

CWI Tracts

Managing Editors

J.W. de Bakker (CWI, Amsterdam)
M. Hazewinkel (CWI, Amsterdam)
J.K. Lenstra (CWI, Amsterdam)

Editorial Board

W. Albers (Maastricht)
P.C. Baayen (Amsterdam)
R.T. Boute (Nijmegen)
E.M. de Jager (Amsterdam)
M.A. Kaashoek (Amsterdam)
M.S. Keane (Delft)
J.P.C. Kleijnen (Tilburg)
H. Kwakernaak (Enschede)
J. van Leeuwen (Utrecht)
P.W.H. Lemmens (Utrecht)
M. van der Put (Groningen)
M. Rem (Eindhoven)
A.H.G. Rinnooy Kan (Rotterdam)
M.N. Spijker (Leiden)

Centrum voor Wiskum:le en lnformatica
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The CWI is a research institute of the Stichting Mathematisch Centrum, which was founded
on February 11 , 1946, as a nonprofit institution aiming at the promotion of mathematics,
computer science, and their applications. It is sponsored by the Dutch Government through
the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

CWI Tract 26

The misconstrued semicolon:
Reconciling imperative languages
and dataflow machines

A.H. Veen

Centrum voor Wiskunde en lnforrnatica
Centre for Mathematics and Computer Science

1980 Mathematics Subject Classification: 68A05, 6881 o.
1983 CR Categories: C.1.3., C.4., D.3.2., D.3.4.
ISBN 90 6196 302 8

Copyright © 1986, Mathematisch Centrum, Amsterdam
Printed in the Netherlands

Table of Contents

A Layman's Introduction v

Acknowledgements ix

I Introduction
1.1 The Origin of the Projeet 2

1.2 The Datafiow Compiler Project 3

1.3 The Demand Graph 4

1.4 Summary 5

2 Dataftow Machines 8

2.1 Parallel Computers 8

2.2 Datafiow Machine Language 11

Datafiow Programs 11

Datafiow Graphs 12

Conditional Constructs 13

Iterative Constructs and Reentrancy 15

Procedure Invocation 18

2.3 The Architecture of Dataflow Machines 19

A Processing Element 19

Dataflow Multiprocessors 22

Communication 23

Data Structures 24

ii

2.4 A Survey of Dataflow Machines 24
Direct Communication Machines 26
Static Packet Communication Machines 27
Machines with Code Copying Facilities 28
Machines with Both Tag and Code Copying Facilities 29
Tagged Machines 29

2.5 The Manchester Data Flow Machine 31
2.5. l. Overview 31
2.5.2. The Match Operation 33
2.5.3. Instruction Set 36
2.5.4. State of the Project 37

2.6 Feasibility of Dataflow Machines 37
2.6.1. Processing 38
2.6.2. Storage 39
2.6.3. Conclusions 40

3 Dataffow Programming 44
3.1 Declarative Languages 45

3.1.1. SISAL 46
3. 1.2. Functional Languages 48

3.2 Imperative Languages 50
3.3 Imperative versus Declarative Languages 52

4 Program Flow Analysis 55
Graph Terminology 56

4.1 Applications 56
Example of an Application 57
Abstract Applications 58

4.2 Existing Methods 59
4.2. l. Interprocedural Analysis 60
4.2.2. Intraprocedural Analysis 61

5 The Demand Graph Method 66
5.1 Evolution of the Demand Graph Method 66
5.2 Language-Independent Aspects 68

5.2.1. Syntactic Analysis 68
5.2.2. Demand Graph Construction 70
5.2.3. Demand Propagation 80
5.2.4. Extraction 82

6 Demand Graph Construction
6.1 The SUMMER Programming Language
6.2 Overall Structure

The Type Tree
Construction of the Syntax Trees
Attach Procedures

6.3 Naive Demand Graph Construction
Assignments, Variables, and Constants
Input and Output

6.4 Conditional Control Flow
BRANCH, MERGE and LINK Nodes
Conditional Cocoons
Case Expressions
Failure Mechanism
AND and OR Nodes
Conditional Expressions in Address or Value Context
Iteration

6.5 Multiprocedural Graphs
Global Variables
Return Expressions

6.6 Arrays
ARRAY and ARRAY-ACCESS Nodes
Accesses from within a Conditional
Accesses from within a Loop

6.7 Conditional Aliasing
The LACAP Algorithm
Functional Description
Example
Implementation
Alias Graphs that are not Trees
Crossing Cocoon Boundaries
Case Expressions, Loops, and Procedures

7 Demand Propagation
7.1 Forward Propagation through an Acyclic Graph
7.2 Propagation in a Cyclic Graph
7.3 Backward Flowing Information
7.4 Bi-Directional Information Flow

iii

83
83
87
88

88
89
89
90
91
92
93
94

94

95
96
98
98

100
100
102
103
104
106
107

108
109
110
112
113

115
116

117

118
119
123
127
128

iv

8 Generating Dataflow Code 130
8.1 The Target Language 131
8.2 General Mechanisms 136
8.3 Simple Operations 137

Type Handling 137
Strings 138
Literals 139
Input and Output 140

8.4 Control Flow 140
Conditional Constructs 141
Optimizations Recognized by BRANCH Nodes 142
Procedure Interfacing 142
Iteration 143

8.5 Arrays 144
Macros 145
Completion Detection 147
Loops 149
Conditional Aliasing 150

8.6 Loop Optimizations 152
8.6. L Parallel Distribution of Loop Constants 152
8.6.2. Complete Array Update 155
8.6.3. Reduction Cycles 155

9 Evaluatfoil 157
9.1 Quality of the Generated Datafl.ow Code 157
9.2 Complexity 161
9.3 Extensions 162

9.3.L Omissions 162
9.3.2. Further Optimizations 164

9.4 Conclusions 164
Program Analysis 164
Datafl.ow Programming 165
A Functional Perspective on Imperative Programs 166

I F:rom Program to Parse Tree 168

II Mgori~ for Demand Graph Comtruction 171

Index 177

v

A Layman's Introduction

The content of this book presupposes a familiarity with computers and the
problems involved in their design and operation. This introduction attempts to
explain the main issues for an audience without such a technical background.
It discusses the need for parallel computers, dataflow machines, and analysis of
imperative programs.

Although many present-day computers are capable of performing millions of
operations per second, there are many applications for which much faster
computers would be highly desirable. Weather forecasting provides a
convincing example. To make a prediction of tomorrow's weather based on
the situation today, a powerful computer calculates the changes in the
atmosphere over the next twenty four hours. Because the amount of
interaction in the atmosphere is so vast, many local interactions have to be
ignored and only a very approximate calculation can be made: a somewhat
more precise calculation would take weeks to complete, obviously reducing the
usefulness of the forecast considerably. For more accurate forecasting a much
faster computer is needed. There are many other applications for which the
speed of present-day computers is inadequate, and no matter how fast
computers are or will become, there will always be a need for even faster ones.

The fastest computers today are thousands of times faster than those of
twenty years ago. Most of this increase in speed is due to technological
improvements in the basic circuits of which computers are made. These speed
improvements are likely to continue but the rate of improvement is expected to
decrease rapidly. Dramatic improvements should be coming from elsewhere,
notably from the way the basic circuits are put together to form a computer.

Virtually all existing computers are sequential: they have one central unit,
known as the processor, that performs the trillions of operations that are
required for a complex calculation in one long sequence. With present chip

vi

technology a processor can be made quite cheaply, especially if it does not
have to be extremely fast. If a great number of these cheap processors could be
put together so that they can usefully cooperate on a common task, a
potentially powerful computer would be obtained. Such a computer, in which
many operations are performed in parallel, is known as a parallel computer.
This concept is almost as old as computers themselves and many designs for a
parallel computer have been made over the past twenty years. Yet none of
them has shown an acceptable performance for a wide range of applications.

The problems involved in the design of an efficient parallel computer are
clarified by means of a culinary analogy. The following list indicates the
parallels:

kitchen
food preparation
ingredients
assembly line
recipe
recipe's style

parallel computer
computation
input data
pipeline
program
programming language

Consider the task of preparing food in the kitchen of a large restaurant. A
sequential computer is like a kitchen with only one cook. If there are many
guests, one cook will clearly not be able to finish the task in time: a number of
people, which we call (food) processors, should work in parallel. The problem
is how to organize the kitchen in a way that a large number of processors can
cooperate efficiently, without wasting much time on coordination or on waiting
for each other. We describe three forms of organization, of kitchens as well as
parallel computers.
a One extreme approach is an assembly line, which carries dishes from one

processor to the next, each processor constantly repeating the same
operation. If everything works smoothly, hardly any coordination is needed
during the actual preparation of the food. An assembly line is an example
of a synchronous organization: the processors work in lock-step. For the
assembly line to work efficiently, the simple operations have to be exactly
equal in duration, otherwise a processor with a short task will often be idle,
waiting for another processor to finish. Extensive analysis is needed to
divide the task into such steps. Such an analysis is only feasible if the task
is the same everyday. This is the case in a fast food restaurant with a small
menu that never changes.

The most popular of todays high-performance computers follow this
approach. They contain the equivalent of an assembly line, called a pipeline.
Such computers perform well on computations that have a very regular
nature, but the programmer needs to analyze the problem thoroughly to
formulate the computation in a way that will keep the pipeline occupied
most of the time. Part of the analysis can sometimes be done by a compiler,
i.e. the program that is required to translate programs written in a high­
level programming language into simple low-level operations.

vii

® If the task is less regular, as in a more sophisticated restaurant, a more
flexible organization is needed. One approach is to let each processor work
on a separate dish. When he has completed one dish he asks a coordinator
for the next task. In this case the processors work asynchronously: a
processor working on dishes that are quick to prepare may complete several
of them in the time another takes to prepare a complicated one. A
disadvantage is that a processor may have to wait for part of his task to
finish (e.g. for water to boil) wasting time that he could have spent helping
to prepare other dishes. Even more waste occurs if at a certain time there
are more processors than there are dishes to prepare.

In a so called coarse grain asynchronous parallel computer the computation
is similarly divided into a number of large subtasks. Such a machine has
similar drawbacks as the kitchen organization just described. While working
on a subtask, a processor may waste time waiting on data to become
available. Also the parallelism, i.e. the number of subtasks that are ready to
be executed, may at times be insufficient to keep all processors occupied.
The programmer must divide the computation into a sufficiently large
number of subtasks to attain an acceptable level of performance. This is
often far from trivial. For this type of analysis, it is more difficult for the
compiler to assist the programmer than is the case with pipeline computers.

® Another approach is to divide the task into many simple operations, each of
which can be completed rapidly (e.g. "tum down the heat" if the water
boils). This type of organization has two advantages. The operations are
chosen in such a way that a processor never has to sit idle, waiting until pa.rt
of his operation is finished. There are also on average many more
operations that can be performed in parallel. The main drawback of this
type of organization is that much time has to be spent on coordination:
the coordinator often spends more time instructing a processor what to do
next than the processor needs to complete the operation.

In a fine grain parallel computer this problem is dealt with by special
coordination hardware. The program needs to be in a special format to
enable this hardware to make its decisions rapidly. In one type of fine grain
parallel computer, the so called dataflow machines, the program is a set of
operations together with a specification of how operations depend on each
other. This is called a dataflow program.

Dataflow programs are low-level: the operations are very simple and
consequently the program is long. A programmer specifies his programs in a
high-level programming language. The translation between these two levels is
performed by a compiler. To make this translation easier, data.flow machines
are usually programmed in a so called applicative language. In such a language
the computation is specified as a set of definitions in an arbitrary order. In
the more common imperative programming languages a computation is
specified as a sequence of operations, the order of which is significant.

The kitchen may serve to clarify the difference between these two types of
languages. A recipe can be seen as the equivalent of a program. Recipes are
usually completely ordered: they specify the steps to be taken in a linear

viii

sequence. A recipe for "toast with egg" may read as follows:

Boil an egg for 8 minutes.
Toast a slice of bread.
Slice the egg and put it on the toast.

Such a recipe corresponds to an imperative program. The equivalent
applicative recipe would be:

Toast with egg is toast with a sliced hard-boiled egg.
Toast is a slice of bread that has been toasted.
A hard-boiled egg is a raw egg that has been boiled for 8 minutes.

Applicative programming languages are relatively new and it is not yet clear
how suitable they are for realistic large-scale calculations. A major problem is
also that practically all existing software is written in imperative programming
languages. The feasibility of datafiow machines would be greatly enhanced, if
a compiler was available that would translate an imperative program into a
datafiow program. Such a compiler is the main subject of this book.

To clarify the analysis such a compiler bas to perform, we return to the
kitchen once more. A cook who follows an imperative recipe does not have to
adhere to its order completely. Part of the order is superfluous and not
conducive to a quick preparation. In the example above, the bread can be
toasted while the egg is boiling. The slicing, however, has to wait until the egg
is done. Determining which part of the order in an imperative recipe is
essential and which operations can be performed in parallel requires analysis,
but usually of a very simple nature.

The compiler that translates an imperative program to a datafiow program
has to perform a similar analysis. Such a compiler reduces the order in an
imperative program to its essential part. In many imperative programming
languages this order is indicated by a semicolon. The compiler, in a sense,
reinterprets this symbol; it should not be construed as to imply sequential
execution.

ix

Acknowledgements

In addition to those officially associated with this book, many other people
contributed to it. All their help I gratefully acknowledge.

The cradle of the project was the dataflow club, an informal and inspiring
discussion group at the former Mathematical Centre. Its members have made
valuable contributions over the past five years. From Jan Heering I learned to
appreciate the spirit of scientific investigation. Paul Klint conceived and
delivered SUMMER and has kept its implementation in working order. With
Wim Bohm I shared the fascination with parallel computing. They all read
early versions of this book and made many helpful comments.

The Centre for Mathematics and Computer Science gave the financial
support and has been a pleasant place to work. Especially the excellent
computing facilities provided by the Informatica Lahoratorium have been of
great help. Frank v.an Dijk and Fred Veldkamp implemented most of the
algorithm for demand graph construction. The Dataflow Research Group in
Manchester provided software, stimulating discussion and support. Paul
Vitdnyi gave advice on complexity of graph algorithms. Gerard Kindervater,
Steven Pemberton, Shirley Edwards, and Bert Mentink made helpful remarks
about the text. Ruth Hogenboom designed the cover. Eloy Everwijn gave
valuable suggestions.

The help of Marleen Sint has been both essential and diverse. She is partly
responsible for SUMMER and its implementation. She helped to clarify the
main concepts in this book. She managed to read incomprehensible versions
of this book and improved them considerably. She gave encouragement in the
periods I needed it most. And finally she put up with me during the months
of obsession with issues like italic font, past tense, and semicolons.·

Chapter 1

Introduction

Efficient cooperation is not easy. In the course of time organizational structures have
evolved that allow groups of people to cooperate successfully. For computer
processors, cooperation would also be desirable, but the organizational structures that
are available are still primitive. These organizational structures have been studied in
the areas of parallel computer architecture and distributed computing. The central
problem is efficient coordination: processors have to be kept busy with relevant tasks,
using each others results when appropriate, but the overhead associated with this
coordination should not overshadow the real computation.

For certain well defined problem areas good solutions have been found. If the
structure of the computational task is highly regular, the task can be easily divided, and
the amount of work involved in each subtask accurately predicted. Scheduling, i.e.
deciding when and where a subtask is to be executed, can then be done when the
problem is analyzed rather than during execution. Many parallel computers that
exploit such knowledge of the problem domain have been designed and some of them
have been quite successful.

Most desirable is, of course, a general purpose parallel computer that performs well
on a wide variety of computational tasks, but this is very hard to achieve. Most
computational tasks show great and unpredictable variation in the distribution of their
computing demands. Adjusting to this variation efficiently requires a flexible machine
that constantly reallocates its resources. Such flexibility is offered by machines that
maintain a common pool of executable subtasks. The problem is to limit the overhead
that is involved in maintaining this common pool, while keeping the pool full enough to
keep most processors busy.

The approach used in fine grain parallel computers is to maximize the number of
concurrently executable tasks by dividing the program into many small subtasks, often
the size of a conventional machine instruction. Since the average subtask is so small its
scheduling should be highly efficient. Part of the scheduling overhead is due to the
need for suspension of executing subtasks, when they need data from other subtasks.
Data.flow machines are fine grain parallel computers in which coordination overhead is

2 1. Introduction

reduced by obviating such suspensions: a subtask is not executable until all its input
data are available. Scheduling overhead is further reduced by a combination of special
hardware and a program format in which each subtask contains pointers to all subtasks
that are dependent on its results. In this program format, called a dataflow graph, there
are no control flow instructions and the data flow is made explicit.

Over the past fifteen years numerous datafiow machines have been proposed and
most proposals have been accompanied by a special programming language that allows
for simple translation from programs into datafiow graphs. These languages are known
as dataflow languages. Datafiow graphs, however, can be generated for all kinds of
programs including those written in more conventional, so called imperative, languages.
This book results from a project in which this type of translation was studied. Before
discussing the aims of this project we take a short look at its origins.

1.1. The Origin of the Project
We became farlliliar with literature on datafiow machines and early single assignment
languages towards the end of 1979. Having had some experience with language design,
we knew how hard it is to design a practical general purpose programming language
and we were not impressed by the languages the datafiow field had produced so far.
Neither were we convinced by the argument with which the development of datafiow
languages was usually motivated: the complexity, or even impossibility, of translating
any of the existing languages into datafiow graphs with sufficient parallelism. Even
though converting control flow programs into datafiow graphs may not be
straightforward, a large part of the data-dependency information could be uncovered
relatively easy, as demonstrated by numerous optimizing compilers that use data­
dependency analysis to help bridge the gap between language and machine. It was not
clear to us a priori that the gap between existing languages and datafiow machines
could not be bridged similarly. Several reasons make the issue too important to
abandon without a serious effort.

The development of high-level programming languages has been intertwined with
that of computer architecture. The connection has been far too intimate. The quality
of a language should be judged by how well it supports good programming practice,
whereas a good implementation (i.e. the combination of compiler and machine) should
execute programs efficiently. These should be separate concerns, but the design of most
languages has been guided by the implementations that were deemed feasible. FORTRAN
is a prime example of this uneasy compromise between conflicting demands: although
the language was intended to hide the peculiarities of a particular machine, at the time
of its conception the concern with computing efficiency was so pervasive and the
experience with translation so minimal that the class of machines for which it was
designed is clearly visible. FORTRAN rapidly gained such a wide popularity that the
language in tum guided, and probably hampered, the evolution of new architectures: a
new machine was not attractive if it could not execute the existing software more
efficiently than the old one. In fact, a similar influence works the other way around: in
many eyes a new language is not attractive if its implementation on existing machines is
much less efficient than implementations of existing languages. Architecture and
language design are thus kept in a mutual strangle-hold. The development of datafiow
languages in conjunction with datafiow machines is an attempt to break this strangle­
hold by assuming that continuity in software development can be safely ignored.
Several examples in the past indicate that this is a precarious assumption. A more
fruitful approach may be to allow a wider gap between architecture and language and
to develop program analysis methods to provide efficient translation.

3

To explore the difficulties involved in the translation of imperative languages into

dataflow graphs, a pilot compiler was implemented that accepted a subset of the locally

used language SUMMER and produced code for the dataflow machine being designed in

Manchester. No description of the instruction set of the target machine was available

at the time so a simple instruction set and a simulator for a somewhat idealized

machine were devised. The central part of the translation was a data-dependency

analysis that connected each instruction with all instructions that were dependent on its

result. The analysis was supported by objects, called cocoons, that mimicked the role of

the memory during conventional execution. Separate cocoons were created for each

control flow path and the expressions translated within separate cocoons were

connected by interface nodes, which in tum mimicked the control flow operators during

dataflow execution.
The design and implementation of the pilot compiler were encouraging. In less than

two months a compiler was produced that accepted programs with multiple assignment,
global variables, conditionals, iteration, procedure calls, and interactive I/O. The

auspicious implementation was partly due to the target machine, which was a

conveniently idealized model of a real machine: its basic types and arithmetic

operations coincided with those of the input language. Another factor was that no

attention was paid to efficiency, although an effort was made to generate code with

sufficient parallelism. The main reason for the success was however the choice of the

input language: the subset avoided the complications caused by escapes, pointers,

aliasing, and user defined types. Case statements, recursion, and arrays were also

excluded from the subset, but the implementation of these features was expected to be

straightforward.

1.2. The Dataflow Compiler Project
Encouraged by the results of the pilot compiler a research project was initiated to test

the validity of the following hypothesis:
® A well structured imperative language is a suitable source language for a datafiow

machine.
With "well structured" was meant a language without unrestricted jumps. The term

"suitable" was made more precise by two supporting hypotheses:
e A translator from an imperative language into dataflow machine code is similar in

complexity to a conventional optimizing compiler.
® Such a translator produces code similar in quality to that generated from a datafiow

language.
One way to demonstrate the validity of these hypotheses would have been to implement

the straightforward extensions to the compiler and to show somehow that the resulting

input language was a generally useful programming language. In addition, it had to be
shown that the simulated target machine was a realistic model for a datafiow machine.

The latter point seemed easy enough, but proving the former point did not seem

attractive: discussions on the usefulness of programming languages are hopelessly
dominated by issues of taste.

Instead it was decided to follow a more complicated but potentially more convincing

route by implementing a compiler for an existing language and an existing machine.

Comers not cut did not have to be shown to be unimportant. The choice of a target

machine was easy: the Manchester Datafiow Machine had reached its final stages of

construction and its instruction set had stabilized. The choice of the input language

was harder. SUMMER is purely a research language, but it contains most of the features

that make translating imperative languages into dataftow graphs problematic. Since the

4 1. Introduction

compiler is meant to demonstrate the feasibility of such a translation, rather than to be
used as a production compiler, we decided after ample deliberation to stick with
SUMMER as input as well as implementation language. An attractive consequence of this
choice was that if a full implementation was produced, it could run on the dataflow
machine itself. We did not fully realize at the time that some of the more obscure
features of SUMMER make it into one of the hardest languages to translate into dataflow
graphs.

Around the same time F. van Dijk and A. Veldkamp, students at the University of
Amsterdam, started a short-term project to improve the conventional implementation of
SUMMER by implementing a static type analyzer. Since the dataflow code generator
would also need some form of static type analysis and since the data-dependency
analysis needed in both projects was quite similar, it was decided to join forces into a
new project. Its goal was to produce a general analyzer to be used for the two original
projects and useful for other applications of flow analysis as well. This decision had
far-reaching consequences; the emphasis of the research shifted from just dataflow code
generation to program flow analysis in general.

US. The Demand Graph
A general data-dependency analyzer should express its results in a format that is
convenient for a variety of applications. We decided to combine the data-dependency
information with the syntax tree of the analyzed program into a new program
representation, which we called the demand graph. It is structurally similar to a
dataflow graph with all its arcs reversed. The demand graph is constructed with the aid
of cocoons similar to the ones used in the pilot compiler. It does not contain any
explicit control flow constructs: these have all been interpreted during the data­
dependency analysis and their effects have been expressed in interface nodes created by
the cocoon mechanism. Interface nodes encode the static ambiguity of data­
dependency: they appear wherever data-dependency is influenced by conditional
control flow.

An interesting effect is that often two different programs are translated into exactly
the same demand graph. In this way the demand graph construction algorithm defines
an equivalence relation on programs. The differences removed by the equivalence
relation are due to an over-specification of execution order inherent in an imperative
program. The statements in a program text are completely ordered, whereas the nodes
in the demand graph constitute a partial order. In the interpretation of control flow
constructs this superfluous ordering is removed. A poignant illustration is offered by
the semicolon considered as sequence operator. During demand graph construction a
semicolon separating two statements is interpreted as ordering the two statements only
if dictated by data-dependencies. The semicolon thus changes from a sequence
operator into a mere separator; the same role it has in many applicative languages.

The demand graph is a convenient program representation to carry out various flow
analysis applications. The application specific analysis consists of depositing initial
information in demand graph nodes and propagating the information through the
graph, combining information when appropriate. The analysis has to be concerned
only with data flow, since all control flow operators have already been interpreted.
When the information collected in each node has stabilized, the results of the analysis
can be extracted from selected nodes.

1.4. Summary 5

Implementing a demand graph constructor for the complete SUMMER language turned
out to be too ambitious for the available man-power. The main reasons for this are:
e Designing and implementing a fully general analysis method was more work than the

two original applications together.
e In some sense SUMMER is imperative to the extreme: both escapes and aliasing are

pervasive in most programs. Dealing with these two issues efficiently required a
considerable effort.

The main omissions are user-defined types, cyclic data structures, and interprocedural
aliasing. The implemented subset, however, amounts to a fully usable language. The
datafiow code generator developed for this subset allows some interesting comparisons
with dataflow languages to be made; these will be discussed in the concluding chapter.

1.4. Summary
The chapters of this book do not have to be read in strict order. The chapter on
dataflow code generation presupposes familiarity both with dataflow machines and how

they are programmed (chapters 2 and 3) as well as with the analysis method (chapters 4
until 7). These two parts can be read in any order or concurrently.

Chapter 2 contains a comprehensive survey of dataflow machines. It presents a

general model of a dataflow machine and discusses the crucial design choices.
Numerous designs for dataflow machines, either constructed or merely proposed, are
described as special cases of the general model. The use of a unifying terminology

greatly facilitates comparisons between the different designs. The chapter contains a
detailed description of the target machine for the code generator and is concluded by a
discussion on the feasibility of dataflow machines as general purpose computers. This
discussion is based on figures derived from experience with the Manchester Datatlow
Machine, but has ramifications for other fine grain parallel computers including
reduction machines.

Chapter 3 elaborates on the differences between applicative languages (of which
datafiow languages are examples) and imperative languages, especially in relation to
datafiow machines. It describes the notion of the average interface size of statements

and presents this as the major factor determining the suitability of a program for fine
grain parallel execution. It sheds new light on the continuing discussion about the
relative merits of applicative and imperative languages.

Chapter 4 discusses the area of flow analysis and compares some existing methods,
but is not intended as a survey. It introduces terminology used in the description of
the analysis method.

The general analysis method is described in chapter 5; it subsequently treats the four

phases of the analysis: syntactic analysis, demand graph construction, demand
propagation, and extraction. Since the analysis method has a wider applicability than
the input language for which it was implemented, the discussion in this chapter is kept
independent of SUMMER.

6

Datallow
Programming

IFl111uro 1.1. Dependency graph of the book.

1. Introduction

From
Program

to
Parse
Tree

II
Algorithm

for
Demand
Graph

Construction

Each ellipse stands for a chapter and each box for an appendix. The two chapters on
dataflow can be read independently of the four chapters on flow analysis. Those readers
only interested in the analysis method can skip chapters 2, 3, and 8. Readers that are mostly
interested in dataflow code generation could skip chapters 4, 6, and 7.

Chapter 6 is the most -technical one; it contains a detailed description of the crucial
part of the analysis method: the construction of the demand graph. It starts with a
short description of SUMMER and then presents algorithms for the treatment of the
language features for which analysis has been implemented. Much attention is given to
the integrated treatment of escapes and the efficient handling of aliases. Aliasing can
be dealt with quite easily, but could result in a large and therefore inefficient demand
graph. Limiting the graph to a reasonable size is a complicated but interesting
problem. The last section of this chapter describes the algorithm developed for this.

Chapter 7 gives examples of the application specific propagation of demands. The
main application that is described is the one that performs static type checking. A
simpler version of this application is included as part of the code generator.

Chapter 8 describes the generation of code for the Manchester Datafl.ow Machine.
For most language features the translation from demand graph to dataflow graph is
straightforward. Type analysis is needed to cater to the strong typing of the target
machine. Interesting issues are the implementation of in situ update for arrays and
optimizations for loops that result in highly parallel code.

1.4. Summary 7

In chapter 9 the compiler is evaluated. The code the new compiler generates for

several mini-programs is compared with that generated by an existing compiler for a

dataflow language. This comparison shows that, at least for these small programs, there

is not a significant difference in quality, neither in terms of efficiency nor parallelism.

A discussion on the complexity of the new compiler estimates that it is comparable to

that of a conventional optimizing compiler. Both results lend strong support to the

hypothesis that an imperative language is a suitable source language for a dataflow

machine.

8

Chapter 2

Dataflow Machines

Early advocates of data-driven parallel computers had grand visions of plentiful
computing power provided by machines that were based on simple architectural
principles and that were easy to program, maintain, and extend. Experimental datafiow
machines have now been around for almost a decade, but still there is no consensus
whether data-driven execution, besides being intuitively appealing, is also a viable
means to make these visions become reality.

To facilitate the continuing debate, this chapter provides an introduction to datafiow
machines and their underlying principles. No familiarity with parallel computers or
graph terminology is assumed. The first section places datafiow machines in the
context of other parallel computers. The next two sections introduce datafiow graphs,
describe the execution of a program on a datafiow machine, and discuss different types
of machine organizations. Section 2.4 presents a comparative survey of a wide variety
of machine proposals and is followed by detailed study of one, operational, prototype.
The concluding section discusses the feasibility of the datafiow concept on the basis of
this prototype.

2.1. Parallel Computers
The term parallel computers could be somewhat misleading, since it suggests a
monopoly on the exploitation of parallelism. However, Babbage's design for his
analytical engine called for arithmetic to be performed on fifty digits in parallel
[Hock81], the ENIAC also added the ten digits of its numbers in parallel [Gold72], and
nearly all computers built since used parallelism in one form or another to speed up
operation. As pointed out by Hockney [Hock81], the speed of computers has increased
by roughly five orders of magnitude in the period between 1950 and 1975; three orders
of magnitude are attributable to an increase in speed of the basic components while the
rest of the speed-up is due chiefly to the introduction of parallelism.

Most of the parallel features were pioneered in "supercomputers", i.e. machines that
were designed to be the most powerful that were available at the time. In the early
fifties the overlapping of I/O operations with computation and even some primitive

2. 1. Parallel Computers 9

form of vector processing were introduced; the ACE computer, which became

operational in 1951, was the first. About a decade later parallel features like pipelining,

instruction look ahead, cache memory, and memory interleaving were pioneered in the

design of the ATLAS and the STRETCH computer. Almost all computers perform their

arithmetic in parallel except the ones that were built just after the introduction of the

fast but expensive electronic valve. Although most of these forms of parallelism are

commonplace today even in computers with moderate performance, the term parallel

computer is reserved for a machine in which parallel features are prominently visible at

the machine language level.
The integration of more and more components onto a single chip makes parallel

computers more attractive, and the availability of VLSI technology has spurred a

renewed interest in this field. In principle, cheap processing power in VLSI form makes

it possible to build a very fast parallel supercomputer, which would hitherto have been

unaffordable. But VLSI makes parallelism attractive even for medium performance

machines. The reasons for this are mostly economic. A higher level of integration

leads to more computing power per dollar, since it rapidly decreases the manufacturing

cost per gate but not the design cost of each unique part. This ever increasing ratio

between design and manufacturing costs has a profound influence on systems

architecture. It is most cost effective to design parts which are replicated many times

(amortizing the design costs). Memory, in which one design is replicated billions of

times, is the driving force behind the integration efforts. Popular microprocessors,

which are both cheap and universal, follow in their wave. Machines with a much less

wide appeal, such as high or medium performance machines, can only take full

advantage of VLSI if design costs can be amortized internally: such machines should

contain a few different parts that are simple and that are replicated many times.

Because the parts have to be simple, concurrency is the only hope to achieve high

performance.
The efficiency of a parallel computer is influenced by several conflicting factors. A

major problem is contention for a shared resource, usually shared memory or some

other communication channel. If during a significant part of a computation, a major

part of the processing power is not engaged in useful computation we speak of under­

utilization. If under-utilization is due to contention for a particular resource, then this

resource will be called a bottleneck. The severity of bottlenecks can often be reduced by

careful coordination, allocation, and scheduling, but if this is done at run-time it

increases the overhead due to parallelism, i.e. processing that would be unnecessary

without parallelism. Next to speed the most important quality of a parallel computer is

its effective utilization, i.e. utilization corrected for overhead. The best one can hope for

is that the effective utilization of a parallel computer approaches that of a well-designed

sequential computer. Another desirable quality is extensibility, i.e. the property that the

performance of the machine can always be improved by adding more processing

elements. We speak of linear speed-up (and excellent extensibility) if the utilization does

not drop when the machine is extended.
Some parallel computers are asynchronous at the level of the machine language: as

long as two concurrent computations are independent, no assumptions can be made

about their relative timing. These we will call asynchronous machines; the term refers to

the architecture and does not imply that the organization of the machine is also

asynchronous. In the programming of synchronous parallel computers the timing of

concurrent computations plays a prominent role. They require skillful programming to

bring utilization to an acceptable level since scheduling and allocation, i.e. deciding

when and where a computation will be executed, has to be done by the programmer.

10

For certain kinds of applications this is quite feasible. For instance in low level signal
processing massive amounts of data have to be processed in exactly the same way: the
algorithms exhibit a high degree of regular parallelism. Various parallel computers
have been successfully employed for these kind of applications.

Figure 2.1. Some of the design options for parallel computers.
The distinction between synchronous and asynchronous corresponds to the classic
distinction between SIMD (Single Instruction Multiple Data stream) and MIMD (Multiple
Instruction Multiple Data stream), but is somewhat more informative. If the parallel operations
are synchronized at the machine language level, scheduling and allocation needs to be done
by the programmer. In asynchronous machines the processes that run in parallel need to be
synchronized whenever they communicate with each other.

Synchronous parallel computers show a great variety in the power of individual
processors and in the access paths between processors and memory. In associative
processors (e.g. STARAN) many primitive processing elements are directly connected to
their own data; those processing elements that are active in a given cycle all execute the
same instruction. Contention is thus minimized at the cost of low utilization.
Achieving a reasonabl~ utilization is also problematic for processor arrays such as
ILLIAC IV, DAP, and PEPE. The most popular of today's supercomputers are pipelined
vector processors, such as the CRAY-ls and the CDC 205. These machines attain their
speed through a combination of fast technology and strong reliance on pipelining
geared towards floating point arithmetic on long vectors. The performance of vector
processors is highly dependent on the algorithms used and especially on the access
patterns to data structures. The reason for this is the large discrepancy between the
performance of the machine when it is doing what it is designed to do, i.e. processing
vectors of the right size, and when it is doing something else; the speed of scalar and
vector operations differ more than an order of magnitude.

In many areas that have great needs for processing power, the behavior of algorithms
is irregular and highly dependent on the input data making it necessary to perform
scheduling at run time. This calls for asynchronous machines in which computations
are free to follow their own instruction stream without interference from other
computations. However, computations are seldom completely independent and at the
points where interaction occurs they need to be synchronized by some special

2.2. Dataf!ow Machine Language 11

mechanism. This synchronization overhead is the price to be paid for the higher
utilization allowed by asynchronous operation.

There are different strategies to keep this price to an acceptable level. One is to keep
the communication between computations to a minimum by dividing the task into large
processes that operate mainly on their own private data, such as in the HEP [Smit78] or
the CM* [Swan77]. Although in such machines scheduling is done at run time, the
programmer has to be aware of segmentation, i.e. the partitioning of program and data
into separate processes. Again the difficulty of this task is highly dependent on the
regularity of the algorithm. Extension of the machine is not easy, since it requires the
program to be repartitioned differently. Another problem is that processes may have to
be suspended, leading to complications such as process swapping and the possibility of
deadlock.

A different strategy to minimize synchronization overhead is to make communication
simple and cheap, by providing special hardware and coding the program in a special
format. Examples are reduction and dataflow machines. Because communication is so
cheap, the processes can be made very small; about the size of a single instruction in a
conventional computer. This makes segmentation trivial and improves extensibility,
since the programs are effectively divided into many processes and special hardware
determines which of them can execute concurrently.

In dataflow machines scheduling is based on availability of data; this is called data­

driven execution. In reduction machines scheduling is based on the need for data; this
is known as demand-driven execution. Demand-driven machines are currently under
extensive study. There are close parallels between dataflow machines and reduction
machines, but the relative merits of each type remain unclear. Most of the crucial
implementation problems are probably shared by both types of machines. See
[Trel82b] for a comparative survey.

2.2. Dataflow Machine language
Although each dataflow machine has a different machine language, they are all based
on the same principles. These shared principles are treated in this section. Because we
are concerned with a wide variety of machines, we often have to be somewhat
imprecise. More specific information is provided in section 2.5, which deals with one
particular machine. We start with a description of dataflow programs and the ways
they differ from conventional programs. Dataflow programs are usually presented in
the form of a graph; a ~hort summary of the terminology of dataflow graphs is given.
The rest of this section shows how these graphs can be used to specify a computation.

DATAFLOW PROGRAMS

In most dataflow machines the programs are stored in an unconventional form called a
data.flow program. Although a dataflow program does not differ much from a control
flow program it nevertheless calls for a completely different machine organization.
Figure 2.2 serves to illustrate the difference. A control flow program contains two
kinds of references: those pointing to instructions and those pointing to data. The first
kind indicates control flow and the second kind organizes data flow. The coordination
of data and control flow creates only minor problems in sequential processing (e.g.
reference to an uninitialized variable), but becomes a major issue in parallel processing.
In particular when the processors work asynchronously, references to shared memory
must be carefully coordinated. Dataflow machines use a different coordination scheme
called data-driven execution: the arrival of a data item serves as the signal that may
enable the execution of an instruction, obviating the need for separate control flow arcs.

12

a:=x+y
b :=a X a
c := 4- a

x

y

a

b

c

+

x

Figure 2.2. A comparison of control flow and dataflow programs.

2. Dataflow Machines

Memory

4

On the left a control flow program for a computer with memory-to-memory instructions. The
arcs point to the locations of data that are to be used or created. Control flow arcs are not
shown. In the equivalent dataflow program on the right only one memory is involved. Each
instruction contains pointers to all instructions that consume its results.

In dataflow machines each instruction is considered to be a separate process. To
facilitate data-driven execution each instruction that produces a value contains pointers
to all its consumers. Since an instruction in such a dataflow program contains only
references to other instructions, it can be viewed as a node in a graph; the dataflow
program in figure 2.2 is therefore often represented as in figure 2.3. In this notation,
referred to as a dataflow graph, each node with its associated constants and its outgoing
arcs corresponds to one instruction.

Because the control flow arcs have been eliminated, the problem of synchronizing
data and control flow has disappeared. This is the main reason why dataflow programs
are well suited for parallel processing. In a dataflow graph without cycles the arcs
between the instructions directly reflect the partial ordering imposed by their data
dependencies, which would have to be extracted by analysis if a control flow
representation were used. Instructions between which there is no path in the dataflow
graph can safely be executed concurrently.

DATAFLOW GRAPHS

The prevalent description of dataflow programs as graphs has led to a characteristic
and sometimes confusing terminology stemming from Petri net and graph theory.
Instructions are known as nodes, and instead of data items one talks of tokens. A
producing node is connected to a consuming node by an arc, and the "point" where an
arc enters a node is called an input port. The execution of an instruction is called the
firing of a node. This can only occur if the node is enabled, which is determined by the
enabling rule. Usually a strict enabling rule is specified, which states that a node is
enabled when each input port contains a token. In the examples in this section all
nodes are strict unless noted otherwise. When a node fires it removes one token from
each input port and places at most one token on each of its output arcs. In so called
queued architectures, arcs behave like FIFO queues. In most machines each port acts as
a bag: the tokens present at a port can be absorbed in any order.

2.2. Dataf!ow Machine Language

4

x y

c b c b

Figure 2.3. The dataflow program of figure 2.2 depicted as a graph.

The small circles indicate tokens. The symbol at the lett input of the subtraction node

indicates a constant input. In the situation depicted on the lett the first node is enabled, since

a token is present on each of its input ports. The graph on the right depicts the situation

atter the firing of that node.

13

Figure 2.3 serves to illustrate these notions. It shows an acyclic graph comprising

three nodes, with a token present in each of the two input ports of the PLUS node

(marked with the operator "+ "). This node is therefore enabled and it will fire at some
unspecified time. Firing involves the removal of the two input tokens, the computation

of the result, and the production of three identical tokens on the input ports of the

other two nodes. Both of these nodes are then enabled and they may fire in any order

or concurrently. Note that, on the average, a node that produces more tokens than it

absorbs increases the level of concurrency. All three nodes in this example are

functional, i.e. the value of their output tokens is fully determined by the node

descriptions and the values of their input tokens. A more formal treatment of these

notions can be found in [Veen8 l].

CONDITIONAL CONSTRUCTS

Conditional execution and repetition require nodes that implement controlled

branching. The conditional jump of a control flow program is represented in a

dataflow graph by BRANCH nodes. The most common form is the one depicted in

figure 2.4.

value
true false y

true false value

Figure 2.4. BRANCH and MERGE nodes.

A BRANCH node on the left and a non-deterministic MERGE node on the right.

A copy of the token absorbed from the value port is placed on the true or on the false

output arc depending on the value of the control token. Variations of this node with

more than two alternative output arcs or with more than one value port (compound

BRANCH) have also been proposed. As we shall see shortly, the complement of the

BRANCH node is also needed. Such a MERGE node does not have a strict enabling rule,

i.e. not all input ports have to contain a token before the node can fire. In the

14 2. Dataflow Machines

deterministic variety the value of a control token determines from which of the two
input ports a token is absorbed. A copy of the absorbed token is sent to the output
arc. The non-deterministic MERGE node (i.e. a MERGE node without control input) is
enabled as soon as one of its input ports contains a token; when it fires it simply copies
the token that it receives to its successors. This is equivalent to allowing more than one
arc to end at the same port. If such knots [Veen81] are allowed, MERGE nodes can be
abolished, with the advantage that a strict enabling rule is all that has to be supported.

Figure 2.5 shows an implementation of a conditional construct. If one token enters
at each of the three arcs at the top of the graph, the two BRANCH nodes will each send a
token to subgraph for to subgraph g. Only the activated subgraph will eventually send
a token to the MERGE node. If certain assumptions are made about the two subgraphs,
it can easily be shown that this graph has the property that when one token is placed
on each input arc, exactly one token is produced on the output arc. Furthermore, no
port will ever contain more than one token. Such a graph is called safe. It ensures
deterministic behavior even in the presence of non-deterministic MERGE nodes.

f g

Figure 2.5. Conditional expression.

The graph corresponding to the expression z :~ if test !hen f(x,y) else g(x,y) Ii. If test
succeeds, both BRANCH nodes will send a token to the left, otherwise the tokens will go to the
right. Note the use of the non-deterministic MERGE node.

Figure 2.6 shows a number of problems that may arise when BRANCH and (non­
deterministic) MERGE nodes are used in an improper manner. All nodes in this figure
are strict, except the MERGE nodes, and produce tokens on all output arcs when they
fire, except the BRANCH nodes. The first graph is unsafe. If a pair of tokens arrives at
the input ports of node A, the node is enabled and will fire, but this will not enable
node B, since it receives only one token on one of its input ports. A new token may end
up at the same port, if a second pair of tokens enters the graph. The second graph is
also unsafe. When a token enters the graph, node A will fire and place a token on each
of the input ports of the MERGE node. This node will then send two tokens to its output
arc. In the third graph a token will be left behind at an input port of either node C or
node D depending on the value of the control token of the BRANCH node. Such a graph
is called unclean.

2.2. Dataffow Machine Language

figure 2.6. Problems resulting from the improper use of BRANCH and MERGE nodes.

The first two graphs are unsafe; the third one is unclean.

ITERATIVE CONSTRUCTS AND REENTRANCY

15

Figure 2.7 illustrates problems that may arise when the graph contains a cycle. The
simple graph on the left will deadlock unless it is possible to initialize the graph with a
token on the feedback arc. Such an initial placement of tokens is known as priming the
graph. The graph on the right is unsafe since after the firing of the node two tokens
will be present on its input port. Although these are not realistic graphs, the same
problems may arise in any cyclic graph unless special precautions are taken.

figure 2.7. Problems with cyclic graphs.

The graph on the left will deadlock, the one on the right is unsafe.

A correct way to implement a loop construct is shown in figure 2.8. Note the use of a
compound BRANCH node rather than a series of simple BRANCH nodes as in figure 2.5.
The strict enabling rule of this node ensures that it does not fire before subgraph g is
free of tokens. Tokens for the next iteration can therefore be safely sent into the same

subgraph. Because the nodes in subgraph g can fire repeatedly, it is an example of a
reentrant graph. The way reentrancy is handled is a key issue in dataftow architecture.
A dataftow graph is attractive as a machine language for a parallel machine, since all
nodes that are not data dependent can fire concurrently. In case of reentrancy,
however, this maximum concurrency can lead to non-deterministic behavior unless
special measures are taken.

16

new new
y x

Figure 2.8. A loop construct according to the lock method.

2. Dataflow Machines

y x

An implementation of the expression while f(x) do (x,y) :~ g(x,y) od, using the lock method
to protect the reentrant subgraphs t and g.

A graph in which reentrancy can lead to non-determinism is illustrated in figure 2.9,
where the cycles for x and y lead through separate MERGE and BRANCH nodes. In the
first iteration the first PLUS node will calculate the value for x and send copies to
subgraph h and to one of the MERGE nodes. Subgraph h may postpone the absorption
of its input token. Meanwhile the nodes on the cycle for x may fire again and the PLUS
node may send a second token to subgraph h. The use of the compound BRANCH node
in figure 2.8 is therefore essential for its safety. This method we will call the lock
method. It is safe and simple, but not very attractive for parallel machines: the level of
concurrency is low, since the BRANCH node acts as a lock that prevents the initiation of
a new iteration before the previous one has been concluded.

An alternative approach is the acknowledge method. One way to implement this
method is to add extra acknowledge arcs from consuming to producing node. These
acknowledge arcs ensure that no arc will ever contain more than one token and the
graph is therefore safe. One arc provides space for one token. In a manner too
complicated to show here, the proper addition of dummy nodes and arcs can transform
a reentrant graph into an equivalent one allowing overlap of consecutive iterations in a
pipelined fashion. The acknowledge method therefore allows more concurrency than
the lock method, but at the cost of at least doubling the number of arcs and tokens.
Through proper analysis, however, a substantial part of these arcs can be eliminated
without impairing the safety of the graph [Mont80, Broc79]. Both of these methods can
also be implemented at the architecture level by modifying the enabling rule. In some
machines locking is implemented by specifying that nodes in a reentrant subgraph can
only be enabled a second time after all tokens of a previous activation have left the
subgraph. The architectures of other machines implement acknowledgement by
enabling a node only after all its output arcs are empty.

2.2. Dataflow Machine Language

new
x

new
y

Figure 2.9. An unsafe way to implement a loop.

0

x:=y:=O
while x < 10
dox:=x+I

y: = y + h(x)
od

A new token may arrive at the input of subgraph h before the previous one is absorbed.

17

A much higher level of concurrency is obtained when each iteration is executed in a
separate instance (or copy) of the reentrant subgraph. This copy method requires a
machine with facilities to create a new instance of a subgraph and to direct tokens to
the appropriate instance. A more efficient way to implement the copy method is to
share the node descriptions between the different instances of a graph without
confusing tokens that belong to separate instances. This is accomplished by attaching a
tag to each token that identifies the instance of the node it is directed to. These so
called tagged architectures have an enabling rule that states that a node is enabled if
each input arc contains a token with identical tags. Safety in these machines means that
no port will ever contain more than one token with the same tag. A tag is sometimes
referred to as a color or a label.

The tagged nature of the architecture shows up in the program in the form of nodes
that modify tags. Figure 2.10 shows the implementation of the example of figure 2.9 on
a tagged architecture. The proper execution of nested loops requires that the tags used
within a loop are distinct from those in the surrounding expression. A new area in the
tag space is therefore allocated at the start of the loop; within the area tags are ordered.
Tokens entering the loop receive the first tag and tokens for consecutive iterations
receive consecutively ordered tags within the allocated area. On tokens that exit the
loop, the tag corresponding to the surrounding expression is restored. This method can
lead to a much higher level of concurrency, because the cycle for x can safely send a
whole series of tokens with different tags into subgraph h, with each token initiating a
separate and possibly concurrent execution of h.

18

new new
x y

Figure 2.10. An implementation of a loop using tags ..

0

x:=y:=O
while x < 10
dox:=x+ I

2. Oataf/ow Machines

y := y + h(x)
od

At the start of the loop a new tag area is allocated. Tokens belonging to consecutive
iterations receive cons!lcutive tags within this area. On tokens trial exit from the loop the tag
from before the loop is restored; this operation requires an extra input arc that has been
omitted from the illustration.

PROCEDURE INVOCATION

The invocation of a procedure introduces similar problems with reentrancy, to which
the methods described above can also be applied. An extra facility is required to direct
the output tokens of the procedure activation back to the proper calling site. This is
usually implemented as shown in figure 2.11. A token is sent into the procedure body
that contains a reference to a node at the calling site. This token is then used by the
output nodes of the procedure body to direct the return values to the proper places.
Since these output nodes can thus send tokens to nodes to which they have no static
arc, these are known as dynamic nodes.

2.3. The Architecture of Dataffow Machines

actual
parameter

r----------._
I '

'
A:

'_ _______ .J

Figure 2. 11. Use of dynamic nodes to return procedure results.

On the left a call of procedure P whose graph is on the right. P has one parameter and one

return value. The actual parameter receives a new tag and is sent to the input node of P and

concurrently a token containing address A is sent to a node with a dynamic output arc. This

SEND-TO-DESTINATION node transmits its first input token to a node of which the address is

contained in the second token. The effect is that, when the return value of the procedure

becomes available, the dynamic node sends the result to node A, which restores the tag

belonging to the calling expression.

2.3. The Architecture of Dataflow Machines

19

This section describes dataflow machines at the level that directly supports the machine
language. First the basic execution mechanism of a processing element is described and
then the overall structure of a dataflow multiprocessor.

A PROCESSING ELEMENT

A typical dataflow machine consists of a number of processing elements, which can
communicate with each other. Figure 2.12 shows a functional diagram of a processing
element.

r--1
'

I .

L - - -;:,.:--__..,,.
enabling

unit

memory
for tokens
and nodes

Figure 2.12. Functional diagram of a processing element.

The enabling unit accepts tokens from the left and stores them at the addressed node. If this

node is enabled, an executable packet is sent to the functional unit where it is processed.

The output tokens, with the destination addresses, are sent back to the enabling unit.

Modules dedicated to buffering or communication have been left out of this diagram.

20 2. Dataflow Machines

The nodes of the datafl.ow program are often stored in the form of a template
containing a description of the node and space for input tokens. The node description
consists of the operand-code (a shorthand for the mapping from input values to output
values) and a list of destination addresses (the outgoing arcs). We can think of the
movement of a token between two nodes as the progress of a locus of activity. A node
that produces more tokens than it consumes increases the number of concurrent
activities. Concurrent activities interact at nodes that consume more than one token.
Coordination has to take place at these nodes. In datafl.ow machines coordination
therefore amounts to the administration of the enabling rule for those nodes that
require more than one input. The unit that manages the storage of the tokens we call
the enabling unit. It sequentially accepts a token and stores it in memory. If this
causes the node to which the token is addressed to become enabled (i.e. each input port
contains a token), its input tokens are extracted from memory and, together with a
copy of the node, formed into a packet and sent to the functional unit. Such an
executable packet consists of the values of the input tokens, the operand-code and a list
of destinations. The functional unit computes the output values and combines them
with the destination addresses into tokens. Tokens are sent back to the enabling unit,
where they may enable another node. Since the enabling and the functional stage work
concurrently, this is often referred to as the circular pipeline.

Dividing a processing element into two stages is just one of the possibilities. In some
machines the processing elements do not have to be so powerful and they just consist of
a memory connected to a unit that handles both token storage and the execution of
nodes. In other machines the circular pipeline consists of more concurrent stages, as
for instance in most machines that use the tag method to protect reentrant code. Since
in such a machine nodes are shared between different instances of a graph, the space in
a template to be reserved for storage of input tokens may become arbitrarily large.
This makes it impractical to store tokens in the nodes themselves. Token storage is
therefore separated from node storage and the enabling unit is split into two stages: the
matching unit and the fetching unit, usually arranged as shown in figure 2.13.

r--,
I I

memory
for tokens

memory
for nodes

functional
unit

Figure 2.13. Functional diagram of a processing element of a tagged machine.

I
I
I
I
I
I

- -- ...I

The matching unit stores tokens in its memory and checks whether an instance of the
destination node is enabled. This requires a match of both destination address and tag.
Tokens are stored in the memory connected to the matching unit. When all tokens for a
particular instance of a node have arrived, they are sent to the fetching unit, which combines
them with a copy of the node description into an executable packet to be passed on to the
functional unit.

2.3. The Architecture of Dataflow Machines 21

For each token that the matching unit accepts, it has to check whether the addressed

node is enabled. In most tagged machines this is facilitated by limiting the number of
input arcs to 2 and providing each token with an extra bit that indicates the number of

tokens the addressed node requires. The matching unit only has to check whether its

memory already contains a matching token, i.e. a token with the same destination and
tag. Conceptually, the matching unit simply combines destination and tag into an

address and checks whether the location denoted by the address contains a token. The

set of locations addressed by tag and destination forms a space that we call the

matching space. Managing this space and representing it in a physical memory is one

of the key problems in tagged dataflow architectures.
Although not apparent at first, the problem of matching space management is quite

similar to the problems encountered in code copying machines and in fact involves

problems that have plagued parallel architectures from the beginning. At the entrance

to a loop, and during procedure invocation, a unique tag area has to be allocated.

Guaranteeing uniqueness in a parallel computer is problematic. The fundamental

trade-off is between the bottleneck created by a centralized approach and the

communication overhead or inefficient use of space offered by a distributed approach.

In [Arvi77] an extremely distributed approach is proposed in which the uniqueness of a
new tag area can be deduced from the existing tag. Since a tag in this scheme

effectively encodes the calling stack of a procedure invocation, its size grows linearly

with calling depth. Many partly distributed solutions have been proposed. They all

amount to statically distributing the matching space over a set of managers, each of

which manages the allocated area locally. An example is a centralized counter per

processing element, which together with a unique identification of the processing

element provides a unique tag. To prevent the local areas from becoming exhausted the

matching space must be large and, consequently, at any given time sparsely occupied.

Large sparsely occupit:d spaces cause several problems. Firstly, addressing an item

requires many bits. Secondly, implementing the space involves a difficult trade-off

between storage waste (e.g. a sparsely occupied array) and access time overhead (e.g. a

linked list). Hashing techniques offer a compromise. Actual implementations of the

approaches just described are far too few to come to any conclusion yet.
It is interesting to note that the trade-offs for code copying machines are virtually

identical. When a copy of a subgraph needs to be created a storage area has to be

allocated. A virtual memory scheme with sparse allocation can be used, but addresses

become large and an efficient mapping to physical memory is needed. Paging

techniques that exploit locality in instruction execution may be useful. A good memory
manager would avoid these problems but has the same drawbacks as described above.

Efficient distributed allocators and resource managers should therefore be a focal point

of dataflow research. The applicability of mechanisms that have been developed to
solve similar problems in sequential machines (cache, virtual memory management)

should also be studied.
In one variety of dataflow machines each node that fires has been loaded into the

memory of a processing element before the computation starts. Nodes are statically

allocated not only to a processing element but also to a physical memory address. In

these so called static machines destination addresses are fixed before the computation

starts and do not have to be calculated dynamically. These machines do not support

concurrent execution of a loop or procedure body. Such concurrency requires facilities

to implement the copy or the tag method. Machines of this type are called dynamic. 1

I. This is not related to the concept of dynamic nodes and arcs described previously.

22
2. Oataflow Machines

Static machines are much simpler than dynamic machines, since they do not need mechanisms for copying or matching of token tags, but for most algorithms their effective concurrency is lower. Algorithms with a predominantly pipelining type of parallelism, however, execute efficiently on static machines with acknowledging.

DATAFLOW MULTIPROCESSORS
Figure 2.14 shows a schematic view of the structure of a complete dataftow machine. Although each description of a dataftow machine in the literature seemingly presents a different picture, most designs conform to one of the three structures illustrated.

communication

output (a) input

communication communication

m
u
n
i : '
c
a
t

output (b) input output (c) input
Figure 2.14. Overall structure of various dataflow multiprocessors.
(a) One level dataflow machine. Communication facilities deliver tokens that are produced by a functional unit to the enabling unit of the correct processing element. as determined by the destination address and the allocation policy.
(b) Two level dataflow machine. Each functional unit consists of several functional elements (FE), which concurrently process executable packets.
(c) Two stage dataflow machine. Each enabling unit (EU) can send executable packets to each functional unit (FU).

2.3. The Architecture of Oataflow Machines 23

In a one level datafiow machine there is only one level of concurrency in the execution
of instructions. Instructions are executed in the processing elements and the resulting
tokens are used in the same processing element or communicated to other processing
elements. The other two structures exploit the fact that the processing of executable
packets is independent and can be done in any order or concurrently, since they
contain all the information that the functional unit needs to fire the node and to
construct the output tokens. In a two level machine each functional unit consists of
many functional elements, which process executable packets concurrently. Scheduling is
trivial: an executable packet is allocated to any idle functional element. By adjusting
the number of functional elements the power of the functional unit can be tuned to that
of the rest of the processing element. In a two stage machine the processing elements
are split into two stages and between the two stages there is an extra communication
medium that sends executable packets to functional elements. This two stage structure
is advantageous if the functional stage is heterogeneous, for instance when some
functional elements have specialized capabilities.

COMMUNICATION

Figure 2.14 is merely intended to indicate that there is a way to communicate between
different processing elements without suggesting any particular topology. In an actual
machine the communication medium can have the structure of a tree, a ring, a binary
n -cube, or an equidistant n X n switch. An even more important difference lies in the
nature of the connections that the communication medium provides. Just as there are
circuit switching and packet switching networks, a datafiow machine can have a direct
communication or a packet communication architecture.

In direct communication machines adjacent nodes in the graph are allocated to
processing elements that have a direct connection with each other. An important
property of a direct communication architecture is that the communication medium
delivers tokens in the same order as they were received. If the communication medium
is equipped with queues, unsafe graphs (datafiow graphs in which arcs can contain
more than one token) can be executed without impairing determinism.

Packet communication offers the greatest opportunity for load distribution and
parallelism in the communication unit, since it can be constructed from asynchronously
operating packet switching modules, with parallelism and redundancy in this critical
resource. Such a module can accept a token and forward it to another module
depending on its destination address. The order of packets is not necessarily
maintained, and consequently the arcs of the graph do not behave as FIFO queues.
Deterministic execution on these machines can therefore only be guaranteed for safe
graphs. The best structure for the communication unit and its limitations in size and
performance are a matter of debate among datafiow architects. One approach is to
have a large number of slow and simple processing elements connected to a high band
width communication unit. A one level machine structure is usually appropriate for
this approach. Other architects claim that as soon as the machine contains more than a
few dozen processing elements, insurmountable bottlenecks in the communication unit
are created. They therefore concentrate on the construction of powerful processing
elements, which almost always involves a two level design. These architects tend to
postpone the design of the higher level until later, and sometimes one processing
element is presented as a complete machine. The performance of one processing
element, however, is limited by the inherent bottlenecks in the enabling section.

24 2. Oataflow Machines

DATA STRUCTURES

In a datafiow graph values flow from one node to another and are, at least at that level
of abstraction, not stored in memory. If a value is input to more than one node, a
copy is sent to each node. Conceptually, data structures are treated in the same way as
other values. A retrieve operation, for instance, consumes a complete structure and an
index and produces a copy of the retrieved element. Directly implementing this
concept is known as copying. Copying is appropriate for small structures. In a tagged
machine with limited token size a complete structure can be sent to a node by
packaging each element as a separate token distinguished by subsequent tags.
Unfortunately, data structures tend to be large and implementing these by the
conceptually simple copying method would place an unacceptable burden on the
machine. Many machines therefore have a facility to store structures. In such machines
an element can be retrieved by sending a request to the unit where the structure has
been stored.

The datafiow equivalent of a selective update operation (changing one element of a
structure) is an operation that consumes the old structure, the index, and the new value
and produces a completely new structure. This involves the copying of structures even
when they are stored. There are several ways to reduce excessive copying. Structures
that are not shared do not have to be copied before an update. A refer"!nce count
mechanism can be used to detect this, and is helpful for garbage collection. For shared
structures copying can be further reduced by storing the structure in the form of a tree
and copying only the updated node and its ancestors.

Another approach is to provide restrictive access primitives in the programming
language. This lead to the concept of streams, which are structures that can only be
produced and consumed sequentially. These may be processed more efficiently in some
machines and so increase the effective parallelism, because elements of a stream can be
consumed before the stream is completed. This increase in parallelism can also be
achieved by treating the structures non-strictly, i.e. allowing access to elements before
the structure has been completely created.

2.4. A Survey of Dataflow Machines
This section presents a survey of most of the datafiow machines described in the
literature. The extent of such a survey is not immediately clear, since there is no sharp
definition of datafiow machines in the sense of a widely accepted set of criteria to
distinguish datafiow machines from all other computers. For the sake of this survey we
consider as datafiow machines all programmable computers of which the hardware is
optimized for fine grain data-driven parallel computation. Fine grain means that the
processes that run in parallel are approximately of the size of a conventional machine
code instruction. Data-driven means that the activation of a process is solely
determined by the availability of its input data. This definition excludes simulators as
well as non-programmable machines, for instance those that implement the datafiow
graph directly in hardware, an approach that is popular for the construction of
dedicated asynchronous signal processors. We also exclude data driven computers that
use coarse grain parallelism such as the MAUD system [Leco79], and computers that are
not purely data-driven [Trel82a].

The concept of data-driven computation is as old as electronic computing. It is
ironic that the same von Neumann, who is sometimes blamed for having created a
bottleneck that dataflow architecture tries to remove, made extensive study of neural
nets, which have a data-driven nature. Realization of such devices was not feasible at
the time. Asynchronously operating I/O channels, introduced in the I 950's, which

2.4. A Survey of Dataflow Machines 25

communicate according to a ready I acknowledge protocol, are among the first
implementations of data-driven execution. The development in the l 960's of multi­

programmed operating systems, such as MULTICS, provided the first experience with the

complexities of large scale asynchronous parallelism. The intractability of these systems
has lead to the emergence of new models for the design of parallel systems. After

exposure to these problems in the MULTICS project [Denn69] Dennis at MIT developed

the model of Dataflow Schemas, building on work by Karp&Miller [Karp66] and

Rodriguez [Rodr69]. These dataflow graphs, as they were later called, evolved rapidly

from a method for designing and verifying operating systems to a base language for a
new architecture. The first designs for such machines [Denn74, Rumb75] were made at

MIT. The first dataflow machine became operational in July 1976 [Davi79] and several

have been built since.
A clear view of the common properties of different dataflow machines is sometimes

obscured by trivial matters like differences in terminology, choice of illustrations, or

emphasis. Comparisons of dataflow machines have appeared elsewhere, but they were

mostly limited to a few machines [Denn80a, Hazr82]. A more extensive list can be

found in [Trel82b]. An interesting comparison of machines for the execution of

functional languages recently appeared in [Vegd84].

DDMI
Micro

Form I

Figure 2.15. A survey of dataflow machines, categorized according to their architecture and

implementation.

The keys in the boxes refer to the machines that are summarized in figure 2.16.

Figure 2.15 illustrates our classification of dataflow machines. Its form is chosen for

reasons of clarity and gives an impression of which machines are most similar, although

it does not do justice to all the important properties of a particular machine. The

choice of properties used for the classification is limited by the fact that many

descriptions (and some designs) are vague and incomplete. In figure 2.15 dataflow

machines are categorized according to the nature of the communication unit and the

architecture of the processing elements. The topology of the communication unit is not

26 2. Dataflow Machines

used as a criterion, since it does not really help to characterize a dataflow machine and
is often left unspecified. In the rest of this section all machines appearing in the figure
are described separately, using the common terminology established in the previous two
sections. A few features of some designs are summarized in the table at the end of this
section.

Key Machine Group Start Opera-
Project tional

Direct Communication Machines
DDMI Data-Driven Machine # 1 Davis, Utah 1972 1976
Micro Micro-Programmed Marczyilski, Warsaw
DDPA Data-Driven Processor Array Takahashi, Tokyo 1983

Static Packet Communication Machines
DDP Distributed Data Processor Cornish, 1976 1978

Texas Instruments
LAU LAU System Prototype # 0 Syre, Toulouse 1975 1980
Form I Prototype Basic Dennis, MIT 1971 1982

Datafiow Processor

Dynamic Packet Communication Machines
Rumb Datafiow Multiprocessor Rumbaugh, MIT 1974
Form IV Dynamic Datafiow Processor Misunas, MIT 1976
Multi Multi-User Datafiow Machine Burkowski, Winnipeg
Id Id Machine Arvind, MIT 1974 1984
Paged Paged Memory Caluwaerts, Leuven 1979

Datafiow Machine
MDM Manchester Gurd&Watson, 1976 1981

Datafiow Machine Manchester
DDSP Data-Driven Signal Processor Hogenauer, ESL
DFM-1 List-processing-oriented Amamiya, Tokyo 1980 1983

Datafiow Machine
EM-3 ETL Data-Driven Machine-3 Yuba, ETL 1984
DDDP Distributed Data-Driven Kishi, Tokyo 1982

Processor

Figure 2.16. A summary of the dataflow machines that are described in the text.

The dates are in most cases estimates and are merely meant as an indication of the relative
chronology.

DIRECT COMMUNICATION MACHINES

The main drawback of direct communication machines is that for many graphs it is
difficult to find a good mapping onto the network (a/location.) For applications that
have predictable and regular communication patterns matching the machine's topology,
this may be a fruitful approach, however. The most important member of this class is
the oldest working dataflow machine, the DDMl [Davi77, Davi79]. The processing
elements of this machine are arranged as a tree. Allocation is simplified by preserving
the hierarchical tree structure of the program. Any internal node of the processing tree
can allocate a part of its program (a subtree) to any of its descendants. Allocation is
simple and distributed, but far from optimal with respect to even load distribution over
the processing elements. Another, less elaborate, example is provided by a machine
developed in Warsaw, in which the processing elements receive the node descriptions in
the form of micro-programs [Marc83].

2.4. A Survey ofDataflow Machines 27

In Japan an interesting dynamic direct communication machine has been developed
for large scale scientific calculations, such as solving partial differential equations
[Taka83]. The processing elements are arranged on a two-dimensional grid and use
tags to distinguish tokens belonging to different activations. To avoid the necessity to
allocate unique tag areas dynamically, the input language is somewhat restricted (no
general recursion) so that static allocation is possible. A hardware simulator, consisting
of 4 X 4 processing elements, each connected to 8 neighbors, has been used to study
small applications. It confirmed analytical predictions that communication delay does
not seriously degrade performance provided that programs have enough parallelism. A
prototype is now under construction.

STATIC PACKET COMMUNICATION MACHINES
The first packet communication dataflow machine that became operational is the
Distributed Data Processor [Com79, John80], built at Texas Instruments. The
references suggest that DDP uses a locking method to protect reentrant graphs.
Although the compiler may create additional copies of a procedure to increase
parallelism, this copying occurs statically. It is a one level machine with a ring
structured communication unit, augmented with a direct feedback link for tokens that
stay within the same processing element. A prototype comprising four processing
elements has been built.

Around the same time the LAU project in Toulouse, France, designed another static
dataflow machine [Syre80, Comt80, Syre77]. LAU stands for Langage a assignation

unique (single assignment language). This group first designed a high-level language
and then a machine for its efficient execution. The group concentrated on the
construction of a powerful processing element and left the higher level structure more
or less unspecified. In 1980 the LAU system prototype #0, a processing element with
32 functional elements, was completed. Most functional elements are built around a
conventional micro-processor. The machine is not programmed by pure dataflow
programs as described in section 2.2. There is a separate program and data memory
and programs are represented as conventional control flow programs, in which control
flow arcs have been replaced by additional pointers in data memory to all consuming
instructions. This requires a multi-phase communication between functional unit and
token memory and it also complicates the communication with other processing
elements. Safety is guaranteed by a hardware supported locking mechanism. As in the
DDP, the programmer can instruct the compiler to create copies of reentrant subgraphs
to increase parallelism. The instruction set includes nodes that manage all copies of a
subgraph and choose the copy to be used dynamically.

Dennis and his colleagues at MIT have been in the vanguard of the dataflow field and
produced the first designs for datafiow machines. The earliest design [Denn74] had a
two stage structure, with each enabling unit (called an instruction cell) dedicated to one
node and with heterogeneous functional units. This design was later extended into a
series of machines differing in the way they handled reentrancy and data structures.
They ranged from the elementary Form I processor, which was static and could only
handle elementary data, to the full fledged Form IV processor, which had extensive
structure facilities and which could copy subgraphs on demand (see below). When it
was discovered that an unsafe graph might deadlock the machine and acknowledge arcs
had to be introduced, it became clear that it was wasteful to dedicate the processing
power needed in one instruction cell just to one instruction. They were therefore
shared between a group of nodes and called cell blocks. A prototype has now been
built in which the different parts are emulated by micro-programmable micro-

28 2. Dataflow Machines

processors [Denn80b]. Since this single unit can emulate both a cell block and a
functional unit, the prototype has the single stage structure of figure 2.14. The
prototype that is now operational consists of 8 processing elements and an equidistant
packet routing network built from 2 X 2 routing elements.

MACHINES WITH CODE COPYING FACILITIES

The datafiow machines with potentially the highest parallelism are the dynamic
datafiow machines; they employ either code copying or tags to protect reentrant graphs.
It is characteristic for a code copying machine that it cannot always be detennined
statically what the physical address of a node will be. The first detailed design of a
datafiow machine was of this type [Rumb75]. Allocation in this machine is per
procedure: all the nodes and intermediate results of one procedure are stored in the
memory of one processing element. There is a fast connection from the output to the
input port of a processing element such that a circular pipeline is created. Tokens stay
within this pipeline unless they are directed to another procedure, in which case they
are routed to a special processing element called the scheduler. This scheduler sends a
copy of the called procedure and its input values to an idle processing element. If there
is no idle processing element, it waits until a processing element becomes dormant and
then saves its state (i.e. all the unprocessed tokens) and declares it idle.

The MIT Form IV datajlow processor is not one machine, but refers to a whole family
of designs: there have been a number of articles from the datafiow group at MIT each
specifying part of a full fledged datafiow machine. They are all based on an extension
of the basic architecture originally described by Dennis and Misunas [Denn74], but
include special units to store data structures in the form of a tree using hardware
supported reference counts. There have been different proposals for the handling of
reentrancy. Misunas [Misu78] rejected locking and acknowledgement, because it limits
parallelism and proposed to program the machine without iteration. Procedure bodies
would be stored just like data structures and presumably the invocation of a procedure
would result in the storing of a copy of the procedure in the cell blocks. Weng
[Weng79] is more specific about this mechanism. Miranker [Mira77] suggests a sort of
virtual memory for nodes. Translation from virtual to physical address is handled by a
relocation box, which manages both the physical and the virtual space. A node is
copied into physical memory when it receives its first token. A procedure call generates
a unique suffix, which identifies a particular activation. The relocation mechanism
ensures that all tokens in that invocation receive the same suffix. This is similar to the
tag method. All nodes in a procedure are relocated, not only those that get executed.
Code copying is needed because in all machines of this family tokens and nodes are
stored together as templates.

A proposal that is surprisingly similar to this is presented by Burkowski [Burk8 l].
He produced a detailed hardware design for the static Form I processor, including the
acknowledge scheme to protect reentrant graphs, but added memory management
facilities, so that the machine can safely be shared between independent tasks. This
feature makes it into a dynamic machine, since nodes can be allocated and removed
under program control. Although this makes code copying at procedure invocation
feasible, no reference to this can be found in the description.

2.4. A Survey of Dataflow Machines 29

MACHINES WITH BOTH TAG AND CODE COPYING FACILITIES
Arvind and Gostelow began their study of dataflow languages and architectures at the

University of California, Irvine, almost a decade ago. They designed the language Id

(Irvine Dataflow), which introduced many interesting concepts. Independently from

similar work in Manchester, they developed the concept of tags (originally known as

colors) and showed that it helped to extract more of the parallelism available in a

dataflow graph [Arvi77]. Simulation studies were also carried out [Gost80]. The

machine they designed has interesting data structure facilities implementing so called]­

structures (for incomplete structures). These structures are non-strict: fetching of already

written elements is allowed before the structure is complete. This increases the effective

parallelism of a program and facilitates the asynchronous activation of parts of a

procedure (i.e. non-strict procedure call). Special hardware is included to defer fetches

of elements that are not yet available. Arvind and his group, now at MIT, are in the

process of constructing a prototype. Original plans called for the implementation of

the processing elements in VLSI, but this has been postponed until after the construction

of a prototype comprising 64 Lisp machines. These machines will each emulate one
processing element, and can communicate through a packet routing network consisting

of 64 switching elements. The physical connections between these switching elements

favor a binary 7-cube topology, but the network can be programmed to emulate other

topologies. Since the paths between processing elements are unequal in length, with the

path from a processing element back to itself the shortest, the allocation of nodes and

structures can have a great influence on the performance of the machine. Since

elaborate facilities are needed to make this allocation as flexible as possible, allocation

of memory and of tags is under control of a software manager. An advantage of the

combined managing of these two resources is that dynamic trade-off is possible. The

tag space (limited by the maximum size of a tag) is kept small and is used rather

densely. When the tag supply is exhausted, new copies of a subgraph are allocated.
In Leuven, Belgium, a machine has been designed, with an elaborate memory

management scheme [Calu82]. Each processing element has its own memory manager,

but they can also communicate with each other, so that the total memory space is

shared. A procedure call results in the allocation of a fresh memory area for the tokens

belonging to the new invocation. A pointer to this area serves as the tag. To facilitate

an even load distribution the area is allocated in a neighboring processing element.
Therefore, when a node is enabled, its description must be fetched from another

processing element. Caches are used to create local copies. In fact memory is paged

and complete pages are copied. An interesting feature of the memory system is that it

treats data structures in the same way as programs. just as in the Form IV processor,

and that they can be converted into each other. This makes the implementation of
higher order functions feasible.

TAGGED MACHINES
The first tagged dataflow machine built was the Manchester Dataflow Machine

[Gurd80, