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CHAPTER I 

INTRODUCTION 

J. GENERAL INTRODUCTION AND SUMMARY 

This treatise concerns two topics, both involving large deviations. Ir~ 

Chapter II, probabilities of gross errors (large deviations) of point esti

mates are considered and in Chapter III we determine the Bahadur efficiency 

and deficiency of classical two-sample conditional tests in exponential 

families. The present chapter contains an introduction to both subjects, a 

summary of the results and some more technical preliminaries. We start with 

an outline of the estimation problem. 

Let x1,x2 , ••• be a sequence of independent random variables with a 

common probability distribution P8 onlRk, where P8 is a member of a para

metric family P = {P 8 : 8 E 8} (in the initial two sections of C~apter II 

a somewhat greater generality is allowed). For each n = 1,2, .•• let an 

estimate T = T (X 1, ... ,X) of g(8) be given, where g is a map of 8 into d n n n 
lR. Examples of g's of interest are g(8) = E8x1, g(8) = var8 x1 or g(8) = 

inf {x: P8((-oo,x]) ~ 4} when k = I, in case 8 = (e(I) , ... ,e(d)) E lRd one 

might take g(8) = 8 or g(8) = e<i)_ 

The quality of Tn is often measured by its (normalized) expected 

quadratic loss 

(I. I) 

or, since (I.I) may be hard to obtain, by the variance (or covariance 
l 

matrix) of the limit distribution of n 2 (T - g(8)). This variance is then 
n 

compared with the Cramer-Rao bound. Note that the limit distribution of 
l 

n 2 (T - g(8)) allows a sensible approximation of the probability of errors n 

(I. 2) P8 <11T -g(B)il>s) n n 
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-1 
when E 

n 
O(n 2 ) as n + 00 • We aim to take, however, the probability of 

gross errors 

(I • 3) 

for fixed values of E as a basis for comparison of different estimates of 
g(8), a point of view first taken by Basu (1956), Bahadur (1960b) and Huber 
(1968). Just like the expected quadratic loss (I.I), the probability of 
gross errors (1.3) - also called the inaccuracy function - can often not 
be evaluated explicitly and one considers an asymptotic expression instead. 

For consistent (sequences of) estimates {T }, the inaccuracy function n 
tends to zero as n + 00 , usually exponentially fast (when E > 0 is fixed); 
we take the exponential rate of convergence 

(I. 4) 

coined inaccuracy rate by Sievers (1978), as a yardstick to compare esti
mates of g(8): the larger the inaccuracy rate the better the estimate. 

In Section II.I a bound b(E,8) on the inaccuracy rate of consistent 
estimates originally due to Bahadur (1960 b) is discussed. Bahadur's bound 
b(E,8) plays a similar role for the inaccuracy rate as the Cramer-Rao bound 
for the variance of the limit distribution. An obvious target of this study 
is to determine (consistent) estimates which attain Bahadur's bound, if 
they exist. Since inaccuracy rates (1.4) and bounds b(E,8) are often hard 
to evaluate and small E1 s are particularly important, most authors (Baha
dur (1960b, 1967, 1971, 1983), Fu (1973, 1975, 1982), Perng (1978)) con
centrate on the behaviour of the inaccuracy rate and b(E,8) as E + O. In 
sufficiently smooth one-parameter families with g(8) = 8 it holds that 

b(E,8) 1 2. ( 2) 2E i 8 + 0 E as E + 0, 

where i 8 denotes the Fisher information. Bahadur (1960b, 1967) proved that 
the inaccuracy rate of the maximum likelihood estimate (MLE) equals b(E,8) 
to first order as E + 0. This result was extended to certain maximum pro
bability estimates by Fu (1973) and, ink-parameter families, to regular 
best asymptotic normal estimates by Perng (1978). Perng's result includes 



MLE's ink-parameter exponential families. In contrast, we shall mainly 

study inaccuracy rates for fixed £ > O. 
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In Section II.2 a simple but important sufficient condition (II.2.2) 

for an estimate to attain Bahadur's bound is seen to fail in families which 

are not "exponentially convex", see Section 2a and Lemma II. 2. 2, giving a 

partial explanation for the elusiveness of estimates which attain the bound. 

In Example II.2.2 Bahadur's bound is proved to be unattainable. 

Section II.3 treats estimation in exponential farrrilies. Exponential 

convexity is here equivalent to a convexity condition on the parameter 

space, and indeed, for exponentially convex exponential families the MLE 

generally attains Bahadur's bound when £ is not too large, extending 

Perng's (1978) result for infinitesimal £ 1 s to the present fixed-£ case. 

Curoved exponential fcunilies are considered next as an important subclass of 

the non-exponentially convex exponential families. Here the nice result of 

the convex case is not available, though examples are given where the bound 

is attained at a single 8 or for a single £ > O. Therefore we slightly 

change tack and investigate only estimates which satisfy a natural lineari

ty restriction. In that class of estimates the MLE turns out to have the 

best inaccuracy rate for each sufficiently small, but fixed £, 

In the final section of Chapter II we look at shift fcunilies on the 

real line having Lebesgue densities. There are only a few essentially 

different exponentially convex shift families (examples II.4.1-3); in these 

families the MLE attains Bahadur's bound. For other shift families the 

bound is not often attained for all 8 1 s simultaneously, but examples are 

given (examples II.4.4 and II.4.11) where a consistent estimate attains the 

bound for each £ > 0 and at a single 8. In shift families it is natural to 

restrict attention to (translation) equivariant estimates, an estimate T11 

being equivariant when T (X1+c, ... ,X +c) = T (x1, ••• ,X ) + c for each c E lR. n n n n 
Sievers (1978) noted that when p(x-E) I p(x+E) is nondecreasing, where p is 

the density of P0 , an equivariant estimate T! exists which minimizes for 

fixed n 

over the class of equivariant estimates, cf. also Huber (1968). 

Thus, the inaccuracy rate of equivariant estimates is bounded by the 
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inaccuracy rate of {TE} (Sievers (1978), Thm. 2. 1), when p satisfies the n 
condition above. 

For a wider class of shift families we derive a bound which coincides 
with Sievers' bound when p satisfies his condition. When p is sufficiently 
smooth and E is small enough, an M-estimate is constructed which attains 
this bound. In constrast to Sievers we employ a typical large deviation 
approach. Furthermore, we prove these estimates to be essentially unique 
in the class of M-estimates and we give a necessary condition for Gateaux
differentiable estimates to attain the bound. An example is given where a 
Gateaux-differentiable L-estimate (a trimmed mean) indeed attains the bound 
in the double exponential shift family. Remarkably, Sievers' bound can be 
higher than Bahadur's bound. The reason is that Sievers' bound concerns 
equivariant estimates, which are not necessarily consistent (examples 
II.4.2-3). When p is symmetric and sufficiently regular though, Sievers' 
estimate {TE} is consistent and hence Sievers' bound is not larger than n 
Bahadur' s. 

In the last part of Section II.4 we show by an example that the 
approach of Sievers cannot easily be generalized to location-scale families. 

In Chapter III we consider, in a full one-parameter exponential family 
{P6 : 6 E 8*}, the problem of testing the hypothesis 61 = 62 against the 
alternative 61 > 62 on the basis of samples x1, ••• ,Xm from Pe 1 and 
Y1, •.. ,Yn from P62. Without loss of generality we assume that the family is 
in its canonical form, cf. Section 2a, implying that L~ 1 X. and L~ 1 Y. 

i= i i= i 
are sufficient for 61 and 62 . 

The uniformly most powerful unbiased (UMPU) test for the above test
ing problem is the - possibly randomized - conditional test oc defined by 
means of the conditional distribution of L Xi given L Xi + L Yi, cf. 
Lehmann (1959). 

EXAMPLE I.I. Let X and Y have binomial distributions with parameters (m,p 1) 
and (n,p2), respectively (X and Y are sums of independent Bernoulli random 
variables). Fisher's exact test, randomized so that the conditional size 
equals a, is UMPU for p 1 = p2 against p 1 > p2 . 

The main purpose of this chapter is to determine how much the power 
of the conditional test falls short of the envelope power, in terms of 
Bahadur efficiency and deficiency. The envelope power is determined by most 
powerful (MP) tests against simple alternatives, hence the difference in 



power describes how much we lose by not knowing the nuisance parameter. We 

shall now briefly introduce Bahadur efficiency and deficiency for the two

sample case; more general introductions can be found in Bahadur (1971) and 

in Groeneboom and Oosterhoff (1981). The efficiency concept was originated 

by Bahadur ( 1960 a). 

5 

Let {~} and {~} be nondecreasing sequences of integers such that 

~+nN = N for each N, and define N+(a,S,8 1,82) to be the smallest number N 

such that the MP test of H = {(8,8) : 8 Ee*} against {(81,82)} of size a 

has power at least Sin (8 1,8 2). Let Nc(a,S,8 1,82) be similarly defined for 

the conditional test. 

The Bahadur efficiency of the conditional test versus the MP test is 

defined as 

keeping the other parameters fixed (the more classical Pitman efficiency 

may be defined as 

keeping a and S fixed). 

The Bahadur efficiency turns out to equal 1 in our testing problem, 

hence it is useful to consider the speed of convergence by looking at the 

difference of the required sample sizes N - N , named deficiency by Hodges 
c + 

and Lehmann (1970). 

Bahadur deficiency of order O(D(N)) is defined by 

as a+ O, 

where S, 8 1 and 82 are kept fixed. Bahadur deficiency of order a(D(N)) is 

similarly defined. Deficiency of order 0(1) is also called bounded defi

ciency. Note that eB = 1 is equivalent to Bahadur deficiency of order a(N). 

Bahadur (1965,1971) proved, under general conditions in a one-sample 

situation, that the likelihood ratio (LR) test has Bahadur efficiency I 

with respect to the MP test. Kallenberg (1978,1981) proved the LR test to 

have Bahadur deficiency (with respect to the MP test) of order O(log N) in 

k-parameter exponential families, and 0(1) in one-parameter exponential 

families. In the normal location-scale family however, the t-test was found 
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to have bounded deficiency, too (Kallenberg (1981)). Note that the t-test 
is actually UMPU. The present situation is somewhat similar in that 
81 - 82 = 0 is to be tested against 8 1 - 82 > 0, where 82 is a nuisance para
meter like the variance in the t-test. 

We shall prove, for one-parameter exponential families with either 
a lattice distribution or a Lebesgue density satisfying some regularity 
conditions, that the Bahadu:t' deficiency of the conditional test with res
pect to the MP test is bounded. Furthermore, an explicit upper bound for 
the asymptotic deficiency will be obtained for families with a density. 
Boundedness of the deficiency implies, of course, that the Bahadur effi
ciency equals I. 

For the binomial distribution of example I.I, the theoretical results 
are complemented by computer calculations. For some selected values of 
(p 1 ,p2), the power S and the sample size N+' an upper bound on the 
deficiency Ne - N+ has been determined. This upper bound turns out to be 
low and remarkably constant as a function of N+. 

Michel (1979) investigated the asymptotic power of the (one sample) 
conditional test in a k+l-parameter exponential family, where the hypo
thesis concerns the first parameter only, the other k being nuisance para
meters. For local alternatives he proved that this UMPU test has the same 
power up to O(N-I) as a test which is MP in a larger class of not neces
sarily unbiased tests. Using the methods of the present study one may prove 
in Michel's testing situation, but for fixed alternatives and a+ 0, that 

_1 the conditional test has the same power up to 0(N+ 2 ) as the MP test. 

Albers (1974) determined the Pitman deficiency of the conditional 
test with sample ratio ~IN = ! versus the same test with the Pitman
optimal ratio. He proved that the Pitman-optimal ratio tends to ! and that 
the deficiency is bounded. Thus, for local alternatives the ratio~ IN= 
is almost optimal. For fixed alternatives, however, the situation is dif
ferent. 

The Bahadur-optimal sample ratio converges to a number v0 which de
pends on the alternative and is in general not equal to !. Moreover, as we 
shall prove in Section III.7, the Bahadur efficiency of the conditional 
test with ratio ! versus the conditional test with the Bahadur-optimal 
ratio is in general smaller than one, in contrast to Albers' result. 
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We conclude this section with some remarks on the notation. In re

ferences to a relation, theorem, etc., within a chapter, the chapter number 

is omitted. Probability measure(s) is frequently abbreviated to pm(s), 

P-almost surely is denoted [P]; almost everywhere will refer to Lebesgue 

measure and is abhreviated to a.e. Furthermore, convergence in distribution 

and in probability under a pm P are denoted Vp and L, and finally, the 

end (or omission) of a proof will be indicated by D. 

2. GENERAL PRELIMINARIES 

2a. Exponential families 

A d-dimensional random vector Y is distributed according to a k-para

meter exponential family when its densities with respect to a a-finite 

measure v on1Rd are of the form 

(2. I) 
y 

dPe (y) c(S) exp { ~ Q. (S)T. (y)} h(y)dv(y), 
j= I J J 

where c(S) is the norming constant and the functions Tj, j = I, ... ,k and h 

are assumed to be v-measurable. 

EXAMPLE 2.1. The binomial distribution has density with respect to counting 

measure 

EXAMPLE 2.2. The normal N(µ,o 2) distribution has Lebesgue density 

2 -! 2 2 {27TO} exp {-Hy-µ) /o} 

y 
Since P8 depends one only through the functions Qj' a more natural 

parametrization has the form (absorbing the factor h into v) 

(2.2) 
y 

dPe (y) c(S) exp{~ 8.T.(y)}dv(y), 
I J J 

Since the vector T = (T 1(Y), ••• ,Tk(Y)) 1 is sufficient for 8, all statisti

cal inference is based on T, whence we may as well consider the densities 
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of T itself, which can be written as 

(2. 3) T c(8) exp {L 8.t.}dv (t), 
J J 

8 E 8, 

the (a-finite) measure VT being induced by the map T, cf. Witting (1966), 
p. 57. 

Applying vector notation and changing the name of the statistic to X 
we obtain the representation which shall be employed in the sequel: 

(2. 4) 

where 

(2.5) 

x dP8 (x) 

1}!(8) 

exp {8 1x-1}!(8)}dµ(x), 8 E 8, 

e'x 
log J e dµ(x) 

and where 8 is a subset of the full parameter space 

k e' 8* {8 E JR ! f e Xd]J(X) < oo}. 

As is well known, 8* is convex. Throughout this thesis we will assume that 
8* has a non-empty interior with respect to the Euclidean topology on1Rk, 
denoted int 8*, and that the measureµ is not supported on a flat of dimen
sion lower than k. Barndorff-Nielsen (1978) has called such a representa
tion of the family {F8 : 8 E 8*} 11 full canonical" and the statistic X "mini
mal canonical". As noted by Berk (1972), these assumptions do not restrict 
generality since they can be met by transforming and/ or reparametrizing to 
lower dimensional subspaces. The assumptions also imply that iJ; is strictly 
COnVeX On 8* and hence continuous On int 8*. When 80 E int 8*, 

holds for each 8 E 8*, hence it is not a restriction to assume thatµ is 
a probability measure and that 0 E int 8*. 

EXAMPLE 2.1. (continued). The binomial distribution has density 

dP:(x) = exp {ex + n log l+2e8 } dP~(x) 



where P0 is the binomial B(n,!) distribution and e =log (p/(t-p)). 

EXAMPLE 2.2. (continued). For the normal N(µ,cr2) distribution, the density 

of the minimal canonical statistic (Xt,x2) = (Y,Y2) can be written as 

9 

PX . the distribution of X for o, a 2 t. The relation of (µ,cr2) where 0 is µ = 

and (et ,e2) is given by et = 
2 

µ/cr ' e2 ~ - t I (2cr2). Note that e* = 

{(et ,e2> : -oo < et < 00 

' 
-00 < e2 < !}. 

Let 

8t = {e E 8* : Eellxll < oo}, 

where II· II denotes Euclidean norm, then int e* c Gt (Berk (1972)). On 81 we 

define 

The map A is. 1-1 on e 1 (Berk (1972)); its inverse A-I is defined on A= J.(8\ 

For e E int e* we have >.(e) = grad ~(e) and the covariance matrix ~e is 

equal to the matrix of second order derivatives of ~. 

Furthermore, since µ is not supported on a flat, ~e is positive 

definite on int e*. Since moments of all orders exist on int e* (Lehmann 

(1959)), each moment EellxlP is uniformly bounded fore EA when A is a com

pact subset of int e*. 

Finally, when (X1,x2, ••• ,Xn) is a random sample from Pe, and 

0 E int e*, the distribution of xn = .!_ Ln x. is given by n i=I i 

dP(n) (x) e exp {ne'x - n~(e)}dµ(n)(x), 

where p~n) is the distribution of xn and µ(n) = p~n). 

For one-parameter exponential families, we list some additional pro

perties. Since e* is convex, it is a possibly infinite interval inlR. 

Kallenberg (1978), Lemma 2.2.1, proved that~ is continuous one* and that 

J.(e) = EeX is properly defined and continuous one*, considered as a map

ping into the extended real line. Moreover, >. is increasing one*; its 
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inverse A-I is increasing and continuous on A. The second derivative of ~ 
is denoted a 2 . 

To conclude this subsection we introduce a special one-parameter ex
ponential family. Let p* be the class of all pms on a set X, let P,Q E p* 
and let µ be a a-finite measure dominating both P and Q. Furthermore, let 
p and q be the µ-densities of P and Q and define Y = {x EX: p(x)·q(x) > O}. 

DEFINITION 2.1. The exponential family between P and Q, PP,Q = 
{Ra : a E [O,I]} is defined by its µ-densities {ra}' 

rN (x) = exp fo log .s..0!2_ - ~P ,Q (a) }p (x) I y (x), "" P (x) 
a E [O,I]. 

Note that PP,Q is empty when Y = 0, PP,Q contains more than one pm un
less q(x)/p(x) is a constant on Y and that the family is independent of the 
measureµ. Furthermore, r 0 (x) = p(x)ly(x)/P(Y) and r 1(x) = q(x)ly(x)/Q(Y), 
thus when P(Y) = I we have P = R0 • 

Exponential families as in Definition 2.1 were earlier used by Brown 
(1971). Note that the dominating measure p(x)ly(x)µ(x) of {Ra} is not nec
essarily a probability measure. 

When Pn,Pe are members of an exponential family {P6 e E 0}, the 
family between pn and Pe is a linear subfamily of {Pe : e E 0*}: 

Pn,Pe 
p ., = {P 

(1-a)n+ae aE (O,I]}. 

PwPe 
Note that p c {Pe : e E 0} for all n,e E 0 iff 0 is convex. More 
generally, we shall call a set P of pms exponentially convex when P,Q E P 
implies PP,Q c P. 

2b. Kullback-Leibler information 

Let P* be the class of all pms on a set X. For P,Q E p* the Kullback
Leibler information K(P,Q) is defined as 

dP K(P,Q) = EP log dQ when P « Q, 00 otherwise. 

Some basic properties are 0 s K(P,Q) s oo, K(P,Q) = O # dP/dQ = I [P], 
K(aP 1 + (l-a)P0 ,Q) s aK(P 1,Q) + (l-a)K(P0 ,Q). The last inequality implies 
convexity of the sets 
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(2.6) r*(b,Q) = {P E p* : K(P,Q) ~ b}, Q E p*, 0 $ b $ oo, 

In spite of these distance-like properties Kullback-Leibler information is 

not a metric (it does not satisfy the triangle inequality and is not sym

metric, f~r instance). Note that the set r*(b,Q) is not exponentially con

vex. We give an example: 

EXAMPLE 2.3. Let x 1,x2 ,x3 be distinct points and define Q{x.} = ~' i= 1,2,3; 
{ } 1 { } 1 Po,P1 . i . P0 xi = z, i= 1,2 and P1 xi = z, i=2,3. P contains one pm R with 

K(R,Q) = log 3 whereas K(P0 ,Q) = K(P 1 ,Q) = log~. 

A useful identity concerning Kullback-Leibler information is 

(2. 7) J dQ K(R,P) - K(R,Q) = log dP dR, 

which holds when both K's are finite and Q << P [R] (Csiszar (1975)). The 

following lemma was also proved by Csiszar ((1975), Lemma 2. I). 

LEMMA 2.1 (Csiszar). When K(P,R) and K(R,Q) arr finite, then (i) and (ii) 

below are equivalent. 

(i) K(aP + (1-a)Q) ~ K(R,Q) for each a E [0,1]. 

(i'i') f 1 dR dP ( ) og dQ ~ K R,Q • 

D 

A quantity related to Kullback-Leibler information is M(P,Q), de

fined for P and Q E p* by 

(2.8) M(P,Q) = inf {max [K(R,P),K(R,Q)] : REP*}. 

M(P,Q) occurs in the theory of Chernoff efficiency of tests - it is the 

logarithm of the Chernoff index of the most powerful test of P against Q -

cf. Chernoff (1952), Kallenberg (1982) and, more implicitly, Brown (1971). 

One might say that M(P ,Q) is the Kullback-Leibler information of the 

"middle" of PP,Q with respect to P and Q. A lemma supports this view: 

LEMMA 2.2. When it is finite, the infimum in (2.8) is attained for a unique 

pm &-- E PP,Q. Without restrictions we have, writing p = dP/dµ and q = a 
dQ/dµ, 

(2.9) M(P ,Q) J a I-a - log inf q p dµ. 
O<a<I 
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The proof is deferred to Section 2d. 

Often we shall not be concerned with P* itself, but with a subset P 
of P*. Therefore we define for P,Q E P 

(2. 10) Mp(P,Q) = inf {max [K(R,P),K(R,Q)] : RE P}. 

Note that Ra E P implies Mp(P,Q) = M(P,Q). The converse also often holds: 

LEMMA 2.3. If P is closed in the metric of total variation and P,Q E P then 
Mp(P,Q) M(P,Q) < 00 implies that the infimwn in (2.10) is attained in P, 
i.e. R~ E P. a 

The proof is again in 2d. 

In exponential families (2.4) we have 

(2. 11) 

for all n E 8 1, 8 E 8*. In one-parameter exponential families, (2.11) holds 
for all n,8 E 8*, 

EXAMPLE 2.4. Let {P8 : 8 E lRk} be the multivariate normal family with mean 
vector 8 and identity covariance matrix Ik, then we have dP8(x) = 
exp {8'x - 1ll8ll2}dP0(x), hence K(n,8) = !lln-8112 . 

In other exponential families the relation between Kullback-Leibler 
information and Euclidean distance is not so nice, but there is still a 
connection, as was proved by Kallenberg (1981), Lemma 3.1.a: 

LEMMA 2.4. (Kallenberg). If {P8 : 8 Ee*} is an exponential family and Ca 
compact subset of int e*, then ll>..Cn)-A.(8)11 !lln-811, K(n,8) !lln-8112 and 
K(n,8)/((n-8)'(A(n)-A.(8))) are wiiformly bounded al.Jay from zero and in-
finity, for n,8 E c, n f. 8. D 

In exponential families, the equivalent of (2.7) 
and S E 8*, 

K(8,s) - K(8,n) = <n-s)'A.(8) - w<n) + wCs) 

or, sometimes more conveniently, 

is, 

(2. 12) K(8,s) - K(8,n) = <n-s)'(A.(8) - >..(n)) + KCn.s). 

I for n,8 E e 
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As an analogue to (2.6) we define for 8 E e* 

(2. 13) r(b,8) = {n E e* : K(n,8) s b}. 

A sort of Kullback-Leibler "distance" K(8) of the boundary of e* to 

e is defined for interior points of e* by 

(2. 14) K(8) =sup {a : 3 compact C c int e* with f(~,8) c C }. 
a a 

Note that by continuity of K(·,8) on int e* for 8 E int e*, f(a,8) is 

closed when a< K(8). 

To see that K(8) is positive on int e*, take a compact Euclidean hall 

{n: \\n-8\\ s b} c int e*. K(·,8) attains its infimum over the compact sur

face of this ball in n, say. It follows that K(8) ~ K(n,8) > 0. 

A lennna of Kallenberg (personal connnunication) gives conditions 

ensuring that K(8) = 00 on int e*. 

LEMMA 2.5. (Kallenberg). If e* is open and 

(2. 15) 
. k 

B = { x ElR : sup ( 8 'x - 1/1 ( 8)) < oo} is open 
8E8* 

then K(8) = oo for each 8 Ee*. 

We reproduce Kallenberg's proof here with his permission. 

PROOF of Lennna 2.5. (Kallenberg). Let 80 E 8*. It is sufficient to prove, 

for each a> 0 that ra = {8 Ee* : K(8,80) s a} is compact. Define 

B = {x: sup [(8-80) 1 x - 1/1(8) + 1/1(80)] s a} 
a 8E8* 

then Ba is closed (its complement is open), and bounded since 

as \\x\\ + 00 when o is small enough, hence B is compact. Note that /\. = 
* a -1 A(8 ) is open. It shall be proved that f = A (B ) and that Ba c /\., im-a _ 1 a 

plying compactness of ra by continuity of A on/\.. 

First, let C be the closure of the convex hull of the support of µ, 

then, by Theorems 9.1 (ii)* and 9.2 of Barndorff-Nielsen (1978), 

int C c B c C and A(8*) = int C, which, since B is open, implies 
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(2. 16) B = int C = A(G*). 

Observe, that (2. 16) implies Ba c B A. It remains to show 

but this follows readily from 

sup* {(8-80) 1 A(S) - ~(8) + ~(80 )} 
8E8 

for all 80 c e*, and the 1-1 relation between B =A and e*. D 

REMARK 2.1. The condition that 8* is open is frequently satisfied. 

Barndorff-Nielsen (1978) calls families with open 8* regular. Furthermore, 

by (2. 16) the conditions imply that the likelihood l(8 ;x) = 8 'x - ~(8) 
-I * attains its supremum (in A (x)) when x E B. Since B = A(G ) is open we 

have P8(Xn E B) + I as n + 00 for each 8 E e* so that the probability that 

the maximum likelihood estimate A-l(X) exists tends to I as n + 00 • 
n 

2c. A large deviation lemma 

Here we present a lemma on large deviations in one-parameter expo

nential families. Though the lemma follows readily from Chernoff's theorem 

(Chernoff (1952)), we include a proof here since this exemplifies the proof 

of a large deviation theorem in its simplest form. 

