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Introduction 

Many operations management planning and control problems require a series 
of decisions over time at an increasing level of detail. For example, there are at 
least two distinct decision making levels in most production operations. At the 
lowest level, detailed production scheduling decisions determine who will do a 
particular job on what machine and when. Considerations at this level include 
minimizing setups and meeting due dates. At a higher level, aggregate plan­
ning decisions are made concerning hiring and layoffs, overtime, production 
levels for product groups, ordering of raw materials, and setting due dates. The 
time horizon for aggregate decisions may range from several months to one 
year. At the time aggregate decisions are made, much detailed information is 
not known with certainty. This may include future product demand, job pro­
cessing times, machine breakdowns, worker availability, and raw material avai­
lability. In addition, other details are deliberately ignored at the aggregate 
level. For example, the sequence dependent nature of setups is usually ignored, 
and product groups are used rather than individual stock-keeping units. 

Let us consider a two-level decision situation in more general terms. At the 
aggregate level one has to decide upon the acquisition of resources. Precise 
information on what will ultimately be required of them is not yet available. 
Subsequently, at the detailed level, one has to decide on the actual allocation of 
the. resources, when all the relevant information is at hand. The challenge of 
these hierarchical planning problems is to incorporate the initially imperfect 
detailed level information into the aggregate decision so as to arrive at an 
overall solution procedure that is optimal or nearly optimal. Specifically, the 
costs of acquiring resources at the aggregate level have to be weighed against 
the benefits of having them available at the detailed level. 

The traditional approach to these types of problems is through the design of 
a hierarchical planning system. In such a system, each decision level is treated 
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as a separate mathematical programming model. The various models are 
linked such that the solution of a higher level model generates part of the 
input for the model below it. 

There are two fundamental reasons for using a hierarchical approach. 
Reducing complexity. Breaking a problem into subproblems is a standard 

method for simplifying the solution process. A tenet of hierarchical planning is 
that this partitioning can be done so that the interaction effects between sub­
problems are acceptably weak. 

Coping with uncertainty. It is important to realize that the decisions at the 
various levels in the planning process need to be made at different points in 
time. For example, aggregate planning decisions are made early enough to 
implement plans for hiring/layoff, raw materials acquisition, etc.. On the other 
hand, a decision to assign a particular job to a specific machine can be post­
poned until the instant before the job begins processing. This is important in 
light of the fact that much data at the detailed level is uncertain at the time 
aggregate decisions are made. If detailed and aggregate decisions were com­
bined in a single giant optimization model, as is sometimes proposed, the 
detailed decisions would be made earlier than necessary and hence would be 
based on less reliable forecasts of the uncertain data. The hierarchical 
approach postpones the detailed decisions as long as possible so that they can 
be based on more timely and hence more accurate data. 

A third advantage often attributed to hierarchical systems is that they paral­
lel the hierarchical organization of most firms. While this is certainly an impor­
tant consideration, we believe that hierarchical planning organizations, as well 
as hierarchical planning systems, are a response to the nature of the problems 
being solved, and to the need to reduce complexity and respond to uncertainty 
cited above. 

Past work in hierarchical planning has mainly consisted of building clever 
systems. The models have so far always been deterministic in nature. A 
natural question is how the quality of the decisions produced by such systems 
can be evaluated. We are interested both in comparing different systems and in 
direct evaluation of a single system. A very favorable and often applied 
method to compare different systems empirically is Monte Carlo simulation. In 
this approach higher level models are run with forecasts of the lower level 
data. Lower level models are run with actual data values generated randomly 
by the Monte Carlo method. We can often evaluate, either by analytic or by 
empirical methods, the degree of optimality of the solutions to the submodel at 
each level. All of these evaluation methods fail to answer the question of how 
good a particular hierarchical system performs when compared to an optimal 
system. To answer this we need a measure of optimality for the entire system, 
not just for each subproblem. But then, first of all, we need a rigorous formu­
lation of the optimization problem that the hierarchical system is supposed to 
solve. 

A little thought should make it clear that no deterministic mathematical pro­
gramming model can be appropriate if we wish to capture the uncertainty that 
exists at lower levels of the overall decision problem accurately. It would be 
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more appropriate to represent this uncertainty by a stochastic model. This 
leads us into the theory of stochastic programming, which is the subarea of 
mathematical programming that considers problems with parameters 
represented by random variables. 

The stochastic program related to a hierarchical planning problem models 
lower levels accurately, using stochastic parameters for which probability dis­
tributions are specified. The objective at each level is to minimize known costs 
at that level plus the expected objective value of an optimal lower level solu­
tion. For example, consider the form such a model would take for a hierarchi­
cal job shop scheduling problem. At the time machines are acquired, only pro­
babilistic information is available on the jobs to be processed. A two-stage 
stochastic programming model of this problem would select the number or the 
types of the machines so as to minimize the acquisition costs of the machines 
plus the expected cost of processing the jobs optimally on the acquired 
machines. 

For those who are familiar with stochastic programming theory, we notice 
that our concept of a multi-stage stochastic program is broader than what is 
common in the literature. According to the traditional interpretation each next 
stage reflects a recourse decision to correct inf easibilities due to the decision at 
the previous stage. Here we do not so much correct infeasibilities but we have 
to pay extra if our aggregate level decision differs from one that would have 
been optimal if all detailed level information would have been available before 
the aggregate decision was made. 

Unfortunately, the formulation of a hierarchical planning problem as a 
multi-stage stochastic programming problem does not bring us any closer to its 
optimal solution, because of the generally recognized computational difficulty 
of stochastic programming. The evaluation of a stochastic programming objec­
tive function in one point of its domain asks for the computation of the 
expected optimal solution value of the detailed level problem. In the case the 
problem parameters have a continuous distribution this amounts to the 
integration of a function, of which one evaluation requires the solution of a 
deterministic mathematical programming model. 

In this book we focus on hierarchical planning problems, of which the lower 
decision level is of a combinatorial nature. It therefore involves the solution of 
an integer rather than a linear programming problem as is common in the exist­
ing literature on stochastic programming. This adds another serious computa­
tional difficulty. 

Whereas for solving deterministic linear programming problems truly 
efficient methods (like Karmarkar's method) have been developed, no such 
method has been found so far for integer programming. None of the methods 
proposed in the sixties turned out to be able to solve any but the smallest 
problems within a reasonable amount of time. Even today, when linear pro­
gramming problems with thousands of variables are solved on a routine basis, 
integer programming problems with one hundred variables may already 
present insurmountable problems. 

The computational difficulties associated with integer programming appear 
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to be fundamental. For a while, optimists could keep hoping that some totally 
new approach could provide a breakthrough to a truly efficient integer pro­
gramming method. Computational complexity theory, however, put an end to 
that illusion in the early seventies, by showing that the computational 
difficulties encountered in solving integer programming problems are likely to 
be caused by the inherent complexity of the problem and not by the intellec­
tual limitations of the researchers studying it. This theory associates the notion 
of an easy or well-solved problem with the existence of an algorithm whose 
running time is bounded by a polynomial function of the problem size (defined 
as the number of bits needed to encode a problem instance). In this sense the 
general integer programming problem is highly unlikely to be easy: it belongs 
to a class of notoriously difficult combinatorial optimization problems, the 
NP-hard problems, for which strong evidence exists that any solution method 
has, in the worst case, a running time that is a superpolynomial function of the 
problem size. 

The importance of the distinction between these two types of running times 
is revealed when large problem instances are considered. Table 1 (cf. [Garey & 
Johnson 1979]) illustrates the differences in growth rates among several run­
ning time functions. We note the explosive growth rates for the two exponen­
tial functions. 

Even more revealing is an examination of the effect of improved technology 
on algorithms having these running time functions. Table 2 shows how the 
size of the largest problem solvable in one hour would be affected if we had a 
computer 100 or 1000 times faster than our present one. We observe that with 
the 2n running time function a thousand fold increase in speed would only add 
10 to the size of the largest problem that can be solved in one hour, whereas 
with the n 5 algorithm this size almost quadruples. 

Thus an improvement in technology will not really help us in solving larger 
problems with algorithms that have an exponential running time. Our only 
hope is therefore through understanding the structure of the problems in order 
to arrive at faster algorithms. 

The intractability of both integer programming and stochastic programming 
justifies some pessimism about the optimal solution of stochastic integer pro­
gramming problems. It would indeed be foolhardy to aim for the design of a 
solution method that solves any instance of these problems to optimality. As 
in integer programming one possible attitude towards these problems is to 
abolish the ideal of optimization and to settle for an approximation of the 
optimal solution. Thus, approximation methods or heuristics are looked for. 
Essentially, the hierarchical planning systems that we mentioned before are 
nothing but that: heuristics for stochastic integer programming. So we have 
returned to where we started. But we have gained something on our way. The 
formulation of hierarchical planning problems as stochastic integer program­
ming problems provides a proper framework for a theoretical analysis of 
hierarchical planning systems, as opposed to an empirical one. Whereas an 
empirical analysis involves the evaluation of (necessarily arbitrary) computa­
tional experiments, we will now aim for a rigid estimate of the error of the 
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Size n 

running 10 20 30 40 50 60 
time 

function 

n .00001 .00002 .00003 .00004 .00005 .00006 
second second second second second second 

nL. .0001 .0004 .0009 .0016 .0025 .0036 
second second second second second second 

nJ .001 .008 .027 .064 .125 .216 
second second second second second second 

nJ . I 3.2 24.3 1.7 5.2 13.0 
second seconds seconds minutes minutes minutes 

2n .001 1.0 17.9 12.7 35.7 366 
second second minutes days years centuries 

3n .059 58 6.5 3855 2X 10~ l.3X 1013 

second minutes years centuries centuries centuries 

TABLE I. Comparison of several polynomial and exponential running time 
functions. (Copied with permission from M.R. Garey and D.S. Johnson, Com­
puters and Intractability: A Guide to the Theory of NP-Completeness. W.H. 
Freeman and Company. Copyright© 1979, Figure 1.2, p 7.) 

running 
time 
function 

n 
nL 

nJ 

n' 
2n 

3n 

Size of largest problem instance 
solvable in I hour 

With present With computer 
computer 100 times faster 

Ni IOON1 

Ni lON2 
N3 4.64N3 

N4 2.5N4 

Ns Ns +6.64 

N6 N6 +4.19 

With computer 
1000 times faster 

lOOON1 
31.6N2 

lON3 
3.98N4 

Ns+9.97 

N6+6.29 

TABLE 2. Effect of improved technology on several polynomial and exponen­
tial time algorithms. (Copied with permission from M.R. Garey and D.S. John­
son, Computers and Intractability: A Guide to the Theory of NP-Completeness, 
W.H. Freeman and Company. Copyright© 1979. Figure 1.3, p 8.) 
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heuristic, i.e., the absolute or relative difference between the heuristic solution 
value and the optimal one. As both must depend on realizations of the random 
parameters of the stochastic programming model, our performance analyses 
and the resulting quality statements are necessarily of a probabilistic nature. 

The design and analysis of hierarchical planning systems viewed as heuristics 
for stochastic integer programming problems are the subject of the first three 
chapters. In Chapter 1 a general approach is outlined. Stochastic models for 
hierarchical planning problems with two decision levels are formulated. We 
also indicate how to construct hierarchical planning systems for their solution. 
It is evident that a heuristic for scheduling problems will differ from one for 
vehicle routing problems. Therefore the hierarchical planning systems are una­
voidably problem specific. However, the differences are mainly reflected in the 
part of the systems concerned with the solution of the detailed level decision 
problem. There is enough similarity between the various hierarchical planning 
systems with respect to the ways in which the aggregate level decision is 
derived and in which the detailed level heuristic is embedded in the system, to 
allow general design principles to be formulated. 

Also the performance analyses of our hierarchical planning systems have 
enough in common to allow for the application of general devices. We review 
various performance measures and exhibit some relations between them. For 
two stochastic integer programming problems of a general nature we design 
hierarchical planning systems along the above lines and derive sufficient condi­
tions under which they satisfy various quality statements based on the perfor­
mance measures. 

In Chapters 2 and 3 we consider some specific examples. In Chapter 2 we 
study hierarchical scheduling problems, i.e., problems, in which the detailed 
level involves the scheduling of jobs on machines. In Chapter 3 we study 
hierarchical routing problems, in which the detailed level asks for the routing 
of vehicles located at a central depot through customers, and hierarchical loca­
tion problems, in which depots or service centers are to be located at the 
detailed level. For these problems hierarchical planning systems are designed 
and analyzed through application of the general principles outlined in Chap­
ter I. 

The remaining part of this book is devoted to optimization methods rather 
than approximation methods for stochastic integer programming problems. As 
mentioned above it is virtually hopeless to aim for methods that solve any sto­
chastic integer programming problem efficiently. As in integer programming, 
the only way to obtain computational success seems to be through the exploi­
tation of special structure. One might investigate if some stochastic integer 
programming problems have enough structure to allow for the design of 
enumerative solution methods whose empirical behavior is satisfactory 
although they are not efficient in the formal sense. 

Only a few results are available in this direction. In Chapter 4 optimization 
methods are designed for stochastic integer programming problems whose spe­
cial structure is induced by the (discrete) distribution of the parameters which 
is concentrated on a small number of points. The relations that exist between 



7 

the various feasible solutions of these problems can efficiently be exploited by 
dynamic programming recursions. Such methods have a running time that is 
bounded by a function that is polynomial in the problem size, but exponential 
in the above mentioned number of points with positive density. 

Finally, in Chapter 5, we aim for more general results. For this we need 
theoretical insight into the properties of stochastic integer programming objec­
tive functions. Unfortunately, certain theoretical properties of linear program­
ming that have contributed to the design of successful stochastic linear pro­
gramming algorithms are typically lacking for integer programming. For exam­
ple, properties of optimal linear programming solution values viewed as func­
tions of the parameters imply convexity of stochastic linear programming 
objective functions in the aggregate level decision variables. Stochastic integer 
programming objective functions, however, are generally non-convex, and if 
the random parameters have discrete distributions, they are even discontinu­
ous. The main results that we derive in this chapter are that, for a general class 
of stochastic integer programming models, continuous distributions for the 
random parameters induce continuous but not necessarily convex objective 
functions, while discrete distributions lead to discontinuous objective functions. 
These results should be regarded as some initial theoretical insight in the struc­
ture of stochastic integer programming objective functions. They are still far 
removed from a well implemented stochastic integer programming algorithm. 
Directions for future research will be discussed. 
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A framework for the design and probabilistic analysis 

of hierarchical planning systems 

In the introduction we formulated hierarchical planning problems as multi­
stage stochastic integer programming problems. We explained their intractabil­
ity and proposed hierarchical planning systems as heuristics for their solution. 
The stochastic programming model provides a proper framework for the 
analytical evaluation of the performance of such heuristics. In Chapters 2 and 
3 we will see that precise statements about the behavior of hierarchical 
scheduling, routing and location systems can be derived, such as asymptotic 
optimality in expectation, in probability or with probability I. 

Although the probabilistic analyses of these heuristics are different, the state­
ments that can be derived are similar. Also, the hierarchical planning systems 
constructed have many features in common. The purpose of this chapter is to 
outline a general approach to the design and analysis of hierarchical planning 
systems. 

In Section 1.1 we will formulate two basic stochastic programming models 
for a hierarchical planning problem with two decision levels. In Section 1.2 we 
will indicate how to construct heuristics for its solution. We will review the 
various ways to measure the performance of such heuristics in Section 1.3 and 
exhibit relations between these measures in Section 1.4. We will use these con­
cepts in Section 1.5 in analyzing a general two-level planning problem, of 
which many of the problems in Chapters 2 and 3 are special cases. In Section 
1.6 we analyze a general two-stage decision situation in which there is a possi­
bility to adjust the first stage decision at a certain cost, when a realization of 
the stochastic parameters has become known. 
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1.1. Stochastic programming models 
Consider the typical two-stage decision situation outlined in the introduction. 

At the aggregate level, one has to decide upon the acquisition of resources. 
The first stage decision will be denoted by X, the set of feasible decisions by <X., 
and the direct cost associated with X by f (X), where f: ~IR is a real func­
tion. Probabilistic information about future resource requirements is 
represented by a n-dimensional vector w. We will indicate random variables 
by boldface characters. We denote the set of all possible realizations of w by 
621). 

The input to the detailed level consists of the first stage decision X and a 
realization w of the random vector w. The objective at the second stage is to 
decide upon a certain allocation of the resources acquired so as to minimize a 
cost y (X, w ), where y : 'XX Rn ~R is a real function. The optimal value of 
y(X,w) will be denoted by y*(X,w). We notice that, for a given X,y*(X,w) is a 
(complicated) function of the random vector w and hence a random variable in 
itself. The total cost of the acquisition decision X and the optimal allocation 
decision will be denoted by z*(X,w)=f(X)+y*(X,w). 

The stochastic programming formulation that naturally captures the uncer­
tainty existing at the lower level is the two-stage decision model. Each of the 
two decision levels. of the hierarchical planning problem corresponds to a stage 
in this model. The objective at the first stage is to determine a decision x· E'X 
such that the expected total cost Ez*(X, w)=f (X)+ Ey*(X, w) is minimized: 

Ez*(X* ,w) = minxE~{Ez*(X, w)}. 

In stochastic programming terminology, the first stage decision is made 'here 
and now', given imperfect information about the second stage, and it is there­
fore independent of a particular realization w of w. 

We also formulate the distribution model. Contrary to the two-stage decision 
model, the objective here is to determine a function X0

: Rn ~ex such that for 
each realization w of w the actual cost is minimized: 

z*(X°(w),w) = minxE~{z*(X,w)}, VwE6l!f. 

Thus, before the aggregate decision is taken, we 'wait and see' until perfect 
information about the second stage is available. Solving this problem can be 
regarded as characterizing the minimum total cost achievable as a function of 
w. Although this model does not reflect the actual decision process in a 
hierarchical planning problem, it allows us to obtain more insight into the per­
formance qualities of methods for its solution. 

1.2. Two-stage stochastic programming heuristics 
As has been argued in the introduction, there is little hope to develop efficient 
optimization algorithms for the above stochastic programs. As to the two­
stage decision model, the determination of y • (X, w) is often an NP-hard prob­
lem, so that a heuristic must be used at the second stage. Even if y • (X, w) can 
easily be determined, it seems impossible to obtain a tractable representation 
of Ey • (X, w), and the use of a heuristic at the first stage is generally 
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unavoidable. The distribution model is at least as hard to solve to optimality. 
We will outline a two-stage heuristic approach; the heuristics at the first and 
second stage will be denoted by H 1 and H 2 , respectively. 
, At the first sta?te, we replace Ey*(X,w) by an approximation yH'~X) and 

determine an X 'E<X such that the approximate total cost z '(X)= 
j(X)+yH'(X) is minimized: 

zH'(XH') = minxE<X{zH'(X)}. 

In some cases, even this approximate first stage problem is NP-hard and 
another heuristic device is needed to solve it (see Sections 2.1.2 and 3.1.2). 

At the second stage, we allocate the resources acquired, achieving an 
approximate cost yH'(XH' ,w). In some cases, the second stage problem does 
not require any approximation and H 2 denotes a polynomial-time optimiza­
tion algorithm. The total cost of the entire heuristic for a realization w of w 
will be denoted by zH'(XH',w)= j(XH')+ yH'(XH',w). 

The success of this heuristic approach evidently depends on the quality of 
yH'(X) as an approximation of Ey*(X, w) and of yH'(X,w) as an approxima­
tion of y*(X,w). In this context, use can be made of the existing literature on 
probabilistic analyses of combinatorial optimization problems and heuristics to 
solve them. Specifically, we can use results from probabilistic value analysis of 
combinatorial optimization problems. Although these problems may be 
difficult to solve, their optimal value often allows for a simple probabilistic 
description in terms of the problem parameters. Results in this direction were 
achieved for routing problems in [Beardwood et al. 1959] and (Steele 1981] and 
for location problems in [Hochbaum & Steele 1981] and [Zemel 1984]. 

We will also use results from probabilistic error analysis of heuristics for 
combinatorial optimization problems as were outlined in [Karp 1977] for rout­
ing problems and in [Fisher & Hochbaum 1980], [Hochbaum & Steele 1981 ], 
[Papadimitriou 1981] and [Zemel 1984] for location problems. 

