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CHAPTER I 

INTRODUCTION 

This piece of work has been motivated by a combined interest in both 
partial differential equations of mixed elliptic-hyperbolic type and 

Fourier Integral Operators. We test the utility of these operators for the 

study of the Tricomi operator 32/3t2 + t~x and the operator 

t(cl/ar2) + ~ + a(Cl/3t), which we will call the Pseudo Tricomi operator. x 

The Tricomi operator dates back to 1923, when Tricomi considered a 

· 1 b d 1 bl f h · " 2u/"t2 + t(" 2u/"x2) O · sllllp e oun ary va ue pro em or t e equation o o o o = in 
R2 (Tricomi [26]). Then, in the forties it was Frankl' who saw the general 
connection between this equation and the theory of plane transonic gas 

flows (Frankl' [9]). This discovery aroused the interest in Tricomi and 

related operators. Some names that should be mentioned here are those of 
Bizadse, Gellerstedt, Germain and Bader, Morawetz, Protter. For more in­
formation see Bers [I]. Recent contributions are those of Schneider [22] 
and Gramtchev [12]. 

The Pseudo Tricomi operator we encountered first in Karol [17], in which 
boundary value problems were discussed for the associated homogeneous 

equation in R2• Although most probably this operator is not connected with 
problems of any practical interest, still it is very interesting, because 
it is of mixed type and characteristic along the "parabolic line" t = O. 

Most existing proofs for these problems use either integral equations 
or the energy integral method. 

In the first case the region n in which the equation is considered, is 

divided into two regions nl and n2, so that the equation is elliptic in nl 
and hyperbolic in n2. First assuming T(x) = u(x,O) to be known on the 

common boundary of nl and n2, the problems in nl and n2 are solved, giving 
then a (singular) integral equation for T. Disadvantages of this method 
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are: I. no closed formula for the solution is obtained and 2. it is not 

clear whether one obtains a solution in Q or in QI u Q2. See for example 

Tricomi [26] and Bizadse [2]. 

For the energy integral method one has to find a Hilbert space H, a sub­

space S and an (energy) estimate \\w\\ s c\\liw\\, for w E S, L denoting the 

partial differential operator. The Hahn-Banach theorem then gives existence 

of a weak solution. The disadvantage of this method is that it is purely 

existential. See for example Morawetz [20] and Schneider [22]. 

Neither of these methods makes clear what happens in the transition 

area, when the operator changes type from hyperbolic to elliptic. In 

particular, the difference in bicharacteristic structure of Tricomi and 

Pseudo Tricomi operator is not represented. This becomes all too clear when 

we allow distributional data. Therefore it is natural to apply Fourier 

Integral Operators (FIOs). In the two publications Hormander [15] and 

Duistermaat/Hormander [7] it was shown that for certain PDOs P 

satisfying conditions on their bicharacteristic structure, FIOs can be used 

as the main tool for describing the singularities of solutions of the 

equation Pu= f in terms of the singularities of f. We might say they are 

employed to describe the singular part of solutions of the equation. 

Similar results for boundary value problems can also be obtained. 

The Tricomi operator belongs to the class of operators satisfying the 

conditions referred to above, but the Pseudo Tricomi operator does not. One 

of the objectives of this research was to examine to what extent FIO­

techniques are usable for the study of this operator. 

FIG-techniques usually give solutions modulo smooth functions. This is 

probably one of the reasons why up to now they have been considered to be 

of mainly theoretical interest. Of course, in order to be of practical 

interest they should lead to 'exact' solutions. This might be arranged in 

three ways: 

!. the classical way: first apply FIO-techniques to split off the singular 

part of the problem and solve the remaining problem, involving only 

smooth data, with other methods such as integral equations, numerical 

techniques, etc. 

2. be more careful in the analysis: e.g., try to make asymptotic results 

exact, avoid cut-off functions, etc. 

3. try to obtain estimates for the remainder. 
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A second objective of this research was to develop techniques in order to 

obtain exact solutions by way of method 2 or 3 for some feasible problems. 

The organization of the next chapters is as follows. 

In chapter 2 we give a summary of the theory of distributions, 

PDOs and FIOs that is used in the other chapters. This chapter is rather 

extensive in order to keep this work as much self-contained as possible 

and in order to explain at least the most simple facts about FIOs and their 

use for those who are not acquainted with the theory for these operators. 

The chapters 3 and 4 deal with the Tricomi operator (in chapter 3 inE.n+l). 

Fundamental solutions are constructed and analysed and boundary value 

problems with distributional data are discussed. 

In chapter 5 we discuss an operator which is not of real principal type, 

that is, it does not have the properties indicated above. 

We conclude with appendices in which some theory connected with Bessel and 

Airy functions is summarized and many technical lemmas used in the pre­

ceeding chapters are stated and proved. 

The new results of this study are the following. 

From the view-point of equations of mixed type: we solved boundary value 

problems with distributional data and we obtained explicit formulas for 

fundamental solutions. The formulas are closed in the transition area. The 

behaviour of solutions near the 'parabolic line' is described. 

From the view-point of FIOs: most problems considered in this study have 

been solved exactly by applying adapted FIO-techniques. 

These results could be obtained only by developing a large technical 

machinery. Fortunately, for the operators in question we were able to make 

use of various classical results, such as integral representations and 

asymptotic expansions for solutions of ordinary differential equations. 

In fact, it is an arguable point whether this machinery is so much larger 

than it is in the case of integral equations or energy integral methods, 

while the results are more detailed and more perspicuous. Therefore there 

seems to be no reason to shun FIO-methods in problems of practical 

interest, notably in mathematical physics. 
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CHAPTER 2 

PRELIMINARIES 

In this chapter we will give a sunnnary of that part of the theory of 

distributions, Fourier Integral Operators (FIOs) and Partial Differential 

Equations (PDEs) which is relevant for the next chapters. Also the notation 

used will be exposed. Proofs of theorems will not be given here. Most of 

them can be found in Schwartz (23] and Hormander (16]. Also in these books 

the most elementary theory of distributions can be found, which we assume 

to be wellknown. 

Sections that are not more or less introductory of character but that con­

tain results which are used only once or twice are marked by an 

asterisk (*). 

2.1. Distribution spaces. 

In this section we give a list of some more or less wellknown distri­

bution spaces together with some defining properties. Let n c Rn be an 

open subset and let x = (xl, .•• ,xn) denote a point of n. 

C~(Q) := the set of smooth functions with compact support contained in Q; 

~j + 0 in C~(Q) means that for some compact K c n, supp ~j c K for all j 

and for every fixed multi-index a 

V'(n) .- the set of distributions on n. 

the dual of C~(Q), that 

so that ~j + 0 in C~(Q) 

is, it is the set of linear forms u on 

implies u(~.) + O. 
J 
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C00 (Q) := the set of smooth functions on Q. 

sup JDa<P. I + 0 
XEK J 

for every multi-index a and every K c Q, K compact. 

E'(Q) :=the set of distributions with compact support contained inn. 

It is the dual of C00 (Q). 

Let now Q = JRn. 

S(JRn) := the set of smooth functions <P such that for every (a,S): 

sup < oo. 

(!l. + 0 in S(JRn) means that for every (a,S) 
J 

S'(JRn) := the set of temperate distributions on JRn. 

It is the dual of S(Rn). 

0 (Rn) := the set of smooth functions <P on Rn so that f(x)Da<P(x) is bounded M 
on Rn for every f E S(Rn) and every multi-index a. 

Convergence of (<Pj) c OM to zero means that (fDa<Pj) converges uniformly to 
zero on JRn for every f E S and every a. 

O~(lRn) :=the set of rapidly decreasing distributions in S'. 

Here u is said to be rapidly decreasing if for every <P E C~(Rn) we have 
<P * u E S(JRn) . 

Convergence of (u.) c O~ to zero means that (<P * xau.) converges uniformly 
n J J 

to zero onJR for every <PE C~ and every a. 

The last two spaces are discussed in Schwartz [23]. 

REMARK. 

J. 0~ is not the dual of OM. 

2. If u E O~ n C00 then not necessarily u E S. Take for example 
u = e-x sin ex 



E CD') 
0 0 

:= the set of all lD E C00(:1R. +) (u E V'(:J!t)) SO that for some E > 0 

tp(u) is zero for x < E, 

E00(V~) := the set of all <.p E c"°(JR +) (u E V1(JR+)) so that for some R < 00 

qi(u) is zero for x > R. 

We say that (j)j + 0 in E0 (uj + 0 in V~) if (j)j + 0 in C00(IR+) 

(u. + 0 in V1(JR.+)) and E can be chosen independently of j. 
J 

W h (j) 0 in E (u. + 0 in V') if (j). + 0 in C00(JR.+) e say t at j + 00 J 00 J 

(u. + 0 in p'(JR.+)) and R can be chosen independently of j. 
J 

Any distribution in V~ can be extended to a continuous linear form on E00 , 

a distribution in v: can be extended to a continuous linear form on E0• 
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It is clear that an element of E0 or V~ can be extended to JR. by 

defining it to be zero for x ~ 0. This defines a continuous map between E0 
00

( ) V' V'( ) and C R and between 0 and JR. • 

Finally, V' :=the set of distributions in V1(JR.) with support in:JR+. + 

2.2. Convolution. 

If u 1 E V1(JRn), u2 E V1(JRn) and at least one in E', then u 1 * u2 is 

the distribution so that for <.p E C~(JRn): 

* defines a separately continuous bilinear map. 

If both u 1 and u2 belong to E' or if u 1 E E' remains within a fixed compact 

set, then it is even continuous. 

If all but at most one have compact support, the convolution of two or more 

distributions is welldefined, conunutative and associative. 

If u 1 E V' and u2 E C~ or u 1 E E' and u2 E C00 then u 1 * u2 is smooth and 

(u1 * u2)(x) = <u 1(y),u2(x-y)>. 

Finally we have supp(u 1 * u2) c supp(u1) + supp(u2). 

This is the best known case. We will now discuss two more situations 

in which convolution can be defined. 

If ul E v: and u2 E v~ then ul * u2 is welldefined and 

supp(u1 * u 2) c supp(u 1) + supp(u2). The convolution of distributions in V_~ 

is conunutative and associative. * defines a continuous bilinear map. 
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If u 1 E E1(:1Rn) and u2 E S 1(JR.n) then u1 * u2 E S'(Rn). This can be 

extended by continuity to the case ul E o~. Then * defines a separately 
continuous bilinear map. If both.distributions belong to 0~ it is even 
continuous. Then u 1 * u2 E O~ as well. Again convolution is commutative and 
in case of several distributions ins', it is associative provided all but 
at most one belong to o~. 

REMARK. In more general cases convolution can be defined. However, this 
product is not necessarily associative. It is in the cases mentioned above. 

2.3. Fourier transformation. 

For (j) E S(JR.n) the Fourier transform tP of (j) is given by: 

A 
\ll( I;) 

Here s E ]Rn and <x,s> := rj=I xjsj. 

The inverse Fourier transform ~ is given by: 

~<s) l J ei<x,l;>(j)(x)dx. 
(2'IT)n 

Both (j) + {p and (j) +~define continuous linear maps between S and itself. 
We have Fourier's inversion formula: 

<tP) v (j) and (~/ = (j). 

By duality 
A v 
u and u can be defined for u E S'(lRn) as well. 

A A v v <u,(j)> .- <u,(j)> and <u,(j)> := <u,(j)>. 

Fourier's inversion formula also holds for u ES'. We also have: 

Fourier transformation is an isomorfism between O~(:IR.n) and OM(JR.n). 
See Schwartz [23]. 

As to the relation between Fourier transformation and convolution: 
01 i A .A A V nV V If u 1 E C and u2 E S , then (u1 * u2 ) = u1 •u2 and (u1 * u2 ) = (2TI) u 1°u2 • 

Here multiplication is welldefined because ~I E OM and ~I E OM. 
Finally we mention the partial Fourier transforms IP and liJ of q> E S defined 
by: 
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Here s' E ]Rn-! and x = (x' ,xn) with x' E ]Rn-I. Again~+~ and~+~ define 
continuous linear maps between S and S. Further (~)~ = ~ = (\P)~. 

2.4. Singular support and wave front set. 

Fors E JRn we define lsl := (r~=I £,~)~. Let f = f(s) be a function 
defined at least for I E, I ~ R for some R < 00 • f is said to be rapidly 
decreasing if 

(2. 4. I) 

If 0 f t, 0 E ]Rn then a conic neighbourhood U of t, 0 is defined to be a neigh-
bourhood of t, 0 which is invariant under multiplication by positive scalars. 
f is said to be rapidly decreasing in the direction t, 0 if for some conic 
neighbourhood U of E,O, condition (2.4.1) holds for I 1:, I 2 R, E, E U. 

If u E E' (JRn) then it is wellknown that: 

U E C~ ~ ~ is rapidly decreasing. 

More generally the singular support of a distribution u E V'(n), n c ]Rn, 
denoted by sing supp (u), is defined as follows: 

(2.4.2) 

That is: <i);:i is not rapidly decreasing. 

Sing supp (u) is the smallest set outside of which u is smooth. Note that 
definition (2.4.2) does not take into account the directions in which 'Wli 
is (is not) rapidly decreasing. For that purpose the wave front set of u, 
denoted by WF(u) is introduced. Let n c ]Rn be open, u E V'(Q), XO En and 

n t, 0 E JR , t, 0 f o. Then: 

Cx0,t,0) E WF(u) ** v ~ E c~(Q) with ~(x0 ) = J: c01Ct,) is not 

rapidly decreasing in the direction t, 0 . 

u is smooth in (x,E,) will mean (x,E,) i WF(u). 

EXAMPLES. 
_ ( , 11 ) ]Rn+m s: , n+m oo n+m I. Let x - x ,x E ' u(x"=O) E v (R ). Then for~ E Co(JR ): 

Consider x0 
and ~(x' ,0) 

-r--cc• C") J -i<x' ,!;'> ( ' O)d ' ~u(x"=O) s ,c, = e ~ x , x. 

(xo,xo), E,o = (E,o,E,o). If XO f 0 then for some~: ~(xo) = I 
- 0. So ~ = 0 which implies x0 i sing supp (ox"=O) and 
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(x0 ,i;0 ) f. WF(o(x"=O)) for all i;0 . If x 0 =~then V (j) E c~: (j)(x',O) E c~(:Rn). 
Provided (j)(x0,o) f O then 0 1)!:_~) = ((j)o)(!;') is rapidly decreasing in 
!;'. But then easily follows: (j)Q is rapidly decreasing in the direction of i;0 

~ i;0 f o. 
So 

sing supp o(x"=O) = {(x' ,O") Ix' E lRn}, 

WF(o(x"=O)) = {(x' ,O",O' ,!;") Ix' E lRn, !;" E lRm \ o}. 

2. ' {I H E V (lR) by: H(x) = 0 if 
x < 0 

x > 0 
Define 

COJ -ix!; dxe (j)(x). 
0 

If x 0 f 0 then for some (j) E C~: (j)(x0 ) I and H(j) = (j) or H(j) = O. In both 
cases (j}il is rapidly decreasing in !;. If x 0 = 0 then 

- (j)(O) I OOJ -ix!; d(j) !,OH(!;) = ---;y- + '"'7 dxe -d for !; f O. 
l.<, l.<, 0 x 

For (j) E C~, (j)(O) = I one more application of partial integration shows that 

this does not behave better than i for I!; I -• 00 • So 

3. 

singsupp(H) = {O}, 

WF(H) = { (O,!;) I i; f O}. 

u = - 1-.- E V'(lR) is defined by <u,(j)> x+iO 
section 2.13. Then 

lim J (j)(~) dx. See also 
E-1-0 x+:iE 

-i~ * H = -i J ~(n)dn. 
-oo 

Clearly this is rapidly decreasing for !; + - 00 • If (j)(O) = l then 

f° ~(n)dn = 2n(j)(O) = 2n so then (qi· --l.-0 )" is not rapidly -co x+:i 
decreasing for !; + +00 • If x 0 f 0 then for some (j) E C~, (j)(x0 ) = I and 
(j)(x) = 0 in a neighbourhood of the origin. So (j) • -.!.--0 is smooth. Therefore x+:i 

sing supp (x}iO) = {O}, 

WF (x+1i0) = { (0,0 I!;> o}. 

Properties of WF(u). 

Consider Q x lRn, Q c Rn open, with coordinates (x,I;). 

I. Define n 1 : Q x lRn + Q by n 1(x,I;) = x. 

If u E V'(Q) then n 1[WF(u)] = singsupp (u). 
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2. If u E V'(D), <.p E C00(D) then WF(<.pu) c WF(u). If a is a multi-index 

then WF(Dau) c WF(u). So if P is a linear differential operator with smooth 

coefficients, then WF(Pu) c WF(u). 

3. If n1 is an open subset of n then u 1 := uln is welldefined and 

I I -I l 
WF(u 1) = WF(u) n1 where WF(u) n1 = WF(u) n n 1 (D1). 

4. WF(u) is a closed conic subset of n x (JR.n \ O). Here conic means that 

(x,s) E WF(u) and A> O implies (x,As) E WF(u). If Vis an arbitrary closed 

conic subset of n x (lR.n \ O) then there is a distribution v E V' (n) with 

WF(v) V. 

WF(u 1 0 u2 ) c WF(u 1) x WF(u2) u 

(supp(u 1) x {O}) x WF(u2) u WF(u 1) x (supp(u2) x {O}). 

2.5. Convolution and singularities. 

For u E E' (:IR.n), v E V '(JR.n) the convolution u * v is welldefined and 

WF(u * v) c {(x+y,s) I (x,s) E WF(u) and (y,0 E WF(v)}. 

We will also encounter the following situation. Let u E E1(lRn), 
x 

v E V 1 (JR.n x JR.m). Then convolution of u and v with respect to x only, x y 
written as u *x v, is welldefined by: 

u * v := (u ® o ) * v x y=O 
and 

WF(u *xv) c {(x1 +x2,y,s,n) I (x2,y,s,n) E WF(v) 

and [(x 1,s) E ~~(u) or (s = 0 and x 1 E supp(u))J}. 

This will be proved in section A.7. 

2.6. Operations with distributions. 

The notion of the wave front set allows to generalize operations with 

functions to the case of distributions with suitable smoothness properties. 

This is done by continuous extension from the smooth case. For that a 

stronger type of convergence is used. 

Let n c ]Rn be open and r a closed cone in n x (JR.n \ O). So (x,0 E r 
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implies (x,\s) E r for all A > o. 

V~(Q) := {u E v' ([2) I WF(u) c r}. 

Then u E V~(Q) "*for every~ E C~(Q) and every closed cone V cJRn with 
r n (supp ~ x V) = 0 we have sup lslNl~Cs)I < 00 , 

v 
N= l ,2,3, •.•• 

A sequence (uj) c V~(Q) is said to converge to u E V~(Q) if 
i. u.-+ u in V'(n) 

J 

ii. svp lslNl~<O-~j<OI-+ 0, j-+ ()()for N= 1,2,3, .•. and (~,V) as above. 

C~(Q) is dense in V~(Q). 

* Composition with smooth maps. 
n· 

Let Qi c lR i, i =I, 2, be open sets. !f f is a function f : QI -+ Q2 
and u is a function defined on Q2 then u 0 f is a function defined on QI. 

If f is smooth and Df(x) is surjective for every x E Q1 the map 
u -+ u 0 f defined for continuous functions can be extended in a unique way 
to a continuous lineair map f* : V'(Q2)-+ V'Cn1). f*u is called the 
pullback of u by f. 

The demand on surjectivity can be relaxed as follows: 

(2.6.1) Let f be smooth and Nf := {(f(x),n) I tf'(x)n = O}. Then the pull­
back f*u can be defined in a unique way for all u E V'(Q 2 ) with 
Nf n WF(u) = 0 so that f*u = u 0 f when u E C00 and for any closed cone 
r c Q2 x (~n2 \ O) with r n Nf = 0 we have a continuous map 
f*: V[(Q2)-+ v~*r(Ql). Here f*r = {(x,tf'(x)n) I (f(x),n) Er}. 
Then WF(f*u) c f*WF(u). 

Note that if Df(x) is surjective, Nf = {(f(x),O) Ix E Q1}, so 
Nf n WF(u) = 0 for all u E V'(Q2). 

The set Nf is called the set of normals of the map f: 

tf'(x)n = o ~ v s: o = <tf'(x)n,s> = <n,f'(x)s>. 

Therefore the condition Nf n WF(u) = 0 says that WF(u) contains no points 
(y,n) which are orthogonal to the image of T(rt1), the tangent bundle of QI' 
under the map (x,s)-+ (f(x),Df(x)s). 
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* Multiplication. 

Multiplication of two distributions can be defined for instance if for 

every x0 E Q one of the distributions is smooth in x0. This can be 

generalized as follows: 

(2.6.2) Multiplication of u and v E V'(Q) can be defined if (x,s) E WF(u) 

implies (x,-s) t WF(v). So if u is not smooth in (x,s), v must be smooth 

in (x,-s). 

uv is defined as the pullback of u ® v by the diagonal map x + (x,x). 

Property 5 of section 2.4 and the result on composition with a smooth map 

given above provide the arguments. Then: 

WF(uv) c {(x,s+11) (x,S) E WF(u) or s = O, (x,11) E 1-lF(v) or 11 O}. 

If u E E', v E E' and if we write strictly formally 

A I I\ I\ I J" I\ UV = ---U * V = --- U(ll)V(s-ll)dll, 
(2TI)n (2n)n 

condition (2.6.2) gives an indication that this integral will be con­

vergent. 

Restrictions. 

(2.6.3) Let Q be an open subset of JRn and Ya submanifold of Q with normal 

bundle denoted by N(Y). If u E V'(Q) has WF(u) n N(Y) = 0 then the re­

striction uly of u to Y can be defined as the pullback by the inclusion 

Y....,. Q, This restriction is unique in the sense that it is sequentially 

continuous from V~(Q) to V' (Y) for every closed cone r c Q x (JRn \ O) with 

r n N(Y) = 0. 

We discuss this locally. So Q = JRk+l, y = { (x' ,x") I x' E lRk, x" = o}. 

Then N(Y) = {(x' ,O,O,s") Ix' E JRk, s" E ]Rl}. 1: x' + (x' ,O) is the in­

clusion map. Then N = {(x',0,11) J tl'(x')ll O} = N(Y). So the condition 
1 

given in paragraph (2.6.I) is satisfied. 

If Q = JR.2, Y =JR x {O}, u(x 1,x2) = {x2 for x2 > O 
0 < 0 

then it is easily seen that WF(u) = N(Y), sou does not fit into this 

framework. Of course uly can be defined here as well. For later reference 

we discuss one more extension of the notion of restriction that covers 

this case. 
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Let Q c lRn open, Ya (n-1)-dimensional smooth submanifold of Q so that 

Q \ Y consists of two components. The restriction of smooth functions on Q 

to Y can be extended to a continuous map between Hal (Q) + Ha1-!(Y) if a > !. oc oc 
This is a wellknown theorem in the theory of Sobolev spaces. See for 

instance Lions/Magenes [18]. 

2. 7. Kernels. 

We start this section with the Schwartz kernel theorem. Let Q, c llti 
1 

be open subsets, i = 1,2. If KE V' (n1 x n2) then we get a map 

K: C~(Q2 ) + V'(Q 1) by: 

(2. 7. I) <KqJ,~> := <K,~ ® qJ>. 

For every KE v•cn, x Q2) the prescription (2.7.1) defines a linear 
map K from C~(Q2 ) to V'(Q 1). This map is continuous in the sense that 

~j + 0 in C~(n2 ) implies K~j + 0 in V'(n 1). Conversely, for every linear 
map K with these properties there is a unique KE V'(n1 x n2) so that 

(2.7.1) is valid. K is called the kernel of K. 

If A and B are sets, R c A x B and C c B then 

R ° C := {a E A [ 3 c E C: (a,c) E R}. 

(2.7.2) Then supp(K~) c supp(K) o supp(~). 

Two cases in which the map K can be extended to E'(n2) are: 

I. If Kc C00 (Q1 x n2) then K : E'(Q2) + C00(Q1) continuously and 

(Ku)(x1) = <u,K(x 1,.)>. Conversely every continuous map with these proper­

ties is defined in this way by a kernel K c C00
• The corresponding operator 

is called smoothing. 

2. Define tK, the transpose of K by <tK~,<.(1> := <t/!,K<.(1>, ~ E C~(Q2 ), 
~ E C~(Q 1 ). If tK : C~(Q 1 ) + C00(Q2) continuously, then K can be extended 
to a continuous map between E'(n2) and V'(n 1) by <Ku,~> := <u,tKw>. 

Conditions for other extensions can be expressed in terms of the wave 
front set of the kernel K. 

If lP E C~(n2 ) WF(Kq:i) can be estimated in terms of WF(K) as follows: 
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(2.7.3) 

Define 

WF(K)nl := {(xl,l;I) I (xl'x2,i;I,O) E WF(K) for some x2 E n2}' 

WF'(K)n2 := {(x2,l;2) I (xl,x2,0, -1;2) E WF(K) for some xl E nl}. 

Note that 

(2.7.4) 

WF'(K)n2 = 0 implies tK : c~ + c00
, 

for the kernel of tK is given by tK defined by tK(x 1,x2) = K(x2,x1). 

(2.7.S) For u E E'(rl2) with WF(u) n WF 1 (K)n2 = 0, Ku E V'(rl1) can be 

defined: for such u Ku can be defined in a unique way so that the map 

E'(M) n Vr<rl2) , u +Ku E V'(n1) is continuous for all compact sets Mc n2 
and all closed conic sets r so that r n WF'(K)n = 0. Here E'(M) is the set 

2 
of distributions with support in M. The propagation of singularities is as 

follows: 

WF(Ku) c WF(K)n u WF'(K) 0 WF(u), 
I 

(2.7.6) 

where WF' (K) = {(x1 ,x2,i; 1,t,:2) I (x1 ,x2,i; 1,-t,:2) E WF(K)}. Also WF(K), which 

is a subset of (rl1 x n2) x JR.n1+n2, is identified with the set 

{(x1,l;1,x2,l;2) I (x1,x2,i; 1,l;2) E WF(K)}, which is considered as a subset of 
(n1 x JR.nl) x cn2 x JR.n2). 

I t 00 00 r,., REMARK. If ~W (K)n2 = 0 then K : c0 + C • So K can be extended to E ( .. 2) 

by transposition. See case 2. This map coincides with the map defined in 

paragraph (2.7.S) for both maps are equal on C~(rl2 ) and continuous. 

If n3 c JR.n3 open, Kl E V' (rll x rl2) and K2 E V' (rl2 x n3). we now dis­

cuss the composition K1 ° K2• 

(2.7.7) For X E C~(rl3 ) property (2.7.2) shows that a sufficient condition 

for K2x to be in E'(n2) is that the projection TI : supp K2 3 (x2,x3) + x3 
is proper, that is TI-I (M) is compact in supp K2 for every compact M c n3• 

Moreover, if WF 1 (K1)n2 n ~W(K2 )n2 = 0, property (2.7.3) and condition 

(2.7.S) show that K1 ° K2 is a continuous map between C~(rl3 ) and V'(n1). 

So K1 ° K2 has a kernel K E V' <n1 x n3). For the wave front set of K holds: 
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(2.7.8) WF'(K) c WF'(K1)oWF'(K2 ) u WF(K1)ri1 x (S13 x {O}) 

u ( S1 I x { O} ) x WF ' ( K2 ) ri3 

2.8. Oscillatory Integrals. 

In this section we call attention to a very important class of 
operators which have kernels defined as oscillatory integrals. These 
operators are the local Fourier Integral Operators (FIOs). As in the 
previous sections, all definitions will be given locally, that is, we only 
consider the case that we are working on open subsets of someJR.n. In the 
next chapters, no global, invariant theory on manifolds is necessary. 
Therefore we leave it out in this chapter, too. 

The materials for oscillatory integrals are phase functions and symbols. 

Phase functions. 

Let S1 c Ji1 be open and r c S1 x (JR.N \ 0) be an open cone for some N. 
So x E SJ, (x,8) E r implies (x,A8) E r for every A > o. 

Let (jl E C00(f) be a smooth function in r which satisfies: 
i) (jl is homogeneous of order l in 8, that is: (jl(x,A8) = A(jl(x,8) if 

(x,8) E r and A > o. 
ii) (jl is real. 

iii) d(jl ~ o in r. 
Then (jl is called a real phase function in r. 

In many situations condition ii) can be replaced by the condition 
Im (jl ~ O. Most of the time we will work with real valued functions. So we 
omit the adjective real and assume (jl real unless otherwise stated. If 
r = S1 x (JR.N \ O) we simply say tp is a phase function. 

The set C(jl is defined as 

c(jl := {(x,8) E r I (jl8 (x,8) o}. 

(jl is called non-degenerate if 

V (x,8) E C(jl: the differentials d(Cl(jl/Cl8k), k = J, ••• ,N are 

linear independent at (x,8). 



This implies that CIP is a submanifold of dimension n in f. 

The set AIP is defined as 

(2. 8. I) 
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The set AIP will play an important role in the description of the wave front 

set of a kernel given as an oscillatory integral. If IP is non-degenerate it 

is an n-dimensional conic submanifold of lR.n x (lR.n \ O) and the map 

~n ~ (x,e) + (x,IP (x,e)) E A defines a diffeomorphism of a conic open 
"' x IP 

neighbourhood of an arbitrary point of CIP onto a conic neighbourhood of 

the image of that point in AIP. 

REMARK. A first step towards a global discussion is to note that AIP can be 

considered as a submanifold of T* (rl) \ O. Here T* (rl) denotes the cotangent 

bundle of n, which is the dual of the tangent bundle T(rl) of n. 

If in future we use the notation T*(n), one can always interpret this 

locally as n x lR.n with n = dim n. Then T* (rl) \ 0 "" n x (lR.n \ O). 

Symbols. 

Let n c lR.n be open and let m, p 

and 0 ~ o < J. Then Sm ~<n x lR.N) is p,u 

and o be real numbers with 0 < p ~ l 
co( N the set of all S E C Q X lR. ) SO that 

for every compact set Kc n and every multi-index a,S there is a constant 

c < ()() 
K,a,S so that 

(2.8.2) lnxSnaes(x,e)I ~ c (l+lel)m-plal+olsl for x E K, e E :RN. 
K,a,8 

So the estimate improves after differentiation with respect to e and does 

not get too much worse after differentiation with respect to x. 

The best possible constants in estimate (2.8.2) are semi-norms that 

turn Sm into a Frechet space. The elements m called symbols of of S 0 are p,o p, 
order m and type (p,o). We also that s satisfies Sm . If say 0-estunates. 

sml sm2 m1+m2 p, 
SI E and s2 E then s 1s2 E s 0 • p,o p,o p, 

N If f is an open conic subset of n x lR , s is a function defined on r, 
smooth for lei > R for some R then s is said to satisfy Sm ~-estimates in p,u 
r if s satisfies the estimates (2.8.2) for x EK, lei > R, (x,e) E r. 
If r n x lRN we say that s satisfies Sm ~-estimates for large e. p,u 

For s E Sm ~= cone supp (s) := {(x,A.e) I (x,e) E supp(s), A ~ Q}. p,u 
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Finally, we say that s is rapidly decreasing in an open cone r if s 
m . . satisfies S _,.-estimates in r for every m E lR. p,u 

EXAMPLES. A polynomial of degree m is in s7 0• If s E C00 and homogeneous of , 
m degree m in 8 for large 8 then s E sl,O 

(2.8.3) A method for constructing symbols is: 

If s is a symbol in s0 _,.(Q x lRN) and f is a C00-function in a neighbourhood p,u 
of the limit points of s when IBI ~ 00 while x may vary, then f(s(x,8)) 

· f · s0 · f 1 e satis i.es p, 0-esti.mates or arge • 

Oscillatory Integrals. 

Let ~ be a phase function in the open cone r c Q x lRN. Let F be a 
closed cone in r u (Q x {O}), s a symbol with supp(s) c F. Let u E C~(Q). 
Consider the expression I~(su) given by 

(2.8.4) I~(su) = f ei~(x,B)s(x,8)u(x)dxd8. 

If m is the order of s and m + N < 0 this is an absolutely convergent inte­
gral. This is also the case if s vanishes for large 8. In a unique way for 

m N oo all s E U -" S _,.(Q x lR ) with support in F and all u E c0 (Q) an inter-m,p, u p,u 
pretation for this integral can be given so that I~(su) isa continuous 
linear function of s E s;,o for every fixed u E C~(Q), m E lR, 0 < p s I 
and 0 so< I. Then the linear form u +I (su) is a distribution of order 

m ~ s kif s ES _,.and m-kp < -N, m-k(I-o) < -N. p,u 

The proof is based on the method of stationary phase. 
The properties of ~ make it possible to construct a differential operator 

0 -1 L ~I aj~a/38j) +tI bk(3/3xk) + c, aj E SI O' bk,c E SI O' so that 
Lel.$ = el.$. Then L maps Sm-" into gm-~ wi~h E = min(p,i-o) > O. Fors p,u p,u 
vanishing for large 8 in formula (2.8.4) repeated application of partial 
integration with L gives the expression 

If m - kE + N < 0 this integral is absolutely convergent for all s E Sm p,o 
and I(j)(su) can be defined for such s by this expression. Since E > O, this 
is possible for every m,p,o as above. It can be ~nown that I(j)(su) has the 
properties given above. 
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The extended definition of expression (2.8.4) will be called an oscillatory 

integral. We will use the notation (2.8.4) for I~(su) even if the integral 

is not absolutely convergent. For the distribution u + I~(su) the notation 

J d8ei~(x, 8 )s(x,8) 

is used. 

If ~ and s depend continuously on a parameter y E 1Rm in C00(f) and 

s~, 0 (Q x JRN) respectively, supp(s) c F, then I~(su) is a continuous 

function of y. This remark can also be used to justify differentiation with 

respect to y under the integral sign. 