LEMMA 2.6. Let {P8 8 E 8} be a one-parameter exponential family. When 
8 E int e* and a E int A with A(8) < a then 

-I - -1 lim n log P 8 (Xn 2: a) = -K(A (a), 8). 
n+oo 

PROOF. Writing n -1 
A (a) we have n > 8 and 

(2. 17) 

f [a,oo) exp 

f (n) 
[a,oo) dP 8 (x) 

{-n[(n-8)x - ~(n) + ~(8)]}dP(n)(x) 
n 

exp {-nK(n,8)} f[ ) exp {-n(n-8)(x-a)}dP(n)(x). 
a, 00 n 

The last integral is bounded since x-a is nonnegative. Furthermore, it is 
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larger than 

(2. 18) f[ _1) exp {-n!(n-8)}dP(n)(x) 
a,a+n 2 n 

= exp {-n!(n-8)}P (a ~ X < a+n-l). 
n n 

Since n! (Xn - a) is asymptotically normal with mean zero under Pn, the 

probability in (2.18) tends to a positive limit and the lemma is proved. D 

REMARK 2.2. The technique of the proof above is called exponential 

centering (the pm P~n) is determined so that the integration region is a 

central part of the distribution) and is not only a standard tool in proofs 

of large deviation theorems, but also - then known as the saddle point 

method - used to obtain better approximations of distribution functions 

for small values of n, cf. Daniels (1954), Barndorff-Nielsen and Cox (1979). 

Exponential centering is particularly easy in exponential families 

since the centered pm - called conjugate or associate - is a member of the 

same full exponential family. The large deviation theorems of sections 

III.4 and 5 will be proved using exponential centering, with a more ac

curate evaluation of the integral. 

2d. Proofs 

PROOF of Lemma 2.2. First assume µ(pq > 0) = 0, then M(P,Q) = 00 and (2.9) 

holds trivially. In case µ(pq > O) > O, both K(R0 ,P) and K(R1,Q} are 

finite. For each R with R << R0 we have 

(2. 19) K(R,P) = J log :~ dR = J {log d~ + log ~~} dR 

= K(R,Ro) + K(Ro,P), 

where the last equality holds true since dR0/dP is a constant [R0]. Simi

larly, 

(2.20) 

Since (2. 19) and (2 •. 20) hold for R = Ra and since a i+ K(Ra,Ri) is con

tinuous and monotone for i = O, 1, an a exists which uniquely minimizes 

(2.21) max [K(R ,P),K(R ,Q)] a a 
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over a E [0,1]. Note that this minimum is finite, implying M(P,Q) < 00 • 

Now let R E p* with K(R,P) < 00 and K(R,Q) < 00 then R << R0 and we 

shall prove that 

(2.22) max [K(R,P),K(R,Q)] ~ max [K(R~,P),K(&->,Q)] a a 

with equality iff R = Ra. 

First assume a= 0, then K(R0 ,Q) ~ K(R0 ,P) and hence (2.19) implies 

(2.22) with equality iff R = R0 • 

In case O < a < 1 we have K(R,Q) K(R,P) where R = Ra, implying by 

(2. 7) that 

(2.23) 

By definition 2.1 we have on Y = {x : p(x)q(x) > O} 

(2.24) dR _ ~ dQ P,Q ~ 
logdP - a log dP -1/J (a), 

hence integration with respect to R yields 

(2.25) 

Assume without loss of generality that K(R,Q) ~ K(R,P) then (2.7) implies 

f log ~~ dR ~ O. 

In view of (2.25), integration with respect to R of (2.24) now yields 

and, using (2.7), 

(2.26) K(R,P) ~ K(R,R) + K(R,P). 

The case a = 1 is analogous to that of a = 0. 

To prove (2.9), observe that by Definition 2.1 we have 

P Q f a 1-a 
l/J ' (a) = log q p l{pq>O}dµ, CTE[0,1] 

and, since log ~~ is the sufficient statistic in the family PP,Q, 

(2. 27) EN log ddQP = f log~dR = ~l/JP,Q(a). 
"" dP a da 
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For a E (0,1), (2.9) now follows from (2.23). When a= 0 (say) we have 

K(Ra,Q) s K(Ra,P) implying by (2.7) that (2.27) is nonnegative for each 

a E (0,1) and hence (2.9) follows by continuity of ~P,Q. D 

PROOF of Lemma 2.3. Let {R } c P satisfy, as n + 00 , 
n 

(2.28) max [K(R ,P),K(R ,Q)] + M(P,Q). 
n n 

Assume a O, then M(P,Q) = K(R0 ,P), hence (2.19) implies K(Rn,P) 

K(Rn,RO) + M(P,Q). It follows now from (2.28) that 

lim K(R ,Ro) = o. 
n+oo n 

By the corollary to Theorem 2.4.2 in Pinsker (1975) this implies that {R } 
n 

tends to R0 in total variation. Now let 0 < a < 1 and assume Rn satisfies 

(2.29) 

By the previous proof, (2.26) then holds for R = Rn' which can be rewritten 

as 

Together with the analogous result for the Rn's which do not satisfy (2. 29) 

we have 

K(R ,R) s max [K(R ,P),K(R ,Q)]-M(P,Q), n n n 

implying convergence to zero of the left hand side and R + R in total 
n 

variation. D 





19 

CHAPTER II 

LARGE DEVIATIONS OF ESTIMATES 

I. INTRODUCTION 

Let X be a topological space and B its Borel a-algebra, let p* be the 

class of all probability measures on Band let P be a subclass of P*. Fur

thennore, let g : P +]Rd be a map. 
k Mostly, p will be a parametric family {Pe : e E 8} with 8 c]R' but 

we also want to be able to treat other P's such as the class of pms onlR 

which have symmetric Lebesgue densities. In that case, g(P) could be the 

centre of symmetry of P. 

Let the sequence {x1,x2 , •.• } with values in X00 be distributed ac

cording to the product measure P00 on B00 for some P E P and let {Tn}:=l be 

a sequence of estimates of g(P) such that Tn = Tn(X 1, .•• ,Xn). 

We shall only consider estimates that take values in g(P). 

The quality of an estimate Tn is usually measured by its (nonnalized) 

expected quadratic loss 

(I. I) v (T ,P) = f n n • [[r - g(P) [[2dPn, n n X n 

or, since v (T ,P) can be hard to obtain, by the variance of the limit n n 1 
distribution of n 2 (T - g(P)). 

n 

In this chapter we concentrate on the inaccuracy function 

(I. 2) a (i::,P,T ) = Pn<[[r - g(P) II> E:) n n n 

as a criterion to judge the quality of T , a point of view taken by Basu 
n 

(1956), Bahadur (1960b), Huber (1968) and others. Just like the expected 

quadratic loss (I.I), the inaccuracy function (1.2) can usually not be 

evaluated explicitly and an asymptotic expression is taken instead. For 

consistent (sequences of) estimates {T } the inaccuracy function tends to 
n 
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zero as n + 00 , typically exponentially fast when E > 0 is fixed. 

EXAMPLE I.I. Let x1,x2 , ••. be i.i.d. normal with mean 8 and unit variance, 
let g(8) = 8 and Tn = Xn' then P8 (1Xn - 81 > E) = exp {-n(E2/2) + O(n)} as 
n -+ oo. 

Note that g(P8) is abbreviated to g(8) and that the exponent on P8 
is suppressed. We will continue to do this unless it causes ambiguities. 

EXAMPLE 1.2. Let x1,x2, ••. be i.i.d. uniform (0,8), g(8) = 8 and Tn = Xn:n, 
the largest order statistic. We have P 8 (Xn:n < 8-E) = exp {-n log (8/ (8-E))}. 
This example is a rare occasion where the inaccuracy function is simple and 
explicit. 

2 The exponential rate of convergence (E /2 and log (8/(8-E)) in the 
examples above) was coined inaccuracy rate by Sievers (1978) in a shift 
family context. We give a somewhat modified definition. 

DEFINITION I.I. The inaccuracy rate e(E,P,{T }) of the sequence {T} of n n 
estimates of g(P) is defined as 

(I. 3) e(E,P, {T }) 
n 

- limsup n-I log P<llT -g(P)ll > E). 
n+oo n 

When P is a parametric family {P8 : 8 E 0}, the inaccuracy rate will 
be written as e(E,8,{T }). Note that large values of e mean that estimation n 
errors are rarely larger than E. 

In contrast to the variance of the asymptotic distribution (to be 
called asymptotic variance hereafter), the inaccuracy rate is determined 
by the non-local or large deviation-behaviour of the estimate {T }. The 

n 
same contrast is found in testing problems between Pitman efficiency and 
Bahadur efficiency. The local criteria - asymptotic variance and Pitman 
efficiency - may be called classical and are extensively studied. There 
have also been, in the last two decades, many publications on Bahadur 
efficiency, see Kallenberg (1981) for references. In estimation theory, 
however, the inaccuracy rate approach ~s relatively unexplored, especially 
for fixed values of E, though it was already proposed by Basu (1956) and 
Bahadur ( 1960 b). 

Our aim is to find estimates that are best with respect to the 
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inaccuracy rate; to avoid trivial "estimates" such as T - c, which has in-
n 

accuracy rate infinity when II c - g(P) II s E and zero otherwise, we shall only 

consider consistent estimates. To know whether an estimate indeed attains 

the maximal value of the inaccuracy rate (in the class of consistent esti

mates) it is useful to have an upper bound for this criterion. Such a bound 

was found for consistent estimates by Bahadur (1960b, 1971) and recently 

generalized by Bahadur et aZ (1980) to non-i.i.d. frameworks. Bahadur's 

bound on the inaccuracy rate can be seen as an equivalent of the Cramer-Rao 

bound on the asymptotic variance. 

The main tool for the derivation of Bahadur's bound is Stein's lemma 

(see Chernoff (1956)), which is an application of the fundamental lenma of 

Neyman and Pearson. We restate the inequality-part of Stein's lelllilla here as 

LEMMA 1.1. If P,Q E P* and {An}:=I is a sequence of subsets An c xn, then 

implies 

D 

For applications of this lemma where a limsup is needed we have a 

simple corollary: 

COROLLARY 1.2. UndeP the conditions of Lemma I.I, 

limsup Q{A} > 0 • limsup n-I log P{A} ~ -K(Q,P), 
n+oo n n+oo n 

PROOF. Take a subsequence {nk} with!.!:!!! Q{Ank} 
A' as 

limsup Q{A }. Define sets 
n+oo n 

n 

A' 
n 

then lim Q{A'} 
n+oo n 

limsup Q{A} > O. The corollary now follows from Lelllilla I.I 
n+oo n 

and 

-I 
limsup n log P{A } ~ 
n+oo n n+oo 

liminf n -) log P{A'}. 
n 

D 
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The upper bound on the inaccuracy rate for consistent estimates is 
now easily derived: When {T } is consistent we have for each Q E P with n 

(I. 4) llg(Q) - g(P)ll > E, 

that liminf QCll T - g(P)ll > E) > 0, implying by Lennna I. I n+co n 

(I. S) liminf n -I log PCll Tn - g(P)ll > E) ~ -K(Q,P) · 
n+co 

Since (1.5) holds for each Q E P satisfying (1.4), the following lemma is 
proved: 

LEMMA 1.3. If {T} is a consistent estimate of g(P) for each PEP, then n 

(I. 6) - liminf n-I log PCllr - g(P)ll > E) ~ b(E,P), n n+co 

where b(E,P) is Bahadur's bound 

(I. 7) b(E,P) = inf {K(Q,P) Q E P, llgCQ) - g(P)ll > d. 
D 

When p is a parametric family {P8 : 8 E 8}, Bahadur's bound is de
noted b(E,8). Note that (1.6) is stronger than the formal statement of the 
bound 

(I. 8) e(E,P, {T }) ~ b(E,P). 
n 

In view of (1.8) we shall call a sequence of estimates {T } of g(P) inac
n 

curacy rate optimal when 

(I. 9) e(E,P,{T }) = b(E,P) 
n 

for all E > 0, P E P. Since this optimality is often unattainable, we say 

that {Tn} is inaccuracy rate optimal for EO at P0 when (J.9) holds for 
E = EQ and P = P0 . 

EXAMPLE J. I. (continued). We have K(n,8) = !ln-81 2 implying b(E:,8) 
It follows that X is an inaccuracy rate optimal estimate of 8. n 

EXAMPLE J.2. (continued). K(n,8) = log (8/n) when 0 < n ~ 8 and 00 other

wise, hence Xn:n is inaccuracy rate optimal. 

EXAMPLE 1.3. Let X =lR and B the a-algebra of Borel sets onlR. Let P be the 
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class of pms having a positive Lebesgue density onlR and let g map each pm 

onto its median. It has been noted in Bahadur et al (1980) that in this 

case the sample median X[(n+l)/ 2]:n is inaccuracy rate optimal. Now this is 

hardly useful, since the class P is so large that there are very few es

sentially different consistent estimates indeed. 

As remarked in Bahadur et al (1980), Example 1.3 parallels a result 

of Pfanzagl (1976) concerning the optimality of the sample median with 

respect to the asymptotic variance. We shall extend this parallel, thereby 

providing an answer to a question in Bahadur et al (1980), Example 4.2. 

EXAMPLE 1.4. Let X, Band gas in Example 1.3 and let PS be the class of 

symmetric positive Lebesgue densities. There are many consistent estimates 

of the median (e.g. "robust" symmetric estimates), but, as will be proved 

in Section 2, none of them attains the bound b(E,P) for each P E PS' not 

even for any fixed E > 0 (see Example 2.2). 

This example parallels the known fact (for references, see Pfanzagl 

(1976)) that the sample median is not optimal with respect to the asym

ptotic variance in PS. 

In general the determination of e(E,P,{T }) can be quite a problem, 
n 

even in parametric families. This is one of the reasons that many authors 

(Bahadur (1960b,1967,1971), Fu (1973,1975), Perng (1978)) mainly study the 

behaviour of e(E,P,{T }) and b(E,P) as E + O. In regular one-parameter 
n 

cases (with g(8) = 8) they find 

(I. I 0) as E + 0, 

where i 8 denotes the Fisher information, and moreover, that 

(I. 11) lim e(s,8,{T }) I b(s,8) = 1 
s+O n 

holds for the MLE of 8. The optimality property (I.II) has been called 

"local asymptotic optimality" by Bahadur (1980), in earlier papers it has 

been named "efficiency in the sense of asymptotic effective variances" 

(Bahadur (1960b,1971)) and "asymptotic efficiency in Bahadur's sense" (Fu 

(1973,1975)). In view of our earlier definition following (1.8), we shall 

refer to (I.II) as local inaccuracy rate optimality. 

In Section 2, a sufficient condition for inaccuracy rate optimality 
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due to Bahadur will be presented, together with an explanation why that 

condition cannot hold in situations where P is not exponentially convex. 

In Section 3, exponential families {PS : 6 E 8} are treated. These 

families are exponentially convex iff 8 is convex and in that case, the MLE 
is usually inaccuracy rate optimal. As an important subclass of the non

convex exponential families, curved exponential families are examined next. 
Under a linearity restriction on the class of estimates, it turns out that 
inaccuracy rates are either equal to the inaccuracy rate of the MLE for 

each E in an interval (O,E0) or strictly lower than the inaccuracy rate of 
the MLE for each E in an interval (O,E0). 

In the final section of this chapter we look at shift families on the 
real line. A logical restriction is here to translation equivariant esti
mates. Results of Sievers (1978) will be extended and his "optimal esti
mates" will be proved to be essentially unique. 

2. A NATURAL CONDITION FOR OPTIMALITY 

Suppose {p } is a consistent estimate of P and g is continuous, then n 
{T } = {g(P ) } is a consistent estimate of g(P). Note that maximum likeli-n n 
hood estimates often have this structure. Now regard {K(Pn,P0)} as an esti-

mate of K(P,P0). If K(· ,P0) is continuous this estimate is consistent, 
hence (1.7) yields 

(2. I) 

inf {K(Q,P0) : Q E P, K(Q,P0) > b}. 

Note that the right hand side of (2.1) can be larger than b. The simple 

but useful Proposition 2 of Bahadur (1980) (also in Section 2 in Bahadur 
(1983)) states that optimality with respect to the inaccuracy rate of 

{K(Pn,P0)} as anestimate of K(P,P0) yields optimality of g(Pn) as an esti
mate of g(P). We give a slightly refined version: 

PROPOSITION 2.1. (Bahadur). If g is continuous and {P} is a consistent 
n 

estimate of P such that for each b < b 0 

(2.2) 

b(E,P0) for each E > O with b(E,P0) < b0 , and hence 
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b(E,Po) < bo, at Po. D 

Several remarks should be made concerning this proposition: 

25 

REMARK 2.1. Continuity of g and consistency of P can only be defined when n 
P is equipped with a topology, e.g. the topology of total variation. When 

P is a parametric family {P8 : 8 E 8}, consistency and continuity are 

usually defined with respect to the topology on 8. Equivalence of both 

definitions depends on the bi-continuity of the map 8 >+ P8 • 

REMARK 2.2. Since optimality with respect to the inaccuracy rate of 

{K(Pn,P0)} as an estimate of K(P,P0) implies optimality of {g(Pn)} as an 

estimate of g(P) for each continuous g, Kullback-Leibler information is a 

sort of "canonical distance" when dealing with large deviations of esti

mates. To further support this, note that when e estimates 8, the proba-
n 

bility P8(K(en,8) ~ b) does not depend on the parametrization, whereas 

P8<JJg(en)-g(8)JJ > E) generally does. 

REMARK 2.3. The condition on E in Proposition 2.1 holds for each b0 > 0 

when E is small enough, provided g is not a constant on any "open Kullback

Leibler ball" {Q : K(Q,P0) < o}. To see this, take Q with K(Q,P0) < b0 and 

g(Q) f. g(P0), then let E < JJg(Q) - g(P0)JJ. 

We give a simple example of an application of Proposition 2.1. 

EXAMPLE 2.1. Let {P8 : 8 E JRk} denote a multivariate normal family with 

fixed covariance t and mean vector 8. Since K(n,8) = !<n-8)' *-I (n-8) we 

have, taking X as an estimate of 8, 
n 

Since for each positive o, when x is large enough 

we have as n + oo, 

(2. 3) 

Thus (2.2) holds and g(X) is an inaccuracy rate optimal estimate of g(8) n 
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for each continuous g. 

A theorem of Efron and Truax (1968) generalizes (2.3) to exponential 
families. This will be treated in Section 3. Another application of Pro
position 2.1 is found in Example 4.2. 

Bahadur (1980), Proposition 3, gives a local version of Proposition 
2.1, too: if 

(2.4) -I ~ limsup limsup (nb) log P(K(P ,P) ~ b) s -1, 
b+O n+oo n 

then g(P) is locally inaccuracy rate optimal, cf. (I.II). Condition (2.4) n 
is related to the existence of estimates which are optimal with respect to 
asymptotic variances: In sufficiently regular parametric families 

k {P8 : 8 E 8} with 8 c]R, it holds that as n + 8, 

2 K(n,8) = Hn-8) •r8(n-8) + o<[[n-e[[) 

where 18 is Fisher's information matrix. If an estimate Sn of 8 exists 
which is optimal with respect to asymtotic variances, i.e. 

n!(en-8)'1! ~ N(O,Ik), 

1 2 . d" 'b . then nK(8n,8) + 2 Xk in istri ution. When this convergence is stronger so 
that 

(2.5) 

tends to zero uniformly for b > 0, then (2.2) follows by calculation of the 
tail probability of the X~ distribution. The uniform convergence of (2.5) 
is a stringent condition, but note that for (2.4) to hold the convergence 
is only needed for "infinitesimal" values of b and this may be expected to 
occur more frequently. Indeed (2.4) has been proved (implicitly) for the 
MLE in various situations, cf. Fu (1973,1975), Perng (1978) and, in certain 
Markov chains, Bahadur (1983). 

As mentioned before, condition (2.2) is less frequently satisfied. 
We shall now give a lemma indicating that (2.2) cannot hold for each P E P 
when P is not exponentially convex, cf. Section I.2. 

LEMMA 2.2. If Pl,P2 E p such that 
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(2.6) 

cf. (I.2.9), (I.2.10), and Pn is an estimate of P then condition (2.2) 

fails for each b with M(P 1,P2) < b < Mp(P 1,P2), at least at one of the pms 

p I 'p 2. 

The proof is preceded by some remarks. 

REMARK 2.4. When P is not exponentially convex and P is closed in the total 

variation topology, there are P1,P2 E P such that (2.6) holds, see LelIIIlla 

2.3. If moreover P is connected, such P's usually exist with M(P 1,P2) ar

bitrarily small, thereby refuting (2.2) for arbitrarily small values of b. 

Note that the class Pin Example 1.3 is exponentially convex, whereas PS 

of Example 1.4 is not. It should also be noted that the family of uniform 
n 8 (0,8) distributions, cf. Example 1.2, is exponentially convex, P' con-

sisting of one pm with parameter min (n,8). 

REMARK 2.5. Condition (2.2) is not necessary for an estimate g(P ) to be 
n 

inaccuracy rate optimal. Thus, the occurence of (2.6) does not exclude the 

existence of an optimal estimate but merely indicates a reason for the 

possible elusiveness of such an estimate. 

PROOF of LelIIIlla 2.2. Let M(P 1,P2) < b < Mp(P 1,P2) and choose Q E P* such 

that 

(2.7) 

Since Pn takes values in P only we have Q(max {K(Pn,P 1),K(Pn,P2)} > b) 

for each n, implying either for i = I or for i = 2 

limsup Q(K(P ,P.) > b) > O. 
n->-oo n l. 

Corollary 1.2 together with (2.7) completes the proof. D 

Now we give an example where not only (2.6) holds, but indeed 

Bahadur's bound is proved to be· unattainable. Moreover, we shall sketch a 

modification showing that local inaccuracy rate optimality, cf. (I.I I), 

cannot hold either. 

EXAMPLE 2.2. (continued from Example 1.4). We shall construct, for E = I, 

a pair P1,P2 of pms with SYIIIIlletric densities such that their medians g(P 1) 
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and g(P2) satisfy 

(2.8) 2E 

and such that 

(2.9) 

implying not only (2.6), but also the existence of a pm Q E p* such that 

(2. 10) i = I ,2. 

Since for any nondegenerate estimate {T } of g(P) 
n 

we have that for i = I or for i = 2 

limsup Q(IT -g(P.)I > E) > 0 
n-+oo n l. 

and hence by Corollary 1.2 and (2. 10), 

-limsup n-I log P.(IT -g(P.)I > E) ~ K(Q,Pi.) < b(E,Pi.) n->-oo l. n l. 

for i = I or for i = 2, proving Bahadur's bound to be unattainable. 

Define P 1 and P2 as follows: The synnnetric density p(x) is given by 

{t for lxl < I, 
p(x) = k 

t · 2- for 2k- l ~ Ix I < 2k+ 1 , k ~ I. 

Let a positive function f be periodic with period 4, symmetric around -1 

and symmetric around +I, such that 

2k+2 
(2. 11) J f(x)dx = 2, 

2k 

but not synnnetric around O. For instance, f can be chosen as in fig. 2.1. 

-2 -1 0 2 

fig.2. I. A possible f. 



Now define P1 and P2 by their densities p1 and p2 as 

f (x) · p (x+ I) , 

f(x) • p(x-1). 

Note that P1 and P2 are sylIII!letric around -1 and 1 respectively, implying 

(2. 8). 
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We determine M(P 1,P2). By Lemma I.2.2 and (I.2.25) we have M(P 1,P2) = 
~ P1,P2~ ~ K(R,P 1) = -\j! (a) (Note that indeed 0 < a < 1 since R0 = P 1 and R1 = P 2). 

Furthermore, by (2. 1 I) 

(2. 12) -\jJP1,P2(a) -log J exp {a log:~~=~ }p 1(x)dx 

= -log J exp {a log~~~::~} f(x)p(x+l)dx 

is independent of f since p(x-1) and p(x+l) are constant on (2k,2k+2) for 

each k E Z. It follows that a= !, yielding 

(2. 13) 
! 

-log J {p(x+l)p(x-l)} 2 dx = log i. 

The value of b(s,P 1) is found for E = as 

inf {f"' log r((x)) r(x)dx: r a density with r(x) = r(-x)} 
-oo Pt x 

inf{C[log pr/c-.J.) +logp~~~~)]r(x)dx: r(x)20, r r(x)dx=!} 

inf {Clog p(x+l)p(~~g{~(x)f(-x) r(x)dx: ... } . 

l 
The infimum is attained when r is proportional to {p(x+l)p(x-l)f(x)f(-x)} 2 

on (0, 00), hence 

(2. 14) 
oo I 

b(s,P 1) = -log 2 J {p(x+l)p(x-l)f(x)f(-x)} 2dx 
0 

00 [ -k-1 2k+2 ! ] =-log2 r t2 2 J {f(x)f(-x)}2dx 
k=O 2k 

I 2 I 

=-log (2 · i · 22 J {f(x)f(-x)Pdx), 
0 

where the periodicity off is used. Note, that the last member of (2.14) 

can be written as 

(2. 15) ! logi - log J2 {f(x)f(-x)}!dx, 
0 
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which is larger than M(P 1,P2) (see (2.13)) by the conditions on f and 

Schwarz' inequality, thus (2.9) holds since b(E,P2) = b(E,P 1). 

It follows moreover from (2.13)- (2.15), that the difference 

b(E,P 1) - M(P 1,P2) can be made arbitrarily large by choosing f appropriate

ly. When f is chosen as in fig. 2. I , this difference is ! log~ • 

Take 

Now we sketch how the example can be modified for arbitrary E > 0: 

p(x) = { c k 
cp 

for lxl < E 

for (2k-l)E s lxl < (2k+l)E 

where 0 < p < I can be chosen dependent on E such that p (x) -+ 4 exp { - Ix I } 

as E -+ 0 (p exp {-2E}), and let f be periodic with period 4E, symmetric 

about -E and +E, etc. Define p1(x) = f(x)p(x+E), and p2(x) = f(x)p(x-E), 

then the difference of b(E,P 1) and M(P 1,P2) is again 

-log ~21 f 2E {f(x)f(-x)}4dx, implying (2.9) for arbitrary E > 0. 
E 0 
Finally we consider E -+ O. Let p = exp {-2E}, then, by analogy to 

(2.13) we obtain 

which is of order E2 as E -+ 0. 

The difference b(E,P 1) - M(P 1,P2) can be made to have order Eby 
I 2E ! ! 

choosing f such that ~2 J {f(x)f(-x)} 2 dx = {J-E} 2 (this can be achieved 
E 0 

with an f similar to fig. 2. I which satisfies lf(x) - I I s IE). It follows 

that local inaccuracy rate optimality, cf. (I.I 1), cannot hold, at least 

not uniformly on any total variation neighbourhood of the double expo- · 

nential in the family of symmetric densities, for estimates of the median. 

Note that for the double exponential itself, b(E,P) is of order E2. 

This section is concluded with a technical lemma. 

LEMMA 2.3. If P is closed in total vaPiation and P is not exponentially 

convex, then thePe ape P1,P2 E P such that (2.6) holds. 

