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Abstract 
We study the set of incompressible strings for var­

ious resource bounded versions of K olmogorov com­
plexity. The resource bounded versions of K olmogorov 
complexity we study are: polynomial tiTne CD com­
plexity defined by Sipser, the nondeterministic vari­
ant due to Buhrman and Fortnow, and the polynomial 
space bounded K olmogorov complexity. CS introduced 
by Hartmanis. For all of these mea.rnres we define the 
set of random str'ings RfD, Rf ND, and R;··s as the set 
of strings .r such that CD 1 (1:), CND 1 (x), and CS-'(x) 
is greater· than or equal to the length of x, for s and t 
polynomials. We show the following: 

-CD 
• MA ~ NPR, , where MA is the class of Merlin-

Arth·ur games defined by Babai. 

('J\'D 

• A.i\l ~ NPR, , where AM is the class of Arthur-
Merl-in games. 

• PSPACE ~ NPR';'s. 

These rcs·ults show that the set of random strings for 
various reso·ur·ce bounds is hard for complexity classes 
under nondeterministic reductions. 

This paper contrasts the earlier work of Buhrman 
and M ayordomo where they show that for polynomial 
time deterministic red·uct·ions the set of exponential 
time K olrnogorov random strings is not complete. 

1 Introduction 
The holy grail of complexity theory is the separa­

tion of complexity classes like P, NP and P SPA GE. It 
is well known that all of these classes possess complete 
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sets and that it is thus sufficient for a separation to 
show that a complete set of one class is not contained 
in the other. Therefore lots of effort was put into the 
study of complete sets. (See [BT94].) 

Kolmogorov [Lev94] however suggested to focus at­
tention on sets which are not complete. His intuition 
was that complete sets possess a lot of "structure" 
that hinders a possible lower bound proof. He sug­
gested to look at the set of time bounded Kolmogorov 
random strings. In this paper we will continue this 
line of research and study variants of this set. 

Kolmogorov complexity measures the "amount" of 
regularity in a string. Informally the Kolmogorov 
corn plexi ty of a string x, denoted as C ( x), is the size of 
the smallest program that prints x and then stops. For 
any string x, C(x) is less than or equal to the length 
of x (up to some additive constant). Those strings for 
which it holds that C(x) is greater than or equal to 
the length of x are called incompressible or random. A 
simple counting argument shows that random strings 
exist. 

In the sixties, when the theory of Kolmogorov com­
plexity was developed, Martin [Mar66] showed that 
the co-RE set of Kolmogorov random strings is com­
plete with respect to (resource unbounded) Turing re­
ductions. Recently Kummer [Kum96] has shown that 
this can be strengthened to show that this set is also 
truth-table complete. 

The resource bounded version of the random strings 
was first studied by Ko [Ko91]. The polynomial time 
bounded Kolmogorov complexity CP(x), for pa poly­
nomial is the smallest program that prints x in p( Ix I) 
steps. Ko showed that there exists an oracle such that 
the set of random strings with respect to this time 
bounded Kolmogorov complexity is complete for co­
NP under strong nondeterministic polynomial time re­
ductions. He also constructed an oracle where this set 
is not complete for co-NP under deterministic polyno­
mial time Turing reductions. 



Buhrman and Mayordomo (BM95] considered the 
exponential time Kolmogorov random strings. The 
exponential time Kolmogorov complexity et ( x) is the 
smallest program that prints x in t(lxl) steps for func­
tions t(n) = 2nk. They showed that the set of t(n) 
random strings is not deterministic polynomial time 
Turing hard for EXP. They showed that the class of 
sets that reduce to this set has p measure 0 and hence 
that this set is not even weakly hard for EXP. 

The results in this paper contrast those from 
Buhrman and Mayordomo. We show that the set of 
random strings is hard for various complexity classes 
under nondeterministic polynomial time reductions. 

We consider three well studied measures of Kol­
mogorov complexity that lie in between CP(x) and 
ct(x) for p a polynomial and t(n) = 2n•. We 
consider the distinguishing complexity as introduced 
by Sipser [Sip83]. The distinguishing complexity, 
CDt(x), is the size of the smallest program that runs 
in time t(n) and accepts x and nothing else. We show 
that the set of random strings RfD = {x I CDt(x) ~ 
j x j}, for t a fixed polynomial is hard for MA under non­
deterministic reductions. MA is the class of Merlin­
Arthur games introduced by Babai [Bab85]. As an im­
mediate consequence we obtain that BPP and NP 8 PP 

are in NPRf0 • 

Next we shift our attention to the nondeterminis­
tic distinguishing complexity (BF97], CNDt(x), which 
is defined as the size of the smallest nondeterministic 
algorithm that runs in time t(n) and accepts only x. 
We define RfND = {x: CNDt(x) 2'.: Ix!}, fort a fixed 
polynomial. We show that AM ~ NPRfNo where AM 
is the class of Arthur-Merlin games [Bab85]. It follows 
that the complement of the graph isomorphism prob­
lem, G I, is in NP Rf ND and that if for some polynomial 
t, RfND E NP n cr:rNP then GI E NP n cr:rNP. 

The s(n) space bounded Kolmogorov complexity, 
CS 8 (x!y) is defined as the size of the smallest program 
that prints x, given y and uses at most s(lxl + IYD tape 
cells [Har83]. Likewise we define R<j8 = { <x, y> : 
CS 8 (xiy) 2:: lxl} for s(n) a polynomial. We show that 
PSPACE ~ NPR;s_ 

For the first two results we use the oblivious sampler 
construction of Zuckerman (Zuc96], a Lemma [BF97] 
that measures the size of sets in terms of CD complex­
ity, and we prove a Lemma that shows that the first 
bits of a random string are in a sense more random 
than the whole string. For the last result we make use 
of the interactive protocol (LFKN90, Sha92] for QBF. 

