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Abstract

We study the set of incompressible strings for var-
zous resource bounded versions of Kolmogorov com-
plexity. The resource bounded versions of Kolmogorov
complezity we study are: polynomial time CD com-
plezity defined by Sipser, the nondeterministic vari-
ant due to Buhrman and Fortnow, and the polynomial
space bounded Kolmogorov complerity, CS introduced
by Hartmanis. For all of these measures we define the
set of random strings REP, RENP | and RES as the set
of strings r such that CD'(x), CND'(z), and CS*(x)
ts greater than or equal to the length of x, for s and t
polynomials. We show the following:

MA C NPR | where MA is the class of Merlin-
Arthur games defined by Babai.

AM C NP R'CND, where AM 1is the class of Arthur-
Merlin games.

PSPACE C NPR.

These results show that the set of random strings for
various resource bounds is hard for complexity classes
under nondeterministic reductions.

This paper contrasts the earlier work of Buhrman
and Mayordomo where they show that for polynomial
time deterministic reductions the set of erponential
time Kolmogorov random strings is not complete.

1 Introduction

The holy grail of complexity theory is the separa-
tion of complexity classes like P, NP and PSPACE. It
is well known that all of these classes possess complete
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sets and that it is thus sufficient for a separation to
show that a complete set of one class is not contained
in the other. Therefore lots of effort was put into the
study of complete sets. (See [BT94].)

Kolmogorov [Lev94] however suggested to focus at-
tention on sets which are not complete. His intuition
was that complete sets possess a lot of “structure”
that hinders a possible lower bound proof. He sug-
gested to look at the set of time bounded Kolmogorov
random strings. In this paper we will continue this
line of research and study variants of this set.

Kolmogorov complexity measures the “amount” of
regularity in a string. Informally the Kolmogorov
complexity of a string z, denoted as C(z), is the size of
the smallest program that prints z and then stops. For
any string z, C(x) is less than or equal to the length
of z (up to some additive constant). Those strings for
which it holds that C(z) is greater than or equal to
the length of z are called incompressible or random. A
simple counting argument shows that random strings
exist.

In the sixties, when the theory of Kolmogorov com-
plexity was developed, Martin [Mar66] showed that
the co-RE set of Kolmogorov random strings is com-
plete with respect to (resource unbounded) Turing re-
ductions. Recently Kummer [Kum96] has shown that
this can be strengthened to show that this set is also
truth-table complete.

The resource bounded version of the random strings
was first studied by Ko [Ko91]. The polynomial time
bounded Kolmogorov complexity CP(z), for p a poly-
nomial is the smallest program that prints z in p(|z]|)
steps. Ko showed that there exists an oracle such that
the set of random strings with respect to this time
bounded Kolmogorov complexity is complete for co-
NP under strong nondeterministic polynomial time re-
ductions. He also constructed an oracle where this set
is not complete for co- NP under deterministic polyno-
mial time Turing reductions.



Buhrman and Mayordomo [BM95] considered the
ezponential time Kolmogorov random strings. The
exponential time Kolmogorov complexity C*(z) is the
smallest program that prints z in t(|z|) steps for func-
tions t(n) = 2. They showed that the set of t(n)
random strings is not deterministic polynomial time
Turing hard for EXP. They showed that the class of
sets that reduce to this set has p measure 0 and hence
that this set is not even weakly hard for EXP.

The results in this paper contrast those from
Buhrman and Mayordomo. We show that the set of
random strings is hard for various complexity classes
under nondeterministic polynomial time reductions.

We consider three well studied measures of Kol-
mogorov complexity that lie in between CP(z) and
C*(z) for p a polynomial and t(n) = 27" We
consider the distinguishing complexity as introduced
by Sipser [Sip83]. The distinguishing complexity,
CD*(z), is the size of the smallest program that runs
in time t(n) and accepts z and nothing else. We show
that the set of random strings REP = {z | CD*(z) >
|z|}, for t a fixed polynomial is hard for MA under non-
deterministic reductions. MA is the class of Merlin-
Arthur games introduced by Babai [Bab85]. As an im-
mediate consequence we obtain that BPP and NPEFF
are in NPR®,

Next we shift our attention to the nondeterminis-
tic distinguishing complexity [BF97], CND*(z), which
is defined as the size of the smallest nondeterministic
algorithm that runs in time t(n) and accepts only z.
We define RENP = {z : CND'(z) > |z|}, for t a fixed
polynomial. We show that AM C NPR™ where AM
is the class of Arthur-Merlin games [Bab85]. It follows
that the complement of the graph isomorphism prob-
lem, G1, is in NPR™™ and that if for some polynomial
t, RENP € NP N co-NP then GI € NP N co-NP.

The s(n) space bounded Kolmogorov complexity,
CS5°(z|y) is defined as the size of the smallest program
that prints z, given y and uses at most s(|z|+|y]) tape
cells [Har83]. Likewise we define RY® = {<z,y> :
CS*(z|y) > |z|} for s(n) a polynomial. We show that
PSPACE C NPR”,

For the first two results we use the oblivious sampler
construction of Zuckerman [Zuc96], a Lemma [BF97]
that measures the size of sets in terms of CD complex-
ity, and we prove a Lemma that shows that the first
bits of a random string are in a sense more random
than the whole string. For the last result we make use
of the interactive protocol [LFKN90, Sha92] for QBF.