PROOF. The non-convexity implies the existence of P and Q E P such that 

PP,Q_p is nonempty. Let PP,Q = {Ra : a E [O,J]} then {a : Ra E P} is 

closed, since K(·,·) is continuous on {R} and K(R ,R)-+ 0 implies con-
a n a 

vergence in total variation of Rn to Ra' cf. Pinsker (1975), p. 20. Now 

let a 1,a2 be the endpoints of the (a) largest open (relative to [O,l]) 
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interval U with {R : a a E U} n p l/J. Define 

{~' 
when al > 0 

pi RO when al 0 and R0 E p 

p when al 0 and RO f p 

and P2 similarly for a2, R1 and Q. Now (2.6) holds for P 1,P2 in view of 

Lemma I.2.3. D 

3. EXPONENTIAL FAMILIES 

3a. Introduction 

In this section let {p8 : 8 E 0*} be a full k-parameter exponential 

family, given by its densities with respect to a a-finite measureµ onlRk 

dP8(x) = exp {8'x-1jJ(8)}dµ(x), k 
X E JR , 8 E 8* 

as discussed in Section I.2. We shall consider here a subfamily P = 

{Pe : 8 E 8}, where 8 c 0*. Since xn is sufficient for 8, we allow only 

statistics T which are functions of X : Tn = t (X ). When X E /\, T can n n n n n n 
equivalently be written as a function of A- 1(x ), since A is one-to-one on 

n 
81. To further simplify the notation we introduce the statistic 

lA - I (X ) when X E /\ 
e* = n n 

n 
800 otherwise 

where it is convenient to think of 800 as a point outside 8 1. Note that 

when X E int /\, e* is the MLE of 8 when 8 = 8*, cf. Barndorff-Nielsen n n 
(1978), Theorem 9.13. We arrive at the representation 

T T (S*) when X E /\. n n n n 

Here T is a map from 8 1 into g(8) when estimates of g(8) are considered. n 

As mentioned briefly in Example 2.1, a theorem of Efron and Truax 
-* ((1968), Thm. 6) proves condition (2.1) for the MLE Sn, when 8 is the full 

parameter space 0*: 

THEOREM 3.1. (Efron and Truax). If b<K(8) (cf. (I.2.14)) then, as n->- 00 , 

-* 1 (k-1) P8(K(8n,8) > b) = (nb) 2 exp {-nb + 0(1)}. 

D 
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By continuity the theorem also holds for events K(e*,e) ~b. A full-
n 

length proof of a generalized version of this theorem was given by 

Kallenberg (1978). Le111111a I.2.5 gives simple conditions ensuring K(8) 00 

for each e E int e*; without any condition, K(8) > 0 on int e*. 

Note that Theorem 3.1 together with Proposition 2.1 solves the opti

mality problem (see Lemma 1.3) with respect to the inaccuracy rate in full 

exponential families for continuous g, T = g(S*) being the optimal esti-n n 
mate. This result will be extended to families where 8 is a convex subset 

of e* in Theorem 3.5. These exponential families (with convex 8) are ex

ponentially convex, cf. the last alinea of Section I. 2a; we shall ab

breviate the phrase "exponentially convex exponential family" to "convex 

exponential family". 

For non-convex exponential families, the general result of the convex 

case does not hold: When 8 is closed (and non-convex), condition (2.2) of 

Proposition 2.1 fails by Lemma 2.2, for at least one pair 8,b, see also 

Remark 2.4. An example of a non-convex exponential family will be given, 

however, where an estimate {T } of g(8) exists such that e(£,8,{T }) = n n 
b(£,8) for a fixed E > 0 (Example 3.7). 

Cu~ved exponential fa.rrrilies form an important subclass of the non

convex case. We shall in Theorem 3.8 prove that estimates which satisfy a 

linearity condition (these estimates are called linear M-estimates (LME's), 

cf. Definition 3.1) and are optimal with respect to asymptotic variances, 

all have the same inaccuracy rate as the MLE, which also satisfies these 

conditions. The explanation is that optimality with respect to the asym

ptotic variance implies "convergence" to the MLE, in the class of LME's. 

In Theorem 3.10 we prove that LME's which do not converge to the MLE indeed 

have a lower inaccuracy rate, when £ is small enough. Thus, in the class 

of LME's the MLE can not be improved upon with respect to the inaccuracy 

rate. 

Since the MLE plays a prominent role in this section, we shall intro

duce this estimate more fully. A detailed account of the consistency pro

perties of the MLE can be found in Berk (1972). As mentioned before, the 

likelihood of a sample x1·····xn is maximized over e* in the point e: 
-1 - -A (Xn) when Xn EA. A condition like b < K(8) of Theorem 3.1 will be 

imposed (implicitly or explicitly) in theorems and lemmas of this section 

to ensure that the event X f A occurs with negligible probability. 
n 
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Maximizing the likelihood over a subset 8 of e* is equivalent to 

minimizing the Kullback-Leibler information K(e*,·) over 8 (when X EA), 
n n 

cf. Efron (1978). If it exists the unique point 8(n) minimizing K(n,·) 

over 8 is called the Kullback-Leibler projection of n on G. Thus, when 
~* I ~ ~ ~* en= n E 8 and 8(n) exists, 8(8n) is the MLE of e on e. We shall use the 

notation 

and we shall assume that S can be completed to a measurable function. In n 
our theorems and lemma's, care will be taken to ensure that e exists on 

the relevant parts of 8 1 A sufficient condition for the existence of S 

at n is given in Lemm.a 3. I 2. 

When 8 exists, i.e. e maximizes the likelihood of x over 8, the n n n 
MLE of g(8) equals g(S ). Berk (1972), Thm. 3.1, proved that the estimate n 
e eventually exists and is consistent for 8 E 8 n int e* when 8 is locally n 
compact and locally convex, thus for continuous g, the MLE g(S ) is con

n 
sistent under those conditions. 

In part b of this section we present the main results and some 

examples. The proofs and the more technical lemmas are given in part c. 

We conclude this part with a useful lemma on large deviations which 

is sufficient to prove the assertions made in the examples of subsection 

3b. For Ac lRk, cS > 0 define, abbreviating inf {llY-xll : x E A} to lly-All, 

The Hausdorff distance dH(A,B) of sets A,B E lRk is defined as 

where Ac denotes the complement lRk \A of A. 

LEMMA 3 2 Lt EE E e* and 80 E int e*. If ----·-· e ' I ' 2' .. • c -

( 3. I) 

and, for some b with K(E,80) < b < K(80), 

(3.2) 
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where f is defined in (I.2.13), then 

(3.3) -I -* limn log Pe (6 E E ) = -K(E,60). 
n-kx> o n n 

The proof is given in part c of this section. 

REMARK 3.J. The equality part of condition (3.1) is similar to condition 

(3.4) of Theorem 3.1 in Groeneboom et al (1979). We give examples toil

lustrate this condition: 

EXAMPLE 3.1. (i) Let {Pe: 8 E lR} be the normal N(6,J) shift family and 

let E = E = [J, 00) u {!}. Since K(n,8) = !(n-e) 2 we have 
n 

K(E,O) K(cl E,O) = t, K(int E,O) = ! 

and, by Le111111a I.2.6 and P(X = !) = 0, 
n 

-I -lim -n log P0 (X E E ) = l . 
n-kx> n n 

(ii) Take {P6 : 6 ElR} and E as in (i).Let En= [J,00) u [!,!+I/In). By 

an inspection of the proof of Lemma I.2.6 it is clear that 

lim -n - I log P0 (X E E ) = t , 
n-kx> n n 

thus (3.3) may or may not hold when (3.1) fails. 

(iii) Condition (3.1) is not redundant when En and E are replaced by int En 

and int E in condition (3.2): 

Take for {P6} the family of binomial (2,p) distributions, see Example 

I.2.1. We have p = A(6) = e6/(l+e8). Let E = A- 1([l,1) u {!}), E = 
n 

A-J([l,1)), then (3.2) holds for int E and int E. Now nX has a binomial n n 
(2n,!) distribution when e = 0, hence 

-I -* -I -lim -n log P0 (6 E E ) s lim -n log P0 (xn = !) 
n-kx> n n n-kx> 

whereas K(E,O) = l log 3 + log !. 

3b. Results and examples 

We begin with a lemma that establishes the inaccuracy rate of an 
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estimate as the Kullback-Leibler information of a certain set with respect 

to 8. As an important corollary we find sufficient conditions for estimates 

to have the same inaccuracy rate. The proofs are given in 3c. 

LEMMA 3.3. Let T = T (S*) be a consistent estimate of g(8), let 8 E 8 and n n n 
£ > O. If b(£,8) < K(8) (cf. (1.7), (I.2.14)) and there exist a continuous 

1 - -function T : 8 + g(G) and a constant b with b(£,8) < b < K(8) such that 

(3.4) 

then 

(i) 

(ii) 

(iii) 

where 

lim sup 
n-+oo 

{II T (n) - T (n)ll 
n 

fJ E f(b,8)} 0 

liminf n-l log P8 <11Tn - g(8)11 > £) ~ -K(E(£,8,T) ,8) 
n+oo 

limsup n-l log P8 <11Tn - g(8)jl > £) ,,; - lim K(E(E;,8,T) ,8) 
n->-oo E;t£ 

K(E(£,8,T),8), 

E(£,8,T) {f} E 8 1 II T (fJ) - g(8)ll > £}. 

COROLLARY 3.4. If the conditions of Lemma 3.3 hold and K(E(·,8,T),8) is 

left continuous at £, then 

e(£,8,{T }) = e(£,8,{T(S*)}). 
n n 

D 

REMARK 3.2. When 8 = e* and g is continuous, taking T = g yields 
-* K(E(£,8,T),8) = b(£,8) when b(£,8) < K(8). Consequently, g(8n) is optimal 

with respect to the inaccuracy rate when b(£,8) < K(8). As mentioned in the 

introduction to this section, this also follows from Theorem 3.1 and Pro

position 2.1. 

REMARK 3.3. It should be noted that condition (3.4) does not prescribe the 

speed of convergence. The uniformity, however, is essential. We give an 

example: 

EXAMPLE 3.2. Let {P8 : 8 E lR} be the normal shift family N(8,l), let 

g(8) = 8, T(8) = 8. Define 
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8 when 8 ~ 0 or 8 2 l/n 
1 (8) = { 
n 1+8 when 0 < 8 < l/n 

then 1 (X) is a consistent estimate of 8 and 1n converges pointwise to 1, n n 
but 

P0 (j1 (X )j >I)> P0 (o < X < n- 1) n n n 

_1 
> en 2 

for some positive c, implying e(l,0,{1 (X )}) = O, contrasting with n n 
e(l ,O,X) = ~. 

n 

Next we give an example where equality holds in assertions (i) and 
(ii) of Lennna 3.3, but the values are different, and where the estimate is 
optimal with respect to asymptotic variances but not inaccuracy rate opti
mal for each £. 

EXAMPLE 3.3. Let {P8 : 8 E :rn.2} be the family of bivariate normal pms with 
mean 8 = (8 1,82) and covariance r 2 . Define G = {(8 1,0) : 8 1 E :JR.}, let 
g(8) = 81 and 80 = (O,O). 

Define the map 1 : :rn.2 -+ g(G) as 

T(l11,l12) 

see fig. 3. I. 

11 .... 

' ' 

r ~1+11; 

' ' \ 

if 

if 

if 

112 < 0 or 11 1 2 I 

112 2 ~ I and 111 < I 

0 ~ 112 < ~ and 11 1 < I, 

G = g(G) 

(I ,0) 

fig. 3.1. For simplicity, g(G) is drawn superimposed on G. 1 maps the 
shaded region on the point (1,0). In the region between G and the 
parabole the inverse images under 1 are halfparaboles. 



Since K(ri,8) 

= ~ 

Now define {T } = {T (S*)} by n n n 

{
T(T)) 

Tn(T1) = 
T (ri) + 1 /n when n is odd 

when n is even 

then (i) and (ii) of Lemma 3.3 hold with equality for 8 = 80 and E = 1. 

This also shows that {T } is not inaccuracy rate optimal for 8 = 80 and 
n 2 

E = 1, x1 being optimal with e(E,8,{X1 }) = !s for all 8,E. To prove ,n ,n 
optimality with respect to asymptotic variances, 

~* ~* - -2 sider T(8 ). Since T(8) = Xl + 0(X2 ) when 8 n n ,n ,n 

it is sufficient to con

E e, /n(T(S:)-81) is 

asymptotically normal N(0,1). 

Example 3.3 shows that optimality with respect to asymptotic 

variances, which is a local property, leaves a lot of freedom for the 

behaviour of the estimate in values 
~* of 8 remote from e. It is of ten the n 

behaviour in these non-local values which determines the large deviation 

properties of the estimate. Another clear illustration of this phenomenon 

can be found in Example 3.5. 
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We now treat exponential families with a convex parameter space 

("convex exponential families"). Here the possible existence of an estimate 

of 8 which satisfies condition (2. 2) of Proposition 2. I is not "threatened", 

since convex exponential families are exponentially convex. Indeed we shall 

prove, under weak conditions on 8,E and 8, that (2.2) holds for the MLE 

en on e, implying inaccuracy rate optimality of g = g(e ) for each n n 
continuous g. 

THEOREM 3.5. Suppose the parameter space 8 of an e;x:ponential family is a 

con?Jex relatively closed subset of e* and let gn = g(Sn) whenever the MLE 

e of 8 exists. n 
If g is continuous then (~ 

gn is consistent and) 

(3.5) e(E,8,{g }) n b(E,8) 

for all E,8 satisfying 

(3.6) b(E,8) < K(8). 

REMARK 3.4. The condition that 8 is relatively closed is used to show 
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existence of e ' the convexity yields unicity. The rest of the proof is es
n 

sentially the demonstration that when 8 is convex and 8 E 8 0 int 8*, 

K(e(•),8) ~ K(·,8) 

on a sufficiently large subset of 0*, implying (2.2) for Sn by Theorem 3.1. 

The full proof is given in Section 3c. 

The remainder of this subsection is devoted to curved exponential 

families, which form an important subclass of the non-convex exponential 

families. 

A curved exponential family is a k-parameter exponential family 

{P8 : 8 E 8}, k ~ 2, such that 8 is the image under a bicontinuous map 8 of 

an interval S"l of the real line; 8 = 8(S"l) is a curve in 8* (cf. Efron (1975)). 

Since the family {P8 : 8 E 8} is parametrized by the one-dimensional para

meter W E S°l, it is usually denoted as {PW : W E S°l}, where 

dPw(x) =exp {8(w)'x - ljJ(S(w))}dµ(x). 

We shall assume the following regularity conditions to hold: 

(3.7) 

(3.8) 

(3.9) 

and 

(3. JO) 

. S(int S"l) c int 0* and S(S"l) is closed in 0*, 

e-1 is 1-1 and continuous on 8 n int 0*, 

e = d~ e <w) exists and 11e11 does not vanish on compact subsets 

of int n, 

8 exists and is continuous on int n. 

EXAMPLE 3.4. The family of normal densities with mean \J > 0 and variance 

(Vµ) 2 (constant coefficient of variation) is a curved exponential family: 

8 is a subset of the set 0* of Example I.2.2, defined as the image of (0, 00) 

under 

We shall narrow the scope of our estimation problem as outlined in 

Section I somewhat and only consider estimation of w. To keep in line with 

the definitions of Section I, take 



-1 
g(S) = w = e (8), 
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-1 
where, with an abuse of notation, e stands for a point of e and e for the 

inverse of the map e : n + e. 

An important quantity in smooth one-parameter families is the 

(statistical) curvature y introduced by Efron (1975), which for curved 

exponential families is given by 

8, S and t evaluated at w. (In the general situation a similar formula 

involving cumulants holds, see Efron (1975)). 

In curved exponential families, the MLE wn of w is not a sufficient 

statistic, being of lower dimension than the minimal sufficient X (unless 
n 

Yw is identically zero, in which case S(w) is a straight line in e* and a 

one-dimensional parametrization of {PS : 8 E 8} should have been employed, 

cf. Section I.2a). Efron (1975) and Efron and Hinkley (1978) argue that 

Yw is a measure for the (second order) difference of the asymptotic vari

ance of the MLE w and its Cramer-Rao bound {ni }-1, where iw denotes the 
n w 

Fisher information of x1 in PW. These ideas go back to Fisher (1925) and 

Rao (1961,1962,1963). Efron (1975) makes this precise in curved expo

nential families. 

Quantitative results connecting the curvature with the difference of 

the inaccuracy rate e(£,w,{w }) and Bahadur's bound b(E,w) do not naturally n 
arise (for fixed £ > O) since the inaccuracy rate of an estimate T (S*) can 

n n 
be determined by the values of Tn in non-local points, whereas yw is a 

locally-determined quantity. For the same reason, Fisher information plays 

no role in the large-deviation properties of estimates either. 

A way to make a connection between the inaccuracy rate and Fisher in

formation is to let £ tend to zero as in ( 1. 1 O) and ( 1. 11). By calculating 

expansions of b(E,w) and e(£,w,{w }) , Fu (1982) obtained a "second order" 
n 

optimality result. He proved 

(3. 11) lim £-4{b(£,w) - e(E,w,{w })} 
£+0 n 

and showed that this limit is minimal, in symmetric translation families 



40 

with log-concave density, over the class of translation equivariant esti-

mates. 

Note, however, that (3.11) involves taking two limits, first n + 00 

and then E + O. 

Kallenberg (1983) proposed a more direct approach, letting E = E + 0 
3 l n 

and n + 00 simultaneously. When nE + 00 and E n 2 = 0(1), his results differ 
n n 

from Fu's. 

We give a simple example to illustrate (3.11) and to show that the 

MLE is not necessarily admissible with respect to the inaccuracy rate when 

E is large. 

EXAMPLE 3.5. Let {PW : w E 0. = [-n/2,n/2]} be the family of bivariate nor

mal distributions with mean (sin w, I - cos w) and * = 12. Note that the 

curvature exists for w E int n and equals I. This model, see fig. 3.2, was 

essentially introduced by Fisher (1956). 

,,,,.--- .... , ' , ' 
I ' 

I \ 

I 
6(-~TI) = (-1, I) 

-I 
t (w) 

fig. 3.2. Fisher's circle model. The Fisher information and the 

curvature Yw are constant on int n and equal to 1. 

The MLE wn = W(Xn) of w exists uniquely unless xn E {(0,62) : 62 ~ I}, 

which has probability zero. For w E int n the inverse images w- 1(w) of w 

are the open half-lines from (0,1) through 6(w). Using plane geometry it 

follows from K(ri,6) = !llri-6112 , Lemma I. 3 and Lemma 3.2 that 

(3.12) 
__ {

00

2 sin2 iE when E <in+ lwl, 
b (E ,W) 

otherwise 
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(3. 13) 

. 2 
Sl.n E 
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when E < !TI, 

otherwise. 

Relation (3.11) is now easily verified by Taylor expansion, for each 

W E int rl. 

A better estimate T 
n 

t- 1 (w): 

t(X ) is defined by describing the "fibres" 
n 

-1 
For w E [O,TI/2), t (w) consists of halflines 

and the circle segment with centre (1,1) joining the two halflines. A 

typical fibre has been drawn in fig. 3.2. For negative values of w, the 

fibres form a mirror image of the positive half plane. Using plane geo

metry it may be verified that e(E,w,{T }) > e(E,w,{w }) when 
n n 

!(TI/2 + Jwj) < E < TI/2 + lwl. 

Note that the estimate {T } is optimal with respect to asymptotic 
n 

variances at each w E int rl. 

Examples of non-admissibility of the MLE in finite-parameter families 

are given in Rukhin (1983) and Kester (1981). 

In the same "circle model" we give an example of an estimate which 

attains - at a fixed w0 and each E > 0 - Bahadur's bound. At other values 

of w, however, the inaccuracy rate is lower. 

EXAMPLE 3.6. Let {P : w E rl} be defined as in Example 3.5. To attain 
w 

Bahadur's bound we should see to it that the (Euclidean) distance of 

{ (x 1 ,x2) : I t(x 1 ,x2) - wj > E} to 8(w) equals that of {8(w-E) ,8(w+E)} to 

8(w), cf. Lennna 1.3, Lemma 3.2. This can be done for a fixed w0 = O, say, 

and each E > 0 by taking as the fibres t- 1(w) straight lines through 8(w), 

perpendicular to 8(w) -8(w0). Note that the resulting estimate is indeed 

consistent and that the optimality holds in w0 only. 

Another example shows that it is possible in a curved exponential 
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family to attain Bahadur's bound for a fixed E > 0, but at each w E int ~. 

EXAMPLE 3.7. Let {P8 : e E JR.2} be the bivariate normal family with mean 

e E JR.2 and unit covariance matrix. Take the curved subfamily {Pw : w E JR.} 

as 

8(w) (f(w),ef(w)), 

where 

w w ~ 0 
f(w) = { , I 

-2 log (1-w) +I - l-w, w < o. 

Note that f - and hence 8 - has continuous second derivatives, thereby 
satisfying (3.10). Let E = I. We construct T = t(X) by its fibres: t- 1(w) n n 
is the straight line through 8 (w) which is perpendicular to 8 (w) - 8 (w+ I) 
(on a strip around 8(~)). 

8(w+2) 

t-I (w+I) 

t-1 (w-1) 

fig. 3. 3. t -I (w+ I) is perpendicular to 8 (w+ I) - 8 (w+2). The distance 

II 8(w+I) - 8(w)ll is increasing as a function of w. 

We have b(l,w) = ! min <lle<w-1) - 8(w)ll 2, lle(w+l)-8(w)ll 2) 
and 

(3. I 4) 

!II e (w-1)-e (w)l 12 

where E1 = {x : t(x) < w-1}, E2 {x : t(x) > w+I}. The example has been 
constructed so that the minimum in (3.14) occurs for E1 and then equals b 
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since t- 1(w-1) is perpendicular to 6(w-I)-6(w). 

These examples indicate that in the class of consistent estimates, a 

uniformly best estimate with respect to the inaccuracy rate does not exist. 

Estimates which are optimal with respect to asymptotic variances play 

a prominent role in estimation, both in theory and in practice. It would 

therefore be interesting to investigate their performance with respect to 

the inaccuracy rate. Since the asymptotic variance is a local property, 

however, optimality in that sense has little connection with the inaccuracy 

rate, which is often non-locally determined, see Example 3.5. We shall 

impose a linearity condition to link the "non-local behaviour" of the esti

mates to their "local behaviour". Estimates {T } = {t (X )} where the in-
n n n 

verse images under tn are essentially hyperplanes in A will be called 

linear M-estimates (LME's), cf. Definition 3.1. We shall prove that LME's 

which are optimal with respect to asymptotic variances have the same in

accuracy rate as the MLE for each£ in an interval (0,£0), due to "con

vergence" of these estimates to the MLE. 

Moreover, we prove that LME's which do not converge to the MLE are 

not locally inaccuracy rate optimal (cf. (I.JO)). It follows that the in

accuracy rate of these LME's is lower than that of the MLE for each £ in 

an interval (0,£0), since the MLE is locally inaccuracy rate optimal, cf. 

Bahadur ( 1960 b, 1967). 

Note that these results imply a stronger superiority of the MLE than 

the property proved in Fu (1982), Theorem 3.3,for MLE's in translation 

families. 

We now define LME's more formally. To simplify the notation we write 

m(w) = A.(6(w)) 

DEFINITION 3.1. An estimate {T} = {t (X )} is called a linear M-estimate 
nk n n 

(LME) when functions pn : ~ +JR , continuous strictly monotone functions 

bn : ~ + ~ and for each compact interval B c int ~. a positive d = d(B) 

exist such that when w E B and 

(3. 15) llx-m(w)li < d, 
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the relation of tn(x) and w is given by 

> > 
(3. 16) w <=> p (w) '(x - m[b (w)]) n n 

o. 
< 

Moreover, we require that (3.15) and (3.16) hold for x = m[b (w)] when n 
w E B. The constant d will be called the radius of T on B. For definiten 
ness we assume II P II = 1. n 

In figure 3.4, the relation (3. 16) is illustrated. Note that 6(D) 
has been mapped onto m(D). 

m(D) 

t- 1 (w) 
n 

m[b (w)] n 

fig. 3.4. Inside the ball {x: llx-m(w)ll < d}, t- 1(w) is the n 
hyperplane perpendicular to pn(w). 

REMARK 3.5. M-estimates T 
n 

sample space xn as the (or 

function ~. The right hand 

= tn(X1, •.• ,Xn) are usually defined on the 
an appropriate) zero of L~ 1 ~(X. ,·), for some 

i= l. 

side of (3.16) resembles this, but involves the 
sufficient reduction of xn to the space of means. The estimates defined in 
definition 3.1 are called linear since the inverse images t- 1(w) are (k-1)-

n 
dimensional hyperplanes (in a neighbourhood of m(w)), see fig. 3.4. An in-
tuitively appealing consequence of the inequalities in (3.16) is that 
tn (x) < tn (y) implies tn (x) < tn ( Hx + y)) < tn (y) (when x,y and Hx + y) 
are close enough to m(D)). 

-1 By (3. 16) we have that tn(m(w)) = bn (w) (therefore, the quantity 
-1 

bm (w) - w could be called the Fisher bias of Tn). Lemma 3.6 provides con-
vergence of bn(w) tow for each consistent LME; the proof is deferred to 
Section 3c. 
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LEMMA 3.6. If {T } is both an LME and consistent then the functions b con-
n n 

verge to the identity on int n. 

In Examples 3.5, 3.6 and 3.7, the estimates considered are LME's. In 

these examples it is also easily verified, that the MLE is an LME. This is 

more generally true: 

LEMMA 3.7. For each compact interval B of int n there exists ad> 0 such 

that w(x) exists uniquely when II x - m(B>ll < d and such that the MLE {w } is n 
an LME, 'With radius d on B. 

The proof, given in 3c, first shows the unique existence of w(x). Next, 

(3.16) is found as the expression of the fact that the derivative 

S(w) I (x - m(w)) of the likelihood equals zero for w = w(x) and is positive 

(negative) when w < w(x) (w > w(x)). It follows that p (w) = S(w) /lle<w>ll n 
in case of the MLE. 

REMARK 3.6. LME's with p + S/llSll are found in Examples 3.6 and 3.7: in n 
Example 3.6 we have p (w) = (S(w)-8(0))/llS(w)-S(O)ll, in 3.7 it is n 
pn(w) = (S(w)-S(w-1))/llS(w)-S(w-1)11 ((bn(w)=:w in both examples). 