Last we construct an oracle world where our first 
result can not be improved to deterministic reductions. 
We show that there is an oracle such that BPP g 
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pRf0 for any polynomial t. The construction of the 
oracle is an extension of the techniques developed in 
Beige! et al. [BBF98]. 

2 Definitions and Notations 
We assume the reader familiar with standard no­

tions in complexity theory as can be found e.g., 
in [BDG88]. Strings are elements of :E*, where :E = 
{O, 1}. For a string s and integers n, m $ !sl we use 
the notation s[n .. m] for the string consisting of the 
nth through mth bit of s. We use A for the empty 
string. We also need the notion of an oblivious sam­
pler from [Zuc96]. 

Definition 2.1 A universal (r,d,m,€,-y)-oblivious 
sampler is a deterministic algorithm which on input 
a uniformly random r-bit string outputs a sequence of 
points z1 , •.• , Zd E {O, l}m such that: for any collec­
tion ofd functions fi, ... ,fd: {O,l}m f--7 [0,1] it is 
the case that 

Pr [I~ t,f;(z;) - Ef;I $ €] 2'.: 1- 'Y 

(Where Ef; = 2-m Lze{o,i}m f;(z)) 

In our application of this definition, we will always 
use a single function f. 

Fix a universal Turing machine U, and a nonde­
terministic universal machine Un. (All our results 
are independent of the particular choice of univer­
sal machine.) We define the Kolmogorov complexity 
function C(x!y) (see [LV97]) by C(xjy) = min{IPI : 
U(p, y) = x }. We define unconditional Kolmogorov 
complexity by C(x) = C(xl.A). Hartmanis defined 
a time bounded version of Kolmogorov complexity 
in [Har83], but resource bounded versions of Kol­
mogorov complexity date back as far as [Bar68]. (See 
also [LV97].) Sipser [Sip83] defined the distinguishing 
complexity CDt. We will need the following versions 
of resource bounded Kolmogorov complexity and dis­
tinguishing complexity. 

• CS8 (x!y) = min{IPI : U(p,y) = x and U(p,y) 
uses at most s(lxl +!YI) space}. (See [Har83].) 

• CDt(x!y) = min{p : U(p,x,y) accepts and 
U (p, z, y) rejects for all z =/. x and U (p, z, y) runs 
in at most t(lzl + !YI) steps for all z E :E* }. 
(See [Sip83].) 

• CNDt(xly) = min{p : Un(p,x,y) accepts and 
Un(P, z, y) rejects for all z =/. x and Un(P, z, y) 
runs in at most t(lzl +!YI) steps for all z E :E*}. 
(See [BF97].) 



For 0 < E :::; 1 we define the following sets of strings 
of "maximal" GDP and CNDP complexity. 

• Rf f = {x: CDt(xl,\) ~ 1:lxl} 

• Rf;'0 = {x: CNDt(xl,\) ~ 1:ixl} 

Note that for E = 1 these sets are the sets mentioned 
in the introduction. We also define the set of strings 
of maximal space bounded complexity. 

All quantifiers used in this paper are polynomially 
bounded. Often the particular polynomial is not im­
portant for the sequel or it is clear from the context 
and is omitted. Sometimes we need explicit bounds. 
Then the particular bound is given as a superscript 
to the quantifier. E.g., we use 3my to denote ''There 
exists a y with IYI :::; m," or v=nx to denote "For all .r 
of length n." 

The classes MA and AM are defined as follows. 

Definition 2.2 L E MA iff there exists a \xlc time 
bounded machine Al such that: 

1. xEL ==> 3yPr[M(x,y,r)=l]>2/3 

2. x ~ L ==> 'v'yPr[M(.r, y, r) = l] < 1/3 

where r is chosen uniformly at random in { 0, 1} i.r I'. 

L E AM iff there exists a l.rl" time bounded ma­

chine A1 such that 

1. x EL ==> Pr(3yM(.r,y,r) = l] > 2/3 

2. x ~ L ==> Pr[3yM(x, y, r) = l] < 1/3 

where r is chosen un-iformly at random in {O, l}l.rl'. 

Let #lvf represent the number of accepting compu­
tations of a non deterministic Turing machine Af. A 
language L is in (flI' if there exists a pol:;nomial time 

nondeterministic Turing machine Af such that for all 

x: 

• x EL=> #M(x) is odd. 

• x (/. L => #M(x) is even. 

Let g be any function. \Ve say that advice function 

f is g-bounded if for all nit holds that lf(n)J:::; g(n). 
In this paper we will only be interested in functions g 

that are polynomial. 
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3 Distinguishing Complexity for De­
randomization 

In this section we prove hardness of Rf D and 
for Arthur-Merlin and Merlin-Arthur games respec­
tively under NP-reductions. 

Theorem 3.1 For 0 < <- s; I and any t with 

w(nlogn), MA~ NPRi'.~ 

and 

E 

Theorem 3.2 For 0 < f < 1 and any t with E 

w(nlogn), AM~ NPRf~0 

The proof of both theorems is as foHows: 
First guess a string of high CD1'01 Y-complexity, m>pec­
tivdy CNDP"111 -complexity. :\'ext, we use the nonde­
terministic reductions once more to pla:v the rolt• of 

:'vlerlin, and use the random ;;tring to derandomiz1• 

Arthur. Note that this is not as as it 
might look. The randonmess used by Arthur in int1·r­
active protocols is used for hiding and can in 
not be substituted by computational rnndnm1wss. 

The proof nt>t'ds a string of CDP 
CNDP complexity for p some 
show that we nm numll'tt>rmini~ticallv 1·xtrad sudi a 

string from a lung<>r striug with high ,., 
(re.;pPctivdy CND1-complexit:v') for anv hxt·d t with 

t ( n ) E u.' ( 11 I og 11 ) • 

Lemma 3.3 Lft f be such that 

g, t, t' and T be such that T(n) 
)) l. T(n) log T(n) () d ( 

j(n , llll 11 -+:-.c · 11 n) · - = an g n 

n - f ( n) - log If ( n) j . Then for all 

with CD 1 (s) > g(lsi), it holds that 

g(f(is\)) - 2 log lf(islJI - 0(1). 

