEN 1975. 

For about 15 years so-called denotational semantics have been provided 

for programming languages (see e.g. TENNENT 1976, STOY 1977, De BAKKER 1980) 

of a program is given as a mathematical object in a model; usually some 

function which describes the input-output behaviour of the program. By ab

stracting from the intermediate stages of the computation, the model has 

far less resemblance to a real computer than the abstract machines used in 

operational semantics. The programs are not considered so much to be trans

forming values into values, but rather as transforming the entire initial 

state of a computer into some final state. In this approach, states are 

highly complex descriptions of all information present in the computer. 

Mostly, we are not interested in all aspects of a computer state, but 

only J..n a small part (for instance the values of the input and output vari

ables). This leads to a third approach to semantics, which uses so-called 

predicate transformers (FLOYD !967, HOARE 1969, DIJKSTRA 1974, 1'976 and 

DE BAKKER 1980). A (state) predicate J..S a proposition about states. So a 

predicate specifies a set of states: all states for which the proposition 

holds true. We need'to correlate propositions about the state before the 

execution of the program (preconditions) with propositions about the state 

afterwards (postconditions). This is the approach to semantics that we will 
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follow in the sequel. Usually one distinguishes approaches which asso

ciate preconditions and postconditions, but do not consider termination of 

the execution of the program, and approaches which consider termination as 

well. The former approaches are said to deal with partial correctness, and 

the latter with totaZ correctness. Since all programs we will discuss are 

terminating programs, the distinction is for our fragment not relevant and 

will not be mentioned any further. 

As an example we consider the program from Section 2.1. An initial 

state may be described by specifying that on the input channel three num-
2 bers a, b and c are present such that a ~ 0, and b - 4ac ~ O. The execu-

tion of the program will lead such a state to a state where xl and x2 con

tain the solutions to the equation ax2 + bx + c = O. Conversely, we observe 

that, if one wants the program to stop in a state where xl and x2 repre-

h 1 . f h . 2 b 0 . ff. . sent t e so utions o t e equation ax + x + c = , it su ices to require 

that the coefficients a, b and c are present on the input channel (in this 

order~) before the execution of the program, and that moreover a ~ 0 and 

b2 - 4ac ~ 0. In the semantics we will restrict our attention to the real 

computation, and therefore consider a reduced version of the program from 

which the input and output instructions and the specifications of the iden

tifiers such as reaZ are removed. Let us call this reduced program 'prog'. 

In presenting the relation between predicates and programs, we follow a 

notational convention due to HOARE 1969. Let 'IT be a program, and cp and ijJ 

predicates expressing properties of states. Then {cj>}'IT{ijJ} means that if we 

execute 'IT starting in a state where cp holds true, and the execution of the 

program terminates, then predicate ijJ holds in the resulting state. Our ob

servations concerning the program are now expressed by: 

(9) fo ~ 0 A (b 2-4ac) ~ 0} prog {a.(x1) 2 + b(xl) + c = 0 A 

2 2 
a(x2) + b(x2) + c = 0 A Vz[az + bz + c = 0 + z = xl v z = x2J}. 

There are two variants of predicate transformer semantics. The aim of 

the first variant, the forward approach or (Floyd-approach) can be described 

as follows. For any program 'IT, find, according to the structure of 'IT, a pre

dicate transformer which for any state predicate cp yields a state predicate 

ijJ, such that if cj> holds before the execution of 'IT, then ijJ gives all infor

mation about the final state which can be concluded from cp and 'IT. Such a 

predicate ijJ is called a strongest postcondition with respect to cp and n. 
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defined by 

(I) {~} TI {sp} and 

(II) If {~} TI {n} then from sp we can conclude n. 
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Suppose that we have two predicates sp1 and sp2, both satisfying (I) 

and (II). Then they are equivalent. From (I) follows that{~} TI {sp1} and 

{~} TI {sp2}. Then from (II) follows that sp1 implies sp2 and vice versa. 

Since all strongest postcondition with respect to ~ and TI, are equivalent, 

we may speak about the strongest postcondition with respect to ~ and TI. For 

this the notation sp(TI,~) is used. 

Instead 0f this appr0ach, one frequently follows an approach which re

verses the process: the baakwa.1.'d-approaah or Hoa.1.'e-approaah. For a program 

TI and a predicate w one wants to find the weakest predicate which still 

ensures that, after execution of TI, predicate w holds. Such a predicate is 

called a weakest preaondition. Mathematically a weakest precondition wp 

(with respect to TI and W) is defined by 

I {W'p} TI {W} 

II If {n} TI {w} then from n we can conclude wp. 

Analogously to the proof for postconditions, .it can be shown that all 

weakest preconditions are equivalent. Therefore we may speak about the 

weakest precondition with respect to TI and ~. For this the notation 

wp(TI,~) is used (see DIJKSTRA 1974, 1976 for more on this approach). 

Above, I used the phrase 'based upon the structure of TI 1 • This was re

quired since it would be useless to have a semantics which attaches to each 

program and predicate a strongest postcondition in an ad-hoe way, in parti

cular because there are infinitely many programs. One has to use the fact 

that programs are formed in a structured way according to the syntax of 

the programming language, and according to our framework, we aim at ob

taining these predicate transformers by means of a method which employs 

this structure. 

3. PREDICATE TRANSFORMERS 

3.1. Floyd's forward predicate transformer 

Below, Floyd's description is given of the strongest postcondition for 

the assignment statement. But before doing so, I give some suggestive 
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heuristics. Suppose that x = 0 holds before the execution of x := 1. Then 

afterwards x = 1 should hold instead of x = O. As a first guess at a gener

alization one might suppose that always after execution of v := o it holds 

that V = o. But this is not generally correct, as can be seen from inspec

tion of the assignment x := x + 1. One must not confuse the old value of a 

variable with the new one. To capture this old value versus new-value dis

tinction, the information about the old value is remembered using a variable 

(in the logical sense!) bound by some existential quantifier and using the 

operation of substitution. So after v := o one should have that v equals 

'o with the old value of v substituted (where necessary) for v in o'. This 

paraphrase is expressed by the expression V = [z/v] o, where z stands fo~ 

the old value of v and [z/v] is the substitution operator. Thus we have ob

tained information about the final situation from the assignment statement 

itself. Furthermore we can obtain information from the information we have 

about the situation before the execution of the assignment. Suppose that 

4> holds true before the execution of the assignment. From the discussion 

in Section 2 we know that the execution of v := o changes only the value 

of v. All information in 4> which is independent of v remains true. So after 

the execution of the assignment [z/v]q, holds true. If we combine these two 

sources of information into one formula, we obtain Floyd's foY'Wa:rd predi

cate transformation ruZ.e for the assignment statement (FLOYD 1967). 

(10) {q,} v:=o {3z[[z/vJq, A v [z/vJoJ}. 

Here 4> denotes an assertion on the state of the computer, i.e., the values 

of the relevant variables in the program before execution of the assignment, 

and the more complex assertion 3z[[z/vJq, A v = [z/v]o] describes the situa

tion afterwards. 

The examples below illustrate how the assignment rule works in prac-

tice. 

I) assignment: x := 1; precondition: x 0 

obtained postcondition: 

3z[[z/x](x=O) A x = [z/x]l], i.e. 3z[z=O A x=l], which is equivalent to 

x = 1. 

2) assignment: x := x + 1; precondition: x > 0 

obtained postcondition: 

3z[[z/x](x>O) Ax= [z/x](x+l)], i.e. 3z[z>O A x=z+l], which is equiv

alent to x > 1. 
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3) Assignment: a[l] := a[1] + 1; precondition: a[l] = a[2]. 

Obtained postcondition: 

3z[[z/a[1]J(a[1] = a[2]) A a[1] = [z/a[1JJ(a[1]+1)], i.e. 

3z[z = a[2] A a[l] = z+l], which is equivalent to a[l] = a[2] + 1. 

3.2. Hoare's backward predicate transformer 

Below Hoare's description will be given of the weakest precondition 

for the assignment statement. First I will give some heuristics. Suppose 

we want x = 4 to hold after the execution of x := y + 1. Then it has to be 

the case that before the execution of the assignment, y + 1 = 4 holds. 

More generally, every statement about x holding after the assignment has 

to be true about y + 1 before its execution. This observation is described 

in the following rule for the backward predicate transformer (HOARE 1969) 

(II) {[a/vJ~} v :=a{~}. 

Some examples illustrate how the rule works in practice. 

I) Assignment: x := 1; postcondition: x = 1. 

Obtained precondition: 

[1/x](x=l), i.e. 1 = 1, or true. 

This result says that for all initial states x = 1 holds after the exe

cution of the assignment. If the postcondition had been x = 2, the ob

tained precondition would have been 1 = 2 or false, thus formalizing 

that for no initial state does x = 2 hold after execution of x := 1. 

2) Assignment: x := x + 1; postcondition x > 1. 

Obtained precondition: 

[x+1/x](x>1), i.e. x + 1 > 1 which is equivalent to x > 0. 

3) Assignment: a[l] := a[l] + 1, postcondicion a[l] = a[2] + 1. 

Obtained precondition: 

[a[l] + 1/a[l]](a[l] (a[2]+1)), i.e. a[1] + 1 = a[2] + 1, which is 

equivalent with a[l] = a[2]. 

3.3. Problems with Floyd's rule 

Since 1974 it has been noticed by several authors that the assignment 

rules of Floyd and Hoare lead to incorrect results when applied to cases 

where the identifier is not directly associated with a cell storing an in

teger value. Examples are given in Van EMDE BOAS (1974), (thesis 13), 
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be BAKKER (1976). GRIES (1977), JANSSEN & VanEMDE BOAS (1977a,b). The 

examples concern assignments involving an identifier of an integer array, 

or a pointer to an integer identifier. In this section I will consider only 

examples concerning Floyd's rule. 

An example concerning assignment to a subscripted array identifier is 

(12) a[a[l]J := 2. 

Suppose that the assertion which holds before the execution of the assign

ment is 

(13) a[l] = 1 A a[2] = 1. 

Then Floyd's rule implies that after the execution of the assignment holds 

(14) 3z[[z/a[a[l]JJ(a[l]=l A a[2J=J) A a[a[l]] = [z/a[a[1]]]2] 

i.e. 

(15) 3z[a[1] = 1 A a[2] 1 A a[a[l]] 2] 

which is equivalent to 

(16) a[l] = 1 A a[2] = 1 A a[a[l]J = 2. 

This formula is a contradiction, whereas the assignment is a correctly 

terminating action. Compare this result with the situations in figure 3, 

where this assignment is performed in a situation satisfying the given 

precondition. Then it is clear that the postcondition should be 

(17) a[l] = 2 A a[2J = 1. 

It turns out that problems also arise in the case of pointers 

(JANSSEN & Van EMDE BOAS 1977a). An example is the following program con

sisting of three consecutive assignment statements. The identifier p is a 

pointer and x an integer variable. 

(18) x := 5; p := x; x := 6. 

Suppose that we have no information about the state before the exe

cution of this program. This can be expressed by saying that the predicate 

true holds in the initial state. By application of Floyd's rule, we find 

that after the first assignment x = 5 holds (analogously to the first exam

ple above). Note that the state presented in figure 2a (Section I) satis

fies this predicate. For the state after the second assignment Floyd's rule 

yields: 

(19) 3z[[z/p](x=5) A p [z/p]x] 



i.e. 

(20) 3z[x=5 A p=x] 

which is equivalent to 

(21) X = 5 A p = X. 

It is indeed the case that after the second assignment the integer value 

related with p equals 5 (of figure 2b). According to Floyd's rule, after 

the third assignment the following is true: 

(22) 3z[[z/xJ(x=5 A p=x) A x = [z/x]6] 

i.e. 

(23) 3z[z = 5 A p = z Ax = 6]. 
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This formula says that the integer value related with p equals 5. But as 

the reader may remember from the discussion in Section 2, the integer value 

related with p is changed as well (figure 2c). 

3.4. Predicate transformers as meanings 

Floyd's assignment rule is one rule from a collection of proof rules: 

for each construction of the programming language there is a rule which 

describes a relation between precondition and post condition. The meaning 

of a construction is defined in a completely different way. A computer-like 

model is defined, and the meaning of a statement (e.g. the assignment 

statement) is described as a certain state-transition function (a function 

from computer states to computer states). The proof rule corresponding to 

the construction can be used to prove properties of programs containing 

this construction. A prime example of this approach is De BAKKER (1980). 

It is, however, not precisely the approach that I will follow in this 

chapter. 

In the discussion in section 2.2 I have mentioned arguments why pre

dicate transformers are attractive from a semantic viewpoint, and why 

state-transition function are less attractive. I will give predicate trans

formers a central position in my treatment: the meaning of a program, and 

in particular of an assignment statement, will be defined by means of a 

predicate transformer. 