EXAMPLES. 

I . For u E C~(1Rn): 
u = G = ~-I~ J d8ei<x,8> J d -i<y,8> ( ) 

(2TI)n ye u y . 

If x E S, X(O) = I then X(E8) + I in s7,o for E f O, m > o. This is a 

simple exercise. Also X(E8)u(8) + u(8) in S, so 

u = lim - 1- J d8ei<x, 8>X(E8) J dye-i<y, 8>u(y) 
(2TI)n 

. I J i<x-y 8> I J i<x-y 8> 
= lim-- e ' X(E8)u(y)dyd8 =--n e ' u(y)dyd8. 

(2TI)n (2TI) 

The last expression is considered as an oscillatory integral with phase 

function <x-y,8>, symbol l/(2TI)n, x considered as a parameter. 

2. More generally' if p = LI I< a (x) a: is a partial differential 
()(-ID ()( dX 

operator (PDO) of order m, a E C00 , then 
()( 

I J i<x-y 8> Pu = --n e ' p(x,8)u(y)dyd8. 
(2TI) 

p(x,8) := L\a\~m a°'(x)(i8)°' is called the symbol of P. So for fixed x, 

Pu can be considered as an oscillatory integral with phase function 

<x-y,8> and symbol p(x,8)/(2TI)n E s7,o The associated distribution is 

J ei<x-y, 8>p(x,8)d8 r a (x)(-1)\a\o(a) • 
\al~m °' (y=x) 

3. Consider the Cauchy problem 

" 2u I A 0 Q • ]Rn+ 
DU - ~ = J.n > 

Clt 
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u = 0, ~ = 8 on t = O. Clt (x=O) 

n 2; 2 Here 6 := rk=I Cl Clxk. Partial Fourier transformation with respect to x 

gives the solution 

I f [ i(<x,B>+t!BJ) _ i(<x,8>-tJBJ)] dB u(x, t) = ( 2'TT)n e e 2ifeT. 
oo n Let X E c 0(lR ) be equal to in a neighbourhood of 0 and substitute 

I = X ( 8) + (I - X ( 8)) . Then 

1 f [ei(<x,8>+t 1e1) - ei(<x,8>-t I e I)] xCB)d8 u(x,t) ---
(2'TT)n 2ilBI 

is the sum of two oscillatory integrals with 

respectively and symbol - 1-(I-x(B))-.1
1
-

1 
E 

(2'TT)n 2i e 

phase functions <x,8>± t!BI 
-I 

81, o· 

Note that the integral involving xCB) is absolutely convergent and 
defines a function which is smooth in (x,t). Therefore u can be said to be 
the sum of two oscillatory integrals modulo a smooth function. If one is 
interested only in the singularities of u this function can be neglected. 

On the other hand, note that since the integrand is clearly bounded by It!, 
on compact subsets the contribution of this integral can be made arbitrarily 
small by choosing the support of X small enough. 

We will now discuss the singularities of the distribution 

s u -+ I<P(su). Let <P and s be as in the definition of I<P(su). Then: 

WF(S) c A<P. 

Here A<P is defined by equation (2.8.1). 

(2.8.5) Moreover, if (x0,s0) E A<P and s is rapidly decreasing in a conic 

neighbourhood of every (x0,e) so that (x0,8) E c<P and s0 = A.tpx(x0 ,8) for 
some A.> 0, then (x0,s0) t WF(S). 

The importance of the set C<P seems obvious. As to the set A<P, note that 

for 1jJ E C~: 

Also 

The method referred to in the discussion of the integral (2.8.4) can then 
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be applied in order to verify the fact that WF(S) c AIP, 
-I 

using an operator 

L = I: bj (Cl/Clxj) + c so that bj ,c E SI ,O and 

L(1P(x,8) - <x,1;>) = tp(x,8) - <x,i;>· for !; 1' (j) (x,8). 
x 

Let now Q = Q1 x Q2 clR.nl xm.n2 be open. The coordinates in QI and Q2 
we now denote by x and y respectively. Let IP= tp(x,y,e) be a phase function 

N in an open cone r c Q x lR. , s = s(x,y,e) a symbol with supp(s) in a closed 

cone contained in r. Then 

K(x,y) = J eitp(x,y,e)s(x,y,e)de 

can be considered as a distribution kernel with 

WF(K) c { (x, y ,IP (x,y' 8) ,IP (x,y. e)) I Ille (x ,y' e) o}. 
x y 

Then 

WF(K)Q c {(x,IP ) J 3 (x,y,e) : 1P8(x,y,8) = 0 and IP (x,y,e) = O}, 
I x y 

WF 1 (K)n c {(y,-<P ) J 3 (x,y,e) : IPe(x,y,e) = 0 and IP (x,y,e) = O}. 
"2 y x 

Note that Ille = 0 and IP = 0 implies IP 1' 0, for IP is a phase function. y x 
In particular if IP has no critical points as function of (y,e), 

WF(K)Q1 =~so the associated operator K maps C~(Q2 ) to C00 (Q1). If IP has 

no critical points as function of (x,e), K extends to an operator 

E'(Q2) + V'(Q1). See section 2.7. 

(2.8.6) An operator associated with a kernel defined as above, with a 

phase function IP satisfying the conditions that it does not have critical 

points with respect to (x,8) and to (y,e), is called a Fourier Integral 

Operator (FIO). In that case formula (2.7.6) shows that 

WF(Ku) c WF 1 (K) o WF(u). 

(2.8. 7) The order µ of a FIO is defined as: µ 

order of s E Sm(Q N 
dim QI and n2 s, x lR. ) , n1 = 

may seem to appear out of the blue, but it has 

position rules for FIOs. 

= m+ !N- Hn1 +n2), m is the 

= dim Q2• This definition 

its grounds in the com-

(2.8.8) An operator C~ + V' is said to be properly supported if the kernel 

K of this operator satisfies: 

the projections supp(K) 3 (x,y) + x E Q1, 

supp(K) 3 (x,y) + y E Q2 
are proper. 
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A properly supported FIO maps C~ to C~ and can be extended to a map from 

V'(n2) to V'(nl). 

2.9. Pseudo Differential Operators. 

A Pseudo Differential Operator (WDO) of order m is defined as a FIO 

with phase function <x-y,6> and symbol s = s(x,y,8) in Sm ~en x n X1Rn). p,u 
Here n = dim n. In particular, every PDO is a WDO (see example 2 in 

section 2.8). 

Consider a WDO with kernel K given by 

I i<x-y,8> 
e s(x,y,6)d6, S E 

Then WF(K) c {(x,x,8,-8) I 8 f o}. 

Let X(x,y) be a smooth function in n x n, equal to I in a neighbour­

hood of the diagonal in Q x n and properly supported. Then 

I i<x-y 8> J i<x-y 8> K = e ' X(x,y)s(x,y,8)d8 + e ' (l-X(x,y))s(x,y,6)d8. 

Here the first integral on the right is properly supported and the other 

one is smoothing, that is, it maps E'(n) to C00 (n). This follows from 

property (2.8.5). 

Properly supported WDOs have another "standard form". If A is such an 

operator and o < p then A can be written uniquely in the form 

I I i<x n> ~ n Au(x) =--n- e ' O(x,n)u(n)dn, u E S(lR ) ' x E n. 
( 27T) 

(2. 9. I) 

Here o E Sm (n x JRn) is called the complete symbol of A. Asymptotically p,o 
it is given by 

(2.9.2) 

For example, the complete symbol of a PDO is again p(x,8). 
• ID For a properly supported WDO of order m with complete symbol o in s1 0 , a 

ID m-] ' principal symbol is defined as a symbol TE sl,O so that o-T E SI o· 
n ' For example, if o is given by formula (2.9.2), then (2n) s(x,x,n) is a 

principal symbol. Note that is not unique. 

For a WDO A with kernel K WF(K) can be identified with 
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{(x,6) I (x,x,6,-6) E WF(K)} =: WF(A). 

Then the complete symbol 0 contains the following information: 

The complement of WF (A) is the largest open cone in T* (r.l) \ 0 in which 0 is 

rapidly decreasing. 

This leads to: if A is as above and u E V'(r.l) then WF(A) n WF(u) 0 

implies Au E C00
• 

*REMARK. Consider again convergence in Vi(rl) (see section 2.6). Choose 

(tp,V) so that f n (supp tp x V) = 0. Let 0 = 0(s) be a symbol so that 

supp(0) c V. Then A defined by 

is a (locally finite sum of properly supported) ~DO(s) and WF(A) n r 0. 

So Au E C00 for u E V[(rl) and the condition 

sup lslNl~-~.I-+ 0 for all N implies AuJ·-+ Au in C00 • 

v J 

Moreover, if Au. + Au in C00 for any such A, the converse also holds. 
J 

2.10. The bicharacteristic relation. 
m 

Let P be a properly supported ~DO with a principal symbol p E s1 0 
' homogeneous of degree m for s f 0. For example, if 

aa . a 
P = :LI I< a (x) -a-, then p(x,S) = Z::\ I a (x) (iS) • 

a -m a ax a =m a 

In global theories it is convenient to consider p as defined on T* ($]). 

In our situation T*(r.l) can be identified with r.l x JR.n. 

(2.10.1) N := {(x,s) p(x,s) 0, x E n, s f O} is called the character-

istic set of P. It is a closed, conic subset of T*(Q) \ 0. A surface inn 

defined by tp(x) = c is called characteristic (at x) if p(x,tpx(x)) 0 when 

tp(x) = c (at x). That is, the normal bundle (at x) is in N. 

From now on we assume that p is real (modulo a constant). 

Let 

H is called the Hamilton vector field of p. 
p 2 2 

If for all (x,s) E N, I: (3p/3sk) + I: (3p/3xk) f O, then N is a smooth 
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(2n-1 )-dimensional submanifold of Q x (lRn \ 0) and H is tangent to N. So 
p 

it defines a flow on N, called the Hamilton flow of p. The integral curves 

of this flow are called the bicharacteristic strips of p. They are the 

solutions of the Hamilton-Jacobi equations 

ds· _J 
ds 

-~ 
dX • ' j 

J 

1, ... ,n, p(x(s),s(s)) = o. 

If for some j, ap/as. f O, the projections of these strips to Qare smooth 
J 

curves in n, called the bicharacteristic curves of p. A strip which has 

a given curve as projection will be referred to as a strip above that curve. 

p is said to be of (real) principal type in n if p has a real homo­

geneous principal symbol and no complete strip stays over a compact set 

inn. 

SI is said to be pseudo- (or bicharacteristically) convex with respect 

to P if for every compact set K c Q there is another compact set K' c Q 

so that K' contains any interval on a bicharacteristic curve of P with both 

end points in K. 

Finally, the bicharacteristic relation C is defined by 

C := {((x,s),(y,n)) E NxN I (x,S) and (y,n) are on the same 

bicharacteristic strip}. 

If P is of real principal type in Q and Q is pseudo convex with respect to 

P, then C is a closed conic submanifold of (T* (Q) \ O) x (T* (Q) \ 0) which 

is closed in T* (Q x Q) \ O. 

2.11. Parametrices. 

Let QI c JR.n 1, st2 c lRn 2 be open subsets and let A : V'(Q2) + V'(Q 1) 

be a properly supported continuous linear operator. If B: f'(Q 1) -+ V'(Q2) 

is a continuous linear operator, then B is called a left parametrix of A 

if BAu - u E C00 (Q2) for all u E E' (st2). So BA = I+ R and R is a smoothing 

operator, that is, R has a smooth kernel (see section 2.7, case!). 

A right parametrix of A is a continuous linear operator C : E'(Q1) + V'(Q2) 

so that ACu - u E C00 (Q 1) for u E E' (QI). So AC = I+ R1 and R1 is smoothing. 

A parametrix of A is a continuous linear operator which is both a left 

and a right parametrix of A. 
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If Bis a left parametric of A and Au= f, u EE', then Bf= BAu = 

u +Ru. So the possibility of singularities in u is completely determined 

by the singularities of B. See section 2.7, formula (2.7.6). If Bis a 

right parametrix then for f EE', A(Bf) = ABf = f+R 1f, so modulo a smooth 

function, Bf is a solution of the equation Au= f. In case both A and B are 

properly supported these results extend to u E V'. 

Ellipticity. 
n m N 

Let n c lR • s E s o(n x lR ) and let r be an open conic subset of 
N p, 

n x (lR \ O). s = s(x,8) is said to be elliptic in r of order m if for every 

compact K c n there are constants C and R so that, 

(2.11.l) \s(x,8)\ ?C\8\mifxE K, \8\ ?R, (x,8) Er. 

If f n x (lRN \ O) we say s is elliptic. 

A 'l'DO A is called elliptic if it is defined by an elliptic symbol 

s(x,y,8). Note that if this symbol is elliptic in r then the complete sym­

bol (J is elliptic in { (x, 8) I (x,x, 8) E r} which is an open conic subset of 

n x (~ \ O). This can easily be seen by observing that it is sufficient 

that a principal symbol has property (2.11.1). So if p > o every elliptic 

'!'DO is modulo a smoothing operator equal to a properly supported ~O A 

defined by equation (2.9.1) with an elliptic complete symbol G. Such 

operators A have a parametrix, which can be constructed by successive ap­

proximations: 

If x(x,8) is zero in a neighbourhood of the zeros of a and equal to one for 

\8\ large, the estimate (2.11.I) shows that KG is an element of S-m. 
P ,cr 

Let Q be an 'l'DO with symbol X. Then it can be shown that QA- I R is a '!'DO 
. . -p+o . a 2 

with symbol in S 0 . Since -p+o < O, E ~ I - R + R - ..• for some '!'DO E with 

symbol in SO 0• ~hen EQ is a left parametrix. In a similar way a right p, 
parametrix can be constructed. Both can be shown to be a parametrix for A. 

If A is a properly supported ~O with complete symbol which is elliptic 

in an open conic subset containing (x0 ,s0), a similar construction shows 

that there is a '!'DO B so that (x0 ,~ 0 ) i WF(BA- I) and (x0,s0) i WF(AB - I). 

Such an operator is called a (microlocal) parametrix of A at (x 0 ,~ 0 ). 

A consequence of this fact is the following result. Let P be a PDO on 

n and N as in section 2.10, u E V'(n). Suppose (x,~) i "W(Pu) u N. Then 

there is a properly supported 'l'DO Q so that (x,~) f_ WF(QPu - u). Since 



26 

u = QPu +(I - QP)u we have WF(u) c WF(QPu) u WF(QPu - u). So (x,I;) i WF(u). 

Together with property 2 in section 2.4 this gives: 

(2.1!.2) WF(Pu) c WF(u) c WF(Pu) u N. 

In particular, if P is elliptic: WF(u) = WF(Pu). 

Let now A be a properly supported FIO defined by a non-degenerate 
N 

x n2 x lR ), P > !. phase function tp and symbol s = s(x,y,8) E Sm 1 (n 1 p, -p 
Let (x0 ,~ 0 ,y0 ,n 0 ) E AtD (actually (x0 ,y0 ,~ 0 ,n0 ) E AtD: cf. section 2.7). 

A is said to be elliptic in (x0 ,~ 0 ,y0 ,n 0 ) if for some open conic subsets 

r c nl x n2 x:JRN, (xo.~o) E rx c T*(nl)\O, (yo.no) E ry c T*(n2)\0 the 
map 

ctn n r 3 (x,y,8) ~ (x,\j) ,y,\j) ) E A n er x r ) 
o/ x y \j) x y 

defines a diffeomorfism (cf. section 2.8) and s is elliptic in r. A is said 
to be elliptic if s is elliptic in n 1 x n2 x JRN. If A is an elliptic FIO, 

then A has a parametrix B which is a properly supported elliptic FIO, in 
general with different phase function. AB and BA are ~DOs. If A is 

elliptic in (x0 ,~ 0 ,y0 ,n0 ) there is a properly supported FIO B, elliptic in 
(y 0 ,n 0 ,x0 ,~ 0 ) so that AB and BA are ~DOs and (x 0 ,~ 0 ) i WF(AB- In1), 

(y0 ,n0 ) i WF(BA- In2). 

2.12. PDOs of real principal type. 

In this section we discuss some results about the existence of 

solutions of PDEs of real principal type and their qualitative properties. 

These results are taken from Duistermaat/Hormander [7], section 6. 

We start with a general result on the propagation of singularities. 

(2.12.1) Let P be a ~DO on n, properly supported with real principal part 

p which is homogeneous of degree m. If u E V'(n) and Pu= f, then 

WF(u) \ WF(f) is contained in N and is invariant under the Hamiltonian 

vector field H (see section 2.10). 
p 

The first statement already was given in section 2.11. The second 

means that if (x0 ,~ 0 ) E WF(u) \ WF(f), then the strip through (x 0 ,~ 0 ) 

must be in WF(u) at least until it hits WF(f). 

Let us sketch here a part of the proof. This proof is based on 
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reduction to the special case P = D (= CJ/iCJx ). 
n n 

Let E+ = io(x' -y')H(x -y ), E- = -io(x' -y')H(y -x) denote the (kernels n n n n n n 
of) the forward and backward fundamental solutions of Dn Then 

-(n-1) J i<x'-y' 8>. oo n n = (2~) e ' iu(x,y)dxdyd8, u E c0(JR x JR ). 

For (D = <x'-y',8> we have A = {(x' ,x ,I;' ,O,x' ,y ,-1;' ,O) I I;' f O}. (For 
(p n n 

(x',1;') fixed, the set {(x',x ,1;',0) Ix E JR} describes a bicharacteristic 
n n 

strip of Dn!) It can be shown that this leads to: 

Here 6 * = the diagonal in (T*(JRn) \ 0) x (T*(JRn) \ O). Note that 

(x,1;,y,n) E WF(K)"" (x,1;,y,-n) E WF'(K) for any kernel K. 

This result makes it possible to prove statement (2.12.1) for 

P D and n =JRn. 
n 

In the general case one can assume P to be of order one, for if Q is 

an elliptic ~DO with positive principal part, homogeneous of degree 1-m, 

then QP has the same characteristics and bicharacteristic strips as P and 

WF(f) = WF(Qf) = WF(QPu). 

If (x0 ,t;0) E N and HP has the direction of the cone axis 

{(x0,At;0) I A > O} in (x0 ,t;0), then the strip through (x0 ,t; 0) is equal to 

this cone axis. So in that case, the statement is trivial. Therefore one 

can assume that H and this direction are linearly independent. Then for 
*p n 

some (y0,n0) E T (JR ) \ 0, a conic neighbourhood rx of (x0 ,t; 0) in T*(n) \ O, 

a conic neighbourhood I' y of (y 0, n0) in T*(JRn) \ 0 and a FIO A can be given 

with non-degenerate phase function (D,so that (x0 ,i;:0 ,y0 ,n0) EA~, A is 

elliptic in (x0 ,i;:0 ,y0 ,n0), the relation A~ maps the strip through (y0,n0) 

of Dn in fy onto the strip of P through (x0 ,t;0) in fx and A transforms P 

locally to Dn in the sense that 

The operator A links the wave front sets of Pu and Dnv and of u and v, 

where v is a distribution so that u = Av which exists because of the 

ellipticity of A. Then the general case can be deduced from the case P = D • 
n 
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On the other hand there is the following statement: 

(2.12.2) Let P be as in statement (2.12.1). Let I c :1R be an open interval 

and y : I+ T*(n) \ O be a map defining a strip which has at most one point 

in common with every cone axis. Let r :=closure of {(x,;\t;) I (x,Q E y(I), ;\ > O} 

in T*(n) \ 0, the closed conic hull of y(I). 

Let r' := the limit points of f := n10 closed conic hull of y(I \ I 0), 

with 10 c I, r0 compact. Then one can find u E V'(n) so that 

WF(Pu) c r' and WF(u) \ r' = r \ r'. 

If y composed with the projection to n is proper, then r' 0 so 

Pu E C00 and WF(u) = r. 

We now turn to some results on existence of solutions. Let P be as in 

statement (2.12.1). 

(2.12.3) Let Kc n be compact so that no complete bicharacteristic curve 

is contained in K. Then 

N(K) := {v E E'(K) I tPv = O} 

is a finite dimensional subspace of C~(K) orthogonal to PV'(n). If 

f E C00 (n) and f is orthogonal to N(K) then one can find u E C00(n) so that 

Pu = f in a neighbourhood of K. 

That N(K) c C00 (n) follows directly from statement (2.12.1) and the 

condition on the bicharacteristic curves. 

The condition on the bicharacteristics is merely sufficient, but not 

necessary for the conclusions to be valid. For instance, if the condition 

is violated the lower order terms might rescue the conclusion. However, 

these terms are irrelevant when the condition is fulfilled. In particular, 

if P is of real principal type (see section 2.10), this condition is valid 

for every compact K c n. In that case the following global solvability 

theorem can be proved: 

If P is of real principal type in n then 

P defines a surjective map from V'(n) to V'(n)/C00(n) 

~ n is pseudo convex (see section 2.10) with respect to P. 



This leaves open only the problem to solve Pu 

The following statement then holds: 

f for f E C00 (S"2). 

The equation Pu = f has a solution u E C00 (S"2) for all f E C00 (S"2) so that 

<f,v> = 0 for all v E C~(S"2) with tPv 0 
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~For every compact Kc S"2 there is a compact K' c S"2 so that v E E'(st) and 

supp tPv c K implies tPv = tPw for some w E E'(s-2) with supp w c K'. 

Finally we discuss the construction of parametrices for P. 

The example of the case P = Dn and the result (2.12.1) show that the 

bicharacteristic relation C as defined in section 2.10 will play an im­

portant role. Note that for P = Dn the set A~ is equal to the set c'! 

(C' = {(x,l;,y,11) I (x,i;,y,-11) E c}.) 

If P is of real principal type and S"2 pseudo convex, then C is a closed 

conic subset of T* (S"2 x S"2) \ O, so it might serve as the wave front set of 

some kernel KE V'(st x S"2). Moreover, if P is of real principal type then: 

S"2 is pseudoconvex ~ 

C is a closed conic submanifold of T* (S"2 x S"2) \ 0 which is contained in 

(T*(S"2) \ O) x (T*(st) \ O) and V (x0,i;0 ,y0 ,n0) E c there is a conic neigh­

bourhood r so that c n r =A' for some non-degenerate phase function~. 
~ 

So locally C can be described by means of phase functions. This indi­

cates the role FIOs will play in the construction of parametrices: If A is 

the kernel of a FIO with phase function~ defining C, then ~W(A) c A cc'! 
~ 

Essentially the construction of a parametrix amounts to the following 

procedure: 

Again we may assume that the symbol of P is of order I, for an ellip­

tic '!'DO has a parametrix which is a '!'DO. Note that for the identity 

operator I, WF(I) = T*(st) \ 0, that is, its kernel has WF 1 = t,.*, the diagonal 

in (T* (S"2) \ O) x (T* (S"2) \ O). Write I as sum of IJ'DOs Ti with symbols in S~ ,O 

so that the supports of the corresponding kernels are locally finite. More­

over, WF (Ti) should be in such a small open conic subset r i of T* (S"2) \ 0 

that either T. is elliptic in r., in which case there is a '!'DO F. with 
1 1 1 

PF. = T. +R. with R. E C00 (see section 2.11), or P can locally be trans-
1 i 1 i 

formed to Dn using locally elliptic FIOs (see the discussion of statement 
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(2.12.1)). In the second case, transformation of one of the fundamental 

solutions E± of D in the opposite direction gives an operator Fi. so that n n 
PF i = Ti+ Ri. The supports of the Fi can be chosen locally finite so that 

F = r Fi is welldefined and PF = I+ R. Here R plays the same role as in the 

elliptic case, that is, for some G, PG- R E C00
• But then F - G is a right 

parametrix for P. A left parametrix for P can be obtained by noting that 

t(tPtE) = EP and tp has the same principal symbol as P. 

Note that if one 

in forward direction, 

backward direction. 

chooses E: then E propagates singularities in fi only 

if one chooses E-, E propagates singularities in 
n 

In different fi' different choices might be made. The 

number of different parametrices thus obtained depends on the number of 

components of C \ LiN, LiN the diagonal in N x N. In particular, define C+ 

and C- as the set of points ((x,~),(y,n)) in N x N so that (x,~) lies after 

(resp. before) (y, n) on a bicharacteristic strip. Then C \ LiN = C + u C 
+ C , C are unions of components. Then the procedure given above leads to 

parametrices E+ and E so that 

Any left or right parametrix E with WF'(E) contained in Li* u C+ or Li* u C 

is equal to E+ or E- modulo C00
• 

E+ - E- is a locally finite sum of FIOs with phase functions <.p. so that 
J 

c' = U ~·and symbols s. in s1 0 which have order !-m+ !(n-N.), where 
J J ' J 

N. is the number of phase variables 8 in s.(x,y,8). 
J J 

For other unions of components, similar statements are valid. 

We conclude this section with two more statements concerning para­

metrices. 

I. Let Ebe a left or right parametrix for P. Then 

Li* c WF'(E). (Note that WF(Pu) c WF(u)!) 

2. Let p have real homogeneous principal part. If A E V'(n x n), A is the 

associated operator and PA has smooth kernel, then (x,~,y,n) E WF'(A) 

and s # 0 implies p(x,~) = 0 and B(x,~) x {(y,n)} c WF'(A). Here 

B(x,~) is the bicharacteristic strip through (x,~). 

2.13. Homogeneous distributions on JR. 

Define for a E ~ the function x~ by 



> 
if x o. 

< 

Here logx is chosen to be real for x > O. For Re a. > -I x~ is locally 

integrable so it defines a distribution onlR. Moreover, for~ E C~(lR), 
a. <x+,q» is an analytic function in a. for Re a. > -1. Now, for Re a.> -I 

oo I oo 

<x~,q» = f xa.~(x)dx = f xa.[~(x) - ~(O) ]dx + f xa.~(x)dx + ~~~) 
0 0 I a. 
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The expression on the right is welldefined for Re a.> -2, a.+ -1. In this 

way one obtains an analytic continuation of x~ for Re a.> -2, a.+ -1. Simi­

larly one obtains an analytic continuation of x~ for Re a.> -n-1, 

a.+ -1,-2, ••• ,-n. Sox~ has an analytic continuation for a.E$, a.+-1,-2, ••• 

This is denoted by x~ as well. <x~,q» has poles of first order in 
a (-l)n (n-1) 

a.= -1,-2, •••• (a+n)x+ + (n-I)! o(x=O) for a+ -n, n = 1,2, •••• 

a 
x+ has the properties: 

a. a+J 
x•x+ = x+ , a+ -1,-2,-3, ••• 
d a a.-1 

dx x+ = ax+ , a + o,-1,-2,-3, ••• 
a a a. 

For A> 0: <x+,<!» =A <x+,~(xA)>, a.+ -1,-2, ••• 

Then 

I. 

2. 

3. 

That is, x~ is homogeneous of degree a. 

For Re a. > 0, these properties are evident so they follow for other values 

of a. by analytic continuation. 

If xa := {0 if x > O 
- lxla < 0 

then in a similar way xa. can be continuated analytically to a distribution 

xa for a+ -1,-2, •••• It has the same properties as x~. 

The distributions (x+iO)a. and (x-iO)a, a+ -1,-2, ••• , are given by: 

(x±iO) a. •·= a. + ±1Tia a. x+ e x • 

Let log z := log I z I + i arg z, I arg z I < 1T. Then 

(x+iO)a and (x-iO)a = lim (x-iE)a.. 
E-i-0 

Here the convergence is in V1 (lR) and even in S'(lP). Note that (x± iE)a. are 

smooth functions. These limits exist when a. = -1,-2, ••• , too, and (x ± iO)a. 

becomes entire in a.. In particular: 
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I + . cS x ± iO = vp~ rn x=o· 

a Finally, we denote by x[O,l]' a f -1,-2,-3, ••• , the analytic con-
tinuation of the distribution given for Re a > -I by the function 

xa 0 < x < 

x[o,1] = {o if 
x < o, x > 

a d a Note that x[O,I] is not homogeneous and dxx[O,I] 
a-I 

ax[O,I] - 0(x=I)' 

Fourier transforms. 

have: 

Homogeneous distributions belong to S'. For the Fourier transforms we 

f(a+l)e(a+l)ni/2(-s+iO)-a-I = 

f(a+l)e-(a+l)Tii/2(s-iO)-a-I. 

rca+l)e(a+J)ni/2(s+i0)-a-l. 

[(x+iO)a]A 

[(x-iO)aJA 

~eani/2c--a-I 4 0 1 2 f(-a) "'+ > CJ, T ' ' '• • • • 

2n -mri/2 -a-I 
r(-a)e s_ 'af0,1,2, .•.• 

Wave front sets. 

WF(x~) = {(O,t;) Is f o}. 

WF((x±iO)a) = {(O,t;) It;,~ O}, a f 0,1,2, ..•• 

Note that the (x ± iO)a are distributions with the smallest possible 
(non-empty) wave front set. 

2.14. Additional notations and symbols. 

If we use the signs ±, +, ~ etc. in a formula this formula should be 
interpreted as two formulas compressed into one formula. 

Example. ±a+ b z c± signifies +a - b > c+ and - a+ b < c • 
So first read the signs above, then the signs below. 

If we use the symbol C to denote a (fixed) constant, we allow our­
selves to use the same symbol C for several different constants. 

Finally we mention some symbols also used in Watson [27]: 



If n E lN, a. E ~ then: 

I. 

2. 

(a.)n := a.(a.+l)···(a.+n-1). 

(a.) := I• 
0 <l-a.) <!+a.) 

(a.,n) := (-l)n :! n ( T(a.+n+ ) ) 
= n! f(a.-n+ ) 

Here f(z) is the Gannna function. 
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CHAPTER 3 

THE TRICOMI OPERATOR ON Rn+l 

3.1. Introduction. 

In this chapter we will construct a fundamental solution for the 

Tricomi operator T. 
For u € V'(lRn+l) Tu is given by 

Tu=(~+t ~ ~)u. at k=t a~ 
. n+l n Coordinates in R are (x, t), x € lR • 

An operator E : E'(Rn+I) + V'(Rn+I) is said to be a fundamental solution 

for T if E is continuous and 

E'( n+l TEu = u = ET u for all u E R ) . 

Note that a fundamental solution is a parametrix. However, it is exact. 

The symbol of T is given by -T2 - t I E; 12 • Here I E; I = (~=l E;~) !. The symbol 

is real and homogeneous of degree 2. Clearly T is elliptic for t > 0 and 

hyperbolic for t < O. 

The Tricomi operator is very wellknown. It is one of the most simple 

PDO h . h 11' ' ' f n+I d h b l' . h s w ic are e i.pti.c in one part o R an yper o i.c in anot er part. 

For n = I Green's functions and Riemann functions were constructed a long 

time ago (see Germain/Bader [11]), so that solutions for the equation 

Tu = f could be given at least for sufficiently smooth f. Moreover, T is 

one of the most simple PDOs which are not either elliptic or hyperbolic 

but nevertheless of real principal type (see section 2.10 and section 3.2). 

Al n+l . d . T h soR is pseu o convex with respect to • Therefore the t eory as ex-

plained briefly in section 2.12 gives the existence of a number of para­

metrices. 
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The reason why we still want to discuss the construction of a funda­

mental solution is threefold. 

In the first place we show that at least some of the parametrices referred 

to above can be given in concrete formulas. Moreover, the parametrices we 

obtain are even fundamental solutions so that we have exact solutions of 
. E'( n+I) the equation Tu = f for arbitrary f E • JR. • Finally, the explicit 

formulas give us the opportunity to illustrate some notions and the 

construction given in section 2.12. 

3.2. The bicharacteristic structure. 

The bicharacteristic strips of T are given by the Hamilton-Jacobi 

equations: 
dx· 
.=J.. = -2t~. 
ds J' 

ds· 
_] = 0 
ds ' 

dt 
- = -2T, ds 

under the condition (-tls! 2 -T2)(s) = O. 

dT 
ds = j I, ... , n, 

For (s,T) f (O,O) these equations form a non-degenerate system. The strip 

that starts for s = O in (x0 ,t0 ,s0 ,T0 ), t0 Js0 J 2 +T~ = o, can be obtained as 

follows: 

We have s(s) = So and if so = 0 then To = 0, so so f o. But then 
t(s) = -ls0 J-2T2(s), T(s) = ls0 J2s+T0 and one gets that the strip is given 

by 

Looking at the t-coordinate only, it is easy to see that no complete strip 

stays over a compact . lln+I T is of real principal . n+I set 1n , so type rn :R 
n+I 

is pseudo with to T (see section 2.10). Moreover, Il convex respect 

If we use the T-coordinate as parameter along the strip instead of s, 

it can also be described as 

{ 2 SQ 3 3 T 2 } 
(xo+"Jzy(T -TO)'-lsol2' so' T) ITEil. 

From this we can derive that the bicharacteristic relation C of T is given 

by: 

o} 



J 2. I; 3 3 , 2 a2 
l((y+ 3 TZr(T -a), -IW, I;, T),(y, -IW, I;, a)) I I; 

C is a closed conic C00-submanifold of r*(JR.n+l x Rn+!)\ 0. 

From this expression it is clear that 

is a non-degenerate phase function defining C. But from Lemma A.7.2 it is 

also clear that the following four functions define C for t < O, s < 0, 

8 f o: 

q>(±,+)(x,y,t,s,8) 

q>(±,-)(x,y,t,s,8) 

2 1 3 
:= <x-y,8>±3((-t) 2 + (-s) 2)l81, 

3 3 
:= <x-y,8>±t((-t)2 - (-s) 2)!8!. 
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The bicharacteristic curves of T are the projections of the bicharacteristic 

strips to the (x,t)-space. 