Last we construct an oracle world where our first
result can not be improved to deterministic reductions.
We show that there is an oracle such that BPP ¢
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PR for any polynomial ¢. The construction of the

oracle is an extension of the techniques developed in
Beigel et al. [BBF98].

2 Definitions and Notations

We assume the reader familiar with standard no-
tions in complexity theory as can be found e.g,
in [BDGS88]. Strings are elements of £*, where ¥ =
{0,1}. For a string s and integers n,m < |s| we use
the notation s[n..m] for the string consisting of the
nth through mth bit of s. We use A for the empty
string. We also need the notion of an oblivious sam-
pler from [Zuc96].

Definition 2.1 4 universal (r,d, m,e¢,y)-oblivious
sampler is a deterministic algorithm which on input
a uniformly random r-bit string outputs a sequence of
points z1,... ,z4 € {0,1}™ such that: for any collec-
tion of d functions fi,...,fq : {0,1}™ > [0,1] it is
the case that

!

(Where Ef, = 2™ Z:e{o,l}"‘ fi(z))

In our application of this definition, we will always
use a single function f.

Fix a universal Turing machine U, and a nonde-
terministic universal machine U,. (All our results
are independent of the particular choice of univer-
sal machine.) We define the Kolmogorov complexity
function C(z|y) (see [LVI7]) by C(z|y) = min{|p| :
U(p,y) = z}. We define unconditional Kolmogorov
complexity by C(z) = C(zx|\). Hartmanis defined
a time bounded version of Kolmogorov complexity
in [Har83], but resource bounded versions of Kol-
mogorov complexity date back as far as [Bar68]. (See
also [LV97].) Sipser [Sip83] defined the distinguishing
complexity CD*. We will need the following versions
of resource bounded Kolmogorov complexity and dis-
tinguishing complexity.

o CS*(zly) = min{lp| : U(p,y) = = and U(p,y)
uses at most s(|z| + |y|) space }. (See [Har83].)

e CD'(z|y) min{p U(p,z,y) accepts and
U(p, z,y) rejects for all z # z and U(p, z,y) runs
in at most ¢(|z| + |y|) steps for all z € E*}.
(See [Sip8&3].)

¢ CND'(z|y) min{p : Un(p,z,y) accepts and
Un(p, z,y) rejects for all z # z and U,(p,z,9)
runs in at most t(|z| + |y|) steps for all z € £*}.
(See [BF97].)

L4
p Zfi(zi) —-Ef;
i=1
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For 0 < € < 1 we define the following sets of strings
of “maximal” CD? and CNDP complexity.

e RPP = {z: CD*(z|)\) > elz|}

° REGND = {z : CND*(z|)) > elz|}

Note that for € = 1 these sets are the sets mentioned
in the introduction. We also define the set of strings
of maximal space bounded complexity.

R = {<z,y>: CS*(aly) = |z}

All quantifiers used in this paper are polynomially
bounded. Often the particular polynomial is not im-
portant for the sequel or it is clear from the context
and is omitted. Sometimes we need explicit bounds.
Then the particular bound is given as a superscript
to the quantifier. E.g., we use 3™y to denote “There
exists a y with |y| < m,” or V="z to denote “For all x
of length n.”

The classes MA and AM are defined as follows.

Definition 2.2 L € MA iff there exists a |z|° time
bounded machine M such that:

1. z € L = JyPr[M(z,y,r)=1]>2/3
2. z¢ L = VyPr[M(z,y,r)=1]<1/3

where r is chosen uniformly at random in {0, 1},
L € AM iff there exists a |z|° time bounded ma-
chine M such that

1. z € L = Pr[F3yM(z,y,r) =1]>2/3
2 z¢L = Pr[3yM(z,y,r)=1<1/3
where 7 is chosen uniformly at random in {0, 1=,

Let #M represent the number of accepting compu-
tations of a nondeterministic Turing machine Af. A
language L is in @ P if there exists a polynomial time
nondeterministic Turing machine M such that for all
z:

e z €L = #M(z)isodd.
e z ¢ L= #M(zx) is even.

Let g be any function. We say that advice function
f is g-bounded if for all n it holds that | f(n)] < g(n).
In this paper we will only be interested in functions g
that are polynomial.
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3 Distinguishing Complexity for De-
randomization
In this section we prove hardness of RC” and RENP

for Arthur-Merlin and Merlin-Arthur games respec-
tively under NP-reductions.

Theorem 3.1 For 0 < e < 1 and any t with t(n}) €
w(nlogn), MA C NPRZ

and

Theorem 3.2 For 0 <el1 and any t with t(n) €
w(nlogn), AM C NPR”

The proof of both theorems is roughly as follows:
First guess a string of high CD?® '¥_complexity, respec-
tively CNDP°!Y-complexity. Next, we use the nonde-
terministic reductions once more to play the role of
Merlin, and use the random string to derandomize
Arthur. Note that this is not as straightforward as it
might look. The randomness used by Arthur in inter-
active protocols is used for hiding and can in general
not be substituted by computational randomness.

The proof needs a string of high CD” respectively
CND? complexity for p some polynomial. We first
show that we can nondeterministically extract such a
string from a longer string with high CD' complexity
(respectively CND'-complexity) for any tixed ¢t with
t(n) € winlogn).