In theory I could define the meaning of an assignment by any predicate 

transformer I would like. But then there is a great danger of loosing con

tact with the behaviour of computer programs in practice. Therefore I will 
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give a justification of my choice of the predicate transformers. This will 

be done by defining a state-transition function that resembles the usual 

state-transition semantics. Then it will be proven that the defined predi

cate transformers are correct and yield strongest postconditions (or weakest 

preconditions). In the light of this connection wit~ practice, it is not 

surprising that there is a resemblence between Floyd's (Hoare's) predicate 

transformer and the one I will define. But the formal position of the pre

dicate transformers is essentially different in this approach. Actually, I 

shall argue that Floyd's (Hoare's) predicate transformer cannot be used for 

our purposes. The problems with the standard formulation of the transformers 

are mentioned below; they are solvable by some modifications which will be 

discussed in the next section. The discussion will be restricted to the 

Floyd-approach; for the Hoare approach similar remarks apply. 

In the Floyd-approach the predicate-transformation rule for the as

signment is an axiom in a system of proof rules. It can be considered as an 

instruction how to change a given predicate into its strongest postcondi

tion. In our approach an assignment statement has to be considered seman

tically as a predicate transformer. Hence it has to correspond with a single 

expression which is interpreted in the model as a predicate transformer. 

This requires that Floyd's rule has to be reformulated into such an ex

pression. This can be done by means of a suitable A-abstraction. The pre

dicate transformer corresponding with assignment x := o will look like (24). 

(24) A$3z[[z/x]$ A x = [z/x]o]. 

This expression is not quite correct because of an inconsistency in the 

types of $. The subexpression [z/x]$ is part of a conjunction. Therefore 

both [z/x]$ and $ have to denote a truth-value. But in the abstraction A$ 

the $ is not intended as an abstraction over truth-values (there are only 

two of them), but as an abstraction over predicates (there are a lot of 

them). This means that the types of$ in (24) are not consistent, so it 

cannot be the predicate-transformer which we will use. 

A second problem is the occurrence of the substitution operator in 

Floyd's rule (and in (24)). It is an operator which operates on strings of 

symbols. The operator does not belong to the language of logic and there 

is no semantic interpretation for it. Hence expressions containing the 

operator have no interpretation. To say it in the terminology of our 

framework: expressions like (24) are not a polynomial operator over the 

logic used. Remember that no logical language has the substitution operator 
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as one of its operators. Substitution belongs to the meta-language, and is 

used there to indicate how an expression of the logic has to be changed in 

order to obtain a certain other expression. Since proof rules and axioms 

are, by their nature, rules concerning syntactic objects, there is no ob

jection against a substitution operator occurring in a proof rule. But we 

wish to use predicate transformers to determine meanings. If we would use 

substitution operators in predicate-transformers, then our transformers 

would be instructions for formula manipulation, and we would not do seman
tics. The same observation is made by Tennent with respect to another rule. 

He stated in a discussion (NEUHOLD 1978, p.69): 

Subs-titution is purely syntac-tic, function modification semantic. 
The third problem can be illustrated by considering the assignment 

x := y + 1. The identifier x is used in the execution of the program in an 

essentially different way than the identifier y. They is used to indicate 

a certain value. The x is used as the name of a cell, and not to indicate 

a value. This different use corresponds with the semantic difference : in 

section l.2 we observed that the left-hand side of the assignment statement 

is referentially opaque, whereas the right-hand side is transparent. Floyd's 

rule does not reflect these differences. The rule makes no clear distinction 

between a name and the value associated with that name. In my opinion this 

is the main source of the problems with Floyd's rule. Remember that all 

problems we considered above, arose precisely in those situations where 

there are several ways available for referring to a certain value in the 

computer: one may use an identifier or a pointer to that identifier; one 

may use an array identifier subscripted with an integer, or subscripted 

with an compound expression referring to the same value. 

In the field of semantics of natural languages an approach which iden

tified name and object-referred-to was employed in the beginnings of this 

century. Ryle epitomizes this feature of these theories in his name for 

them: 'Fido'-Fido theories! The word 'Fido' means Fido, the dog, which is 

its meaning (see STEINBERG & JAKOBOVITS 1971, p.7). The approach was 

abandoned, because it turned out to be too simple for treating the less 

elementary cases. In view of the analogy of the behaviour of names in na

tural languages and in programming languages we observed in section I, it 

is not too surprising that Floyd's rule is not completely successful either. 
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4. SEMANTICAL CONSIDERATIONS 

4.1. The model 

In section 5 the syntax and semantics of a small fragment of a pro

gramming language will be presented; in section 7 a larger fragment will be 

dealt with. The treatment will fit the framework developed in the first 

chapter. So we will translate the programming language into some logical 

language, which is interpreted in some model. In the present section the 

semantical aspects (model, logic) will be discussed which are relevant for 

the treatment of the first fragment. In sections 6 and 7 this discussion 

will be continued. 

In section 2.1 we observed that the assignment statement creates an 

intensional context. Therefore it is tempting to try to apply in the field 

of programming languages the notions developed for intensional phenomena 

in natural languages. The basic step for such an application is the trans

fer of the notion 'possible world' to the context of programming languages. 

It turns out that possible worlds can be interpreted as internal states of 

the computer. Since this is a rather concrete interpretation, I expect that 

the ontological objections which are sometimes raised against the use of 

possible world semantics for natural languages (e.g. POTTS 1976), do not ap

ply here. The idea to use a possible world semantics and some kind of modal 

logic can be found with several authors. An influencing article in this 

direction was PRATT 1976; for a survey, see Van EMDE BOAS 1978 or PRATT 

1980. 

An important set in the model is the set of possible worlds, which in 

the present context will be called set of states. This set will be intro

duced in the same way as possible worlds were introduced in the treatment 

of natural languages. It is just some non-empty set (denoted by ST). They 

are not further analysed; so we do not build explicitly in our semantic 

domains some abstract model of the computer. But this does not mean that 

every model for intensional logic is an acceptable candidate for the inter

pretation of programming languages. Below I will formulate some restrictions 

on these models, which determine a certain subclass, and these restric

tions have, of course consequences for the set ST as well. In this indirect 

way certain properties of the computer are incorporated in the model. The 

formulation of the restrictions only concern the simple assignment state

ment, and they will be generalized in section 7. 
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An integer identifier is associated with some cell in the computer, 

and for each state we may ask which value is contained in this cell. The 

semantic property of an integer identifier we are interested in, is the 

function which relates a state with the value contained (in that state) in 

the cell corresponding to that identifier. So we wish to associate with an 

identifier a function from states to values, see chapter for a discussion 

(the same idea can be found in ADJ 1977 or 1979). In order to obtain this 

effect, integer identifiers are translated into constants of type <s,e> 

(e.g. the identifiers x,y and w are translated into the constants x,y and 

w of type <s,e>). But something more can be said about their interpretation. 

The standard interpretation of constants of intensional logic allows that 

for a given constant we obtain for different states different functions 

from states to values as interpretation. But we assume that on the computers 

on which the programs are executed, the relation between an identifier and 

the corresponding cell is never changed, so that for all states the func

tion associated with an identifier is the same. The interpretations of x,y 

and w have to be state independent (in chapter 5, section 2 a related situa-

tion will arise for natural language; one uses there for such constants the 
name 'rigid designators'). This requirement implies that not all models for 

intensional logic are acceptable as candidates for formalizing the meaning 

of progranming languages. We are only interested in those models in which 

the following postulate holds. 

4.1. Rigidness Postulate 

Let c E CON and v E VAR Then the following formula holds: <s,e> <s,e> 

3v0 [c=v]. 

4.1. END 

The above argumentation in favour of the rigidness postulate is not 

completely compelling. For a fragment containing only simple assignment 

statements one might alternatively translate integer identifiers into con

stants of type e which are interpreted non-rigidly. In such an approach 

the constant relation between an identifier and a cell would not have been 

formalized. This aspect will, however, become essentail if the fragment is 

extended with pointers. Although there are no essentially non-rigid con

stants in the fragment under consideration, it is also possible to consider 
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such constructs e.g. the integer identifier xory which denotes the same as 

the integer identifier x or the integer identifier y, depending on which of 

both currently has the greatest integer value. The rigidness postulate 

guarantees that the interpretation of constants is state independent. There

fore we may replace the usual notation for their interpretation, being 

F(c)(s), by some notation not mentioning the current state. I will use 

V(c) as the notation for the interpretation of a constant with respect to 

an arbitrary state. 

Two states which agree in the values of all identifiers should not be 

distinguishable, since on a real computer such states (should) behave alike. 

Two states only count as different if they are different with respect to 

the value of at least one identifier. This is expressed in the following 

postulate. 

4.2. Distinctness Postulate 

Let s,t EST. If for all c E CON, V(c)(s) 

4. 2. END 

V(c) (t), then s t. 

The execution of an assignment modifies the state of the computer in 

a specific way: the value of a single identifier is changed, while the 

values of all other identifiers are kept intact. This property is expressed 

by the update postulate, which requires that the model to be rich enough to 

allow for such a change. The term 'update' should not be interpreted as 

stating that we change the model in some way; the model is required to have a 

structure allowing for such a transition of states. 

4.3. Update Postulate 

For all s E ST, c E CON . , n E lN there is a t E ST such that <s,e> 

V(c) (t) = n 

V(c')(t) =V(c')(s) if c' #-c. 

4.3. END 

The update postulate requires the existence of a certain new state, 

and the distinctness postulate guarantees the uniqueness of this new state. 
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I formulated the update postulate for constants of type <s,e> only, but 

in section 7 it will be generalized to constants of many other types as 

well. If the update postulate holds for a constant c and a value d, then 

the (unique) state required by the postulate is denoted <c+d>s. 

Note that the postulates differ from the meaning postulates given for 

natural languages in the sense that they are formulated in the meta-lan

guage and not in intensional logic itself. This allowed us to use quanti

fication over states and over constants in the formulation of the postulates. 

One might wish to construct a model which satisfies these three postu

lates. It turns out that the easiest way is to give the states an internal 

structure. The rigidness postulate and the distinctness postulate say that 

we may take for elements of ST sets of functions from (translations of) 

identifiers to integers. The update postulate says that ST has to be a suf

ficiently large set. Let ID be the set of integer identifiers. Then we might 

take ST lNID. Another possibility (suggested by J. Zucker) is 

ST= {s ENID I s(x) ~ 0 for only finitely manyx}. Sets of states with a 

completely different structure are, in principle, possible as well. 

In the introduction I have said that the set of states (set of pos

sible worlds) is just some set. This means that states are, in our approach, 

a primitive notion and that no internal structure is required for them. But 

the models just described correspond closely with the models know from the 

literature (e.g. the one defined by De BAKKER (1980, p.21)); for the larger 

fragment we will consider this correspondence is less obvious (see section 

7). The difference between these two approaches is that here we started 

with requiring certain properties, whereas usually one starts defining a 

model. A consequence is that we are only allowed to use the properties we 

explicitly required, and that we are not allowed to use the accidental 

properties of a particular model. This is an advantage when a model has to 

be explicit about a certain aspect, whereas a theory is required to be 

neutral in this respect. An example could be the way of initialization of 

identifiers as discussed in De BAKKER (1980, p.218). He says about a cer

tain kind of examples that it: '[ .. ]indicates an overspecification in our 

semantics[ .. ], it also leads to an incomplete proof theory'. He avoids 

the problem by eliminating them from his fragment. By means of the present 

approach such an overspecification could probably avoided. 
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4.2. The logic 

We will use a possible-world semantics for dealing with phenomena of 

opaque and transparant contexts. Therefore it is tempting to use as logical 

language the same language as we used in the previous chapters: intensional 

logic. Since we deal with a programming language, some of the semantic 

phenomena will differ considerably from the ones we considered before. In

tensional logic will be extended with some new operators which allow us to 

cope with these new phenomena. 

The programs deal with numbers, and this induces some changes. The con

stants of type e (v1 ,v2 , ••• )will be written in the form 0,1,2,3 .. ,e ,e 
and interpreted as the corresponding numbers. The logic is extended with 

operators on numbers: +, x, -, ~. ~. =. The symbols true and false abbre

viate 1 = 1 and 1 # 1 respectively. The progrannning language has an if

then-else-fi construction (the fi. plays the role of a closing bracket; it 

eliminates syntactic ambiguities). A related construction is introduced in 

the logic. Its syntax and semantics are as follows: 

4.4. DEFINITION. For all T E Ty, a E MEt' 8 E ME, and y E ME, we have 

The interpretation is defined by: 

V if a then 8 else y s,g 

4.4. END 

if V (a) s,g 

otherwise. 

The update postulate and the distinctness postulate guarantee for 

n E lN and c E CONe existence and uniqueness of a state <c+n>s. It is use

ful to have in the logic an operator which corresponds with the semantic 

operator <c+n>. These operators, which I will call state switchers, are 

modal operators (since they change the state, (i.e. world) with respect to 

which its argument is interpreted). The syntax and semantics of state 

switchers is defined as follows. 

4.5. DEFINITION. For all cr,T E CAT, ~ E MEO, c E CON a E ME we have <s,T>' T 



v 
{a./ c}c/> E ME • 

cr 

The interpretation is defined by: 

v 
V ({a./ c}<j>) 
s,g 

[

V<c+V (a)>s,g(<j>) 
s,g 

v (<j>) s,g 

if <c+V (a)>s 
s,g 

is defined, 

otherwise. 

149 

Note that in the present stage of exposition, the 'defined' case only ap

plies for c E CON <s,e> 
4.5. END 

One might wonder why the state-switcher contains an extension operator, 

for only the constant c and the expression a are relevant for determing 

which state-switcher is intended. The reason is that state-switchers have 

many properties in common with the well-known substitution operators. The 

state-switcher determined by c and a behaves almost the same as the substi

tution operator [a/vc]. This will be proven in section 4.3. 

The meaning of a program will be defined as a predicate transformer. 

Since we will represent meanings in intensional logic, we have to find a 

representation of predicate transformers in intensional logic. Let us first 

consider state-predicates. These are properties of states. For some states 

the predicate holds, for others it does not hold, so a state predicate is 

a function f: S + {O,l}. Since the interpretation of intensional logic is 

state-dependent, such a state predicate can be represented by means of an 

expression of type t. 

A predicate transformer should, in the present approach, not be an 

operation on expressions, but a semantic function which relates state

predicates with state-predicates. So it should be a function 

f: (S+{O,I}) + (S+{O,I}). This means that it is a function which yields a 

truth-value, and which takes two arguments: a state-predicate, and a state. 

Changing the order of the arguments does not change the function essentially. 

We may consider a state-predicate as a function which takes a state and a 

state-predicate, and yields a truth-value. Hence we may say that a predi

cate transformer is a function f: S->- ((S+{O,I}) + {O,l}). This view is, 

in a certain sense, equivalent to the one we started with. A formula of 

type <<s,t>,s> has as its meaning such a function, hence formulas of type 
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<<s,t>,t> are suitable as representations of predicate transformers. There

fore programs and assignments can be translated into expressions of this 

type. 

One might have expected that programs and assignments are translated 

into expressions of type <<s,t>,<s,t>>. This was the type of the transla

tions of programs and assignments in JANSSEN & Van EMDE BOAS (1977a,b). The 

first argument for using the type <<s, t>, t> of theoretical r,ature. An ex

pression of type <<s,t>,<s,t>> has as its meaning a function 

f: S + ((S+{O,I}) + (S+{O,I})), and this is not a predicate transformer 

(although it is closely connected, and could be used for that purpose). 

The second argument is of practical nature: the type of the present trans

lation gives rise to less occurrences of the A and v signs. 

A consequence of the representations which we use for (state-)predi

cates and predicate transformers is the following. Suppose that program rr 

is translated into predicate transformer rr', and that this program is exe

cuted in a state which satisfies predicate~. Then in the resulting state 

the predicate denoted by rr'(A~) holds; it is intended as the strongest 

condition with respect to program rr and predicate~ (i.e. sp(rr,~)). 

4.3. Theorems 

The substitution theorem says that the state-switcher behaves almost 

the same as the ordinary substitution operator. The iteration theorem 

describes a property of the iteration of state-switchers. 

4.6. SUBSTITUTION THEOREM. The following equalities hold with respect to all 

variable assignments and states. 

I. 

2. 

4. 

5. 

6. 

7. 

{a/vc}c' 

{a/vc}v 

v 
{a/ c}(3x~) 

c' 

v 

for all c' E CON. 

for aZZ v E VAR. 

analogously for v,+,+-+,I, if-then-else-fi constructs. 

3x{a/vc}~ if x does not occur free in a 

analogously for Vx~, Ax~. 

v v v 
{a/ c}(S(y)) =[{a/ c}S]({a/ c}y). 

{a/vc}AS 

{a/vc}vc a. 

analogously for D S 
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Consequence 

The state switcher {a/ve} behaves as the substitution operator [a/ve], 

except if applied to '\i ,o S or v S (where S t e). The formulas {a/ e} "s and 

fo/e}DS reduce to "sand Of3 respectively, whereas fo/e}vf3 cannot be re

duced any further. 

PROOF. Let t be the state <e+V (a)>s, so 
s,g vt cp. ,g 

I. V (fo/ve}e')=V (e')=V (e'). 
s,g t,g s,g 

2. 

3. 

4. 

5. 

6. 

7. 

The equalities hold because of the Rigidness Postulate. 

v 
v fo/ c} (v) = vt (v) s,g ,g 

v 
V {a/ e}(cjJAW) = I -s,g 

= g(v) = V (v). 
s,g 

Vt,g(<PAW) = I - vt,g(cp) = 

v 
V (W) = I - V ( fo/ e}cp) t,g s,g = I 

v 
and V ({a/ e}w) s,g 

v v 
v ({a/ e}cp" {a/ e}w) = I. s,g 

Analogously for the other connectives. 

and 

-
v 

V (fo/ e}3xcjl) s,g - Vt (3xcjl) = I - there is a g' ~ g such 
,g x 

that vt,g'(cp) = - {x not free in a~} - there is a g' ~x g such 

that V ({a/ve}cjl) = I - V (3x{a/ve}cp) = I. 
s,g s,g 

vs,g{a/ve}(S(y)) = vt,g(S(y)) = Vt,g(S)(Vt,g(y)) 

V ({a/ve}S)(V {a/ve}y) = V ({a/ve}S({a/ve}y)). 
s,g s,g s,g 

v /\ /\ /\ 
V (fo/e}S)=V (S)=At'Vt' (S)=V (f3). 
s,g t,g - ,g s,g 

V ({a/ve}ve) = V (ve) = V(e)(<c+V (a)>s) = V (a). 
s,g t,g s,g s,g 

4.7. ITERATION THEOREM. 

PROOF. Note that also here the state switcher behaves as a substitution 

operator: first a substitution of a 2 for all occurrences of vc, and next a 

substitution of a 1 for the new occurrences of ve, is equivalent with an im

medaite substitution of [a 1/veJa2 for all occurrences of ve. The proof of 

the theorem is as follows. 

First consider <c+d 1>(<e+d2>)s, where d 1 and d2 are possible values 

of e. This denotes a state in which all identifiers have the same value as 

ins, except fore which has value d 1. So it is the same state as <c+d 1>s 
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(due to the distinctness postulate). This equivalence is used in the proof 

below. 

v v v 
V {a 1/ c}({a 2/ c}$) = V<c+V (a )>s g{a 2/ c}($) 
s,g s,g I ' 

V<c+V< V ( )> (a 2)>(<c+-v (a 1)>)s,g($) 
c+ s,g a 1 s,g s,g 

V<c+V (a )>s g($) = 
<c+-V (a )>s g 2 ' 

s,g I ' v v 
V v ($)=V {fo 1/c}a 2/c}($) <c+-V ({a 1/ c}a 2)>s,g s,g s,g 

4.7. END 

5. FIRST FRAGMENT 

5.1. The rules 

In this section the syntax and semantics will be presented of a small 

fragment of a programming language. The fragment contains only programs 

which consist of a sequence of simple assignment statements; many program

ming languages have a fragment like the one presented here. The treatment 

will be in accordance with the framework developed in the first chapters 

of this book. This means that for each basic expression (generator of the 

syntactic algebra) there has to be a translation into the logic, and that 

for each syntactic rule there has to be a corresponding semantic rule which 

says how the translations of the parts of a syntactic construction have to 

be combined in order to obtain the meaning of the compound construction. 

The syntax of the fragment has the following five categories: 

!. INT The set of representations of integers. Basic expressions in 

this category are: 1,2,3, .•• ,12, ••• ,666, •.• 

2. ID The set of integer identifiers. Basic expressions are x,y and z. 

3. ASS The set of assignments. 

4. PROG The set of programs. 

5. BOOL The set of boolean expressions. 

The basic expressions of the category INT translate into corresponding con

stants of type e; the translation of 1 is 1 etc. The identifiers x,y and w 
translate into corresponding constants of type <s,e>: the translation of x 

is x. 

The syntactic rules are presented in the same way as in previous chap

ters. In the clause called 'rule', the categories involved are mentioned; 
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first the categories of the input expressions, then the category of the re

sulting expression. The F-clause describes the operation which is performed 

on the input expressions; here a. always stands for the first input expres

sion, S for the second, and y for the third. The T-clause describes how the 

translation of the resulting expression is built up from the translations 

of the input expressions. Here a.' denotes the translation of the first in

put expression, S' of the second, and y' of the third. 

Rule 

Example 

,~la: INT x INT + BOOL 

Fla:a.=S 

Tia: a.' = S'. 

s 1a: Out of the integer expressions 1 and 2, we may build the 

boolean expression 1 < 2, with as translation 1 < 2. 

Rules s 1b •• s 1e: Analogously for the relations>,$,~, 

Rule 52a: 

F2a: 

T2a: 

Example 

Rules SZb' 5 2c: 

Rule 

Example 

Rule s4 

F4 

T4 

Example 

Rule 

Example 

INT x INT + INT 

Cl. + s 
a.' + S' 

(1+2) I = 1 + 2 

Analogously for the operations x and + 

ID + INT 

Cl. 

v a.' 

The integer identifier x can be used to denote an integer. 

ID x INT + ASS 

Cl. := s 
AP[3z[{z/va.'}vp A 

v 
a.' = {z/a.'}S' JJ (z E VAR ) 

e 
See below. Notice the similarity and differences between 

this predicate transformer and Floyd's original rule. Some 

extension operators have been added, and the substitution 

operator is replaced by an operator with a semantical in

terpretation. 

ASS + PROG 

a.' 

Every assignment statement can be used as a (reduced) pro-

gram. 
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Rule s6 PROG x PROG + PROG 

F6 a;B 

T6 ).p[a' (AB' (P))]. 

Rule s 7 BOOL x PROG x PROG + PROG 

F 7 :!:f.. a then B else y fi 
T7 AP[B'A(a' A VP) v y'A(la' A VP)] 

5.2. Examples 

5.1. EXAMPLE: x := y. 

The derivational history of this assignment is presented in figure 4. 

Also the successive steps of the translation process are presented in the 

tree. At each stage the number of the rule used and the category of the 

produced expression are mentioned between braces. 

{ 
y := x {Prog,S5} 

v v v 
:\P[3z[{z/ y} PA y 

I 
{

y := x {Ass,s4} 

v v v 
:\P[3x[{z/ y} PA y 

/ {:{ID} 

Figure 4. y := x 

v v 
{z/ y}( x)]] 

The obtained translation of the program can be reduced, using the sub

stitution theorem, to (25) 

v v v v (25) ).p[3z[{z/ y} p A y= x]]. 

Now suppose that before the execution of the assignment x equals 7 and y 

equals 2 (cf. Section I, Figure 2c). So the initial state satisfies predi

cate (26) : 

( 26) V X = 7 A Vy 2. 



Then after the execution of the assignment the following holds: 

This reduces to (28), and further to (29) and (30). 

(28) 3z[{z/vy}(vx=7 A vy=2) A vy=vx] 

(29) 3z[vx=7 A z=2 A vy=vx] 

(30) 
v v v 
x=7 A y= x. 

5.2. EXAMPLE: y := x; y := y + 1. 

The translation of the second assignment statement is obtained in the same 

way as the translation of y := x in example 5.1. Its translation is (31), 

which reduces to (32). 

(31) AP3z[{z/vy}vp A vy 

(32) AP3z[{z/vy}VP A Vy 

v v 
{z/ y} ( y+l)] 

z+l]. 

The translation of the whole program is therefore 

AQ[y:=y+lJ'(A[[y:=x]' (Q) ]) = 

AQAP[3z[{z/vy}vp A vy = z+1]](A3z[{z/vy}vQ A vy=vx]) 

v v v v v v 
AQ3z[{z/ y}(3w[{w/ y} Q A y= x]) A y = z+l] 

AQ3z3w[{{z/vy}w/vy}vQ A z=vx A Vy z+l] 

AQ3z3w[{w/vy}vQ A z=vx A Vy= z+l]. 

Suppose now that before the execution of the program x > 0 holds. Then af

terwards (33) holds, which reduces in turn to (34) and further to (35). 

(33) 3z3w[{w/vy}(vx>O) A z=vx A vy=z+l] 

(34) 3z[vx>O A z=vx A vy=z+l] 

(35) 
v v v 

x>O A y= x+l. 

