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CHAPTER 1 

INTRODUCTION 

I.I. THE SCOPE OF THE STUDY 

This monograph considers some aspects of the analysis of ordered 

contingency tables. The main focus is on bivariate tables. Most literature 

concerning ordered contingency tables is in the context of log-linear models; 

see for example FIENBERG (1977, pp. 52-58), GOODMAN (1979, 1981, 1985), HABERMAN 

(1974b)and McCULLAGH (1978, 1980). We, however, prefer a non-parametric 

approach. In analysing the dependence between categorical variables one 

frequently investigates whether there are meaningful or relevant orderings of 

the categories in order to faciliate the interpretation of the data. An 

often used method is correspondence analysis. In fact, our study is moti­

vated by some problems arising in this type of analysis. 

Let X and Y be two categorical variables. Consider real valued 

functions ~I and w1, defined on the categories of X and Y respectively, 

such that the correlation between ~1 (X) and w1(Y) is maximal. Such trans­

formed variables are called the first pair of canonical variables and des­

cribe the most informative part of the association between X and Y. The 

second pair of canonical variables, ~2 (X) and w2(Y), maximizes the corre­

lation among all transformations which are uncorrelated with ~1 (X) and 

w1(Y). Higher order pairs of canonical variables are similarly defined. The 

association between X and Y is completely described by all pairs of canoni­

cal variables together with their canonical correlations. In fact, this 

defines the technique correspondence analysis. Clearly, for each t= 1,2, ... 

the values of ~t and wt at the categories of both variables are invariant 

under permutations of categories. So this technique makes no assumption on, 

nor uses any ordering of categories. However, the following phenomena are 

frequently observed in practice; see for example BENZECRI ( 1973, pp. 44-45, 337-338, 

482-484), GIFI (1981, p. 145), GREENACRE (1984, pp. 226-232) or HILL (1974). When the 

categories of X and Y both have an intuitively meaningful order, then this order is 
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often reflected in the order of their values assigned by WI and w,; i.e. 

the functions are both increasing in the intuitive ordering. Moreover, the 

functions w2 and w2 of the second canonical pair are frequently both first 

decreasing and then increasing in the intuitive ordering, exhibiting a kind 

of convexity property. Since both technique and contingency tables make no 

claim on the order in which the rows and columns are presented, this or­

dering property of correspondence analysis gives rise to the following 

problem. For which contingency tables (forms of dependence between cate­

gorical variables) are w1 and w1 increasing and is w2 convex with respect 

to w1 and w2 convex with respect to w1 and do generalized convexity proper­

ties hold for higher order canonical functions? 

A related problem is studied by EAGLESON (1964), EAGLESON and 

LANCASTER (1967) and LANCASTER (1975, 1980). These authors consider the 

more general situation where X and Y have arbitrary distributions (not just 

discrete) and are interested in the problem of determining in which cases 

the functions wt and wt for t 1,2, ••• form orthogonal polynomial systems. 

Orthogonal polynomial systems possess the generalized convexity property. 

(Orthogonality follows from the fact that the t-th pair of canonical 

variables is uncorrelated with previous pairs.) 

It turns out that the ordering properties can be explained by gene­

ralizations of Lehmann's notion of regression dependence, which will be 

called order dependence. These generalizations are closely related to the 

concept of total positivity. Order dependence induces a meaningful (in a 

probabilistic sense) ordering over the categories of both variables. There­

fore, the ordering property is quite relevant for the practice of corres­

pondence analysis. It not only explains phenomena frequently noted in the 

literature, it also supports the use of the technique and provides an im­

portant tool for the analysis of ordered contingency tables. 

The question arises whether tests of independence can be given which 

are more sensitive to these forms of positive dependence than conventional 

tests of independence. To this end, some well-known tests for the continuous 

analogon of the problem are adapted to contingency tables. Using an unified 

and quite general approach, asymptotic properties of these tests and of 

some more conventional tests are studied. 

It is interesting to know whether positive dependence can be ordered 

(partially) such that tests sensitive to positive dependence become more 

powerful under "increasing" positive dependence. Typical for such an 
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ordering is that negative dependence precedes independence. Not much at­

tention has been paid in the literature to orderings of positive dependence; 

just a few suggestions to compare bivariate distributions have been 

published, e.g. CAMBANIS, SIMONS and STOUT (1976), KOWALCZYK and 

PLESZCZYNSKA (1977), TCHEN (1976) and WHITT (1982). The orderings con­

sidered by Whitt are quite strong and are not very often satisfied; the 

orderings introduced by the other authors are too weak to be reflected in 

the power functions of tests. 

Let's now review the contents of the monograph in more detail. The 

next section introduces the notations and conventions used throughout this 

study. 

Chapter 2 is more or less preliminary. It starts with some basic pro­

perties of correspondence analysis which are essential for a good under­

standing of the technique. For the sake of completeness, proofs of these 

elementary results are given. Several conventional tests of independence 

are based on the canonical correlations produced by correspondence analysis. 

Asymptotic properties of these tests are derived under the general setup of 

conditional Poisson sampling rather than the more usual multinomial sam­

pling. Since such generalizations of well-known results for the multinomial 

case are frequently mentioned and applied without proof, a complete treat­

ment is given in Sections 2.2 and 2.3. Furthermore, the tests are compared 

by means of approximate Bahadur and Pitman efficiencies. The results of 

this chapter are used later to derive asymptotic properties of tests sensi­

tive to positive dependence. 

In Chapter 3 the notion of order dependence is introduced. It is 

actually equivalent, up to permutations of categories of both variables, to 

generalizations of the notion of regression dependence. These generaliza­

tions are related to those studied by VAN ZWET (1968). The theory of total 

positivity is basic to generalized regression dependence and some results 

of this theory are summarized in Section 3.1. The oscillation diminishing 

property given in Theorem 3.2.3 (Section 3.2) is typical for generalized 

regression dependence.Section 3.4 illustrates that order dependence and 

generalized regression dependence arise quite naturally in practical models. 

The main result of this chapter, the ordering property of correspondence 

analysis, is formulated in Section 3.3. This result actually first appeared 

in SCHRIEVER (1983). Furthermore, tests of independence which are sensitive 

to ordered alternatives are considered in the last section of Chapter 3. The 



4 

tests of YATES (1948) and adaptations of tests based on Kendall's tau and 

Spearman's rho turn out to perform well in such situations. Their ap­

proximate Bahadur efficiencies with respect to some conventional tests are 

derived. Tests based on canonical variables turn out to have a rather bad 

performance. 

Chapter 4 discusses several suggestions for a partial ordering for 

positive dependent distributions. The continuous case as well as the dis­

crete case is considered. Such a partial ordering, denoted in this intro­

ductory chapter by :2:, is in fact only useful when it has the following 

properties. Suppose F and F' are two bivariate distributions such that 

F' :2: F, then any reasonable measure of positive dependence should attain 

a larger value at F' than at F. Moreover, for finite samples drawn from F' 

and F, one wants these measures computed at samples from F' to be 

stochastically larger than at samples from F. This last property implies 

that tests based on such measures have power functions which are monotone 

in the ordering. The main focus in Chapter 4 is on an ordering called "more 

associated" which actually has these properties in case F and F' are con­

tinuous. This ordering is related to the notion of dependence called 

"associated" by ESARY, PROSCHAN and WALKUP (I 967); special cases of the 

ordering are related to regression dependence. In case tied observations 

can occur in samples from F and F', the order preserving properties only 

hold in very few and simple cases. But it is shown in Section 4.4 that the 

results carry over to the contingency table case when the definitions of 

the partial orderings and measures of dependence are modified appropriately. 

The last chapter discusses generalizations of the ordering properties 

of correspondence analysis to the multivariate case (Section 5.2). But 

first the most common generalization of correspondence analysis, called 

multiple correspondence analysis, is briefly described in Section 5.1. 

(A complete system of generalizations is given in GIFI (1981); see also DE 

LEEUW (1984 b).) Partial orderings similar to those introduced in Chapter 4 

could easily be formulated for the multivariate case, but it is somewhat 

premature to give partial orderings since the corresponding forms and 

measures of multivariate positive dependence have not yet been sufficiently 

explored. Chapter 5 closes with an example of multiple correspondence ana­

lysis in ordered latent structure models. Such models are frequently used 

in psychological measurement theory to analyse ability (or attitude) tests, 

e.g. intelligence tests. MOKKEN (1971) introduced models with orderings 

related to order dependence and total positivity. It turns out that, under 



realistic assumptions, multi correspondence analysis orders the questions 

(items) in the tests according to their difficulty and orders individuals 

according to their ability (or attitude). 

1.2. GENERAL NOTATIONS AND CONVENTIONS 

5 

The following notation will be used in the sequel. Matrices are de­

noted by capital letters. The (i,j)-th element of a matrix A is denoted by 

a .. ; however the diagonal elements of a diagonal matrix are singly sub-
1J 

scripted. Vectors are denoted by lower case letters and are considered as 

column vectors. The i-th component of a vector x is denoted by xi. The 

transpose of a matrix or vector is denoted by the superscript T The symbol 

® is used for the Kronecker matrix product (cf. RAO, 1973, p. 29 or 

MUIRHEAD, 1982, pp. 73-76). Furthermore, for a matrix A, vec [A] denotes the 

vector with elements a .. arranged lexicographically by its indices and 
1] 

diag[A] denotes the diagonal matrix with diagonal elements a .. , also 
1] 

arranged in lexicographical order. The identity matrix is denoted by I and 

the vector having all its components equal to unity by e; the size of this 

matrix and vector will be clear from the context, but if ambiguity arises 

the size is given as an index, e.g. In or em. The square matrix S denotes 

the upper triangular matrix with unities on and above the diagonal. Its 

inverse S-I is the matrix with unit elements on the (main) diagonal, with 

elements -I on the first super diagonal and with all other elements zero, 

thus 

-I 

-1 

S= 

-1 

The sizes of these square matrices will also be clear from the context or 

are given as indices. 

A real number x is said to be positive when x ~ 0 and is called 

strictly positive when x > O. Similarly a n x n matrix A is said to be 

positive definite when x1Ax ~ 0 for all n-dimensional vectors x and is said 

to be strictly positive definite when x1Ax > 0 for all non-zero vectors x. 

A real valued function f defined on X cJR is called increasing on X when 

x 1 < x 2 (x 1,x2 EX)=<> f(x 1) ~ f(x 2) and is called strictly increasing on X 
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if strict inequality is implied. The notions (strictly) negative, (strictly) 

negative definite and (strictly) decreasing are similarly defined. For sub­

sets A1 and A2 of R, the notation A1 < A2 is used for x1 E A1 ,x2 E A2 ""x 1 < x2 . 

The expectation and variance of a random variable Z are denoted by 

EZ and Var (Z). Similarly, Cov and Corr stand for covariance and correlation 

of two random variables. The symbol~ is short for "is distributed as". 

Convergence in distribution of random variables is denoted by -+D and con­

vergence in probability by -+p• The n-dimensional normal distribution is 

abbreviated by N • 
n 

The bivariate distribution function of the pair of random variables 

(X,Y) is usually denoted by F. The variable corresponding to the first 

argument of a bivariate distribution is called the row variable and the 

second one the column variable. The marginal distributions of the row and 

column variable of F are denoted by Fr and Fe respectively. A version of 

the conditional distribution function of the row variable given the column 

variable is denoted by F I . A density of F with respect to some product r c 
measure Or x ac is usually denoted by p. In case X and Y have discrete dis-

tributions (contingency table case), the matrix P contains the cell proba­

bilities. Such a matrix is called a probability table. Occasionally, the 

same notation F or P is used for empirical as well as underlying distri­

butions. In case empirical versions are explicitly meant, the upper script 

- is added usually in combination with the sample size (N) as an upper index. 

So an empirical probability table has relative frequencies as elements. 

The term contingency table is used for the table with (integer valued) 

frequencies, which add to the sample size. 
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CHAPTER 2 

CORRESPONDENCE ANALYSIS 

2.1. BASIC PROPERTIES 

Correspondence analysis (abbreviated CA) is the now well-established 

name of a technique for analysing the association which is present in a 

contingency table. CA is actually mathematically equivalent to a number of 

other techniques independently (re-) introduced by several authors, e.g. 

reciprocal averaging (RICHARDSON and KUDER, 1933 and HORST, 1935), simul­

taneous linear regression (HIRSCHFELD, 1935), Fisher's contingency table 

analysis (FISHER, 1940 and MAUNG, 1941), optimal scaling (GUTTMAN, 1941), 

principal component analysis of qualitative data (BURT, 1950), gradient 

analysis (WHITTAKER, 1967), biplot (GABRIEL, 1971), dual scaling (NISHISATO, 

1980) and of course analyse factorielle des correspondances (BENZECRI, 1973). 

The origin of the principle behind these techniques is hard to trace, 

because it can be described from several points of view. Fisher and Guttman 

are often regarded as the inventors, but earlier references are those of 

Richardson and Kuder, Horst and Hirschfeld. (Hirschfeld later became better 

known under the name Hartley.) The history of CA and related techniques is 

described in BENZECRI (1982), DELEEUW (1973,1983) and NISHISATO (1980). 

Fisher's and Maung's approaches to CA are perhaps the most appealing 

from a statistical point of view. In 1940 Fisher considered a contingency 

table of the hair and eye colour of Scottish school children in the context 

of discriminant analysis. In his analysis he assigned scores to the cate­

gories of the nominal variable eye colour in such a way that the distri­

butions given the hair colour classes were most distinct. Fisher stated 

that such scores may be found in a variety of ways. He didn't notice that 

his method to find these scores was actually the core of the reciprocal 

averaging algorithm described by RICHARDSON and KUDER (1933) and HORST 

(1935). Furthermore, Fisher noted that in his example each derived (scored) 

variable has a linear regression on the other. But seeking derived variables 
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with simultaneous linear regressions was in fact the problem considered by 

HIRSCHFELD (1935). In 1941 Maung worked out Fisher's contingency table ana­

lysis and showed that the derived variables maximize the product moment 

correlation. 

Our approach to CA is also based on maximizing correlations. This 

section summarizes some basic properties of the CA solution. Furthermore, 

some attention is paid to the graphical display of the CA solution. Such a 

graphical representation of contingency tables is quite common in practice 

and Benzecri's interpretation is briefly explained. This section closes 

with some remarks on a generalization of CA to continuous variables. Such 

a generalization is, however, of limited practical value. 

This section is concerned with population properties of CA only and 

does not deal with the problem of how the solution is affected by sampling 

variation. Some asymptotic sampling results are given in the next section. 

Let X and Y be two nominal variables with n and m categories res­

pectively. It is assumed throughout this chapter that n 5 m. For notational 

convenience the categories of X and Y are labeled by 1,2, .•. ,n and 1,2, •.• ,m 

respectively; but it should be emphasized that these are just labels, 

neither their value nor their ordering need be (and generally is not) 

meaningful for the corresponding categories. Furthermore, let the joint 

distribution of the two (nominal) variables be given by the n x m probability 

table P with elements 

p .. = P{X 
l.J 

i, y = j} for i = l, ... ,n; j = l, ... ,m. 

Thus all elements of P are positive and add to unity. The marginal distri­

butions of the row variable X and the column variable Y are given by the 
T T vectors r = (r 1, ... ,rn) and c = (c 1, ... ,cm) respectively, where 

m n 
r. 

l. 
[ p .. = P{X 

j=I i.J 
i} and c. 

J 
I: p .. 

i=I l.J 
P{Y j} i=l, .•. ,n; 

Diagonal matrices Rand Care defined by R = diag [r 1, ..• ,rn] and 

C = diag [c 1, .•• ,cm] and are assumed to be non-singular. 

j =I, ••• ,m. 

Correspondence analysis seeks two real valued functions ~I and ~I' 

defined on the categories of X and Y respectively, such that the correlation 

of the derived (numerical) variables ~1 (X) and ~ 1 (Y) is maximal. Clearly, 

it is no restriction to assume that the derived variables have mean zero 
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and unit variance. Such variables cp1(X) and w1(Y) are called the (first 

pair of) canonical variables and their correlation is called the canonical 

correlation. This first pair of canonical variables describes the most in­

formative part of the dependence between X and Y. The remaining part of the 

dependence can be analysed in a similar way and so CA seeks a second pair 

of canonical variables cp2 (X) and w2 (Y) which has maximum correlation but 

is uncorrelated with the first pair. This procedure is continued with a 

third pair, a fourth pair etc. until no new pair which is uncorrelated with 

the previous pairs can be found. 

DEFINITION 2.1.1. The t-th pair of canonical variables of the distribution 

of (X,Y) is a pair of transformed variables cpt(X) and wt(Y) for which 

(2.1.1) 

is maximal subject to 

Ecpt (X) = 0, 

(2.1.2) Var (cpt (X)) = I, 

Ewt(Y) = 0, 

Var(wt(Y)) = 1, 

The correlation At is called the t-th canonical correlation and the 

functions cpt and wt are called the t-th canonical (row and column) functions. 

The CA solution consists of all triplets (At,cpt,Wt) fort= 1,2, •••• 

The present definition of CA is equivalent to definitions based on 

the reciprocal averaging algorithm or based on simultaneous linear re­

gression, as is shown by the following result of HIRSCHFELD (1935). 

PROPOSITION 2.1.1. The transformed variables cpt(X) and wt(Y) are a t-th 

pair of canonical variables iff they satisfy 

(2.1.3) 
Atcpt(X) = E(Wt(Y)!X) 

AtWt(Y) = E(cpt(X)jY) 

with At maximal subject to (2.1.2). 

a.s. 

a.s. 

PROOF. First suppose that cpt(X) and wt(Y) satisfy (2.1.3) with At maximal 

subject to (2.1.2). Thus, since both transformed variables are normalized 
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with mean zero and unit variance, At= ,\E<.J\(X)<.Pt(X) = E<.Pt(X)E(ljit(Y) Ix) = 

Corr (<.pt(X),ljit(Y)) is maximal subject to (2.1.2). 

Conversely, suppose that <.pt(X) and ljit(Y) is a pair maximizing (2.1.1) 
subject to (2.1.2).. Let g(Y) and µ be such that Var (g(Y)) = 1 and µg(Y) 

E(<.Pt(X)jY) with probability one. Clearly, E<.Pt(X) = 0 implies Eg(Y) = 0. 
Since all transformed variables are normalized, it follows by Cauchy­

Schwarz that·\= Corr (<.;>t(X)rljit(Y)) = E<.Pt(X)ljit(Y) = Eljit(Y)E(<.Pt(X)IY) = 
µEljit(Y)g(Y) ~µ(Elji~(Y)Eg2 (Y)) 2 =µwith equality only if ljit(Y) = g(Y) with 

probability one. Thus for each <pt (X), 1/\ (Y) maximizes Corr (\I\ (X),lji t (Y)) 

only if Atljit(Y) = E(<.Pt(X)IY) a.s .. So it remains to show that E(<.Pt(X)IY) is 
uncorrelated with ljis(Y) for s = l, ••. ,t-1. This can be done by induction 
over t. For t = I there is no such condition. Now suppose that As<.Ps(X) = 

E (lji (Y) IX) a. s. for s = l , •.. , t-1. Then Cov (lji (Y) ,E(<.p (X) IY)) = Elji (Y)<.P (X) = s s t s t 
E<.Pt(X)E(lji (Y) Ix) = A Ecp (X)<.P (X) 0. Similarly, it follows that s s t s 
At<.Pt(X) = E(ljit(Y)ix) a.s.. D 

COROLLARY 2.1.2. Corr (<.Pt(X),ljis(Y)) = 0 for s ~ t. 

Fisher's approach, in the context of discriminant analysis, was to 
find the transformation of the row variable which yields greatest variance 

between categories of the column variable relative to its variance (FISHER, 
1936). That is to find <.Pt(X) which maximizes Var (E(<.Pt(X) IY)) subject to 
Var (<.Pt(X)) = I and Corr (<.Ps(X),<.Pt(X)) = 0 for s = l, ... ,t-1. Let At and 

ljit(Y) be such that Atljit(Y) = E(<.Pt(X)IY) a.s., then it is easily verified 
that Fisher's approach produces another equivalent formulation of CA. 

The functions <.Pt and ljit are only defined on the categories of X and 

Y. Therefore, only the values <.Pt(i) for i = l, .•. ,n and ljit(j) for 
j = 1, ... ,m, called category scores of the t-th canonical pair, are of 

interest fort= 1,2, ..•. In the sequel the functions <.Pt and ljit are 

identified with vectors <.Pt= (<.Plt'"'"'<.Pnt)T and ljit = (ljilt'''''ljimt)T, where 
<.P.t = <.Pt(i) for i = l, ... ,n and lji. =lji (j) for j = l, ... ,m and t = 1,2, ... l. Jt t 

Although <.Pt and ljit are vectors, they still will frequently be called 
canonical functions. Thus by Proposition 2.1. I, the vectors of category 
scores satisfy 

(2. 1. 4) 
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where At is maximal subject to 

T 
r <Pt = O, c Tl/lt = o, 

(2.1.5) T 
<PtR<Pt 1, T 

1/ltCl/lt 1 ' 
T 0, 1/ITCl/I 0, for s = 1, ••• , t-1. <PtR<Ps t s 

These equations show an important property of CA: if two rows of P are 

proportiona.Z then the CA category scores for these rows are equaZ and, 

moreover, the category scores for other rows and coZumns remain una.Ztered 

when such rows are pooZed. A simiZar property hoZds for proportionaZ coZumns. 

HIRSCHFELD (1935) showed that the vectors with CA row and column 

category scores can be obtained by solving a matrix eigenvalue problem. 

Recall that a set of n-dimensional vectors is said to be complete when 

they are linearly independent and spanlln. 

THEOREM 2.1.3. The vectors <Pt and 1/lt satisfying (2.1.4), where At is ma.xi­

maZ subject to (2.1.5), exist fort= 1,2, ••• ,n-I. Moreover, the vectors 

e,<1>1, ••• ,(j)n-l can be any corrrpZete set of eigenvectors of the matrix 

R-lpc-lpT corresponding to the eigenvaZues 1 ~Ai~ ••• ~ A~-l and the 

o~ c-1PTR- 1P corres-vectors e,1/11, ••• ,1/ln-l is any set of eigenvectors 

ponding to the same eigenvaZues. 
J 

-1 -1 T 
PROOF. It is easily seen that u is an eigenvector of R PC P corres-

ponding to an eigenvalueµ iff R!u is an eigenvector of R-!pc-IPTR-! cor­

responding to the eigenvalue µ. Since the latter matrix is symmetric and 

positive definite, a complete 
T T 

such that utRut = 1 and utRus 

values µ 1 ~ µ2 ~ ••• ~ µn ~ 0 

set of eigenvectors u 1,u2 , ••• ,un, normalized 

= 0 for t + s, corresponding to real eigen­
-1 -1 T of the matrix R PC P exist. Furthermore, 

this matrix has positive elements and its row sums are unity (Markov or 

stochastic matrix) and hence by GANTMACHER (1977, vol II, p. 83) its 

largest eigenvalue µ 1 = 1 and the corresponding eigenvector can be taken 

u 1 = e. Furthermore, <Pt and 1/lt satisfy (2.1.4) with At maximal subject to 

(2.1.5) iff 

with At maximal subject to (2.1.5). Hence <Pt can be taken ut+l and 

A~ µt+l fort= 1, .•• ,n-1. D 
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Note that the vectors ~ and W are uniquely determined, up to a t t 
change of sign, when the corresponding eigenvalue A~ is simple. 

Fisher pointed out (cf. MAUNG, 1941) that the following canonical 
decorrrposition (which shows similarity to a singular value decomposition) 
of a probability table P always exists. It provides more insight in the way 
category scores describe the dependence structure between the nominal 

variables X and Y. 

PROPOSITION 2.1.4. Let ~ 1 , ... ,~n-l and w1, .•. ,wn-I he vectors satisfying 
(2. 1.5). Then (2. 1.4) holds iff 

n-1 
(2. 1. 6) p .. = r.c.(1 + r At~'tw.t) 

l.J i. J t= I i. J 
for i I, .. .,n; j J, •.• ,m. 

PROOF. Let<!> denote the nxn matrix with e,~ 1 , ... ,~n-l as columns and 'I' 

the mxn matrix with e,w 1 , ••• ,wn-l as columns. Then (2.1.5) for 
t = J, ... ,n-1 is equivalent to 

I. 

Furthermore, write A= diag [l,A 1 , ••• ,An-I]. Note that since the columns of 
<!> spanlRn, q,q,T = R-I. Therefore, (2.1.4) fort= l, ... ,n-1 implies 

and hence P = R<l>A'l'TC. The converse is obvious. D 

The canonical correlations_A 1, ..• ,An-I measure the strength of the 
dependence in the probability table. Consequently, tests of independence 
can be based on empirical canonical correlations (cf. Section 2.3). For 
example, it is easily seen from (2.1.6) and (2.1.5) that Pearson's x2 

n-1 2 equals r 1 At. The category scores (canonical functions) on the other 
hand, give more insight into the structure or form of dependence. Structure 
and strength are, however, not completely separated by these two concepts. 
The canonical variables can be used in further analysis as numerical 
versions of the row and column variables, in particular when these nominal 
variables possess an ordinal relation (cf. Chapter 3). 

The following theorem shows how an intuitive concept of "stronger" 
dependence is reflected in the canonical correlations. Consider two n x m 
probability tables P and P' such that P = NTP'M, where N and M are square 
matrices with all elements positive and row sums unity (Markov matrices). 
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The existence of such matrices means that the distribution P of (X,Y) can 

be derived from the distribution P' of (X',Y') by independent randomizations 

of the row and column variable: there exist independent random variables 

U and V both distributed on [O,I], say, and independent of (X',Y') and 

there exist functions K 1 : {J, ••• ,n}x [O,I]->- {J,. .. ,n} and 

K2 : {I, ... ,m} x [O, I] ->- {I, ... ,m} such that 

Intuitively, P' is more strongly dependent than P. The following result holds 

for their canonical correlations Aj 2 ••. 2 A~-I and Al 2 ••• 2 An-I' 

THEOREM 2.1.5. Suppose that P = NTP'M, where N and Mare square Markov 

matrices, then 

(2.1.7) 
t t 
:L A ~ :L A' 

s=I s s=l s 
for t I, .•• , n-1. 

PROOF. First make P' square by replacing the last row by m-n+l copies of 
-- -1 
(m-n+l) times this last row and make N of size m x m by applying the same 

operation to both the last row and the last column. This does not affect 

the canonical correlations of P and P'. Thus it is no loss of generality 

to assume that P and P' are square. 

