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GENERAL INTRODUCTION 

This paper deals with symmetries of dynamical systems and in particular 

Hamiltonian systems. Suppose X is a vector field on a manifold M. With 

this vector field an autonomous dynamical system 

(O. I) u(t) 
d 

- dt u(t) X(u(t)) 

on the manifold Mis associated. Dynamical systems of this type arise in 

many places in science, biology, economy, and other disciplines. Sometimes 

the manifold M is a linear space. In that case several considerations can 

be somewhat simplified. A very simple example of a system for which a correct 

treatment cannot be given in a linear space is the Kepler problem. In gene

ral a system with constraints has to be considered on a manifold which is not 

a linear space. The general theory described in Chapters 2, 3 and 4 will 

be given for a system on an arbitrary manifold. However, several of the 

examples treated in Chapter 5 will be systems which are considered in a 

linear space. An important special type of dynamical system is the Hamiltonian 

system. For autonomous Hamiltonian systems, as introduced in Section 3.2, 

there always exists a function H on M, the Hamiltonian, such that H(u(t)) 

is constant on every solution u(t) of the system. In physical situations 

which are described by a Hamiltonian system this function H is often, but 

not always, equal to the energy of the system. If the initial state u0 of 

the system at t = t 0 is known, we can try to find the time evolution u(t) 

of the system by solving (O.l). However, in most cases for a dynamical/ 

Hamiltonian system an explicit form of the solution, corresponding to an 

arbitrary initial value u(t0 ) = u0 , cannot be found. We shall not go into 

questions concerning existence and uniqueness of the solutions of (O.l) now. 

By means of numerical methods it is often possible to find a very good 

approximation for the solution of (O.I) with initial value u(t0) = u0 . 

An alternative way to obtain some information about the dyna

mical system is, instead of looking at a specific solution (as is done in 

the numerical approach), to find properties which are shared by all solu

tions or at least classes of solutions. Such properties are for instance 

the existence of constants of the motion, the existence of symmetries, 

the stability of the solutions or the behaviour of the solutions for t + oo. 
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In this paper we shall only consider symmetries and constants of the motion 

of dynamical systems and in particular Hamiltonian systems. For a finite

dimensional Hamiltonian system the existence of k constants of the motion 

in involution (i.e. with vanishing Poisson brackets) allows to reduce the 

dimension of the phase space by 2k. If the number of constants of the motion 

in involution equals half the dimension of the manifold (which is always 

even), the system is called completely integrable. In that (exceptional) 

case an explicit form for the solutions of (O.l) can be given. This is one 

of the reasons for the interest in constants of the motion. 

As far as we know for infinite-dimensional Hamiltonian systems 

the relation between the existence of an infinite series of constants of the 

motion in involution and "complete integrability" is not yet clear. During 

the last decennia a number of infinite-dimensional Hamiltonian systems have 

been solved using the so-called "inverse scattering methods". All these 

equations also have an infinite series of constants of the motion in involu

tion. This has led to the conjecture that the existence of such a series 

is strongly related to the possibility of solving the initial value problem 

for these equations (for instance by inverse scattering). This conjecture 

has also given rise to the, in our opinion misleading, usage to call an 

infinite-dimensional Hamiltonian system integrable or completely integrable 

if there exists an infinite series of constants of the motion in involution. 

In Chapter 2 we consider a general dynamical (i.e. not necessa

rily Hamiltonian) system of the form (O.J). A symmetry of that system is 

introduced as an infinitesimal transformation of solutions of the system 

into new solutions of the system. We shall consider symmetries which also 

may depend explicitly on t. So Y(u,t) is a symmetry if for every solution 

u(t) of (0.1) also u(t) + E Y(u(t),t) is a solution (up to o(E) for E + 0). 

This leads to a definition of symmetries of (O.J) as, possibly parameterized, 

(contravariant) vector fields which satisfy 

(0.2) Y + [X,YJ 0 c.Y d 
aty) 

where [X,Y] = LXY is the Lie bracket of the vector fields X and Y. Sometimes 

this type of infinitesimal transformation is called a generator of a symmetry; 

the notion symmetry is then used for a finite (i.e. not infinitesimal) trans

formation of solutions of (0.1) into new solutions of (O.l).However, we shall 
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use the notion symmetry only for infinitesimal transformations, or more 

precisely for parame te rized vector fields satisfying (O. 2). The relation 

between symmetries and finite transformations of solutions into (new) solu

tions is similar to the relation between a Lie algebra and a corresponding 

Lie group. Therefore it is not surprising that the set of symmetries of a 

dynamical system has a natural Lie algebra structure. 

A second important concept in this paper is the adjoint sym

metry, that is a, possiblyparameterized, one-form (covariant vector field) 

cr(u,t) which satisfies 

(O. 3) a + LX cr = O • 

It turns out that every constant of the motion F of (0.1) gives rise to an 

adjoint symmetry cr = dF. Of course the converse is not true in general. The 

four possible types of linear operators (in fact tensor fields of total order 

2) which map (adjoint) symmetries into (adjoint) symmetries are also intro

duced in Chapter 2. These operators are called recursion operators for (ad

joint) symmetries, SA- and AS operators. An SA operator maps symmetries 

into adjoint symmetries, an AS operator acts in the opposite direction. For 

an arbitrary dynamical system interesting operators of these four types do 

not exist in general. If there exists a recursion operator for symmetries 

or for adjoint symmetries, its eigenvalues (in the finite-dimensional case) 

are constants of the motion. This suggests a possible relation between 

these recursion operators and the eigenvalue problems used in the inverse 

scattering method. For the Korteweg-de Vries and Sawada-Kotera equation 

(Sections 5.6 and 5.7) this relation can be given explicitly. 

A more interesting situation appears if the dynamical system 

is a Hamiltonian system. In Chapter 3 we introduce Hamiltonian systems 

using the language of symplectic geometry. The phase space of these Hamil

tonian systems is a symplectic manifold (M,w). Denote the (0,2) tensor 

field corresponding to the symplectic form w by n. The inverse {2,0) tensor 

field is denoted by n+. Then the Hamiltonian system on (M,w) with Hamiltonian 

H is given by 

(O. 4) u = X = rt dH 

The classical Hamiltonian systems written in terms of p. and q. are a special 
l. l. 

case of (0.4). It turns out that several interesting partial differential 
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equations (Korteweg-de Vries-, sine-Gordon-, Benjamin-Ono equation) can 

be considered as infinite-dimensional Hamiltonian systems of this type. 

In Chapter 4 we study symmetries for Hamiltonian systems. 

An important consequence of the Hamiltonian character is that the tensor 

fields Q and Q+ can be used as SA- respectively AS operators. Then every 

constant of the motion F does not only give rise to an adjoint symmetry 
+ dF but also to a symmetry Q dF. A symmetry Y such that the corresponding 

adjoint symmetry o = QY is (non-) exact/closed will be called a (non-) 
+ . canonical/semi-canonical symmetry. So the symmetry Q dF corresponding to 

a constant of the motion F is canonicaL An important part of this paper 

consists of the study of non (semi-) canonical symmetries. These symmetries 

have interesting properties. For instance if Z is a non-·semi-canonical 
+ symmetry, then the Lie derivatives L2 Q and L2 Q are again SA respectively 

AS operators. This implies that every non-semi-canonical symmetry gives rise 
+ to a recursion operator for symmetries !\ = Q L2 n. Using this recursion 

operator we can construct an infinite series of symmetries by 

(O.S) 

In Section 4.5 we give conditions on Z (and M) such that this series con

sists of canonical symmetries. Then there exists an infinite series of 

constants of the motion (in involution) Fk such that xk 
+ 

= Q dFk. An alter-

native way to generate an infinite series of symmetries is to compute the 

repeated Lie bracket with z (= higher Lie derivative in the direction of Z) 

(0.6) 

This series is considered in Section 4.7. It turns out that the conditions 

mentioned above also imply that the symmetries xk are canonical and corres

pond to constants of the motion Gk. The possible relation between the two 

series of symmetries Xk and Xk (constants of the motion Fk and Gk) is also 

considered in Section 4.7. It turns out that if X2 = bX2 then Xk = bkXk 

(so Gk = bkFk) with b, bk E TR. In that case the constants of the motion 
Fk can also be obtained by a third method. This situation appears in se

veral examples. A completely different series of symmetries can be generated 

by 

(0. 7) Ak-lz 
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Several properties of this series of symmetries are described in the Sec

tions 4.6 and 4.7. We give conditions which imply that this series consists 

of non-semi-canonical symmetries. We also show how the symmetries Zk can 

be used to give a multi-Hamiltonian formulation of (0.4) and describe the 

structure of the Lie algebra of symmetries of (0.4) generated by the series 

xk and zk. 

Several of the results mentioned above can be obtained if 

there exists a non-semi-canonical symmetry Z, which satisfies some addi

tional conditions. However, it may happen that for such a symmetry 

L2 Q = aQ and [Z,XJ = bX for a, b E 1R. Then all elements of the series 

(0.5) and (0.6) are identical to X and all elements of the series (0.7) 

are identical to Z (up to multiplicative constants). This trivial situa

tion appears often if Z is the symmetry corresponding to a scale law of 

(0.4). It will be clear that the existence of a symmetry Z for which this 

trivial situation does not occur, is a highly nontrivial property which is 

in some way related to the "complete integrability" of the Hamiltonian 

system. 

Some examples of the theory described in the Chapters 2, 3 and 

4 are given in Chapter 5. As an example of the theory of Chapter 2 we con

sider the Burgers equation. All other examples are (semi-) Hamiltonian sys

tems. Of course the whole of the methods described in Chapters 2, 3 and 4 

cannot be applied completely to each of the given examples. Several examples 

are infinite-dimensional (Hamiltonian) systems. The most extensive example 

of this type is the Korteweg-de Vries equation. In Section l.3 we describe 

function spaces (i.e. non-metrizable topological vector spaces) in which 

we consider these equations. In these spaces a consistent treatment of 

(adjoint) symmetries and the various operators between (adjoint) symmetries 

can be given. Differential geometrical methods will be an important tool 

in this paper. A short overview of the differential geometrical concepts 

used will be given in Section I.I. Finally in Section J.2 we show how these, 

in first instance finite-dimensional, concepts can be "generalized" for 

(infinite-dimensional) topological vector spaces. 
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CHAPTER I: MATHEMATICAL PRELIMINARIES 

I. I DIFFERENTIAL GEOMETRY 

In this section we shall briefly describe some aspects of differential 

geometry. The concepts introduced in this section will be extensively 

used in the Chapters 2, 3 and 4. For a more comprehensive treatise and 

also for proofs of the results given here, we refer to the literature, 

for instance Abraham and Marsden [1,44] or Choquet-Bruhat [3]. 

Tangent and cotangent spaces. 

Let M be a smooth finite-dimensional manifold with dimension n. The tangent 

space to M in a point u € M is denoted by T M. This is a linear space with 
u 

dimension n. The tangent bundle TM is the union of all tangent spaces of M, 

so TM = u~M TUM. The tangent bundle TM is a manifold with dimension 2n. 

The tangent bundle projection ~ 1 : TM+ Mis a mapping which sends a tangent 

vector A€ TM to its point of application. So if A€ TuM then ~ 1 (A) = u. 

The dual space of T M is the cotangent space T*M. So an element 
u ' u 

a.€ T*M can 
u 

be considered as a linear mapping a. : T M + 1R. Since the 
u 

dimension of T M is 
u 

finite, the dual space of T*M is again T M. The duality u u 
map between T M and 

u 
T*M will be denoted by <.,->. So if A € T M and Of. € T*M u u u 

then <a. ,A> € 'JR • 

The cotangent bundle T*M is the union of all cotangent spaces 

of M, so T*M = u~M T~M. It is again a manifold with dimension 2n. Suppose 

Of.€ T*M, so a.€ T~M for some u € M. The mapping ~ 1 : T*M + M: a+ u is 

called the cotangent bundle projection. 

Natural bases. 

Suppose we choose local coordinates ui(i=l, ••• ,n) on an open subset Uc M 

(so U can be described by one chart), By varying the coordinate u 1 and 

keeping the other coordinates fixed, we obtain a curve in U c M. The tan

gent vector of this curve 'in a point u € M, is an element 
a 

= au 1 
of the tangent space TuM. This tangent vector is denoted by e 1 

a 
In a similar way we can construct the tangent vectors ei =:-TE 

au i 
TM 

u 

this way we can use the local coordinates u to construct (i=2, ••• ,n). So in 
a a basis {e. = ~-. I i=l, ••• ,n} for TM for all u € U. This basis is called 

i aui u 
a natural basis. If A € T M with u € U, it can be written as 

u 



(I.I.!) A 
i 

A e. 
l. 

In this paper we shall always use the convention that, unless otherwise 

indicated, summation takes place over all indices which appear twice, once 

as a subscript and once as a superscript. 

(1.1.2) 

A basis { dui i=l, ••• ,n } for T~M is defined by 

i 
<du ,e.> 

J 
o~ 

J 
v i,j 

This basis is called the natural cobasis. The bases {e. I i=l, ••• ,n} for 
l. 

TM and { d} 
u 

If ci, E T*M with 
u 

(l.1.3) 

Then 

i=l, .•. ,n} for T*M are called each others dual bases. 
u 

u E U, we can write 

i 
a.du • 

l. 

(1.1.4) <ci,,A> i j <ci,.du ,A e.> 
l. J 

. j i 
ci,.A o. 

l. J 
i a.A . 

l. 

Tensor fields. 
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We shall frequently need smooth functions, vector fields, one-forms and 

(higher order) tensor fields on M. For a formal definition of these objects 

(using sections of the corresponding vector bundles) see for instance 

Abraham and Marsden [1,44] or Choquet-Bruhat [3]. 

I. 1. 5 Definition. 

The set of smooth functions on M will be denoted by F(M). The sets of 

smooth vector fiel.ds and (differential) one-forms on M will be denoted by 

X(M) respectively X*(M). Finally the set of smooth tensor fields on M with 
i 

covariant order j and contravariant order i will be denoted by T.(M). A 

tensor field 3 E T~(M) will be called an (i,j) tensor field on M~ 
J 

So if A E X(M) then A(u) ET Mand if a E X*(M) then a(u) E T*M. Of course 
u u 

D 

we can expand vector fields and one-forms in the corresponding natural bases: 

(1.1.6) i 
A(u) =A (u)ei(u) and a(u) i 

ai(u)du 
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One-forms are sometimes called covariant vector fields, in contrast to 

vector fields which are called contravariant vector fields. Of course 

functions, vector fields and one-forms on M are special cases of tensor 

fields, so formally 

F(M) T~ (M), X(M) T~(M), X*(M) 

Lie algebra's. 

We now make some remarks on the structure of the sets introduced in definition 

1.1.5. Of course all these sets are linear spaces (with infinite dimension). 

The product of two functions on M is again a function on M. This means that 

F(M) is not only a linear space but also a ring (with identity). The product 

of a vector field, one-form or tensor field with a function yields again an 

object of the same type. This can be expressed by saying that X(M), X*(M) and 

T~(M) are modules over the ring F(M). The linear space X(M) has additional 
I. 

structure. First we give the following 

L l. 7 Definition. 

A real linear space E with a bilinear product[·,·] 

satisfies 

i) [X,X] = 0 V X E E, 

E x E -. E, which 

ii) [X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]] 

is called a Lie algebra. 

0 V X,Y,Z EE, 

[J 

Note that i) implies that the product is antisymmetric: [X,Y] =-[Y,X]. 

The second condition is called the Jacobi identity. It is well-known that 

the space X(M) of vector fields on M is a Lie algebra. The product [A,B] of 

two vector fields A and B on M is called the Lie product or Lie bracket of 

the vector fields A and B (see section 2.8 for an unusual (and complicated) 

introduction of the Lie bracket of vector fields). 

the Lie bracket of the vector fields A= Ai e. and B 
I. 

(l.I.8) [A ,B] (B i,· .Aj i j -A,.B)e. 
J J I. 

i d i where we use the notation B,. =--.- B , etc. 
J dUJ 

i In local coordinates u 
i Be. is the vector field 

I. 



9 

Tensor products, 

In (1.1.6) we showed how vector fields and one-forms can be expanded in the 

natural bases corresponding to a coordinate system. By taking tensor products 

(@) of the elements of these bases, we can construct bases for the various 

types of tensor fields. Suppose qi E T~ UI), A E T: (II) and '¥ E T~ (M). Then, in 

a local coordinate system we can write 

j i 
qi •• du ®du , A 

1] 

i j 
/\..e.® du , 

J 1-

The tensor product of the tensor fields = E rf (M) and 8 E T~(M) is a tensor 

field =Ill 8 E T~+~(M). For instance in local coordinates (A E X (M)) ,,+J 

11.@A 

Contractions. 

The tensor product is an operation which yields a tensor field of higher 

order(s) then the original tensor fields. An operation which lowers both 

orders of a tensor field is the contraction. Suppose= E T~(M) with i,j ~I. 
Then by contraction we obtain a tensor field =c E rf=:(M). 1 In fact if i > 

and/or j > I several types of contraction are possible. As an example 
2 consider a tensor field= E T1(M). So, using a local coordinate system, we 

can write 

-1-J d i 
::: 0 e. ®e. ® u • 

Yv J 1 

Then by contraction we can obtain the tensor(vector) fields 

_ij 
:::. e .. 

J 1-

Contracted multiplication. 

An operation which will be used very often in this paper, is contracted 

multiplication, that is a tensor product followed by a contraction. 

Contracted multiplication of two tensor fields =1, =2 will be denoted by 
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~ 1 ~ 2 • For instance 

(l. l.9) J\1¥ 

(l.1.10) M 

The duality map between a vector field A and a one-form a can also be written 

as a contracted multiplication 

However, it will be convenient to use<·,·> for this duality map. It is 

easily seen from (J,l.10) that by contracted multiplication of a tensor 

field A E T: UO and a vector field A we obtain again a vector field M on M. 

This means we can consider A also as a linear mapping A : X(M) + X(M). 

Similarly the contracted multiplication of.a te~sor field r E T:{M) and a 

one-form a yields again a one-form fa(= r~a.duJ), So we can consider r also 
' J l. 

as a linear mapping r X*(M) + X*(M). Note that A and rare tensor fields 

of the same type. The two different mappings are possible since we can 

perform different contractions. In general we shall use the symbol A for 

tensor fields which are used as a mapping A : X(M) + X(M) and the symbol r 

for tensor fields which are used as a mapping r : X*(M) + X*(M). Note that 

this means that in the contracted multiplication A?.. we contract "using the 

lower index of A" while in the contracted multiplication r:: we contract 

"using the upper index of r". The contracted multiplication of a tensor 

field<!> E T2°(M) and a vector field A yields a one-form a= <!>A= <!> •• Ajdui 
. l.J 

So we can also consider<!> as a linear mapping<!> X(M) + X*(M). Finally a 
2 tensor field~ E T0(M) can be used to transform a one-form into a vector 

field. Hence we can consider it as a linear mapping ~ : X*(M) + X(M). 

Vector bundle maEs· 

We have seen that a tensor field A E T:(M) can be used as a linear mapping 

A: X(M) + X(M). Of course we can also transform a vector A ET Minto a 
u 

vector AA E T M. So we can also 
u 

use A as a linear mapping A : T M + T M. 
u u 

Since u E M is arbitrary we can also consider the tensor field A as a mapping 

A : TM + TM. A mapping of this type {with A T M + T M linear) is called a 
u u ---

vector bundle map. Similar results hold for the other types of tensor fields. 
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We sunnnarize the various applications of tensor fields with total order two 

in the following scheme 

tensor field linear map vector bundle maE 

I /\ET 1UO /\ X(M) + X(M) /\ TM +TM, 

(l.1.11) 
r E r: (M) r X* CM) + X*(M) r T*M + T*M, 

<ll E T~(M) <ll X(M) + X*(M) <ll TM + T*M, 

'!' E T~(M) '!' X*(M) + X(M) '!' T*M + TM . 

The difference between considering A as a vector bundle map /\ : TM + TM and 

as a linear map /\ : X(M) + X(M) is that with the vector bundle map we can 

transform one vector of TM, while the linear map/\ : X(M) + X(M) transforms 

a vector field on M. 

Lie derivatives. 

An extremely important tool in this thesis will be the Lie derivative. 

Suppose ~ is a tensor field of arbitrary orders and A is a vector field. 

Then the Lie derivative LA~ is again a tensor field of the same type as ~. 

In the special case that _ B, a vector field, we have 

(1.1.12) -Lg1. 

In local coordinates the Lie derivatives of FE F(M), BE X(M), a E X*(M), 

<ll E T~(M), /\ E T:(M) and'!' E T~(M) are given by 

Llx 

(1.1.13) 

LA<!l = 

LA/\ 

LAIJI 

k F,/ ' 

[A,B] 

(a. kA 
]. ' 

k 

(<I> .. kA 
l.J' 

k 
+ a/,i) 

k k 
+ <I>.kA'. ]. J 

(/\~ Ak - k i 
A/'k + 

J,k 

i 
du , 

k duj ® dui, + <Pk .A,.) 
J ]. 

i k 
f\kA'j) 

j 
e i ®du , 

(IJlijAk 
'k 

_ 'l'ikAj 
'k 

_ IJlkjAi ) 
'k 

e.® e., 
J ]. 
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The Lie derivative satisfies Leibniz' rule 

Of course higher Lie derivatives are also possible. For instance 

Since the Lie derivative "commutes with contraction" this means that the 

Lie derivative also satisfies Leibniz'rule with respect to contracted 

multiplication. For instance 

[A ,J\B] 

Differential forms. 

A (differential) k-fo:t'/11 E; on M, considered 

completely antisymmetric mapping E; : T M x 
u 

we can identify a k-form with a completely 

in a point u E M, is a k-linear 

T M x ... x T M + 1R. This means 
u u 

antisymmetric tensor field with 

covariant order k and contravariant order 0. For instance a two-form ~ can 

be identified with a tensor field ~ E T~(M) 

(l.1.14) ~(A ,B) «M ,B> V A ~B E X(M). 

Note that we consider the tensor field~ as a mapping~ : X(M) + X*(M). 

This different way of using a tensor field and the corresponding differential 

form is the reason for introducing a distinct notation. In general we shall 

use capital Greek letters for tensor fields. If a tensor field corresponds 

to a differential form, we denote this form by the corresponding small greek 

letter (~,E;; ~.~; Q,w). The interior> product iAE; of a k-form with a vector 

field yields a (k-1)-form defined by 

(I. I. 15) 

It is easily seen that the (k-1)-form iAE; corresponds to the tensor field~. 

The interior product of a two-form with a vector field yields a one-form. 

From (1.1.14) we obtain 

(l.l.16) 
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which means iA~ = ~A. For a function F E F(M) we define iAF O. 

Exterior differentiation. 

The interior product lowers the degree of a differential form. An operation 

which increases the degree of a differential form is exterior differentiation. 

If s is a k-form, the exterior derivative d~ is a (k+l)-form. In local 

coordinates the exterior derivative of a function F (=zero-form), one-form 

a and two-form ~ are given by 

(1.1.17) da(A,B) 
j i 

(a .. - a . . )A B 
1,3 J,1 

.. k 
d~(A,B,C) = (~ •• k + ~.k . + ~k . . )A3B1C , 1], J ,1 1,J 

for all vector fields A,B,C E X(M). 

1.1.18 Definition. 

A k-form s with d~ = 0 is called a ctosed k-form. A k-form s (k > 0) which 

can be written as ~ = d~ with~ a (k-1)-form is called an exact k-form. 

Since d2~ = dd~ = 0 for all forms~an exact form is always closed. In 

general the converse is not true. 

1.1.19 Lemma (Poincare). 

CJ 

Suppose s is a closed k-form on M. Then for every point u E M there exists 

a neighbourhood U such that siu (s restricted to U) is exact. 

Proof: 

See for instance Abraham and Marsden [I, § 2.4.17]. 
a 

So for every closed k-form s and every point u E M there exists a neighbour

hood U of u and a (k-1)-form ~ on U such that s = d~ on U. Of course this 

does not imply that s = d~ on the whole manifold M. 
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Exterior multiplication. 

Suppose 21 € ~(M) and 22 € T~(M) are two completely antisymmetric tensor 

fields. The corresponding differential forms are denoted by ~I and ~ 2 • It is 

easily seen that the tensor product 2 1e2 2 € T~+R, (M) is in general not 

completely antisymmetric. By "antisymmetrization" of this tensor field we 

obtain a tensor field 2 € T~+R, (M) which is again antisymmetric. The 

corresponding (k+i)-form ~ is written as 

and is called the exterior produat of the forms ~I and ~ 2 • For instance if 

k = i = I we have 

The Lie derivative LA2 of a completely antisymmetric tensor 

field 2 € T~(M) is again an antisymmetric tensor field of the same type. The 

k-form corresponding to LA2 is denoted as LA~• where ~ is the k-form 

corresponding to the tensor field 2. For instance for a two-form$ we have 

(see (1.1.14)) 

(1.1.20) 

Note that this formula is only a consequence of the distinct notations we 

use for a tensor field and the corresponding differential form. 

Several formulas. 

Now we give a list of various other formulas which will be used in this 

paper (see also Choquet-Bruhat [3, chapter IV, § A4]). Suppose - 1 and 22 
are arbitrary tensor fields, A and B are vector fields and a is a one-form 

on M. Then 

(1.1.21) 

(Leibniz'PUle for contracted multiplication, same type of 

contraction in all terms) 



(I. l. 22) 

(special case of (J,J.21)) 

(I. I. 23) 

( 1. I, 24) 

For the operators LA' iA and don differential forms it can be shown that 

(1.1.25) 

(J,1.26) d2 dd 0 ' 

(1.1.27) 

( 1. 1. 28) 

( 1. l. 29) da(A,B) = LA<a,B> - L8<a,A> - <a,(A,B]> (a one-form) , 

(I. l. 30) 

It is easily seen from (I.1.27) and (1.1.26) that 

(1.1.31) 

Suppose F is a function on M. Then using iAF 

that 

(I. 1.32) 

Transformation proEerties. 

0 we obtain from (l.1.27) 

15 

Suppose there exists a diffeomorphism f between M and some other manifold N 
so f : M + N. Then using this diffeomorphism all vector fields, differential 

forms, tensor fields on M can be transformed to objects of the same type on 

N, All operations described in this section are natural with respect to this 

transformation, i.e. the transformed objects satisfy similar relations as 
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the original objects. For instance suppose A and B are two vector fields on 

M. The transformed vector fields on N are given by A = f'A and B = f 'B. 
Then it can be shown that 

f' [A,B] [ (f'A), (f'B)), 

so the transformed Lie bracket of A and B is equal to the Lie bracket of the 

transformed vector fields. 

Parameterized tensor fields. 

We shall frequently use functions, vector fields, differential forms and 

tensor fields on M which also depend on some additional parameter (t E lR.). 

1. 1. 33 Definition. 

The set of smooth parameterized funations on M will be denoted as F (M). The 
p 

sets of smooth parameterized veator fields and one-forms on M will be denoted 

as X (M) and X*(M). Finally the set of smooth parameterized tensor fields on 
p p . 

M with covariant order j and contravariant order i will be denoted as T7 (M). 
JP 

In all cases the parameter (t) is allowed to take all values in JR. 

So if YE X (M), then Y(u,t) ET M for all t E 1R. Of course F (M) = f(MxlR.). 
p u p -

However, in order to keep a uniform notation, we shall only use F (M). Of . p 
course F(M), X(M), X*(M) and T7(M) are (can be identified with) subsets of 

• J 
F (M), X (M), X*(M) and T7 (M). 
p p p JP 

1.2 "DIFFERENTIAL GEOMETRY" ON A TOPOLOGICAL VECTOR SPACE 

In the preceding section we gave an overview of some aspects of differential 

geometry on a finite-dimensional manifold M. The notions and relations 

introduced in that section will extensively be used in chapters 2, 3 and 4. 

So we can make a straightforward use of the results of those chapters if we 

consider a dynamical system on a finite-dimensional manifold (for instance 

the periodic Toda lattice [52]). However, several interesting dynamical 

systems are described by partial differential equations, i.e. they have "an 

infinite number of degrees of freedom". So at first sight we need the 

machinery of differential geometry, as described in section I.I, also on 



manifolds of infinite dimension. Fortunately most of the interesting 

dynamical systems with "an infinite number of degrees of freedom" can be 

considered in a topological vector space instead of on an arbitrary manifold 

(of infinite dimension). Iri this way we can avoid the problems associated 

with differential geometry on manifolds of infinite dimension. 

I 7 

We shall now describe how several differential geometrical 

objects, introduced in section I.I, can be "generalized" to the case that the 

manifold M is an (infinite-dimensional) topological vector space W. The 

(topological) dual of W will be denoted by W* and the duality map between W 

and W* by<.,.>. We only consider the case W** = W, so W is reflexive. The 

space of linear continuous mappings of W into some topological vector space 

WI will be denoted by L(W,W1). We shall consider L(W,W1) as a topological 

vector space with the topology of bounded convergence (see Yosida [45, § IV.7]). 

Since M = W is a linear space, we can make the following 

identifications 

(l.2.1) 

T W 
u 

T*W 
u 

W , TW w x w ' 

W*, T*W W x W*. 

Using these identifications it is easy to introduce (objects similar to) 

vector fields, differential forms and tensor fields on W. A vector field A 
on W is a mapping 

(! .2.2) A w + w x w u + (u,A(u)) 

where A : W + W is a, possibly nonlinear, mapping. So we can identify the 

vector field A with the mapping A. Therefore A will also be called a vector 

field. To simplify notation we shall drop the tilde and write A instead of A. 
In a similar way we can introduce one-forms and tensor fields of higher order. 

This results in the following list of identifications (c.q. definitions in 

the infinite-dimensional case) : 
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(1.2.3) 

tensor field 

A E X (W) 

a E X* (W) 

~ E T~(W), considered as 

vector bundle map ~ : TW + T*W 

A E T:(W), considered as 

vector bundle map A : TW + TW 

r E T:(W), considered as 

vector bundle map,r : T*W + T*W 

o/ E T~(W), considered as 

vector bundle map o/ : T*W + TW 

"representation" 

A w + w ' 

W _,. W* , 

W + L(W,W*) , 

A W + L(W,W) , 

r W + L(W*,W*) , 

W + L(W* ,W) • 

Note that a tensor field in T:(W) can be represented by a linear operator 

(in fact operator field on W) A(u) : W + W and by a linear operator 

f(u) W* + W*. If A(u) and f(u) correspond to the same tensor field we have 

A(u) = r*(u) for all u E W. If~ is antisymmetric (so ~(u) is antisymmetric 

for all u E W) the corresponding differential two-form tjJ on W is given by 

( l. 2 .4) tjJ(u) (A,B) «P(u)A ,B> V A,B E W, 

An example of this relation is given by (5.6,2). In fact expressions of 

that type are the reason for introducing a distinct notation for tensor 

fields (represented by operator fields) and corresponding differential 

forms. In a similar way we can introduce higher order tensor fields and 

differential forms on W. 
Next we introduce Lie derivatives and (for differential forms) 

exterior derivatives. First some remarks on differential calculus in to

pological vector spaces. For a more detailed discussion of this complicated 

subject we refer to Yamamuro [46], Suppose W1 is some topological vector space 

and f is a (nonlinear) mapping f : w + wl. 



1.2.5 Definition. 

We call f Gateaux differentiable in u E W if there exists a mapping 

8 E L(W,W 1) such that for all A E W 

(1.2.6) lim .!_ (f(u + EA) - f(u) - SA) 
s+O s 

0 
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in the topology of W1• The linear mapping 8 E L(W,W 1) is called the Gateaux 

derivative off in u and is written as e = f'(u). 

a 

If f is Gateaux differentiable in all points u € W, we can consider the 

Gateaux derivative as a (in general nonlinear) mapping 

Suppose f' is again Gateaux differentiable in u E W. The second derivative 

off in u E W is a linear mapping f"(u) € L(W, L(W,W 1)), It is easily seen 

that f" (u) can be considered as a bilinear mapping 

f"(u) : w x w + rvl. 

Under certain assumptions it can be shown that this mapping is symmetric: 

f"(u)(v,w) = f"(u)(w,v) fo:t all w,v E W (see [46]), We shall call a mapping 

f : W + W1 twiae differentiable if its first and second Gateaux derivatives 

exist and if f"(u) is a symmetric bilinear mapping for all u € W. We assume 

all mappings in this section are twice differentiable. 

I. 2. 7 Remark. 

Note that in the limit given in (1.2.6) a uniformity in A is not required. 

If this limit is uniform on all sequentially compact subsets of W, the 

mapping f is called Hadamard differentiable. If the limit is uniform on all 

bounded subsets of W, the mapping f is called Freahet differentiable. 
a 

Suppose A : W + W is (represents) a vector field. The Gateaux derivative in 

u € W is a linear mapping A'(u) : W + W. The dual of this mapping is denoted 

by A'*(u) : W* + W*. 
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I. 2. 8 Definition. 

The Lie derivatives in the direction of a vector field A of a function 

F : W + ll< and of the various tensor fields (vector fields, one-forms) 

considered in (I.2.3) are defined by 

F' (u)A "' <F' (u) ,A> , 

LAB(u) "' [A,B] (u) B' (u)A(u) - A' (u)B(u) (BE X(W)), 

a'(u)A(u) + A'*(u)a(u) 

(I. 2. 9) (~'(u)A(u)) + ~(u)A'(u) + A'*(u)~(u) 

(/\.' (u)A (u)) + /\.(u)A' (u) - A' (u)/\.(u) , 

(r'(u)A(u)) - r(u)A'*(u) + A'*(u)r(u) , 

LA~(u) = (~'(u)A(u)) - ~(u)A'*(u) - A'(u)~(u) . 

a 

First some remarks on the notation in these expressions. Consider the formula 

for LA~' Since~ : W + L(W,W*) we have ~'(u) E L(W, L(W,W*)). So (~'(u)A) E 
L(W,W*) and (~'(u)A)BEW*. By definition 

(~' (u)A)B lim .!. (~(u + EA)B - ~(u)B). 
E-+0 E 

Of course in general this expression is not symmetric in A and B. Therefore 

we shall always insert brackets in expressions of this type. It is easily 

seen that the Lie derivative of an object yields again an object of the same 

type. Note that if r*(u) = /\.(u) (so r and /\. represent the same tensor field) 

the same holds true for the Lie derivatives:(LAr(u))* = LA/\.(u). Next we 

define exterior derivatives of zero-, one- and two-forms. 

l.2.10 Definition, 

i) The exterior derivative of a function F : W + R is the mapping 

dF : W + W* : u + F'(u) (so dF(u) = F'(u)), 
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ii) The exterior derivative of a one-form a W + W* is the two-form 

da(A ,B) <a' (u)A ,B> - <a' (u)B ,A> 

<(a'(u) - a'*(u))A,B> V A,B E W. 

iii) The exterior derivative of a two-form~. corresponding to an operator 

~(u) as in (1.2.4), is given by 

d~ (A ,B ,C) <(~'(u)A)B,C> + <(~'(u)B)C,A> + <(~'(u)C)A,B> , 

V A,B,C E W. 

a 

Note that the definitions (1.2'.8) and (1.2.10) strongly resemble the 

expressions in local coordinates (1.l.13) and (1.1.17) for the corresponding 

objects on a finite-dimensional manifold. Contractions and interior products 

in the infinite-dimensional case are interpreted via (1.2.3). Also we shall 

adopt the notions ciosed and exact differential forms (see definition I.I.IS). 