Lemma 3.3 Let f be such that f(n) < n. and let
g. t. t'" and T be such that T(n) = (¢'(f(n)) +n -
f(n)), lim, —Tﬂl%%r(—")- =0 and g(n) > g(f(n)} +
n — f(n) = log|f(n)]. Then for all sufficiently large s
with CD'(s) > g(|s}), it holds that CD"(S[I.‘f(]s})}) >
g(f(Is) = 2log | f(Is])] - O1)-

Proof . Suppose for a contradiction that for any
constant do and infinitely many s with cD'Ys) >
g(n), it holds that CD' (s[L.f(|s)}) < o(f(s])) -
2log|f(|s])| = do. Then for any such s there exists a
program ps that runs in t'(f(|s) and recognizes only
s[1. £ (Is)] where |ps| < g(F(Is])) = 2log f(Is])| - do-
The following program then recognizes s and no other
string.
Input y
Check that the first f(|s]) bits of y equal
s[1..f(|s])], using ps- (Assume lf(}si)i is stored
in the program for a cost of log | f(|s])] bits.)
Check that the last |s| — f(|s]) bits of y ‘equal
s[f(]s]) + 1..]s]]. (These bits are also stored in the
program.)




This program runs in time T'(|s|) = t'(f(|s])) + |s| —
f(|s]). Therefore it takes at most t(|s|) steps on U for
all sufficiently large s [HS66).

Its length is |p,| + s| — £(Is]) + log|f(lsD] + &y <
a(£ (1)) ~ 2 10g | £ (s])| — do+ [5| ~ F(|s]) +log | F(Is])| +
d;. Which is less than g(]s|) if we take dg > d,. Hence
CD*(s) < g(|s]), a contradiction. a

Corollary 3.4 For every polynomial n¢, 0 < ¢ < 1,
t € w(nlogn) and sufficiently large string s with
CD'(s) > els|, if m |s|% and s' = s[l.m] then
CD™ (s') > e|s'| = 2log|s’| — O(1).

Proof . Take t'(n) = n°, f(n) = n¢ and g(n)
and apply Lemma 3.3.

Before we can proceed with the proof of the theo-
rems, we also need some earlier results. We first need
the following Theorem from Zuckerman:

€en

Theorem 3.5 ([Zuc96]) There is a constant ¢ such
that for v = y(m), € = e(m) and o = a(m) with
m~1/2l8"m < o < 1/2 and € > exp(—a?'°¢ ™m),
there exists a universal (r,d,m,€,v)-oblivious sampler
which runs in polynomial time and uses only r = (1 +
a)(m +logy~1) random bits and outputs d = ((m +
logy~1) /€)= sample points, where co = c(loga™")/a

We also need the following lemma by Buhrman and
Fortnow:

Lemma 3.6 ([BF97]) Let A be a set in P. For each
string x € A=" it holds that CD?(z) < 2log(|A="]) +
O(logn) for some polynomial p.

As noted in [BF97|, an analogous lemma holds for
CND? and NP. That is:

Lemma 3.7 ([BF97]) Let A be a set in NP. For
each string x € AT™ it holds that CNDP?(z) <
2log(|A=™]) + O(logn) for some polynomial p.

From these results we can prove the theorems. First
we use Theorem 3.5 to amplify MA and AM protocols
using as few extra random bits as possible.

Lemma 3.8

1. Let L be a language in MA. For any constant
k and any constant 0 < a < L there erists a

deterministic polynomial time bounded machine
M such that:

(b) ¢ L = Y"yPr[M(z,y,r) =1] <27
where m = |z|° and r is chosen uniformly at
random from {0,1}(1Fe)(1+k)m
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2. Let L be a language tn AM. For any constant
k and any constant 0 < a < % there exists a
deterministic polynomial time bounded machine
M such that:

(a) z€ L = Pr[ayM(a:,y’T) =1]=1
(b) T ¢ L = Pr['_—']yM(m,y,r) — 1] < 9—km

where m = |z|° and r is chosen uniformly at
random from {0,1}(3+)(1+k)m

Proof .

1. Zachos and Fiirer showed that the fraction 2/3
can be replaced by 1 in [ZF87]. Now let M, be
the deterministic polynomial time machine corre-
sponding to L in Definition 2.2, adapted so that
it can accept with probability 1 if z € L. Assume
M, runs in time n¢ (where n = |z|). This means
that for My, the 3y and Vy in the definition can be
assumed to be 3"y and V™ y respectively. Also,
the random string may be assumed to be drawn
uniformly at random from {0, 1}™.

To obtain the value 275™ in the second item, we
use Theorem 3.5 with v = 27%™ and € = 1/6. For
given z and y let f, be the function that on input
z computes My (z,y,z). If |[y] = |z] = n® =m
then fry : {0,1}™ = [0,1]. We use the oblivious
sampler to get a good estimate for Ef,,. That
is we feed a random string of length (1 + a)(1 +
k)m in the oblivious sampler and it returns d =
((1 + k)m/e)°= sample points z, ... ,zq on which
we compute ﬁzgzl fey(2z:). M is the machine
that computes this sum on input z, y and = and
accepts iff its value is greater than 1/2.