The following theorem states in effect that LME's which are optimal 

with respect to the asymptotic variance have the same inaccuracy rate as 

the MLE, when £ is small enough. 

THEOREM 3.8. If an LME {T } is optimal with respect to the asymptotic 
n 

varianee, i.e. 

(3. 17) 

then for each compact interval c c int n there is an £ 0 > 0 such that 

(3. 18) e(E,w,{T }) 
n 

e(E,w,{w }) 
n 

for each £ < £ 0 and all w E c. 

The proof is given in subsection c. It amounts essentially to the 

demonstration that (3. 17) implies pn (w) -+ e (w) I II e <w>ll and bn (w) -+ w 

for each W E int Q, hence the estimate "converges" to the MLE. The proof 

is then completed by an application of LeUD11a 3.9 which may be of inde

pendent interest and is given here. In contrast to the condition in 
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Lemma 3.3, the convergence (3.19) need not be uniform. 

LEMMA 3.9. Let {T } = {t (X )} be a consistent LME such that n n n 

(3.19) limp (w) = p(w), 
n-+oo n 

W E int f:2. 

(i) For each compact interval C of int D there is an E0 > O such that 

e(E,w,{T }) 
n 

K(E_(E) u E+(E),8(w)) 

for each E < E0 and all w E C, where 

E_(E) 
(3. 20) 

{n E e* 

{n E e* 

p(w-E)'(A(n)-m(w-E)) < O}, 

p(W+ E) 1 (A(n) -m(W+ E)) > O}. 

(ii) Moreover, 

(3.21) K(E+(E),8(w)) = K(nE,8(w)), 

with nE satisfying p(w+E)'(.A(nE)-m(w+E)) O and, for a t > O, 

(3.22) nE = 8(w) + tp(W+E). 

A similar relation holds for E_(E). 

This lemma is proved in Section 3c. 

REMARK 3.7. For "convergent" LME's (satisfying bn(w)-+ wand (3.19)), the 
inaccuracy rate is apparently determined by the function p, when E is small 
enough. 

By Lemma 3.9, LME's which converge to the MLE have the same inac
curacy rate as the MLE. The next theorem says that other LME's are not 
locally inaccuracy rate optimal (cf. (I.I I)). Since the MLE is locally in
accuracy rate optimal, this implies that the inaccuracy rate of LME's 
which do not converge to the MLE is lower than the inaccuracy rate of the 
MLE for each E in an interval (O,E0). The theorem will be proved in Section 
3c. 

THEOREM 3.10. Let {Tn} be a consistent LME and let w0 E int D. If {pn(w0)} 
does not converge to e (wo) I II e (wo)ll then 
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lim e(E,Wo,{T }) I e(E,Wo,{w }) < J. 
E-70 n n 

3c. Proofs 

PROOF of Lemma 3.2. Let b satisfy K(E,60) < b < K(60) such that (3.2) holds. 

Define 

F = E n f(b,60), 
n n 

K(E,60) and, by Theorem 3.1, 

IPe <8* EE) - Pe <6* E F )j ::;P6 <e* f r(b,60)) o n n o n n 0 n 

Since K(E,60) < b it is thus sufficient to prove 

-I -* limn log Pe (6 E F ) = -K(E,60). 
n-+co 0 n n 

-nb+o(n) 
e 

Let c 1 > K(E,60) and choose 6 E int F with K(6,60) < c 1. Leto> 0 satisfy 

U(o,6) = {n: lln-6j[ < o} c F. Since dH(Fn,F)-+ 0 we have F~ c (Fc) 0/ 2 when 

n is large enough, which implies U(o/2,6) c Fn by U(o/2,6) n (Fc) 012 = 0. 
Furthermore, 

yielding by Lemma I.I 

liminf n-I 
n-+ oo 

as n -+ 00 , 

-* log Pe (6 E Fn) ~ 
0 n 

liminf n-I 
n-+oo 

-* log P60 (en E u(o/2,6)) ~ -K(6,60) > -c 1. 

Now choose c2 < K(E,60). Since c2 < K(cl F,60), d = 

inf {!In- ell : n E r(c2,60), e E cl F} is positive. Thus r(c2,60) n (F)d/2 = 

0, implying f(c2,e0) n Fn = 0 when n is large enough. By Theorem 3.1 we 

obtain 

-* -* Pe (6 E F ) s P6 (6 f r(c2 ,e0)) o n n o n 
e-nc2+0(n) as n -+ 00 • 

Since c 1 and c2 can be chosen arbitrarily close to K(E,60), (3.3) 

follows. 0 

PROOF of Lemma 3.3. Let e = K(E(E,6,T),6). We prove first that e s b(E,6): 
• · · -6* Pn 0 1 . ,,.,I Since T is continuous and n ~ n on int o , we have for n E int o 
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T( Ae*) Pn 
-----'+ T (n), 

n 

A* pn ~ and hence by (3.4), Tn(8n)---+ T(n) for n E int f(b,8). Consistency of 
A* 

~ Tn(8n) now implies T(n) = g(n) for each n E 8 n int f(b,8), hence eSb(E,8). 
Lemma 3.2 now implies assertion (iii) since (3.1) holds for E = E(t:,8,T). 

Now let c > 0 with e + c < b. 

By continuity of T and K(·,8) there exists an n E f(b,8) such that 
e < K(n,8) < e + c and llT(n) - g(S)ll > E. Moreover, there is an open U with 
n EU such that e < K(-,8) <band llT(-)-g(S)ll > t:+c 1 on U for some 
positive c 1• Condition (3.4) now ensures that llT (·) - g(S)ll > E on U when n 

A* Pn n is large enough and hence it follows from en ---+ n that as n + 00 

p <llT ce*) - g(S)ll > E) ;<: p ce* E U) + I. n n n n n 

Now apply Lemma I.I to obtain 

liminf n-I log P8(i1Tn - g(S)ll > E) ;<: -K(n,8) > -e-c. n-> oo 

Since c was arbitrarily small, (i) is proved. 
It remains to prove (ii). Let~< E. Since T + T uniformly on f(b,8), n 

we have when n is large enough, for each n E f(b,8), 

implying 

II T(n) - g(S>ll s; ~,.II T (8) - g(S>ll s t:, n 

s; P8 CllT (S*) - g(S)I/ n n > E, 8* E f(b,8)) 
n 

+ P8ce: f rcb,e)) 

s; Pe<l/T(S:) - g(S)ll > 0 + Pe(e: f f(b,8)) 

s; e-nK(E(~,8,T),8)+o(n) -nb+o(n) + e , 

where the last inequality holds by (iii) and Theorem 3.1. The observation 
that b > b(E,8) ;<: e ;<: K(E(~,8,T),8) completes the proof. D 

REMARK 3.8. The proofs of (i) and (ii) above are very similar to the proof 
of Lemma 3.2. The latter lemma cannot be invoked directly however, since 
condition (3.4) does not imply convergence in Hausdorff distance of the 
sets E(E,8,Tn) to E(E,8,T), see Example 3.3. 
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The proof of Theorem 3.5 is preceded by some technical lemmas. 

LEMMA 3.11. Let 8 be a convex subset of e* and let n E int e*. 

If e(n) exists and S(n) E int e* then 

(3. 23) K(8(n),8) $ K(n,8) 

for each 8 E 8 n int e*. 

PROOF. Let 8 E 8 n int e*. Suppose e(n) exists and e(n) E int e* n 8. By 

convexity of 8, the function t i+ K(n,te(n) + (l-t)8) is minimal fort= I. 

Consequently, its left derivative is nonpositive at t =I: 

(S(n) - 8) '(A(S(n)) - A(n)) $ o. 

Application of (I.2.12) yields (3.23). D 

The next lemma establishes existence of the MLE. 

LEMMA 3.12. Let 8 be a relatively closed convex subset of e* and let 

n E int e*. 

If K(n,.8) < K(8) for some 8 E 8, then the Kullback-Leibler projection 
e(n) exists and S(n) E int e*, thus e exists when 

n 

x E A(\ u {n 
n 8E8 

K(n,8) < K(8)}). 

PROOF. Let n E int e* and 8 E 8 satisfy K(n,8) < K(8), then the closed 

Kullback-Leibler ball f(K(n,8),8) is a subset of int e* and compact, hence 

K(n,·) attains its infimum on the compact set f(K(n,8),8) n 8, say in TI. 

Now we prove that K(n,s) ~ K(n,TI) for all s E e. Fix s E e, suppose 

K(n,s) < 00 and let 0 > o. Define Sa= as+ (l-a)8 and let a< I satisfy 

K(n,sa) < K(n,s) + o. Now K(n, ·) attains 

vexity) on the compact convex set {s : 

its infimum (unique by strict con-

a 
Sa* E int e*, Lemma 3.11 applies and it 

0 $ a$ a}, say in sa*· Since 

follows that Sa* E f(K(n,8),8) n e, 

thus 

Unicity of S(n) = TI follows from the convexity of 8 and the strict con-

vexity of K(n,·). D 
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PROOF of Theorem 3.5. Let E > 0, 8 E 8 satisfy (3.6) and choose 

n E 8 n int e* with llg(n) - g(8)11 >E. Then, by the result of Berk (1972) 
mentioned in the introduction to this section (p. 33), g(Sn) is consistent 

at n, hence by Lemma I.I (taking An= {(x 1, ••• ,xn) : S(xn) exists and 
llg(S(xn))-g(8)11 > E}, P P8 ,Q = Pn) we have 

(3.24) liminf n-I log P8 <11g(Sn)-g(8)ll > E) :e: -K(n,8). n-+ co 

Since (3.24) holds for n's with K(n,8) arbitrarily close to b(E,8), we 
obtain 

e(E,8,{g }) ~ b(E,8). 
n 

It remains to prove 

limsup n-I log P8 <1i g - g(8)ll > E) ~ -b(E,8). 
n-+oo n 

Let A= {n E e* : K(n,8) < b(E,8)} then S(·) exists on A and S(A) c int e* 
by Lemma 3.12. We obtain 

(3.25) 

However, e* EA implies e EA by Lennna 3.11 which in view of the defi-n n 
nitions of b(E,8) and A implies that II g(S ) - g(8)ll ~ E. It follows that n 
the first term in the right hand side of (3.25) equals zero. The second 
term equals exp {-nb(E,8) + o(n)} as n-+ 00 , by Theorem 3.1. D 

REMARK 3.9. The above proof contains a proof of Proposition 2.1 in this 
special case. That proposition could not be applied directly since it 
assumes consistency of {P } for each P E P. 

n 

! -PROOF of Lemma 3.6. Let w E int n. Since n 2 (X -m(w)) is asymptotically 
n 

normal with nonsingular covariance matrix, we have 

(3.26) 

implying by (3. 16) that 

- -I 
P (t (X ) > bn (w)) -+ w n n 

as n -+ 00 • 

Since consistency of {T } implies for each E > 0 n 
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-I 
we obtain limsup b (w) $ w. Together with the analogous result from (3.26) 

ll..+oo n 
with the inequality reversed we have 

-I 
lim b (w) = w 
n-+oo n 

and the lemma is proved. D 

PROOF of Lemma 3.7. Let B be a compact interval of int ~and choose a com

pact subset A of int 8* such that 8(B) c int A and such that 

{w E ~ : 8(w) E A} is a compact subset of int ~. There exists a d 1 > 0 

such that II x - m(B)ll < d 1 implies 

K(A-l(x),8 n Ac) > 4K(8(B),Ac) > K(A-l(x),8(B)). 

It follows that for II x - m(B)ll < d 1, the infimum of K(A -I (x), ·) over 8 is 

attained in a point 8(w), say, in the compact set 8 n A, where w = w(x). 

(3.27) 

and 

(3.28) 

We prove that d > 0 and o > 0 exist such that for llx-m(B)ll < d, 

d2 -) 
lw-wl $ o ~-2 K(A (x),8(w)) > o 

dw 

implying unicity of the minimizing w(x). Let 

cl = inf {S(w)' *w B(w) : w E e- 1 (8 n A)} 

which is positive by (3.9) and nonsingularity of *· Now 

d2 -I 
- 2 K(A (x) ,8(w)) 
dw 

-e(w)'(x-m(w)) + S(w)' * S(w), w 

hence it is sufficient to show that e(w)'(x-m(w)) <cl for lw-wl $ o. 
By Lemma I.2.4 it holds that for some c2 > 0 

llx-m(w)ll $ c2llx-m(B)ll for all x E A(A) 

and by Lemma I.2.4 and (3.9) there is a c3 > 0 such that 
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Now choose o = !c 1/(c3c 4) and d2 = !c 1/(c2c4) where c 4 is an upper bound 

on llli(w)ll provided by (3.10), then (3.27) holds when llx-m(B)ll < d2 • Next, 

let lw- wl > o. By (3.8), cs > 0 exists such that 

lw-wl > o ~lle<w)-e(w)ll > cs. 

Hence, 

(3.29) 

when llx-m(B)ll is so small that llt..- 1(x)-8(w)li < !cs. Again by Lemma I.2.4, 

(3.29) implies 

-1 
K(/.. (x),8(w)) > c6 > O. 

Now choose 0 < d < d2 such that II x - m(B)I! < d implies (3. 29) and 
-I A 

K(A (x),8(w)) ~· c 6 , establishing (3.28). 

We proceed to prove w = w(X ) to be an LME. Let t = w, p = e I II e II n n n n 
and bn(w) = w; we show that (3.16) holds when dis small enough. Let w0 E B. 

-I A -I By Lemma I.2.4, both K(/.. (x),8(w(x))) and K(/.. (x),8(w0 )) tend to zero as 

II x - m(w0 )!1 + 0 hence there is a 0 < d < d such that 

implying by (3.27) that d: K(t..- 1(x),8(w0)) -S(w0)'(x-m(w0)) is negative, 

zero or positive as required by (3.16). D 

The proof of Theorem 3.8 will be preceded by a technical lemma and 

the proof of Lemma 3.9. 

LEMMA 3.13. Let B be a compact interval of int ~. Uniformly for LME's 

{T } = {t(X )} with radius ~ don Band n n 

(3. 30) l!m[b(w) l - b(w)!I < d/3 

it holds for wk E B, k = 1,2, .•• that 

PROOF. Suppose w0 < wk for each k and define 
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(3. 31) 

where 

is the part of p (~) that is perpendicular to p(w0). Since II yk - m(w0)11 < d 

by (3.30) and (3.31) we have t(yk) = w0 • When k is large enough it also 

holds that II yk - m(wk)ll < d, implying by t (yk) < wk and Definition 3. I that 

which by evaluation of p(wk)'vk leads to 

(3.32) 

Now llvkll ={I - [p(wk)'p(w0)] 2 }~ hence (3.32) implies that p(wk)'p(w0) 

tends to I or to -I as k + 00 • To exclude the latter possibility take x 

m[b (w0)] - i dp (w0), then t (x) < w0 < wk, thus, when k is large enough, 

which can be rewritten as 

(3.33) 

Since the right hand side of (3.33) tends to zero, only the possibility 

p(wk)'p(w0) +I remains. 

To complete the proof, observe that when p(wk)'p(w0) > 0, 

llP<~) - p(w0)11 2 = 2-2p(wk)'p(w0) 

s 2(1 - [p(wk) 'p(w0)] 2) = 211vkll2 

and combine this with (3.32). When wk < w0 the proof is analogous. 0 

PROOF of Lemma 3.9. Let C be a compact interval of int n, choose a compact 

interval B of int n such that C c int B and choose a compact convex subset 

A of int e* such that 6(B) c int A. Let d be the radius of {T } on B and 
n 

let b0 > 0 satisfy K(n,6(C)) < b0 =+ n E A and also w E B, K(n,6(w)) < b0 
=+ 11>-<n) -m(w)ll < d/2. Choose E0 > 0 such that K(6(w+E0),6(w)) < h0 and 

K( e (w - Eo) 'e (w)) < bo for each w E c and such that I w - WI I :S Eo implies 

K(6(w 1),6(w)) :S b0/2 for each w E c. 



Now fix E < EO and w E c. Write 

e = K(E+(E),8(w)) 

then e < b0 since 8(w+E) E cl E+(E). 

We shall prove that 

-1 lim n log P (T > w + E) = -e. 
n-+oo w n 

By Definition 3.1 and the conditions on b0 we have, writing wE for w + E 

and r for f(bo,8(w)), 

IP (T >w )-P (p (w )'(X -m[b (w )]) > 0, X E A(f))I w n E w n E n n E n 

< P (X f A(f)) = exp {-nb0 + o(n)} w n 

as n + 00 , where the equality holds by Theorem 3.1 since f(b 0 ,8(w)) c A 

implies b0 < K(8(w)). Thus, since e < b0 it suffices to prove 

(3.34) lim n- 1 log P (X E A(En)) 
n+oo w n 

-e 

where 

E = {n Ee* : p (w ) 1(A(fl) -m[b (w )]) > O} n r. n n E n E 

Since f is bounded and pn(WE) + p(wE) by (3.19) and bn(WE) +WE since 
is consistent, cf. Lenmia 3.6, we have 

{T } 

as n + 00 

with 

E = {n Ee* : p(w ) 1(A(n)-m(w )) > O} n r. 
E E 

Note that indeed K(E,8(w)) = K(E+(E),8(w)) since E and E+(E) differ only 
outsider and K(E+(E),8(w) = e < b0 . Lenmia 3.2 now implies (3.34) and 
together with the analogous result for E_(E), (i) follows. 

n 

Now we prove (ii): Let nE be a point in cl E where (3.21) holds and 

let n E E, then, writing xa = (1-a)A(f!E) + ClA(fl)' 

(3.35) 

for each positive a. By (I.2.12) we have for xa EA 
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Since A (xa) E E for each sufficiently small positive a, we obtain 

Now let a + 0 then Lemma I.2.4 implies 

which holds for every n E E satisfying (3. 35) (for a = I) whence nE: - 8(w) 

is a multiple of p(wE:), proving (ii). D 

PROOF of Theorem 3.8. Let c0 be a compact interval in int ~. Choose more 

compact intervals c1,c2 ,c3,c4 such that Ci c int Ci+I' i=0, ..• ,3 and 

c4 c int ~. We prove that the conditions of Lemma 3.9 hold with p(w) = 

B(w) I 11 B(w)ll for w E c1• 

Since {T } is consistent, b (w) + w for each w E c4 , as n + 00 , by 
n n 
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Lemma 3.6. Moreover, since pn(w) f 0 for all n,w, we obtain using the uni-

form boundedness of the moments of X on the compact set 8(c4) c int e* and 

the Berry-Esseen theorem that uniformly on c4 as n + 00 , 

(3. 36) P (p (b- 1(w))'(X -m(w)) ~ O) + !. w n n n 

-1 
By the convergence of bn(w) + w on c4 we have bn (w) E c4 for all w E c3 

when n is large enough. Thus, (3.16) and (3.36) imply uniformly on c3 as 

n -+ co, 

+ l 2. 

The asymptotic normality of n!(T -w) (with zero mean) yields b- 1(w) 
_ 1 n n 

w+o(n 2 ) uniformly on c3 whence 

(3. 37) 

as n + 00 holds uniformly on c2. 

Now let w E C 1 and u E lR and consider 
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(3. 38) 
l l 

P (n 2 i 2 (T -w) ~ u) = P (p (w )'(X -m[b (w )]) ~ O) + o(J), w wn wnn n nn 
_1 _l 

where w = w+n 2 i 2 u and the o(J)-term is bounded by the probability that n w 
llx - A.(w )II > d, d being the radius of {T } on c4 . We have n n n 

(3.39) p (w ) '(X - m[b (w ) ]) = p (w) '(X - m(w)) nn n nn n n 

- p (w) '(m[b (w ) ] - m(w)) + (p (w ) - p (w)) '(X - m[b (w ) ]) • n nn nn n n nn 

Since w E c2 when n is large enough it follows from (3.37) and the asym-n I 

ptotic normality of n 2(X -m(w)) that the last two terms in (3.39) together n 
equal 

(3. 40) -(b (w )-w)p (w)'m(w) + o(lb (w )-wl) n n n n n 
_I 

+ II P (w ) - P (w)ll • Op (n 2 ) n n n w 
_1_1 • -1 

= -n 2 i 2 p (w)' m(w)u + o(n 2 ) w n 

+ O<llm[b (w )]-m[b (w)lll) ·OP (n-!), n n n w 

where Lemma 3.13 was also used. As a result of (3.39) and (3.40), (3.38) 
equals 

(3. 41) P (n!p (w)' <x -m(w)) ~ c!P (w)'m(w)u) + 0(1). w n n w n 

Since the covariance *w is nondegenerate on c1 and pn f 0 we have as n + 00 

l -
n 2 p (w)' (X - m(w)) Vp 

(3.42) n n ---14N(O,J). 
{p (w)'* p (w)}! 

n w n 

Denoting as<·,·> and ll·P the inner product and norm induced by*, con-w w w 
dition (3.17), (3.38), (3.41) and (3.42) imply, using m(w) = 

(d/d(w))A.(8(w)) =* S(w) and i = S(w)' * S(w) = 118<w)ll 2 that, as n + 00 , w w w w 

<pn(w),S(w)>w 
. -~!. 

II pn (w)IUI 8(w)l[w 

Since II P (w)ll = I, it follows that, n 

(3. 43) p (w) + S(w) I [I e(w)[I. n 

By (3.37) and (3.43) the condition (3.19) of Lemma 3.9 is satisfied. D 
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PROOF of Theorem 3.10. Since {T} is consistent, b (w) +won int ~.which 
n n 

by monotonicity implies uniform convergence on compact subsets of int ~. 

Moreover, since II pn (w0 )1\ = I, there is a subsequence {nk} such that Pnk (w0) 

converges to Po' say' with Po "' e (wo) I II e (wo)ll • By the uniform convergence 

of {bn} and Lemma 3.13 there exist c 1 > 0 and c2 > 0 such that lw-w0 1 < c2 

implies 

(3. 44) 

Now abbreviate 80 = 8(w0), wE = w0 + e:, and write bmax (e:,80 ) = 

max {K(8(w ),80),K(8(w ),80)}. Choose a compact interval B c int ~and 
E -E: 

choose e:0 < c2 such that [w0 - e:0 ,w0 + e:0 ] c int B and such that both 

b (e:0) < K(80) 
max 

and 

A(f) c {x: llx-m(w)ll < !d(B)}, 

where r abbreviates f(bmax (e:0 ,80),80). For each E < e:0 we have, as in the 

proof of Lemma 3.9, 

where 

-1 
limsup n. log PW (Tn > w0 + E) 
k+oo K 0 k 

-1 
limsup ~ log Pw0 <~k E A(Enk(e:)), 
k+oo 

The subsequence {pnk(wE)} has a further subsequence {pnk(wE)} which con

verges to pE, say, where PE satisfies by (3.44) 

(3.45) 

implying that En' (e:) + E(E) in Hausdorff distance, with 
k 

(3. 46) 

By Lemma 3.2 we obtain 

(3.47) 
-) 

limsup n log Pw0 <rn > w0 + E) 
n+oo 
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-I -;:;: lim nk' log Pw (~, <A(E(E)) =-K(E(E),80). 
k-->oo 0 k 

Note, that (3.47) holds for every E < E:0 for an E(E) of the form (3.46) 
with PE satisfying (3.45). We proceed to evaluate K,(E(E),80). By Lennna 
3.9 (ii) we have 

(3.48) 

with 

(3.49) 

(3.50) 

By Taylor expansion we have, as E i 0, 

which combined, with (3.45) and (3.49) yields by plane geometry, for some 
c3 > O and sufficiently small E, ll8(wE) -nEll > c3E. Leillllla I.2.4 now im
plies for a positive c4 and small E's 

(3.51) 

Since, also by Taylor expansion as E i 0, 

t • 2 ( 2) ;; l.W E: + 0 E , 
0 

(3.50) and (3.51) imply 

(3.52) as E i O. 

Noting that the MLE does in first order attain the local inaccuracy 

bound !E2iw' cf. Bahadur (1960b,1967), the proof is complete by (3.47), 
(3.48) and (3.52). 0 

4. SHIFT FAMILIES 

4a. Introduction 

In this section, let P = {P8 8 E lR} be a shift family of 



probability measures onlR, with densities Pe with respect to Lebesgue 

measure given by 

(4. I) Pe (x) = p (x - 8), X E JR., 8 E JR. 
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The estimation problem as outlined in Section I will be narrowed to 

estimation of 8: we shall take g(S) = 8. As a consequence, Bahadur's bound 

b(E,8) is now independent of 8 and will be written as b(E). 

EXAMPLE 4.1. Let p(x) be the standard normal density, then {X} is inac
n 

curacy rate optimal, cf. Example I.I. 

EXAMPLE 4.2. Let p(x) = e-x • l[O,oo)(x), then {P8} defined by (4.1) is the 

exponential shift family. We have b(E) = E, and this bound is attained by 

{Xl:n}, the smallest order statistic in the sample x 1, ••• ,Xn. This can be 

shown by direct calculation of the inaccuracy rate or deduced by Pro

position 2.1 from the optimality of the largest order statistic in the 

uniform family of Example 1.2, by taking g(S) =-log 8. 

There is another exponentially convex shift family, as is demon

strated in the next example. 

EXAMPLE 4.3. Let, for a fixed a: > 0, 

-I x-8 (f(a:)) exp fo(x - 8) - e } , X E JR. 

This loggamma shift family is a one-parameter exponential family. In a more 

canonical form with canonical parameter v = -e-8 , the density p* of the 

sufficient statistic Y = ex is 

p*(y) =exp {vy+log (-v)}(r(a:))-lya:-I. 

(The more usual parametrization of this gamma density employs S -1/v 
as the scale parameter.) Let 

v =-a:(..!. .~ /i)-I, 
n n i=I 

the MLE of v and take g(·) = - log(-·) in Theorem 3.5 or Remark 3.2, then 

g(v ) is seen to be optimal with respect to the inaccuracy rate as an n 
estimate of 8 = g(v) (Note that K(v) = 00 for each v by (I.2.12) and 

(I.2.14)). Thus 
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T = log (_!_ ~ exi) 
n na i=I 

attains Bahadur's bound for each E and 8. The bound is min {K(P_E,P0), 
K(PE,PO)} and equals a(e-E - I+ E). 

These examples seem to be the only shift families (essentially) which 
are exponentially convex, cf. Barndorff-Nielsen (1978), Section 1.3. 