1.2.11 Theorem. 

The relations (1.1.22) up to (1.1.32) included are also valid for Lie 

derivatives and exterior derivatives given in definitions 1.2.8 and 1.2.10. 

Proof: 

All proofs are similar to proofs in local coordinates of the corresponding 

relations on a finite-dimensional manifold. If a second derivative appears, 

we need its symmetry. 

a 

Suppose a is a closed one-form with continuous derivative a'(u) : W + W*. 
Then (definition 1.2.10 ii) a'(u) = a'*(u) for all u E W. Since W is a linear 

space, a closed differential form is also exact. Define the function 

F : W + R by 

(1.2.12) F(u) 
I 

J <a(au) ,u> da. 
0 

Then it is easily verified that a dF, so indeed a is also an exact one-form. 
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In a somewhat different context an operator a: W + W* with a'(u) = a'*(u) 

is called a potential operator. Expression, similar to (l.2.12), can be 

given for closed higher order differential forms. 

Finally we mention that we shall use the same notation as 

introduced in definition 1.1.33 for parameterized functions, vector fields, 

one-forms and higher order tensor fields on W. 

1. 3 SOME FUNCTION SPACES 

In chapter 5 we shall consider several nonlinear evolution equations. Some 

of these equations can be written in the form 

(1.3.1) 

where f is a polynomial in u and its derivatives. The Burgers equation 

(section 5.2), Korteweg-de Vriesequation (section 5.6) and the Sawada-Kotera 

equation (section 5.7) are of this type. In this section we describe function 

spaces S , in duality with spaces U , in which we shall consider these equa-
p p d 

tions. For c:onvenience we set 3 -- dx ' 

J .3.2 Definition. 

For p E Ut we define the space S by 
p 

. r:r- m+p 
sp = { u E C00 ('1R.) I Vx~+I dmu(x) E LIOln, v m ~ 0}. 

The following two theorems describe some properties of the space S . 
p 

J.3.3 Theorem. 

a 

For every function u E S there exists a series of constants C such that p m 

c 
Jamu(x)I ~ m ;;;r:; m+p+ ! 

Proof: 



Hence 

()v (x) 
m 

rr- m+p-1 m rz- m+p+ I m+ 1 
(m+p+l) Yx-+J Xd u(x) + Vx-+l d u(x), 

~ m+p rz-- m+p+I 1 
!av <x>I ~ <m+p+1>!vx-+1 amu<x)I + !vx-+1 am+ u(x)I. 

m 

Since u E S P this means that av m E L 1 ( 1R) • Then from 

()v (y) dy 
m 
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we see that v is bounded; there exists a constant C such that Iv (x)j SC 
m m m m 

VxEIR. 

An important property of the spaces S is described in 
p 

I. 3.4 Theorem. 

Suppose u E S . Then also xu E S . 
p x p 

Proof: 

From ()m(xu ) = x()m+lu + m()mu we obtain 
x 

a 

Both terms of the right hand side are elements of L1(1R.), so also the left 

hand side is an element of L1 ( 1R). 

a 

We shall also need smooth functions v which satisfy the following conditions 

(I. 3. 5) lim v(x) = -lim v(x) = a E JR, a depends on v, 
x~ x+-oo 

(I. 3. 6) 
rr- m+p m+I 

Vx-+I () v(x) E L1 ( TR) V m 2: O. 

I. 3. 7 Definition. 

For p E IRi" we define the space U by 
p 

u = { v E C00('1R.) I v satisfies (1.3.5) and (1.3.6) }. 
p 

a 
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We now consider the relations between the spaces S and U . 
p p 

1.3.8 

i) 

ii) 

iii) 

Proof: 

Theorem. 

s c: u ' p p 
if v E U 

p 
if u E S 

p 

then 3v = v E S , 
x p 

and v E U then uv E S • 
p p 

The first two parts of this theorem follow illllllediately from the definitions 

of S and U . An elementary calculation yields 
p p 

(l.3.9) 

rr- i+p . 
Since u E S we have Vx-+I aiu E 

m-i P. ;;;z:; am-iv. 

L 1(1R). We now consider the function 

For i = m this is equal to v, which is clearly a bounded 

function.For i < m we obtain from part ii) of this theorem and theorem 1.3.3 

also that this function is bounded. Hence the left hand side of (1.3.9) is 

an element of L 1 ( 1R). 

1.3.10 Corollary. 

If u E S and v E S then also uv E S • 
p p p 

d 
We have seen that the operator 3 = dx maps Up into Sp. It is possible to 

define an inverse operator which acts in the opposite direction. 

1.3.11 Theorem. 

The inverse operator of () u .... s is the operator Cl-I s .... u p' defined 
p p p 

by 

x 00 

(I. 3. 12) 
-1 f u(y) 

I f u(y) a u(x) dy - 2 dy. 
-00 -"" 

Proof: 

For u E S both integrals exist. We now show that Cl-Ju E u It is easily 
p p 
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seen that a- 1u satisfies (1.3.5) with 

co 

a = I J u(y) dy . 
...m 

Since 88-lu = u and u E S it follows from the definition of Sp that a- 1u 
p -1 

also satisfies (I.3.6). The proof is completed by noting that a av = v for 

arbitrary v E U • 
p 

D 

Next we introduce a topology on S and on U . For v E U and u E S define 
p p p p 

00 

(1.3.13) <v,u> J v(x)u(x) dx. 

This bilinear mapping U x S + 1R is called a duality or duality map. It is 
p p 

easily seen that this duality map is separating, i.e. for every nonzero 

v E U there exists a u E S such that <v,u> # 0 and for every nonzero 
p p 

u E S there exists a v E U with <v,u> f 0. With every v E U corresponds 
p p p 

a seminor>m p (u) = l<v,u>I on S , Also every u ES gives rise to a seminorm 
v p p 

q (v) = l<v,u>I on U . Then, using the family of seminorms { p 
u p v 

we can supply S with a topology, The seminorms { q \ u E S } 
p u p 

v E U } , 
p 

provide U 
p 

with a topology. Some properties of both topological spaces are described in 

I. 3. 14 Theorem. 

The spaces S and u are locally convex Hausdorff topological vector spaces. 
p p 

The ( topological) dual of S 

(topological) dual of 

Proof: 

S* 
p 

u 
p 

u 
p 

u* 
p 

is 
p is 

s 
p' 

s . 
p 

(can be represented by) 

so 

See Choquet [43; propositions 22.3 and 22.4]. 

u and the 
p 

Since we now have a topology on S and on U we can study the 
p p 

continuity of the various mappings between these spaces. Recall that a 

mapping of a topological space into a topological space is continuous iff 

the inverse image of an open set is open. Suppose W1 and W2 are topological 

vector spaces with topologies generated by the families of seminorms {q.} 
l. 
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respectively {pi}, Then a linear mapping 0 : W1 + W2 is continuous iff for 

every seminorm pi on W2 there exist a constant C and a seminorm qj on W1 
such that 

p. (Gw) ::;. Cq. (w) 
i J 

If W1 c: W2 we can consider an element of W1 also as an element of W2' This 

mapping of W1 into W2 is called the embedding operator. 

I. 3. 15 Theorem. 

The mappings Cl : U + S and 3-I : S + U are continuous. Suppose u E S • p p p p p 
Then the mapping mu U + S : v + uv is continuous. The embedding operator 

p p 
of S into U is also continuous. 

p p 

Proof: 

Suppose v E U , then Clv = v E S , For an arbitrary w E U we have p x p p 
co 00 

I f WV dxJ 
x I f vwx dxJ = ~ (v). 

x 

This means that () : U + S is continuous. The continuity of the other 
p p 

mappings is proved in a similar way, 

Suppose u E S • 
p 

To simplify notation we will denote the mapping m u 
u p 

(multiplication by u) by u : u +S Then, using various parts of this p p 
()3 -I -I that for instance ua, au, Ud U : u +S and a u, 

' p p 
theorem, we see 

a- 1ua- 1 : s u · · p + p are continuous mappings. 

Consider the topological vector spaces W1 and W2 with 

(topological) duals W~ and w;. The dual operator of a linear operator 

0 : W1 + W2 is the linear operator e* w; + W~ defined by 

(l .3.16) 

+S 
p 

-! 
Ud , 

A special situation occurs if Wf = W2 and w; = (W~*=) W1 (so W1 is reflexive), 

Then 8 : WI -+ W2 and also 8 * : WI ->- U.12 , In this case we call an operator 8 

symmetric if e* = e and antisymmetric if e* = -e. 
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1.3. 17 Theorem, 

The operators a U + S and a- 1: S + U are antisymmetric, so 
p p p p 

( 1, 3, 18) 

(1.3.19) 

Proof: 

The first expression follows by partial integration. The proof of (1.3.19) is 

a straightforward computation using (1.3.12) and (1.3.13). 

a 

We shall frequently need the dual of an operator which is the composition of 

two other operators, Suppose e.= e2e1 : W1 + W2 with e1 : W1 + W3 and 

8 2 : W3 + W2• Then it is easily seen that 9* = 9'r9;. 
Finally we describe some operators which we shall use frequently 

in chapter 5 (in particular in section 5.6). For u € S consider the 
3 p 

operators ua, au. a : U + S . The dual operators are found to be 
p p 3 3 

(ua)* = - au, (au)* = - ua and (a )* = - a , This means that 

(1.3.20) ~ = ua + au - a3 : LJ + S p p 

is an antisymmetric operator. We shall also meet the operator 

r -I 2 a ua + u - a u + u . 
p p 

The dual operator of r is then given by 

s + s . 
p p 

1.4 THE HILBERT TRANSFORM 

In this section we describe some properties of the Hilbert transform, which 

will be used in Section 5.5. The HiZbePt tPa:nsfOY'171 of a function u E t 2 Cl'R) is 

defined by 

00 

Hu(x) 
p 

= -1T 
f ~dy 

y-x 
(principal value integral). 



! .4. I 

Suppose 

Lemma. 

ES with 0 < p < 1, then the function p 

( 1. 4. 2) w(x) = .!'.. f co 1::1...~xl dy 
1T -co y-x (principal value integral) 

is bounded for all x E 1R • 

Proof: 

It follows from the definition of Sp that u E L1 ( "!R). Suppose x > O. Then 
we can write (l .4.2) as 

l 3 2x 
yu(y) dy 

2x 
yu(y) dy 

co 

( 1 • lf. 3) w(x) = - f +~ J I 

J + -1T 
"""" 

y-x 1T y-x 1T 
2x 2x 

II + + 13. 

co 

It is easily seen that lr1 + r31 S ~ f luCylldy, Set v(y) 

we obtain from theorem 1.3.3 that 

lv<yll s 

for all y E 7R . Using the m·ean value theorem we obtain 
3 

~dy y-x 

yu(y). Then 

P fix v(x) + (y-x)v (a(y)) 
1T 1 Y dy Cia(y)-xi < ly-xl). 

zX y-x 
il.x 

I 2 
= - f v (a(y)) dy. 

1T l y 
2x 

Then (l.4.4) implies 

C + C 2(C0 + c1) I I Is; .!... x _0 ___ 1 < -----
2 rr lnx) 2 +1 rr 

for x > O. 

Hence w(x) is bounded for x > 0. A similar estimate can be given for x < 0. 

!. 4. 5 Lemma. 

If u E S with 0 < p < l then Hu E C00 (11n and p 

Cl 



( 1. 4. 6) Hu (x) $.. 

Proof: 

c 

/x2+! 

VxEIR. 

Since uE SP we have (lmuE L2 (1R) form= 0,1,2, •••• So H(lmu ()~u 
E L2 (IR.), which implies that Hu E C00 (1R). Next note that 

xHu(x) 

(I. 4. 7) 

xu(y) d 
y-x y 

=~I Joo u(y) dy 
-00 

00 

+ f J 
1T 

~dy. 
y-x 

Then using lemma I. 4. I and Hu(x) E C00 (7R ) we obtain (I. 4, 6). 

l .4.8 Corollary. 

If u E S and xu E S then 
p p 

00 

( 1. 4. 9) xHu(x) 
1T J u(y) dy + H(xu(x)). 

Proof: 

This result follows at once from (1 .4.7). 

The main result of this section is stated in the following 

1.4 .10 Theorem. 

For 0 < p < I we have H s -+ u . 
p p 

Proof: 

29 

D 

D 

It follows from lemma 1.4.5 that Hu E C00 (TR.) and lim Hu(x) 
. !?-:- m+p m+ 1 

0. So we only 

have to show that vx-+1 .a Hu(x) E L1 (TR.). 

Note that if u E S then xJamu E S for j ~ m (see theorem p p 
1.3.4). By using 

(I.4.9) we obtain 

xm,;(xam+lu) 
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Since xm+l om+lu € S we obtain from lemma 1.4.5 and the fact that Hu € C00 (1.R) 
p 

that 

r;-- m+I 
!vx-+I om+IHuj S: _c_ 

v'x2+1 

~m+p m+I 
Since 0 < p <I this implies that VJC+I o Hu(x) € L1(1R) form= 0,1,2, •. 

Thus we proved that Hu € U . 
p 

a 

Finally we mention some other properties of the Hilbert transform: 

00 co 

(1.4.11) f uHv dx - f ~Hu dx (antisynnnetry), 

(1.4.12) HHu(x) -u(x), 

(I. 4. 13) oHu Hou, 

(I. 4. 14) (Hu)(Hv) = uv + H(uHv) + H(vHu). 

1.5 ANALYTICALLY INDEPENDENT FUNCTIONS 

1.5.1 Definition. 

The functions F1, ••• ,Fk on a possibly infinite-dimensional manifold Mare 

called analytiaally independent if the corresponding one-forms dF 1(u), ••• , 

dFk(u) are linearly independent elements of T~M for all u € N, where N is a 

dense open subset of M. 
a 

If the manifold M is finite-dimensional, we can introduce local coordinates 
i u (i=l, ••• ,n) on Uc M. Then it is easily seen that the functions F1, ••• , 

Fk are analytically independent iff the Jacobian matrix 
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aF 1 aF 1 

au 1 aun 

aFk aFk 

au 1 aun 

has rank k. This also implies that on a manifold of dimension n there can 

exist at most n analytically independent functions. The notion analytically 

independent is explained in the following 

1.5.2 Theorem. 

Suppose Mis a finite-dimensional manifold. The functions F1, ••• ,Fk on M 

are analytically independent iff locally there does not exist a relation 

where g : IRk + IR is a smooth function such that in every point of an open 

dense subset of IRk the gradient (one-form dg) does not vanish. 

Proof: 

See Levi-Civita [54; chapter I, §5,6]. 

a 
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CHAPTER 2: SYMMETRIES FOR DYNAMICAL SYSTEMS 

2. l INTRODUCTION 

This chapter deals with some general properties of dynamical systems on 

manifolds. If the dynamical system is a Hamiltonian system, more speci-

fic results can be obtained. Those more specific results will be consi

dered in Chapter 4. In Section 2.2 we shall introduce two linear equations 

associated with the dynamical system. Solutions of these equations will 

be called symmetries and adjoint symmetries. Since most of the considera

tions in Section 2.2 are of local character, we shall use a local triviali

zation of the (co)tangent bundle of the manifold. An introduction of sym

metries without using a local trivialization of the tangent bundle will 

be described in the appendix of this chapter. Several properties of sym

metries and adjoint symmetries are considered in Sections 2.3 and 2.4. 

Higher order symmetries (of which symmetries and adjoint symmetries are 

special cases) are studied in Section 2.5. In Section 2.6 we consider a 

dynamical system for which there exist two infinite series of symmetries. 

This situation will occur several times in Chapters 4 and 5. Finally in 

Section 2.7 we study the transformation properties of (adjoint) symmetries. 

A very important tool in this chapter is the Lie derivative 

of several types of tensor fields in the direction of a vector field, 

Sometimes we shall also give the more classical formulas, using local 

coordinates, In that case the manifold is assumed to be finite-dimensional. 

For an infinite-dimensional manifold our results are formal. 

Symmetries (also called invariant variations, infinitesimal 

variations, infinitesimal Backlund transformations) are also studied by 

Olver [13], Wadati [14], Fuchssteiner [12,37,64], Fuchssteiner and Fokas 

[8], Fokas [JS] and others. Most authors consider a dynamical system in 

some (unspecified) topological vector space and write their expressions 

in terms of Gateaux, Hadamard or Frechet derivatives. However, the 

only natural type of derivative for studying symmetries is the (infinite

dimensional version of the) Lie derivative, which replaces complicated 

combinations of derivatives of one of the previous types. Using this Lie 

derivative most expressions are considerably simplified and important 

new relations can be found. Since Lie derivatives are also defined on 
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(in fact invented for) arbitrary smooth manifolds, we can easily describe 

the theory for dynamical systems on manifolds. In contrast to most authors 

we also consider (adjoint) symmetries which depend explicitly on the time t. 

In several applications this type of (adjoint) symmetry turns out to be 

important. 

2.2 DEFINITION OF SYMMETRIES AND ADJOINT SYMMETRIES 

Suppose Mis a manifold and X a vector field on M, so X EX(M). For a curve 
d 

u(t) on M we set u(t) = dt u(t) ETu(t)M . 

In this chapter we shall consider the following autonomous differential 

equation on M 

(2. 2. 1) u (t) X(u(t)). 

The parameter t is called time. This equation can be supplied with an 

initial condition u(t0) = u0 . Since (2.2.1) is an autonomous system, it 

is no restriction to take t 0 = 0. We shall assume that for all u0 EM and 

t 0 E1R there exists a unique solution u(t) of (2.2.1), with u(t0 ) = u0 , 

defined on some interval 1 EJR . 

Suppose U is an open subset of M which can be described by 

one chart. This means the tangent bundel TU is a trivial bundle, 

TU UxW for some linear space W. Then we can consider the vector field X 

as a mapping X : U + W. The derivative of X(u) in a point uEU is a linear 

mapping X' (u) : W + W • Suppose u(t) is a solution of (2.2.1) which lies 

in U. Then we can linearize (2.2.1) around u(t) and obtain 

(2.2.2) v(t) X' (u(t)) v(t) v(t) E Tu(t)U = W. 

Since ~t X(u(t)) = X'(u(t))X(u(t)), this equation has always the solution 

v(t)= X(u(t)). Another interesting linear equation, associated with 

(2.2.1) is the so-called adjoint equation of (2.2.2) 

(2.2.3) w(t) - X'*(u(t)) w(t) w(t) ET~(t)u W*, 

where X'*(u) : W* +((I* is the dual operator of X'(u) . The equations 

(2.2.1) and (2.2.3) can be derived from the following variational principle 
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(2.2.4) 
t2 

stat f <w(t), u(t) - X(u(t))> dt, 
tl 

over the set of all curves u(t) EU, w(t) E(l) for tE [t 1,t2 ] with u(t 1) 

and u(t2) fixed. A "variation" of w(t) gives (2.2.1) while a "variation" 

of u(t) leads to (2.2.3). 

With appropriate initial conditions for v and w we could 

study the Cauchy problems, associated with (2.2.2) and (2.2.3). 

However, we are only interested in special solutions of (2.2.2) and 

(2.2.3). Suppose there exists a YE X (M) (so Y is a vector field on M, 
p 

depending on an additional parameter t, Y(u, t) ET M), such that for all 
u 

solutions u(t) of (2.2.l) which lie (partl0 in U, v(t) = Y(u(t),t) is a 

solution of (2.2.2). This means 

Y (u(t),t) + Y' (u(t),t) u(t) X' (u(t)) Y(u(t), t). 

Note that Y, the partial derivative of the parameterized vector field Y 

with respect to the parameter (t), is again a vector field on M. Since 

u(t) is a solution of (2.2.1) we obtain 

Y (u(t),t) + Y'(u(t),t) X (u(t)) =X'(u(t)) Y (u(t),t). 

This condition has to be satisfied for all solutions u(t) (which lie 

partly inU) with arbitrary initial condition u(t0 ) = u 0 , hence 

(2.2.S) Y (u, t) X'(u) Y (u;t) - Y' (u,t) X (u) VuEU, tEJR . 

The right-hand side can be interpreted as the Lie bracket [Y,X] of the 

vector fields Y and X. This Lie bracket can also be written in terms of 

Lie derivatives 

[Y,X] - L y 
x 

So we can write (2.2.5) as 

L X. y 



Y + [X,Y] Y + L Y = 0 V'uEU, tE1R • 
x 

This condition on the vector field Y does not depend on the local 

trivialization TU = U x W. 
This leads to the following 

2.2.6 Definition. 

A parameterized vector field Y on M 

(2.2.7) Y + [X,Y] 0 

(so YE X (M)), which satisfies 
p 

on M x 1R is called a symmetry of the dynarrricaZ system (2.2.1). The set 

of symmetries of (2.2.1) will be denoted by V(X;M). 

a 

In the appendix of this chapter we shall show how (2.2.7) can be derived 

without using a local trivialization of TM. Since Y = XE V(X;M) the set 

V(X;M) contains always a non-zero vector field. 

Next we turn to special solutions of (2.2.3). Suppose there 

exists a o E X*(M) (so o is a parameterized one-form or covariant vector 
p 

field, cr(u,t) E T*M) such that for all solutions u(t) which lie (partly) 
u 

in U, w(t) = cr(u(t),t) satisfies (2.2.3). This implies 

o(u(t),t) + o'(u(t),t) u(t) = - X'*(u(t)) o(u(t),t). 

Using (2.2.1) we obtain 

o(u(t),t) + o'(u(t),t) X(u(t)) - X'*(u(t)) o(u(t),t). 

This condition has to be satisfied for all solutions u(t) in U, hence 

6(u,t) + o'(u,t) X(u) + X'*(u) o(u,t) 0 V'uEU, tEJR • 

The last two terms in the left-hand side can be written as LXo, the Lie 

derivative of the one-form o in direction of the vector field X. This 

35 



36 

operation results again in a one-form which is independent of the 

trivialization TU= U x W. Hence the following 

2.2.8 Definition. 

A parameterized one-form o (so o E X*(M)) which satisfies 
p 

(2.2.9) 6 + L o x 0 

on M x 1R is called an adjoint syrronetry of the dynamical system (2.2.l). 
The set of adjoint symmetries of (2.2. J) will be denoted by V*(X;M). 

D 

Adjoint symmetries which do not depend on t (so Lt1 = O) are 

also called integraZ invariants. Of course V (X;M) c: X (M) and V* (X;M) c: X* (M). 
p p 

Finally we mention that in the remaining part of this chapter (adjoint) 

symmetries, unless stated otherwise, are meant as (adjoint) symmetries 

of the dynamical system (2.2.l). 

2.3 PROPERTIES OF SYMMETRIES 

First some remarks on the notion of constant of the motion. 

2.3.l Definition. 

We call a function F E F (M) a constant of the motion or first integral p 
of (2.2.l) if, for all solutions u(t) of (2.2.1) 

d 
dt F (u(t), t) 

This is equivalent to 

(2.3.2) F + < dF,X > 

0. 

F + L F x 0 onMxJR, 

Constants of the motion which differ only by a real constant will be 

identified. The following two lemma's are an immediate consequence of 

the fact that the evolution equation (2.2.l) is autonomous. 

a 



2.3.3 Lemma. 

If F is a constant of the motion, then the same holds true for F. 
c 

2.3.4 Lemma. 

If YE V(X;M), then also YE V(X;M) • 
c 

Some properties of the set of symmetries V(X;M) are described in 

2.3.S Theorem. 

V(X;M) is a real linear space. Further if Y E V(X;M) and F is a constant 

of the motion, then FY E V(X;M). 

Proof: 

Symmetries have to satisfy the linear equation (2.2.7), so the first 

remark is trivial. Next note that (Leibniz' rule) 

[X,FY] F[X,Y] + (LXF) Y. 

Since F is a constant of the motion and Y a symmetry this can be written 

as 

[X,FY] - FY - FY a - at (FY) • 

So the vector field FY is again a symmetry. 

c 

Theorem 2.3.S can be summarized by saying that the set of symmetries 

V(X;M) is a module over the ring of constants of the motion of (2.2.1). 

2.3.6 Theorem. 

V(X;M) is a Lie algebra with the same Lie bracket as the algebra X(M) 

of all vector fields on M. The autonomous symmetries (that is symmetries 

Y with Y = 0) form a subalgebra of V(X;M). 

37 
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Proof: 

Suppose Y1, Y2 E V(X;M). Set Y 

Using the Jacobi identity for Lie brackets we get 

[Y,X] 

which shows that V(X;M) is a Lie algebra. Finally note that if Y1 and Y2 
are autonomous, then Y = [Y 1, Y2 ] is also autonomous. 

0 

Next we consider tensor fields which can be used to construct 

(new) symmetries from (already known) symmetries. Suppose f\ E r:P(M), so 

A is a parameterized tensor field of covariant order I and contravariant 

order I. Then{\ can also be considered as a vector bundle map A :TM 7TM 
or as a linear mapping{\: X (M) ~ X (M). We can ask under which 

p p 
conditions{\ maps V(X;M) into V(X;M). This leads to the following 

2.3.7 Theorem. 

Suppose the tensor field A E T~p(M) satisfies 

(2.3.8) 0 on M x 1R • 

Then if YE V(X;M), then also f\Y E V(X;M). 

Proof: 

Since the Lie derivative satisfies Leibniz' rule we have 

Cl al: (f\Y) + [X, AY] a al: (f\Y) + LX (AY) f\(Y + [X,Y]) + (f\ +L A) Y. x 

So if Y is a symmetry and A satisfies (2.3.8), we see that AY is also a 

symmetry. 0 
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2.3.9 Definition. 

A parameterized linear mapping A : X (M) + X (M), corresponding to a 
p p 

parameterized tensor field (also denoted by) A E T:P(M) which satisfies 

(2.3.8), is called a recursion operator for symmetries. 

Recursion operators for symmetries are sometimes called strong symmetries. 

2.3. 10 Remark. 

Another possibility for constructing (new) symmetries out of already known 

ones is to compute the Lie bracket with some other symmetry. This method 

should not be confused with the application of a recursion operator 

for symmetries. Suppose Y1 and Z are two symmetries and A is a recursion 

operator for symmetries. Then we can construct the symmetries Y3 and Y4 by 

Then in a point u EM the vector Y3 (u,t) depends only on Y1(u,t) and 

a 

A(u,t), while Y4(u,t) depends on Y1(u,t), Z(u,t) and their derivatives in u. 

a 

Suppose U is an open subset of M such that the tangent bundle TU is trivial, 

TU = U x W. Then we can consider the vector field X as a mapping X : U + W 
and the tensor field A as a mapping A: U + L(W,W) (see also Section l.2). 

The condition (2.3.8) can now be written as 

A(u, t) + A. (u, t) X(u) + A(u, t) x• (u) - X' (u) A(u, t) 0 • 

For a solution u(t) of (2.2.1) which lies in U this implies 

(2.3.11) d 
dt A(u(t),t) + A(u(t),t) X'(u(t)) - X'(u(t))A(u(t),t) 0 . 

This type of expression is well-known in the theory of isospectral trans

formations (or "inverse scattering"). Hence we consider the following 
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eigenvalue problem 

(2,3.12) on M x m. , 

Note that the "eigenvalue" A is a function on M x m., while the "eigen

vector" Y is a (parameterized) vector field on M. 

2.3.13 Theorem. 

Suppose M is an n dimensional manifold and /i. a recursion operator for 

symmetries. Then the (real and imaginary parts of the) eigenvalues Ai 

(i = l, ... ,n) of /i. are constants of the motion. 

Proof: 
d The Lie derivative (and at) commute with contracted multiplication. This 

implies that /i.k is also a recursion operator for symmetries, so 

(2.3.14) 0 for k 1,2,3, .... 

By contraction in /i.k we obtain a function on M x m. given by 

uh c 
n 

l 
i=I 

Then (2.3.14) implies that 

n 
(.2_ + LX) l f.~ 0 , 
at i=l i 

which yields 

0 for k 0,1,2, •••• 

For an arbitrary solution u(t) of (2.2.l) this means 

(2.3.15) 
n k d l Ai(u(t),t) dt Ai(u(t),t) 

i=I 
0 . 



Fork= 0,1, ••• ,n - I this is a system of n equations with n unknowns. 

The corresponding determinant is the Vandermonde determinant, which does 

not vanish if all the eigenvalues are different. So in that case 
d 

dt Ai= 0 for i = l, ••• ,n. Next suppose for instance Al = A2 and all the 

other eigenvalues are (also mutually) different at t = t 0 . This implies 

Al = A2 on a sufficiently small interval ] 3 t 0 . For if Al ~ A2 at 

t =t0 + E, then at t 0 + E all the eigenvalues are different, The first 

part of this proof then implies they are independent of t. However, this 

contradicts with Al = A2 at t = t 0 . So there exists an interval ] 3 t 0 

such that Al = A2 on]. The system (2.3.15) implies 

d 
O ' dt Ai 0 i 3,. • .,n , at t 

Since Al 
d d 

A2 on J this implies dt Al = dt A2 = O at t = t 0 • A similar 

method can be used if more eigenvalues coincide. The proof is completed 

by noting that u(t) is an arbitrary solution of (2.2,J), 

Finally we remark that in most applications the recursion ope

rators for symmetries A do not depend explicitly on t (so A= 0). 

2.4. PROPERTIES OF ADJOINT SYMMETRIES 

The first two results concerning adjoint symmetries correspond to similar 

results for symmetries. 

2.4. l Lemma. 

Suppose GE V*(X;M), then also GE V*(X;M). 

2.4.2 Theorem. 

The set of adjoint symmetries V*(X;M) is a real linear space. Moreover if 

Fis a constant of the motion and GE V*(X;M), then Fa E V*(X;M). 

41 

D 
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Proof: 

Adjoint symmetries have to satisfy the linear equation (2.2.9), so 

V*(X;M) is a real linear space. Next assume F is a constant of the motion, 

a E V*(X;M) , then 

o. 

This means Fa E V*(X;M). 

This theorem can be summarized by saying that V*(X;M) is a module over 

the ring of constants of the motion of (2.2.1). In contrast to V(X;M) 
the space V*(X;M) does not have a natural Lie algebra structure. 

a 

It turns out that there is a close relation between the space 

of constants of the motion and a subspace of V*(X;M). Let F be a function 

on M (or on M x 1R), then its exterior derivative dF is a (parameterized) 

one-form on M. 

2.4.3 Theorem. 

Suppose F E F (M) is a constant of the motion. Then the o!]§-form a dF p 
is an adjoint symmetry. 

Proof: 

The function F is a constant of the motion, so F + LxF = O. 

The exterior derivative d commutes with the Lie derivative and with 

differentiation with respect to t. Hence 

dF + LX dF = O. 

This means that a dF is an adjoint symmetry. 



2.4.4 Remark. 

In fact we proved a little more. Suppose F E F (M) such that for all 
p 

solutions u(t) of (2.2.l) 

d 
dt F(u(t), t) f(t), 

where f: 1R -+ 1R is some function. This means F + LX F = f. Then the 

calculation above (with df = O) shows that o = dF is also an adjoint 

symmetry. In the following theorem we show that o also can be written 

as the exterior derivative of a constant of the motion. 

2.4.5 Theorem. 
a 

Let o E V*(X;M) be exact, so there exists a function F E F (M) such that 
p 
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o = dF. Then there exists a function g: 1R-+ 1R such that G(•,t) = F(o,t)-g(t) 

is a constant of the motion with o = dG. 

Proof: 

Since o is an adjoint symmetry, we have o + LXo = O. This can be written as 

d(F + L~) = 0, which implies that F(u,t) + LX F(u,t) = f(t) on MxIR for some 

function f : 1R -+ JR. • Let g : 1R -+ 1R. be a function such that g = f. Then 

G(.,t) = F(.,t) - g(t) is a constant of the motion with o = dG. 

0 

The theorems 2.4.3 and 2.4.5 can be summarized by saying that every constant 

of the motion gives rise to an (exact) adjoint symmetry and that every 

exact adjoint symmetry can be written as the exterior derivative of a 

constant of the motion. 

Now we are going to study operators which map V*(X;M) into itself. 

Consider a parameterized tensor field f E T:P (M). Then we can consider 

r also as a linear mapping r : X*(M)-+ X* (M), and we can ask under 
p p 

which conditions r maps V*(X;M) into V*(X; M). Analogous to theorem 2.3.7 
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we now have 

2.4.6 Theorem. 

Suppose the tensor field f E T:P(M) satisfies 

(2.4. 7) 0 on M x 1R 

Then for all o E V* (X;M) also fa E V* (X;M). 

Proof: 

Similar to the proof of theorem 2.3.7 we have 

So if o E V*(X;M) and r satisfies (2.4.7) we see that r o E V*(X;M). 

Cl 

2.4.8 Definition. 

A parameterized linear mapping r: X*(M) ~ X*(M), corresponding to a tensor p p 
field (also denoted by) r E r:P(M) which satisfies (2.4.7), is called a 
recursion operator for adjoint symmetries. 

2.4.9 Remark. 

The conditions (2.3.8) and (2.4.7) for the tensor fields A and rare 
identical. This means that a tensor field A which satisfies (2.3.8), gives 
also rise to a recursion operator for adjoint synnnetries. In local coordinates 
on M the tensor field A is represented by a matrix A~ . Suppose Y is a . J 
synnnetry with coordinates Yi and o is an adjoint synnnetry with coordinates 
o .. Then the vector field Z with coordinates Zi =A~ Yj is again a synnnetry. ]_ J 
But also T. =A~ o. is (represents) an adjoint synnnetry. The dual operator J J ]_ 
of A : X (M) ~ X (M) is a linear p p 
notation, we have Z = AY and T = 

operator A* :X* (M) 
p 

A*o . This leads to 

~ X*(M). 
p 

So, in operator 

Cl 



2.4.10 Theorem. 

Suppose A is a recursion operator for symmetries. Then A* is a recursion 

operator for adjoint symmetries. Also if r is a recursion operator for 

adjoint symmetries then r* is a recursion operator for symmetries. 

Proof: 

The operators A : X (M) + X (M) and A* : X*(M) + X*(M) correspond both 
p p p p 

to the tensor field (also denoted by) A. If A is a recursion operator for 

symmetries the tensor field satisfies (2,3,8) and so (2,4,7), 

Hence A* is a recursion operator for adjoint symmetries. The second part 

of the theorem is proved in a similar way, 

2.4.11 Corollary. 

Suppose M is a finite-dimensional manifold. Then the eigenvalues of a 

recursion operator for adjoint symmetries are constants of the motion. 

Proof: 
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a 

This result follows at once from the preceding theorem and Theorem 2,3.13. 

a 

2.5 GENERAL RESULTS 

We first consider operators which relate symmetries and adjoint symmetries. 

Suppose ~ is a parameterized tensor field of contravariant order 2 and 

covariant order 0, so ~ E T~ p (M). Then we can also consider ~ as a 

vector bundle map~: T*M +TM or as a linear operator~ : X*(M) + X (M). 
p p 

Now we investigate under which conditions ~ maps adjoint symmetries into 

symmetries. 