For t 0 ~ 0 a curve through (x0,t0) is given by 

{( 2 I; 3 3 ,2 ) I T6 } x0 +3TCT4(T -T0),-TZP" T ER, t 0 =-IZl2, I; f 0. 

For a point (x,t) on such a curve we have 

Each curve has a cusp at t = O. Note that every strip is smooth, even at 

t = O. A curve lies in the plane through (x0 ,0) spanned by (l;,O) and (0,1). 

Identifying this plane with R2 ' with x - XO = Am we get the figures: 

~,~ . l~I = 
Fig. I: bicharacteristic curve for 'o < o. 

; 

-/K----~-+--( x-0·-'o_I __ ____..,., A rf,j 

Fig. 2: bicharacteristic curve for To > O. 

In figure I 'o < 0, T < 0 on the left part of the curve and 
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T > O on the right part. In figure 2 'o > 0, T > 0 on the right 

part and T < 0 on the left part. 

The set ~ is given by 
(+,+) 

{ 2 9 3 3 i 
~ = (y-"!-((-t)Z + (-s) 2),t,9,-(-t) 2 lel; 

(+,+) lei i } 

y,s,e,(-s) 2 1el) I e f o, s < o, t < o . 

For fixed (y,s,9) this set describes the part of the strip through 
1 

(y,s,9,(-s) 2 ISI) lying above the left part of the curve in figure 2. z e s 3 i 
That is, the set {(y- 3 T8T((-t) 2 +(-s) 2),t,e,-(-t) 2 ISI) It< O} is the 
indicated part of the strip. 

Similarly the other phase functions are related to other parts of strips 
(and curves). 

+ + +- - + 

Fig. 3: relation between phase functions and curves. 

3.3. The construction of a fundamental solution. 

In this section we derive an explicit formula for a fundamental 

solution for T. We will proceed in two steps. 

First we derive in a straightforward way a formal expression which hope­
fully has the properties we want. Second we show that indeed it has these 
properties. 

So consider the equation Tu = f. We assume for this moment f E C~(]Rn+I). 
Partial Fourier transformation with respect to x gives the equation 

(3. 3. I) Tu =f. 

Here T = a2/dt 2 -tlt;:l 2 , u u(l;:,t) and f f(l;:,t). Keeping!;: fixed, T can 
be considered as an ordinary differential operator in t. The corresponding 



equation Tu 
Airy equation 

0 can be transformed by substituting z 

v" - zv = O, v = v(z). 

2 

tlsl3 into the 

Solutions of this equation are wellknown. See section A.2 about the Airy 

functions. Let v 1(z) and v 2(z) be two independent solutions of the Airy 

equation. Solutions of Tu = 0 are given then by 

2 2 

c 1COv 1CtlsJ 3 ) +c2COv2CtlsJ 3). 
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Equation (3.3.1) can now be solved formally by the method of variation of 

constants. This gives 

Here D = -Iv) 
v' 

I 

The only solution of the Airy equation which is not exponentially in­

creasing for z ++ 00 is Ai(z). It is even exponentially decreasing for 

z + +00 • Therefore, if we want to obtain u by means of inverse partial 

Fourier transformation, we must choose at any rate v1 (z) = Ai(z) and 

reverse the interval of integration in the second integral. Thus we obtain 

the following tentative expression for a solution: 

(3.3.2) u(x,t) = D J di:- i<x,I;> I 
--- c,e ~ x 
(Zn)n ls II 

[l Ai(tJslt)vCslslt)f(l;,s)ds 

00 2 2 ] 
+ J vCtlsl 3)AiCslsl 3)f(l;,s)ds 

t 

Here v = v(z) is a solution of the Airy equation not yet fixed. 

We now shift our attention to the way this expression might propagate 

singularities in f in case f E E'(lRn+I). In particular we are interested 
3 

in values for t ~ 0. The results of section A.S show that Ai(tji;j2) can be 

written as 
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for t f 0, s f 0. Here a±(t,s) are elliptic symbols for t f O, s f 0. 

See Lemma A. 5.1. 
2 

Also v(tlsi3) can be expressed in such a way. The same exponentials appear. 

If we substitute these expressions in expression (3.3.2) we see that the 

phase functions W(+ ) and/or W(+ -) (see section 3.2) appear. So it might -,+ -, 
be possible to interpret expression (3.3.2) as a sum of FIOs multiplied by 

H(t-s) or H(s-t), at least for s < 0, t < O. But then the phase functions 

determine the propagation of singularities. We will determine v so that a 

singularity in f is propagated at most along half a strip (cf. section 2.12, 

statement (2.12.l)). Looking at the pictures given in section 3.2, we note 

that we cannot allow all four phase functions to appear in the first 

integral in expression (3.3.2), for in that case they appear in the other 

integral as well and so u(x,t) might become singular along an entire strip. 

This implies that we must choose 

v(z) = Ai(e21Ti/3z) or v(z) = Ai(e-21Ti/3 z) . 

Since 

3 

Ai(e-Zrri/ 3tlsit) =a (t,s)e-fi(-t) 2 lsl, t < 0, sf 0, 

substitution produces in the first integral the phase functions w(+,+) and 

W(-,-)' in the second q:>(+,+) and q:>(+,-) or in the first integral the 

phase functions q:>(+,-) and q:>(-,+)' in the second q:>(-,+) and q:>(-,-)" 

We will now define two operators which will be shown to have the 

properties we demand, that is, they are fundamental solutions and propagate 

singularities in a nice way: 

(3.3.3) 
±rri/6 . 1:- 1 := e J dl;.ei<x,s> x 

( 21T)n-l ~ 

[ 
t 2 +2 . 13 2 l AiCtlsl1l)Ai(e- rri sisl 3)f(s,s)ds 

+ f Ai(/2rri/3tlslt)AiCslsl%-)f(i;,s)ds]. 
t 

Here f E C~(JR.n+I) and the constant D in formula (3.3.2) turned out to be 

21Te±rri/6 Presumably a singularity of f in (y,s) can be propagated by A± 

only along that part of the strips above those parts of the curves given by 

the following pictures. We come back to this in the next section. 



' 4 ' A+ Fig. : propagation by . Fig. 5: propagation by A-. 

Let us now show that A+ and A- are fundamental solutions. 

LEMMA 3.3.4. Let f E C~(lRn+I) and 0 < T < oo. 

V n: V m: 3 C: V ltl S T: V s: 

1:;(Ai(tlsli) L Ai(e±Zni/3slsli)f(s,s)ds)I sc(l+lsl)-m, 

I a()~( Ai(/Z7Ti/3t Is Ii) I Ai(s Is I i)f (s, s)ds) I s C(I+ Is I )-m. 

PROOF. It is clear that for every s fixed the expressions above are well­

defined and smooth in t for f E C~. 
Suppose supp(f) c {(x,t) I x2 +t2 s R2}, R > O. Then for some C < 00 

(3.3.5) lsl 2m If e-i<x,s>f(x,t)dxl = I f e-i<x,s>/:J.mf(x,t)dxl s c. 
lxlsR x 

Here C is independent of t. 

So f(~,s) is rapidly decreasing in ~ uniformly in s. 

Lemma A.5.2 shows that for T0 = max{R,T} 3 

So 

Also 

I 2n l I S It'~· 

I an . ±2ni/3 I 1i I {cn(l+ls ) es ' 
V n: 3 C : --nAi(e t s ) s 

n at Cn(I+lsl )2n, 

0 s t s TO 

-T0 s t s 0 

V n: 3 C : 
n 

0 s t s TO 

-TO s t s 0 

ll Ai(/Zni/3sl;li)f(s,s)dsl s L IAi(/Zni/3slsli)l l'f<s,s)I ds 

s {ceflslt~(1+lsl>-m. 
C(I+lsl )-m, • 

-T s t S 0 
m arbitrary • 

41 
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jJ Ai(sJsJ%)f(s,s)dsl s 
t 3 t e -% J s I t 2 ( I + I s I ) --m' 0 s t s T 

s , m arbitrary. 
C(l+JsJ)--m, -T s t s 0 

For n = 0 the statement now follows from the fact that the exponentials 
cancel. For n > 0 we use the estimates given above and an induction 

argument. D 

± oo n+l . oo n+I COROLLARY 3. 3. 6. A maps C 0(JR ) contrnuous 7,y to C (Ill ) • 

PROOF. Lei<x,s> = (iS)aei<x,s>. 
--- ClxC! 
For fixed sf 0, the integrand is a smooth function in (x,t). For lsJ ~ I, 
Lemma 3.3.4 shows that every derivative of the integrand with respect to 
(x,t) can be bounded by an integrable function in s, uniformly in (x,t) for 
ltJ s T, I< 00 arbitrary. Nears= 0 these derivatives behave not worse 

+ 00 than lsl-~ which is integrable. This implies A-f E c for f E c~. The 
continuity follows from the fact that fj + 0 in C~ implies that the sup­
ports of the f. are contained in a fixed compact set and 

J 

I a_r_~ I j s nf.(S,t) s C + 0 for all (a,n). Clt J a,n D 

By transposition tA± is a continuous map from E' to V'. Note that tT T. 

LEMMA 3.3.7. 

+ + 
PROOF. For f E C~, g E C~: <A-f,g> <f,A-g>. This follows easily after 
repeated application of Fubini's theorem using Lemma 3.3.4 and substi-

tution s + -s. D 

+ 
PROPOSITION 3.3.8. A- extends to a fundamental solution for T. 

PROOF. For u EE': <A±u,ip> := 
+ + 

<u,A-qi>. It is clear that A- is welldefined 
for u E E' and continuous. In order to show that A± is a fundamental 

+ + oo n+I solution it is sufficient to show that A-Tw = w = TA-\ll for \ll E c0(m ). 
+ + 

That TA-\ll = \ll follows from a straightforward computation. A-Tl.P = l.P 

follows after repeated partial integration. D 
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3.4. Singularities of A±. 
± 

In this section we discuss the way A propagates singularities, as 
+ 

indicated in section 3.3. To this.end we look for FIO-representations of A-. 

Let f E E'(:IR.n+I). Since T(A±f) = f, formula (2.11.2) shows that 

(3.4. I) 
+ 

WF(f) c WF(A-f) c WF(f) u N. 

+ 
Moreover, WF(A-f) \WF{f) is invariant under the Hamilton flow determined 

+ 
by T. We intend to show that A- propagates a singularity off in a point 

(x,t,~,T) E N only along the strip through that point and only in one 
+ 

direction. Also, if f is smooth along a strip, then so is A-f. 

For every E > 0 f can be written as f = f_ + f 0 + f+, supp{f±) c 

{(x,t) I t~±t} and supp{f0 ) c {(x,t) I ltl <d. Formula (3.4.1) holds for 
+ 

f± and f 0 as well. It is not difficult to check that A-f+ is smooth for 

t < t· The set N = {(x,t,~,T) I tl~l 2 +T2 = O} lies above {(x,t) It$ o}. 

Therefore we can restrict ourselves to the analysis of the singularities 
+ + 

of A-f_ and A-f0 for t $ o. 

+ 
First we analyse A-f for f € E' with supp{f) c {(x,t) It < o}. Choose 

0 $ X{s) $ I and 
oo n 

x = x<s) € c0(:1R ) so that 

x<O = r for 
0 

l~I < I 

lsl > 2 

Then t-x is zero in a neighbourhood of s = O. The functions X and 1-x are 

called cut-off functions. In formula (3.3.3) we now replace the factor 
2 

lsl-3 by 

(3.4.2) I I I 
lsl~ = x<s)lsli + ci -x<s))liff. 

+ + + + + 
Then we can write A-f = Alf + A2f, Al and A2 are related to the first and 

second term in expression (3.4.2) respectively. Consider the operators 
+ + + 1 n - , n -

A-, Al and A2 as operators from E (lR x Il ) to V (lR x Il ) • 

f +I dsei<x,s>f~H [l Ai<tlsli>Ai<e2'1Ti/ 3 slsl~Yf'<s,s)] 
• oo n - oo n -defines a continuous map between c0(Il x Il) and C (lR x Il ). It has the 

kernel K = K(x,t,y,s) given by 
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Because X has compact support the integral defines a smooth function in 

(x,t,y,s). So the singularities of K are given by those of H(t-s). 
H(t-s) is the pullback of H under the map (x,t,y,s) -+ t-s. So the results 
given in section 2.6 show that 

(3.4.3) WF(H(t-s)) = {(x,s,O,a;y,s,O,-a) I a f o}. 

+ A similar analysis of the other terms shows that the kernels of A1 and A1 
both have their wave front set in this set. Note that (x,s,O,a) i N for all 

(x,s,o). Formula (2.7.6) in section 2.7 now shows that Ar and Al do not 
propagate singularities along a bicharacteristic strip. 

Next we discuss for s < O, t < 0 the kernel given by 

J df;ei<x-y,E;> 1-x<E:J Ai(tjE;jt)Ai(e2ni/3s!E:I~). 
2 I E: J '3" 

Here (J-x)/IE:l'3" is zero in a neighbourhood of E; = 0. The formulas given in 
the previous section show that this kernel can be written as the sum of two 

3 3 
oscillatory integrals with phase functions <x-y,E;> - tJ E; I ((-t)Z" - (-s) 2 ), 

3 3 
<x-y ,E;> + t J E; J ((-t)Z + (-s) Z) and symbols 

respectively. 
-I The symbols are elements of s1 0 • Of course, these phase functions are the 
' functions I.I>(-,-) and I.I>(+,+) from section 3.2. The kernel given for s < O, 

t < 0 by 

can be written as the sum of two oscillatory integrals with phase functions 

I.I>(+,+)' I.I>(+,-) and symbols 

1-x 
--2-a+(t,Oa+(s,O, 
I E: I~ 

respectively, which are again in s;'.o· 
But then it follows that the kernel of A; restricted to 

{(x,t,y,s) J s < O,t < O} is a linear combination of the kernels 

J /1.1>c+,+) ~a+(t,Oa+(s,Odf;, 
I E: J 3 

J ii.I>( ) J -v H(t-s) e -,- ~a (t,Oa (s,E;)df; 
!E:l3 - + 

and 
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f ill>(+ -) 1-x H(s-t) e • --2-a+(t,E;)a (s,f;)df;. 
lsl! -

The results of section 2.6 on multiplication of distributions show that 

multiplication with H(±(t-s)) is welldefined. This follows from equation 

(3.4.3) and the fact that 3q>(±,±)/3x = t; + O. The wave front sets of these 

kernels are contained in 

/\_ f\_ I uWFH(t-s)u ·w(+,+)' ·w(-,-) t~s 

{(y, s, E; ,a+ (-s)'! I E; I ; y, s ,-t; ,-a-(-s} I!; I) I a+ 0, !; + 0, s < O} and 

liq,(+,-) I tSs u WFH(s-t) u 

{(y,s,t;,cr-(-s)!lsl; y,s,-t;,-a+(-s)!lsl) I a+ o, !; + o, s < O} 

respectively. 

It is clear that the only relevant sets are ~ , ~ and ~ • 
(+ +) (- -) {+ -) 

The sets liq,( ) +,+ u 11q, I and 11q, I show that a singularity in 
(-,-) t~s (+,-) tSs 

(y,s,!;,(-s)!lt;i) or (y,s,!;,-(-s)!ii;i) respectively, is propagated only 

along the strip through that point and only in one direction. 

A similar result holds for the operator A; (all directions are 

reversed). 

+ 
The representation of A- given above is valid only for s < O, t < 0 

since the related phase functions describe the bicharacteristic relation 

only for s < O, t < O. 

+ 
Let us now discuss A-f for f such that supp(f) c {(x,t) I ltl <d. 

+ 
Again it is sufficient to determine the singularities of A-f for t < O. 

For lP EC~ with support inlRn x R- we write 

+ ±lfi/6 . i:- I 
A-lP(x,t) = e f dE;e 1<x,s>__ x 

(21T)n-J lslf 

j [-Ai( t I E; I %)Ai( e ±21Ti/3 s I E; I%) +Ai (e ±2ni/3t I!; If )Ai(s I E; If) ]<P<t;, s)ds 
t t 

±lfi/6 . i:- I 2 +2 .,3 2 
+ e 1 f d!;ei<x,.,> -:-y f Ai(tjt;i3)Ai(e- lfi sjt;j3)li)(E;,s)ds 

(21T)n- Isla 

Both integrals on the right are welldefined for all (x,t) and define 
+ + 

smooth functions. They define continuous operators A3 and A4 respectively, 
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oo n oo n+ l , + j from c0(lR x JR to c (JR ). So for f E E , A-f t<O 

First consider tA~f. 
The kernel of tA± has support in {(x,t,y,s) Is 5 t < Q}. Therefore we can 3 
as before use the asymptotic expansions of the Airy functions to show that 
the kernel of tA+ has its wave front set in 3 

[l\p(-,-) u l\p(+,-)] lt~s u WFH(t-s) u 

{(y,t,t;,a; y,t,-t;,-a) Ii:; -1 o, t < o}. 

So a singularity of f in (y,s,n,a) causes tA;f jt<O to be singular at most 
along that part of the strip through that point indicated in Fig. 6. 

Fig. 6: propagation by tA;. 

t -The same story can be told for A3. 

. t + Next consider A4. 

Note T(tA:f) = 0 for t < 0, so WF(tA:f) c Njt<O and is invariant under the 
Hamilton flow of T restricted to t < O. As before it is sufficient to ana-

2 2 
lyse the expression defining A: with lt;l-r replaced by (1-x(i:;))lt;l-r. 
Using formula (A.2.1) it can be shown that fort;# 0: 

(3.4.4) Ai(e27Ti/ 3 slt;I~) 

I [ ni/3 fo i(sa+}a3 /lt;l 2 )d -ni/6 fo -sa+ta3 /lsl 2 d ] ~ e e a+e e a . 
27T I t; I 3 -00 -oo 

From this it follows that for ~(s) E C~(JR-) 

f e-isa~(s)Ai(e27Ti/ 3 slt;lt)ds 

is rapidly decreasing in all directions (t;0 ,a0) wLth a0 > O. 
· co n -Then it follows easily that for tp E c0(lR x JR ) 

[tp(tA+f)]" 
4 



is rapidly decreasing in all directions (~0 ,cr0 ) with cr0 > O. 

So WF(tA~f) c {(x,t,~>r) It< 0 aµd T < O}. That is; 

singular along the strips given in Fig. 7. 

Fig. 7: propagation by tA4. 
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Now we return to A+f, supp(f) c {(x,t) I It! < E}. We must show that if A+f 

is singular in a point (x0 ,t0 ,~ 0 ,T0) E N\WF(f), then f is singular in a 

point lying on the strip through that point and on the right side of 

(x0 ,t0 ,~0 ,, 0 ) in Fig. 8. 

Fig. 8: A+f singular in X then f singular in some point Y. 

Well, if this would not be the case then A+f is singular along an infinite 

part of the strip through (x0 ,t0 ,~ 0 ,,0) on which the T-coordinate is 
. t + t + positive. This is impossible as follows from the analysis of A3 and A4. 

This concludes the analysis of A+. A- is treated in a similar way (all 

directions are reversed). 

REMARK. In the analysis of tA~ we did not determine the singularities of 

the kernel of tA~ as we did for the kernel of tA;. This was not necessary. 

However, integral representations for the Airy functions like expression 

(3.4.4) lead after substitution at least locally to FIO-representations. 

3.5. Connections between T and Dt. 

T is an operator of real principal type, so T is locally equivalent to 
a 

the operator Dt (= iot). That is, for every characteristic point 
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X = (x0 ,t0 ,t;0 ,T0) of Ta characteristic point Y of Dt can be found and 
a FIO A with properties as given in section 2.12, so that 

(X,Y)iWF(P0TA-ADt). Here P0 is a 'l'DO with symbol of order(-!), elliptic 

in a conic neighbourhood of X. We will illustrate here in a sketchy way how 
these operators P0 and A can be obtained, without going in too many 

technical details. 

Note that the symbol of Dt is T and that a strip of Dt through 

(yo,so,no,O) is given by {(yo,s,no,O) Is E lR.}. Now let (xo,to,t;o,To) be a 
characteristic point of T. So t 0 !t: 0 1 2 +T~ = O. 

First we assume t 0 = 0. Then T0 0 and t;0 f 0. The strip through 

(x0 ,o,t; 0 ,o) is given by {(x0 +~ T3s 0/lt:0 1 4 , -T 2/ls0 1 2 , t; 0 , T) IT E lR.}. Let 

r be an open conic neighbourhood of <so,O), so that (t;,T) E r implies t; f 0. 

Choose a cut-off function X = X(i;,T) so that X = I in f and X 0 in a 
conic neighbourhood of E; = O. The symbol of T can be factorized as 

lt:l<-tlt:l-T2/ls!). Here X(i;;,T)Jsl is a symbol which is elliptic in r. 
Let PO be the '!'DO with symbol X(i;>r)Th- and let TO be the '!'DO with symbol 
X(i;,T)(-tlt:I -T2/lsl). Then it c-an easily be shown, using formulas for the 
composition of 'l'DOs, that P0T-T0 is a '¥DO with wave front set disjunct 
fromlln+I x f. Therefore we can consider T0 instead of T. Note that T0 has 

the same bicharacteristic structure near (x0 ,o,s0 ,0) as T has. 

We will now give a phase function for A. 

The phase functions occurring in section 3.2 invite us to consider the 
phase function 

1jJ (x, t, y, s, !;; , T, 0) 
3 3 

TO l T - 0 <x-y,l)> + tT - so---+ - --- • 
Is I 3 ls 12 

It is welldefined outside a conic neighbourhood of s O, non-degenerate 
and it meets the conditions on the critical points (cf. section 2.8). 
We have 

So 
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Substitution of a = 0 gives 

and indeed, for fixed (y,s) on the right of this expression we see a strip 

of Dt and on the left a strip of T0 (and T) (substitute -slsJ = T). 

In order to get an elliptic FIO A such that 

we choose ~ as the phase function and must determine a symbol. Because of 

the particular choice for the phase function ~ of A it is not difficult to 

show that we can take a= I, for instance. In order to verify this we need 

a formula for the composition of a '¥DO and a FIO given for instance in 

Treves [25], page 332. We will not discuss this in further detail. 

Next we assume t 0 < O. Then T0 =±1-t0 ls0 J. 

We consider the case T0 = -v'-t0 J s 0 J. Note that -t Is 1 2 - T2 

(MJsj-T)(MJsi +T), (x0,t0,s0,-/-t0 is0 i) is a characteristic point of 

r-"tl [,I + T and r-"tj [,I - T is an elliptic symbol in a conic neighbourhood of 

this point. Let P1 be a '¥DO with symbol x1(t,f,,T)(Mjt,j -T)1, x1 an ap­

propriate cut-off function. Then P 1 T = T 1 + R, where R is a '¥DO with wave 

front set disjunct from a conic neighbourhood of (x0,t0 ,t,0 ,-;:r-;Jt.0 J) and 

T1 is a '¥DO with principal symbol x1(t,f,,T)(M\sl +T). This is not the 

complete symbol since r-"tl s I - T depends on T. Again we can consider T1 

instead of T. 

Consider the phase function 

3 3 

~! (x,t,y,s,t,,a) = <x-y,f,> +flt.I ((-t)2 - (-t0)2) - (t-s)a. 

Then 

y,s,t.,-a) I s < o, s -+ o}. 
For a = 0 and (y,t,) fixed, again we see the link between a strip of Dt and 
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a strip of T 1 (and T). 

An elliptic FIO B with phase function ~I can be constructed (locally) so 

that 

As a principal symbol for B we can choose b =I. 
A complete symbol can be obtained by means of a recursion procedure. 

REMARK. The "time-variable" s is used as parameter along a strip of Dt and 

along a strip of T for t < 0. In the fundamental solution as constructed 

this is represented by the function H(t-s). In a neighbourhood of t = 0, 

T should be used as parameter (a strip reflects at t = O!). Therefore one 

expects the function H(T-a) to appear in a FIO-representation of the funda­

mental solution near t = O. Indeed, the analysis made in section 3.4 shows 
that A± propagates a singularity of f in (y,s,n,a) only to points (x,t,~,T) 
with T § a. 
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CHAPTER 4 

BOUNDARY VALUE PROBLEMS FOR THE TRICOMI EQUATION 

4.1. Introduction. 

In this chapter we will study several boundary value problems for the 

T . . . . R2 ricom1 equation 1n 

Solutions for the problems discussed in sections 4.2 and 4.3 are wellknown 

in the case of sufficiently smooth boundary data. So is a solution for the 

problem discussed in section 4.5 with the boundary condition on t re-

placed by a condition on the behaviour of the solution for x2 + t2 -+ 00 

(t ~ O). See for instance Bizadse [2] and Von Wolfersdorf [28]. 

We attempt to allow general distributional data. Moreover we wish to 

emphasize the use of Fourier techniques. This means that we will use 

Fourier transformation so that in a natural way FIOs will appear. The 

theory connected with these operators enables us to describe the qualitative 

properties of expressions and solutions. This in its turn can be used for 

instance to show that restrictions to the boundary are welldefined. 

We also considered the possibility of extending the results thus 

obtained to regions with more general boundaries. Our findings for t < 0 

(the hyperbolic part) are embodied in section 4.4. We only find solutions 

modulo a smooth function on the boundary. For t > 0 (the elliptic part) we 

tried to apply the method using the Calderon projection (see Boutet de 

Monvel [3] and Chazarain/Piriou [4]). Unfortunately, our effort to con­

struct solutions with this method broke down on the fact that the method 

brought with it too many technical problems we could not solve. Therefore 

we will only consider the simple boundary t = t 0 is constant (see section 

4.5). 
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4.2. The Cauchy problem. 

The first problem we discuss is 

1
32u a2u 
~ +t~ = o, 
Clt Clx 

uJro = f, 

au! at r 0 = g. 

(4. 2. 1) 

Here ro = {(x,t) It= O} cJR2. 

For t < 0 this is a (degenerate) hyperbolic initial value problem. 
0 In case of f E cl and g E C a classical solution has been obtained by con-

structing a Riemann function for T. This solution is given by 

+I 3 s +I 3 1 
y 1 J f(x+1(-t)Zs)[J-s2]-6ds+y2t f g(x+t(-t)Zs)[I-s2]-6ds, 

-I -l 
(4.2.2) 

with 2 2 
23r(l) 

y = ~ and y2 
I r <t) 

2-3r<j) 
r2 < t) . 

See Bizadse [2]. 

This solution can be obtained in another way. Assume for the moment 
f E C~(lR) and g E C~(:IR). Application of Fourier transformation with respect 
to x gives for v(t) := u(l;,t) the equations 

d2 2 
~ - tlsl v = O, 
dt 

v(O) = f(S) and dv (O) 
dt 

This is solved by 

(4.2.3) li<s,t) 

with 

2 2 
c 1 (S)Ai(tlsl 3 ) + c2(1;)BiCtlsl 3), 

7r(Bi'(O)f - ~Bi(O)g), 
lsl3 

-7r(Ai' (O)f - - 1-2 Ai(O)g), !; 1' O. 
li;J3 

For the functions Ai and Bi see section A.2. 

g(S). 

We have !(Ai(z) ± iBi(z)) = e±7fi/3Ai(ze+27fi/3), so we can rewrite u as 

2~i u(i;, t) = Ai' ( O) [ e 7fi/ 3 Ai ( t I!; J f e27fi/ 3) - e -'fTi/3 Ai( t Ii; If e - 27fi/ 3)]f (0 

+ Ai(o)[-1 -(AiCtlslfe27fi/ 3) -Ai(tji;j1e-27fi/3))]g(I;). 
J1;1t 



53 

For t s O Ai(tlslte2ni/3) and Ai(tlslje-2ni/ 3) are bounded, so we can 

apply Fourier's inversion formula. Define for t s 0 

LEMMA 4.2.4. 

u t := 21n J eixs[ e ni/3 Ai (t Is I j e2ni/3) - e -ni/3 Ai( t Is Ii e -2ni/3)] ds, 

Vt := -21 f eixs~[Ai(tlslfe2ni/3)-Ai(t!slte-2ni/3 )]ds. 
n lsll 

3 

I. Ut and Vt ha.ve support contained in {x I lxl s f(-t)2}. 

2. Ut and Vt are elements of C00(lR~,E'(lRx)). 

3. If q>j -+ 0 in C00(lRx) then <Ut'q>j>-+ 0 in C00(lR~). A similar statement 

holds for vt. 

PROOF. I. The powerseries of Ai(z) (see section A.2) shows that Ut and Vt 

can be continued analytically to an entire function in S· Moreover, the 

asymptotic expansion for Ai(z) shows that these functions are bounded on ~ 
3 

by a polynomial times exp j(-t)2 lrm sl. So the result follows from the 

Paley-Wiener Theorem. 

2. Lemma A.5.2 shows that for -T s t s 0 

(4.2.5) v n ~ 0: 3 c : I annAi(tlsli e±2ni/3)1 s c O+lsl) 2n. 
n Clt n 

So for q> E C~, in <Ut,q» = <fit'~ we can differentiate under the integral 

sign, since ¥ is rapidly decreasing. For q> E C00 the result follows by 

using an appropriate cut-off function. 

3. Without restriction q>. -+ 0 in C00
0(lR ). 

J . x 
We have: 

V m: 3 (Cj) : l~·<OI s Cj(I+lsl)-m and Cj-+ 0 (j-+ 00). 
m j J m m 

Together with estimate (4.2.5) this shows that D~<Ut,q>j>-+ 0 uniformly on 

[-T,O], T arbitrary. D 

For t s 0, f E V'(lR ) and g E V'(lR ) we now define 
x x 

(4.2.6) E(f,g)(·,t) := 2ni[Ai'(O)Ut * f+Ai(O)Vt * g]. 

The convolutions are with respect to x only. They are welldefined because 

of Lemma 4.2.4. 
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PROPOSITION 4.2.7. 

J. V f,g E V1(1R): E(f,g) E C00(1R~,V'(:JRX)), 
2. E(f,g) depends continuously on (f,g). 

3. The restricUons of E(f,g) and 33t E(f,g) to r0 are welldefined. 
4. E(f,g) can be considered as an element of V1 (1R x 1R-), still depending 

continuously on (f,g).It is a solution of problem (4.2.1) fort< O. 

PROOF. I. <Ut * f,c.p> = <Ut(x),<f(y),<P(x+y)>> is smooth forts O, 
<P E C~(lR), because <f(y) ,<P(x+y)> is smooth in x. 
2. If fj + 0 in V'(:lR) then <fj(y),<P(x+y)> + 0 in C00(11\J· So we can apply 
Lemma 4.2.4, part 3. 

3. This follows from the first part. 

4. For 1jJ E C~(JR.x 1R-) <E(f,g),ijJ> := J_000 <E(f,g)(•,t),1/!(·,t)>dt. 
This defines a distribution onlR x 1R- and from 

<Ut * f,ijJ> = J <Ut(x),<f(y),ijJ(x+y,t)>>dt 
it is clear that this distribution depends continuously on f and g. 
For f and g in C~(lR) E(f,g) obviously defines a solution for problem 
(4.2.I). Now C~(:JR) is dense in V'(1R) and the restriction operator (in the 
sense of part 3) is continuous, so the result follows by continuity. D 

Let us now examine the singularities of E(f,g). From estimate (4.2.5) 
it is clear that E(f,g) is smooth in (x,t), t s 0 for f,g E C~(1R) and so 
for f,g E C00(1R) also. We recall that 

3 

Ai(tlslte±2ni/3) = e±ti(-t)~js! a±(t,s), s ¥ O, t < O. 

l 
See section A.5. Here w(s)a±(t,s) is an element of s~60 if w(s) is a 

' smooth function such that 

-- {I w(O for 
0 

If we substitute this in the definition (4.2.6) of E(f,g) we get for 
f E c~, g E c~, t < o: 

E(f,g)(x,t) - j dseixs w(sl iAi(O) x 

- 00 lsl 3 
3 

(4.2.8) 

{[ e ni/3 ~ii'(~o/ Is I hcs) + g(O ]a+ ( t, ~) eti(-t) 21 s I 
3 

-[e-ni/3 Ai'(0)1~1hco +g(~)]a (t s)e-ti(-t)2jt;j} 
Ai(O) - ' 



modulo operators with smooth kernels (cf. section 2.8, example 3 and 

section 3.4). 

It is clear that this expression can be considered as a sum of FIOs 

with elliptic symbols and non-degenerate phase functions 
3 

~± := (x-y)t; ± t<-t)2it;I. These phase functions are just the functions 

~(+ ) defined in section 3.2 with s = O. 
-,+ 

By continuity equation (4.2.8) holds for f,g in E'(lR), too, and for 

f,g E V'(ll) as well because we can make the symbols to be properly 

supported. 

The relations defined by these phase functions are 

3 t; l 
~±={(y+t<-t>2m,t,t;,+<-t>21t;1;y,t;) 1 t < o.t;"' o}. 

3 

SS 

So a FIO with phase function (x-y)t; + t<-t)2!t;I propagates a singularity in 

(y,t;) to the left if t; > 0 and to the right if t; < O. For the other phase 

function the other way round. 

Fig. 9: propagation in (x,t)-space. 

Indeed singularities are propagated along bicharacteristic strips.Le11111la 

4.2.4 shows that E (f,g)(x0,t0)only depends on the data on that part of the 

boundary cut out by the bicharacteristic curves through (x0,t0). The same 

is represented by expression (4.2.2). If we express the Airy functions in 

terms of Bessel functions and use the integral expression (A. 1. 7), it is not 

difficult to show that for f and g in C~(ll) expressions (4.2.2) and (4.2.6) 

are equal. 

REMARK 4.2.9. Let t 1 < 0, u 1 := E(f,g)lt=ti and v 1 := a(ltE(f,g)lt=ti" 

Of course, these restrictions are welldefined. u 1 and v 1 are the Cauchy 

data of E(f,g) on t = t 1, while f and g are the C~uchy data on t = O. From 

formula (4.2.8) it follows that modulo smooth functions u1 and v1 are given 

by 
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Here A11 , A12 , A21 and A22 are sums of FIOs with elliptic symbols of order 

-i, -~, ~ and t• respectively. 

