
Randomness is Hard

Harry Buhrman*
CWI

PO Box 94079
1090 GB Amsterdam

The Netherlands

Leen Torenvliet t
University of Amsterdam

Department of Computer Science
Plantage Muidergracht 24

1018 TV Amsterdam

Abstract
We study the set of incompressible strings for var­

ious resource bounded versions of K olmogorov com­
plexity. The resource bounded versions of K olmogorov
complexity we study are: polynomial tiTne CD com­
plexity defined by Sipser, the nondeterministic vari­
ant due to Buhrman and Fortnow, and the polynomial
space bounded K olmogorov complexity. CS introduced
by Hartmanis. For all of these mea.rnres we define the
set of random str'ings RfD, Rf ND, and R;··s as the set
of strings .r such that CD 1 (1:), CND 1 (x), and CS-'(x)
is greater· than or equal to the length of x, for s and t
polynomials. We show the following:

-CD
• MA ~ NPR, , where MA is the class of Merlin-

Arth·ur games defined by Babai.

('J\'D

• A.i\l ~ NPR, , where AM is the class of Arthur-
Merl-in games.

• PSPACE ~ NPR';'s.

These rcs·ults show that the set of random strings for
various reso·ur·ce bounds is hard for complexity classes
under nondeterministic reductions.

This paper contrasts the earlier work of Buhrman
and M ayordomo where they show that for polynomial
time deterministic red·uct·ions the set of exponential
time K olrnogorov random strings is not complete.

1 Introduction
The holy grail of complexity theory is the separa­

tion of complexity classes like P, NP and P SPA GE. It
is well known that all of these classes possess complete

·Email: buhrmanCQlcwi.nl. Partially supporte<l by the Dutch
foundation for scieutific research (N\VO) by SION project
612-34-002, and by the European Union through NeuroCOLT
ESPRIT Working Group Nr. 8556, and HC&!ll grant nr.
ERB4050PL93-05 l 6.

tResearch done while on leave at CWI. Email:
leen@wins.uva.nl.

1093-0159/98 $10.00 © 1998 IEEE
249

The Netherlands

sets and that it is thus sufficient for a separation to
show that a complete set of one class is not contained
in the other. Therefore lots of effort was put into the
study of complete sets. (See [BT94].)

Kolmogorov [Lev94] however suggested to focus at­
tention on sets which are not complete. His intuition
was that complete sets possess a lot of "structure"
that hinders a possible lower bound proof. He sug­
gested to look at the set of time bounded Kolmogorov
random strings. In this paper we will continue this
line of research and study variants of this set.

Kolmogorov complexity measures the "amount" of
regularity in a string. Informally the Kolmogorov
corn plexi ty of a string x, denoted as C (x), is the size of
the smallest program that prints x and then stops. For
any string x, C(x) is less than or equal to the length
of x (up to some additive constant). Those strings for
which it holds that C(x) is greater than or equal to
the length of x are called incompressible or random. A
simple counting argument shows that random strings
exist.

In the sixties, when the theory of Kolmogorov com­
plexity was developed, Martin [Mar66] showed that
the co-RE set of Kolmogorov random strings is com­
plete with respect to (resource unbounded) Turing re­
ductions. Recently Kummer [Kum96] has shown that
this can be strengthened to show that this set is also
truth-table complete.

The resource bounded version of the random strings
was first studied by Ko [Ko91]. The polynomial time
bounded Kolmogorov complexity CP(x), for pa poly­
nomial is the smallest program that prints x in p(Ix I)
steps. Ko showed that there exists an oracle such that
the set of random strings with respect to this time
bounded Kolmogorov complexity is complete for co­
NP under strong nondeterministic polynomial time re­
ductions. He also constructed an oracle where this set
is not complete for co-NP under deterministic polyno­
mial time Turing reductions.

Buhrman and Mayordomo (BM95] considered the
exponential time Kolmogorov random strings. The
exponential time Kolmogorov complexity et (x) is the
smallest program that prints x in t(lxl) steps for func­
tions t(n) = 2nk. They showed that the set of t(n)
random strings is not deterministic polynomial time
Turing hard for EXP. They showed that the class of
sets that reduce to this set has p measure 0 and hence
that this set is not even weakly hard for EXP.

The results in this paper contrast those from
Buhrman and Mayordomo. We show that the set of
random strings is hard for various complexity classes
under nondeterministic polynomial time reductions.

We consider three well studied measures of Kol­
mogorov complexity that lie in between CP(x) and
ct(x) for p a polynomial and t(n) = 2n•. We
consider the distinguishing complexity as introduced
by Sipser [Sip83]. The distinguishing complexity,
CDt(x), is the size of the smallest program that runs
in time t(n) and accepts x and nothing else. We show
that the set of random strings RfD = {x I CDt(x) ~
j x j}, for t a fixed polynomial is hard for MA under non­
deterministic reductions. MA is the class of Merlin­
Arthur games introduced by Babai [Bab85]. As an im­
mediate consequence we obtain that BPP and NP 8 PP

are in NPRf0 •

Next we shift our attention to the nondeterminis­
tic distinguishing complexity (BF97], CNDt(x), which
is defined as the size of the smallest nondeterministic
algorithm that runs in time t(n) and accepts only x.
We define RfND = {x: CNDt(x) 2'.: Ix!}, fort a fixed
polynomial. We show that AM ~ NPRfNo where AM
is the class of Arthur-Merlin games [Bab85]. It follows
that the complement of the graph isomorphism prob­
lem, G I, is in NP Rf ND and that if for some polynomial
t, RfND E NP n cr:rNP then GI E NP n cr:rNP.

The s(n) space bounded Kolmogorov complexity,
CS 8 (x!y) is defined as the size of the smallest program
that prints x, given y and uses at most s(lxl + IYD tape
cells [Har83]. Likewise we define R<j8 = { <x, y> :
CS 8 (xiy) 2:: lxl} for s(n) a polynomial. We show that
PSPACE ~ NPR;s_

For the first two results we use the oblivious sampler
construction of Zuckerman (Zuc96], a Lemma [BF97]
that measures the size of sets in terms of CD complex­
ity, and we prove a Lemma that shows that the first
bits of a random string are in a sense more random
than the whole string. For the last result we make use
of the interactive protocol (LFKN90, Sha92] for QBF.