2.5.1 Theorem. 

Suppose ~ E T~ p (M) is a tensor field such that 

(2.5.2) on M x 1R 

Then for all a E V* (X;M) we have ~a E V(X;M). 
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Proof: 

From 

we see that, if o E V*(X;M) and '±' satisfies (2.5.2), 'l'o E V(X;M). So'±' 

maps adjoint symmetries into symmetries, 

0 

2.5.3 Definition. 

A parameterized linear mapping 'I' : X*(M) + X (M), corresponding to a tensor 

field (also denoted by) 'I' E T0
2 (M), whfch satistes (2,5,2), is called an AS oper>ator. p . 

So an AS operator, applied to an adjoint symmetry, yields a symmetry. 

Next we consider operators acting in the opposite direction. 

2.5.4 Theorem. 

Suppose cjJ E TO (M) is a tensor field such that 2p 

(2.5.5) on Mx:IR. 

Then for all YE V(X;M) we have TYE V*(X;M). 

Proof: 

The proof is similar to the proof of theorem (2.5.l). 

2.5.6 Definition. 

a 

a 

A parameterized linear mapping <l> : X (M) + X*(M), corresponding to a tensor 

field (alsodenotedby)<l> E T~p(M),whfchsatis~ies (2.5.5),iscalledanSAoperator. 

0 

So an SA operator <l> maps symmetries into adjoint symmetries. 

As expected, if an AS (SA) operator is invertible, the inverse 

operator is an SA (AS) operator. 



2.5.7 Theorem. 

Suppose 'l' (~) is an invertible AS (SA) operator. Then the inverse 
-I -l 

operator 'l' (~ ) is an SA (AS) operator. 

Proof: 
-l I 

Since 'l' 'l' =Id E T 1p(M) we have 

and 

0 • 

This means that if 'l' satisfies (2.5.2), then 'l'-I satisfies (2.5.5). 

D 

Recall that with a parameterized two-form ~ always corresponds 
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an (anti-symmetric) tensor field~ E T~p(M) or equivalently a linear operator 

~ : X (M) + X*(M), such that 
p p 

~(A,B) <~A,B> V A,B E X(M) • 

This leads to 

2.5.8 Theorem. 

Let a be an adjoint symmetry which is not closed, so do * O. Then the 

operator~ : X (M) + X*(M), which corresponds to the two-form~ =do is 
p p 

an SA operator. 

Proof: 

The adjoint symmetry a satisfies 6 + LXa = O. After exterior differentiation 

we obtain~+ LX~ = 0, which is equivalent to ~ + LX~·= 0. Hence 

~ is an SA operator. 
!J 

2.5.9 Remark. 

Since d~ = ddo = 0 the SA operator~ corresponds to a closed two-form(~). 

This means that the SA operator ~ satisfies additional conditions, which 
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are explained in Section 3.2. Operators of this type will be called 

cyclic operators. If ~ do is also nondegenerate, the operator ~ is 

invertible. If further a = dG for some constant of the motion G, the dy

namical system is a Hamiltonian system. This will be expl&ined in Section 

3.5. 

Cl 

Of course Theorem 2.5.8 is also correct, if a is closed. However, in that 

case we obtain the trivial SA operator ~ = O. In a local coordinate system 
i i d. u the adjoint symmetry a can be written as a = oi du , The correspon 1ng 

SA operator is then represented by the matrix~ .. = a . . - a . .• 
1] 1,J J,1 

Recall that with every vector field A and every one-form a 

corresponds a function on M, defined by their contraction <a,A> = iAa. 

2.5.10 Theorem. 

Suppose YE V(X;M) and a E V*(X;M). Then the function F 
constant of the motion. 

Proof: 

Using Leibniz' rule we obtain 

F + L F x < a , Y + Lx1 > + < a + Lxa , Y > 

This means F is a constant of the motion. 

<a,Y> is a 

o. 

Starting with two symmetries Y1 and Y2 an AS operator '¥ 

can be defined in the following way. For a E X*(M) set 
p 

(2. 5. l l) '¥a 

D 

It is easily seen that '¥ is an AS operator. Application of this operator 

to an adjoint symmetry a gives '¥a= <a, Y 1> Y2 • By theorem 2.5.10 we see 

that <o, Y1> is a constant of the motion. Then, from theorem 2.3.5 we 

see that '¥a is a symmetry, so '¥ is indeed an AS operator. Of course 

we can also verify that '¥ satisfies (2.5.2). This operator '¥ is rather 

trivial. We obtain always the same vector field Y2, multiplied by different 



functions < a,Y 1 > • This implies that ~ is not invertible. It is easily 

seen that if ~ f 0, it is not antisymmetric. This method of constructing 

an AS operator, starting with two symmetries can be 

E V(X;M) and cij E 1R for i,j = l, ... ,k. Then for ·a 

(2.5.12) ~a cij <a, Y.> Y .. 
i J 

extended. Let Y 1 , ••• , 

E X*(M) define 
p 

Then ~ is an AS operator. This construction yields a symrnetric operator 
. f ij j i d . . . f ij j i . . . 1 i c = c an an antisymmetric operator i c = -c . Using simi ar 

methods we can also construct SA operators and recursion operators for 

(adjoint) symrnetries. For instance, let o E V*(X;M) and YE V(X;M). Then 

for A E X (M) define 
p 

(2.5.13) M < o ,A> Y. 
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Then A is a (rather trivial) example of a recursion operator for symmetries. 

There are four different types of operators relating symmetries 

and (adjoint) symmetries. They were described in the definitions 2.3.9 

(A, recursion operator for symmetries), 2.4.8 (f, recursion operator for 

adjoint symmetries), 2.5.3 (~. AS operator) and 2.5.6 (~. SA operator). 

If one or more of these operators exist, we can construct new operators 

by using products and powers of already known operators. For instance, 

suppose there exists an AS operator ~ and an SA operator T· Then ~~ is a 

recursion operator for symmetries and ~~ is a recursion operator for adjoint 

symmetries. Also other combinations are possible. Let A be a recursion 

operator for symmetries and ~ an AS operator. Then A~ is again an AS 

operator. Of course all these results have a straightforward proof. 

We continue this section by giving a more general approach of 

the theory described in this section and in the Sections 2.3 and 2.4. 

Up to now we considered constants of the motion, (adjoint) symmetries 

and several operators between those symrnetries. All these objects are 

(can be considered as) tensor fields ~ of different types which satisfy 

(2.5.14) 0 on M x 1R 
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This leads to the following 

Definition. 

A tensor field~ E Tk (M) which satisfies (2.5.14) is called a (k,i) symip 
metry of the dynamical system (2.2.1). 

Following this definition a constant of the motion is a (O,O) symmetry, a 
symmetry is a (l,0) symmetry and an adjoint symmetry is a (O,l) symmetry. 
Further an SA operator corresponds to an (0,2) symmetry and an AS operator 
to a (2,0) symmetry. Both recursion operators for symmetries and for ad
joint symmetries correspond to (1,1) symmetries (see also Remark 2.4.9). 
This last property also shows the problems associated with Definition 
2.5.15, Although recursion operators for symmetries and for adjoint sym
metries both correspond to (l,1) symmetries, it is convenient to have 
distinct names for those two operators. Therefore we shall in general use 
the previous introduced designation. 

0 

There are several methods for constructing new tensor fields out 
of already known ones. Suppose ~is a parameterized tensor field of arbitrary 
orders and Y is a parameterized vector field. Then new parameterized tensor 
fields can be constructed by the following methods (see also Abraham and 
Marsden [l, §3.4]): 

i) Compute Ly_ , the Lie derivative of _ in the direction of y, 

i~) 
L Compute_® ~ 1 , the tensor product of_ and some tensor field ~ 1 . 

iii) If the co-and contravariant orders of _ are both positive, we 
can perform a contraction. 

iv) If = is antisymmetric and has covariant order k and contravariant 
order 0 we can compute the exterior derivative of the corresponding 
k-form ~ . Then d~ corresponds again to a tensor field (with 
orders k+l and 0). 

v) Suppose = and some other tensor field = correspond to k and 2-forms ,, I 
~and ~ 1 . Then we can construct a tensor field =z corresponding to 
the (k+2)-form ~ 2 =~A ~ 1 • 



There are several relations between these methods. A tensor field ~ 2 
constructed by v), can also be obtained by ii). For instance if ~and ~l 

have both covariant order I, then 

~2 - ® ~I - ~I ® -

So we need not consider method v). If _corresponds to a differential 

k-form i; then 

The interior product iy of a vector field with a differential form can 

be obtained by a tensor product with Y followed by a contraction. So for 

k-forms i) can be obtained from ii), iii) and iv). Almost all results 

of Sections 2.3, 2,4 and this section are in fact special cases of the 

following 

2' 5. 16 Theorem. 

Suppose ~ is a (k,£) symmetry, ~ 1 is a (i,j) symmetry and Y is a symmetry 

(i.e. a (l,O) symmetry). Then 

i) Ly~ is a (k,£) symmetry, 

ii) _ ® ~ 1 is a (k+i ,£+j) symmetry, 

iii) if k > 0 and £ > 0 every possible contraction in _ yields a 

(k - I , £ - I ) symmetry, 
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iv) if ~ is a (0,£) symmetry corresponding to a £-form i;, the tensor field 

corresponding to the (£ + I) form di; is a (O , £ + I) symmetry. 

Proof: 

i) Using the commutation rule for Lie derivatives we obtain 

~ (L ~) + LXLY= = at r + L L = x y 

L = + L 
Y [X,Y] 
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Since the vector field Y is a symmetry, the last two terms cancel, 

so LY:, also satisfies (2.5.14). 

ii) This part of the theorem is a straightforward consequence of 

iii) Suppose :: is a tensor field with both orders positive. Denote the 
tensor fields obtained by a contraction in _ and (the same contraction 

in) Ly:: by =e and ::Le· Then LY::e = ::Le' so "contraction conmmtes 
with the Lie derivative': Using this property it is easily shown that, 

if:'. satisfies (2.5.14), then also =e satisfies (2.5.14). 

iv) Using Lyd = dLY (for differential forms), this result is also 

easily proved. 

D 

We mentioned already that most results of sections 2.3, 2.4 and of this 
section can be obtained from theorem 2.5.16. For instance the theorems 

2.3.5, 2.3.7, 2.4.2, 2.4.6, 2.5.!, 2.5.4 and 2.5.10 follow also from ii) 
and iii) of Theorem 2.5.16. As an example consider theorem 2.4.6. 
In that theorem rand a are both tensor fields which satisfy (2.5.14). 
Then also the tensor product f©O satisfies this condition. After contraction 
we see that the tensor field fa (=one-form) also satisfies (2.5.14), so 
it is an adjoint symmetry. Further theorem 2.3.6 (and in fact also the 
lemma's 2.3.3, 2.3.4 and 2.4.l) follows from part i) of Theorem 2.5.16. 
The theorems 2.4.3 and 2.5.8 are special cases of part iv) of theorem 
(2.5.16). Finally we mention that the AS operator~ and the recursion 
operator for symmetries A, as given in (2.5.12) and (2.5.13), can be 
written as 

~ cijY.®Y., 
l_ J 

A a® A . 

Then by Theorem 2.5. 16 ii) ~ is an AS operator and A a recursion 

operator for symmetries. 



2,6 NIJENHUIS TENSORS AND INFINITE SERIES OF SYMMETRIES 

Suppose the dynamical system u = X(u) has a nontrivial recursion operator 

for symmetries A. Then, starting with the symmetry X we can construct an 

infinite series of symmetries by 

(2,6, I) X = Ak-I X 
k k 1,2,3, ... 

If there exists a symmetry z0 , not in this series, a second series of sym

metries is given by 

(2,6.2) k o, 1,2, .... 

2.6.3 Remark. 

The situation as described above occurs for instance in the case of the 

Burgers equation (see Section 5,2) and the Korteweg-de Vries equation (see 

Section 5.6), In these cases the symmetry z0 is related to the invariance 

of the equation under a scale transformation. For these equations there 

also exists a symmetry x0 such that X = x1 = A x0 ; the symmetry x0 then 

corresponds to the invariance of the equation for translations along the 

x-axis. Note that for every autonomous system u = X(u) the symmetry X 

corresponds to the invariance of the equation for translations in time. 
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a 

If some extra conditions are satisfied the Lie brackets between the ele

ments of both series can easily be found. We first describe some proper

ties of (1,1) tensor fields. 

2 • .6. 4 Lennna, 

1 For every tensor field A E T1 (M) there exist a tensor field 
] 

_ E T2(M), only 

dependent on A, such that for all vector fields A on M 

(2.6,5) ::!A • 
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or in local coordinates 

The tensor field _ is antisyrrnnetric in its covariant indices (3~k 

Proof: 

A simple calculation in local coordinates shows that in a point u E M the 

left hand side of (2.6.5) does not depend on the derivatives of A in u. 
Hence we can consider (2.6.5) as a (coordinate independent) linear mapping 

of a vector in u (A(u)) into a (1,1) tensor in u (the left hand side of 
(2.6.5)). But this means that 3(u) is a (l,2) tensor and 3 a (1,2) tensor 
field. The antisyrrnnetry of 3 follows by contracting (2.6.5) with the 
vector field A. Then an elementary calculation using Leibniz' rule and 

the antisyrrnnetry of the Lie bracket yields that the left hand side of 
(2.6.5) vanishes. Hence 3AA = 0 (3~kAkAj 0) which means that 3 is anti
syrrnnetric in its covariant indices. · 

The tensor field 3 is sometimes called the Nijenhuis tensor field of A, 
cf. for instance Schouten [67, page 66] or Nijenhuis [68]. Suppose A is 

D 

a recursion operator for syrrnnetries, or in the terminology of the prece
ding section, a (1,1) synnnetry. Then it can be shown that the corresponding 
Nijenhuis tensor field 3 is a (1,2) synnnetry. Since in most interesting 
cases the Nijenhuis tensor field of a recursion operator for syrrnnetries 
vanishes, we shall not give a proof of this result, If the Nijenhuis ten

sor field of A vanishes, we have 

(2.6.6) \f A E X(M) • 

Application of (2.6.6) to (contraction with) a vector field B results in 

(2.6. 7) [AA,AB] - A[AA,BJ = A[A,AB] - A2[A,B] • 

If M = W, a (possibly infinite-dimensional) topological vector space, we 
can write out (2.6.7) using the expressions for the Lie derivatives given 



in (l.2.9). This yields 

(2.6.8) (A'(!i.A))B - (A'(AB))A A((A'A)B - (A'B)A) • 

Although (2.6.7) and (2.6,8) (for dynamical systems in a topological vec

tor space) are equivalent with (2.6.6), these conditions are rather un

practical. As far as we know the conditions (2,6,7) and (2,6,8) have been 

introduced by Fuchssteiner [12] and Magri [17] and in a formal calculus 
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by Gel'fand and Dorfman [16]. Operator valued functions A on W which satis

fy (2.6.8) were called heriditary symmetries by Fuchssteiner (see also 

[8,37,64]). Magri introduced the name Nijenhuis operator, which is rather 

confusing since the Nijenhuis tensor field corresponding to A is the 

(vanishing) (1,2) tensor field 3. Finally the name regular operators was 

used by Gel'fand and Dorfman. 

Next we return to the two series of symmetries given in (2.6.1) 

and (2.6.2), For several equations it turns out that 

(2,6.9) all a E 1R , 

(2.6.10) b E 1R • 

First we compute the Lie derivatives of the recursion operator for symme

tries A. 

2. 6, 11 Theorem, 

Suppose A is an autonomous recursion operator for symmetries (so A 

a vanishing Nijenhuis tensor. Then 

0) with 

i) LX A = 0 , 
k 

ii) if (2.6.9) is satisfied L2 A 
k 

Proof: 

k+l 
a A , 

k l ,2,3,. .. 

k 0,1,2,. ... 

Since A is a re.cursion operator for symmetries with A = 0, it satisfies 

Lx A= 0, Then i) follows at once from (2.6.6). The second part of this 
I 

theorem follows in a similar way from (2,6.9) and (2,6.6). 

D 
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It is easily seen (Leibniz' rule) that (under the same assumptions) the 
Lie derivatives of powers of A are given by 

(2,6. l 2) 0 ' 

(2.6.13) m k+m L2 (A ) = ma A • 
k 

The Lie brackets between the elements of the two series of syrrnnetries Xk 
and Zk are now easily found. 

2.6. 14 Theorem. 

Suppose A is an autonomous recursion operator for symmetries with vanishing 
Nijenhuis tensor field. Then 

iii) if (2,6,9) and (2,6,10) are satisfied [Zk,X£] ((£ - l)a +b) XkH • 

Proof: 

In proving i) it is no restriction to assume £ k + m with m > O. Then, 
using (2,6.12) 

0 , 

To prove ii) we again assume £ k + m with m > O. Then (2,6,13) implies 

Finally, using (2.6,!0) and (2,6,13) 



57 

= ((!l- l)a +b) xk+!l 

0 

Since X1 = X and f\ do not depend on t, the symmetries Xk also do not. Hence 

we can consider on M the autonomous dynamical systems u = Xk(u). Now Theorem 

2.6.ll i) implies that f\ is also a recursion operator for symmetries of these 

dynamical systems. Also Theorem 2.6.14 i) implies that every vector field 

X!l is also a symmetry of u = Xk(u). These results on the series Xk have al

ready been given by Fuchssteiner [12,37], Fuchssteiner and Fokas [8] and 

Magri [17]. 

2. 6. 15 Remark. 

If a symmetry x0 as described in Remark 2.6.3 exists, the results of the 

Theorems 2.6.11 and 2.6,14 also hold for x0 if [Z0 ,x0J = (b -a)X0 and 

Lx f\ = 0, If A is invertible this follows from (2.6.9) and (2.6.!0), in 
0 

other cases these relations have to be verified. 

2.6.16 Remark. 

It may happen that instead of z0 a symmetry Z is known such that 

(2.6.17) 

and 

(2.6.18) 

L f\ = a Ap+ I z 

P E 1N • 

Comparison of these two relations with the results given in the Theorems 

2,6.11 and 2.6.14 suggests to define a series of symmetries Zk by 

Z = flk-p Z (so Z 
k 

.. 

z ) 
p 

k p,p+I,. •• • 

0 
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Then it is easily verified that Theorems 2.6.11 and 2.6.14 remain valid 
(of course only for those Zk which exist, i.e. k ~ p). 

Finally we remark that the results fiven in the Theorems 2.6,11 and 2.6.14 
can also be obtained without using the vanishing of the Nijenhuis tensor 
field of A. However, then the Conditions (2.6.9) and (2.6.10) have to be 
extended with similar conditions in terms of z1 and z2• See Ten Eikelder 
[69] for more details. 

2.7 TRANSFORMATION PROPERTIES 

Suppose there exists a diffeomorphism f between M and some other 
manifold N. Denote the inverse mapping by f+ , so 

(2.7.l) {f+:M _,_ 
f :N-+ 

N 

M. 

Then we can use the derivative off to transform the equation (2.2.l) 
to a differential equation on N 

(2.7.2) X(v). 

Note that X is a vector field on the manifold N. -Symmetries Y of (2.7.2) are vector fields on N which satisfy 

Y + [X,Y] 0 onNxJR. 

Adjoint symmetries of (2.7.2) are one-forms on N which satisfy 

a + L a 
x 

0 on N x 1R. 

The sets of symmetries and adjoint symmetries of (2.7.2) are denoted 
by V(X;N) respectively V*(X;N). Note that all the expressions given in 
the sections 2.3, 2.4, 2.5 and 2.6 were given in terms of tensor 

fields (vector fields, k-forms), Lie derivatives and exterior derivatives . .. 
The transformation properties of tensor fields are well-known. Suppose _ 
is an arbitrary tensor field, Y a vector field and n a k-form on M. 

D 



The transformed tensor fields, vector fields and k-forms on N are 

denoted by the same symbol, supplied with a tilde . Then 

(2.7.3) 

(2.7.4) 

L- -y 

an dll 

This means that the operations L and d are "natural with respect to 

a diffeomorphism". Suppose Y is a symmetry of (2.2.1). The transformed 

vector field Y = f'Y on N satisfies 

,::, 
y f' y f' L? 

Using (2.7.3) we see that 

y Lr [X,Y] 

so the vector field y on N is a symmetry of (2.7.2). 

In the same way we can show 
+•* then the one-form (J = f (J 

that if a is an adjoint symmetry of (2.2.1), 

on N is an adjoint synnnetry of (2.7.2). 

So we have proved 

2.7.5 Theorem. 

If YE V(X;M) then Y = f'Y E V(X;N). 

Also if a E V*(X;M) then a +•* f a E V*(X~N). 

Suppose~ is an AS operator for equation (2.2.1) on M. Then using 

(2.7.3) we can show that the transformed operator (tensor field) on N 
is an AS operator for (2.7.2). Similar results hold for the other 

possible operators. We sunnnarize them in 

2.7.6 Theorem. 

0 

Consider the operators A, r, ~. ~ as described in the definitions 2.3.9, 

2.4.8, 2.5.3 and 2.5.6. Then the corresponding operators for (2.7.2) on 

the manifold N a~e given by 
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ii f' ii +-' 
f'(f+-(v)) ii ( f+- ( v) , t) +-' f A(v,t) f (v), 

r f 
+-' * r t'* r (v' t) f+-'*(v) f(f+(v),t) f'*(f+(v)), 

(2.7.7) 

'!' f I lj' f'* '!' (v, t) f'(f+-(v)) 'l'(f+(v),t) f'*(f+(v)), 

+-' * +• <P(v, t) f+'*(v) <P(f+-(v),t) f+' (v). <P f <P f 

a 
2.8 APPENDIX 

In this appendix the evolution equation u = X(u) on M is extended to 
an evolution equation for u and its "variation" ou = v on TM. Using this 
evolution equation for z = (u,v}, we show how (2.2.7) can be derived 
without using a local trivialization of the tangent bundle TM. Since 
z(t) E TM and so z(t) E Tz(t)(TM) we have to construct a vector field 
on TM( not on M). 

First some mathematical preliminaries (see also Abraham and 
Marsden [l, § l .6 and exercise J.6 D] ) . The set T(TM) can be considered 
as a vector bundle in two different ways. First T(TM) is the tangent 
bundle of TM with projection n 2 : T(TM)+ TM In this case, the internal 
structure of TM is unimportant. However, using the fact that TM is 
itself a tangent bundle, we can supply T(TM) with another vector bundle 
structure. Denote the projection of the tangent bundle TM by n 1 : TM+ M. 
The derivative of this map is n; : T(TM) + TM. Using this map we can 
supply T(TM) with an additional vector bundle structure. Note that with 
the projection n; the bundle T(TM) is not a tangent bundle. The two 
possible projections are illustrated in figure I and figure 2. 

Note that in these figures tangent vectors to M can be indicated in two 
ways, see y E T M in figure 2. The situation is summarized in the u 
"dual tangent rhombic", as shown in figure 3. In the sequel we shall 
need the following 

2.8. l Lemma. 

There exists a map SM : T (TM) + T (TM) such that 

i) SM o SM = Id on T (TM), 



TM 

Proof: 
--.....;. 

See Abraham and Marsden [I, exercise l.6 DJ . 

A 

I 

z '--le:~, 
2 

u 

A E T2 (TM) 

7T 2 (A) = z 

Figur>e 1. 

T(TM) 

I \ 
TM 

\ 
TM 

/ 
M 

Figure 3. 

A E T2 (TM) 

7T l : TM -+ M, 7Tl(z) "' u 

7f I • T2 (TM)-+ TuM, 7T j (A) l" 

Figur>e 2. 

A 

I \ 
y z 

} 
u 
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The map SM is called the canonical involution on M. The lemma may be 

clearified by looking at figure 2. If_we apply the mapping SM to A E T(TM) 

we obtain A = SM(A) E T(TM). From 1T2(A) = 1T2(SM(A)) = 1Tj (A) = y we see 

that A E T (TM) • So we obtain a vector A which is tangent to TM in y. 
y - . 

Another application of SM to A yields again the vector A. 

Now we are able to express the Lie bracket of two vector fields 

on M in terms of the derivatives of the vector fields. Suppose C is 

a vector field on M. So it is a mapping C:M + TM such that 

(2.8.2) 1T 1 o C = Id : M + M • 

The derivative of the vector field C in a point u E M is the linear 

mapping 

C' (u) 

Suppose E E T uM' then C' (u) E E T C(u) (TM), hence 

(2.8.3) C(u) E TM. 

By taking the derivative of (2.8.2) we obtain 1Tj o C' 

This implies 

(2.8.4) 1T 1 (C'(u) E 
I EE TM. 

Id TM +.TM. 

Let B be another vector field on M. Analogous to the expressions for 

the Lie bracket in local coordinates or in a local trivialization(see(l.1.8) 

or (2.2.5)), we would like to define [B,C] by computing the difference 

of C'(u) B(u) and B'(u) C(u). But since B'(u) C(u) E TB(u)(TM) and 

C'(u) B(u) E TC(u)(TM) this is not possible. 

Now we can use the canonical involution SM. Using lemma 2.8.l and 

(2.8.4) we see that 

(2.8.5) 1T 2(SM(C' (u)B(u))) = 1T; (C' (u)B(u)) = B(u). 



This means that SM(C'(u) B(u)) E TB(u) (TM). So we can define 

(2.8.6) F(u) SM(C'(u) B(u)) - B'(u) C(u) E TB(u) (TM) . 

We now compute the projection n; of F(u). Using lemma 2.8.1, (2.8.3) 

and (2.8.4) and noting that nj TB(u)(TM) +TUM is a linear map, 

we obtain 

nj(F(u)) n2 (C' (u) B(u)) - nj (B' (u) C(u)) 

C(u) - C(u) 0 ET M. 
u 

This means that F(u) is not only tangent to TM in the point B(u), 

but even tangent to TM in the point B(u). The situation may be 
u 

elucidated by the following figure. 

C' (u)B(u) 

Figure 
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So F(u) E TB(u)(TuM). Finally, using the canonical isomorphism between 

the linear space TuM and its tangent space TB(u) (TUM) (see for instance 

Dieudonne [18], § 16.5.2) we can consider F(u) as an element of TM. 
u 

Since u is arbitrary we constructed a new vector field Fon M. By 
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expressing (2.8.6) in local coordinates we see that F = [B,C], 
the Lie bracket of the vector fields Band C on M. So we have proved the 
following 

2.8.7 Theorem. 

The Lie bracket of the vector fields Band C on M is the vector field 
[B,C]on M, given by 

(2.8.8) [B,C](u) SM(C'(u)B(u)) -B'(u) C(u). 

2.8.9 Remark. 

In most text-books the Lie bracket of two vector fields is introduced 
in a much simpler way. However, in the derivation of the condition 
(2.2.7) for symmetries, both terms of the right hand side of (2.8.8) 
first appear seperately. 

2.8.10 Remark. 

0 

0 

The preceding construction the Lie bracket is not symmetric. Of course 
the other possibility (using SM(B'(u) C(u)) ET (TM)) yields the same 

C(u) result. 

D 

After these complicated preliminaries the final results are within reach. 
An evolution equation for u and its "variation" ou = v is easily 
obtained. Suppose z = (u, ou) E TM. The expression (2.2.2) suggests 
to describe the time evolution of z using X'z. However, from (2.8.3) 
we see that n 2 (X'z) = X(u), which means that (in general) X' z ~ T2 (TM). 
The correct generalization of (2.2.2) is given by 

(2.8.ll) z 

Lemma 2.8.I and (2.8.4) imply that 



'TT 1 (X' z) 
I 

z, 

so SM(X'z) E Tz(TM). This means that indeed the right hand side of 

(2.8.11) is a vector field on TM. From u = TI 1(z), lennna 2.8.1 and 

(2.8.3) we obtain 

X(u), 

so we see that (2.2.1) is "contained in" (2.8.11). By using a local 

trivialization of TM it is also possible to derive (2.2.2) from (2.8.l I). 

So the evolution equation (2,8.11) can be considered as an equation 

which describes the evolution of u (as given in (2. 2. I)) and the 

evolution of v = ou (for a local trivialization given in (2.2.2 )). 

Finally we consider again special solutions of (2.8.11). 

This leads to 

2.8.12 Theorem. 

Suppose Y is a parameterized vector field on M such that for all 

solutions u(t) of (2.2.1) z(t) = Y(u(t),t) satisfies (2.8.11). Then 

(2. 8. 13) y [Y,X] • 

Proof: 

Since z(t) = Y(u(t),t) has to be a solution of (2.8.11) for all solutions 

u(t) of (2.2.1), the vectorfield Y must satisfy 

(2.8.14) Y(u,t) + Y'(u,t) X(u) = s·(X'(u) Y(u,t)) yu EM, t E 1R. 
M 

Note that Y' (u, t) X(u) E T ( ) (TM) while at first sight Y(u, t) E T Jl. y u, t 
However, since TuM is a linear space, it is canonically isomorphic 

with its tangent space in an arbitrary point, hence 
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So (2.8.14) is a correct equation. The theorem now follows from 
theorem 2.8.7. 

Thus we have again obtained condition (2.2.7) (which is equivalent to 
(2.8.13)) for the vector field Y. 

D 



CHAPTER 3: HAMILTONIAN SYSTEMS 

3.1 INTRODUCTION 

In this chapter we make some remarks on Hamiltonian systems. Since many 

results in this chapter are standard, a number of proofs is omitted. 

In Section 3.2 we introduce Hamiltonian systems using symplectic geometry. 

In Sections 3.3, 3.4 and 3.6 we describe Poisson brackets, variational 

principles and completely integrable Hamiltonian systems. The transfor

mation properties of Hamiltonian systems are explained in Section 3.7. 

In Chapter 2 we considered (adjoint) symmetries for general dynamical 

systems. In Section 3.5 we show that, if a certain kind of adjoint 

symmetry exists, the dynamical system is Hamiltonian. Symmetries for 

Hamiltonian systems are described in the next chapter. Sometimes we give 

expressions using local coordinates. In that case the Hamiltonian systems 

are considered to be finite-dimensional. In this paper we only consider 

autonomous (possibly infinite-dimensional) Hamiltonian systems. 

Introduce 

Tiln. Then a classical 
coordinates q 1, •.• , qn' p1, .•• , pn in phase space 

Hamiltonian system can be described by a function 

IR 2n ~ IR' H : ~ called the Hamiltonian. The system consists of the set of 

differential equations 

(3.1.1) 

i I, ... , n. 

3.2 DEFINITION OF HAMILTONIAN SYSTEMS 

67 

A very elegant description of Hamiltonian systems is possible in the 

language of symplectic geometry (see for instance Arnold [2], Abraham and 

Marsden [I] , Souriau [4]). This method will finally result in a system 

of differential equations, of which (3.1.1) is a special case. Therefore 

we called (3.1.1) a classical Hamiltonian system. The phase space of these 

Hamiltonian systems will be a symplectic manifold (M,w). 

Consider a two-form w on M. With this two-form corresponds a 
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vector bundle map n * TM + T M, defined by 

(3.2.1) <Q A,B> w(A,B) 

Of course n can also be considered as a tensor field of covariant order 
0 

2, n € T2(M). Mostly we use the last designation. Since a two-form is 

antisymmetric in its two arguments, the tensor field n also is anti

symmetric 

<Sl(u) A,B> 

3.2.2 Definition. 

-<Q(u) B,A> VA,BET M,VuEM . 
u 

We call a two form w (strongly) nondegenerate if the tensor field n 
(considered as vector bundle map n : TM + T*M) is an isomorphism. The 

inverse tensor field is then denoted by n+ . If the tensor field (vector 

bundle map) Q is injective, the two-form w is called weakly nondegenerate. 
+ 

In that case Q is only defined on the range of n. 
IJ 

A weakly nondegenerate two-form on a finite-dimensional manifold M is 

(strongly) nondegenerate. A nondegenerate two-form can only exist on a 

finite-dimensional manifold M if the dimension of M is even. We call n 
and Q+ the tensor fields corresponding to the (nondegenerate) two-form w. 

It is easily seen that n+ is also antisynnnetric 

V a, 8 E T* M, V u E M. 
u 

The tensor field Q can be used to transform a vector field on M into a 

one-form. So we can consider Q as a linear mapping Q X(M) + X*(M). 
In the same way we can consider Q+ as a linear mapping Q+ X*(M) + X(M). 

3.2.3 Definition. 

A syrrrplectic manifold is a pair (M,w) where w is a closed, nondegenerate 

two-form on the manifold M. The form w is called a syrrrplectic foP/Tl. 

IJ 

Infinite-dimensional Hamiltonian systems are often described using a 

closed, weakly nondegenerate two-form w. Then w is called a weak syrrrplectic 
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fomi. 

It is useful to translate the closedness of a two-form w into 

properties of the corresponding tensor fields S1 and S1+-. First the following 

3.2.4 Theorem. 

i) Suppose w E T~(M) is an antisynnnetric tensor field with corresponding 

two-form <fi (so <fi(A,B) = «PA,B>). Define the mapping f : X(M) x X(M) x X(M) + 

+ F(M) by 

(3.2.5) f(A,B,C) = <LA(wB),C> • 

Then there exists a tensor field _ E T~(M) such that for all vector fields 

A, B and C on M 

(3.2.6) d<fi (A ,B ,C) ';',ABC f(A,B,C) + f(B,C,A) + f(C,A,B) • 

ii) Suppose 'I' E T;(M) is antisynnnetric. Define the mapping 

g : X*(M) x X*(M) x X*(M) + F(M) by 

(3.2. 7) g(a,S,y) = <L'l'a S,'l'y> • 

Then there exists a tensor field ~ E T~(M) such that for all one-forms a, 

S, y on M 

(3.2.8) g(a,S,y) + g(S,y,a) + g(y,a,S) • 

Proof: 

It is obvious from (3.2.5) that the value of f(A,B,C) in a point u E M also 

depends on the derivatives of A and B in u. However, a calculation using 

local coordinates or the formulas given in (l.2.9) shows that the right 

hand side of (3.2.6) in a point u EM depends only on A(u), B(u) and C(u) 

and not on their derivatives. Hence we can consider the right hand side 

of (3.2.6) as a coordinate independent mapping of three vectors 

(A (u) ,B(u) ,C(u)) into IR. But this means that ';',(u) is a (0,3) tensor and so 

3 is a (0,3) tensor field on M. Using local coordinates it is easily seen 
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that ~ is the tensor field corresponding to the three-form d$. This can 

also be shown with some manipulations using (l.l.29). The second part of 

the theorem can be proved in a similar way. 

0 

In [70] Schouten shows how a (k + !l + l ,O) tensor field can be constructed 

from a (k + 1,0) and a (Jl + 1,0) tensor field. If we start with two identical 

antisymmetric (2,0) tensor fields '¥this construction yields the (3,0) tensor 

field~ as given in (3.2.8). 

3.2.9 Definition. 

i) A tensor field 1> E T~(M) will be called cyclic if it is antisymmetric 

and if the corresponding tensor field ~ E T~(M) vanishes. 

ii) A tensor field '¥ E r;(M) will be called canonical if it is antisymmetric 

and if the corresponding tensor field ~ E T~(M) vanishes, 

a 

The relations between closed two-forms and cyclic and canonical tensor fields 

are explained in 

3.2.10 Theorem, 

i) Let $ be a two-form with corresponding tensor field 1>. Then $ is closed 

iff 1> is cyclic. 

ii) If 1> E T~(M) is a cyclic tensor field which is invertible, then the in

verse tensor field 1>-I is canonical. Also if '¥ E r;(M) is a canonical 

tensor field which is invertible, the inverse tensor field '¥-l is cyclic. 