> 

Proof . Suppose for a contradiction that for any 

constant d0 and infinitely many s with CD 1 > 
g(n), it holds that CD1' (s[l..f(Jsll]l < 
2 log lf(lslll - d0 . Then for any such s there t>xisb a 

program Ps that runs in t'(f(isi)) and 
s[l..f(lsi)] where \Psi< g(f(isl)) - 2log -
The following program then recogniws s and no other 

string. 
Input y 
Check that the first /(isi) bits of Y 

s[l../(\sl)], using Ps· (Assume 
in the program for a cost of log 
Check that the last Is! - bits of 11 

s[f (lsi) + L!sj]. (These bits are also storNl in t!w 

program.) 



This program runs in time T(Jsi) = t'(f(lsl)) + Jsl -
f(lsl). Therefore it takes at most t(Jsi) steps on U for 
all sufficiently large s (HS66]. 
Its length is !Psi + lsl - f(lsl) + log lf(Jsl)I +di < 
g(f (Jsl)) - 2 log If (Jsl)I- do+ Is! - f (Jsl) +log lf(lsl)I + 
d1 . Which is less than g(Jsl) if we take d0 > di. Hence 
CDt(s) < g(JsJ), a contradiction. 0 

Corollary 3.4 For every polynomial nc, 0 < € ::; 1, 
t E w ( n log n) and sufficiently large string s with 

CDt(s) 2:: Eis!, if m = Is!~ and s' = s(l..m] then 
cvn°(s') ~ i:Js'I - 21ogJs'I - 0(1). 

Proof. Take t'(n) = nc, f(n) = n~ and g(n) = m 
and apply Lemma 3.3. 

Before we can proceed with the proof of the theo­
rems, we also need some earlier results. We first need 
the following Theorem from Zuckerman: 

Theorem 3.5 ([Zuc96]) There is a constant c such 
that for 'Y = 1(m), i: = i:(m) and a = o:(m) with 
m-l/2log"m::; o:::; 1/2 and€~ exp(-o:2log"mm), 
there exists a universal ( r, d, m, €, 'Y )-oblivious sampler 
which runs in polynomial time and uses only r = (1 + 
o:) ( m + log 'Y-i) random bits and outputs d = ( ( m + 
log1- 1)/E)c" sample points, where c.,,= c(loga-1)/o: 

We also need the following lemma by Buhrman and 
Fortnow: 

Lemma 3.6 ((BF97]) Let A be a set in P. For each 
string x E A=n it holds that CDP(x) ::; 2 log(IJA=nll) + 
O(logn) for some polynomial p. 

As noted in (BF97], an analogous lemma holds for 
CNDP and NP. That is: 

Lemma 3.7 ([BF97]) Let A be a set in NP. For 
each string x E A"'n it holds that CNDP(x) ::; 
2log(IJA=nll) + O(logn) for some polynomial p. 

From these results we can prove the theorems. First 
we use Theorem 3.5 to amplify MA and AM protocols 
using as few extra random bits as possible. 

Lemma 3.8 

1. Let L be a language in MA. For any constant 
k and any constant 0 < o: ::; ~ there exists a 
deterministic polynomial time b~unded machine 
M such that: 

(a) x EL ~ 3myPr[M(x,y,r) = 1] = 1 

(b} x tJ. L ~ ymyPr[M(x, y, r) = l] < 2-km 

where m = Jxlc and r is chosen uniformly at 
random from {O, l}(l+a)(l+k)m 
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2. Let L be a language in AM. For any constant 
k and any constant 0 < o: ::; ~ there exists a 
deterministic polynomial time bounded machine 
M such that: 

(a) x EL ~ Pr[3yM(x,y,r) = l] = 1 

(b) x tJ. L ~ Pr[3yM(x, y, r) = l] < 2-km 

where m = lxlc and r is chosen uniformly at 
random from {O, l}(l+a)(i+k)m 

Proof. 

1. Zachos and Fiirer showed that the fraction 2/3 
can be replaced by 1 in (ZF87]. Now let ML be 
the deterministic polynomial time machine corre­
sponding to L in Definition 2.2, adapted so that 
it can accept with probability 1 if x E L. Assume 
ML runs in time nc (where n = JxJ). This means 
that for ML the 3y and 'Vy in the definition can be 
assumed to be 3n' y and r;ne y respectively. Also, 
the random string may be assumed to be drawn 
uniformly at random from {O, 1}"0

• 

To obtain the value 2-km in the second item, we 
use Theorem 3.5 with 'Y = 2-km, and€= 1/6. For 
given x and y let fxy be the function that on input 
z computes ML(x, y, z). If IYI = lzl = nc = m 
then f:i:y : {O, l}m r-+ (0, l]. We use the oblivious 
sampler to get a good estimate for Efxy· That 
is we feed a random string of length (1 + o:)(l + 
k)m in the oblivious sampler and it returns d = 
((1 + k)m/E)c"' sample points z1 , ... , Zdon which 

we compute ~ L,~=l fxy(zi)· M is the machine 
that computes this sum on input x, y and r and 
accepts iff its value is greater than 1/2. 