In the treatment of this program we first determined the translation 
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of the program, and then considered some specific precondition. If we knew 

the precondition beforehand, and were only interested in obtaining the post

condition (and not in obtaining the translation of the whole program), 

we could first calculate the postcondition after the first assignment. This 

postcondition could then be taken as precondition for the second assignment. 
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5.3. EXAMPLE: i:f y < O then y := x else y := y+l fi_. 

The predicate transformer corresponding with this program is 

V A V V 
A y=z+l] (l[ y<O] A Q)]. 

This reduces to 

v v v v v v v 
(37) AQ[3z[z<O A {z/ y} Q A y= x] v 3z[l[z<O]A{z/ y} Q A y=z+l]. 

Suppose that we have no information about the state before the execution of 

the assignment. This is expressed by the precondition 1=1. Then afterwards 

(38) holds, which reduces to (39). 

(38) 3z[z<O A vy=vx] v 3zCl[z<O] A vy=z+l] 

(39) 
v v v 

y= x v y ~ 1. 

5.3. END 

6. POINTERS AND ARRAYS 

6.1. Pointers 

An application of Floyd's rule to assignments containing pointers may 

give rise to problems, see the example in section 3. In sections 4-6 we 

have developed a compositional, algebraic approach for simple assignments. 

This algebraic approach can be generalized in a straightforward way to the 

case of pointers. I will consider at this moment only pointers to integer 

identifiers; a more general and formal treatment will be given in section 7. 

Pointers to integer identifiers are expressions which have as value 

in a given state some integer identifier. In another state they may have 

another identifier as value. Therefore we associate with a pointer some 

function from states to interpretations of integer identifiers. In analogy 

to the treatment of integer identifiers, this is done by translating the 

pointer into a rigid constant; so pointer p translates into constants 

p E CON . The execution of the assignment p := y has as an effect <s,<s,e>> 
that the current state is changed in such a way that in the new state all 

identifiers have the same value as before, except for p which now has 

value y. This effect can be described by means of a state switcher like the 

ones we introduced in relation with simple assignments. Below I will 
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introduce some postulates which guarantee that the state switchers {z/vp} 

can be interpreted in the way we intend, and satisfies equalities analogous 

to the substitution theorem (4.6). But first an example. We assume that the 

predicate transformer corresponding with the assignment p := o reads: 

v v v 
(40) AP[3z[{z/ p} PA p (z E VAR ). 

<s,e> 

6.J. EXAMPLE. x := 5; p := x; x := 6. 

Let us assume that this program is executed in an arbitrary state, so the 

precondition is true. We are interested in the postcondition after the last 

assignment. That postcondition is obtained by calculating the postcondition 

of each assignment in turn, and taking that postcondition as input for the 

predicate transformer of the next assignment. The postcondition of the 

first assignment for precondition true reduces as follows. 

V V V A V 
AP[3z[{z/ x} PA x=5]]( true) = 3z[ x=5] 

v 
x=5. 

The postcondition of the second assignment (using the predicate transformer 

described above) reduces as follows 

V V V A V V V 
AP[3z[{z/ p} P v p=x]( [ x=5]) = 3z[{z/ p}( x=5) A 

A vp=x] = [vx=5 A vp=x]. 

Finally, the postcondition of the last assignment reduces as follows: 

AP3z[{z/vx}vp A vx=6](A[vx=5 A vp=x]) = 3z[{z/vx}(vx=5 A vp=x) A vx=6]= 

[3z[z=5 A vp=x] A vx=6] = [vp=x A vx=6]. 

From this formule follows vvp=6, so the postcondition has as consequence 

that the integer value related with p is 6. This is as it should be (see 

figure 2). 

If we compare the treatment of this program with the treatment using 

Floyd's rule see (18)-(23), then we observe that this success is due to a 

careful distinction between the representation of the interpretation of 

identifier x, namely x, and the representation of the value of that identi

fier, namely vx. This has as its effect that in the calculation of the last 

postcondition the x in the identity p=x is not replaced by z as would be 

the case if Floyd's rule were used. 

6. I. END 

For the constants which translate pointers, we have postulates analogous 

to the ones we have for constants translating integer identifiers (rigidness 
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postulate, distinctness postulate, update postulate). Something more, how
ever, has to be said about the possible values of pointer constants. Con-
sider p E CON . This constant is interpreted as a function from <s,<s,e>> 
states to objects of type <s,e>. Not all such objects are possible values 
of pointers. In a given state the extension of p has to be the interpreta
tion of some integer identifier and we have already formulated some require
ments concerning such interpretations (update postulate etc.). For instance, 
the interpretation of an integer identifier cannot be a constant function 
yielding for all states the same value. Consequently the extension of p 

cannot be such an object. Thus we arrive at the following postulate con
cerning the constants of type <s,<s,e>> (for higher order pointers analo
gous requirements will be given). 

6.2. Properness postulate 

For all c E CON ' s E ST <s,<s,e>> 

V(c) (s) E {V(c') I c' E CON } . <s,e> 

6.2. END 

6.2. Arrays 

In section 3 it was shown that a straightforward application of Floyd's 
rule to assignments containing subscripted array identifiers may yield in
correct results. Here a compositional treatment of the semantics of such 
assignments will be developed (the formal treatment will be given in 7). 
In order to have a comparision for the treatment, I will first sketch a 
treatment due to D~ BAKKER (1976, !980). 

De BAKKER presents an extension of Floyd's proof rule for the case of 
assignment statements. His treatment is based on the definition of a new 
kind of substitution operator [a:/13]. In most cases this operator behaves 
as the ordinary substitution operator, but not in the case that both a: 
and 13 are of the form array-identifier-with-subscript. Then this substi
tution may result in a compound expression containing an if-then-else con
struction. The relevant clause of the definition of the operator is as 
follows. 
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(41) {[t/a[s 1JJ(b[s2J) = b[[t/a[s 1JJ(s 2)J 

[t/a[s 1JJ(a[s2J) =if [t/a[s 1JJs2 = s 1 then t else a[[t/a[s 1JJs2J. 

Using this operator, De Bakker gives a variant of Floyd's rule for as

signment statements: 

(42) {~} a[s] := t {3y3z[[y/a[z]](~) A z = [y/a[z]](s) 

A a[z] = [y/a[z]](t)]}. 

6.3. EXAMPLE. 

Assignment: a[a[l]] := 2. Precondition: a[l] 

Postcondition: 

1 A a[2] 1. 

3y3z[[y/a[z]](a[1] 1 A a[2] = 1) A z = [y/a[z]](a[l]) A a[z] 

By the definition of substitution this reduces to 

[y/a[z]](2)]. 

3y3z[if l=z then y else a[l] fi = 1 A if 2=z then y else a[2] fi = 1 A 

z = if l=z then y else aUJ fi A a[z]=2]. 

From the second and the third boolean expression in the conjunction, we 

see that we must take z=l, and the whole expression reduces to: 

3y[y=l A a[2]=1 A l=y A a[1]=2]. 

This is in turn equivalent to a[1]=2 A a[2]=1, from which it follows that 

a[a[1]]=2. 

This proof rule works correctly! It is not easy to understand why the rule 

works, but De Bakker has proven its correctness. 

6.3. END 

From our methodological point of view this solution has the same dis

advantages as Floyd's original proposal, the main one being that the sub

stitution operator defined in (41) has no semantic interpretation. In order 

to obtain a solution within the limits of our framework, let us consider 

the 'parts' of the assignment a[s] := t. The usual syntax says that there 

are two parts: the left hand side, (i.e. a[s]), and the right hand side 

(i.e. t). The left hand side has as its parts an array identifier (i.e. a) 

and an integer expression (i.e. s). This analysis has as a consequence that, 

in our algebraic approach, we have to associate with the array identifier 

a some semantic object. In the papers by De Bakker this is not done, nor is 

this done by several other authors in the field. One usually employs a 

model which is an abstract computer model with cells, and it is not pos

sible to associate some cell with a. In our model, on the other hand, it 

is not difficult to associate some semantic object with a. For each state 

an array identifier determines a function from integers (subscripts) to 
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integers (the value contained in the cell with that subscript). In analogy 
to the treatment of integer identifiers, this relation between an identi
fier and the associated function, is given by translating the array identi
fier into a rigid constant of type <s,<e,e,>>. 

Using the fact that it makes sense to speak about the value of (the 
translation of) an array identifier a, we can easily describe the effect of 
the execution of an assignment a[S] := y. By this assignment a state is 
reached in which the value associated with a differs for one argument from 
its old value. If the old value of a is denoted by z, then the new value 
of a is, roughly, described by: ;\n[if n=S then y else z(n) fi]. I said 
'roughly' since it is not yet expressed, for B and y, to take here the old 

value of a. These considerations give rise to the following predicate trans
former associated with a[S] := y: 

(43) ;\P[3z{z/va}vp A Va= {z/a}(;\n[if n = S' then y else va[n] fi])]. 

Notice the direct analogy of this predicate transformer with the predicate 
transformer for the simple assignment. The correctness of (43) is, I believe, 
much clearer than of the one given by De Bakker. This perspicuity is due 
to the fact that we treat the array identifiers as having a meaning. In a 
model based upon the use of 'cells', such an approach does not come natural
ly. The main point of the present approach (arrays as functions) is the 
basis for the treatment of arrays in GRIES 1977. It turned out that already 
in HOARE & WIRTH 1973 arrays are considered as denoting functions (however 
not in the context of the problems under discussion). 

6.4. EXAI-1PLE. Consider the assignment a[a[l]] := 2, executed in a state in 
which a[l] = 1 and a[2] = 1. We wish to find the strongest postcondition 
in this situation. This is found by application of the predicate trans
former (associated with the assignment) to the precondition expressing the 
mentioned property of the state. In the logical formulas given below I 
should write a(l) etc., since we interpret a as a function. But in order 
to keep in mind what we are modelling, I prefer the notation a[l] 

[a[a[l]] :=2J'(A[[va[r1]=1 Ava[2]=1]) = 
= ;\p[3z{z/va}vp A Va= {z/va}(;\n if n=va[l] then 2 else 

3z[z[l]=1 A z[2]=1 A Va 

3z[z[1]=1 A z[2]=1 A va 

V A V V a[n]fi)]( [ a[1]=1 A a[2]=1]) 

;\n if n=z[l] then 2 else z[n]fi] -- -- -
;\n if n=l then 2 else z[n]fi]. 



From this postcondition the value of a[a[l]] can be calculated: 

v[a[va[l]] = va[An if n=l then 2 else z[n] fi [1]] = va[2] 

6.4. END 
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z[ 2] 

Now that we know which predicate transformer should be used, let us 

look at how it was obtained. We could have tried to find some translation 

for the left hand side of the assignment (i.e. for a[n]), out of which the 

predicate transformer could be formed. It turned out to be preferable to 

use the insights obtained from considerations based on the principle of 

compositionality. We observed that a[s] := t is a notation for changing the 

function associated with a. This suggests to consider such an assignment as 

a three-place syntactic operation which takes as inputs the array identi

fier, the subscript expression, and the expression at the right hand side 

of the := sign. In such an approach it is easy to obtain the desired predi

cate transformer, and therefore this approach will be followed. This shows 

that semantic considerations may influence the design of the syntactic 

rules (however, a binary approach to the assignment is not forbidden). 

In JANSSEN & Van EMDE BOAS (1977a) assignments to multi-dimensional 

arrays are treated. Since the proposal given there, is not strictly in ac

cordance with the principle of compositionality, it is not mentioned here. 

One could incorporate assignments to n-dimensional arrays by introducing a 

separate rule for each choice of n; then an n-dimensional array is con

sidered as a function of n arguments. 

7. SECOND FRAGMENT 

7.l. The rules 

In this section I will present the syntax and semantics of a fragment 

of the prograrrnning language ALGOL-68 (Van WIJNGAARDEN 1975). The fragment 

contains integer identifiers, pointers to integer identifiers, pointers to 

such pointers, etc., so there is in principle an infinite hierarchy of 

pointers. The fragment also contains arrays of integers, arrays of integer 

identifiers, arrays of pointers to integer identifiers, etc., so in prin

ciple an infinite hierarchy of arrays. In order to deal with such infinite 

sets, the syntax will contain rule schemata. These schemata are like the 

hyperrules used in the official ALGOL-68 report (VAN WIJNGAARDEN 1975). 

Following the framework from eh.!, the semantics of the fragment will be 



162 

described by means of a translation into intensional logic. As explained 

in the previous section, this logic has to be interpreted in a restricted 

class of models. The models have to satisfy certain postulates; these will 

be presented in section 7.3. In section 7.4 a model will be constructed 

that satisfies these postulates. 

The names of the categories used in section 5 have to be changed in 

order to follow the ALGOL-68 terminology. The category of integers will be 

called 'int id' (i.e. integer identifier) and the category of integer iden

tifiers ID will be called 'ref int id' (i.e. reference to integer identi

fier). As explained above there will be an infinite set of categories. In 

the description of a category name we may use the meta notion mode. The 

possible substitutions for this metanotion are described by the following 

meta rules; 

mode -+ int 

mode -+ ref mode 

mode -+row of mode. 