Last we construct an oracle world where our first
result can not be improved to deterministic reductions.
We show that there is an oracle such that BPP g

250

pRf0 for any polynomial t. The construction of the
oracle is an extension of the techniques developed in
Beige! et al. [BBF98].

2 Definitions and Notations
We assume the reader familiar with standard no­

tions in complexity theory as can be found e.g.,
in [BDG88]. Strings are elements of :E*, where :E =
{O, 1}. For a string s and integers n, m $!sl we use
the notation s[n .. m] for the string consisting of the
nth through mth bit of s. We use A for the empty
string. We also need the notion of an oblivious sam­
pler from [Zuc96].

Definition 2.1 A universal (r,d,m,€,-y)-oblivious
sampler is a deterministic algorithm which on input
a uniformly random r-bit string outputs a sequence of
points z1 , •.• , Zd E {O, l}m such that: for any collec­
tion ofd functions fi, ... ,fd: {O,l}m f--7 [0,1] it is
the case that

Pr [I~ t,f;(z;) - Ef;I $ €] 2'.: 1- 'Y

(Where Ef; = 2-m Lze{o,i}m f;(z))

In our application of this definition, we will always
use a single function f.

Fix a universal Turing machine U, and a nonde­
terministic universal machine Un. (All our results
are independent of the particular choice of univer­
sal machine.) We define the Kolmogorov complexity
function C(x!y) (see [LV97]) by C(xjy) = min{IPI :
U(p, y) = x }. We define unconditional Kolmogorov
complexity by C(x) = C(xl.A). Hartmanis defined
a time bounded version of Kolmogorov complexity
in [Har83], but resource bounded versions of Kol­
mogorov complexity date back as far as [Bar68]. (See
also [LV97].) Sipser [Sip83] defined the distinguishing
complexity CDt. We will need the following versions
of resource bounded Kolmogorov complexity and dis­
tinguishing complexity.

• CS8 (x!y) = min{IPI : U(p,y) = x and U(p,y)
uses at most s(lxl +!YI) space}. (See [Har83].)

• CDt(x!y) = min{p : U(p,x,y) accepts and
U (p, z, y) rejects for all z =/. x and U (p, z, y) runs
in at most t(lzl + !YI) steps for all z E :E* }.
(See [Sip83].)

• CNDt(xly) = min{p : Un(p,x,y) accepts and
Un(P, z, y) rejects for all z =/. x and Un(P, z, y)
runs in at most t(lzl +!YI) steps for all z E :E*}.
(See [BF97].)

For 0 < E :::; 1 we define the following sets of strings
of "maximal" GDP and CNDP complexity.

• Rf f = {x: CDt(xl,\) ~ 1:lxl}

• Rf;'0 = {x: CNDt(xl,\) ~ 1:ixl}

Note that for E = 1 these sets are the sets mentioned
in the introduction. We also define the set of strings
of maximal space bounded complexity.

All quantifiers used in this paper are polynomially
bounded. Often the particular polynomial is not im­
portant for the sequel or it is clear from the context
and is omitted. Sometimes we need explicit bounds.
Then the particular bound is given as a superscript
to the quantifier. E.g., we use 3my to denote ''There
exists a y with IYI :::; m," or v=nx to denote "For all .r
of length n."

The classes MA and AM are defined as follows.

Definition 2.2 L E MA iff there exists a \xlc time
bounded machine Al such that:

1. xEL ==> 3yPr[M(x,y,r)=l]>2/3

2. x ~ L ==> 'v'yPr[M(.r, y, r) = l] < 1/3

where r is chosen uniformly at random in { 0, 1} i.r I'.

L E AM iff there exists a l.rl" time bounded ma­

chine A1 such that

1. x EL ==> Pr(3yM(.r,y,r) = l] > 2/3

2. x ~ L ==> Pr[3yM(x, y, r) = l] < 1/3

where r is chosen un-iformly at random in {O, l}l.rl'.

Let #lvf represent the number of accepting compu­
tations of a non deterministic Turing machine Af. A
language L is in (flI' if there exists a pol:;nomial time

nondeterministic Turing machine Af such that for all

x:

• x EL=> #M(x) is odd.

• x (/. L => #M(x) is even.

Let g be any function. \Ve say that advice function

f is g-bounded if for all nit holds that lf(n)J:::; g(n).
In this paper we will only be interested in functions g

that are polynomial.

251

3 Distinguishing Complexity for De­
randomization

In this section we prove hardness of Rf D and
for Arthur-Merlin and Merlin-Arthur games respec­
tively under NP-reductions.

Theorem 3.1 For 0 < <- s; I and any t with

w(nlogn), MA~ NPRi'.~

and

E

Theorem 3.2 For 0 < f < 1 and any t with E

w(nlogn), AM~ NPRf~0

The proof of both theorems is as foHows:
First guess a string of high CD1'01 Y-complexity, m>pec­
tivdy CNDP"111 -complexity. :\'ext, we use the nonde­
terministic reductions once more to pla:v the rolt• of

:'vlerlin, and use the random ;;tring to derandomiz1•

Arthur. Note that this is not as as it
might look. The randonmess used by Arthur in int1·r­
active protocols is used for hiding and can in
not be substituted by computational rnndnm1wss.

The proof nt>t'ds a string of CDP
CNDP complexity for p some
show that we nm numll'tt>rmini~ticallv 1·xtrad sudi a

string from a lung<>r striug with high ,.,
(re.;pPctivdy CND1-complexit:v') for anv hxt·d t with

t (n) E u.' (11 I og 11) •

Lemma 3.3 Lft f be such that

g, t, t' and T be such that T(n)
)) l. T(n) log T(n) () d (

j(n , llll 11 -+:-.c · 11 n) · - = an g n

n - f (n) - log If (n) j . Then for all

with CD 1 (s) > g(lsi), it holds that

g(f(is\)) - 2 log lf(islJI - 0(1).

>

Proof . Suppose for a contradiction that for any

constant d0 and infinitely many s with CD 1 >
g(n), it holds that CD1' (s[l..f(Jsll]l <
2 log lf(lslll - d0 . Then for any such s there t>xisb a

program Ps that runs in t'(f(isi)) and
s[l..f(lsi)] where \Psi< g(f(isl)) - 2log -
The following program then recogniws s and no other

string.
Input y
Check that the first /(isi) bits of Y

s[l../(\sl)], using Ps· (Assume
in the program for a cost of log
Check that the last Is! - bits of 11

s[f (lsi) + L!sj]. (These bits are also storNl in t!w

program.)