By Theorem 2.1.3, 2 AJ 2 ••• 2 A _ 1 are the square roots of the 
n I I 

eigenvalues of the matrix R-lpc-lpT and hence of R- 2PC-IPTR- 2 • Therefore, 

I 2 Al 2 .•• 2 A I are by definition (see MARSHALL and OLKIN, 1979, 
n- I I 

p. 498) the singular values of R- 2PC- 2 • Similarly, I 2 Aj 2 ••• 2 A~-I 
-' _1 

are the singular values of R' 2P'C' 2 • 

Furthermore, N and M are Markov matrices, so Ne = e and Me = e and 

it follows from P = NTP'M that MTc' = c and NTr' r. Hence R-INTR'N and 
-I T C M C'M are Markov matrices and (by GAi.~TMACHER, 1977, vol II, p. 83) have 

_1 T ! 
largest eigenvalue equal to unity. Thus all singular values of R 2 N R' 2 and 

! _! 
C' 2MC 2 are less than or equal to unity. Since P = NTP'M, it follows that 

and application of the first inequality on p. 250 of MARSHALL and OLKIN 

(1979) to this product of (square) matrices yields the desired result. 0 

If (2.1.7) holds, then the canonical correlations of P' are said to 

weakly su"brnajorize the canonical correlations of P. Hence for all 
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increasirl{J Schur-convex functions ~ of the canonical correlations, 

(cf. MARSHALL and OLKIN, 1979, p. 59). Examples of such increasing Schur-

convex functions are 

the first canonical correlation: ~cc°' I'··· ,An-I) Al, 

Pearson's 2 
~cs<A1, ···,An-I) 

rn-1 A2 x t=l t' 

the geometric mean ~GM(A I' ... ,An-I) 
rrn-l 

t=I At. 

(cf. MARSHALL and OLKIN, 1979, p. 63 and p. 73 respectively). This result 

for instance implies that pooling row (column) categories decreases the 

first canonical correlation and Pearson's x2 . Another example of two pro­

bability tables P and P' satisfying the conditions of Theorem 2.1.5 is when 

Pisa convex combination of P' and independence; i.e. P = arcT + (I -a)P' 

for 0,; a,; l. 

BENZECRI (1973) approaches CA from a geometrical viewpoint. He des­

cribes CA as a technique for displaying the rows and columns of a proba­

bility table as points in a q-dimensional vector space; where q is an in­

teger less than or equal to n-1, usually q = 2 or q = 3. The i-th category 

of the row variable X is represented by a point ~i with coordinates 

(A 1~ 1 (i), .•. ,Aq~q(i)), for i = l, ••• ,n, and the j-th category of Y is re­

presented by a point n. with coordinates (A 1 ~ 1 (j), ... ,A ~ (j)), for 
J q q 

j = l, ... ,m. This yields n + m points in a q-dimensional space. Benzecri' s 

interpretation of this graphical representation is based on the following 

properties of the Euclidian distance, denoted by II .. II , between row points 

and between column points. 

PROPOSITION 2.1.6. If q = n-1 or when Aq+I = ... =An-!= 0, then 

~ (P{Y=j[X=i} - P{Y=j}) 2/P{Y=j} 
j=l 

for i = I , ... , n, 

n 
r 

i=l 

11~. - ~ .• 11 2 
1 1 

lln. - n., 11 2 
J J 

(P{X=i[Y=j} - P{X=i}) 2/P{X=i} for j = l, ... ,m, 

~ (P{Y=j[X=i} - P{Y=j[X=i'}) 2/P{Y=j} 
j=I for i,i'=l, .. .,n, 

~ (P{X=ilY=j} - P{X=i!Y=j'}) 2/P{X=i} 
i=I forj,j'=l,. .. ,m. 
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PROOF. Follows by straightforward computations using (2.1.5) and (2.1.6). D 

Thus in the complete graphical representation the distance between 

row point ~i and the origin indicates the extent to which the conditional 

distribution of YIX= i is similar to the marginal distribution of Y and 

thus can be interpreted as the contribution of the i-th category of the row 

variable to the dependence between X and Y. Analogously, the distance 

between two row points ~i and ~i' indicates similarity of the conditional 

distributions of YIX=i and YIX=i'. There exists, however, no clear 

interpretation of II~· -ri-11. In the case that q<n-1 and A >O, the 
1 J q+I 

expressions for the distances in Proposition 2.1.6 only hold approximately 

and should be used with care. 

Further results and properties and, in particular, applications of CA 

can be found in GIFI (1981), GREENACRE (1981, 1984), HILL (1974), LEBART et 

al. (1977) and NISHISATO (1980). 

In some cases the reciprocal averaging formula's (2.1.4) or Benzecri's 

geometrical approach motivate applications of CA to matrices other than 

probability tables. An example is application to so called incidence matri­

ces which are matrices consisting of unities and zero's specifying presence­

absence of joint occurences of the row and column categories. The appli­

cation of CA to incidence matrices is equivalent to Whittaker's gradient 

analysis (cf. HILL, 1973, 1974 and GAUCH, 1982). 

Definition 2.1.1 of CA is also appropriate for bivariate distributions 

in general. Note that the canonical functions then not always exist (cf. 

RENY!, 1959). LANCASTER (1958, 1963) and CHESSON (1976) generalized some of 

the results in this section of which the following canonical decomposition 

is needed for later reference. Let L2 (1R,da) be the set of all real functions, 

square integrable with respect to a measure a. Suppose that F is a biva.riate 

distribution function with ma.rginals Fr and Fe and suppose that Pearson's 

x2 for F, defined by 

(2.1.8) x2 =ff (dF/(dF dF )) 2dF dF - 1, r c r c 

is finite. Then complete sets of orthonormal functions {1,~1 .~2 •••. } on 

L2(1R,dFr) and {1,~ 1 .~ 2 , ••• } on L2 (1R,dFc) exist such that each member of a 

set of canonical functions appears as a member of the complete set of 

orthonormal functions. Furthermore, the canonical decomposition of F is 

given by 
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00 

(2.1.9) dF(x,y) = (I + I At~t(x)1jJt(y))dFr(x)dFc(y) 
t=I 

a.e. 

where At is the t-th canonical correlation. Moreover, 

2 x 
00 

I 
t=I 

A converse of this result also holds. Such a canonical decomposition for 

the standard bivariate normal distribution is the well-known Mehler's 

expansion in which the canonical functions are Hermite polynomials and the 

canonical correlations are powers of the correlation parameter in absolute 

value. EAGLESON (1964) gives such decompositions for other well-known 

bivariate distributions (cf. Section 3.4). The canonical functions of con­

tinuous distributions give insight into its dependence structure but are of 

less practical value than in the contingency table case. 

It can be proved (cf. DAUXOIS and POUSSE, 1977; MAUNG, 1941 and NAOURI, 

1970) that the CA solution of discretisized continuous distributions approx­

imates the continuous CA solution, provided the discretization is fine enough. 

2.2. ASYMPTOTIC RESULTS 

This section considers asymptotic distributions of the sample 

canonical correlations and functions. In particular, the limiting distri­

butions under the null-hypothesis of independence and under local alter-
. . ~(N) ~(N) 

natives are considered. The sample canonical correlations Al , ... ,An-I and 
~(N) ~(N) -(N) ~(N) 

the vectors of the sample category scores ~I , ... ,~n-I and ~JI , ••• , 1Pn-l 

are the canonical correlations and canonical functions of the empirical 

probability table P(N), which contains the relative frequencies of a sample 

of size N drawn from an underlying table P. Attention is not restricted to 

samples of N i.i.d. observations from P (multinomial sampling), but the 

larger class of conditional Poisson distributions for P(N) is considered. 

A conditional Poisson distribution for instance arises when sampling is 

conditioned on (both) marginals. 

Several results presented in this section are well-known under 

1 . . 1 d" "b . f P-(N) Th" . . l" . mu tinomia istri utions or . is section gives genera izations to 

conditional Poisson sampling. It turns out that results concerning the 

problem of testing independence are the same as under multinomial sampling, 

provided the conditioning is only on marginals. 



The conditional Poisson model for P(N) as a generalization of the 

multinomial model is also considered in HABERMAN (1974, pp. 14-27). In 

conditional Poisson models the underlying probability table may be dif­

ferent for each sample size, so it is denoted by P(N), but it is assumed 

that 

(2. 2. I) as N -+ 00 • 

(The underlying table P(N) should not be confused with its empirical es­

timator P (N)). Let Z (N) be a n x m random matrix of independent Poisson 

variables with expectation NP(N). Furthermore let A be a matrix of size 

k x mn consisting of integer elements, which do not depend on the sample 

size, and such that the vector e is in the linear subspace spanned by the 

rows of A. Then P(N) is said to have a conditional Poisson distribution 

when 

(2.2.2) 
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provided P{Avec [z(N) _NP(N)] = O} > 0. The assumption that e can be written 

as a linear combination of the rows of A implies that the sample size equals 

N. Some well-known specific cases of conditional Poisson models are given 

in Examples 2.2.1-2.2.3 below. HABERMAN (1974, p. 18) derived the following 

asymptotic result for conditional Poisson distributions. 

LEMMA 2.2.l. Suppose that the underlying probability table P(N) satisfies 

(2.2.1) with p .. > 0 for i = l, ... ,n and j = I, ... ,m and that P(N) has the 
l.J 

conditional Poisson distribution (2.2.2), then 

as N -+ oo 

with covariance matrix 

(2.2.3) t = D - DAT (ADA T) - AD 

where D = diag [p] and (ADAT )- is a reflexive generalized inverse of ADAT. 

The asymptotic sampling properties of the canonical correlations 

will be derived from asymptotic distributions of the n x m random matrix 

W(N) with elements 

(2.2.4) 
-(N) 
w •• 

l.J 
i = I , ... , n; j = I, ... ,m, 
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where ~~~) is defined zero when r~N) or c1N) equals zero. The matrix W(N) 

describes the deviation from independence in the sample. The matrix W(N) 

corresponding to the underlying table P(N) is similarly defined and satis­

fies W(N) ~ W as N ~ 00• Furthermore, it is assumed (throughout) that the 

marginals r and c of the limiting underlying probability table P are strict­

ly positive. The following le11D11a shows that the canonical correlations 

A1 , ••• ,An-l and the canonical functions ~1 , ••• ,~n-l and w1 , ••• ,wn-l can be 

obtained from the matrix W. 

LEMMA 2.2.2. The squared aanoniaal aorrelations Ai~ •.• ~ A!_ 1 and 0 are 

the eigenvalues of the matrix wwT. Furthermore, the veators ~1 , ••• ,~n-l'e 
are eigenvectors of R-iwwTR! aorresponding to eigenvalues Al~ ••• ~ An-I~ 0 

and the veators w1 , ••• ,wn-l'e are eigenveators of c-!wTwc! aorresponding to 

the same eigenvalues. 

PROOF. Follows from Theorem 2.1.3 and the fact that 

wwT = R-!pc- 1PrR-! - R!eeTR! 0 

Of course similar results hold for the canonical correlations and 

functions of P(N) and the empirical P(N) provided inverses are replaced by 

generalized inverses. 

LEMMA 2.2.3. Under the assumptions of Lemma 2.2.I, 

(2.2.5) as N ~ 00 

where t is given by (2.2.3), D = diag [P] and 

(2.2.6) 

PROOF. Consider the nm-dimensional function g such that g(vea [P]) = vea [W] 

and thus also g (vec [il (N)]) = vea [W(N)]. Since the marginals of P are strict­

ly positive, this function is continuously differentiable in a neighborhood 

of P. Routine differentiation shows that the nm x nm matrix G of first 

derivatives of g at P, 

gij ,kl = 
<lg •. (Z) I l.J 
-~()~z-kl- Z=P ' 

is given by (2.2.6). Application of the ()-method (cf. RAO, 1973, p. 388) to 

this function g and the limiting distribution of N! vea [P(N) - P(N)] in 
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Lennna 2.2.1 gives the desired result. (Note that the a-method, as formulated 

in Rao, also holds when the parameter depends on N but converges to a limit, 

and the function g is continuously differentiable in a neighbourhood of 

this limit point.) D 

Since eigenvalues are continuous functions of the matrix elements 

and are even differentiable when the eigenvalue is simple (cf. WILKINSON, 

1965, pp. 67-69), the a-method can again be applied to obtain the joint 
! '1"(N)2 (N)2 

distribution of N2 (At - \ ) for t = I, ... ,n-1. This produces the 

following result which is, in a less transparent notation, also given in 

O'NEILL (1978) for the special case of multinomial sampling. 

THEOREM 2.2.4. Suppose that the conditions of Lemna 2.2.1 hold and that all 

canonical cor>relations of P ar>e simple, i.e. A1 > A2 > ••• > An-I > O, then 

(2.2.7) 

as N -+ co, where the n x (n-1) matr>ix <i> has the row category scores 

<P 1 , .•• ,c.pn-l as colurrms, the mx (n-1) matrix'¥ has the column categor>y 

scor>es 1J! 1 , ••• ,lj!n-l as colurrms, /\.=diag[A 1, ... ,An-l] and G and tare given 

by (2.2.6) and (2.2.3). 

PROOF. O'NEILL (1978) derives (2.2.7) from (2.2.5). Alternatively, one can 

again apply the a-method as indicated above. D 

This result gives information about asymptotic sampling variation of 

the canonical correlations. (Second order asymptotics are given in O'NEILL, 

1978 b.) It follows from Lemma 2.2.3 that W(N) -+p Was N-+ co and hence 

(2.2.8) A(N) _,. At 
t p 

as N -+ co 

and, in case that At is simple, also 

(2.2.9) as N -+ 00 

for t = I, ..• ,n-1 (because eigenvectors are continuous functions of the 

matrix elements when the corresponding eigenvalue is simple; cf. WILKINSON, 

1965, p. 67). Thus the sample canonical correlations are (weakly) con­

sistent estimators for At' t = l, ... ,n-1. But it follows from MARSHALL and 
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OLKIN (1979, p. 357) that for each N, 

t 
I 

s=l 

t 
I 

s=I 
fort= l, ... ,n-1, 

which means that these partial sums of sample canonical correlations are 

positively biased estimators in finite samples (see also O'NEILL, 1978 b). 

The remaining part of this chapter considers asymptotic properties of 

tests of independence based on canonical correlations or canonical variables. 

Such tests are considered in the next section, but the limiting distribu­

tions of canonical correlations and functions under the hypothesis of inde­

pendence and local alternatives needed for this are derived in this section. 

These limiting distributions are considerably simplified when the 

d . . 1 P . d" "b . f .,(N) . 1 d. . d con itiona oisson istri ut1on o r is on y con itione on some 

(linear combinations) of the marginals r(N) and c(N). So it is assumed in 

the sequel that the conditioning matrix A is of the form 

(2.2.10) AT = (I 0 e l e 0 Im) B 
n m: n 

for some (n+m) xk matrix B. The following three examples demonstrate that 

the conditional Poisson model (2.2.2) with conditioning matrix A of the 

form (2.2.10) covers most practical sampling models. 

EXAMPLE 2.2.1. Commonly, the contingency table NP(N) arises from N inde­

pendent and identical samples from the probability table P and thus NP(N) 

has a multinomial distribution with parameters N and P. In order to show 

that this multinomial distribution can be considered as a conditional 

Poisson distribution let Z(N) be a matrix of independent Poisson variables 

with expectation NP and let AT = e. Then since e T vec [Z (N)] is a Poisson 

variable with expectation N, evaluation of the density function (with res­

pect to the counting measure) of (Z (N) I e T vec [Z (N)] = N) produces the 

desired multinomial. 

EXAMPLE 2.2.2. In some cases the contingency table NP(N) arises from a 

sample in which the column sums are kept fixed in advance at say 

N1,N2 , ... ,Nm where I~ Nj = N. This situation corresponds to independent 

multinomial samples for each column; the j-th column arises from a multi­

nomial sample of size N. and probability vector (p 1 I ., ... ,p I.) with 
n J J n J 

I 1.=l p·~· = I. Making the natural assumption that the underlying probability 
1 J (N) 

table P N) has elements p.. = p. I .N./N, it follows, as in the example 
l] 1 J J 



above, that sampling conditional on column sums leads to a conditional 

Poisson distribution with conditioning matrix AT = (en® Im). 
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EXAMPLE 2.2.3. Suppose that sampling is conditional on both row and column 
. . ~(N) ~(N) . 

sums, i.e. both marginals Nr and Ne of the contingency table are kept 

fixed. Again assume that the marginals r(N) and c(N) of the underlying 
(N) . ~(N) ~(N) 

table P are equal to those fixed values of r and c . The distribu-

tion of NP(N) can be considered as a conditional multinomial distribution 

with parameters N and P(N), conditioned on both marginals. Therefore, it 

follows from Example 2.2.1 that P(N) has a conditional Poisson distribution 

with conditioning matrix AT= (I ® e ! e ®I ). Under the hypothesis of 
) T n m: n m (N) 

independence p(N) = r(N c(N) , the distribution of NP is the generalized 

multiple hypergeometric distribution (cf. LEHMANN, 1975, p. 384). In 

classical contingency table analysis it is quite common to perform the ana­

lysis conditionally on the marginals (even when sampling is unconditional). 

This gives extra motivation for considering this specific conditional Poisson 

distribution. 

Let's turn to the asymptotic distributions of the canonical correla­

tions and functions under the null-hypothesis of independence and under 

local alternatives. Let n0 be a set of n x m null-hypothesis probability 

tables with marginals bounded away from zero, e.g. for arbitrary E > 0 

define n0 = {p : p .. = r.c. ~ E for i l, ... ,n; j = l, ... ,m}. Introduction 
iJ i J 

of such IT 0 is unnatural, but only for such restricted hypotheses can the 

tests be shown to have the proper asymptotic size (cf. Section 2.3). Denote 
(N) oo 

by P0 = {P0 }N=I the sequence of null-hypothesis conditional Poisson dis-

tributions with conditioning matrix A of the form (2.2.10) drawn from 

underlying tables 

(2. 2. 11) P (N) = (N) (N)T r c E IT0 

where r(N) ->- r and c(N) ->- c as N + 00 • Consequently, r > 0 and c > O. 

Furthermore, consider alternative probability tables P,(N) with marginals 

r (N) and c (N) such that P' (N) ->- P'. Assume that the elements of P' (N) are 

bounded away from zero. Let A~Nl, ... ,A<~~ denote the canonical correlations 
(N) (N) (N) (N) n 

and ~I , •.. ,~n-I and w1 , ..• ,wn-I the corresponding canonical functions 

of P'(N). Since p•(N)->- P', they can be chosen such that A(N) +A 
t t' 

(N) (N) . 
~ + ~t and W ->- W for t = I , ... , n-1 as N -+ 00 , where (A .~ , W ) is the 

t t t (N) t t t 

t-th canonical triplet of P'. Let W' be the n x m matrix with elements 



22 

w!~N) = (p!~N) - r~N\~N»/(r~N\~N))~ i= l,. .. ,n; j = l, .•. ,m. 
1J 1J 1 J 1 J 

Cl 1 W,(N) + W' N b P {p(N)}00 h f ear y, as + 00 • Denote y 1 = 1 N=I t e sequence o 
focal aZternatir:e conditional Poisson distr>ibutions (with conditioning 

matrix A of the form (2.2.10)) drawn from the local contamination al­

ternative tables 

(2.2.12) 8 > o. 

The matrix W(N), defined similarly to (2.2.4), for this local alternative 

table equals 8N-~W'(N). Therefore, the canonical correlations of the table 
-1 (N) -1 (N) (2.2.12) are 8N 2 A1 , ... ,8N 2 A _ 1 and its canonical functions are 

(N) (N) (N) (N)n 
~I , ••. ,~n-I and ~I , ... ,~n-I" Furthermore, let 

_ (N) oo 
PA - {PA }N=l denote a 

sequence of fixed alter>native conditional Poisson distr>ibutions drawn from 
the underlying tables P'(N). 

It can be shown by standard methods that the sequencesP0 and PL are 
contiguous. 

The following theorem gives the limiting distributions of the canonical 

correlations and functions under the null-hypothesis and under local alter­
native conditional Poisson distributions. The first part of this theorem 
generalizes results of O'NEILL (1978) (asymptotic null distribution of 

canonical correlations under multinomial sampling), CORSTEN (1976) 

(asymptotic null distribution of N~fN) 2 under multiple generalized hyper­

geometric sampling) and of HABERMAN (1981) (asymptotic distribution of 

NAfN) 2 under local alternative multinomial sampling; his proof is rather 
sketchy). Let W 1(m-l,I) and W 1(m-l,I,8 21\AT) denote the central and non-n- n-
cen t ral standard Wishart distributions of dimension n-1 and with m-1 de-

grees of freedom. Thus when X denotes a (n-1) x (m-1) standard normally dis­

tributed matrix, i.e. vec[X] ~ N(n-l)(m-l)(O,I), and 1\ denotes the 
(n-1) x (m-1) "diagonal" matrix with diagonal elements A1 , ... ,An-I' then 
XXT ~ Wn-I (m-1,I) and (X + 81\) (X + 81\) T ~ Wn-I (m-l ,I,821\AT). Furthermore, in 
order to make the sample canonical functions asymptotically unique with 

probability one, it is assumed in the theorem below that the sign of each 
~ (N) f I I . h f. vector ~t , or t = , ... ,n-, is sue that the irst non-zero component 

. . l . Th . f ;J,(N) . d . d b is strict y negative. ' e s1gn o 't't is etermine y 

~(N)T~(N) 
p ~t 

for t l, ... ,n-1. 



2 ( .)Th t' .. d" t "b ' f ~(N) 2 '\(N) 2 
THEOREM 2 .. 5. i e asympto &c JO&nt &s r& ut&on o NA 1 , •.. ,NAn-I 

under P0 is the same as the joint distribution of the eigenvalues of a 

Wn_ 1(m-l,I) distributed matrix and their asymptotic joint distribution 

under PL is the same as the joint distribution of the eigenvalues of a 

Wn_ 1(m-l,I,8 2AAT) distributed matrix. 

(ii) The asymptotic marginal distribution of each 0~N), for 
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t = l, ... ,n-1, under P0 is the uniform distribution on the (n-1)-dimensional 

half ellipsoid {u E lRn: rT u = O, uT Ru = I, u 1 <'. O}. The asymptotic marginal 

distribution of each ~~N) fort= l, ... ,n-1, under P0 is the uniform dis­

tribution on the (m-1 )-dimensional ellipsoid {v E lRm: cT v = O, vTcv =I}. 

(iii) Moreover, denoting jp(N)* = ± jp(N) where the sign is randomly 
t -(N) t -(N) ~(N)* -(N)* 

chosen fort= l, ••• ,n-1, the sets{~ , ... ,~ 1 },{~ 1 , ••• ,~ 1 } and 
2 -(N)2 I n- n-

{N~~N) , ... ,N\_ 1 } are under P0 pairwise asymptotically stochastically 

independent. 

PROOF. First consider the random matrix W(N) defined by (2.2.4). It follows 

by Lemma 2.2.3 that under P0 

N! vec [W(N)] -+D Nnm(O,GtGT) as N -+ 00 

and under PL 

as N -+ 00 

where in both cases 

G (R - ~ ® C- ~) (I - (R ® C )(R- I ® ee T + ee T ® C- I ) ) 

t (R ® C) - (R ® C)AT (A(R ® C)AT )-A(R ® C) 

since in both cases diag[P]-+ R ® C as N-+ 00 • Furthermore, since the sample 

size equals N, eT vec [P(N) -P(N)] = 0 a.s. and hence eTt =OT and te = 0. 
I I I I T 

Therefore the covariance matrix equals GtGT = f(R- 2 ® C- 2 )¥(R- 2 0 C- 2 )f 

where 

(2.2.13) 
I I T I I I T I I T I 

I' = (G + (R 2 0 C2 )ee ) (R2 ® C2 ) = (I-R2 ee R2 ) ® (I- C2 ee C2 ). 

Since A is of the form (2.2. 10), it follows that 

l I l I • I I 

f(R 2 ® C2 )AT = f(R 2 ® C2 el R2 e ® c 2 )B 0. 

Hence the covariance matrix equals GtGT = I'I'T = f. Thus under PO 
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(2. 2.14) as N -+ 00 

and since W'(N)-+ W', under PL 

(2. 2. 15) 
I (N) 

N2 vec [W ] -+D N (8 vec [W'] ,f) as N -+ oo. nm 

Next consider the probability table P'. Recall that its canonical 

functions ~ 1 , •.. ,~n-l together with the vector e spanlRn. Let~ denote the 
I T I ! T ! 

n x (n-1) matrix with ~I' ... '~n-l as columns, then R 2 ~~ R2 = I - R2 ee R2 

m The vectors e,1J! 1, ••• ,1jJn-I do not spanlR when m > n, therefore define 

ljJn' ... ,ljJm-I such that the m x (m-l) matrix 'l' with w1, ... ,1jJn-l '1jJn' .. · ,ljJm-l 
as columns satisfies 'l'TC'l' =Im-I and 'l'Tc = O. The columns of 'l' together with 

m 1 T 1 1 T 1 e now span lR and hence c•'l''l' C2 = I - c•ee c2. Furthermore, since A1 , ••• ,An-I 
are its canonical correlations, it follows from the canonical decomposition 

(2.l.6) that 

where /\. is the (n-1) x (m-1) "diagonal" matrix with A1, ... ,An-I as diagonal 
elements. Hence for a standard normally distributed (n-1) x (m-1) matrix X, 

and 

Combining this with (2.2.14) and (2.2.15) yields that under P0 , 

(2.2.16) N~W(N) _,_ R!~x'l'Tc~ 
D as N -+ 00 

and under PL 

(2.2.17) as N ->- 00 • 

-(N) 2 -(NY (i) By Lemma 2.2.2, NA 1 , ... ,NA 1 are the non-zero eigenvalues T n-
o f NW(N)w(N) and since eigenvalues are continuous functions of the matrix 

elements, it follows by the continuous mapping theorem that 

N~fN) 2 , ..• ,N~~~{ 2 converge under P0 in distribution to the non-zero eigen­
values of R~~x'l'Tc'l'xT~TR~, that is to the eigenvalues of xxT. The result 

under PL follows similarly. 

(iii) Since an eigenvector corresponding to a simple eigenvalue is a 
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continuous function of the matrix elements (cf. WILKINSON, 1965, p. 67) 

and since P{all eigenvalues of <l>XXT<l>TR are simple}= I, it follows from 

Lemma 2.2.2 and .the continuous mapping theorem that the joint distribution 
A(N) A(N) . 

of (jll , ... ,(jln-I converges under P0 in distribution to the joint distribu-

tion of the (suitably normalized) eigenvectors of <l>XXT<l>TR corresponding to 
. . A(N) -(N) 

non-zero eigenvalues. Similarly, ~I , ... ,~n-I converge under P0 in dis-

tribution to the joint distribution of the (suitably normalized) eigen­

vectors of ~XTX~TC corresponding to non-zero eigenvalues. Furthermore, it 

is easily seen that h 1, ... ,hn-I form a complete set of orthonormal eigen-

vectors of xxT iff <l>h 1, ... ,<l>hn-l and e form a complete set of eigenvectors 

of <l>XX T <l> T R. Let H* denote the (n-1) x (n-1) orthonormal matrix with the 

* * * vectors h 1, ... ,hn-I as columns, where ht = ±ht with random choice of sign 

fort= l, ... ,n-1. Then for any (n-1) x (n-1) orthonormal matrix Q, the 

columns of QH* form a complete set of orthonormal eigenvectors of QXXTQT 

and, moreover, QXXTQT ~ xxT. This implies that the joint distribution of 

the eigenvectors of QXXTQT does not depend on Q and thus QH* ~ H*. There­

fore, H* has the so called Haar invariant distribution (cf. ANDERSON, 1958, 

p. 321). It also follows that 

(QXXTQT I all eigenvalues of QXXTQT) ~ (XXT I all eigenvalues of XXT), but 

since the eigenvalues of QXXTQT and xxT are the same, 

(QR* I eigenvalues of XX T) ~ (H* I eigenvalues of XX T). Thus 

(H* I all eigenvalues of xxT) also has the unique Haar invariant distribu­

tion, i.e. (H* I all eigenvalues of XX T) ~ H*. So H* and the eigenvalues of 

XXT are independently distributed (see also ANDERSON, 1958, p. 322). 