For a strictly hyperbolic Cauchy problem it is wellknown that the corres­
ponding operators are sums of FIOs with symbols of order 0, -1, I and 0, 

respectively. Note that T is strictly hyperbolic only for t < O. If we 
solve the Cauchy problem for T with data on t = t 0 < 0, we obtain an ex­
pression for the solution similar to expression (4.2.8). We use the same 

cut-off function w. And indeed, restriction to t = t 1 < t 0 then gives sums 

of FIOs with symbols of order O, -1, I and O, respectively. These symbols 
depend on t 0 , t 1 and S· Keeping t 1 fixed, it is not difficult to show that 
for t 0 t 0 these symbols converge to the corresponding symbols of the 

0 _.§.+£ l 1+£ operators A11 , A12 , A21 and A22 in s1, 0 , s1: 0 , s1, 0 and .sr_ 0, respectively. 
Here £ > 0 is arbitrary. 

REMARK 4.2.10. ut and vt only depend on t and Is!. Moreover, for x E ]Rn we 
have 

The operator 'd 2/dt 2 - tlsl 2 only depends on t and lsl, too. From this it 
follows easily that by interpreting x as (x1, •.. ,xn)' s as (s 1, •.• ,sn) and 
xs as <x,s>, formula (4.2.6) gives a solution to the problem 

a2u 
tl1xu 0 in ]Rn x lR-. -- + 

'dt 2 

ujro f, 

au' at r 0 
= g. 

' n -Interpreted as elements of V (~ x JRt) Ut and Vt only depend on t and lxl, 
have support in {x E JRn I lxl s f(-t)f} 

3 
and are singular only for 

lxl = f(-t) 2 • The singularities have 
3 I / 2 

<lxl - t(-t)2 )~-n , respectively. 

3 l /2 
order <lxl - tC-t)Z)-3-n and 

This concludes the discussion for t < O. 

2 
For t > 0 we remark that in formula (4.2.3) Lhe function Bi(tJsJ3) 

is exponentially increasing for JsJ + oo. Suppose we are interested in 
values of t such that 0 s t s T, 0 < T s oo. In order to be able to apply 
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Fourier's inversion formula we will assume for some C00-function xCs) which 

is zero in a neighbourhood of s = 0 and one for lsl large: 
3 

2 lslT2 
c2COxCs)e3 

c2COx<O = o 

E S 1 (JR) if T < oo, 

if T = 00 • 

For the problem (4.2.1) on 1R x (O,T) this means that we cannot prescribe f 

and g arbitrarily. It implies that 
2 3 

(4. 2. I I) MDCs) = 1~13 fl<Oe-tlslT2 + Ai,'Co)lslfcxi)CO 
TIAi(O) Ai(O) 

for some h E S', h = 0 for T = 00 • 

For such g we define fort~ T (t < 00 if T = 00): 

(4.2.12) E~(f,g)(x,t) = f dseixs x 

{ iAi'(o)[eni/ 3Ai(t Is I te2ni/ 3)-e -ni/3Ai(t Is lte-2ni/ 3) ](1-x(s))f(O 

+ iAi(o)[-~(Ai(t lsl te2ni/ 3) -Ai(t Is I te-2ni/ 3))]<1-x(s))g(S) 
lsl 3 2 

+ 2TIA~(O) Ai(tlsl 3 )(xf)(0 
' 3 

- 2TIA~(O) [Bi(O)Ai(tlslt)-Ai(O)Bi(tlslt)]e-tlslT2 J;co} 

Here his defined by equation (4.2.11). 

In the first two terms f and g are multiplied by smooth functions with 

compact support. In the last two terms Xf and h are zero in a neighbourhood 

of s = 0, so multiplications are welldefined for f and h in S'. 

PROPOSITION 4.2.13. Let x be as above, f E S 1(1R), g E S'(:IR) so that for 

some 

I. 

2. 

3. 

4. 

5. 

h g satisfies condition (4.2.11). Then: 

E~(f,g) E C00
((- 00 ,T]t,S'(1Rx)). Here (-00 ,T] := 1R if T = 00 • 

If f.+ 0 in S', g.+ 0 in S' and there are h. so that g. satisfies 
J J J J 

condition (4.2.11) with h. and h- + 0 in S' then EXT(f.,g.) + 0 (as 
00 J J J J 

element of C ((- 00 ,T] ,S'(:IR))). 

E~(f,g) is a smooth function on 1R x (O,T). 

The restrictions of ET(f,g) and .J_ET(f,g) to r 0 are welldefined. 
X ot X 

E~(f,g) can be considered as an element of V1 (1R x (- 00 ,T)), satisfying 

the same continuity property as element of V' as in part 2. It is a 

solution of problem (4.2.1) fort< T (with a special choice of g!). 
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PROOF. 1,2. By writing <ET(f,g),tp> in terms of Fourier transforms, this is x 
a simple verification using Lemma A.5.2. 

3. This follows from formula (4.2.12) and Lemma A.5.2. 

4. This follows from the first part. 

5. As in Proposition 4.2.7 for~ E C~(:JR x (- 00 ,T)) 

T T T 
<E (f,g),~> := f <E (f,g)(· ,t),~(·,t)>dt. x -oo x 

This is continuous in (f,g) as can be seen again by expressing it in terms 
of Fourier transforms. 

For f and gin C~(R) it defines a solution of problem (4.2.1) in 

]R x (- 00 ,T). For general f and g it follows by continuity. D 

REMARK 4.2.14. If g satisfies condition (4.2.11) for some (X,h) then for 

all x 1 with the same properties as X there is h1 such that g satisfies 
T condition (4.2.11) for Cx 1,h1). Moreover EX(f,g) is independent of the 

choice for (X,h). Therefore we can omit the x-sign in case T < 00 • 

REMARK 4.2.15. ET(f,g) is equal to E(f,g) on ]Rx :JR-. The singularities of 
T 

E (f ,g) for t ~ 0 are therefore known. 

REMARK 4.2.16. We can rewrite condition (4.2.11) as 

This is a Pseudo Differential relation between f and g. For simplicity we 

neglect the other term. The symbols have order t and O, respectively. For 
regular elliptic problems one gets a similar relation between the Cauchy 
data, however with symbols of order I and O, respectively. This relation 
is determined by the Calderon projection (see Chazarain/Piriou [4]). Note 

that T is elliptic only for t > O. Solving the Cauchy problem for T with 
data on t t 0 > ·o, indeed we obtain a relation similar to the relation 

given above with symbols of order I and O, respectively. These symbols 
I 0 converge to the symbols given above in sl,O' sl,O' respectively for 

t 0 + o. 

For later convenience we give one more property of the distributions 

Ut and Vt discussed in Lemma 4.2.4. 

LEMMA 4.2.17. For fixed t ~ 0 U can be written as the swn of two 
t 
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3 3 

distributions with support contained in {x Ix ~ f(-t) 2} and {x Ix ~ -f(-t)Z} 

respectively. Also U can be UJY'itten for fixed t s 0 as the sum of two 
t 3 3 

distributions with support contained in {x Ix s f(-t)'2"} and {x Ix s -f(-t)"l':} 

respectively. A similar statement holds for Vt. 

PROOF. e 7Ti/ 3 Ai ( t Is I% e 27Ti/ 3) - e -7Ti/ 3 Ai ( t Is It e -27Ti/ 3) 

and the terms are analytic for Im s ~ 0. 

We claim that 

supp[Ai(tste±27Ti/ 3)]v c {x Ix s + f(-t)t} 

and 
2 +271"/3 v 1 

supp[Ai(t(-O!e- i )] c {x Ix~± f(-t)2}. 

Let us show this for [Ai(t(-s)fe271i/3)]v. 

It is clear that it is a welldefined element of S 1(JR), for Ai(t(-s)te271i/ 3) 

is bounded and continuous for s real. The support can be computed directly 

(cf. the argument above Remark 4.2.9), but we can also note that for Ims < 0 
3 

eji(-t)2sAi(e27Ti/3t(-s)t) 

is a bounded analytic function, continuous for Im s s O, for 
27Ti/3 z.. 1 7T 

\arg e t(-s) 3 s 3 then. Further 

J eixsAi(e27Ti/3t(-0 f)ds = (1 -~) J eixsAi(e27Ti/\(-s) t)~. 
Clx I+ s 

3 

An application of complex contour integration shows that for x - j(-t) 2 < 0 

this is equal to 

The distribution Vt can be treated in a similar way. D 

4.3. The Gour sat problem. 

Let 

fJ - {Cx,t) Ix > (3x)f o} ' : == 0 and - T < t < 

r := {(x,t) Ix> 0 and t = O}, 
+ 

r .- {(x,t) Ix> 0 and t = -(3;)t}. 
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Then f is part of a bicharacteristic curve and bnd n-

/K-
1 ,~r 

Fig. JO: n-. 

We choose x as the parameter along f. Then f can be identified withlR+. 
Consider now the problem 

(4.3.1) f, 

h. 

We will take h E E' (f) (so that 0 i supp (h)) and f E Ma for some Cl > ~. 
Here Ma is defined by Ma := {u E V1(lR) I supp(u) c JR+ and 
3 ~ E C~(JR): ~(x) = I in a neighbourhood of x = 0 and~ E Ha(JR)}, where 
Ha is a Sobolev space. Note that the condition f E Ma for Cl > t implies 
that f is continuous in x = 0 (in particular f(O) = O). 
The reason for this choice for f is that Ma is large enough to be useful in 
section 4.5 and small enough to be useful in this section. 

The problem will be solved by determining g such that E(f,g)lr =h. 
That is, we must determine g E V'(lR) such that the restriction of E(f,g) 
to f is welldefined and equal to h. Note that f is characteristic. 
First we will discuss the case h = O. 
Then it is obvious that we should choose g so that E(f,g) will not have 
singularities on bicharacteristic curves going to the left. Formula (4.2.8) 
and the discussion following it show that probably a good choice for g will 
be 

(4.3.2) 

This equals 

so 



_j_ Ai' (0) _.§. 
g(x) = -r(-f) Ai(O) x+3 * f(x). 

For arbitrary f with supp(f) c :m.+. this convolution is welldefined and 

supp(g) c :m.+, too. 

Define 

Ef := E(f ,g) with g chosen as above. 

Then T(Ef) O for t < 0 and Eflr = f. 
+ 

To show that Ef satisfies the boundary condition on r is more difficult. 
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An inspection of formulas (4.2.6) and (4.2.8) shows that for f E C~(1R), 

Ef is given by: 

Ef = -Ai'(0)13[ldt;eixt;f(t;)Ai(tjt;lfe21Ti/3) 

+ j di;eixt;f(i;)Ai(tlt;lfe-21Ti/3)] 
00 0 

=-Ai' (0)/3 J di;eixt;f(i;)Ai(e21Ti/3t(-t;)f). 

PROPOSITION 4.3.3. The map V~ 3 f + Ef E V1(1R x 1R-) is continuous. For 

f E v~. Ef is given by aonvoZution of f ® ot=O and a distribution with 

support in 

{(x,t) I t < 0 and x ;>; j(-t)f}. 

5 5 

PROOF. If f.+ fin V' then x-! *f.+ x-3 *fin V+'· E(f,g) depends 
J + + J 

continuously on f and g. So f + Ef is continuous. From Lemma 4.2.17 it is 

clear that 

3 
is a distribution in V1(1R x 1R-) with support in {(x,t) Ix;>; f(-t)I}. 

For f E C~(1R) it is clear that Ef is given by convolution of f ® ot=O with 

this distribution. This convolution is welldefined for f E v~ as well and 

continuously depending on f. But then the continuity of E shows that Ef is 

given by this convolution for arbitrary f E v~. D 

Modulo a smoothing operator we can also describe Ef by means of a FIO. 

00 2 1 
(4.3.4) Ef = -Ai'(0)/3 J eixt;-3i(-t) 2t;a(t,i;)f(i;)dt;. 

-00 

Here a(t,S) = w(t;)[H(i;)a_(t,t;) +H(-Oa+(t,t;)] is a symbol of order -t 
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3 
for t < 0 which is elliptic and (x- y - %C-t)~)i;: is a nondegenerate phase 

function for t < 0. 

This is obvious for f E C~(lR). For f E E'(IR) it follows by continuity. 

PROPOSITION 4.3.5. 

l. Let f E Ma for some a> t· Then the restriction of Ef tor is well­

defined. 

2. Let f E M for some a > t and let Y be the trace operator on r. a 
Then Eflr = y(Ef) = o. 

PROOF. We can write f = f 1 +f2 with f 1 E H~omp(IR), supp(f 1) cJR+ and 

f 2 E V'(IR), supp(f2) c IR+. L~t E > 0 be so that supp(f2) c [E, 00). Then 

supp(Ef 2) c {(x,t) I x-t(-t):Z ~ d so we can assume f 2 = 0, that is f = f 1 • 

The FIO given by equation (4.3.4) has order - 1
52 , since n 1 = 2, n2 = I, 

m = -i and N =I. See section 2.8, paragraph (2.8.7). 

Now Corollary 4.4.5 in Duistermaat [6] shows that E is continuous from 
s s+ 1 - a+l -H (lR) to H1 6(lR x lR ) for every s E IR. So Ef E H1 6(JR x lR ) . From the comp oc oc 

theory of Sobolev spaces it is wellknown that the trace operator y is con-
a+l - a i 

tinuous H10~(lR x lR ) -+ H1:~ (f), provided a+ t > ! or a > t. This concludes 

the first part. 

If a > t and f E Ha then comp' 
a+1 

Ef E H G(JR x lR ). So Ef is continuous for loc 
t < 0 because a+ t > I. Also supp(f) c lR+ so Proposition 4.3.3 shows that 

supp(Ef) c Q-. A combination of these facts gives the desired result. D 

REMARK 4.3.6. The fact that we must choose a > t is sufficient for the 

application of Proposition 4.3.5 in section 4.5. However, note that a > t, 
f E Ha implies f is continuous. In particular, f(O) = O. The converse is 

not true. So we do not allow every continuous function which is zero in 

x = 0. This is in contrast with the work of other authors. See for instance 

Bizadse [2]. Presumably the fact that we work with Ha-spaces is to blame 

for this, together with the fact that we did not compute the distribution 

in Proposition 4.3.3 explicitly. 

If we keep t t 0 < 0 fixed and consider E 

V' (lR x { t 0}), then f E Hex implies Ef I 
comp t=to 

function in x provided a > t· So we get an 

Proposition 4.3.S might be improved. 

Next we consider the case f 0. 

as an operator from M to 
i a 

E Ha+6 . This is a continuous 
comp 

indication that the result of 

V' + ' ~ If g E 0(JR ) , then there exists a unique g E V (JR.) such that gjlR+ g and 



supp(g) = supp(g). 

Define E0g := E(O,g). 
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The restriction of E0g to f is we.lldefined. This follows from the fact that 

WF(E0g) n N(f) = 0 because g is smooth in a neighbourhood of x = 0 

(see section 2.6). 

PROPOSITION 4.3.7. g + y(E0g) determines a continuous map between Vb<JR.+) 
and Vb<f). 

PROOF. The map is welldefined and y(E0g) E Vb(f). For the proof of the 

continuity it is sufficient to consider for all £ > 0 the restriction of 

this map to E'(Y ), where Y = {y E lR+ I y >d. Let (u.). c E'(Y) be a 
£ £ J J £ 

sequence so that u. + u (j + oo), u E E'(Y ). Then E0u. + E0u in V'(JR. x JR.-). 
J £ J 

We will show that the sequence (E0uj)j converges to E0u in VK£ with K£ 

defined by 

This is a 

Let A be 

Then AE0 
So AE0 : 

3 l 
K£ := {(x,t,i;,T) I x-%(-t)'2' :2: t£ or T = -(-t) 2i;}. 

closed cone in T*(:m. XJR.-) and WF(E0v) c K if v E E'(Y£). 
x t £ 

a properly supported '¥DO with WF(A) n K£ = 0. 
has a C00-kernel. This follows from formula (2.7.8) in section 2.7. 

E'(Y£) + C00(1R x lR-) continuously and 

Now K£ n N(f) = 0, so the result given in section 2.6 shows that 

y(E0uj) + y(E0u) in V'(r) and also in Vb(f). 0 

( 00 + We define Sg := y E0g). For g E c0(1R.) Sg is given by: 

(4.3.8) (Sg)(x) iAi(O) f di;eixs ~[Ai(-(3x)tlsl%e2Tii/ 3 ) 
Is I 3 2 

- Ai(-<3;)tlslte-2Tii/3) ]g(i;). 

3x Z. 
Substitution oft= -(2""")3 in formula (4.2.8) produces the phase functions 

(2x-y)s and -yi;. Operators related to the last phase function have kernels 

with wave front set contained in {(x,O;O,-s) Is + O}. Therefore these 

operators are smoothing on Vb, for u E Vb implies u is smooth in x = O. 

So for g E Vb: 
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Sg y(E(O,g)) ;:: iAi(O) ff dydE;:ei( 2x-y)E;: x 

w(t;:) [H(E;:)a (-(3x)t ,t;:) - H(-Oa (-(3x)t ,t;:)Jg(y). 
Jt;:J1 +. 2 - 2 

That is, S is an elliptic FIO modulo a smoothing operator. Therefore S 

has a parametrix. It is even rather easy to give a proper inverse for S. 
We can transform formula (4.3.8) into a formula that can also be derived 

from formula (4.2.2): 

• 00( +) f (4 ) Consider g E c0 1R and ormula .3.8 . 

Ai(-(32x) t It;: I te2ni/3) _ Ai(-(32x) t It;: If e -2ni/3) 

!i/3 Ai(-c3;)fJt;:Jf)- !iBi(-c3;)tJt;:li) = 

. 3 l 1 *( 2X)3Jt;:J3 Jt(xJt;:J) 

and 

(lxJt;:J)t +I (l-s2)-teixJt;:Jsds. 
J1(xJt;:J) = r~·s·)f(l) J 

3 6 2 -I 

See sections A.I and A.2. 

Here we can omit the absolute sign in eixJt;:Js. But then 

Changing 

Here 

the order of integration we get 
_§. 1 +1 1 

Sg = -2nAi(O) 3 5 C3x/ 2) 3 J ds(J-s2)-Sg(x+sx) 
f(·~-)f(t) -l . 

2nAi(O) 
= Y2· 

36f(t)f(t) 

Compare this to formula (4.2.2). 

Substituting x(l+s) SI , 

(4.3.9) (Sg)(x) 

l 
Equating this to h(x) we get Abel's equation for s:Gg(s). 

In terms of Fourier transforms it can be solved as follows. We must solve: 

3 1 _l _1 x 
-y ( - ) 3x Gg * x 6 = h(-) 2 2 + + 2 . 

Then 
3 1 -l A 5ni/l2 _§. A 

-y2(2) 3 (x/g) · f(t)e (-t;:+iO) 6 2h(2t;:). 



So 

2(-y 2 C t) ire t)e5ni/ 12) -1 C-t; + iO) +t£c20. 

For the distributions x~ and (-t; + iO) a, see section 2. 13. 

Define 

(4.3. 10) 

VI + 
PROPOSITION 4.3.11. Q can be extended to a continuous map between 0(1R) 

VI + V' + and 0(1R ) . Then SQh = h for every h E 0(JR ) . 

PROOF. In fact Q represents convolution of h(X2) and a distribution with 
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5 11 

support in1R+, for [(-E;+i0)6]v = const·x:6 . This extends continuously to 

h E Vb(JR+) giving a distribution which ts zero in a neighbourhood of the 

origin. Therefore multiplication with x! is welldefined. 

It is evident that SQh = h for h E C~(JR+). Now Proposition 4.3.7 shows 

that S is continuous and so is Q. But then SQh = h for every h E Vb(JR+). D 

REMARK 4.3.12. Formula (4.3.10) shows that Q is an elliptic FIO modulo a 

smoothing operator. Its phase function is (x-2y)t;. 

2x 

A 

Fig. II: propagation of a singularity of h in A. 

We can now define: E_(f,h) := Ef+E(O,Qh). 

PROPOSITION 4.3.13. E (f,h) is a solution for problem (4.3.1). If 

fj E ua>t Ma v j 2 o so that fj + f 0 in V'(lR) and if hj + h0 in Vb<:rn.+), 
then E (f.,h.) + E (f0 ,h0) in V'(~n. 

- J J -

PROOF. That E_(f,h) is a solution for problem (4.3.I) is clear. The con-

tinuity follows from Proposition 4.3.3 and Proposition 4.3.11. D 

REMARK 4.3.14. Formula (4.3.4) and Remark (4.3.12) show that singularities 

in f and hare propagated to the right (cf. Fig. II). 
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4.4. A non-characteristic boundary value problem. 

Let (j)(x) be a C00-function for x::: 0, (j)(O) = 0, lD(x) > 0 for x > 0 and 
! dlf) 

-I < (j) 2 (x)dx(x) < I. Let r+ be as in section 4.3 and let r be the curve 

parametrized by r = { (x,-({l(x)) Ix > o}. Again r can be identified with JR+ by 

choosing x as parameter along f. Note that f is nowhere characteristic. 

Consider now the region Q := {(x,t) Ix > 0 and -lf)(x) < t < O}. 

Fig. 12: Q. 

We will investigate the problem 

0 in Q, 

(4. 4. I) f, 

h 

V' + with f and h in o(JR ) . 

Again we will try to solve this problem by looking for a g such that 

E(f,g)lr =h. Note that for arbitrary g E V'(JR) the restriction of E(f,g) 

to r is welldefined because r is nowhere characteristic. 

However, it turns out that we can only give a solution for problem (4.4.1) 

modulo a smooth function on r, that is: u I r - h is smooth. This is due to 

the fact that we did not succeed in obtaining a proper inverse for some 

elliptic '¥DO. 

For f,g in V~(JR+) we define operators A1 and A2 by 

Alg := (21TiAi(O)V *x g) I r• 
A2f := (2TiiAi'(O)U *x Olr· 

For U = Ut and V = Vt see formula (4.2.6). U and V are considered as 

elements of V '(JR x JR-). 

PROPOSITION 4.4.2. A1 and A2 are continuous maps from V~(I'+) to V~(f). 
The kernel of A1 in V'(JR+ x JR+) has support contained fn 

{(x,y) Ix> 0 and q(x) s y s p(x)}. Here q(x) := x-tt02Cx) and 
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3 

p(x) := x +ftp~ (x) are smooth and monotonically increasing functions from 
+ + 

lR to lR • 

q ( x) p(x) 

/ 

/ 

r 

Fig. 13: interrupted lines are bicharacteristic curves. 

So A 1 is properly supported. 

PROOF. That A1g and A2f belong to V~(f) follows from the properties of the 

supports of V and U. 

If g. + 0 in V~(ll+) then E(O,g.) + 0 in V~(ll x ll- with 
J 2 2 J 

K = {(x,t,s,T) I t[s[ +T = O}. Since Kn N(r) = 17), A1gj + O in V'(r) and 

also in V~(f), so A1 is continuous. , 

For ijJ EC~(~), g E C~(JRY): <(V*g)[r,ijJ>;:, <~-\ll(x)(y),g(x-y)>,ijJ(x)> so the 

kernel of A1 has support in {(x,y) [ [x-y[ stqJZ(x), x > o}. 

The properties of q and p follow from the properties of \l). 0 

00( + The results of section 4.2 show that for g E c0 JR. ) A1g is given by 

CA1g)(x) iAi(O) f dseixs - 1-2 [Ai(-tp(x)[s[te2ni/ 3) 
- 00 Is 1~ 

- Ai (-tp(x) [ s It e -2ni/3)] g(t;). 

Here g is extended by g(x) = 0 for x s 0. 

Also Lemma 4.2.17 shows that A1 can be written as A1 = B1 +B2 with B1 
and B2 having kernels B1 and B2 respectively so that 

supp B1 c {(x,y) [ p(x) 2: y} and supp B2 c {(x,y) [ q(x) 

supp(g) c [x0,x1], 0 < x 0 < x 1 < oo, then supp(A1g) c 

I -I supp(B 1g) c [p- (x0),oo) and supp(B2g) c [q (x0),oo). 

2: y}. If 
-I -I 

[p (xo),q (xl)], 
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p-1 i :<.O I xo 

/ ' 
/ ' 

/ ' / 

q-1 ( xo) 

Fig. 14: interrupted lines are bicharacteristic curves. 

-I 
Suppose B1 exists and has the 

I -1 supp B~ B2g c [pq (x0), 00). So 

application of B~ 1 B2 repeated 

00 

2: 
n=O 

property supp 

the support of 

(see also Lemma 

is a welldefined inverse for A1. 

-1 [p(x0),oo). Then BJ g c 

g will shift to infinity 

4. 4.1 O). But then 

A similar result holds if B2 is invertible. Then the support of g will 
shift to zero. 

by 

Unfortunately we are not able to obtain an exact inverse for B1 (or B2). 

Therefore we restrict ourselves to the determination of a parametrix for 

A1. Modulo smoothing operators we will write A1 as A1 = c1 + c2• Here c1 and 

c2 can be chosen to be properly supported elliptic FIOs. c1 and c2 will be 

related to phase functions (p(x) -y)E, and (q(x) - y)E, respectively and the 

support of their kernels will have similar properties as the support of 
B1 and B2• 

Let w(E,) be a C00-function on ll such that 

w(E;) {° for I E, I < 
1 > 

We know that 
3 

Jitp2 (x)IE, I a+ (-<.p(x) ,E;)' 
3 

Ai(-tp(x)lt;lfe-2Tii/3) = e-jitpZ(x)lt;I a_(-<.p(x),E,), E, f O, 

2 5 
and IE,\-3w(E,)a±(-<.p(x),E,) are elements of S~~0(JR+ x lR) which are elliptic 
(see Lemma A.5.1). 

Let X(x,y) be a C00-function on lR+ x lR+ so that X = 1 on a neighbour­

hood of the support of the kernel of A1 and so that X is properly sup-
oo + 

ported. For g E c0(JR ) then <V_<.p(x) (y) ,g(x-y)> = <V_<.p(x}y),x(x,x-y)g(x-y)> 



because 1-X(x,x-y) is zero on a neighbourhood of supp(V_tp(x)). 

Fourier transformation gives that 

= iAi(O) I dseixs _1 _2 x 
lsh· 

[Ai (-tp(x) Is If e2Tii/3) - Ai(-tp(x) Is If e -2ni/3)] x 

I dye-iysx(x,y)g(y). 

Let x 1 and x 2 be smooth and properly supported functions on lR+ x lR+ which 

are equal to one in a neighbourhood of the diagonal in lR+ x lR+ and choose 

r~(x),y) y :S q(x) 

(4.4.3) xCx,y) if q (x) s y :S p(x) • 

x1(p(x),y) y e:: p(x) 
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Then it is easy to check that X satisfies the conditions mentioned before. 

/ p ( x ) 

q Ix I 

Fig. 15: support of X· 

Define 

(4.4.4) 

Here 

2 1 
(A11 g){x) ff dydse i(x-y+3t1>2 (x))s a 11 (x,s)x 1(p(x), y)g(y), 

3 

(A12g) (x) JJ dydsei(x-y-ft1>2 (x))s a 12cx,Ox2Cq(x) ,y)g(y), 

3 

JJ dyds [ e i (x-;+ft1>2 (x))s a 11(x,S)[x (x, y )-x 1Cp(x), Y )] g (y) 

+ e i(x-y-ftpi" (x))s aiz<x,S)[x(x, y)-x2Cq(x), y)]g(y)] , 

iAi(O) J dyg(y)x(x,y) J dsei(x-y)s[I-w(OJ-1-2 x 
lslr 

[ Ai(-tp(x) Is If e2ni/3) - Ai (-tp(x) Is If e -2ni/3)] • 
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a 11 Cx,0 = iAi(O)w(S)~[H(Oa (-q:J(x),0 - H(-S)a (-q:J(x),0], ls[3 + -

a12Cx,S) = iAi(O)w(O~[H(-S)a (-q:J(x),S) - H(s)a (-q:J(x),S)] 
lsl~ + -

_.§. + 
Then it is clear that a 11 and a 12 belong to s1: 0(JR x JR) and are elliptic. 

A11 , A12 and A13 are welldefined (sums of) properly supported FIOs. So they 

define continuous maps between V1 (JR+) and V1 (JR+) (even C00(lR+) and C00(lR+)). 

Note that X(x,y) - x 1 (p(x) ,y) is zero in a neighbourhood of the set of 

critical points of (p(x) - y)s and xCx,y) - x 2Cq(x) ,y) is zero in a neighbour­

hood of the set of critical points of (q(x) -y)s. So A13 is smoothing. 
+ + The s-integral in the definition of A14 is a smooth function on lR ~,JR • 

Therefore A14 defines a continuous map from V'(JR+) to C00(lR+). 

PROPOSITION 4.4.5. A1 

PROOF. The operators are continuous on Vb(f+), so we can restrict ourselves 

to showing that A1g = L~=l A1jg for g E C~(lR+). For fixed x the continuous 

dependence of Alj' j = 1,2,3, on their symbol(s) shows that (A1jg)(x) = 

lim€+O (A~jg)(x), where A~j is obtained from A!j by replacing w(s) by 
a(€s)w(s), with a ES, a(O) = l. 

But then the proof amounts to an application of Fubini's theorem. D 

The operators A11 and A12 will play the role of c1 and c2 in the 

remark made above. For this purpose we will construct suitable cut-off 

functions x1 and Xz· 

LEMMA 4.4.6. Define for x > O, 0 < a ~ I the functions c and d by 
a a 

2a t 2a i ca(x) := x- 3<P (x) and da(x) := x+ 3(j) (x). 

Then c and d are C00 for x > 0 and for a < I a a 
q(x) = c 1(x) < ca(x) < x < da(x) < d 1(x) = p(x). 

Further l-a < c~(x) < l+a and I-a< d~(x) < l+a. 

q ( x ) r. ~ ( x l di(x) pix) 
~---

~-"-

/ 

a== 1 

/" 

Fig. 16: interrupted lines are bicharacteristic curves. 
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PROOF. The properties of ea and da follow easily from the properties of <.p. D 

For 0 < b < a< I let X(a,b) and X(a,b) be elements of C00(R+ x :R+) so 
I . 2 

that 

x~a,b\x,y) {o 
y::;; ca(x) or y ?: da(x) 

if 
I cb(x) s y s db (x) 

{o 

-I -I 

x~a, b) (x,y) 
y s da (x) or y ?: ea (x) 

if -I -I 
I db (x) s y s cb (x) 

These are functions which are properly supported and equal to one in a 

neighbourhood of the diagonal in R+ x R+. Note that in order to keep this 

neighbourhood small the parameter a should be chosen small. In that case 

the functions ea' da' cb and db are "almost" the identity. 

00 + 
LEMMA 4.4.7. Let g E c0(R) and supp(g) c [x0,x1]. Then: 

supp(Jx~a,b)(x,y)g(y)dy) c [d:1(x0),c:1<x 1)l, 

supp (s x~a, b) (x,y)g(y)dy) c [ea (xo) ,da (xl )] • 

F d ·11 t k th f t" (a,b) and x(a,b) for or x 1 an Xz we wi a e e unc ions x 1 2 

some (a,b). 

Let us consider now the operator A11 • 

If we substitute z = p(x) we obtain the 'l'DO 

~r i(z-y) -1 
~ dyd~e a 11 Cp (z),~)X 1 (z,y)g(y). 

D 

-1 5 
Here a 11 (p (z),~)x 1 (z,y) is a properly supported element of s~:o which is 

elliptic. 

So this operator has a properly supported parametrix. Modulo a smoothing 

operator it can be given by 

§. 

for some f 11 belonging to sr,o· A parametrix for A11 is then given by 

LEMMA 4.4.8. A11 F 11 -I = R1 and F11 A11 -I = R2, where R1 and R2 have C00 

kernels so that 
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supp(kernel of R1) c { (x,y) J c c p(x) s p(y) S d d p(x)}, 
a a a a 

supp(kernel of R2) c {(x,y) I c c (x) s y s d d (x)}. D 
a a a a 

00 + 
LEMMA 4.4.9. Let g E c0(lR) so that supp g c [x0,x1] an.d a< I. 
W• 'h I-a n.d 1-a the i.· a - a a = -.,- n: 

" 0 - l+a I " 

-I -1 -I -I 
supp(FllA12g) c [da pq ca(xo),ca pq da(xl)] c [dao<xo),oo), 

-I -I -1 -1 
supp(A1l11g) c [q cada p(xO),q daca p(xl)] c [dal (xO),oo), 

t t -1 -I -I -1 
supp( A12 F 11 g) c [da qp ca(x0),ca qp da(x 1)J c (O,ca0 Cx 1)], 

t t -I -I -1 -1 
supp( F 11 A12g)c[p cada q(x0 ),p daca q(x 1)Jc (O,ca1Cx 1)]. 

PROOF. The kernel of tAl2 has support in {(x,y) I X2(q(y),x) + o}. The 

kernel of tFll has support in {(x,y) I X1(y,p(x)) + o}. Therefore the first 

inclusions follow from Lemma 4.4.7. 

From Lennna 4.4.6: 

so 

3 
q-lc (y)-y = q-lc (y)-q-lq(y) >He (y)-q(y)) = t(l-a)tp'Z(y), 

a a a 
- I -I - I I I-a 2 1 

d p(y)-y = d p(y)-d d (y) > -1+ (p(y)-d (y)) = -1+ -3 \P2 (y), 
a a aa a a a 

- I - I -1 I I -a 2 .J. 
y-c q(y) = c c (y)-c q(y) > -1+ (c (y)-q(y)) = -1+ -3 tp2 (y), 

a aa a aa a 

y-p-ld (y) = P-lp(y)-p-ld (y) > !(p(y)-d (y))= t(l-a)tpf(y), 
a a a 

LEMMA 4.4.10. Let 0 <as an.d choose z > O. Define 

n 
zn := da(z) (da applied n times) 

w := cn(z). 
n a 

Then z -+ 00 an.d w + O for n -+ co, 
n n 

PROOF. tp{x) > 0 for x > 0 and a> 0 so (zn)n is monotonically increasing. 