This program runs in time T(Jsi) = t'(f(lsl)) + Jsl -
f(lsl). Therefore it takes at most t(Jsi) steps on U for
all sufficiently large s (HS66].
Its length is !Psi + lsl - f(lsl) + log lf(Jsl)I +di <
g(f (Jsl)) - 2 log If (Jsl)I- do+ Is! - f (Jsl) +log lf(lsl)I +
d1 . Which is less than g(Jsl) if we take d0 > di. Hence
CDt(s) < g(JsJ), a contradiction. 0

Corollary 3.4 For every polynomial nc, 0 < € ::; 1,
t E w (n log n) and sufficiently large string s with

CDt(s) 2:: Eis!, if m = Is!~ and s' = s(l..m] then
cvn°(s') ~ i:Js'I - 21ogJs'I - 0(1).

Proof. Take t'(n) = nc, f(n) = n~ and g(n) = m
and apply Lemma 3.3.

Before we can proceed with the proof of the theo­
rems, we also need some earlier results. We first need
the following Theorem from Zuckerman:

Theorem 3.5 ([Zuc96]) There is a constant c such
that for 'Y = 1(m), i: = i:(m) and a = o:(m) with
m-l/2log"m::; o:::; 1/2 and€~ exp(-o:2log"mm),
there exists a universal (r, d, m, €, 'Y)-oblivious sampler
which runs in polynomial time and uses only r = (1 +
o:) (m + log 'Y-i) random bits and outputs d = ((m +
log1- 1)/E)c" sample points, where c.,,= c(loga-1)/o:

We also need the following lemma by Buhrman and
Fortnow:

Lemma 3.6 ((BF97]) Let A be a set in P. For each
string x E A=n it holds that CDP(x) ::; 2 log(IJA=nll) +
O(logn) for some polynomial p.

As noted in (BF97], an analogous lemma holds for
CNDP and NP. That is:

Lemma 3.7 ([BF97]) Let A be a set in NP. For
each string x E A"'n it holds that CNDP(x) ::;
2log(IJA=nll) + O(logn) for some polynomial p.

From these results we can prove the theorems. First
we use Theorem 3.5 to amplify MA and AM protocols
using as few extra random bits as possible.

Lemma 3.8

1. Let L be a language in MA. For any constant
k and any constant 0 < o: ::; ~ there exists a
deterministic polynomial time b~unded machine
M such that:

(a) x EL ~ 3myPr[M(x,y,r) = 1] = 1

(b} x tJ. L ~ ymyPr[M(x, y, r) = l] < 2-km

where m = Jxlc and r is chosen uniformly at
random from {O, l}(l+a)(l+k)m

252

2. Let L be a language in AM. For any constant
k and any constant 0 < o: ::; ~ there exists a
deterministic polynomial time bounded machine
M such that:

(a) x EL ~ Pr[3yM(x,y,r) = l] = 1

(b) x tJ. L ~ Pr[3yM(x, y, r) = l] < 2-km

where m = lxlc and r is chosen uniformly at
random from {O, l}(l+a)(i+k)m

Proof.

1. Zachos and Fiirer showed that the fraction 2/3
can be replaced by 1 in (ZF87]. Now let ML be
the deterministic polynomial time machine corre­
sponding to L in Definition 2.2, adapted so that
it can accept with probability 1 if x E L. Assume
ML runs in time nc (where n = JxJ). This means
that for ML the 3y and 'Vy in the definition can be
assumed to be 3n' y and r;ne y respectively. Also,
the random string may be assumed to be drawn
uniformly at random from {O, 1}"0

•

To obtain the value 2-km in the second item, we
use Theorem 3.5 with 'Y = 2-km, and€= 1/6. For
given x and y let fxy be the function that on input
z computes ML(x, y, z). If IYI = lzl = nc = m
then f:i:y : {O, l}m r-+ (0, l]. We use the oblivious
sampler to get a good estimate for Efxy· That
is we feed a random string of length (1 + o:)(l +
k)m in the oblivious sampler and it returns d =
((1 + k)m/E)c"' sample points z1 , ... , Zdon which

we compute ~ L,~=l fxy(zi)· M is the machine
that computes this sum on input x, y and r and
accepts iff its value is greater than 1/2.

If x E L there is a y such that Pr[ML(x, y, r) =
1] = 1. This means ~ L,~=l fxy(zi) = 1 no matter
which sample points are returned by the obliv­
ious sampler. If x tJ. L then Efxy < 1/3 for
all y. With probability 1 - 'Y the sample points
returned by the oblivious sampler are such that

1~ 2::1=1 fxy(z;) - Efxyl ::; €, SO ~ I:t=l J(z;) >
~ with probability ::; 2-km. D

2. The proof is analogous to the proof of Part 1. We
just explain the differences. For the 1 in the first
item of the claim we can again refer to [ZF87], but
now to Theorem 2(ii) of that paper. In this part
ML is the deterministic polynomial time machine
corresponding to the AM -language L and we de­
fine the function fx : {O, l}m r-+ [O, 1] as the func­
tion that on input z computes 3n' yML(x, y, z) =
1. Now fx is an NP computable function. The

sample points z1 , •.. , zd that are returned in this
case have the following properties. If x E L then
fx(z;) = l. That is for every possible sample
point there is a y; such that ML(x, y;, z;) = 1.
So for any set of sample points z1 , ... , zd that
the sampler may return, there exists a y =
<Y1,. ·. , Yd> such that ML(x, y;, z;) = 1 for all i.
If x ~ L then f x (z;) = 1 for less than half of the
sample points with probability 1 - -y. That is

Pr [(:3y = Y1 ... Yd)[~ L~=l ML(x, y;, z;) > ~J] is

less than 2-km_ So if we let M(x,y,r) be the
machine that uses ·r to generate d sample points
and then interprets y as <y1 , ... , Yd> and counts
the number of accepts of ML (x, Yi, z;) and accepts
if this number is greater than !,d we get exactly
the desired result. - 0

In the next lemma we show that a string of high
enough CDpoly (CNDpoly) can be used to derandomize

a MA (AM) protocol.

Lemma 3.9

1. Let L be a language in MA and 0 < £::; 1. There

exists a deterministic q(n) time bounded machine

M, for q a polynomial, a > 0 and integer k such

that for every r with lrl = (1 + a:)(l + k)q(n) and
CDq(r) > clrl, v="x[x EL ~ 3yM(x,y,r) =
1].