1.3. Peiformance measures 
Before defining a number of ways to measure the performance of stochastic 
programming heuristics, we recall some concepts of stochastic convergence. A 
sequence of random variables x1 ,x2,... is said to converge to a random vari­
able x 
(a) in expectation if limn--.00 £ I Xn -x I =O 

[notation: EI Xn -x I ~o]; 
(b) in probability if limn--.00 Pr{ I Xn -x I~£}= 1 for every £>0 

[notation: Xn~x (ip)]; 
(c) with probability 1 or almost surely if Pr{limn__.aoXn =x} = 1 

[notation: Xn~X (wpl)]. 
Some well-known relations between these types of convergence are given in 
Section 1.4. 

The quality of a solution provided by a two-stage heuristic (H 1,H 2 ) can be 
measured by comparing it with optimal solutions to the two-stage decision 
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model and to the distribution model. The quality statements are of an asymp­
totic nature, i.e., they are concerned with problems of growing size reflected in 
the dimension of the random vector w. In the notation the index indicating 
the problem size is suppressed if it is clear from the context. 

In the context of the first model, one is primarily interested in the asymp­
totic behavior of the ratio of the expected costs 

EzH'(XH' ,w) 

Ez*(X* ,w) 

We notice that the ratios defined in this section are well-defined since for each 
X and for each wE61.lf z*(X,w)>O. If the above ratio tends to I as the problem 
size tends to infinity, then we say that the approximation algorithm (H 1,H 2 ) is 
asymptotically expectation-optimal. If the heuristic depends on a given number 
t:>O and has the property that, for each t:, the ratio tends to a number less 
than l +t:, then (H 1 (t:), H 2(t:)) is said to be an asymptotically expectation­
optimal approximation scheme. 

Other obvious ideas are to investigate the asymptotic behavior of the ratio of 
the actual costs 

zH'(XH' ,w) 

z*(X* ,w) 
and 

zH'(XH' ,w) 

z*(X0 (w),w) 

If the first of both ratios tends to I (or, for each t:>O, to a number less than 
I +t:) in expectation, in probability or with probability I, then we say that the 
approximation algorithm (or scheme) is asymptotically optimal in expectation, in 
probability or with probability I. If the second ratio satisfies analogous proper­
ties, then the heuristic is said to be asymptotically clairvoyant rather than 
asymptotically optimal: in addition to the inaccuracy due to approximating the 
two-stage decision model, the relative loss caused by imperfect information 
also disappears in the limit. 

Still other measures are based on a comparison of the aggregate decisions 
XH', X* and X0 (w). In case ':X is a set of numbers, one can directly investigate 
the limiting behavior of the ratios 

XH, 
and -­

X0(w) 

(see e.g. Sections 2.1.1, 2.3, 3.1.1). The first of these ratios is a deterministic 
variable, but the second one is random and its convergence analysis results in 
probabilistic statements. Sometimes it ma# even be possible to obtain good 
bounds on the differences XH' - X* and X ' - X0 (w). In case ':X is a family of 
subsets, one possibility is to convert each set X E':X into a number W(X) by 
taking a weighted sum over its elements and to consider the ratios of or the 
differences between W(XH'), W(X*) and W(X0 (w)) (cf. Sections 2.1.2, 3.1.2). 
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1.4. Relations between performance measures 
Lemmas I.I, 1.2 and 1.3 give fundamental relations between the three types of 
convergence of a sequence of random variables x.,x2, ••• to a random variable 
x. We refer to [Serfling 1980] for proofs and for examples which show that the 
inverse implications do not hold in general. 

LEMMA 1.1. Xn--+X (wpl) ~ Xn--+X (ip). 0 

Preliminary to Lemma 1.3 we give the following definition. Let I { x eA l be the 
indicator function of x which has value 1 if x EA and value 0 otherwise. 

DEFINITION. A sequence of random variables x1 ,x2,... is uniformly integrable if 

liIJ\.-00 SUpnE{ I Xn I 1Jx.J>c) = 0. 

LEMMA 1.3. Suppose the sequence x.,x2,... is uniformly integrable. Then 
Xn--+X (ip) ~ EI Xn 1--+E IX I and EXn--+EX . D 

We will now investigate relations between the performance measures intro­
duced in the previous section. To simplify notation, we will write 

zH for zH'(XH' ,w), z* for z*(X*,w), z0 for z*(X0 (w),w). 

To simplify the analysis, we introduce the following assumptions that are usu­
ally satisfied in our applications. 

ASSUMPTION 1.1. zH lz0 is uniformly integrable. 

ASSUMPTION 1.2. zH I Ez0 is uniformly integrable. 

ASSUMPTION 1.3. There exists a constant c 1 >0 such that for n sufficiently large 
z* I Ez* <c 1 (wpl). 

ASSUMPTION 1.4. There exists a constant c2 >0 such that for n sufficiently large 
z* I Ez* >c2 (wpl). 

ASSUMPTION 1.5. There exists a constant c3 >0 such that for n sufficiently large 
z0 /Ez0 >c3 (wpl). 

In addition to these assumptions, we will use the basic properties of our 
models that zH ";;f:z0

, z* ";;f:z0
, z0 >0 and EzH;;;,. Ez*; but it need not be true that 

zH ";;f:z* for every realization w E"lil. Note that under Assumption I.I also zH /z* 
is uniformly integrable, and that under Assumption 1.2 also zH I Ez* and 
z0 I Ez0 are uniformly integrable. In each of the applications that we are con­
sidering in the following chapters we will investigate to what extent our 
assumptions are realistic. 
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Tl.l 

Ez1l ~1 
Ez* 

Ez1I ~1 
Ez' 

z1I ->I (ip) 
z• ~->I (ip) 

Ll.l Ll.3 0 
Tl.3 t 

z 

Ll.l Ll.3 
I 
10 

z1' 
7->l (wpl) El.2 z1' /z' ~1 (wpl) 

0 

FIGURE I. I. Relations between performance measures 

~= valid implication; : invalid implication; 0: Obvious; E: Example; L: 
Lemma; T: Theorem; t: if zH /z* has a finite limit (wpl) 

Figure J. l shows which relations hold under these assumptions, and which 
do not. We will first illustrate some of the invalid implications by means of 
two examples, and next prove the valid implications in three theorems. The 
examples are of a general non-asymptotic nature, but the variables satisfy the 
above properties, which are inherent to our models. 

EXAMPLE 1.1. Ez1l I Ez* ~l but ElzH lz* -11~0 and zH lz* ~ 1 (ip). 
Let Pr{zH = l,z* =2} = ~ and Pr{z1l =2,z* =I}=+. We have EzH I Ez* =I 

but ElzH /z* - II=! and z1l /z* E { ~ ,2}. D 

EXAMPLE 1.2. zH/z0~l (wpl)butz1l/z*~l (wpl). 
Let x be uniformly distributed on the unit interval [O, I] and let n denote 

problem size. For each n EN, define 

{
2 (x Ef1;/)} 

z1;! = 1 (x fif1;/) ' 

{
2 (xEJ~)} 

z~ = 1 (xfif~)' 

z~ = I, 

where the intervals 11;[ and J~ are defined by 
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/(n)= 211og,nl,/H [o l ]r [n-/(n) n-/(n)+l] 
n = ' I (n) ' n = I (n) ' I (n) 

l 
4 

n=4,5,6,7; 
/(n)=4 

l 
2 

3 
4 17 

FIGURE 1.2. Illustration of the intervals in Example 1.2 

(cf. Figure 1.2). We observe that limn--+oo z!! = 1 (wpl) so that limn--+oo 
z!! lz~ = 1 (wpl) as well; however, with probability 1 limn--+oo z; does not exist 
and neither does limn--+oo z!! lz;. In probabilistic terms, we therefore have that 
z!{ /z~~l with probability 1 but z!! 1z;~1 only in probability. 

This example is due to H.C.P. Berbee. It will be shown in Theorem 1.3 (ii) 
that, if z!! 1z; has a finite limit (wpl), then the implication is valid. D 

Theorems 1.1 and 1.2 collect the implications between the various conver­
gence properties in the context of the two-stage decision model and the distri­
bution model, respectively. 

THEOREM 1.1. 
(i) Elz8 /z* -11~0 =* z8 /z* ~1 (ip); 
(ii) z81z·~1 (ip) =* ElzH/z*-ll~O under Assumption 1.1; 
(iii) Elz8 /z* -11~0 =* EzH I Ez* ~ 1 under Assumption 1.3. 

PRooF. (i) This is immediate from Lemma 1.2. 
(ii) It is obvious that under Assumption 1.1, z8 /z* -1 is also uniformly integr­
able. Hence, (ii) follows from Lemma 1.3. 
(iii) We bound EzH from above by 

H 

EzH = j z9 dF(w) ~ f<I:. -ll+l)z*dF(w), 

so that, under Assumption 1.3, for n sufficiently large 

EzH J z8 z* _H • 1 ~ --~ 1 + I- - 11-dF(w) ~ 1 +c,Elz-- /z -11. 
Ez* z* Ez* 

Since Elz8 /z* -11~0, we have Ez8 I Ez* ~l. D 
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THEOREM 1.2. 
(i) ElzH /z0 

- 1 l-O ~ zH /z0 
- 1 (ip ); 

(ii) EzH/Ez0 -l ~zH/z0 -l (ip); under Assumption 1.5; 
(iii) zH /z0 -1 (ip) ~ ElzH /z0 -11-0 under Assumption 1.1; 
(iv) zH /z0 -1 (ip) ~ EzH I Ez0 -1 under Assumptions 1.1 and 1.2. 

PROOF. (i) This is immediate from Lemma 1.2. 
(ii) For every £>0 we can bound EzH I Ez0 from below by 

EzH zH z 0 z0 
--= j---dF(w);;;. l +£E(--lz11 >z(I +<J)-
Ez0 Z 0 Ez0 Ez0 

So that, under Assumption 1.5, 

EzH 
Ez" ;;;.J+£C3Pr{zH>zo(l+£)}. 

It follows from EzH/Ez0 -1 that Pr{zH>z0 {l+t:)}-O for every £>0, i.e., 
ZH /z0 -1 (ip). 
(iii) Under Assumption 1.1, zH /z0 -1 is uniformly integrable and we can apply 
Lemma 1.3 to obtain (iii). 
(iv) We can bound EzH I Ez0 by 

1 o;;;; ~:~ =E(zH I Ez0
) 

zH zo zH 
=E(-o -E o lzH..;(J+<)z )+ E(-E o lzH>(l+<)z°) 

z z z 

zH 
o;;;;(1+£)+£(£zo lzH>(l+<)z). 

Under Assumption 1.2, we have that zH I Ez0 is uniformly integrable. Therefore 
for every £>0 there exists a constant S such that uniformly 
E(zH I Ez0 lzH !Ez">o)<£, and hence 

~:~ .;;;(I +t:)+ E(zH I Ez0 1,H !Ez"..;IJ 1,H>(l +<)£) 

+ E (zH I Ez 0 1,H !Ez°>li 1,H>(l +<)z°) 

.;;;; 1 +t: +l>Pr{ zH >(I +£)Z0
} + E(zH I Ez0 1,11 !Ez>IJ) 

.;;;; 1+2t:+SPr{ zH >(1 +t:)z0 
}. 

Since zH/z0 -1 (ip), we have Pr{zH>(l+c::)z0 }-0 for every t:>O. It follows 
that EzH I Ez0 -1. D 

Theorem 1.3 states the relations between the two-stage decision model and 
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the distribution model. 

THEOREM 1.3. 
(i) zH /z0 ~1 (ip) ~ zH /z* ~1 (ip), under Assumptions 1.2 and 1.4; 
(ii) Suppose zH /z* converges to a constant L (wpl). Then zH /z0 ~1 (wpl) 
~zH /z* ~ 1 (wp 1 ), under Assumptions 1.2 and 1.4. 

PROOF. (i) For every t:>O we define 

zH 
61.ilO(t:) = {w: -0 >l+t:2}, 

z 
ZH 

61Jf1(t:) = {w: -. >l+t:2}, 
z 

ZH 
61Jf3(t:) = {w: -. <1-t:}. 

z 

EzH can be bounded from above by 

EzH = f zHdF(w) 

~ J zH dF(w) + (1 +t:2) J z* dF(w) + (1-t:) J z* dF(w), 
~00 ~00 ~00 

so that 

EzH zH z* 
1 ~ --. ~ j -. dF(w) + 1 + t:2 - t: j -. dF(w). 

Ez •af,(<l Ez "1If,(<l Ez 

Under Assumption 1.2, for every t:>O there exists a 8>0 such that uniformly 
E(zH I Ez* lzn tEz">IJ)<t:2. Therefore under Assumptions 1.2 and 1.4 we can 
bound EzH I Ez* by 

1 ~EzH I Ez* ~t:2 + 1 +t:2 +8Pr{wE61Jf1 (t:)} - t:c2Pr{wE61Jf3(t:)} 

that is, 

8 2 Pr{wE61Jf3(t:)} ~ -Pr{wE61Jf1(t:)} + -t:. 
t:C2 C2 

Since zH lz* ~1 (ip), we have Pr{wE61.ilO(t:)}~O for every t:>O and, since 61Jf0(t:) 
;d 61Jf1 (t:), Pr{ wE61Jf1 (t:) }~O for every t:>O as well. This result together with 
the above upper bound implies that for every t:>O, asymptotically 

2 Pr{ WE61Jf3(t:)} ~-t:. 
C2 

We observe that lirn. ..... o Pr{wE61Jf3(t:)} =O. Since Pr{wE61Jf3(t:)} is a decreasing 
function oft: this implies that Pr{wE61Jf3 (t:)}~O for every t:>O. It follows that 
Pr{wE61Jf1 (t:) n 61Jf3 (t:)}~o for every t:>O, i.e., zH lz* ~ 1 (ip). 
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(ii) Since zH/z0 -l (wpl) and z0 ~z*, we know that L~l. By Theorem l.l(ii), 
the uniform integrability of z HI z * and the assumption that limn---+ao (z HI z *) 
exists, we have that 

1.5. A general two-level planning problem 
We will first consider a specific, simply structured type of the distribution 
model formulated in Section I. I. We will next show how results derived for 
this type of model also hold for a more general model by simple extensions of 
the arguments. 

The first model has 'X=~ and f (X)=cX at the aggregate level for a given 
constant c>O, and the objective is to determine a function X0 :1Rn-~ such 
that for each realization w of w 

z*(X0 (w),w) = minxEN{cX+y*(X,w)}. 

Models of this type occur when one has to decide upon the acquisition of a 
number of identical resources each at a fixed cost c. Such models are studied 
in Chapters 2 (Sections 2.1.l and 2.3) and 3 (Sections 3.1.1, 3.2, 3.3). They 
share some features that allow us to treat them in a general way. This general 
treatment concerns the design of the first stage heuristic as well as the analysis 
of the quality of the first stage decision and the entire hierarchical planning 
system. 

First of all, there typically is a lower bound on y * (X, w) that can be written 
as the product of two factors, one depending only on X and the other only on 
w. More specifically, there exist a constant y>O and a function g :IRn-IR such 
that asymptotically for each X E~ 

~ ~y*(X,w) (wpl). 
xr 

Secondly, there often is an approximation v of g(w) depending on the prob­
lem size and the probability distribution of w that is asymptotically accurate 
with probability 1: 

_gW - 1 (wpl). 
v 

Such value estimates are available for various combinatorial optimization prob­
lems, as has been mentioned already in Section 1.2. 

These characteristics lead to a simple heuristic H 1 for the first stage prob­
lem. Defining y HI ( X) = v I xr' we have that asymptotically 

zH 1 (X) = cX+-v- ~ cX + y*(X,w) = z*(X,w) (wpl). (1.1) xr 
Observing that zH 1 is an unimodal function, achieving its minimum at 

I x = (..)'.!'._) y+l ' 
c 
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we copcluqe that X 8 ' ... is detenajned by Inimmmng z8 ' (X) subject to 
X E {l X J, r X] } n N. ( l X J and r X] denote the integer rounddown and 
roundup of X respectively.) 

The third common feature is the existence of a second stage heuristic H 2 

that produces an upper bound ony*(X0 (w),w) which is asymptotically equal to 
the above probabilistic lower bound with probability l: 

H'(XH' ) 
y ,w --+ l (wpl). 
yH'(XH') 

No general recipe for the design of such a heuristic can be given, since the 
model considered here allows for a wide variety of problem types at the 
detailed level. In this situation, it can be proved that the heuristics H 1 and 
(H 1,H 2 ) are both asymptotically clairvoyant with probability 1. 

THEOREM 1.4. If X eN, f (X)=cX (c >0) and H 1 and H 2 are such that 
(A)y8'(:J=v/)(Y~*~X,w) (wpl) asymptotically and 
(B)y8 '(X ',w)!y 8 '(X ')-+l (wpl), 
then 
(i) z8 '(X8 ' ,w)/z*(X°(w),w)-+l (wpl); 
(ii) X81 /X°(w)-+l (wpl). 

PROOF. (i) We can bound z*(X,w) from below (asymptotically with probabil­
ity 1) and from above (deterministically) by 

so that 

cX + y 8 ' (X) = z8 ' (X)oe;;;z * (X, w)oe;;;z 8 ' (X, w) 

= cX +y8 '(X, w) (wpl), 

cX8 ' +y8 '(X8 ') oe;;; z*(X°(w),w) oe;;; cX8 ' +y8 '(X8 ' ,w) (wpl). 

Condition B then yields the desired result. 
(ii) Let n denote problem size. For each £>0 we define 

. X8 ' 1 
61JS"(£) = {w: limsupn .... 00-- < -1 + }. 

X°(w) £ 

The unimodality of z 8 ' implies that for we61JS"(£) asymptotically 

z 8 '((1 +£)X8 ') oe;;; z 8 '(X°(w)) oe;;; z*(X°(w),w) oe;;; z8 '(X8 ' ,w) (wpl). 

A tedious but straightforward calculation shows that for each n 

z 8 '((1 +£)X81 ) _ (1 +£}y+(l +£)-y 
zH'(XH') - y+ 1 > I. 

Hence, we have for w e 61JS"(£) that 

z82 (X81 ,w) 
liminfn-+oo H H > 1 (wpl). 

z '(X ') 
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On the other hand, we know that this limit is equal to 1 (wpl), so that 
Pr{wE611f(£)} =O for every £>0. Similarly, Pr{liminfn__, 00 XH, I X 0 (w)> 
>l/(1-£)}=0. It follows that XH'/X 0 (w)-l (wpl). 0 

Obviously, many of the nice features of the above model no longer hold if the 
resources that are to be acquired are not identical, so that X is a set rather 
than a number and f (X) is a set function such as in Sections 2.1.2 and 3.1.2. 
We will show that extensions of notions from the previous model capture the 
difficulties inherent to these models and allow for the derivation of the same 
statements about the heuristic. 

Again there is often a lower bound on y* (X, w) that can be written as the 
product of a function g: Rn -R and in this case a set function h : ~IR: i.e., 
asymptotically 

y*(X, w) ;;;,, h(X)g(w) (wpl). 

Using an approximation v of g(w), having the same qualities as in the previous 
model, and defining yH' (X) = vh (X) leads to the asymptotic lower bound 
function 

zH'(X) = f(X)+vh(X).;;;; f(X)+y*(X, w) = z*(X, w) (wpl). 

The determination of a set XH, that minimizes zH' (X) is a combinatorial selec­
tion problem. Theorem l .4(i) can be reformulated appropriately such as to 
hold for this new situation. 

THEOREM 1.5. If f : ~IR and H 1 and H 2 are such that 
(A)yZ'(~=vh(XJ:o;;;;y~(X,w) (wpl) asymptotically and 
(B)y '(X ',w)ly '(X ')-1 (wpl), 
then 

zH'(XH' ,w)/z*(X0 (w),w) - I (wpl). D 

In most cases the above combinatorial selection problem is NP-hard, which 
suggests that approximating XH' is the only practical alternative. For the 
approximation X' we cannot guarantee that 

zH'(X') .;;;; minxEox{z*(X, w)} (wpl). 

Nevertheless, in Theorem 1.6 we show that the same statement of Theorem 1.5 
can be established if we add an extra condition which requires that zH' (X') is 
a sufficiently good approximation of zH' (XH, ). 