Suppose (z ) is bounded. Then z -+ z00 < co, But then d (z ) - z = 
n n a n n 

zn+I - zn-+ O. Because da is continuous it follows that da(z00) = z00 or 
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3 

~2(z00) = O. This is a contradiction. So (zn) is not bounded and zn + 00 • 

(wn)n is monotonically decreasing and bounded by O. If wn + w0 then 

wn - ~a<wn) = wn -wn+l + 0 and the continuity of ca gives that ca(w0) = w0 
or ~2 (w0 ) = O. This implies that w0 = O. D 

At this point we know enough about the supports to define a parametrix 

for A1• 
00 + 

For x > 0 and g E c0(lR ) we define 

(4.4.11) (Gg)(x) := ( ~ (-FllA12)~llg)(x). 
-n-0 

We also consider the transpose of G: 

(4.4.12) 

At this point we recall the definitions of E0 , E00 , V~ and V~ given in 

section 2. I. 

PROPOSITION 4.4.13. 

I. Equation (4.4.11) defines a continuous map between C~(lR+) and E0• 

Equation (4.4.12) defines a continuous map between C~(lR+) and E00 • 

2. A1G = I+T 1 and GA1 = I+T2 with 

TI [Rl + (Al3+Al4)Fll] 3o (-Al2Fll)n, 

T2 jo (-FllA12)n[R2+Fll(A13+Al4)]. 

PROOF. I. Lemmas 4.4.9 and 4.4.10 show that on every compact Kc :JR.+ the 

series defining Gg and tGg in fact are finite (so are the series defining 

T1 and T2). That Gg E E0 follows from the fact that A12g and F 11 g belong 

to C~(:JR+). Similarly tGg E E00 • 

The continuity of G and tG follows from the continuity of A12 , tA12 , F 11 
t and F 11 

2. 

n+I 00 n 
= - n~O (-Al zF 11) + (I+ RI) n~O (-Al 2F 11) 

00 

+ (Al 3 +Al 4) n~O F 11(-AlzF11) 
n 

I+ [RI + (Al3+Al4)Fll] ~ (-A1zF11)n. 
n=O 
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00 

(-FI !Al 2)~ 11 (Al I +Al 2 +Al 3 + A14) GA1 I: 
n=O 

00 n oo n+l 
I: ( -F 11 Al 2) (I + Rz) - n~O (-Fl!Al2) + 

n=O 
00 

( -F 11Al2)~11 (Al 3 +Al 4) + I: 
n=O 

00 

(-FllA12)n[R2+Fll(Al3+AJ4)]. I + I: D 
n=O 

REMARK 4.4.14. It is clear that G can be defined on E0 as well. Then 
G: Eo continuous 

E0 and Proposition 4.4.13 (2) remains valid due to the 

fact that the operators have properly supported kernels. 
Also tG: Eoo continuous Eoo. 

V' t V' By transposition Gu can now be defined for u € 0 and Gu for u € 00 

by 

<Gu,cp> := <u,tGcp>, 
(4.4.15) 

t 00 + < Gu,cp> := <u,G<P>, cp E c0(:R ) • 

For u smooth this coincides with definitions (4.4.11) and (4.4.12). 

PROPOSITION 4.4.16. 

I. G is a continuous map between V~ and V~. tG is a continuous map 

between v~ and v~. 

2. A1Gu-u and GA1u-u belong to E0. 

PROOF. I. This is straightforward. 

2. This follows from the fact that T1 and T2 map V~ continuously to E0 
because R1, R2, A13 and A14 are (properly supported) smoothing operators. D 

We return to the boundary value problem (4.4.1) 

Define 

PROPOSITION 4.4.17. E2(f,h) is a solution of problem (4.4.1) modulo a 

smooth function on r. 

PROOF. Ez(f,h)lr Azf+AIG(h-Azf) 

h +TI (h- A2f) 

and 

D 



Let us now discuss the way singularities of E2(f ,h) are related to 

those of f and h. 

I + 
LEMMA 4.4. IS. Fol' u E V0(-m. ) : 

-1 n I } WF(Gu) c {((pq ) p(y) ,~) n dZ, n ~ 0, (y,~) E WF(u) • 

f 

Fig. 17: interrupted lines are bicharacteristic curves. 

PROOF. The phase functions of F11 and A12 are (x-p(y))~ and (q(x)-y)~. 

The symbols of F11 and A12 are elliptic for l~I large. Therefore 

{(p(y),~) I (y,~) E WF(u)}, 

{(q- 1 (y),~) I (y,~) E WF(u)}. 

Composition gives the desired result. D 

For f = 0, E2(0,h) = E(O,Gh). If we take into consideration the way 
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E propagates singularities we can conclude that singularities in h on r are 

propagated to the right, possibly with reflexion at r+ or r. 
For h = 0, Ez(f,O) = E(f,-GAzf). 

Then WF(A2f) c {(p- 1 (y),~) I (y,~) E WF(f)} u {(q- 1 (y),~) I (y,~) E WF(f)}. 

Therefore WF(GA2f) c {((pq-1 )n(y),0 In E 7l, n ~ O, (y,~) E WF(f)}. So if 

f has a singularity in (y0 ,~ 0 ), GA2f can have a singularity in (y0 ,~ 0 ), 

too, and E might propagate these singularities to the left. However, we 

will show that they cancel along a strip through (y0 ,0,A~0 ,0), A > O, for 

x <Yo· 

PROPOSITION 4.4.19. Leth= 0 and <Yo·~o) E WF(f). 

Assume ((qp- 1 )n(I0),~0 ) t WF(f) fo!' evePy n ~I. 

Then {(y0 -i(-t)2. ,t,~,-(-t)i~) It< o.~~0 > O} n WF(E2(f,O)) = ~. 

PROOF. E2(f,0) E(f,-GA2f) and G =Fil +:r:=I (-F 11 A12 )~ll" We have 

((qp-I )n(y0),~0 ) t WF(f) for n ~ I, so it is sufficient to consider 

E(f,-F 11 A2£). 
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As in Proposition 4.4.5, A2 ::: A21 +A22 modulo a smoothing operator with 
3 

(A21 f)(x) = JJ dydt;ei(x-y+fq)i(x))I; a 21 (x,Ox1 (p(x) ,y)f(y) 

for f e: c~. 

A21 is again a properly supported elliptic FIO and 

iAi'(O)w(l;)[eni/3H(l;)a+(-cp(x),1;) + 

- e -ni/3H(-l;)a _ (-cp(x) .o] . 
l 

A22 is connected with the phase function (x-y-tcp2(x))I;. 

This implies that we can restrict ourselves to the analysis of E(f,-F 11 A21 f). 

A simple calculation gives: 

(4.4.20) 

Define 

with X smooth, zero for It;! < I and one for Ii;! > 2. 

Compare this to formula (4.3.2)! 

We claim that A21 f-A 11 f* is smooth for f e: E'. 

A substitution of z = p(x) turns A11 and A21 into 'l'DOs. 

f_ = 1,2, f E S. 

Here 

(4.4.21) 

See section 2.9, formula (2.9.2). 
00 * For f e: c0 we have f e: S and 

* -1 J izl; A (A21 f-A 11 f )(p (z)) = dl;e o(z,l;)f(i;), 

_ Ai' (0) -ni/3 f 
with o(z,1;) - o2(z,1;) - o1 (z,1;) Ai(O) e X(O (-0 . Formulas (4.4.20) and 

(4.4.21) show that a is a rapidly decreasing symbol. So indeed A21 f-A 11 f* 

is smooth for f e: E'. Since we can restrict ourselves to f e: E', we get 

(modulo C00
). 

The analysis in section 4.3 now shows that modulo a smoothing operator, 
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E(f,-f*) is given by formula (4.3.4): 
3 

2 -
E(f,-f*) ::= -Ai'(0)/3Jf dyd~ei(x-y-3(-t)Z)~ a(t,E;)f(y). 

This implies the proposition. D 

REMARK 4.4.22. So we did not solve problem (4.4.1) exactly. But we reduced 

it to a similar problem with f = 0 and h E E0• Presumably this problem is 

easier to handle, for instance in a numerical way. Alternatively, one 

might try to invert I+ T2 . T2 has a smooth kernel so possibly it is com­

pact. Note that in order to keep T1 and T2 small (in some sense), R1 , R2 , 

A13 and A14 should be kept small. A14 can be dealt with by choosing an ap­

propriate function w (cf. section 2.8, example 3). The property of A1 
represented by Lemma 4.2.17 shows that for another choice of x, x1 and x2 

the second term in the definition of A13 vanishes and the first term can 

be added to A11 • Then we only have to deal with R1, R2 • Unfortunately no 

further information is available about the possibility of choosing a para­

metrix F so that FA11 -I is arbitrarily small (in some other sense than 

compactness). Therefore we leave it to this. 

4.5. A mixed elliptic-hyperbolic problem. 

In this section we consider a simple mixed elliptic-hyperbolic 

boundary value problem. 

For T ~ 00 let QT be the region given by 

QT={(x,t) I (x < 0 and 0 < t < T) or (x?: O and-(3;)t < t < T)}. 

Define f and f+ as in section 4.3. Further 

r := {(x,t) Ix< 0 and t = O}, 

rT := {(x,t) It T}. 

As before, f and r+ can be identified withlR+, r withlR- and rT with R. 

Note that bnd Q = cl(f_ u r u fT). 

For T < 00 we consider the problem 

(4. 5. I) j:~r- =~-,in QT' 

ulr = h, 

ulrT = k. We will assume CEE'(r_),hEE 1 (r) and kEE'(rT). 
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Let 0.- be the open part of 0.T bounded by f+ and f (the hyperbolic part). 

Let 0.; be the open part of 0.T bounded by f_, f+ and fT (the elliptic part). 

r, 

r. 
1:_ 

r 

Fig. l 8 : 0.T . 

Without the boundary condition on t = T (that is: T = 00 ) but with the con­

dition u is bounded for ICx,t)I + 00 , t 2 0, a solution for this problem is 

wellknown in the case f and h continuous and integrable (see for instance 

Von Wolfersdorf [28]). The solution is then obtained as follows. Determine 
+ - + + f on r+ and solutions u and u in 0. and 0.00 so that u_jr = f , u-lr = h, 

- + -d + I + + 
u+ I r_ u r + = f + f and at (u+ - u_) r + = o. Then f can be found by solving 
an integral equation on a halfspace. However, this method doesnot make it 

clear that one obtains a solution in 0. and not only in 0.- u 0.:. 

We will choose a similar approach and allow distributional data which are 

nice at (0,0). Actually we do not arrive at an integral equation for the 

determination of f+ but rather on (one of) the proof (s) of solvability of 

such an equation. 

From now on we take T = I and omit the subscript T. For other values 

the problem can be treated in the same way. 

The problem in 0.- we discussed in section 4.3. Here we discuss the problem 

in i"t. From equation (4.2.3) it is clear that a formal solution for the 

problem 

r 0 in 0.+ 
' 

(4.5.2) uj t=O f, 

uit=I k 

is given by 
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with 

-Bi(O))( ~). 
Ai(O) k 

Then, again formally, the derivative g of this expression with respect to t 

at t = 0 is given by 

(4.5.3) 

with 

x 

Ai(O)Bi( Jt;J3) - Bi(O)Ai( Jt;J'!) 
2 2 

(Ai'(O)Bi(J!;J:) - Bi'(O)Ai(Jt;J3)) 

1T 

(
Ai I ( 0) J i; J t ) 

= Ai(O) + 

0 -1 ~ 
2 c A. ( 0) Ai ( J i; I 3 )) Jt;J3 1T 1 

+ Ai(O)Bi(J!;J!)-Bi(O)Ai(Jl;j!) ~ • 

LEMMA 4.5.4. c3 and c4 are real analytic. For I; real we have 

c (I;) = Ai' ( 0) Ji; J f + e -t Ji; J 0 ( i;) 
3 Ai(O) I ' 

c4(1;) = e-fJt;Jo2(1;), 

For the definition of y1 and y2, see section A.2. 

So these expressions are analytic and c3 and c4 are real analytic in I; = 0. 

For z > 0: 
l • /6 3 

Ai(O)Bi(z) - Bi(O)Ai(z) = 2Ai(O)(; )'2e-ni Jt(tiz!). 

See formula A.2.6. Now Jt(w) has only real zeros, so c3 and c4 are real 
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analytic everywhere. 
2 I 

Now Ai([s[;) = exp(-%[s[)ai 1(1,s), ai 1 ( l, I;) a symbol in S ~:o for s large, 

and Bi([s[3) = exp(%[s[)b(s), b(s) 

See section A.5. 

an elliptic symbol in s~:o for s large. 

The ellipticity of b then shows that 

5 z I I l[slt e3 s c (S) = ______ n _______ _ 
4 Ai(O)b(s)-Bi(O)ai(l,s)e-!lsl 

E sY,o for large s, 

e1lsl(c3(s) -~\'c~o/ [sit) 
2 

1 [s[3ai(I,s) 

- nAi(O) Ai(O)b(s)-Bi(O)ai(I,Oe-!lsl E 

2 

s3 for large s. 1,0 D 

Lemma 4.5.4 shows that the multiplications in equation (4.5.3) are 

welldefined if f and k belong to S'(JR). Further g satisfies condition 

(4.2.ll) for such f and k. From Proposition 4.2.13 it then follows that 

with g given by equation (4.5.3) E1(f,g) is a solution for problem (4.5.2). 

We continue by determining f+ E M n s', a > t. so that for f = f+ + f-a 
the distributions g+, defined by equation (4.5.3), and g-, defined by 

equations (4.3.2) and (4.3.10), are equal on r+. 

The solutions E(f+,g-) in 0.- and E1 (f,g+) in 0.+ then satisfy the same 

boundary conditions on r+. Remark 4.2.15 says that E1(f,g+) = E(f,g+) for 

t < 0. The properties of Ut and Vt show that E(f,g+) = E(f+,g+) = E(f+,g-) 
. rr l(f +) . . T in". Now E ,g is a solution of u = O fort~ J. Therefore we get 

PROPOSITION 4.5.5. The construction explained above provides a solution for 
+ -problem (4.5.I) in 0. and not only in 0. u 0.. D 

We proceed to determine f + The equation for f + is 

(4.5.6) [ -+ -- -Jv I Ai'(O) -2 + 
c/ + c3f + c4k = - f(-t) Ai(O) x/ * f + Qh on r+. 

Here Q is defined by equation (4.3.10). 

First we will show how a possible candidate for f+ can be obtained by means 

of a derivation in which some steps may be hard to justify. Afterwards we 

will show that this candidate is indeed a solution. 

Rewrite equation (4.5.6) as follows: 

(4.5.7) Ff+='¥ on f+ 



with 
+ ,_ [ ~+]v I Ai'(O) -~ 

Ff .- c3f + f(-t) Ai(O) x+ 
+ 

* f ' 

I -1 [ -Tii/3 . £]V Recall that --2- x 3 e (-t;;+iO) 3 • 
f(-'3') + 

For s f 0 we have 

Cc) Ai'(O) -ni/3(-C+'O)f = Ai'(O)(lclt + -ni/3(-C+'O)t) + 
c3 " + Ai(O) e " 1 Ai(O) " e " 1 

+ e -! I s I a I ( s) . 

Let us omit the last term for the moment (then we neglect a smoothing 

operator!). We have 

2 '/3 2 
lsl 3 + e-Til. (-t;;+i0)3 

3 -ni/3 £ I 
2e (-t;;+iO) 3 (I + i/3 sign 0. 

With u := [te-Tii/3(-t;;+iO)t]v * f+ we arrive at the integral equation 
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Ai ( 0) I I f ixt;; . ~ l (.l ) 
Ai'(O)'l'=u+i/3ZTI e sign(E;;)udt;;=u+n/3x*u,x>O. 

- + -
Note that supp(u) c :JR.+# supp(f) cJR+. 

Similar integral equations are encountered in the work of other authors 

discussing problem (4.5.1). For'¥, u in L2[0,00 ] a solution is given by 
1 

u = 1_ Ai ( 0) ['!' _ I x -t f ~ d ] 
4 Ai'(O) n/3 + 0 x-y y 

See Hochstadt [14], page 190. 

However, we do not think this formula to be suitable as a basis for a 

generalization to our situation. But the method of constructing this 

solution suggests how to get another solution formula. For we also have 

lslt + e-nil\-t;;+io)t = e-ni/3(-t;;+io)t(I + e-ni/3H(t;;) + eni/3H(-'s)) 

. / 3 l l 
= /3' e-TIJ. (-t;;+io)2(t;;+io)6. 

With v := [13e-ni/3 (-t;;+iO)tr * f+ we get the equation 

~i\\0d) '¥ = [ (t;;+io)i]v * v for x > o. 

Because supp [<s+io)t]vc:JR- then it follows that we must have 

v = Ai(O) [<s+iO)-i]v * '¥ for x > o. 
Ai'(O) 
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Therefore a possible solution is 

+ e ni/ 3 Ai(O) [ . _1]v (I. 1 ]v ) f := /3 Ai, (Cl) c-s+io) 2 * H(x) l(s+io)-6 * '!' • 

After this introduction we return to equation (4.5.7). 
2 • /3 2 

Note that we factorized lsl3 + e-ni (-s+io)3 in two factors being ana-

lytically continuable for Im s < 0 or Im s > 0 so that they are Fourier 

transforms of distributions with support inJR+ and JR- respectively. We 
·11 f . (C) Ai'(O) -ni/3( c ·o)f . . ·1 wi actorize c 3 c, + Ai(O) e -c,+i in a simi ar way. 

This is a continuous function which behaves for lsl + 0 like 
Ai'(O) -ni/3 . .f. 

- I+ Ai(O) e (-s+i0) 3 because c 3 (o) = -l and for lsl -+ 00 like 

~ii'C~o/ (lslt + e-ni/3(-s+io)t) = 

= /3 ~ii'C~0/lsl~(H(S)eni/ 6 +HC-Oe-ni/ 6). 

Cc) Ai' (O) -ni/3 (-"' ·o)t 
c3 " + Ai(O) e c,+i LEMMA 4.5.8. 

_ I Ai' (0) -ni/3 (-"' . O)°! 
+ Ai(O) e c,+i 

is in c 1 (lR). 

-I Ai'(O) -ni/3(-"' ·o)f =-1 Ai'(O) ±ni/31"'1t + Ai(O) e c,+i + Ai(O) e " for s ~ O. 

Ai'(O) 
Ai(O) < 0 so the real part is~ -1. It is therefore clear that the expres-

sion is smooth for s I 0 and continuous for all s. Now c 3 (s) is real ana­

lytic so c 3 (s) = -l+sr(s), r smooth, for s small. But then the expression 
is equal to 

I+ sr(s) 
_ 1 + Ai'(O) -ni/3(-"' ·o)t 

Ai(O) e c,+i 

For s I 0 this is differentiable and the derivative has a continuous 

extension for s = 0. D 

Note that the quotient behaves like /3 e+ni/ 6 for s + ±00 • 

We define the function s(s) by 

( "') + Ai' (O) -ni/3(-"' ·o)f c3 c, Ai(O) e c,+i (4.5.9) s(S) := 
/3(s+i)f(-s+i)-t(-I + Ai'(O) e-ni/3(-s+io)i°). 

Ai(O) 

Then s is c1 and s ~ I for Is I + 00 • 
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PROOF. I - s(t;) = 

- I+ Afi'(~O/ e±iri/3lt;li (1 - e+iri/6 

-l+Ai 1(0) ±iri/31i:ll 
Ai(O) e "' 

1 

(-t;+i)6) 
I 

(t;+i) 6 
+ a rapidly de­

creasing function. 

Now ! 
I +iri/6 (-t;+i)6 _ I +iri/6 
-e (t;+i)t - -e 

Using this the result follows. 

. ! 
(+I ±t)6 

(±1 ±t)'G' 

• l 

(I -t)6 
I - . 1 

(I +t)6 

It is clear that Jarg s(t;)J < 11. s(t;) + 0 and s bounded. With 

D 

Lennna 4.5.10, £ < ls(t;)J < M for some 0 < £ < M. So with log z the princi­

pal branch of the logarithm, log s(t;) is welldefined. 

LEMMA 4.5.11. s E s~ 00(m.\o), that is: s satisfies s~. 0-estimates for 

Jt;J ~ o > O, o arbitrary. 

PROOF. (-t;+i)t[c {t;) + Ai'(O) e-iri/3 (-t;+io)t] belongs to s-1~.o for 
3 Ai(O) 

t; large. 

(t;+i)i[-1 + ~ii'(~0? e-ni/3 (-E;+io)t] belongs to sf.o for t; large 

0 and is elliptic fort;+ O. Sos E s 1, 0 fort; large. 

COROLLARY 4.5.12. 

I. log s(t;) E c 1(m.) n L2(m.) and d~ log s(t;) is bounded. 

2. log s(t;) satisfies s~, 0-estimates for Jt;I ~ o > o. 

D 

PROOF. J. log s(t;) E c1(lR.) is evident. For Jt;J + 00 : log s(t;) = 
log(J-(1-s(t;))) ~ -(1-s(t;)). So Lennna 4.5.IOshows that log s(t;) E L2(lR.). 
d _ SI (t;) . 

dt; log s(t;) - s(!;), which is clearly bounded. 

-I 0 
2. d s' (t;) E s 1 ,O' s(t;) E s 1 ,O and s is elliptic for large t;. 

So dt; log s(t;) E s~!o· Since log s(t;) is bounded, the result follows. D 

PROPOSITION 4.5.13. 3 funation u(z) analytia for Im z + 0 and bounded for 

Jim zJ ~ o, o > 0 arbitrary, so that u~z) has the same properties as u(z) 

and 

3 bounded aontinuous funations s+(t;) and s-(t;) so that -1+ and~ are 
+ s s 

bounded and aontinuous also and with u-(t;) := u(E;±i£): 
s+(t;) £ 

I. s(E;) = s-(t;) • 
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2. sup lu;(O- s\OI -+ 0 for E + o. 

3. sup lu~(O - s-(s) I -+ 0 for E + o. 

4. sup lu~~O - s+~o I -+ O for E + o. 

5. sup lu~~s) - s-~o I -+ 0 for E + 0. 

PROOF. Define 

u(s+iE) := exp [--21. ~ * log s<o], E f O, 1Tl. c_,+l.E 

s+(s) := exp[! log s(O - 2;i vpt * log s(s) ]. 

s-(0 := exp[-! log s(O - 2;i vpt * log s(s) ]. 

Corollary 4.5.12 shows that log s(O E c1 n L2 and d~ log s(O is bounded. 
I So Lemma A.6.4 shows that ~+iE *log s(s) is analytic in z = s+iE for E f 0 

and bounded for !El 2: o. Further Lemma A.6.1 shows that vpt *log s(O is 
bounded and continuous. Then it is clear that u(s+iE) and u(s~iE) are ana­
lytic in s+iE for E f 0 and bounded for I EI 2: 0. Also s+' s-, ....L+ and I 

S S-

are bounded and continuous. That s(s) = s+(s)/s-(s) is evident. 
The boundedness of s+, s-, ~ and ~ together with Lelllllla A.6.5 then s s 
shows that the other statements are true. See also Conway [5], page 162, 
Lell!llla 5.7. D 

REMARK 4.5.14. This Proposition and its proof are a modification of 
Theorems 7 and 8 in Hochstadt [14], page 191 and 192. The main difference 
is that we took care of uniform convergence. 

Let us call c3(s) + A;i·(~; e-Tii/ 3(-s+iO)t =: q(O. 
We are ready now to factorize q(s). 

Define 
1 

:= 13Cs+i)6s+Cs), 

(-t"+" )-t (_I+ Ai I (O) -Tii/3(_1:" 'O)t)_I_ := s 1 \ Ai(O) e s+i s-(t;) .. 

Further 
1 

:= /3(z+i)Gu(z) for Im z > 0, 
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PROPOSITION 4.5.15. 

I. q+(i;), q-(i;), q+~i;) and q-(i;) are continuous functions which belong 

to S'(lR.i;), so that q(i;) = q-(i;)q+(i;). 

I I 
2. q+(z) and q+(z) are analytic for Im z > O, q-(z) and q-(z) for 

Im z < 0. 

3. If q~(!;:) := q±(!;:±is), s > o, then q~(i;) and q±~i;) belong to OM(lRi;:) 

V s > 0 and q~(i;:) + q±(i;:), q~~O -+ q±~i;) ins S' (s + O). 

4. q±(i;:) and q±~i;:) are Fourier transfoms of distributions in S' with 

support contained inlR~. 

PROOF. The first and second part follow easily from Proposition 4.5.13 and 

formula (4.5.9). 
+ I 

Clearly q~(i;) and q±(i;) are smooth for £ > O. In order to show that they 

belong to OM' it is £sufficient to show that u± and __!,.. (see Proposition 
£ u-

4. 5. I 3) do. These functions are bounded. Furthermore£ 

dd:n [?:}~c * log s(i;)] = (-1 )nn! 1 
1 * log s(O is bounded • 

.., .., L"- (!;:+is)n+ 
+ I Then the derivatives of the functions uE and u- are bounded, too. So 

they belong to OM. The convergence in S' is cle~r, for if we divide any of 

the functions q~(i;:) and q±~s) by I/ (I + !;: 2 ), they are bounded uniformly 

for Is\ ~ I by an integrabEj_e function. Here we use the uniform convergence 

mentioned in Remark 4.5.14. Finally let~ E C~(lR.) have support contained 

in JR+. 
<(q+)v,~ = <q+,~> = lim <q+ ~ = lim J q+(i;:+is)~(i;:)di;:. 

s+O s' s+O 

Now (I - (Cl 2 /ax2) )~ has support in JR'F as well so (I + s2);f{O is an ana­

lytic function which is bounded for Im s ~ O. So with contour integration: 

Then it follows that <(q+)v,~> = O. So (q+)V has support contained inlR-. 

The supports of the other distributions can be determined in a similar way. 

REMARK 4.5.16. Of course, the statement about the supports can be 

generalized to distributions having analytic continuations that give 

continuous approximations ins'. 

For future use we state one more lemma. 

D 
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+ LEMMA 4. 5. I 7. q , q , q+ and q- can be written as the swn of a continuous 
function with compact support and an elliptic symbol in Sm for some 4p,O 
m, 0 < p < ! . 

PROOF. Fors large, Lemma 4.5.11 shows that s satisfies S~ 0-estimates. 
+! ' Because tt~-+oo s(s) =I, the same holds for js(s)j- 2 (see section 2.8, 

paragraph (2.8.3)). According to Corollary 4.5.12, so does log s(s). 

Let ~ be a C~-function, equal to I in a neighbourhood of 0. Then 
I 0 . -1 vp~ * ~(s) log s(s) is the sum of a c0-function and a symbol m s1 ,O (see 

Lemma A.6.2). Lemma A.6.6 and Corollary 4.5.12 show that 

~ [vpj_ * (!-~)log s<o] = vpt 
d 

ds s * ds (!-~)logs. 

Here d 
ds(l-~)logs E 

-I 
sp,O' 0 < p :;; I, so according to Lemma A.6.3: 

~ [vpl * (!-~)log s(s)] 
m -! +~' 0 < p :;; !. 

ds s E S ~ p, 0 for m > 

But then vpt * (!-~)logs E s!p,O if 0 < p < ! because vpt * (I-~) logs 
is a bounded function (see Lemma A.6.1). 

We conclude that vpt * log s = v 1 +a with v 1 E C~, a E s!p,O' 0 < P < !. 
The e±(l/ 2rri)a E s0 as well and e±(I/ 2rri)v1 = l for large t', n !P,0 s 
The rest of the proof is now straightforward. D 

We now return again to equation (4.5.7). 

Purely formally we deduce: 

So 

[q-(s)f+(s)lv [q+~s)Jv * ~ for x > o, 

[q-(s)f+(s)]v H(x)([;+]v * ~) 

and we get 

The main problem we encounter when we try to show that this formal solution 
indeed solves equation (4.5.7) is that convolution between arbitrary dis­
tributions is not necessarily welldefined. If it is, it is not necessarily 
associative. Therefore we will only give a partial solution for problem 

(4.5.1). That is, we give a solution u that satisfies ujf = h only for 



x < R. Here R > 0 can be chosen arbitrarily large. 

Let \)JR, R > be a c~-function so that 

I 1-<x<R 
\jJR (x) = { for R I 

0 x < 2R, x > R+I 

~ ~ v 
Define ljlR := \jJRQh-[c3C + c4k] . 

We will consider the equation 

(4.5.18) Ff+ = ljl R on f +, f+ E M n S' a, 

We claim that a solution is given by 

(4.5.19) 

for some et > t . 

LEMMA 4.5.20. H(x)([d+]v * ljlR) is a welldefined element of S 1 (1R). Its 

singularities for x > O are those of \jJRQh. 
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PROOF. [~]v ES' and ljlR E 0~ because of Lemma 4.5.4. So the convolution is 

welldefined. From Lemma 4.5.17 we know that~ is the sum of a continuous 

function with compact support and an ellipticq symbol. Then [d+]v * \jJRQh is 

an elliptic ljlDO modulo a smoothing operator. Lemma 4.5.4 shows that 

[~r * (c4k)v is smooth and that id+ r * [c3rJv is an elliptic ljlDO modulo a 

smoothing operator. Therefore [~] * ljlR is smooth in a neighbourhood of 

x = O, for f- and Qh are. Multiplication with H(x) is then welldefined and 

the singularities of H(x)([~+]v * ljlR) are those of \jJRQh. D 

LEMMA 4.5.21. f+ defined by foY'flTUla (4.5.19) is a welldefined element of 

S '(lR) • f+ E M for a < I • a, 
The singularities of f+ for x > 0 are those of \jJRQh. 

PROOF. f+, being the convolution of two distributions with support in:iifF, 

is welldefined and supp(f+) c :iifF. 

Lemma A. 7. 3 gives f+ E S '(lR). 

In order to show that f+ E M for et < 1 it is sufficient to analyze 

[ql_Jv * a H(x)~(x) with ~ c C00 

0· 1 I .A. 
Because l~tkPI is bounded, l~J 2 --::-~ is bounded as well. So [ ~-r a,* H~ E Ha,(lR) for et < I. T\en it easily follows f+ E Ma,' et < I, because 

u E H => \)Ju E Ha, if ~J E c~. 

For the determination of the singularities of f+ we can assume 

H(x)([~]v * ljlR) E E'. But then the proof is similar to the proof 
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in Lemma 4.5.20. D 

LEMMA 4.5.22. H(x)([-bY * IJ'R) is a weUdefined element of o~. Its 
qE 

singularities for x > 0 are those of ~RQh. 

H(x)(U~Jv * IJ'R) + H(x)([~] * IJ'R) ins' for E + o. 

PROOF. I is qr an elliptic symbol. This can be proved by methods similar to 
the ones used in the proof of Lemma 4.5.17. As in Lennna 4.5.20, [_!_JV * ljl qt R 
is smooth in x = 0 and its singularities for x > 0 are those of ~RQh. It 
is clearly an element of 0~. Choose cS > 0 so that f and Qh are smooth for 
Jxl < 0 and X E C~ SO that 

{
I 

x(x) = 
0 

for 
Jxl < ~o 

Ix I ;:,, io 

Then ~E := X([~]v * IJ'R) and ~O := x<[d+Jv * IJ'R) are smooth. 
H(x)~E(x) E E' ~ o~ and that H(x)(J-x)<[<f-r]v * IJ'R) E o~ is clear. Finally 
[ I ]v [ I ]v . , O, [ I ]v E [ I ]v . , + ->- -::-:i:- in S , IJ'R E c so '::+ * IJ'R + '::+ * IJ'R in S • Then 

qE q [ I ]v qE q [ I ]v H~E-+ H% in S' and H(l-x)( q~ * IJ'R) -+ H(I-x)( qt" * IJ'R) in S'. D 

Finally we have 

PROPOSITION 4.5.23. Let f+ be given by equation (4.5.19). Then f+ is a 
solution for equation (4.5.18). 

PROOF. Lennna 4.5.21 shows that f+ E M n s' for a< I. So we must verify a 
that Ff+ = IJ'R on f +· 

I. [ ~+ r (I) v * ([ qi_Jv * H(x)([~]v * IJ'R)) c3f = c3 

(2) 
v * ([d-]v * H(x)(~to [cf;]v * IJ'R)) c3 

(3) 
lim (~ 3 * ([d-r * H(x)([cf;]v * IJ'R))) E+O 

(4) 
H~((~3 * [d-]v) * H(x)([cf;]v * IJ'R)). 

(I): ~ 3 E 0~. 
(2): Proposition 4.5.15. 

(3): Lemma 4.5.22, continuity of convolution between two distributions with 
support inJR+ and separate continuity of convolution between a dis­
tribution in o~ and a distribution ins'. 
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(4): Lemma 4.5.22, associativity of convolution of distributions if all but 

one are elements of o~. 

2. [Ai'(O) -ni/3 (-t"+"O)t]v * f+ = 
Ai(O) e s i 

([Ai' (0) -ni/3 l J ]v ([ J ]v )) 
~to Ai(O) e (-f,+iE)3 q- * H(x) ~ * IJ'R • 

3. H(x)([~r * IJ'R) = [~r * IJ'R - H(-x)([~r * IJ'R). 

and both terms on the right are elements of o~. 

v * [J_]v + [Ai'(O) -'ffi/3(-t"+· )t J_]v 
c3 q- LAi(O) e s iE q-

= [ q+ r + ~i'(~O/ e -ni/3[((-f,+iE) t - (-f,+iO) t) d-r' 
because we are dealing with elements of S 1 which have Fourier transforms 

that are continuous functions. 