In other shift families we may therefore expect, that inaccuracy 
rate optimal estimates usually do not exist, cf. Section 2. Sievers (1978) 
came to the same conclusion, be it apparently on a more empirical basis. 
We give an example where Bahadur's bound is attained with a consistent 
estimate, in a shift family which is not exponentially convex, for a fixed 
8 and all E > 0: 

EXAMPLE 4.4. Let P8 be the uniform (8-1,8+1) distribution, then b(E) 
since K(n,8) 

T 

= co for all n f 8. Define the estimate {T } by 
n r wh•n 

xl :n 2: -1 and X $ 
n:n 

xl :n+l when x < -1 n l:n 

X -I when x > 1, n:n n:n 

co 

0 for each E > 0. Note however, 
that the inaccuracy rate is finite for all other 8's. 

A consistent estimate with e(E,O,{T }) = b(E) for each E > 0 in the n 
double exponential shift family is given in Section 4d, Example 4.11. 

It is seen in Examples 4.4 and 4.11 that Bahadur's bound can be 
attained with a consistent estimate. The estimates attain the bound for one 
8 only, however, and they are therefore not translation equivariant. 
(Translation) equivariance is a restriction which is usually imposed upon 
location estimates in shift families. Sievers (1978) found an upper bound 
on the inaccuracy rate for equivariant, not necessarily consistent esti
mates. We shall derive it here in somewhat greater generality. Note that 
for equivariant estimates the inaccuracy rate is independent of 8; it will 
be denoted as e(E,{T }). 

n 

LEMMA 4.1. (Sievers). If p is a density on:m. and {T} is equivariant, then n 

e(E,{T }) $ s(E) 
n 
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where 

which is defined in (I.2.8). The bound s(s) will be called Sievers' bound. 

PROOF. In view of (I.2.8) we have to show 

(4.2) e(s,{T }) s max (K(Q,P ),K(Q,P )) n -s E 

for each equivariant {T } and all Q E p*, the class of pms on JR. Assume n 
M(P_E,PE) < oo and let Q satisfy K(Q,P_E) < oo and K(Q,PE) < 00 then Q <<PE, 

hence Q has a density. The equivariance of {T } now implies Q(T = O) = 0 n n 
since the Lebesque measure of the same event is zero. It follows that 

max {limsup Q(T > 0), limsup Q(T < O)} > 0, 
n+oo n n+oo n 

implying by corollary 1.2 that either 

or 

By translation equivariance and 

e(E,{T }) = 
n 

-1 -1 min {- limsup n log P0 (T > s), - limsup n log P0 (Tn < -s)}, 
n-+oo n n-+oo 

(4.2) is established. D 

REMARK 4.1. In view of Lemma I.2.2 we have 

(4. 3) I a 1-a M(P ,P ) = - log inf p (x-s)p (x+s)dx, 
-s s O<a<l 

which is the expression for the bound in Sievers (1978). 

Sievers (1978) only proved the bound (4.3) to hold for densities 

with nondecreasing p(x-s)/p(x+s). In that case, a best equivariant estimate 

(minimizing P0 (1Tnl > s) for each n over the class of translation equi

variant estimates) exists, cf. Ferguson (1967), Section 4.7. This estimate 

was also derived in Huber (1968). Sievers derives his bound as the inac

curacy rate of this best equivariant estimate. We shall find an estimate 
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which attains Sievers' bound in a different way in Section 4b and prove it 

to be essentially unique in a large class of equivariant estimates, in 

Section 4c. 

EXAMPLE 4.1. (continued). Sievers' bound also equals ~E 2 (and is attained 

by the sample mean). 

EXAMPLE 4.2. (continued). Here, s(E) 

tained by the estimate {Xl:n - E}. 

2E. This bound is at-

EXAMPLE 4.3. (continued). By Lemma I.2.2, s(E) is found by minimizing 
max {K(R,P_ ),K(R,PE)} over RE PP_E,PE. Since P = {P8 : 8 E lR} is an ex-

E p p 
ponential family, P -E' E equals {P8 : -E s 8 s E}. The minimization yields 
s(E) = K(S,E) (= K(S,-E)) with S =log (2E/(eE-e-E)), hence 

( 2E E s (E) =a e -
eE - e-E 

- E - log - 2-E-) . 
eE - eE 

It is not immediately clear which estimate attains this bound. We shall 

return to this question in the next subsection. 

In Examples 4.2 and 4.3 we see that, contrary to a remark of Sievers 
(1978), the bound s(E) can be la:r>ger than b(E). The reason is that Sievers' 

bound holds for equivariant estimates, which are not necessarily consistent. 

Indeed the estimate in Example 4.2 above is not consistent. 

EXAMPLE 4.4. (continued). Sievers' bound equals -log (1-E) when E < I and 
00 otherwise. It is attained by {(x1 + X )/2}. This example represents :n n:n 
a rare occasion where an estimate attains Sievers' bound for each E > 0. 

4b. M-estimates 

In this subsection the inaccuracy rate is derived for a class of 

M-estimates, essentially by means of Chernoff's theorem. As a side effect, 
an estimate which attains Sievers' bound will emerge in a natural way. 

M-estimates are defined here as a suitable zero (or change of sign) 
of 

where ~' is a function into the extended real line which attains positive as 
well as negative values, but not both -oo and +oo. We consider two classes 



of functions W, requiring either 

(4.4) 

or 

(4.5) 

W is nondecreasing 

W is bounded, continuous and such that An has at least one 

zero for each n [P0]. 
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The condition on An holds when x· W(x) is nonnegative for lxl l3rge enough. 

We now define M-estimates more precisely: When W satisfies (4.4), 

the M-estimate {T } = {T (W)} is defined by 
n n 

(4.6) T sup {t : A (t) ? O}. 
n n 

When W satisfies (4.5) and not (4.4), An(t) may have zeros which are 

meaningless as an estimate of 8; we define Tn as the zero closest to an 

auxiliary estimate. We take the sample median Mn= X[(n+l)/Z]:n for this 

purpose: When W satisfies (4.5), {T} is defined by 
n 

+ + r when t -M :$; M -t 
(4. 7) T n n 

n + 
t when t -M > M - t 

n n 

where 

+ 
inf {t A n(t) O}, t t ? Mn' 

t sup {t t :$; Mn' An (t) O}. 

Note, that definitions (4.6) and (4. 7) render {T } translation n 
The inaccuracy rates of these estimates involve the log-moment 

functions of W(X) under PE and P_£; we define 

Furthermore, we define the quantity eW(E) by 

(4.8) e,1,(£) = min {-inf y (T), -inf y (T)}. 
o/ T?O -£ T:5:0 £ 

equivariant. 

generating 

THEOREM 4.2. Let W satisfy (4.4) and let {T } be defined by (4.6). If 
n 

P£(W(X 1) < O) > 0 or P£(W(X1) = 0) = 0 then 
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(4.9) 

REMARK 4.2. The asymmetry of the condition above is due to the asymmetry in 

definition (4.6). The M-estimate could have been defined as 

inf {t : A (t) s O}, in which case there would have been conditions on the n 
sign of W under P_E, in Theorem 4.2. 

PROOF of Theorem 4.2. We shall prove that 

(4. 10) 
-I 

limn log P0 (Tn > E) = inf y (T) 
n-+oo T~O -E 

and 

( 4. 11) 
-I limn log P0 (T < -E) = inf y (T). 

n-+oo n TsO E 

Since {T } is translation equivariant, n 

and, as mentioned before, PE(Tn = O) O. It follows now from (4.6) that 

(4. 12) 

In cases where PE(W(X1) = O) = 0 and PE(W(X1) < O) = 0, we have 

PE(An(O) = O) = O, hence, by (4.12), PE(Tn < 0) = PE(An(O) < O) = O. It is 
easily seen that the right hand side of (4.11) also equals - 00 in this case. 

Now assume PE(W(X1) < O) > 0 and W > - 00 , then by Chernoff's theorem 

as generalized in Bahadur (1971) p. 8-9, we have 

-I 
lim n log PE(An(O) s ncn) = inf y (T) 
n-+oo TSO E 

for each sequence {c} with lim c = 0, implying (4.11) by (4. 12). n n-+oo n 
When PE(w(X1) = - 00) > O (and hence PE(w(x1) = oo) = 0) yE(T) is seen 

to be +oo for each negative T, hence the infimum equals 0 (at T = 0). 

Moreover, PE(An(O) < O) +I as n + 00 , establishing (4.11) in this case, 

too. 

To prove (4.10), observe that (4.6) implies 

and it is therefore sufficient to apply Chernoff's theorem directly. D 



An example which shows that the condition of the theorem may not be 

omitted is obtained as follows. 

-x EXAMPLE 4.5. Let p(x) = e I [O,oo) {x) and let 

1/l(x) {
-oo, 

0, 

I, 

x < 0 

0 s x < 2 

x;;?: 2. 

We have P (T < O) = P (A (0) < O) = O, and P_e:(Tn > O) e: n e: n 
e-ne:, implying e(e:,{T }) = e:. 

n 
On the other hand, it is seen that 

inf log J eT1/ldP = -(2-e:) T -(2-e:) inf log { I - e + e e } 
TSO e: TSO 

-(2-e:) log (I - e ) 

and inf log J eT1/ldP = -e:, whence 
T;;?:O -e: 

-(2-e:) e1/l{e:) = min {-log (I - e ),e:}, 

which is smaller than e: when e: = !. 

NOTE. For monotone 1/J, Rubin and Rukhin (1983) recently proved (4.9) to 

hold for any estimate {Tn} satisfying, for a sequence qn + O, 

I! L 1/l(X. - T >I s a. n l. n "t1 

When 1/1 is not monotone but satisfies (4.5) and {T } is defined by n 
(4.7), the situation is more complicated. Usually however, the result 
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(4.9) still holds provided e: is small enough. We shall first discuss the 

ideas involved. Since 1/1 is non-monotone, relation (4.12) no longer holds, 

but we may define a sequence of measurable subsets of the sample space, 

where (4.12) holds. When the probability of these subsets is large enough, 

we are still able to prove (4.9). The actual formulation of these notions 

is a bit technical: 

Define for o > O, 
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(4. 13) 

{(xl, ••• ,xn) 

{(xl, •.• ,xn) 

-I = - limsup n log n+oo 

A (t) is decreasing on (-o,o)}, n 

x[(n+I)/2J:n E [-o,oJ}, 

P0{:m.n\cn(o)}, 

-I n d(o) =-limsupn logP0{:m. \Dn(o)}. 
n +co 

Observe that c(·) is nonincreasing and that d(·) = e(·,{M }), the inacn 
curacy rate of the sample median. 

THEOREM 4.3. Let~ and {T} satisfy (4.5) and (4.7), respectively. It holds n 
that 

(4. 14) 

for each o ~ E. FurtheY'!Tlore, when e~(E) < c(E) we have 

(4. 15) 

The proof essentially shows that (4.12) holds with a large enough 
probability, and is given in 4d. 

REMARK 4.3. Most of the non-monotone functions ~ that have been proposed 
for M-estimates, cf. Andrews et al (1972), have a central part (where the 
density has most of its mass) with positive, often constant slope, while 
the parts with negative slope correspond with the tails of the density. 
Suppose that the slope is ~ ! on [-a,a] and nowhere less than -1. Now c(o) 
can be estimated: Since An(·) is nonincreasing on (-o,o) whenever at least 
two thirds of the sample points are in the interval (-a+o,a-o), we have 

P0 (c (o)) ~ r (j)pj(l-p)n-j, 
n j>~n 

where p P0 ((-a+o,a-o)). If p > t it follows that 

c(o) ~ 1 log ;P + 1 log 3( l~p) • 

Under certain general conditions, the inaccuracy rate of the sample median 
is (generalize in Example 6. I in Bahadur (1971)) 

d(o) = min {-!log 4p+(l-p+),-!log 4p_(l-p_)}, 

where p+ = P0 ((o,oo)), p_ 

4.3 may be verified. 

P0 ((- 00 ,-o)). Thus, the conditions of Theorem 



Rubin and Rukhin (1983) remark that for the MLE of the Cauchy shift 

family, (4.9) does not hold. Now this MLE is obtained as the M-estimate 

with 

ljJ(x) = _ LJ.& = 2x 
p(x) ~· 

The slope of ljJ is positive on (-1,t) but since P((-1,1)) = !, Remark 4.3 

is not helpful here. The next theorem implies however that (4.9) holds in 

this case, when£ is sufficiently small. 

THEOREM 4.4. Asswne that p is positive in a neighbourhood of 0 and that 

P((- 00,0)) = !. If 1jJ satisfies (4.5) and is, moreover, continuousty dif

ferentiabte with bounded derivative such that j ljJ' (x) - ljJ' (y) I < c 11 x - y I 

for a cl < 00 and au x,y € m., and such that 

f ljJ'(x)p(x)dx > 0 
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then, for each suffiaientty smaii £, (4.9) hotds for {Tn} satisfying (4.7). 

REMARK 4.4. The assumption on p ensures that d(o) > 0 for each o > O. When 

the sample m~dian is replaced by another equivariant estimate in the 

definitions (4.7) and (4.13), Theorem 4.3 remains valid; for Theorem 4.4, 

d(o) > 0 for some positive o is again required. 

Theorem 4.4 will be proved in Section 4d. Its main part is the 

demonstration that c(o) > 0 for some o > O. 

The uncomely expression (4.8) for the inaccuracy rate of an M-esti

mate may be made more transparent by defining 

(4. 16) P { P* ·. I '" } 1jJ = Q € o/dQ = 0 • 

It was proved by Hoeffding (1965), that 

- inf y (T) = K(P,1,.P ) • 
•~o -£ o/ -£ 

Thus, the inaccuracy rate equals the Kullback-Leibler "distance" of the 

"plane" P,1, to the pair {P ,P }. 
o/ -£ £ 
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fig. 4.1. The shift family P and the "plane" PI/!. The arrows indicate 
Kullback-Leibler "distance" determining the inaccuracy rate. 

Now consider the expression (4.3) for Sievers' bound s(s). It can 
be rewritten as 

(4. 17) 
a log p(x-s) 

-log inf J e p(x+E) p(x+s)dx. 
O<a<l 

By comparing this to the definition (4.8) of el/J(s), we find that s(E) 
e\j! (s), when 1/!€ is defined as 

€ 

(4. 18) 

and either 1/JE < 00 a.e. or 1/JE > - 00 a.e. To see this, note that 

T\j! (x) T\j! (x) 
inf log J e € dP (x) = inf log J e E dP (x) 
T:5'.0 € T:5'.l -€ 

. J T\j!E (x) ( ) ,,, . d , and use convexity of T 1+ e dP_E x on JR. When 'Ys is non ecreasing 
and either a.e. > -oo or a.e. < 00 , indeed {T (1/Js)} attains Sievers' bound n 
(Sievers (1978), Thm 2. 1). 

Note that the condition P € (1/J < 0) > 0 or P € (1/J = 0) = 0 of Theorem 
4.2 is not needed when 1/J = 1/Js· Example 4.6 below shows that densities p 
exist such that the above-mentioned condition fails for 1/J = 1/Js· 

EXAMPLE 4.6. Let p be given by 

p(x) 

then we have, when 0 < € < !, 



- 00 x < £ 

0, £ ~ x < 1-£ 
iliE(x) 

x-1+£, 1-£ < x ~ 1+£ 

2£, x > !+£. 

Note that (4.18) leaves iii£ undefined on (- 00 ,-£). It seems reasonable to 

extend iii£ monotonically in that case. 

-£ 0 £ 1-£ 1+£ 

2£ 

-£ 1£ 1-£ 1+£ 

(-co) 

fig. 4.2. The densities p(x-£) and p(x+E) (above) and the 

function iii£ (below). 

Since iii£ is nondecreasing, {Tn (iii£)} attains Sievers' bound s(E) 

eiliE(E), though the condition of Theorem 4.2 is violated. 

EXAMPLE 4.2. (continued). We have 

x < £ 

x;:: £. 

The corresponding M-estimate is {Xl:n - £}. 
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EXAMPLE 4.3. (continued). In this family, 

X E -E 1}JE(x)=-2etE+e(e -e ), 

which is increasing. It follows that the corresponding M-estimate, 

T(i}JE) =log (eE - e -E ~ e Xi) 
n 2Eetn i=I 

attains Sievers' bound, which was found in the previous treatment of this 
example. Observe, that T(ijJE) and the MLE of 8 differ only by the constant n 
log ((eE - e -E) /2E) (which is of order E2 as E -+ 0). 

(4. 5)' 

bound. 

For densities and E's such that ijJE is not monotone, but satisfies 
Theorem 4.3 provides conditions under which {T(ijJE)} attains Sievers' n 
Moreover, when p is sufficiently smooth we shall prove that the 

conditions of Theorem 4.3 hold for 1}! = ijJE when E is small enough, with 
the important implication that Sievers' bound is attainable in these 
situations. 

THEOREM 4.5. Let p > 0 onlR with J_000 p(x)dx =!.If p is three times dif
ferentiahle such that p'(x) > 0 (< O) for each small (large) enough x, 
such that the first three derivatives of log p are bounded and such that 
J (log p)"pdx < 0, then (4.9) holds for {T(i}Jd} (defined by (4. 7)) and n 
i}JE, when E is small enough. 

The proof is deferred to Section 4d. 

EXAMPLE 4. 7. The Cauchy density, p (x) = ('rr (I + x2)) -I. We have 

2 
1 I+ (x + E) 
og 2. 

I+ (x - €) 

The conditions of Theorem 4.5 hold, hence {T(ijJE)} attains Sievers' bound 
n 

when £ is sufficiently small. 

It has already been mentioned that the estimates which attain Sievers' 
bound are not necessarily consistent, see Example 4.2. 

To investigate this problem it is useful to consider, if it exists, 

A(t) J ijJ(x-t)p(x)dx. 

Now suppose that 1}! is nondecreasing and that A exists. Define t 0 as 



"the value of T~\)J) at P ~·, analogous to definition (4. 6): 

t 0 sup {t : A(t) ~ O}. 

If A(t) > 0 for each t < t 0 , the M-estimate T~\)J) converges to t 0 [P0 ]. 

(Serfling (1980), Lelllllla 7.2.1.A). Thus, {T~\)J)} is consistent iff t 0 = 0. 
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If\)! satisfies (4.5), A(t) exists for each t and A(t) = 0 may have 

more than one root. Let t 0 be the root corresponding to definition (4.7) 

with Mn = 0 and An = A, and suppose A is strictly decreasing in a neigh

bourhood ( t 0 - o ;t0 + o). If I t 0 I < !o and the sample median Mn converges to 

zero [P0 ] then {Tn} defined by (4.7) converges to t 0 [P0 ]. This can be 

proved by the method of proof of Theorem A.2 in Portnoy (1977). Again, 

consistency requires t 0 = O. 

For Sievers' estimate {T(\)JE)} we have, when both K's are finite, 
n 

J p(x-E) _ _ 
A(O) = log ( ) p(x)dx - K(Po,P ) K(Po,P ). p X + E -E E 

If, moreover, p > 0 on lR and \Ct) = J \)JE(x- t)p(x)dx exists in a 

neighbourhood of O, a nondecreasing \)JE implies that AE is continuous and 

decreasing in a neighbourhood of 0 (When llJ!EI is bounded, this follows 

from the continuity of a convolution when one of the arguments is con

tinuous, when llJ!EI is not bounded, a truncation argument can be used). 

For p's such that\)! satisfies (4.5), A is decreasing in a neighbourhood 
E E 

of 0 when the (central) part of \)JE which has a positive slope is large 

enough, see Remark 4.3. 

For most interesting cases it therefore holds that consistency of 

{T~\)JE)} requires equality of the Kullback-Leibler information of P0 with 

respect to P_E and PE. For symmetric densities this obviously holds, but 

otherwise generally not. 

The question arises whether we can find - in the general case - a bound 

on the inaccuracy rate for translation equivariant consistent estimates, 

and whether this bound is attained. Note that such a bound cannot be 

larger than the least of the bounds of Bahadur and Sievers. Equivariant 

consistent estimates that attain either of these bounds are therefore 

best with respect to the inaccuracy rate in the class of equivariant con

sistent estimates. Examples of such estimates are found in Examples 4.2 

and 4.3, where the MLE's attain Bahadur's bound, and usually in cases where 
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p is synnnetric and {T(~E)} attains Sievers' bound. n 

When K(P0 ,P_£) and K(P0 ,P£) are both finite, a class of (equivariant) 
M-estimates is obtained by taking 

~(a)(x) = a{log p(x) - K(P0 ,P_£)} 
p (x + £) 

{ p(x-£) } + (1-a) log p(x) + K(P0 ,P£) • 

Note, that indeed /..(0) = 0 for each a, hence, when p(x)/p(x+ £) is non
decreasing, the corresponding M-estimate {T(a)} is usually consistent for n 
each a E [0,1]. Now a may be chosen to maximize the inaccuracy rate over 
the class {{T(a)} : a E [0,1]}. It is unknown, however, whether this n 
maximizes the inaccuracy rate over all consistent equivariant estimates, 
or at least over all consistent M-estimates. In case of symmetry, a= ~ 

yields Sievers' estimate. 

4c. Unicity properties of Sievers' estimate 

In this section we study unicity properties of Sievers' estimate 
{T(~E)} cf. (4. 18). We start with some preliminaries. Many estimates (and n ' 
other statistics) can be written as 

T (X1, ... ,X) = T(P) n n n 

where T is a functional on p* and P is the empirical probability measure n 
associated with x1, •.• ,Xn, assigning mass 1/n to each of the points 
xl , ... ,xn. 

The sample mean, for example, is obtained by taking the functional 

(4. 19) T(Q) = f xdQ(x). 

Since functionals like (4.19) may not be properly defined on p* (the right 
hand side may not exist), we also define for each m > 0 

P = {Q E p* : Q((-m,m)) = I}. m 

With this definition the functional (4.19) is defined on P for each m. 
m 

M-estimates are found as a suitable (according to definitions (4.6) 
or (4.7)) sign-change of 

(4.20) AQ(t) = f ~(x- t)dQ(x). 
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Furthermore, the class of L-estimates (linear combinations of order 

statistics) is defined here as generated by the functionals 

(4. 21) 
1 

L(Q) =I J(t)Q- 1(t)dt, 
0 

-1 
where J is a weight function on (0,1) and Q is the inverse of Q((-00 ,•]) 

defined by 

inf {x : Q((-oo,x]) ~ t}. 

Note that L = L(P ) is properly defined as soon as definition (4.21) is 
n n 

proper for each Q € U P , and that 
m m 

L is translation equivariant iff J has 
n 

total mass 1. A well known example of an L-estimate is the a-trinnned mean, 

obtained by taking 

(4.22) -1 
J(t) = (1-2a) l(a,l-a)(t). 

We shall also need the concept of continuity of a functional. A functional 

T is weakly continuous on p* when Qt+ T(Q) is continuous with respect to 

the topology .of weak convergence, cf. Billingsley (1968) or Huber (1980). 

For our purposes, a convenient definition of weak convergence, denoted 

Q ~ Q, is that for each bounded and continuous real function f, we have n 

J f(x)dQ (x) + J f (x)dQ(x) as n + 00 • 
n 

Let p > 0 on lR and let {Ra : a € [O, 1]} l-e:•Pe: be the exponential 

family between P and P, cf. Definition I.2.1. Furthermore, let R = R--e: e: a 
be the unique pm in {Ra} satisfying (cf. Lennna I.2.2), 

max {K(R,P ),K(R,P )} = M(P ,P ). -e: e: -e: e: 

Note that p > 0 onlR implies R0 P-e:' R1 = Pe: hence a€ (0,1). From 

(I.2.23) it then follows that 

(4.23) 

We shall now first assume that ~e: is nondecreasing and finite-valued. 

This implies that p > 0 onlR and moreover, that the M-estimate {T(~e:)} 
n 

satisfies the "Cauchy mean value" property. In terms of the corresponding 

functional this means that for each y € [0,1] and P,Q € P*, 
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(4.24) T(P)::;; T(Q) ~T(P)::;; T(yP+(l-y)Q)::;; T(Q). 

Under some continuity assumptions we shall prove that translation 
equivariant estimates T = T(P ) such that T satisfies (a weakened version n n 
of) (4.24) can only attain Sievers' bound on the inaccuracy rate when {T } 

n 
essentially equals {T(~£)}. 

n 
The assumptions a~e 

(4.25) T is weakly continuous on P for each m and translation m 
equivariant, 

(4.26) 
R 

T ~ T(R) and ai+ T(RN) is continuous, for a in an open n a "' 
neighbourhood of a 

and furthermore, for each Q EU P and 0 yQ+ (1-y)R, y E [O,I] it m m '"'( 
holds that 

(4.27) 

(4.28) I 1 p(x+£) dO 
og p (x+£+o) -y 

and J log p(x-£) dO 
p(x-£-o) -y tend to zero as 

0 + 0 

and lastly, a weakened form of (4.24): 

(4.29) 
< $ 

T(Q) > T(R) ~ T(Qy) ~ T(R). 

REMARK 4.5. Assumptions (4.25) - (4.27) hold when T is a weakly continuous 
translation equivariant functional on P*. Note however, that the sample 
mean (4.19) is not weakly continuous on p* while it is on P for each m. 

m 
Assumption (4.28) holds when d(log p(x))/dx is a.e. bounded. 

THEOREM 4.6. Assume p > 0 onlR and~ is nondecpeasing. If 
£ 

(4. 30) e(£,{T(P )}) = s(£) 
n 

and assumptions (4.25) - (4.29) hold, then foP each k-tuple (x1, ••• ,xk) 
with coppesponding empiPical Pk' we have 

~ < $ 
(4.31) T(Pk) t ~I: ~ (x. - t) O. 

> £ i ~ 

REMARK 4.6. Relation (4.31) implies that 



(4.32) 

k where \(t) =I:l 1/JE:(xi-t). Many authors (Huber (1980), Sievers (1978), 

Serfling (1980)) define M-estimates this way, requiring T(Pk) to be any 

measurable function satisfying (4.32). We have chosen for the simpler 

definition (4.6), see also Remark 4.2. 
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In the proof, which is given in Section 4d, we show that when (4.31) 

fails for some k-tuple x 1, ••• ,xk, a pm Q exists with T(Q) > 0 and 

K(Q,P_e:) < s(e:). Relation (4.30) is then contradicted by application of 

Corollary I. 2. 

The applicability of Theorem 4.6 is, apart from the continuity as

sumptions, restricted by assumption (4.29), which, though apparently in

nocent, does not hold for most L-estimates (Leurgans (1981)), and may fail 

for M-estimates based on a non-monotone 1/J, too. 

EXAMPLE 4.8. Let the functional L be the a-trimmed mean, defined by (4.21) 

and (4.22). Let R be absolutely continuous and synmetric, then L(R) = 0. 