Proof: 

Part i) follows immediately from Theorem 3.2.4 i). Using L 1>-l 
A 

the second part of this theorem is also easily proved. 

Note that this theorem implies that every symplectic form w gives rise to 

a cyclic tensor field Q and a canonical tensor field Q+, In the literature 

cyclic tensor fields unfortunately are also called symplectic operators 

(symplectic transformations are explained in Remark 3.7.6). For canonical 

tensor fields various other names are in use, such as Hamiltonian, inverse 
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symplectic, implectic, co-symplectic. See for instance Gel'fand and Dorfman 

[16] or Fuchssteiner and Fokas [8]. In local coordinates the tensor fields 

I and~ are represented by matrices l .. (u) and ~ij(u). Then I is cyclic if 
1] 

it is antisymmetric and if 

(3, 2. 11) 31.J'k(u) a I .. k(u) + t.k .(u) + lk .. (u) = 0 • 1J, J ,1 1,J 

The tensor field ~ is canonical if it is antisymmetric and if 

(3.2.12) 0 . 

Now we are able to define a Hamiltonian vector field on a 

symplectic manifold (M,w). Consider a function H : M + IR, then dH is a 

one-form on M. 

3.2.13 Definition. 

The vector field X = n+dH is called a Hamiltonian vector field on the 

symplectic manifold (M,w). The function His called the Hamiltonian, 

the corresponding dynamical system is called a Hamiltonian system. 

Note that i~ = dH. Since w is nondegenerate the vector field X is also 

uniquely determined by this relation. If w is only a weak symplectic form, 

the vector field X may not exist (everywhere). Let u : (a,b) + M, then we 

say that u is a solution of this Hamiltonian system if 

(3.2.14) u (t) + 
Q (u(t)) dH(u(t)) VtE (a,b). 

a 

In a local coordinate system the tensor field Q is represented by a matrix 

n .. (u) and the tensor field Q+ is represented by the inverse matrix Qij (u). 
1J . 

Then the coordinates u1(t) of u(t) satisfy the following system of 

differential equations 

(3.2.15) 

However, we can always introduce new local coordinates q 1, ••• ,qn,p 1, ••• ,pn 

such that the system (3.2.15) transformes into the system (3.1.1). 
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(3.2.16) Theorem (Darboux). 

Suppose w is a symplectic form on a finite-dimensional manifold M. Then for 

each u0 EM there exists a neighbourhood with local coordinates q 1, ••• ,qn' 

p 1, ••• ,pn such that the symplectic form w can be written as 

(3.2.17) w 

Proof: 

n 
l: d qi A d pi , 

i=l 

See Abraham and Marsden [I] or Choquet-Bruhat [3]. 

The coordinates q1, ••• ,pn are called canonical coordinates. In this new 

coordinate system the cyclic tensor field Q and the canonical tensor field 
+ 

Q are represented by 

(3.2.18) 

(3.2.19) 

Q •• 
l.J 

0. . - 0. . 
i,J+n i+n,J 

v i, j I , ••• , 2n • 

a 

With these matrices (3.2.15) reduces to the well-known classical Hamiltonian 

sys tern (3. I • I) • 

Note that a Hamiltonian vector field is defined in terms of H 

and Q+ Of course this definition is also possible if the canonical tensor 

field Q+ does not come from a symplectic form w (i.e. Q+ is not invertible). 

This leads to the following 

3.2.20 Definition. 

Suppose H is a function and Q+ a canonical tensor field on a manifold M. 
Then the vector field X = Q+-dH will be called a semi-Hamiltonian vector 

field on M. The corresponding dynamical system will be called a semi
Hamiltonian system. 

a 

Of course every Hamiltonian system (vector field) is also semi-Hamiltonian. 

However, since Q+ in the preceding definition is not necessarily invertible, 

the converse is not true. 
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3.2.21 Remark. 

The definition of a semi-Hamiltonian system (vector field) was given in 

terms of a Hamiltonian H and a (not necessarily invertible) canonical 

tensor field '2+. In the following section we shall see that every canonical 

tensor field Q + on M gives rise to a Poi.c;son structure, i, e, a Lie algebra 

structure for F(M) which also satisfies Leibniz' rule ({FG,K} = F{G,K} + G{F,K}), 

Therefore a manifold M with a canonical tensor field is called a Poisson 

manifold. Since every symplectic form w gives rise to a canonical tensor 

field, every symplectic manifold "is" also a Poisson manifold. Of course 

the converse is not true, 

3.3 POISSON BRACKETS 

Let (M,w) be a symplectic manifold or let M be a manifold with a canonical 

tensor field Q+ (a Poisson manifold). With every pair of functions F and G 

on M corresponds a (new) function on M, called the Poisson bracket of F 

and G. 

3 .3. I Definition. 

The Poisson bracket of two (possibly explicitly time dependent) functions 

F and G on M is the function {F,G} defined by 

(3.3.2) {F,G} + 
<dF, ~ dG>, 

Two functions on M are in involution if their Poisson bracket vanishes. 

In local coordinates (on a finite-dimensional manifold) the definition 

can be written as 

{F,G} ij 
F, . '2 G, . 

1 J 

3.3.3 Theorem. 

The Poisson bracket satisfies the so called Jacobi identity 

{{F,G},K} + {{G,K},F} + {{K,F},G} 0 

for any three functions F, G, KE F (M). 
p 

D 
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Proof: 

In the case that n+ corresponds to a symplectic form w, the proof of this 

result can be found in many text-books, see for instance Arnold [2]. We 

now give a proof which only uses that Q+ is canonical (and not that Q+ is 

invertible). Note that 

{F,G} 

This implies 

{ {F ,G},K} 

g(dG, dF , dK) 

where g is given in (3.2.7) (with o/ Q+). The theorem follows now from 

(3.2,8) and Definition 3.2.9. 

Recall (Definition 2.3.l) that a function FE F (M) is a constant of the 
p 

motion or first integral of a dynamical system on M if 

d 
dt F(u(t), t) 0 

D 

for all solutions of the dynamical system. For a (semi-) Hamiltonian system 

with Hamiltonian H this implies the following 

3.3.4 Lemma. 

A function F E F (M) is a constant of the motion iff {F,H} + F = 0 on p 
M " IR. For functions F, which do not depend explicitly on t (so F E F (M)) 
this condition is {F,H} = 0. 

Proof: 

It is easily seen that 

d 
dt F(u(t), t) 

+ 
< dF, S1 dH > + F {F,H}+F, 

D 



The following lennna is an innnediate consequence of the Jacobi identity. 

3.3.5 Lennna. 

The set of constants of the motion for a (semi-) Hamiltonian system is a 

Lie algebra, if we take the Poisson bracket as Lie product. The set of 

autonomous constants of the motion is a subalgebra of this Lie algebra, 

3.4 VARIATIONAL PRINCIPLES 

It is well known that the classical Hamiltonian system (3.1.1) can be 

derived from the following variational principle 

stat 
u 

n 
~ 

i=I 

75 

[J 

where LI is the set of all curves in phase space IR 2n with qi (t 1) and qi (t2) 

fixed. There also exists a variational principle which yields directly the 

more general equations (3.2.15): 

3.4.1 

For every 

one-form 

(3.2.15) 

(3.4.2) 

Theorem. 

point uo E M there 

a defined on u0, such 

is a stationary point 

exists 

that a 

of the 

a neighbourhood U0 3 u0 and a 

solution u(t)E U0 for tE[t 1 ,t2] of 

following functional 

t2 
f ( < a(u(t)), u(t) > - H(u(t))) dt 
tl 

over the set of all curves u(t) E U0 fort E [t 1,t2] with u(t 1) 

u(t2) =u(t2). 

Proof: 

The two-form w is closed, so for every point 

neighbourhood u0 and a one-form a defined on 

On a neighbourhood u0 c u0 there exist local 

u0 E M there exists a 

u0, such that.w = - da 

coordinates ui such that 
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i 
a = ai du • So (3,4.2) can be written as 

/1 
tl 

(3.4.3) (a.(u(t)) tii(t) - H(u(t))) dt 
I. 

Then it is an elementary exercise to show that stationary points of (3.4.3) 

with u(tl) = u(tl ), u(t2) = u(t2), are solutions of 

(3.4.4) ( ) . i 
a .. - a .. u 

I.' J J' I. 
H, .. 

J 

From w - da ~D .. dui A duj we obtain D .. 
JI. JI. 

a .. - a ... Multiplication 
I.,J J 'I. 

of (3.4.4) with Dij, the inverse matrix of D .. , results in (3.2.15). 
Jl 

a 
3.5 HAMILTONIAN SYSTEMS AND ADJOINT SYMMETRIES 

In this section we make some remarks on the question: when is a dynamical 

system a Hamiltonian system? In general this is a very difficult problem. 

For a number of equations the Hamiltonian character was only found after 

a long time. For instance, the Hamiltonian character of the Korteweg-

de Vries equation [6,7] was found rather recently by Gardner [II] and Broer 
[10]. 

Consider an autonomous dynamical system on a manifold M 

(3.5.1) u = X(u) 

Suppose p is a non-closed adjoint symmetry of this system. By Theorem 2.5.8 

p gives rise to an SA operator n, defined by 0A = iAdp, VA E X(M). Since p 

is an adjoint symmetry we have 

(3.5,2) 

This expression leads to the following 

3.5.3 Theorem. 

Suppose the dynamical system (3.5.1) has an adjoint symmetry p such that 

i) dp is nondegenerate , 

ii) p = dG for some constant of the motion G • 



Then (3.5,l) is a Hamiltonian system with Hamiltonian H 

symplectic form w = dp. 

Proof: 

Since p dG we obtain from (3,5.2) that 

(3.5.4) S1X dH • 

We now show that H and w do not depend explicitly on t: 

-G - <p,X> -G - <dG,X> 0 

since G is a constant of the motion. Also 

w = dp = ddG 0 

-G - <p,X> and 

Finally dp is nondegenerate (S1 is invertible), so (3.5.4) implies that X 

is the Hamiltonian vector field corresponding to w and H. 

3.5.5 Remark. 
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D 

The Hamiltonian systems described in this theorem have the following special 

properties: 

i) the symplectic two-form w is not only closed but also exact, w = dp, 

ii) the one-form p satisfies p + LXp = dG + LXp = O, so LXp = -dG, where 

G is a constant of the motion. 

D 

These two properties indicate that, in trying to find out whether a dynamical 

system is Hamiltonian, one should not try to find an adjoint symmetry as 

described in Theorem 3.5.3. However, several interesting Hamiltonian sys

tems (Korteweg-de Vries equation, Sine Gordon equation, Toda chain) are 

of the type described in this theorem. 

3.6 COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS 

For symplicity we now consider the symplectic manifold M = IR 2n with 

canonical coordinates q 1, ••• , Pn· Then w 

d . d" - - IR2n uce new coor inates q 1, ..• , pn on 

~ d qi A dpi. Suppose we intro-
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3 .6. l Definition. 

The transforma.tion from q 1, ... , pn to q 1, ... ,pn is called a canonical 
coordinate transformation if, in new coordinates w 

0 

So after a canonical coordinate transformation the differential equations 
for qi' pi are also of the form (3.1.}). 

Sometimes by means of a canonical coordinate transformation, 
the system of differential equations is greatly simplified. For instance 
suppose all the new coordinates qi are cyclic. This means the Hamiltonian, 
written as function of pi and qi' depends only on the pi. The solution of 
the corresponding Hamiltonian system is trivial and the system is called 
corrrpletely integrable.Furthermore the functions pi constitute a set of 
n constants in involution. In general it turns out that the existence of 
n constants of the motion in involution, is directly related to the 
complete integrability of the system. 

3.6.2 Theorem (Arnold, Liouville). 

Suppose there exist n constants of the motion in involution F1 
Consider the level set of functions F. 

}_ 

M 
a F.(ql, ... ,p) 

i n 
a.} 

}_ 

Assume the one-forms dFi are linearly independent on M8 and that Ma is 
compact and connected. 

Then 

i) M 
a 

is invariant for the Hamilton flow with Hamiltonian H, 
ii) M-

a 
is diffeomorphic to then-dimensional torus Tn = {(q 1 , •.. ,qn) mod 2n}, 

iii) there exist n functions pi(F 1, ••• ,Fn) such that ij 1, ••• , qn, p 1, ••• ,p0 

are coordinates for a neighbourhood of Ma. The transformation (q 1 , ••• ,pn) ~ 
(q 1 , ••• ,pn) is a canonical coordinate tr~nsformation and the Hamiltonian H, 
expressed in the new coordinates, depends only on the pi : H = H(p 1 , ••• ,pn). 

Proof: 

See Arnold [2]. 

0 

The solution of the corresponding Hamiltonian system 



(3.6.3) afi(pl, .. .,pn) 

() p. 
]_ 

i l, ... , n 

is trivial and the system is completely integrable. The coordinates pi are 

called action variables, while the q. are called angle variables. 
]_ 

Note that we only discussed complete integrability for finite-
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dimensional Hamiltonian systems. As far as we know an appropriate defini

tion of complete integrability for infinite-dimensional Hamiltonian systems 

and an infinite-dimensional version of Theorem 3.6.2 have not yet been 

given, 

3.7 TRANSFORMATION PROPERTIES OF HAMILTONIAN SYSTEMS 

In Section 2.7 we discussed the behaviour under transformations of (adjoint) 

symmetries and the four possible operators between adjoint symmetries, The 

transformation properties of Hamiltonian systems are also easily found. Con

sider the Ha.iniltonian vector field X = ~+dH, on a manifold M, corresponding 

to the symplectic form w and Hamiltonian H. Suppose there exists a diffeo

morphism f : M + N with inverse f+ : N + M. Using the derivative map 

f' : TM + TN we can transform the vector field X on M to a vector field 

X = f'X on N. 

3. 7. I Theorem. 

The transformed vector field X = f'X of the Hamiltonian vector field X is 

again a Hamiltonian vector field. The corresponding Hamiltonian H and 

symplectic two-form w on N are given by 

+-
(3. 7 .2) H(v) H ( f (v)) V v EN, 

(3.7.3) w(A,B) 

- 0 
The tensor fi:lds ~ ET2 (N) a~d 

maps we have ~: TN + T*N and ~+ 

n+ E T2 (N) (considered as vector bundle 
0 

: T*N + TN) are given by 
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(3. 7 .4) +'* +' f 11 f 

(3.7.5) + 
f 'Q f '* 

Proof: 

The relations between functions, differential forms and tensor fields are 

"natural" with respect to transformations (see also section 2. 7) • This 

means that the transformed vector field X = f'X can also be obtained from 

the transformed Hamiltonian H and the transformed two-form w. The 

formulas (3.7.2), (3.7.3), (3.7.4) and (3.7.5) give the usual transformation 

properties of functions, differential forms and tensor fields. 

[J 

3.7.6 Remark. 

By the method used in theorem 3.7.l we can supply the manifold N with a 

symplectic two-form w , the push-forward of w by f. Suppose there exists 

already a symplectic form ~ on N; so (M,w) and (N,~ ) are both symplectic 

manifolds. On N we now have the symplectic forms ~ and w . If ~ = w 

the mapping f is called a symplectic transformation (symplectic 

diffeomorphism) or canonical transformation. A canonical transformation 

should not be confused with a canonical coordinate transformation, as 

described in definition 3.6.J. 
t:I 

Other properties of the Hamiltonian system on M are also easily translated 

to the transformed system on N. 

3. 7. 7 Corollary. 

The transformed Poisson bracket of two funct~ons_F 1 , F2 on Mis equal to the 

Poisson bracket of the transformed function F1, F2 on N. 

+ +'* FromFi(v) Fi(f(v)) (i=I,2)weobtaindFi f dFi. 

The result now follows from the definition of Poisson bracket and from 

(3.7.5). 

So if the functions F1, F2 on Mare in involution, the transformed 

functions F1, F2 on N are also in involution. 

CJ 



CHAPTER 4: SYMMETRIES FOR HAMILTONIAN SYSTEMS 

4.1 INTRODUCTION 

In Chapter 2 we considered some properties of dynamical systems on a mani

fold M. We introduced symmetries, adjoint symmetries and four types of 

operators between those symmetries. In this chapter we assume that the 

dynamical system is a Hamiltonian system. The most important consequence 

of this Hamiltonian character is that there always exists at least one 

SA- and one AS operator. This implies that with a constant of the motion 

not only corresponds an adjoint symmetry, but also a symmetry. However, 

there can also exist symmetries which are not related in this way to a 

constant of the motion. These so called non- (semi-) canonical symmetries 

have interesting properties, In Section 4.2 we show how they can be used 
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to construct (new) SA- and AS operators and hence recursion operators for 

(adjoint) symmetries. The thus constructed (new) SA operator is always 

cyclic; if it is also invertible, the system can be written as a Hamiltonian 

system in two different ways. These so called bi-Hamiltonian systems are 

considered in Section 4.3. Non- (semi-) canonical symmetries can also be 

used in various ways to construct (new) constants of the motion out of 

already known ones. In Section 4.4 we shall describe three possible methods 

for doing this. In Sections 4.5 and 4.7 we give conditions under which 

these methods can be used to generate infinite series of constants of the 

motion. The possible relation between these series is also studied in 

Section 4.7. A series of (non-semi-canonical) symmetries is constructed 

in Section 4.6. The methods described in the Sections 4.5, 4.6 and 4.7 

can be applied to several popular "completely integrable" finite- and in

finite-dimensional Hamiltonian systems (Toda chain, Korteweg-de Vries 

equat.ion, sine-Gordon equation, ••• ). Of course the existence of infinite 

series of constants of the motion for these equations is well-known. How

ever, several of our methods for constructing these series seem to be new. 

Also the series of non-semi-canonical symmetries is generally overlooked, 

In this chapter we shall consider an autonomous Hamiltonian sys

tem on a symplectic manifold (M,w) with Hamiltonian H. With the symplectic 

form w correspond the cyclic tensor field n E T~(M) and the canonical tensor 
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field r:/' E T~(M) (see Section 3,2). The Hamiltonian vector field on Mis 

then given by 

(4.1,1) x + 
r.l dH 

and the corresponding differential equation is 

(4.1.2) u(t) X(u(t)) r.l+ (u(t)) dH (u(t)) • 

As in Chapter 2 we shall assume that for all inital conditions u(t0) = u0 
there exists a smooth unique solution u(t) of (4.1.2), defined on some 

interval I c IR. 

In Section 4.8 we consider the case that (4,1,l) is only a semi

Hamiltonian vector field and (4.1.2) is only a semi-Hamiltonian system (see Sec

tion 3.2). With some modifications several results obtained for Hamiltonian 

systems also hold for semi-Hamiltonian systems. Finally we mention that, 

unless otherwise stated, all constants of the motion, (adjoint) symmetries, 

SA- and AS operators and recursion operators for (adjoint) symmetries men

tioned in this chapter belong to the (semi-) Hamiltonian system (4.1.2), 

4.2 SA- AND AS OPERATORS 

In this section we discuss the various possible SA- and AS operators 

for a Hamiltonian system. The following lemma will be useful in the 

sequel. 

4.2.l Lemma. 

Suppose a is a closed (parameterized) one-form on M and ~ E T~ (M) is 

a canonical tensor field. Then L~a~ = 0. 

Proof: 

Let S and y be arbitrary one-forms on M . Then define the vector fields 

A = ~a , B = ~S and C = ~y. Application of Leibniz'rule to the identity 

da(B,C) 



results in 

(4.2.2) da(B,C) 

Using Leibniz' rule and the antisymmetry of ~ and its Lie derivatives 

we can write the second term as 

<a, [B,C] > < a,L8 (~y) > 

Substitution in (4.2.2) gives 

da(B, C) 

Since ~ is canonical (see Definition 3.2.9) this becomes 

The one-form a is closed, so the left hand side vanishes. The one-forms 

S and y are arbitrary, so L ~ = L ~ = O. 
A ~a 

The first application of this lemma is described in the following 

4.2.3 Lemma. 

Let a be a closed (parameterized) one-form on M and let A = n+a be 

the corresponding vector field. Then LAn+ = O, LAn = 0 and LAw = O. 

CJ 
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Proof: 

The tensor field Q+ is canonical. So by the preceding lemma LAQ+ 
LA(QQ+) = 0 we obtain 

0 • 

0 is equivalent with LAw o. 

4.2.4 Remark. 

O. From 

The importance of Lemma 4.2.l is that it can be used in cases where a cano-

nical tensor field ~ is (maybe) not invertible (see for instance Sections 

4.8 and 5,7). In the proof of Lemma 4.2.3 we had~= n+, which is invertible. 
+ Using this property the proof that LAn = 0 can be considerably simplified. 

From A = n+a. we obtain a. = nA = iAw. Since a. is closed we have d iAw = da. = O. 

Then, because w is closed, LAw = iAdw .+ d iAw = O, which is equivalent to 

LAn = o. Finally LAn+ = -n+(LAn)n+ = o. 
D 

Recall that a tensor field~ E T~p(M) which can be used to map adjoint sym

metries into symmetries was called an AS operator (see Definition 2, 5. 3). 

A tensor field ~ E T~p(M) which can be used to map symmetries into adjoint 
symmetries was called an SA operator (see Definition 2.5.6). It turns out 

that for a Hamiltonian system there always exists an SA- and an AS operator. 

4.2.5 Theorem. 

The tensor field n+ is (can be considered as) an AS operator and the tensor 

field n is an SA operator. 

Proof: 

The conditions for an AS operator were given in Definition 2.5.3. The opera

tor Q+ is an AS operator if it satisfies 

(4.2.6) 0 . 

L + . + It follows from Lemma 4.2.3 with a = dH that Xn = O. Since n does not 

depend explicitly on t, it satisfies (4.2.6). Then Theorem 2.5.7 implies 

that n is an SA opera tor, 

0 



In local coordinates the tensor field Q is represented by a matrix 

(matrix valued function) Q . . (u) and the tensor field Q+ is represented 
kJ1, l.J . 

by the inverse matrix Q (u). A symmetry Y has components YJ(u,t) and an 

adjoint symmetry cr has components cr£(u,t) •. Then Theorem 4.2.5 says that 

if Yj is (represents) a symmetry, Q . . (u) YJ(u,t) is an adjoint symmetry, 
l.J k 

Also if cr£(u,t) is an adjoint symmetry, Q £(u) cr£(u,t) is a symmetry. 

Theorem 4.2.5 has a very important consequence. Suppose F 

is a constant of the motion. Then Theorem 2.4.3 says that dF is an 

adjoint symmetry. Next Theorem 4.2.5 implies that Q+dF is a symmetry. 

So for a Hamiltonian system every constant of the motion F gives 1°ise 
to a symmetry Q+dF. This leads to the following 

4.2.7 Definition. 

i) A symmetry Y with adjoint symmetry a = QY which is (not) exact, will 

be called a (non-) canom'.cal symmetry. 

ii) A symmetry Y such that a = QY is (not) closed will be called a (non-) 

semi-canonical symmetry. 

It is useful to introduce similar names for adjoint symmetries. Hence the 

following 

4.2.8 Definition. 

i) An adjoint symmetry a which is (not) exact will be called a (non-) 

canonical adjoint symmetry, 

ii) An adjoint symmetry which is (not) closed will be called a (non-) 

semi-canonical adjoint symmetry. 

These definitions imply that a (non-) (semi-) canonical symmetry Y gives 

rise to a (non-) (semi-) canonical adjoint symmetry a = QY and conversely. 

A canonical symmetry Y can be written as Y = Q+dF, where F is a possibly 

parameterized function M. If we ignore the possible dependence on the 

parameter (t), this means that Y is a Hamiltonian vector field with Hamil

tonian F. (Similarly a semi-canonical symmetry is a locally Hamiltonian 

vector field.) 
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4.2.9 Remark. 

Suppose o = QY is a canonical adjoint symmetry. Then there exists a function 

F E F (M) such that o = dF. However, by Theorem 2.4.5 there also exists a 
p + 

constant of the motion G such that o = dG and Y = Q dG. So the space of 

canonical adjoint symmetries (a subspace of V*(X,M)) and the space of 

canonical symmetries (a subspace of V(X,M)) are both isomorphic to the 

space of constants of the motion. (Constants of the motion which differ 

only by a (numerical) constant are identified.) 

4.2.10 Remark. 

An exact differential form is always closed. In the terminology introduced 

above, this means that a canonical (adjoint) symmetry is also a semi

canonical (adjoint) symmetry. A differential form which is not closed is 

also not exact. This implies that a non-semi-canonical (adjoint) symmetry 

is also a non-canonical (adjoint) symmetry. Since a closed form is not 

necessarily exact, the converse of these two assertions is not true. By 

the Poincare lemma a closed one-form a can locally be written as a = dF. 

0 

If this relation holds on M, the form is exact. There is a topological 

condition which implies that closed k-forms are exact. In our case (one

forms) the condition is that the first cohomology group of M vanishes. If 

the manifold M has this property, (non-) semi-canonical (adjoint) symmetries 

are identical with (non-) canonical (adjoint) symmetries, This happens for 

instance if M is also a linear space. 

0 

i In local coordinates u a canonical adjoint symmetry o has local coordinates 

oi = G,i for some constant of the motion G. The coordinates oi of a semi

canonical adjoint symmetry satisfy o .. = o ..• 
l.' J J, l. 

A characterization of (non-) semi-canonical symmetries is 

given in the following 

4.2.11 Theorem. 

A symmetry Y is semi-canonical iff LyQ O. 
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Proof: 

Since w is closed, we have 

d(nY) . 

So ny is closed iff Lyw = 0, which is equivalent to Lyn = O. 

This theorem implies that the symplectic form w is invariant under the flow 

corresponding to a semi-canonical symmetry Y. So this flow consists of cano

nical (symplectic) transformations. This explains the name (semi-) canonical 

symmetry. 

Since Lyn+= -n+(Lyn)n+ Theorem 4.2.11 also implies that a symmetry 

Y is semi-canonical iff Lyn+ = 0. 

4.2.12 Remark. 

It is important to realize that the answer to the question whether a given 

symmetry is (non-)· (semi-) canonical depends on the symplectic form w. If a 

dynamical system can be written as a Hamiltonian system in two essentially 

different ways (using two symplectic forms and two Hamiltonians), these an

swers may be different. In that case one has to say which symplectic form 

has been adopted. 

4.2.13 Theorem. 

+ 
Suppose Z = n T is a non-semi-canonical symmetry. Then for k 1,2,3, ..• 
l..) Lk + • zn l.S an AS operator, 

ii) L~n is an SA operator. This SA operator is again cyclic and corresponds 
k-1 to the (exact) two-form d LZ T 

(4.2. 14) k-1 
(dLz •)(A,B) 

Proof: 

i) and the first part of ii) follow at once from the Theorems 4.2.5 and 

2.5.16 i).From T = nz 

This implies (4.2.14). 

izw and the closedness of w we obtain dT = Lzw· 



88 

In Theorem 2.5.8 we have seen that (also for a non-Hamiltonian system) a 

non-closed adjoint synnnetry T = nz gives rise to an SA operator. Theorem 

4.2.13 ii) states that (for a Hamiltonian system) this operator is identical 

to L2n. 
Note that in the proof of Theorem 4.2.13 we did not use that the 

symmetry Z was non-semi-canonical. However, if Z is semi-canonical, Theorem 

4.2.11 says that L2n = 0 (and hence L2n+ = 0). So then the SA- and AS operators 

given in Theorem 4.2. 13 vanish. For a symmetry Z which is non-semi-canonical 
+ the operators L2n and L2n do not vanish. Of course this does not imply that 

they are invertible. As an example of this consider a Hamiltonian system 

with two analytically independent constants of the motion F and G. Then 

Z = rtT = rtF dG is a non-semi-canonical symmetry. The two-form dT is then 

given by dT = dF A dG. Then (4.2.14) implies that 

<dF,A>dG - <dG,A>dF • 

So the SA operator L2n maps any vector field A into the module of one-forms 

spanned by dF and dG. If the manifold M has dimension larger than 2, this 

means that L2n is not invertible. 

Finally we expand a (non-canonical) symmetry in canonical symme-

tries. 

4.2.15 Theorem. 

Suppose there exist m analytically independent constants of the motion 

G1, •.• ,Gm. If a symmetry Z can be written as 

m 
z I 

i=l 

+ 
F. n d G. 

l. 1 
F. i<: F (M) 

1 p 

then the functions F. are constants of the motion. 
1 

Proof: 

Since n+ is an AS operator and the G. are constants of the motion, we have 
1 

m 
L (F.+ LxF.)n .... dG .. 

i= l 1 1 1 
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+ 
The vector field Z is a symmetry, so the left hand side vanishes. Since Q 

is invertible and the one-forms d G. are linearly independent on a dense 
l. 

open subset N of M, we obtain 

Fi + lxFi = 0 on N , i l, ... ,m. 

The continuity of these expressions implies that this also holds on M, so 

the F. are constants of the motion. 
l. 

4.3 BI-HAMILTONIAN SYSTEMS 

a 

Sometimes it is possible to write a dynamical system as a Hamiltonian system 

in (at least) two essentially different ways. Suppose a vector field X on M 
can be written as a Hamiltonian vector field using the symplectic form w and 

the Hamiltonian H, but also using the symplectic form; and the Hamiltonian H. 
So 

(4. 3. I) x 

and 

(4.3.2) 
~+ ~ x = Q dH 

where Q+ and Q are the inverse tensor fields of the tensor fields Q and Q 

which correspond to w and ;, If Q+ <f c Q for some c € IR, the dynamical sys

tem u = X(u) is called a bi-Hamiltonian system. Several popular "integrable" 

Hamiltonian systems are of this type, see for instance Magri [5]. In Section 

4.6 we shall meet dynamical systems which can be written as a Hamiltonian 

system in infinitely many ways (see Theorem 4.6.12). Magri observed that the 

combination of the SA- and AS operators corresponding to (4.3.1) and (4.3.2) 
. ~ ~ -I 

yields the recursion operators for symmetries A1 = Q Q and A2 = Q Q (= A1 ). 

If for instance (4.3.1) is only a semi-Hamiltonian form, we still obtain the 

recursion operator A1 but no longer A2 (see also Fuchssteiner [64]). 

In Theorem 3.5.3 we have seen that, for a general dynamical sys

tem, the existence of a certain adjoint symmetry implies that the system is 

a Hamiltonian system. Of course this theorem is also valid if the dynamical 

system is already a Hamiltonian system. In that case Theorem 3.5.3 provides 

us with a symplectic form and a Hamiltonian which may or may not be equal to 
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the original ones. If the two symplectic forms are not equal up to a mul

tiplicative constant, the system is bi-Hamiltonian, We now reformulate 

Theorem 3.5.3 in case the original system is already a Hamiltonian system. 

Theorem. 

Suppose Z = rt--r is a non-semi-canonical symmetry of the Hamiltonian system 

(4. l.2) which satisfies the following conditions 

i) the SA operator L2ri is invertible, or equivalently the two-form dT is 

nondegenerate, 

ii) the symmetry Z is canonical, so there exists a constant of the motion G 

such that Z = n+t ~+dG~ 

Then the vector field X is also the Hamiltonian vector field corresponding 

to the Hamiltonian H = L2H - G and the symplectic form~= dT. 

Proof: 

Theorem 3.5.3 yields that X is also the Hamiltonian vector field corresponding 

to the Hamiltonian H 

Since X = rl + dH and T 

-<-r ,X> - G and symplectic form d·t. 

rlZ we have 

So H L2H - G and this concludes the proof. 

D 

If a symmetry Z as described in this theorem exists, the vector field X can 

be written as 

+ 
X rl dH 

and as 

4.4 THE CONTRACTION BETWEEN A SYMMETRY AND AN ADJOINT SYMMETRY 

Suppose o 1 and o 2 are two adjoint symmetries (of (4.l.2)) with corresponding 
+- + 

symmetries Y1 = rl 0 1 and Y2 = D 0 2 . Then by Theorem 2.5.IO the function 

(4.4. l) G <01,Y2> 



is a constant of the motion. We shall now compute the corresponding cano

nical symmetry n+dG. Since n+ is canonical, the corresponding (3,0) tensor 

field=, given in (3.2.8), vanishes. Substitution of a= cr 1 and S = cr2 in 

(3.2.8) then yields 

(4.4.2) + <Ly cr 2,n y> + <L y,Y 1> + <L + cr 1,Y2> = o 
I y2 n y 
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for all one-forms y on M. The last term in the left hand side can be written 

as 

L + G + <a 1 , Ly (n + y )> 
n Y 2 

Substitution in (4.4.2) implies 

(4.4.3) 

Note that, up to here, the calculation is also possible for a semi-Hamiltonian 

system. For a Hamiltonian system we can write this as 

(4.4.4) 

By construction this is a canonical symmetry. In the 
+ ognize the recursion operators for symmetries n Ly n 

I 
Y2 respectively Y1 and the Lie bracket [Y2,Y1J. Note 

right hand side we rec-
+L . and n y2n, acting on 

that these recursion 

operttors, generated by Y1 
operator (n+) and a cyclic 

respectively Y2, are products of a canonical AS

SA operator (Lyn resp. Lyn). First suppose y 1 
I 2 

is a canonical 
+ 

that YI = n a I 

symmetry. Then there exists a constant of the motion F1 such 

n+dF 1• Theorem 4.2.11 now implies that Ly 1n = O. In this 
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case (4.4.l) and (4.4.4) can be rewritten as 

(4.4.5) G 

and 

+ (4.4.6) Q dG 

Formula (4.4.5) can be considered as a method for constructing a (new) con

stant of the motion Gout of a known constant F 1 and a symmetry Y2 • Then the 

canonical symmetry corresponding to G consists of two parts. The first part 

is Q+(Ly Q)Q+dF 1, that is the recursion operator Q+(Ly Q) applied to the 
2 + 2 + 

symmetry Q dF 1• The second term is the Lie bracket of Y2 and Q dF 1. We can 

also try to use the single terms to construct a (new) constant of the motion. 

So, starting with a constant of the motion F 1 and a (non-semi-canonical) sym

metry Y2 there are several possible ways to construct another constant of the 

motion: 

i) We can compute G = Ly2F 1. 

ii) We can apply the recursion operator Q+(Ly2n) to Q+dF 1 and obtain 

However, the symmetry Y3 can be canonical or non-canonical. Only in the 

first case this method yields a constant of the motion. 

iii) We can compute the Lie bracket 

Also in this case Y4 may be canonical or non-canonical. 

It follows from (4.4.6) that Q+dG = Y3 + Y4 • So if method ii) works then 

also method iii) works and conversely. Method i) seems very attractive be

cause it yields at once a constant of the motion. However, it is easier to 

describe properties of a constant of the motion which is constructed with 

oqe of the other methods. In Section 4.5 we consider the problem of con

structing an infinite series of canonical symmetries (and so constants of 

the motion) using a recursion operator for (adjoint) symmetries of the form 

n+Ly n ((Ly n)n+) (method ii). 
2 2 
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In the first part of Section 4.7 we investigate !lllder which conditions an 

infinite series of canonical symmetries can be obtained using the (repeated) 

Lie bracket with Y2 (method iii). Then we study the possible relations between 

these two series and consider method i). 