The second term on the right converges to 0 ins' and has support inlif"F:. 

is zero for x > 0 because both distributions have support inlR-. 

Finally: 

and 

so 
[q+r * [~r = [q+~r. q+~+ 

([q+]v * [~Jv) * IJ'R + IJ'R ins'. 

So indeed Ff+= IJ'R on r+. 

ins' 

THEOREM 4.5.24. Let f+ be given by equation (4.5.19), 

? A v 
g := [c3r + c 4k] . 

D 

Then E1(f,g) is a solution for problem (4.5.I) except for the fact that 

E1(f,g)lr = h only for x <~·This solution depends continuously on f-, h 
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and kin the sense tlzat iJF k.->- O in E', f:->- 0 in E'(r ), h.->- 0 in E'(f) J J - J 
and for some E > 0 supp(f:) c (- 00 ,-E] and supp(h.) c [E, 00), then 

J J 
E1(f.,g.)->- 0 in V'(Sl). 

J J 

PROOF. That E1(f,g) is such a solution follows from Proposition 4.5.5, 
Proposition 4.5.23 and 

See section 4.3. 

E(f+,g)lr = S(ljJRQh) 

h + S( (1/JR - l )Qh). 

R Now S((l/JR- l)Qh) = 0 for x < z· 

SQh + S((~JR - I )Qh) 

Under the conditions of the Theorem, 

and the ~R,j are smooth for lxl < E. 

(4.5.19), f:->- 0 in S'. Further: 

~R,j := ljJRQhj - (cij + c4kj ]v->- 0 in 0~ 
But then for f: defined by formula 

J 

J 

g. 
J 

A A+ ~ 

c3(£7+f.)+c4k., 
J J J 

so for X as in section 4.2, formula (4.2.11): 

See Lemma 4.5.4. 

Now 

x<~J1TAi(~)[ e-tlE;la1 (E;)R + a2cok.] _,_ o ins·. 
li;;l 1 J 

Therefore f"!°+f: and gJ· satisfy the condition in Proposition 4.2.13, part 2. J J 
Then Proposition 4.2.13 part 5 shows the continuity. D 

Choose R0 so large that WF(lj!R.0Qh) = WF(Qh). This is possible as can be 
derived from Remark 4.3.12. Then the singularities off+ for x > 0 are 
those of Qh. See Lemma 4.5.21. Since Theorem 4.5.24 gives a solution in Sl 
this implies that: his singular in (x,E;) ** E1(f,g) is singular along the 
strip through (2x,O,E;,O). See again Remark 4.3.12. 

'f + + . f 0 Moreover, i we choose R1 > R0 then fRJ - fRo is smooth or x > so 
the solutions obtained differ by a smooth function in Sl. 

Finally note that (I - lj!R0)Qh is smooth. So is S( ( 1 - if!R.0)Qh). This is 
the error made on r. Let us show that this error can be made arbitrarily 
small in the supremum norm. 
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PROPOSITION 4.5.25. Leth E E'(r), supp(h) c [£,M-1], £ > o, M < 00 • Choose 
1 £ 

Ro so t1uit Ro > 2M, Ro < 2· Then for> R > Ro: 

I) S(( 1 -1/JR)Qh) is smooth on r. 

2) sup IS(( I -1/JR)Qh) I + 0 for> R + 00 • 

XEf 

PROOF. The first part was made clear above. As to the second part, note 

that h can be written as 

m < oo, mk < 00 , fk continuous, 

supp fk c [f,Ml, k = I, ... ,m. 
1 11 

Since Qh = const • x'6(x -6 * h(X2)) it therefore suffices to show that + + 

for R + 00 , a. s -f, f continuous, 

supp(f) c [£,2M]. 

The next inequalities can easily be derived. For x ~ R 

Ix~* f\ l 12[ f(yXx-y)a.dyl s C(x-2M)a. s C(R-2M)a.(f)B 

for all B ~ a.. Here C only depends on f, not on R. So formula (4.3.9) shows 

that for x < ~: 

and for x ~ ~: 
a. 

1 a. 12x (1-ijlRXs)(x+*f)(s) I 
\s((l -1/JR)x!<x+ * f))i = const J ds 

0 (2x-s)'S" 
a. 2x 8 a. 1 

s const • (R-2MJ J s ds = C (R-2M) (2x)B-6+l 
RB 0 (2x-s)'S" RB 

provided B > -1. Here we used x~ * x1 = x~+q+I. Choose -1 < B <-f. 
Note that a. s -if so this is allowed. Then 

sup \s((l -ijlR)x!(x~ * f))i s C· (R-2M)a. RB+t =C(R-2M)~t + O 
XEf RB 

for R + 00 because a.+ t < O. 0 





CHAPTER 5 

THE PSEUDO TRICOMI OPERATOR 

5.1. Introduction. 

In this chapter we discuss the PDO Pa given by 

p 
a 

Here a E 4 is a constant. 

n 32 Cl 
:L --2- + aat. 

k=l Clxk 
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We call this operator the Pseudo Tricomi operator for its resemblance to 

the Tricomi operator T (at least at first sight). Pa is elliptic for t > 0 

and hyperbolic fort< 0 as T is. However the set {(x,t) It= O} is 

characteristic. This has as consequence that Pa is not of real principal 
. n+ I S . 5 2 f ' f 1 ' f P f type in R . ee section • • There ore existence o so utions o au = 

and smoothness properties near t = 0 are open questions. 

The operator Pa for n = appeared in a paper by I.L. Karol ([17]). 

In this paper boundary value problems for Pau 0 were investigated in a 

bounded region with boundary consisting for t < 0 of parts of bicharacter­

istic curves (cf. section 5.8, fig. 21). The number of boundary values 

which can be prescribed on these curves proves to be dependent on a. We will 

hardly discuss boundary value problems for Pa but we come back to this 

dependence on a in section 5.8. 

We will construct a fundamental solution for Pa, which has smoothness 

properties that can easily be seen to be dependent on a. 

For every x the set {(x,0,0,T)IT ~ O} describes a bicharacteristic 

strip of Pa. See section 5.2. Such a strip has the direction of the cone 

axis through (x,0,0,±1) (see section 2.12). These strips are responsible 

for the difficulties that appear because Pa is not of real principal type. 
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V. Guillemin and D. Schaeffer ([13]) discussed a class of PDOs p 
(Cl.' t3) 

having strips which are equal to a cone axis. In this class Pa appears for 
B = O. They discussed the qualitative properties of u such that PCl.u E C00 in 
the neighbourhood of such a strip. However they only considered the values 
of (a,S) so that P(a,S) has only one strip equal to a cone axis. So Pa was 
not included in their discussion. 

It turns out that the fact that Pa is independent of x causes serious 
problems in describing the singularities of solutions of Pu f for t = O. 
On the other hand, this fact enables us to give solutions for arbitrary 
f E E'. 

5.2. The bicharacteristic relation. 

Let us first determine the bicharacteristic strips of Pa. For all a 
the principal symbol of Pa is given by 

2 12 -tT - Is , 

so the Hamilton-Jacobi equations for these strips become 

dx· ds· 
(5.2.1) _J = -2c- _J = 0 J0 =l • n ds c, j ' ds ' ' · • ' ' 

dt 
ds = -2tT, 

dT 2 
ds = T 

under the condition (-tT2 - Jsl 2)(s) = O. 

Note that the system (5.2.1) is degenerate for s = 0, t = O, T f 0. 
This already indicates that we can expect trouble at t = O. The strip that 
starts for s = 0 in (x0 ,t0 ,s0 ,T0), t0T~+ ls0 12 = O, can be obtained as fol­
lows. 

Because T = 0, tT 2 + lsl 2 =0 implies s=O we have T(s) f 0 along each 
strip. In particular TO f 0. 

Then dT/ds = T2 gives T(s) = To/(! - STO)' sTO < l. 

Because s(s) = s 0 one easily gets that the strip is given by 

(5.2.2) 

For s 0 = 0 this gives the halfray with direction (O,T0) above (x0 ,0). So 
we have 

PROPOSITION 5.2.3. Let rl be an open set in JRn+I. Then Pa is of r>eal pr>incipal 
type in rl if and only if rl doesnot contain points (x,t) with t = O. D 



By writing T = T0/(l-sT0 ) we 

(x0,t0,s0,T0) as 

2s0 2s 0 
( 5.2.4) {(x - - + -, 

0 TO T 

can also describe the strip through 

lsol 2 
---z-. s0 , T) I n 0 > oL 

T 

From this we can derive that the bicharacteristic relation C of Pa, Pa 
. n+I . . 

considered on the whole:R , is given by 
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2s 0 2s 0 ls0 12 2 
1 12_ 

{((x0 -T()+-T-, -~, s 0 , T),(x0 , t 0 , s 0 , T0 )) \ t 0T0 + s 0 - o, n 0 > o} 

2s 2s Is\ 2 Is 1 2 
= {((y- 0 +T, ---=r· s, T),(y, ---z, s, o)) \m > o}. 

T 0 

C is a C00-submanifold of T*(:Rn+I x:Rn+I). 

However, C is not closed in T*(Rn+l x:Rn+I) \ O. This is a consequence of the 

fact that a strip given by expression (5.2.4) converges to the strip 

{(x0 - 2s0 /T 0 , O, O, T) I TT 0 > O} in the sense that for TTO + 00 , To fixed, 

2 
( x _ 2s0 + 2so _ l.£0_) _ 2so O) 

o T0 T ' T" _,._ <xo T0 ' 

(\s0 \2 + T2)-!(s0 ,T) + (o, 1~~1) (i.e. normalized). 

P Opo 5 2 5 Th 1 ~ • *( n+ J n+ I ) \ · · b R SITION • • • e cvosure OJ C i.n T JR x :R 0 i.s gi.ven y 

Cl(C) = c u c1 u c2 with 

cl {((x,O,O,T),(y, -! \x-yj 2 ,O,O)) IT f O} 

c2 {((x,-! lx-y\ 2 ,O,O). (y,O,O,o)) I 0 f O}. 

C · d ( ) *< n+ I n+ I ) \ . ons1 er c .. N c C, c 0 ET :R xE. 0 with 
J JE 2 2 

_ 2s j 2s j I s j I I s j I 
C. - ((y. - --a+-T-, ---2-, I;., T.),(y.,--z, s., 0.)), O.T. > 0, 

J J j j T. J J J O· J J J J 
J J 

PROOF. 

c0 = CCx0 , t 0 , s0 • T 0 ),(y0 , s0 , n0 , o0 )), \ s0 \ 2 + T~ + \n0 \ 2 + o~ f o, 

cj + c 0 • 

If T0o0 > 0 then evidently c 0 E C. If TO = O, o0 = O then necessarily 

s 0 = O, n0 = 0, but this is not allowed. If 'o = O, o 0 f 0 then also neces­

sarily s 0 = n0 = O. So s 0 = 0 and 

2 s 2 
t =lim-fuL =-! lim IY· - ~+ 21:;,j - y., -!\x0-y0 \ 2 , 

0 T" J 0 · T. J 
j J J 

SO c 0 E C2 . 

In the same way, if TO f 0 and o 0 0 then c 0 E c1• 
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So Cl(C) c C u c1 u c2 . The other inclusion is obvious. D 

When dealing with an operator P of real principal type, on pseudoconvex 
sets ~ parametrices can be constructed with kernels having their wave front 
set in their bicharacteristic relation C (see section 2.12). Now wave front 
sets are closed while for Pa C is not. So we must expect that the sets c1 
and c2 will play a significant role in the construction of parametrices for 
Pa. They represent the difficulties when Pa is not of real principal type. 

(5.2.6) Taking account of formula (2.7.3) we might expect that c1 will be 
met in the process of constructing parametrices E such that EC~ c C00

• 

Paragraph (2.7.5) and the set c2 point to difficulties that arise, when Eu 
· r n+I is to be defined for all u E E (lR ) . 

Phase functions defining C can easily be given. From formula (5.2.4) 
it is clear that 

m(x t y s c T n) ·.= <x-y,c> + tT - s~ -~ + ~ "' ' ' ' ,c,' ,v c, v T CT 

is such a function. But from Lemma A.7.2 it is also clear that the fol­
lowing functions define C for t < O, s < O, T z O, CT ~ 0: 

l ! 
l!J±(x,y,t,s,8) := <x-y,8> + 2((-t) 2 - (-s) 2 ) 181. 

Finally we look at the bicharacteristic curves of Pa. Because these 
curves are the projections of the bicharacteristic strips to the (x,t)­
space, it follows from formula (5.2.2) that for t 0 < 0 a curve through 
(x0 ,t0) is given by 

2 1 12 
I {(x0 -2t;(l-s), -s t; ) s > O} 

with t; fixed such that -t0 = It; 1 2 . 

For a point (x,t) on such a curve we have 

so a curve lies on a (generalized) paraboloid with top (x0-2t;,O). These 
paraboloids are degenerate characteristic conoids of Pa. 

For n = I we have t; = l-t0 or t; = -l-t0 • 

The equations for the bicharacteristic curves then become 
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2M or -2r-t, t < o. 

Fig. 19: bicharacteristic curves of Pa for n =I. 

Note that (x 1 ,O) is the projection of a strip {(x.J ,O,O;r) IT > o}. So each 

parabola is the union of three bicharacteristic curves (if we call {(x 1,0)} 

a curve, too). 

REMARK 5.2.7. The set {(x,-!lx-yl 2) \ x E JRn} appearing in Proposition 5.2.5 

is a degenerate characteristic conoid with top in (y,O). 

5.3. Special solutions for the homogeneous equation. 

OnRn+I we examine the equation 

Pa u = (t ~ + ti + a-aa ) u = o. 
at x t 

Formal Fourier transformation with respect to x transforms this equation into 

(5.3.1) ~ ~ ·.--t-:::-za2 +N-a - \t;,\2. PNu = 0 with u = u(~,t), P u. 
"" s a at at 

I 
Further Fourier transformation with respect to t gives the equation 

(5.3.2) 0 with U = u(f;,,T), Pa:= -iT2 aaT - (2-a)iT - \t;,\ 2• 

For each of these equations we will give solutions defined on (open subsets 
n+I 

of) lR • These solutions will be used in the next sections. 

I. P~u O. 

For T ~ 0 a solution is given by 

c(E;,)Ta-2 exp (-i I~) 2), c arbitrary. 

Applying formally Fourier's inversion formula, we get a phase. function 

<x,E;,> + tT - \t;,\ 2/T, which is familiar to us. Note that if c(E;,) is con­

sidered to be the Fourier transform of some u E E'(lRn) then we get the 
x 
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formal solutions 

(S.3.3) 

Of course we should be careful about integration near T = 0 (as well). The 
function <.p = <x-y ,E;> + tT - J s j 2 /T is a welldefined phase function outside a 
conic neighbourhood of T = 0. 

However 

2t; lsl 2 
11. = {(y+-, -~, t;, ,,; y, -t;) I' f o}. ({) T T-

So <.p doesnot satisfy the conditions given in section 2.8, paragraph (2.8.6). 
Choose E; = O! So expression (S.3.3) doesnot define a FIO. Therefore even 
for smooth u this expression doesnot necessarily define a smooth function. 
It might be singular for t = 0. This fact is closely related to the ap­
pearance of the set c1 in Proposition (S.2.5). It represents the fact that 
t = 0 itself is a characteristic surface. 

II. Pau o. 

Keep s -F 0 fixed. 

If we try u = tsvt;(t) we obtain for s !(J-a) the following ordinary dif-
ferential equation for v := vt;: 

2 I 12 2 tv"+tv'-[E; t+HJ-a)]v=O. 

This is an equation which can be reduced to the Bessel equation (see section 
A.I). Fort f 0 solutions are given by: 

For I-a E ~ J 1_a(z) = (-1)!-aJa-J(z), so v(I) and v( 2) are not linear in­
dependent. Although for these values of a also two independent solutions 
can be given, we will assume a E ~ \2l in case we are in a situation in 
which we use the solutions of the differential equation given above. We 
make this restriction in order to avoid additional difficulties in com­
putation and notation. 

Then solutions of ~w = 0 for t f 0 are 

Note that in the definition of t!(J-a) and t! we do not have to use the 
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same logarithm. Using in each case a branch of the logarithm defined for 
1T 31T -2 < arg t < Z' we obtain a solution ka-l which is smooth in t (and t;) 

from u~2 )' given by: 

PROPOSITION 5.3.4. For each a E ~. k 1 can be continued analytically to 
; n+I a- I ~ and then ka-I is a solution of Paw = 0 on the entire lRn+ • 

PROOF. The analyticity of ka-l follows from the fact that ka_ 1(t;,t) 

ja_ 1 (2ilt;lt~), because ja_1(z) is analytic and even in z (see section A.I). 

With the branch of the logarithm as above, we have for real (t;,t), ltt;I 1 O, 

(2ilt;lt~)l-a = (2ilt;l) 1 -at~(l-a), so 
(5.3.5) 

ka-I (t;,t) = (2ilt;l) 1 -atHl-a)Ja-l(2ilt;lt~) = (2ilt;l) 1 -~~2 )(t;,t). 

So Pk a a-I 0 for ltt;I 1 O, but then Pk 1 = 0 on the entirelRn+I. a a- D 

Using u~I) we can define several solutions of Paw= 0 on the entire 

Rn+!. For 8 E ~ \<Z, we define s8 to be the subset of V'(lR) consisting of 

the four distributions t8,t8,(t+i0)8 and (t-iO)B. 
+ -

For a = as E SB let as+ I be the corresponding element in SB+ I . 

REMARK 5.3.6. The elements of SI-a are solutions of ~w = 0 for t; = O. So 

is w = I. Tensoring these distributions with o(t;=O) E V'(R~) or (Cl/at;j)o(t;=O) 
. 1 . ~ n+I d" gives so ut1ons of Paw= 0 onR • We have t·a8 = af3+l' the correspon 1ng 

element in SS+!" This is obvious for 8 > 0 and follows for arbitrary 

8 E ~ \ :Z by analytic continuation. 

PROPOSITION 5.3.7. Let u0 be a smooth solution of F;w = 0 on Rn+l. Let 
, n+l 

a= aa-I E Sa-I' considered as an element of V (lR ) by tensoring with nt;. 

Then au0 is a solution of P2_aw = O on lln+l. 

PROOF. Because u0 is smooth, au0 is welldefined. 

dUQ Cl 2u 0 
+ 2(a-l)a 2 ~t +a 1 ---....-. a- 0 a- at'" 

Because taa_3 = aa_2 and taa_2 = aa-I (Remark 5.3.6) it easily follows that 

P2_a(au0) = o. D 
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COROLLARY 5.3.8. For every a E s1_a: a·k 1 _a(~,t) is a solution of Paw= 0 
n+l on JR . 

PROOF. kl-a is smooth and satisfies J52_akl-a = 0. Note that 1-a = (2-a) - l. 
Because (2-a)-l = 1-a and 2-(2-a) =a, Proposition 5.3.7 gives the 
desired result. D 

REMARK 5.3.9. 

I. 

2. The essence of Proposition 5.3.7 is that we obtain solutions defined on 
the entire JRn+l. Similar statements fort f 0 are known (see Karol [17]). 

Still using the same branch of the logarithm we can write 

t!(J-a)(2il~lt!)l-ak (~ t) 
1-a ' 

(2il~l)l-a(t+iO)l-akl-a(~,t). 

Corollary 5.3.8 now says that we can "cut off" u~I) at t = 0. This is not 
~(2) I I a-I ~ possible for ua = (2i ~ ) ka-l because Pa(H(t)ka-I) = 

(a-l)ka-J(~,O)ot=O = (a-I)ja-l(O)ot=O and ja_1(0) f o, a i ~. 

A consequence of Remark 5.3.6 is that J, xj' al-a and xja!-a are 
solutions of Pau = 0 for all a 1-a E SI-a' We will now seek solutions 
defined as u(lxl 2/4+t), u some element of V'(JR). Note that lxl 2/4+t 0 
gives a characteristic conoid: see Remark 5.2.7. 

Consider the function f: Rn+I -+R defined by f(x,t) = lxl 2/4+t. 
f is smooth and Df is surjective everywhere. Therefore the pullback f*u is 
welldefined for all u E V'(JR), mapping V'(JR) into V'(:IR.n+I) continuously 
(see section 2.6). For continuous u 

<f* u,<.p> = ff dxdt u(f(x, t))((l(x, t) = J J dxdt u ('x4l 2 + t) (/) (x, t) 

ff dxds u(s) (()( x, s - lx4l 2). 

So for u E V'(R) f*u can be defined by 

* I( k) <f u,<jl> := <u, (j) x, s - 4 dx> . 

Here 



(5.3.10) 

• oo ~I ~ defines a continuous map between c0(E. ) and t.; 0(:R). 

For later convenience let us prove the next proposition. 

PROPOSITION 5.3.11. Formula (5.3.10) defines a continuous map between 
S("Rn+I) and S("R). 

n+I PROOF. Choose ljl E S(R ) • Then 

N 
Vy: VN20: 3CN,y< 00 : sup j(I + Jxl 2 +t2)2DYljl(x,t)J < CN,y' 

In particular 

/ljl(x, s - Jx4J 2)/ s 
c n+l ,O 

(I + Ix j 2)(h+l)/2 

so the integral is convergent. It is a smooth function in s because ljl is 
m smooth and similar estimates hold for Dtljl(x,t) for all m. 

Let us now show that the integral is rapidly decreasing in s. That its 
derivatives also decrease rapidly then follows by similar arguments. 
A simple calculation shows that 

Because 

c 2m+n+l ,O 
(I+ JxJ 2fn+l)/2 

$ 2 
for s 

2 2 

c 2m+n+l,O 
(I + J x J 2 + ( s - J x J 2 I 4) 2) m+ ( n+ I ) I 2 

I 

it follows that sm J ljl(x,s - Jxl 2 /4)dx is bounded for all m 2 O. 
Conclusion: the integral defines an element of S(:R). 

IOI 

If now tpj->- 0 in S(Rn+I) then V (y,N): c~,y->- O (j->- 00). From the estimates 
above it is then clear that J ljl. (x,s - JxJ 2/4)dx->- 0 in S(JR) as well. D 

J 

COROLLARY 5.3.12. If u E S'(:R) then f*u E S'(:Rn+l). D 

* If we compute Pa(f u) we get 
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So we obtain a solution of Pav = 0 if we choose v f*u with u a solution of 

[ s dd:2 + (a + ~) dds ] u = 0 · 

For a+7 I- Z: we can take u E Sl-a-n/ 2 (or u =I). 

For n a+7 s o, {sl-m 1-m 1-m 
, I } , n Cl+z E ~. u E 's 's m = a + 2· 

(5.3.13) + -
For Cl +1f = 1 ' u E {H(s), H(-s), ln(s+iO), ln(s-iO), I}. 

For a +-2- E Z, Cl+ n > 2- 2, {o(m-2) ( . 0 )1-m ( _. 0 )1-m u E s=O , s+i , s i , i},m=a+~. 

Note that for n even, automatically a + 1f I.~ if a i Z:. 

5.4. A non-smoothness result. 

For ~DOs P of real principal type, u E E', Pu E C00 implies u E C00
• In 

this section we show that Pa does not have this property when considering 
· ( ) b f ..,,n+ I . . . ( ) . h 0 ( 1 it on open su sets o -"' containing points x,t wit t = see a so 

Proposition 5.2.3). 

Also we show a consequence this fact has for the qualitative properties of 

a parametrix for Pa. 

PROPOSITION 5.4.1. Let E > 0 be given. There exists a distribution 

U E 

I. 

2. 

E '(Rn+ I) so that 
00 

Pa.u E C . 

supp(u) E {(x,t) 1 lxl 2 + t 2 s E2}. 

3. u '- C00
• 

PROOF. Choose \j) E C~(filn) so that \j)(X) = {~ Ix\ < E/4 
for Ix\ > E/2 

,_ 1-a.-n/2 n Let ba. .- s_ , a.+z- f 2,3,4, ... , a f 2,3,4, ..•• We will give 

proof only for these values of a. For a+7 = 2,3,4, ... , one should 

b - ..,a.+(n/ 2)-2 f 2 3 4 odd, b = (s +_ ~O)l-a-n/ 2 a. - u s=O , or Cl = , , , ••• , n a ~ 

the 

choose 

Let f be as in the previous section. We define v := \j) *x f*(ba) (see 

section 2.5 for *x). This is welldefined. 

The results given in section 2.6 show that 
2 

* \x\ T WF(f (ba)) c {(x, --4-, 2 x, T) IT f O}. 

But then Lemma A.7.5 gives: 
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(5.4.2) WF((jl * (f*(b ))) "' {{x,0,0,T) [ x E supp (<jJ)}. x a 

Note that Pa(f*bc) = O. Corollary 5.3.12 shows that f*ba E S'(JRn+l). So 
A-,;-.... "'A~ Pa(f ba) = O, too. But then ra((jl(s)f ba) = 0 so v satisfies Pav = 0. 
Let us show now that (0,0,0,J) and (0,0,0,-1) are in WF(v). 

For a + 7 < 0 it is easy to check that for t < 0 

(5.4.3) 

2 6 Here (1-p )+is defined by analytic continuation for 6 f -1,-2, ...• Then 
formula (5.4.3) holds for a+ -2" f 2,3,4, ..• as well. From formula (5.4.2) 

it is clear that the restriction of 

it is given by formula (5.4.3) with 

provided 2M < ~ and 

v 

x 

to x = x0 is welldefined. 

= XO. Since (jl( -2yM) = 

f(n/2)r(2-a-n/2) f 0 
2f(2 - a) 

I 

For t < 

for [y[ 

for a f 2,3,4, ... , we see that v restricted to x = 0 behaves like tl-a 

for t t 0. Now v is zero for t > O. But then it follows 

0 

,,; 

straightforward that (O,l) and (0,-1) belong to the wave front set of the 
restriction of v. So (0,0,0,±1) E WF(v). Choose~ E C~(JRn+I) so that 

~(x,t) = f for/ix[ 2 +t2 
0 

< 3E/4 

> E 

Then u :=~satisfies conditions I, 2 and 3. D 

One might wonder if it would be possible to improve part I of Propo­
sition 5.4.1 by constructing u EE' satisfying conditions 2 and 3 and 

Pau = 0. This is not the case, as follows from the next proposition. 

PROPOSITION 5.4.4. Let u E E' be such that Pau = 0. Then u = 0. 

PROOF. If u E E' and Pau 0, then u is an analytic function such that 
Pali= o. Fors fixed, T f 0 we get ii(s;r) = c(S)Ta-Z exp (-i [s[ 2/T). 
From this expression it is clear that c(s) = 0 for all S· So u = 0 and 
therefore u = O. D 

An important consequence of Proposition 5.4.1 is 

PROPOSITION 5.4.5. Let a E ~ be given. There is no operator E such that 
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I) 

2) 

3) 

oo n+I oo n+l . 
E : c0 (:JR ) -+ C CIR ) cont-inuousZy 

tE : C~(lRn+ I) -+ Coo(:Rn+ I) 

PaE = I+ R where I is the identity and R has a smooth kernel. 

PROOF. Suppose an operator satisfying these conditions does exist. Let 
u E E' be such that P2 u E C00

• Then P u E c00
0 • So tE(P2 u) is smooth. -a 2-a -a t t t t t Now E(P2_au) = E( Pau) = (PaE)u u + Ru, so u is smooth. But this 

contradicts Proposition 5.4.1. D 

REMARK. The fact that E maps C~ continuously to C00 implies that tE maps E' 
continuously to V'. 

5.5. The construction of a fundamental solution. 

In this section we will construct for a E ~ \ Z an operator Ea such 
oo n+ I oo n+ I . · that Ea : c0(lR ) -+ C (JR ) continuously and PaEc/P = <.p = EaPa<.p for all 

oo n+I . <.p E c0(lR ). Then Ea is a fundamental solution for Pa. The procedure will 
be as follows. 

~ ~ 00 n+I First we will consider the equation Pau = f, f E c0(lR ). By means 
of the method of variation of constants we obtain solutions, at least for 
t f O, which behave "well" for lsl -+ 00 • Next we define a solution which is 
valid in a neighbourhood of t = O, too. In the next section we then show 
that this gives us an operator Ea with the desired properties. 

So let a E ~ \Z, s f O, f E C~(JRn+I) and consider the equation 

(5.5.1) 'Pell= 1, 1 = f(f,;,t). 

Let u~I) and u~2 ) be the solutions of the homogeneous equation obtained in 

section 5.3. For the reason explained in that section, we choose the 

argument of t for the definition of u~2 ) such that u~2 ) becomes smooth in t. 

Therefore we take the branch of the logarithm with argument arg(t) such 
n 3n that -"2" < arg t < z· (Other choices for the argument will give the same 

function multiplied by a constant.) If we apply the same branch for the 

definition of u~ 1 ~ any other choice for the argument gives a solution 
which can be written as 

AH(t)u~l)+µH(-t)u~I), A f 0 andµ f 0. 

With A we define this to be ul and we define u2 := u~2 ). 



. ~ ail . (5 5 ) . With v :=at' equation .. J can be written as 

(5.5.2) (1 o) a ('il) ( o -1)(u:) (o) 
O t at v + -Ji;J2 a v = f · 

Solutions of this system for f = 0 are 

v. = "()t U ., c. = c. ( i;), i = I , 2. i CJ i i i 
If we now write c. := c.(t,i;), i= 1,2, 

(~) 1 i 
(variation of constants) and sub­

the equation stitute ~ in equation (5.5.2) we get 

( I o)(u1 
0 t VJ 

For t i 0 therefore 

Now 

(5.5.3) 

u2 ,-1(v2 -u2)( O ) 
v 2 -v1 u 1 (l/t)f · 

t!(I-a)J (ZiJ!;Jt!) 
I-a 

t!(I-a)J (2iJi;Jt!) 
a-I 

a3t [ 
II ] aat [ " 

1 I J (z) tl-a(ili;Jt-2) :-a 
Jl-a(z) 

tl-a(iJi;Jt-!/ sin (1-a)n 
-2nilsltl 

J~-l(z)I 
Ja-l(z) z=ZiJi;Jt! 

-a sin ( 1-a)TI 
t . 

-'IT 

So for t i 0 

Clcl 'IT -I a-I ~ 
at sin (I-a)TI (H(t) + µH(-t)) t Uz(i;,t)f(i;,t)' 

dCz -'IT -I a-I ~ 
at= sin (l-a)TI (H(t) +µH(-t)) t u1 (i;,t)f(i;,t). 

REMARK. Clc 2/Clt is independent ofµ while Clc 1/at is not. 

For later convenience we remark that if we choose u 1 

u2 = ;.. 3u1 +;..4u2, Ai= \<O, i= 1,2,3,4, then 

dCI 1f -1,A1 A2,-1 a-I ~ 
at;= sin(l-a)TI(H(t)+µH(-t)) ;..3 ;.. 4 t (;\3Ul+;\4U2)f, 
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Let J w(s,s)ds denote a primitive of w(s,t) with respect to t. Then we ob­
tain for equation (5.5.1) the formal solution(s): 

(5.5.4) ~ -'IT I ;\I 
u(s,t) = sin(J-a)n 1c 3 

2 x ;\ ,-1 
lc4 

{-[;\ 1U1C s, t )+!c2u z< s, t )] J s a-J(H( s)+µH(-s))-I [ !c 3u 1Cs, s)+\U 2( s, s)]f ( s, s)ds 

+[!c 3u 1(s,t)+!c4uz<s,t)] f sa-J(H(s)+µH(-s))-l [!c 1u1(s,s)+!c2uz<s,s)]f(s,s)ds}. 

The asymptotic expansion of the Bessel functions (see section A.4) shows 
l 

that J±(l-a)(2ilslt 2 ) is exponentially increasing fort> 0 fixed, lsl + 00 • 

In order to be able to apply Fourier's inversion formula we therefore 
choose !c 3 and !c4 so that !c3u 1 + !c4u2 is rapidly decreasing for every t > 0 

fixed, lsl + 00 • This can be done uniquely modulo a multiplicative constant 
with 

Then 

(a-1 )ni -e 
i sin ( J-a)n and ;\ =~---~ 4 i sin ( 1-a)n· 

HI-a) -e JJ-a(2i " t ) + Ja-J (2i " t ) [ 
(a-J )ni · I c:-1 ! · I c:-1 ! ] 

t i sin (1-a)n 

t > o. 

For the same reason as above we must choose the "intervals of integration" 
in expression (5.5.4) for t > 0 as follows: in the first integral we 
integrate over t < s < 00 , in the second over (- 00 <) s < t. If furthermore 
the Bessel functions are expressed in terms of the function Ka-I f rorn section 
5.3, with these adaptations expression (5.5.4) becomes for t > 0: 

(5.5.5) u(s,t) = Cin <7-a)n • ;\ +;\ )a-J)7fi) x 
I 2 

{[1c 1(2ilsl) 1-at 1-ak1_a<s,t)+!c2(2ilsl)a-Ika-I<s,t)] x 

00J (a-I )n:i, I I I-a a-I I I a-l ~ [-e l2i s ) k1_a(s,s)+s (2i s ) ka_ 1Cs,s)]f(s,s)ds 
t 

+[-e(a-J)nit!-a(2ilsl) 1-ak1_a(s,t)+(2ilsl>a-Jka-l(s,t)] x 

t I-a a-I a-I ~ J [!cpilsl) k1_a(s,s)+!c2s (zilslJ ka_ 1Cs,s)]f(s,s)ds 
0 

+[-e(a-I)nitl-a(zilsl) 1-ak1_a(s,t)+(2ilsl)a-lka-l<s,t)] x 

Jo I 11-a ;\2 a-I I I a-I ~ } [!cpi s ) k1_a(s,s)+µs (2i s ) ka_1Cs,s)]f(s,s)ds • 
(-oo) 



Omitting the first factor, this is linear in (A 1,A2). For Al 

A2 = 0 we get: 

(5.5.6) 

I-a J a-J ~ 
+ t k 1_a(s,t) s ka_ 1(s,s)f(s,s)ds 

t 

t 

+ ka_ 1(s,t) f k1_a(s,s)f(s,s)ds 
0 

I and 

+ [-e<a-J)nitJ-a(2ilsl) 1-ak1_a<s,t) + (2ilsl)a-lka-I(s,t)] x 

O J-a ~ f (2ilsi) k1_a(s,s)f(s,s)ds. 
(-oo) 

For A1 = 0 and A2 = l we get: 

(5.5.7) 
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Looking for an expression which is smooth in t for t ~ O, we notice that 

expression (5.5.6) contains at least two singular terms, which donot cancel. 