THEOREM 1.6. If f :~R and H 1 and H 2 are such that 
(A)yH1(X)=vh(X):o;;;;y*(X,w) (wpl) asymptotically, 

H H 
(B)y '(X',w)l,i. '~')-I (wpl), and 
(C)zH'(X')lz '(X ')-I 
then 
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zH'(X',w)/z*(X0 (w},w)-+l (wpl). 

PROOF. Because of Condition A we can bound z*(X,w) from below (asymptot­
ically with probability 1) and from above (deterministically) by 

so that 

j(X)+yH'(X) = zH'(X) :E;;; z*(X,w):E;;;zH'(X,w) 

= f(X)+yH'(X, w) (wpl), 

f(XH')+yH'(XH') = zH1 (XH1 ):E;;;z*(X0 (w),w):E;;;zH2 (X',w) 

= /(X')+yH'(X',w) (wpl). 

It is obvious that, asymptotically, 

zH'(X',w) ::::::: zH'(X',w) 
""" (wpl). 

z*(X°(w),w) zH'(XH,) 

The latter term is equal to 

zH'(X',w) . zH'(X') 

zH'(X') zH'(XH1 )
0 

Conditions B and C together yield the theorem. D 

We finally note that, if in Theorems 1.4, 1.5 and 1.6 the probabilistic nature of 
the conditions is different (in probability or in expectation instead of with pro­
bability 1 ), then the probabilistic statements about the asymptotic clairvoyancy 
that can be proved differ correspondingly. 

1. 6. A general recourse problem 
In this section we study a two-level planning problem, in which a recourse on 
the aggregate level decision is possible, after a realization of the random 
parameters has become known. 

As in the first model of the previous section we assume that we have to 
decide on a number X of resources at the aggregate level at a cost c each, so 
that f (X)=cX. Given a realization w of the random parameters at the 
detailed level, it is possible to acquire some extra resources X 1 ( w) at a price 
c1 >c each or to sell some of the acquired resources X2(w) at a price c2<c. 
With the resources that are ultimately available we have to solve the detailed 
level combinatorial problem, the optimal value of which is now denoted by 
y • (X + X 1 ( w )-X 2 ( w ), w ). The total cost of the two decisions is defined by 
zR(X,w)=cX+ X1(w)-X2(w)+ y*(X + X1(w)-X2(w),w). 

The two-stage decision problem is to determine a value X* EN, for which 

EzR(X* ,w)=minxeN{EzR(X, w)}. (1.2) 

The optimal solution of the distribution problem is equal to the one of the first 
model of Section 1.5 as this problem aims for the optimal choice of X given a 
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realization of the random parameters before the aggregate level decision is 
made. It is obvious that here for each realization w of w XJ(w)=X2(w)=O. 

Along the lines of Section l .5 we design and analyze a hierarchical system 
for the solution of the two-stage decision problem. Again we assume that an 
almost sure lower bound on y * (X, w) exists that can for each X be written as 

_gW<y*(X, w) (wpl) 
)(Y 

(y>O). This implies that asymptotically 

g(w) < *(X + X (w)- X (w)) ( I) 
(X+XJ(w)-X2(w))Y y J 2 wp · 

Hence, asymptotically, we can bound the second stage cost from below by 

min {c X (w)-c X (w)+ g(w) } (wpl) 
X,(w),X,(w)EN J J 2 2 (X+XJ(w)-X2(w))Y . 

This minimum is determined from the first order Kuhn-Tucker conditions 

CJ -yg(w)/(X+XJ(w)-X2(w))Y+J =O 

Cz -yg(w)/(X+XJ(w)-X2(w))Y+J=O. 

From these conditions we obtain: 
J 

. c2P+J >yg(w)~X2(w)=X-(~p+J, XJ(w)=O; 
Cz 

c2p+J .;;;;yg(w).;;;;cJ)(Y+J~x2(w)=XJ (w)=O; 

J 

CJp+J <yg(w)~X2(w)=O, XJ(w)=(~) y+J -X 
CJ 

Now, a lower bound on the expected second stage cost is given by 
oo J 

z~'(X) = cX+ j (cJ((..:rs:.Mp+J -X)+ 
CJ 

~xy+I 
y 

~xy+I 

+ g(w) J )dF(g(w))+ Y j ~dF(g(w))-
-vafw\ - )(Y ( x + ( .... L.6 .... l.'.:'..L-)Y + J - X) y .:i.. X'+ I 

CJ y 



~xy+J 

'Y C2 + J -xr+ 1g(w)lxYdF(g(w))- -
y 

~xy+I 
'Y 

I c -
-((-2 )Yg(w))'Y+ 1 )dF(g(w)). 

y 

~xr+1 
'Y 

f 
0 

I 

(c2X(ycY g(w)) y+ 1 
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To obtain the heuristic first stage decision XH, we minimize z~' (X). The first 
order condition is given by 

_1_ +l oo 
c-(yc!c 1xY+ 1 /y)'Y+ 1 fg(c 1xY+ 1 /y).1..:!....!..c1xY-c1 J dF(g(w))+ 

y c1X'+ 1/y 

00 c,X'+I /y 

c-c 1 J dF(g(w))--1+1 J g(w)dF(g(w))- (1.3) 
X,+11 xY X'+'I c, 'Y c, 'Y 

c,X'+' ly 

-c2 J dF(g(w))=O. 
0 

As in Section 1.5 we assume that an approximation v of g(w) exist that is 
asymptotically accurate with probability I: g(w)/v~l (wpl). We will show 
that, if moreover asymptotically E(g(w)lv)= I, equation (1.3) is asymptotically 
satisfied by XH, =(yv/c)11<Y+IJ_ Substitution of Xin (1.3) by this value yields 

C2 C1 
-v -v 
c c 00 

c -c2 J dF(g(w))- ~ J g(w)dF(g(w))-c1 J dF(g(w)). (1.4) 
0 c, c, v 

-v -
c 
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Since g(w)/v~l (wpl), the second and the fourth term in (l.4) tend to 0, and 
the third term tends to -c, which makes (l.4) asymptotically equal to 0. That 
XH, is indeed a global minimum is shown when we consider the second 
derivative of zH' (X): 

xy+I / + l ( + l) c, Y 
-c2fg(c2xY+ 1 /y).1..!:..!_c2xY + Y Y +2 j g(w)dF(g(w))-

y xY X'+'1 c, y 

-?c1xY+ 1 /yfg(c 1xY+ 1 /y) Y~ 1 c 1XY + 

+-1+J-c2Xy+ 1lyfg(c2xY+ 1 /y).1.±.!_c2xY + 
xY y 

We observe that this first stage decision is equal to the one in the first model 
of Section 1.5. (We omit the integer restriction on XH, as it does not influence 
asymptotic results.) For the second stage recourse decision we propose the fol­
lowing heuristic. If yg(w )>c 1 (XH' ) 11(y+ 1> then we acquire an extra number of 
resources X7'(w)=(yg(w)/c 1)11<Y+l)_XH'. If yg(w)<c2(XH')11(y+I) we sell a 
number of resources X~'(w) =XH' -(yg(w)/c2)11<Y+l). If 
c2(XH' )11(Y+ 1> ~yg(w )~c 1 (XH' )11(y+ I) we neither acquire any extra resources 
nor sell any of the acquired resources. 

Again we assume the existence of a heuristic H 3 for the solution of the ulti­
mate combinatorial or.timization problem that, given a number X of resources, 
produces a value y H' ( X, w) the expectation of which is asymptotic to 
y H' ( X) = v I xY The value produced by the entire hierarchical system 
(Hi.H2,H3) is given by 

EzZ"H'(XH' ,w)=cXH' + E(c 1X7' (w)-c2 X~' (w)+yH'(XH' + X 1(w)-X2(w),w)). 

If zH'(X)=cX+vlxY is the lower bound on the objective function of the 
problem without a recourse possibility, (see (1.1)) then the following theorem 
establishes that there is asymptotically no recourse, and the solution value pro­
duced by the hierarchical system (H 1,H 2 ,H 3) is asymptotic to the optimal 
value of the problem without recourse Ez • (X*, w). 

THEOREM I. 7. If H 1 and H 3 are such that 
(A)y:'(~=vlxYH~·~x,w) (wpl) asymptotically and 
(B)y '(X ',w)ly '(X ')~l (wpl), 
then 
(i) xi' (w)~O (wpl); 
(ii) X1 '(w)~o (wpl); 
(iii) EzZ"H'(XH, ,w)/ Ez*(X* ,w)~l. 



PROOF. (i) For every t>O we have 

P {Ii XH'( ) }-P {l" _KM (l- )y+I~} r mn .... oo 2 w >£ - r lffin-+oo < ( . 
v c 

The latter probability is 0 for every £>0. 
(ii) This is proved analogously to (i). 
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(iii) Given (i) and (ii), we can prove (iii) in the same way as we proved 
Theorem l .4(i). D 
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Hierarchical scheduling problems 

In this chapter we oonsider job shop design and scheduling problems. The 
aggregate decision concerns the design of the shop while at the detailed level 
jobs are to be scheduled. 

In [Armstrong & Hax 1977] and [Schwimer 1972) hierarchical systems have 
been described that use an integer programming model and simulation with an 
embedded heuristic sequencing rule to make the higher level decision. Then, 
the lower level decision is made with the heuristic sequencing rule. 

We will present hierarchical systems and analyses of their performance for 
some specific job shop design and scheduling problems, following the lines of 
the previous chapter. Three different types of problems are considered in the 
three sections that follow. In all the models the cost directly related to the first 
stage decision is known with certainty, but there is only stochastic information 
about some job characteristics. Thus, we will assume throughout this chapter 
that the processing times of the jobs, denoted by wj for job j, are independent 
identically distributed random variables with finite expectation µ.. The random 
vector of processing times that corresponds to a problem with n jobs is 
denoted by w=(w1> ... , wn). Let G/tf denote the set of all possible realizations 
w of w. Throughout this chapter we will use the notation Wsum = ~; = 1 wj and 
Wmax = maxj = 1, ... ,n { Wj}. 

In Section 2.1 the aggregate problem is to determine the number and types of 
machines to be acquired, while at the detailed level, given a realization of the 
job characteristics, we have to schedule the jobs on the available machines so 
as to minimize the maximum job completion time. There are several subsections 
in which a number of variants of the problem lire studied. These variants are 
obtained by considering different types of machines and different stochastic 
assumptions on the number of jobs and on their processing times. 
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In Section 2.2 the first stage decision concerns the determination of a 
delivery time before which all jobs must be completed, while at the second 
stage we have to minimize the number of machines that allows the construc­
tion of a schedule for the jobs that satisfies the delivery time constraint set at 
the first stage. This problem is also known as the bin-packing problem. 

The hierarchical scheduling problem presented in Section 2.3 asks again for 
the determination of a set of machines to be acquired at the higher level. The 
lower level problem is to schedule the jobs on the acquired machines such as 
to minimize the sum of the job completion times. 

For each of the above problems we show how a simple heuristic has many 
of the performance qualities that were introduced in the previous chapter. 

2. 1. Maximum job completion time 
The models studied in this section are all special cases of the following general 
stochastic programming model. At the first stage one has to select a subset X 
of machines to be acquired from a set <:)]L of available parallel machines, given 
the number n of jobs to be processed and given the probability distribution of 
the vector w = (w1, ••• , wn) of their processing times. Let 'X= 2GJR be the 
power set of ~ The direct acquisition cost is given as a function f: ~~ 
of X. 

The second stage problem is to determine a schedule for the jobs on the set 
X of machines selected at the first stage, given a realization w of w, such that 
each machine processes at most one job at a time, each job is processed during 
an uninterrupted period of length equal to its processing time, and no job is 
processed prior to time 0. The second stage objective is to minimize the max­
imum job completion time or 'makespan'. Let y * ( X, w) denote this minimum 
value. Without loss of generality we may assume that the cost per time unit of 
the second stage schedule is 1. The total cost of the first stage decision and an 
optimal second stage decision is denoted by z*(X,w)= f(X)+y*(X,w). 

The two-stage decision problem is to determine a set of machines X* E'X 
such that 

Ez*(X* ,w) = minxd{Ez*(X, w)}. 

The distribution problem is to find a function X0
: ~n ~'X that yields for each 

realization w of a w set of machines X 0 (w) such that 

z*(X 0 (w),w) = minxE~dz*(X,w)}, 'VwE62if. 

Since computing y*(X,w) is an NP-hard problem [Karp 1972], determining 
Ey * (X, w) as a function of X for an arbitrary given probability distribution of 
w seems virtually impossible. A heuristic approach is therefore the only practi­
cal method for the solution of large instances of this problem. 

In Subsection 2.1.1 we investigate the case in which the available machines 
are identical in cost and speed, whereas in Subsection 2.1.2 they are uniform; 
i.e., each machine has its own cost and speed. In Subsection 2.1.3 we consider 
two variants in which in addition to stochasticity in the processing times of the 
jobs there is uncertainty about their number. In the first variant n is still fixed 
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but each job has a fixed probability p of entering the shop while in the second 
variant n itself is a random variable with a known probability distribution. 

2.1.1. Identical machines. In the first variant of the model described above we 
assume that identical parallel machines are available, at cost c each. The first 
stage problem is to determine a number rather than a set of machines. If we 
assume that an unlimited number of machines is available, we can take 'X to 
be the set of positive integers. The direct first stage cost is given by f (X)=cX. 
Note that we are encoutering here the simple model of Section 1.5. 

Along the lines of Section 1.5 we design a hierarchical system to solve the 
two-stage decision problem. The heuristic for the first stage is based on the 
replacement of Ey*(X,w) by an approximationyH'(X). The approximation is 
derived by applying an idea that is fundamental to many hierarchical planning 
systems: we suppress the combinatorial fine structure of the second stage prob­
lem. The maximum job completion time when all the machines have equal 
workload, which is equal to w sum IX, is obviously a lower bound on y * (X, w ). 
The required estimate is now taken to be equal to the expectation of this lower 
bound: yH' (X) = Ewsuml X = nµ.I X. The resulting first stage problem is then 
to determine the value XH' that minimizes the lower bound function 
zH'(X) = cX+nµ.IX. We note that zH'~X) is a convex function. Its derivative 
is equal to 0 for X = ~- Since X ' must be a positive integer, XH' is 
determined as the value XE{ l Vnµ./c J, r~l} nN that minimizes zH'(X). 

At the second stage we schedule the jobs on the machines according to a list 
scheduling rule: the jobs are placed in an arbitrary fixed order and at each step 
the next job on the list is assigned to the earliest available machine (see Figure 
2.1). LetyH'(X,w) denote the earliest time when all jobs are completed under 
this heuristic, for given X and w, and let zH'(X,w)=cX+yH'(X,w) be the 
corresponding total cost. The heuristic solution value provided by the combi­
nation of the first and second stage heuristic is then 

zH'(XH' ,w) = cXH' +yH'(XH' ,w). 

We will show that the heuristic (H 1,H 2) is asymptotically clairvoyant by veri­
fying Conditions A and B of Theorem 1.4. Condition A is easily verified by 
the observation that the strong law of large numbers implies that Wsumlnµ. ~ l 
(wpl), so that, asymptotically, 

nµ.I X =e;;;; y*(X, w) (wpl). 

To show that the second condition of Theorem 1.4 is satisfied as well we make 
an additional assumption on the distribution function of the processing times. 

ASSUMPTION 2.1. The processing times w1, ... , Wn have finite second moment. 

Under this assumption the following lemma can be proved ( cf. [Dempster et 
al. 1983]). 
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FIGURE 2.1. Illustration of the list scheduling heuristic 

LEMMA 2.1. Under Assumption 2.1, 
{i) limn-.ooWmaiJVn =O {wpl); 
(ii) limn-.00 EwmaiJ Vn =O. D 

The following theorem characterizes the value of an optimal solution of the 
second stage scheduling problem, given a number X of machines, and shows 
that, as the number of jobs tends to infinity, the relative error made by the list 
scheduling rule H 2 almost surely tends to 0. 

THEOREM 2.1. If X=O(Vn), then, under Assumption 2.1, 
(i) y·~x, w)l(nµI X) -> I (wpl); 
(ii)y '(X,w)l(nµIX)-> I {wpl). 

PROOF. Consider a schedule produced by the list scheduling rule on X 
machines for a realization w of w. Let L be the latest time that all machines 
are occupied and let job k be completed last ( cf. Figure 2.1 ). It follows from 
the nature of list scheduling that 

H Wsum Wsum y '(X,w) ~ L+wk ~ -x+wk ~ -x+wmax· (2. l) 

Therefore, for each realization w of w, 

Wsum • H Wsum -X ~y (X,w)-0 '(X,w)~-x+wmax· 

Division by nµI X yields 

Wsum ~ y*(X,w) .,:::: y8 '(X,w) .,:::: Wsum + Xwmax 
nµ nµlx ""' nµ/X ""' nµ nµ 

The strong law of large numbers implies that, since µ is finite, 
Pr{(wsumlnµ->l} = I. This observation, Lemma 2.1 (i) and the assumption 
that X = 0( Vn) imply the theorem. D 

In particular, Theorem 2.1 holds for X 8 ' E n ~1, l ~J } n ~. so 
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that Condition B of Theorem 1.4 is also satisfied. Theorem 1.4 now implies 
asymptotic clairvoyancy of the first stage heuristic H 1 and of the overall 
hierarchical system (H 1,H 2): 

THEOREM 2.2. Under Assumption 2.1, 
(i) zH'(XH' ,w)/z*(X0(w),w)~l (wpl); 
(ii) XH, I X°(w)~l (wpl). D 

It is easy to verify that, under the reasonable assumption that the distribu­
tion of the processinf times has bounded support (i.e., constants wL and w u 
exist such that Pr{w <w<wu} =I), Assumptions 1.1 up to 1.5 from Section 
1.4 are valid. This implies that the heuristic (H i.H 2) satisfies a wide range of 
asymptotic optimality properties (cf. Figure 1.1). 

In addition to the probabilistic and asymptotic statements on the behavior 
of (H i.H 2), we can give a bound on the relative worst case error the heuristic 
produces when solving the two-stage decision problem. 

THEOREM 2.3. 

EzH'(XH' ,w) Ewmax 
--~~~ ,,.;:; 1 + ~-===-

E z * ( X *, w) 2v;;;;;· 

PROOF. Taking expectations in inequality (2.1) yields 

H H Ewsum 
Ey '(X ',w).;;;:; --H- + Ewmax· 

X' 

Hence, 

(2.2) 

By the definition of XH, 

Ez*(X* ,w);;;;.., cXH, +_!!l!:_H ;;;;.., 2v;;;;;. 
X' 

(2.3) 

(2.2) and (2.3) together imply the theorem. D 

From this theorem and Lemma 2. l(ii) asymptotic expectation-optimality of 
(H 1,H 2) follows immediately. 

2.1.2. Uniform machines. The model studied in this section is an extension of 
the model in Section 2.1.1. The difference is that, at the first stage, one has to 
select a subset from a set ~ of uniform machines, knowing the cost c; and 
speed s; of each machine i E~ When at the second stage, job j is assigned to 
machine i, it has to be processed during a period of length wj Is;. The set of 
feasible first stage decisions is ~=2~, the power set of ~ In this model 
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j(X)=~. xc;. Corresponding to each XE'X we define s(X)=~. xs;. We 
IE IE 

assume that constants cL,cu,sL,su exist such that cL:s;;;.c;:s;;;.cu and sL:s;;;.s;:s;;;.su 
for all iE~ 

The reader will realize that this problem is even harder than the problem 
with identical machines, so that a heuristic seems unavoidable for solving 
problem instances of a large size. With this problem we find ourselves in the 
situation of the second model sketched in Section l.5. A hierarchical system 
will be devised along the lines of that section; by verifying Conditions A, B 
and C of Theorem l.6 we will prove its asymptotic clairvoyancy with probabil­
ity I. 

It is not difficult to verify that Wsumls(X) is a lower bound ony*(X,w) for 
each X and for each realization w of w. As an acproximation for Ey*(X, w) we 
take the expectation of this lower bound: y '(X)=Ewsumls(X)=nµls(X). 
The resulting function to be minimized at the first stage of the heuristic is 

H z '(X) = j(X)+nµls(X). (2.4) 

It is no longer possible here to imitate theJ.'rocedure developed in the previous 
subsection. The determination of a set X ' that minimizes (2.4) is a combina­
torial selection problem and it is very unlikely that this problem can be solved 
in polynomial time. 

LEMMA 2.2. The problem of minimizing z H' ( X) over all X E 'X is NP-hard. 