Define Q to have atoms of size a at R-I (!a) and of size I - a at a point 
-I 

y > R (I - ~a) , with ! > I - a > a and y chosen large enough to ensure 
-I L(Q) > O. Now let y = !a, then (I -y)R(R (!a))+ ya < a, hence L(~) is 

determined by the size of the atoms of Q, not by y. Now a > ~ implies 

L(~) < O, contradicting (4.24) (and (4.29) when R is chosen equal to R). 

EXAMPLE 4.9. Let the functional T be defined as the M-functional T(ijJ), 

with 1jJ given by fig. 4.3. 

-4 2 4 

fig. 4. 3. The function 1/J, (a "Hampel"). 
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The corresponding M-estimate was proposed by Hampel, cf. Andrews 
et al (1972). Let R have a positive symmetric density and choose Q to have 
atoms HI - o) at -3 and I and an atom of size 8 at -1. Definition (4.7) 
yields T(R) O, T(Q) = -1, when 8 > 0. However, the median of~ 
(I - y)R + yQ tends to 0 as y + 0 and for 8 < i it holds that 

J 1/i(x)d~(x) > 0 

for each y > O, implying T(~) > 0 when y is small enough. 

We shall now use the concept of differentials of statistical 
functionals to derive a necessary condition for a differentiable statistic 
to have inaccuracy rate s(E). 

A statistic T of the form T(P ) shall be called G-differenti<ible at n n 
R, when a measurable function X = XR exists such that for all Q E U Pm 

(4.33) lim y-l{T(R+y(Q-R)) -T(R)} = f X(x)dQ(x) 
y+O 

is finite and 

(4.34) f X(x)dR(x) = O. 

G-differentiability is a modification of Gateaux-differentiability, 
cf. Huber (1980), Section 2.5. Note that X is Hampel's Influence Curve 
(Hampel (1968,1974)). 

THEOREM 4.7. Let p > 0 on lR. If T = T(P) is translation equivariant, n n 
G-differenti<ible at R, and (4.27) and (4.28) hold for each Q EU Pm' then 
(4.30) implies that x is a.e. proportional to 1/!£. 

The proof is given in Section 4d. 

Two lemmas are now presented which establish G-differentiability for 
classes of M- and L-estimates: 

LEMMA 4.8. Let T(1/i) = T(P ) be an M-estimate, and let T(R) n n 

(4.35) A~(O) exists and does not vanish 

and if for each Q E U P 
m 

(4. 36) T(~) + 0 as y + 0, 

0. If 



(4.37) 

where Cly 

(4.38) 

Aqy(T(Cly)) = o for y E [O,y0 ] 

R + y (Q - R), and 

AQ(·) is continuous at 0, 

then T is G-difj'erentiable at R with 

(4.39) 

REMARK 4.7. Serfling (1980), p 245, seems to require (4.35) only in his 

statement on Gateaux-differentiability of M-estimates. To see the neces

sity of (4.38), take 

{
O, 

1/J(x) = 
x/ lxl, 

x = 0 

x f o. 

The corresponding M-estimate is the sample median. Let R be standard nor

mal, then (4.35) holds. Let Q have atoms of size ! at 0 and I, then 

T(Qy) = 0 for each y < I and f 1/JdQ = !, contradicting (4.39) to be the 

influence curve. 

Lemma 4.8 is proved in Section 4d. 
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From Lemma 4.8 and Theorem 4.7 it follows that if an M-estimate 

satisfies the conditions of Lemma 4.8 and Theorem 4.7, and attains Sievers' 

bound, this M-estimate is T(1/JE). 
n 

We turn our attention to L-estimates: 

LEMMA 4.9. Let R have a positive density onlR and let ERlxl < 00 • If the 

functional Lis given by (4.22) with J bounded and continuous, then Lis 

G-differentiable at R with 

x 00 y 
X(x) = f J(R(u))du - ff J(R(u))du dR(y), 

0 -co 0 

where R( u) abbreviates R((- 00 , u]). Note that x is properly defined since 

J is bounded and ERlxl < 00 • 

The proof is a application of a theorem of Boos (1979) followed by 

integration by parts. It is given in full in the next subsection. 

We would like to determine the inaccuracy rate of the unique (equi

variant) L-estimate (with bounded continuous J) which may attain Sievers' 
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bound. 

By Theorem 4.7 and Lennna 4.9 this L-estimate is determined by 

x 
J J(R(u))du c(ijJE:(x) -ijJ£(0)), 

(4.40) 
0 

I 
J J(t)dt I. 
0 

The last relation ensures that L is translation equivariant. Note 
that proposition 4.7 only concerns bounded J's. By (4.40) this implies that 
i)i£(x) = O(lxl) as lxl + 00 • 

The inaccuracy rate of an L-estimate is presently not known to have 
a simple form like (4.8) for M-estimates. When J equals zero on the 
"tails" [O,a] and [1-a,I] for some a> 0, Groeneboom et aZ (1979) give an 
expression for the essential large deviation probability, which involves 
minimizing over a complicated (non-convex!) subset of p* (The tails con
dition was relaxed somewhat by Groeneboom and Shorack (1981)). For trinnned 
means, however, Groeneboom et aZ (1979) find a more explicit expression. 
We shall use this to show that a trinnned mean attains Sievers' bound in 
the double exponential family. 

EXAMPLE 4.10. Let p(x) =~exp {-lxl}, then by synnnetry, for a given£> O, 

{
(2(1+£))-I 

dR(x)/dx = _1 
(2(1+£)) 

exp {- Ix I+£} , > £ 

~ £, 

By Lemma 4.1, Sievers' bound equals K(R,P ) = E: - log (1+£). This is -£ 
attained by the M-estimate {T~ijJE:)} (Sievers (1978)), with ijJ£ given as 

!::~· ~x~ :E:£ 

2£, x > E:. 

The "candidate" L-estimate is the (2(1+£))- 1-trinnned mean Ln, say. By 
synnnetry, its inaccuracy rate equals 

By Theorem 6.3 and formula (6.13) of Groeneboom et aZ (1979), this can be 
expressed as (writing a= (2(1+£))- 1) 



(4.41) 

with 

(4.42) 

2a. log a. + ( 1 - 2a.) log ( 1 - 2a.) 

+ inf {sup f(a,b,t) :-ea< a < b < ea, b > d 
t~O 

b t 
f(a,b,t) = (1 - 2a.) [te: - log f e xp{x)dx] 

a 

-a.[log P0(a) +log (1-P0{b))]. 

We shall show that f(0,2e:,1) attains the sup and inf in (4.41). Consider 

f(a,b,1) - f(0,2e:,1) = 

(1 - 2a.)[-log J ~ex-\x\dx + 
a 

-a.[log P0 (a) - log ! + log 

2£ 
log f !dx] 

0 

( 1 - PO (b)) 

-1 
Multiplying by (l+e:)/e: = (1-2a.) we obtain, when a < 0 and b > e:, 

loge: - log ! - log [ l-;2a + b] - 21e: [a - b + 2e:] 

I [ 2a ] ~ 4e: e - 2a - 1 ~ O, 

where the inequality log x ~ x-1 was used. When a ~ O, we find in a simi

lar way that 

f(a,b,1) ~ f(0,2e:,1). 

It follows that 

inf sup f(a,b,t) ~ f(0,2£,1) 
a,b t~O 

and it suffices to remark that f(0,2£,1) ~ f(0,2e:,t) by synnnetry and con

vexity of 

2e: 
t ~ f e(t-l)(x-e:)dx. 

0 

It remains to evaluate f(0,2e:,1). Together with the other part of (4.41), 

this indeed equals e: - log (l+e:). 
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4d. Proofs and miscellany 

This section contains, apart from the pending proofs, some examples 
of unexpected phenomena. We start with the proofs. 

PROOF of Theorem 4.3. Leto~£> 0. By (4.7) we have 

P0 (1Tnl > £) s P0 ({An(-£) < 0 or An(£) > O} n cn(o)) 

+ P0 ({1Mnl > 0;£} n Cn(o)) + P0(lR.n\Cn(o)) 

s P0 (An(-£) s 0 or An(£) ~ O) 

+ Po(lR.n \ Dn(o;£)) + Po(lR.n \ cn(o)). 

Since, by Chernoff's theorem (Chernoff (1952)) and translation equivariance, 

(4.14) is proved. To prove (4.15) it is sufficient to write the inequality 

~ P0 <{1T I ~ £} n c (£)) n n 

n 
~ P0 (An(-£) so or An(£)~ O) - P0(lR. \Cn(E)). 

D 

PROOF of Theorem 4.4. By the conditions on p, d(o) > 0 for each o > O. We 
shall prove that 

(4.43) as £ -+ 0 

and that 

(4.44) c(o) > 0 for some o > 0. 

The theorem then follows from Theorem 4.3. Since ~ is bounded and con
tinuous, y8(T) is continuous in 8 and T by dominated convergence. Moreover, 
by strict convexity of y0 (·) we have y0 (T) > 0 for each T > 0 or for each 
T < 0. Assume the latter, then by pointwise convergence of y£ to y0 it 
follows that inf y (T)-+ 0 as£* O, implying (4.43). T:5:0 £ 

To prove (4.44), let J ~'pdx = c2 > 0, then the derivative of 
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T t+ log f e T(I/!' - ~c2)pdx 

is positive at T = 0, implying 

inf log f T(I/!' - lc2) c3 < 0. e 2 pdx 
TSO 

By Chernoff's theorem it follows that 

-J I 
-limn log P(-:A.'(O) ;:: -le) - c 

n->oo n n 2 2 - 3" 

-I 
Since the Lipschitz condition on 1jJ' is "inherited" by n A.~ we have 

P(_!_A.'(O) < -~c2 ) 
n n 

and (4.44) is established. D 

PROOF of Theorem 4.5. First note that, since el/!£(£) 

as £ -+ O, 

and that d(o) > 0 for each o > 0 as in the previous proof. By continuity 

of p and the tails condition on p', (4.5) holds for 1/!£ (for each E > 0), 

hence it is again sufficient to prove that c£(o) > 0 for some o > 0, where 

c£(·) is defined as c(·) in (4. 13) by taking 

n I 
A.(t}=A. (t}= l: -2 1/!(X.-t). 
n £,n i=J E £ i 

Since this is essentially an elaboration of the previous proof, using the 

mean value theorem to bound ijJ, 1/!' and 1/!", we omit further details. D 

The proofs of Theorems 4.6 and 4.7 are preceded by a useful lemma. 

LEMMA 4. 10. If p > 0 and {T(P ) } is a translation equivariant estimate 
n 

such that (4.26) and (4.30) hold, then T(R) = O. 

PROOF. Assume T(R) > 0, then by (4.26) 

R (T(P ) > 0) -+ 
a. n 

as n -+ co, 

for an a.< a with K(R ,P ) < M(P_£,P£) = s(E). Corollary 1.2 now implies a. -£ 

-I ~ 
limsup n log P (T(P) > 0) ~ -K(Rro,P-£), 
n -+co -£ n "' 

contradicting (4.30) by equivariance of T(Pn). D 
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PROOF of Theorem 4.6. Suppose (4.31) fails then without loss of gene
rality there is a k-tuple x 1, •.• ,~ with 

Let m > max {!xii}, then by the monotonicity and boundedness of~£ on 
(-m,m) and by (4.25) a pm Q E P exists such that m 

(4.45) T(Q) > 0, 

and 

K(Q,R) < oo. 

By Definition I.2.1 we have 

(4.46) 

Since a E (0,1), the last term equals K(R,P ), cf. (I.2.25). It follows -£ 
that (4.46) and the second part of (4.45) yield 

(4.47) I dR ~ 
log~ dQ < K(R,P_£). 

-£ 

By Csiszar's (1975) lemma (cf. Lemma I.2.1), (4.47) and the convexity of 
K(·,P-£) imply that 

(4.48) 

for each y E (O,y0) for some y0 > O. By Lemma 4.10 

T(R) = 0 

hence (4.29) and the first part of (4.45) imply for each y E [0,1] 

(4.49) 

Fix y > 0 such that (4.48) (and (4.49)) hold. Since T is translation equi
variant, (4.27) implies for each o > 0 

(4.50) ~(·-o)(Tn > O) + 1 as n + 00 , 

where ~(·-o) denotes the pm ~ shifted by the amount o. By (4.28) and 
(4.48) o can be chosen small enough to ensure 



(4.51) 

Since K(R,P ) = s(E), (4.50) and (4.51) imply by Corollary 1.2 that 
-E 

(4.30) does not hold. 0 

PROOF of Theorem 4.7. This proof is similar to the previous one. Again 

assume that the conclusion of the statement is false, i.e. assume that X 

and WE are not a.e. proportional. First we shall construct a Q E U Pm 

such that, say, 

(4.52) J X(x)dQ(x) > 0, J WE(x)dQ(x) < O. 

Let A= {x : WE(x) < o,x(x) > O}. If R(A) > 0 define Q by 

(4. 53) d~ (x) 
dR 

~ -I 
{R(A n (-m,m))} IA ( )(x) n -m,m 

for some m with R(A n (-m,m)) > 0. A similar choice can be made when 

R(WE > O,X < 0) > O, resulting then in (4.52) with reversed inequalities. 

Now assume that WE and X do not attain opposite signs (a.e.). 
+ - + 

Let WE' WE' X and X denote the positive and negative parts of WE 

and x and assume without loss of generality that w; is not a.e. pro

portional to x+ and that 

(4.54) J w;dR = J x dR. 
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Since J WEdR J XdR = 0 (cf. (4.23),(4.34)), (4.54) holds for the positive 

parts, too. 

Let 

{x : -m < 

such that 

(4.55) 

U = {x : -m < x < m,W (x) > X(x) > O} and V = 
m E m 

x < m,WE(x) < 0 or x(x) < O}, then by (4.54) an m < 00 exists 

(4.52) holds with Q defined such that dQ/dR is proportional to 

{- J w Iv dR}- 1 tv + 2{f <w +x)1u dR}- 1 tu . 
E m m E m m 

Moreover, (4.55) and, in the previous case, (4.53) imply K(Q,R) < 00 • The 

differentiability condition now implies that 

(4.56) 

for each sufficiently small y > O. As in the previous proof, (4.56) and 

the second part of (4.52) contradict (4.30). 0 

PROOF of Lemma 4.8. By (4.37), (4.36) and (4.38) we have 
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which by differentiability of AR (cf. (4.35)) yields 

Divide by Ai(O) and y and let y + 0 to obtain G-differentiability and 
(4.39). D 

PROOF of Le1Ililla 4.9. In this proof, denote Q(·) = Q((- 00 ,·]) for each Q E P*. 
Let Q EU P . We shall prove that (4.33) holds with X defined by (4.35). m 
Define q(t) = t(l-t), then J q(R(x))dx < 00 since ERlxl < 00 • Moreover, when 
~ = R + y(Q - R) we have 

s~p {i(~(x)-R(x))/q(R(x))i}-+ 0 as y + O. 

By Theorem 2 of Boos (1979) it follows that 

(4.57) 

Define 

-1 J limy (L(O ) - L(R)) = - (Q(x) - R(x))J(R(x))dx. y+o -Y 

x 
J J(R(u))du 
0 

then for each m > m0 with Q E Pmo we obtain, integrating by parts, 
m m 

(4.58) - f (Q- R)J(R)dx = -(Q - R)X 1 l~m + f x 1d(Q- R) 
-m -m 

m m 
= -(1-R(m))X1(m) - R(-m)x 1(-m) + f x 1dQ - f x 1dR. 

--m -m 

Now let m-+ 00 , then the first two terms of the last member of (4.58) tend 
to zero; the last two tend to J x(x)dQ(x), completing the proof by 
(4.57). D 

In the remainder of this section we give some examples of curious 
phenomena. The first is a consistent estimate in the double exponential 
family which attains Bahadur's bound at 8 = 0 for each E > O. 

EXAMPLE 4.11. Let p(x) =!exp {-Ix!}. We shall construct an estimate which 
is based on the discretized Kullback-Leibler information of ~ with 

n 
respect to P0 , and show it to be consistent and to attain Bahadur's bound 
at 8 = 0 for each E > 0. 



For each k = 1,2, ••• , let 

1\1 = (-oo,al)' '\j 

'\k = [~-1'00), 

[a. 1,a.), j 
J- J 

2, ... ,k-1, 

Define for pms Q E p* the discretized Kullback-Leibler information 

with respect to P0 by 

k Q(Akj) 
Q ('\j ) log p 0 (Akj) (4.59) ~(Q) = j~I 

Now 8 + K(P8,P0) is continuous and increasing on [0,00); let K-I be its 

inverse. 

Define the functionals T(k) by 

and the estimate T as 
n 

where k(n) tends to 00 at a suitable rate to be determined later. 

(4.60) 

We prove that {T } is consistent for certain sequences {k(n)}: 
n 

Fix e E (- 00 , 00) and let z k" = p (A_.) and Pk· = Pe(A_ .) ' then n J n -KJ J -KJ 

l~<P) -~(P0 )1 = \ ~ [Z k" logZ k' - pk. logkpk.]\ n · j= I n J n J J J 

,,; I>t I kZnkj log kZnkj - kpkj log kpkj I . 
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Furthermore, since P8 is double exponential, there are constants c 1 and c2 -e e (e and e ) such that for all k,j 

(4.61) 

implying for each c > 0 that 

(4. 62) 

k 
~ I: 

j=I 

2 c2 
k nc2 
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where Chebyshev's inequality was used. The upper bound of (4.62) tends 
to zero for each c > 0 provided 

(4.63) k = k(n) o(ln) as n->- co. 

Fix o > O. Since x log x is uniformly continuous on [c 1,c2], a constant c3 
exists such that the last member of (4.60) is smaller than o when 
[ Znkj - pkj [ :'.> c/k for each j. When k = k(n) satisfies (4. 63) it follows 
from (4.60) and (4.62) that 

(4.64) 

Since ~(P9 ) -+ K(P8 ,P0) as k->- co, (4.64) implies, as k and n->- co with 
k = o(ln), 

P 9 ([~<Pn) -K(P9 ,P0) [ > o)-+ o. 

It follows that K- 1 (~(Pn)) ~ [e[. The correct sign is implied by con
sistency of the sample median. 

Now we prove that for each E > 0 

(4.65) e(E,0,{T }) = b(E). n 

Fix E > 0. By the definition of Tn we have 

Po([Tn[ > E) = Po(~(Pn) > K(PE,PO)) 

= P0 (~(Pn) > b(E)) ::; exp {-nb(E) + O(k log n)} 

as k = k(n) ->- co and n ->- co, where the last inequality was proved, using the 
technique of the proof of Lemma 3.1 in Groeneboom et al (1979), in Kester 
(1978), proof of (2.22). 

It follows that (4. 65) holds when k k(n) 
which is implied by (4.63). 

o(n/log n) as n ->- co, 

REMARK 4.8. The proof of consistency leans rather heavily on the bounds 
(4.61). Such bounds are available when p has exponential or heavier tails. 
The estimate can therefore also be constructed for the logistic and 
Cauchy densities. 

In Sections and 2 we have seen that in shift families a bound on 
the inaccuracy rate is attained, under some conditions, by an M-estimate 



which is related to that bound in a natural way. We shall now show that 

the analogous estimate does not attain the generalized bound in location

scale families. 

Let a location-scale family {P µ E 1R, a E1R+} be given by its 
µ,a 

Lebesgue densities 

-I -I 
Pµ, 0 (x) =a p(a (x-µ)), 
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and consider location-scale equivariant estimates {(T ,S )} of (µ,a), i.e. 
n n 

when Y. = a(X. + µ) for each i, then 
]. ]. 

T (Y 1, ••• ,Y) n n a(T (x1, ••• ,x) +µ), 
n n 

Inaccuracy rates are defined as 

-limsup n-I log P CIT -µI > 0£) 
n-+ oo µ;a n 

and 

making them location-scale invariant, and just like in the pure location 

case, bounds on these rates for equivariant estimates are found as, cf. 

Lemma 4.1, 

(4.66) M(P l'p I) -£, £, 

for the location estimate and 

(4.67) 

for the scale estimate. The "candidate" M-estimates to attain these bounds 

are found as a suitable zero or change of sign of 

( X· - t) I:•" _l._ 
'I' s ' 

( X· - t) :rx _i __ 

\ s 

where 1jJ =log (dP£,l/dP_£,I) and X =log (dPO,p/dPO,l/p). When p is the 

standard normal density, the resulting estimates 

- {p2 - p-2 I - 2}! x -:r x-x n' 4 log p n ( i n) 
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indeed attain the bounds (4.66) and (4.67). For the scale estimate this 
f 11 . d p ""n ( -) 2 h d . . b . ""n- I X2. . o owssinceuner O,I'""I·Xi-X haste same istriutionas,_1 i 

In the double exponential family, however, the bound is not attained 

by the proposed estimates, and the results of Section 3 suggest that other 
?·!·-estimates will not attain it either. 

Let 

then 

Pµ,o(x) = 2o exp {- lx~µI}' 

ij;(x) 

x(x) 

2 max (-s, min (x,s)), 

(p -l) lxl - 2 log P p 

"should" produce H-estimates which attain the bounds (4.66) and (4.67). 
Let (T,S) be the functional-pair corresponding to these M-estimates, then 

implies 

Ix ( x - T(Q) ) dQ = 0 
S(Q) I 

-I 
P - P I I S(Q) = 2 log p EQ X-T(Q). 

-I Note that (p - p ) / (2 log p) is larger than one for each p > I. 

Let R be the (unique, cf. LelllIIla I.2.2) pm with 

K(R,P 1) = K(R,P 1) =M(P 1 ,P 1). -s, E, -s, E, 

We shall show that a pm Q exists such that ~ = yQ + ( I-y)R satisfies 
for each y E (O,l] 

(4. 68) 

implying T(~) > 0, and such that 

(4.69) I ij;(x)dQ < o 

which implies then as in the proof of Theorem 4.6 that T T(P ) does n n 
not attain the bound M(P 1 ,P 1). -s, s, 

Let E = I and take Q such that its density q is given by 



q(x) = 4a.1(_514,-l)(x) + (1-a.)1( 7 , 8)(x) 

with a fixed a. E (1/2,10/19). 

Now EQIX- tl :> 5/4 for each t E lR. 

Moreover, R is given by 

~ {*' dR/dx = -lx-11 
!e ' 

lxl s 

Jxi > 1 

and hence ERlx- tl ~ 5/4 for each t E lR, too. It follows that for each 

y E (0, 1] and t E lR 

EQ Ix- tl > 5/4, 
y 
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implying S(~) > 5/4. It is now easily checked that (4.68) and (4.69) hold. 

REMARK 4.9. The proposed scale estimates in the normal and double ex

ponential families above are both inconsistent. This is related to the 

fact that 

f X(x)dP0 , 1(x) ; 0 

as discussed for location M-estimates at the end of Section 4b. Taking 

X = lxl - I yields a consistent scale estimate for the double exponential 

family but does not remedy the suboptimality of the proposed location 

estimate. 

REMARK 4.10. It was proved in Example 4.10 that a trinnned mean (which is 

scale equivariant by its nature) attains the bound (4.66). This shows the 

bound to be sharp, in the double exponential family. 





CHAPTER Ill 

THE BAHADUR DEFICIENCY OF A 
TWO-SAMPLE CONDITIONAL TEST 

IN ONE-PARAMETER EXPONENTIAL FAMILIES 

I . INTRODUCTION 

We consider a full one-parameter exponential family {P8 : 8 E e*} 

of probability measures (pms) on lR given by its densities with respect to 

a non-degenerate pm P0 as 

( J. I) 8 Ee*, 

* where 8 is the log-moment generating function of po and e is the full 

parameter space, cf. Section I.2a. 

Suppose we have a sample x1, ••• ,Xm from a P9 1-distribution and an

other sample Y1, ••• ,Yn from P92 , and suppose the hypothesis 8 1 = 82 is to 

be tested against the alternative 81 > 82 at level a.. Since I:~ Xi and 

r~ Yi are the sufficient statistics for 8 1 and 82 , it is convenient to 

abbreviate these statistics: 

Define, suppressing the dependence on m and n, 

m 
X = I: X1., 

i=I 

Furthermore, define 

R = X+Y. 

n 
Y = I: Y •• 

i=I 1 

91 

P9 192 ,E9 192 and var9 192 will denote the joint pm of X,Y and the expectation 

and variance with respect to P9 192 ; the pm induced by a function f of X and 

Y will be written as P~(~,Y) 
I 2 

The uniformly most powerful unbiased (UMPU) test for the testing 

problem is the conditional test oc defined on the possible outcomes of 

(X,Y) by (Lehmann (1959), Sections 4.4 and 4.5) 
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> 

( !. 2) when x k(x+y), 

< 

where y(r) and k(r) satisfy 0 ~ y(r) < and 

( !. 3) y(r)P 88 (x = k(r) I R = r) + P88 (x > k(r) I R = r) = a. 

Note that since R is sufficient for 8 when 81 = 82 = 8, y(r) and k(r) can 
be chosen independent of 8. 

EXAMPLE I. I. Let x1, •.. ,Xm and Y1, .•• ,Yn be two random samples from 
Bernoulli distributions with parameters p 1 and p2 , respectively. Note that 
the Bernoulli distribution is written in the form (I.I) by taking 8 = 
log (p/(1-p)), ij;(8) =log 2(e8 + I) and P0 ({0}) = P0 ({I}) = ~-

Testing p 1 = p2 against p 1 > p2 is equivalent to testing 81 = 82 
against 81 > 82. The critical values and randomization probabilities k(r) 
and y(r) of Fisher's exact test, cf. Example I.I. I, are determined by (1.3); 
the conditional distribution of X given X + Y = r is hypergeometric with 
parameters m+n, r and m. 

The aim of this chapter is to determine how much the power of the 
conditional test falls short of the envelope power, in terms of Bahadur 
efficiency and deficiency. 

Let H = {(8,8) : 8 E e*} be the null hypothesis and let K= {(81,82)} 
be a fixed point of the alternative hypothesis H1 = {(8 1,82) : 81 > 82}. 
Furthermore, let {~} and {nN} be nondecreasing sequences of integers such 
that ~+nN = N for each N = 1,2, ..•. Define N+(a,S,8 1,8 2) to be the 
smallest number N such that the MP test of H against K of size a, based 
on observations x1, •.• ,XmN'YI, ••• ,YnN' has power at least Sin K. Let 
Nc(a,S,8 1,82) be similarly defined for the conditional test. Note that 
N+ and Ne also depend on the sequence of ratio's {~/N}. 

B The Bahadur efficiency e (of the conditional test versus the MP 
test) is defined as 

(I. 4) B 
e 

. N+(a,S,8 1,82) 
;~ Nc(a,S,8 1,82) ' 

keeping the other parameters fixed. Since the Bahadur efficiency turns 
out to equal I in our testing problem, we consider the limiting behaviour 



of the deficiency, i.e. the difference of the sample sizes Ne -N+. 