If z € L there is a y such that Pr[M(z,y,r) =
1] = 1. This means Z?:l fry(2:) = 1 no matter
which sample points are returned by the obliv-
ious sampler. If ¢ ¢ L then Ef,, < 1/3 for
all y. With probability 1 — v the sample points
returned by the oblivious sampler are such that

ﬁzlj:l f:cy(zi) - Efry’ < e, so }172?:1 flzi) >
% with probability < 27Fm, O

2. The proof is analogous to the proof of Part 1. We
just explain the differences. For the 1 in the first
item of the claim we can again refer to [ZF87], but
now to Theorem 2(ii) of that paper. In this part
M is the deterministic polynomial time machine
corresponding to the AM-language L and we de-
fine the function f, : {0,1}™ + [0, 1] as the func-
tion that on input z computes 3 yM(z,y,2) =
1. Now f, is an NP computable function. The



sample points zy,... , zy that are returned in this
case have the following properties. If z € L then
fz(2:) = 1. That is for every possible sample
point there is a y; such that My (z,y;,2;) = 1.
So for any set of sample points zj,... ,zy that
the sampler may return, there exists a y =
<Y1, .- ,Ya> such that My (z,y;,z) = 1 for all 5.
If z ¢ L then f,(z;) = 1 for less than half of the
sample points with probability 1 — v. That is
Pr((Gy = v a)lh DL, Mo,y 2) > §]] is
less than 27%™  So if we let M(z,y,r) be the
machine that uses r to generate d sample points
and then interprets y as <yi,... ,y4> and counts
the number of accepts of M (z,y;, 2;) and accepts

(Although A, ,, is finite and therefore trivially in
P it is crucial here that the size of the polynomial
program is roughly |M|+|z|+|y|.) Because of the
amplification of the MA protocol we have that:

"Aa.- yo“ < 2(1+a)(1+k)m—km

Since 7 € A; y, it follows by Lemma 3.6 that:
CD(r)
< 2[(1+ )1+ k)m — km] + |z|
+ |yo| + O(log m)
2am + 2akm + Sm.

IN

This contradicts the choice of r since:

if this number is greater than %d we get exactly CDi(r) > €|
the desired result. O = (14 a)(1+k)me
In the next lemma we show that a string of high > 2am + 2akm +5m
enough CD?°!Y (CNDP°¥) can be used to derandomize
a MA (AM) protocol. 2. Let M be the deterministic g(n) time bounded
machine corresponding to L of Lemma 3.8, item 2.
Lemma 3.9 Choose a < § and k > —S—. Let r be such
1. Let L be a language in MA and 0 < € < 1. There that CND?(r) 2 €|r|. Suppose o € L. Then it

exists a deterministic q(n) time bounded machine
M, for q a polynomial, a« > 0 and integer k such
that for every r with |r| = (1 +a)(1+k)q(n) and
CD(r) > €|r|, V"z[z € L < JyM(z,y,7) =
1].

. Let L be a language in AM and 0 < € < 1.
There ezists a deterministic q(n) time bounded
machine M for q a polynomial, a > 0 and inte-
ger k such that for every r with |r| = (1+a)(1 +
k)q(n) and CND(r) > €|r|, V="z[z € L <=
IyM (z,y,r) =1].

Proof .
1. Let M be the deterministic g(n) time bounded

machine corresponding to L of Lemma 3.8, item 1.
Choose a < § and k > —5=. Let r be such that
CDA(r) > €|r|.

Suppose z € L. Then it follows that there exists
a y such that for all s, M(z,y,s) = 1. So in

particular it holds that M (z,y,r) = 1.

Suppose = ¢ L. We have to show that for all y it
is the case that M (z,y,r) = 0. Suppose that this
is not true and let yo be such that M(z, yo,7) = 1.
Define

o

A;r,yo = {S : M(fl?,yo,S) = 1}

It follows that A, ,, € P by essentially a program
that simulates M and has z and yo hardwired.
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follows that for all s there exists a y such that
M (z,y,s) = 1. So in particular there is a y, such
that M(z,y,,7) = 1. Suppose z ¢ L. We have
to show that VyM (z,y,r) = 0. Suppose that this
is not true. Define 4, = {s : YM(z,y,s) =
1}. Then A, € NP by a program that has x
hardwired, guesses a y and simulates M. Because
of the amplification of the AM protocol we have
that |4,| < 2(+e)(+km=km " Gince r € A4, it
follows by Lemma 3.7 that:

CNDY(r) <
< 2[(1+ @)1 +k)ym — km] + |z| + O(log m)
< 2am + 2akm + 4m.

This contradicts the choice of r since:

CND(r) > €r|
= (1+a)(l+k)me
> 2am + 2akm + 4m

0

The following corollary shows that a string of high

enough CDP™Y complexity can be used to derandom-
ize a BPP machine.

Corollary 3.10 Let A be a set in BPP. For any € >
0 there ezists a polynomial time Turing machine M a
polynomial q such that if CD?(r) > €|r| with |r| = g(n)
then for all x of length n it holds that z € A <=
M(z,r) = 1.



Proof of Theorem 3.1. Let A be a language in MA.
Let g, M, and ¢'(n) = {1 + a){(1 + I)g(n) be as in
Lemma 3.9, item 1. The nondeterministic reduction
behaves as follows on input r of length n. First guess
an s of size q(¢'(n)) and check that s € R, Set
r = ${1..¢'(n)] and accept if and only if there exists
a y such that M(r,y.7) = 1. By Corollary 3.4 it
follows that CD7(r) > ¢|r| and the correctness of the
reductions follows directly from Lemma 3.9, item 1.
Proof of Theorem 3.2. This follows directly from
Lemma 3.9, item 2. The NP-algorithm is analogous
to the one above.