Similarly, let K* denote the (m-1) x (n-1) orthogonal matrix with the eigen­

vectors (random choice of sign) of xTx corresponding to non-zero eigen­

values. Then (QXXTQT I all eigenvectors of XTQTQX) ~ (XXT I all eigenvectors 

of xTx) which implies that H* and K* are independently distributed. This 

proves pairwise independence of <l>H*, ~K* and the eigenvalues of xxT and 

{A(N)* -(N)* 
hence proves pairwise asymptotic independence of tP1 , ... ,(jln-l }, 

{~~N)* , .... ~~~(}and {N~fN) 2 , .•. ,N~~~~ 2 }, where the superscript* denotes 

random choice of sign. Since the signs of the vectors ~~N) and ~~N) are 

related, the * can only be removed in one of the two sets. 

(ii) Each column h* of H* l.S uniformly distributed on the unit 

in lRn-l 
t 

sphere (cf. MUIRHEAD, 1982, 37) and * is uniformly p. therefore <l>ht 

distributed on {u ElRn:rTu o, uTRu = l}. Since it is assumed that vectors 

of row category scores have first non-zero component strictly negative, it 
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follows that the limiting distribution under P0 of cp~N) is the uniform 
distribution on {u E lRn: rTu = 0, uTRu = I, u 1 ~ O}. Similarly, it follows 
that under P0 , $~N)* is asymptotically uniformly distributed on 
{v E ]Rm: cTv = O, vTcv = J}. Since under P6N), N~W(N) ~-N~W(N) it follows 
that under P(N) ~(N) ~ ~(N)* D 0 ' o/t o/t • 

2.3. TESTS OF INDEPENDENCE 

This section briefly discusses some properties of tests of inde­
pendence based on canonical correlations and canonical variables. The 
limiting distributions of the test statistics considered under null-hypo­
thesis and local alternative conditional Poisson distributions easily fol­
low from Theorem 2.2.5. It is shown that tests based on canonical correla-
tions, at least the ones considered, are generally consistent and asymp­
totically unbiased. Tests based on canonical variables are generally not 
consistent. Furthermore, tests are compared by means of approximate 
Bahadur and Pitman efficiencies. 

Tests most common in contingency table analysis are the chi-square 
test, which rejects for large values of 

T(N) = N 
CS 

n m 
L: L: 

i=I j=l 

n-1 ~(N)2 
N L: ;\t , 

t=I 

and the likelihood ratio test, which rejects for large values of 

(This test is not based on canonical correlations, but is nevertheless 
considered in this section). Less familiar is the canonical correlation 
test which rejects for large values of 

It follows from Theorem 2.2.5 (i) that the asymptotic testing problem 
(against local alternatives) is equivalent to the problem of testing the 
hypothesis EY = 0 against the alternative EY = BA, where the columns of Y 
are independently and normally distributed with common covariance matrix 
(identity matrix). This is exactly the MANOVA problem with known covariance 
matrix. So one might expect that well-known tests for the MANOVA problem 
have a good performance in contingency table analysis. The likelihood 



ratio statistic for the MANOVA problem corresponds to the geometric mean 

of the squared canonical correlations, 

T(N) =N(nrrl ~t(N))2/(n-1). 
GM t=I 

The statistic 

is based on Pillai's test for the MANOVA problem. A variation on this is 
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COROLLARY 2. 3. I. The asymptotic: distribution of each of the statistics T~~>, 
Ti~)' T~N) and TciN) under the hypothesis P0 is chi-square with (n-I)(m-1) 

degrees of freedom; their asymptotic distribution under the local alterna­

tive P1 is non-central chi-square with (n-l)(m-1) degrees of freedom and 

l . 8 2 ,n-1 ,2 h . d" 'b . +- (N) 
non-centra ity parameter LI At. T e asymptotic istri ution oJ Tee 
under P0 and PL is the distribution of the largest eigenvalue of a 

Wn_ 1(m-l,I) and a Wn_ 1 (m-l,I,8 2J\J\T) distributed matrix, respectively. The 

t . d. 'b . f T(N) d . l h d' "b . +" asymp otic istri ution o· GM un er P0 is equa tote istri ution o; 

the geometric mean of n-1 independent chi-square variables with degrees of 

freedom m-l ,m-2, ... ,m-n+l. 

PROOF. The limiting distributions of T~~) and T2~) follow directly from 

Theorem 2.2.5. The asymptotic distribution of T~~) under P0 follows from 

the result (x) on p. 540 in RAO (1973). Furthermore, it is easily seen that 

A(N) for t 
t 

= l, ... ,n-1 tends to zero in probability under P0 as well as 
(N) (N) (N) . . 

under PL as N ~ 00 • Therefore, TCS , Tp and TQ are asymptotically equi-

valent under null-hypothesis and local alternatives. Expansion of the 
. (N) n m ~(N)2 

logarithm shows that TLR and N l:i=l l:j=l wij are, under P0 and under PL' 

asymptotically equivalent. D 

The limiting distributions of T~~) and Ti~) under P0 and P1 also 

follow from HABERMAN (1974, pp. 109-110). 

In practice tests based on these six statistics can be performed by 

rejecting the null-hypothesis when the test statistic exceeds the upper 

a-point of the corresponding limiting (null-hypothesis) distribution. Since 

these limiting distributions are valid under any convergent sequence 

{P (N) = r(N) c (N) T } 00 in the null-hypothesis IT the null-hypothesis dis-
N= l O' 
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tribution of these statistics converges unifoY'l'Tlly in the elements of n0 . 
Hence for each statistic T(N) 

So all tests have asymptotic size a. In case that the marginals of the 
tables in n0 are not bounded away from zero, the sequence of probability 
tables in no for which the supremum is attained could tend to a limiting 
table with one or more zero marginals. For such sequences the derived 
limiting distributions are not valid and therefore the limiting tail pro­
bability may differ from a. In fact, in 2 x 2 tables this tail probability 
exceeds a. 

The following theorem shows that these tests have the desirable pro­
perties of consistency and asymptotic unbiasedness; extending earlier re-
sults of HABERMAN (1981). 

THEOREM 2.3.2. (i) Tests based on the statistics T(N) T(N) T(N) T(N) d CS ' LR ' cc ' p an 
T6N) are consistent against all fixed alternatives. The test based on T~~) 
is consistent against fixed alternatives with strictly positive smallest 
canonical correlation, i.e. with An-I > 0. 

(ii) The asyrrrptotic power functions, for local alternatives PL, of 
these tests are strictly increasing in each At fort= l, ••• ,n-1; in par­
ticular these tests are asymptotically unbiased. 

PROOF. (i) Since eigenvalues are continuous functions of the matrix elements, 
the first result follows from Lemma 2.2.3. 

(ii) The asymptotic testing problem is equivalent to the MANOVA 
testing problem that the expectation of Y is zero, where the columns of the 
matrix Y are independently and normally distributed. Therefore, (ii) 
follows from DAS GUPTA, ANDERSON and MUDHOLKAR ( 1964) (see also Theorem I. I 
in PERLMAN and OLKIN, 1980), provided the acceptance region of the test 
considered is convex in each column of Y when the remaining columns are 
held fixed. By asymptotic equivalence of T~~), Ti~)' T~N) and T6N) it is 
sufficient to prove that the trace (sum of eigenvalues), largest eigenvalue 
and determinant (geometric mean of eigenvalues) of yyT are convex functions 
in each column of Y. To this end let Y1 and Y2 be two arbitrary (fixed) 
matrices of size (n-l) x (m-1) which only differ in the j 0-th column and let 
a= I-a for some 0 s as I. By Cauchy-Schwarz, 
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T 2 T - T -2 T trace (aY 1 +aY2)(aY 1 +iiY 2) =a traceY 1Y1 +2aatraceY 1Y2 +a traceY2Y2 

T - T s a trace Y 1Y1 + a trace Y 2 Y 2 

and 

max u T ( aY 1 + aY 2) (cw 1 + aY 2) Tu s max 
uT u=l uT u=I 

s a max uTY YTu +a ·max uTY 2YT2u. 
u Tu= I I I u Tu= I 

The desired convexity property of the trace and largest eigenvalue functions 

follows. Convexity of the determinant is proved as follows. First consider 
T 2 the case that Y1 and Y2 are square, then ckt (Y 1Y1) = det (Y 1) and similar 

equalities for Y2 and aY 1 +aY2. Expansion with respect to the j 0-th column 

yields ckt (aY 1 +aY2) = a.det (Y 1) + adet (Y 2). Hence 

(2. 3. I) 
2 - 2 - 2 

det (a.YI +a.Y2) s adet (YI) + adet (Y2). 

In case that Y1 and Y2 are not square, write ckt (Y 1Yi) as the sum of squares 

of all determinants of (n-1) x (n-1) submatrices of Y1 (cf. RAO, 1973, p. 

32) and make similar expansions for det (Y2Y~) and det ((a.Y 1 +aY2)(aY 1 +aY2)T). 

Using inequality (2.3.1) for each (n-1) x (n-1) subdeterminant involving 

j 0-th column in the expansion of det ((a.Y 1 +aY2)(aY 1 +aY2)T) yields 

d - -T d T - T et ((a.Y 1 +a.Y2)(a.Y 1 +aY2) ) s a et (Y 1Y1) + a.det (Y 2Y2). This completes 

proof. D 

Although these tests are asymptotically unbiased, Example 4.4.3 

shows that they are biased for finite samples. 

the 

the 

The relative performance of two tests can be investigated by the 

finite sample relative efficiency: the ratio of the minimal sample sizes 

required to guarantee a fixed power against an alternative. Its computation 

is generally not feasible, but the asymptotic efficiencies of Bahadur and 

Pitman can be interpreted as approximations of the finite sample relative 

efficiency. 

BAHADUR ( 1960) introduced the appiooximate Bahadur efficiency for two 

tests based on so called standard sequences of statistics. The sequence of 

statistics {T(N)}00 is said to be a standard sequence (for testing the 
N=I 

hypothesis of independence) if the following three conditions are satisfied. 
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(i) There exists a continuous distribution function H such that 

under each P0 , 

lim P{T(N) ~ t} = H(t) 
N-><x> 

for every t. 

(ii) There exists a constant a, 0 < a < 00 such that 

log (1 -H(t)) as t + 00 • 

(iii) There exists a function b defined on all probability tables 

such that under each PA 

lim P{jN-~T(N) _b(P')j > £} 
N+w 

with 0 < b(P') < oo. 

0 for every £ > 0 

The present conditions (i) and (iii) are stronger than Bahadur's 

conditions since arbitrary convergent sequences of underlying probability 

tables are considered here, i.e. uniform convergence is required in (i) 

and (.iii). 

The approximate slope of a standard sequence is defined as s(P') = 

ab 2(P') and the approximate Bahadur efficiency of the standard sequence 

{T~N)}==I with respect to the standard sequence {T~N)}:=l is defined as the 

ratio of slopes 

A value larger than unity indicates that T1 is superior to T2 at the 

(limiting) alternative P'. 

I I 

THEOREM 2.3.3. The sequences 
~~ I 

{ (N)2}00 { (N)'}oo 

. • (N)2 oo (N)2 oo 
of stat~st~cs {Tes }N=l' {TLR }N=l' 

Tee N= 1 and TP N= 1 are standard sequences with approximate Bahadur 
slopes 

n-1 2 
L ;\ , 

t=l t 

n m 
2 L L p!.log(p'../(r.c.)), 

i=I j=I iJ iJ i J 

see<P') = ;\~, 
n-1 

sp(P') = L J.. 2 /(1 +J.. 2). 
t=l t t 

Furthermor~, if attention is restricted to alternatives P' with ;\n-l > 0, 

then {T~)'};=I is a standard sequence with approximate slope 



s (P') = (n-1)(nrr 1 A ) 2/(n-I), 
GM t=l t 

and if attention is restricted to alternatives P' with A1 < I, then 

{T(N) 2 }00 is a standard sequence with approximate slope 
Q N=I 

n-1 2 2 
:L A/(1-J..). 

t=I t t 
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PROOF. The three conditions for standard sequences are verified as follows. 

(i) Innnediately from Corollary 2.3.1. 

(iii) It follows from (2.2.8) that under fixed alternatives PA, 

converges in probability to At fort= 1, ... ,n-1. Application of the 

continuous mapping theorem produces the desired result. 

(ii) First consider a slightly more general set-up. Let T(N) be an 

univariate statistic of the form T(N) = T(N~fN) 2 , ... ,N~;~~ 2 ), where T is 

a continuous positive function such that T(cl1 , ... ,cln_ 1) = cT(l1, ..• ,ln-I) 

for all c 2 0 and all l 1 2 ... 2 ln-I 2 0. It follows from Theorem 2.2.5 

that, under P0 , T(N) converges in distribution to T(l1 , ••• ,ln-l)' where 

1 1. 2 ... 2 l 1 2 0 are the eigenvalues of a W 1 (m-1 ,I) distributed 
n- n- 1 

matrix. Let H denote the limiting null-distribution function of T(N) 2 • 

Then by MUIRHEAD (1982, p. 107), 

1-H(t)= 

K r .. r exp (- ~ n;: I l. )(nrr I li.) (m-n-1 ) I 2 
n l1~· .~ln_ 1 20 i=I i i=I 

n (l.-l.)dl 1 ••• dl 1• 
i<j i J n-

T(f1, •• ,fn-J)2t2 

Changing the variables, t 2u. 
1 

I -H(t) K t(n-l)(m-1) 
n 

l. for i 
i 

l, .•. ,n-1, produces 

) (m-n-1)/2 u. x 
i 

IT ( u. - u.) du I ••• du I . 
i<j i J n-

x 

By Laplace's method of asymptotic expansions of integrals (cf. ERDELYI, 

1956, pp. 36-39) it follows that 

-2 
lim -t log (1-H(t)) ~a, 
t-+oo 

h . h . . f "n-1 . . w ere a is t e minimum o ~ 1 ui on the integration area B 
n-1 

{u Ell : u 1 2 u2 2 ... 2 un-I 2 O, T(u 1, ... ,un-I) 2 I}. 

The chi-square, canonical correlation and geometric mean statistic 
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fit this set-up. It can be verified that the minima of L~-I ui on the cor­

responding integration area's are aCS l, ace= I and aGM = n-1 respective­

ly. Therefore, the square roots of these statistics satisfy condition (ii) 

of standard sequences with these constants aCS' ace and aGM. Since Ti~), 
T~N) and TciN) have the same limiting null-distribution as T2~), the square 

roots of these statistics also satisfy this condition with constants aLR = 

D 

( N)~ . (N) Note that tests based on T are equivalent to tests based on T 

and therefore produce the same relative efficiencies. The following in­

equalities are easily verified for each alternative P', 

sCC(P') 5 sCS(P') 5 sQ(P'), 

sGM(P') 5 sCS(P') 5 sQ(P'), 

sp(P') 5 sCS(P') 5 sQ(P'). 

(N) 
This suggests that the test based on TQ is superior to the other four and 

that the chi-square test is second best. The slope of the likelihood ratio 

test cannot be ordered with respect to the other slopes for all alterna­

tives. These orderings of tests should be interpreted with care because the 

approximate Bahadur efficiency does not always give a good approximation to 

the finite sample relative efficiency. In many cases Pitman efficiencies 

give better approximations. 

The Pitman efficiency is based on comparisons of powers of tests at 

local alternatives. Using results of ROTHE (1981) it can be verified that 

the Pitman efficiencies between tests based on T~~), Ti~), T~N) and TciN) 

are all unity, which means that Pitman efficiencies do not discriminate 

between these tests. Furthermore, in a neighbourhood of rr 0 the distributions 

of the six statistics converge uniformly in the alternative parameter and, 

therefore, it can be shown using the Lemma and the Theorem in WIEAND (1976) 

that the Zimit of the approximate Bahadur efficiency (as the alternative 

approaches the hypothesis) equals the Zimit of the Pitman efficiency (as 

the size a of the test tends to zero). 

Of interest is the Pitman efficiency between the chi-square (or like­

lihood ratio) test and the canonical correlation test. Using the arguments 

above it can be shown that 

n-l 2 2 
L ;\ /;\ 

t=l t I 
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(where PE is short for Pitman efficiency), suggesting that the chi-square 

test always dominates the canonical correlation test. The computation of 

the exact Pitman efficiency between these two tests is rather intractable. 

Even its numerical computation is quite a difficult problem, but in the 

case n = m = 3 it can be carried out. Such numerical computations indicate 

that the canonical correlation test is slightly better than the chi-square 

test for alternatives with A2 very close to zero, but that the chi-square 

test beats the canonical correlation test rapidly as the alternative moves 

away from the axis A2 = 0. Furthermore, it is noted in HABER}1AN (1981) 
(N) (N) (N) (N) 

that tests based on TLR , Tes , TP and TQ are asymptotically locally 

best (maximize the derivative of the asymptotic power function at the 

null-hypothesis). 

The considerations given above recommend tests based on T~~), Ti~) 
T(N) 

or Q . 

The tests above are based on canonical correlations and are tests 

against omnibus alternatives. Intuitively, one might think that tests based 

on canonical variables are sensitive to certain fOY'mS of dependence. In 

view of the results of Section 3.3, certain (normalized) linear combinations 

of the row or column category scores might produce tests with a good per­

formance against certain alternatives. 

Let a be any n-dimensional vector which is not proportional to e and 

consider 

(2.3.2) T(N) 
R,t 

This statistic can be interpreted as the square of the sample correlation 

between the t-th sample canonical variable ~~N)(X) and the transformed row 

variable a(X), where the function a is defined by a(i) = ai for 

i = 1, ... ,n. Similarly, consider for any m-dimensional vector b, which is 

not proportional to e, the statistic 

(2.3.3) 

The following proposition shows that the limiting distributions of these 

statistics under the hypothesis is a beta distribution. 

PROPOSITION 2.3.4. Under the hypothesis P0 , 

(2.3.4) T(N) ~D B(!,~(n-1)) 
R,t 

as N ~ 00 , 
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(2.3.5) as N ->- 00 , 

fort= l, •.. ,n-1. Moreover3 under fixed alternatives PA, 

(2.3.6) T(N) ->- T 
R,t P R,t' 

T(N) .... T as N .... oo, C,t P C,t 

fort= l, .•• ,n-1, where 

TR,t (aTR~t)2/(aTRa - (aTr)2), 

TC,t = (bTc~t)2/(bTCb - (bTc)2), 

provided the t-th canonical correlation At is simple. 

PROOF. Using the same notation as in the proof of Theorem 2.2.5, it follows 
under P0 that 

as N ->- 00 

where aT 
* n-1 Since ht is uniformly distributed on the unit sphere inlR , the result 

(2.3.4) follows from MUIRHEAD (1982, p. 39). Similarly, (2.3.5) follows. 
Furthermore, (2.3.6) is a trivial consequence of (2.2.9). D 

Thus, unfortunately, tests based on canonical variables are generally 
not consistent. Combining them with tests based on canonical correlations 
produces consistent tests but with a rather bad performance. 
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CHAPTER 3 

ORDERING PROPERTIES 

IN CORRESPONDENCE ANALYSIS 

3.1. TOTAL POSITIVITY 

This section sunnnarizes results of the theory of total positivity 

which will be needed in the present and following chapters. Important 

references on this subject are GANTMACHER and KREIN (1950) and KARLIN (1968). 

Let X and V be subsets of JR. and let K be a real valued function 

(kernel) defined on XxY. In the case that X = {l,. . .,n} and Y = {l,. . .,m}, 

the kernel K can be considered as a nxm matrix K with elements k .. = K(i,j) 
1J 

for i = l,. . .,n and j = l,. .. ,m. 

DEFINITION 3.1.1. The kernel K is called totally positive of orders 

(abbreviated TP s) on X x Y if for every t = I,. .. , s, all x 1 < x2 < ... < xt 

and all y 1 < Yz < ••• < yt (xi EX, yi c Y for i = l, ... ,t) the determinant 

(3. I. I) 
K (xl ,x2,. . .,xt) 

Y1•Yz,. .. ,yt 

K(xl,yl) 

K(~z·Y1) 

K(xl ·Yz) ... K(xl ,y t) 

K(~z·Yz) .•. K(~z·Yt) 

is positive. When the determinant (3. I.I) is even strictly positive for 

every t = 1, ... ,s and all x 1 < ••• < xt' y 1 < ••• < yt, then K is said to 

be strictly totally positive of orders (STP ). 
s 

This definition has the following two obvious consequences. 

PROPOSITION 3. I. I. Let K be (S)TP on X x Y, then 
s 

(i) f(x)g(y)K(x,y) is (S)TP on X x Y whenever the functions f and 
s 

g are (strictly) positive on X and Y respectively, 

(ii) K(f(u),g(v)) is (S)TP on f-(X)xg-(Y) when the functions f and 
s 

g are both (strictly) increasing or both (strictly) decreasing on f-(X) and 
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g-(Y) respectively. (Here f-(X) 
defined). 

{u E lR: f(u) E X} and g-(Y) is similarly 

PROOF. Trivial. 0 

The following important result in the theory of total positivity is 
often called the basic composition formula. 

LEMMA 3.1.2. Leto be a sigma-finite measure and suppose that the integral 

(3.1.2) M(x,z) = f K(x,y)L(y,z)do(y) 
y 

converges absolutely, then 

PROOF. See KARLIN (1968, p. 17). 0 

COROLLARY 3.1.3. Let K be TP on XxY and let L be TP on YxZ, then M s r defined by (3. I. 2) is TP . ( ) on X x Z. Moreover, when L is STPr and K min s,r 
is TP and satisfies the rank condition that for all t = l, ... ,s and all s 
x 1 < ..• < xt (xi EX; i= l, ••• ,t) there exist sets B1 <B2 < ... <Bt with 
o(B.) > 0, B. c Y for j = l, ... ,t such that det i(K(x.,B.))i "I 0, where J J ]_ J 

K(x.,B.) = f K(xi,y)do(y) 
i J B. 

J 

(3. I. 3) 

then Mis actually STP . ( )" min s ,r 

for i,j I , ... , t, 

Using Proposition 3.1.l and Corollary 3.1.3 many examples of (S)TP 
kernels can be constructed from a few basic examples. In Section 3.4 
(strict) total positivity of well-known bivariate probability densities is 
proved starting from the following numerous examples. 

EXAMPLE 3.J.l. The function 

-- {' if x s; y K(x,y) 
0 if x > y 

2 on lR (cf. KARLIN, 1968, p. 16). is TP 
00 

EXAMPLE 3.1.2. The function K(x,y) 
p. 15). 

exy is STP on:JR.2 (cf. KARLIN, 1968, co 



EXAMPLE 3.1.3. The function K(x,y) = (x+y)-o., a>O is STP00 for O<x,y«"'. 

To verify this consider for s = I ,2, ••• the "derived" determinant 

K*(x1,x2•···•xs) l(aj-1 ~1 
::: <lyj-1 K(xi,y1 ' 

y,y, ••• ,y 

which in the present example for 0 < x 1 < x 2 < ••• < xs and y > 0 equals 
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-a s-1 (-1) a(a+ I) .•• (a+s-2) 

K*(xl,x2, ••• ,xs) 

y,y, ••• ,y 

( ) a+s-1 
xl+y 

-a s-1 (-1) a(a+ I) ... (a+s-2) 
a+I 

(xs+y) ( ) a+s-1 
xs+y 

• s-2 • s-1 (x +y) (x +y) 
s s 

> o. 

The last determinant is the Vandermonde determinant. By KARLIN (1968, pp. 49-50), 

K is STP00 • (For a= I this example is also given in KARLIN, 1968, p. 149.) 

EXAMPLE 3.1.4. The function K(x,y) = r(x+y+ I) is STPOO for 0 $ x,y < 00 • 

By definition r(x + y +I) = f; ex log (z) ey log (z) e-zdz and hence the result 

follows from Example 3.1.2, Proposition 3.1.1 and Corollary 3.1.3. 

EXAMPLE 3.1.S. The function 

{
(x-y)m if x > y 

K(x,y) = , m E :N 
0 ifxsy 

2 is TP00 onlR (cf. KARLIN and STUDDEN, 1966, p. 17). 

EXAMPLE 3.1.6. The function 

{
l/(x-y)! 

K(x,y) = 
0 

if x ;:: y 

if x < y 
2 is TP00 on Z • (Follows from KARLIN (1968, p. 137) and Proposition 3.1.1.) 

EXAMPLE 3.1.7. The function 

= {~x~y) if x;:: y and x-y s n 
K(x,y) 

if x < y or x-y > n 

is 
2 1968, p. 44). TPOO on Z (cf. KARLIN, 
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EXAMPLE 3.1.8. Let {~t(x)};=O be an orthogonal polynomial system (where ~t 
is of exact degree t) with respect to a measure a on [a, 00), where a> -oo, 

Assume that ~t(O) > 0 fort= 0,1, ••.. Then K(x,t) = ~t(-x) is STP00 for 
a~ x < 00 and t = 0,1, .•. (cf. KARLIN and McGREGOR, 1959, p. 1115 or 

KARLIN, 1968, p. 438). 

EXAMPLE 3.1.9. An important class of (S)TP functions are of the form 

K(x,y) = f(x-y) for x,y E :JR. Functions f for which f(x-y) is (S)TPs are 

called (strictly) P6lya frequency functions of order s (abbreviated 

(S)PFs). It can be proved that f is PF 2 iff f is positive and log concave 
on :JR. 

The interest of totally positive functions is largly due to the 

variation diminishing property. Let f be a function defined on a subset Z 
of :JR. The minimum number of sign changes of f on Z is defined by 

where the supremum is over all sets z 1 < z2 < ••. < zt (zi E Z; i = l, ••• ,t), 

t is arbitrary but finite, and S-[u 1 ,u2 , ••• ,ut] is the number of sign 

changes of the sequence u 1 ,u2 , ••• ,ut discarding zero terms. The maximum 
number of sign changes of f on Z is defined by 

where S+[u 1 ,u2 , ••• ,ut] denotes the maximum number of sign changes of the 

sequence, assigning arbitrary signs to zero terms. The relevant number of 
sign changes of f with respect to a sigma-finite measure a on Z is defined 

by 

where the infimum is taken over all functions h which o-a.e. equal f. 

LEMMA 3.1.4. (Variation Diminishing Property). Let K be a kernel defined on 
X x Y, where X and Y are Borel-measurable sets, and let a be a sigma-finite 
measure on X. Suppose that f x K(x,y)do(x) exists and is finite for every 
y E Y. Consider the transformation 

(3.1.4) g(y) = f K(x,y)f(x)do(x) 
x 

where f is a bounded Borel-measurable function. 

for y E Y 
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(i) If K is TPs, then 

(3.1.5) 

Moreover, if S-(g) = S~(f) s s-1, then g and f exhibit the same arrangement 

of signs. 

(ii) 

(3.1.6) 

If K is STP and f f 0 a-a.e., then 
s 

(iii) Under slight non-degeneracy conditions, converses of (i) and 

(ii) aZso hold. 