The Bahadur deficiency is said to be of order O(D{N)) when 

Nc-N+ 
D(N+) = 0(1) as a.-+ 0, 

keeping again the parameters B, el and e2 fixed. Deficiency of order 

o(D{N)) is similarly defined. Deficiency of order 0(1) is also called 

bounded deficiency. 

We shall consider families (I.I) such that P0 is a lattice distri

bution or such that P0 has a Lebesgue density satisfying the regularity 

condition (2.6); we shall prove that the Bahadur deficiency of the con

ditional test with respect to the MP test is bounded, when the ratio 

~/N remains bounded away from 0 and I. An explicit upper bound for the 

asymptotic deficiency will be obtained when P0 has a density. 

Boundedness of the Bahadur deficiency implies that the Bahadur 

efficiency equals I. 
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When {Pe : 6 E 8*} is the normal shift family with known variance, 

the conditional test (1.2) is equal to the well known Gauss test for the 

difference of two normal means, which is uniformly most powerful {UMP). It 

follows that in this special case the deficiency is identically zero. There 

is another exponential family where the conditional test is UMP, the gamma 

scale family with known shape parameter. This fact seems to have been over

looked in textbooks. We give a proof: 

Let {Pe : e E e*} with e* = (-oo,O) be given by 

{ } -I ~-I dP6{x) = exp 6x + log (-6) {r{~)) x dx, x > 0, 

for some fixed~> 0. Let (61,62) E HI and let, for each e Ee*, oe be the 

MP test of (6,6) against (e 1,e2). This test is based on the likelihood 

ratio dP6162/dP66 and given by 

o6(X,Y) = ( when (6 1 -S)X + (62 -S)Y <:: c6 
0 < 

where c6 is determined by E66o6(X,Y) = a.. When o+ is the MP test of H 

against (e 1,e2) with size a. then, since (6,6) c H, we have 

(I. 5) 
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for each 9 E (-oo,Q). Since the conditional distribution of X/r given 
X+Y = r is the beta (m!;:,ni;:) distribution (independent of r), the condi
tional test (I.2) is given by 

{
I ~ 

cS (X,Y) = when X/(X+Y) k, 
c 0 < 

where k is the (I-a)-quantile of the beta (mi;:,ni;:) distribution. The power 
of the conditional test cannot exceed that of the MP test: 

(I. 6) 8 s 8 . c + 

Now choose cS such that cS 9 = cSc, i.e. take 9 = k9I + (I-k)92 , then (I.S) and 
(I.6) imply B+ = Bc: the test cSc is MP for H against (SI,92). Since (SI,9 2) 
is arbitrary, cSc is UMP. 

The same proof applies to the normal shift family, with the dif
ference that there the distribution of X- mr/N given R = r is independent 
of r. In both cases the rejection region of the conditional test has a 
linear boundary whence one of the tests cS 9 is the same as cSc. 

2. MAIN RESULTS 

2a. Preliminaries and Tesults 

In this section we present the main results, but we start with some, 
mostly notational, preliminaries. 

* { f ex Let 8 = 9 : e dP0 (x) < 00 } be the full parameter space of the 
exponential family (I.I) and assume 0 E int e*. The first three derivatives 

2 of 1/! are denoted as ;\ = 1/J', a = 1/J" and p = 1/J"'. Note that p(9) 
E8 (x 1 -\(9)) 3• Where unambiguous, we write\., a:, a2 , pi. instead of \(Si.), 2 2 ]_ ]_ v a (9.), a (9v) and p(9.), see also (4.3) and (4.4). ]_ ]_ 

Kullback-Leibler information will occur nearly always in a linear 
combination Iv, defined by 

(2. I) 

Note that 91+ Iv(9I,e2 ,9) is strictly convex since both K's in (2.I) are. 
In view of (I.2.II), the derivative (d/d9)Iv(9I,e 2,e) equals 
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(2.2) 

we find that 8v, defined as 

(2. 3) 

is the value of 8 which minimizes IV(8 1,82 ,8) for fixed 81,82. Furthermore, 

we note that 

(2.4) 

Our theorems will be stated for families (I. I) such that either 

(2.5) 

or 

(2.6) 

P0 has a lattice distribution with minimal lattice Z 

P0 has a Lebesgue density and for each compact subset G of 
* ~ int G there is a k ~ I such that the densities p8 (x) of the 

k-th Convolutions Of P8 are bounded, uniformly for 8 E 8 and 

X E JR. 

REMARK 2.1. The requirement that the minimal lattice be Zin (2.5) is im

posed to avoid non-essential transformations later on. Condition (2.6) 
implies a regularity property of the characteristic function of P8 which 

is used to obtain uniformity in the limit theorems of Section 3, cf. 
. •k Lemma 3.1. Note that (2.6) is stronger than boundedness of the density p0 

for some k ~ I. To see this, modify the standard normal density such that 

for each x E Z, the probability mass of [x-!,x+!) is concentrated on a 

smaller interval (x-Ex,x+Ex) and such that the resulting density p0 (x) 

equals I for each x E Z. For any 8 f O, the density p8 is now unbounded. 

In the sequel we assume that the ratio ~/N, denoted by VN' remains 

bounded away from zero and one, i.e. for some E > 0 it holds that 

(2.7) VN =~/NE [s,1-s] for each N ~ 2. 

Now let~ be a convex compact subset of int H1 and let 0 < E < !. 

THEOREM 2.1. If (2.5) or (2.6) holds then 

(2.8) 0( I) as a-+ 0, 
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uniformly for 8 E [£,!-£]and (6 1,e2) En. 

THEOREM 2.2. If (2.6) holds then, uniformly for 8 E [£,!-£]and 
(6 1,e2) En as a+ o, 

(2.9) 

. -1 (2.10) D(v,e 1,e2) =I+ (nun {K(6 1,6),K(62,e)}) • HRv-1-log Rv), 

v(l-v)(6 1 -e2 )2crfcr~ 
(2.11) RV= 2 2 

T \!cr \! 

(recall that a~ = cr2 (6\!)) and 

(2. 12) 2 2 2 2 2 'v = v(e 1-ev) cr 1 + (1-v)(6 2-ev) cr2 • 

An often feasible way to prove theorems on Bahadur efficiency and 
deficiency is as follows. Suppose tests {o~'a} and {o~'a} are to be com
pared. One defines for each test ai(N,8) to be the smallest size a such 
that o~,a h.as power at least 8 at a fixed alternative. Asymptotic expansions 
for a 1(N,8) and a 2(N,8) as N + 00 are then inverted to obtain expansions for 
the minimal sample sizes N1(a,8) and N2(a,8) as a+ 0. For the present 
problem this approach meets two difficulties. 

In the first place, the MP test of H against the simple alternative 
{(6 1,62)} is not explicitly known (it exists but involves a generally un
known least favourable distribution on H, cf. Lehmann (1959)). Secondly, 
the smallest size ac(N,8) for the conditional test to attain power 8 is 
not easily found as a function of 8: one would have to invert, for fixed 

(61,62) E HI' 

8 (N,a) = f Ee 6 (oN,alR = 
c 1 2 c 

R 
r)dPe 6 (r), 

1 2 
where oN,a is defined by (1.2) and (1.3). c 

The proofs of theorems 2.1 and 2. 2 circumvent these problems: In Sec-
tion 4, a lower bound on a+(N,8) is found as the size ~(8) of the MP test 
of (6,6) against (6 1,e2) for a suitable choice of 6, in Section 5 we derive 
an implicit expression for the critical values k(r) of the conditional 
test, and in Section 6 these are combined to prove that the power 

-! 
8c(N,aN(8)) exceeds 8-N 2 S for some finite number S. The main result is 
then a consequence of the following lemma. 



LEMMA 2.3. Consider for each Nanda tests o~,a and o~'a. Define Si(N,a) 

to be the power of o~,a at a fixed point (8 1,82) of H1 and let Ni(a,S) be 

the smallest N such that Si(N',a) ~ S for each N' ~ N, i = 1,2. 

Furthermore, let ai(N,S) be the smallest size with Si(N,a) ~ S, i = 1,2. 

Now assume that N2(a,S) ~ N1(a,S) for each a and S, and that for 

each N 

(2. 12) i I , 2. 

Let aN(S) satisfy for each N and S 

(2. 13) 

and, uniformly for SE [E,1-E] as N + 00 , 

(2. 14) 

where E is continuous, g is continuously differentiable and I(v) ab

breviates Iv (8 1, 82 , 8v) • Moreover, let S ( ·, ·) be a continuous function 

such that uniformly for SE [E,1-E] as N + 00 

(2. IS) 

For each s' >Ewe have, uniformly for SE [s',1-E'] as a+ 0, 

(2. 16) 

This lemma will be proved in Section 2b. Note that condition (2.12) 

holds for the MP test as well as for the conditional (UMPU!) test (1.2). 

For these tests the power is monotone in N, too. 

Section 3 contains some central limit theorems which are used in 

Sections 4 to 6 to prove the main result. 
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In Section 7 we study the conditional test for different values of 

the sample ratio VN = ~/N. We shall find that the Bahadur-optimal ratio 

is equal to the constant v0 which maximizes Iv(8 1 ,82,8) as a function of 

v, cf. (2.4). Moreover, we prove that the conditional test with a sample 
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ratio which does not converge to v0 has Bahadur efficiency lower than I 
with respect to the optimal-ratio conditional test. These results are 
compared with those of Albers (1974), who studied the Pitman efficiency and 
deficiency of these tests. 

For Fisher's exact test, cf. Example I.I, numerically determined 
bounds on the deficiency are presented in Section 8. 

2b. Proof of Lemma 2.3. 

The proof is somewhat tedious since the most significant 
term in (2.14), NI(V) depends on N and on the sample ratio in a compli
cated way. We first present a helpful lemma: 

LEMMA 2.4. If \)N E [E, 1-E] for each N Ell' then N ;;>: M implies 

< 2. 1 7) Niv < 8 1 , 8 2 , 8v ) - Miv < 8 1 , 8 2 , 8v ) ;;.: y (N - M) , 
N N M M 

with y min (K(8 1,8 1_E),K(82 ,8E),IE(8 1,82,8E),ll-E(8l'82,8 1_E)). 

PROOF. Abbreviate I(v) = Iv(8 1,82,8v)' v = vN, µ = vM. First assume v s µ. 
By the mean value theorem we have for some s with V s s $ µ 

(2. 18) 

Since by (2.1) and (2.4) 

(dd al(a- 1)) -I = I(s) - sI'(s) = K(82 ,8~), a a=s .., 

multiplication of (2.18) by v and the definition of y yield 

l(V) ;;>:~I(µ) + (I - ~)y, 

implying 

NI(v) - MI(µ);;>: (N ~j: - M)r(µ) + N(1 - ;::;:)y 

=M(~ -1)(1(µ)-y) + (N-M)y;;>: (N-M)y. 

The last inequality holds since ~ ~ ~ and since by the concavity of I, 
I(µ) ;;.: y. Now assume v > µ, By the mean value theorem, 

-I -I -I -I d -I (1-v) I(v) - (I-µ} I(µ)= ((1-v) - (I-µ) )(-d aI(l-a )) _1 a a=( 1-s) 



As above we obtain 

I(v) ~ 11-v I(µ) + (1 - 1-v)Y 
-µ 1-\1 

and (2.18) follows after substitution of 1-V = ~/N, etc. D 

PROOF of Lemma 2.3. Let a> 0 and SE [£',I-£']. 

By (2.15) there is a sequence {SN} with 

(2. 19) 

such that for each N 

(2.20) 

Choose N large enough to ensure ~(SN) s a then (2.20) and (2.12) imply 

N2(a,$) < 00 and hence N1(a,S) < 00 • It follows that for i = 1,2, 

implying 

(2.21) 

Abbreviating N. = N.(a,S) we obtain from (2.13), (2.20) and (2.21) that 
1 1 

which by (2.14) implies, writing v1 for vN1 and vz for vN2-1, that 

(2.22) N1I(v 1) - N~g(v 1 ,S) +!log N1 + E(v 1,$) 

~ (N2 - l)I(v2>- (N2 - l)!g(v2,S> +!log (N2 - I) 

as a + O. 

Here, the right hand side was obtained by Taylor expansion of the 

terms containing SN2_1, cf. (2.19). Since g and E are bounded, (2.22) 

yields 

and by the assumption N2 ~ N1 this implies in view of Lemma 2.4, 

99 
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I l 
N2 -I-N1 =O(N~) OCNP asa-+O. 

It follows that v2-v 1 = O(N~!). By Taylor expansion of the terms con
taining N2 and \!Z' one now finds from (2.22) and Lemma 2.4 that 

(2.23) as a -+ O. 

Insertion of (2.23) into (2.22) finally yields 

as a-+ O. Now (2.16) is implied by the definition of I(v). 0 

3. CENTRAL LIMIT THEOREMS 

We need some central limit theorems with the special feature that 
the convergence is uniform on compact subsets of int e*. 

Throughout this section, let 8 be an arbitrary compact subset of 
int e* and let f(t,8) =Ee exp (itX 1) be the characteristic function of P8 • 
We shall first prove that condition (2.6) implies regularity properties 
of f(t,9): 

LEMMA 3.1. If (2.6) holds then a k ~I exists such that unifoPmZy fore E 8 

(3. I) 

If P0 has a Lebesgue density then for each o > 0 there is an n < I such 
that 

(3.2) lfCt,9)1 < n for all ltl > 0 and e Ee. 

PROOF. Let k and y be the constants implied by condition (2.6) such that 
~ 
Pe (x) < y for all e E 8 and x E lR. We have 

*k 2 J (p9 (x)) dx < y 

and (3.1) follows by the Plancherel indentity (cf. Feller (1971), chapter 
XV). To prove (3.2) assume the contrary, then there is a o > 0 and there 
are sequences {t },{e} with It I > o and e E 8 such that lfCt ,e )I-+ n n n n n n 
as n -+ 00 • Since 8 is compact assume en -+ e E e. A slight elaboration of 
the proof of Theorem 2.9 in Lehmann (1959) shows that for any sequence 
{t }, 9 -+ 9 E int 8* implies n n 



Jf(t ,8) - f(tn,8)J + O as n + 00 , 
n n 

IOI 

whence Jf(tn,8)J +I, too. This contradicts the fact that P8 has a density 

and that Jt I > O > O. D 
n 

Theorems 3.2 and 3.3 concern the distribution function and the 

density of a weighted sum of X and Y. Let{~} and {bN} be sequences inlR 
2 2 

such that ~ + bN 'f O. Let TN = ~X + bNY, J.lN = V~Al + ( 1-V)bNA2 , TN = 
{ 2 2 - 2 2}~ - * - - h. VaNcrl + (1 V)bNcr2 , where V - VN' and let TN - (TN NµN)/(TNv~). 

THEOREM 3.2. If P0 has a Lebesgue density then unifomzly for 8 1,82 E EJ 

and x E lR as N + 00 , 

(3. 3) 
* _1 PN 2 

P9 9 (TN ~ x) - <P(x) - N 2--3 (1-x )<j>(x) 
1 2 6TN 

PROOF. The proof is completely analogous to that of Theorem XVI.4.1 in 

Feller (1971). Suppose without loss of generality TN = 1, then l~I and 

I bN I are bounded. Define 

and let fN(t) and gN(t) be their Fourier transforms. By Esseens smoothing 

lemma (cf. Feller (1971), Lemma XVI.3.2) we have for arbitrary E > 0 

whenever the constant a is chosen so large that 24IGN(x)I < EaTI for all 

x. Note that 

-1 PN 3 
GN(x) = <j>(x) { 1 + N 2 - 6- (x -3x)} 

is uniformly bounded for 81,82 E EJ and each N. Next consider 

t 
_1t21 Nh ( r.c;) p 31 

(3.4) !f(t)-g(t)l=e 2 e NvN -1--N-(it) 
N N 6/N ' 

where 

(3.5) 
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and f 1 (t) = E9 1 exp {it(X1 -A. 1)}, f 2 (t) = E92 exp {it(Y 1 -A.2)}. 

The right hand side of (3.4) is now estimated using the inequality 

le 2 -1-wl::; <lz-wl + ~lwl 2 )exp(max Clzl,lwl)). 

Observe that, when o is small enough, the functions {t ~ h';J(t): 
N <:: I, 81 ,82 E 8} are equicontinuous on (-o,o). This follows from the uni

form (N;;:: I, 81,82 E e,!tl < o) boundedness of the fourth derivative 
h~4 )(t), given by 

h~4)(t) = v~[ (ddu)4 log f I (u) L=~t + (1-v)b~[ (d~)4 log f2 (u) L=bNt • 

The boundedness follows from the boundedness of~· bN' fik)(t), k::; 4, 
i = 1,2, and from the fact that fi(t) is uniformly bounded away from zero 
on (-o,o) when o is sufficiently small. By the equicontinuity shown above 
there exists a o > 0 such that for each N and for all e1,e2 E 8 

(3.6) lh';J(t) - ~~(O)[ < £ if ftl < o. 

0 and h~'(O) = i 3pN, (3.6) implies 

(3. 7) I . 3 I I 13 [h (t) - -(it) p <-sit -~ 6 N - 6 if[tl<o. 

Choose o small enough to ensure not only (3.7), but also 

then it fo11ows for ltl < olN that 

whence 

It remains to estimate 

(3.8) f lfN(t)ldt 
ltlE(o/N,alN) t 



The last integral is exponentially small. Since 'N = I which implies 

max <laNl,lbNI) > d for some positive d, the first integral in the right 

hand side of (3.8) equals 

m n 
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f 
'

ft (aNt)f2(bNt) I min (m n) f 111 -! --'---"....__....-..__..__ d t :S: n ' - d t = O (N ) , 
ltlE(6,a) t ltlE(6,a) t 

when n is the bound in (3.2) for ltl > 6/d. D 

THEOREM 3.3. If {PS : 8 Ee*} satisfies condition (2.6), then uniformly for 

el,82 € e and x ElR as N-+ co, 

(3.9) pN(x) - ~(x) = 0(1), 

where pN is the density of T;. 

PROOF. Again assume 'N = I. By Fourier inversion, 

(3.10) 

Define hN(t) as in (3.5), then uniformly for 81,82 E 8, 

l~<t)I < !t2 if ltl < 6. 

By the inequality lez-tl < elzl, this implies 

t 

leNhN(IN) I -!t2 -lt2 (3.11) -le <e • 

Since NhN(~) = 0(~) by (3.7), it follows using (3.11) that 

f I NhN(~) I lt2 
e - I e- 2 dt = 0(1) 

ltl<61N 

by dominated convergence. 

To estimate 

observe that the last integral tends to zero, and that the penultimate 

one is smaller than 
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which tends to zero when k is the number found in Lemma 3.1, since in that 
case the integrand is the product of an integrable and a bounded function. 

D 

THEOREM 3.4. If P0 has a lattice distribution with rrrinimo.l lattice~. then 
uniformly for 81 E El and x E ~ as m-+ 00 , 

(3. 12) ( x-rrJ. ) a 1lillP8 (X = x) - cp --=1- = o ( 1 ) . 
1 cr 1/m 

PROOF. The proof is similar to that of Theorem 3.3, specialized to ~ 
bN = 0. Instead of (3.10) we get 

1TCT l lill ( t ) -1 2 ~_!__ J jfm -- - e 2 t jdt 
21T -1TCT ;;;; 1 a )'Im , 

I 

The first integral is estimated as in the previous proof; the second one 
trivially tends to zero. D 

The last theorem of this section is a local limit theorem for the 
conditional distribution of X given R = r, and partially generalizes a 
theorem of Hannan and Harkness (1963). 

THEOREM 3.5. Let (S 1,82) be the solution of the equations 

(3. 13) 

~ ~ ~2 2 ~ . ~2 ~2 -1 and define Ai= A(8i), cri a (8i)' 1 = 1,2, and a {(vcr 1) + 
cc 1-v)a2)-1}-1 

2 

(i) If {P8 : e Ee*} satisfies condition (2.6), and pN(x) is the con
ditional density under (8 1,8 2) of (x-nJ1)/(cr/N) given R = r, then 
uniformly for x E 1R and all 8 1,82 ,r such that 81,82 E El, 

(3. 14) PN(x) - cjJ(x) = o(l) as N-+ oo, 

(ii) If P0 is a lattice distribution with minimal lattice~. then 
uniformly for x E: ~and au 81,82,r such that 81,82 E: El, 
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PROOF. Since the distribution of X\R = r depends on 81,82 only through its 

difference 81-82 we may indeed replace the parameters by 81 and 82• The 

proofs of (i) and (ii) above are completely analogous; we shall give here 

the proof of (i) only. 

Let px, py and pR be the densities of X, Y and R under (81,82). 

Theorem 3.3 specialized to aN = 0 or bN = 0 implies 

(3. 15) lo1o2/mnp2\x)p\r-x) - <P(~7~)<PC~:-~5:2)\ ~ 

~ ,~x, 1~ ,-~Y a 1vmp lx) a2vnp (r-x) 

and by integration we find using the uniformity in x of (3.9) that 

(3. 16) f.{~ ~ ,--~x, ~Y (x-mX1) (r-x-nX2)} ~ 
a 1a2vmnp lx)p (r-x) -<fl crl.Tn; <fl 02Tn dx=O(N ). 

In view of (3.13) and the definition of a we have 

(3.17) ( x-mJ: ) (r-x-nX ) (x-nJ ) <fl __ 1 <fl 2 = _1_ <fl __ 1 
a1rm a2rn l27i' alN 

thus (3.15) implies 

(3.18) x, y 1 (x-nJ 1\ 
olo2liiillp lx)p (r-x) =--= <P -~--1+ o(I) 

1"27T a1N1 

and from (3. 16) it follows that 

~ ~ ,--- ~it alN ! 
a 1a2vmn p lr) = -- + o(N ) • 

l27T 
(3. 19) 

L xiR=r( ) b h d" · 1 d · et p8 8 x e t e con itiona ensity 

then b~ t3. 18) and (3. 19), 

<fl (x) + o ( 1) • O 
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4. A LOWER BOUND FOR THE SIZE OF THE MOST POWERFUL TEST 

Leto+ be the MP test of H = {(e,e) : e E 8*} against K = {(e 1,e 2)} 
with given power Sin Kand let a+(N,S) be its size. Though o+ exists, it 
is in general not explicitly known - it involves a least favourable distri
bution, cf. Lehmann (1959), Section 3.8 -; we shall be satisfied with a 
(lower) bound for a+(N,S). We find this bound by considering for each 
e E 8* the MP test oe of {(e,e)} against K which has power S in K. Since 
{(e,e)} c H, the size ae(N,S) of oe is at most equal to a+(N,S); a lower 
bound is found by maximizing ae(N,S) over e E e*. 

By the fundamental lemma of Neyman and Pearson, the test oe is given 
by 

> 

( 4. I) oe(x,y) 

< 

where 

is an increasing function of the likelihood ratio 

and ce and Ye satisfy o < Ye $ 1 and 

(4.2) 

(4. 3) 

Before stating the theorem of this section we introduce more notation: 

Te= te(X,Y), 

-I 
µve N Eele2Te = v(el-e)AI + (1-v)(e2-e)A2' 

2 -1 2 2 2 2 Tve N vare 1e2Te = v(e 1-e) cr 1 + (l-V)(e 2-e) cr2 , 
-I 3 3 3 Pve N Ee 1e2 <Te - Nµve) = v(e 1-e) p1 + (l-v)(e 2-e) p2 • 

Moreover, let ev be defined in (2.3) and abbreviate 

(4. 4) 

Finally define 
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THEOREM 4.1. Let E > 0, let e be a aonvex aompaat suhset of int e*, and let 

°'N(B) be the size of the MP test of {(eN,eN)} against {(e 1,e2)} with power 

a in (el,e2)' where 

(4.5) 

* then, for eaah a E (0,1) and eaah N with eN Ee ' 

If moreover, {Pe : e Ee*} satisfies aondition (2.6), we have uniformly for 

a E [E,1-E] and el,e2 Ee as N ~ 00 , 

-! ! * } (4. 7) °'N(B) = N exp {-NIV(el ,e2,ev> - N 'vcN - ElV + o(I) • 

where c; is defined by 

(4. 8) Pe e ((Te - Nµv)/(TVIN) 
1 2 V 

a. 

and 

2 2 ua ( dTve \2 
(4.9) E1v = !us + ! log 27TTv - ! 7 --aa-Je ) . 

v v 
More generally, when {pe : e E e*} does not neaessarily satisfy aondition 

(2.6), then, uniformly for a E (E,1-E) and e1,e2 E 8 as N ~ 00 , 

(4. 10) 

REMARK 4.1. For the validity of (4.10), eN = ev + O(N-!) is sufficient. 

PROOF of Theorem 4.1. Statement (4.6) was proved in the introduction to 

this section. We shall prove (4.7) and explain the special choice (4.5) 

of eN' under the assumption that {Pe : e E e*} satisfies condition (2.6). 

Let e be arbitrary in 8, possibly dependent on N. Since Te has a density, 

the critical value ce of the test oe is found from 

(4. 11) 

* When ce is defined by 
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(4. 12) 

(4.11) implies by Theorem 3.2 that as N 7 00 

(4. 13) 
* _1 Pv8 2 _1 

c = - u - N 2 -- (1-u ) + o (N 2 ). 
8 S 6T3 S 

v8 

Now a8 (N,S) is determined by exponential centering (cf. also Lennna I.2.6): 

(4. 14) 

ff exp {-(8 1-8)x - (8 2-8)y + mljJ(8 1) + nljJ(82) - NijJ(8)} 
{t9:2'.c9} 

We use Theorem 3.3 with ~= 81-8 and bN = 82-8, and the dominated con-

vergence theorem to see that 

(4. 15) 
-(t-c ) T 

e 8 dP e (t) 
8182 

1 00J -z ( * Z ) e pN c 8+~ dz 
'v81N o 'v8"N 

where pN is the density of (T8-Nµv8)/(Tv81N). 
Combine (4.14), (4.15) and (4.12) to get 

(4. 16) 

Insertion of (4.5) in (4.16) yields (4.7) by means of a second order 

Taylor expansion. The choice (4.5) of {8N} is motivated by the fact that 

it minimizes the leading terms of -log a 8(N,S) up to o(l): we have, using 

(4.16) and (4.13) 



! '3Tve 
= -mA(8 1) - nA(8 2) + N)..(8) - N uBae + 0(1). 

Equating this to zero yields e eN + O(N- 1). 

Now we prove (4.10) in the absence of the regularity properties of 

Lemma 3.1. In view of (4.2), c8 satisfies 

The Berry-Esseen theorem (cf. Feller (1971), XVI.S) shows that uniformly 

for e,el,e2 Ee and BE [s,J-E], 

c; = -u8 + O(N-!). 

(c; is defined in (4.12)). Proceed as in the previous case and arrive at 

(4.17) exp 

It remains to evaluate the integral. By (4.1) we have 

(4.18) 

f 
[ce,"") 

T 
denoting P888 (t) 

I 2 
constant, i.e. 

(4. 19) 

-(t-c8) 
e dP ( t) 

-(t-c ) 
s f o8(t)e e dP(t) s 

-(t-c8) 
e dP ( t), 

briefly as P(t). Let b 1 be a uniform Berry-Esseen 

for each t E lR, each N, and all e,e 1,e 2 E 8, and let b2 be a constant 

such that for all 8,8 1,8 2 E 8, 

(2b 1+l)Tve 
<jl ( -uE +I) 

(E is the bound for Bin the conditions of the theorem). 

The left hand member of (4.18) is larger than 
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(4.20) 

For sufficiently large N, i.e. when b2/(Tv8/N) < ! and lc;I < [u6 1 + !, 
the last member of (4.20) is larger than 

(4.21) -b2( b2 b1) -b2 -! e ---cjl(-u +I) - 2-- <:: e N . 'velN s IN 

On the other hand (cf. (4.18)) we have 

(4.22) 
-(t-c ) 

e e dP(t) L I 
j=O [c8+j,c8+j+I) 

$ !: e-jP(c8+j $Te < c8+j+I) 
j=O 

-(t-c ) 
e e dP(t) 

$ j~O e -j { ~( c; + ,~:~)- ~ ( c; + 'v!VN) + 2b 1N-!} 

$ - 1-( I + 2b )N-!. 
1-e-J ''verz:IT I 

The conclusion from (4. 18) - (4.22) is that the integral in (4. 17) is 
_! 

N 2 exp {0( I)} as N -+ 00 • The choice 8 = 8N now maximizes the leading terms 
in ( 4. I 7) up to exp {O (I)}. D 

REMARK 4.2. When P8 is the normal distribution with mean 8 and unit 
variance, it can be shown that o+ = 09 • Since in this case also v 
(dT 8;ae) 8 = 0, equality holds in (4.6). The same equality also holds v v 
for the ganuna scale family with known shape parameter, cf. Section J. 

5. THE CONDITIONAL PROBABILITY OF A LARGE DEVIATION 

Since the conditional test is defined by means of the conditional 
probabilities in (J.3), we evaluate in this section, for general y, rand 
k, yPe e(X=k I R=r) + pe eCX>k I R=r). Let n be an arbitrary compact 
subset of int tt 1• 
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-I THEOREM 5. I. Suppose {kN}, {rN} are sequences such that A (~/m) and 
-I -I -I A ((rN-kN)/n) exist and (A (~/m), A ((rN-kN)/n)) E rl for each N. Denote 

n 1 = A- 1 (~/m), n2 = \- 1((rN-kN)/n) and n = \-l(rN/N). 

(i) If {Pe : e Ee*} satisfies condition (2.6), then as N + 00 

I 

= N- 2 exp{-Niv<n 1,n2 ,n) - E2)n 1,n2,n) + 0(1)}, 

where 

(S.2) 

(ii) If P0 is a lattice distribution with ~dnimal lattice Z and 

YN E [O,I), then as N + oo 

(5.3) yNPee<x = kN I R = rN) + pee<x >~I R = rN) 

_ 1 a2 ( n 1 ) a2 ( n 2) 
= N 2 exp {-NI(n 1 ,n2 ,n) - ! log 2nv(I-v) 

-<n1-n2> ) 
e + -(n -n ) 

1-e 1 2 

a2(n) 

o(J)}. 

REMARK 5.1. Note that the 0(1) terms in (5.1) and (5.3) are uniform in 

{yN}, {rN} and{~}, provided (n 1,n2) E rl. 

REMARK 5.2. Statement (ii) of Theorem 5.1 is stronger than necessary; we 
shall use it with the two log terms replaced by 0(1). 

PROOF of Theorem 5.1. First observe that there exists a convex compact 

subset e of int e*, such that <n1.n2) E rl implies nl' n2 and n Ee. We 
prove (5.3); the proof of (5.1) is completely analogous. Since the left 

-I hand side in (5.3) is independent of 8, replace 8 by n = A (rN/N). For 
x E Z we have 

(5.4) P (X = x I R = r ) = P (X = x) · P (Y = r -x) /P (R = r ) . nn N n n N nn N 

By the exponential family properties, this equals 

exp{-(n 1-n)x + m~(n 1 ) - <n 2-n)(rN-x) + n~(n2 ) - N~(n)} 

· Pn 1 (X = x) Pn2 (Y = rN-x) /P n n (R = rN) 
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=exp {-N\/11 1,11 2 ,11)} exp {-(11 1 -11 2)(x-~)}P111112 (X=x I R=rN) 

. pll 1 ll2 (R = rN) /Pllll (R = rN)' 

hence the left hand side in (5.3) equals 

·[yNP11111 /X=kN I R= ri.) + 

. Pll 1 ll2 (X = x I R = rN)] • 

00 

r exp{-(11 1 -11 2 )(x-~)} 
x=kN+I 

Now Theorem 3.5 is applied: uniformly in x and rN we have as N + 00 

Pll 11 (X= x j R= rN) = (crll 11 /N)-1 <P ( x-k~) + o(N-~) 
I 2 I 2 cr11 ll N 

I 2 
2 -I 2 -1 -! where cr11 11 = {(vcr (11 1)) + ((1-v)cr (11 2)) } , whence the last factor 

I 2 
in (5.5) equals by dominated convergence as N + 00 

I[ 00 -(11 -11 )·j ] (5.6) (cr1111121N)- yN<fl(O) + j:l e l 2 <fl(O) + o(l) 

e -<111-112) 

1-e -<111-112) 
+0(1)]. 

Finally, the lattice-analogon of (3. 19) implies as N + oo 

(5. 7) 
P (R=rN) 

1111 
+ o(l), 

which completes the proof, since the denominator in (5.7) equals 
cr(11)//v(l-v). D 

6. THE POWER OF THE CONDITIONAL TEST 

In this section, the main result (Theorems 2.1 and 2.2) will be 
proved. In view of Lemma 2.3 and Theorem 4.1 it is sufficient to prove 
that the power of the conditional test is large enough, see Lemmas 6.1 
and 6.2 below. 

Let S1 be an arbitrary compact subset of int {(8 1,82) Ee* x e*·: 81 > 82} 
and let £ > O. 



LEMMA 6.1. If aondition (2.5) or (2.6) holds then, uniformly for 

8 E [£,1-£] and (81,82) En, we ha.ve 

(6.1) 8c(N,~(8)) = 8 + O(N-l) as N + oo, 

where ~(8) is d.efined in Theorem 4.1. 

LEMMA 6.2. If (2.6) holds then, uniformly for 8 E [£,1-£] and (81,82) En 

as N + 00 , 

where Tv is defined in (4.4) and~ in (2.11). 
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Note that Lemma 6.1 is partly implied by Lennna 6.2. We shall first 

prove Lemma 6.2 and subsequently, by adaptation of the proof, the remaining 

part of Lemma 6.1. In these proofs, we omit the index v of Iv, 8v, crv' EIV' 

d . * f * Elv and TV, an write c or cN. 

PROOF of Lenma 6.2. We shall determine 8c(N,~(8)) by integration of the 

joint density of (X,Y) over the critical region ~ of the conditional 

size-~(8) test, defined by, cf. (1.2),(1,3), 

(6.3) AN= {(x,y) : P88 cx ;z: x I R = x+y) s ~(8)}. 

Note that the conditional probability above was found in Section 5 

and ~(8) in Section 4. Fix o E (O,f) and define 

(6.4) BN = {(x,y): lx-IllA 1! s cr 11tii·N°, ly-nt..2 1 s cr2v'n·N°} 

then P8 8 ((X,Y) f BN) = O(N-l), cf. Theorem XVI.7.1 of Feller (1971), 
I 2 

implying as N + oo 

Let Q' be another compact subset of int H1 such that Q c int Q' then for 

all sufficiently large N, (81,82) En and (x,y) E BN imply 
(f..-)(x/m),f..-)(y/n)) E Q'. 

By (6.3), (4.7) and (5.1) there exists a sequence {d1N} with dlN + 0 

as N + 00 such that for all (x,y) E BN 
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(6.6) NI(l,- 1(x/m),>,- 1(y/n),A.-J((x+y)/N) + ! logN 

-I -I -I + E2 (>.. (x/m),A. (y/n),A. ((x+y)/N)) - dlN 

2! NI(81 ,82 ,8) + N!Tc* + ! log N + El 

implies (x,y) E AN. By Taylor expansion there is a sequence d2N + 0 such 
that (6.6) is implied by 

Now write 

{

E =El - E2(81,82,8), 

(6.8) u = (x-m>.. 1)/(a 11iil), v = (y-n>..2)/(a21ii), 

T1 = (8 1-8)a 11\J, T2 = (82-8)0211-v 

(by (4.3) and (4.4) T~ + T; = T2). 

In view of (6.6) - (6.8) there is a sequence d3N + 0 such that 
(x,y) E AN n BN is implied by 

(6.9) 

and which also satisfies N-!+3o/d3N + O. 

Write (6.9) more briefly as 

(6. I O) 

and consider also the inequality 

(6. 11) ! ( Tc*-T 2v \2 2 
2! N- {E - A TI ) - Bv 



115 

For all (x,y) E BN (or lul,lvl < N°), (6.11) implies (6.10) when N is 

large enough. To see this, let yN be a uniform <lul,lvl < N°) upper bound 

for the absolute values of the expressions in curly brackets in (6.10) and 

(6. II), with yN = 0(N20 ) as N ~ 00 • Now lul ,lvl < N°, (6. II) and 

IT 1u + T2v - Tc*I > yNN-! imply T1u + T2v - Tc*> yNN-!, hence (6.10) 

holds. On the other hand, when lul,lvl < N° and IT 1u + T2v - Tc*I s yNN-!, 
* -~+20 -1 3 ~ it follows by u = (Tc - T2v)/T 1 - O(N ) and N 2+ u = o(d3N), that the 

negation of (6. 10) implies the negation of (6.1 I) when N is large enough. 

Similarly, one may also prove that (x,y) E AN n BN implies (6.11), pro

vided d3N is chosen appropriately. We conclude that (rearrange (6.11) in 

powers of v): 

(6. 12) (x,y) E ~ n BN 

(( T2 )2 T2 ) 2 - - A+ B + -C v 
TI TI I 

+ o(I)}, 

Let the variables U and V be defined by 

(6. 13) 

let F1(u) P8 (Us u), F2(v) = P8 (V s v), let p 1 and p2 be the 
I 2 -1 * 

densities of F1 and F2 , and write c(v) = T1 (Tc -T2v). By (6.12) we have 

(6. 14) Pe 1e2((X,Y) E AN n BN) = 

Pee (U :e: c(V) + N-!{T-1 1(E 1 +A1v-B 1v2)} + a(N-!), 1u1.1v1 < N°) 
I 2 

= J 1-F 1(c(v) + N-!{T7 1<E 1 +A1v-B 1v2)} + o(N-!))·p2(v)dv 

-1 
+ o(N 2 ), 

where E1, A 1 and B1 abbreviate the constant and the coefficients of v and 

v2 in the expression in curly brackets in (6. 12). The last o(N-!) term in 

(6. 14) is caused by integration outside BN (see (6.4)). 

The integral in (6.14) is evaluated using the mean value theorem; 
-1 

abbreviating the coefficient of N 2 in (6. 14) as Q(v) we get 



I 16 

(6. 15) J 

-1 -1 
for l~N(v) I < IN 2Q(v) + o(N 2 )1. The first integral in the right hand 
side of (6.15) equals 6 by the definitions of c(·), c*, U, V, 1 1 and1 2 
(cf. (4.8), (6.13) and (6.8)), the second one equals 

(6. 16) J Q(v)cjl(c(v))cjl(v)dv + J Q(v)cjl(c(v))(p2(v) - cjl(v))dv 

+ J Q(v){p 1(c(v) + ~N(v)) - cjl(c(v))}p2(v)dv. 

The second and third integrals in (6.16) tend to zero since they are 
dominated by 

(6. 17) sup IP2(v) - cjl(v)I J IQ(v)l<P(c(v))dv 

+sup IP 1(c(v) - ~N(v)) - cjl(c(v)) I J IQ(v)lp2 (v)dv, 

where the suprema are taken over v E lR, 61 ,62 E 8 and 6 E [E, 1-E]. These 
suprema tend to zero by Theorem 3.3 since ~N(v) + O. The integrals in 
(6.17) are uniformly bounded since all moments of P6 are bounded for 6 E 8. 

It remains to evaluate the first integral in (6.16). 

Since 

-l * * (v-1 2c*/1) cjl(c(v))cjl(v) = cjl(1 1 (Tc - 12v))cjl(v) = cjl(c )cjl 11 ; 1 • 

we have, substituting Q(v) and subsequently E1, A1, B1, E, A, B and C, 

J Q(v)<P(c(v))cjl(v)dv 

0 0 
+ - 1- 2- /v( 1-V) 

02 



* -I { 1 *2 cp(c )< E 1 -E2 -~(c +I) 

+ ! ( ~: )2 (v(e 1 -e)cr~ + (1-v) (e2-e)cr;) 2 

+ ! ( cr~:2 ) 2 ((e 2-e) - (e 1-e)) 2v(J-v)} 

where the definitions of 'i and <2 were used. Insertion of E1 and E2 

((4.9) and (5.2)) now yields, since c* = c; = -u8 + O(N-!) (cf. (4.13)), 

D 

PROOF of Le1lllll<l 6.1. We follow the proof of Lenuna 6.2. Using (S.3) and 

(4. 10) we obtain instead of (6. 12) that a constant d exists with 

(6. 16) Pele2((X,Y) €AN n BN) 

~ Pe 8 (U > c(V) + N-!Q(V) + N-!d, \u\,\v\ < N°), 
I 2 

-1 -1 I I 2 
where c(v) <1 (-<u8 -<2v) and Q(v) = <1 (A v+B v ). Writing the right 

hand side of (6.16) as an integral with respect to F2 , we obtain 

(6. 17) J l-F 1(c(v))dF 2(v) 

- J F1(c(v) + N-!Q(v) + N-!d) - F1(c(v))dF 2(v) 

The integrand of the last integral is dominated by the number of lattice 
-1 
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points of F 1 in an interval of length N 2 (Q(v) + d) times the maximal mass 

of such a lattice point, hence by Theorem 3.4 it is dominated by 

(6. 18) 

Since Ee \v\ and Ee v2 are bounded, the last integral in (6.17) is of order 
_I 2 2 

O(N ~}.The first integral of (6.17) equals 
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by the Berry-Esseen theorem. D 
_1 

REMARK 6.1. Several of the O(N 2 ) terms in the proof above can be made 

more explicit, cf. Remark 5.2. The estimates in Section 4 are necessarily 
rather crude in the lattice case, however, since T6 then has a lattice 

distribution when (6 1-6)/(62-6) is rational. 

7. THE OPTIMAL RATIO OF THE SAMPLE SIZES 

In this section we study the asymptotic performance of the con
ditional test (1.2) for different ratios of the sample sizes and compare 
our fixed alternatives-results with those for local alternatives proved by 
Albers (1974). Throughout this section, assume that P0 is a lattice dis
tribution with minimal lattice Zl, or that {P6 : 6 E G*} satisfies condi
tion (2.6). We have to adapt the notation a little bit . 

..,N,a,e 1 ,e2 For all N, a, 6 1 and 62 let u* be the conditional test (1.2) 
with m and n = N-m chosen such that its power S*(N,a,6 1,62) in (6 1,62) is 
ma:idmal. Let \!*(N,a,61 ,62) be the ratio m/N of the test o~,a,el •62. Note, that 

N,a,6 1 ,62 for fixed (6 1,62) the tests o* satisfy (2.12). Furthermore, for 
each\) E [O,I] let o~'a be the test (1.2) with ID= [\!N] and n = N- [vN]. 

Define N*(a,S,6 1,e2), a*(N,S,6 1,6 2), S\!(N,a,e 1,e2), N\!(a,S,6 1,e2) and 
a\!(N,S,6 1,8 2) similarly to the definitions in Lemma 2.3. 

THEOREM 7.1. (Albers (1974)). Uniformly for 82 in a compact suhset of 
int e*, uniformly for a bounded away from zero and S bounded (JJ;)ay from a 
and 1, as 8 1 + e2 , 

( 7. 1) 0 ( 1) 

and for each constant a > O, as N + 00 , 

(7. 2) 

PROOF. Albers' conditions in Albers (1974), Section 2, are implied by ours. 
In fact, Albers gives more explicit expressions for the order terms in 
( 7. 1) and ( 7. 2) • D 

The conclusion from Theorem 7.1 is that for local alternatives the 
choice m/N = ! is almost optimal. For fixed alternatives the situation is 



different. Define v0 by 

Note that v0 maximizes Iv(6 1,62,6v) as a ftmction of v, cf. (2.4). Let Q 

be a compact subset of int H1 and let £ > O. 
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THEOREM 7.2. Unifor'7rlly for (6 1,62) in Q and unifor'7rlly for v,$ E [£,!-£]as 

Cl + 0 

where I(v) abbreviates Iv(6 1,62,6v) and N* stands for N*(a,$,6 1,62). 

had d . . ,,N,a ,,N,a,61,62 . b d d COROLLARY 7.3. The Ba ur ef~a~enay of uv versus u* ~s oun e 
0 

at the fixed alternative (6 1,62), hence the ratio v0 is almost optimal. 

The Bahadur effiaienay of o~,a versus o!•a• 6 t• 62 is smaller than one when 

VO 'f !. 

In the sequel fix (6 1 ,62) E Q and delete (6 1 ,62) from the notation. 

The key lemma for the proof of Theorem 7.2 is 

LEMMA 7.4. Uniformly for $,v E [£,!-£] as N + 00 

(7.5) a"(N,$) =exp {-NI(v) + Ntr u - ! logN + O(t)}. 
v v $ 

PROOF. Let aNv($) be defined by 

~v($) = exp {-NI(v) + N!TvuS - ! log N}. 

By Lemma 6.1 we have uniformly for $,v E [£,!-£]as N + 00 

$v(N,~v($)) = $ + O(N-!). 

Let {$1N},{$2N} be sequences such that siN = $ + O(N-!), i = 1,2, and for 

all V E (£, J-£), 

implying 
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and (7.5) follows by first order Taylor expansions of u13 , i 
iN 

We separate another lemma from the proof: 

I, 2. 

LEMMA 7.5. When n > O is sufficiently small and N is large enough, 

(7.6) min av(N,13) = min a (N,13). 
osvs1 n<v<l-n v 

0 

PROOF. Let 0 < n < ~ such that 2I(n) < I(~), suppose v s n. Define for each 

N, ~ = [ :=~ N + 3 J, then it follows that [n~l "' [~N] and ~ - [n~l 
"' ( 1-n)~ > ( 1-V)N + I "' N- [vN]. Since the test o~N,a is UMPU we have 

13n(~,a) "'13v(N,a), implying 

By the definition of av(N,13) it holds that 

whence (7.7) yields 

Using (7.5) and the definition of~ it follows by 2I(n) < I(!) that for 

vs n, and similarly for v"' 1-n, av(N,13) > a!(N,13) when N is large enough. 

0 

PROOF of Theorem 7.2. For all N,13 we have 

(7 .8) ~0 (N,13) "'a (N,13) "'min av(N,13). 
* 0SV$) 

The first inequality follows from 

6 (N,av (N,13)) "' 13v (N,av (N,13)) "' 13, * 0 0 0 

and the second is implied by the fact that for each N the set {ON,a: a > O} 
* is a subset of {o~,a: VE [O,I], a.> O}. By Lemmas 7.5 and 7.4 the minimum 

in (7.8) equals for some n > O, as N ~ 00 , 

(7 .9) min N-! exp {-NI(V) 
n<v<l-n 



Let the minimum be attained for v = v . (N,S) then, by equating the derimi.n 
vative of the leading terms in (7.9) to zero, we have 

By Taylor expansion - note that ~I J = 0 -, (7.8) and Lemma 7.4 it 
V Vo 

follows that as N + 00 , 

(7.10) 

Proceeding from (7.5) and (7.10) as in the proof of Lemma 2.3 we obtain, 

writing N* = N*(a,S) and NV= Nv(a,S), that as a+ 0 

The theorem follows. D 

8. NUMERICAL COMPLEMENTS 

In the situation of Example I.I bounds on the deficiency have been 

determined by, numerical computation. For some values of the alternative 

(p 1 ,p2), the power Sand the sample size N, we determined a MP test o++ 

of (pN,pN) against (p 1,p2) having power Sat (p 1,p2), where pN is deter

mined by relation (4.5). The sample ratio m/N was taken equal to !, see 

below. 

Denoting the size of o++ as ~· we then computed the smallest D 

D(N,S,p 1,p2) with 

Note that since o++ is MP for a smaller null hypothesis than the MP 
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test o+ of H against (pi ,p2), D is an upper bound on the deficiency Ne - N+. 

Table 8.1 actually gives the "randomized" bound o*, defined as 

o* D -

Thus, putting o* = D-l+R, one has to include the (N+D)-th observation with 

probability R to obtain exactly power S with the conditional size - aN test. 

Note that for moderate values of (p 1,p2) the deficiency-bound is quite low, 

it seems to increase only in extreme cases but even then its constancy as 
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a function of N is remarkable. 

Furthermore, to complement Section 7 we computed the Bahadur-optimal 

sample ratio v0 and the Bahadur efficiency of the conditional test with 

ratio ! versus the test with ratio v0 • Both are given in table 8.2 for a 

range of alternatives (p 1,p2). Note that v0 is close to! when p 1 and p2 

are moderate; for all but very extreme p's the Bahadur efficiency does 

not drop below 0.95. 



P1 

o. 10 

0.20 

a.so 

0.60 

123 

8 = 0.6 8 = 0.9 

* 8c(N) * 
P2 N aN 8c(N) D aN D 

0.01 20 0.247699 0.5031 9. 169 0.685115 0.8730 4.896 
40 o. 150003 0.5263 8.963 0.485878 0.8877 3.741 
60 0.086540 0.5297 10.658 0.333542 0.8668 10.487 

100 0.031275 0.5477 9.959 o. 178110 0.8785 9.616 
150 0.009469 0.5555 10.564 0.079469 0.8826 9.648 
200 0.002964 0.5637 10.348 0.033828 0.8854 9.235 
300 0.000301 0.5696 10.908 0.006123 0.8883 9. 134 
400 0.000032 0.5742 10.711 0.001014 0.8896 9.586 
500 0.000003 0.5781 10. 296 0.000169 0.8911 9.567 
600 - - - 0.000027 0.8913 10.004 
700 - - - 0.000004 0.8925 9.306 

0.05 20 0.217871 0.5629 3.513 0.599428 0.8844 2.615 
40 o. 109422 0.5714 3.705 0.407056 0.8825 4.601 
60 0.059098 0.5771 3.545 0.285S22 0.8888 3.934 

100 0.018282 Q.S816 3.784 o. 13SS45 0.8923 3.S20 
150 0.004428 O.S863 3.563 0.051S28 0.8938 3.49S 
200 0.001103 o. S877 3.703 0.018970 0.8946 3.S4S 
300 0.000071 O.S900 3.650 o. 002394 0.89S6 3.375 
400 o.ooooos 0.5913 3.669 0.000280 0.8961 3.S04 
SOO - - - 0.000031 0. 8966 3.617 
600 - - - 0.000003 o. 8968 3.S97 

o. 30 20 0.249S41 0.5816 2.006 0.641S40 0.89S3 I. 219 
40 0.148099 O.S924 I. 348 0.493607 0.8993 1.029 
60 0.090976 O.S9S9 I. 237 0.377140 0.8978 1.184 

100 0.03S990 O.S952 I. 263 0.218444 0.8982 1.033 
ISO 0.011842 O.S943 l.S81 0.106783 0.8972 I. 772 

200 0.004034 O.S957 l.46S O.OSIS35 0.8982 1.420 
300 0.000483 O.S970 1.402 0.011230 0.8984 1.476 
400 O.OOOOS9 O.S971 1.439 0.002314 0.8987 1.401 
SOO 0.000007 O.S974 1.435 0.0004S7 0.8988 1.423 
600 - - - 0.000087 0.8990 1.402 
700 - - - 0.000016 0.8990 1.422 

0.40 20 0.2S6136 0.5831 I. 702 0.650192 0.8971 LOOS 
40 0.155457 O.S9SI I.OOO 0.504658 0.8997 I .OOO 
60 0.097319 O.S993 1.001 o. 391140 0.8993 I .OOO 

100 0.039800 O.S960 1.012 0.231383 0. 8977 1.008 
ISO 0.013S27 o. 5937 I. 820 o. 117941 0.898S I .OOO 
200 0.004864 O.S97S I.OOO 0.058900 0.8998 I .OOO 
300 0.00063S O.S984 1.003 0.013801 0.8998 I .OOO 
400 0.000084 O.S964 I. 380 0.003030 0.898S 1.000 
SOO 0.000011 O.S987 1.001 Q.0006SI 0.8996 I .OOO 
600 0.000002 o.S994 1.004 0.000133 0.8988 1.095 
700 - - - 0.000027 0.8991 1.001 

Table 8.1. The power of the conditional test and its deficiency 

with respect to the test o++· 
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~ 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 

I 

0.002 

0.005 

0.01 

0.02 

0.05 

0.1 

0.2 

0.5 

0.472 
0.997 

0.438 0.463 
0.985. 0.995 

0.417 0.438 0.472 
0.975 0.985 0.997 

0.402 0.418 0.446 0.472 
0.965 0.975 0.989 0.997 

0.389 0.399 0.419 0.439 0.464 
0.957 0.964 0.976 0.986 0.995 

0.384 0.391 0.405 0.421 0.441 0.474 
0.954 0.959 0.968 0.977 0.987 0.997 

0.385 0.389 0.399 0.410 0.426 0.453 0.476 
0.955 0.958 0.964 0.971 0.980 0.991 0.998 

0.403 o.405 0.410 0.417 0.426 0.444 0.462 0.482 
0.969 0.970 0.973 0.976 0.981 0.989 0.995 0.999 

Table 8.2. The asymptotically optimal sample ratio v0 (upper entry) 

and the Bahadur efficiency (lower entry) of the con

ditional test with ratio ! with respect to the conditional 

test with ratio v0 • 
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