Corollary 3.11 For anye >0 and t € w(nlogn)
1. BPP and NPBPP are included in NPRY .
2. GT € NPR",

It follows that if REYY € NPNco-NP then the Graph
isomorphism problem, G, is in NP N co-NP.

4 Limitations

In the previous section we showed that the set R ?
is hard for M4 under NP reductions. One might won-
der whether R{P? is also hard for MA under a stronger
reduction like the deterministic polynomial time Tur-
ing reduction. In this section we show that this, if
true, will need a nonrelativizing proof.

To be more specific, we show the existence of an
oracle A such that EXPNP* ¢ Np /poly and P+
@ P4, We first show that this implies for 0 < € < 1
that BPP* ¢ PRC" (Note that RCP™ has a mean-
ingful definition.)

Lemma 4.1 For any oracle A and 0 < € <1 it holds
that «f EXPNP? C NP4 /poly and &P+ = P* then
BPP* ¢ PR

Proof . Suppose for a contradiction that the lemma
is not true. If EXPMY C NP /poly then EXP C
NP/poly, so EXP C PH. Also, if EXPMP C
NP/poly, then certainly EXPM C EXP/poly. Tt
then follows from [BH92] that EXPM = EXP, so
EXPNF C PH.

If +P = P then unique-SAT (see [BFT97] for a
definition) is in P. Then NP = R by [VV86] and
hence PH C BPP.

Finally unique-SAT is in P is equivalent to: For
all r and y, CPW(zly) < CDPY(z|y) + O(1).
(See [FK96].) As R” (the set of polynomial time ¢

random strings is in co- NP) it follows from the proof of
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that theorem that for a particular universal machine!
unique-SAT € P implies RC? € co-NP. This in
its turn implies by assumption that BPP and hence
EXPNF arein PNP, this however contradicts the hier-
archy theorem for alternating Turing machines [HS65}.
As all parts of this proof relativize, we get the result
for any oracle. 0
Now we proceed to construct the oracle.

Theorein 4.2 There exists an oracle A such that
EXPNPT ¢ NP4 [poly A wP* = P4

Proof . The proof of the construction parallels the
one from Beigel, Buhrman and Fortnow [BBF98],
who construct an oracle such that P4 = & P4 and
NEXP# = NP4, We will use a similar setup.

Let M be a nondeterministic linear time Turing
machine such that the language L* defined by

we L e #MA(w)mod2 =1

is @ P4 complete for every A.

For every oracle A, let K be the linear time com-
plete set for NP#. Let NE" be a deterministic ma-
chine that runs in time 2" and for all A accepts a
language H* that is complete for EXPNP . We will
construct A such that there exists a n? bounded advice
function f such that for for all w

& <0w, 1> e 4
& Jv v] = |w|? and
<1, f(lw]),w,v> € A

w e LA
we HA

(Condition 0)

(Condition 1)

Condition 0 will guarantee that P = &P and Condi-
tion 1 will guarantee that EXPNP ¢ NP /poly

We use the term O-strings for the strings of the form
<0,w,11*I"> and 1-strings for the strings of the form
<1, z,w,v> with |z| = |v]| = |w|?. All other strings we
immediately put in A.

First we give some intuition for the proof. Condi-
tion 0 will be automatically fulfilled by just describ-
ing how we set the l-strings because they force the
0-strings as defined by Condition 0.

Fulfilling Condition 1 requires a bit more care since
NKA(I) can query exponentially long and double ex-
ponentially many 0- and 1-strings. We consider each
I-string <1,z,w,v> as a variable yc. ,.» whose
value determines whether <1, z, w,v> is in A. We will
show that the computation N"M(w) can be forced in
such a way that it can be represented by a low-degree

cD
! Contradicting “For all universal machines, BPP € pRiey
just requires disproving this for a particular universal machine.



polynomial over these variables in the field of two el-
ements. To encode the computation properly we use
the fact that the OR function has high degree.

We will assign a polynomial p, over GF[2] to all of
the O-strings and 1-strings z. We ensure that for all z

1. If p, = 1 then z is in A.
2. If p, = 0 then z is not in A.

First for each 1-string z = <1, z, w,v> we let p, be
the single variable polynomial y<. w,v>-

We assign polynomials to the O-strings recursively.
Note that M“(z) can only query O-strings with |w| <
\/T;I— . Consider an accepting computation path 7 of
M (z) (assuming the oracle queries are guessed cor-
rectly). Let ¢r1,... ,¢x,m be the queries on this path
and br 1,...,br m be the query answers with b, ; =1
if the query was guessed in A and b, ; = 0 otherwise.
Note that m < n = |z|.

Let P be the set of accepting computation paths
of M(z). We then define the polynomial p. for z =
<0,z, 1121*> as follows:

P = Z H (Pqn,; +bri+ 1)

reP 1<i<m

(1)

Remember that we are working over GF[2] so addition
is parity.

Setting the variables Y<: w.»> (and thus the 1-
strings) forces the values of p. for the 0-strings. We
have set things up properly so the following lemma is
straightforward.

Lemma 4.3 For each 0-string z = <O,z,1|’|2> we
have p. = #M*(z) mod 2 and Condition 0 can be
satisfied. The polynomial p. has degree at most |z|°.

Proof: Simple proof by induction on |z|. O

The construction will be done in stages. At stage
n we will code all the strings of length n of H# into
A setting some of the 1-strings and automatically the
0-strings and thus fulfilling both condition 0 and 1 for
this stage.