PROOF. We will show that the problem of minimizing (2.4) is a generalization 
of the following known NP-complete problem [Garey & Johnson 1979]: 

PARTITION: Given a set 5={1, ... ,t} and positive integers a1 , ••• ,ai,b with 
~. "a; = 2b, does there exist a subset Tc 5 such that "". Ta; = b? lE~ - ""-'1e 

Given any instance of PARTITION, we construct an instance of our minimiza­
tion problem defining '!)]L= 5, c; = s; =a; (i E '5) and n µ = b2 . It is easily verified 
that for a subset T~'!f, ~. Ta;=b if and only if j(T)+nµls(T):s;;;.2b. Hence, 

IE 

PARTITION yields a positive answer if and only if the minimum value of zH'(X) 
is at most 2b. D 

If we aim to find a hierarchical planning system that solves our problem in 
polynomial time, then Lemma 2.2 suggests that already the solution to the 
heuristic first stage problem is to be approximated. We propose a greedy 
heuristic, which derives its name from its appetite for immediate improvement. 
We define the ratio's q; =c;I s; (i E'!)]L) and renumber the machines according to 
nondecreasing q·. Let C = ""; S. = ""; s Z = C + nµI S (i E ~) and 

I I """k=J' I """k=I I• I I I 

Z 0 = oo. The greedy heuristic selects a subset XG = { l,. . .,g} E'X where g is the 
largest index such that Zg _ 1 > Zg. The greedy decision XG is an approxima­
tion of XH'. An absolute worst case bound on the quality of this approxima­
tion is established by Lemma 2.3. 



LEMMA 2.3. The greedy solution XG satisfies 
{i) Z.e.:=min;e~fZ;}; 
(ii) z71 '(XG):oe;;;zH'(X8 ')+cu. 
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PROOF. (i) The values Z; define a piecewise linear function Z(S) on the inter­
val [O,s(~)] as follows: if S=AS;+(l-A)S;+1 for some i;;:.O and AE[O,l], 
then Z(S)=AZ1 +(1-A)Z;+i· This function is convex, since its slope over 
[S;,S;+d increases with i: 

Z;+ 1-Z; Z;-Z;-1 (s;+ 1 +s;)nµ. ---- - = q;+1-q;+ > 0. 
S;+1-S; S;-S;-1 S;+1S;S;-1 

Therefore, Sg is uniquely determined as the smallest value of S for which Z(S) 
takes on its minimum. 
(ii) There exists an i ;;:.o such that S; ~s(X8' ):oe;;;S; + 1. Since C; is the minimum 
machine cost at which a total speed S; can be achieved, we have C;=e;;;f(X8 '). 

Hence 

:oe;;; C;+1-C; = C;+ 1 :oe;;;c". D 

The heuristic for the second stage problem again assigns the jobs to the 
machines according to a list scheduling rule. Let y 8'(X,w) denote the earliest 
time by which all jobs are completed under this rule, for given X E 'X and 
we'1, and let z8 '(X,w)=f(X)+y 8 '(X,w). The overall procedure (HJ.H2) 

produces a solution with value 

zH'(XG,w) = f(XG) + yH'(XG,w). 

For an asymptotic analysis of the heuristic (H 1,H 2), we first make some 
assumptions on the set ~ of available machines. It is reasonable to assume 
that the values cL,cu,sL and su, defined before, are constants rather than 
problem instance dependent variables. This will imply that the number of 
selected machines grows as Vn, as in Section 2.1.1. It is then also reasonable 
to assume that the number of available machines grows faster than Vn, but 
remains polynomially bounded in n in order to allow an efficient implementa­
tion of the greedy heuristic. We therefore require the following. 

AssUMPTION 2.2. The parameters cL,cu,sL,su are fixed constants. Moreover, 
there exist constants D>O, D'>O, d';;:.d>O such that 
Dn112+d:oe;;; l~I :oe;;;D'nll2+d'. 

To verify Condition A of Theorem 1.6 we notice that the strong law of large 
numbers implies that asymptotically 

s~t :oe;;; y*(X, w) (wpl). 
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From Lemma 2.3 (ii) it follows that 

zH'(XG) zH'(XH')+cu 1 ,,,;;;; ,,,;;;; . 
ZH, (XH') ZH, (XH') 

As the latter term tends to 1 when n tends to infinity, Condition C of Theorem 
1.6 is also satisfied. To verify Condition B we need a preliminary lemma that 
bounds the order of magnitude of the sum of the speeds of the machines 
selected by the greedy heuristic. We use the notation h 1(n)=f>(h2(n)) to indi­
cate that there exist constants C>O and C'>O such that 
Ch 2 (n)~ lh 1(n)l ..;;C'h2(n) for n sufficiently large. 

LEMMA 2.4. Under Assumptions 2.1 and 2.2, s(XG) = f>(Vn). 

PROOF. Let qL=cL/su and qu=culsL. We observe that zH'(XH') is not 
greater than the minimum lower bound value obtainable under the assumption 
that c;=cu and s;=sL for all iE01L We have seen in Subsection 2.1.l that this 
value tends to 2Vqunµ. Hence we may choose any q*>qu to insure that for 
n sufficiently large 

qLs(XG) + --1!1!:_ ,,,;;;; zH'(XG) 
s(XG) 

Thus, a constant C' exists such that 

qLs(XG)+--1!1!:_ ,,,;;;; C'Vn 
s(XG) ' 

which implies DVn ~s(XG)..;;D'Vn for 

C'-VC'2-4qLµ 
D = -----~-~-

2qL 

In the following theorem we give a characterization of the optimal value of the 
second stage scheduling problem, and show that as the number of jobs tends 
to infinity, the relative error of list scheduling tends to 0 almost surely. 

THEOREM 2.4. If s(X)=O(Vn), then, under Assumption 2.1, 
(i)y*~X,w)l(nµls(X)) ~I (wpl); 
(ii)y '(X,w)l(nµls(X))~l (wpl). 

PROOF. For every realization w of w we have 

W H W W ~ ,,;:::: *(X ),,;:::: '(X ),,;::::~ + ~ s(X) ....,.y ,w ..... y ,w....,, s(X) sL . (2.5) 
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Division by np.ls(X) yields 

Wsum ~ y*(X,w) ~ yH'(X,w) Wsum + s(X)Wmax 
np. ..... np.ls(X) ..... np.ls(X) =e;;; ---;;;-- nµsL · 

By the strong law of large numbers, w5'F-/np.-+l (wpl). Due to the finiteness 
of the second moment of 'J!i.• Wmax/Yn-+0 (wpl) (cf. Lemma 2.l(i)). The 
assumption that s(X)=O(Vn) implies (i) and (ii). D 

The combination of Lemma 2.4 and Theorem 2.4 implies that Condition B of 
Theorem 1.6 holds for (H 1,H 2). Theorem 1.6 then establishes the asymptotic 
clairvoyancy of the hierarchical system with probability I. 

THEOREM 2.5. Under Assumption 2.1, 

z.H'(XG,w) --+ I (wpl). D 
z (X"(w),w) 

As in the previous subsection, we can derive a bound on the relative difference 
between the heuristic solution value to the two-stage decision problem and the 
optimal value. 

THEOREM 2.6. 

EzH'(XG,w) cu + EwmaxlsL 
_ ___..----'........._ =e;;; I + ---;===-

Ez * (X* ,w) 2VcLnµlsu 

PROOF. Taking expectations in (2.5) yields 

E H'(XG ) ~ EW5um + EWmax 
:>' 'W ._ S (X) SL . 

Hence, 

Application of Lemma 2.3 (ii) yields 

EzH'(XG,w).;;;;,. f(XH') + np. 
s(XH') 

u Ewmax + C + --L-. 
s 

By the definition of XH, 

Ez*(X* ,w) ;;;i. f(XH') + np. 
s(XH') 

L 
:::;:; .E._ s(XH') + np. -- 2v' L I u ,,:$' ,,:$' c np. s . 

Su s(XH') 

Inequalities (2.6) and (2. 7) establish the theorem. D 

(2.6) 

(2.7) 



36 

Lemma 2.1 (ii) applied to this worst-case bound again shows directly that 
(H 1,H 2) is asymptotically expectation-optimal. 

2.1.3. Random number of jobs. In this section we consider extensions of the 
model in Section 2.1.1. In addition to uncertainty about the processing times 
of the jobs we postulate uncertainty about their number, i.e. the number of 
jobs becomes a random variable. The following theorem will show that under 
certain conditions on the distribution of the number of jobs, the results derived 
for the problem in Section 2.1.1 carry over to the problem situation considered 
here. 

THEOREM. 2.7. Given a sequence of random variables x1 ,x2 , ... , a random vari­
able x, and a sequence of random numbers NJ.N2, ••• , independent ofx1>x2 , •.•• If 
Xn~X {wpl) and Nn~OO (wpl), then xN. ~x (wpl). 

PROOF. From the assumptions we have 

Pr{'1,>o3n(<) '1n;;.n(<): lxn -xl <t:} =I 

and 

Pr{'1,>o3m(<) 'r;jn>m(<) :Nn ~n.} =I. 

These two probabilities combined yields 

Pr{'V,>o3k(<)=max(n(<),m(<)) '1n;;.k(<):lxN. -xl<t:} =I. D 

A special case is obtained when we consider the number of jobs fixed but each 
job enters the shop with fixed probability p. In this case the number of jobs 
that enter the shop is a random variable that has a binomial distribution with 
expectation np. For this situation we define the independent random variables 
131, j = l,. .. ,n as follows: 131=1 if job j enters the shop and 131 =O otherwise. 
Their common distribution is given by Pr { 131 = 1} = p and Pr { 131 = 0} = I - p. 
The random variables -r1=131w1 (j= l,. .. ,n) model the stochastic assumptions of 
this problem. They are independent and identically distributed and have com­
mon expectation 

E-r1 = pµ. 

Any reader can verify that the design and the analysis of the hierarchical sys­
tem for the problem of Section 2. I. I carries over to this problem by simply 
substituting -r for w and pµ. forµ.. 

In the second extension the number of jobs is a random variable n. We 
assume that n has mean 'II· The first stage heuristic of the hierarchical system 
that we devise for this problem is again based on the estimate Ewsuml X of the 
optimal second stage cost. In this case 

Ewsum = ~:= 1 E(wsumln=n)Pr{n=n} = µ.~:= 1 nPr{n=n} = 11µ. 

For the solution of the second stage scheduling problem we use again the list 



37 

scheduling rule. Analogously to the analysis in Subsection 2.1.1 it can be 
proved that the relative error produced by the hierarchical system (H 1,H 2), if 
compared to the optimal solution value of the two-stage decision problem, 
tends to 0 whenµ. tends to infinity. 

2.2. Delivery time 
The model studied in this section is the symmetric counterpart of the model 
described in Section 2.1. While in the latter model a set of machines was 
chosen first and a schedule of the jobs constructed next so as to complete all 
jobs as early as possible, here the decisions are reversed. At the first stage a 
decision is asked with respect to a delivery time Y, within which all jobs must 
be completed, under the same stochastic assumptions on the jobs as in Section 
2.1. The cost of extending the delivery time by one unit is known with cer­
tainty and given by a function f: IR~IR. At the second stage, given a realiza­
tion w of the job characteristics, one has to determine the minimum number of 
identical parallel machines, denoted by x * ( Y, w ), that allows a nonpreemptive 
schedule satisfying the delivery time constraint Y set at the first stage. We 
assume that the cost of a machine is 1. The total cost of the first stage deci­
sion Y and an optimal second stage decision will be denoted by 
z*(Y,w)= f (Y)+ x*(Y,w). We will assume that j(Y)=dY, i.e., the cost of 
extending the delivery time by one unit is a fixed amount d. 

The overall objective of the two-stage decision problem is to determine a 
value Y* for Y for which 

Ez*(Y* ,w) = minYER {Ez*(Y, w)}. 

The distribution problem is to find a function Y°:Rn~IR such that for every 
realization w of w, 

z * ( Y°(w ), w) = min YER { z * (Y, w) }, 'v'w EG(J). 

We can interpret this hierarchical scheduling problem as a hierarchical bin 
packing problem. In a bin packing problem we are given n items with weights 
wi. ... ,wn and an unlimited supply of bins, each with the same capacity. The 
problem is to pack the items into a minimum number of bins. If we identify 
jobs with items, processing times with weights, delivery times with capacities 
and machines with bins, then the above hierarchical scheduling problem is the 
problem of choosing a capacity for the bins at the first decision level with only 
probabilistic information about the item weights, and packing the items into as 
few bins as possible at the second level, when a realization of the item weights 
is given. We have chosen for the presentation of this problem as a scheduling 
problem, however, because the cost structure under consideration is more 
natural in the scheduling context than in the bin packing context. 

As in the previous section, the second stage problem is NP-hard [Garey & 
Johnson 1979), which in conjunction with the stochastic formulation of the 
problem forces us again to look for heuristics for its solution. We will design a 
hierarchical system proceeding along the lines of the first model of Section 1.5. 
For each realization w of w, WsumlY is a lower bound on x*(Y,w). The 
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ew.ectation of this lower bound provides an estimate of Ex* ( Y, w): 
x ' ( Y) = Ewsu'J}I Y = nµI Y. The resulting first stage heuristic problem is to 
find a value Y ' that minimizes the function 

zH'(Y) = dY+Ef-. 

From the first order condition for this convex function it follows that 
yH, = Vnµld. 

For the solution of the second stage problem we use a heuristic that assigns 
jobs to machines according to the following rule. The jobs are placed in some 
fixed order, and the machines are indexed. The jobs are assigned to the 
machines in the given order, starting with job 1 on machine 1. Suppose job j is 
the next one to be scheduled, and let machine i be the highest indexed 
employed machine. Job j is assigned to machine i if this is feasible, i.e. if the 
addition of its processing time to the sum of the processing times of the jobs 
already assigned to machine i does not exceed the delivery time. Otherwise, 
job j is placed at the end of the list of jobs that are still to be scheduled, and 
job j + 1 is the first job assigned to machine i + 1 (see Figure 2.2). The 
number of machines required under this rule will be denoted by x H, ( Y, w ), for 
a given Y and a given realization w of w. The overall cost of the heuristic 
solution is 

zH'(YH,, w) = dYH, + xH'(YH', w). 

To prove asymptotic clairvoyancy with probability 1 of both the first stage 
heuristic H 1 and the overall heuristic (H 1,H 2) we will verify Conditions A and 
B of Theorem 1.4 for this model. The strong law of large numbers allows us to 
verify the first condition. It implies that Wsumlnµ~l (wpl) so that asymptoti­
cally zH'(Y) is a lower bound on z*(Y,w) with probability 1. 

-------r------------.- - - - --, 
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FIGURE 2.2. Heuristic solution 

To verify the second condition we need Assumption 2.1 (see Section 2.1.l) 
which states finiteness of the second moment of the random processing times, 
so that Lemma 2.1 can be used as a preliminary. The following theorem gives 
asymptotic characterizations of the optimal and the heuristic number of 
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machines in the second stage scheduling problem, given Y. It shows that both 
are asymptotic to the lower bound nµ.I Y. 

THEOREM 2.8. If there exists a constant L ;;;;i:Q such that Vn I Y ~L and 
Yln~o. then 
(i) x*~Y, w)/(nµ./Y)~l (wpl); 
(ii)x '(Y,w)/(nµ./Y)~l (wpl). 

PROOF. To bound x 8 '(Y,w) from above we observe that after having 
employed rwsumlYJ machines we have tried to fit all jobs at least once and a 
set of at most rwsumlYJ -1 jobs remains to be scheduled, each of which has a 
processing time of at most Wmax· For this set of jobs we need at most another 
<r Wsuml Y] -1)/ l Y lwmaxJ machines. Thus 

W H W W y 
;m os;;; x*(Y,w) os;;; x '(Y,w) E;;; r ;ml +<r ;m l-1)/ l Wmax J 

Division by n µ./ Y yields 

Wsum :s;;:: x*(Y,w) :s;;:: x 8 '(Y,w) 
nµ. """' nµ.I Y """' nµ.I Y 

w w y 
os;;; ~+l+~/(---1) 

Y Y Wmax 

Wsum Wsum WmaxlY 
= -y+ l +-y( 1-(wmax/Y) ). 

Wsum Y Wsum WmaxlY 
os;;;--+-+--( ) 

nµ. nµ. nµ. l-(wmax!Y) 

The strong law of large numbers implies that Wsumlnµ.~l (wpl). Under the 
given conditions on Y and under Assumption 2.1, Lemma 2. l(ii) implies that 
Wmax I Y ~o (wp 1 ). These two observations together with the condition that 
Yln~o imply the theorem. D 

In particular, the conditions on Y are satisfied by Y 81 = Vnµ.ld, so that 
Theorem 2.8 implies that Condition B of Theorem 1.4 is satisfied. Asymptotic 
clairvoyancy with probability 1 has now been established for both the first 
stage heuristic H 1 and the hierarchical system (H 1,H 2). 

THEOREM 2.9. Under Assumption 2.1, 
(i) Y81 /Y°(w)~l (wpl); 
(ii) z 8 '(Y81 ,w)/z*(Y°(w),w)~l (wpl). D 

Also here we can derive a bound on the relative difference between the heuris­
tic and the optimal solution value to the two-stage decision problem. 
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THEOREM 2.10. 

E H'(YH' ) (Ew2 )112 
z ,w.;;;;1+ sum (E((Vdw /fu)/(1-Vdw /fu))2)112. Ez*(Y*,w) 2nµ max µ max µ 

PROOF. Taking expectations in (2.8) yields 

H Ewsum E(Wsum(Wmaxl Y)/(1-Wmaxl Y)) 
Ex '(Y,w).;;;;-y-+1+ y . 

Hence, 

E(w (w I yH, )/(1-w I yH, )) 
EzH'(YH',w).;;;;dYH'+.-!!LH +I+ sum max H max 

y I y I 

Application of Holder's inequality (see [Serfling 1980, p. 352]) yields 

EzH'(YH, ,w).;;;;dYH, +-l!Ji-+ 1 
Y' 

(Ew2 )112 
+ su; (E((wmaxl yH, )/(1-wmaxl YH' ))2)112 

Y' 

=2v'dn; +I 

(Ew2 )112 
+ ~ (E((Vdwmaxl~)/(l-VdWmax/~))2 )112 

nµld 

By the definition of yH, 

Ez • ( Y*, w) ;;;. 2 v'dn;. 
Inequalities (2.9) and (2.10) establish the theorem. D 

(2.9) 

(2.10) 

To derive asymptotic expectation-optimality of (H 1,H 2) from the above 
theorem we observe that from Lemma 2.1 it follows immediately that 
(E((Vdwmaxl ~)/ (1- Vdwmaxl ~))2 ) 112 ~0. Moreover we can rewrite 
(Ew;um)112 Inµ as 

E'""'w2 
..!_( 4.i 1 + n(n -1) µ2)112 
µ n2 n2 

Since E~wrln 2~o and n(n-1)µ2 !n 2 ~µ2 , we have that (Ew;um) 112 !nµ~1. 
The above two observations establish the desired result. 
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2.3. Average job completion time 
The last model studied in this chapter is similar to the model studied in Sec­
tion 2.1.1. The difference occurs at the second stage. Given a realization of 
the processing times of the jobs at the second stage of the model described 
here, we have to decide on a schedule of the jobs on the machines acquired, so 
as to achieve a minimum value of the average job completion time. This 
difference is important because, contrary to the minimization of the maximum 
job completion time, the scheduling problem in this model is not NP-hard but 
solvable in polynomial time by a simple priority rule. 

The first stages of both models are identical: a number X of identical 
machines that are to be acquired has to be decided on, given the cost c of a 
machine and the distribution of the job processing times. We again have 
<X=N. Let F(wi) be the common distribution function of Wi. ... , Wn and 
assume that it is continuous, with finite expectationµ. Lety*(X,w) denote the 
optimal value of the second stage scheduling problems. Let us again assume 
that the cost per time unit is 1. The total cost will be denoted by z*(X,w) 
=cX+y*(X,w). 

The objective for the two-stage decision problem is to determine a value 
X* E 'X such that 

Ez*(X* ,w) = minxe~{Ez*(X, w)}. 

The objective of the distribution problem is to find a function X° :Rn -,)<X that 
yields for each realization w of w machines X°(w) for which 

z*(X°(w),w) = minxe~{z*(X,w)}, VweG(tf. 