In expression (5.5.7) only the last term is singular, but this term can be 

omitted since it is a solution of the homogeneous equation. 

So finally we arrive at the following expression for u for t > 0: 

(5.5.8) 

For t < 0 we remark that the bicharacteristic structure of Pa more or less 

forces us to integrate overs> tin expression (5.5.4). In order to get 
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a smooth connection at t 0 we therefore define u(s,t) for t < 0 by 

expression (5.5.8), too. 

We are now at the point of defining a fundamental solution for Pa. The 

interpretation of expression (5.5.8) is still not clear for two reasons. In 
the first place, the factor lsl 2(a-l) doesnot behave well at s = O, al­

though it might be interpreted as a distribution. However, the term con­

taining it is a solution of the homogeneous equation, so we can multiply it 

by an arbitrary smooth function of s. Second we might have problems with 
the factors sa-! and t 1-a. Here we shall use the distributions s~-J and 
a-1 

s[O,I] (see section 2.13) to overcome these difficulties. 

Let 

For a E 

(5.5.9) 

IJ!(s) be 
00 

function, ,,; \j! a C 0 

f lsl > I 
w<s) for 

0 lsl < ! 
~ oo n+I . \Z, f E c0(JR ) define 

-TI 
(Faf)(s,t) :=sin (1-a)n x 

,,; I and 

{e (1-a)Tii\j!(s) (2ils I )2(a-l )k l(s,t) <sa-I ,k l (s,s)f(s,s)> 
a- + a-

Here < , > means (distributional) integration with respect to s. 

(5.5.10) 

THEOREM 5. 5. 11 • For a E ~ \ Z, f E C~(lRn+ 1) Eaf is we Z ldefined and smooth, 

Ea : C~(lRn+I) + C00(lRn+l) continuously and PaEaf = f = EaPaf. 

The (very technical) proof of this theorem will be given in the next 

section. From this theorem we can derive: 

COROLLARY 5.5.12. Let Ea be the operator of Theorem 5.5.ll. Then tEa 

defines a continuous map between E '(JRn+ 1 ) and V 1( lRn+ 1 ) by 

It satisfies tE P =I= P tE on f 1(lRn+l). 
a 2-a. 2--a. a 
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PROOF. The proof follows easily from Theorem 5.5.11 and the fact that 

~~ t~· D 

5.6. The proof of Theorem 5.5.1 I. 

The analysis of Ea is far more difficult than the corresponding ana-
+ 

lysis of A- in Chapter 3 in the case of the Tricomi operator. For not only 

we have to deal with the exponential growth of some factors for Is\ + 00 , 

but also we have to be very careful with the distributions s~-l and s[~'.IJ 

We will now analyse first the operator Fa. The results will be for­

mulated in two propositions. 

~ oo n+I 
PROPOSITION 5.6.l. For a E 'f\Z., f E Co(lR ), Faf is weUdefined and 

smooth in (s,t) and PaFaf = 1 = FaPaf. 

PROOF. ~(s)(2i\sJ) 2 (a-l) is smooth ins. kS(s,t) is smooth in (s,t) for 

every SE ~.1(~,t) is smooth in (s,t) and if supp fc{(x,t) \ \x\ 2+t2 '-'R2}, 

then (Dls,t)1)(~,t) = 0 for a:l (~,t) with \t\ ~ R, y arbitrary. Now for 

a E ~ \Zl, s~-1 E V'(lR) and s(0 ~ 1] E E'(JR), so it is clear that the integrals 

in expression (5.5.9) are welldefined for s fixed and smooth in (s,t). But 

then Faf is also welldefined and smooth in (s,t). 

We now show that PaFaf = 1. This may seem obvious for a > I and conse­

quently for a E ~ \Zl, but is should be remarked, that the application of 

the method of variation of constants near s = 0 or t = 0 still needs some 

justification. 

We choose the most simple way and compute PaFaf directly. The first term of 

expression (5.5.9) is a solution of Pau = 0, because ka-I is. Furthermore 

a a-I a-I a 
tat<s[O,l]'l!l(st)> = t<s[O,l]'sl!l'(st)> <s[O,J]'tlP'(st)> 

a a d a 
= <s[O, l]' as l!l(st)> -<ds s[O,I] ,l!J(st)> 

a-I 
= -a<s[O,l]'<.p(st)> + l!J(t). 

Then it is easy to check that 

PNFNf = . (-;rr ) [-(1-a)k k + tk J-k - tk J-k ]1=1, 
~ ~ s:m -a 1f I-a a-I I-a at a-1 a-1 at I~ 

as follows from expression (5.5.3). 
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because of Proposition 5.3.7. 

and 

o. 

a-I ,....__, 
t<s[O, J] ,ka_ 1(st)Paf(st)> = 

a-1 a2 ~ a ~ · I 1 2~ = <ka-l (st)s[O, l] 'swf(st) + aa;f(st) - t s f(st)> 

~ a-1 ~ d ~ a~ = t <(P aka-!)( st) s[O, l], f ( st)> -tat ka_ 1(s, t) f (s, t)+tka_ 1Cs, t) at f (s, t) 

and P k 1 = O. a a-
Substitution and addition gives 

F P f = -n [-(1-a)k k + tk l_k - tk l_k ]1 = f D a a sin ( I -a) TI 1-a a-1 I -a 3 t a- I a- I Cl t I -a ' 

The next proposition constitutes the main part of the proof of 
Theorem 5.5.11. 

PROPOSITION 5.6.2. Let a, f and Fa be as in Proposition 5.6.1. Let T > 0 be 
arbitrary. Then 

V p: V m: 3 K < oo: p,m 

Vt: ltl<T: Vs: lslml 3
3;PcFaf)(s,t)I ::::Kp,m' 

Moreover, if (f.) is a sequence in c00

0(1Rn+l) for which f.+ 0 in C00
0(lRn+l), 

J • J 
then the constants KJ := K (f.) can be chosen such that p,m p,m J 

V p: V m: Kj + O (j -+ oo). p,m 

PROOF. Faf was constructed so that it would be smooth and not exponentially 
increasing for t > 0 fixed, lsl -+ 00 • The analysis of Fa should make use of 
these two properties. IYI ::; 
Let X E C~(lR) be such that 0 ::; X ::; I and X(y) = {l for 

0 IYI 2 4 
Then x1Cs,t) := X(4tlsl 2) is a C00-function such that 



Fig. 20: support of x 1• 

Further x2Cs,t) := n - x 1Cs,t). 

For j = 1,2 and f..= 1,2 we now define F~j,f..)f by 

00 

-<x-k 1>Cs,t) J <x1..k1 f)(s,s)ds 
J a- t -a 

-tCX/l-a)(s,t) <s[~~ 11 , <x1..ka-J1) (s,st)>}. 

Then each F(j,f..)f is welldefined and smooth and a 

because 
2 2 
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1 = [x 1 Cs,t) +x2<s,t>Hx 1 Cs,s) +x2Cs,s)] = j:;1 f..:; 1 xjCs,t>xf:.s,s). 

For each (j,f..) F~j,l) will now be shown to satisfy this proposition. 

Because f E C~ we know that 

(5.6.3) v p: v m: 3 c : l()n'pf cs,t>I ~ c c1 + lsl>-m v cs,t). p,m <3t p,m 

Let R > 0 be such that f(x,s) = 0 for lsl ~Rand assume ltl < T. 

Analysis of F~~· 
1 

We have k6(s,t) = jS(2ilslt 2 ) and jS(z) is an even, analytic function 

(see section A.I). 

But then x 1Cs,t)k6(s,t) = ~<tlsl 2 > with ~(y) E c00 zero for IYI ~I. So 

(5.6.4) Vp: lad:p<X1ks)(s,t)I = 1ad:p~tlsl 2 >1 = lsl 2pl~(p)Ctlsl 2 >1 ~ clsl 2P. 
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Let k E lN u {O} be so that k+a-1 > 0. Then 

a-I ~ ( I k+a-1 ~ ak ~ ) <s+ ,(X1ka-lf)(i;;,s)> = (Ci)s+ ,(-IJ 0<X1ka-Jf)(i;;,s) 
k as 

(-I)k k (k) IJ/lt;;l2 k+a-1 ai 3k-i ~ 
= -- i: . s ~ ex k ) . f ds. (a)k i=O 1 0 3s1 I a-J Clsk-1 

This can be estimated in absolute value for lt:I ~ I by 

I I -m I ( 1 )k+a-J I I 2k C • max C. (I+ s ) ·!:IT· ~I !;; • 
osisk 1 •m jt;;j /;; 

So 

I aa:P 1/J(/;;)(21 s I ) 2(cH )<x 1 ka-J )(s, t) <s~-I, <x 1 ka_ 11) (s, s)> / s 

C · max C. (I+ lsl)-m+Zp-Z, m arbitrary, C,k independent of f. 
Osisk 1 •m 

The next lemma will be used frequently. The proof is obvious. 

LEMMA. Let a 1(s,t) and a 2 (s,t) be smooth functions such that 

I aP / I I a-+2p -Pa.(s,t) s c.(1 + s) 1 v t,i;;,p,i. 
Clt 1 1 

I 3P I . al +az+2p Then Cltp<-a 1a 2)(s,t) sC(l+lt:I) Vt,l;,p. D 

Now 

(5.6.5) /I <x 1k 1_af)(s,s)ds/ s J lx 1k 1_af'lds s 
t t 

J Ix k f'lds s c-c0 (I+ lt:l)-m-2 , 
lslsmin{R,1/lsl 2} 1 I-a ,m 

so 

I I -m+2p-2 
s C • max C. (I+ s ) , 

osisp 1 ,m 

m arbitrary, C independent of f. 

Finally: 

(S.6.6) 

k-1 . . [ p+i ] ] + i: (a+p+i+l)k. 1c-1) 1t 1 .l___,_+ <x 1k 11) Cs,t). i=O -1- CltP 1 a-

If a-l+p+k ~ O, this can be estimated by 
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Therefore: 

I ()():p t(X1 kl -a)(!;, t) <sro-,\]' <x1ka-11') (s, st)> I 
sC· max c. [ltl(l+lsl)-m+Zp+p(l+lsl)-m+Z(p-l)J 

Osisp+k i,m 

s C · max C. ( l +Is I) -m+Zp-Z for It I < T, C, k independent of f. 
osisp+k i,m 

Conclusion: 

'ef m,p: 3 K : 'ef (S,t): ltl < T: 
m,p 

l ~F(l,l)fl s K • max c. (!+\s\)-m+Zp-Z. 
Cltp a m,p Qsisp+k i,m 

Here K is independent of f and k E JN u {O}should be chosen so that m,p 
k 2 I-a. 

Analysis of F~Z,Z)f. 

The cut-off functions allow us to rewrite F(Z.Z)f: 
a 

For Is I 2 ! , t f 0: 

1/J(s)C2\s\) 2ca-i)k -t 1-o:k = 
a-1 1-a 

i sin (l-o:)Tie(l-a)Tii(2i\sl)a-lt~(l-a)H(1 l)(2i\slt!), -a 

ka_ 1Cs,t) = (Zilslt!)J-aJa_ 1 (2i\slt~) = 

= 1 (2i Is I) I-at H l -a) [H( 1) (2i Is\ t ~) + H (Z) (2i Is It!) L 
2 a-1 a-I 

Lemma A.4.1 shows that after multiplication by x2 (s,t) these expressions 

can be written as 

and 
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~(2ijt;j) 1 -at!(l-a) x 

[ e-zjt;[t~.l~-J(l;,tXI-e(a-J)7Ti2cos(a-l)7!) + e2 Jt:lt~.l~_ 1(t;,t)]. 
Factors tS we estimate as follows: 

l 
We can assume [tl 2 [t;j ~!and It[ <Tso 

l4t~s1 s(1 
2 -S if S-2p > 0

} s c 3 1t:J 2P for [t:I ~I if S>O. 
at c2 1t:I P < o 

Now we can estimate (CJP/(ltP)F(Z,Z)f using the estimates of Corollary A.4.6. a 

Note that 

(5.6.7) 

For p ~ 0: 

(5.6.8) 

[e-z[t;lt!I =I fort< O. Further for p ~ I: 

jCla;P ! [1/!(t;)(2lt:i)2(a-l)sa-1ka-1-k1-a](xz1)(t;,s)dsj 

= I aa:p-~I [1/J(t:) C2 [ t;, I) Z(a-1) ta-Jka-1 - kl-a] <xzf) (I;' t)I 

Jc 3 le-z[t:lt![ [t;,J 2p-Z max C. (1+[1;[)-m, a< I 

s 1c [e-zlt:it!l lt:l2p-2+:-~sp:axi,mc. (l+jt;,J)-m, a.> I 
4 osisp-1 i,m 

a < I 

a > I 

It: I ~ I, 

I tl < T. 

Now integration in the first term of F(Z,Z)f is over t s s, so the products a 
of the exponentials remain bounded. Applying the estimates obtained above 
and once more Leibniz' rule, we conclude that the pth derivative of the 
first term can be estimated by 
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C• max C. (l+il;i)-m+2p+ll-a.I, C independent off, ltl < T. 
Q:Si:Sp i,m 

Next: 

II sa.-I(x2ka.-lf)(l;,s)dsl 

0 t ! l 

:S c 1 sign(t) ~ lsl Ha.-l)li;l 1 -a.Je-2 11;1s 2l~-i<l;,s)+e2 1i;I s' .e.:_1(1;,s)l if'U~,s) Ids 

1 

< lC2Tie2Ji;it•l l1;12(1-a.)cO,m(l+li;lf"m, a.< I 

- ! • li;I ~ I, ltl < T. 

C3Tle2li;lt 11i;1 l-a.cO,m(1+1i;1)-m ' a.> I 

In a way similar to the one above we can now derive that the p th 

derivative of the second term can be estimated by 

c· max C. (l+jl;j)-m+2p+II-a.I, C independent off, ltl < T. 
Q:Si:Sp i,m 

This concludes the analysis of F( 2 • 2)f. a. 

Analysis of F(l, 2)f. 
---"-----a.--

We can rewrite F~ 1 • 2 )f as follows: 

F(l,2)f = -TI x 
a. sin(l-a.)TI 

{<x1ka.-l)(l;,t) I [1jl(/;)(2il;i) 2 (a.-l)sa.-Ika.-l -kl-a.](xz1H!;,s)ds 

t t 
I I 2(a.-1) f a.-1 ~ 

+ijl(/;)(2 I;) Cx 1ka.-l)(l;,t) s <x 2ka._ 1f)(l;,s)ds 

I 0 

-t(x1k 1-a.)(l;,t) f sa.-l<x2ka.-lf)(l;,st)ds}. 
0 

We may assume ltl li;l 2 :S I, lsl Ji;J 2 ~ l· 
The ft00-integral in the first term was estimated before (see the analysis of 

F~2,2)f). However, for p ~ I its p th derivative is given by 

aa:p~-\ [-(wcoc21i;1) 2<a.-I)ta.-ika.-i<i;,t)-k1-a.<i;,t))<xz1)<1;,t)]. 

Here we may assume! :S It! li;l 2 :SI so here lcaP/atP)t$1 :S cli;l 2p-2$ 

for all $. If we note that le-2 Ji;idl :S I for t real, we may conclude, com­

bining the estimates (S.6.4) and (S.6.7), that the pth derivative of the 

first term can be estimated by 

C•max C. (l+li;l)-m+2p+II-a.I, C independent off, Jtl < T. 
Q:Si:Sp i,m 
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In the second term we note that lezs!lsl I s e2 and le2t!!sl J s e2, because 

fort> 0: s!lsl s t!lsl s I. But then the second term satisfies similar 

estimates as the first term. 

In the third term we note that 

P I a-I ~ I +a-I [ aP ~ ] -a;. f s <x2k _1f)(s,st)ds = f sp ~<x2ka_ 1 f) (s,st)ds. 
dt Q a Q dS 

lstl !lsl s ltl !lsl s I so exponentials are bounded. lstl lsl 2 ? ! and 

I t 11 s I 2 s I so s ? ! . 

By now it should be obvious that the third term satisfies similar 

estimates as the first term (even with exponent -m+2p-2+ll-al). This con­
cludes the analysis of F(l,Z)f. 

a 

Analysis of F(Z,l)f. 
-~-~---a--

We can assume ltl lsl 2 ? ! and lsl lsl 2 s I. Forts 0 we have 

le± 2 lslt!I =I so forts o (ClP/atP)(X k )(s,t) can be estimated by 2 a-1 

C Is I 2p+ \ l -a I , I s I ? I , -T < t s O. 

So forts 0 F~Z,l)f can be analysed similarly to F~l,l)f, giving for the 

p th derivative the estimate 

C·max Ci m(I+ls\)-m+2p-2+II-al, 
osisp+k ' 

For t? 0 we rewrite F(Z,l)f as follows: a 

F(Z,l)f = -'IT x 
a sin ( 1-a)'IT 

C independent of f, -T < t s 0, 

k > I-a. 

{ I I 2(a-I) a-1 a-I ~ 
tx2<s,t)[iJ!(s)(2s) t ka_ 1-k1_a]<s[O,J]'<x 1ka-If)(s,st)> 

a I I 2(a-l) a-I ~ +t x 2<s,t)iJ!(s)(2 s) ka_ 1<s,t)<s[J,oo)'<x 1ka.-lf)(s,st)> 

-<x2ka._ 1)Cs,t) f <x 1k1_af)(s,s)ds}. 
t 

This is obvious for a > I. For a E: ~ \Z: it follows by analytic continuation. 

Note that for s fixed x2Cs,t) = 0 in a neighbourhood of t = O. So the 

second term is welldefined and smooth for t ? 0, too. 

The first term consists of factors which have been analysed before 

(see estimates (5.6.6) and (5.6. 7)). Its p th derivatives can be estimated by 
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-m+2p+ \ 1-a \ . 
C • max C. (I+\!;\) , C rndependent of f, 0 :!> t < T, 

0 . k l.,m 
s; 1:!>p+ I !; I ;:: 1 ' k > 1-ot. 

The third term also consists· of factors analysed before (see estimates 

(S.6.5) and (S.6.8)). We have tl\i;\ s; si\i;\ s; 1, so exponentials are 

bounded and we can estimate the derivatives as above (with k = O). 

As for the second term, because t\i;\ 2 ;:: ! 

I aa:p <s[1-.~y<X1 kot_ lf)(!;' st)> I = I { sp+ot-1 [aa:p <x1 ka-l)] (!;' st)dsl. 

Also \st\ \i;\ 2 :!> I, so \s\ :!> l/(t\!;{ 2) s; 4 and we can estimate this by 

Further 

< c 2t \!;\ l\i;\2p+2(1-ot)) l at< 

- \ !; \ 2p+ 1 -at e ' at > 
' \!;\;::I, I tl < T. 

Now tl\i;\ s; (st)i\i;\ s; 1 so exponentials are bounded, so the derivatives 

of the second term have estimates as those of the third term. This con­

cludes the analysis of F( 2• 1)f. 
at 

Conclusion: Let T > 0 and supp(f) c {(x,t) \ \t\ :!> R}, then 

v p: v m: 3 K'. : v 
p,m (!;,t) with \t\ < T: 

I aa:P (F af)(i; 't)j s; K • max C. (l+\i;\ )-m+2p+\ l-ot\. 
p,m O:!>i:!>p+k 1,m 

Here C. =C. (f), k E lN u {O} should be chosen so that k <: 1-ot and 1,m 1,m 
K is depending on T,R,p,m only. In particular, K is independent of f 

p,m 2 2 2 p,m 
such that supp(f) c{(x,t) \ \x\ +t :!> R}. So Ff satisfies an estimate as 

• • • at • oo n+ 1 
mentioned 1n the propos1t1on. Let now (f.) be a sequence 1n c0(1R ) such 

h f 0 . c""(lRn+ I ) . J • tat J. + 1n 0 , J + 00 • Then 3 R: VJ: 
2 2 2 . 

supp fj c {(x,t) I [x\ + t $ R } and for c;,ot := sup(x,t) \(D~D~fj)(x,t)\ 
we have V (p,ot): c;,ot + 0 (j + 00). But then 

\i;~~j(!;,t)\ = \J e-i<x,i;>D~~fj(x,t)dxl s; CR·C~,ot 
with CR only depending on R. 

Now 
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'° c 2: cj 
m,R I j< p,a Cl _m 

with C R depending on (m,R) only. m, 

establish estimate Let cj .- sup(I:" ) j(l+jE;j)UUPf.(E;,t)J. Then these Cj p,m ,,,t t J . p,m 
(5.6.3) for f. and for fixed (p,m) cJ + O. But then the constants J p,m 

:= K • max 
p,m Osisp+k 

satisfy Kj + 0 (j + 00), too. p,m 

d 
i,m 

This concludes the proof of Proposition 5.6.2. 

The proof of Theorem 5.5.11. is now an easy matter. 

D 

PROOF of Theorem 5.5.11. The Propositions 5.6.1 and 5.6.2 show that Faf is 

smooth and 

jn~n~(e+i<x,E;>(Faf)(s,t))j = lsaD~(Faf)(S,t)j 

s c (l+Js\)-(n+I) for JtJ < T, T < 00 arbitrary. p,a 

Therefore E f is 
oo n+ I a 

welldefined and smooth in (x,t). If (f.) is a sequence in 
00 n+I J j c0(JR ) so that f. + o in 

J . 
c0(JR ) (j + 00), then the constants C = C p,a p,a 

can be chosen so that CJ 
P ,a 

+ 0 (j + 00). But then for Jtj < T 

Jn~P(E f.)(x,t)j = - 1 -If ei<x,s>s~P(F f.)(s,t)dsl 
x t a J ( 21f) n t a J 

ds + o for j + 00 • 

(1+Js I )n+l 

So Eafj + 0 in C00
• Now obviously Ea is linear so Ea is a continuous map 

oo n+ I oo n+ I . from c0(JR ) to c (lR ) • Finally 

~ ,,,...._,. "" 
(P aEaf) = (P F f)"" = (f)'"" = f ' a a 

(F P f)"' = 
a a 

(f)"' = f, 

as follows from Proposition 5.6.1. D 

5.7. Qualitative properties of (t)Ea. 

In this section we will discuss the way tE propagates singularities. a 
In the first place we remark that from formula (5.5.9) it follows that the 

kernel of Ea has support contained in {(x,t,y,s) I s s 0 =<> t s s}. So the 

kernel of tEa has support contained in { (x, t ,y, s) J t s 0 =<> s s t}. Note 
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that this implies that we avoid the set c2 given in Proposition 5.2.5. See 

also paragraph (5.2.6). Therefore, if supp(f) c {(y,s) \ s ~ -M} for some 

M ~ 0 then supp(tE f) c { (x, t) \ t ~ -M}. In particular we obtain a 

, n+l t I PROPOSITION 5.7.1. Let f E E (1R ). Then WF( Eaf t<O) does not contain a 

complete bicharacteristic strip of P . a 

PROOF. Along such a strip t ~ - 00 (see section 5.2). D 

From Proposition 5.4.5 we learn that for some f E C~(1Rn+I) tEaf cannot 
t be smooth. Together with Proposition 5.7.1 and the fact that WF( Eaf) c N = 

{(x,t,l;,i:) \ n 2 + ls\ 2 = O} this shows that for such f: 

(5.7.2) 

Of course, the set c1 given in Proposition 5.2.5 is responsible for this 

fact. 

Finally we show that for f E E1(1Rn x JR-) the singularities of tEaf 

for t < 0 can be obtained by expressing tEa in terms of FIOs. This should 
n -not be too surprising since Pa is of real principal type onJR x R and 

]Rn x R- is pseudo convex with respect to Pa (see section 5.2). 

For f E C~(1Rn x R-) the restriction of Eaf to t < 0 is given by 

~1~ f ds i<x,s> -TI x 
( 2TI)n e sin (1-a)TI 

00 

f I-a a-I ~ 
ds[-ka-J (s,t)k1_a(s,s) + t k 1_a(s,t)s ka-I (s,s)]f(s,s). 

t 

So the restriction of the kernel of Ea to s < 0 and t < 0 is given by 

with 

H( ) I f d• i<x-y,s> < •) s-t -~- se ea t,s,s 
( 2TI) n 

-TI I-a a-I 
. (I a) [-k 1Cs,t)k1 (l;,s)+t k 1 (l;,t)s k 1cs,s)l sin - TI a- -a -a a-

[ J l -a ( 2 i \ I; \ t ! ) Ja- 1 ( 2 i \ s \ s ! ) - Ja- J ( 2 i \ s \ t ! ) JI -a ( 2 i \ I; \ s ! ) ] 

-Tii l ( 1-a) l (a- I ) --t2 s2 x 
2 
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See section 5. 3 and section A. I .. For E;, f 0 this is equal to 

See section A.4. 

As in section 3.4 we introduce a function X E C00 so that 

x<s) = {1 for lsl < 
0 > 2. 

Then the kernel 

can be written as the sum of a smooth function and two FIOs with phase 
l l 

functions <x-y,E;,>± 2lsl ((-t) 2 - (-s) 2 ) and symbols 
+ -

[l-X(s)]h-1 (t,E;,)h+1 (s,E;,) respectively. The phase functions are the -a -a 
functions ~ given in section 5.2. The symbols are elliptic elements of :i: s7 10 (see section A.4). 

' 
- E;, ! ! - -! I -! I I I ~+ = {(y + 2TIT((-t) -(-s) ),t,E;,,+(-t) Is ;y,s,-E;,,±(-s) E;, ) t<o,s<o,E;,.; o}. 

As in section 3.4 we see that multiplication with H(s-t) is welldefined 
and that the wave front set of the kernel of Ea restricted to s < 0 and 
t < 0 is contained in 

(5.7.3) WF(H(s-t)) u (~+ u~_),s<::t u {(x,t,E;,,T;x,t,-E;,,-T) It< o}. 

t Now the kernel of Ea is obtained from the kernel of Ea by exchanging 
(x,t) and (y,s). But then it is clear from formula (5.7.3) that indeed a 
singularity of f can only be propagated by tEa along the strip through that 
point and only in one direction. 

Moreover we have 

COROLLARY 5.7.4. Let f E E' be singular in some point (x0,t0 ,E;,0 ,T 0) of N 
with t 0 < O. Suppose f is smooth in points (y,s,11,0) on the strip through 
that point for s < t 0• Then tEaf is singular in points (x,t,E;,,T) on this 



strip fort> t 0 until the strip hits another point in WF(f). 

PROOF. The symbols are elliptic. D 

Remark 5.7.5. Property (5.7.2) shows that it is senseless to try to des­

cribe tEaf in terms of FIOs in a neighbourhood of t = O. For a FIO has a 

phase function satisfying the conditions given in paragraph (2.8.6), so 

it maps c~ to C00
• 

5.8. Smooth solutions of P u = 0. -------------a--
In this section we have a closer look at the solutions of the homo-
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geneous equation. In particular we are interested in smooth solutions. The 

results we obtain are not complete but we can determine all smooth solutions 

of Pau = 0 for t < 0 which are smooth even up to t = 0. We only have partial 

results for smooth solutions of Pau = 0 for t > 0. 

If t 0 < 0 and PNu = O then f := ul and g · 3uj determine u ~ t=to ·= at t=to 
completely for t < 0 since Pa is hyperbolic for t < 0 and { (x, t) I t = t 0 } 

is nowhere characteristic. Therefore we first consider for t 0 < 0 the 

problem: 

for t < 0, x E JR.n, 

(5. 8. I) 

Again we proceed formally in order to obtain a foL'11lula for the solution. 

Partial Fourier transformation with respect to x gives 

~, ~ 

u t=to = f, g. 

Solutions of pa';{ = 0 are 

See section 5.3. Here fort< O, tS =exp S(log(-t)+ni). Substituting the 

boundary conditions for t 

and g by 

t 0 , c 1 and c 2 can be expresses in terms of f 

( cl (t;:)) 
c2 (t;:) 

n\ t;: I Ft() Ha-I) 
sin (1-a)n to x 
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(

- ~-stlo Ja-I (z)g(I;) + [J~-1 (z) - 2 jl; ~~~to Ja-I (z) ]f (0) 
I-to .A ' I-a A 

lZfJl-a(z)g(i;) - [JJ-a(z) - 2j1;jl-to JJ-a(z)]f(I;) 

Here z = 2ilslt~. 

(5.8.2) Using the relations zJ~(z) ± VJV(z) = ±zJV_ 1(z) and the definition 
kv(l;,t) (2ilslt!)-vJv(2ilslti) from section 5.3,+the solution 'ii can be 
written as: 

a 
(5.8.3) ~ _ 1fto A I 

1
2 A 1-a u(l;,t) - . (l ) [k l(l;,to)g(i;)-2 I; k (l;,to)f(i;)]t kl (l;,t) sin -a 1f a- a -a 

Note that but for f and g, the only singular factors in this expression are 
a I-a t t t 0 and t for t 0 O and t o. 

LEMMA 5.8.4. 

I. 

2. 

3. 

For fixed t s O, kv(l;,t) is the Fourier transform of a distribution 
with support in {x I !xl s 2/:t}. 
Let ~(x,t) denote this distribution. Then~ E Ccc(JR-,E'Ol\)). 

ro n oo_ If \j). -+ 0 in C (JR ) then <K (x, t) ,(j). (x)> -+ 0 in C (JR-). J x -v J 

PROOF. The analyticity of kV follows from Proposition 5.3.4. The asymptotic 
expansions of the Bessel functions provide the Paley-Wiener estimates. 
Corollary A.4.6 and estimate (5.6.4) show that for arbitrary T > 0 

(5.8.5) v k: 3 ck: j4k cs,t)I s c o+lsl) 2k, llt'c V k 
-T s t s O. 

The rest of the proof is now similar to the proof of Lemma 4.2.4. D 

It should now be clear that for arbitrary f and g in C00(1Rn), the 
(unique) solution of problem (5.8.J) can be obtained from formula (5.8.3) 
by interpreting [k 1 (1;,t)f(I;)]~ as the convolution of K 1(x,t) and f with a- a-
respec t to x, etc. Again, FIG-representations can be obtained by inserting 
the asymptotic expansions of the Bessel functions. The phase functions which 
appear are 

<x-y, s> ± 2 I i; I c r-t - r-t()) . 

One might also expect the phase functions <x-y,I;> ± 2lslCM +I-to) to 



appear. However, the terms involving these functions cancel. 

r = 10 

Fig. 21: Cauchy problem on t =to· 

Of course, this expresses the fact that a bicharacteristic strip, unlike 

the situation in case of the Tricomi operator, does not reflect at t = 0 

but only approaches asymptotically. 
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Next we will determine the solutions for t < 0 which remain smooth up 

to t = O. 

LEMMA 5. 8. 6. Suppose f E C00(:m.n) • Then ~ (x, s) * x f is smooth for s · ,,; 0. 

PROOF. For f E C~(lRn), KV (x, s) *x f = I I (21f)n J ei<x,E;>kv (E;, s) f (E;)dt;. 

Then f(E;) is rapidly decreasing, kv(E;,s) is smooth for all (E;,s), so 

estimate (5.8.5) shows that KV(x,s) *x f is smooth for s $ 0. For f E C00(lRn) 

the result follows from Lemma 5.8.4, part I. D 

From this Lemma it follows that Fourier's inversion formula applied to 

the second term on the right in equation (5.8.3) gives a function which is 

smooth for t s O, provided f E C00 and g E C00
• The same holds for the other 

term but for the factor t 1-a. Note that a t ll. Since kv(E;,O) = jv(O) = 
2-v(I/f( )) .t. 0 d' ' f ' (' 1 d' I-a) v+I r , a necessary con 1t1on or this term inc u ing t to 

be smooth for t ,,; 0 is: 

This condition is also sufficient. (Note that for t 0 = 0 this condition 

simply states (Pau)(x,O) = O.) But then substitution of t 0 = 0 gives that 

u(x,t) has the representation 

(5.8.7) u(x,t) = cau(x,O) *x Ka_ 1(x,t). 

1/ja-l(O) = 2a-lr(a). So we have derived 
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PROPOSITION 5.8.8. u is a solution of P u = 0 for t < 0 which is smooth up a 
co tot= 0 ~ u(x,t) = f(x) *x caKa_ 1(x,t) for some f EC • 

Moreover, in that case we have, with * convolution with respect to x only: 
I) f(x) = u(x,O), 

2) 

3) 

dU dKa-J Ka-I (x,t) * at(x,t) - ~(x,t) * u(x,t) = 0 for t ~ 0, 
au u(x,O) -tK 1 ~(x,t) * .,,-t(x,t) + !K (x,t) * u(x,t) = I a , t ~ O. ~ a -a 2 - f(l-a) 

PROOF. Most results follow from the discussion above. In statement 2) we 
expressed CJ~l 2ka)v- in terms of aKa_ 1/at using the relations (5.8.2). 0 

REMARK. Of course, the fact that { (x, t) I t = O} is characteristic is 
Clu responsible for the fact that we can only prescribe u on t = 0 and not ar· 

However, we showed that there is a unique u which is smooth up to t = 0 
and satisfies Pau = 0 fort< O, ujt=O = f E C00

• Alternatively, if u is 
smooth for t < 0 and we require u to be Ck, k < 00 , up to t = O, then 
equation (5.8.3) shows similarly that this is the case for arbitrary 
f E C00 and g E C00 if and only if I-a > k. If I-a < k, u is forced to be of 
the form (5.8.7). This fact accounts for the different boundary value 
problems discussed in Karol [17] for different ranges of a (see section 5.1). 