We now return to (4.4.4) and assume both symmetries Y1 and Y2 
are canonical. So there exist constants of the motion F 1 and F2 such that 

+ + 
Y 1 = n dF 1 and Y2 n dF2 • Then (4.4.1) and (4.4.4) can be written as 

(4.4.7) G 

and 

(4.4.8) + 
Q dG 

This means the canonical sy11UI1etry corresponding to the Poisson bracket 

G = {F 1,F2} is equal to the Lie bracket of the canonical symmetries corre

sponding to F2 and F 1• So we have proved the following well-known 

4.4.9 Theorem. 

The canonical symmetries form a subalgebra of the Lie algebra of symmetries 

V(X;M). This subalgebra is isomorphic to the Lie algebra of constants of the 

motion, as described in Le11UI1a 3.3.5. 

This theorem has the following consequence. Considerations which only use 

canonical (adjoint) symmetries can also be held on the level of constants 

of the motion. It is only useful to work with vector fields (one-forms) if 

non-canonical (adjoint) symmetries are involved. 

4.5 INFINITE SERIES OF CONSTANTS OF THE MOTION I 

A lot of popular "integrable" Hamiltonian systems have an infinite series 

of constants of the motion. These constants of the motion Fk do not depend 

explicitly on t and are in involution 

F. 
l. 0 ' {F.,F.} 

l. J 
0 . 
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The most obvious way of constructing a new constant of the motion is by 

taking the Poisson bracket of two already known elements of the series. 

Since the series Fk is in involution this method will not work. Another 

possibility is to take the Poisson bracket with some other constant of the 

motion G. It turns out that several equations have a constant of the motion 

G, not in the series Fk, such that 

~ E 1R • 

However, very often £ ~ 0, which means that in this way we cannot go upwards 

in the series Fk. For instance, for the Korteweg-de Vries equation there 

exists a constant of the motion G such that £ = -l (see for instance Broer 

and Backerra [25]). In the case of the Sawada-Kotera equation there is a 

constant of the motion G with £ = O. For both equations this method is not 

suitable for constructing an infinite series of constants of the motion. For 

the Benjamin-Ono equation there exists a constant of the motion G such that 

£ = !. Then an infinite series of constants of the motion is easily construc

ted and the following considerations are unnecessary. All these three equations 

will be used as examples in Chapter 5. 

In this section we shall consider the problem of constructing an 

infinite series of constants of the motion using a recursion operator for 

(adjoint) symmetries. For a Hamiltonian system every non-semi-canonical 

symmetry Z gives rise to a recursion operator for (adjoin!:) symmetries 

A= Q+(L2Q) (r = (L 2Q)Q+). An infinite series of adjoint symmetries pk and 

corresponding symmetries xk is then given by 

(4. 5. I) 

In general the (adjoint) symmetries of such a series will not be (semi-) 

canonical, Le. they do not correspond to constants of the motion. This type 

of problem has also been studied by Magri [5,17], Fuchssteiner [12,37,64], 

Fuchssteiner and Fokas [8], Gel'fand and Dorfman [16] and others. However, 

our approach, using non-semi-canonical symmetries and working in a differen

tial geometrical context is somewhat different. 
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We remarked already that every non-semi-canonical synnnetry Z 
. +L gives rise to a recursion operator for synnnetnes A = n zn. If we "use 

the synnnetry Z twice" we can construct the recursion operators 

and 

In general these recursion operators will be different. However, for several 

"integrable" Hamiltonian systems, there exists a (non-semi-canonical) synnnetry 

Z such that both operators are equal up to a multiplicative constant. The 

existence of such a synnnetry is essential for the results of this section 

and the Sections 4.6 and 4.7. Hence the following 

4.5.2 Hypothesis. 

There exists a non-semi-canonical synnnetry Z and a real number c with 

c <# (k - 1)/k Vk E JN, such that 

(4.5.3) 

The following theorem is easily proved by induction and Leibniz' rule. 

4.5.4 Theorem. 

Suppose Hypothesis 4.5.2 is satisfied. Then 

(4.5.5) 

(4.5.6) 

4.5. 7 

k-1 
TI (j (c - I) + I) 

j=O 

Corollary. 

k 1,2,3,. .. 

(Lzn)Ak are cyclic fork 0,1,2, •••• 

[] 

[] 
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Proof: 

The Lie derivatives of a closed two-form are again closed. Hence the Lie 

derivatives of a cyclic tensor field are again cyclic. 1be condition on c 
in Hypothesis 4.5.2 implies that the numerical factor in (4.5.5) does not 
vanish, so the SA operators (lzll.) (D.+Lzll.)k are also cyclic. o 

4.5.8 Remark. 

The Lie derivative of a canonical tensor field is not necessarily canonical. 
However, it can be shown by a long computation that, if Hypothesis 4.5.2 is 
satisfied, the AS operators D.+((LZD.)ll.+)k are canonical fork= 1,2,3, .•• 
See also Fuchssteiner and Fokas [8]. Since we do not need this result in the 

sequel, we omit the proof. D 

An infinite series of semi-canonical (adjoint) symmetries is now easily con
structed. First the following 

4.5.9 Lemrua. 

A 

Suppose w is a cyclic SA operator and Y a symmetry such that Lyw 0. Then 
the adjoint symmetry p = ~y is semi-canonical. 

Proof: 

Denote the closed two-form corresponding to~ by~. Then p 

dp = Ly~= O, so p is semi-canonical. 

4.5.10 Corollary. 

Suppose w is a cyclic SA operator with w 
canonical adjoint symmetry with p = 0. 

0. Then p u 

iy~· Hence 

a 

A+ 
Wll. dH is a semi-

IJ 

The main result of this section now follows immediately from the Corollaries 

4.5.7 and 4.5.10. 



4.5. 11 Theorem. 

Suppose Hypothesis 4.5.2 is satisfied and suppose the symmetry i is semi

canonical. Then 

i) the symmetries Xk and corresponding adjoint symmetries pk given in 

(4.5.1) are semi-canonical (so dpk = O), 

ii) [Xi,Xj] = 0 for i,j = 1,2,3, ••• , 

iii) if the first cohomology group of M vanishes, there exists an infinite 

series of constants of the motion in involution F 1 = H,F2,F 3, ••• , 

defined by 

(4.5. 12) 

Proof: 

Since Z is semi-canonical we have a~ (LZQ) = Lin = O. Then i) follows from 

(4.5.1) and the Corollaries 4.5.7 and-4.5.10. To prove ii) first note 

that 

ix P. - <p. ,x. > 
i J J l. 

0 ' 
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+ 
because Q and Lzn are both antisymmetric. Since p. is closed (semi-canonical) 

l. 

this implies LX p. 
i J 

[X. ,X.] 
l. J 

diX p. = 0. Hence 
i J 

+ <Lx n )p. 
i J 

0 ' 

because X. is semi-canonical. If the first cohomology group of M vanishes 
l. 

semi-canonical symmetries are canonical, i.e. correspond to a constant of 

the motion. Finally {F.,F.} 
l. J 

F. are in involution. 
l. 

<a.,X.> = 0, so the constants of the motion 
l. J 

Cl 
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Note that the constants of the motion Fk cannot depend explicitly on t: 

fork 1,2,3, ..• 

+ + This also means that the vector fields Xk = D pk D dFk are Hamiltonian 
vector fields on M with Hamiltonian Fk and symplectic form w (canonical 

tensor field D+). It is easily verified that Lx D+ = 0 and Lx L2D = 0. 
• + k k 

This means that Lx A= O. Since A= D LzD = O this implies that A is also 
. k + a recursion operator for symmetries of the Hamiltonian systems u = Xk = D dFk. 

4 .5. 13 Remark. 

Note that we did not prove that the constants of the motion constructed in 

Theorem 4.5.ll are analytically independent. For instance, it may happen 

that Fk = 0 for k > k0 or that Fk = ~H, fk E 1R. This last situation occurs 
if L2D = fD for some f E IR. On a symplectic manifold of dimension 2n there 

can only exist n analytically independent functions in involution. Hence 
for a finite-dimensional Hamiltonian system every finite subset of constants 

of the motion of the series Fk which contains more than n elements must be 

analytically dependent. 

0 

4.6 INFINITE SERIES OF NON-SEMI-CANONICAL SYMMETRIES 

In the preceding section we considered a series of symmetries Xk which was 

constructed by applying powers of the recursion operator A = D+LzD to the 
symmetry X = D+dH. A completely different series of symmetries Zk and corre

sponding adjoint symmetries Tk can be defined by 

(4.6. I) (so Z 1 - Z) , 

(4.6.2) fork l,2,3,. •.. 

In this section we shall describe some properties and applications of the 

series of (adjoint) symmetries Zk (Tk). First the following 
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4.6. 3 Lemma. 

i) Suppose w is a cyclic (0,2) tensor field and ~ a canonical (2,0) tensor 

field. Define A= ~w E r:(M). Then 

L~ ~ = -~(L w)~ M A VA E X(M) • 

ii) Suppose w is a cyclic (O, 2) tensor field and A is a (I, I) tensor field 

such that wA (in coordinates w.k~) is again a cyclic (0,2) tensor field. 
l. J 

Then 

VA E X(M) • 

Proof: 

Both results are easily proved using local coordinates or (for infinite

dimensional systems) using the expressions given in (l.2.9). 

4.6.4 Remark. 

a 

For an arbitrary antisymmetric (0,2) tensor field w and an antisymmetric 

(2,0) tensor field~ it cari be shown that there exists a (2,1) tensor field 

E 1 such that 

VA E X(M) • 

Also for an arbitrary (O, 2) tensor field w and a (I, I) tensor field A such 

that wA is again antisymmetric, there exists a (0,3) tensor field ::: 2 such 

that 

VA E X(M) • 

These two formulas resemble (2.6.S), where we considered 11:.AA· The tensor 

fields E1 and :::2 correspond to the Nijenhuis tensor field E, introduced in 

Lemma 2.6.4. In fact the preceding lemma gives sufficient conditions for the 

vanishing of the "generalized Nijenhuis tensor fields" E1 and E2 . 

a 
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Now we return to the symmetries Zk and corresponding adjoint symmetries Tk' 

defined in (4.6.1) and (4.6.2). 

4.6 .5 Theorem. 

Suppose Hypothesis 4.5.2 is satisfied. Then fork= 1,2,3, ... 

(4.6.6) 

(4.6.7) 

wi th ~ = k ( c - I ) + 2 - c . 

Proof: 

k + 
-~A Q 

Using Lemma 4.6.3 ii) and Corollary 4.5.7 we obtain 

Lz (stA) 
k-l 

Writing out this term with Leibniz' rule and Hypothesis 4.5.2 results in 

(4.6.6). 

0 

Using Lemma 4.6.3 it is also possible to compute more complicated derivatives 
+ m1 m2 Jiik • . of Q and Q (for instance Lz Lz ••. Lz st). Sincewe donotneedthose deriva-

1 2 k 
tives in the sequel we shall not work them out further. Note that the case 

m1 # O, mi= 0 for i = 2, .•. ,k is already treated in Theorem 4.5.4. We only 

mention that 

(4.6.8) 

As a simple consequence of the Theorems 4.6.5 and 4.2.11 we have 

4.6.9 Corollary. 

Suppose Hypothesis 4.5.2 is satisfied. Then the symmetry Zk is non-semi

canonical i ff Ak # O. 

D 
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So if the recursion operator for symmetries A is not nilpotent, the series 

Zk(Tk) consists of non-semi-canonical (adjoint) synnnetries. 

We now show that the symmetries Zk can be used to give a multi

Hamiltonian form of the Hamiltonian system (4.1.2). Using (4.6.6) and Theo

rem 4.5.1 I iii) we obtain 

(4.6.10) k 
(L~n)X = ~ r dH = ~ dFk+I fork 1,2,3,. ••• 

(Always A = n+Lzn and r 
the closed two-form 

(Lzn)n+.) The cyclic operator Lz n corresponds to 
k 

(4 .6. I I) 

The expressions (4.6.10) and (4.6.11) lead to the following 

4.6. 12 Theorem. 

Suppose the conditions of Theorem 4.5.11 are satisfied and suppose the first 

cohomology group of M vanishes. If moreover Lzn is invertible (injective), 

the vector field X is the Hamiltonian vector field corresponding to the 

(weak) symplectic form L~w = dTk and the Hamiltonian ~Fk+l fork= 1,2,3, ••. 

If Lzn is invertible, we can write X as 

k I ,2, 3,... . 

Proof: 

In view of (4.6.10) and (4.6.11) we only have to show that Lz n is invertible 
k (injective). This follows at once form (4.6.6). 

a 

If all the symplectic forms dTk are essentially different (i.e. not equal up 

to a multiplicative constant), the system is sometimes called a multi-Hamilto

nian system. 

We end this section by computing the Lie bracket of the elements 

of the series Zk. Recall the definition of the Nijenhuis tensor, given in 

Section 2 .6. 
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4.6. 13 Lemma. 

Suppose Hypothesis 4.5.2 is satisfied. Then the Nijenhuis tensor of 
+-L • 1\ = Q ZQ vanishes. 

Proof: 

It follows from Lemma 4.6.3 that 

and 

\IA E X(M) • 

Then a simple calculation shows that 

(4.6. 14) \IA E X(M) • 

This means that the Nijenhuis tensor of 1\ vanishes. 

If Hypothesis 4.5.2 is satisfied, it is easily seen that 

(4.6 .15) 2 
(c-1)11 • 

For the series of symmetries Xk and Zk this implies 

4.6. 16 Theorem. 

Suppose the conditions of Theorem 4.5. JI are satisfied. Then 

(c - I) (t -k)ZkH 

Proof: 

Since i is canonical we have :t (L 2Q) = LZQ = O, which implies that 1\ = 0. 

The theorem now follows from Lemma 4.6.13, (4.6.15), Theorem 2.6.14 i) and 

ii) and Remark 2 .6. 16. 



Note that part i) of this theorem was also proved in Theorem 4.5.11. The 

only Lie bracket which remains is [Zk,X£]. This bracket will be considered 

in the next section. 
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It will be clear that recursion operators for symmetries which 

have a vanishing Nijenhuis tensor field and which can be written as the pro

duct of a canonical AS operator and a cyclic SA operator play an important 

role in these considerations. This has already been noticed by Magri [5] and 

Fuchssteiner and Fokas [8]. There last mentioned authors speak of heriditary 

symmetries which admit a symplectic-implectic factorization. In theorem 

2.3.13 we have seen that, for a finite-dimensional system, the eigenvalues 

of a recursion operator for symmetries are constants of the motion. If the 

recursion operator is of the form described above, more results on the cor

responding eigenvalue problems can be given, see Ten Eikelder [ 47] . 

4.7 INFINITE SERIES OF CONSTANTS OF THE MOTION II 

In Section 4.5 we constructed an infinite series of (adjoint) symmetries 
+ 

Xk(pk)' using a recursion operator for (adjoint) symmetries A= n Lzn 
(r = (Lzn)n+). Under certain conditions (given in Theorem 4.5.11) the series 

Xk consists of canonical symmetries and corresponds to a series of constants 

of the motion Fk. In the first part of this section we shall describe an 

alternative way to construct such a series. Then we shall consider the 

possible relations between the two series and finally we describe a third 

method to generate series of constants of the motion. 

Suppose Z is some symmetry. Then define the series of symmetries 

~ and corresponding adjoint symmetries pk by 

(4. 7. I) (so xl [Z,~]) 

(4.7.2) 

If the symmetry Z is semi-canonical, it follows from (4.4.5) and (4.4.6) 

that the symmetries ~ are canonical and correspond to the constants of the 

motion (-l)k-IL~-IH. (If Z is canonical this also follows from Theorem 4.4.9.) 

From now on we shall assume that Z is non-semi-canonical. Then the symmetries 

given in (4.7.1) are not necessarily (semi-) canonical. It is easily seen 

that 'X2 = [Z,X] = i. So if the series ~ has to consist of (semi-) canonical 

symmetries, at least i has to be (semi-) canonical. Of course this method 
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of generating (nontrivial) symmetries is only possible if Z f O. We now 

give conditions on z which imply that the series xk consists of semi-canonical 

symmetries. First the following 

4.7.3 Lemma. 

Suppose Hypothesis 4.5.2 is satisfied and suppose the symmetry Z is semi-
k k canonical. Then LXLZw = 0 or equivalently LXLZD 0 for k = 0, 1,2, ..•• 

Proof: 

The AS operator D+ does not depend on t, hence L~+ = 0 (see Theorem 4.2.5). 

Since Z is a semi-canonical symmetry, Theorem 4.2.ll implies that :t CL2D) = LZD = O. This means that the SA operator L2D satisfies LXLZ~ 0. 
The lemma now follows form Theorem 4.5.4 and Leibniz' rule. 

4.7.4 Theorem. 

Suppose the conditions of Lemma 4.7.3 are satisfied. Then 

i) the symmetries Xk given in (4.7.l) are semi-canonical, 

ii) if the first cohomology group of M vanishes, there exists an infinite 

series of constants of the motion <\:• defined by 

(4.7.5) 

Proof: 

nlk-lx -z k l,2,3, .... 

ix w and the closedness of w we obtain dpk 
k 

Writing out this term with (I. l.24) finally results in 

Now Lemma 4.7.3 implies that dpk 

are semi-canonical. 

4. 7 .6 Remark. 

o, so the (adjoint) symmetries xk (pk) 

It is easily verified by the same method as in the proof of Theorem 4. 7 .4 

0 

0 

~ JI, ~ 

that the adjoint symmetries (Lzrl)Xk (and also (L2n)Xk) are also semi-canonical. 

D 
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Note that the conditions for the existence of the series of constants of the 

motion Fk, as described in Theorem 4.5.11 and<\• as described in the prece

ding theorem, are identical. We now consider the relation between the two 

series. The symmetries corresponding to F2 and G2 are given by 

+ 
r.1 dG2 = [Z,X] . 

For several equations (Korteweg-de Vries, sine-Gordon, ... ) it turns out that 

(4.7.7) for some b E 1R , b f - l • 

If this relation holds the symmetries Xk and Xk (and so the corresponding 

constants of the motion Fk and Gk) also differ only by a multiplicative 

constant. 

4.7.8 Theorem. 

Suppose a symmetry Z as described in Hypothesis 4.5.2 exists. If (4.7.7) is 

satisfied, then 

(4.7.9) ((i-J)(c-1) +b)XkH. 

Proof: 

We first show that Z x2 is canonical. If b = 0 this follows from (4.7.7). 

If b f 0 we obtain from (4.4.5) and (4.4.6) that 

Since bf -I this implies that i is canonical. So A= n+Lin = 0. The theorem 

now follows from Lemma 4.6.13, (4.6.15) and Theorem 2.6.14 iii) (see also 

Remark 2.6.16). 

4. 7. 10 Corollary. 

Let the conditions of Theorem 4.7.8 be satisfied. Then 

k-2 
n (j(c-1) +b)Xk. 

j=O 
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Proof: 

By construction Xk 

ceding theorem. 

L~-IX = L~~ 1 x 1 . The result now follows from the pre-

For the corresponding constants of the motion Fk and Gk this means 

(4.7.11) 
k-2 

G = n (j(c-1) + b) Fk • 
k j=O 

Finally we describe a third method for generating series of constants of 

the motion. The two previously considered methods consisted in generating 

Cl 

an infinite series of symmetries (in Section 4.5 using a recursion operator 

A = Q+LZQ' in the first part of this section by computing the repeated Lie 

bracket with Z). Then the problem was to show that these series consist of 

canonical symmetries. Another method (method i) in Section 4.4) is to gener-
k ate a series of constants of the motion of the form L2H. For every symmetry Z 

this yields immediately a (possibly trivial) series of constants of the 

motion. Note that in this approach it is not necessary to reconstruct a 

constant of the motion from its corresponding symmetry. Under certain con

ditions this series is identical to the previously generated ones. 

4. 7 .12 Theorem. 

Let Hypothesis 4.5.2 be satisfied. If also (4.7.7) holds then 

(4.7.13) 

Proof: 

k 

k-2 
n (j (c - I) + b + I) • 

j=O 

1,2,3, ••• 

The proof is done by induction. Since f 1 = l and F 1 
k =I. Next assume (4.7.13) holds fork= i. So 

(4.7.14) 

Application of L2 then gives 

H the result holds for 
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Substitution of (4.7. 14) and using (4.7.9) then gives 

f.11, ((JI, -1) (c - 1) + b)X.11,+I • 

Hence 

and this implies (4.7. 13) fork JI, + I. 

a 

Finally we summarize some of the results obtained in Sections 4.5, 4.6 and 

4.7. Several results were obtained under the assumption that a symmetry Z 

as described in Hypothesis 4.5.2 exists and that i is a semi-canonical sym

metry. In the proof of Theorem 4.7.8 we showed that this last property is 

also a consequence of (4.7.7). Then if Hypothesis 4.5.2 and also (4.7.7) 

are satisfied: 

i) 

(c - I) (JI, -k)Zk+JI, 

ii) the symmetries ~ are canonical and correspond to constants of the 

motion in involution Fk with 

fk given in Theorem 4.7.12 , 

k iii) if A + 0 the symmetry Zk is non-semi-canonical. 

4.8 SEMI-HAMILTONIAN SYSTEMS 

In this section we consider the case that the dynamical system (4.1.2) is 

only a semi-Hamiltonian system. This means that the canonical tensor field 
+ ( • n corresponding to the Poisson structure on M) is not necessarily inver-

Z) 

tible. Hence the inverse tensor field n may not exist. We shall now shortly 

describe the consequences for the theory given in this chapter and also show 

how several results can be maintained. 
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+-
As far as Q is concerned, Lemma 4.2.3 and Theorem 4.2.5 remain 

+-valid. This means that Q is again an AS operator. Hence also for a semi-

Hami 1 tonian sys tern every constant of the motion F gives rise to a symmetry 

r2+dF~ The definition of a (non-) (semi-) canonical symmetry Y was given in 

terms of the (not-) closedness/exactness of the corresponding adjoint sym

metry o = QY, Since in this case Q is not available, these definitions are 

not possible for a symmetry. 

4.8. I Remark. 

For adjoint symmetries the definitions of (non-) (semi-) canonical (see 

Definition 4.2.8) are still possible. In view of Theorem 4.2. 11 one could 

try to define a (non-) semi-canonical symmetry Y as a symmetry with LYQ+- = 0 

(LYQ+ ~ 0). Then by Lemma 4.2.3 every semi-canonical adjoint symmetry a (so 

do = O) gives rise to a semi-canonical symmetry Y = Q-<-a. However, a non-semi

canonical adjoint symmetry a (so do ~ O) can also give rise to a semi-canonical 

symmetry Y = Q+a. An (extremely trivial) example of this situation is provided 

by the case that rl+- == 0., Hence this definition is not very useful .. 

Of course the first part of Theorem lf. 2. l 3 also holds in this case, so 

is a (possibly vanishing) AS operator. 

D 

Lk + 
ZQ 

Next we consider the Sections 4.5, 4.6 and 4.7. In these sections 

we often used a recursion operator for (adjoint) symmetries which was obtained 

from a symmetry Z by /I = Q+LZQ (r = (L2Q)Q+). For a semi-Hamiltonian system Q 

may not exist, so we cannot compute its Lie derivative L2Q. Hence in this 

case a (in the Hamiltonian case non-semi-canonical) symmetry does not give 

rise to a recursion operator for symmetries. However, sometimes (at least 

for the Sawada-Kotera equation) there exists a cyclic SA operator <I> which 

"behaves like L2Q". This property is stated more precisely in 

4.8.2 Hypothesis. 

For the semi-Hamiltonian system (4.l.2) there exists a nontrivial cyclic SA

operator <I> and a symmetry Z such that 

(4.8.3) 

(4.8.4) 
+ 

c qi Q <I> c E 1R , c p (k - l ) /k VkE1N. 

D 
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+-
If Q is invertible (i.e. the Hamiltonian case), we obtain from (4.8.3) that 

<!> = L2Q. Then (4.8.4) means that Z is a synnnetry as described in Hypothesis 

4.5.2. In fact several results of the Sections 4.5, 4.6 and 4.7 remain valid 

if L2Q is replaced by an SA operator <!> as described in Hypothesis 4. 8. 2. In 

these sections we anticipated on this by writing most expressions in terms 
+ 

of Q and L2D, avoiding Q as much as possible. For instance instead of 

( 4 . 5 . 5) we now obtain 

(4.8.5) 
k 
n 

j=l 
k 1,2,3, .... 

Th . . l" ( + )k . ( is imp ies that the SA operators<!> Q <!> are cyclic fork= 0,1,2, ... com-

pare with Corollary 4.5. 7). We shall now mention some other results of the 

Sections 4.5, 4.6 and 4.7 which also hold for semi-Hamiltonian systems. 

Define the series of (adjoint) synnnetries 

xk (D+<!>)k-lX, 
Pk 

(<!>D+-)k-l dH 

(4.8.6) zk (Q+<l>)k-1 2 , 
Tk+J <!>Zk 

xk Lk-IX 
z Pk+! <!>Xk fork l, 2' 3, ... 

Then for a semi-Hamiltonian system we can prove the following 

4.8.7 Theorem. 

Suppose Hypothesis 4.8.2 is satisfied. Then, with L2Q replaced by <!> and 

except for the statements which say that certain synnnetries are (non-) 

(semi-) canonical, we have 

i) if<!>= 0 the results of Theorem 4.5.11 remain true, 

ii) if (D+<l>)kQ+ f 0 then dTk f 0 (compare with Corollary 4.6.9), 

iii) Lennna 4.6.13 remains true, 

iv) if~ 0 then the results of Theorem 4.6.16 remain true, 

v) if<!> 0 then dpk+l = 0 (compare with Remark 4.7.6), 

vi) if<!> 0 and X2 = bX2 (bf -1) then the results of Theorem 4.7.8, Corol

lary 4.7. 10 and Theorem 4.7.12 also remain true. 

D 
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CHAPTER 5 EXAMPLES 

5. l INTRODUCTION 

In this chapter we shall apply the theory, described in the preceding 

chapters, to several well-known differential equations. Most of these 

equations have been extensively studied in recent years. However, we obtain 

some results which, as far as we know, are new and give also different 

proofs of already known properties. As an example of the theory of Chapter 

2 (i.e. dynamical systems which are not necessarily Hamiltonian) we consider 

in Section 5.2 the Burgers equation. All the other examples are Hamiltonian 

and semi-Hamiltonian (Section 5.7) systems. In Section 5.3 we consider the 

most general form of a finite-dimensional linear Hamiltonian system. For 

such a system several additional results can be obtained. A simple example 

of a nonlinear finite-dimensional Hamiltonian system is provided by the 

Kepler problem. This will be discussed in Section 5.4. Then in Section 5.5 

we consider the Benjamin-Ono equation. The most extensive example of this 

chapter will be the Korteweg-de Vries equation, discussed in Section 5.6. 

In fact the theory of the Sections 4.5, 4.6 and 4.7 has been written with 

this equation in mind. The final example is the Sawada-Kotera (-Caudrey-Dodd

Gibbon) equation. This equation will be considered as a semi-Hamiltonian 

system. Recall that some modifications of the theory of Chapter 4 for the 

case of a semi-Hamiltonian system have been indicated in Section 4.8. 

Note that the examples given in the Sections 5.3 and 5.4 are 

finite-dimensional systems, while all the other examples concern infinite

dimensional systems. The differential geometrical methods used in the Chap

ters 2, 3 and 4 have only a sound foundation if the manifold M is finite

dimensional. So at first sight the results of the preceding chapters can 

only be used to investigate finite-dimensional systems. However, all the 

infinite-dimensional systems can be considered on a manifold which is a 

topological vector space. The only example of this chapter which cannot be 

considered on a manifold which is a vector space is the (finite-dimensional) 

Kepler problem. In Section 1.2 we showed how several differential geometrical 

objects can also be introduced on a (possibly infinite-dimensional) topolo

gical vector space W. Using the results of that section we can also inves

tigate the mentioned infinite-dimensional systems. 
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In the remaining part of this section we show which form the 

conditions for the various introduced objects take for dynamical and Hamil

tonian systems on a topological vector space W. Note that the following 

considerations do not apply to Section 5.4, the Kepler problem. Suppose X 

is a vector field on W, so it is (represented by) a possibly nonlinear 

mapping X : W + W. Then we can consider in W the dynamical system 

(5.J.J) u X(u) • 

The following theorem describes (adjoint) symmetries and operators between 

symmetries for the system (5.1.1). 

5.1.2 Theorem. 

Consider the parameterized vector field Y : W x 1R + W, the parameterized 

one-form cr : W x 1R + W* and parameterized tensor fields I, A, r.~ of the 

same type as in (1.2.3). Then: 

i) Y is a symmetry of (5.1.1) iff 

(5.1.3) Y(u,t) + Y'(u,t)X(u) - X'(u)Y(u,t) 0 • 

ii) o is an adjoint symmetry of (5.1.1) iff 

(5.1.4) o(u,t) + o'(u,t)X(u) + X'*(u)o(u,t) o. 

iii) I is an SA operator for (5.1.1) iff 

(5.1.5) l(u,t) + (l'(u,t)X(u))+ l(u,t)X'(u) + X'*(u)•(u,t) 0 • 

iv) A is a recursion operator for symmetries of (5.1.1) iff 

(5.1.6) A(u,t) + (A'(u,t)X(u)) + A(u,t)X'(u) - X'(u)A(u,t) 0, 

v) r is a recursion operator for adjoint symmetries of (5.1.l) iff 
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(5. !. 7) f(u,t) + (f'(u,t)X(u)) - f(u,t)X'*(u) + X'*(u)f(u,t) 0, 

vi) P is an AS operator for (5.1.1) iff 

(5. l. 8) P(u,t) + (P'(u,t)X(u)) - P(u,t)X'*(u) - X'(u)~(u,t) 0 . 

All these expressions are assumed to vanish for all u E W and t E 1R • 

Proof: 

Using (1.2.9) it is easily seen that all these expressions are equivalent 
to the corresponding expressions in chapter 2. 

IJ 

Suppose u(t) is a solution of (5.I .!). The equation, obtained by linearizing 
(5.1.I) around u(t) is 

(5. l. 9) v(t) X' (u(t))v(t) v(t) E W. 

This equation can be considered as an equation for the "variation" v(t) ~ c'iu(t) 
of u(t). Similar equations were considered in (2.2.2) (using a local 
trivialization of the manifold) and in (2.8.ll) (differential equation on 
the tangent bundle). Suppose y(u,t) is a symmetry of (5.1.1). Then it is 
easily seen that v(t) = Y(u(t),t) is a solution of (5.J.9). So symmetries 
can be interpreted as solutions of the linearized equation (5.1.9), which 
can be expressed in u and t. In fact we can even use this property to 
find symmetries. The adjoint equation of (5.1.9) is given by 

(5. I. 10) w(t) - x'*(u(t) )w(t) w(t) E W*. 

Let o(u,t) be an adjoint symmetry of (5.1.1). Then it is easily verified 
that w(t) = o(u(t),t) satisfies (5.1.10). So adjoint symmetries a can be 
considered as solutions of the "adjoint linearized equation" (5. I. lO), 
which can be written in terms of u and t. 

5. !. 11 Remark. 

Sometimes we shall meet (adjoint) symmetries which do not depend explicitly 
on t. For symmetries and adjoint symmetries of that type (autonomous 



synunetries) the first terms in (5.l.3) and (5.l.4) vanish. Almost all 

recursion operators for (adjoint) synunetries, SA- and AS operators which 

we shall use in the sequel, do not depend explicitly on t (autonomous 

operators). So for these operators the first terms in (5.1.5), (5.l.6), 

(5. l. 7) and (5. 1.8) also vanish. 

5. I. l 2 Remark. 

l 13 

0 

In Section 5.3 we shall meet synunetries of the form Y(u,t) Yu and adjoint 

synunetries of the form o(u,t) = 8u where Y : W + W and a : W -r W* are linear 

operators. In that case the derivatives are easily found: Y(u,t) = 0, 

Y'(u,t) = Y and cr(u,t) = 0, o'(u,t) = 8. In Section 5.3 we also use recur

sion operators for (adjoint) symmetries, SA- and AS operators which do not 

depend explicitly on u and t (i.e. constant operator fields). An SA operator 

of this type is <P(u, t) = " where '.':'. : W + (JJ* is a linear operator. For opera

tors of this type the derivatives with respect to u and t vanish. This means 

that in the Conditions (5.1.5), (5.l.6), (5.1.7) and (5.l.8) the first two 

terms are zero. 

0 

In section 3.2 we considered a closed two-form and the 

corresponding tensor field(s).In Definition 3.2.9 we introduced cyclic tensor 

fields and canonical tensor fields. The corresponding conditions can be written 

in terms of Lie derivatives. In the case that M = W, a topological vector 

space, these conditions can be simplified somewhat. 

5. I. 13 Theorem. 

An antisymmetric tensor field ~ E T~(W) (=antisymmetric operator field 

~(u) : W + W*) is cyclic iff 

(5.1.14) <(~'(u)A)B,C> + <(~\u)B)C,A> + <(~'(u)C)A,B> 0 

for all A, B, C, u E W , 

Proof: 

By Theorem 3.2. 10 an antisymmetric tensor field is cyclic iff the corresponding 

two-form is closed. Then this theorem follows at once from definition 
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1.2.10 iii) (and Theorem 1.2. l l). 

5. l .15 Theorem. 

An antisyIIIliletric tensor field o/ E T~(W) (= antisymmetric operator field 

o/(u) : W* + W) is canonical iff 

(5.l.16) <a,(o/'(u)(o/(u)S))y> + <S,(o/'(u)(o/(u)y))a> + 

+ <y,(o/'(u)(o/(u)a))S> 0 

for all a, S, y E W* and u E W. 

Proof: 

Cl 

The tensor field o/ is canonical if the corresponding (3,0) tensor field _ 

(see Theorem 3.2.4 ii) ~anishes. Substitution of Lo/aB, as given in (l.2.9), 

in (3.2.8) yields that 2 vanishes iff (5.1.16) is satisfied. 

5. L 17 Remark. 

It is easily seen from (S.1.14) and (S.J.16) that antisymmetric operators 

~ : W + W* and o/ : W*+ W , considered as constant operator fields (i.e. 

~(u) and o/(u) do not depend on u) always satisfy (S.l.14) respectively 

(S.1.16). Hence every antisymmetric operator~: W + W* is cyclic (so the 

corresponding two-form is closed) and every antisymmetric operator 

o/ : W* + W is canonical. 

Cl 

The fact that W is a topological vector space has also 

consequences for the relation between semi-canonical and canonical 

symmetries. In section 1.2 we have seen that a closed one-form a on W is 

also exact. The corresponding function F on W such that a ~ dF was given 

in (1.2.12). Of course these results also hold if a (and hence F) depend 

on a parameter (t). In terms of (adjoint) symmetries this means that 

semi-ca:nonical (adjoint) symmetries are ca:nonical (adjoint) symmetries 

and that non-ca:nonical (adjoint) symmetries are non-semi canonical 

Cl 
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(adjoint) syrronetries. So we can omit the prefix "semi" in these notions. 