These modes correspond with types of intensional logic; this correspondence 

is formalized by the mapping T which is defined as follows. 

T(int) = e 

T(bool) t 

T(ref mode) = <s,T(mode)> 

T(row of mode) <e,T(mode)>. 

For each 'mode' there is a category 'mode id' which contains denumer

able many expressions: the identifiers of that mode. Examples are: 

Category 

int id 

ref int id 

ref ref int id 

row of int id 

Typical identifiers 

1,2,3, ••• ,666, ••• 

x,y,w,x1 ,x2 , ••• 

p,q,p1•P2• ••• 

a,a1 ,a2 , ••• 

The rule schemata of the fragment are presented in the same way as the 

rules presented in section 5. The main difference is that in section 5 we 

had actual rules, whereas we here have schemata which become actual rules 

by means of a substitution for mode. Important is that throughout one scheme 

the same substitution for mode has to be used. 



Rule BI .. BS 

FB 1 •• FBS 

TB 1 •. TB5 

Rule II •. I3 

FI l .• FI 3 
TI 1 •. TI 1 

Rule El 
FE 1 

TE] 

Rule E2 
FE 2 

TE2 

Rule E 
3 

FE 3 
TE 3 

Rule E4 
FE 4 
TE 4 
comment 

Rule ES 

FES 

TES 

Rule Al 
FA 1 

TA 1 

Rule A2 
TA2 
FA2 

int exp x int exp + bool exp 

a * S where * stands for <,>,~,~. or 

a' * S' idem for *· 

int exp x int exp + int exp 

a 6l S where $ stands for +,x,+ respectively 

a' $ S' idem for e. 

mode id + mode unit 

a'. 

mode unit + mode exp 

a'. 

ref mode exp + mode exp 

Cl, 

v a' 

bool exp x mode unit x mode unit + mode unit 

if_ a then S else y fi 
if_ a' then S' else y' fi 
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The rule is defined for units and not for exp's in order to 

avoid the problems of 'balancing' (see e.g. Van WIJNGAARDEN 

197S). 

ref row of mode unit x int exp + ref mode unit 

Cl.' [ s' J 

'\va'[S']]. 

ref mode id x mode exp + ass 

Cl. := s 
{z/a'}S'] where z E VART(mode)' 

ref row of mode id x int exp x mode exp + ass 

a[SJ := y 

AP[3z{z/va'}vp Ava' 

z[n] fi ]. 
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Rule pi ass + simple prog 

FP 1 a 

TPI a' . 

Rule p2 simple prog + prog 

FP2 a 

TP 2 a' • 

Rule p3 prog x simple prog + prog 

FP 3 a; 13 

TP3 AP(ct' ("[ 13' (P) ]) ) • 

Rule P4 bool exp x prog x prog + prog 

FP4 if a then 13 else y fi 

TP4 :\P[l3' ("[a' A VP]) V y'("[la' J\ VP])]. 

7.1. EXAMPLE. In section 5 I have given several examples of assignment 

statements. Therefore now as example a somewhat more complex program 

p := a[l]; a[l] := 2 precondition a[1]=1 J\ a[2]=2. 

The postcondition after the first assignment is: 

" v v [p := a[7]]'( [ a[1]=1 A a[2]=2]) = 

- V V V V A V A V V AP3zL{z/ p} PA p = {z/ p} [ a[l]]]( [ a[1]=1 A a[2]=2]) 

v v v " v [ a[1]=1 " a[2]=2 " p = [ a[l]]]. 

Then the postcondition after the second assignment is: 

1 then 2 else a[n] fi] -- -- -

= 3z[z[1]=1" z[2]=2" vp = "[va[l]]" 

v 
a = An if n = 1 then 2 else z[n] fi]. 

this conclude that 
vv v 

a[l] From we p = = 2. 

7. 1. END 

7.2. The postulates 

In order to formulate the postulates, I will first define the set AT 

of achievable types. This set consists of the types which are achievable 

by translating expressions of categories which have a name obtained from 
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the name-scheme 'mode exp' • 

7.2. DEFINITION. The set AT c Ty is defined by the following clauses: 

I. e EAT 

2. If T EAT then <s,T> EAT and <e,T> EAT. 

7.2. END 

The rigidness postulate says that all constants are rigid designators. 

7.3. Rigidness Postulate 

For all T E AT and c E CON 3vD [c=v]. 
<s, T> 

7.3. END 

The distinctness postulate says that two states are different only if 

they give rise to a different extension of some constant. 

7.4. Distinctness Postulate 

Let s,t EST. If for all TE AT and c E CON we have V(c)(s) 
<s,T> 

V(c)(t), then s = t. 

7.4. END 

The properness postulate says, roughly, that the extension of a con

stant has to be a value that can be achieved by executing instructions 

from the programming language. First we define these sets AVT of achievable 

values of type T. 

7.5. DEFINITION. The sets AV (TEAT) of achievable values of type Tare de
T 

fined as the smallest sets satisfying the following clauses. 

I 

II 

III 

IV 

AV JN 
e 

{V(c) I c E CON } c AV 
<s,T> <s,T> 

if p E AV and n E JN then 
<s,<e,T>> 

AV = AVJN. 
<e,T> T 

7.6. Properness Postulate 

As[[p(s)](n)] E AV 
<s, -r> 

For alls E ST,T EAT, c E CON<s,T> we have V(c)(s) E AVT. 

7.6. END 
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The update postulate says that the model should have such a richness 

that the value of one identifier can be changed into arbitrary achievable 

value, without changing the values of other identifiers. 

7.8. Update Postulate 

For all s E ST,T E AT, c E CON 
<s,T>' 

such that 

I. V(c)(t) = d 

d E AVT, there is a state t E ST 

2. V(c')(t) = V(c')(s) for all constants c' i c. 

7.8. END 

The update postulate only requires 'updating' to an achievable value. 
This means that the interpretation of {a/vc} can be defined as follows. 

7.9. DEFINITION. 

7.9. END 

7.3. A model 

{

V<c+V a>s,g ~ 
= s,g 

vs,g~ 

if V (a) is achievable s,g 

otherwise. 

The postulates concerning the model can be distinguished in two groups. 
Some of the postulates require a certain richness of the model (the dis

tinctness postulate and the update pcstulate), other postulates limit this 

richness (rigidness postulate and properness postulate) • I will show that 

it is possible to steer a course between this Scylla and Charibdis by con

structing a model which satisfies all these postulates. 

The model will be built from the set of natural numbers and a set of 
states. This set of states should have a certain richness since the model 

has to fulfill the update postulate (every constant can take every achiev

able value). In order to obtain this effect one would like to take as set 

of states the cartesian product of the sets AVT of achievable values of 

type T. This method cannot be used since the achievable values themselves 
are defined using the set of states (clause III of their definition). 

Therefore we will first introduce a collection of expressions which will 

turn out to be in a one-one correspondence with the achievable values. The 
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set of states will be defined as the cartesian product of the sets of these 

expressions. 

7.11. DEFINITION. The sets AE (TEAT) of achievable value expressions of 
T 

type T are defined as the smallest sets satisfying the following clauses: 

(I) v i E CON if i E AE e e 

(2) v c E CON <s,T> if C E AE <s,T> 

(3) v i E AE and for v,, p E AE p[i J E AE 
e <s,<e,T>> <s,T> 

(4) If for all n E JN : <Pn E AE then (<j>n) nEJN E AE 
T <e,T> 

7 .10. END 

Clause (4) introduced infinite sequences of symbols. They arise since 

we did not formalize the finiteness of arrays. The above definition has as 

a consequence that corresponding to each achievable value given by the 

definition of AV, there is an expression in AE. 

A model for IL satisfying the postulates is now constructed as follows. 

We use the sets AE of achievable value denotations and define the set of 
T 

states by 

s n n 
TEAT CON 

<s,T> 

AE • 
T 

For c E CON we denote the projection on the c-th coordinate of a state 
<s,T> 

s by Ilc(s). 

Having chosen the set S, the sets DT are determined for each type T. 

To complete the description of the model we must explain how V (c) is de

fined for constants. This function is defined simultaneously with a mapping 

G: lJ AE + U AV 
TEAT T TEAT ,· 

(I) V (i) G(D = i for i E AE 
e 

i.e. a number denotations are mapped onto the integers denoted by them. 

(2) V (c) G(c) = :\s[G(II (s))] for 
- - c 

c E CON <s,T> 
(3) G(tlil ) = ~s[G(p) (s) [G(D JJ for p E AE <s,<e,T>> 
(4) G ( ( <j> ) lN ) = :\ n[ G ( <j> ) ] 

n nE - n 
for (<j> ) E AE • 

n nElN <e,T> 

Clearly the map G: UTEAT AE, + UTEAT AV, in this way becomes a bijec

tion. So all elements in the model which are of an achievable type, are 

achievable values. Moreover the model satisfies all postulates, due to the 

definition of the set S. 
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8. CORRECTNESS AND COMPLETENESS 

8.1. State transition semantics 

In the previous section the meaning a program is defined, and one 

might expect that the story ends Jt:here. But the kind of meanings (predi
cate transformers) are far removed from the behaviour of a computer while 

executing a program. One might ask whether we did not loose the connection 
with a notion of meaning that is more connected with the behaviour of com

puters. In order to answer this question another kind of semantics will be 
considered; one in which the meanings of assignments and programs are de

fined as mappings from states to states, rather than as predicate trans
formers. I will call it a state-transition semantics; it is related with 

the standard denotational semantics. 

In order to express such a state transition semantics, we need a lan

guage in which states can be represented. In the present context the best 

choice seems to be Ty2: two sorted type theory (see chapter 3, or GALLIN 
1975, for a definition). For our purposes this language is extended with 

state switchers: 

8.1. DEFINITION. If T E AT, c E CON ,13 E ME and s E MES, then <s,-r> T 

<c+i3>s E ME • The interpretation of such an expression is defined by s 

V (<c+i3>s) = V ,(s), where g' ~s g and g'(s) is the unique state t, g g 

8.1. END 

such that V(c)(t) = V(i3) and V(c')(t) = V(c')(s) 

if c' i C; if such a state exists (the update 

postulate guarantees uniqueness); otherwise g' (s) = s. 

The state-transition semantics of the fragment is defined by means of 
providing for a translation into Ty2. The translation function will be 

denoted as ". For the identifiers the translation into Ty2 is the same as 

the translation into IL, so X' = x" for all identifiers X. 

For most of the translation rules into Ty2 the formulation can easily 

be obtained from the translation rules into IL using the standard formu

lation of IL in Ty2 (see chapter 3). Therefore I will present here only 

those rules which are essentially different: the rules concerning assign
ments and programs. 



Rule 

Rule 

Rule 

Rule 

Rule 

Rule 

Ass -+ Simple Prag 

FP 1 a 

OP 1 a". 

Simple Prag -+ Prag 

FP 2 a 

OP 2 a". 

Frog x Simple Prag -+ Frog 

ap~ 

A.s[a" (S" (s))]. 

Boal Exp x Frog x Frog -+ Frog 

if a then S else y fi 
OP 4 A.s[if o;" (s) then S" else y" fi]. 

Ref mode Id x mode Exp -+ Ass 

FA 1 a := S 

OA 1 A.s[<a"+S">(s)]. 

Ref Row of mode Id x Int Exp x mode Exp -+ Ass 

TA2 a[S] := y 

OA2 A.s[<a"+A.n if n = S" then y" else a"[n] fi>(s)]. 

8.2. Strongest postconditions 
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Our aim is to prove that the predicate transformers we have defined in 

the previous section, are correct with respect to the operational semantics", 

and that these predicate transformers give as much information about the 

final state as possible. The relevant notions are defined as follows. 

8.2. DEFINITION. A forward predicate transformer TI 1 is called correct with 

respect to program TI if for all state predicates ~ and all states s. 

8.3. DEFINITION. A forward predicate transformer TI' is called ma:x:imaZ with 

respect to program TI if for all pairs of state predicates $,w holds: 

if for all states s: s f $ implies TI"(s) f w, 
then f TI 1 (A$) -+ w. 
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8.4. THEOREM. Let rr be a program, and rr 1 and rr 2 be fo:rward predicate trans

formers which are correct and maximal with respect to rr. Then for all $: 
L /\ /\ r rr1($)+-+rrz($). 

PROOF. Since rr 2 is correct we have: 

if s f $ then rr"(s) f rr 2 C/\$). 

Since rr 1 is maximal, from the above implication follows: 

F TI I (/\ $) -+ TI 2 (/\ $) . 