We now discuss smooth solutions for t > O. 
In this case our results are less complete. This is caused by the fact that 
in the elliptic case we do not have representation formulas like formula 
(5.8.3) for the solution of a Cauchy problem. However we will give a 
partial result in the spirit of Garabedian. 

Because Pa is elliptic for t > 0 we know that Pau = 0 implies u is 
real analytic fort> O. We will assume that u = u(z,t), z = x+iy, even is 
entire in z for t > 0 and we will determine all such u which are smooth in 
(x,t) and (y,t) for t ~ O. 

Define for t < 0 v(z,t) := u(iz,-t). 
Then v is welldefined, entire in z for t < 0 and 

0. 

Let moreover 

f(x) v(x,t0) = u(ix,-t0), 

g(x) dV dU . ar<x,to) = -at(1x,-to), to < o. 



125 

Then f and g are entire and v can be expressed in terms of f and g by 

means of formula (5.8.3). Note that u is smooth in (y,t) fort 2 0 implies 

v(x,t) is smooth in (x,t) for t 5 0. So v is given for t 5 0 by 

v(x,t) 

We did not use here that u is smooth in (x,t) up to t = O! Proposition 

5.8.8, part 3 shows that v(x,O) is entire in x. But then u is given by 

u(x,t) = v(-ix,-t) ca<Ka_1Cn,-t),v(-ix-n,O)> 

ca<Ka_1 Cn,-t),u(x-in,O)>. 

We denote this by u(x,t) = u0 * c K 1(x,t). a a-

PROPOSITION 5.8.9. u is a solution of Pau = 0 for t > 0 which is entire 

in z = x + iy for t > 0 and smooth in (x,t) and (y,t) for t 2 0 

~ u(x,t) = f * c K 1(x,t) for some entire function f. a a-
Moreover, in that case we have f(x) = u(x,O). 

PROOF. =>follows from the discussion above. 

""' That u is analytic in z = x + iy for t 2 0 is evident. Furthermore we can 

prove that <Ka_ 1(n,-t),w(x,y,n)> is smooth in (x,y,t) fort 2 0 for 
00 00 

arbitrary w E C . We can assume w E c0 and then the result follows as 

before from estimate (5.8.5). That Pau = 0 follows from the fact that 

~( )f (x-in) = o. x,n 
The last statement is evident. D 

We might try to extend the result of Proposition 5.8.9 to smooth 

functions f so that for some smooth a= a(x,n): ~( )a= 0 and a(x,O) 
x,n 

f(x). For bounded f such a function might be given by Poisson's formula for 

harmonic functions. However, we do not see how to obtain such a for ar­

bitrary smooth f. 

COROLLARY 5.8.10. If f is entire then 

{
f(x) * caKa_1(x,-t), 

u(x, t) := 
f(x) *xcaKa_ 1(x,t), 

defines a smooth solution of Pau = 0, u\t=O 

t 2 0 

t 5 0 

f. 

PROOF. The smoothness follows from the fact that the expressions defining 

u are equal on t = 0 and satisfy Pau = 0 for t 2 0, t 5 0 respectively. D 





APPENDICES 

A.I. Bessel functions. 

In this section we summarize some wellknown facts about Bessel 

functions. See Watson [27]. 

For n E Z the Bessel function Jn(z) is defined by 

(A. I. I.) J (z) = - 1-. 1' -~+I exp (!z(w--w1 ))dw. 
n 21fl. I w I =I w--

It is clear that Jn(z) is an entire function in z. Moreover 

J (z) = (-l)nJ (z). 
-n n 

More generally, for v E ~ Jv(z) is defined by 

oo (-l)m(!z)v+2m 
(A.1.2) Jv(z) = m~O m! r(v+m+I) 
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This coincides with definition (A.I.I) when v 0,1,2, ••• etc. The function 

(A. I. 3) 

can be extended to an entire function in z. That is, we can define branches 

of Jv(z) in the same way as we define branches of zv. 

Note that jv(-z) = j\l(+z). 

For v E ~ Jv(z) is a solution of Bessel's equation 

2 d2u du 2 2 
z -- + z dz + (z - v )u = 0. 

dz2 

So is J_v(z). For \! t ~ these two functions are linear independent. 

More generally, the equation 
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(A.1.4) 
2 d2u du 2 2 2S z - 2 +(2a-2Sv+l)z-d +(Sy z +a(a-2Sv))u dz z 

0 

Sv-a S by u = z J+ (yz ). 
-V 

is solved 

Some formulas: 

(A. I. 5) J_v(z) I = _ 2 sin vrr , 

J~v(z) Tiz 
z f o. 

(A. 1. 6) zJ' (z) ±VJ (z) = ± zJ"_I (z). V V v+ 

Oz)v +JI 2 v-! izs 
J)z) = f(v+l)f(!) (1 - s ) e ds, 

2 -1 
(A. L 7) Re v > -! . 

This formula can be interpreted for v 1 -!, -! etc. in distributional sense. 
See Gelfand/Schilow [JO]. 

Finally we mention the Hankel functions, which have some use in 
section A.3. 

For v t Z: 
-vni 

H~l)(z) 
J (z) - e J (z) -v v := 

i sin VTI 

VTii 
H( 2)(z) 

e Jv(z) - J_)z) 
:= 

i sin VTI v 

So Jv(z) = !O~l)(z) + ~2)(z)). 

A.2. Airy functions. 

In this section we summarize some wellknown facts about Airy functions. 
See also Erdelyi [8]. 

The function Ai(z) is defined for z real by 

(A.2. I) 1 oo ·c i 3) A"( ) J 1 zs+-3 s d 1 z = - e s. 2TI _00 

It can be shown that Ai(z) is an entire function in z which solves the 
Airy equation 

(A.2.2) o. 

It can be written as 



(A. 2. 3) 

with y 1(z) 

Ai(z) = Ai(O)y1 (z) +Ai' (O)y2(z) 

= L00 a z3m and 
m=O m 

I Ai(O) = --- Ai I (0) = - -i--

3tr(f) ' 33rCt) 

entire. 

The functions Ai(e±2Tii/3z) are solutions of equation (A.2.2) as well. 

Then Ai(z) = e-Tii/ 3Ai(e2Tii/ 3z) + eTii/3Ai(e-2Tii/ 3z). If we define 

(A.2.4) B'( ) ·[ -Tii/3A"( 2Tii/3 ) Tii/3A.( -2Tii/3 )] 
i z = i e i e z - e i e z 

then Ai(z) and Bi(z) are solutions which are real for real z. 

(A.2.5) IAi(z) 

Ai' (z) 

Finally for x > 0: 

(A.2.6) 

Bi(z) I 
Bi' (z) 

= -
TI 
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A.3. LEMMA A.3.1. Let Q c lRn, Q open. Let ijJ = ijJ(x,S) : Q x (JR.N \ {O}) ->-JR.+ 

satisfy s~ 0-estimates inn x (lRN\ {O}), A.> O, such that for every K com­

pact, Kc n there are constants c 1 ,c2 > 0 such that V x EK, ~ f 0: 

c 1 1~11.. s 1/J(x,~) s c2 lslt... Let a = a(y) be a smooth function on lR+ such that 
() m-n oo 

3 m0 : V n: 3 C > 0: Vy? I: la n (y)\ s Cy 0 . Let X = X(s) be a C 

function such that 0 s X s I and 

x=f lsl ?M 
0 < N < M < oo, 

0 lsl s N 

Then b(x,s) := xClsl)a(l/J(x,s)) 
A.ma N 

is an element of s1 , 0 cn x lR ). 

PROOF. Clearly b is smooth on n x lRN. Without restriction we can from now 

on assume lsl ? N and omit X· The method of proof will be a familiar one. 

See Melrose [!9]. 

Let K be a compact set, K c n. By induction with respect to n we will prove 

that for all n ? O 

(A.3.2) 

For j 

v j: 

V X E 

IY1 I+ IY2 1 $ n =:> 

y y (') 
K: 1Dx1Ds 2a J (1/J(x,S)) I 

0 we then obtain the desired result. 
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The basisstep n = 0 is shown by remarking that the estimates for I}! and 
(') (') (m -j)A 

a J show that la J (l}!(x,s))j s clsl 0 for ls[ 2 N. 

Now we assume estimate (A.3.2) to be proved for n s m. 

With D = a/axk or D = a/ask and IY, I+ [Yzl s m then 

(A.3.3) nn:In~za(j)(l}!(x,s)) = n:ln~2[a(j+l)(l}!(x,s))·Dl}!(x,s) ]. 

c· ) A(m0-j-I) 
Because a J+I (l}!(x,s)) behaves like a symbol in s 1, 0 at least for 

I I I I d ''' . f . SA SA- l . h 1 . y 1 + y 2 s m, an D'I' satis ies I ,O- or 1 , 0-estimates, t emu ti-
plicative property of symbols shows that (A.3.3) satisfies estimate (A.3.2) 

for n = m+I. D 

LEMMA A.3.4. Let a,l}!,x and n be as in Lemma A.3.1. Assume moreover that 

Amo N Then b(x,s) = x<[s[)a(l}!(x,s)) is an elliptic element of s1 , 0 (n x lR) of 
order Am0 • 

PROOF. Only ellipticity has to be shown. Since [a(y)[ 2c0 [y[l!IO for y 2 Yo 

we have for x E K compact, [s[ 2 s 0 , 0 < s 0 < 00 and some c > 0: 

[a(l}!(x,s))[ 2 clslAmo. 

This shows that b(x,s) is elliptic of order Am0. D 

EXAMPLE. Let a be smooth for y > 0 so that 

co m-n a(y) ~ L a y , a0 f O, y + 00 , 

n=O n 

and an asymptotic expansion for a(n) is obtained by differentiation of the 

series. Then a satisfies the assumptions of Lemma A.3.4. 

A.4. Asymptotic expansions of Bessel functions and related symbols. 

The asymptotic expansion for Jv(z) can be derived from the formula 

Jv(z) = ~[~l)(z) + ~2)(z)] 

and the asymptotic expansions for ~l)(z) and ~Z)(z). In Watson [27} we 

find 
(I) -~-n 

h z 2 

v,n ' 
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uniformly in z for lzl + 00 , -'IT< arg z < 2TI and 

h(2) =' fiei(Iv+! )TI (v,n), 
v,n Vff (2i)n 

uniformly in z for I z I + 00 , -2TI < arg z < 'IT. Asymptotic expansions for deri­

vatives of e-iz~I )(z) and eiz~2 )(z) can be obtained by formal differen­

tiation of the asymptotic series. Expansions valid in other sectors are 

provided by the relations: 

~I) ( zem'ITi) 

~2) (zemTii) 

sin(l-m)V'IT l:/ I) (z) _ e -VTii si;i mV'IT H( 2) (z) 
sin V'IT ·-v sin V'IT ·-v ' 

mTii 
Here arg(ze ) = m'IT + arg z, -TI < arg z $ TI. In particular, an expansion 

for H~2 ) (z) valid in the sector 0 < arg z < 2TI is given by 

~2 \z) ~ e-iz ~ h( 2)z-!-n - eVTii2cosVTieiz ~ h(l)z-!-n. 
n=O v,n n=O v,n 

Finally we remark that 

(2) V'ITi (I) 
Hv (z) + e 2cosV'ITHV (z) 

-iz 00 

~e !: 
n=O 

(2) -!-n 
h z 
v,n 

for I z I -+ 00 , 0 < arg z < 2TI. 

In chapter 5 we are interested in the asymptotic behaviour of 
I 

Jv(2ilslt 2 ) for \sl + 00 , t E lR \ {O}, arg t = o for t > o and arg t =TI 

for t < O. We define for z f O, 0 < arg z < 2TI 

+ e-iz~l)(z), av(z) := 

~(z) := eiz[~2)(z) + VTii (I) ] e 2 cos V'IT RV ( z) . 

For t f 0 and s f 0 then 

Now 
+ 00 (I) -!-n 

a (z) ~ !: h z 
v n=O v,n 

and 
- oo (2) -1-n 

av(z) ~ !: hv z 2 • 
n=O ,n 

Let \ji(t,s) := 2ltl!lsl forts f o. + 
Then a- and \jJ satisfy the conditions 

of Lemma A.3.1, so with X an arbitrary cut-off function: 

x<lsi)i\;(t,s) and x<lsi)l\;Ct,s) 

-1 n 
are elements of s 1: 0 ((:JR\{O}) x:JR ). 
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Moreover, Lemma (A.3.4) and the fact that h(IO) and h( 20) are unequal to zero v, v, 
show that these symbols are elliptic of order-~. 

The next two lemmas give us estimates which will be useful in chapter 

5 as well. 

LEMMA A. 4. l • Let X : ~ -+- JR be 

{
I I z I 

X(z) = for 
o I z I and define 

smooth, O s X s I and 

? M 
, 0 < N < M < 00 

s N 

+ -Then .tv and .tv are smooth in (t,t). Let K be a compact subset of JR. Then 

(A.4.2) 

+ -PROOF. Of course lv and .tv are smooth. The rest of the proof is quite simi-
lar to the proof of Lemma (A.3.1). So we will show by induction with res­
pect to n that for all n ? 0 

(A.4.3) V k+IYI s n: V j: 3 C: ln~l<xa~)(j)(2iltlt~)I s 

s C(l+ltl) 2k fort EK, t E ]Rn. 

For n = 0 it is sufficient to note that (Xa~)(j)(2iltlt4) is bounded for 
2ltl!ltl ? N. So suppose estimate (A.4.3) is true for n s m. Then for 

k+Jyl sm 

(A.4.4) 

I 
It is easy to show that 2iltlt 2 satisfies estimates such as in expression 

(A.4.2) for 2ltl ltl ~ ? N, k+ !YI ? I. 

An application of Leibniz' rule then gives estimate (A.4.3) with n = m+l. D 

+ REMARK. The estimates (A.4.2) do not show that 1- is a symbol. For y = 0 
+ it is easily shown that these estimates cannot be improved. So l- is not 

a symbol at all. This is different from the case of the Airy function, in 
which a similar construction did give a symbol (see Melrose [!9]). 

I 
LEMMA A.4.5. V k? 0 3 Ck: V (t,t): \tl 2 itl ? l => 

le±2\~\t~ ~ e+2lslt~j "cklsl2k. 
dt 



PROOF. 

Because 
l 

for J t J 2 I~ J <'. I , 

an induction argument gives the desired result. 

COROLLARY A.4.6. Let K be a compact subset of JR. 
l 

/2l~lt 2l~(~,t) 

is smooth and 

for t E Kand every ~. 
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D 

PROOF. This follows from Lemma (A.4.1), Lemma (A.4.5) and Leibniz' rule. D 

A.5. Estimates for the Airy function and related symbols. 
2 

In this section we give estimates for the functions Ai(wtl~l3), w E ~ 

fixed, lwl =I, which appear in the discussion of the Tricomi operator. We 

remark here that in Taylor [24] and Melrose [19] estimates are given for 

expressions involving Airy functions which are similar to the ones we give. 

However, in order to have them at our disposal when we need them, we state 

and prove the estimates for exactly the expressions we encounter. 

An asymptotic expansion for Ai(z) valid for z E ~' Jarg z·I < 1T has 

the form 
3 

_2z2 
Ai(z) = e 3 ai(z) 

00 -l-3n/2 
with ai(z) ~ L a z 4 , a0 f O. 

n=O n 

Asymptotic expansions for derivatives of ai(z) can be obtained by dif­

ferentiation of the series. An expansion for Ai(z) valid in a sector con­

taining z with arg z = 1T is found by using the relation 

Ai(z) = e1Ti/ 3Ai(ze-Z1Ti/ 3) + e-1Ti/ 3Ai(z/1Ti/3). 

Let w E ~' lwl =I, larg wl < 1T and define 

2 

aiw(t,0 := ai(wJtl 1~13), ~ E JRN. 

LEMMA A.5.1. Let X b~ as in Lemma (A.3.1). Then X(i~l)aiw(t,~) is an el­

liptic element of s~:0 ((lR \ {O}) x JRN). 
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2 

PROOF. ~(t,s) = [t[ [s[3 satisfies the conditions of Lemma (A.3.1) with 
A= i· a(y) = ai(wy) satisfies the conditions of Lemma (A.3.4) with m = -!. 
This follows from the asymptotic expansion of ai(z). 

In particular we define for t 1 0: 

a+(t,s) := ai(e2Tii/ 3t[s[f), 

a_(t,s) := ai(e-2Tii/ 3tlslt). 

LEMMA A.5.2. I) Lets E JRN, w E ~. lwl = I, larg wl <TI, T > o. Then 
3 

I 3n 2 I V n 2 0: 3 C : ---:0 Ai(wt[s[~) 
n Clt 

s cn(1+[s[)2nle-tls[<wt)21 

D 

for O s t s T. 

2) a similar statement holds for -T s t s 0 and w such that [arg(wt)[ <TI. 

PROOF. 3~ Ai(wt[s[t) = (w[s[f)nAi(n)(wtls[f) so we must show that 
dt 3 

[Ai(n)(wt[s[~)[ s c (I+lsl)n/3le-tlsl<wt)2!. 
n 

Now Ai( 2)(z) = zAi(z) so for n 2 3: Ai(n)(z) = zAi(n-2)(z) + (n-2)Ai(n-3)(z). 

Therefore it is sufficient to prove this for n = 0 and n = J. For n = 0 it 
is obvious because ai(wy) is continuous and bounded for y ~ 00 • 

! Here ai(l)(wy) is continuous and [-(wy)!ai(wy)+ai(i)(wy)[ s 
Hence the result. 

Cy 4 for y 2 I. 

For the function Bi(z) we remark that for [arg z[ < J 
3 

1z2 
Bi(z) = e 3 bi(z) 

in which bi(z) has an asymptotic expansion of the form 

bi(z) ~ ~ b z-!-3nl2, b0 1 O. 
n=O n 

2 

For bi(t[s[3) similar conclusions hold as given in Lelllllla (A.5.J). 

A. 6. Convolution with the distribution vp ~. 
In this section we derive some properties for the convolution of 

functions with the distribution vp~ that will be used in section 4.5. 

D 



For IP E C~(:R) -£ 00 -£ M 
<vp .Jc, cp> = lim f + f IP(x) dx = lim f + f IP(x) dx 

£-1-0 -oo £ x £-1-0 -M £ . x 
if supp IP c [-M,+M]. Because 

-£ M 
0 = f + f IP(O) dx 

-M £ x 

and IP(x) - IP(O) 
I x 

is continuous this is welldefined. This also holds for 

IP E c0(R). 

For IP E c1(R) n L2(:R) we can define 

-I 00 -£ I 
<vpl,cp> := f +f IP(x)dx+ lim f + f IP(x). 

x -"" +I x £-1-Q -I £ x 

If IPj -+ 0 in c1(lR) and in L2(lR), <vp~,IPj>-+ O. 

For IP as above we will discuss the convolution vpi* IP= <vp~,IP(x-y)>. 

LEMMA A. 6. I • Let IP E C I (:JR) n LzCR) and :~ bounded. Then vp i * IP is a 

bounded and continuous function. 

PROOF. I f IP(x-y) dy Is f llP(x-y) ldy s 
IYl?:l y IYl?:l y 

s ( J ~dy f llP(x-y) 12dy)! :5 M < 00 , M independent of x. 
IYl?:l y 

I 
f IP(x-y) dy I = I f IP(x-y); IP(x) dy Is 

£siyis1 Y £slyls1 

s 2 max llP' (F,:) I s 2M0 < oo, 

IE:-xjsl 
D 

LEMMA A.6.2. Let IP E cb(JR). Then vpt *IP(O = uo + s with uo E c~ and 
-I 

sEs1, 0 • 

PROOF. Let l/! 1 E C~(lR) be an even function so that 

{
I IE:I<! 

l/! 1 (0 = for 
0 Ii: I > I 

and l/J2 := I -ijJ 1• Then u0 := l/Jl vpt * IP and s := ijJ2 vpt * IP• u 0 is in C~, 
s is clearly smooth and 

n 1 f n(l/J2(l;-n)) 
D l/!2 vp ~ * IP = Di; l;-n IP(TJ) dT]. 
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Here lnl s R so that for li:I "'R+I: ls-nl?: llsl- lnll = lsl- lnl?: lsl-R?: 1. 

Then 
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IDn_l_I = ci I Is; ccl.;1-R)-(n+I)_ 
.;-n (.;-n)n+I 

D 

with mo > t+~+max(m,-1). 

LEMMA A.6.3. Let lP = lP(.;) E Sm 0(:JR) with m < P, 
_1 

2. 

PROOF. Let w1 and w2 be as in the previous Lemma. Then iJ! 1 vpf: * lP is smooth. 
So is iµ 2 vpf: * \j) because of Lemma A.6.6. 

DnijJI vpt * \P = vp J iµI (n) (D~)~.;-n) dn 

and 

(Dn\j))(.;-n) - (D~)(.;) = (Dn+l\j))(.;-e) with e E (-1 ,+I) -n 
But then jDn+l\P(.;-8)1 s; C(J.;i-l)m-p(n+l) for i.;I ~ 2. 

Further, W2 vpt E s7'.o and \j)E s~.o so that W2 vpt * \j) E s1;~~2+max(-l ,m)+c 
for every E > 0 as follows from Lemma A.6.7. 

l . ~+p/2+max(-1 m)+c Therefore vp7 * \j) is in S 1 0 ' for every E > 0. s 2P, D 

It is wellknown that in V' (R) (and even in S') 

E I I 
2 2 ...,. o(x=O) and x ± iE ->- VPx + iTio(x=O) for E + o. 

TI(x + E ) 

LEMMA A.6.4. Let \j) E L2(:JR). Then--}-,.-* <P is an analytic function of 
X - 1.E 

z = x ± ic for Im z ~ 0. It is bounded for Im z ~ ±o, o > 0 arbitrary. 

PROOF. This Lemma is wellknown. See for instance Hochstadt [14], page 191, 
Theorem 7. D 

LEMMA A. 6. 5. Let lP E C 1 (:JR) n L 2(:JR) and ~~ bounded. Then 
I I - . -!'. I 0 . th x ± ic * \P->- vpx * lP + iTil() "or E ..- -in e supremwn norm. 

PROOF. We only discuss the convergence of ~1-.- * \j). The other sign goes ~~ x+ic 
similarly. From Lemma A. 6.1 we know that vp~ * lP is a bounded function 

I and Lemma A.6.4 shows that x+iE * l() is a bounded function for E > 0 
fixed. 

x +I i E * lP - vp ~ * <P + i Til() = 



Now 

so 

and 

iE 
*{jJ-~*{jJ+iTI{jJ. 

x + E 

iE = I (_I__ _ _I__ ) and I ( I I ) x 
x2 + E2 "2\x - :LE x + :LE 2 x - iE + x + iE = x2 + E2 

I J.. iE x I 
--.- * {jJ - vp * {jJ + --,,-----,,- * {jJ = ---,.-----,,- * (j.J - vp - * {jJ 
X + :LE X XL + EL XL+ EL X 

I f (+z - l.. \~cx-y)dyl = j f 
1y121 y +E yr \y\21 

2 2 (j.J(x-y)dy s -E2 I 
y(y + E ) 

2( d 2 ) 1 2 SE f r f \(j.J(x-y)\ dy 2 S CE, 
\y\21 y 

los\;!s1 

losi;!s1 

2 2 (j.J(x-y)dy = -E2 I 
y(y + E ) 

; 2 ((j.J(x-y) - (j.J(x) )dy E2 I 
y(y + E ) 

because \~(tp(x-y) - (j.J(x)) I = \lP' (!;)I S M. 

iE . . f (j.J(x-y) - tp(x) d 
-2--2 * \I) - :L'TT{jJ = 1-E 2 2 y 
x +E y +E 

and 

S E f \ylM dy -2EMlogE, 

IE f (j.J(x-~)-~(x) dyl s 
\y\21 Y +E 

M0 = max \tp(y) \. 

LEMMA A.6.6. Let f and g belong to L2(JR). 

I. f * g is continuous. 

ES\y\SJ Y 

D 

2. If f E c 1(IR) and for some a>!: \f'(x)\ s c\xl-a for Ix\ 2 I, then 
I nd d I f * g E C (IR) a dx f * g = f * g. 

PROOF. I. \(f*g)(x+h)-(f*g)(x)\ sf \f(x+h-y)-f(x-y)\ \g(y)\dy 

= f I f(y+h) - f(y) I I g(x-y)\ ay s \lfh - f llz l~\1 2 -+ o if h -+ o. 
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Here fh(y) := f(y+h). (See Rudin [21], page 196, Theorem 9.5). 

2. Fix E f O, jEI s I. Then 

lf(y+E)E-f(y) - f'(y)I 

for some n, O < lnl < jEj. 

I f' < y+n) - f' < Y) I 

f' is continuous and for jyj 2 2: jy+nl 2 j jyJ - lnl I = !YI - lnl > \y\ - 121. 

So \f'(y+n)I s C(jyj-1)-a for jyj 2 2, lnl s I. Therefore 

jf'(y+n)j s h(y) with h E L2(:IR) for all lnl s I. Now 

I (f * gXx+E) ~ (f * g)(x) _ (f' * g)(x)/ s 

s J I f(y+E); f(l) - f' (y), jg(x-y)jdy 

and 

which is an integrable function. Here his independent of E, 0 < jEj s 1. 

An application of Lebesgue's Dominated Convergence Theorem gives the 

desired result. D 

m1 
LEMMA A.6.7. Leto= o(s) be an element of s 0 (1R) and T = T(s) an element 

m2 P1, 
of sp2 , 0(1R). Assume 0 < p 1 s p2 s I, m1 < -! and m2 < -!. 
Then o * T is an element of STPJ ,O for m > ! + p 1 /2 + max(m 1 ,m2). 

PROOF. (o * TXO = J o(s-n)T(n)dn is welldefined and smooth as follows from 

Lemma A.6.6. For 0 s k s n: 

n J n J n-k k DS(O * T)(s) = (D O)(s-n)T(n)dn ~ (D O)(s-n)(D T)(n)dn 

by means of partial integration. 

Further for a 2 o: Islas <ls-nl + lnl)a s c <ls-nla+ lnla) so a 

j Is I aD~(o *L)(S)I s 

s Ca J I s-n 1al(Dn-ko)(s-nXDkTXn)I dr,+Ca J I (Dn-ko)(s-n) In I a(DkT)(n)I dn 

which is bounded in s provided m1 - p 1 (n-k) +a < -! and m2 - p2k +a < -! . 
Here we use the fact that the convolution of two functions which are in 

L2 is a bounded function. For n = 0 this implies 0 s a, m1 +a < -! and 

m2 +a < -~. So 0 s a < -! - max {m1 ,m2}. For n > 0 even we choose k = ~ and 



then we can take 

P1 
O s a.< -~-max{m 1 ,m2 }+n--z· 

For n odd we choose k = n;I • Then 0 s a., a. < -! - m1 + n(p1 /2) - p1 /2 and 

a. < -! -m2 + n(p2/2) + p2/2, so we can take 

Summing up, we can take 

for some E > O. 

Note that for a.< 0: Jt;;J~n(O*T) is clearly bounded for lt;;I-+ 00 • D 

A.7. Some lennnas. 

LEMMA A. 7. I. Let S1 c lR.n+I, S1 open. Let P be a '!'DO on S1 with real homo­

geneous principal symbol p which is independent of x. Here (x,t), x E Jil, 
denotes a point in S1. Suppose (x0 ,t0 ,t;;0 ,-r0 ) E S1 X (lR.n+I \0) is such that 

p(x0,t0 ,t;;0 ,-r0) = O and ~(x0 ,t0 ,i;; 0 ,-r0 ) ~ o. Then in a neighbourhood of 

(x0,t0 ,i;;0 ,-r0 ) T is deteY'f11ined as a C00-function in (t,I;;) such that 

'o = T(t0 ,t;;0), p(x,t,1;;,-r(t,I;;)) = O, T is homogeneous of order one in i;;. 

PROOF. Implicit Function Theorem. D 

LEMMA A.7.2. Consider again the situation as described in Lemma A.7.2. 

In a neighbourhood of ((x0 ,t0 ,i;;0 ,-r0),(x0,t0 ,i;;0 ,-r0)) the bicharacteristic 

relation of P is given by l\j,0, where <Po is the phase function given by 

<1>0(x,y,t,s,8) = <x-y,8> + $(t,8) - $0(s,8). 
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Here$ is a smooth function near (t0 ,t;;0), homogeneous of order one, so that 

~~ = T(t,I;;), $0(s,1;;) = $(s,I;;). 

PROOF. ~o = {(x,t,8,~~; y,s,8, a:s0) Ix -y + ~~ - a:90 = o}. 
The Hamilton-Jacobi equations are (with parameter z along a strip): 

dx = ~ 
dz ai;;' 

Note that~= T(t,8), 

dt = ~ di;; 
dz dT' dz = 

~-as - T(s,8). 

0, :~ = - *, p(x,t,l;;,T) = 0. 
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<lijJ <lijJO 
It is sufficient to check that (y- a-e<t,9) + ae-<s,9),t,9,T(t,9)) is on 
the same integral curve as (y,s,9,T(s,9)). For t = s the two points 

coincide. Since ~~ ! 0 we can use t as parameter along the strip instead 
of z. 

Then 

d [ <liJ! <liJ!o J dt y- ae (t,9) + ae (s,9) 

-2._ [ t] = I = 2R./2R. dt dT dT ' 

-2._ [T ( t I; )] = .£!_ = - 2R-/2R-d t ' dt Clt dT • 

321jJ __ dT = 2R-/2R-
- ata9 - ae a9 <lT ' 

LEMMA A.7.3. Let u 1, ... ,un E S'(R), supp(uk) c]R+, k= 1, ... ,n. 

Then u 1 * * un E S'(JR). 

D 

PROOF. u1 * * un E V'(lR) is welldefined and associative because all uk 
have support in R~ See section 2.2. Therefore we can assume n = 2. 
Choose X E C00(R) so that 

-- {I X(s) for s 
0 

> -! 

< -1 

Then for (() E C~(lR): 

(A.7.4) 

Let us show that this defines a continuous linear form on S(lR), too. 

Since ul ® u2 E S'(lR2) we must show first that x(x)x(y)<.p(x+y)·E S(lR2). If 
x2 + y2 = R2 then x2 ~ R2 /2 or y2 ~ R2 /2, so lxl ~ R/./2 or IYI ~ R/./2. We 
can assume x ~-I and y ~ -1, so if R > ./2: x+y ~ R/./2 - I. But then we get 
for I~~ 2./2, x ~ -1, y ~-I the inequalities: 

I --- I ----- /x2 + y2 ,,; - /x2 + y2 - I $ x+y $ 21~ 
2./2 /2 

Now <.p E S(R) implies 

V (i,m): 3 M0 : V 
.c,m 

z: i/<P(m)(z)I $Mo < ""· 
.c,m 

lal 
!: Ck l<.p(k) (x+y) I, Ck < 00 and 

k=O 
independent of ((). 

Also 

But then for /x2 + y2 ~ 2./2: 
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For /x2 + y2 s 2/2 : 

This implies x(x)X(y)<JJ(x+y) E S(lR2 ). Moreover, if (j). + 0 in S(lR) then 
• J 

V (i,m): M~ + 0. So X(x)X(y)<JJ.(x+y) + 0 in S(lR2 ) as well because the Ck 
~,m J 

are independent of (j). Therefore expression (A.7.4) can be extended con-

tinuously to S(:R), that is, u 1 * u 2 E S '(lR). D 

REMARK. u E S '(:Rn) ~ 

u = Da(l+lxi 2 )kf(x) for some a,k and bounded continuous function f. 

Furth:r (l+lxl2)k(l+\y\2)i s (I+ lxl 2 + IY\ 2 )k+i, sou E S 1 (lRn), v E S 1 (:Rm), 

implies u ® v = n~8 (1 + \x\ 2 + \yl 2)k+ih(x,y) with 
x y 

h(x,y) = f(x)g(y) (I+lx\ 2 )k(I+lyl 2)i a bounded continuous 
(I + Ix 12 + I y 12 ) k+:t'. 

function. 

LEMMA A.7.5. Let a E E'(:Rn) and b E V'(:Rn x lR.m). Convolution of a and b 
x x y 

with respect to x only is then welldefined by 

and we have 

a * b x 

WF(a *x b) c {<x 1 +x2 ,y,s,n) I (x2 ,y,s,11) E WF(b) and 

[ (x 1 ,s) E WF(a) or (s = 0 and x 1 E supp(a))]}. 

PROOF. a® oy=O E E 1 (lR: x lR;) so convolution is welldefined. 

Therefore 

WF(a ® oy=O) <p WF(a) x WF(oy=O) u ((supp(a) x {O}) x WF(oy=O)) 

u (WF(a) x (supp(oy=O) x {O})) 

{<x,O,s,11) I (x,t;) E WF(a) or (s=O,n;!<Oand xE supp(a))}. 
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(x2 ,y2,s,n) E WF(b)} 

c {cxl+x2,y,s,n) I (x2,y,s,n) E WF(b) and 

[<x1 ,S) E WF(a) or (s 0 and x1 E supp (a))]}. 

Step (I) follows from property 5 in section 2.4, step (2) follows from 

the result given in section 2.5. D 
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