Finally we make some remarks on the notation and terminology 

in this chapter. In the preceding chapters we used the notation and ter

minology of differential geometry. We shall also do this in this chapter, 

with a few exceptions. If W is infinite-dimensional, the exterior derivative 

of a function (functional) F : W + 1R is the one-form dF(u) = F' (u), as 

introduced in Definition 1.2.10 i).In cases where the duality map between 

W and W* is given by the L2 innerproduct (all our infinite-dimensional 
1 ) h d . • • 1 d d oF ( oF ( u)) . examp es , t e er1vat1ve of F 1s frequent y enote as ou or ~ in-

stead of F'{u). This expression is called the variational derivative of F. 

In all sections except 5.3 and 5.4 we shall use this notation, so dF(u) 
oF 

will be replaced by au • 

The derivative of various parameterized objects with respect 

to the parameter (t) has always been indicated by a dot, for instance 

Y(u,t) =a~ Y{u,t) (derivative of a vector field. to the parameter). However, 

when dealing with partial differential equations, derivatives with respect 

tot (x,y, ••. ) are very often indicated by a subscript t (x,y, ••• ). Apart 

from Sections 5.3 and 5.4 we shall also use this notation. So the derivative 

of a parameterized vector field with respect to the parameter will be written 

as 
a 

Yt(u,t) =at Y(u,t) , 

a dynamical system (Korteweg--de Vries equation) will be written as 

ut = X{u) = 6uux - uxxx 

5.2 THE BURGERS EQUATION 

This equation was used by Burgers [48,49] in 1939 in a model for turbulent 

fluid motion. It is the simplest possible equation which describes both non

linear and diffusion effects. The Burgers equation arises in many places 

in physics, particularly in problems where shock waves are involved (see 

for instance Whitham [32]). We shall study it in the form 

(5. 2. I) X(u) 2uu + u xE.1R. x xx 



116 

Various other forms of the Burgers equation can be reduced to (5.2.1), using 
transformations of the dependent and independent variables. A transformation 
which relates (5.2.l) to the diffusion equation was found in 1950 by 
Hopf [50} and in 1951 by Cole [51] . This so-called Hopf-Cole transformation 
is given by 

(5. 2. 2) f(u) 
a- 1u 

v = e 

v 
(5.2.3) f+-(v) x u = 

v 

The corresponding evolution equation for v is given by 

(5.2.4) f' (u)X(u) X(v) v xx , x E 1R (u 

Various methods are available for solving this linear equation. Suppose 
we take an initial value u0 E S1 (see definition 1.3.2) at t = t0 • Then, 
using the relation with (5.2.4), it can be shown that the corresponding 
solution u(.,t) E S1 fort~ t 0 . Th:refore we shall study (5.2.l) in the 
space S 1 • Define the function space U 1 = U 1 e 1R = { u E C00 ('!_< ) I u (x) 
= v(x) + a, v E U1, a E 1R }. A duality map between S 1 and U1 is given by 

<o.,A> Ja(x) A(x)dx 

Then,similar to theorem 1.3.14, we introduce topologies on s1 and U1 such 
that S* = U 

I I and u~ 

We shall now study synnnetries and adjoint synnnetries for (5.2.J). 

Since we consider (5.2.1) on a topological vector space, a synnnetry Y is 
(can be considered as) a mapping Y: s1 x 1R + s1 which satisfies (5.1.3). 
The derivative mapping of X in the point u is given by 

(5.2.5) X' (u) 

Substitution in (5.1.3) yields 

2 YJu,t) + Y'(u,t) (2uux + uxx) - (2ua + 2ux +a) Y(u,t) O, 

V u E S 1 ,y t E 1R • 
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Two simple solutions of this equation are 

(5.2.6) Y(u,t) =X0 (u) ux and Y(u, t) z0 (u, t) 

Note that indeed x0 : S 1 + S 1 and z0 : S 1 x 1R + S 1• Both symmetries have 

a simple geometrical interpretation. The equation (5.2.1) is invariant for 

translations along the x-axis. If u(x,t) is a solution of (5.2.1), then 

u(x + s,t) is also a solution of (5.2.1) for all£ E 1R. The difference 

between these two solutions is given by 

u(x+s,t) - u(x,t) for £ + O. 

This implies that x0 (u) = ux is a solution of the linearized equation and 

hence a symmetry (see (5.1.9)). The symmetry z0 is related to the scaling 

properties of (5.2.1). It is easily seen that, if u(x,t) satisfies (5.2.1), 

the function au(ax,a2t) also satisfies (5.2.1) for all a E 1R. By setting 

a= I + £ and taking the limit £ + O we find that the difference between 

the two solutions is given by 

2 
(1+£)u((l+s)x, (!+£) t) - u(x,t) s(u(x,t) + xux(x,t) + 

2 
2tut(x,t)) + 0(£ ). 

So Z0 (u,t)=u+xu + 2t(2uu + u ) is a solution of the linearized equation x x xx 
of (5.2.1) and hence a symmetry (see (5.1.9)). 

Recursion operators for symmetries of (5.2.1) can easily be 

found by using the relation with the linear equation (5.2.4). Suppose we 

consider the equation (5.2.4) in some linear space W. An autonomous recursion 

operator for symmetries of (5.2.4) is a linear operator A(v) : W + W, defined 

for all v E W, such that (see (5.1.6) and remark 5.1.11) 

(5.2.7) (A' (v) X(v)) + A(v)X' (v) - X' (v) A(v) 0 V v E W , 

where X(v) = v and X'(v) 
xx 

satisfies this condition. 

a2• It is easily verified that A(v) 
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5.2.8 Remark. 

Symmetries of (5.2.4) satisfy the linearized equation of (5.2.4). Since 

(5.2.4) is a linear equation, symmetries are solutions of (5.2.4). 
Suppose w(x,t) satisfies (5.2.4), then also w (x,t) satisfies (5.2.4). This 

x~ 

mapping corresponds to the recursion operator A= 3. 

D 

Using the transformations (5.2.2) and (5.2.3) we can foY'mally transform A 
to a recursion operator A for symmetries of (5.2.1). By theorem 2.7.6 the 
operator A is given by 

(5.2.9) 

5.2.10 

A(u) 
+ ~ 

f '(v)A(v)f'(u) 

-I 
3 + 3u3 • 

Theorem. 

(v=f(u)) 

-I The operator A(u) = 3 + (lu3 is a recursion operator for symmetries of 
(5. 2. I). 

Proof: 

It is easily seen that A(u) : s1 + S 1• We have to show that A satisfies 

(5.1.6). Since A does not depend on t, this becomes 

(5. 2. l l) (A'(u)X(u)) + A(u)X'(u) - X'(u)A(u) 0 

Recall that the derivative of A(u) in u E S1 is a bilinear operator 
A'(u) : S1 x S1 + S1• Inserting one fixed function A E S1 this derivative 

reduces to the linear operator 

(A'(u)A) =3A3-l 

So the first term of (5.2.ll) is the linear operator 

(A' (u)X(u)) 



Using (5.2.5) the other terms of (5.2.11) can be found. Then a tedious 

computation shows that A satisfies (5.2.11). 

This recursion operator for symmetries was already given by Olver [13]. 

Starting with the symmetries x0 and z0 given in (5.2.6), we can construct 

two infinite series of symmetries 

(5.2.12) k 1,2, 3, .... 

The first few elements of these series are given by 

XO u x 

x1 2uu + u x xx 

(5. 2. 13) x2 3u2u + 3uu + 3u2 + u x xx x xxx 

zo U + XU + 2t(2uu + u ) 
x x xx 

! l 9 

IJ 

2 
+ x(2uu + u ) + 

2 
+ 3uu 3u2 + u ) z1 u + 2u 2t(3u u + xx xx x xxx x x x 

Note that x 1 = X = ut; this symmetry is related to the invariance of (5.2.1) 

for translations along the t-axis. Some properties of the two series of 

symmetries are given in the following 

5.2. 14 Theorem. 

The symmetries Xk and Zk can be written as 

k 0,1,2,. ... 

where rk(u,ux, ••• ) and sk(u,ux, ••• ) are polynomials in u and its first k 

derivatives. 
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Proof: 

The recursion operator J\ can be written as J\ 

This implies 

-j k 
3((l+u)3 . Hence J\ 

5. 2. l 5 

k -] 
3(3+u) a u 

x 
k 3((l+u) u. 

k 
(3+u) u. In the same way we obtain 

k 
3(3+u) XU + 2tXk+l 

k k k-1 
(x3(3+u) + ((l+u) + k3(3+u) )u + 2tXk+J 

Remark. 

The synnnetries Xk are mappings Xk : S 1 + S 1 (vector fields on S 1). So 

we can study the evolution equations 

D 

(5.2.16) k I, 2 ,3,... . 

By formally applying the (derivative of) the transformation (5.2.2) we 

obtain 

f'(u)ut (u 

f' (u)J\k-l (u)X(u) 

(f' (u)J\(u)f+-'(v))k-!f' (u)X(u) 

~k+I 
0 v. 



So, using the Hopf-Cole transformation, we can transform (5.2.16) into 

the linear equation 

(5.2.17) 

Note that (with appropriate boundary conditions) (5.2.17) is a Hamiltonian 

121 

+- R, ooR,2 • system if k is even (k= 2t; ~=a, H(v) = (-1) i j-oo(a v) dx). If k 1s odd, 

say k = 2t+I, then (5.2.17) is an equation of "diffusion type" if R, is even 

and an equation of "anti-diffusion type" if R, is odd. Similar properties 

hold for the corresponding nonlinear equations (5.2.16). 

Cl 

In (5.2.12) we gave two infinite series Xk and Zk of symmetries 

for the Burgers equation. We now consider the various Lie brackets between 

the elements ·Of both. series. One possible way for computing these Lie brackets 

is to transform to the linear equation (5.2.4) and compute the Lie brackets 

of the corresponding symmetries of (5.2.4). This method is possible because 

for the Burgers equation a linearizing transformation (Hopf-Cole) is known. 

However, a straightforward computation using the methods described in Section 

2.6 is also possible. We shall follow this second method. Recall that the Lie 

derivative of the recursion operator A is given by (see (1.2.9)) 

LA/\.(u) = (11.'(u)A(u)) + /\.(u)A'(u) - A'(u)/\.(u) . 

A long computation shows that 

(5.2.18) /\. ' 

and that 

(5.2.19) 
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5.2.20 Theorem. 

The Lie brackets between the elements of the series of symmetries Xk and Zk 
are given by 

0 

k' l', 0, I, 2,... . 

The Lie derivatives of the recurs ion operator for symmetries A are 

k 0' l '2' . . . . 

Proof: 

A simple computation shows that Lf\AA = ALAA for all A(u) E s 1. Hence the 
Nijenhuis tensor of A vanishes. The theorem now follows immediately from 
(5.2.18), (5.2.19), the 'Tileorems 2.6.Jl and 2.6.14 and Remark 2.6.15 (with 
a = 1, b = 2). 

Similar algebra's of symmetries can easily be constructed for the higher 

order Burgers equations given in (5.2.16). 

Next we turn to adjoint symmetries for the Burgers equation. 
The function (functional) 

F(u) J u(x)dx 

is a constant of the motion of (5.2.1). 'Tilis function is differentiable, 

D 

oF ~ oF 6U = l E U1. So o(u) = ou = 1 is an adjoint symmetry of (5.2.1). A recursion 
operator for adjoint symmetries is given by 

r(u) 



Since f(u)a(u) = 0 we cannot construct a series of adjoint symmetries by 

using the recursion operator r. We did not find adjoint syrrnnetries which 

were essentially different from a. 
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Finally we mention that Taflin [53] has shown that in a suit

able function space the Burgers equation can be considered as a Hamiltonian 

system which has an infinite series of constants of the motion. However, 

the used function space is much smaller than the space S 1 which we use. 

Therefore Taflin's result cannot be obtained in S 1• 

5.3 A FINITE DIMENSIONAL LINEAR HAMILTONIAN SYSTEM 

Suppose W is a finite-dimensional (real) linear space with dimension 

2n; so W is isomorphic to 1R 2n. The dual space of W is denoted by W*. 

In this section we shall consider a linear Hamiltonian system on the space 

W. Some general remarks on dynamical systems and Hamiltonian systems on a 

linear space have been made in section 5.1. Let w be a symplectic form on 

W such that the corresponding operator li(u) : W + W* does not depend on 

u. So 

w(A,B) <rl.4,B> V A,B E W, 

where Ii : W + W* is a linear antisymmetric operator. Since w is nondegenerate, 

the operator Ii is invertible. The inverse operator Ii+ : W* + W is also a 

linear antisymmetric operator. Suppose H : W + JR. is a homogeneous quadratic 

function. Then there exists a unique symmetric operator H : W + W* such that 

H(u) !< H u,u > . 

The corresponding one-form is dH(u) = H u. Then the Hamiltonian system on 

the symplectic space (W,w) with Hamiltonian H is given by 

(5. 3. l) u Ii+ H u. 

With X lt+H W + W, this system can also be written as 

(5 .3 .2) X(u) Xu. 
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In Theorem 3.4. l we described a variational principle for a Hamiltonian 

system. At first sight this theorem provides us with a variational principle 

on a neighbourhood U0 of some point u0 E M = W. However, in this case 

the manifold M is a linear space. This means the second cohomology group 

of M vanishes, so every closed two-form is exact. Hence the one-form a, 

such that w = -da, exists on the whole space M = W. It is easily seen that 

a(u) =-!Du. Then (similar to Theorem 3.4.1) a solution ~(t) of (5.3.1) 
is a stationary point of 

(5.3.3) 
t2 

f O<Du,u> - !<Hu,u>) dt 
t] 

over the set of all curves u(t) in W with u(t 1) = ~(t 1 ) and u(t2) = ~(t2 ). 
Note that for every inital value u(t0 ) = u0 E W the differential 

equation (5.3. l) has a unique solution u(t) E W which exists for all t E 1R 

u( t) 

This suggests that a finite-dimensional linear Hamiltonian sustem is com

pletely integrable. The complete integrability of such a system has already 

been proved by Williamson [65]. A different proof has been given by Kocak 
[71]. 

In the remaining part of this section we shall first consider 

constants of the motion, (adjoint) symmetries and operators between those 

symmetries for the Hamiltonian system (5.3.1). The existence of these 

objects turns out to be related with the existence of operators ::: which 

satisfy the condition (5.3.5). Then we shall make some remarks on the 

space of operators satisfying (5.3.5). Finally we show how the theory 

described in section 4.5 , can be applied in this example. 

Suppose F: W + TR.is a homogeneous quadratic function. Then 

there exists a symmetric operator :::: W + W* such that 

(5 .3 .4) F (u) <::: u,u> 

The function F is a constant of the motion if L;(F 
This means 

-<--" 
<:::!;6 Hu,u> 0 Vu E W • 

<dF,X> 0 on W. 



+~ 

This condition is satisfied iff 3Q H is an antisynnnetric operator. Since 

3 and H are synnnetric and n+- is antisynnnetric, this is equivalent to 

(5. 3 .5) 
+- - + 

3Q H - Rn 3 0 . 

This condition can also be written in the following two equivalent ways 

(5.3.6) 0 

and 

(5.3.7) 0, 

where [.,.1 is the aommutator of two linear operators. The linear space 

of operators 2 : W + W* which satisfy (5.3.5) will be denoted by E. The 

canonical adjoint synnnetry and the canonical synnnetry, corresponding to 

the constant of the motion (5.3.4) are given by p(u) = dF(u) = 2u and 

Y(u) = Q+-dF(u) = Q+-2u. The Poisson bracket of two constants of the motion 

Fi(u) = ~ <2i u,u> (i = 1,2) is easily found to be 

(5.3.8) 

Thus we have proved 

5.3.9 Theorem. 
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The function F, defined by (5.3.4) , with 2 a synnnetric operator, is a 

constant of the motion iff 2 satisfies (5.3.S). The corresponding canonical 

(adjoint) symmetries are given by p(u) = dF(u) = 2u and Y(u) = Q+-dF(u) 

= Q+-2 u. The Poisson bracket of two homogeneous quadratic functions 

Fi(u) = ! <2iu,u> is given by (S.3.8). It is again a homogeneous quadratic 

function, corresponding to the symmetric operator 21n+-22 - 22n+-31• 

a 

Next we study (adjoint) symmetries for (S.3.1). 

Note that for all linear operators 2: W + W*, p(u) = 2 u is a one-form 

on W. This one-form is an adjoint synnnetry if it satisfies (5.1.4). For a 
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one-form of this type this condition becomes (see also remark 5.l.12) 

(5.3.10) -X+ X*2=0. 

Since x*= - HQ+, this condition is equivalent to (5.3.5). Of course, in this 
case 2 is not necessarily symmetric. Suppose Y : W + W is a linear 
operator. The vector field Y(u) = Yu is a symmetry if it satisfies (5. l .3). 
For a vector field of this type this condition becomes 

(5. 3. 11) [X, Y] 0 • 

+-By setting Y= ~t 2 we obtain again condition (5.3.5) for-· Adjoint symmetries 
of the form P(u) = :O:u and symmetries of the form Y(u) Yu [t:O: u we shall 
call linear (adjoint) syrrorietries. The manifold W is a linear space, so its 
first cohomology group vanishes. This implies (see section 5. !) that canonical 
and semi-canonical (adjoint) symmetries are identical. It is easily seen 
that the linear (adjoint) symmetries above are canonical iff the operator -
is symmetric. The corresponding constant of the motion is then F(u) = 

~ <3u,u> . Also a simple calculation shows that the Lie bracket of two 
linear symmetries Yi(u) +-

Yiu= Q 3iu (i=l,2) is the linear symmetry 

(5.3.12) 

Note that the first square bracket is the Lie bracket of two vector fields, 
while the second square bracket is the commutator of two linear operators. 
We summarize the results concerning linear symmetries in the following 

5 .3. l 3 Theorem. 

The following three conditions are equivalent: 
i) the linear operator _ W + W* satisfies (5.3.5), so_ EE, 
ii) the one-form p(u) = - u is a linear adjoint symmetry, 
iii) the vector field Y(u) Yu = Q+-~ u is a linear symmetry. 
These synnnetries are canonical iff ~ is a symmetric operator. The corresponding 
constant of the motion is given by F(u) ~<2 u,u> . The Lie bracket of two 
linear synnnetries Yi(u) =Yiu (i=l,2) is the linear symmetry y3 given in 
(5.3.12). 
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The conditions for the four possible operators between (adjoint) 

symmetries are also easily derived. Consider the linear operator A : W + W. 
This linear operator is a recursion operator for symmetries if it satisfies 

(5.1.6). Since A does not depend on u and t, this implies 

(5. 3. 14) 

This relation is also easily obtained from (5.3.11). 

Since n+ is invertible, we can set A = n+3. Then the operator 3 : W + W* 
has to satisfy (5.3.5). The conditions for recursion operators for adjoint 

symmetries and for AS- and SA operators can be derived in a similar way. 

We summarize them in the following 

5.3.15 Theorem. 

Suppose = : W + W* is a linear operator. Then the following conditions 

are equivalent: 

i) A n+= :W + W is a recursion operator for symmetries, 

ii) r =n+ :W* + W* is a recursion operator for adjoint symmetries, 

iii) - is an SA operator, 

iv) 'I' W* + W is an AS operator, 

v) _satisfies (5.3.5), so_ EE • 

If - is antisymmetric, it is a cyclic operator and 'I' is a canonical operator. 

Proof: 

We showed already that i) and v) are equivalent, In a similar way it can be 

shown that each of the conditions ii), iii) and iv) is equivalent with v). 

The fact that antisymmetric operators = : W + W* are cyclic and antisymmetric 

operators 'I': W* +Ware canonical was already explained in remark 5.1.17. 

c 
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In the preceding part of this section we have discussed 
constants of the motion, (adjoint) symmetries and several operators between 
those symmetries. It is important to note that these objects not necessarily 
are of the considered type. For instance there may exist non-quadratic 
constants of the motion and symmetries which are not linear. The existence 
of objects of the discussed type was always related to the existence 
of a linear operator W-+ W*, which satisfies (5.3.5). We shall now 
make some remarks on the linear space E of operators ~ satisfying this 
condition. The following theorem describes some elementary properties 

of the space E. 

5 .3. 16 Theorem. 

i) E is a Lie algebra; if ::: 1, :=;2 EE , then also 

'°3 

The set of symmetric operators ::'. E E is a subalgebra of E. This 
subalgebra is isomorphic with the Lie algebra of homogeneous quadratic 
constants of the motion. Further, if :: 1 and ~ 2 are both antisymmetric, 
:=; 3 is symmetric. If one of~!' ~2 is symmetric and the other is 
antisymmetric, ~ 3 is antisymmetric. 

iii) If _ E E, then also ;o• E E . 

0 

It is easily seen that HEE and Q E E. So E always contains a symmetric 
operator and an antisymmetric operator. The fact that HEE gives rise 
to the following 

5. 3. I 7 Corollary. 

Suppose ;o 1 E E. Then ;o 2 = :: 1 Q+~ EE. If ::: 1 is symmetric (antisymmetric), 
;o 2 is antisymmetric (symmetric). 

D 
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Using this corollary we can construct the following series of elements of E 

(5.3.18) 
~ A ..,.- - -<--- 2 

rt, H, Hrt H, H (rt H) , ... 

Note that the operators in this series are alternately antisymmetric and 

symmetric. 

Suppose ~I is an an:isymmetric element of E . If ~I is 

invertible, the closed two-form w, defined by 

w(A,B) 

+--
is nondegenerate. By corollary 5.3.17 ~ 2 = ~ 1 rt His a symmetric element of 

E . Hence H(u) = ! < ~ 2u,u> is a quadratic constant of the motion. Then the 
differential equation (5.3.2) can also be considered as a Hamiltonian system 

on the symplectic space (W,w ) with Hamiltonian H: 

(5.3.19) 

The variational principle corresponding to this Hamiltonian form of (5.3.2) 

is easily found (see also (5.3.3)). Suppose u(t) is a solution of (5.3.2) 

(or (5.3.19). The the curve u(t) in W is a stationary point of 

(5.3.20) 

over the set of all curves u(t) in W with u(t 1) = u(t 1), u(t 2) = u(t2)· 

If ~ 1 # a rt for some a E 1R , the two ways (5. 3. I) and (5. 3. 19) of writing the 
differential equation (5.3.2) as a Hamiltonian system are essentially 

- +-
different and the system is bi-Hamiltonian. If the operator X = rt H is 

invertible, we can also start with an invertible symmetric operator 
- --1 ~ 2 E E. Then ~I = ~ 2 X is an antisymmetric element of E and we can 
write the system again as (S.3.19). So, in the case X is invertible, any 

quadratic constant of the motion H(u) = <~2u,u>, with !:! 2 invertible, can 

be considered as Hamiltonian. The corresponding symplectic form is then 

w (A ,B) Y A,B E W. 
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Note that if ~ 1 is an invertible symmetric element of E, we can write 

(5.3.2) also as 

ti 
_-J ........ 
~I ~l S"l Hu 

In this expression ~ 1 is symmetric and ::; 2 is antisymmetric! 

Next we consider a basis for the Lie algebra E. Recall ((5.3.5) 
and (5 .3 .6)) that :;: E E iff the operator Y = Q+:; is a commutator of 

+~ 

X = Q H. 

5.3.22 Theorem. 

Suppose X +-
0, H is invertible.Then a basis for E consists of the same 

number (=k) of symmetric and antisymmetric operators. So the dimension 

of the subalgebra of symmetric operators of E is half the dimension of 

the Lie algebra E 

Proof: 

Suppose the operators ~I' .•. , w£ form a basis for E. Define the symmetric 

and antisymmetric parts of w. by w: = ~(w. + w~) and w~ =!Cw. - w~ ). i 1 i i i 1 i 
Then by theorem 5.3.16 iii) these (anti)symmetric operators are also 

elements of E . Clearly any element :; of E can be written as a linear 

combination of the 2£ operators W~ (i=l, •.• ,£). We can reduce this set to 
i 

a new basis ::;: 1, ... , :;:£ of E, which consists only of symmetric or anti-

symmetric operators. Suppose :: 1 , ... , ~k are symmetric and ~k+I' ••• , ~£ 
+-are antisymmetric operators. By corollary 5.3.17 the operators :'..S"l H 

- i 
(i=l, •.. , k) are antisymmetric. Since X S"l+H is invertible, these 

operators are linearly independent. Hence £ - k ~ k. In a similar way we can 
show £ - k ~ k. So £ = 2k and the basis :'.i consists of k symmetric and 

k antisymmetric operators. 

0 

The symmetric operators :'.i(i=J, ... ,k) give rise to k quadratic constants 

of the motion Fi (u) = ~ <~i u, u> . Every operator :'.i (i= I, ... , 2k) gives rise 

to a "bilinear constant of the motion". By this we mean a bilinear function 
G: W x W->- 1R such that for every pair of solutions u(t), v(t) of (5.3.1), 
the function G(u(t), v(t)) is constant. These "bilinear constants of the 
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motion" are given by 

(5 . 3. 23) i l '2' .•• ' 2k. 

Note that G.(u,u) = F.(u) for i =I, ... ,k and Gi.(u,u) = 0 for i = k+l, ... ,2k. 
]_ ]_ - -

If all the eigenvalues of X = Q+H are different, a basis for the 

space of operators which commute with X,is given by { ~ili=O,l, ... ,2n-l} . 

The corresponding basis for Eis {Q~il i = 0,1, •.• ,2n-J} . So in that case 

a basis for E consists of n symmetric operators 

(5.3.24) 
- +- 2 - +- 2n-2 

H, H(Q H) , ... , H(Q H) , 

and of n antisymmetric operators 

(5 .3.25) 

If X has eigenvalues which are degenerate, the dimension of the space of 

operators,which commute with X, is higher then 2n(2k > 2n). A basis for E 

is then more complicated then the basis given (5.3.24) and (5.3.25). 

We shall now show how the theory described in chapter 4, can 

be applied to the linear Hamiltonian system under consideration. In 

particular we shall construct an infinite series of constants of the 

motion, using the method described in Section 4.5. In Theorem 4.2. 13 we 

have seen that with a non-semi-canonical symmetry Z corresponds an SA 

operator L Q. For a linear symmetry of the form Z(u) = Q+~ u (~EE), this 
z 

SA operator is given by 

(5.3.26) 

The higher derivatives L~~ are also SA operators. For k 2 we 

obtain 

(5.3.27) 

In section 4.5 we considered the relation between the two SA operators 

L~Q and (LzQ)Q+Lz n. In that section we have assumed that Hypothesis 4.5.2 
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is satisfied, i.e. there exists a non- (semi-) canonical symmetry Z such 

that 

for some c E IR with c # (k - ) /k , Vk E IN • 

In this case this condition becomes 

(5.3.28) 

It is easy to see that every antisymmetric operator '.'. satisfies (5. 3.28) 

with c = l. The theory, described in Section 5 of the preceding chapter, 
leads to the following 

5.3.29 Theorem. 

+ 
Suppose Z(u) = II :'.u is a non-(semi-)canonical synnnetry with .~ antisymmetric. 
Then the adjoint symmetries defined by 

(5.3.30) ok+l(u) k O, I, 2 , .,. , 

are canonical. The corresponding constants of the motion are given by 

(5.3.31) ( ) - I (;:; ·+-) k Fk+l u - 2< -~ Hu, u > 

These constants of the motion are in involution. 

Proof: 

Since - is antisymmetric, Hypothesis 4.5.2 is satisfied with Z(u) = ~+~ u 
and c 1. The first cohomology group of W vanishes (see also section 5.1). 
So this theorem is a straightforward consequence of Theorem 4.5.ll iii). 

5.3.32 Remark. 

A straightforward 

Define :: 1 = i:i and 

:'.k E E . Since :'.k 

0 

theorem can be given in the following way. 

Then by theorem 5.3.16 ii) the operators 

and ::'. is antisymmetric, the operators are 
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also antisymmetric. Then, by corollary 5.3.17, the operator ~kQ+~ is a 

symmetric element of E. Hence ak+l'defined in (5.3.30), is a canonical 

adjoint symmetry. It is easily seen that the corresponding constants of the 

motion, given in (5.3.31), are in involution. 

D 

It is important to note that the alternative proof of theorem 5.3.29 , given 

in the preceding remark, depends essentially on the fact that we consider 

a linear equation in a linear space. However, the methods described in 

chapter 4, can also be applied to a nonlinear equation on an arbitrary 

manifold. 

Theorem 5.3.29 can only be applied if a non-canonical symmetry Z(u) = Q+_ u 

(so ~ E E) with ~ antisymmetric, is known. A simple example is given by 
+-

- HQ H. Then the constants of the motion Fk are found to be 

(5.3.33) Fk+l (u) 
- + 2k~ 

<(HQ ) Hu,u > k 0, 1, 2,. ... 

Note that these constants of the motion correspond to the symmetric operators 

of the series (5.3.18) and that the first n constants correspond to the 

operators given in (5.3.24). It is a simple exercise to show that 
k -k 

Fk+l(u): (-1) H(X u). Note that if u(t) is a solution of (5.3.1), then 

vk(t) = Xk u(t) is also a solution of (5.3.1). Hence Fk+l(u(t)) = (-J)k· 

H( vk ( t)) . So the constant of the motion Fk is, up to the sign, equal 

to the Hamiltonian, evaluated for a transformed solution. 

Finally we remark that, since M = W is a finite-dimensional 

linear space, the series Fk (k = 1,2,3, •.• ) given in (5.3.31) or (5.3.33) 

cannot be analytically independent (see also Remark 4.5. 13). For instance, 

if all the eigenvalues of X = ~+H are different, only the first n constants 

of the motion given in (5.3.33), are analytically independent. 
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5.4 THE KEPLER PROBLEM 

The Kepler problem is a simple example of a finite-dimensional completely 
integrable Hamiltonian system. It is well suited to illustrate several as
pects of the theory described in the preceding chapters. In this section we 
shall dis cuss constants of the motion, (adjoin t) symmetries and the various 
operators between these symmetries for the Kepler problem. 

The configuration space of the two--dimensional Kepler problem 
is Q = 1R2\{0}. On IR2 we take the standard basis; the coordinates with 
respect to this basis we call q 1 and q2 . The phase space is M = T*Q = 

= IR2\{0} x JR 2 , with natural coordinates q 1, q2 , pi' Pr Note that a closed 
one-form on M is not necessarily exact, so the first cohomology group of M 
does not vanish. 

5. 4. l Remark. 

Formally an atlas for Q and also for T*Q must consist of (at least) two 
charts. However, we shall use the more customary coordinates p;iven above. 

The standard symplectic form on M is then w 

the function H : M ->- 1R by 

(5 .4 .2) 

The Hamiltonian system with Hamiltonian H on the symplectic manifold (M,w) 
is then 

cjl P1 

cj2 P2 

(5.4.3) 

Pi 
ql 

( 2 ) 3/2 
ql + q2 

P2 
qz 

( 2 2) 3/2 
q I+ qq 

D 
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These equations describe the motion of a unit-mass in the Q-plane which is 

attracted by a fixed centre in (O,O) with a force which is inverse propor

tional to the square of the distance to the centre. The solutions of this 

system are well known. We shall restrict ourselves to periodic solutions, 

which means that we only consider solutions with H < O. So instead of M 
we now take the phase space M = { (q 1 ,q2,p 1 ,p2) E MI H(q 1 ,q2 ,p 1 ,p2) < O} • 

Of course we can also consider w as a symplectic form on M and H as a 

function on M. 
Several constants of the motion of the Hamiltonian system 

(5.4.3) are known. Besides the Hamiltonian H there are the constants of the 

motion: 

L 

(5.4.4) FI PzL -
qi 

2 2 I 
(q I + q2) 2 

F2 -plL -
q2 

2 2 I 
(q1+q2)~ 

The function Lis the angular momentum of the system. The two functions F 1 
and F2 are the two non-zero components of the Runge-Lenz vector (sometimes 

called Laplace-Runge-Lenz vector). 

5.4.5 Remark. 

3 In vector notation in the Euclidian 1R the angular momentum L is the length 

of the angular momentum vector 

The Runge-Lenz vector is then given by 

F 

[J 
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The Poisson brackets between these constants of the motion are found to be 

{L,H} 0 {FI ,H} 0 0 ' 

(5.4.6) 

Of course the four constants of the motion H, L, F 1 and F2 must be analyti-· 
cally dependent: The existence of four analytically independent autonomous 
constants of the motion for a system with a four-dimensional phase space 

would prohibit any evolution of the system. Indeed a simple computation 
shows that 

F~ + F~ 

This suggests to define a cons taut of the motion F by taking the polar-angle 
of the point (F 1,F2 ) in the (F 1,F2 ) plane. So 0 :<; F < 2n. For F 1 > 0 and 

F 2 > 0 we have F = arctan (;~). Note that, although F is discontinuous on 
the positive F 1 axis, its differential 

dF - 2--2 (F 1dF 2 -F2dF 1) 
F F-1 + 2 

is a smooth one-form on M. 
We now try to find a constant of the motion G which is analytically indepen
dent of H, L and F. This is only possible if G depends explicitly on t. 
Define the function K1 on M by 

l 
(5. 4. 8) -(plql +p2q2)(-2H)2 - sgn(plql +p2q2)arccos K2 , 

where 

(5.4.9) 

(K 1 is related to one of the action-variables of the Kepler problem.) It is 
easily seen that K1 is discontinuous at places where p 1q 1 + p 2q 2 = 0 and 
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K2 # I. Substitution of p 1q 1 + p2q2 = 0 in (5.4.9) yields K2 = 
= sgn((q~+q;)~ - 12). This implies that, when passing the submanifold 

p 1q 1 + p2q2 = 0 at a place where (q~+q;)! < 12 , the function K1 jumps by 

oK 1 = 2TI. Note that this means that the corresponding one-form dK 1 is 

smooth everywhere on M. A simple computation shows that {K 1,H} = (-2H) 312 

This implies that G = K1 - (-2H) 3/ 2t is a constant of the motion. A lonp, 

computation shows that 

(5.4.10) dH A d1 A dF A dG 

So H, 1, F and G are a set of four analytically independent constants of 

the motion. 

5.4.1 I Remark. 

The constants of the motion F and G are not continuous everywhere on M. At 

certain places F and G jump by 2TI. Of course we can also consider F and G 

as continuous "multivalued functions" on M. Note that the corresponding 

adjoint synnnetries dF and dG are smooth (single-valued) one-forms on M. 
Two continuous (single-valued) constants of the motion are given by sin(F) 

and sin(G). 

The adjoint symmetries corresponding to H, 1, G and F will be denoted by 

(5.4. 12) dH , d1 , dG , 

CJ 

By construction pi and p2 are canonical adjoint synnnetries. It is easily 

verified that dp 3 = 0 and dp 4 = 0, so p3 and p4 are semi-canonical adjoint 

synnnetries. Since it is not possible to write p3 = dG and p4 = dF for smooth 

(single-valued) functions F and G on M, the adjoint synnnetries p3 and p4 
are not-canonical. The corresponding synnnetries will be denoted by 

+ 
Xi = n pi (i = 1,2,3,4). So x1 and x2 are canonical synnnetries, while 

x3 and x4 are semi-canonical synnnetries which are not canonical. 
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5 .4. 13 Remark. 

The situation as described above appears in any completely integrable 

Hamiltonian system (see Section 3.6). For such a system there exist cano··· 

nical coordinates q., p., such that the Hamiltonian depends only on the Pi·· ~ ]_ ]_ 

The qi are coordinates on a torus, so they jump by 2rr at certain places 

(or they are "multivalued-functions, this depends on the point of view). 
~ ~ 3H 

The functions p. and q. - t-;;=- are 2n constants of the motion. Note that ]_ ]_ ~ opi 
the adjoint symmetries dp. are canonical while the adjoint symmetries 

]_ 

dq. - td ~ are only semi-·canonical. ]_ dlJi 

In addition to the Poisson brackets given in (5.4.6) we mention that 

(5. 4. 14) 

{G,H} <p 3'X I> (-2H)3/2 ' 

{G,L} 0 

It follows from (5.4.10) that the symmetries X. (i = I,2,3,4) 
]_ 

are linearly independent at every point of M. This means that every other 

symmetry of the Kepler problem can be expanded in these four symmetries. 

the symmetry which is related to the scale rule 

0 

As an example we consider 

of the Kepler problem. It 

is a solution of (5.4.3), 

also a solution for every 

is easily verified that if (q 1(t),q2 (t),p 1(t),p 2 (t)) 
-2 3 -2 3 3 3 then (k -q 1 (k t) ,k q 2 (k t) ,kp 1 (k t) ,kp2 (k t)) is 

k E 1R. By setting k = l + E and taking the limit 

for E + 0 we obtain an infinitesimal transformation of a solution into 

another solution. This yields the symmetry 

(5 .4. 15) y d d d 3 -2q l - 2q2 - + p I - + P2 -, - + 3tXI • aq] ciq2 :Jpl op2 

The corresponding adjoint symmetry is 

(5. 4. 16) o = stY 
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A simple computation shows that 

(5.4.17) do = -w 

which means that Y(cr) is a non-semi-canonical (adjoint) symmetry. By setting 
4 Y =Li.=! G.X. and computing the contractions with p. (j = 1,2,3,4) we obtain 

l. l. J 
a system of linear equations for the G .• This finally results in the expansion 

l. 

and 

(5.4.18) CJ 

Recursion operators for symmetries and for adjoint symmetries 

are also easily constructed (see also Section 2.5). The most general recur

sion operator for adjoint symmetries is given by 

4 
r l 

i,j=l 
G •• p. ® X. 

l.J l. J 

where the G .. are constants of the motion. For instance 
l.J 

is a recursion operator for adjoint symmetries such that 

r dH = p 2 = dL , r2dH = o . 

In a similar way we can construct recursion operators for symmetries and 

SA- and AS operators. From (5.4.17) and (5.4.18) we obtain that 

For the corresponding SA operator n this yields 

The inverse AS operator n+ can be written as 
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5.5 THE BENJAMIN-ONO EQUATION 

Internal waves in a stratified fluid with infinite depth can be described 

by the Benjamin-Ono (BO) equation [55,56]. In fact the BO equation can be 
considered as a limit of a more general equation, which describes internal 
waves in a stratified fluid with finite depth. In the deep water and shallow 
water limit this equation reduces to the KdV-respectively the BO equation. 
We shall consider the BO equation in the form 

(5 .5. l) 2uu + Hu 
x xx 

where H is the Hilbert transform 

Hu(x) 
p 

TT 
Joo u(y) dy 

y-x 

x E 1R , 

(principal value integral) . 

Multi-soliton solutions of this equation have been found by Matsuno [59] 
and by Chen, Lee and Pereira [60] . A single soliton solution with velocity 
- c has the form 

(5.5.2) u(x, t) 2c 
c > 0. 2 2 

l+c (x+ct) 

We shall consider the BO equation in the space S (O < p < I) with dual space p 
U . Clearly the soli~on solution given in p (5.5.2) is an element of S . 

p 
In theorem 1.4.10 we have proved that the Hilbert transform can be considered 
as a linear antisymmetric operator H : S ~ LI • Several other properties of p p 
Hare given in section 1.4. An infinite series of constants of the motion 
of the BO equation has been constructed by Nakamura [61] and by Bock and 
Kruskal [62] . The first elements of this series are 

(5.5.3) 

F~ (u) = f'udx 

l 
3 

l 
4 

r=(u3 3 H ) d J + 2'1 ux x, 

00 4 2 f (u +3u Hu 
x 

-00 

foo 

2 
2 

u dx , 
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It is easily verified that the BO equation can be written in the form 

oFO 
2 

(5. 5. 4) () 
3 a (u Hu ) ut + 

OU x 

So we can consider the BO equation as a Hamiltonian system with Hamiltonian 

F~ and canonical operator <l. A simple calculation shows that the BO equation 

can also be written in the form 

(5. 5. 5) '!' (u) (~ ua +~au+ aHa)u 

2 2 
However, the antisymmetric operator 'l'(u) = 3" u<l + 3" 3u + aHa : UP -->- SP is 

not canonical. Hence (5.5.5) is not a (semi-) Hamiltonian form of the BO 

equation. 

5.5.6 Remark. 

The Korteweg-de Vries equation can be written in two forms ((5.6.6) and 

(5.6.15)),whichstrongly resemble (5.5.4) and (5.5.5). One of these forms 

is Hamiltonian and the other is semi-Hamiltonian. Then the corresponding 

SA- and AS operators can be used to construct a recursion operator for 

(adjoint) symmetries of the Korteweg-de Vries equation. Since (5.5.5) is 

not a (semi-) Hamiltonian system, this construction is not possible for 

the BO equation. 

It is remarkable that for the BO equation there also exist 

infinite series of constants of the motion which can only be expressed in 

terms of densities which depend explicitly on x and t. First define the 

following functions (functionals) 

I _ I f 2 C2 (u) - Z XU dx , 

(5. 5. 7) 

and also 

2 _I 2 2 
C/u) - 2 fx u dx, 

on S . 
p 

cl 
3 

1 f 3 3 3 x(u + 2 uHux)dx, 

_31 f 2( 3 3 H )d x u + 2 u ux x, 

D 
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(5.5.8) 
2 J 2 4 2u2Hu - 2uu Hu + 

2 c4 (u) x (u + 2ux)dx x x 

Then a long computation shows that 

I F2(u,t) I c2 (u) 
0 

+ 2tF3(u) 

(5. 5. 9) 
I F3(u,t) I c3 (u) 0 

+ 2tF4 (u) 

and also 

2 F2(u,t) 2 c2 (u) I 
+ 4tC3 (u) 2 0 

+ 4t F4 (u), 

(5 .5. 10) 
2 F3(u,t) 2 c3 (u) I 

+ 4tC4(u) 2 0 
+ 4t F5 (u), 

2 F4 (u,t) 2 c4 (u) I 
+ 4tC5 (u) 

2 0 
+ 4t F6 (u) 

are constants of the motion of the BO equation. In these expressions F~ 
0 and F6 are the following two constants of the motion of the series whose 

first elements are given (5.5.3). Further c;(u) is an expression of the form 

given in (5.5.7) (C~(u) = ~ Jcxu5 + ••• )dx). We do not give the very lengty 

expressions for F~, F~ and CS explicitly. The canonical symmetry corresponding 

to the constant of the motion F 1 is given by 
2 

. I 
I oF2 

x =Cl-
2 OU 

2 
This symmetry is related to the scale transformation u(x,t) + au(ax,a t) 

of the BO equation. By taking the repeated Poisson brackets of the constants 

of the motion given in (5.5.3), (5.5.9) and (5.5.10) (and of already 

constructed elements) we can generate an infinite-dimensional Lie algebra 

of constants of the motion for the BO equation. However some care is necessary 

in this construction. The variational derivatives of c 2 and c2 are given by 2 3 

2 
x u 

oc2 
3 

OU 

2 2 3 2 3 2 
x u + z x Hux + 2 H(x u)x. 
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2 6C 2 
For u E s we have E U but 

2 t. u . Also Hu = Cl Hu E S XU x u 
p p 6u 

p x x p 

(see section 1. 4)' so xHu E U but x2Hu i u In a similar way we can show 
x p x p 

3 2 6C2 
c2 cz that t. 3 t. 2 H(x u)x u Hence u . So formally and are not 

p 
6u 

p 2 3 

differentiable in the choosen topology. This means that Poisson brackets 
2 2 

between F2, F3 and other (differentiable) constants of the motion may not 

exist. To avoid these problems we generate a Lie algebra E of constants of 

h · f ( ) · · h { 0 0 l I 2} t emotion o 5.5. I starting wit F2, F3 , F2 , F3 , F4 

Next we 

The leading terms of 

make some remarks on 

the constants of the 

the structure of this Lie algebra. 

motion F~ given in (5.5.3), 

(5. 5. 9) and (5. 5. 10) are 

Lk (u) 
I 

9, I 

It is easily seen that 

(5. 5. 11) {Lr L~} 
s' J 

of the form 

J xku9,dx. 

(i(s-1) -r(J'-J))Lr+~-l 
s+J-2 

k 
This means that there.can be several methods to construct L9, using Poisson 

bracket of elements L: with "lower orders". Hence it may be possible to 
J 

generate distinct constants of the motion of the algebra E which have the 

same leading term L~ . For small values of k and 9, it can be verified that 

elements of E whi~h have the same leading term L~ are identical. We 

conjectu:r>e that this also holds true for the other elements of E. In that 

case a constant of the motion with leading term L~ is uniquely determined. 

We shall denote this constant of the motion by F~. Then, similar to 

(5 .5. 11) 

(5. 5. 12) {Fr F~} 
s' J (i(s-1) - r(j-l))F~:~=; 

If the conjecture mentioned above is correct, we can also generate an 
k .. 0 0 O O I I 2 

algebra {C9,} , starting with {c2 = F2, c3 F3 , c2 , c 3 , c4} . Then it can 

be shown (see Broer and Ten Eikelder [58] ) that 
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In any case we can construct an infinite series of constants 

of the motion FO by 
k 

(5.5.13) k-1 

If the Poisson bracket of the FO with FO vanishes, we obtain 
k 4 

(5. 5. 14) - {Fko' c31} k-1 

Then the corresponding symmetries satisfy 

(5.5.15) 
oC 1 

[A 3
1, XO J with A 1 = a-3 

k-T k 3 OU 

This relation has been used by Fokas and Fuchssteiner [63] to generate 

an infinite series of symmetries and corresponding constants of the motion 

for the BO equation. However, since all symmetries in this relation are 

canonical, there is no reason to work with symmetries instead of the 

corresponding constants of the motion (see also Theorem 4.4.9). Moreover 

a straightforward construction of the constants of the motion using (5 .5. lif) 

also avoids the problem of showing that the symmetries constructed in (5.5.15) 

are canonical. Note that (5.5.14) and (5.5. 15) are only correct if 

{F~, F~} = 0 for k ~ 3. This holds if the series F~ is in involution. This 

last property is often mentioned in the literature, but as far as we know 

a correct proof bas not yet been given. To our opinion the proof given by 

Fokas and Fuchssteiner [63] is incomplete. If the conjecture mentioned above 

turns out to be correct, it follows immediately from (5.5.12) that the 

series FO is in involution. 
k 

Non-canonical symmetries for the BO equation are easily con

structed. For instance 

z 

is a non--canonical symmetry. The corresponding SA operator L2r:i is found to 
-] + 

be (r:i = 3 , r:i = a) 
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(5 .5. 17) 

0 I 0 
oF 4 oF 3 oF 3 oF 4 

(L2rl)A = <- A> - - <- A> -
OU ' OU OU ' OU 

+ . 
for all A(u) E SP. Then A = Q LZQ = a LzQ is a recursion operator for 

symmetries. However, non-canonical symmetries of this type do not satisfy 

the condition given in Hypothesis 4.5.2. Hence we cannot use the method 

of Section 4.5 to generate an infinite series of constants of the motion 

in involution. 
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5.6 THE KORTEWEG-DE VRIES EQUATION. 

During the last decennium the Korteweg-de Vries (KdV) equation has become 

one of the most discussed equations of mathematical physics. The equation 

was derived by Korteweg and de Vries in 1894 [6, 7] for describing long 

water waves in one direction in a canal. Korteweg and de Vries described 

periodic solutions (cnoidal waves) and solitary wave solutions of the 

equation. Solitary waves were already reported by Scott Russell [26] in 

his famous ride along a channel. His report is quoted in many books on 

solitons, see for instance Bullough and Caudrey [27] . For a long time the 

Korteweg-de Vries (KdV) equation gained only limited attention in hydro

dynamics. Interest in the equation increased enormously in the sixties. 

In 1965 Zabusky and Kruskal [28] obtained numerical evidence for the 

remarkable result that two solitary waves, after their interaction, 

assume again their original shape. Gardner, Greene, Kruskal and Miura [19] 

showed in 1967 how the initial value problem for the KdV equation on the 

real line, with fastly decaying initial value for [x[ + 00 , could be solved. 

The method they used has become known as "inverse scattering". In 1968 

Lax [29] found an infinite series of "higher order KdV equations", which 

all can be solved by this method. These higher order KdV equations are 

directly related with the infinite series of constants of the motion of 

the KdV equation, found by Miura, Gardner and Kruskal [30] in the same year. 

The Hamiltonian character of the KdV equation was pointed out by Gardner [JI] 

and later by Breer [!OJ • After this numerous other papers on the KdV and 

related equatio~s appeared. We mention only the work of Wahlquist and 

Estabrook on prolongation structures [3!] and the paper of Zakharov and 

Faddeev [24] , in which they show that the KdV equation can be considered 

as an infinite-dimensional completely integrable Hamiltonian system. 

The KdV equation has also been derived in several physical situations, 

see for instance Whitham [32] or Su and Gardner [33] . 

Of course we shall not give many new results on the KdV 

equation. In this section we consider symmetries of the KdV equation. 

Besides the well-known series of symmetries which correspond to the higher 

order KdV equations, we shall describe another infinite series of symmetries. 

These symmetries depend explicitly on x and t. They are well suited to 

illustrate the theory described in chapter 4. Using this second series of 
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symmetries we describe several methods for constructing the constants of 

the motion. One of these methods is a very simple recursion formula for the 

constants of the motion themselves (i.e. not for their gradients (= adjoint 

symmetries) or corresponding symmetries). We also show that every constant 

of the motion of the infinite series can be considered as a Hamiltonian for 

the KdV equation. The corresponding (weak) symplectic forms are explicitly 

given. Then we make some remarks on the symmetries which appear in the 

inverse scattering method. We end this section with some remarks on the 

higher order KdV equations. 

In this section we consider the KdV equation in the form 

(5. 6. I) X(u) 6uu - u x E 1R • 
x xxx 

Various other forms of the equation can easily be transformed to (5.6.l). 

We shall study (5.6.1) in the space s2 , provided with the topology induced 

by u2 and the duality map (see theorem 1.3.14) 

<a,A> (' a(x)A(x) dx aE u2 , A E S2 

We now describe the Hamiltonian form of the KdV equation. Define the two

form w on s2 by 

(5. 6. 2) w(A,B) 
-I 

<3 A,B> 

-I . 
Note that 3 :S2 ->- u2 is antisymmetric, so w is correctly defined. The 

corresponding operators are 

(5.6.3) 

(5.6.4) 

It is clear (see remark 5.1.17) that Q is a cyclic operator,Q+ a canonical 

operator and w a symplectic form. Define the function (functional) 

H : S 2 ->- 1R by 

(5.6.5) H(u) 
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The exterior derivative (= variational derivative) is given by 

dH(u) ~(u) 3u2 - u xx 

Then the KdV equation is a Hamiltonian system on S 2 with Hamiltonian H 

and symplectic form w 

(5.6.6) +- cSH 
u =~ -

t OU 
2 Cl(3u - u ). xx 

Clearly the Hamiltonian H is a constant of the motion. Several other constants 

of the motion are easily found 

co 2 
G(u,t) = J (xu + 3tu )dx, 

-00 

(5.6.7) 
co 00 2 f udx , F2 (u) = f u dx, 

H (u), =J 

In 1968 Miura found a relation between the KdV and the so called 

Korte1ueg-de Vries (MKdV) equation. 

(5.6.8) - v 
xxx 

x E 1R. 

It is easily verified that for every solution v of (5.6.8) the function 

(5.6.9) u = f(v) 
2 v + v 

x 

is a solution of (5. 6. l). This transformation has become known as Mi'.ura 

transformation. Using a modified version of the transformation Miura, 

Gardner and Kruskal [30] proved in 1968 that the KdV equation (and also 

the MKdV equation) has an infinite series of constants of the motion Fk. 

5.6 .10 Remark. 

The MKdV equation can also formally be written as a Hamiltonian system on 



some space W of smooth functions, which vanish, together with their 

derivatives, fast enough for Ix! + 00 • Using the canonical operator a and 

the Hamiltonian K(v) = ~ f <v 4 +v2)dx we can write the MKdV equation as 
x 

-00 

(5 .6. I I) =3 oK(v) = 3(2v3 - v ). 
v t ov xx 

Symmetries Y(u,t) and adjoint symmetries a(u,t) of the KdV equation have 

to satisfy the conditions (5.1.3) and (5.1.4). Using 

X' (u) 6u3 + 6u - a3 = 63u - a3 
x 

X'*(u)= -6ua + a3 : u2 + u2 

these conditions become 

(5.6.12) 

(5.6.13) 

3 
Yt(u,t) + Y'(u,t)(6uux - uxxx) - (63u - 3) Y(u,t) 

3 
at(u,t) + a'(u,t)(6uux - uxxx) + (-6ua +a )a(u,t) 

Define the antisymmetric operator (operator field) ~(u) by 

(5.6.14) 

0, 

o. 

It was observed by Magri [5] that the KdV equation can also be written as 

(5.6.15) X(u) 
0 

~(u) ou 
3 

~F2 (u) = (2u3 + 2Clu - a ) u. 

It is easily verified that ~(u) satisfies (5. 1.16), so it is a canonical 

operator. This means that (5.6.15) is a semi-Hamiltonian system with Hamil 

tonian ~F 2 and canonical operator ~. The fact that we did not prove that 

~ is invertible, prevents us from saying it is a Hamiltonian system. From 

the two possible ways of writing the KdV equations (5.6.6) and (5.6. 15) we 

can obtain some interesting results. 
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5 .6 .16 Theorem. 

+ Consider the operators S1 : S 2 -+ U2 , S1 U2 -+ S 2 and '¥ : Ll2 -+ S 2 as given 

in (5.6.3), (5.6.4) and (5.6.14). Then'¥ and S1+ are AS operators and S1 is 

an SA operator (for the KdV equation). 

Proof: 

The Hamiltonian form (5.6.6) of the KdV equation implies (Theorem 4.2.5) 

that S1 is an SA- and S1+ is an AS operator. The semi-Hamiltonian form 

(5.6.15) only yields that'¥ is an AS operator (see Section 4.8). 

5 .6. 17 Corollary. 

nwn -- 2'-lu + 2u'-l ' S U · SA HTH 0 0 0 : 2 -+ 2 is an Operator, 

D 

i) <!> 

ii) A -! 2 
'¥S1 = 2u + 23u3 - 3- s2 + s2 is a recursion operator for symme-

tries, 

iii) r = S1'¥ = A* = 23- 1ua + 2u - a2 

adjoint symmetries. 

u2 __,_ u2 is a recursion operator for 

The recursion operator for symmetries A is well-known. It seems first to 

D 

be found by Lenard. Several other authors use this operator or derive it 

again, see for instance Olver [13], Wadati [14], Magri [5], Fuchssteiner 

[12], Calogero and Degasperis [34] or Gel'fand and Dikii [35]. Using the 

recursion operators A and r two infinite series of (adjoint) symmetries are 

easily constructed. We start with two symmetries, which are related to the 

invariance of solutions of (5.6.l) for translations along the x-axis and 

for a soale transformation. Suppose u(x,t) is a solution of (5.6.1). Then 

it is easily seen that u(x+E:,t) and a2u(ax,a3t) are also solutions of 

(5.6.1). By taking the limit for E: + 0 of u(x+E:,t) - u(x,t) and of 

a2u(ax,a\) - u(x,t) (with a l +£)we obtain the following two solutions 

of the linearized KdV equation (linearization around u(x,t)) 

(5. 6 • 18) u 
x 
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(5.6.19) 

It is easily verified that x0 and z0 satisfy (5.6.12) and that x0 (u), 

z0 (u, t) E 5 2 for all u E 52, t E 1R. So indeed we have two symmetries; 

X0 ,z0 E V(X; 5 2). The factor i in (5.6. 19) may look strange, but turns out 

to be convenient in the sequel. The corresponding adjoint symmetries are 

Note that indeed p0 (u), T0 (u,t) E U2 . Using the recursion operators A 

and r we now obtain the following 

5.6.20 Theorem. 

Two infinite series of symmetries for the KdV equation are given by 

The corresponding adjoint symmetries are given by 

The first few elements of the series Xk and pk are 

Xl x 6uu - u xxx' x 

pi a-1x 3u2 -
c5F3 

u 
~ 

, 
I xx 

(5.6.21) 
x2 30u2u - 20u u - IOuu + u x x xx xxx xxxxx' 

a- 1x !Ou3 - Su 2 IOuu 
5 c5F4 

Pz - + u 2Tu 2 x xx xxxx 

The first elements of the series Zk and Tk are 

[J 
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z1 2u 
2 I -! 3 l 3 + 2 u () u - u + 2 xuux - - XU + 4 tX2 x xx 4 xxx 

2u 2 l -I 
+_I_ xX 3 

tX2 , + - u d u - u + 4 2 x xx 4 l 

(5.6.22) 
3 3 2 l 3 4 UX + 4 XU - 4 XUXX + 4 tp2 

l ~ - l (u2) l - J 3 I 3 4 ° + 2 u() u - 4 ux + 4 xpl + 4 tp2. 

So these series of symmetries and adjoint synunetries depend explicitly 
on x and t. 

5 .6. 23 Remark. 

It is easily shown that the general form of Zk and 'k' as suggested by 
(5.6.19) and (5.6.22), is 

Zk(u,t) 

'k (u, t) 

where fk and gk are functions which can be constructed using u, its 
derivatives and the operator a- 1• (So fk and gk may not contain x explicitly; 
a translation of u(x) along the x-axis must correspond to the same 
transla~ion of (fk(u))(x)and (gk(u))(x) along the x-axis). 

0 

The "variational derivatives" of the constants of the motion F 1 and G are 

(5.6.24) l, 
oG 
OU x + 6tu. 

Both derivatives are not elements of u2 , which means that, strictly speaking, 
F 1 and G are not differentiable (in the choosen topology). The local 
conservation law corresponding to F1 is 



(5.6.25) 2 
(3u - u ) 

xx x 

Because f (3u2 - u )dx = 3F2 , the flux of u in the local conservation xx 
law (5.6~25) is again a conserved quantity. Broer [25] has shown that, 
using this conserved flux property, a new constant of the motion can 
be constructed. For the KdV equation this turns out to be G. In [25] 

the Poisson brackets between G and the series Fk are also given 

(5.6.26) {Fk,G} = k Fk-l, 

l oF I I I 6G l 3 If we set p_ 1 = '2 ~ = '2 and T_ 1 =SOU= S x + 7; tu then we can verify 

that o_ 1 and T_ 1 satisfy (5.6.13) and that 

(5.6.27) p = fp 
O -I fT_l • 
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The series of symmetries Xk is well-known, see for instance Lax [29] 

Olver [13] , Magri [5] or Wadati [14] . The equations ut = Xk(u) are 

called higher order Korteweg-de Vries equations. The symmetries Xk are 
6Fk+2 

canonical and correspond to the constants of the motion Fk by Xk = ak3 ~ 
(~ E 7R). This means that the higher order KdV equations are also Hamiltonian 
systems. These results were first found by Gardner. In the sequel we shall 

also prove that the symmetries Xk are canonical. The series of symmetries Zk, 
although easily found, has attracted much less attention. As far as we know, 
it is only published by Olver [36] . This series is well suited to illustrate 

the theory, described in the Sections 4 .5, 4 .6 and 4. 7, which we shall do now. 

We first study the SA operators which correspond by Theorem 

4.2.13 to the (adjoint) symmetries z0 and z1 (T0 and T 1). Recall that an 
arbitrary symmetry Z = Q+T gives rise to an SA operator 

. , I - I I 3 ( 2 T •* = l - l I 3 ( 2 Using TO= 4 3 + 4 x + 4 t 6u- 3 ) and O -4 3 + lf x + 4 t 6u- :l ) 

we obtain 
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L n = l~-1 In z " 2 0 2" • 
0 

So we find again the already known SA operator rl. This is not surprising 

since the symmetry z0 corresponds to the scale properties of KdV. The 

symmetry z1 leads to a more interesting result. The derivative of TI and 

its dual operator are 

3 -! I -I I -! _ l_ Cl 3 1 2 3 , T; z () u + z(Cl u) + z u(l 4 + z xu - 4 x() + 4 tp2, 

Since p2 is canonical (p 2 
5 oF2 
2 ~),we have Pz P'* 2 . 

Hence 

(S.6.28) L2 n = 23-lu + 2u()-l - Cl 
1 

qi • 

So we find the already known SA operator qi • Because of the normalization 

factor in (5.6.19) the multiplicative constant in (5.6.28) is equal to!. 

We can compute again the Lie derivative and obtain the SA opera-
tor 

(5.6.29) 

- 6Clu - 6uCl + l a5 
2 

- 3u a -I xx 

This means that z1 satisfies hypothesis 4.5.2 with c = 1 . This hypothesis 

is essential for the theory described in the Sections 4.5, 4.6 and 4.7. 

As a first result we obtain from Theorem 4.5.4 and Corollary 4.5.7 the 
following 



5 .6.30 

i) Fork 

ii) Fork 

while 

Theorem. 

0, I ,2, ••• we have 

Lk n 
z1 

2-k(k +I)! rkn 

I ,2 we have 

Lk + z n < - 1 ) k .!. n + rk 
k I 

fork 3,4, .•• 

L~ n+ o 
I 

2-k (k + I)! !1Ak 

(-l)k _!_ Akn+ 
k 

iii) The SA operators rkn nAk are cyclic fork = 0, 1,2, .•• 
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a 

An infinite series of constants of the motion Fk for the KdV equation is 

now easily constructed. (We use Fk in stead of Fk since the normalization 

is different; the coefficient of uk in Fk is assumed to be I). 

5.6.31 Theorem. 

The (adjoint) symmetries Xk(pk) are canonical. The corresponding constants 

of the motion Fk' defined by 

k 0, I ,2, ... 

are in involution, F3 H. 
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Proof: 
3 15 + oF4 

From (5.6.22) and (5.6.21) we obtain that Zlt = 4 X2 -S ~ ~ , so Zlt 

is a canonical symmetry. Fork::: 1 the theorem now follows from theorem 4.5. ll. 

The case k = 0 (so r2) has to be considered separately. A simple calculation 

shows that r2 = ~ J00u 2dx is a constant of the motion. The Poisson bracket 
-00 

vanishes since r = rl'JI, and rl and 'JI are antisymmetric. So the whole series 

Fk (k = 2,3, ... ) is in involution. 

D 

5.6.32 Remark. 

The reason that we have to consider F2 separately is that in theorem 

4.5. l I we constructed a series of constants of the motion, starting with 

the Hamiltonian H = F3 . In this case there also exists a constant of the 

motion F2 "below" the Hamiltonian. We can also consider F\ = ~F 1 H00 udx 

- -as the first element of the series Fk. However, formally F 1 is not 

differentiable. If we still compute the corresponding symmetry we obtain 

0 . 

This would imply that the Poisson bracket of F 1 
function vanishes. 

!F1 with every other 

The coefficient of uk in Fk found to be <2k-3) ! 
is k~(k-2)! 

So if we set 

for k > l 

D 

we obtain a series of constants of the motion such that the coefficient 
k 

of u in Fk is equal to I. 
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Next we consider the (adjoint) symmetries Zk (Tk). 

5 .6. 33 Theorem. 

i) For k 0,1,2, ... we have 

(5 .6 .34) 

ii) The (adjoint) symmetries Zk (Tk) are non-canonical for k 0, 1,2, .... 

Proof: 

k Part i) follows at once from Theorem 4.6.5. It is easily seen that A always 
contains a term (-l)ka 2k, so Ak f 0. Then part ii) is a consequence of 
Corollary 4.6.9. 

0 

So far we have constructed a series of canonical symmetries Xk' 
corresponding to the constants of the motion Fk and a series of non-canonical 
symmetries Zk. We now consider the various Lie brackets between the elements 
of the two series. 

5 .6. 35 Theorem. 

Fork,£ 2 0 we have 

0 

Proof: 

Fork,£ 2 l the parts i) and ii) follow from Theorem 4.6.16. It is easily 
verified that [Z 1,X 1J = i x2 • Then, also fork,£ 2 I, part iii) is a conse
quence of Theorem 4.7.8 (with b = i, c = ~). The cases k = 0 and/or£= 0 
have to be considered separately, see Remark 2.6. 15. 

0 
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Of course the fact that the symmetries of the series Xk commute fo::lows 
also from the fact that the corresponding constants of the motion Fk+2 
are in involution. 

We now have described two methods for constructing the constants 
of the motion Fk (or Fk). First we used a recursion operator for (adjoint) 
symmetries A(f), viz. the construction described in the theorems 5.6.20 
and 5.6.31. The second method consisted in generating the canonical symmetries 
Xk by using the Lie bracket with;, see theorem 5.6.35. However, the most 
simple method for constructing the infinite series of constants of the 
motion is described in 

5.6.36 Theorem. 

The constant of the motion Fk(k > 2) can be obtained from Fk-I by 

Proof: 

2k 
2 4 (k-1) -l 

2k 
2 4(k-I) -! 

Fork= 3 this result is easily verified. Fork > 3 the first expression 
follows from Theorem 4.7.12 (for the KdV equation H = F3 = F3). The 
normalization coefficient is easily found by considering the highest power 
of u. Using the expression for z1, as given in (5.6.22), we obtain 

Since 0 the term with explicit time dependence 
vanishes. 

D 
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In Theorem 4.6.12 we have shown how the non-canonical (adjoint) 

synnnetries Zk (Tk) can be used to generate a multi-Hamiltonian form of the 

considered system. We shall now give a multi-Hamiltonian form of the KdV

equation. A necessary condition for the construction described in Theorem 

4.6. 12 is the invertability or injectivity of the SA-operator L21 Q = w. 
Since w Q~Q and Q is invertible, this raises the question of the invert-

3 ability or injectivity of ~(u) = 2u3 + 23u - a : U2 + S2 . We shall not try 

to prove invertability of ~(u). However, we can prove the following 

5.6.37 Theorem. 

Let u E S2 • Then the linear operator ~(u) u2 + s2 is injective. 

Proof: 

Suppose there exists a function w E U2 , w ¥ 0 such that 

(5.6.38) 'P(u)w 2u w + 4uw - w 0 . x x xxx 

We shall show that this leads to a contradiction. After multiplication 

of (5.6.38) with w we can write this expression as 

d 2 
dx(2uw - WW 

xx 

Since w E U2 and u E S2 this implies 

(5 .6. 39) 2uw2 - ww xx 0. 

0. 

We shall first show that this implies that w cannot change sign on 1R . 
Suppose w(x0 ) = 0 for some x 0 E 1R. Then (5 .6. 39) implies wx(x0) = O. 

Suppose wxx(x0 ) = 0. Then, by considering (5.6.38) as an initial value 

problem with initial values w(x0 ) = O, wx(~) = 0 and wxx(XcJ) = 0 and 

using the existence and uniqueness theorems for ordinary differential 

equations, we obtain w = 0 on 1R, which is a contradiction. So wxx(x0 ) > 0 

or w (x) < O, which means that w(x) cannot change sign on JR. It is no xx 0 
restriction to assume w(x) ;:: 0 on "JR. So ~f w(x0) = 0 then wx(x0 ) = 0 and 

w (x) > 0. Hence w(x) ~ 4w (x )(x-x) for x + x . This means that IW(X) xx 0 xx 0 0 0 
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is continuous but not differentiable in x = x0 . Denote the number of zeros 

of w(x) between x and some point x 1 with w(x 1) f 0 by n(x). Then it is 

easily seen that 

(5. 6. 40) z(x) 

is again a function with continuous derivatives. Substitution of 

w(x) = z2 (x) in (5.6.39) results in 

(5.6.41) -z + uz xx 0 • 

From w E U2 and w(x) ;?: 0 for all x E 1R we obtain lim w(x) 

(5.6.40) implies x+±oo 

(5 .6. 42) lim z(x) 0. 
x->oo 

O. Then 

The solution z of (5.6.41) and (5.6.42) can be obtained from the following 
integral equation 

(5 .6 .43) z(x) f (y-x)u(y)z(y) dy. 
x 

Since u E S2 the integral exists for every bounded continuous function z. 

Using a standard contraction argument we show that this equation can only 

have the trivial solution z = 0. Since u E S 2 there exists a real number 
A > 0 such that 

(5 .6. 44) B f lu(y) IY dy < !. 
A 

Denote by C[A, 00) the space of bounded continuous functions on [A, 00). 

If we supply C[A, 00 ) with the uniform norm it is a Banach space. Define 
the linear operator 8: C[A,oo) -> C[A,co) by 

00 

(Gz) (x) J (y-x)u(y)z(y) dy. 
x 

It is easily seen that 8 is a contraction 

co 

llcez)JI '.:'. llzll J 2yju(y)I dy '.:'. 2B/lzll. 
A 
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This means that 8 has only the fixed point z = 0. Hence (5.6.41) and (5.6.42) 

have only the solution z(x) = 0 on [A, 00 ) and so (uniqueness) z(x) = 0 on JR. 

Then (5.6.40) implies that w(x) = 0 on 1R, which is again a contradiction. 

This completes the proof. 

IJ 

5.6.45 Remark. 

It is easily seen that a real number A such that (5.6.44) is satisfied also 

exists for u E S 1• So the theorem also holds if u E S 1 and if we consider 

~(u) as an operator ~(u) : U1 + S1• If u ~ S1 the theorem may be not 

correct. For instance with the functions 

u(x) 

w(x) 
l+x2 

we can verify that ~(u)w 2u w + 4uw + w x x xxx 
0 • 

IJ 

5.6.46 Remark. 

Let u E S 2 be a function which can be obtained by the Miura transformation 

(5.6.9) from some smooth function v, so u = v2 + v . Then it is easily 
x 

verified that the operator ~(u) can be factorized 

~(u) 2u() + 2Clu - a3 

(2v+Cl)Cl(2v-Cl), 

However, for an arbitrary u E S 2 a function v such that u = v 2+vx has 

singularities on the x-axis. So this factorization cannot be used to 

prove injectivity or even invertability of ~(u). 

IJ 

As a consequence of the Theorems 4.6.12 and 5.6.37 we now obtain the fol

lowing 
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5.6.47 Theorem. 

The KdV equation can be considered as a Hamiltonian system with Hamiltonian 

Hk + I) Fk+) and weak syrnplectic form dTk. 