Analogously we prove 

8.4. END 

A consequence of this theorem is that all predicate transformers which 

are correct and maximal with respect to a certain program yield equivalent 

postconditions. This justifies the following definition. 

8.5. DEFINITION. Let TI be a program and $ an expression of type t. Now 

sp(rr,$) is a new expression of type t, called the strongest postcondition 

with respect to TI and $. l~e interpretation of sp(TI,$) is equal to the in

terpretation of TI 1 (/\$), where rr' is a forward predicate transformer which 

is correct and maximal with respect to rr. 

8.5. END 

A notion which turns out to be useful for proving properties of predi

cate transformers is 

8.6. DEFINITION. A predicate transformer rr' is called recoverable with re

spect to program rr if for all states t and state-predicates $ 

if t f rr' (/\$) then there is a state s such that s f $ and rr"(s) t. 

8.7. THEOREM. If rr' is recoverable, then rr' is maximal. 

PROOF. Suppose that rr' is recoverable and assume that s F $ implies that 

rr"(s) f 1/J, but that not f rr'($)-+ 1/J. Then there is a state t such that 

t f rr (/\$) and t f I 1/J. Since TI' is recoverable there is a state s such 

that s f $ and rr" (s) = t. By assumption we also have rr" (s) F 1/J. Contra

diction. 



8.8. THEOREM. The translation function defined in section 7 yields 

strongest postconditions. 

l 71 

PROOF. By induction to the structure of the possible programs. We only con

sider the case x := o because for other cases the proof is straightforward. 

Part I : Correctness. Let s F q, and t = 1f" (s) . Thus t = <x + o">s. We have 

to prove that 

( 44) t f 3 z[ { z / x ' }q, A \ ' = { z / x ' } o ' ] . 

v 
Leth be such that h(z) = Vs( x). Then for every formula ijl: 

v (ijl) = v h (iji) • 
<x'+h(z)>t,h s, 

Therefore 

(46) t,h f= {z/x'}<P. 

Moreover 

v o' 
s ,h v x'. t,h 

This means that ' is correct. 

Part 2: Recoverability. Let 

(48) t F 3z[ {z/ xH A 
v v x = {z/ x'}o'J. 

Thus there is a g such that (49) and (50) hold 

(49) t,g f {z/\'}<P 

v v 
(50) V C x') = V ({z/ x'}o'). 

t t,g 

We define s = <x+g(z)>t, then we immediately conclude that s f rp. We prove 

now that the value of v x' is the same in 1f 11 (s) and in t. Since this is the 

only identifier in which they might differ we conclude that the states are 

the same (the update postulate guarantees uniqueness~) 

v<x+g(z)>t(o') = 

v v 
V {z/ x'}o' = V ( x'). t,g t 

Notice that this proof also holds in case that o is an \-expression, or in 

case g(z) is not achievable. This means that 1f 1 is recoverable, hence 1f 1 

is maximal. 

8.8. END 
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8. 3. Completeness 

The notions 'completeness' and 'soundness' of a collection proof rules 

play an important role in the literature concerning the semantics of pro

gramming languages. Such collections are intended to be used for proving 

properties of programs. Our main aim was not to prove properties, but to 

define meanings. However, in the discussions about our approach the possi

bility to prove properties of programs played an important role. In the ex

amples several proofs concerning effects of programs were given, and one of 

the arguments for using predicate transformers was their usefulness in 

proofs. Therefore it is interesting to consider our approach in the light 

of the notions 'soundness' and 'completeness'. First I will informally dis

cuss these notions in their relation to the traditional approach (for a 

survey see APT 1981), there after I will try to transfer them to our ap

proach. 

In the traditional approaches one describes the relation between the 

assertions (state predicates) $ and $ and the program TI by means of the 

correctness formula {$}TI{$}. This formula should be read as stating that if 

$ holds before the execution of program TI, then$ holds afterwards (for a 

discussion see section 2). Formula$ is called a precondition, and$ a 

postcondition. collection C of proof rules for such formulas consists of 

axioms, and of proof rules which allow to derive new formulas from already 

derived ones. For the basic constructions of the programming language cer

tain formulas are given as axioms (e.g. Floyd's axiom for the assignment 

statement). An important proof rule is (52); the so called rule of conse

quence. It allows us to replace a precondition by a stronger statement, and 

a postcondition by a weaker statement. 

(52) If p+p 1, {p1}S{q1}, q 1 + q are derived, then {p}S{q} follows. 

The notion r C (derivable in C) is then defined as usual. Hence (53) means 

that the formula {$}TI{$} can be derived from the axioms by using only rules 

from C. 

(53) r c Hh{$}. 

Besides the syntactic notion r C' the semantic notion FM of satisfac

tion in a model M is used. A model M is defined, in which assertions $ and 

$ can be interpreted and in which the execution of TI is modelled. Then (54) 

says that it is true in M that if $ holds before the execution of TI, then 
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~ holds afterwards. 

The notions soundness and completeness of collection C of proof rules 

relate the syntactic notion \- C with the semantic notion f M" The collec

tion C is called sound if for all ~.~ and TI 

(55) \- C {~}TI{~} implies f M {~}TI{~}. 

The collection C is called complete if for all ~.~ and TI 

Most identifiers in computer programs have to be associated with num

bers, and the assertions in correctness formulas may say something about 

the numerical values of these identifiers. We may consider a trivial pro

gram a (e.g. x := x) a trivial assertion S (e.g. true), and an arbitrary 

assertion y from number theory. Then (57) holds. 

(57) FM {S}a{y} if and only if 

Suppose now that we had a complete collection C of proof rules for correct

ness formulas. Then combination of (56) with (57) would learn us that (58) 

holds 

(58) 1-c {S}a{y} if and only if 

Thus a complete proof system for correctness formulas would give us a com

plete proof system for arithmetic. Since arithmetic is not completely 

axiomatizable, there cannot be such a complete system C for correctness 

formulas. Concerning this situation De BAKKER (1980, p.61) says the fol

lowing: 

'[ .. ]we want to concentrate on the progra:rrrming aspects of our language, 
and[ .. ] pay little attention to questions about assertions which do 
not interact with [assignment] statements (so that even if an axioma
tization of validity were to exist, we might not be interested in 
using it). 

For this reason De Bakker takes all valid assertions as axioms of C, i.e. 

if FM~. then by definition \- C ~· This notion of completeness, viz. where 

certain assertions are taken as axioms, is called complete in the sense of 

Cook. For a formal definition see COOK (1978), or APT (1981). This notion 

is defined only for logical languages which are expressive: languages in 

which all strongest postconditions can be expressed (for the class of pro

grams under consideration). From the results in 8.2 follows that our ex

tension of IL is expressive. 
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In order to define the notions 'soundness' and 'completeness' for our 

approach, we have to find notions that can be compared with f- C and with 

FM· First I will consider the syntactic notion f-c· In our approach the 

logical deductions are performed on the level of intensional logic. So if 

we would introduce a sys tern S of proof rules, it would be proof rules of 

intensional logic. Hence we have to find an expression of IL which corre

sponds with (52). 

We have characterized (in intensional logic) the meaning of a program 

11 by means of a predicate transformer 11', and we have proven that this trans

former yields strongest postconditions, i.e. sp(11,$) = 11'(A$). Consider now (59) 

(59) 11 1 (A$) + '4J. 

Formula (59) expresses that if $ holds before the execution of 11, then 1J 

holds afterwards. So (59) corresponds with the correctness formula {$}11{1J}. 

An alternative approach would of course be to use the corresponding back

ward predicate transformer. The discussion below will be restricted to for

ward predicate transformers; for backward predicate transformers related 

remarks could be made. Suppose now that we have a system S of proof rules 

of in tensional logic. The notion f- S can be defined as usual. Then (60) 

says about S the same as (53) says about C. Therefore I will consider (60) 

as the counterpart of (53). 

A 
(60) f- 5 11'($)+1J. 

In section 7 we have defined a class of models. Let f denote the in

terpretation in these models. In the light of the above discussion (61) 

can be considered as the counterpart in our system of (54). 

A system of proof rules for IL is called sound if for all $,1J and 11 (62) 

holds. 

C62) f- s 11 • c" $) + 1i implies F 11' c" $) + 1i. 

A system S of proof rules is called corrrplete if for all $,Vi and n (63) 

holds 

We might consider again trivial program a, trivial condition B, and 

an arbitrary IL formula o. Then (64) holds 

(64) f a' (\B) + o if and only if f 8. 



Suppose now that proof system S contains modus ponens. Then (65) holds 

(65) f- S a' ( 11S) + 6 if and only if f- S o. 

Suppose moreover that S is complete. Then from (64) and (65) it follows 

that (66) holds 

(66) ~ o if and only if !- S o. 
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Thus a complete system of proof rules would give us a complete axiomatiza

tion of IL. Such an axiomatization does not exist (see chapter 3). Hence S 

cannot be complete either. In this situation we might follow De Bakker, 

and make the notion of completeness independent of the incompleteness of 

the logic we use. So we might take all formulas of our extension of IL as 

axioms. But then S is complete (in the sense of Cook) in a trivial way since 

all correctness formulas are formulas of our extension of IL. 

This completeness result is not very exciting, and one might try to 

find another notion of completeness. A restriction of the axioms to only 

arithmetical assertions seems me to be unnatural for the fragment under 

discussion because our programs do not only deal with natural numbers, but 

also with pointers of different kinds. From a logical viewpoint it is at

tractive to try to prove for our extension a kind of generalized complete

ness (see chapter 3). This would require that Gallin's axiom system for IL 

(see chapter 3) is extended with rules concerning state-switchers. Thus we 

might show that a system S is generalized complete, i.e. that it is com

plete with respect to the formulas which are true in all generalized models. 

The models defined in section 7 constitute a subclass of the set of gener

alized models. I do not know any reason to expect that the formulas valid 

in all models of this subclass are the same as those valid in all gener

alized models (because our subclass does not contain an important class: 

the standard models). Hence generalized completeness would be an interest

ing result that proves a certain degree of completeness, but it would not 

correspond with the traditional completeness results in computer science. I 

doubt whether computer scientists would be happy with such a completeness 

result. 

Another concept between 'incomplete' and trivially 'complete', is sug

gested by Peter van Emde Boas. The formula n'( 11 ~) + W was intended to be 

the analogue of the Hoare formula Hh{w}. The language in which we express 

~ and W contains state switchers, but in most cases a programmer will be 

interested in cases were ~ and W are state-switcher free. However, our 
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analogue of the Hoare formula, viz. ~'(A$)+$, will always contain a state

switcher introduced by the predicate transformer ~'. Now one might hope for 

a result which says that this state-switcher can always be eliminated. In 

the examples we described this was indeed the case. There are however si

tuations where no reduction rule is applicable (if values of pointers are 

involved, where these values are unknown). This makes it unlikely that it 

will always be possible to eliminate the state-switcher from a formula ob

tained by application of a predicate transformer to a state-switcher free 

formula (i.e. such an expressibility result is not te be expected). It 

would however, be interesting to know whether the reduction formulas are 

sufficient to eliminate the state-switchers from those translations of 

Hoare formulas where elimination is possible. This gives the following in

termediate concept of 'completeness'. 

If $ and $ are state-switcher free and I=~· (A$) 

9 • THE BACKWARD APPROACH 

9.1. Problems with Hoare's rule 

Besides the approach discussed up till now, there is the approach 

based on backward predicate transformers. In section 3 we have already met 

Hoare's rule for the assignment statement 

(67) {[o/vJ $} v := o {$}. 

Hoare's rule may yield incorrect results when applied to assignment con

taining pointers or arrays, just as was the case with Floyd's rule. I men

tion three examples. 

De BAKKER (1976) presents for Hoare's rule the following example 

(68) {[1/a[a[2]]](a[a[2]]=1)} a[a[2]] := 1 {a[a[2]]=1}. 

The precondition in (68) reduces to 1=1. That would imply that, for any 

initial state, the execution of a[a[2]] := 1 has the effect that afterwards 

a[a[2]] 1 holds. This is incorrect (consider e.g. an initial state satis

fying the equality a[2]=2 A a[1]=2). 

GRIESS (1977) presents the following example 

(69) {l=a[j]} a[i] := 1 {a[i] = a[j]}. 

Whereas in example (68) the obtained precondition was too weak, in the 

present example the obtained precondition is too restrictive. The postcon

dition holds also in case the initial state satisfies i=j. 
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An example of the failure of Hoare's rule for the treatment of pointers 

is (JANSSEN & VAN EMDE BOAS 1977b): 

(70) {x=x+l} p := x; {p=x+l} x := x+l {p=x}. 

It is impossible to satisfy the precondition mentioned in (70), whereas for 

any initial state the postcondition will be satisfied. 

Besides the objection that (67) gives incorrect results in certain 

cases, the same more fundamental problems arise as were mentioned in sec

tion 3 for Floyd's rule (e.g. the use of textual substitution). 