As mentioned above, this scheduling problem has the feature that the second 
level problem can be solved in polynomial time for each realization of the pro­
cessing times of the jobs. An optimal schedule can be constructed by assign­
ing the jobs in order of increasing processing times to the first available 
machine [Conway et al. 1967]. Let w<O:e;;;w<2>:e;;; · · · :e;;;w<n> be the order statis­
tics of wi. ... , Wn· The optimality of the above shortest processing time first 
rule (SPT-rule) implies that 

*(X ) = .!.~n ln -j+l J (j) y ,W n -"j=I X W • 

The analysis of the expected value of this term as a function of X is not a 
trivial task. To find a suitable value of X at the aggregate level, we will still 
have to rely on a heuristic approach. As in the previous models, this first stage 
heuristic will again be based on a lower bound on the second level objective 
that is asymptotically accurate. Obvious lower and upper bounds on y*(X,w) 
are given by 

.!. ~n n - j + 1 (j) ~ *(X ) ~ .!. ~n n - j + X + 1 (j)(2 12) -"·-1 x w -...y ,w ..... -"·-1 x w . n 1- n 1-

As in the previous models, we will use the expected value of the lower bound 
as an approximation of the expectation of the optimal second stage cost. To 



42 

calculate the bound, we first rewrite the lower bound as 

1 1 U> -""'n W· - -~n (j-l)w . X~J=I 1 nX J=I (2.13) 

The expected value of the first term in (2.13) is equal to n µJ X. The expected 
value of the second term is calculated as follows. Let F(x) be the common 
distribution function of the processing times. 

~; = 1 (j -1)£w'.J) 

00 n -1 
=n J~;= 1 (j- l)(j _ 1)F(x)i- 1(1-F(x)t-ixdF(x) 

0 

00 n -2 
=n(n-l)j~~=~( k )F(xl(l-F(x)t-2-kxF(x)dF(x) 

0 

00 

= n(n -1) j xF(x)dF(x). 
0 

The resulting lower bound on Ey * (X, w) is given by 

1 00 

y 8 '(X) = -(nµ-(n-l)j xF(x)dF(x)). x 0 

Minimization of the lower bound 

z8 '(X) = cX+y 8 '(X) 

yields the heuristic choice X 8 ' for X at the aggregate level: X 8 ' is the most 
00 

favorable round-off of ((nµ-(n - l)P)/c)112 with p= f xF(x)dF(x). We 
0 

observe that P can be readily calculated for some special cases of practical 
importance. For example, if the frocessing times are uniformly distributed on 
an interval [a,b], then p=(b 3 -a )/(3(b-a)2), and if they come from a nega­
tive exponential distribution with parameter A, then P= 3/(4A). 

At the detailed level, we schedule the jobs on the XH' machines acquired 
using the SPT-rule. The overall heuristic solution value is given by 

z*(X8 ' ,w) = cXH, +y*(X8 ' ,w). 

As a preliminary for the analysis of the performance of the heuristic we will 
analyze the asymptotic behavior of the bounds in (2.12). We rewrite these ine­
qualities for each w E6lll' as 

1 1 . · 1 -~~ W· + -~n (l-.L)wU> .;;;;-y*(X,w) (2.14) n2 X l=I 1 nX 1=1 n n 

.;;;; X + 1 ~n w +-1-~~ (1-j_)wUl. 
n 2 X 1 = 1 1 nX 1 =I n 

We observe that 
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is an example of a so-called L-statistic, a linear combination of order statistics, 
which has the general form 

_!_ ~~ J ( j_ )w<i>' 
n J=I n 

where in our case J(t)= 1-t. 
We establish the following almost sure convergence result for such statistics. 

The following theorem was proved in a more general form in [Serfling 1980). 
The proof in our special case is however straightforward enough to merit 
presentation on its own. 

THEOREM 2.11. If J :(0, 1 ]-+R is a continuous function, then 

_!_ ~~-/(j_)Wi>-+ j xJ(F(x))dF(x) (wpl). 
n J- n 0 

PRooF. If we define the empirical distribution function by 

Fn(X) = _!_I U I wjEO;;x} I, 
n 

then 

(2.15) 

We consider the inverse function p- 1(y) = infx{x IF(x)>y} of F(x) and 
observe that 

However, vj = F(wj) is uniformly distributed on (0,1) [Feller 1968) and hence 

Fn(F- 1(y)) = Vn(y), 

where Vn(y) is the empirical distribution function of n uniformly, indepen­
dently distributed random variables. Thus, if we substitute x =F- 1(y) in 
(2.15), we obtain 

I 

Un = J p-l(y').l(Vn(y))dVn(y) (2.16) 
0 

I I 

= J p-l(y)(J(Vn(y))-J(y))dVn(y)+ J p-l(y').l(y)dVn(y). 
0 0 

Since J(t) is continuous on [0,1] and hence uniformly continuous, we may use 
the fact that 
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(the Glivenko-Cantelli Lemma [Billingsley 1979, p. 232]) to conclude that, for 
any t:>O, with probability 1, 

li 
I 
/6F- 1(y)J{Vn(y))dVn(y)- J6F- 1(y)J(y)dVn(y) I :;:::::: 

msup 00 """""*'· n-. J6F- 1(y)dVn(y) 
(2.17) 

Because of the strong law of large numbers, the denominator in (2.17) con­
verges toµ (wpl), and hence 

lim SUPn-.oo Ii p-I (y)(J (Vn(y))-J (y))dVn(y)I =O (wpl). (2.18) 

We again invoke the strong law of large numbers to analyze the second term 
in the right hand side of (2.16) 

I 

limn-.oo J p-I (y)J (y)dVn(y)=limn ..... oo J_ ~~ _ 1 F- 1(v;)J (v;) (2.19) 
0 n I-

I 

= f p-l(y)J(y)dy (wpl). 
0 

Together (2.18) and (2.19) imply the theorem. 0 

As a special case, we obtain 

Tn--')µ-p (wpl). (2.20) 

We will establish asymptotic clairvoyancy of the heuristic by verifying the 
conditions of Theorem 1.4. Condition A is not satisfied in this case because 
zH' (X) is not an almost sure lower bound on the optimal value of the distribu­
tion problem. Therefore we compare zH' (XH') to a value that is such a lower 
bound. If we define, for each X EN and for given w, 

and 

zLB(X,w) = cX +yLB(X,w), 

then we can derive from (2.12) that, 

z*(X0 (w),w);;;;;,: minx EN {zLB(X,w)}. 

(2.21) 

(2.22) 

(2.23) 

The value XLB(w) that minimizes zLB(X,w) is given by xLB(w) = ~' 
where zLB(XLB(w),w)= 2-..;;;;T:. We have that 

2 cn(µ--n-p) v n-1 

2~ 
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Application of (2.20) to this ratio yields 

zH'(XH') 
(2.24) 

We can again characterize the value of an optimal solution of the second stage 
problem asymptotically. We will see that it is asymptotically equal to yH' (X). 

THEOREM 2.12. If x = o(n), then 

y*(X, w) ~ I (wpl). 
n(µ.-v)IX 

PROOF. Using (2.12) we can write 

n • n l X+l 
-Tn ,.;;;;y (X,w),.;;;; -Tn+--X Wsum· 
X X n 

Division of (2.25) by n (µ.- v) yields 
x 

l,.;;;; y*(X,w) ,.;;;;l+ Wsum(X+I) 
µ.-v n(µ.-v)I X µ.-v n 2(µ.-v) 

(2.25) 

(2.26) 

As X=o(n), the strong law of large numbers implies that 
Wsum(X+l)/(n 2(µ.-v))~O (wpl). This together with (2.20) implies the 
theorem. D. 

Obviously, 

yH'(X) 

n(µ.-v)I X 

n -l 
n(µ.---v)I X 

n ~ l. 
n(µ.-v)I X 

We have deterministically that 

zL8 (XL8 (w),w),.;;;;z*(X 0 (w),w),.;;;;cXH' +y*(XH' ,w). 

Division by zH' (XH') yields 

zL8 (XLB(w),w),,;;;: z*(X0 (w),w),,;;;: cXH, +y*(XH, ,w) 
zH'(XH') ..... zH'(XH') ..... cXH, +yH'(XH'). 

(2.27) 

As XH'E{L((nµ.-(n-1)v)lc) 112J, f((nµ.-(n-l)v)/c) 112 l}nN, Theorem 2.12 
together with (2.27) implies that the latter term of the above inequalities tends 
to I with probability l. This observation together with (2.24) implies asymp­
totic clairvoyancy of the hierarchical system. From the definition of 
zL8 (XL8 (w),w) it is easy to prove (cf. Theorem 1.4 (ii)) that for every £>0, 

Pr{lim xLB(w) < -·-} = 0 
n-+oo Xo(w) I+£ 

and 
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Pr{fun XLB(w) 1 } 0 
n-..oo Xo(w) > 1-£ = . 

This together with the fact that 

. XH' 
Pr{funn-..oo LB = 1} = 

X (w) 

implies the second part of the following theorem. 

THEOREM 2.13. 
(i) z*(fH' ,w)/z*(X°(w),w)~l (wpl); 
(ii)X '/X°(w)~l (wpl). D 

If the second moment Ewy is finite we can even establish the rate at which 
z*(XH, ,w)/z*(X0 (w),w) converges to 1, something that was not done in previ­
ous cases. For this purpose, we make use of a result that is established in the 
following theorem. As in the case of Theorem 2.11 a generalization of this 
theorem was proved in [Serfling 1980). 

THEOREM 2.14. If J :[O, lJ~~ is a continuously differentiable function, then with 
probability 1 

Vn ll . . 00 I fun SUPn-..oo V -"':£n_/(-L)w'.Jl - J xJ(F(x))dF(x) < oo. 
loglog n n J - n 0 

PROOF. In this proof we will use the notation that was introduced in the proof 
of Theorem 2.11 : 

I I 

Un- j F- 1(y)J(y)dy = j F- 1(y)(J(Vn(y))-J(y))dVn(y) (2.28) 
0 0 

I I 

+ J p-l(y)J(y)dVn(y)- J p-l(y)J(y)dy 
0 0 

and analyze the right hand side of (2.28) in parts. 
Since J (t) is continuously differentiable on [O, l], we may apply the mean 

value theorem to conclude that there exists a lJE(O, 1) such that 

(2.29) 

with 

Wn(y) = lJVn(y) + (1-lJ)y. 

Since Vn(y) is an increasing function and F- 1(y);;;;oO, we may conclude, after 
substitution of (2.29) in the first term of the right hand side of (2.28) that 

I 

I J p-I (y)(J (Vn(y))-J (y))dVn(y) I 
0 
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.,;;; supyE[O,IJ IVn(y)-y I /F-1{Y)IJ'(Wn(y))ldVn(y). 
0 

Now, since Fis continuous [Chung 1949), we have 

. Vn lim supn ..... oo I Vn(y)-y I I 
lim SUPn-+oo , I - 2 (wpl). 

v2loglogn 

Furthermore, there exists a constant M such that 

I I 

J p- I (y) I J'(W n(y )) I dVn(y )o;;;;M J p- I (y )dV n(y ), 
0 0 

because J'(y) is continuous on (0, 1 ]. Now, 
I 

limn..... 00 _!_ J F- 1(y)dVn(y) = l. 
µ. 0 

Hence, with probability 1, 
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lim SUPn-+oo V Vn IJF- 1(y)J(Vn(y))dVn(y)-f F- 1(y)J(y)dVn(y)I < 00. 
loglogn 0 o 

The last two terms of the right hand side of (2.28) can be rewritten as 

I 

_!_ ~~-1F-1(v;)J(v;)-J p-l(y)J(y)dy 
n 1- 0 

If Ewy< oo, we may apply the law of the iterated logarithm [Hartman & 
Wintner 1941): to find that with probability l, 

lim supn ..... oo V Vn IJF- 1(y)J(y)dVn(y) - f F-1(y)J(y)dyl < 00. (2.31) 
loglogn 0 o 

Together (2.30) and (2.31) imply the theorem. D 

We use Theorem 2.14 to analyze the convergence rate of z*(XH' ,w)/ 
z*(X'(w),w). From (2.29) and (2.31) we obtain 

X H, + nTn +_!_ XH, + 1 
H C H H Wsum 

l :o;;;;; z. (X I' w) ,,;;;;; x I n x I (2.32) 
z*(X'(w),w) 2 ~ 

From the definition of X9 ' we have 

cX9 ' _ 1 = (c(nµ.-(n - l)P))112 -(cnTn)112 

(cnTn)112 (cnTn)112 

1 -µ.+(µ.-p)-Tn 
n 
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Hence, Theorem 2.14 applied once again to the special case that J(t)= I -t 
yields that 

lim SUPn-+oo I cXH1

112 - 11( n )112 < oo (wpl). (2.33) 
(cnTn) loglogn 

Furthermore, 

nTn 

XH, = ( c(nµ-(n - l)v) )112 
limn-+oo 112 

(cnTn) cn(µ-v) 
l (wpl). 

We observe that 

c 

Together, (2.33), (2.34) and (2.35) imply that with probability 1 
nTn 

(2.34) 

(2.35) 

XH' 
lim supn-+oo 112 - l ( n )112 (2.36) 

(cnTn) loglogn 

= lim SU 1 - II < 00 I nTn 11 cXH' I n 2 
Pn-+oo (cnTn)112 (cnTn)112 ( loglogn) . 

Finally 

2 
-wsum 

l. n ( n )112 Im SUPn-+oo 112 l l = 0 (wpl). 
(cnTn) og ogn 

(2.37) 

We apply (2.33), (2.36) and (2.37) to (2.32) to arrive at the following strong 
extension of Theorem 2.13. 

THEOREM 2.15. 

lim sup I z*(XH' ,w) -11( n )112 < oo (wpl). D 
n-+oo z*(X0 (w),w) logilog2n 

We finally establish the rate of convergence of the heuristic solution at the 
aggregate level to the optimal one in the following theorem. 

THEOREM 2.16. 

Ii I X 0 (w) 
. m SUPn-+oo XH, - + 1/4 < 00 (wpl) . 
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PRooF. Recall zLB(XL8(w),w). We have 

zL8 (XL8 (w), w)~z*(X0 (w), w)~zL8(XL8(w), w)+ l_ ~n _ 1 w1. (2.38) 
n ;-

We now compute X 1(w) and X2(w) such that 

2 
zL8 (X1(w),w) = zL8 (X2(w),w) = zL8 (XL8 (w),w)+-;; ~;=I wj. 

To do so, we solve the equality 

nTn 112 2 
eX+-- = 2(enT) + - ~n W· x n n ~j=I 1 

rewritten as 

2 
eX2-(2(enT )112 + - ~n W·)X +nT = 0 

n n~J=ll n ' 

to find two roots 

X1(w) = (nTn)112 +_I ~n_ w-(-1_~~- w-(enTn)112+ (-·-~~- w.)2)112 
e en ~; - 1 1 en ~; - I 1 en ~; - 1 1 

and 

X2(w) = (nTn )112 + _l_~n_ W·+(-1_~n_ w-(enTn)l/2+(-1 ~~- w.)2)112. 
e en ~ J - 1 1 en ~ J - I 1 en ~; - t 1 

The definitions of X 1 (w), X2(w) and X0 (w) imply that X 1 (w)~X0(w)~X2(w) 

and hence 

(2.39) 

Now 

(2.40) 

I 
(-~n w-) 

en J=I ; 

XH' 

and 

X2(w)-X1(w) 2 2 2 I 
----- ~ --(-~n- w (enTn)112)112 +--(-~~- w-). (2.41) 

XH, XH, en ;-I J XH' en ;-1 1 

As 

2 (enT )114 
lim (-~n ·)112 n ( I) 

n--+oo en ~J=lwl nl/4 < oo wp ' 

(2.39), (2.40), (2.41) together with (2.34) and the strong law of large numbers 



50 

imply the theorem. 0 

For this problem we can also establish a worst case bound on the relative 
error the heuristic produces with respect to the optimal solution of the two­
stage decision problem. 

THEOREM 2.17. 

_!_Ew 
Ez*(XH' ,w) XH' +I) n sum 
---"-------'~ ~ I + ( 
Ez*(X*,w) XH' 2Vc(nµ-(n -I)v) · 

PROOF. Using the bounds in (2.12) we have 

The observation that cXH, +~ETn=zH'(XH') and zH'(XH')~ 
X' 

2Vc(nµ-(n - l)v) yields the theorem. 0 

Asymptotic ex,Jjectation-optimality of the heuristic follows easily from the 
definition of X ' . 
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Hierarchical vehicle routing and 

location problems 

Vehicle routing problems, in which customers have to be served from a central· 
depot by one or more vehicles, have acquired the reputation of being notori­
ously difficult on one hand and of being of great practical importance on the 
other hand. . These problems are usually formulated under the assumption that 
perfect information about the customers is available. In actual practice, this 
assumption is not always justified. In particular, the medium or long term 
planning problem of acquiring a suitable fleet of vehicles has to be solved with 
vague and at best probabilistic information about what will ultimately be 
required of them. 

Hierarchical routing problems, involving the trade-off between the cost of 
acquiring vehicles now and the expected benefits of having them available at a 
later stage, form the first class of problems studied in this chapter. 

Proceeding along the lines of Chapter 1, we will present hierarchical systems 
for some special cases of the vehicle routing problem and analyze their perfor­
mance. In the problems under consideration we assume that the costs directly 
related to a first stage decision are known with certainty, whereas only stochas­
tic information is available about some of the customer characteristics. Thus, 
we will assume that the locations of the customers are independent identically 
distributed random variables with known probability distributions. 

In Section 3.1 the aggregate problem is to determine the number and types 
of vehicles to be acquired, while at the detailed level, given a realization of the 
customer characteristics, we have to route the vehicles available through the 
customers so as to minimize the length of the longest route assigned to any of 
them. This detailed level criterion is convenient since it works in favor of a 
reasonable division of labor among the vehicles. 

Location problems, that are the subject of Section 3.2, deal with the location 
of depots from which customers must be served. The hierarchical location 
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problem that we study in this chapter asks for a decision of the number of 
depots to be established at the aggregate level, when only stochastic informa­
tion is available about the locations of customers that are to be served from 
these depots. At the detailed level, given a realization of the customer loca­
tions, the depots must be located so as to minimize the sum of the distances of 
the customers to the depots, where the distance of a customer to the depots is 
defined as the Euclidean distance of that customer to the nearest depot. The 
set of possible locations for the depots will be restricted to the customers loca­
tions. The detailed level problem is known as as a median-location problem. 
It is NP-hard in itself. 

The hierarchical location and routing problem that we study in Section 3.3 
can be viewed as a generalization of the hierarchical location problem above. 
Whereas in that problem each customer is served individually, here customers 
are served in groups by vehicles, that have a capacity of serving only a limited 
number of customers. The aggregate level decision still concerns the number of 
depots to be established, under the same stochastic assumptions as in the 
hierarchical location problem. At the detailed level the depots are to be 
located and vehicles are to be routed from the depots through the customers so 
as to minimize the total distance to be traveled. Also, in this case the detailed 
level problem is NP-hard. 

Each of the above problems is defined in the plane. The locations of the 
customers are independent and have common uniform distribution on a region 
that is for each of the problems defined in the respective section. The vector 
that represents the random locations of the n customers will be denoted by w. 
Let the set of all possible realizations of w be denoted by 6l!f. 

3.1. Hierarchical vehicle routing 
In this section we study variants of the following stochastic programming 
model. At the first stage one has to acquire a fleet X of vehicles with unlim­
ited capacity, to be selected from a set 'J1L of available vehicles. Let 'X= 2'lll be 
the power set of ~ The direct acquisition cost is given as a function f :~R 
of X. The vehicles are used to serve n customers from a single depot. We 
assume that the customers are located randomly in a circular area R with 
radius r, with the depot at its center. The distribution is uniform. 

Subsequently, at the second stage, the vehicles that have been acquired have 
to be routed from the depot through the n customers, a realization of whose 
locations is now given. For each XE'X and each realization w of w let v;(X,w) 
be the length of the route assigned to the ith vehicle in an optimal solution of 
the second stage problem. We assume that the detailed level cost is propor­
tional to the length of the longest route. Hence the second stage optimal cost is 
defined by 

y*(X,w) = max;EX{v;(X,w)}. 