2. Let L be a lang·uage in AM and 0 < i: :S 1.
There ex·ists a deterministic q(n) time bounded

machine Af for q a polynomial, o: > 0 and inte­

ger k such that for every r with lrl = (1 + o:)(l +
k)q(n) and CNDq(r) > i:lrl, v="x[x E L ~
3y M (x, y, r) = l].

Proof.

1. Let M be the deterministic q(n) time bounded
machine corresponding to L of Lemma 3.8, item 1.
Choose a < fr and k > ,_6

20 . Let r be such that
CDq(r) 2: i:lrl.

Suppose x E £. Then it follows that there exists
a y such that for all s, M(x, y, s) = 1. So in
particular it holds that M (x, y, r) = 1.

Suppose x tf. L. We have to show that for all y it
is the case that M(x, y, r) = 0. Suppose that this
is not true and let y0 be such that M(x, Yo, r) = l.
Define

Ax,y0 = {s: M(x,yo,s) = 1}

It follows that Ax,yo E P by essentially a program
that simulates AI and has x and Yo hardwired.

253

(Although Ax,y0 is finite and therefore trivially in
P it is crucial here that the size of the polynomial
program is roughly IMI + lxl + IYI·) Because of the
amplification of the MA protocol we have that:

ll A II < 2(l+<>)(l+k)m-km
X1YO -

Since r E Ax,yo it follows by Lemma 3.6 that:

CDq(r)

< 2[(1 + a)(l + k)m - km]+ lxl
+ IYol + O(logm)

< 2o:m + 2akm + 5m.

This contradicts the choice of r since:

CDq(r) > Elrl
= (1 + a:)(l + k)mi:

> 2mn + 2a.km + 5m

2. Let M be the deterministic q(n) time bounded
machine corresponding to L of Lemma 3.8, item 2.
Choose a. < ~ and k > ,_52a. Let r be such
that CNDq(r) 2: i:lrl. Suppose x E £. Then it
follows that for all s there exists a y such that
M(x, y, s) = 1. So in particular there is a Yr such
that Af(x, Yr, r) = 1. Suppose x ~ L. We have
to show that 'v'yM(x,y,r) = 0. Suppose that this
is not true. Define A.x = {s : 3yM(x,y,s) =
l}. Then Ax E NP by a program that has x
hardwired, guesses a y and simulates Af. Because
of the amplification of the AM protocol we have
that llA.rll :'.S 2(l+a)(l+k)m-km. Since r E .4.x it

follows by Lemma 3.7 that:

CNDq(r) :S
< 2[(1 + a.)(1 + k)m - km]+ lxl + O(logm)

< 2a.m + 2akm + 4m.

This contradicts the choice of r since:

CNDq(r) > €1rl
= (1 + a:)(l + k)mi:

> 2a:m + 2a.km + 4m

0

The following corollary shows that a string of high
enough CDpoly complexity can be used to derandom­

ize a EPP machine.

Corollary 3.10 Let A be a set in EPP. For any£>

0 there exists a polynomial time Turing machine M a
polynomial q such that if CDq(r) 2: clrl with lrl = q(n)
then for all x of length n it holds that x E .4 <==?

M(x, r) = 1.

Proof of Theorem 3.1. L1·t A a in MA.
Let q . . U. and ··- 1 + 1 ..._ af' rn
Len1ma 3.9. itPm L The nomlPterminbl
b<•haves as foilows on .r of First gm·~s
an s of siZ<> n) and check that ·" E St>t
r :::: (n)] and acrept if and
a y such that M y. = l. By 3.-t it
follows that CD'1 (r) 2: and t lu• correct rw~s of t !w
reductions follows dir(•ctly from Lemma 3.9. itPm l.
Proof of Theorem 3.2. This follows dir<~{-tly from
Lemma 3.9. item 2. The NP-algorithm is analogous
to the one above.

Corollary 3.11 For 1111,11 f > 0 and t E ...i(n log n)

J. EPP and NPBPI' ar·e included in

It follows that if Rf,ND E NPnco-NP then the Graph
isomorphism problem, CJ, is in NP n co-NP.

4 Limitations
In the previous section we showed that the st>t R[(i

is hard for MA under NP reductions. One might won­
der wht•ther R{.',° is also hard for M.4 undt'r a strong('!'
reduction like the dett>rministic polynomial time Tur­
ing reduction. In this section we show that this. if
true, will rwed a nonrelativizing proof.

To b1:• more specific, we show the existence of an
NPA 4 I oracle A. such that EXP c;;; NP· /poly and P·· =

. We first show that this implies for 0 < £ :::; 1

that BPP'1 </. pRi~I'/". (Note that Rr~n··1 has a mean­
ingful definition.)

Lemma 4.1 For any oraclt~ .4. and 0 < < :::; 1 it holds
\if"' Aj ' ' that if EXP' t;;; NP poly and ,:~P·" = P·" then

BPPA rt, pR(~'.

Proof . Suppose for a contradiction that the lemma
is not tnw. If EXP NP <;; NP /poly then EXP t;;;
iVP/puly, so EXP <;; PH. Abo. if EXPNP C
NP /poly, then certainly EXPNP t;;; EXP /poly. It
tlu.•n follows from [BH92] that EXPNP = EXP, so
£;\pNP c;;; PH.

If ,7,p = P then uniqtw-SAT (sPe [BFT97] for a
definition) is in P. ThPn NP = R hy [\T8GJ and
hence PH c;;; BPP.

Finally unique-SA.T is in P is equirnlent to: For
all .r and y, CP"1Y(.rJy) :::; CDP01 Y(.rJy) + 0(1).
(See [FK9GJ.) ;\s RCP (the set of polynomial time C
random strings is in co-NP) it follows from till' proof of

254

that theorem that for a particular unin•rsal machim•1

uniqtw-SAT E P implies R~~JJ E co-NP. This in
its turn implii>s assumption that BPI' and lwnn•

art' m , this hmn•ver contradicts t lw hit•r-
tlwon·m for altf'rnating Turing marhiues [HS6.~1j

As all parts of tlfr.; proof relativize, we get the result
fur any oradt'. 0
\'ow we to construct tht> oracfo.

Theorem 4.2 There exists an oracle A such that
EXP'VP" C NPA /poly I\ ,tiPA = p.·t

Proof . The pruof of the construction parallels the
one from Beige!, Buhrman and Fort.now [BBF98],
who construct an oracle such that pA = ci:1PA and
IVEXPA = NPA. We will use a similar set up.