9.2. Backward predicate transformers 

Using a state switcher a formulation can be given for the backward pre

dicate transformers which satisfies our algebraic framework. The transfor

mer corresponding to v := o is 

The transformer corresponding with a[S] := y is 

v v v 
;\p[{t.n if n = S' then y' else a[n] fi/ a} P]. 

. [ . J 1 d. . v [. J v [ '] 9.1. EXAMPLE. Assignment a~ := ; Postcon ition a i = a J 
. . v . v v . v . 

Precondition: {;\n if n = i then 1 else a[n]!_~/ a}( a[i]= a[1J) reducing to: 

1 = (if j = i then 1 else a[j]fi)[j] and 

further to: j = i v a[jl = 1 (compare this with (69)). 

9.2. EXAMPLE. Assignment a[a[2]] := 1; postcondition va[va[2]] = I. 
v v v v 

Precondition: {;\n if n = a[2] then 1 else a[n] fi/ a}( a[ a[2]]=1). 

We have to apply the state switcher to both occurrences of va in the post

condition. If we apply it to va[2] then we obtain 

if 2 = va[2] then 1 else va[2] fi. 
- --

This leads us to consider the following two cases. 

I. 2=va[2]. 

Then the precondition reduces to 
v v 

({f.n if n = a[2] then 1 else a[n] fi/ a} a)[l] 

a.[1] = 1. 

II. 2 1' v a[ 2] • 

Then the precondition reduces to 

1 which reduces to 

v v 
({An if n = a[2] then 1 else a[n] fi/ a} a)[2] = 1 which reduces to 

1 = 1. 
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So the precondition is (va[2]=211 va[l]=l) v (va[2] # 2). (Compare this result 

with (68)). 

9.2. END 

9.3. Weakest pr~conditions 

We aim at obtaining backward predicate transformers which yield a re

sult that is correct with respect to the operational semantics ", and which 

require assumptions as weak as possible about the initial state (i.e. dual 

to the requirements concerning the forward predicate transformers). The 

relevant notions are defined as follows. 

9.3. DEFINITION. A backward predicate transformer '11 is called correct with 

respect to a program 11 if for all state predicates cl> and all states s 

then ·rr"(s) f $. 

9.4. DEFINITION. A backward predicate transformer '11 is called minimal with 

respect to a program 11 if for all pairs of state predicates n and $, the 

following holds: 

if for all states s: s F n implies 11 11 (s) f $, 

then F n -+ '11 ( $) • 

9.5. THEOREM. Let 11 be a program, and 11 1 and 11 2 be backward predicate trans

formers which are correct and minimal with respect to 11. Then for all $: 

PROOF. Since 11 1 is correct, we have: 

ifs F 11 1($) then 11"(s) J= $. 

Since 11 2 is minimal, from this implication follows 

L 11 11 
r 111($)-+112($). 

Analogously we prove f 11 2 ($)-+ 11 1(<1>) • 

9.5. END 

A consequence of this theorem is that all backward predicate trans

formers which are correct and minimal with respect to a certain program, 

yield equivalent preconditions. This justifies the following definition. 
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9.6. DEFINITION. Let TI be a program and $ a state predicate. Then wp(TI,$) 

is a new expression of type t, called the weakest precondition with respect 

to TI and $. The interpretation of wp(TI,$) is equal to the interpretation 

of 1TI(A$), where 1rr is a backward predicate transformer which is correct 

and minimal with respect to TI. If a state predicate is equivalent with 

wp(TI,$) it is called a weakest precondition with respect to TI and $. 

9.6. END 

In 9.2 backward predicate transformers are defined for the assignment 

statements. We wish to prove that they yield a weakest precondition. This 

will not be proven in a direct way because it turns out that backward and 

forward predicate transformers are closely related. The one can be defined 

from the other, and correctness and maximality of the forward predicate 

transformers implicate correctness and minimality of the backward predicate 

transformers. These results will be proven in the next subsections. 

9.4. Strongest and weakest 

Strongest postconditions and weakest preconditions can syntactically 

be defined in terms of each other. This connection is proved in the follow

ing theorem. 

9.7. THEOREM. Let Q E VAR. and let 
<s,t> 

(I) be 3Q[vQ AD [sp(rr,vQ) + $]] 

and 

(II) be VQ[D [$ + wp(TI,vQ)] + VQ]. 

Then it holds that 

formula (I) is equivalent to wp(TI,$), and formula (II) is equivalent to 

Sp(TI,$). 

PROOF. 

part A 

I show that (I) is correct (A 1) and minimal (A2) with respect to $,TI and" 

From this follows that (I) is equivalent to r,yp(TI,$). 

part A1 

Suppose that s satisfies (I), so 
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Then for some g (71) and (72) holds 

(71) s,g f VQ 

(72) s,g f D[sp(ir,vQ) -+cjl]. 

By definition of sp, from (71) follows 

ir"(s),g f sp(ir,vQ). 

By definition of D from (72) follows 

11 11 (s), g f sp( 11, v Q) -+ cp. 

Therefore 

ir"(s),g f cjl, or equivalently ir"(s) f cjl. 

This means that (I) is correct. 

part A2 

Suppose that for all s holds 

(73) s f n implies ir"(s) f cp. 

By definition of sp from (73) follows 

f sp(ir,n)-+cjl. 

So for all s 

s f D [sp(ir,n) -+ cpJ. 

Let g be an assignment such that g,s f Q 

s,g f D [sp(ir,vQ)-+ cjl]. 

So (for the choice Q = An) 

This means that (II) is minimal. 

part B 

A 
n. Then 

I show that (II) is correct (B 1) and maximal (B 2) with respect to cp,.rr, and". 

From this it follows that (II) is equivalent with sp(ir,cjl). 

part B1 
Let 

s f cp. 

Suppose that for variable assignment g holds 



Then from (74) follows 

s,g f wp('IT,vQ). 

So 

(75) 'Tf 11 (s),g I= vQ. 

From (74) and (75) it follows that for all g holds 

I= v v 
'Tf 11 (s) ,g D [~-+ wp('IT, Q)] -+ Q. 

So 

'Tf"(s) I= VQ[D [~-+ wp('IT/QJ-+ vQ]. 

This means that (II) is correct. 

part B 2 

Suppose that for all s holds 

(76) s I= ~ implies 'Tf 11 (s) I= n. 

Then, by definition of wp it follows that 

(77) I= ~-+ wp('Tf,n). 

Suppose that t satisfies (II), so 

L v v 
(78) t r VQ[D [~-+ wp('IT, Q)]-+ Q]. 

Let g be an assignment such that g, t I= Q 

I= v v 
(79) t,g D [~-+ wp('IT, Q)]-+ Q. 

Then from (77) and (79) follows 

(80) t,g I= 

So 

v 
Q. 

( 81) f VQ[ [D [ ~ -+ wp ('IT, v Q) } -+ v Q] -+ v Q] • 

This means that II is maximal. 

9.7. END 

/\ 
n. Then: 

181 

That wp(~,'Tf) and sp('IT,~) are closely connected is also observed by 

RAULEFS (1978). He gives a semantic connection. Theorem 9.7 goes further, 

because an explicit syntactic relation is given. 
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9.5. Correctness Eroof 

The theorem 9.7 has as a consequence that weakest preconditions and 

strongest postconditions can be defined in terms of each other. Now it is 

unlikely that the formulas with quantification over intensions of predi

cates are the kind of expressions one would like to handle in practice. The 

importance of the theorem is that given some expression equivalent with 

sp(11,rp), it allows us to prove that some expression (found on intuitive 

considerations) is equivalent with wp(11,rp). From the correctness and maxi

mality of the predicate transformers defined in section 5 and 7, it follows 

that the backward predicate transformers defined in this section are cor

rect and minimal. 

9.8. THEOREM. The following -two statements are equivalent 

(I) sp(x := o, rp) 

(II) wp(x := o, rp) 

v v v 
3z[{z/ x}<P A x' = {z/ x'}o'J 

{0 1/x}rp. 

PROOF. 

part 1: (I)=> (II). 

Assume that (I) holds. Then from theorem 9.7 follows: 

So we have to prove that for arbitrary assertion cp and state s holds that 

(83) s I= {o'/x'H 

if and only if 

V I x 
v 

{z/ x'H' J-+ rpJJ 

part la: (83) => (84) 

Assume that (83) holds. Let g be a variable assignment such that 

L A V 
(85) g r o = {a'/ x'}w. 

Then (due to (83)) we have 

c 86) s • g != v o . 

In order to prove (84) we have next to prove the necessary validity of the 

formula mentioned after the D for this choice of Q. So we have to prove 

that for arbitrary state t (87) implies (88). 

(87) t \= 3z[{z/\'Ho'/x'}<P A 
V I x 

v 
={z/x'}O'J 
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(88) t I= ~· 

Leth be a variable assignment for which (87) holds. Then using the itera

tion theorem, we find 

(89) t,h f= {{z/x'}o'!\'H "\• = {z/\'}O'. 

The second conjunct gives us information about the value of vX, in this 

state. The state switcher says that we have to interpret ~ with respect to 

the state where vx' precisely has that value. So the state switcher does 

not change the state! This means that 

(9o) t F= ~. 

So (87) implies (88), and therefore (84) holds. 

part lb: (84) * (83) 

Assume (84) holds. Then there is a variable assignment g such that (91) 

and (92) hold 

(91) s,g 

v v v v 
D [3z[{z/ x'} Q" x' = {z/ x'}o'J + ~J. (92) s,g 

In (92) it is said that a certain formula is necessarily valid. Application 

of this to state <x'+o'>s gives 

L v v v 
(93) <x'+o'>s,g r 3z[{z/ x'} Q" x' {z/x'}o'J + ~. 

Let g'; g be such that g'(z) = Vs(vx') so <x'+z><x'+o'>s 

holds, we have 

(94) <x'+z><x'+o'>s,g' I= vQ. 

Consequently 

L v v (95) <x'+o'>s,g' r {z/ x'} Q. 

Moreover 

(96) <x'+o'>s,g' I= vx' 

s. Since (91) 

b V (v ') V ("') = V ("') =V {z/v '}"' 
ecause <x'+o'>s x s u <x'+z><x'+o'>s u <x'+o'>s x u • 

From (94) and (95) follows that the antecedent of the implication in (93) 

holds. Therefore the consequent of the implication holds 

(97) <x'+o'>s,g' I= ~ 

so 

(98) s,g' f= {o' /x'H. 
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This means that (83) holds, so (84) => (83)_. And this completes the proof of 
(I) => (II) . 

part 2: (II) => (I) 

The proof of (II)=> (I) uses a related kind of arguments. Therefore this 
proof will be presented in a more concise way. Assume that (II) holds. Then 
we have to prove that for arbitrary s and q,: 

L v v v (99) s r voco [q, +{a'/ x'} oJ + oJ 

if and only if 

(JOO) s F 3z[{z/x'H 11 \• 
v 

{z/ x'}a'J. 

part 2a 

Assume (99). Take for Qin (99) the assertion in (100). We now prove that 

the antecedent of (99) holds, then (JOO) is an innnediate consequent. So sup
pose t F q,. We have to prove that 

{z/x'}O'JJ 

or equivalently 

002) t r 3z[{z'l\'H 11 0• = {z/x'}o'J. 

This is true for g(z) = Vt(vx'), so the antecedent of (99) holds, and from 
this follows that (JOO) holds. 

part 2b 

Assume (JOO). Let g be arbitrary and assume 

L v v (J03) s,g r q, + {o'/ x'} Q. 

This is the antecedent of (99). We now prove that the consequent holds, so 
that 

(I 04) s 'g F v Q. 

From (100) follows that for some g' ~ g 
z 

(105) <x'+z>s,g' f <ji. 

Using (103), from (J05) follows 

(106) <x'+z>s,g' F {O'/x'}vQ. 

Consequently 

L v v v (107) s,g' r {{z/ x'}O'/ x'} Q. 

From (100) also follows 



<108) s,g' f= v v x' = {z/ x'}o'. 

From (108 and (107) we may conclude 

(109) s,g' f= vQ. 

This proves (104), so (99) follows from (JOO). 

9.8. END 

9.9. THEOREM. The following two statements are equivalent 
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(I) F sp(a[l3] := o,~) = 3z[{z/a'}~ "Va' v . ' {z/ a'}An if n = 13' then 8 

else v a [n] fi] -- -
L v v 

(II) r wp(a[l3] := o,~) = {An if n = 13' then o' else a'[n] fi/ a}$. 

PROOF. The expressions at the right hand side of the equality signs are a 

special case of the corresponding expressions in the previous theorem. So 

theorem 9.9 follows from theorem 9.8. 

9.9. END 

From theorems 9.9 and 9.10 it follows that the predicate transforma

tions for the assignment as defined in section 9.2, yield weakest precon

ditions. 

10. MUTUAL RELEVANCE 

In this section I will mention some aspects of the relevance of the 

study of semantics of programming languages to the study of semantics of 

natural languages, and vice versa. Most of the remarks have a speculative 

character. 

The present chapter constitutes a concrete example of the relevance of 

the theory of semantics of natural languages to the study of programming 

languages. Montague's framework was developed for natural languages, but 

it is used here for ptirogramming languages. The notions 'opaque' and 'trans

parant', well known in the field of semantics of natural languages, turn 

out to be useful for the study of semantics of programming languages, see 

section I. And the logic developed for the semantics of natural languages 

turned out to be useful for programming languages as well. 

In the semantics of natural languages the principle of compositionali-

ty is not only the basis of the framework, but also, as will be shown later, a 

valuable heuristic tool. It helped us to understand already existing 
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solutions. It gives rise to suggestions how to deal with certain problems, 

and it is useful in finding weak points in proposals from the literature. 

I expect that the principle can play the same role in the semantics of 

programming languages. The treatment of arrays in this chapter (see sec

tion 6) is an example of the influence of the principle. Below I will give 

some further suggestions concerning possible relevance of the principle. 

Consider the treatment of 'labels' and 1 goto-statements' by 

A. de Bruyn (chapter 7 in De BAKKER 1980). The treatment is rather complex, 

and not much motivation for it is given. I expect, however, that these 

phenomena are susceptible to the technique explained in chapter 1: if the 

meaning of some statement seems to depend on certain factors, then incor

porate these factors into the notion of meaning. In this way the notion of 

'continuation' (used by de Bruyn) might be more easily explained, and thus 

the proposal more easily understood. 

In De BAKKER 1980, the proof rules for certain constructions make use 

of devices which are, from a compositional point of view, not attractive. 

These constructions are assignments to subscripted array identifiers, pro

cedures with parameters, and declarations of identifiers at the beginning 

of blocks. In the proof rules for these constructions mainly syntactic sub

stitution is used. From a compositional point of view it is not surprising 

that the semantic treatment of these phenomena is not completely satisfac

tory. For assignments to array elements an alternative was proposed in 

section 6, and for blocks a suggestion was made in section 4. A composi

tional approach to the semantics of procedures with parameters would de

scribe the meaning of a procedure-call as being built from the meaning of 

the procedure and the meaning of its argument. If this argument is a re

ference parameter (call by variable), then the argument position is opaque. 

This suggests that the meaning of such a procedure should be a function 

which takes as argument an intension. 

In the semantics of natural language ideas from the semantics of pro

gramming languages can be used. The basic expression in a programming lan

guage is the assignment statement. For the computer the assignment state

ment is a command to perform a certain action. I have demonstrated how the 

semantics of such commands is dealt with by means of predicate transformers. 

Inspired by this approach, we might do the same for commands in natural 

language. Some examples (taken from van EMDE BOAS & JANSSEN 1978) are given 

below. Consider the imperative 
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(110) John, d.rink tea. 

Its translation as a predicate transformer would become something like 

This expression describes the change of the state of the world if the com

mand is obeyed. The operator B is a kind of state-switcher, it indicates 

the moment of utterance of the co11U11and. A similar approach can be used to 

describe the semantics of actions. One might describe the smenatics of per

formative sentences like 

(112) We arown Charles emperor 

by means of an predicate transformer. 

Often a sequence of sentences is used to perform an action rather than 

to make a some assertions: sentences can be used to give information to the 

hearer. Consider the text 

(113) Mary seeks John. John is a unicorn. 

These sentences might be translated into the predicate transformers (114) 

and (115). 

(114) Ap[vp A seek*(mary,john)] 

v 
(115) AP[ PA unicorn*(john)]. 

Suppose that the information the hearer has in the beginning is denoted by 

~· Then by the first sentence this information is changed into 

(116) ~A seek*(mary,john) 

and by the second sentence into 

(117) ~A seek*(mary,john) A unicorn*(john). 

From the final expression the hearer may conclude that Mary seeks a unicorn. 

Also on a more theoretical level the semantics of progra11U11ing languages 

can be useful for the study of semantics of natural languages. In the study 

of natural languages the need for partial functions often arises. In the 

semantics one wants to use partially defined predicates in order to deal 

with sortal incorrectness and presuppositions, and in the syntax one wishes 

to have rules that are not applicable to every expression of the category 

for which the rule is defined. In the field of programming languages pheno

mena arise for which one might wish to use partial functions. In this field 

techniques are used which make it possible to use nevertheless total 
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functions. The basic idea is to introduce in the semantic domain an extra 

element. Since this approach is, from an algebraic point of view, very at

tractive, I would like to use this technique in the field of natural lan

guages as well (see chapter 7). 
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APPENDIX 

SAFE AND POLYNOMIAI 

In this appendix the theorem will be presented which was announced in 

chapter 2, at the end of section 7. The theorem states that in an infinite

ly generated free algebra all safe operations are polynomially definable 

(free algebras are algebras which are isomorphic to a term algebra). Remind 

that f: A51 x ••• x Asn + Asn+I is safe in L-algebra <A,F> if for every L-al

gebra <D,G> and every h E Epi(<A,F>,<D,G>) there is a unique 

f: Ds 1 x ••• x Dsn + Dsn+I such that h E Epi(<A,F u {f}>,<D,G u {f}>). The 

proof originates from F. Wiedijk (pers. comm.). 

THEOREM. Let A = <(A ) S' (F ) r> be a 
s SE Y YE 

free algebra, that has a generating 

set (B ) S where each B is infinite. Let f: As x ••• x As + 
s SE s I n 

A be 
Sn+] 

a safe operator. Then f is a polynomially definable over A. 

HEURISTICS. First I will give some heuristic considerations, there after the 

theorem will be proved by proving two Lemmas. 

Let us assume for the moment that the theorem holds and let us try to 

reconstruct from f the polynomial p that defines f. Let <b 1, •.. ,bn> be a 

possible argument for f, where b 1, .•. ,bn are generators of A. There is a 

term t E TL,A such that tA = f(b 1, ... ,bn). Since A is free, this term is 

unique. Hence t is obtained from the polynomial p we are looking for, by 

means of substituting, for the respective variables in p constants cor

responding to b 1, •.. ,bn. Term t (probably) contains constants for b 1, ... ,bn' 

but it is not yet clear for any given occurrence of such a constant in t, 

whether it occurs in p as parameter, or is due to substitution for a variable 

In order to decide in these matters, we consider the value of f for gener

ators <c 1, .•• ,en> which are different from <b 1,. .. ,bn> and from the con

stants in t. Suppose that for term u we have uA = f(c 1, ... ,cn). Then u can 

also be obtained from p by substituting constants. We already know that all 

constants in p also occur in t. Since c 1, ••• ,cn do not occur in t, all 

their occurrences in u are due to of their substitution for variables. So 

if we replace in u all occurrences of (constants corresponding with) 

c 1, .•• ,cn by variables, we have found the polynomial p we were looking for. 

This idea is followed in the next lemma. We perform these steps and prove 

that the polynomial so obtained has the desired properties. 
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LEMMA I . There is an infinite sequence (z ) of disjoint n-tuples kk=l,2, .•. 
of generators of A, and a polynomial p such that for each zk, f(zk) = p(zk). 

PROOF. We define by induction a sequence (zk)kE{O,J, ..• }" Let 
B B B B d k B B arbitrarily. 0 = , ••• , 0 = , an ta e z0 E 0 x ••• x 0 ,sl s1 ,sn sn ,sl ,sn 
This n-tuple is used for the first attempt to reconstruct the polynomial p 

which corresponds with f. Below I will define an infinite sequence of at

tempts to reconstruct p, and there after it will be proved that from the 

second attempt on always the same polynomial will be found; this is the 

polynomial p we were looking for, as will be proven in lemma 2. 

Assume that z0 , ... ,zk and p0 , ... ,pk are already defined. Then we obtain 

zk+I and pk+l as follows. 

Let Ck be the set of generators of sort s which corresponds with ,s 
constants in pk' and let {zk,s} be the set of components of zk of sort s. 

Define Bk =Bk /(Ck u {zk }), and let zk I E Bk I x ••• x Bk I ,s ,s ,s ,s + + ,s1 + ,sn 
Since A is generated by (Bs)sES' f(~+I) can be represented by a term t 

with parameters from (Bs) SES' including zk+I • This term t can be expressed 

as a polynomial expression in zk+J' say pk+l(zk+I), where, moreover, no 

component of zk+I occurs as parameter in pk+l. Since for all k and s the sets 

ck,s and {zk,s} are finite, and Bk,s was infinite, it follows that Bk+J,s is in

finite. Hence this construction can be repeated for all k. 

Next it will be proven that the polynomials p 1,p 2, ••• , are identical, 

thus proving the theorem for the sequence z 1,z2, ••. , (note that p0 and z0 
are not included). The basic idea of the proof is that we introduce for each 

k a homomorphism which maps zk on z0 , and then apply the assumptions of the 

theorem. 

Consider the mapping h defined by 

if b E (B /{zk }) for some s 
s 's 

(i) 
where zk is the i-th component of zk. 

Since A is free, the mapping h determines uniquely a homomorphism 

h: <A,F> ~ <[(B /{~ }) 8 J,F>. Moreover, h is an epimorphism since all 
S 1<,s SE 

generators of the 'range'-algebra occur in the range of h. The polynomials 

pk were chosen to contain no constants corresponding to components of zk, 

therefore h (pk (zk)) pk (h ( zk)) holds for all k. 

Since operator f is safe, there is a unique f such that 



h E Epi(<A,F u {f}>,<[B ,{zk }) s],F u {f}>). 
S ,S SE 

Now the following equalities hold: 

I h(f(zk)) = f(h(zk)) = f (z0) 

p0 (h(z0)) = p0 (z0). 

II h(f(zk)) = h(pk(zk)) = pk(h(zk)) = pk(z0). 

From I and II follows p0 (z0) = pk(z0). Analogously we can prove that 

pl(zl) = pk(zl). 
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Since A is free, there is a unique term t such that pk(z0) = t = p0 (z0). 

So if we replace the variables in pk and p0 by constants corresponding to 

the components of z0 , we obtain the same expression. From this, and the fact 

that no components of z0 occur as constants in p0 , it follows that the con

stants in pk consists of: 

al) all the constants in p0 . 

a2) possibly some constants corresponding to components of z0 . 

Analogously it follows that the constants in pk consist of 

bi) all the constants in p 1 

b2) possibly some constants corresponding to components of zk. 

We have chosen z 1 in such a way that no constant in p0 corresponds to 

a component of z 1, and no component of z0 equals a component of z 1• So if 

Pk contained constants for components of z 1, this would conflict with al) 

and a2). Therefore we have to conclude that the constants in pk are the 

same as the constants in p 1, and none of these, moreover, corresponds to 

components of z 1• So for all k? 1 we have pk = p 1 • Call this polynomial 

p. Then f(zk) = p(zk) for all k? 1. 

LEMMA 2. Let p be the polynomial guaranteed by lemma 1. Then for all 

a E As x ••• x As, f(a) = p(a). 
I n 

PROOF. Let a= <a(I) , ... ,a(n)>, and assume that a(i) = t(i)(bii) , ... ,b(i)), 

where t(i) is a polynomial without constants, and the b~i),s are gener~tors 
J 

of A. Assume moreover that f(a) = t. Let zk be the infinite sequence of dis-

joint n-tuples of generators given by le!llllla I. Since there are only finite

ly many constants in t 1 and finitely many bSi)'s, there is an m such that 

the components of zm are all different from the constants in t and the 

b~i),s. 
J 
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Define 

A 

h by if b € B /{z } for some s s m,s 

where z(i) is the i-th component of z . 
m m 

This mapping h defines an epimorphism h € Epi(<A,F>,<[(B \{z })] S'F>). 
i, m,s se: 

Since f is safe, there is a unique operation f such that 

h € Epi(<A,F u {f}>,<[(B \{z } )],Fu {f}>). 
s m,s s 

Now the following equalities hold 

(I) (n) (I) (n) 
f(a , .•• ,a ) = tA J h(tA) = hf(a , •.. ,a ) = 

h(f(t 1(b(l))), ... ,f(tn(b(n)))) 2 f(h(t(l)(b(l))), •.• ,h(t(n)(b(n)))) 

= f(h(z(l)), •.• ,h(z(n))) = h(f(z(I) , ••. ,z(n))) = 
m m m m 

_ (I) (n) _ (I) (2) _ (I) (n) 
- h(p(z , ••• ,z )) - p(h(z ), .• .,h(z )))- p(a , •.. ,a ). m m m m 

Equalities I and 2 hold since zm has no components which occur in tor b. 

END LEMMAS. 

From lemma I and lemma 2 the theorem follows 

END THEOREM. 
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