The sum of the first stage cost f (X) and the cost of an optimal second stage 
decision is denoted by z*(X,w) = j(X)+y*(X,w). The two-stage decision 
objective is to find a set of vehicles X* C 'X such that 
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Ez*(X* ,w) = minxcx{Ez*(X, w)}. 

The distribution problem is to find a function X0
: 6llf~~ that yields for each 

realization w of w a set of vehicles X0 (w) for which 

z*(X(w),w) = minxcx{z*(X,w)}, Vwe6hf. 

Determining Ez * (X, w) as a function of X requires integration of the function 
y*(X,w), a single evaluation of which requires the solution of an NP-hard 
problem [Garey & Johnson 1979). 

The section is divided into three subsections. In Subsection 3.1.1 we assume 
that the available vehicles are identical in cost and speed, whereas in Subsec­
tion 3.1.2 we assume that they are uniform, i.e., each vehicle has its own cost 
and speed. In Subsection 3.1.3 we study two variants of the problem in which 
in addition to stochasticity in the location of the customers, there is uncer­
tainty about the number of customers to be served at the detailed level. 

3.1.1. Identical vehicles. In this subsection we assume that the available vehi­
cles are identical. Each of them has a cost c, so that at the aggregate level one 
has to decide on a number X of vehicles to be acquired. In this case we thus 
have ~=N andj(X)=cX. 

This is a special case of the simple model outlined in Section 1.5. Along the 
lines given there we will design a hierarchical system to solve the two-stage 
decision problem and show that the system is asymptotically clairvoyant with 
probability 1 by verification of Conditions A and B of Theorem 1.4. 

A lower bound ony*(X,w) can be derived as follows. For each realization w 
of the customer locations, let t*(w) be the length of an optimal traveling sales­
man tour through all customers, i.e. a tour that visits each customer exactly 
once. Since the sum of the lengths of the optimal routes of X vehicles, 
~;=I v7(X,w) is greater than or equal to t*(w), we have 

y*(X,w) = max;=l ..... x{v7(X,w)} ;;a. _i,~;= 1 v;(X,w) (3.1) 

;;a. _i,t*(w). 

To estimate t*(w)/ X we apply a theorem due to Steele [Steele 1981) which 
extends earlier work by Beardwood et al. [Beardwood et al. 1959), and which 
characterizes asymptotically the optimal value of a traveling salesman tour. 

THEOREM 3.1. If n customers are distributed uniformly over a compact region R 
with area P(R), then there exists a constant P>O such that 

t*(w) ~ p ( l). 
VnP(R) wp 

(3.2) 

In our problem R is a circular region with radius r, so that P(R)=wr2 . Substi­
tution of this in (3.2) yields, in view of (3.1 ), that the function 
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(3.3) 

is asymptotically an almost sure lower bound on z * ( X, w ). As a heuristic deci­
sion at the aggregate level, we now choose the number of vehicles equal to the 
integer value XH' that minimizes zH'(X). Since zH'(X) is a convex function of 
X, the first order condition, given by 

c - _/}_ y;;;;;;I' = 0 x2 
implies that XH, is equal to the most favorable round off of 

[Jl~Tn+ 
At the detailed level we have to route XH' vehicles through n customers with 

locations given by w, so as to minimize the maximum length of any route 
assigned to a vehicle. We propose to solve this problem by means of a parti­
tioning heuristic that is similar to Karp's heuristic [Karp 1977] for the 
Euclidean traveling salesman problem. Roughly, the heuristic consists of three 
steps. At first, R is partitioned into smaller subregions, each of which contains 
no more than d customers for some parameter d that is yet to be determined. 
In the second step, an optimal traveling salesman tour is constructed through 
the customers in each of these subregions. In the third and final step, the tours 
are combined in a suitable manner to form the routes for the vehicles. 

The partitioning of the circular area in the first step is carried out by means 
of cuts, of which we distinguish two types. We represent the location of each 
customer by its polar coordinates. A radial cut of a region splits up the region 
by means of the radius through the customer in the region with median angu­
lar coordinate (see Figure 3.la). Similarly, a circular cut splits up a region by 
means of the circle arc (with the depot as center) through the customer in the 
region with median radial coordinate (see Figure 3.lb). 

FIGURE 3.la. 
Radial cut 

FIGURE 3.lb. 
Circular cut 

In a round of cutting, each subregion existing at the beginning of the round 
is split up exactly once. We carry out K of these rounds, with 
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K = flogi (n - I) l 
(d -1) . 

We start our cutting procedure from the circular area with one radius arbi­
trarily fixed. The first K / 2 rounds involve only radial cuts, thus creating 2K12 

sectors; the last K/2 rounds involve only circular cuts. We number the 2K 
subregions obtained by starting with an arbitrary sector, numbering the subre­
gions according to increasing distance from the depot, and continuity on the 
adjacent sector in, say, clockwise direction until all subregions have been num­
bered. The jth region will be denoted by R/w) (j = l, ... ,2K) (see Figure 3.2). 
It is easy to show that the above cutting procedure (which is simpler than the 
one proposed in [Karp 1977]) results in subregions containing no more than d 
customers each. 

FIGURE 3.2. The subregions 

LEMMA 3.1. R/w) (j= l, ... ,2K) contains at most d customers. 

PROOF. By induction we will show that the number of customers in each of 
the subregions existing after k rounds of cutting is no more than 

...!!_+_I_+ ... +_!_+ 1 = n -2 +2. 
2k 2k-I 2 2k 

After one round of cutting one of the subregions contains n 12 customers and 
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the other (n 12)- 1 or n 12 depending on the parity of n. The customer on the 
splitting segment is added to both subregions so that for k = 1 the hypothesis 
is obviously satisfied. Suppose that it is also satisfied for k - 1 rounds. If in 
the kth round we split a region with (n - 2)/2k - I + 2 customers the number of 
customers in each of the two newly created subregions is at most 

n I 1 1 n I I 
(2k-I + 2k-2 + ... +2+1)2+1 = '°2k+ 2k-I + ... +2+1, 

which verifies the induction hypothesis. Therefore, after K rounds of cutting 
the above upper bound is smaller than or equal to 

<: =7)(d-1) + 2, 

which is no more than d if and only if d~n. D 

In the second step of the heuristic, an optimal traveling salesman tour of 
length t*(R/w),w) is formed through the customers (including those on the 
boundary) in each region R/w) by means of a suitable optimization method. 
Let the graphical configuration corresponding to such a tour be indicated by 
T*(R1(w),w). It is not difficult to see that the union of these tours defines an 
Euler graph, i.e., a connected graph on the set of all customers in which each 
customer has even degree. Euler's theorem implies that there exists a spanning 
walk that passes through each edge exactly once. The length of this spanning 
walk is W(w)=2;2~ 1 t*(R1(w),w). 

In the final step' we assign each customer to a specific vehicle, in such a way 
that the route for each vehicle is approximately equal to W(w)I X. We do so in 
the obvious manner, by considering R 1(w),R 2(w),R 3(w), ... until we find the 
greatest I such that 

8 = W(w)/X-2;~= 1 t*(R1(w),w):;;;., 0. 

If 8>0, we divide T*(R1+ 1(w),w) into two parts. The customers on the part 
with length 8, together with the customers on the tours T* (R 1 ( w ), w ), ... , 
T*(R1(w),w) are assigned to the first vehicle. The customers on the other part 
are the first ones to be assigned to the second vehicle. We continue this pro­
cedure until each vehicle has a set of tours (including at most two partial 
tours) assigned to it whose lengths sum exactly to W(w)I X. 

The union of these tours does not necessarily define a spanning walk. In 
general, it will not be connected and have the form depicted in Figure 3.3 in 
heavy lines. As indicated in the figure at most eight additional dotted segments 
may be required to create a spanning walk. 

Two additional segments (indicated by + + +) are needed to connect the 
depot to the customer that is closest to it. It is easy to see that the total length 
of the additional segments is a constant y(w) depending only on r. The result­
ing spanning walk can be transformed into a tour by subsequent application of 
two operations. The first one deletes a loop (see Figure 3.4a). The second 
operation is applied whenever a node u has degree greater than two and has 
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FIGURE 3.3. From a set of tours to a spanning walk 

no loop (see Figure 3.4b). Then a pair of edges (u1>u) and (u 2 ,u) exists that 
does not form a cut set of the spanning walk; i.e., if we remove this pair from 
the walk, the walk remains connected. These edges are removed and replaced 
by the single edge (u1>u 2). 

The triangle inequality ensures that the resulting tour has no greater length 
than the oriW,i:al spanning walk. The lengths of the resulting routes are 
denoted by v; '(X,w) (i = l, ... ,X). The longest of them has length denoted by 
y 8 '(X,w), which is the value produced by the second stage heuristic, for each 
realization w of the customer locations. The value produced by the hierarchi­
cal system formed by the first stage and the second stage heuristics H 1 and H 2 
for a given realization w of w is given by 

z 8 '(X8 ' ,w) = cX8 ' +y8 '(X8 ' ,w). 

It is not difficult to see that, subject to the usual assumption that each ele­
mentary operation on real numbers requires unit time, the above second stage 
heuristic can be implemented so as to require a running time that is polyno­
mial in the number of customers, provided that d is chosen to depend 
appropriately on n. 

In the first step, all customers have to be sorted with respect to their angular 
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u 

FIGURE 3.4a. FIGURE 3.4b. 
Deletion Substitution 

as well as to their radial coordinates. In addition, each round of cutting takes 
linear time. Altogether, this step requires O(nlogn) time. 

The second step, calculation of an optimal traveling salesman tour in each 
subregion, can be carried out in 0(8") time per region for some constant fJ> 2 
(e.g., by dynamic programming [Held & Karp 1962)) and hence in O(n8" Id) 
time overall. 

In the third step, the assignment of each customer to a vehicle takes time 
that is linear in the number of subregions and in the number of vehicles. This 
includes the time needed to create the extra segments, which is proportional to 
d2XH'. 

Since the first stage heuristic requires a constant amount of time and results 
in XH' =O(n 114 ), the overall running time of the hierarchical system is 
O(nlogn+n8"!d+d2n 114 ). If we take d equal to login, this running time is 
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O(n 2 /logn). 
To prove asymptotic clairvoyancy of both the first stage heuristic H 1 and 

the hierarchical system (H 1tH 2) we verify Conditions A and B of Theorem 1.4 
in Section 1.5. Verification of A is easy from (3.1) and Theorem 3.1. The error 
analysis of the detailed level partitioning heuristic, which leads to the 
verification of Condition B, is much harder. 

As a preliminary we will prove two lemmas that together yield an upper 
bound on the length of the spanning walk constructed in the first two steps of 
the heuristic. 

Consider a subregion Ri(w) and let T*(w)nRj(w) denote the intersection of 
the optimal tour through n customers with Rj(w). Let per(R) be the perimeter 
of the region R. The proof of the following lemma is from [Karp 1977). 

LEMMA 3.2. 

t*(R_;(w),w)-t*(w)nRj(w) E;;; ;per(Rj(w)). 

PROOF. Let T*(w)nRj(w) consist of k continuous curves C1tC2 , ••• , Ck. 
(see Figure 3.5). 

FIGURE 3.5. Converting r•(w)nRi(w) into a walk 

Let the 2k end points of these curves, in clockwise order around the boun­
dary of Rj(w), be r1tr2, ... ,r2k. Assume without loss of generality that 
lr1r2l+lr-sr4I +···+ lr2k-tr2klE;;;lr2r3I +···+ lr2kr1I, where 
lr;,r;2 I denotes the distance from r;, to r;2 along the boundary of Rj(w). Con­
sider the walk consisting of the following three parts: the curves CJt ... ,Ck; two 
copies of each of the segments r 1r 2, r 3r 4,..,r2k-tr2k; and one copy of each of 
the segments r2r3, r 4 ,r5, ... ,r2kr1. Then the length of the first part is 
t*(w)nRj(w), an~ the sum of the lengths of the second and third part is less 
than or equal to T the perimeter of Ri(w). As the length of an optimal travel-

ing salesman tour through the customers in Rj(w) is smaller than the length of 
this spanning walk the lemma follows. 0 
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From Lemma 3.2 it follows that 

""2« * ""2K 3 ""2K W(w) = ~J=lt (Rj(w),w)~~J=lt*(w)nRj(w)+2 ~J= 1per(Rj(w)) 
• 3 2« 

=t (w)+2~J=lper(Rj(w)). 

Our cutting procedure, which is different from the one in [Karp 1977) is not 
only simpler to implement, but also leads to a more exact evaluation of 

2« 
~J= 1per(Rj(w)). 

LEMMA 3.3. 

PROOF. After K/2 radial cuts, the sum of the perimeters of the sectors is 
clearly equal to 

(3.4) 

In the first round of circular cuts, all sectors are split by circle arcs, the sum of 
which is certainly smaller than 27Tr, so that (3.4) is increased by no more than 
47Tr. In the second round, the increase is bounded in a similar manner by 87Tr. 
Hence, the overall increase is bounded by 

(2Kl2 -1)47Tr. (3.5) 

Since K= flogi((n -1)/(d- l))l, (3.4) and (3.5) together imply the lemma. D 

From the above two lemmas an upper bound can be derived on the route 
length for each vehicle, and hence, ony8 '(X,w): 

H'(X ) :i;::: W(w) + ( ) :i;::: ~+ O(Vn/d) y ,w '"""' x y w "'""" x x . (3.6) 

This upper bound is used in the following theorem, which establishes an 
asymptotic characterization of the optimal solution and the heuristic solution 
of the second stage vehicle routing problem and shows that they are asymp­
totic to the same form. 

THEOREM 3.2. 
(i) y*(X, w)!({1y;;:;;:i-I 10~1 (wpl); 
(ii) y 8 '(X, w)/(pv;;:;;:i-; x~ 1 (wpl). 

PROOF. (3.1) and (3.6) together yield 

~~ *(X ):i;::: H'(X )~~+ O(Vnid) X ""'Y ,w """.Y ,w "'""" X X . 

Division by 1 y;;:;;:i- yields, 

(3.7) 



t*(w) .s::: y*(X,w) .s::: y82 (X,w) .s::: t*(w) + O(v;:;/d) 
{J y;;:;;;r .... {J y;;:;;;r IX .... p y;;:;;;r IX .... p y;;:;;;r p y;;:;;;r . 
For d=login, we have 

O(v;:;/d) 0 
p v;;:;;;r - . 

This observation, Theorem 3.1 and (3.8) together imply the theorem. D 
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(3.8) 

Theorem 3.2 shows that Condition B of Theorem 1.4 is also satisfied so that 
asymptotic clairvoyancy with probability 1 of the heuristic H 1 and (H 1,H 2) is 
established. 

THEOREM 3.3. 
(i) z8 '(X8 ' ,w)/z*(X°(w),w)-+ (wpl); 
(ii) X 8 ' I X°(w)-+ l (wpl). 0 

For the verification of Assumptions 1.1-5 it is sufficient to verify that for 
sufficiently large n there exist constants C 1 and C 2 such that with probability 
1, 

C1 Vn E;;;t*(w)E;;;C2 Vn. 
The upper bound is established deterministically in [Few 1955). The lower 
bound is derived in [Karp & Steele 1985, Exercise 5). Therefore Theorem 3.3 
implies a whole range of other convergence properties as well (cf. Figure 1.1). 

3.1.2. Uniform vehicles. This subsection is an extension of the previous subsec­
tion in the same way that Subsection 2.1.2 was one of Subsection 2.1.1. At the 
first stage we have to select a subset from a set ~ of uniform vehicles, knowing 
the cost c; and the speed s; of each vehicle i e~ The set of first stage feasible 
solutions is 'X.=2c:JR,, the power set of~ In this model the first stage cost are 
defined as j (X) = ~; eXC;. Corresponding to each X E 'X. we define 
s(X)=~. s;. We assume that constants cL,cu,sL,su exist such that 

1er 
cL:s;;;;c;E;;;cu and sL:s;;;;s;E;;;su (ie~). 

The second stage objective is to determine routes for the vehicles selected so 
as to minimize the maximum time required for any of the vehicles to traverse 
its route. Using the notation of the previous subsection we write the optimal 
second stage cost now as 

y*(X,w) = max;ex{vj(X,w)/s;}. 

Similar to relation (3.1 ), here 

*(X ) ::a:~ y ,w ,,,... s(X) 

for each X and each realization w of w. And, analogously to (3.3) the function 
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(3.9) 

tends to be a lower bound on z • (X, w ), with probability 1. Minimization of this 
function is NP-hard, so that we need an approximation of the minimum XH'. 
As in Subsection 2.1.2, a greedy heuristic will be used. We renumber the vehi-
cles according to nondecreasing ratios c;ls; (iE~). Let C; = ~~= 1 cb 
S; = ~~ = sk, Z; = C; + nµ.I S; (i E~) and Z 0 = oo. The greedy heuristic selects 
a subset fG={l, ... ,/}C<Jll, where I is the largest index such that Z1 - 1>Z1. 

The quality of the greedy solution XG is established in the following lemma, 
the proof of which is similar to the proof of Lemma 2.3 and therefore omitted 
here. 

LEMMA 3.4. The greedy solution XG satisfies 
(i) Z1=min;E~fZ;}; 
(ii) zH'(XG).;;;;/i1 (XH')+cu. D 

The heuristic for the solution of the second stage problem first constructs a 
spanning walk through all the customers, in the same way as was done in the 
previous subsection. Subsequently, rather than cutting the walk into pieces of 
equal length, we allocate a part of length W(w)s;ls(XG) to the ith vehicle and 
transform this part into a route also in the manner described in the previous 
subsection. Let the length of the resulting route be denoted by v f 2 ( XG, w ), 
and let the heuristic value of the second stage routing problem be defined by 

yH'(XG,w) = max;Ex"{vf2(XG,w)ls;}. 

The value of the solution produced by the entire hierarchical system is denoted 
by 

zH'(XG,w) = j(XG)+yH'(XG,w). 

For an asymptotic analysis of the heuristic (H 1,H 2), we first have to restrict 
the set ~ of available vehicles, just as we had to restrict the set of available 
machines in Subsection 2.1.2. 

ASSUMPTION 3.1. The parameters cL,cu,sL,su are fixed constants. Moreover, 
there exist constants D >0, D'>O, 8';;;.8>0 such that 
Dn 114+6.;;;; l'JRJ .;;;;D'n 114+6'. 

Verification of Condition A of Theorem 1.6 is simple from the construction 
of zH'(X). 

To verify Condition C of Theorem 1.6 we notice that Lemma 3.4 (ii) implies 
that 

zH'(XG) zH'(XH')+cu 1 .;;;; .;;;; ~--'-~...L...~-
z H' (XH') ZH, (XH') 

The latter term tends to 1 when the number n of customers goes to infinity. 
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This, together with inequality (3.3) implies Condition C. For the verification 
of Condition B we prove the following theorem, which shows that the heuristic 
value and the optimal value of the second stage problem are asymptotic to the 
same function, with probability 1. 

THEOREM 3.4. 
(i) y*(X,w) ~1 (wpl); 

fJ ....r,;:;;I Is ( X) 

(ii) yH'(X, w) ~1 (wpl). 
fJ ....r,;:;;I Is ( X) 

PROOF. It is easy to see that analogous to (3.7) we have for this problem 

..!.M :S::: *(X ):S::: H'(X )~..!.M + O(v;;J;i) s(X) ....., y ,w ..... y ,w """" s(X) s(X) 

Division by fl ....r,;:;;I Is (X) yields 

t*(w) .s::: y*(X,w) ,,;;;; y8 '(X,w) 

/l ....r,;:;;I ....., fJ ....r,;:;;I Is ( X) fJ ....r,;:;;I Is ( X) 

,,;;;; t*(w) + O(v;;J;i) 
fJ ....r,;:;;I /l ....r,;:;;I . 

Since we have chosen d =log n, 

O(v;;J;i) 0 
fJ ....r,;:;;I ~ . 

This observation, Theorem 3.1 and (3.11) imply the theorem. D 

(3.10) 

(3.11) 

Theorem 3.4 implies directly that Condition B of Theorem 1.6 holds for 
(H 1,H 2). Theorem 1.6 then establishes asymptotic clairvoyancy of the 
hierarchical system, with probability 1. 