We will need to know the degree of the multivariate

multilinear polynomials representing the OR and the
AND function.

Lemma 4.4 The representation of the functions
OR(u1, ... ,um) and the AND(uy,... ,umn) as mul-
tivariate multilinear polynomials over GF[2] requires
degree exactly m.

Proof: Every function over GF[2] has a unique rep-
resentation as a multivariate multilinear polynomial.
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Note that AND is just the product and by using De
Morgan’s laws we can write OR as
OR(u1,...,um) =1+ [] (1+w).0
1<i<m

W.lo.g. we will assume that machine N only
queries strings of the form ¢ € K“. Note that since
N runs in time 2™ it may query exponentially long
strings to KA.

Let z; be the first string of length n. When we
examine the computation of N(z;) we encounter the
first query ¢q; to K“. We will try to extend the or-
acle A to A" O A such that ¢; € KA If such an
extension does not exist we may assume that g, will
never be in K no matter how we extend A in the
future. We must however take care that we will not
disturb previous queries that were forced to be in K4.
To this end we will build a set S containing all the
previously encountered queries that were forced to be
in K4. We will only extend A such that for all ¢ € S
it holds that ¢ € K A" We will call such an extension
an S-consistent extension of A.

Returning to the computation of N(z;) and q; we
ask whether there is an S-consistent extension of A
such that ¢ € K A" If such an extension exists we
will choose the S-consistent extension of A which adds
a minimal number of strings to A and put ¢ in S.
Next we continue the computation of NKA(a:I) with
q1 answered yes and otherwise we continue with ¢
answered no. The next lemma shows that a minimal

extension of A will never add more than 23" strings to
A.

Lemma 4.5 Let S be as above and q be any query to
K4 and suppose we are in stage n . If there exists an
S-consistent eztension of A such that g € K4 then
there exists one that adds at most 23™ strings to A.

Proof . Consider the computation of machine M3 (q)
that accepts K. Let o1,...,0; be the smallest num-
ber of strings such that adding them to A is an S-
consistent extension of A such that Mfél (¢q) accepts.
(Recall A" = AU {o1,...,0}.) Consider the leftmost
accepting path of Mﬁ‘»’(q) and let q;,...,gon be the
queries (both 0 and l-queries) on that path. More-
over let b; be 1iff g; € A’. Define for ¢ the following
polynomial:

Py= J[ (g +bi+1) )
1<igon
After adding the strings o1,...,0; to A we have

that P, = 1. Moreover by Lemma 4.3 the degree of



each p,, is at most 22 and hence the degree of P, is at
most 23". Now consider what happens when we take
out any number of the strings 0, ... ,0; of A’ resulting
in A”. Since this was a minimal extension of A it
follows that Mz (q) rejects and that P, = 0. So P,
computes the AND on the [ strings oy,...,0;. Since
by Lemma 4.4 the degree of the unique multivariate
multilinear polynomial that computes the AND over [
variables over GF[2] is ! it follows that [ < 23™. a

After we have dealt with all the queries encountered
on NK* (z1) we continue this process with the other
strings of length n in lexicographic order. Note that
since we only extend A S-consistently we will never
disturb any computation of N K* on lexicographic
smaller strings. This follows since the queries that are
forced to be yes will remain yes and the queries that
could not be forced with an S-consistent extension will
never be forced by any S’-consistent extension of A,
for S C S§'. After we have finished this process we
have to code all the computations of N on the strings
of length n. It is easy to see that |S| < 22" and that
at this point by Lemma 4.5 at most 25" strings have
been added to A at this stage. A standard counting
argument shows that there is a string z of length n?
such that no strings of the form <1, z, w, v> have been
added to A. This string z will be the advice for strings
of length n.

Now we have to show that we can code every string
z of length n correctly in A to fulfill condition 1. We
will do this in lexicographic order. Suppose we have
coded all strings x; (for j < i) correctly and that we
want to code z;. There are two cases:

Case(1): NE%(z;) = 0. In this case we put all
the strings <1, z,z;,w> in 4 and thus set all these
variables to 0. Since this does not change the oracle
it is an S-consistent extension.

Case(2): NX%(z;) = 1. We properly extend
A S-consistently adding only strings of the form
<1l,z,z;,w> to A. The following lemma shows that
this can always be done. A proper extension of A is
one that adds one or more strings to A.

Lemma 4.6 Let |S| < 22" be as above. Sup-

pose that NKA(:r,-) = 1. There exists a proper S-
consistent extension of A adding only strings of the
form <1,z,z;,w> with |w| = n>.

Proof . Suppose that no such proper S-consistent ex-
tension of A exists. Consider the following polynomial:

Q. =1~

q€S

()
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Where P, is defined as in Lemma 4.5, equation 2.
Initially Q., = O and the degree of Q,, < 2°".
Since every extension of A with strings of the form
<1,z,z;,w> is not S consistent it follows that Q.,
computes the OR of the variables y., ., .,,~. Since
there are 27 many of those variables we have by
Lemma 4.4 a contradiction with the degree of Q,.
Hence there exists a proper S-consistent extension of
A adding only strings of the form <1, z, z;, w> and z;
is properly coded into A. O
Stage n ends after coding all the strings of length
n.
O
Our oracle also extends the oracle of Ko [Ko91] to
CDP°" complexity as follows.
Corollary 4.7 There exists an oracle such that RgéD
for any t € w(nlog(n)) and € > 0 is complete for NP
under strong nondeterministic reductions and PNFP #
£

Proof . The oracle from Theorem 4.2 is a world where
co-NP C BPP and CP°"¥(z]y) = CDP*"Y(z|y) + O(1),
hence it follows that RZ? € NP. Moreover Corol-
lary 3.11 relativizes so by [tem 1 we have that BPP C
NPREZ, =

As a byproduct our oracle shows the following.