If x E L there is a y such that Pr[ML(x, y, r) = 
1] = 1. This means ~ L,~=l fxy(zi) = 1 no matter 
which sample points are returned by the obliv­
ious sampler. If x tJ. L then Efxy < 1/3 for 
all y. With probability 1 - 'Y the sample points 
returned by the oblivious sampler are such that 

1~ 2::1=1 fxy(z;) - Efxyl ::; €, SO ~ I:t=l J(z;) > 
~ with probability ::; 2-km. D 

2. The proof is analogous to the proof of Part 1. We 
just explain the differences. For the 1 in the first 
item of the claim we can again refer to [ZF87], but 
now to Theorem 2(ii) of that paper. In this part 
ML is the deterministic polynomial time machine 
corresponding to the AM -language L and we de­
fine the function fx : {O, l}m r-+ [O, 1] as the func­
tion that on input z computes 3n' yML(x, y, z) = 
1. Now fx is an NP computable function. The 



sample points z1 , •.. , zd that are returned in this 
case have the following properties. If x E L then 
fx(z;) = l. That is for every possible sample 
point there is a y; such that ML(x, y;, z;) = 1. 
So for any set of sample points z1 , ... , zd that 
the sampler may return, there exists a y = 
<Y1,. ·. , Yd> such that ML(x, y;, z;) = 1 for all i. 
If x ~ L then f x ( z;) = 1 for less than half of the 
sample points with probability 1 - -y. That is 

Pr [ (:3y = Y1 ... Yd)[~ L~=l ML(x, y;, z;) > ~J] is 

less than 2-km_ So if we let M(x,y,r) be the 
machine that uses ·r to generate d sample points 
and then interprets y as <y1 , ... , Yd> and counts 
the number of accepts of ML ( x, Yi, z;) and accepts 
if this number is greater than !,d we get exactly 
the desired result. - 0 

In the next lemma we show that a string of high 
enough CDpoly ( CNDpoly) can be used to derandomize 

a MA (AM) protocol. 

Lemma 3.9 

1. Let L be a language in MA and 0 < £::; 1. There 

exists a deterministic q( n) time bounded machine 

M, for q a polynomial, a > 0 and integer k such 

that for every r with lrl = (1 + a:)(l + k)q(n) and 
CDq(r) > clrl, v="x[x EL ~ 3yM(x,y,r) = 
1]. 

2. Let L be a lang·uage in AM and 0 < i: :S 1. 
There ex·ists a deterministic q( n) time bounded 

machine Af for q a polynomial, o: > 0 and inte­

ger k such that for every r with lrl = (1 + o:)(l + 
k)q(n) and CNDq(r) > i:lrl, v="x[x E L ~ 
3y M ( x, y, r) = l]. 

Proof. 

1. Let M be the deterministic q(n) time bounded 
machine corresponding to L of Lemma 3.8, item 1. 
Choose a < fr and k > ,_6

20 . Let r be such that 
CDq(r) 2: i:lrl. 

Suppose x E £. Then it follows that there exists 
a y such that for all s, M(x, y, s) = 1. So in 
particular it holds that M ( x, y, r) = 1. 

Suppose x tf. L. We have to show that for all y it 
is the case that M(x, y, r) = 0. Suppose that this 
is not true and let y0 be such that M(x, Yo, r) = l. 
Define 

Ax,y0 = {s: M(x,yo,s) = 1} 

It follows that Ax,yo E P by essentially a program 
that simulates AI and has x and Yo hardwired. 
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(Although Ax,y0 is finite and therefore trivially in 
P it is crucial here that the size of the polynomial 
program is roughly IMI + lxl + IYI·) Because of the 
amplification of the MA protocol we have that: 

ll A II < 2(l+<>)(l+k)m-km 
X1YO -

Since r E Ax,yo it follows by Lemma 3.6 that: 

CDq(r) 

< 2[(1 + a)(l + k)m - km]+ lxl 
+ IYol + O(logm) 

< 2o:m + 2akm + 5m. 

This contradicts the choice of r since: 

CDq(r) > Elrl 
= (1 + a:)(l + k)mi: 

> 2mn + 2a.km + 5m 

2. Let M be the deterministic q(n) time bounded 
machine corresponding to L of Lemma 3.8, item 2. 
Choose a. < ~ and k > ,_52a. Let r be such 
that CNDq(r) 2: i:lrl. Suppose x E £. Then it 
follows that for all s there exists a y such that 
M(x, y, s) = 1. So in particular there is a Yr such 
that Af(x, Yr, r) = 1. Suppose x ~ L. We have 
to show that 'v'yM(x,y,r) = 0. Suppose that this 
is not true. Define A.x = {s : 3yM(x,y,s) = 
l}. Then Ax E NP by a program that has x 
hardwired, guesses a y and simulates Af. Because 
of the amplification of the AM protocol we have 
that llA.rll :'.S 2(l+a)(l+k)m-km. Since r E .4.x it 

follows by Lemma 3.7 that: 

CNDq(r) :S 
< 2[(1 + a.)(1 + k)m - km]+ lxl + O(logm) 

< 2a.m + 2akm + 4m. 

This contradicts the choice of r since: 

CNDq(r) > €1rl 
= (1 + a:)(l + k)mi: 

> 2a:m + 2a.km + 4m 

0 

The following corollary shows that a string of high 
enough CDpoly complexity can be used to derandom­

ize a EPP machine. 

Corollary 3.10 Let A be a set in EPP. For any£> 

0 there exists a polynomial time Turing machine M a 
polynomial q such that if CDq(r) 2: clrl with lrl = q(n) 
then for all x of length n it holds that x E .4 <==? 

M(x, r) = 1. 



Proof of Theorem 3.1. L1·t A a in MA. 
Let q . . U. and ··- 1 + 1 ..._ af' rn 
Len1ma 3.9. itPm L The nomlPterminbl 
b<•haves as foilows on .r of First gm·~s 
an s of siZ<> n) and check that ·" E St>t 
r :::: (n)] and acrept if and 
a y such that M y. = l. By 3.-t it 
follows that CD'1 ( r) 2: and t lu• correct rw~s of t !w 
reductions follows dir(•ctly from Lemma 3.9. itPm l. 
Proof of Theorem 3.2. This follows dir<~{-tly from 
Lemma 3.9. item 2. The NP-algorithm is analogous 
to the one above. 

Corollary 3.11 For 1111,11 f > 0 and t E ...i( n log n) 

J. EPP and NPBPI' ar·e included in 

It follows that if Rf,ND E NPnco-NP then the Graph 
isomorphism problem, CJ, is in NP n co-NP. 

4 Limitations 
In the previous section we showed that the st>t R[(i 

is hard for MA under NP reductions. One might won­
der wht•ther R{.',° is also hard for M.4 undt'r a strong('!' 
reduction like the dett>rministic polynomial time Tur­
ing reduction. In this section we show that this. if 
true, will rwed a nonrelativizing proof. 

To b1:• more specific, we show the existence of an 
NPA 4 I oracle A. such that EXP c;;; NP· /poly and P·· = 

. We first show that this implies for 0 < £ :::; 1 

that BPP'1 </. pRi~I'/". (Note that Rr~n··1 has a mean­
ingful definition.) 

Lemma 4.1 For any oraclt~ .4. and 0 < < :::; 1 it holds 
\if"' Aj ' ' that if EXP' t;;; NP poly and ,:~P·" = P·" then 

BPPA rt, pR(~'. 

Proof . Suppose for a contradiction that the lemma 
is not tnw. If EXP NP <;; NP /poly then EXP t;;; 
iVP/puly, so EXP <;; PH. Abo. if EXPNP C 
NP /poly, then certainly EXPNP t;;; EXP /poly. It 
tlu.•n follows from [BH92] that EXPNP = EXP, so 
£;\pNP c;;; PH. 

If ,7,p = P then uniqtw-SAT (sPe [BFT97] for a 
definition) is in P. ThPn NP = R hy [\T8GJ and 
hence PH c;;; BPP. 

Finally unique-SA.T is in P is equirnlent to: For 
all .r and y, CP"1Y(.rJy) :::; CDP01 Y(.rJy) + 0(1). 
(See [FK9GJ.) ;\s RCP (the set of polynomial time C 
random strings is in co-NP) it follows from till' proof of 
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that theorem that for a particular unin•rsal machim•1 

uniqtw-SAT E P implies R~~JJ E co-NP. This in 
its turn implii>s assumption that BPI' and lwnn• 

art' m , this hmn•ver contradicts t lw hit•r-
tlwon·m for altf'rnating Turing marhiues [HS6.~1j 

As all parts of tlfr.; proof relativize, we get the result 
fur any oradt'. 0 
\'ow we to construct tht> oracfo. 

Theorem 4.2 There exists an oracle A such that 
EXP'VP" C NPA /poly I\ ,tiPA = p.·t 

Proof . The pruof of the construction parallels the 
one from Beige!, Buhrman and Fort.now [BBF98], 
who construct an oracle such that pA = ci:1PA and 
IVEXPA = NPA. We will use a similar set up. 

Let Jf A be a uondetermiuistic linear time Turiug 
machinl' such that the language L-4 defined by 

is ·i'PA complete> for every A .. 
For e\'erv oracle A.. let KA be the li1war time com­

plete set f<;r NPA. Let N;.··" bt> a deterministic ma­
chine that runs in time 211 and for all A. accepts a 
language JIA that is complete for EXPNP''. \\'e will 
comtruct .-l such that there exists a n 2 bound<>d advin' 
function f such that for for all w 

U' ELA 
w E JIA 

<::} <0, w, 11"'1 2 > EA 
<::} 3v Jvl = !u.f and 

<L f(lwl), w, v> E A 

(Condition 0) 

(Condition l) 

Condition 0 will guarantee that P = E~P and Condi­
tion l will guarantep that £..\pNP CNP/poly 

We US(' the tPrrn 0-strings for the strings of the form 
<0. w, i!w! 2 > and I-strings for the strings of the form 
<l, ;:;, w, u> with lzJ = !vl = lwl 2 • All other strings we 
immediately put in A. 

First we give some intuition for the proof. Condi­
tion 0 will be automatically fulfilled by just describ­
ing how we set the I-strings because they force the 
0-strings as defined by Condition 0. 

Fulfilling Condition 1 requires a bit more care since 
XK" (.r) can query exponentially long arnl double ex­
ponentially many 0- and I-strings. \Ve consider each 
1-string <l,z, w, v> as a variable Y<=·"""> whose 
value determines whether <l, z, w, v> is in A.. \V(' will 
shuw that the computation N K·' (:r) can be forced in 
such a way that it can be represented by a low-<lPgrt'e 

1 Contradicting "'for all univf'rsal machines, EPP E pRi~~" 
just requires disproving this for a particular universal machine. 



polynomial over these variables in the field of two el­
ements. To encode the computation properly we use 
the fact that the OR function has high degree. 

We will assign a polynomial Pz over GF(2] to all of 
the 0-strings and I-strings z. We ensure that for all z 

l. If Pz = 1 then z is in A. 

2. If Pz = 0 then z is not in A. 

First for each I-string z = <I, z, w, v> we let Pz be 
the single variable polynomial Y<z,w,i»· 

We assign polynomials to the G-strings recursively. 
Note that MA(x) can only query G-strings with lwl ::; 
JlxT. Consider an accepting computation path 7r of 
M ( x) (assuming the oracle queries are guessed cor­
rectly). Let qrr, 1, ... , qrr, m be the queries on this path 
and brr,1, ... , brr,m be the query answers with brr,i = I 
if the query was guessed in A and brr,i = G otherwise. 
Note that m::; n = lxl. 

Let P be the set of accepting computation paths 
of A1 ( x). We then define the polynomial Pz for z = 
<O,x,Ilxl 2 > as follows: 

Pz = L II (pq~,; + btr,i +I) (1) 
trEP!SiS::m 

Remember that we are working over GF(2] so addition 
is parity. 

Setting the variables Y<z,w,v> (and thus the 1-
strings) forces the values of Pz for the G-strings. We 
have set things up properly so the following lemma is 
straightforward. 

Lemma 4.3 For each G-string z = <0, x, 1 lxl 2 > we 

have Pz = #MA(x) mod 2 and Condition G can be 

satisfied. The polynomial Pz has degree at most lxl 2 . 

Proof: Simple proof by induction on lxl. 0 

The construction will be done in stages. At stage 
n we will code all the strings of length n of HA into 
A setting some of the I-strings and automatically the 
G-strings and thus fulfilling both condition G and 1 for 
this stage. 

We will need to know the degree of the multivariate 
multilinear polynomials representing the OR and the 
AND function. 

Lemma 4.4 The representation of the functions 

OR(u1,··· ,um) and the AND(u1,··· ,um) as mul­
tivariate multilinear polynomials over GF{2} requires 

degree exactly m. 

Proof: Every function over GF(2] has a unique rep­
resentation as a multivariate multilinear polynomial. 
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Note that AND is just the product and by using De 
Morgan's laws we can write OR as 

OR(u1, . .. ,um)= 1 + II (1 + u;). 0 
lS:iS:m 

W.l.o.g. we will assume that machine N only 
queries strings of the form q E K·4 . Note that since 
N runs in time 2n it may query exponentially long 
strings to KA. 

Let x1 be the first string of length n. When we 
examine the computation of N(xi) we encounter the 
first query q1 to KA. We will try to extend the or­
acle A to A' 2 A such that q1 E KA'. If such an 
extension does not exist we may assume that q1 will 
never be in KA no matter how we extend A in the 
future. We must however take care that we will not 
disturb previous queries that were forced to be in KA. 

To this end we will build a set S containing all the 
previously encountered queries that were forced to be 
in KA. We will only extend A such that for all q E S 
it holds that q E KA'. We will call such an extension 
an S -consistent extension of A. 

Returning to the computation of N(x 1) and q1 we 
ask whether there is an S-consistent extension of A. 
such that q1 E KA' . If such an extension exists we 
will choose the S-consistent extension of A. which adds 
a minimal number of strings to A and put q1 in S. 
Next we continue the computation of NKA (x 1 ) with 
q1 answered yes and otherwise we continue with q1 

answered no. The next lemma shows that a minimal 
extension of A will never add more than 23 n strings to 
A. 

Lemma 4.5 Let S be as above and q be any query to 

KA and suppose we are in stage n . If there exists an 
S-consistent extension of A such that q E KA' then 

there exists one that adds at most 23n strings to A. 

Proof. Consider the computation of machine MR (q) 
that accepts KA. Let o1 , ... , 01 be the smallest num­
ber of strings such that adding them to A is an S­
consistent extension of A such that MR' ( q) accepts. 
(Recall A.1 = A U { o1 , ... , o1}.) Consider the leftmost 
accepting path of M { ( q) and let q1 , ... , q2 n be the 
queries (both G and I-queries) on that path. More­
over let b; be 1 iff q; E A'. Define for q the following 
polynomial: 

Pq = II (pq, + b; + 1) 
1S::is;2n 

(2) 

After adding the strings o1 , ... , 01 to A we have 
that Pq = 1. Moreover by Lemma 4.3 the degree of 



each pq, is at most 22n and hence the degree of Pq is at 
most 23n. Now consider what happens when we take 
out any number of the strings o1 , ..• , 01 of A' resulting 
in A". Since this was a minimal extension of A it 
follows that M{' (q) rejects and that Pq = 0. So Pq 
computes the AND on the l strings o1 , •.• , 01. Since 
by Lemma 4.4 the degree of the unique multivariate 
multilinear polynomial that computes the AND over l 
variables over GF[2] is l it follows that l ::; 23n. D 

After we have dealt with all the queries encountered 
on NKA (x1 ) we continue this process with the other 
strings of length n in lexicographic order. Note that 
since we only extend A S-consistently we will never 
disturb any computation of NKA on lexicographic 
smaller strings. This follows since the queries that are 
forced to be yes will remain yes and the queries that 
could not be forced with an S-consistent extension will 
never be forced by any S'-consistent extension of A, 
for S C S'. After we have finished this process we 
have to code all the computations of Non the strings 
of length n. It is easy to see that llSll ::; 22n and that 
at this point by Lemma 4.5 at most 25n strings have 
been added to A at this stage. A standard counting 
argument shows that there is a string z of length n2 

such that no strings of the form <l, z, w, v> have been 
added to A. This string z will be the advice for strings 
of length n. 

Now we have to show that we can code every string 
x of length n correctly in A to fulfill condition 1. We 
will do this in lexicographic order. Suppose we have 
coded all strings Xj (for j < i) correctly and that we 
want to code Xi· There are two cases: 

Case(l): NKA (x;) = 0. In this case we put all 
the strings <l,z,x;,w> in A and thus set all these 
variables to 0. Since this does not change the oracle 
it is an S-consistent extension. 

Case(2): NKA (x;) = 1. We properly extend 
A S-consistently adding only strings of the form 
<1, z, x;, w> to A. The following lemma shows that 
this can always be done. A proper extension of A is 
one that adds one or more strings to A. 

Lemma 4.6 Let llSll ::; 22n be as above. Sup­
pose that NKA (x;) = 1. There exists a proper S­
consistent extension of A adding only strings of the 
form <l,z,x;,w> with lwl = n2 . 

Proof. Suppose that no such proper S-consistent ex­
tension of A exists. Consider the following polynomial: 

Q,,, = 1- II (Pq) (3) 
qES 
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Where Pq is defined as in Lemma 4.5, equation 2. 
Initially Qx; = 0 and the degree of Qx, ::; 25n. 

Since every extension of A with strings of the form 
<l, z, x;, w> is not S consistent it follows that Q,,,, 
computes the OR of the variables Y<z,x; ,w>. Since 
there are 2n2 many of those variables we have by 
Lemma 4.4 a contradiction with the degree of Qx;. 
Hence there exists a proper S-consistent extension of 
A adding only strings of the form <l, z, x;, w> and Xi 

is properly coded into A. D 
Stage n ends after coding all the strings of length 

n. 
D 

Our oracle also extends the oracle of Ko [Ko9 l] to 
CDP01Y complexity as follows. 

Corollary 4. 7 There exists an oracle such that Rf f 
for any t E w(nlog(n)) and f > 0 is complete for NP 
under strong nondeterministic reductions and pNP 'f. 

~~ 

Proof. The oracle from Theorem 4.2 is a world where 
co-NP~ EPP and CP01Y(xiy) = CDP01Y(xiy) + 0(1), 
hence it follows that Rf f E NP. Moreover Corol­
lary 3.11 relativizes so by Item 1 we have that EPP ~ 
NPR~~- D 

As a byproduct our oracle shows the following. 

Corollary 4.8 3A Unique-SAT A E pA and pNPA -f. 
~p,A 

2 

This corollary indicates that the current proof that 
shows that if Unique-SATE P then PH=~~ can not 
be improved to yield a collapse to pNP using relativiz­
ing techniques. 

5 PSPACE and Rf8 

In this section we further study the connection be­
tween R78 and interactive proofs. So far we have 
established that strings that have sufficiently high 
CNDpoly complexity can be used to derandomize an 
IP protocol that has a constant number of rounds 
in such a way that the role of both the prover and 
the verifier can be played by an NP oracle machine. 
Here we will see that this is also true for IP itself pro­
vided that the random strings have high enough space 
bounded kolmogorov complexity. The class of quanti­
fied boolean formulas (QBF) is defined as the closure 
of the set of boolean variables x; and their negations 
x; under the operations/\ (and), V (or), Vx; (universal 
quantification) and 3x; (existential quantification). A 
QBF in which all the variables are quantified is called 
closed. Other QBFs are called open. We need the 
following definitions and theorems from [Sha92). 



Definition 5.1 ([Sha92]) A QBF B is called simple 
if in the given syntactic representation every occur­
rence of each variable is separated from its point of 
quantification by at most one universal quantifier (and 
arbitrarily many other symbols). 

For technical reasons we also assume that (sim­
ple) QBFs can contain negated variables, but no other 
negations. This is no loss of generality since negations 
can be pushed all the way down to variables. 

Definition 5.2 ([Sha92]) The arithmetization of a 
(simple} QBF B is an arithmetic expression obtained 
from B by replacing every positive occurrence of x; by 
variable z;, every negated occur-rence of x; by (1 - zi), 
every/\ by x, every V by+, everyVx; by fL,E{O,i}' 

and every 3x; by L=;E{O,i}· 

It follows that the arithmetization of a (simple) 
QBF in closed form has an integer value, whereas 
the arithmetization of an open QBF is equivalent to a 
(possibly multivariate) function. 

Definition 5.3 ([Sha92]) The functional form of a 
simple closed QBF is the univariate function that is 
obtained by removing from the arithmetizatfon of B 
either L=,E{O,I} or fL,E{O,t} where i is the least index 
of a variable for which this is possible. 

Notation: Lt't B he a (simple) QBF with quantifiers 
Qi,··· ,Qk. For i::; I.: we let 0; =+if Q; = 3 and 
®; = x if Q; = V. Let B be a QBF. Let B' be the 
boolean formula obtained from B by removing all its 
quantifiers. \Ve denote by j_(B) the arithmetization 
of B'. 

Theorem 5.4 ([Sha92]} The language of all clo8ed 
simple true QBF8 is complete for ?SPACE (under 
polynomial time many-one reductions}. 

Theorem 5.5 ([Sha92]) A simple closed quantified 
boolean forrr!'Ula B is true if and only if there exists a 
prime number P of size polynomial in IBI .mch that 
the value of the arithrnctization of B is positive mod­
ulo P. Moreover if B is false then the va/'Ue of the 
arithmetization of B is 0 modulo any any s1Lch prime. 

Theorem 5.6 ([Sha92]) The functional form of ev­
ery simple QBF can be represented by a univariate 
polynomial of degree at most 3. 

Theorem 5.7 ([Sha92]) For every simple QBF 
there exists an interactive protocol with prover P and 
polynomial time bo·unded verifier ir such that: 
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1. When B is true and P is honest, V always accepts 
the proof. 

2. When B is false, V accepts the proof with negli­
gible probability. 

The proof of Theorem 5. 7 essentially uses Theorem 5.6 
to translate a simple QBF to a polynomial in the 
following way. First, the arithmetization of a sim­
ple QBF B in closed form is an integer value V 
which is positive if and only if B is true. Then, 
B's functional form F (recall: this is arithmetiza­
tion of the QBF that is obtained from B by delet­
ing the first quantifier) is a univariate polynomial 
p 1 of degree at most 3 which has the property that 
pi(O)@ pi(l) = V, (Here @ is + if the first quanti­
fier is 3 and x if the first quantifier is \/.) Substitut­
ing any value ri in Pi gives a new integer value Vi, 
which is of course the same value that we get when 
we substitute r 1 in F. However, F(ri) can again be 
converted to a (low degree) polynomial by deleting its 
first L or TI sign and the above game can be repeated. 
Thus, we obtain a sequence of polynomials. From 
the first polynomial in this sequence V can be com­
puted. The last polynomial Pn has the property that 
Pn(r1, ... , rn) = j_(B)(ri, ... , rn)· Two more things 
are needed: First, if any other sequence of polynomi­
als q1 , ... , qn has the property that q1 (0) EB q1 ( 1) ;/= V 
and Pn (r1, ... , r 11 ) = j_(B) (r1, ... , rn), then there has 
to be some i where q;(r;) = p;(r;), yet q; =j: p;. I.e., r; 
is an intersection point of p; and q;. Second, all cal­
culations can be done modulo some prime number of 
polynomial size (Theorem 5.5). We summarize this in 
the following observation, which is actually a skeleton 
of the proof of Theorem 5.7. 