PROOF. The lemma is a special case of KARLIN (1968, p. 233). 0 

Another related property is the following lemma on the number of 

sign changes of eigenfunctions of TP kernels. This result is formulated for 

the matrix case, because its general version still seems to be unproved. 

(A related result for continuous (symmetric) kernels is given in GANTMACHER 

and KREIN, 1950, pp. 268-269; see also KARLIN, 1968, pp. 35-38.) 

Let u 1, ..• ,us denote the eigenvectors of the n x n matrix K corres­

ponding to the s "largest" eigenvalues 1µ 11 2 1µ 21 2 ••• 2 lµs I and let U 

denote the n x s matrix with u 1 , ••• ,us as columns. 

LEMMA 3. I • 5. Suppose that the n x n matrix K is TP and that there exists 
s 

an integer q ::: I such that the q-th iterate Kq is STP . Then the s largest 
s 

eigenvalues of K are strictly positive and distinct, i.e. 

µ 1 > µ 2 > > µs > Jµs+il· Furthermore, the signs of the eigenvectors 

u 1, •.. ,us can be chosen such that 

uC1·i2,. .• ,it) > 0 

1,2, .. .,t 
(3.1.7) 

for aZZ Is i 1 < i 2 < <its n and every t = l, ••• ,s (i.e. the columns 

of U form a so caZZed complete Tchebycheff system) and hence for arbitrary 
l 2 

real numbers ak,ak+i•···•a,e_ (I s k s ls s, Lt=k at> O) the number of 

changes of sign of the Zinear combination 

l 
u = t:k atut 

satisfies k-1 s S-(u) s S+(u) s l-1. 
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PROOF. The lemma is a weaker version of a result in GANTMACHER and KREIN 
(1950, p. 349). D 

Furthermore, the following lemma will be used. 

LEMMA 3. I. 6. The set of all n x m STP s matrices is dense in the set of all 
n x m TP matrices. 

s 

PROOF. In KARLIN (1968, p. 88) the proof is given for matrices of size 
s x m, but the same method applies for matrices of size n x m. D 

3.2. GENERALIZATIONS OF REGRESSION DEPENDENCE 

This section first discusses generalizations of regression dependence 
in the context of arbitrary bivariate distributions. These generalizations 
are basic to the notion order dependence which is introduced at the end of 
this section. 

Let (X,Y) have an arbitrary bivariate distribution F which has 
density p with respect to a product measure a r x a c on X x Y, where X and Y 
are subsets of JR. Recall that F I (· IY) denotes the distribution function r c 
of XIY = y for y E Y. 

DEFINITION 3.2.1. The pair of variables (X,Y) is said to be (S)TP -dependent 
s 

when a suitable version of their joint density p is (S)TP on X x Y. 
s 

TP 2-dependence is sometimes called positive likelihood ratio de­
pendence (cf. LEHMANN, 1966 and TONG, 1980, p. 79). The interpretation of 
its definition 

obviously indicates a strong form of positive dependence between X and Y. 
Even stronger forms of dependence are obtained when p is TPs-dependent for 
s > 2. TP 2-dependence means that the family of conditional distributions of 
XIY = y has the monotone likelihood ratio property. A weaker form of de­
pendence arises when this family is only stochastically increasing, i.e. 

(3. 2. I) 

In this case LEHMANN ( 1966) calls X regression dependent on Y. It is seen 
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from (3.2.1) that the mass of the conditional distributions of xlY = y con­

centrates on higher values in X as y increases. Condition (3.2.1) says that 

the differences Frlc<xly 1) -FrlcCxly2) are positive whenever y 1 < y2• As­

suming further TP properties for these differences yields the following 

generalization of regression dependence. The actual motivation for this 

generalization is Theorem 3.2.3 below. Let X \sup {X} denote the set X with 

its supremum deleted. 

DEFINITION 3.2.2. The pair of variables (X,Y) is said to be column regres­

sion dependent of order s on X x Y (abbreviated CR -dependent) if there 
s 

exists a suitable version of the conditional distribution of XIY such that 

for every t = 2, •.. ,s+I and all x 1 < x2 < ••. < xt-I (xi EX, i = l, •.. ,t-1) 

and all y 1 < y2 < ••. < yt (yj E Y, j = l, ... ,t) the determinant 

(3.2.2) 

is positive. When the determinant (3.2.2) is even strictly positive for every 

t = 2, .. .,s+I and all x 1 < ••• < xt-l (xi EX\ sup {X}, i=l, .• .,t-1) and all 

y 1 < ••• < yt (yj E Y, j = l, ... ,t), then (X,Y) is said to be strictly 

column regression dependent of orders (SCR -dependent). Similarly, (X,Y) 
s 

is said to be (strictly) row regression dependent of order s (abbreviated 

(S)RRs-dependent) when (Y,X) is (strictly) column regression dependent of 

orders (i.e. (3.2.2) holds when the roles of rows and columns and of x's 

and y's are interchanged). Furthermore, (X,Y) is said to be (strictly) 

double regl'ession dependent of order s (denoted (S)DRs-dependent) if (X,Y) 

is both (S)RRs and (S)CRs-dependent. 

In the sequel we shall not bother about the choice of different 

versions of conditional distributions. 

CR 1-dependence corresponds with the usual definition (3.2.1) of 

regression dependence of X on Y. The family of conditional distributions 

of xlY = y which arises when (X,Y) is CR2-dependent is in fact the in­

variant convexity preserving family considered by VAN ZWET (1968). 

PROPOSITION 3.2.1. (S)TP 1-dependence => (S)DR -dependence. 
s+ s 

PROOF. Let (X,Y) be TPs+l-dependent, then their joint density p and hence 



42 

the conditional density of XIY = y is TP 1 on XxY. Application of s+ 
Corollary 3.1.3 to this conditional density and the triangular kernel of 

Example 3.1.1 yields that Frie is TPs+I" Hence by Definition 3.1.1 with 
xt =sup {X}, (X,Y) is CR -dependent. RR -dependence follows similarly. In s s 
the case that (X,Y) is STPs+l-dependent the same arguments apply because 
the triangular kernel satisfies the rank condition of Corollary 3.1.3. 0 

In practice the (S)TPs+I property is often easier verified than the 
(S)RRs or (S)CRs property. The following proposition shows that in the two 

most common cases (S)RRs and (S)CRs-dependence actually involve a (S)TPs 
property. The first part of this result is, for the case s = 2, also 
proved by VAN ZWET (1968). 

PROPOSITION 3.2.2. (i) Let Y be an inteY'VaZ and suppose that qc(x,y) 

-aFrJc<xly)/ay exists, then (X,Y) is (S)CRs-dependent iff qc(x,y) is 
(S)TP on X \sup {X} x Y. s 

(ii) Let Y = {l, ... ,m} and define qc(x,y) = FrJc<xJy)-FrJc<xly+l) 
for x EX and y = l, .•• ,m-1, then (X,Y) is (S)CR -dependent iff q (x,y) is s c 
(S)TP on X \ sup{X} x {l, ... ,m-1}. s 

PROOF. (i) Let x 1 < ••• < xt-l (xi E X \sup {X}) and y 1 < ••• < yt (yj E Y) 

be arbitrary. Consider the function g(n) defined for y 1 ~ n ~ y2 by 

g(n) -
F J (x 1 Jn) r c t-

t-1 
L F I (x. ln)M. +M i=I r c 1 1 t 

where Mi for i l, ..• ,t are signed minors. By the mean value theorem there 
exists y 1 < n 1 < y2 such that g'(n 1)(y2 -y 1) = g(y2)-g(y 1). Since g(y2)=0, 

it follows that 
t-1 
i~I qc(xi,nl)Mi(y2-yl) 

Frlc(xl IYt) 

Frlc(xt-IJyt) (y2-yl). 



Repeated application of the mean value theorem yields the existence of 

Yl < n1 < y2 < n2 < ••• < nt-I < yt such that 

Frlc~xl IY1) Frlc(xl IYt) 

sign . 
Frlc(xt-1 IY1) Frlc(xt-1 IYt) 

qc(xl,nl) qc(xl,nt-1) Frlc~xl lyt) 

sign 
qc(xt-1 ,nl) qc (xt-1 'nt-1) FrJc(xt-1 IYt) 

0 0 

which proves the first part of the proposition. 

(ii) It is easily verified that for x 1 < ••• < xt-l 

(x. E X \ sup {X}) and y = I, ••• ,m-t+2 
l. 

(3.2.3) 

Frlc~xl IY> 

Frlc(xt-1 IY> F I (x 1 I y+t-1 ) r c t-

By KARLIN (1968, p. 60), q l z > 0 for y 1, ..• ,m-t+l 
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( xl,x2, ••• ,xt-1) 

(
x x x )c y,y+ , ••• ,y+t-

implies q 1' 2•···• t-1 > O for I s y < y < < y s m-1. Similar-
c Yl•Y2•···•Yt-l 1 2 t-1 

ly, strict positive sign of the determinant on the right hand side of (3.2.3) 

for all t-1 consecutive elements of Y implies strict positive sign of this 

determinant for all ordered t-1 tuples. It now easily follows that (X,Y) is 

SCRs-dependent iff qc is STPs. The restriction that all determinants are 

strictly positive can be dropped by appealing to Lemma 3.1.6 and 

continuity. D 

Consider the conditional expectations 

(3.2.4) g(y) = E(f(X)!Y=y) for y E Y. 

It follows from the variation diminishing property that the function g 

changes sign at most t times when the number of sign changes of f equals t 

and (X,Y) is TP -dependent with s ~ t+l. Although this result is useful in 
s 

particular situations, the following related weaker result gives a better 
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intuitive grasp of the notions TPs+l and CRs-dependence. It is well-known 

that a stochastically increasing family preserves monotonicity of functions. 
Thus when (X,Y) is CR 1-dependent, the function g is increasing whenever f 

is. A stronger form of dependence is needed if one also wants the regres­

sion of convex functions of X on Y = y to be monotone of order 2, i.e. 

first decreasing in y and then increasing. It turns out that CR2-dependent 

distributions preserve monotonicity of order 2. To illustrate that this 

stronger ordering of (conditional) distributions is natural, consider the 

problem of testing hypotheses about the parameter y of the one parameter 

family of distributions based on one observation of the variable X. If the 

family of distributions is stochastically increasing, then any one-sided 

test has a monotone power function, as one would hope. When this family 

also preserves order 2 monotonicity of functions, then any two-sided test 

has the desirable property that its power function is first decreasing and 

then increasing. 

The following theorem formalizes this property of CRs-dependent dis­

tributions. A function f defined on a subset Z of :rn. is called monotone of 
order s, denoted by M(f) = s, when 

(3.2.5) 

where t is arbitrary but finite and z 1 < z2 < ••• < zt (zi E Z; i = l, ... ,t), 
and f is said to be strictly monotone of order s, denoted SM(f) s, if in 
addition to (3.2.5) also 

Furthermore, the function f is said to be (strictly) monotone of order s 

with respect to a sigma-finite measure a, denoted (S)M0 (f) = s, when 

s = inf (S)M(h), where the infimum is taken over all functions h which cr-a. e. 

equal f. Note that monotonicity is a kind of oscillatory property. In the 

case that Z is an interval and f is differentiable with derivative f', it 

follows from the mean value theorem that M(f) = S-(f') +I. Furthermore, 

when Z = {l, ... ,n} and di denotes the difference di= f(i+l)-f(i) for 

i = l, ... ,n-1, thenM(f) = S-[d 1, ... ,dn-l]+I. 

THEOREM 3.2.3. Consider the conditional expectations 

g(y) = E(f(X)IY = y) for y E Y 



where f is a bounded measurable function. 

(i) If (X,Y) is CR -dependent, then 
s 

Ma (f) s s =>Ma (g) s Ma (f). 
r c r 
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Moreover, when Ma (f) =Ma (g) s s, then f and g exhibit the same arrange-
r c 

ment of oscillations. 

(ii) If (X,Y) is SCR -dependent, f is monotone of order t s s with 
s 

respect to the measure ar and g is monotone of order t with respect to ac, 

then g is even strictly monotone of order t with respect to ac. 

PROOF. (i) Without loss of generality it can be assumed that M(f) 

Ma (f) s s and hence f is of bounded variation. Therefore f can be approxi­
r 

mated by step functions on intervals. Consider a partition x 1 < x2 < ••• < xn 

(x 1 = inf {X}, x =sup {X}, x. EX for i = 2, ... ,n-1) of X. (In case f is 
n i 

not properly defined in x 1 or in xn replace x 1 or xn by an element of X 

"close" to inf {X} or sup {X} respectively.) Let f be the step function such 
n 

that fn(x) = f(xi+I) when xi < x s xi+I' Clearly for all n and all partitions 

(3.2.6) 

Furthermore define 

(3.2.7) g (y) = f f (x)dF I Cxiy) 
n X n r c 

for y E Y, 

for a suitable version of the conditional distribution. By bounded con­

vergence, gn(y) 7 g(y) for y E Y as n 7 00 provided the partition of X is 

refined in an appropriate way. 

Next fix y 1 < y2 < ••• < ym (yj E Y). Since (X,Y) is (S)CRs-dependent 

it follows from Propositions 3.4.1 and 3.2.2 that the kernel qc(i,j) = 

FI (x. 1Jy.)-F I (x. 1 Jy. 1) is (S)TP, where t=min(s,n-l,m-1), on 
r c i+ J r c i+ J+ t 

{l, ... ,n-l}x{l, .•. ,m-1}. Furthermore define u. = f(x. 1)-f(x.) for 
1 i+ 1 

i = l, ... ,n-1 and v. = g (y. 1)-g (y.) for j = l, ... ,m-1. Then by (3.2.7) 
J n J+ n J 

and surrnnation by parts 

(3.2.8) v. 
J 

n-1 
Z:: u.q (i,j) 

i=l ]_ c 
for j = l, ... ,m-1. 

Applying the variation diminishing property to (3.2.8) produces 

(3.2.9) 
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where the last inequality is obtained from (3.2.6). 
T Consider the vector w = (g(y2) - g(y 1), ... ,g(ym) - g(ym-I )) • Choose 

0 < E: < min {iw. I : lw. I > 0, I ,,; j ,,; m-1}, then any (m-1)-dimensional vector 
J J - -

v such that lw. -v.I < E for j = l, ... ,m-1 satisfies S (v) 2' S (w). There­
J J 

fore, since gn + g it follows from (3.2.9) with sufficiently large n that 

Since m and y1 < y2 < ... < ym are arbitrary it follows that M(g),,; M(f). 

Furthermore since g is a version of the conditional expectation, M(g) can 

be replaced by M0 (g). 
c 

(ii) First note that in case of SCRs-dependence, (3.2.9) also holds 

with S- replaced by S+. Moreover, the method of proof of part (i) also 

works for any step function fn(x) = f(~i+I) for xi < x,,; xi+I where 

xi < ~i+I,,; xi+I· Instead of approximating f by one step function, now 

approximate f by upper and lower step functions fu and fl such that n n 
f~(x) ,,; f(x) ,,; f~(x) for all x E X. Denote the corresponding conditional 

by gu and gl respectively. Then gl(y) ,,; g(y) ,,; gu(y) and expectations 
l u 

gn(y) - gn(y) 

(y. E Y) 
J 

n n n n 
+ 0 as n + oo for ally E Y. Moreover, for any y 1 <y2 < ... <ym 

M(f) - I, 

M(f) - I. 

For sufficiently large n this implies 

which proves the theorem. 0 

Under slight non-degeneracy conditions, the converse of Theorem 3.2.3 

also holds. 

Let's return to the case where X and Y are categorical variables and 

introduce the notion order dependence. It is clear that TP, RR and CR­

dependence can be defined because the elements of the sets X and Y can be 

ordered. For categorical variables there is generally no clear a priori 

ordering of categories and hence these forms of dependence are not properly 

defined. But in case there exist labels l, ... ,n for the categories of the 

row variable and labels l, ... ,m for the categories of the column variable 
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such that the corresponding (integer valued) variables X and Y are CR 1-

dependent, then the mass of the conditional distributions of XIY = y con­

centrates on row categories with larger indices as the category index y of 

the column variable increases. Moreover, the conditional distribution 

functions do not cross each other and can be ordered properly. Hence CR 1-

dependence implies that given the labels of the row variable, the ordering 

of categories corresponding to the labels of the column variable is meaning­

ful. If in addition (for the same labels) the variables X and Y are also 

RR1-dependent, then the conditional distributions of YJX = x imply that 

the ordering of row categories according to the labels also makes sense. 

Summarizing, when there exist numerical labels for the categories of the 

row and column variable such that the labeled variables are DR 1-dependent, 

then the dependence implies a meaningful ordering over the row and column 

categories. In this case there is a strong ordinal relation between both 

categorical variables. Intuitively, it is obvious that an ordering of 

categories itself is not necessarily meaningful; it often only makes sense 

with respect to other variables. 

DEFINITION 3.2.3. Two categorical variables are called (strictly) order de­

pendent of orders when there exist labels l, ... ,n and J, ••• ,m for the 

categories of both variables such that the labeled integer valued variables 

are (S)DRs-dependent. 

It will follow from Theorems 3.3.1 and 3.3.2 below that the ordering 

of the labels in Definition 3.2.3 is unique when the probability table of 

both categorical variables has no proportional rows and columns. 

Recall that S denotes the upper triangular matrix with unities on 

and above the diagonal. For a nxm probability table P let the (n-1) x (m-1) 

matrices Q and QT be obtained by deleting the last row and column of 
-I -I r c_I -I 

S R PS and of (S C pTs)T respectively. Then by Proposition 3.2.2 the 

row and column variable of a n x m probability table are (strictly) order 

dependent of order s iff there exists a permutation of rows and columns 

such that the matrices Qr and Qc corresponding to the permuted table P are 

both (S)TPs. 

The following proposition gives an example of order dependence. 

Further examples are given in Section 3.4. 

PROPOSITION 3.2.4. The row and column variables of any rank 2 probability 

table are order dependent of order I. 
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PROOF. Let P be the rank 2 probability table with canonical decomposition 

Rearrange the rows and columns such that the vectors ~I and ~I of row and 

column category scores are both increasing in their components (note that 

category scores are invariant under permutations of rows and columns). 

Straightforward computation of the matrices Qr and Qc for the permuted 

table shows that they are TP 1• D 

3.3. CORRESPONDENCE ANALYSIS AND ORDER DEPENDENCE 

It is clear that CA makes no assumption on, nor uses any ordering of 

the categories of the row and column variables. CA considers both variables 

nominally; under permutation of rows and columns of the probability table, 

the category scores undergo the same permutation. However, the following 

phenomenon is frequently observed in practice. When the categories of both 

variables have an intuitive meaningful order, then this order is often re­

flected by the order of the category scores of the first canonical pair. 

A second phenomenon often encountered in practice is the so called 

"horseshoe" in Benzecri's two-dimensional graphical display of the proba­

bility table; i.e. the row points and column points lie on convex or con­

cave curves. The main result given in this section shows that both 

phenomena occur when the row and column variables are order dependent (of 

order 2). Moreover, it is shown that the stronger ordinal relations corres­

ponding to higher orders of order dependence are reflected in the higher 

pairs of canonical functions. 

Consider the setting of Section 2.1, where X and Y denote categorical 

variables with categories labeled by 1, ... ,n and l, ... ,m, respectively, 

with n ~ m. Recall that ~t and ~t denote the vectors of row and column 

category scores on the t-th canonical pair with canonical correlation At 

(fort= l, ... ,n-1). 

THEOREM 3.3.1. Suppose that, for given category labels, (X,Y) is SDR -
s 

dependent, then 

(i) the first s canonical correlations are strictly positive and 

distinct, i.e. I ~ A1 > A2 > ••• > As > As+!' 

(ii) the canonical functions ~ and ~ for t 
t t 

l, ... ,s are strictly 
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monotone of order t and exhibit the same arrangement of oscillations. More­

over3 for arbitrary real numbers ak,ak+I '" •• ,al (I s k s .t s s, I:~=k a~ > O) 

the orders of monotonicity of the linear combinations 

l 
lP = I: atlj)t 

t=k 

satisfy k s M(lP),M(w) s l. 

l 
and W = I: atwt 

t=k 

(iii) In ease s ~ 2, the sign of lP2 ean be ehosen sueh that lP2 is 

strictly eonvex with respect to lj)1, and w2 is strictly eonvex with respect 

to w1 (i.e. there exist strictly eonvex functions f and g sueh that 

lP2 = f(lP 1) and w2 = g(w 1)). 

PROOF. Let the joint distribution of (X,Y) be given by the nxm probability 

table P and let R and C denote the diagonal matrices with row and column 

sums (as usual). By Theorem 2.1.3 the vectors e,lj)1, ••• ,lj)n-I form a complete 
-I -I T set of eigenvectors of R PC P corresponding to the eigenvalues 

I ~Ai~ ••• ~A;_!• Hence, since the square matrix Sis non-singular, 
-I -I -I S e,S lP1, ••• ,S lj)n-I form a complete set of eigenvectors of Q = 

s-IR- 1Pc-lpTs corresponding to the same eigenvalues. Let Q be obtained by 

deleting the last row and column of Q. Since R- 1Pc- 1pT has row sums unity, 

it follows that the last column of Q equals (0, ... ,0,l)T. This implies that 

s- 1e is an eigenvector of Q corresponding to eigenvalue unity and that for 

t = l, ••• ,n-1, ut = (ult•···•un-lt'unt)T is an eigenvector of Q corres­

ponding to eigenvalue A~ iff ut = (u 1t, .•. ,un-lt)T is an eigenvector of Q 
. ('2 )- n-1 -corresponding to the same eigenvalue and /\t - I u = L 1 u .• Therefore, 
-I n t i.= i. t 

lj)t can be taken such that S lj)t ut fort= l, ••• ,n-1. Thus, 

(3. 3. I) for i I , ••• , n-1 and t I, ... ,n-1. 

Furthermore, since X and Y are SDR -dependent, the matrices Q and Q 
s -I -I r c 

which are obtained by deleting the last row and column of S R PS and of 
-I -I T 

S C P S respectively are both STPs (cf. Section 3.2). It is easily very-

fied that Q = QrQc and hence Q is STPs. Application of Lemma 3.1.5 to the 

matrix Q yields A.f >A.~> ••• >A;> A;+I and that for arbitrary real num­

bers ak, ••• ,a.l (I s k s ls s, I:~ a~> O) the number of sign changes of the 

linear combination 

u = 



so 

- + - + 
satisfies k-1 s S (u) s S (u) s l-1. So in particular S (ut) = S (ut) = t-1 

fort= 1, •.• ,s. In view of (3.1.1) this proves part (i) of the theorem and 

the monotonicity result of the canonical functions w1, ... ,ws. The results 

for the vectors ~ 1 , ... ,~s follow similarly. By Theorem 3.2.3 and the 

transition formula (2.1.4), wt and ~t exhibit the same arrangement of 

oscillations. Moreover, it follows from (3. 1.7) for s = 2 that the sign of 

w2 can be chosen such that 

l s i 1 < i 2 s n-1 ~ u. 2;u. 1 < ui 2/u. 1 , 
1 1 1 1 2 i2 

which by (3.3.1) implies that w2 is strictly convex with respect to w1• It 

similarly follows that ~ 2 is strictly convex with respect to ~ 1 • D 

Note that the conditions of this theorem are somewhat too strong, 

because it is sufficient that some iterate of Q is STP 8 , whereas the 

present conditions imply that Q itself is STPs. However, it seems hard to 

find simple sufficient conditions for Theorem 3.3.1 which are essentially 

weaker. 

THEOREM 3.3.2. Suppose that, for given labels, (X,Y) is DR -dependent, then 
s 

there exist, fort= l, ... ,s, canonical functions wt and ~t which are mono-

tone of order t exhibiting the same arrangement of oscillations. Further­

more, the results (ii) and (iii) of Theorem 3.3.1 are valid in a non­

strict sense for these canonical functions. 

PROOF. Follows from Theorem 3.3.1, Lemma 3.1.6 and continuity 

considerations. D 

When w2 is (strictly) convex with respect to w1 , the two-dimensional 

row points ~I= (A 1w11 ,A 2w12), ... ,~n = (A 1wn 1,A2wn2) lie on a (strictly) 

convex curve. So "horseshoes" in Benzecri's two-dimensional graphical re­

presentation are implied by order dependence of order 2. 

Theorems 3.3.l and 3.3.2 are quite relevant for the practice of CA. If 

the row and column variables are order dependent, then the (meaningful) or­

dering of categories induced by the dependence is reflected in the order of 

the category scores on the first canonical pair and hence is easily obtained 

by inspection of ~I and ~ 1 . Moreover, since the most important aspect of 

assigning scores to categories is perhaps the ordering induced by these 

scores, these results support the use of the canonical variables w1(X) 
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and w1(Y) as numerical versions of the nominal row and column variables. 

The abundance of examples given in the next section demonstrate that 

DR or order dependence is quite common in practical models for probability 

tables. Although this does not imply the DR character for random samples from 

such populations, one may nevertheless expect that empirical probability ta­

bles also often show DR-dependence or are close to it, and hence that the 

ordering properties of the canonical functions remain valid. It is, however, 

difficult to derive precise and useful statistical properties of such 

qualitative aspects of CA. A better argument for the practical relevance of 

these results, when sampling variation has to be taken into account, is the 

fact mentioned before, that an intuitively expected ordering and the ''horse­

shoe" phenomenon are so often found with small-sample real data. When, with 

real data, an obvious deviation from the intuitively expected ordering of 

categories is found, our experience is that a good explanation can usually 

be found for it. This makes CA a very useful exploratory tool for checking 

that an a priori ordering of categories of a nominal variable is correct or 

for pointing out a breakdown for such an ordering. 

One can probably show by using approximation arguments that similar 

ordering properties hold for the canonical functions of continuous bi­

variate distributions. But the arguments above, showing the relevance of 

the results in the contingency table case, do not carry over to the con­

tinuous case, which makes such generalizations less useful. In spite of 

this, such results contribute to a better description of the structure of 

bivariate distributions and give solutions to a somewhat more general 

problem than considered by EAGLESON (1964), EAGLESON and LANCASTER (1967), 

LANCASTER (1975, 1980). These authors were interested in the problem of deter­

mining in which cases the canonical functions of the decomposition (2. 1.9) are 

orthogonal polynomials. Since orthogonal polynomials are strictly monotone 

(with order equal to degree), this should yield a subclass of the DR00-dependent 

distributions. (Note that by Theorem 3.2.3, the class of DR00-dependent dis­

tributions can be characterized by monotonicity preserving properties; 

similarly, the class of distributions with polynomial canonical functions 

preserves linearity, convexity, etc.) 

3.4. ORDER DEPENDENCE IN PRACTICE 

Order dependence frequently occurs in real data. In fact, the 
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variables hair and eye colour of the Scottish school children as considered 

in one of the first applications of CA by Fisher and Maung, are (up to a 

very slight correction) order dependent of order I. Another well-studied 

example in literature is the British social mobility contingency table, 

which compares the occupational statuses of father and son (cf. GIFI 

(1981, p. 145), HABERNAN (1974, p. 217) and many other authors). This 

table is also order dependent of order I and since it is close to order 

dependence of order 2, the "horseshoe" phenomenon is found in its 

graphical representation. 

In this section two important classes of models for (underlying) 

order dependent probability tables are given. A third model are rank 2 

probability tables (cf. Proposition 3.2.4). 

The first class arises from discretizations from well-known bivariate 

distributions. The n x m probability table P is said to be a discretization 

of the distribution F when there exist intervals A1 < A2 < •.. <An with 
n m 

Ui=l Ai= lR and intervals B1 < ... < Bm, Uj=l Bj = lR such that 

(3.4.1) p .. f f dF for i l, .... , n; j 1 ' .... e ,m, 
1.J A· 

]_ 
B· 

J 
and 

(3.4.2) r.= f dF > 0 and c.= f dF > 0 for i 1 , ...... , n; j l, ... ,m. 
]_ r J c 

A. 
]_ 

B· 
J 

PROPOSITION 3.4.1. Let the distribution F be (S)TP, (S)DR, (S)CR or 
s s s 

(S)RR -dependent, then any discretization of F into a n x m probability 
s 

table is (S)TPt, (S)DRt, (S)CRt or (S)RRt-dependent, where t = min (s,n,m). 

PROOF. First consider the case of (S)TPs-dependence. Let X and Y be subsets 

of lR such that F has density p with respect to the product measure 0 XO 
r c 

on XxY with p (S)TPs on X x Y. Consider an interval A such that JA dFr > 0 

and hence or(A) > 0. Let X be obtained from X by replacing the set X n A by 

one element a E x n A; i.e.X={X\A} u {a}. Define p on x x y by 

r(x,y) if x E x \A, y E y 
p(x,y) 

= JA p(x,y)dor(x) if x = a, y E y 

and let s. equal s when X contains an interval and equal the minimum of 

and the number of points in X otherwise. Then for every t = l, ... ,s' and 

all x 1 < ... < xi < a < xi+I < ... < xt-l (xi E X \A) and all 

s 



Yi < ••• < y (y. E Y) 
t J 

P'(xl '' • • ,xi ,a,xi+I '· • • ,xt-1) 

YI"'' ..• ,yt 

J P (xl,. •. ,xi,x'xi+I '' •• ,xt-l)dor(x) 

A Y1 ,. •. • •• ,yt 
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Hence p is (S)TP , on X x Y. Repeated application yields the desired result 
s 

for (S)TPs-dependence. 

Next consider the case that F shows (S)CRs or (S)RRs-dependence on 

X x Y. Define in the setting above 

~ r(x,y) if x t A, y E lR 
F(x,y) = 

F(b,y) if x E A, y E lR 

where b = sup {A}. Hence 

F' I <xly> r c 

if x t A, y E y 

if x E A, y E y 

and 

{
F I (yix) 

~ c r 
F (yix) = 
cir JA F I (yix)dF (x) c r r 

if x E x \A, y E ll 

if X = a, y Ell 

The determinant inequalities (3.2.2) are easily verified for F I 
~ r c 

and hence F shows (S)CRs' or (S)RRs' -dependence on X x Y. D 

and F I c r 

In most examples below it is easier to verify that bivariate distri­

butions are (S)TPs+l-dependent rather than the weaker (S)DRs-dependence. 

To identify various types of bivariate distributions, references are given 

in which the distributions are derived. 

Some bivariate distributions can be generated by the method of tri­

variate reduction. When z1, z2 and z3 are independent random variables 

(usually with distributions from a coDDDon family which is closed under 

convolutions), then the joint distribution of (Z 1 + z3 ,z2 + z3) is said to be 

generated by trivariate reduction. It follows from Corollary 3.1.3 and 

Example 3.1.9 that such distributions are (S)TPs-dependent when the 

densities of z1, z2 and z3 are (S)PFs. It is seen from Examples 3.1.2, 

3.1.7, 3.1.6 and 3.1.5 respectively that densities of the univariate 

normal, binomial, Poisson and gaDDDa distributions are actually (S)PF00 • 

Hence the bivariate normal (with correlation parameter p > O), the 
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bivariate binomial, the bivariate Poisson (HOLGATE, 1964) and the bivariate 

gamma (CHERIAN, 1941) are (S)TP00-dependent. In fact, EAGLESON (1964) shows 

that the canonical functions of these four bivariate distributions are 

orthogonal Hermite, Kratchouck, Poisson-Charlier and Laguerre polynomials 

respectively. So it alternatively follows by the canonical decomposition 

(2.1.9), Corollary 3.1.3 and Example 3.1.8 that the latter three distri­

butions are STP00-dependent. (Note that Hermite polynomials do not satisfy 

the requirements of Example 3.1.8.) 

STP00-dependence of the negative trinomial, the bivariate F (GHOSH, 1955), 

thE bivariate Pareto (MARDIA, 1962), the bivariate logistic (GUMBEL, 1961) 

and the bivariate exponential distribution (CLAYTON and CUZICK, 1985) can 

be proved using the examples in Section 3.1 and Proposition 3.l.1. The 

trinomial, the bivariate hypergeometric and the standard Dirichlet or 

bivariate beta (JOHNSON, 1960) show negative dependence, but it is easily 

verified that the reversed distributions (reversed in one variable) are 

actually TP00-dependent. Of course not all bivariate distributions are 

TPs-dependent; for instance the bivariate Cauchy density p(x,y) = 
-I 2 2 _l 2 

(2n) (I + x + y ) 2 is not TP 2 on lR . 

Another, more specific model for the probability table P is the 

linear by linear interaction model 

log p .. = µ +a. + 6. + y. o. 
l.J l. J l. J 

for i = l, ... ,n; j = l, ... ,m, 

where r. a. = r. 6. = r. y. = r. o. = 0. The probability table P is STPn 
l. l. J J l. l. J J 

when the rows and columns are indexed such that y. and o. are both strictly 
l. J 

increasing in their indices. Thus the row and column variables are always 

(strictly) order dependent of order n. GOODMAN (1981) compares maximum 

likelihood estimates of y and o in this model with the first pair of 

canonical functions ~I and ~ 1 • Furthermore, he discusses the ordering of 

rows and columns which is present in this model by means of TP 2 and DR 1-

dependence; however, he does not prove that this ordering is reflected in 

the components of ~I and ~ 1 • 

In Section 2.1 it was noted that CA could also be applied to incidence 

matrices. Incidence matrices are also often TP. A good example is the 

Miinsingen-Rain incidence matrix (cf. KENDALL, 1971). This matrix only 

slightly departs from a band diagonal matrix, which is TPn. Application of 

CA produces "horseshoes" (see HILL, 1974) as one could expect in view of 



Theorems 3.3. I and 3.3.2. 

3.5. TESTS SENSITIVE TO ORDERED ALTERNATIVES 

This section briefly discusses some tests of independence which are 

sensitive to ordered alternatives. The first three tests are due to Yates 

and the other two are based on Kendall's rank correlation tau and 
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Spearman's rank correlation rho. The tests considered are quite easily 

performed and show a considerable gain of power against most regression 

dependent alternatives, compared to the chi-square and likelihood ratio test. 

Consider the setting of Sections 2.2 and 2.3 where P0 and PL denote 

the null-hypothesis and local alternative conditional Poisson distributions 

for the empirical probability table P(N)' drawn from underlying tables 

(2.2.11) and (2.2.12) respectively and where the conditioning matrix A 

satisfies (2.2.10). Recall that P' denotes the limiting alternative table. 

Before turning to the tests under consideration, the following 

remark should be made. In case the underlying probability table shows DR 1-

dependence, one might hope that the first pair of empirical canonical 

functions 0~N) and $~N) are often monotone of order I. Hence tests based on 

the statistics (2.3.2) and (2.3.3), with a and b strictly monotone too, 

might performe well against such alternatives. However, Proposition 2.3.4 

shows that such tests are inconsistent against most DR 1-dependent alter­

natives. So an attempt to base t'ests sensitive to regression dependence on 

the first pair of empirical canonical variables only, fails. The strength 

of the dependence must be taken into account too. 

l 
YATES (1948) introduced a test of independence which is based on N2 

times the sample (product moment) correlation between row and column 
T variables scored with preassigned values a= (a 1, ..• ,an) and b = 

(b 1, •.. ,bm)T, which are not proportional to the vector e, i.e. based on 

(3. 5. I) 

Against alternatives with (limiting) canonical functions ~I and ~I' Yates' 

test performs asymptotically best when a= ~I and b = ~ 1 . Thus when DR 1-

dependent alternatives are expected, one should take a and b monotone of 

order I; e.g. a= (l, ... ,n)T and b = (l, ... ,m)T if no prior information 

about the canonical functions is available. 
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THEOREM 3.5.1. Under the hypothesis P0 , 

(3.5.2) T(N) + N (O I) 
Y D I ' 

as N + 00 

and under local alternatives P1 , 

(3.5.3) as N + 00 

where 

T = (a1P'b-a1 rb1 c)/((a1Ra- (a1 r) 2)(b1 Cb- (b1 c) 2 ))!. y 

Furthermore, the test which rejects for large (positive) values of T~N) is 

consistent against all fixed alternatives of interest. 

PROOF. Note that 

T~N) = N!aTR.(N) 4w<N)e(N) !b/(aT (R(N) - r(N)r(N) T )ab1 (C(N) - c(N)c(N) T )b)!. 

A(N) A(N) A(N) A(N) Since R , r , C and c converge under P0 and P1 in probability to 

R, r, C and c respectively, the results (3.5.2) and (3.5.3) follow from 

(2.2.14) and (2.2.15). Furthermore, unde~ fixed alternatives PA' W(N) con­

verges in probability to W' and hence N- 2 T~N) converges in probability to 

Ty as N + 00 • Therefore, the test which rejects for large positive values of 

T~N) is consistent against fixed alternatives with Ty > 0. D 

In case alternatives are expected in which only ~I is monotone of 

order I or in case the ordering of column categories induced by regression 

dependence is unknown, one can use the test statistic 

where a is monotone of order I (not proportional to e). This statistic can 

be interpreted as N times the square of the maximal achievable sample 

correlation between scored row and column variables, when the scores of 

the row variable are the preassigned values a= (a 1, .•. ,an)1 . Similarly 

define 

THEOREM 3.5.2. The asymptotic distributions of T~~) and T~~) under P0 are 

chi-square with m-1 and n-1 degrees of freedom respectively. Their asymp­

totic distribut1'.ons under P 1 are non-central chi-square with the same 



degrees of freedom and non-centrality parameters 

and 

2 2 2 T -1 T T 2 T T 2 e T = e (a p I c p' a - (a r) ) I (a Ra - (a r) ) 
YR 

respectively. Furthermore, tests based on these statistics are consistent 

against all fixed alternatives. 

PROOF. Analogous to the proof of Theorem 3.5.1. D 
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The next two tests are based on probability table adaptations of 

Kendall's rank correlation tau and Spearman's rank correlation rho. 

Adaptation can be done in several ways; the present choice is motivated in 

Section 4.4. The probability table version of Kendall's tau for a proba­

bility table P is defined by 

';ji'K(P) 
n m (i-1 j-1 i-l m ) 

2 L L p.. L L Pko - 'f. 'f. Pko 
i=I j=l lJ k=l l=l "-- k=l l=j+l "--

2{sum of all 2 x 2 determinants}. 

For an empirical probability table P(N) this equals 

~ ~(N) 2 
<jlK(P ) =(#{concordant pairs of obs.}- #{disconc. pairs of obs.})/ON ). 

The probability table version of Spearman's rho for P is defined by 

3 I ~ p .. (\: 1 r - I r )(j~l C 0 - ~ c 0 ). 

i=l j=I lJ k=l k k=i+l k l=l "-- l=j+I "--

i-1 n 
Note that~~ r - ~~- r for i = l, ... ,n are centered mid-ranks times 

ic=I k -k=i+I k 
2N-I for the categories of the row variable. Thus ~5 (P) is the covariance 

between row and column variables, scored with these centered mid-ranks. 

The test statistics based on Kendall's tau and Spearman's rho are 

T~N) !N~';Ji'K(P(N))/v(N) 

T~N) tN~';Ji's(P(N))/v(N) 

where v(N) is the product of the sample standard deviations of row and 

column variables scored with (sample) mid-ranks, i.e. 
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THEOREM 3.5.3. Under the hypothesis P0 , 

as N + 00 

and under local alternatives P1 , 

as N -> 00 

where 

1~ { n (i-1 n Y. m 'j-1 m )2)! 1s = 3<tis (P') I . r. r. , r. rk - r. r j r. c. I r. cl - r. cl . 
\i=l 1 \k=I k=i+I k,. j=I J \.t:1 l=j+l 

FurtheY'l'Tlore, tests based on both statistics are consistent against aZZ 

fixed alternatives of interest. 

PROOF. The proof is based on an application of the a-method (cf. RAO, 1973, 

p. 388). Denote by p the vector with components 

(3.5.4) p. = 
1 

n 
r. 

k=i+l 

i-1 
r - r. r 
k k=I k 

and by y the vector with components 

m j-1 
y. = r. cl - r. cl 

J l=j+I l=I 
(3.5.5) 

fori=l, ... ,n 

for j = J, ••• ,m. 

Straightforward computations show that the derivatives of (fi'K at P 

given by 

a:~~~) I 
lJ P=rcT 

= 2 (i>=I j;:l p _ i;:I r p _ £ j;:I p _ £ 
k=l l=I kl k=l l=j+I kl k=i+I l=J kl k=i+I 

= 2p. y .. 
1 J 

Similarly the derivatives of (!i's at P 

a(ji's(P) I 
dPiJ. T 

P=rc 

rcT equal 

rcT are 

(
i-1 j-1 

= 3 r. L: p -
k=l l=l kl 

i-1 m n j-1 
L: :L. p - r. :L p + 

k=l l=J+I kl k=i+I l=J kl 
n m )i :L :L p +p.y. 

k=i+J f=j+l kl i J T 

6p.y .• 
1. J 

P=rc 



Furthermore, by Lennna 2.2.1 it follows that under P0 

N~vec[i'i(N)_r(N)c(N)T] + N (O,t) 
D nm 

as N -+ 00 

and under PL 

where 

The ref ore application of the a-method yields under Po 

and under PL 

N!-;p (P(N)) -+ N1(0,4(p ® y)T~(p ® y)) 
K D 

N~';p (P(N)) 
s +D N1(0,36(p ® y)TtCP ® y)) 

N4~K(P(N)) +D N 1 (28pTR!W'c~y,4(p ® y)Tt(P ® y)) 

N~';p8 (P(N)) -+D N 1 (68pTR!W'C~y,36(p ® y)Tt(P ® y)) 

as N + 00 • It is easily verified that pTr = 0 and yTc = 0. Moreover, since 

the conditioning matrix A is of the form (2.2. 10) it follows that 

(p ® y)Tt<P ® y) = (p ® y)TR ® G(p ® y) = pTRpyTCy. Furthermore, one can 
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T l ! r -(N) 
verify that p R2 W'C 2y = 3~8 (~'). Since v • converges under P0 and under PL 

in probability to (pTRpyTcy) 2 , the limiting distributions of the statistics 

under null-hypothesis and local alternatives follow. Under fixed alterna-

. P P-(N) . b b'l' P' . 1 . . f h tives A' converges in pro a i ity to , imp ying consistency o t e 

tests which reject for large values of T~N) and T~N) against fixed alterna­

tives with -;p'K(P') > 0 and ~8 (P') > O. D 

It is shown in Section 4.4 that these tests are unbiased in finite 

samples against CR 1 and RR 1-dependent alternatives. 

The limiting distributions of another adaptation of Kendall's tau is 

studied in GOODMAN and KRUSKAL (1963, 1972). 

(N) oo 
It is easily shown that the sequences of statistics {Ty }N=I' 

(N)~ oo (N)! oo (N) oo (N) oo 
{T } {T } {T } and {T } are Bahadur standard 

YR N= I ' YC N= I ' K N= I S N= I 
sequences with approximate slopes 
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2 
sye<P') = 'Ye' 

4i'i(P 1 )/(4v2) 

where v 2 pTRpyTey, provided attention is restricted to alternatives with 

'Y > O, 'YR I 0, 'Ye I 0, 4i'K(P') > 0 and 4i's<P') > 0 respectively. This in 

combination with the approximate Bahadur slopes given in Section 2.3 

suggest that the chi-square test, the likelihood ratio test and even the 

canonical correlation test always dominate Yates' test. Numerical com­

putations show that this is certainly not true; in the present case ap­

proximate Bahadur efficiencies very badly describe the relative performances 

of tests. Note that the Pitman efficiency of TiN) with respect to T~N) 
equals unity. No (further) studies have yet been made of the relative 

performance of the tests in this section. GROSS (1981) compares tests based 

on measures of Yates, Spearman and HABERMAN (1974b)by means of particular 

asymptotic relative efficiencies. NGUYEN (1982) describes tests which are 

superior to tests based on Spearman's rho and Kendall's tau for a restricted 

class of alternatives. 

The vectors of preassigned scores a and bin the statistics T~N), 
T(N) and T(N) can also be taken random. When such random vectors converge YR Ye 
in probability to constants a and b, then the same limiting distributions 

apply. So T~N) can be considered as a special case of T~N). Other choices 

of a and b leading to tests which are (in some sense) asymptotically most 

stringent against quadrant dependent alternatives are considered by 

SNIJDERS (1979, p. 216). 
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CHAPTER 4 

ORDERINGS FOR POSITIVE DEPENDENCE 

4.1. DEFINITIONS AND BASIC PROPERTIES 

This section introduces some partial orderings for bivariate distri­

butions which order distributions according to positive dependence. Con­

sider two arbitrary (empirical or underlying) distribution functions F and 

F'. Let (X,Y) and (X',Y') be pairs of random variables with distributions 

F and F' respectively. Throughout this chapter, the support X of the mar­

ginal distribution F of X is defined by X = {x e (- 00 ,+00]: F (x') < F (x) 
r r r 

for all x' < x}. This definition of support is unusual, but it is essential 

that Fr is strictly increasing on X. The supports Y, X' and Y' of the mar­

ginal distributions of Y, X' and Y' are similarly defined. 

Although several intuitive formulations of "more dependent" can be 

given, not much attention has been paid in the literature to make them 

precise. (An ordering according to a single measure of dependence can be 

misleading: bivariate dependencies are generally too complex to be repre­

sented by one single number.) One suggestion for an ordering "more depen­

dent" for probability tables has actually already been given in the lines 

preceding Theorem 2.1.5. This ordering can easily be formulated for arbi­

trary bivariate distributions, but it is intuitively clear that it orders 

distributions according to dependence discarding its sign or form (e.g. 

negative dependence is "more dependent" than independence). WHITT (1982) 

discusses orderings for multivariate distributions which are related to the 

so called HPK inequality (see also EATON, 1982, formula (3.6) or KARLIN and 

RINOTT, 1980, formula (1.18)). These orderings order distributions according 

to positive dependence, but they seem to be quite strong because they do 

not order the standard bivariate normal distributions. The ordering of 

KOWALCZYK and PLESZCZYNSKA (1977) is too weak for our purposes. 

An ordering much weaker than that induced by the HPK inequality but 

stronger than the one of Kowalczyk and Pleszczyfiska is introduced in 
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TCHEN (1976) (see also MARSHALL and OLKIN, 1979, p. 381) and independently 

of Tchen also in CAMBANIS, SIMONS and STOUT (1976). This ordering is of 

more interest to us and is defined as follows. 

DEFINITION 4.1.1. The distribution F' is said to be more concordant than F, 

denoted by F' ~For by (X',Y') ~ (X,Y), when F~(x) = Fr(x), F~(y) = Fc(y) 

and F'(x,y) ? F(x,y) for all x,y E lR. 

This ordering for positive dependence, in particular its extension 

given in Definition 4.1.2 below, has some desirable properties. For example, 

it is a partial ordering, it is invariant under strictly increasing trans­

formations of the marginals, it arises naturally in many examples and most 

well-known measures of dependence preserve the ordering. But still this 

ordering is unsatisfactory because the order preserving property does not 

carry over to samples in any useful sense. Therefore, a somewhat stronger 

ordering called more associated is introduced (Definition 4.1.4) which 

actually is stochastically preserved in samples by most measures of positive 

dependence whenever it is present between underlying distributions. The 

name "more associated" is explained by Proposition 4.1.2 which shows that 

each pair of variables which is more associated than an independent pair is 

associated in the sense of ESARY, PROSCHAN and WALKUP (1967). Furthermore, 

two interesting special cases of the ordering "more associated" are dis­

cussed. Definitions and properties below are frequently formulated in terms 

of random variables, but they only concern their distributions. 

c 
A disadvantage of the ordering ? is that it is only defined for dis-

tributions with the same marginals. The following extension imposes less 

restrictive assumptions on the marginals. 

DEFINITION 4.1.2. The pair (X',Y') is said to be more quadrant dependent 
q q 

than (X,Y), denoted by (X',Y')? (X,Y) or by F' ? F, when 
c 

(F~(X'),F~(Y')) ? (Fr(X),Fc(Y)). 

This ordering gives rise to the following equivalence relation. 

DEFINITION 4.1.3. The pairs (X',Y') and (X,Y) are said to be equally de­

pendent, denoted (X',Y') ~ (X,Y) or F' ~ F, when 

(F~(X'),F~(Y')) ~ (Fr(X),Fc(Y)). 

It is easily verified that the relation ~ is reflexive, symmetric and 
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transitive and therefore actually is an equivalence relation. Furthermore, 

it can be shown that the ordering § is a partial ordering (i.e. it is re­

flexive, transitive and anti-symmetric) of the equivalence classes defined 
d by = on the class of all bivariate distributions. 

Obviously, two distributions can only be compared by means of § or ~ 
when they are elements of the same class F of bivariate distributions with 

marginals satisfying 

(4.1.1) (X' , Y') - F' E F, (X, Y) ~ F E F ~ F ~ (X') ~Fr (X) and F ~ (Y') ~ F c (Y) . 

Examples of such classes F are F = {bivariate distributions with continuous 

marginal distribution functions}, F = {empirical bivariate distribution 

functions based on N observations without ties} and F = {bivariate distri­

bution functions with given marginals}. 

PROPOSITION 4.1.1. (X,Y) ~ (X',Y') iff there exist strictly increasing 

functions \)I: x-+ x· and \)2: y-+ Y' such that (X',Y') - (\!l(X),v2(Y)). 

PROOF. First consider the if-part. Let v7: X' -+ X and v2 : Y' -+ Y be the 

inverses of v 1 and v 2 respectively. Since v7 is strictly increasing on X' 

it follows from X' ~ v 1(X) that F;(x) = Fr(v7(x)) for all x EX'. Similarly, 

F~(y) = Fc(v;(y)) for ally E Y'. Furthermore, (X,Y) - (v7(x'),v;(Y')). 

Hence (F (X),F (Y)) ~ (F (v-1(X')),F (v-2(Y'))) ~ (F~(X'),F'(Y')). 
r c r c c 

Conversely, assume (F;(x'),F~(Y')) ~ (Fr(X),Fc(Y)). Let U denote the sup-

port of the distribution of F~(X') and Fr(X). Define F; : U-+ X' by 

F'-(u) = inf {x: F' (x) ::o> u}. Obviously, the range of Fr'- is X'. Since X' is 
r r 

the support of the distribution F;, it follows that F;-(F;(X')) - X'. 

Furthermore, since X is the support of the distribution Fr' the function Fr 

is strictly increasing on X. Similarly, F' is strictly increasing on U. 
r 

Hence the function v 1 : X-+ X' defined by v 1(x) = F;-(Fr(x)) is strictly in-

creasing on X. By the same arguments it follows that a similar defined 

function\! = F'-(F ) is strictly increasing on Y. Moreover, 
2 c c 

(X',Y') - (F'-(F (X)),F'-(F (Y))) - (v 1(x),v2(Y)). D 
r r c c 

d 
This proposition shows that the equivalence classes defined by = 

consist of distributions which can be transformed into each other by 

strictly increasing transformations of the marginals. Moreover, it follows 

from this proposition that the ordering § is invariant under strictly in­

creasing transformations of the marginals. 
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The results above show that the ordering "more quadrant dependent" 

has some desirable elementary properties. The next section considers 

measures of positive dependence which preserve this ordering. But let's 

first turn to a somewhat stronger ordering for positive dependence on 

which this chapter is mainly focussed. 

DEFINITION 4.1.4. The pair (X',Y') is said to be more assoaiated than (X,Y), 

denoted (X',Y') ~ (X,Y) or F' ~ F, when there exist functions Kl: XxY + X' 

and K2 : X x Y + Y' such that for all x 1 ,x2 E X and y 1 ,y2 E Y 

(4.1.2) 

(4. 1.3) 

(4. I. 4) 

Occasionally, the briefer notation (X',Y') ~ K(X,Y) is used instead of 

(4.1.4), where K is the vector valued function K = (K1,K2). Of course 

(4.1.2) means that K1 and K2 are increasing in both arguments and (4.1.3) 

excludes reflection about the diagonal. Reflection is excluded in order to 

make the ordering compatible with§ and~. Note that (X',Y') ~ (X,Y) does 

not imply (X',Y') § (Y,X). 

Two special cases of the ordering ~ are also of interest. First, in 

case where K1 satisfies K1(x,y) = x for all x EX, y E Y, the pair (X',Y') 

is said to be more row regression dependent than (X,Y), denoted 

(X',Y') V (X,Y). The second special case arises when K2(x,y) = y for all 

x EX, y E Y and is called more aolwrm regression dependent (denoted'~{). 

Clearly, in both cases (4.1.2) implies (4.1.3). 
q 

The names of these orderings, and also that of ~. are borrowed from 

the form of dependence of the class of distributions which are~. ~r, ~r 

and~ than independence; see Proposition 4.1.2 below. Let's first review 

the definitions of these forms of dependence. The pair (X,Y) is called 

assoaiated by ESARY, PROSCHAN and WALKUP (1967) if Cov (K 1(X,Y),K2(X,Y)) ~ 0 

for all pairs of functions K1 and K2 which are increasing in both arguments 

and for which the covariance exists. Furthermore, the pair (X,Y) is called 

quadrant dependent by LEHMANN (1966) when their joint distribution function 

satisfies F(x,y) ~ Fr(x)Fc(y) for all x,y E lR. The following well-known 



relation between these forms of dependence and the forms considered in 

Section 3.2 is proved in ESARY et al. (1967) and TONG (1980, pp. 80,86). 

P RR 1-dep. 
TP 2-dep. => DR 1-dep. 'Is ~association=> quadrant dep. 

CR 1-dep. 

PROPOSITION 4.1.2. 

(4.1.5) (X' 'y') § (X, Y), (X,Y) is quadrant dep. => (X' ,Y') is quadrant 

(4. I. 6) (X' ,Y') 
a 
?: (X,Y), (X,Y) is associated => (X', Y') is associated 

(4.1.7) (X' ,Y') rf (X,Y), (X,Y) is RR 1-dep. => (X' 'y') is RR1-dep. 

(4.1.8) 
, , er 

(X ,Y ) ?: (X,Y), (X,Y) is CR 1-dep. => (X', Y') is CR 1-dep. 

Moreoi,er, let X and Y be independent then 

(4.1.9) (X' ,Y') § (X,Y) ... (X',Y') is quadrant-dep., 
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dep. 

and if in addition X and Y have continuous distribution functions, then also 

(4.1.10) 

(4.1.11) 

(X' ,Y') V (X,Y) ~ (X' ,Y') is RR 1-dep. 

er 
(X' ,Y') ?: (X,Y) ... (X',Y') is CR 1-dep. 