Let Jf A be a uondetermiuistic linear time Turiug
machinl' such that the language L-4 defined by

is ·i'PA complete> for every A ..
For e\'erv oracle A.. let KA be the li1war time com­

plete set f<;r NPA. Let N;.··" bt> a deterministic ma­
chine that runs in time 211 and for all A. accepts a
language JIA that is complete for EXPNP''. \\'e will
comtruct .-l such that there exists a n 2 bound<>d advin'
function f such that for for all w

U' ELA
w E JIA

<::} <0, w, 11"'1 2 > EA
<::} 3v Jvl = !u.f and

<L f(lwl), w, v> E A

(Condition 0)

(Condition l)

Condition 0 will guarantee that P = E~P and Condi­
tion l will guarantep that £..\pNP CNP/poly

We US(' the tPrrn 0-strings for the strings of the form
<0. w, i!w! 2 > and I-strings for the strings of the form
<l, ;:;, w, u> with lzJ = !vl = lwl 2 • All other strings we
immediately put in A.

First we give some intuition for the proof. Condi­
tion 0 will be automatically fulfilled by just describ­
ing how we set the I-strings because they force the
0-strings as defined by Condition 0.

Fulfilling Condition 1 requires a bit more care since
XK" (.r) can query exponentially long arnl double ex­
ponentially many 0- and I-strings. \Ve consider each
1-string <l,z, w, v> as a variable Y<=·"""> whose
value determines whether <l, z, w, v> is in A.. \V(' will
shuw that the computation N K·' (:r) can be forced in
such a way that it can be represented by a low-<lPgrt'e

1 Contradicting "'for all univf'rsal machines, EPP E pRi~~"
just requires disproving this for a particular universal machine.

polynomial over these variables in the field of two el­
ements. To encode the computation properly we use
the fact that the OR function has high degree.

We will assign a polynomial Pz over GF(2] to all of
the 0-strings and I-strings z. We ensure that for all z

l. If Pz = 1 then z is in A.

2. If Pz = 0 then z is not in A.

First for each I-string z = <I, z, w, v> we let Pz be
the single variable polynomial Y<z,w,i»·

We assign polynomials to the G-strings recursively.
Note that MA(x) can only query G-strings with lwl ::;
JlxT. Consider an accepting computation path 7r of
M (x) (assuming the oracle queries are guessed cor­
rectly). Let qrr, 1, ... , qrr, m be the queries on this path
and brr,1, ... , brr,m be the query answers with brr,i = I
if the query was guessed in A and brr,i = G otherwise.
Note that m::; n = lxl.

Let P be the set of accepting computation paths
of A1 (x). We then define the polynomial Pz for z =
<O,x,Ilxl 2 > as follows:

Pz = L II (pq~,; + btr,i +I) (1)
trEP!SiS::m

Remember that we are working over GF(2] so addition
is parity.

Setting the variables Y<z,w,v> (and thus the 1-
strings) forces the values of Pz for the G-strings. We
have set things up properly so the following lemma is
straightforward.

Lemma 4.3 For each G-string z = <0, x, 1 lxl 2 > we

have Pz = #MA(x) mod 2 and Condition G can be

satisfied. The polynomial Pz has degree at most lxl 2 .

Proof: Simple proof by induction on lxl. 0

The construction will be done in stages. At stage
n we will code all the strings of length n of HA into
A setting some of the I-strings and automatically the
G-strings and thus fulfilling both condition G and 1 for
this stage.

We will need to know the degree of the multivariate
multilinear polynomials representing the OR and the
AND function.

Lemma 4.4 The representation of the functions

OR(u1,··· ,um) and the AND(u1,··· ,um) as mul­
tivariate multilinear polynomials over GF{2} requires

degree exactly m.

Proof: Every function over GF(2] has a unique rep­
resentation as a multivariate multilinear polynomial.

255

Note that AND is just the product and by using De
Morgan's laws we can write OR as

OR(u1, . .. ,um)= 1 + II (1 + u;). 0
lS:iS:m

W.l.o.g. we will assume that machine N only
queries strings of the form q E K·4 . Note that since
N runs in time 2n it may query exponentially long
strings to KA.

Let x1 be the first string of length n. When we
examine the computation of N(xi) we encounter the
first query q1 to KA. We will try to extend the or­
acle A to A' 2 A such that q1 E KA'. If such an
extension does not exist we may assume that q1 will
never be in KA no matter how we extend A in the
future. We must however take care that we will not
disturb previous queries that were forced to be in KA.

To this end we will build a set S containing all the
previously encountered queries that were forced to be
in KA. We will only extend A such that for all q E S
it holds that q E KA'. We will call such an extension
an S -consistent extension of A.

Returning to the computation of N(x 1) and q1 we
ask whether there is an S-consistent extension of A.
such that q1 E KA' . If such an extension exists we
will choose the S-consistent extension of A. which adds
a minimal number of strings to A and put q1 in S.
Next we continue the computation of NKA (x 1) with
q1 answered yes and otherwise we continue with q1

answered no. The next lemma shows that a minimal
extension of A will never add more than 23 n strings to
A.

Lemma 4.5 Let S be as above and q be any query to

KA and suppose we are in stage n . If there exists an
S-consistent extension of A such that q E KA' then

there exists one that adds at most 23n strings to A.

Proof. Consider the computation of machine MR (q)
that accepts KA. Let o1 , ... , 01 be the smallest num­
ber of strings such that adding them to A is an S­
consistent extension of A such that MR' (q) accepts.
(Recall A.1 = A U { o1 , ... , o1}.) Consider the leftmost
accepting path of M { (q) and let q1 , ... , q2 n be the
queries (both G and I-queries) on that path. More­
over let b; be 1 iff q; E A'. Define for q the following
polynomial:

Pq = II (pq, + b; + 1)
1S::is;2n

(2)

After adding the strings o1 , ... , 01 to A we have
that Pq = 1. Moreover by Lemma 4.3 the degree of

each pq, is at most 22n and hence the degree of Pq is at
most 23n. Now consider what happens when we take
out any number of the strings o1 , ..• , 01 of A' resulting
in A". Since this was a minimal extension of A it
follows that M{' (q) rejects and that Pq = 0. So Pq
computes the AND on the l strings o1 , •.• , 01. Since
by Lemma 4.4 the degree of the unique multivariate
multilinear polynomial that computes the AND over l
variables over GF[2] is l it follows that l ::; 23n. D

After we have dealt with all the queries encountered
on NKA (x1) we continue this process with the other
strings of length n in lexicographic order. Note that
since we only extend A S-consistently we will never
disturb any computation of NKA on lexicographic
smaller strings. This follows since the queries that are
forced to be yes will remain yes and the queries that
could not be forced with an S-consistent extension will
never be forced by any S'-consistent extension of A,
for S C S'. After we have finished this process we
have to code all the computations of Non the strings
of length n. It is easy to see that llSll ::; 22n and that
at this point by Lemma 4.5 at most 25n strings have
been added to A at this stage. A standard counting
argument shows that there is a string z of length n2

such that no strings of the form <l, z, w, v> have been
added to A. This string z will be the advice for strings
of length n.

Now we have to show that we can code every string
x of length n correctly in A to fulfill condition 1. We
will do this in lexicographic order. Suppose we have
coded all strings Xj (for j < i) correctly and that we
want to code Xi· There are two cases:

Case(l): NKA (x;) = 0. In this case we put all
the strings <l,z,x;,w> in A and thus set all these
variables to 0. Since this does not change the oracle
it is an S-consistent extension.

Case(2): NKA (x;) = 1. We properly extend
A S-consistently adding only strings of the form
<1, z, x;, w> to A. The following lemma shows that
this can always be done. A proper extension of A is
one that adds one or more strings to A.

Lemma 4.6 Let llSll ::; 22n be as above. Sup­
pose that NKA (x;) = 1. There exists a proper S­
consistent extension of A adding only strings of the
form <l,z,x;,w> with lwl = n2 .

Proof. Suppose that no such proper S-consistent ex­
tension of A exists. Consider the following polynomial:

Q,,, = 1- II (Pq) (3)
qES

256

Where Pq is defined as in Lemma 4.5, equation 2.
Initially Qx; = 0 and the degree of Qx, ::; 25n.

Since every extension of A with strings of the form
<l, z, x;, w> is not S consistent it follows that Q,,,,
computes the OR of the variables Y<z,x; ,w>. Since
there are 2n2 many of those variables we have by
Lemma 4.4 a contradiction with the degree of Qx;.
Hence there exists a proper S-consistent extension of
A adding only strings of the form <l, z, x;, w> and Xi

is properly coded into A. D
Stage n ends after coding all the strings of length

n.
D

Our oracle also extends the oracle of Ko [Ko9 l] to
CDP01Y complexity as follows.

Corollary 4. 7 There exists an oracle such that Rf f
for any t E w(nlog(n)) and f > 0 is complete for NP
under strong nondeterministic reductions and pNP 'f.

~~

Proof. The oracle from Theorem 4.2 is a world where
co-NP~ EPP and CP01Y(xiy) = CDP01Y(xiy) + 0(1),
hence it follows that Rf f E NP. Moreover Corol­
lary 3.11 relativizes so by Item 1 we have that EPP ~
NPR~~- D

As a byproduct our oracle shows the following.

Corollary 4.8 3A Unique-SAT A E pA and pNPA -f.
~p,A

2

This corollary indicates that the current proof that
shows that if Unique-SATE P then PH=~~ can not
be improved to yield a collapse to pNP using relativiz­
ing techniques.

5 PSPACE and Rf8

In this section we further study the connection be­
tween R78 and interactive proofs. So far we have
established that strings that have sufficiently high
CNDpoly complexity can be used to derandomize an
IP protocol that has a constant number of rounds
in such a way that the role of both the prover and
the verifier can be played by an NP oracle machine.
Here we will see that this is also true for IP itself pro­
vided that the random strings have high enough space
bounded kolmogorov complexity. The class of quanti­
fied boolean formulas (QBF) is defined as the closure
of the set of boolean variables x; and their negations
x; under the operations/\ (and), V (or), Vx; (universal
quantification) and 3x; (existential quantification). A
QBF in which all the variables are quantified is called
closed. Other QBFs are called open. We need the
following definitions and theorems from [Sha92).

Definition 5.1 ([Sha92]) A QBF B is called simple
if in the given syntactic representation every occur­
rence of each variable is separated from its point of
quantification by at most one universal quantifier (and
arbitrarily many other symbols).

For technical reasons we also assume that (sim­
ple) QBFs can contain negated variables, but no other
negations. This is no loss of generality since negations
can be pushed all the way down to variables.

Definition 5.2 ([Sha92]) The arithmetization of a
(simple} QBF B is an arithmetic expression obtained
from B by replacing every positive occurrence of x; by
variable z;, every negated occur-rence of x; by (1 - zi),
every/\ by x, every V by+, everyVx; by fL,E{O,i}'

and every 3x; by L=;E{O,i}·

It follows that the arithmetization of a (simple)
QBF in closed form has an integer value, whereas
the arithmetization of an open QBF is equivalent to a
(possibly multivariate) function.

Definition 5.3 ([Sha92]) The functional form of a
simple closed QBF is the univariate function that is
obtained by removing from the arithmetizatfon of B
either L=,E{O,I} or fL,E{O,t} where i is the least index
of a variable for which this is possible.

Notation: Lt't B he a (simple) QBF with quantifiers
Qi,··· ,Qk. For i::; I.: we let 0; =+if Q; = 3 and
®; = x if Q; = V. Let B be a QBF. Let B' be the
boolean formula obtained from B by removing all its
quantifiers. \Ve denote by j_(B) the arithmetization
of B'.

Theorem 5.4 ([Sha92]} The language of all clo8ed
simple true QBF8 is complete for ?SPACE (under
polynomial time many-one reductions}.

Theorem 5.5 ([Sha92]) A simple closed quantified
boolean forrr!'Ula B is true if and only if there exists a
prime number P of size polynomial in IBI .mch that
the value of the arithrnctization of B is positive mod­
ulo P. Moreover if B is false then the va/'Ue of the
arithmetization of B is 0 modulo any any s1Lch prime.

Theorem 5.6 ([Sha92]) The functional form of ev­
ery simple QBF can be represented by a univariate
polynomial of degree at most 3.

Theorem 5.7 ([Sha92]) For every simple QBF
there exists an interactive protocol with prover P and
polynomial time bo·unded verifier ir such that:

257

1. When B is true and P is honest, V always accepts
the proof.

2. When B is false, V accepts the proof with negli­
gible probability.

The proof of Theorem 5. 7 essentially uses Theorem 5.6
to translate a simple QBF to a polynomial in the
following way. First, the arithmetization of a sim­
ple QBF B in closed form is an integer value V
which is positive if and only if B is true. Then,
B's functional form F (recall: this is arithmetiza­
tion of the QBF that is obtained from B by delet­
ing the first quantifier) is a univariate polynomial
p 1 of degree at most 3 which has the property that
pi(O)@ pi(l) = V, (Here @ is + if the first quanti­
fier is 3 and x if the first quantifier is \/.) Substitut­
ing any value ri in Pi gives a new integer value Vi,
which is of course the same value that we get when
we substitute r 1 in F. However, F(ri) can again be
converted to a (low degree) polynomial by deleting its
first L or TI sign and the above game can be repeated.
Thus, we obtain a sequence of polynomials. From
the first polynomial in this sequence V can be com­
puted. The last polynomial Pn has the property that
Pn(r1, ... , rn) = j_(B)(ri, ... , rn)· Two more things
are needed: First, if any other sequence of polynomi­
als q1 , ... , qn has the property that q1 (0) EB q1 (1) ;/= V
and Pn (r1, ... , r 11) = j_(B) (r1, ... , rn), then there has
to be some i where q;(r;) = p;(r;), yet q; =j: p;. I.e., r;
is an intersection point of p; and q;. Second, all cal­
culations can be done modulo some prime number of
polynomial size (Theorem 5.5). We summarize this in
the following observation, which is actually a skeleton
of the proof of Theorem 5.7.

Observation 5.8 ([Sha92)) Let B be a closed .5im­
ple QBF wherein the quantors are Q 1 , ... Qn if read
from left to r·ight ·in its syntactic representation. Let
A be its arithmetization, and let V be the value of A.
There exist a prime number P of size polynomial in
IBI such that for any sequence ri, ... , T'n of numbers
taken from [l..P] there is a sequence of polynomial8 of
degree at most 3 and size polynomial in I BI s·uch that:

1. P1(0) 01 P1(l) = V and Pi(O) 01 P1(l) > 0 iff B
is true.

3. Pn(rn) = j_(B)(ri, ... , rn)

4. For any sequence of univariate polynomials
q1, ... , qn such that:

Pi (1 ¥ qi 1 qi l) and

t q,,1 (1) = q,) and

' ... , r,.)

th1·n: is a mmmwl i such th11tp, =I q,, yetp,(r,) =
q,). fe., r, is IHI mft'1'St:dl011 pomt of jl1 and

q, ..

n'here all (in)eqnalities hold modulo p and hold mod­

ulo any prim1' of poly11mni11l size if B is false. Afore­

over, p1 arn be in space (IBI + IPIJ2 from B,

P, r 1 , ••• , r;-1.

From this reformulation of Theorem 5.7 we ob­
tain that for any sequence of univariate polynomials
q1 , .. . , q" and sequence of vahH'S r1 •... , rn that sat­
isfy items 2 and 3 in Observation 5.8 it holds that
either the value that can be computed from q1 in that
sequence is the true value of the arithim·tization of B.
or there is some polynomial q; in this sequence such
that r; is an intersection point of Pi and q; (wh<'re
p, is as in the Obserrntion 5.8). As p; can be com­
puted in quadratic span' from B. P and r 1 , ... , r,_ 1

it follows that in the latter case r, cannot have high
space bounded Kolmogorov complexity relative to B.
P.q 1 , .•. ,q;,r1 , ... ,r,_ 1 . Hence,ifr, does have high
space bouuded Kolmogorov complexity, then r, is not

an intersection point, ~o the first case must hold (i.e.,
the valur: computed from q1 is the true value of the
arithmetization of B). Tht' following lemma makes
this precise.

Lemma 5.9 Let B be a simple closed QBF on n

t•ariables. Ld P be a prime number of size polyno­

mial in IBI. Let q1 .•. q,, be a sequence of polyno­
mials of de_gree 3 with coefficients in [LP]. and let
r1, ... , l'n be numbers in [LP] such that csn(r; I
<B.P,qi, ... ,q,.r1 ,r,_1,0liBl+IPil2>)?: IPI.

Furtherrnore suppose that for i?: 2, q1 _1(r;_1) =
q, ~:, q;(l). If Bis false and .l(B)(r1 , ... ,r,,) =
q,.(r,,) then q1 (0) ;;:, 1 qi(l) = 0. when these equalities
are taken modulo P.

Proof: Take all calculations modulo P. Suppose
<]1 l/1 (1) f. 0. It follows from ObsC'rvation 5.8 that
therE' t'Xists a St'quenre p 1 •..• , Pn satisfying items 1
through 3 of that lnnma. Furthermorl' since B
is false pi(O) \ 1 pi(l) = 0 modulo any prime. so
pi(O) :;:1 P1(l) f. qi(O) ;;)1 qi(l). It follows that there
must be a minimal i such that p; f:: q, and r, is an in­
tPrsPctinu point of p, and q,. However p; can be com­
putPd in space (IBl+iPll~ from B, P and r 1 , ..• , r;- 1 .

As both p; and IJ, have degree at most 3, it follmvs that

258

CS" J <B,P,q1 , ••• ,q;.r1 , ... ,r;_ 1 ,QllBl+IPil'>)

is bounded by a cow;tant. A contradiction. 0

This suffices for the main theorem of this section.
Let s bC' any polynomial.

Theorem 5.10 ?SPACE<:;; NPR~·s

Proof: \\'e prove the lemma for s (n) = n, but tlw
proof can by padding be extended to any polynomial.
There exists an NP oracle machine that accepts the
language of all simple dosed true quantified boolean
formulas as follows. On input B first check that B is
simple. Guess a prime number P of size polynomial
in B, a sequt'nce of polynomials P1, ... , Jin of degn'e
at most 3 and with coefficients in [LP]. Finally guess
a sequence of numbers r 1 , rn- Check that:

3. Pn(r11) = j_(B)(r1,··· ,rn) and

4. finally that
Cs"(·· ·I B p · · . . 011a1+1Pi)' • ·1 r,<, ,p1, ... ,p;,r1, ... ,r,_1, .>

is at least IPI for all i :S n.