Corollary 4.8 3A Unique-SAT 4 € P4 and PNP* #
wpA

This corollary indicates that the current proof that
shows that if Unique-SAT € P then PH = L% can not
be improved to yield a collapse to PV¥ using relativiz-
ing techniques.

5 PSPACE and RCS

In this section we further study the connection be-
tween RCS and interactive proofs. So far we have
established that strings that have sufficiently high
CNDP°" complexity can be used to derandomize an
IP protocol that has a constant number of rounds
in such a way that the role of both the prover and
the verifier can be played by an NP oracle machine.
Here we will see that this is also true for IP itself pro-
vided that the random strings have high enough space
bounded kolmogorov complexity. The class of quanti-
fied boolean formulas (QBF) is defined as the closure
of the set of boolean variables z; and their negations
Z; under the operations A (and), V (or), Vz; (universal
quantification) and 3z; (existential quantification). A
QBF in which all the variables are quantified is called
closed. Other QBFs are called open. We need the
following definitions and theorems from [Sha92].



Definition 5.1 ([Sha92]) A QBF B is called simple
if in the given syntactic representation every occur-
rence of each variable is separated from its point of
quantification by at most one universal quantifier (and
arbitrarily many other symbols).

For technical reasons we also assume that (sim-
ple) QBF's can contain negated variables, but no other
negations. This is no loss of generality since negations
can be pushed all the way down to variables.

Definition 5.2 ([Sha92]) The arithmetization of a
(simple) QBF B is an arithmetic expression obtained
from B by replacing every positive occurrence of x; by
variable z;, every negated occurrence of x; by (1 — z;),
every A\ by X, every V by +, every Vz; by H:ie{o,l}’
and every Iz, by Z:;G{O,l}‘

It follows that the arithmetization of a (simple)
QBF in closed form has an integer value, whereas
the arithmetization of an open QBF is equivalent to a
(possibly multivariate) function.

Definition 5.3 ([Sha92]) The functional form of a
stmple closed QBF 1s the univariate function that is
obtained by removing from the arithmetization of B
either 3°_ cro.1y o7 [1.,e0,1) where i is the least index
of a variable for which this 1s possible.

Notation: Let B be a (simple) QBF with quantifiers
Q1,...,Qk. Fori <k welet ® =+ if Q; = 3 and
®; = x if @; =V. Let B be a QBF. Let B’ be the
boolean formula obtained from B by removing all its
quantifiers. We denote by L(B) the arithmetization
of B'.

Theorem 5.4 ([Sha92]) The language of all closed
sumple true QQBFs is complete for PSPACE (under
polynomial time many-one reductions).

Theorem 5.5 ([Sha92]) A simple closed quantified
boolean formula B is true if and only if there exists a
prime number P of size polynomial in |B| such that
the value of the arithmetization of B is positive mod-
ulo P. Moreover if B is false then the value of the
arithmetization of B is O modulo any any such prime.

Theorem 5.6 ([Sha92]) The functional form of ev-
ery simple QBF can be represented by a univariate
polynomial of degree at most 3.

Theorem 5.7 ([Sha92]) For every simple QBF
there exists an interactive protocol with prover P and
polynomial time bounded verifier V such that:
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1. When B is true and P is honest, V always accepts
the proof.

2. When B 1is false, V' accepts the proof with negli-
gible probability.

The proof of Theorem 5.7 essentially uses Theorem 5.6
to translate a simple QBF to a polynomial in the
following way. First, the arithmetization of a sim-
ple QBF B in closed form is an integer value V
which is positive if and only if B is true. Then,
B’s functional form F (recall: this is arithmetiza-
tion of the QBF that is obtained from B by delet-
ing the first quantifier) is a univariate polynomial
p1 of degree at most 3 which has the property that
p1(0) ® p1(1) = V. (Here ® is + if the first quanti-
fier is 3 and x if the first quantifier is V.) Substitut-
ing any value ry in p; gives a new integer value Vi,
which is of course the same value that we get when
we substitute r; in F. However, F(ry) can again be
converted to a (low degree) polynomial by deleting its
first 3 or [] sign and the above game can be repeated.
Thus, we obtain a sequence of polynomials. From
the first polynomial in this sequence V can be com-
puted. The last polynomial p, has the property that
Pn(ri, ... ,mn) = L(B)(r1,...,r,). Two more things
are needed: First, if any other sequence of polynomi-
als q1,... ,¢n has the property that ¢ (0)® ¢, (1) ZV
and p,(r1,...,mn) = L(B)(r1,...,T,), then there has
to be some i where g;(r;) = p;(r;), yet ¢; # p;. Le., r;
Is an intersection point of p; and ¢;. Second, all cal-
culations can be done modulo some prime number of
polynomial size (Theorem 5.5). We summarize this in
the following observation, which is actually a skeleton
of the proof of Theorem 5.7.