PROOF. The proof of (4.1.5) is trivial and (4.1.6) follows directly from 

property P4 in ESARY et al. (1967). The result (4.1.7) can be verified as 

follows. Let K2 : X x Y _,,. Y' be an increasing function such that 

(X',Y') ~ (X,K2(X,Y)). Then for x 1 < x2 (x 1,x2 EX), 

Hence the family of conditional distributions of Y'IX' = x is stochastically 

increasing in x. The proof of (4.1.8) is similar. 

Since independence is a special case of quadrant, RR 1 and CR 1-dependence 

the implications from left to right in (4.1.9), (4.1.10) and (4.1.11) 

follow from the results above. The implication from right to left in 

(4.1.9) is trivial. The similar implication in (4.1.10) is proved as 

follows. Let X and Y be independent having continuous distribution functions 

and let (X',Y') be RR1-dependent. Thus the conditional distribution function 

F~lr(· Ix) of Y' Ix' = x is decreasing in x. Define in the function 
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K2 : x x y -+ Y' by 

K2 (x,y) = inf {n: F' J (njx) ~ F (y)}. 
c r c 

Obviously, the range of K2 is Y' and, moreover, K2 is increasing in both 

arguments. Furthermore, 

F (y)} 
c 

Therefore, 

P{K2 (X,Y)syjX=x} = P{K2 (x,Y)sy} = P{F (Y)sF'j (yjx)} = F'j (yjx) c c r c r 

where the last equality holds because continuity of Fe implies that Fc(Y) 

is uniformly distributed on the unit interval. Thus the distribution 
. . rr 

function of (X,K2(X,Y)) is F' and hence (X',Y') ~ (X,Y). Note that (4.1.3) 

follows since K1(x,y) ='x and K2 is increasing. The proof of (4.1.11) is 

similar. D 

Note that (X' ,Y') is more concordant than independence iff (X' ,Y') is 
c 

quadrant dependent. Thus by the same arguments, ~ could in fact also be 

called "more quadrant dependent". By Theorem 2. 1 in ESARY et al. (1967), an 

independent pair is associated and hence by (4.1.6), (X',Y') is more as­

sociated than independence implies that (X' ,Y') is associated. However, 

counterexamples can be constructed showing that even in the continuous case 

a converse of this result does not hold. But (4.1.10) and (4.1.11) suggest 

that the class of associated distributions is not much larger than the 

class of distributions which is ~ than independence. 

The ordering ~ has, just as §, the desirable property that it is in­

variant under strictly increasing transformations of the marginals. 

PROPOSITION 4.1.3. Let (X',Y') ~ (U',V') and (X,Y) ~ (U,V), then 
a a 

(X',Y') ~ (X,Y) iff (U',V') ~ (U,V). 

PROOF. Using Proposition 4.1.1 and the fact that the composition of in­

creasing functions is again increasing, the proof is straightforward. D 

a 
So the ordering ~ also gives rise to the equivalence classes defined 

d a 
by = It can be verified that ~ is reflexive and transitive. Moreover, 

since Theorem 4.1.4 below shows that (under some conditions on the mar-

. 1 ) h d · a · q · a f 11 f gina s t e or ering ~ is stronger than ~. anti-symmetry of ~ o ows rom 

anti-symmetry of ~- Hence, ~ is a partial ordering on any subclass of 



bivar>iate distributions F satisfying (4.1.1) of all equivalence classes 

defined by ~. (On the class of all bivariate distributions, anti-symmetry 
a 

does not hold and ~ is only a preordering.) 

THEOREM 4.1.4. Let F be a class of bivar>iate distribution functions with 

marginals satisfying (4 .• 1.1). Then for F' ,F E F 

a q 
F' ~ F => F' ~ F. 

a a 
PROOF. By Proposition 4.1.3, (X',Y') ~ (X,Y) iff (F;(x'),F~(Y')) ~ 

(F (X),F (Y)) and hence it is sufficient to consider distributions with 
r c a c 

the same marginals and prove F' ~ F => F' ~F. So let X' ~ X, Y' ~ Y and 

K1 : X x Y ~ X and K2 : X x Y ~ Y be such that (4.1.2), (4.1.3) and (4.1.4) 

hold. Choose x EX and y E Y. By (4.1.2) and (4.1.4) it follows 

(4. I. 12) 

(4.1.13) 

P{X S x,Y Sy} S P{X' S K1(x,y),Y' S K2(x,y)}, 

P{X ~ x,Y ~ y} $ P{X' ~ Kl(x,y),Y' ~ K2(x,y)}, 

and by (4.1.3) and (4.1.4) 

(4.1.14) 

(4.1.15) 

P{X < x,Y > y} ~ P{X' < Kl(x,y),Y' > K2(x,y)}, 

P{X > x,Y < y} ~ P{x' > Kl(x,y),Y' < K2(x,y)}. 

Next consider the following four cases. 

(i) Suppose K1(x,y) $ x and K2(x,y) s y, then by (4.1.12) 

(4. I. 16) P{X s x,Y $ y} s P{X' s x,Y' s y}. 

(ii) Suppose K1(x,y) > x and K2(x,y) > y, then by (4.1.13) 

(4.1.17) P{X > x,Y > y} s P{X' > x,Y' > y}. 

(iii) Suppose K1(x,y) > x and K2(x,y) s y, then by (4.1.14) 

(4.1.18) P{X s x,Y > y} ~ P{X' s x,Y' > y}. 

(iv) Suppose K1(x,y) s x and K2(x,y) > y, then by (4.1.15) 

(4. I. 19) P{X > x,Y s y} ~ P{X' > x,Y' s y}. 

Since X' ~ X and Y' ~ Y, it follows that each of the formula's (4.1.17), 

(4.1.18) and (4.1.19) implies (4.1.16). Hence for all x EX, y E Y, 
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c 
(4.J.16) holds, implying F' 2 F. D 

It is obvious that the converse of this theorem does not hold. 

a 
This section closes with some examples of the ordering 2. 

EXAMPLE 4.1.1. This first example gives an intuitive idea of the ordering 
a 
2 in terms of transformations of mass. Consider the case where (X',Y') is 

a linear transform, with positive coefficients, of (X,Y). Since the ordering 
a 
2 is invariant under location and scale transformations it is no loss of 

generality to assume that 

(4.1.20) (X' ,Y') ~ ((1-a)X+aY, (1-S)X+ SY) 

for 0 s as S s I. The figure below illustrates that the mass of the dis­

tribution F in the first and third quadrant of JR2 is mapped by the function 

K(x,y) 

(1-a)y 

( ( 1-a)x + ay, ( 1-S)x + Sy) onto the region between the lines 

(1-S)x and ay = Sx. 

R' 

Clearly, the mass of F' is more concentrated around the line y 

that of F. 

x than 

Special cases of the transform (4.l.20) give rise to one-parameter 

families of bivariate distributions {F(a)} A' e.g. 
aE 

(X(a) ,Y(a)) ~ ((1-a)X+aY,Y) for a EA= [O,l]. 

h . f ·1 . . ·1 h h 0 ' l . l" (a') er (a) For t is ami y it is easi y s own t at s a s a s imp ies F 2 F . 

Another example is the family 

(X(a) ,Y<a» ~ ((I-a)x+aY,aX+ (l-a)Y) for a EA= [O,U, 

which is a special case of a family considered by KONIJN (1956); see also 

RUYMGAART (1973). Elementary calculations yield for this family that 

O s as a' s ~ iff F(a') ~ F(a). 
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Linear transforms (4.1.20) form perhaps the most important examples of 
a 

the ordering 2 for continuous distributions. Unfortunately, families 

{F(a)} generated by trivariate reduction 
a>o 

for a > 0, 

where z1, z2 and z3 are independent, generally do not give an example of 
a 

the ordering 2. 

EXAMPLE 4.1.2. Let (X,Y) and (X',Y') have bivariate normal distributions 

with correlation parameters p and p' respectively. Then 

a 
(4.1.21) (X' ,Y') 2 (X,Y) iff -I< p ~ p' ~ l. 

rr er 
In fact, the stronger orderings 2 and 2 hold for the standardized distri-

butions. Moreover, these orderings hold in any elliptical family. Recall 

that elliptical distributions have densities of the form 

det <t>-~ h((x-f,)T t-1 (x-sj)' 
y-n y-n;/ 

where t is a symmetric strictly positive definite 2 x 2 matrix and the 

function h determines the family (cf. MUIRHEAD, 1982, p. 34). Denote this 

distribution by E(h;(f,,n),t). The correlation for this elliptical distri-
1 

bution is p = a 12/(a11 0 22 ) 2 , where CTij is the (i,j)-th element of t. 
Independence is equivalent to p = 0 only in normal distributions. It is 

easily verified that elliptical distributions are closed under linear 

transformations; i. e. for any 2 x 2 matrix K the linear transform (X,Y)K ~ 

E(h;(f,,n)K,KtKT) whenever (X,Y) ~ E(h;(f,,n),t). Hence for (X',Y') ~ 

E(h;(O,O),i') and (X,Y) ~ f(h;(O,O),t),where 

t1 = (I p') 
4 \p' I 

and 

it follows by putting K2(x,y) = y and 

2 2 ! 2 2 ! 
Kl (x,y) = ((1-p' )/(1-p )) 2 x + (p' - p((l-p' )/(1-p )) 2 )y 

er 
that (X',Y') 2 (X,Y) iff I< p ~ p'. It is easily seen that (4.l.21) holds 

for elliptical distributions with arbitrary expectations and covariance 

matrices. 

The following proposition is merely a characterization of the 
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orderings 
a q 
~ and ~ for empirical distributions. Recall that two pairs of ob-

servations (x 1 ,y1) and (x2,y2) are called concordant when (x2 - x 1 )(y2 -y1) > 0 

and disconcordant when (x2 -x1)(y2 -y 1) <O. Furthermore, they tie in the 

row variable when x 1 = x2 and tie in the colwrm variable when y 1 = y2• 

PROPOSITION 4.1.5. Let F(N) and F'(N) be two. empirical distribution func­

tions based on two sets of N observations (x 1,y 1), ••• ,(~,yN) and 

(xj,yj), ... ,(~,yN) respectively. Suppose there are no ties in both sets of 

observations. Then 
(]_') FA,(N) ~ FA(N) 'f-f' f'. tat' ( ) f (I ) _ ~, .or some permu ~on n 1 , ••• ,nN o , ... ,N 

( 4. I. 22) 

and 

(4. 1.23) x;i < x;j' y;i > y~j "'*' xi < xj' Yi> Yj· 

(ii) F,(N) ~ F(N) iff there exists a permutation (n 1, ••• ,nN) of 

(l, ... ,N) such that for i = l, ... ,N the number of observations in the first 

set which is concordant with (x.,y.) is less than or equal to the number 
]_ ]_ 

of observations in the second set concordant with (x~.·Y~.). 
]_ ]_ 

PROOF. Let X = {x 1 , ••• ,xN}, Y {y 1 , ••• ,yN}, X' = {xj, .•. ,xN} and 

Y' = {yj •... ,yN}. 

(i) First suppose F' (N) ~ F(N). Let Kl : x x y -> x· and 

K2 :XxY->- Y' be functions satisfying (4.1.2), (4.1.3) and (4.1.4). Clearly 

(4.1.4) implies that there exists a permutation (n 1, ... ,nN) of (l, ... ,N) 

such that x;. = K1 (xi,yi) and Y~. = K2(xi,yi) for i = l, ... ,N. Since there 
]_ ]_ 

are no tied observations (4.1.2) and (4.1.3) imply (4.1.22) and (4.1.23). 

Conversely, suppose there exists a permutation (n 1, ... ,nN) of 

(J, ••• ,N) such that (4.1.22) and (4. 1.23) hold. Define functions K1 and K2 
in the N points of the first set of observations by K1(xi,yi) = x~i and 

K 2 (xi, Yi) = y; i for i = I , ... ,N. Furthermore, let x0 = inf {X} and 

y0 = inf {Y} and define K1 (x0 ,y0) = inf {X'} and K2(x0 ,y0) = inf {Y'}. 

Extend the functions K1 and K2 in other points (1;,n) E X x Y by 

Kl (!;,n) =sup{K1(x.,y.) : x. s i;' y. s n, 0 s i s N}, 
]_ ]_ ]_ ]_ 

K2(!;,n) =sup {K2(x. ,y.) : x. s i; ' Y· s n, 0 s i s N}. 
]_ ]_ ]_ ]_ 

In order to verify (4. I. 2) let !; 1 s !;2 and nl s n2' then 
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{(x.,y.): x. s t;, 1,y. s 11 1, O sis N} c {(x.,y.):x. s t;, 2 ,y. s 112 , 0 sis N} 
l. l. l. l. l. l. l. l. 

and hence K1(t;, 1 ,11 1) s K1(t;, 2 ,11 2) and K2(t;, 1 ,11 1) s K2(t;, 2 ,11 2). Furthermore, 

verify (4.1.3) as follows. Let t;, 1 ,t;, 2 EX; 11 1 ,112 E Y such that 

K1(t;, 1 ,11 1) < K1(t;, 2 ,11 2) and K2(t;, 1 ,11 1) > K2 (t;, 2 ,11 2). Then for the observation 

(xi,yi) such that xi s t;, 1, yi s 11 1 and K2(xi,yi) = K2 (t;, 1 ,11 1) and for the 

observation (xj,yj) such that xj s t;, 2 , yj s 11 2 and K1 (xj,yj) = k 1Ct;, 2 ,112) it 

follows that K1(xi,yi) < K1(xj,yj) and K2(xi,yi) > K2(xj,yj). By (4.1.23) 

this implies t;, 1 < t;, 2 and 11 1 > 112 • 

(ii) The proof of the second part of the proposition follows 

directly from the definition of ~- 0 

4.2. MEASURES OF DEPENDENCE PRESERVING THE ORDERINGS 

It is interesting to know which measures of positive dependence pre­

serve the orderings ~. ~ and ~. Measures of interest can be written as real 

valued functionals of the (empirical) distribution function. Such a measure 
a 

~ is said to preserve ~ when 

F' ~ F => ~(F') ~ ~(F). 

TCHEN (1976) and CAMBANIS et al. (1976) considered this problem for the 
c 

ordering~; their result is formulated in Theorem 4.2.1 below. 

DEFINITION 4.2.1. A real valued function W defined on1R2 is called lattice­

superadditive (L-superadditive) when 

Note that W is 1-superadditive iff exp (W) is TP 2. So examples of 1-

superadditive functions are easily derived from examples in Section 3.1. 

THEOREM 4.2.1. Let F' ~ F and w be right continuous and L-superadditive on 

1R2, then 

(4. 2. I) ff W(x,y)dF' (x,y) ~ fJ W(x,y)dF(x,y) 
1R2 1R2 

provided the integrals exist and either of the following conditions is 

satisfied: 

(i) W is symmetric and the expectations f W(x,x)dF (x) and 
r 

f W(y,y)dFc(y) are finite, 



72 

(ii) the expectations f W(x,y0)dFr(x) and f W(x0 ,y)dFc(y) are finite 

for some y 0 and x 0 . 

Conversely, if the marginal distributions of F' and F are the same and 
c 

(4.2.1) holds for all L-superadditive functions w, then F' 2 F. 

PROOF. The first part of the theorem is proved in CAMBANIS et al. (1976). 

Its converse follows by noting that the indicator function of the set 

(- 00 ,x] x (- 00 ,y] is L-superadditive. D 

The conditions (i) and (ii) of this theorem can be weakened and per­

haps they are not necessary at all. These conditions or their weaker ver­

sions are satisfied in all cases of interest; e.g. w bounded, w(x,y) = xy 

or any example in which the support of F and F' is bounded (cf. CAMBANIS 

et al., 1976). 

PROPOSITION 4.2.2. Let F be a class of bivariate distribution functions 

satisfying (4.1.1) and let~ be a functional which preserves~ and is in­

variant under strictly increasing transformations of the marginals. Then 

~preserves ~and § on F, i.e. 

F' § F; F',F E F =<> ~(F') 2 ~(F) 

and a similar implication a fortiori holds for ~. 

PROOF. Follows directly from Propositions 4.1.1, 4.1.3 and Theorem 4.1.4. D 

By Proposition 4.1.3 the condition that~ is invariant under strictly 

increasing transformations of the marginals is necessary also. For example, 
c 

Pearson's product moment correlation preserves 2, but it does not preserve 

~ nor § because it is not invariant under strictly increasing transforma­

tions of the marginals. It is obvious that rank statistics and measures 

based on canonical correlations have this invariance property. 

EXAMPLE 4.2.1. Linear rank statistics. 

Let J be a real valued function defined on (O,I] x (O,I] and consider 

measures of the form 

(4.2.2) ~(F) =ff J(F (x),F (y))dF(x,y). 
lR2 r c 

For an empirical distribution function F(N) based on N observations 
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(4.2.3) 

where Riis the rank of xi among x 1, ..• ,~ and Qi is the rank of yi among 

y 1, ••• ,yN. Statistics of the form (4.2.3) are called linear rank statistics. 

For underlying distributions F the measure (4.2.2) may be interpreted as a 

population value. The function J is called the (generating) score function. 

In practice the score function usually depends on the sample size N and is 

derived from the generating score function in either of the following two 

ways. The frequently used approximate score function is defined by 

(4.2.4) JN(u,v) = J(i/(N+l),j/(N+I)) 

for (u,v) in ((i-1)/N,i/N] x ((j-1)/N,j/N], i 

The exact score function is obtained by using 

I , ... ,N and j I ,. • .,N. 

instead of (4.2.4), where Ui:N denotes the i-th order statistic in a random 

sample of size N from the uniform distribution on (0,1) and Vi:N is an 

independent copy of Ui:N" 

The (generating, approximate or exact) score functions of most well­

known rank statistics are of product type J(u,v) = f(u)g(v), where f and g 

are increasing, right continuous and integrable functions. Such score 

functions are L-superadditive and satisfy the additional condition (ii) of 

Theorem 4.2.1 (because ~(x,y) = xy satisfies this condition). Moreover, 

linear rank statistics are invariant under strictly increasing transforma­

tions of the marginals. Therefore, the following specific examples of 
c a q 

linear rank statistics preserve 2 and preserve 2 and 2 on classes of dis-

tributions F satisfying (4.1.1). 

Spearman's rank correlation rho has the generating score function 

(4.2.5) J ( u , v) = 3 ( 2u - I )( 2v - 1 ) . 

Using the approximate score function in the empirical case (without ties), 

this statistic equals the sample product moment correlation of the ranks. 

Fisher-Yates' normal score statistic has the generating score function 

J(u,v) 

where ~- is the inverse of the standard normal distribution function. In 
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the empirical case the Fisher-Yates normal score statistic is computed with 

the exact score function, whereas the approximate score function produces 

the vander Waerden statistic. 

The generating score function of the quadrant statistic is given by 

J(u,v) = sign (u - !) sign (v - !) 

where sign (u) = -1,0,1 as u < 0, = 0 or> O. 

EXAMPLE 4.2.2. Non-linear rank statistics. 

Consider measures of the form 

(4.2.6) ~(F) =ff K(F(x,y))dF(x,y). 
lR2 

Since any bivariate distribution function F is L-superadditive it follows 

from MARSHALL and OLKIN (1979, p. 151) that K(F) is L-superadditive when K 

is increasing and convex. So if in addition K is also right continuous and 

either one of the conditions (i) or (ii) of Theorem 4.2.1 is satisfied, 
c 

then F' ::> F implies ffK(F')dF' ::> ffK(F')dF ::> ffK(F)dF. The last inequality 

holds because K is increasing. Hence under these conditions on K, the 

measure (4.2.6) preserves ~ and preserves ~and ~on classes of distribu­

tions F satisfying (4. I. I). 

Kendall's rank correlation tau is a rank statistic of the form (4.2.6) with 

(4. 2. 7) K(u) = 4u - I. 

For empirical distributions based on N observations (without ties) one 

usually takes 

(4.2.8) ~(u) = (N- l)-l(4Nu-N-3). 

Clearly, these functions K have the desired properties. Inserting (4.2.8) 

in (4.2.6) yields the well-known formula 

~ (F(N)) = (#{concordant pairs} - #{disconc. pairs})/#{pairs}, 
K 

provided there are no ties. Therefore it alternatively follows directly 

f P . . 4 I 5 h d 11' a d q f . . 1 rom ropos1t1on • . t at Ken a s tau preserves ::> an ::> or emp1r1ca 

distribution functions without ties. 

EXAMPLE 4.2.3. Signed canonical correlation. 

The signed canonical correlation of a pair (X,Y) with distribution function 
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F is defined by 

(4.2.9) <Psc(F) = supCorr(q>(X),ljl(Y)) 

where the supremum is taken over all increasing functions q> and ljJ for which 

the correlation exists. It is easily verified that the signed canonical 
c q a 

correlation preserves ~ and preserves ~ and ~ on classes F satisfying 

(4.1.1). To this end let F' ~F. Choose£> 0 and let tD1 and w1 be in­

creasing functions such that <Psc (F) s: Corr (q>1 (X) ,l/11 (Y)) + £. Then by Theorem 

4.2.1, JJ tJ>1l)J 1dF' ~ JJ t1> 1$ 1dF. Since t1>1 (X') ~ q>I (X) and l/1 1 (Y') ~ l/1 1 (Y) it 

follows that <Psc(F') ~Corr(q> 1 (x'),l/1 1 (Y')) ~ <Psc(F)-£. Since£ is arbitrary, 

<Psc<F') ~ <Psc(F). Application of Proposition 4.2.2 yields the desired re­

sult for ~ and ~. 

These examples show that all familiar measures of positive dependence 
a q 

preserve~ and~. It follows directly from Example 4.1.2 that omnibus 

measures such as Pearson's x2 (2.1.8), the canonical correlation, the cor­

relation ratio, the rank statistic <JJ (F(x,y) -F (x)F (y)) 2dF(x,y))~ of r c 
HOEFFDING (1948), etc. do not preserve these orderings. But the canonical 

correlation actually preserves both orderings on the class of DR 1-dependent 

probability tables (distributions) satisfying (4.1.1), because by Theorem 

3.3.2 the canonical correlation and the signed canonical correlation are 

equal for such distributions. 

a 
4.3. SAMPLING PROPERTIES OF THE ORDERING ~ 

The main results formulated in this section show that the order pre-
a 

serving properties of the ordering ~ given in the previous section carry 

over from population distributions to finite samples from these distribu­

tions. The ordering ~ does not share this property with ~. This is the 
a 

principal reason for introducing ~. 

Let F and F' be arbitrary bivariate distribution functions and let 

F-(N) d F- 1 (N) b . . 1 d' 'b . f . b d 1 f N an e emp1r1ca 1str1 ution unctions ase on samp es o 

i.i.d. observations from F and F' respectively. 

a 
THEOREM 4.3.1. Let <P be a measure which preserves~. Then 

(4. 3. I) 
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for all t and N; i.e. ~(F'(N)) is stochastically larger than ~(F(N)) for 

all sample sizes N. 

PROOF. Let (X 1,Y 1), ••• ,(~,YN) be a sample of N i.i.d. observations from F 

and let F be the corresponding empirical distribution function (the super­
a 

script (N) is suppressed). Since F' ~ F there exist functions K1 and K2 
such that (K 1(X.,Y.),K2(X.,Y.)) for i= l, ••• ,N is a sample of N i.i.d ob-

l. l. l. l. 

servations from F'. Denote its empirical distribution function by H'. 
Clearly, the empirical distribution function F' of any other sample of N 

i.i.d. observations from F' has the same distribution as H'. Furthermore, 

it is obvious that P{H' ~ F} =I, which implies P{~(H') ~ ~(F)} =I. Hence 

for all t, P{~(F) > t ~ ~(H')} = 0 and (4.3.1) follows. 0 

rr er 
It is clear that similar results also holds for ~ and ~ and measures 

preserving these orderings. The measures discussed in the previous section 
a 

preserve~ on classes of distributions with marginals satisfying (4.1.1) 

and hence the theorem is not directly applicable to these statistics. But 

if the underlying distributions have continuous marginal distribution func­

tions, the class of all empirical distribution functions drawn from such 

underlying distributions satisfies (4.1.I) and therefore the following 

corollary holds. 

COROLLARY 4.3.2. Let F andF' be bivariate distributions with continuous 
a 

marginal distribution functions and let ~ be a measure which preserves ~ on 

classes of distribution functions satisfying (4.1.I), then (4.3.1) holds. 

It follows from the examples in the previous section that when F and 

F' have continuous marginals, then (4.3.1) holds for Spearman's rank cor­

relation rho, Fisher-Yates' normal score statistic, vander Waerden's statis­

tic, the quadrant statistic, Kendall's rank correlation tau and the signed 

canonical correlation. This result implies that tests based on these statis­

tics have a higher power against F' than against F. In particular, it follows 

from Proposition 4.1.2. that these tests are unbiased against all RR1-depen­

dent and CR 1-dependent alternatives with continuous marginals. This unbiased­

ness result is, for some of these statistics, also proved in LEHMANN (1966). 

Note that (4.3.1) also holds for these statistics when the functions 

K1 and K2 of Definition 4.1.4 are such that for any sample (X 1,Y 1), .•• , 

(~,YN) from F the empirical distribution function of this sample and the 

empirical distribution function of (K 1(x1,Y 1),K2(x1,Y 1)), •.• , 

(Kl(~,YN)'K2(~,YN)) satisfy (4.1.1). 
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a 
Another aspect of the order preserving property of the ordering 2 is 

a 
the following. Suppose F' and F are associated and F' 2 F. Then samples 

from F' are more frequently associated than samples from F. 

. a 
PROPOSITION 4.3.3. Let F be assoc~ated and F' 2 F, then for all sample 

sizes N 

P{F'(N) is associated} 2 P{F(N) is associated}. 

rr 
Similar results hold for RR 1-dependence and 2 and for CR 1-dependence and 
er 
2. 

a 
PROOF. By (4.1.6), F' 2 F and Fis associated imply F' is associated. Using 

the same set-upas in the proof of Theorem 4.3.J, it follows that Fis 

associated implies H' is associated. Hence 

P{F is associated} ~ P{H' is associated}. D 

4.4. THE DISCRETE CASE 

If the distributions F and F' contain atoms, the main result given in 

the previous section is generally not applicable to the statistics con­

sidered in Section 4.2. Moreover, these rank statistics are not well-defined 

for samples containing ties. Furthermore, Definition 4.1.4 requires that 

the whole mass of each atom of Fis moved to an atom of F'. In particular, 

when F and F' correspond to probability tables P and P' of the same size, 

this means that cell's of Pare pooled in order to obtain P' and empty 
a 

cell's in P' arise. Thus the ordering 2 is only present between probability 

tables in very few and simple cases and although Theorem 4.3.1 is valid, 

statistics to which this theorem can be applied are still unknown. 

This section discusses a modified definition of the ordering "more 

associated" which is more appropriate for probability tables. It is shown 

that the results of the previous sections continue to hold for the modified 

ordering in the probability table case, provided the measures of dependence 

are appropriately defined. The idea used here can also be applied to dis­

crete distributions in general, but the notation is then more complicated. 