Up to now we considered two infinite series of synnnetries 

Xk and Zk(k = 0,1,2, ... ) for the KdV equation. A completely different 

set of synnnetries appears in the "inverse scattering method". We shall 

first describe the scattering and inverse scattering problems for the 

Schrodinger equation and indicate how the initial value problem for the 

KdV equation can be solved. Consider the Schrodinger eigenvalue problem 

on 1R with a function u E S2 as potential 

(5. 6. 48) -yxx + uy = A.y. 

For A. = k 2 > 0 this problem has a continuous spectrum. Define the Jost 

functions f(x,k) and g(x,k) as the solutions of (5.6.48) with A.= k 2 , 

such that l f(x,k) 
ikx for x ->- oo , e 

(5.6.49) 

g(x,k) ~ -ikx for x ->- -oo • e 

D 

Fork 1 0 the pairs f(x,k), f(x,-k) and g(x,k), g(x,-k) form two fundamental 

systems of solutions. A solution of (5.6.48) which (in quantum mechanics) 

can be interpreted as a wave, coming from -«>, which is partly reflected and 

partly transmitted, has the asymptotic behaviour 

{ y(x,k) 
ikx + R(k)e 

-ikx for x ->- - oo, e 

(5.6.50) 

y(x,k) ~ T(k) ikx for x + 00 • e 

From (5.6.49) we see that this solution can be written as 

(5.6.50a) y(x,k) g(x,-k) + R(k)g(x,k) T(k)f(x,k), 



The complex functions R and T are called reflection and transmission 

coefficient. The eigenvalue problem (5.6.48) can also have a finite 

l63 

number of discrete (isolated) eigenvalues;\.=-µ~< 0 for j = l, ... ,n(µ. > 0). 
J J J 

We normalize the corresponding real eigenfunctions y. by 
J 

00 2 
J y. (x) dx = l . 
-<JO J 

We fix the sign of y.(x) by requiring y.(x) > 0 as x + - oo. For every 
J J . 

discrete eigenfunction y. we define the normalization coefficient by 
J 

c. lim 
J x->--oo 

-2p.x 
e J 2 

y. (x) • 
J 

The set fa(k); \., c.J j = l, ... ,n} will be called the scattering data of 
J J 

the potential u. The problem of reconstructing the potential u from the 

scattering data is called the inverse scattering problem. This problem 

was solved by Gel'fand and Levitan [21] and Kay and Moses [22] . First 

define the function B 1R -)- 1R by 

(5 .6 .51) B(x) 
n 
2: 

j=J 

µ.x 
c. e J 

J 
+ ~ J00 R(k)e-ikx dk. 

2n 

Then solve the Gel'fand Levitan equation 

x 
K(x,y) + B(x+y) + f B(y+z)K(x,z) dz 

-co 

The potential u can now be obtained from 

u(x) 2 i._ K(x,x). 
dx 

0 x > y. 

Next suppose the potential u satisfies the KdV equation (5.6.l). Then the 

scattering data and the (improper) eigenfunctions f(x,k), g(x,k), y(x,k), 

y.(x) of (5.6.48) will also depend on t. The remarkable discovery of 
J 

Gardner, Greene, Kruskal and Miura [19,20] is that, if the potential u 

of (5.6.48) evolves according to the KdV equation, the evolution of the 
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scattering data is given by 

(5.6.52) 0, 

c. (t) = - 8 µ?(t)c.(t) 
J t J J 

(µ. = ~) 
J J 

I, ... , n. 

The solution of these ordinary differential equations is trivial. The 
initial value problem for the KdV equation can now formally be solved. 

We first compute the scattering data of the initial value. The time 

evolution of the scattering data is given by (5.6.52). Then by "inverse 

scattering" we can find the solution u for arbitrary t. For future reference 
we also give the time evolution of the solutions of (5.6.48) (see for 

instance Eckhaus and van Harten [23, § 2.3.l] 

ft -4ik3f u f + 2(u + 2k2)f , x x 

(5.6.53) 4ik3g 
2 

gt - uxg + 2(u + 2k )gx' 

yt 
4. 3 - ik y - ux?+2(u+ 2k2) Yx 

and 

(5.6.54) 

(5.6.55) Remark. 

If u satisfies the KdV equation, the function B(x,t), as given in (5.6.51) 

satisfies Bt + 8 B = 0. This means that w(x,t) = B(2x,t) satisfies xxx 

(5 .6 .56) w + w 
t xxx 0 • 

So the invertible mapping u + w is a linearizing transformation for the 
KdV equation. Note that (5.6.56) is also the equation obtained by lineari

zing the KdV equation around u = 0. 

D 
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5.6.57 Remark. 

If we want to express the dependence of the scattering data on the potential 

u, we have to write R(k,u), ~.(u), ~.(u) (and n(u)). However, it is usual 
J J 

in inverse scattering theory to consider the reflection coefficient as a 

function of k and t and the discrete eigenvalues with corresponding 

normalization coefficients as functions of t (where u is assumed to satisfy 

the KdV equation). Then 

Rt (k, t) R' (k,u)ut' Aj (t) 
t 

~!(u)u and c. (t) 
J t J t 

~~(u)u. 
J t 

If we consider synnnetries Y and adjoint synnnetries a also as functions 

of x and t, they have to satisfy (see (5.6.12) and (5.6.13)) 

(5.6.58) Yt(x,t) - (6au(x,t) - a3) Y(x,t) 0, 

(5.6.59) 3 at(x,t) + (-6u(x,t)8 + a ) a(x,t) O. 

D 

It is well-known from first order perturbation theory in 

quantum mechanics that an infinitesimal change 6u in the potential u of 

the Schrodinger equation (5.6.48) leads to changes in the discrete eigen

values and reflection coefficient given by 

This implies 

(5.6.60) 

(5. 6. 6 I) 

6L 
J 

6R(k) 

oA. 
_J = 

6u 

oR(k) 
~ 

J 
00 

2 
y. (x)6u(x) dx, 

J 

Zik ~ y 2 (x,k)6u(x) dx. 
-00 

2 
y. (x) 

J 

I 2 
= 2ik y (x,k) 

l, .... ,n, 

k "' 0 • 
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Since y. and all its x derivatives vanish exponentially for [x[ + oo 
J o;\. 2 

we have yj E 52. So ouJ = yj E 52 c U2 • The asymptotic behaviour of 

( k) f I I . . ( 6 ) . l' h oR(k) "" U S y x, or x + oo, as given in 5 .. 50 , imp ies tat ~ ~ 2 . o 

formally R(k) is not differentiable (in the topology of 5 2). From (5.6.52) 

we see that a discrete eigenvalue;\. is a constant of the motion and that 
J 

0. 

This leads to 

5.6.62 Theorem. 

i) The functions 0. = y~ (j=I, ... ,n) are canonical adjoint symmetries 
J J 

corresponding to the constants of the motion;\.; so they satisfy 
J 

(5.6.59). Further 

(5.6.63) 2 
ry.(x,t) 

J 

2 41.. y. (x, t) 
J J 

ii) For k 1 0 the functions 1:; 1 (x,k, t) 

satisfy (5.6.59) and 

(5. 6. 64) 

Proof: 

8ik3t 2 
e y (x,k,t), 

-8ik\ 2 
e g (x,k,t) 

m 1, 2, 3. 

The discrete eigenvalues ;\. are constants of the motion, so their variational 
J 

derivatives are adjoint symmetries. Multiplication of (5.6.48) with y. and 
I Jx application of 4a- yields 

2 2;\.y. 
J J 



while multiplication of (5.6.48) with 2y. gives 
J 

2 -2y.y. + 2uy. 
J Jxx J 

2 ZA.y. 
J J 
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Then (5.6.63) is obtained by adding these two expressions. The fact that 

the functions s (m= 1,2,3) satisfy (5.6.59) follows from a straightforward 
m 

computation using (5.6.53) The proof of (5.6.64) is similar to the proof 

of (5.6.63). 
Cl 

Although s1(.,k,t) = 2ik.;;; (e8ik3t R(k,t)) we do not call s1 the 

canonical adjoint symmetry corresponding to e8ik3t R(k,t). The reason for 

this is that s1(.,k,t) ~ U2• Also (asymptotic behaviour) s2, s 3 (.,k,t)~ U2 • 

Apart from this difference the two parts of the theorem claim similar 

results for the squares of the eigenfunctions of the Schrodinger equation 

(5.6.48). The fact that aj(j=l, ••• ,n) and z; 1 satisfy (5.6.59) is already 

given by Gardner, Greene, Kruskal and Miura [20, theorem 3.6) . However, 

as far as we know the interpretation of a. as canonical adjoint symmetry 
J 

is new. The relations (5 .6.63) and (5.6.64) for the "squared eigenfunctions" 

are also well-known. Of course aa.(j=l, ••• ,n) and ds (m=l,2,3) satisfy 
J m 

(5.6.58) and aa. is a canonical symmetry. These functions are also eigen
J 

functions of the recursion operator for symmetries A 

(5.6 .65) j I, ... , n, 

(5 .6 .66) m 1,2,3 

Recall that in Theorem 2.3.13 and Corollary 2.4.11 we showed that, for a 

finite-dimensional system, the eigenvalues of recursion operators for sym

metries and for adjoint symmetries are constants of the motion. The expres

sions (5.6.63) and (5.6.65) show that this also holds for the isolated 

eigenvalues of recursion operator for (adjoint) symmetries of the KdV equa

tion. 



168 

We now indicate how a second solution of (5.6.59), corresponding 
to a discrete eigenvalue;\., can be constructed. The Jost functions 

J 
f(x,k) and g(x,k) can be continued analytically into the upper half of 
the complex k-plane. In k=iµ. we have (for a moment we omit t) 

J 

g(x,iµ.) ~ 
J 

µjx 
e for x + 

A solution h.(x) of (5.6.48) with A= - µ~which is independent of g(x,iµ.), J J J 
-µ.x 

must have asymptotic behaviour h(x) ~ e J for x + - oo. Then, by considering 
the behaviour for x + -oowe see that the solution y.(x) can be written as 

J 

y. (x) 
J 

l'C: g(x,iµ.) . 
J J 

This means the canonical adjoint synunetry o. can be written as 
J 

o.(x,t) = y~(x,t) = c.(t) g2(x,iµ.,t). J J J J 

We now consider the derivative of g(x,k,t) with respect to k. The time 
evolution of this function ink= iµ. follows from (5.6.53) 

J 

(5.6.67) 

- 12iµ~g - Siµ.g 
J J x 

Then a long but straightforward computation, using (5.6.52), (5.6.53), 
(5.6.67) and (derivatives with respect to x and kink= iµj of) the 
Schrodinger equation (5.6.48) shows that 

(5.6.68) o.(x,t) 
J 

2 ic.(t)g(x,iµ.,t)gk(x,i)J.,t) - 12µ.to.(x,t) J J J J J 



satisfies (5.6.59). It can be shown that CT. is a real function with 
J 

asymptotic behaviour 

a. (x, t) 
J 

2µ.x 
c.(t)xe J 

J 

o. (x, t) ~ I 
J 

for x + - 00 

for x + oo. 

~ 

So oj ~ U2 which means that we cannot call CTj an adjoint synnnetry. Using 
derivatives of (5.6.48) with respect to x and kit is a simple exercise 
to show that 

ra. 
J 

4µ?a. 
J J 

j I, ... ,n. 4µ.cr. 
J J 

Thus, related with the "inverse scattering method", we constructed the 
following solutions of (5 .6 .59): 

i) continuous spectrum;\= k 2 , k E JR.\{O} 

1; 1(x,k,t) 8ik3 t 2 e y (x,k,t), 

8ik3 t 2 e f (x,k,t), 

-8ik3 t 2 e g (x,k,t), 

(m=l,2,3), 

ii) discrete spectrum;\. 
J 

j I, ... ,n 

o.(x,t) 
J 

2 
y. (x, t) 

J 
c. (t)g2 (x,i µ. ,t), 

J J 

o.(x,t) 
J 

2 ic. ( t) g (x, iµ., t) g. (x, iµ., t) - 12µ. tCT. (x, t) , ] J ~K J J J 

with ra. 
J 

2 - 4µ.CT. 
J J 

ra. 
J 

2~ 
4µ.CT. - 4µ.CT. 

J J J J 
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2 It follows from (5.6.50a) that c; 1(x,k,t) = T (k) c; 2 (x,k,t). A more pro-
found study of the inverse scattering method shows that any infinitesimal 
variation ou (smooth, fast decaying as]xj+ oo) .can be written in terms of 
c; 3 , a. and a .. See for instance Zakharov and Faddeev [24, the first J J 
expression in §2] . This enables us to express the symmetries Xk and Zk, 
which we studied in the first part of this section, in terms of c; 3 ,aj and Gj. 
We only give the formal result (X0 and z0 are considered as functions of x 
and t, see Remark 5.6.57) 

x0 (x, t) ux (x, t) 

00 • 3 n 
(5.6.69) d [2i J kR(k,t)eSik t s3(x,k,t)dk - 4 E µ.0.(x,t)], 

dX "IT j=l J J -oo 

Z (x, t) I 
(2u(x,t) + xux(x,t) + 3t u (x, t)) 

0 4 t 

I 3 l f 00 • 3 Sik \ = - - [- (kR (k,t) + 24ik tR(k,t)) e 1; 3(x,k,t)dk 4 3x "TT -oo -1<: 

(5. 6. 70) n 
- .L: 1 (2a.(x,t) + 4µ.o.(x,t)]. 

]"' J J J 

The expression (5.6.69) has already been given (in a somewhat different 
form) by Deift and Trubowitz [66] By applying the recursion operator A 
er inside the square brackets) we can obtain similar expressions for xk 
and zk fork= l,2,3, ... 

We end this section by making some remarks on the higher order 
KdV equations. Denote the "time independent part" of the symmetries Zk by 

Ak' so 

(5. 6. 71) k 0, 1 ,2,. .. 

Then from theorem 5.6.35 we get 

(5.6.72) 
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The following properties of the higher order KdV equations are easily proved. 

5.6.73 Theorem. 

Consider in S 2 the higher order KdV equation 

(5.6.74) X (u) 
m ' ID 

1,2,3, .... 

Then 

i) this equation is a Hamiltonian system with Hamiltonian Fm+ 2 and 

symplectic form IJJ 

ii) the functions (functionals) Fk( or Fk) are also constants of the 

motion for this higher order KdV equation, 

iii) the operator A(f) is a recursion operator for (adjoint) symmetries of 

(5.6.74), 

iv) two infinite series of symmetries for (5.6.74) are 

0,+- 6Fk+2 
OU (independent of m), 

k 0,1,2, ••• 

So Xk, um,k E V(Xm,S 2). The symmetries Xk are canonical while the Um,k 

are non-canonical. The Lie brackets between elements of these series are 

given by 

(5.6.75) 

[U k'U 0 ] = 4C'l-k)U k n m,. m,N m, +1v 
k, 'l 0,1,2, ... 

D 

Note that the structure of the Lie algebra of symmetries of (5. 6. 7 4) , generated 

by {Xk' Um,k' k = 0,1,2, .•. } does not depend on m. For the KdV equation it

self (m = I) this Lie algebra is already described in Theorem 5. 6. 35. 
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5.7 THE SAWADA-KOTERA EQUATION. 

In this section we consider an equation of "KdV type" found by Sawada and 

Kotera [38] and also by Caudrey, Dodd and Gibbon [39]. We study this so 

called Sawada-Kotera (SK) equation in the form 

(5. 7. I) X(u) x E 1R. 

where unx = anu. The SK equation is essentially different from the higher 

order KdV equation ut 

This equation reads 

(5.7.2) 

X2 (u) in the notation of the preceding section. 

Of course the coefficients of both equations can be changed by scale 

transformations of x, t and u. However, it is impossible to transform 

(5,7.l) into (5.7.2) by a scale transformation. It is shown in [39] that 

(5.7.l) and (5.7.2) are the only equations of this type which have 

multi-soliton solutions. We shall consider the SK equation in the space 
S (p = 1,2, ... ) with the topology induced by U and the usual duality p p 
map. In this section we study symmetries and constants of the motion of 

the SK equation. We also make some remarks on the "inverse scattering 

problem" for (5.7.1). For the SK equation there exists a series of 

constants of the motion Fk. The first few elements of this series are 

given by 

FI J u dx I 
F3 = 2 f (2u3 - u 2) 

x 
dx , 

00 

(12u4 2 2 
F4 T2 f - !Suu + uz) dx , 

(5.7.3) x 
-oo 

F6 
I f 6 3600u3u 2 204u 4 2 2 

576 (576u - x x + 576u u2x + 

3 
+ 32u2x 

2 
- 42uu3x + 

2 
u4) dx • 

A constant of the motion of a different type is given by 
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(5.7.4) G f XU dx + 60t F 3. 

The SK equation (and also (5.7.2)) is invariant for the scale transformation 

u(x,t)-+ a2u(ax,a5t). Under this scale transformation the constants of the 
. 2k-1 motion Fk are proportional to a . It appears that constants of the motion 

of the type F3k+ 2 (with densities which are polynomials in u and its 

derivatives) do not exist. Fork= 0 this is easily verified. Using a 

computer program (formula manipulation) it can be shown that also F5 , F8 
and Fii do not exist. In the sequel we shall describe several methods to 

obtain Fk+3 from Fk. Then, starting with FI and F3 we can construct the 

series F3k+l and F3k+ 3 fork= l ,2,3, .••. Of course this does not exclude 
the possibility that a constant of the motion F3k+ 2 exists for some k 

(k > 3). 

Symmetries Y(u,t) and adjoint symmetries a(u,t) of the SK 

equation have to satisfy (see (5.I.3) and (5.1.4)) 

(5.7.5) 

(5.7.6) 

with 

Yt(u,t) + Y'(u,t) X(u) - X'(u) Y(u,t) O, 

a (u,t) + a'(u,t) X(u) + X'*(u) a(u,t) 0 
t 

X' (u) s -+ s ' p p 

X'*(u) 

Define the antisymmetric operators (in fact operator fields) Q+ and ~ by 

(5.7.7) Q+(u) = I2ua + 12au + a3 

(S. 7 .8) ~ (u) 

u -+ s 
p p 

s _,_ u 
p p 

Note that, up to a scale transformation, Q+ is equal to the canonical opera

tor~' given in (Se6&14)e So~+ is also a canonical operator. It can be 
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verified that<!> satisfies (5. 1. 14), so it is a cyclic operator. It has been 
noted by Broer and Ten Eikelder [40] and also by Fuchssteiner and Oevel [41] 

that 
cSF 3 

(5. 7. 9) ut X(u) st+-(u) 
6U 

and 
15F 

(5.7.10) <!>(u)ut = <!>(u)X(u) 288 - 6 
<Su 

Since st+ is a canonical operator, (5.7.9) is a semi-Hamiltonian system. 
Several results for semi-Hamiltonian systems have been given in Section 4.8. 
Recall that for a semi-Hami 1 tonian system we did not introduce the concepts 
of canonical and non-canonical symmetries. A first consequence of the semi-

Hami 1 toni an (5. 7. 9) is 
+ 

is is invertible, form that st an AS operator. If<!> 

(5.7.10) would give a Hamiltonian form of the SK equation. However, we shall 
not try to prove invertability of <!>. Denote the closed two-form corresponding 
to <!> by q, • Then 

(5. 7. l I) 

This is equivalent to LX<!> = O. Since <!> does not depend explicitly on t, this 
means that <!> is an SA operator. Hence we have proved the followinp 

5. 7. 12 Theorem. 

+ The operator st , as given in (S.7.7) is an AS operator. The operator<!>, 
defined in (5.7.8) is an SA operator. Further A= st+<!> S + S is a recur-

p p 
sion operator for symmetries and r = ~~+ U + U is a recursion operator p p 
for adjoint symmetries. 

D 

The "variational derivatives" of FI and G are given by 

oF 1 oG 
x + 60t(3u2 + u ) f/_ u I f/. u p' ou = ou xx p 

This means that F1 and G are not differentiable (in the choosen topology). 

However, if we set 

I 
-x 
72 

5 2 ( l oG ) + 6 t(3u + uxx) = 72 ou 



then a0 and TO satisfy (5. 7 .6). Since o·0 (/. Up and TO (/. Up' we cannot call 

them adjoint symmetries. The factor ; 1 turns out to be convenient in the 

remaining part of this section. Application of ~+ results in 

+ v 12 00 !2ux E: s "O p' 
(5.7.13) 

+ l 
20 ~ 'o - (2u + XU + 5tX(u)) E: S • 6 x p 

It is easily seen that Y 0 and Z 0 satisfy (5, 7. 5) , so they are symmetries 

of the SK equation. Note that the symmetry z0 corresponds to the scale 

transformation u(x,t) 7 a 2u(ax,a5t) of the SK equation. By applying the SA 
operator ~ to Y0 and z0 we obtain the adjoint symmetries 

oF4 
72 -- and T 1 OU 

Three infinite series of (adjoint) sylll!l1etries are constructed in the following 

5. 7. 14 Theorem. 

The series 

(5.7.15) k-1 
r a I' 'k 

k-1 r , 1, k 1,2,3,. .. 

consist of adjoint symmetries of the SK equation. The corresponding 

symmetries are given by 

xk 
+ 
~ Pk Ak-lx 

I (Xl X)' 

yk ~+Ok Ak-ly k 
I A y O' 

+ Ak-lz k 
zk ~ 'k I A z0 • 

Proof: 
oF3 

This theorem is a straightforward consequence of the fact that p1 = 8-;:;- , 

a1 and T 1 are adjoint symmetries and that r is a recursion operator 

for adjoint symmetries, 

CJ 
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We shall show that the adjoint symmetries pk and CJk are exact and corre

spond to the constants of the motion F3k and F)k+l· The adjoint symmetries 

Tk turn out to be non-closed fork~ I. Since the adjoint symmetry TI and 

the symmetry z1 = D+TJ are essentially for the following considerations, 

we give TI explicitly 

(5.7.16) 

(5. 7. 17) 

-I 3 2 -1 5 -1 2 -! 53 (u ) + 3u a u - z a (ux) + u2xa u + !Ouux + 

oF 
a I + 240t 0: 

It is easily seen that T; f Tj*, which implies that Tl is non-closed. 

Notice that the terms which contain x explicitly in T 1 can be written as 
oF 4 ( . 6 2 . . . 1 x ~ see RemarK 5 .. 3 for a similar property of the non-canon1ca symme-

tries of the KdV equation). 
. + By Theorem 2.5.16 1) the operator L2u is again an AS operator 

and the operator L2 w is again an SA operator. A very long computation shows 
that 

(5. 7. 1 8) 
+- + + 

LZ D -Q iPQ 
1 

(5. 7. 19) L2 iP 
+ 

2iPQ iP 
] 

This means that Hypothesis 4. 8. 2 is satisfied (with c = 2). As a first con

sequence (see (4.8.5)) we have the following 

5. 7 .20 Theorem. 

i) The SA operators LkiP are given by z 

ii) The SA_operators iP(Q+iP)k are cyclic, 

Cl 



Now a first series of constants of the motion of the SK equation is ob

tained from the semi-Hamiltonian version of Theorem 4.5. ll. 

5.7.21 Theorem. 

l 77 

The adjoint sy1lll!letries pk are exact and correspond to constants of the motion 

F 3k by 

(5.7.22) 

These constants of the motion are in involution. 

D 

A second series of constants of the motion is described in the following 

5.7.23 Theorem. 

The adjoint symmetries crk are exact and correspond to constants of the motion 

F3k+l by 

(5.7.24) 
oF 3k+ I _o_u_ k-1 r a 1 

These constants of the motion are in involution. Also the Poisson brackets 

between the elements of the series F3k and F3i+l vanish. 

Proof: 

This series of constants of the motion does not start with the Hamiltonian, 
so we cannot obtain it from a semi-Hamiltonian version of Theorem 4.5.Jl. 
However, a straightforward proof using similar methods is 

+-
The operators Q and ~ do not depend explicitly on x, so 

Ly ~ = 0. This means that 
0 

easily given. 

= 0 and 

is a cyclic operator this implies that the adjoint symmetry 

(wQ+)k~y0 is exact (see Lemma 4.5.9). The antisymmetry of 
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+ 
<!> and Q imp lies that the corresponding constants of the motion F 3k+ 1 are 

in involution. We now consider the Poisson bracket between F'3k+l and the 

Hamiltonian F 3 F'3 . Since F3k+l is a constant of the motion we have 

oF 3k+ l 
The derivative = ak does not depend explicitly on t. This means ou 
that F 3k+l can only depend explicitly on t through an "additive function 

of t" (see also the proof of Theorem 2. 4 .5). Subs ti tut ion of the solution 

u(x,t) = 0 shows that this is impossible, so 

0 and 

Finally it follows from 

3 ~ 
-F 3 t 3k+ I 

0 • 

0 . 

that the two series F 3k+ 1 and F 32 are also in involution. 

Thus we have constructed two series of constants of the motion; a series 
F b 1 . h . d. . . oF3 3k y app ying t e recursion operator for a Joint symmetries r to - 0-• OF4 . • u and a series F 3k+ 1 by applying r to Tu. By normalizing these constants 

of the motion so that the coefficient of uk in Fk is equal to l, we obtain 

the series F 3k and F 3k+l" So there exist rational numbers ~ such that 

(5. 7. 25) 

D 

Next we turn to the adjoint symmetries Tk and the corresponding 
+ 

symmetries Zk = Q Tk. 

5.7.26 Theorem. 

The adjoint symmetries Tk are non-closed for k 1,2, 3, ..•. 

Proof: 
+ k + 6k+3 It is easily seen that (rl <!>) Q always contains a term 3 , so this opera-

tor does not vanish. The result now follows from Theorem 4.8.7 ii). 

0 



Recall that, since we are working in a linear space, the notions closed 

and exact and hence non-closed and non-exact are identical. 

The various possible Lie brackets between the elements of the 

three series of symmetries are given in 

5.7.27 Theorem. 

The Lie brackets between the elements of the series of symmetries Xk, Yk 

and Zk are given by 

(5.7.28) 0 ' 

(5.7.29) 0 ' 0 , 

Proof: 
5 A simple computation shows that [Z 1,x1J = 6 x2 • Then (5.7.28) is a conse-

quence of the semi-Hamiltonian version of the Theorems 4.6.16 and 4.7.8 

(with c = 2 and b = ~). The relations (5.7.29) follow from considerations 

similar to the proofs of the theorems mentioned above. 

We now have two distinct methods available for constructing the series of 

constants of the motion F3k and F3k+l" The first method is to construct 
the corresponding adjoint symmetries using the recursion operator r (see 

the Theorem 5.7.21 and 5.7.23). The second method consists in generating 

the corresponding symmetries by using the repeated Lie bracket with Z 1 (see 

Theorem 5.7.27). The simplest method for constructing the two series of 

constants of the motion is described in 

5. 7 .30 Theorem. 

The constants of the motion F3k and F3k+I can be found recursively by 

179 

IJ 
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where a 1 is given by (5.7. 16) and (5.7.17). The normalization constants 

~ and bk have to be chosen such that the coefficients of u3k+ 3 and u3k+ 4 

in F3k+3 respectively r 3k+ 4 are again equal to J. 

Proof: 

The recursion formula for the series F3k is a straightforward consequence 

of the semi-Hamiltonian version of Theorem lf.7.12. The formula for the 

series F3k+l can be proved in a similar way. 

Finally we make some remarks on the "scattering-inverse 

scattering" problem for the SK equation. The "scattering problem" for 

the SK equation, given by Satsuma and Kaup [42] and by Dodd and Gibbon 
[57], reads 

(5. 7. 31) yxxx + 6uyx J.y • 

Suppose this equation has a discrete eigenvalue !. with an eigenfunction y 

such that J00 yy dx exists. Then it can be shown that the eigenvalue !. -oo x 
is purely imaginary and that (formally) 

o:\ 
OU 

_,)
00 yyx dx 

If u evolves according to the SK equation, the discrete eigenvalue :\ is a 

constant of the motion and so i ~~ is an adjoint symmetry. Indeed, using 
h . 1 . . ' [4 ] . b h . o:\ . f' t e time evo ution of y given in 2 , it can e shown t at 1 8 satis ies 

8:\ u 
(5. 7.6). We now can apply the recursion operator r to i ou. After a long 

computation, using (x derivatives and complex conjugates of) (5.7.31) we 

find 

(5. 7. 32) ri o!. 
8U 

27A°5:i o:\ 
OU 

0 

So the recursion operator r has an eigenvalue 27:\\ which is again a constant 

of the motion. See also Theorem 2.3.13 and Corollary 2.4.1 l. The Formula 

(5.7.32) is similar to the Relation (5.6.63) in the case of the Korteweg-

de Vries equation. 
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NOTATION 

A,B,C vectors or vector fields 

C00 (JR ) infinitly differentiable functions on IR 

d exterior derivative 

du 1 , ••• , dun natural cobasis 
d d 

e 1= ~-1 , ••• , e = --- natural basis 
dU n dUn 

E various Lie algebra's 

F,G,K (parameterized) functions on M (elements of F(M) 

or F (M)) or constants of the motion 
p 

F(M) 
F (M) 

p 
f,g 

H 

H 

iA 
L 1 (1R ) 

L2 OR) 

L(W,W 1) 

LA 
M,N 

P1' 
R(k) 

T(k) 

s ,u 
p p 
I n 

u :t 3 11 3 ' U 

u 

TM 
u 

TM 

T*M 
u 

T*M 
T~(M) 

J 

T~ (M) 
JP 

V(X;M) 

smooth functions on M 
smooth parameterized functions on M 
various functions or mappings 

Hamiltonian 

Hilbert transform 

interior product with a vector field A 

Lebesgue space of integrable functions 

Lebesgue space of square integrable functions 

linear continuous mappings of W 

Lie derivative in the direction 

manifolds 

canonical coordinates 

reflection coefficient 

transmission coefficient 

into 

of A 

function spaces (see section l. 3) 

local coordinates 

arbitrary point of M 
tangent space in u € M 
tangent bundle of M 
cotangent space in u € M 

cotangent bundle of M 

WI 

tensor fields on M with covariant order j and 

contravariant order i 

parameterized tensor fields on M with covariant 

order j and contravariant order i 

symmetries of the dynamical system u=X(u) on M 
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V* (X ;M) 

X(M) 

X (M) 
p 

X* (M) 

X* (M) 
p 

X,Y,Z 
U ,U 0 
w,w 1 
W*,Wj 

a,S,y 

r 

f\_ 

p ,CT, T 

w 

I\ 

<·' ·> 

[ .. ' ] 

[', · 1 
{.,.} 

Cl 

d-1 

oF 
OU 

adjoint symmetries of the dynamical system u=X(u) 

on M 
smooth vector fields on M 
smooth parameterized vector fields on M 

smooth one-forms on M 

smooth parameterized one-forms on M 
symmetries (elements of V(X;M)) 
open subsets of M 
topological vector spaces 

topological duals of w,wl 
elements of T*M or one-forms on M 

u 
recursion operator for adjoint symmetries (tensor 

field) 

recursion operator for symmetries (tensor field) 

various tensor fields or linear mappings 

differential k-form (corresponding to :".:) 

adjoint symmetries (elements of V*(X;M)) 
SA operator (tensor field) 

two-form (corresponding to ~) 

AS operator (tensor field) 

cyclic (SA) operator (tensor field) 

canonical (AS) operator (tensor field) 

symplectic two-form (corresponding to 0.) 

tensor product 

exterior product 

duality map (between T*M and T M or between W and u u 
W*) 
Lie bracket of vector fields 

connnutator of two linear operators 

Poisson bracket of two functions 
.1.. or..£!... 
Clx dx 
inverse of Cl (see theorem I. 3. 11) 

variational derivative of F 

Derivatives with respect to u are indicated by a prime. Derivatives with res

pect to t are indicated by a dot, except when partial differential equations 
are considered. In that case derivatives with respect to t are denoted by the 
subscript t. 
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A' 
action variables 79 

analytically independent 30 

angle variables 79 

angular momentum 135 

antisymmetric 8,26 

autonomous differential equation 33 

B: 

Benjamin-Ono equation 140 

bi-Hamiltonian system 89 

"bilinear constant of the motion" 

Burgers equation 115 

C: 

canonical 

coordinates 72 

130 

coordinate transformation 78 

involution 62 

transformation 80 

classical Hamiltonian system 67 

connnutator 125 

completely integrable 77,78 

composition 27 

conseved flux property 153 

constant of the motion 36 

contracted multiplication 9 

contraction 9,21 

contravariant order 7,16 

cotangent 

bundle 6 

bundle projection 6 

space 6 

covariant order 7,16 

D: 

Darboux 72 

differential form 7,12 

closed 13,21 

exact 13,21 

dual 

basis 7 

operator 26 

space 25 

duality map 6,25 

E: 

embedding operator 26 

exterior 

F: 

differentiation 13,20 

product 14 

first cohomology group 86 

first integral 36 

Frechet differentiable 19 

function 7 

parameterized 16 

G: 

Gateaux 

H: 

derivative 19 

differentiable 19 

Hadamard differentiable 19 

Hamiltonian 71 

system 71 

Hilbert transform 27,140 

Hopf-Cole transformation 116 

I: 

in involution 73 

integral invariant 36 
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interior product 12,21 

inverse scattering 39,146,163,180 

isospectral transformation 39 

J: 

Jacobi identity 8,73 

Jost function 162 

K: 

Kepler problem 134 

Korteweg-de Vries equation 146 

L: 

Leibniz'rule 12,14 

Lie 

algebra 8 

bracket 8 

derivative 11,20 

group 3 

product 8 

linear space 8 

local coordinates 6 

M: 

Miura transformation 148 

Modified Korteweg-de Vries equation 

module 8 

multi-Hamiltonian system IOI 

N: 

natural 

basis 6 

co bas is 7 

Nijenhuis tensor field 54 

nondegenerate 68 

O: 

operator 

AS 46,112 

148 

P: 

canonical 70,114 

cyclic 48,70,113 

SA 46, J l l 

Poisson 

bracket 73 

manifold 73 

structure 73 

Poincare 13 

potential operator 22 

principle value integral 27,140 

R: 

recursion operator 

for symmetries 39,111 

for adjoint symmetries 44,111 

reflection coefficient !63 

reflexive 17 

ring 8 

Runge-Lenz vector 135 

S: 

Sawada-Kotera equation 172 

scattering data 163 

Schrodinger eigenvalue problem 162 

semi-Hamiltonian system 72,107 

seminorm 25 

separating 25 

summation convention 7 

syrmnetry 32,35,50, 111 

adjoint 32,36,111 

autonomous 37 

canonical 85 

canonical adjoint 85 

linear 126 

non-canonical 85 

non-canonical adjoint 85 



non-semi canonical 85 

non-semi-canonical adjoint 85 

semi-canonical 85 

semi-canonical adjoint 85 

symplectic 

T: 

form 68 

manifold 68 

transformation 80 

tangent 

bundle 6 

bundle projection 6 

space 6 

tensor field 7 

canonical 70,114 

cyclic 70, 113 

parameterized 16 

tensor product 9 

topological vector space 17 

locally convex Hausdorff 25 

topology 25 

transmission coefficient 163 

twice differentiable 19 

V: 

variational derivative 115 

variational principle 33,75 

vector bundle map 10 

vector field 7 

W: 

covariant 8 

contravariant 8 

Hamiltonian 71 

parameterized 16 

semi-Hamiltonian 72 

weakly nondegenerate 68 

weak symplectic form 68 
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