THEOREM 3.5. 

zH'(XG,w) ~ 1 (wpl). D 
z*(X°(w),w) 

3.1. 3. Random number of customers. In this section we consider extensions of 
the model in Subsection 3.1.1. In addition to uncertainty about the location of 
the customers we postulate uncertainty about their number at the aggregate 
level. Theorem 2.7 implies that the results of Section 3.1 carry over to this 
situation. A special case is obtained when the number of customers is fixed 
but each of the customers places an order with some fixed probability p. In 
this case the number N of customers to be visited is a random variable that 
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has a binomial distribution and expectation np. Then 

~=~ .... /N v; v'N v-;;· 
Since Nln~p (wpl), Theorem 2.7 implies that 

ts;) ~pvp:;;;I (wpl). 

Any reader can verify that the results of Subsection 3.1.l carry over to this 
situation by substituting p'1Tr 2 for '1Tr 2 • 

3.2. A hierarchical location problem 
In this section we consider a two-level decision problem with a depot location 
problem at the detailed level. With only probabilistic information about the 
locations of n customers one has to decide upon the number X of depots to be 
established. The set-up cost c is fixed for each depot. Hence f (X) = cX. We 
assume that the customers are located in a compact region R with area v(R), 
according to the model described in the introduction to this chapter. 

Let the cost to serve a customer be proportional to its distance to the depot 
from which it is served. Then, at the second stage, given a realization of the 
customer locations, the depots must be located so as to minimize the sum of 
the distances of each of the customers to its nearest depot. This problem is 
known in the literature as a median location problem. We assume that the cost 
per distance unit is 1. For the stochastic programming objective we use the 
notation that we have used so far throughout this book. In [Papadimitriou 
1981] it is proved that determination of the optimal second stage cost y * (X, w) 
is an NP-hard combinatorial optimization problem. A heuristic to solve the 
two-stage decision problem is devised and analyzed along the lines of Section 
1.5. Actually, this is no more than an application of results for median location 
problems available in the literature [Papadimitriou 1981], [Zemel 1984]. 
Specifically, in [Zemel, 1984] an asymptotic characterization of the optimal 
solution value of a median location problem is established. 

n 
THEOREM 3.6. If X=o(-1-), then for a=0.377196 ... 

ogn 

y*(X, w)ln ~ a(v(R)/ X)112 (wpl). D 

We use this result to formulate our heuristic first stage problem as determina­
tion of the integer value XH, that minimizes the function 

zH'(X) = cX+an(v(R)IX)112 . 

zH' (X) is a convex function and it is easy~ compute that XH, is equal to the 
most favorable integer round-off of (~an v(R)I c )213 . The heuristic that we 
use for the solution of the second stage median location problem was proposed 
for the first time in [Papadimitriou 1981]. It received the telling name of 
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'honeycomb' heuristic. The region R is tiled with hexagons each with area 
P(R)I XH' and in each of them a depot is established. In each of the hexagons 
that are proper subsets of R a depot is located. Obviously their number is less 
than XH', and it may be completed to XH' by the location of depots in hexa­
gons that are selected arbitrarily from the hexagons that intersect the boundary 
of R. In each hexagon the depot is located in the customer location that has 
minimal total distance to the other customers in the hexagon in question. In 
[Zemel 1984) it is shown that this heuristic is asymptotically optimal with pro­
bability 1 if X=o(n!logn). Since in our heuristic XH, ~(+an v' P(R)/c )213 , the 
latter condition is satisfied and Zemel's result implies Condition B of Theorem 
1.4. We note that the estimate used in the first stage problem is not so much a 
lower bound on the optimal value but rather an almost sure asymptotically 
accurate approximation of the optimal value. Hence a stronger condition than 
Condition A of Theorem 1.4 is satisfied. As a result the hierarchical planning 
system proposed is asymptotically clairvoyant with probability 1. 

3. 3. A hierarchical location and routing problem 
As has been argued in the introduction to this chapter, the problem that we 
study in this section can be regarded as an extension of the hierarchical loca­
tion problem studied in the previous section. 

At the aggregate level one has to decide upon a number X of depots to be 
established at a cost c each. At the detailed level the depots are to be located 
and the n customers must be served by vehicles, each of which is located at a 
depot and has a capacity of serving q customers. The customers are located 
randomly in a compact region R with area P(R) according to the model 
described in the introduction to this chapter. The second stage objective is to 
locate the depots and route the vehicles so as to minimize the total distance to 
be traveled to serve all customers, given a realization of their locations. The 
optimal cost is indicated by u*(X,w) for any X and any realization w of w. 
The sum of this cost and the first stage costf(X)=cXis denoted by z*(X,w). 

The above second stage problem is NP-hard, since it generalizes the median 
location problem (see Section 3.2), in which q = 1. Along the lines of Section 
1.5 we devise a hierarchical planning system to solve the two-stage decision 
problem and we prove that this system is asymptotically clairvoyant with pro­
bability 1. For the formulation of a heuristic first stage problem we first define 
y*(X,w) as the optimal solution value of the median location problem with X 
depots and customer locations represented by w. Then the following lemma 
establishes a lower bound on u*(X,w). 

LEMMA 3.5. 

u*(X,w) ;;;;.: 2y*(X,w) 
q 
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PROOF. Consider a group of q customers to be served by one vehicle. In one 
or another way the vehicle has to reach the customer in this group that is 
farthest from a depot, and return from there to the depot. This implies that 
the length of any route for this vehicle through this group of q customers is at 
least twice the distance from this customer to its nearest depot. This is cer­
tainly more than or equal to twice the average distance of the q customers to 
their nearest depots, given the depot location. Summation over disjunct 
groups of at most q customers, the union of which is the group of all n custo­
mers, yields that the total distance to be traveled is at least the sum of the dis­
tances of the n customers to their nearest depot divided by q, which is the 
optimal median location cost divided by q. D 

We combine this lemma with the asymptotic characterization of the optimal 
value of the median location problem given in Theorem 3.6 so as to arrive at 
an approximation uH'(X) of u*(X,w) that satisfies Condition A of Theorem 
1.4 for the values X that satisfy X = o(n/logn): 

UH, (X) = 2an (P(R)/ X)112_ 
q 

The heuristic first stage decision XH' is then the integer value of X that minim­
izes 

ZH, (X) = cX + 2an (P(R)I X) 112 • 
q 

The function zn, (X) is convex. It turns out that XH' is equal to the most 
favorable integer round-off of (anv;{ii)lcq)213 • We observe that given this 
value Condition A of Theorem 1.4 is indeed satisfied. 

The heuristic that we devise for the second stage distribution problem is a 
composition of the honeycomb heuristic described in Section 3.2 for the loca­
tion of the depots and a tour partitioning heuristic proposed in [Haimovich & 
Rinnooy Kan 1983] for the routing of the vehicles. In the first step of the tour 
partitioning heuristic a traveling salesman tour through all n customers is con­
structed using a space partitioning heuristic similar to the one described in 
Section 3.1.1. At the second step this tour is cut into pieces that contain q cus­
tomers each. Each of these q-chains is connected to a depot as follows. We 
select the customer in the chain that is closest to any of the depots, and we 
add the corresponding segment to the chain. In this way we obtain a spanning 
tree through the q customers and a depot. This is transformed into a spanning 
walk by duplicating the tree. The spanning walk is then converted into a tour 
for a vehicle by means of the operations described in Section 3 .1.1. The cost 
of the heuristic second stage configuration, denoted as uH'(X,w), is bounded 
from above by twice the length of the traveling salesman tour produced plus 
twice the sum of the lengths of the additional segments mentioned above. An 
upper bound on the traveling salesman tour has been established already in 
Section 3.1.1, and is equal to the length of an optimal traveling salesman tour 
denoted by t*(w) plus a term that is O(Vn/logn). An upper bound on the 
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sum of the lengths of the segments added is yH'(XH1 ,w)lq, since from each 
group of q customers we consider only the one closest to a depot established 
by the honeycomb heuristic. It is trivial that the corresponding distance is less 
than the average distance of the q customers to their nearest depots. The above 
observations together yield 

Therefore 

uH'(XH1 ,w)~2t*(w)+O('Vn!logn)+2yH'(XH1 ,w)lq. 

uH'(XH1 ,w) ~ t*(w) + O(Yn/logn) + 
uH• (XH•) (cP(R))l/3(a.n/ q)213 (c1'(R))"3(an I q)2'3 

+ yH'(XH• ,w) 
(cP(R))113(a.n/q)213 · 

Since t*(w) is asymptotic to {JYnP(R) (cf. Theorem 3.1) the first term of the 
right hand side of the above inequality tends to 0 with probability 1. Obvi-

H . 
ously, the second term tends to 0. As X 1 =o(n/logn), the almost sure asymp-
totic optimality of the honeycomb heuristic together with Theorem 3.6 implies 
that the third term tends to 1 with probability 1. The above implies that the 
second stage cost is asymptotically determined only by the lengths of the seg­
ments, which can be interpreted as the median-location cost of n I q groups of 
customers, where each gro1Jf. is considered as one entity. Together, these three 
observations imply that u '(XH1,w)/uH1(XH1 ) tends to 1 with probability 1. 
This implies in its turn that the hierarchical system (H 1,H 2) satisfies Condi­
tion B of Theorem 1.4. Now, this theorem establishes asymptotic clairvoyancy 
of the hierarchical system as a whole. 
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Stochastic integer programming by 

dynamic programming 

Whereas the preceding three chapters dealt with heuristics for stochastic 
integer programming problems, this chapter is devoted to true optimization 
methods. 

As has been argued in the introduction, the only hope to achieve anything 
useful in this direction is through the exploitation of special structure. The spe­
cial structure of the stochastic integer programming problems in this chapter is 
derived first from the special structure of the second stage combinatorial prob­
lems and secondly from the assumption that the stochastic parameters have 
discrete distributions with a fixed (small) number of points in which the proba­
bility mass is concentrated. For example, in the hierarchical scheduling prob­
lem that we consider in Section 4. l we assume that the processing times of the 
jobs can take on only a limited number of possible values. 

We will show how this structure leads to recurrence relations between the 
various feasible solutions of the problems, which can be efficiently exploited by 
dynamic programming routines. Analysis of the routines will show that their 
running times are polynomially bounded in the problem size (such as the 
number of jobs in the scheduling problem) but exponential in the number of 
possible realizations of the stochastic parameters. 

In Sections 4.1 and 4.2 we consider the two hierarchical scheduling problems 
described in Sections 2.1 and 2.2 respectively. We will refer to the hierarchical 
scheduling problem of Section 2.2 as the hierarchical bin packing problem. In 
Section 4.3 we present a dynamic programming algorithm for solving a 
hierarchical multi-knapsack problem. This problem can be viewed as a capital 
budgeting problem. At the aggregate level one has to decide on the sizes of 
budgets that are to be reserved for financing a number of projects at the 
detailed level. Each of the budgets has a given unit price and each of the pro­
jects requires a certain amount of the budgets and has a profit, which is 
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initially known only stochastically. A remarkable feature of this problem is 
that the solution of the distribution version can be read directly from the prob­
lem parameters and does not require any recursive calculations (see Section 
4.3.1). 

In each of the sections there is a subsection in which the basic dynamic pro­
gramming algorithm for the problem in question is presented and a subsection 
in which we report on computational results. In the latter subsections we study 
the shape of the objective function of the two-stage decision problem as a 
function of the first stage decision variables. In Sections 4.1.2 and 4.2.2 we 
compare heuristic and optimal values. In Sections 4.1 and 4.2 we use the nota­
tion of Sections 2.1 and 2.2 respectively. 

4.1. Dynamic programming for hierarchical scheduling 
In this section we restrict ourselves to instances of the problem described in 
Section 2.1 in which the processing times W1> ... , Wn have a common discrete 
distribution with a fixed number k of distinct values a I>····ak in its support. 
We will show in Subsection 4.1.1 that this restriction allows for the construc­
tion of a dynamic programming algorithm that calculates the values of the 
optimal solutions of the problem for all possible realizations of the processing 
times and for each relevant number of machines, and hence solves the problem 
in a time that is polynomial in the number n of jobs but exponential in k. 
Refinements of this algorithm are presented subsequently. In Subsection 4.1.2 
we report on computational experience obtained by implementation of the 
dynamic programming routine. 

4.1.1. Dynamic programming. As mentioned in Section 2.1 determining the 
optimal second stage scheduling cost y*(X,w) in NP-hard. Let us denote by 
w =[n 1, ••• ,nk] the vector of processing times in which the value a1 occurs n1 
times, for j = l, ... ,k. 

One can obtain an optimal schedule on X machines by assigning a certain 
subset of jobs optimally to X - 1 machines and putting the remaining jobs on 
another machine. This observation leads to the following recurrence relations: 

y*(X, [n 1, ••• ,nk])=min{max{y*(X -1,[n 1 -11, ... ,nk -lk]),y*(l,[/1, ... A])} 

IO.;;;;~.;;;;n1(j = l, ... ,k)} (X> I), 

y*(l,[n 1, ••• ,nk])= ~;=I n1a1. 

Computation of y • (X, w) by a dynamic programming algorithm based on this 
recursion requires O(XIIJ= 1n1) time, which is exponential ink but polynomial 
for fixed k. 

In the more general context of the two-stage scheduling problem, we assume 
that the processing times have a common discrete distribution with k integral 
values a 1> ... , ak in its support. The independence of the processing times 
implies that w=[n1> ... , nk] has a multinomial distribution. The idea is now 
to go through the entire recursion once in order to compute y * (X, w) for all 
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values X E { l, ... ,n} and for all realizations w E61tf, where 61tf is given by 

61tf={[n1, ... ,nk]IO,,.;;n1,,.;;n(j=l, ... ,k), n1 + ... +nk=n}. 

The distribution model is then solved by the selection, for each w E61tf, of a 
value of X that minimizes z*(X,w)=cX +y*(X,w). The two-stage decision 
model is solved by the determination of a value of X that minimizes Ez * (X, w) 

=cX+ L "''' Pr{w=w}y*(X,w). 
WE-w 

A straightforward application of the above dynamic programming algorithm 
requires O(nk) comparisons for each of the O(nk+ 1) pairs {X,w), and hence 
O(n21c + 1) time altogether. The multinomial probabilities are easily computed 
within this time bound. 

A more efficient implementation of the algorithm is obtained as follows. Let 
a 1 =max{ ai. ... ,ak}. It is not hard to see that, for any X and w =[n i. ... , nd 

fL7= 1n1a/ X] ~*(X,[ni, ... ,nk]),,.;; fL7= 1n1a/ X] +a1 -1. 

The lower bound is trivial, and the upper bound follows from the observation 
that any list scheduling algorithm will start every job strictly before the lower 
bound. Further, we assume without loss of generality that in the above 
recurrence relations the second maximand attains the maximum: 

y*(X,[ni, ... ,nk])=y*(l,[li. ... ,/k]) for some Ii. ... ,lk. 

We can therefore restrict our attention to vectors [/i. ... , lk] that yield a value 
y * (1, [/i. ... , Id) within a given range of a 1 integers. This implies that only a 
single value of 11 has to be considered for given /2 , ••• ,lk and that O(nk-I) 
comparisons suffice for each pair (X,w). The overall running time is thereby 
reduced to O(n 2k). 

Other, more intricate, refinements lead to a running time of 
O(n21c- 1af'- 3 logna 1). Although that implementation is more efficient for 
small values a i. ... , ak> it is of little avail in view of the results that will be 
presented in Section 4.2.1. 

4.1.2. Computational results. The dynamic programming algorithm was coded 
in PASCAL and run on a CD Cyber 170-750 to solve several instances of the 
two-stage scheduling problem. The solution of instances with 100 jobs and two 
possible processing time values or with 50 jobs and three processing time 
values required about 30 seconds. The values of k considered are admittedly 
small, but the values of n are realistic and the running times are such that the 
brute force approach of this chapter should not be dismissed on grounds of 
manifest inefficiency. 

We illustrate the numerical results on a set of representative instances given 
by 

c = 1, 

n = 1, ... , 100, 

k = 2, a 1 = 18, a 2 = 14, 
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Figure 4.1 shows four functions of the number of jobs: 
- the minimal lower bound minx{zH'(X)} mentioned in Section 2.1.1; 

the minimal expected total cost Ez • (X*, w) (the optimum for the two-stage 
decision model); 
the expected minimal total cost Ez.(X0 (w),w) (the optimum for the distri­
bution model, averaged over all realizations); 
the expected approximate total cost obtained by the heuristic designed in 
Section 2.1.1. 

Note that the last three functions are defined only for integral n; linear inter­
polation has been applied to improve the presentation. The distribution model 
yields slightly better results than the two-stage decision model on average, as 
expected. A comparison between the optima and the lower and upper bounds 
confirms that the absolute differences are significant while the relative 
differences disappear with increasing problem size. 

For the case that n = 100, Figure 4.2 shows three functions of the first stage 
decision variable, the number X of machines: 

the lower bound zH'(X); 
the expected total cost Ez*(X, w) in case of an optimal second stage deci­
sion; 
the expected total cost in case of an approximate second stage decision. 

Note that we have interpreted X as a continuous variable: acquisition of a 
fractional machine costs a fraction of c but yields no benefit at the second 
stage; the vertical line segments correspond to discontinuities. In spite of the 
smoothing effect due to averaging over all realizations, both the optimal and 
the approximate cost functions are highly nonconvex and multimodal. The 
functions consist of a first stage component, which is linear and increasing, 
and a second stage component, which is nonconvex and nonincreasing. Addi­
tion of the two components can tum the nonconvexities into local minima, and 
small values of c appear to be most effective in this respect. 

4,2. Dynamic programming for hierarchical bin packing 
As in the previous section we will show that, when we restrict ourselves to k 
distinct values a 1, ... ,ak as possible realizations of each of the item sizes, for 
fixed k, we can use a dynamic programming algorithm to solve the hierarchical 
bin packing problem within polynomial time. This algorithm and a refinement 
of it are presented in Subsection 4.2.1. In Subsection 4.2.2 we report on com­
putational experience obtained by implementation of the algorithm. 

4.2.1. Dynamic programming. As mentioned in Section 2.2 determining the 
optimal second stage bin packing cost x*(Y,w) for given Y and w is NP-hard. 
We write w=[n 1, ••• ,nkl to denote the vector in which the value a1 occurs n1 
times, for j = 1, ... ,k. 

The following dynamic programming algorithm is due to [Held, Karp & 
Shareshian 1963]. Let C ( Y, w) be the total amount of capacity needed to pack 
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items with weights specified by w into bins of capacity Y. It is assumed that 
C(Y,w) includes the slack capacity of each bin (which is equal to Y minus the 
total weight of the items assigned to that bin) except for the slack capacity of 
the last bin. Thus, if C(Y,w)=xY-A with xeZ+ and O:is;;;A<Y, then an 
optimal packing requires x bins and the last bin has a slack capacity of A. Let 
A(Y,w,a) be the extra capacity needed when an item with weight a is added to 
this packing: 

{
a if A~a. 

A(Y,w,a) = A+a if A<a. 

It is not hard to see that 

C(Y,[n i. ... ,nk])=min1c;jc;;k:n;>O{ C(Y, [n i. ... , nj-t.nj-1,nj + t.····nk]) 

+A(Y,[ni. ... ,nj-t.nj-1,nj+t. ... ,nk],aj)} 

(n1 + · · · +nk>O), 

C(Y,[0, ... ,0])=0. 

We finally have that x*(Y,w)= rc(Y,w)/Y]. 
For the two-stage bin packing problem, we make the same assumptions con­

cerning the distribution of the stochastic parameters as in Section 4.1.1 and 
apply the same strategy to obtain solutions to both stochastic optimization 
models. Since the values a 1, ... , ak are integral, there is no loss of generality 
in considering only integral capacities Y. Let amax =max{ai. ... ,ak} and 
note that lE;;;YE;;;namax· The algorithm requires a fixed number of comparis­
ons for each of the O(nk+lamax) pairs (Y,w), and hence O(nk+lamax) time 
altogether. 

A more efficient implementation of the algorithm is obtained as follows. Let 

a sum= ~J= 1 njaj. It is not hard to see that, for any Y and w=[ni. ... ,nk] 

rasumlYJ E;;;x*(Y,[ni. ... ,nk])E;;;2rasum1YJ- l. 

The lower bound is trivial. The upper bound is a performance guarantee of the 
following simple heuristic: deal with the items in a fixed order and fill each of 
r a sum I Y] bins successively, thereby splitting an item if necessary; next, reas­
sign each of the split items to a separate bin, of which no more than 
r a sum I Y] - 1 will be needed. Addition of the first stage cost yields 

dY +asumlYE;;;z*(Y,[n t.···•nd)E;;;dY +2asum1Y+1. 

These lower and upper bound functions are both convex in Y. The function 
z • ( Y, w) therefore attains its minimum for a value of Y that is bounded by the 
two values of the argument for which the lower bound is equal to the 
minimum of the upper bound. A straightforward calculation shows that the 
latter values are given by (l/2+(2asumd)112 +(asumd +(2asumd)112 
+ 1/4)112)/d. This implies that for all nk realizations w only O((namaxld)112) 
values of Y have to be considered. The overall running time is thereby 
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reduced to O(nk+ 112 a:i;}xd- 112 ). 

Due to the relation between the two-stage scheduling and bin packing prob­
lems that was observed above, they• (X, w) values from Section 4.1.1 could be 
used to derive the x * ( Y, w) values needed here and vice versa, as long as the 
set {a 1, ••• , ak} is the same in both cases. The former recursion has the 
advantage of requiring strictly polynomial time; the latter one is pseudopoly­
nomial but much faster for small values a 1, ••• , ak. 

4.2.2. Computational results. For the typical problem instance given by 

d = 1, 

n = 100, 

k = 2, a 1 =18, a 2 =14, 
I . 

Pr{w1=a 1 } =Pr{w1=a2 } =1 U = l, ... ,n), 

Figure 4.3 shows three functions of the first stage decision variable, the capa­
city Y: 

H - the lower bound z '(Y); 
the expected total cost Ez * ( Y, w) in case of an optimal second stage deci­
sion; 
the expected total cost in case of an approximate second stage decision. 

An investigation of these and other results leads to the same conclusions con­
cerning running time, quality of lower and upper bounds, and the occurrence 
of multiple local minima as in Section 4.1.2. 

4.3. Dynamic programming for hierarchical multiknapsack 
At the aggregate level of the capital budgeting problem that we consider here, 
one has to decide on the sizes X 1, ••• , Xm of m budgets that are to be reserved 
for financing a number of projects, while knowing the cost c; of reserving one 
unit of budget i (i = l, ... ,m), the requirement riJ of project j out of budget i 
(i = l, ... ,m, j = l, ... ,n), and the probability distribution of the vector 
w=(wi, ... , wn) of revenues that the projects will yield. It is assumed that all 
c;,riJ and w1 are nonnegative and that the riJ are integral. At the detailed level, 
after X=(X1i ... ,Xm) has been determined, a realization w of w becomes 
known, and one has to decide on a selection S of the projects that maximizes 
the total revenue y * (X, w) within the budget constraints: 

y*(X,w)=maxs\:{l, ... ,n} {~JESwi I ~JESr;1 ~X; (i = l, ... ,m)}. 

This second stage problem is known as the multiknapsack problem. The total 
profit of the budgeting decision X and the optimal selection decision is 
denoted by z*(X,w)= - ~m- c;X; +y*(X,w). 

In the two-stage decisibii 1 model, the objective is to determine a vector 
X* EIR'!j'. such that 

Ez*(X* ,w) = maxxER': {Ez*(X,w)}. 
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Let 6llf be the set of all possible realizations of w. In the distribution model, 
the objective is to determine a function X 0 :"llf~R'.i such that 

z* (X°(w), w)=maxxER: {z* (X, w)}, 'v'w E61if. 

4.3.1. The distribution model. The knapsack problem, i.e., the second stage 
problem with m = 1, is already NP-hard [Garey & Johnson 1979]. Surpris­
ingly, the distribution model is easily solved to optimality. For each w E"llf, the 
selection S(w) of profitable projects is given by S(w)= U I w1- ~m=I c;riJ>O}. 
The minimum budgets needed to finance these projects ar~ equal to 
X;'(w)= ~JES(w{iJ(i = l, ... ,m), and the corresponding total profit is 

z*(X°(w),w)= ~JES(w)(w1 - ~~=I c;r;j), 'v'w E61if. 

In the situation that each revenue w1 can assume only k distinct values, the 
determination of X° requires O(mn) computations for each of kn realiza­
tionsw. 

4.3.2. Dynamic programming. The second stage multi.knapsack problem is solv­
able by a classical dynamic programming algorithm from [Bellman 1957]. Let 
Fj(X, w) be the maximum revenue if only the first j projects can be selected, 
for given budgets X=(Xi. ... ,Xm) and revenues w =(wi. ... , Wn). An optimal 
selection is either restricted to the first j -1 projects or includes project j: 

Fj((X1, ... ,Xm),w)=max{Fj-1((X1>····Xm),w), 

Fj-1((X1 -r!J, . .. ,Xm -rmj), w)+wJ }(j = l,. .. ,n), 

{
O if X1 = · · · =Xm=O, 

F 0 (( X 1 "·" Xm ), w) = - oo otherwise. 

Since the requirements riJ are integral, also the budgets X; can be assumed to 
be integral. Computation of y*(X,w)=Fn(X,w) requires a single comparison 
for each of rr;n= 1X; vectors X'~X at each of n successive stages, and hence 
O(nII;n= 1X;) time altogether. 

For the two-stage multi.knapsack problem, we again consider the situation in 
which each revenue w1 can assume only k distinct values, for a fixed k. Let 
R;=~~={iJ and note that O..;,X;~R; (i=l, ... ,m). At stagej, only the ki 
differerlt realizations of (wi. ... , w1) need to be distinguishe.d (j = 1,. . .,n ). The 
algorithm therefore has to consider O(k1II;n= 1R;) pairs (X,w) at stagej. Sum­
mation over all j yields an O(knII;n= 1R;) time bound for the computation of 
all y * (X, w) and also for the determination of a budget vector X* that is 
optimal in expectation. 
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4.3.3. Computational results 
The dynamic programming algorithm was coded in PASCAL and run on a CD 
Cyber 170-750 to solve several instances of the two-stage knapsack problem. 
We set m = 1 at the outset and did not attempt to solve proper multiknapsack 
problems, for which m ;:;2. We assumed independence of the revenues w1 and 
tried to make the second stage knapsack problem nontrivial by specifying a 
high correlation between the expected revenue Ew1 of project j and its budget 
requirement r 11 . The solution of instances with twelve projects and two possi­
ble revenue values for each of them required about ten seconds. 

For the problem instance given by 

m = 1, c = 1, 

n = 12, Pr{w1=a 11 }=Pr{w1=a21}=t U=l, ... ,n), 

with the values of r 11 , a 11 , a 21U = l, ... ,n) given in Table 4.1, Figure 4.4 shows 
the expected total profit Ez • ((X 1 ), w) as a function of the budget size X 1• Note 
that the profit is shown only for integral X 1 ; the line segments that start from 
the points shown with a slope - c 1 and that indicate the profit for fractional 
X 1 have been deleted. Even if we restrict our attention to integral values of 
X 1, the profit function has many local maxima. 

J 2 3 4 5 6 7 8 9 10 11 12 

r11 5 2 9 13 10 8 4 7 10 6 4 9 
a11 7 4 12 17 15 12 5 9 14 9 6 l 
a11 3 6 11 8 7 l 4 7 7 2 8 

TABLE 4.1. Knapsack: numerical data 
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The structure of stochastic integer 

programming problems 

In this short chapter· we investigate the structure of objective functions of sto­
chastic integer programming problems as a first step towards the development 
of optimization methods for their solution. We have seen in the previous 
chapter that. these functions can be discontinuous and non convex. These are 
properties that do not work in favor of the design of a successful optimization 
routine. However, the problems studied in Chapter 4 were of a restricted 
nature. In this chapter a much broader class of stochastic integer program­
ming problems is considered. In Section 5.1 we define a general stochastic 
integer programming problem and we analyze its objective function. The main 
results, that we derive are that, when the parameters have a continuous distri­
bution, the objective function is continuous but not necessarily convex and if 
the parameters have a discrete distribution, it is in general discontinuous. 

These results represent no more than an initial theoretical insight into the 
structure of stochastic integer programs. We are still far from a general algo­
rithm for such problems. In Section 5.2 we review some directions for future 
research that may lead to such an algorithm. 

5.1. The stochastic integer programming objective function 
Let us consider the general linear programming model 

min ex 

s.t. Ax =b, 

x;;;a.O 

(5.1) 

(5.2) 

(5.3) 

with c,xERn and bERm and AERmxRn. The fundamental extension that is 
obtained by the additional constraint 
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(5.4) 

yields the general integer programming prob1.:-1n. We have already discussed the 
computational difficulties that this t";;•.nsion gives rise to. Many of these 
difficulties carry over to stochastic ir:.eger programming. 

Let us define the random v~·:.mrs qERk, pER1 and the random matrices 
WER1XRk, TER1xRn. FrJm the general two-stage stochastic linear pro­
gramming problem 

min ex+~ min{qy jWy;;:.Tx+p,y;;:.O,yERk} 

s.t. .4.A =b, 

(5.5) 

(5.6) 

we defr.re the general two-stage stochastic integer programming problem 

min ex+ Emin{ qy I Wy;;;;.Tx +p, y;;;;.O, y EZk} (5.8) 

s.t. Ax =b, (5.9) 

x ;;;;.o, (5. lO) 

xEZn. (5.ll) 

To study the shape of the stochastic integer programming objective function 
we introduce the concept of a value function. If we consider c and A in (5.1) 
and (5.2) .as being fixed, then the optimal solution to the linear program (5.l-3) 
and the integer program (5. l-4) are functions of the right hand side b. These 
functions, denoted by QLP(b) and Q1(b) respectively, are called value func­
tions. 

In [Blair & Jeroslow l 982] the classes of value functions of linear and 
integer programs are characterized. They showed that these can be con­
structed iteratively by simple operations. Each value function of a linear pro­
gram is obtained by starting with linear functions of the form Ah (AERm), and 
by repeating finitely often the operations of taking sums, taking maxima and 
taking nonnegative multiples of the functions already obtained. And reversely, 
each function that can be constructed in this way is the value function of some 
linear program. Thus, for example, the function QLP((bi.b 2)) 

=max{2b 1 +; b2 ,b 1 +5b2} is the value function of some two-constraint linear 
program. 

The value function of an integer program is obtained in the same way 
except that the operation of taking integer round-ups is added to the set of 
operations. Also here each function that can be constructed in this way is the 
value function of some integer program. Thus, for example, the function 
Q1 ((b i.b2)) =max{2b I + ; b2,b I + 3b2 + If b2 l} is the value function Of some 
two-constraint integer program. The addition of the round-up operation 
induces the irregular behavior of integer programming value functions. 
Whereas, by the way they are constructed, linear programming value functions 
are continuous, piecewise linear and convex, integer programming value 
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functions are in general discontinuous. Consider for example the simple value 
functions 

and 

Q1 (b)=rnin{y[y ~b,y~O.y EZ}. 

Their graphs, depicted in Figure 5. l, show the peculiar discontinuities that 
integer programming can generate. 

FIGURE 5.la. FIGURE 5.lb. 
Graph of QLP(b) Graph of Q1(b) 

The above features of the value functions carry over to the objective func­
tions of stochastic programming problems. For a given realization (q,p, W, T) 
of (q,p, W, T), 

QLP(Tx +p)=min{qylWy~Tx+p,y~O} 

is the value function of a realization of the second stage problem of the sto­
chastic linear program (5.1-3). We notice that it is a random function. The 
expected optimal second stage cost is given by the function 

~p(x)=Eq,p,w,TQLP(Tx +p) 

that depends only on the first stage decision variable x. In a similar way we 
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define the functions 

Q 1(Tx +p)=min{qy!Wy;;;a.Tx +p,y;;;a.O, yEZk} 

and 

<.2f (x)=Eq,p,w,TQ1(Tx +p). 

When the random parameters have discrete distributions with a finite number 
of points with positive density, then the functions qlfP (x) and <.i (x) are convex 
combinations of a finite number of value functions. Therefore the objective 
functions of the corresponding stochastic linear programs are piecewise linear 
and convex, whereas the objective functions of the stochastic integer programs 
may be discontinuous. To illustrate the above we consider the following simple 
functions: 

(5.12) 

and 

(5.13) 
I where p is a random variable with distribution Pr{p=2} = Pr{p=2.5} =2-

Their graphs are given in Figure 5.2. As in the deterministic programming 
examples, the objective function of the stochastic linear program is piecewise 
linear and convex and the objective of the stochastic integer program is discon­
tinuous. 

FIGURE 5.2a. 
Graph of zLP(x) 

////// 

FIGURE 5.2b 
Graph of z1(x) 

For stochastic programming models with a continuous distribution on the 
random parameters we may expect smoother objective functions. This is illus­
trated by an analysis of the functions zLP(x) and z1(x) given above, where we 
now assume that p is uniformly distributed on the interval [2,2 +y] with y< l. 
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Their graphs are given in Figure 5.3. The stochastic linear programming 
objective function is no longer piecewise linear but still convex. 

FIGURE 5.3a FIGURE 5.3b 
Graph of zLP(x)(p-U[2,2+y]) Graph of z1(x)(p-U[2,2+y]) 

The stochastic integer programming objective function is no longer discontinu­
ous. The latter observation will be generalized in the following theorem. 

Consider the stochastic program (5.8-11) with only p and T random. We 
define for each realization (p, T) of (p, T) 

Q1(Tx +p)=min{qylWy;;;a.Tx+p,y;;;;.O,yE.lk}. 

Its expected value is given by 

qi(x)=EQ1(Tx+p). 

Let f (p, T) be the joint density function of p and T. Let g(T) be the marginal 
density function of T and let h (plT) be the conditional density function of p 
given T. 

THEOREM 5.1. If f (p, T) is uniformly continuous with rectangular support (II,:::) 
and Q1 (Tx + p) is bounded with probability 1, then qi (x) is continuous. 

PROOF. We will prove that for every c::>O there exists a 8 such that for any 
pair of vectors x and x' satisfying llx - x'll 00 ~8, we have that 
lqi(x)-qi(x')l~t:. For a fixed value c::>O we choose any pair x and x' such 
that x'=x+8i, for a value of 8 that is to be determined later, and where i is 
an appropriate n-dimensional vector satisfying llill 00 ~1. For given p and Tit 
is easy to see that 

Q 1(Tx'+p)=Q 1(Tx +p +8Tt). 
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Therefore 

lqt(x')-qi(x)I = 
If fQ 1(Tx+p+8Tt)j(p.T;"pdT- f fQ 1(Tx+p)f(p,T)dpdTI 
::: n ::: n 

We substitute p' -8Ti for p in the first term of the right hand side of the 
above equality. This yir:;ds 

lqi(x'~ -qi(x)l=lf f Q1(Tx +p')f(p'-8Tt,T)dp'dT-
::: Il' 

ff Q1(Tx +p)f(p,T)dpdTI, 
::: n 

wher.; II'=II+8Tt. We writep instead ofp' again: 

lqt(x)-qi(x)l=lf f Q1(Tx +p)f(p -8Tt,T)dpdT+ 
::: Il'\n 

f f Q1(Tx +p)f(p -8Tt,T)dpdT-
::: n-nn 

f f Q1(Tx +p)f(p,T)dpdT-
::: nnll' 

f f Q1(Tx +p)f (p,T)dpdTI 
E:Il\Il' 

~If f Q1(Tx +p)f(p-8Tt,T)dpdTI+ 
E:Il'\Il 

If f Q1(Tx +p)f(p,T)dpdTI+ 
::: Il\Il' 

If f Q1(Tx +p)(j(p -8Tt,T)-f(p,T))dpdTI 
::: nnn-

By assumption, for each x there exists a finite L such that Q1(Tx +p)~L for 
almost every realization p, T of (p, 1) Therefore the above absolute difference is 
bounded from above by 

Lf f f(p-8Ti,T)dpdT+Lf f f(p,T)dpdT (5.14) 
::: Il'\n ::: n\Il' 

+Llf f (j(p-8Tt,T)-j(p,T))dpdTI 
::: nnn-

We consider each of the above three terms separately. We rewrite the first 
term as 

L f g(t) f h (p -8TtlT)dpdT. 
::: Il'\Il 

Because under our assumption that f (p, T) is uniformly continuous, h (p IT) is 
uniformly continuous and we have that for each £>0 we can choose 81 (€) small 
enough such that 
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f h(p-81(£)Tt!T)dpo;;;; 3~ 
II'\II 

and hence 

L j g(T) j h(p -81(£)Tt!T)dpdT~;. 
::: II'\ II 

(5.15) 

In the same way we can for each £>0 choose 82(£) such that for 
II'=II +82(£)Tt. 

L j j f(p,T)dpdT:s;;;;. 
::: II\II' 

(5.16) 

As f is a uniformly continuous function of p, for each £>0 there exists a 83(£) 
such that 

Hence 

Llf j (j(p-83(£)Tt,T)-f(p,T))dpdTI (5.17) 
::: IInII' 

< L j j 3~ dpdTo;;;; ; . 
::: IInII' 

If we choose 8=min{81(£),82(t:),83(£)} then (5.14), (5.15), (5.16) and (5.17) 
together imply the theorem. D 

We note that the boundedness condition on Q1(Tx +p) is a rather strong 
requirement in integer programming. However, if the density function f (p, T) 
has bounded support, then the condition is met for problems with all 
coefficients positive. 

As we have seen in Figure 5.3b continuous objective functions of stochastic 
integer programming problems are not necessarily convex. The success of algo­
rithms for stochastic linear programs is partially due to the convexity of their 
objective functions. If integrality constraints appear only at the first stage of a 
stochastic program, then the expected optimal second stage cost is still convex 
in the first stage decision variables and the problem can be dealt with by fairly 
conventional adaptations of stochastic linear programming methods (see e.g. 
[Wollmer 1981)). The nonconvexities induced by integrality constraints at the 
second stage cause more fundamental problems. It is not at all obvious how 
these difficulties can be dealt with. In the following section, we give some 
directions for future investigations that might lead to practically useful stochas­
tic integer programming methods. 
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5.2. Directions for future research 
In the previous section we examined the shape of objective functions of sto­
chastic integer programming problems without making attempts to use the 
insights acquired for the construction of an algorithm. This is mainly due to 
the fact that the nonconvexity of the functions does not lead to a natural pro­
posal for such an algorithm. To imitate solution procedures that are successful 
for stochastic linear programs requires more than minor modifications because 
of the integrality constraints on the variables. 

One possibility may be to imitate the L-shaped method for stochastic linear 
programming, which is based on Benders' decomposition [Wets 1983], by sub­
stitution of the stochastic integer programming objective function by a convex 
approximation. More specifically, if we consider a stochastic minimization 
problem and define the epigraph of the objective function as the set of all 
points lying above or on the function, then the minimum of the function is the 
lowest point of the epigraph (see Figure 5.4). This is also the lowest point of 
the convex hull of this epigraph. Therefore, minimization of the function can 
be replaced by minimization of the convex hull of its epigraph. Determination 
of this convex hull is not surprisingly, a nontrivial task. But a useful insight 
can be derived from [Blair & Jeroslow 1979]. They define the carrier function 
of an integer programming value function as the function that is obtained by 
deleting the round-up operators from its description. The epigraph of a carrier 
function is convex and contains the convex hull of the epigraph of the 
corresponding value function. It would be interesting to see if and how carrier 
functions can be used in a decomposition method to solve the stochastic 
integer programming problem. 

Another possible approach for the optimization of multimodal objective 
functions is to use a global optimization algorithm. In the literature on global 
optimization, a variety of algorithms is presented (see [Timmer 1984] for a 
review). For reasons indicated many times before, we are interested in 
methods that require only a small number of function evaluations. For exam­
ple, we may consider global optimization methods that represent the function 
to be optimized as a realization of a stochastic process (see [Boender 1984]). 

A drawback of the latter type of algorithm is that it ignores most prior 
information about the shape of the function. For example, in some cases it 
may be possible to compute a Lipschitz constant for the objective function of 
a stochastic integer program, given the probability distribution of the random 
parameters and the values of the non-random parameters. In such cases one 
could use this information in a global optimization algorithm similar to the 
one presented in [Evtushenko 1971]. 

The construction of optimization methods for stochastic integer program­
ming represents a formidable challenge. Notwithstanding the high asymptotic 
quality of the heuristics discussed in previous chapters, we hope that this chal­
lenge will be properly responded to by further research. 
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FIGURE 5.4. The epigraph and its convex hull 
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