Observation 5.8 ([Sha92]) Let B be a closed sim-
ple QBF wherein the quantors are Qy,...Q,, if read
from left to right in its syntactic representation. Let
A be its arithmetization, and let V be the value of A.
There erist a prime number P of size polynomial in
|B| such that for any sequence ri,...,rn of numbers
taken from [1..P] there is a sequence of polynomials of
degree at most 3 and size polynomial in |B| such that:

1. p1(0) ®1p1(1) =V and p1(0) @, pi(1) > 0 iff B

15 true.
2. pi+1(0) ®iy1 piv1(1) = pi(r:)
3. pnlrn) = L(B)(ry,...,Tn)
4. For any sequence of univariate polynomials

q1,--- ,qn such that:



(a) p1(0) &y pi{1) # q1{0) ©, qi (1) and
(b) Qi+i(0) Eisy q:+1(1) = q,(r,) and
(¢) gn(ra) = L(B)(ry,....ra)

there is a minimal i such that p, # q,, yet p,(r;)
q.(r). Le. r, is an intersection point of p, and

i

Where all (in)equalities hold modulo P and hold mod-
ulo any prime of polynomial size if B is false. More-
over, p, can be computed in space (|B|+|P|)? from B,
P,ory,...,r2.

From this reformulation of Theorem 5.7 we ob-
tain that for any sequence of univariate polynomials
qi.....qn and sequence of values r{,...  r, that sat-
isfy items 2 and 3 in Observation 5.8 it holds that
either the value that can be computed from ¢, in that
sequence is the true value of the arithmetization of B,
or there is some polynomial ¢; in this sequence such
that r; is an intersection point of p; and ¢; (where
p; is as in the Observation 5.8). As p, can be com-
puted in quadratic space from B, P and ry,... 7,
it follows that in the latter case r; cannot have high
space bounded Kolmogorov complexity relative to B,
P.qu,....qi,r1,... ,r;—1. Hence, if r; does have high
space bounded Kolmogorov complexity, then r; is not
an intersection point, so the first case must hold (i.e.,
the value computed from ¢, is the true value of the
arithmetization of B). The following lemma makes
this precise.

Lemma 5.9 Let B be a simple closed QBF on n
variables. Let P be a prime number of size polyno-
mial in |B|. Let q,...q, be a sequence of polyno-
mials of degree 3 with coefficients in [1..P]. and let
Fis...,Tn be numbers in [1..P] such that CS™(r; |
<B.P.qi. .. qiTie... iy, QUBIFIPD Sy > |P|.

Furthermore suppose that for i > 2, gi_y(ri_1) =
q:(0) @, q:(1). If B s false and L(B)(ry,...,r5)
gn(ry) then ¢ (0) ®, q1(1) = 0, when these equalities
are taken modulo P.

Proof: Take all calculations modulo P. Suppose
g1 (0)=1q1 (1) # 0. Tt follows from Observation 5.8 that
there exists a sequence py,...,p, satisfving items 1
through 3 of that lemma. Furthermore since B
1s false p;(0) &) pi(l) = 0 modulo any prime, so
P1(0) 2y pr(1) # @ (0) @ q1(1). It follows that there
must be a minimal ¢ such that p; # ¢, and r; is an in-
tersection point of p; and ¢;. However p; can be com-
puted in space (|B|+|P|)* from B, Pand ry,... ,ri_;.
As both p; and ¢, have degree at most 3, it follows that
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CS”(T,' ’ <B,P,ql,... s qiy Ty e ,T‘i_l’O”BH'IP“2>)
is bounded by a constant. A contradiction. O

This suffices for the main theorem of this section.
Let s be any polynomial.

Theorem 5.10 PSPACE C NP

Proof: We prove the lemma for s(n) = n, but the
proof can by padding be extended to any polynomial.
There exists an NP oracle machine that accepts the
language of all simple closed true quantified boolean
formulas as follows. On input B first check that B is
simple. Guess a prime number P of size polynomial
in B, a sequence of polynomials p;,...,p, of degree
at most 3 and with coefficients in [1..P]. Finally guess
a sequence of numbers ry,... ,7,. Check that:

1. p1(0) ®; py(1) > 0 and

2. pis1(0) @it1 pi41 (1) = pi(ry) and

3. pa(ra) = L(B)(ry,...,rn) and

4. finally that .
CS,l(Ti‘<B1Pvpl) ey P Ty wrl—170(|B|+|P§)“>‘)

is at least |P| for all i < n.

If B is true Lemma 5.8 guarantees that these items
can be guessed such that all tests are passed. If B is
false and no other test fails then Lemma 5.9 guarantees
that p; (0) ®; p1(1) = 0, so the first check must fail. O

By the fact that PSPACE is closed under comple-
ment and the fact that RS is also in PSPACE The-
orem 5.10 gives that R is complete for PSPACE
under strong nondeterministic reductions [Lon82].

Corollary 5.11 RE% is complete for PSPACE under

S
strong nondeterministic reductions

Buhrman and Mayordomo [BM95] showed that for
t(n) = 2", the set RE = {x : C'(z) > |(|)} is not
hard for EXP under deterministic Turing reductions.
In Theorem 5.10 we made use of the relativized Kol-
mogorov complexity (i.e., CS*(xly)). Using exactly
the same proof as in [BM95] one can prove that the
set RDE = {<z,y> : C(z|y) > ||} is not hard for
EXP under Turing reductions. On the other hand
the proof of Theorem 5.10 also works for this set:
PSPACE C NPRDS | We suspect that it is possible
to extend this to show that EXP C NPRD{ - So far,
we have been unable to prove this.
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