If B is true Lemma 5.8 guarantt'es that thest' items
can be guessed such that all tests are passed. If B is
false and no other test fails tlwn Lemma .S.9 guarantees
that p 1 (0) 1~:1 1 p 1 (1) = 0, so the first check must fail. 0

Bv the fact that ?SPACE is dosed under comple­
ment and the fact that R~~·s is also in PSPACE TrH'­
orem 5.10 gives that R;:s is complete for ?SPACE
under strong nondeterrninistic reductions [Lon82].

Corollary 5.11 R~}S is complete for PSP.4.CE unde1·

strong nondeterministic reductions

Buhrman and i\Iayordomo [BJ\195] showed that for

t(n) = 2"', the set Rf'= {.i:: C1(;r)?: l(lx)} is not

hard for EXP under deterministic Turing reductions.
In Theorem 5.10 we made use of the relati vized Kol­
mogorov complexity (i.e., CSs(J:\y)). Using exact!~·
the same proof as in [Bl\195] one can prove that the
S('t RDf' = {<x.y>: C1(xly)?: lxl} is not hard for
EXP under Turing reductions. On the other hand
the proof of Theorem 5.10 also works for this set:
?SPACE <:;; NPRD{°. We suspPct that it is possible
to extend this to show that EXP ~ NPRD,c. So far.
we have been unable to prove this.

Acknowledgements
We thank Paul Vitanyi for interesting discussion~

and providing the title of this paper.

References
[Bab85] L. Babai. Trading group theory for ran­

domness. In Proc. 3rd ACM Symp. Theory
of Computing, pages 421-429, 1985.

[Bar68] Ja. M. Barzdin. Complexity of programs

to determine whether natural numbers not
greater than n belong to a recursively enu­
merable set. Soviet Math. Dokl., 9:1251-
1254, 1968.

[BBF98] R. Beige!, H. Buhrman, and L. Fortnow.
NP might not be as easy as detecting
unique solutions. In Thirtieth Annual
A CM Symposium on Theory of Computing
(STOC), 1998. To appear.

[BDG88] J. Balcazar, J. Diaz, and J. Gabarr6. Struc­
tural Complexity I. Springer-Verlag, 1988.

[BF97] H. Buhrman and L. Fortnow. Resource
bounded kolmogorov complexity revisited.
In Reischuk and Morvan, editors, 14th
Annual Symposium on Theoretical Com­
puter Science, volume 1200 of Lecture
Notes in Computer Science, pages 105-
116. Springer, 1997.

[BFT97] H. Buhrman, L. Fortnow, and L. Toren­
vliet. Six hypotheses in search of a the­
orem. In Proceedings 12th annual IEEE
Conference on Computational Complexity,
pages 2-12, Ulm DE, 1997. IEEE Com­
puter Society Press.

[BH92]

[BM95]

[BT94]

H. Buhrman and S. Homer. Superpoly­
nomial circuits, almost sparse oracles and
the exponential hierarchy. In R. Shya­
masundar, editor, Proc. 12th Conference
on the Foundations of Software Technol­
ogy 8 Theoretical Computerscience, Lec­
ture Notes in Computer Science, pages
116-127. Springer Verlag, 1992.

H. Buhrman and E. Mayordomo. An ex­
cursion to the kolmogorov random strings.
In Proceedings Structure in Complexity
Theory, l01h annual conference (STRUC­
TURES95), pages 197 - 205, Minneapolis,
1995. IEEE Computer Society Press.

H. Buhrman and L. Torenvliet. On the
structure of complete sets. In Proc. Struc­
ture in Complexity Theory 9th annual con­
ference, pages 118-133, Amsterdam, Hol­
land, 1994. IEEE computer society press.

259

[FK96] L. Fortnow and M. Kummer. Resource­
bounded instance complexity. Theoretical
Computer Science A, 161:123-140, 1996.

[Har83J J. Hartmanis. Generalized Kolmogorov
complexity and the structure of feasible
computations. In Proc. 24th IEEE Sympo­
sium on Foundations of Computer Science,
pages 439-445, 1983.

[HS65] J. Hartmanis and R. Stearns. On the
computational complexity of algorithms.
Trans. Amer. Math. Soc., 117:285-306,
1965.

[HS66J F. Rennie and R. Stearns. Two tape simu­
lation of multi tape Turing machines. J. As­
soc. Comp·ut. Mach., 13(4):533-546, 1966.

[Ko91] K. Ko. On the complexity of learning
minimum time-bounded turing machines.
SIAM J. Comput., 20:962-986, 1991.

[Kum96] Martin Kummer. On the complexity
of random strings (extended abstract).
In 13th Annual Symposium on Theoreti­
cal Aspects of Computer Science, volume
1046 of Lecture Notes in Computer Sci­
ence, pages 25-36, Grenoble, France, 22-
24 February 1996. Springer.

[Lev94] L. Levin. Personal communication. 1994.

[LFKN90] C. Lund, L. Fortnow, H. Karloff, and
N. Nisan. Algebraic methods for interac­
tive proof systems. In Proc. 31st Sympo­
sium on Foundations of Computer Science,
pages 2-90, New York, 1990. IEEE.

[Lon82] T. Long. Strong nondeterministic
polynomial-time reducibilities. Theoretical
Computer Science, 21:1-25, 1982.

[LV97] Ming Li and P.M.B. Vitanyi. An Intro­
duction to K olmogorov Complexity and Its
Applications. Graduate Texts in Computer
Science. Springer-Verlag, second edition,
1997.

[Mar66] D.A. Martin. Completeness, the recursion
theorem and effectively simple sets. Proc.
Am. Math. Soc., 17:838-842, 1966.

[Sha92] A. Shamir. IP=PSPACE. Jo·urnal of the
ACM, 4:869-877, October 1992.

[Sip83]

[VV86]

[ZF87]

[Zuc96]

M. Sipser. A complexity theoretic ap­
proach to randomness. In Proc. 15th
ACM Symposium on Theory of Comput­
ing, pages 330-335, 1983.

L. Valiant and V. Vazirani. NP is as easy
as detecting unique solutions. Theoretical
Computer Science, 47:85-93, 1986.

Zachos and Furer. Probabilistic quantifiers
vs. distrustful adversaries. Foundations of
Software Technology and Theoretical Com­
p'uter Science, 7, 1987,

D. Zuckerman. Randomness-optimal sam­
pling, extractors, and constructive leader
election. In Proceedings of the 28th
ACM Symposium on Theory of Comput­
ing, pages 286-295, 1996.

260