This section is only concerned with the probability table case and 

it is assumed that (X, Y) and (X' ,Y') are distributed on X x Y and X' x Y' 

respectively, where X = {J, •.. ,n}, Y {I , ... ,m}, X' = {I , ... , n' } and 

Y' = {J, ••• ,m'}. Their distributions F and F' correspond to probability 
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tables P and P' with entries p .. 
l.J 

P{X = i, Y = j} and p ! . 
l.J 

P{X'=i,Y'=j} 

for appropriate indices i and j. 

DEFINITION 4.4.1. In the probability table case (X',Y') is said to be more 

associated than (X,Y), denoted (X',Y') 1 (X,Y), when 

a 
(X' +U', Y' +V') ~ (X+U,Y+V) 

where U', U, V' and V are independently and uniformly distributed on [O,I) 
a 

and also independent of (X',Y') and (X,Y). Equivalent!Y to (X',Y') ~ (X,Y) 
a a ft er q 

the notation F' ~ F or P' ~ P is used. Orderings ~ , ~ , ~ and the equi-

valence relation i are similarly defined. 

The assumption of uniformityof U, U', V and V' is no restriction. 

Their independence is not essential but has convenient consequences (e.g. 

Proposition 4.4.I). 

Clearly, (X'+U',Y'+V') and (X+U,Y+V) are distributed on 

[I,n'+I)x[I,m'+I) and [l,n+l)x[l,m+l) respectively and have continuous 

marginal distribution functions. These conti'!!:,uous versions of (X',Y') and 
_, - a _, a-

(X,Y) are denoted by F' and F. Thus (X',Y') ~ (X,Y) iff F' ~F. 
a 

It follows from the results in Section 4.1 that the orderings~ and 
g d 
~ are partial orderings of the equivalence classes defined by = over all 

probability tables. 

Furthermore, it is easily verified that the pair (X,Y) is independent, 

quadrant dependent, associated, RR1-dependent or CR1-dependent iff its con­

tinuous version (X + U, Y + V) has the corresponding form of dependence. There­

fore, the following proposition follows directly from Proposition 4.1.2. 

PROPOSITION 4.4.1. 

(X' ,Y') '[ (X,Y), (X,Y) is quadrant dep. '* (X' , Y') is quadrant dep., 

(X' ,Y') 
a 
~ (X,Y), (X,Y) is associated ,. (X' , Y' ) is associated, 
~ 

(X' ,Y') Y (X,Y), (X,Y) is RR 1-dep. ,. (X', Y') is RR 1-dep., 

( I I) CT X ,Y ~ (X,Y), (X,Y) is CR 1-dep. ,. (X', Y') is CR 1-dep •• 

Moreover, when X and Y are independent, then 

(X' ,Y') §' (X,Y) ~ (X', Y') is quadrant dep., 
ft 

(X' ,Y') ~ (X,Y) ~ (X' ,Y') is RR 1-dep., 
er 

(X' ,Y') ~ (X,Y) CoO (X', Y') is CR 1-dep .• 
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PROPOSITION 4.4.2. (X' ,Y') ~ (X,Y) ~ (X' ,Y') ~ (X,Y). 

Next consider a measure of dependence ~ which is (properly) defined 

for bivariate distributions with continuous marginal distribution functions. 

Define the probability table version '¥ of ~ for a probability table P by 

(4. 4. I) $(P) = ~(F) 

where F is the continuous version of the distribution function F corres-

ponding to P. Thus even for an empirical probability table the probability 

table version'¥ is defined as ~ computed at its continuous version. The 

probability table version of rank statistics show similarity to the 

randomization procedure of removing tied observations: the randomization 

procedure is not performed but the randomization distribution is considered 

instead. In the case that the score function J in the measure (4.2.2) is 

bilinear and in the case that the function K in the measure (4.2.6) is 

linear, the probability table versions ';jj' of these measures ~ are equivalent 

to the statistic~ using mid-ranks for ties (see Examples 4.4.1 and 4.4.2). 

In general ';ji' need not be equivalent to ~ with well-known treatment of ties 

(such as: expectation of the statistic over randomization of ties, expecta­

tion of score function over randomization, mid-ranks, least favourable 
~ " ~ 

value of the statistic, most favourable value, etc; cf.HAJEK and SIDAK, 

1967, pp. 118-124). Nor need'¥ correspond to other well-known adaptations 

of rank statistics to contingency (probability) tables. But the version 

(4.4.1) is a natural choice for adapting statistics for which results, simi­

lar to those given in the previous sections, can easily be derived. 

In the following two examples the probability table versions of Ken­

dall's tau and Spearman's rho are calculated. First note that for an nxm 

(empirical) probability table P the distribution function of its con­

tinuous version equals 

(4.4.2) 
- i-1 j-1 j-1 i-1 
F(x,y)= I: I: p,_v+(x-i) I: p~ 0 +(y-j) L pk.+(x-i)(y-j)p .. 

k=I l=I l<A- l=I L-L k=l J l.J 

for i $ x $ i+I and j $ y $ j+l and i= l, ••• ,n; j = 1, ••• ,m. A summation 

>::O • d i<=I is assume to be zero. 

EXAMPLE 4.4.1. Kendall's rank correlation tau. 

By (4.4.I), (4.4.2), (4.2.6) and (4.2.7) the probability table version of 

Kendall's tau for an nxm (empirical) probability table P equals 
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n m "+) jjl 
$K(P) II 4FdF- I = 4 I: I: p .. 1I F(x,y)dydx - I 

i=I j=I 1J i j 
n m (i-1 j-1 i-1 j-1 

4 I: I: . . I: I: Pive + ! I: pkj + ! :r. Pu + !p .. ) - I• 
i=I j=I p1J k=I f.=I k=l l=I 1J 

Elementary calculations yield 

$K(P) 
n m c-1 j-1 i-1 m 

Pkf.) = 2 I: I: p.. I: I: p - I: I: 
i=I j=I 1 J k=I l=i kl k=l l=j+l 

(4.4.3) 

2{sum of all 2x2 determinants}. 

To show this we employ a more transparent notation. Let (X1,Y 1) and (X2,Y2) 

be independent, both with distribution specified by P and let u1, v1, u2 
and v2 be independent and uniformly distributed on [O,I). Then 

(4.4.4) 

Furthermore 

(4.4.S) 

$K(P) = 4P{X I + U I :> x2 + U 2, YI +VI :> Y 2 + V 2} - I 

4(P{X1 < X2,YI < Y2} + !P{X1 < X2,YI = y } 
2 

+!P{X 1 X2,YI < y2} + !P{x1 = X2,Yl =Y2})-I. 

2(P{XI < X2,Yl < y2} + P{xl < x2,YI > Y2} + P{xl 

+ P{X1 < x2,Y 1 = Y2} + !P{X1 = x2,Y 1 = Y2}). 

Inserting (4.4.S) in (4.4.4) yields 

2(P{X 1 < x2,Y1 < Y2} - P{x1 < X2,Y 1 > Y2}) 

2(P{(x 1,Y 1) is concordant with (X2,Y2)} 

-P{(x 1,Y 1) is disconc. with (X2,Y2)}), 

establishing (4.4.3). In case of an empirical probability table P(N) based 

on N observations, (4.4.3) becomes 

(4.4.6) $K(P(N)) = (#{concordant pairs} - #{disconc. pairs})/(~N2 ). 

This is equivalent to two other adaptations of Kendall's tau to contingency 

tables. First, KENDALL (1975, p. 34) suggests using the well-known 

definition 

(#{cone. pairs} - #{disconc. pairs})/#{pairs} 
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~ A(N) 
without removing ties. Clearly, this yields N~K(P )/(N-1). Secondly, it 

is equivalent to using mid-ranks for tied observations. Denoting the number 

of observations in the (i,j)-th cell by N .. Np~~)' the mid-rank of the 
iJ iJ 

observations in this cell is 

(i.e. the expected value of the randomized ranks of the observations in the 

cell, where the expectation is taken over the randomization; see HAJEK and 
v ~ 

SIDAK, 1967, p. 121). Therefore, Kendall's tau (4.2.8) with mid-ranks equals 

4N( ~ r N- 2N .. Q .. -N-3)/<N- I) - w-Kc:P<N))/(N-1). 
'i=I j=I iJ iJ 

Other adaptations of Kendall's tau, such as the measure proposed by 

GOODMAN and KRUSKAL (1954) 

(#{cone. pairs} - #{disconc. pairs})/(#{conc. pairs} + #{discnnc. pairs}) 

or the second adaptation proposed by KENDALL (1975, p. 34) 

(#{cone. pairs} - #{disconc. pairs})/ 
! 

(#{pairs with no tie in row var.}#{pairs with no tie in col. var.}) 2 

are not equivalent but quite similar to (4.4.6). It is not clear whether 

Proposition 4.4.3 and Theorem 4.4.4 hold for these two measures. 

EXAMPLE 4.4.2. Spearman's rank correlation rho. 

The probability table version of Spearman' s rho for an n x m probability 

table P equals 

(4.4. 7) 3 ~ r p .. (2ir1 rk+r.-1)(2jr 1 co+cJ.-I) 
i=I j=J iJ k=l i l=l ,{_, 

where r. = L~ 1 p .. for i=l, ..• ,n and c.= Lni"=I p .. for j=l, •.• ,m. For an 
i J= iJ ( ) J iJ 

empirical probability table P N , (4.4.7) is equivalent to Spearman's rho 
~ 'lif ~ 

(formula ( 11) on p. 113 of HAJEK and SIDAK, 1967) with mid-ranks 
,i-1 NA(N) I (NA(N) 1) f . . . d . Ri = -<-k= 1 rk +. 2 r i + or the observations in the i-th row an with 

"d k Q ..-J-1 NA(N) '( A(N) I) f . . . mi -ran s j = "-f=I cl + 2 Ncj + or the observations in the J-th 

column. The statistic obtained in this way equals N2-;p'S(P(N»/(N2 - I). 

The following results easily follow from their counterparts in 

Sections 4.2 and 4.3. 
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a rr 
PROPOSITION 4. 4. 3. Let <I> be a measul'e of dependence which p1'esewes ~ ( ~ , 

~r 01' ~) fol' distl'ibutions with aontinuous mal'ginal distribution funations. 
he . bab ·1 . b1 . ~ a <rr Cr: 9> T n ?-ts p1'o 1-i,?-ty ta ,,e Vel's?-on <I> p1'esewes ~ ~ , ~ 01' :<!' • 

THEOREM 4.4.4. Let P(N) and P'(N) be empi1'iaal p1'obability tables based on 

multinomial samples of size N dl'aliJn f1'om P and P' respeatively. Then for 
. a 

any meaSUl'e i wh?-ah presewes ~. 

fol' aU t and N. 

a 
Thus when P' ~ P, the probability table versions of Spearman's rho, 

Kendall's tau, Fisher-Yates' normal score statistic, the quadrant statistic 

and the signed canonical correlation based on multinomial samples of size 

N drawn from P' are stochastically larger than those based on multinomial 

samples from P. In particular, tests based on these statistics are unbiased 

against RR 1 -depen~nt and CR1-dependent alternatives. 
rr A (N) 

In case P' ~ P, the result of Theorem 4.4.4 also holds when P' 

and P(N) are based on samples of size N from P' and P which are conditioned 

on row sums. A similar property holds of course for Sf and conditioning on 

column sums. It is not clear whether such results extend to other conditional 

Poisson samples; this problem cannot be solved by the method of proof used 

in Theorem 4.3.1. 

Proposition 4.3.3 iunnediately leads to the following result. 

PROPOSITION 4.4.S. Let P and P' be assoaiated ar.d P' ~ P, then for multi­

nomial samples of size N, 

P{P'(N) is associated}~ P{P(N) is associated}. 

~ 

rr 
Simila?' l'esu Us hold for RR 1-dependenae and ~ and CR 1-dependenae and 

rr cr 
When P and P' are DR1-dependent and P' ~ P and P' ~ P then 

Cr 
~ . 

P{P'(N) is DR1-dep.} ~ p{p(N) is DR1-dep.}. This indicates that the ordering 

property of CA more frequently arises in multinomial samples from P' than 

in multinomial samples from P. 

It should be emphasized that Theorems 4.3.1 and 4.4.4 generally do not 

hold for statisticswhich preserve ~. or~ only on special subclasses of bi­
a 

variate distributions. For example, the canonical correlation preserves ~ 
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on the class of all DR 1-dependent probability tables (cf. Section 4.2). But 

since samples from such probability tables need not be DR 1-dependent, 

Theorem 4.4.4 does not apply for the canonical correlation. The following 

example shows that the reversed stochastic inequality may even hold. 

EXAMPLE 4.4.3. Let the distributions of (X',Y') and (X,Y) be specified by 

the 2 x 2 probability tables 

(
1 o\ 

P' = 
4 

) and 
! !/ 

p = (3/16 

9/16 

1/16) 
3/16 

~ 

rr 
respectively. Note that X and Y are independent. Furthermore, P' ::: P. Let 

4)CC denote the canonical correlation functional. Then for multinomial 

samples of size N = 3 the following exact distribution functions can easily 

be computed 

p{(ji' (P'(3)) 
cc ,,; O} .71875, P(4i' (P(3)) 

cc ,,; O} .68359375, 

P{4) (PI (3)) cc ,,; D .90625, P{4) (P(3)) cc ,,; p .89453125, 

p{(ji' (PI (3)) 
cc ,,; 1 } I. O, P{4) (P ( 3)) 

cc 
,,; I} 1.0. 

Thus (ji'CC(P(3)) is stochastically larger than 4)CC(P 1 (
3)). Since for 2x 2 

probability tables the canonical correlation test is equivalent to the 

chi-square test, this example shows that the canonical correlation test 

and the chi-square test are biase~l. In fact one can prove that for all N, 

P{4)CC(P'(N)) =I}< P{4)CC(P(N)) = !} and hence for all N there exists an a 

such that the power of the level a test against P' is strictly less than a. 
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CHAPTER 5 

THE MULTIVARIATE CASE 

5.1. MULTIPLE CORRESPONDENCE ANALYSIS 

CA can be generalized to the case when more variables are involved. 

This generalization is called multiple correspondence analysis (abbreviated 

MCA); other names in the literature are homogeneity analysis (GIFI, 1981) 

and first order correspondence analysis (HILL, 1974). This section summarizes 

some basic properties of MCA. 

In order to attack the multivariate case, notation must be altered at 

some places. Let x 1,x2 , ••. ,Xk be nominal variables, where 

labeled categories (l = I, ... ,k). The bivariate marginal 

xl has Ill integer 

distribution of X. 

and Xl is given in the nj xnl probability table Pjl' for j,l = l, .•• ,k. It 

is clear that Pil = Plj for j,l = I, ... ,k. The diagonal matrix containing 

the univariate marginal distribution of Xl is denoted by Rl = Pll' for 

l = 1, .•. ,k, assumed to be non-singular. 

MCA seeks k functions w11 ,w21 , ..• ,wkl' defined on the categories of 

x 1,x2, ... ,Xk respectively, such that the first principal component of the 

correlation matrix of w11 (X 1),W21 (X2), ... ,tpkl(Xk) has maximal variance. 

This principal component is called the first MCA component. Subsequently, 

MCA seeks a second component which has maximal variance but which is un­

correlated with the first, etc. 

DEFINITION 5.1.1. The t-th MCA component is the linear combination of 

transformed variables 

k 
Yt = l~I altwlt(xl) 

for which µt = Var (Yt) is maximal subject to 

J 
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E<Pit(Xi) = 0, I for i = l, .•• ,k 

(5.1.1) 
k 2 .G1 a.it I ' 

for t 

COYT (Y ,Y ) 
t s 

I ,2,... . 

0 for s = l, ••• ,t-1. 

The present definition of MCA may depart from other definitions given 

in the literature with respect to the normalization of the variable weights 

a. 1t, ••• ,a.kt" It is clear from 

k k 
Var(Y) = :L :L a..ta. 0 tCorr(!.p. (X.),<P 0 (X 0 )) 

t j=I f=I J .... Jt J .... t .... 

that MCA considers only the bivariate marginals of the k-dimensional dis­

tribution, which is a drawback of the technique. 

MCA may be interpreted as a generalization of principal component 

analysis for categorical variables. Moreover, in the case that x1,x2, ••• ,Xk 

are all dichotomous (i.e. ni = 2 for i = 1,2, ••• ,k), the functions ~it are 

de.termined, up to a change of sign, by their normalization. Hence maximali­

zation of the variance of Yt is only with respect to the variable weights 

a.it for i = l, ••• ,k. Therefore, MCA is in the dichotomous case equivalent 

to principal component analysis of the correlation matrix of the nominal 

variables x1,x2, ••• ,Xk. Note that for dichotomous variables the correlation 

matrix is defined up to changes of sign of rows and columns. This property 

of MCA was also noted by DELEEUW (1973), GUTTMAN (1950) and NAKHLE (1976). 

Another special case arises when there are only two variables involved. 

The following proposition states that in case k = 2, MCA is equivalent to CA 

(see also GIFI, 1981, p. 139; GREENACRE, 1984, p. 135andLEBARTetal., 1977,p.139). 

PROPOSITION 5.1.1. Consider th.e case k = 2 and assume, without Zoss of 

generality, that n 1 ~ n 2 • 

(i) Suppose (At,<Plt(X1),<P2t(X2)) fort= l, ••• ,n1-1 is a CA solution. 

Let <P2t(X2) fort= n 1, .•• ,n2-I be normalized variables such that <P2s(X2) 

is uncorrelated with <P2t(X2) for s < t and t = l, ••• ,n2-I. Th.en a MCA 

solution is given by 

for t 

( I ' 0, for t 
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( I - A. 
s' 

(ii) Conversely, fort= l, .•• ,n1-1 the variablesl!l1t(X 1) and l!l2t(X 2) 

of the MCA solution are a pair of t-th canonical row and colwrm variables 

with corresponding correlation A.t=µt-1, provided\> 0. 

PROOF. Follows directly from (2.1.4), (2.1.5) and Theorem 5.1.3 below. D 

For general k, the MCA solution satisfies the following generalization 

of Proposition 2.1.1 (simultaneous linear regression). 

PROPOSITION 5.1.2. The tuple (µt,altlfllt(X 1), ••• ,aktlflkt(Xk)) is a t-th tuple 

of the MCA solution iff 

(5.1.2) (µt - l)ao lflo (Xl) = r a.tE(qJ.t(X.) lxl) a.s. for l 
't 't j#l J J J 

1 , •.. 'k 

where µt is maximal subject to (5.1.1). 

PROOF. The proof is quite similar to the proof of Proposition 2. I.I. First 

suppose that the tuple satisfies (5.1.2) with µt maximal subject to (5.1.1). 

Multiplying (5.1.2) on left and right hand side by alt<lllt(Xl) and taking 

expectation over Xl yields 

l,. .. ,k. 

Adding these k equotions produces µt = Var (Yt). Hence the tuple maximizes 

Var(Yt) subject to (5. I. I). 

Conversely, suppose that the tuple maximizes µ = Var (Yt) subject to 
t 2 

(5.1.1). Let 8, 8lt and ~lt(Xl) for l = l, ••. ,k be such that r1=! 8lt = I, 

Var(~lt(Xl)) =I for l = l, ••• ,k and 

(5.1.3) (8-1)8l ~lt(Xl) = r a.tE(\ll. (X.)IX 0 ) a.s. for l = l, ... ,k. 
t jfl J Jt J ' 

k 
Define Y~ = Ll=I 8lt~lt(Xl). Notice that 

(µ Var (Y'))~?:: Cov (Y ,Y') 
t t t t 

e. 

Furthermore, by Cauchy-Schwarz, 
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k 
µt = Var (Yt) = e G1 Cov (<Xlt<Plt(X,e), S.etl/llt(X,e)) 

::; 6 ~t Var (<Xlt<Plt(Xl)))!(ll Var (13,etl/llt(X,e)))! 6 

with equality only if 

(5. 1.4) 

Thus Var (Y~) ~ Var (Yt) with equality only when (5.1.4) holds. Moreover, one 

can show by induction over t that Y~ is uncorrelated with Ys for 

s = l, ••• ,t-1 whenever Yt is. To this end suppose that (5.1.2) holds, with 

t replaced bys, for s = l, ... ,t-1. Then for s < t, 

k 
µ Cov (Yt,Y ) = 6µ I: Cov (<X 0 <Po (Xo), 13 0 l/lot(Xo)) s s s l=I ~s ~s ~ ~t ~ ~ 

This proves the proposition. D 

e Cov ( y I. y ). 
t s 

This proposition already indicates that the MCA solution can be ob­

tained by solving a matrix eigenvalue problem. In order to formulate the 

eigenvalue problem introduce the following notation. Let \Jlt denote the 

nl-dimensional vector of category scores 

of the l-th variable on the t-th MCA component for l = l, .•• ,k and 

t = 1,2, •••. All category scores on the t-th MCA component are sunnnarized 
k in the vector of length n = I:l=I n,e• 

Let R be the n x n diagonal matrix with the diagonal elements of R1 , ••• ·~ 

on the diagonal and let B be the n x n block matrix containing the bivariate 

marginals 

RI pl2 

B= 
p21 R2 

Pk) pk2 

Recall that e denotes the vector having all its components equal to unity. 

Define then-dimensional vectors u 1, ••• ,uk-l as follows. Let the first n 1 
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components of u 1 be equal to unity, the next n 2 components equal to -I and 

all other components zero; let u 2 be the vector having the first n 1 com­

ponents equal to unity, the next n 2 components zero, then n3 components 

equal to -I and all further components zero; etc., until uk-l which has 

its first n 1 components equal to unity, the last ~ components equal to 

-I and all other components zero. 

THEOREM 5.1.3. The vectors vt containing all category scores on the t-th 

MCA component exist fort= l, ... ,n-k. Moreover, the vectors 

e,v 1,v2, ••• ,vn-k'ul, ... ,uk-l can be any complete set of suitably normalized 

eigenvectors of the matrix R-IB corresponding to the eigenvalues 

k ~ µ 1 ~ µ 2 ~ •.• ~ µn-k ~ O = •.. = O (where µt is the variance of the 

t-th MCA component). 

-1 
PROOF. First note that a complete set of eigenvectors of R B exists and 

that e,u 1, ••• ,uk-l are eigenvectors corresponding to eigenvalues 

k,0, .•. ,0.By Proposition 5. 1.2 the MCA solution satisfies 

(5.1.5) 

where µt is maximal subject to 

T 0, for l I , ... ,k, vTRv I, e RlVlt = = t t 

VT BV 
s t 0, for s l, ... 't-1. 

Since (5.1.5) holds, 

Therefore the MCA solution satisfies (5.1.5) with µt maximal subject to 

0, 

0 

VTRV =I, 
t t 

for s = l, ••. ,t-1. 

This in turn is equivalent to the eigenvalue problem of the matrix R-IB and 

hence Vt fort= 1, .•. ,n-k can be taken as the remaining eigenvectors of 

R- 1B. 0 

GIFI (1981), GREENACRE (1984), HILL (1974) and LEBART et al. (1977) describe 
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MCA from other points of view, which also lead to the present eigenvalue 

problem. GIFI (1981, pp. 103-104) and HILL (1974) show that the first MCA compo­

nent, according to their definitions, determines a transformation of the va­

riables which maximizes the largest eigenvalue of their correlation matrix. 

Similar to CA, the MCA category scores are usually displayed in a 

q-dimensional graphical representation. The i-th category of the l-th 

variable is represented by the point ~il = (µ 1a.ll<Pll (i), ••• ,JJq°'lqlPf.q(i)) 

for i = 1, ••. ,nf. and l = l, ••• ,k. The interpretation of this graphical dis­

play differs form the interpretation of its CA analogon and is less trans­

parent (cf. GIFI, 1981, p. 102 and KESTER and SCHRIEVER, 1982). Moreover, 

in empirical situations it is also quite common to display the scores of 

the individuals on the first q MCA components. For further properties, 

results and applications of MCA see DELEEUW (1984), GIFI (1981), GREENACRE 

(1984), LEBART et al. (1977) and NISHISATO (1980). 

5.2. ORDERING PROPERTIES IN MULTIPLE CORRESPONDENCE ANALYSIS 

In Section 3.3 it was demonstrated that (S)DRs-dependence implies 

that the t-th canonical row and column functions are (strictly) monotone 

of order t, fort= l, ••• ,s. In the present section it is shown that a 

similar property holds for MCA with respect to a (strict) multiple double 

regression dependence of order I. However, it need not hold with respect 

to multiple regression dependence of higher order. 

DEFINITION 5.2.1. The variables x1,x2, ••• ,~ are called (strictly) multiple 

double regression dependent of order s (abbreviated (S)MDR -dependent) if 
s 

all pairs (Xj,Xf.) for j,f. = l, ••• ,k; j #f. are (S)DRs-dependent. Further-

more, k categorical variables are called (strictly) multiple order depen­

dent of order s when there exist integer labels for their categories such 

that the labeled integer valued variables are (S)MDRs-dependent. 

MDR 1-dependence preserves monotonicity of order I in the following 

sense. Consider the linear regression of Xl on the transformed variables 

f.(X.) for j # l, 
J J 

(5. 2. I) g(x) = L E(f.(X.)iX 0 = x). 
j#.f. J J .... 

It is easily seen that g is increasing (monotone of order I) whenever all 

functions f. are increasing (monotone of order I in the same direction) and 
J 
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all pairs (Xj,Xl) for j = t, .•. ,k are DR1-dependent. However, MDR2-depen­

dence need not preserve monotonicity of order 2 in a similar sense. In case 

x 1,x2, ••• ,Xk are MDR2-dependent and all functions fj are monotone of order 

2 and oscillate in the same direction, then in spite of the fact that by 

Theorem 3.2.3 all functions E(f.(X.)lx 0 = x) are monotone of orders 2, 
J J .(.. 

their sum need not be monotone of order s 2. Moreover, examples are easily 

constructed showing that such a property does not always hold for the 

multivariate normal distribution. Thus even if stronger forms of ordinal 

dependence are present in the k-dimensional distribution, for example if 

the joint density of the k variables is TP2 in every pair when the re­

maining variables are kept fixed, then still monotonicity of order 2 need 

not be preserved in the regression (5.2.1). (Note that the density of a 

multivariate normal distribution is TP00 in pairs iff the off-diagonal 

elements of the inverse covariance matrix are negative.) Monotonicity of 

order 2 is preserved when all functions E(f.(X.)lx 0 = x) attain their 
J J .(.. 

maximum (minimum) at the same place. These considerations indicate that 

some unnatural condition in addition to MDR2-dependence is required. More­

over, in view of (5.1.2), these arguments make it not surprising that MCA 

does not necessarily reflect the higher order monotonicity properties. 

Nevertheless, MCA reflects the ordering of categories induced by 

(strict) multiple order dependence of order 1 in the category scores on 

the first MCA component. 

THEOREM 5.2.1. Suppose tfia.t, for given category labels, x 1,x2, ••• ,Xk are 

SMDR 1-dependent. Then the variance of the first MCA corrrponent is strictly 

larger than unity and each vector of category scores vll of the l-th 

variable on the first MCA corrrponent is strictly increasing for l = l, .•• ,k. 

PROOF. Let T denote the n x n block matrix with diagonal blocks 

Sn1,sn2 , ••• ,Snk and all off-diagonal blocks zero. Furthermore, let Q denote 
- -1 -1 

the n x n matrix Q = T R BT and let the matrix Q of size (n-k) x (n-k) be 

obtained by deleting the rows and columns corresponding to the k indices 

n 1,n1+n2, ••• ,n1+n2+ ••• nk. Similarly to the proof of Theorem 3.3.1 it follows 

from Theorem 5.1.3 that the vectors v 11 ,v21 , ••• ,vkl are strictly monotone 

of order 1 in the same direction iff the eigenvector of Q corresponding to 

its largest eigenvalue µ 1 has strictly positive or strictly negative com­

ponents. Since all bivariate marginal probability tables show SDR1-depen­

dence, the elements of Q are positive and even strictly positive exept on 
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diagonal blocks. This implies that Q2 is STP 1• Application of Lennna 3.1.5 

yields that v 11 ,v21 , ••• ,vkl are strictly monotone of order in the same 

direction and that µ 1 > µ 2• Since the diagonal elements of Q are unities and 

since each row has some strictly positive off-diagonal elements, the largest 

eigenvalue must be strictly larger than unity. D 

THEOREM 5.2.2. Suppose that, for given category labels, x 1,x2, ••• ,xk are 

MDR 1-dependent, then the vectors with category scores v 11 ,v21 , •. ,,vkl of the 

k variables on the first MCA component can be taken monotone of order I in 

the same direction. 

PROOF. Follows from Lennna 3.1.6, Theorem 5.2.1 and continuity considera­

tions. D 

These theorems show that when k categorical variables are multiple 

order dependent of order I, then the (meaningful) ordering of categories 

induced by the dependence is reflected in the order of the category scores 

on the first MCA component. This supports the use of all~ll(Xl) as 

numerical versions of the nominal variables Xl, for l = 1, ••. ,k. 

5.3. SCALING OF ORDERED LATENT STRUCTURE MODELS 

This section discusses an application of MCA in ordered latent struc­

ture models. Such models are developed for the following situation which 

frequently arises in e.g. psychology and medicine. In a population indi­

viduals must be ordered according to their value on some unobservable 

characteristic (e.g. intelligence, knowledge of a subject, attitude in a 

given context, a specific disease). For this purpose responses on a set of 

variables related to the characteristic are collected for each individual 

(e.g. an intelligence test). In this section attention is restricted to the 

simple case in which there is only one such characteristic, called the 

latent variable, and in which the collected responses are dichotomous. The 

variables involvedare called items and the set of all items is called the 

test. Since the characteristic of interest is of ten hard to separate from 

other characteristics, the assumption that responses on the items sys­

tematically depend on only one latent variable is for most applications 

more restrictive than the dichotomy assumption. 

Introducing TP2 in this situation leads to models with realistic 

orderings between items. These ordered models are special cases of the 
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model introduced by MOKKEN (1971). Theorem 5.3.2 shows that the orderings 

between items in such models are reflected in the MCA scores. Furthermore, 

it is shown that the TP 2 property is present in well-known examples of 

latent structure models. The ordering property of MCA, as described in 

Theorem 5.3.2, has already been noted for these examples by GIFI (1981, 

Chapter 9), however proofs have not been given. 

The latent structure model considered in this section supposes that 

the responses of the individuals on the k dichotomous items x1,x2 , .•. ,Xk 

can be accounted for, to a substantial degree, by an univariate latent 

variable Z. It is assumed that conditionally on Z the items x1,x2 , ... ,Xk 

are stochastically independent. This assumption of local independence is 

essential in latent structure models. It means that each individual responds 

independently on the items. Local independence implies that the (global) 

dependence structure between the items is caused and hence can completely 

be explained by variation in the latent variable. 

Let the distribution function of the latent variable Z be denoted by 

H. Results in this section are not based on any assumption on H and thus 

the ordering properties of MCA hold for any (sampled) population. Further­

more, the two response categories of each item shall be labeled by I 

("correct") and 0 ("wrong"). The responses on an item Xl are for each 

latent value z described by the so called trace line 

Til(z) = P{Xl = 1 \z = z} for l 1 ' .•• 'k. 

This probability of a correct response to item Xl for an individual with 

latent value z may be interpreted as the (local) difficulty of item Xl for 

this individual. The unconditional probability of a correct response to 

item xl, 

TI!= J Til(z)dH(z) = P{Xl = I} 
:R 

for l = 1, ... ,k, 

is the (global) difficulty of item Xl for the population. By local indepen­

dence the joint probability of correct responses to both item Xl and item 

Xj' l f j, for an individual with latent value z equals Til(z)Tij(z). The 

unconditional joint probability of correct responses to both items is 

denoted by 

for l,j J, ••• ,k; j f l; 
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however, 

forl= l, ... ,k. 

Note that the correlation between items Xl and Xj equals 

for l,j I, ... , k. 

Denote by t = (olj) the correlation matrix of the items. 

MOKKEN (1971) imposes two natural conditions on the trace lines of 

the items in the test. First, he assumes that for each item the probability 

of a correct response increases as the individual scores higher on the 

latent variable, i.e. 

(5. 3. I) 

Secondly, Mokken assumes that if for one individual an item is more diffi­

cult than another item, then it must be more difficult for all individuals, 

i. e. 

the items in the test can be indexed such that 
(5.3.2) 

J:Sf<j:Sk=>TI.l(z)?Tij(z) for all z and not dH-a.e. equality. 

Indexing is then from easy to difficult. Tests satisfying (5.3.l) and 

(5.3.2) are called doubly monotone. More about interpretation and examples 

of doubly monotone tests can be found in MOKKEN (1971). In many examples, 

see for instance at the end of this section, double monotonicity typically 

occurs in combination with TP 2 of trace lines 

(5.3.3) 

and also in combination with a similar TP 2 property with respect to wrong 

responses, 

(5.3.4) 

The increasing property (5.3.1) implies that all items are positively 

dependent, because 

for l,j = 1, ••• ,k. Thus correlations are even strictly positive. Moreover, 

it trivially follows from (5.3.2) that 
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(5.3.6) I$ l < j $ k => TI 0 >TI. and TI 0 • ~TI •• for i I j. 
"- J -<-1 J 1 

Large departures from double monotonicity violate (5.3.5) and (5.3.6) and 

might be detected by inspection of these properties. Note that (5.3.5) and 

(5.3.6) only concern properties of the observable items. 

Analysis of a latent structure model satisfying the assumptions above 

with MCA may be motivated by the interpretation of this technique and by 

Theorem 5.3.2 below. Recall that in the dichotomous case the first MCA 

component 

equals the first principal component of the correlation matrix t of the 

items x1,x2 , ... ,Xk. Therefore, Y1 "best explains" the dependence structure 

between the items among all linear combinations of items. Since the latent 

variable completely explains this dependence, Y1 can be interpreted as the 

linear combination of the items which best fits the latent variable Z in 

this sense. The category scores on the first MCA component will be used to 

analyse the model. Let y 1 = (y 11 , .•• ,yk1)T be the vector with these scores 

for the correct categories of the items, thus Yfl =al1tDll(J) for l= 1, •.• ,k. 

Similarly, denote by w1 = (w 11 , ..• ,wk1)T, where wll = all<Pll(O) for 

l = l, ••• ,k, the vector with wrong category scores. Both vectors can be 

computed by solving an eigenvalue problem. 

PROPOSITION 5.3.1. The corrrponents of the vectors y 1 and w1 satisfy 

and 

~ n h '-~ ( )T · · 
J or -<- = I, ••• ,k, w ere tr1e vector a 1 = a 11 , ••• ,akl 1-S an e1-genvector, 

normalized such that a1a 1 = I and first non-zero corrrponent positive, cor­

responding to the largest eigenvalue of the correlation matrix t between 

the items. 

! 
PROOF. By the normalization conditions (5.1.1), <Pll(I) = ((l-Til)/Til) 2 and 

! 
<Pl 1(0) =-(Til/(l-Til)) 2 for l = l, •.• ,k, and thus the variance of Y1 is only 

maximized with respect to the vector a 1 containing the weights all for 

l = 1, ••• ,k. This is equivalent to finding the first principal component of 

the covariance matrix of <P11 (X 1) ,<P21 (X 2), •.. ,<Pkl (Xk), that is of the 

correlation matrix t of x1,x2 , .•• ,Xk. 0 
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Suppose a subset of items in the test satisfy the double monotonicity 

and total positivity conditions. Then these items possess strong orderings 

with respect to their difficulties. The next theorem shows that these 

orderings are reflected in the correct and wrong scores even when the re­

maining items do not match the orderings of the items in the subset (i.e. 

cannot be added to the subset without disturbing double monotonicity or 

total positivity). Note that by Proposition 5.3.1 the correct and wrong 

scores do not depend on the order in which items are presented to MCA. 

THEOREM 5.3.2. Suppose tfie test aonsists of m items whiah aZZ satisfy 

(5.3.1), with k repZaaed by m. Furthermore, suppose k of the items, whiah 

without Zoss of generality aan be taken as the first k, aan be ordered 

suah that (5.3.2) and (5.3.3) hold. Then tfie aorreat aategory saores of 

tfiese k items satisfy 

(5.3. 7) 

Similarly, if (5.3.1), (5.3.2) and (5.3.4) hold for tfiese first k items 

tfien 

(5.3.8) 

PROOF. It follows from Proposition 5.3.1 that y1 = (y 11 , •.• ,ym1)T is an 

eigenvector corresponding to the largest eigenvalue of the matrix C with 

elements 

for l,j = l, ... ,m. 

Recall that Sk denotes the k x k upper triangular matrix with unit elements 

on and above the diagonal and all other elements zero. Denote by T the m x m 

block diagonal matrix with diagonal blocks S~ and the identity matrix Im-k 

respectively. Then its inverse T-I is a block diagonal matrix with diagonal 
-IT 

blocks Sk and Im-k' Since T is non-singular, 

ponding to the largest eigenvalue of C iff d 

corresponding to the largest eigenvalue of D 

y 1 is an 
-I 

T y I is 
T-ICT. 

eigenvector corres-

an eigenvector 

2 Under the conditions of the theorem, D turns out to be TP 1 and D 

even turns out to be STP 1• This can be verified as follows. The elements 
-I 

of the matrix T C = B = (blj) are given by 
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Since (5.3. I) holds for all m items, it follows as in (5.3.5) that all cor­

relations are strictly positive and hence blj > 0 for f = I,k+l, ..• ,m and 

j = I,. . .,m. Furthermore, by (5.3.4), TI:[1Til(z) is TP 2 on {I,. .. ,k}xlR and, 

moreover, satisfies 

for l = I, ... , k. 

Therefore, since TI.(z) is increasing in z for each j = l, ... ,m, it follows 
J 

by Proposition 3.1 in KARLIN (1968, p. 22) or by Theorem 3.2.3 that for 

f -I 
each j = I, ... ,m, 'Ill Til(z)Tij(z)dH(z) is increasing in l, i.e. 

for l 2, ... ,k and all j f l-1,l. 

Hence blj ~ 0 for l = 2, ... ,k and all j f l-1,l. Obviously, bll > 0 and 

bll-l < 0 for l = 2, .•. ,k. Thus the matrix B has positive elements exept 

for bll-I' l = 2, ... ,k. But by (5.3.2), 'Ill-I> 'Ill for l = 2, •.. ,k and it 

easily follows that bll-I + bll > 0 for l = 2, ... ,k. Therefore, D = BT is 

TP 1. Moreover, since blj > 0 for l = l,k+l, ... ,m and j = I, ••• ,m and since 

bll-l + bll > 0 for l = 2, ••. ,k, it follows that the elements in the first 

row of D and the elements in the first column of D are strictly positive. 

This implies that D2 is STP 1. 

Application of the Perron-Frobenius theorem (cf. GANTMACHER, 1977, 

vol II, p. 53) or of Lemma 3.1.5 with s =I yields that the eigenvector 

d = (d 1, •.. ,dm)T corresponding to the largest eigenvalue of the matrix D 

has 

d = 

for 

strictly positive components, i.e. dl > 0 for l = I, ... ,m. Since 
-1 

T y 1 or equivalently dl = yll for l = I,k+l, ... ,m and dl = yl1 -yl-IJ 

l = 2, ... ,k the result (5.3.7) follows. The proof of (5.3.8) is 

similar. D 

The result (5.3.7) also holds when (5.3.2) and (5.3.3) are relaxed to 

(5.3.9) 

and 

(5.3.10) 
z -I 

~ f 'Ill Til(l;)dH(I;;) for all z ElR and l=2, ... ,k; 
-00 

however, the latter assumption involves the distribution H of Z. 

Theorem 5.3.2 shows that the MCA correct and wrong category scores 



98 

reflect the difficulties of the items. This in combination with (5.3.5) and 

(5.3.6) can be used for a first investigation of the model assumptions. More­

over, Theorem 5.3.2 suggests that ordering the individuals according to their 

MCA test score Y1 is reasonable: responding a difficult item correctly 

yields a large contribution to this test score and responding it wrongly 

does not cost much, whereas for an easy item it is the other way around. 

The test score Y 1 is a weighted sum of items with small weights for items 

which are less related to the latent variable than the other items. This 

procedure is an alternative to the method proposed by MOKKEN (1971) in 

which individuals are ordered according to the (unweighted) sum of correct 

responses. It is unknown, however, in which cases (exept in the Rasch model; 

see below) which procedure actually works better. An advantage of the MCA 

approach is that a natural generalization of Theorem 5.3.2 to the case of 

items with three or more ordered categories can be given. 

In practice the probabilities TI! for l = I, ... ,k and Tilj for 

l,j = I, ... ,k have to be estimated by the relative frequencies of correct 

responses. Although the MCA scores based on these estimates need not reflect 

the difficulties of the items even when the underlying model satisfies the 

conditions of Theorem 5.3.2, one would expect the total score Y1 to reflect 

the appropriate ordering of the individuals quite well. 

Latent structure models for dichotomous variables studied in the 

literature (e.g. ANDERSEN, 1980; FISCHER, 1974; LORD and NOVICK, 1968) are 

commonly of parametric form, that is, the functional form of the trace 

lines is specified. However, there is often no evidence that the specific 

functional form is actually present in the test at hand. The parametric 

examples below generally satisfy the double monotonicity and total posi­

tivity conditions and therefore analysis both with MCA or with Mokken's 

method is legitimate. These examples are also discussed in MOKKEN (1971). 

Moreover, the ordering properties of MCA under these parametric models 

have already been noted by GIFI (1981, Chapter 9), but proofs where not 

given. 

In Guttman's model the responses on the items are deterministic func­

tions of the latent variable. The trace lines are given by 

if z ~ ol 
for l I , ... , k, 

if z < ol 

where the item parameters satisfy o1 < o2 < ••• < ok. In this model an 
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individual cannot respond correctly to a difficult item and wrongly to an 

easy item. Hence a perfect analysis is possible. The conditions (5.3.J), 

(5.3.2), (5.3.3) and (5.3.4) are easily verified and therefore the results 

of Theorem 5.3.2 hold. Moreover, stronger ordering properties of the correct 

and wrong categories scores on higher MCA components hold. Denote by 

- ( T Yt - Ylt'''''ykt) the vector with correct category scoreson the t-th MCA 

component, so Yft = alt(j)lt(I) for l = 1, ..• ,k and t = J, ••• ,k, and write 

wt= (wlt'''"'wkt)T with wlt = alt(j)lt(O) for l = l, ... ,k and t = J, ••• ,k. 

THEOREM 5.3.3. Consider Guttman's model. For arbitrary real numbers 

ar,ar+l'''''as (I $ r $ s $ k, r~=r a~> O) the numbers of changes of sign 

of the vectors 

s s s 
y = r atyt, w r at wt and a r atat 

t=r t=r t=r 

satisfy 

r-1 s - (y) S+(y) s - (w) S+(w) s-1, $ $ $ s-1, r-1 $ $ $ 

r-1 s - (a) S+(a) $ $ $ s-1. 

PROOF. First consider the assertion for the vector a. By Proposition 5.3.1, 

the vectors a 1,a2 , ••. ,ak are eigenvectors of the correlation matrix t cor­

responding to eigenvalues µ 1 ~ µ2 ~ ... ~ µk. In Guttman's model, 

Tijl =min (nj,nl) for j,l = 1, ... ,k and hence the correlations between the 

items are given by 
l 

f/I-nl)/(nl(I-nj)): 

Tif(I-Tij)/(TI/1-Tif)) 2 

if l $ j 

if l > j 

Therefore, t is a so called Green's matrix which by a result in KARLIN 

(1968, p. Ill) is TPk and has some iterate which is STPk iff 
-I -I -I 

n 1 (l-n1) < n2 (I-n2) < ••• < Tik (1-Tik) or equivalently iff 

n 1 > n2 > .•• > Tik. Application of Lemma 3.1.5 gives the desired result. By 

Proposition 5.3.1, vectors yt and wt are eigenvectors of the matrices 

C = (clj) and W = (wlj) respectively with elements 

clj = (Tilj -Til1Tj)/(1Tl(I - nj)) and wlj = (nlj -nlnj)/(TI/1 -'lfl)) for 

j,l = I, •.• ,k. By the same arguments as above the result follows for the 

vectors y and w. D 

The practical relevance of these stronger ordering properties is 

limited. A slightly weaker result, with respect to the principal components 
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a 1,a2, ... ,ak has been proved by GUTTMAN (1950) and an interpretation is 

given in GUTTMAN (1954); cf. GIFI (1981). 

A somewhat more realistic generalization of the previous model is 

the latent distance model of LAZARSFELD and HENRY (1968). It§ trace lines 

satisfy 
if z 2 ol 

if z < 0,e_ 
for l l, .. .,k 

where o1 < o2 < .•. < ok and E2,e_ < l-E 1,e_ for l = l, ... ,k. If E2,e_ > O, 

Ell> 0 for l l, .•• ,k then the double monotonicity and total positivity 

conditions never hold simultaneously. But the weaker conditions (5.3.9) 

and (5.3.10) are satisfied when Til-l >TI!' TI,e_E 2,e__ 1 2 TI,e__ 1E2,e_, 

Til(l-E 1l-I) 2 Til-l(l-E 1l) for l = 2, .•• ,k and hence (5.3.7) remains valid. 

In the linear model of Lazarsfeld the trace lines are given by TI,e_(z) = 

alz+bl provided 0 ~ a,e_z+bl ~I for l = l, •.. ,k. The conditions (5.3.1) 

and (5.3.2) are for instance satisfied when al-I ~ a,e_ and bi-I 2 bl for 

l = 2, .•. ,k. The total positivity conditions (5.3.3) and (5.3.4) hold when 

al-I b,e_ ~ albl-l and al-I (I+ b,e_) 2 al(I + b,e__ 1) for l = 2, ... ,k. 

RASCH (1960) developped a model in which the (unweighted) sum of all 

correct responses is sufficient for Z. The trace lines for l = l, ... ,k 

satisfy TI,e_(z) = z/(z + O,e_) (or O) when z 2 0 (or z < 0), and where 

0 < o1 < .•. <Ok. This model is actually a special case of a model con­

sidered by Birnbaum. Moreover, Birnbaum proved that in this model Mokken's 

(unweighted) sum of correct responses "uniformly best discriminates" the 

individuals (see MOKKEN, 1971, p. 141). Double monotonicity and total posi­

tivity of trace lines is easily verified. 

The last example consists of models based on shifts in distribution 

functions. For an (univariate) distribution function F the trace lines are 

defined by TI,e_(z) = F(z-o,e_) for l = l,. .. ,k and where o1 < o2 < 

Double monotonicity is obvious. It follows from Corollary 3.1.3 and Example 

3.1.l that the TP 2 conditions (5.3.3) and (5.3.4) hold whenever the density 

p of F (with respect to some measure) is PF 2• Special choices of such PF 2 

distribution functions F yield well-known models, e.g. degenerate distri­

bution (Guttman's model), logistic distribution (Rasch's model), normal 

distribution (models of LAWLEY, 1943 and LORD, 1952). Other PF 2 distribution 

functions are the gamma, Poisson and binomial distribution function. 
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transposed of matrix or vector; 5 

Kronecker matrix product; 5 

"is distributed as"; 6 

convergence in probability; 6 

convergence in distribution; 6 

ordering for positive dependence; 62, 64 

equivalence relation for positive dependence; 62 

ordering for positive dependence in probability 

table; 78 

equivalence relation for positive dependence in pro­

bability table; 78 

number of elements in set (cardinal number) 



112 

SUBJECT INDEX 

Approximate Bahadur efficiency, 30, 32, 59, 60 
Approximate slope 

definition of, 30 
of test statistics, 30, 31, 32, 60 

Association, see Dependence 
Asymptotic distribution 

of canonical correlations 
under null-hypothesis, 23 
under local alternatives, 23 
under fixed alternatives, 19 

of canonical functions 
under null-hypothesis, 23 
under fixed alternatives, 19 

of conditional Poisson distributions, 17 
of test statistics 

under null-hypothesis, 27, 33, 34, 56, 58 
under local alternatives, 27, 56, 58 

Basic composition formula, 36 
Biplot, 7 
Bivariate distribution 

bivariate beta, 54 
bivariate binomial, 54 
bivariate elliptical, 69 
bivariate exponential, 54 
bivariate F, 54 
bivariate gallUlla, 54 
bivariate hypergeometric, 54 
bivariate logistic, 54 
bivariate normal, 53, 69 
bivariate Pareto, 54 
bivariate Poisson, 54 
linear by linear interaction model, 54 
negative trinomial, 54 
standard Dirichlet, 54 
trinomial, 54 

CA, see Correspondence analysis 
Canonical correlation 

definition of, 9 
test statistic, 14, 26, 27, 28, 30, 32, 33, 60, 75, 83 

Canonical decomposition, 12, 16, 51 
Canonical function, 9, JO 
Canonical variables 

definition of, 9 
tests based on, 33, 34, 55 

Catergory scores 
of CA, JO 
of MCA, 88 

Chi-square test statistic, 14, 15, 26, 27, 28, 30, 32, 33, 60, 75, 83 
Column point, 14, 15, 48, 50 
Column variable, 6 
Complete set of vectors, II 



Complete Tchebychef f system, 39 
Concordant, 70 · 
Conditional Poisson distribution, 17 
Conditioning matrix, 17, 20 
Contingency table, 6 
Continuous version, 78, 79 
Correlation ratio, 75 
Correspondence analysis 

definition of, 9 
graphical representation of, 14, 15, 48 
ordering property of, 48- 51 

CR-dependence, see Dependence 

Dependence, forms of 
association, 64, 65, 77, 78, 82 
column regression dependence (CR-dep.), 41-60, 65, 76, 77, 78, 82 
double regression dependence (DR-dep.), 41-60, 65, 75, 82 
multiple double regression dependence (MDR-dep.), 90, 91, 92 
multiple order dependence, 90,92 
order dependence, 47-54 
quadrant dependence, 60, 64, 65, 78 
row regression dependence (RR-dep.), 41-60, 65, 76, 77, 78, 82 
totally positive dependence (TP-dep.), 40-54, 91 

diag[·], 5 
Disconcordant, 70 
Discretization, 16, 52 
Distribution, see Asymptotic distribution; Bivariate distribution 
Double monotonicity, 94 
Dual scaling, 7 
DR-dependence, see Dependence 

Elliptical distribution, 69 

First order correspondence analysis, 85 
Fisher's contingency table analysis, 7, 10 
Fisher-Yates normal score statistic, 73, 76, 82 
Fixed alternative conditional Poisson distribution, 22 

Generalized multiple hypergeometric distribution, 21 
Geometric mean test statistic, 14, 27, 28, 31, 32 
Gradient analysis, 7, 15 

Homogeneity analysis, 85 
Horseshoe phenomenon, 48, 50, 51, 52, 54 

Incidence matrix, 15, 54 
Increasing function, 5 
Invariant convexity preserving property, 41 
Item, 92 

Kendall's tau 
definition of, 74 
probability table version of, 57, 79-81 
test based on, 57-60, 76, 82 

Kronecker matrix product, 5 
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L-superadditive (lattice-superadditive), 71 
Latent structure models, 92-100 

Guttman's model, 98, 99 
latent distance model, 100 
linear model, 100 
models based on distribution functions, 100 
Mokken's model, 94 
Rasch' model, 100 

Latent variable, 92 
Likelihood ratio test statistic, 26, 27, 28, 30, 32, 33, 60 
Linear rank statistic, 72, 73 
Local alternative conditi_onal Poisson distribution, 22 
Local independence, 93 

Majorization, 13, 20 
MANOVA, 26 
MCA, see Multiple correspondence analysis 
MCA component, 85 
MCA variable weights, 85, 86 
MOR-dependence, see Dependence 
Mehler's expansion, 16 
Monotonicity, order of, 44 
Multinomial distribution, 20 
Multiple correspondence analsysis 

definition of, 85, 86 
graphical representation of, 90 
ordering property of, 91, 92, 96, 99 

Multiple order dependence, see Dependence 

Null-hypothesis conditional Poisson distribution, 21 
Non-linear rank statistic, 74 

Optimal scaling, 7 
Order dependence, see Dependence 
Order preserving property 

of CA, see Correspondence analysis 
of MCA, see Multiple correspondence analysis 
of measures of dependence 

in populations, 72, 82 
in samples, 75, 82 

Orderings for positive dependence 
equally dependent, 62 
in probability tables, 78 
more associated, 64 
more column regression dependent, 64 
more concordant, 62 
more quadrant dependent, 62 
more row regression dependent, 64 

Orthogonal polynomial system, 38, 51 
Oscillation diminishing property, 44, 45 

PF function (Polya frequency function), 38, 53, 100 
Pillai's test statistic, 27, 28, 30, 32, 33 
Pitman efficiency, 32, 33, 60 
Positive dependence, see Dependence; Orderings for positive dep. 
Positive definite matrix, 5 



Positive number, 5 
Principal component analysis, 7, 85, 86, 95, 99 
Probability table, 6, 8 
Probability table version, 79 

Quadrant dependence, see Dependence 
Quadrant statistic, 74, 76, 82 

Reciprocal averaging, 7 
Row point, 14, 15, 48, 50 
Row variable, 6 
RR-dependence, see Dependence 

Schur-convex function, 14 
Score-function, 73, 79 
SCR-dependence, see CR-dependence 
SDR-dependence, see DR-dependence 
Sign changes, 38 
Signed canonical correlation, 74, 76, 82 
Simultaneous linear regression, 7, 8, 9, 87 
Slope, see Approximate slope 
SMDR-dependence, see MOR-dependence 
Spearman's rho 

definition of, 73 
probability table version of, 57, 81 
test based on, 57-60, 76, 82 

SRR-dependence, see RR-dependence 
Standard sequence, 29, 30, 31, 59 
STP, see TP 
STP-dependence, see TP-dependence 
Support, 61 

Test statistic 
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see Canonical correlation, 'Canonical variables, Chi-square, Geometric 
mean, Kendall's tau, Likelihood ratio, Pillai's, Spearman's rho, 
Yates' 

see Asymptotic distribution 
Tie, 70, 79 
TP (total positivity), 35-54, 94 
TP-dependence, see Dependence 
Trace line, 93 
Trivariate reduction, 53, 69 

Underlying probability table, 17, 21 

Vander Waerden statistic, 74, 76 
Variation diminishing property, 38, 43 
vea[·], 5 

Yates' test statistic, 55, 56, 59, 60 
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