Observation 5.8 ( [Sha92)) Let B be a closed .5im­
ple QBF wherein the quantors are Q 1 , ... Qn if read 
from left to r·ight ·in its syntactic representation. Let 
A be its arithmetization, and let V be the value of A. 
There exist a prime number P of size polynomial in 
IBI such that for any sequence ri, ... , T'n of numbers 
taken from [l..P] there is a sequence of polynomial8 of 
degree at most 3 and size polynomial in I BI s·uch that: 

1. P1(0) 01 P1(l) = V and Pi(O) 01 P1(l) > 0 iff B 
is true. 

3. Pn(rn) = j_(B)(ri, ... , rn) 

4. For any sequence of univariate polynomials 
q1, ... , qn such that: 



Pi ( 1 ¥ qi 1 qi l) and 

t q,,1 (1) = q, ) and 

' ... , r,.) 

th1·n: is a mmmwl i such th11tp, =I q,, yetp,(r,) = 
q, ). fe., r, is IHI mft'1'St:dl011 pomt of jl1 and 

q, .. 

n'here all (in)eqnalities hold modulo p and hold mod­

ulo any prim1' of poly11mni11l size if B is false. Afore­

over, p1 arn be in space (IBI + IPIJ2 from B, 

P, r 1 , ••• , r;-1. 

From this reformulation of Theorem 5.7 we ob­
tain that for any sequence of univariate polynomials 
q1 , .. . , q" and sequence of vahH'S r1 •... , rn that sat­
isfy items 2 and 3 in Observation 5.8 it holds that 
either the value that can be computed from q1 in that 
sequence is the true value of the arithim·tization of B. 
or there is some polynomial q; in this sequence such 
that r; is an intersection point of Pi and q; (wh<'re 
p, is as in the Obserrntion 5.8). As p; can be com­
puted in quadratic span' from B. P and r 1 , ... , r,_ 1 

it follows that in the latter case r, cannot have high 
space bounded Kolmogorov complexity relative to B. 
P.q 1 , .•. ,q;,r1 , ... ,r,_ 1 . Hence,ifr, does have high 
space bouuded Kolmogorov complexity, then r, is not 

an intersection point, ~o the first case must hold (i.e., 
the valur: computed from q1 is the true value of the 
arithmetization of B). Tht' following lemma makes 
this precise. 

Lemma 5.9 Let B be a simple closed QBF on n 

t•ariables. Ld P be a prime number of size polyno­

mial in IBI. Let q1 .•. q,, be a sequence of polyno­
mials of de_gree 3 with coefficients in [LP]. and let 
r1, ... , l'n be numbers in [LP] such that csn(r; I 
<B.P,qi, ... ,q,.r1 .... ,r,_1,0liBl+IPil2>)?: IPI. 

Furtherrnore suppose that for i?: 2, q1 _1(r;_1) = 
q, ~:, q;(l). If Bis false and .l(B)(r1 , ... ,r,,) = 
q,.(r,,) then q1 (0) ;;:, 1 qi(l) = 0. when these equalities 
are taken modulo P. 

Proof: Take all calculations modulo P. Suppose 
<]1 l/1 ( 1) f. 0. It follows from ObsC'rvation 5.8 that 
therE' t'Xists a St'quenre p 1 •..• , Pn satisfying items 1 
through 3 of that lnnma. Furthermorl' since B 
is false pi(O) \ 1 pi( l) = 0 modulo any prime. so 
pi(O) :;:1 P1(l) f. qi(O) ;;)1 qi(l). It follows that there 
must be a minimal i such that p; f:: q, and r, is an in­
tPrsPctinu point of p, and q,. However p; can be com­
putPd in space (IBl+iPll~ from B, P and r 1 , ..• , r;- 1 . 

As both p; and IJ, have degree at most 3, it follmvs that 
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CS" J <B,P,q1 , ••• ,q;.r1 , ... ,r;_ 1 ,QllBl+IPil'>) 

is bounded by a cow;tant. A contradiction. 0 

This suffices for the main theorem of this section. 
Let s bC' any polynomial. 

Theorem 5.10 ?SPACE<:;; NPR~·s 

Proof: \\'e prove the lemma for s ( n) = n, but tlw 
proof can by padding be extended to any polynomial. 
There exists an NP oracle machine that accepts the 
language of all simple dosed true quantified boolean 
formulas as follows. On input B first check that B is 
simple. Guess a prime number P of size polynomial 
in B, a sequt'nce of polynomials P1, ... , Jin of degn'e 
at most 3 and with coefficients in [LP]. Finally guess 
a sequence of numbers r 1 .... , rn- Check that: 

3. Pn(r11) = j_(B)(r1,··· ,rn) and 

4. finally that 
Cs"(·· ·I B p · · . . 011a1+1Pi)' • ·1 r,<, ,p1, ... ,p;,r1, ... ,r,_1, .> 

is at least IPI for all i :S n. 

If B is true Lemma 5.8 guarantt'es that thest' items 
can be guessed such that all tests are passed. If B is 
false and no other test fails tlwn Lemma .S.9 guarantees 
that p 1 (0) 1~:1 1 p 1 (1) = 0, so the first check must fail. 0 

Bv the fact that ?SPACE is dosed under comple­
ment and the fact that R~~·s is also in PSPACE TrH'­
orem 5.10 gives that R;:s is complete for ?SPACE 
under strong nondeterrninistic reductions [Lon82]. 

Corollary 5.11 R~}S is complete for PSP.4.CE unde1· 

strong nondeterministic reductions 

Buhrman and i\Iayordomo [BJ\195] showed that for 

t(n) = 2"', the set Rf'= {.i:: C1(;r)?: l(lx)} is not 

hard for EXP under deterministic Turing reductions. 
In Theorem 5.10 we made use of the relati vized Kol­
mogorov complexity (i.e., CSs(J:\y)). Using exact!~· 
the same proof as in [Bl\195] one can prove that the 
S('t RDf' = {<x.y>: C1(xly)?: lxl} is not hard for 
EXP under Turing reductions. On the other hand 
the proof of Theorem 5.10 also works for this set: 
?SPACE <:;; NPRD{°. We suspPct that it is possible 
to extend this to show that EXP ~ NPRD,c. So far. 
we have been unable to prove this. 
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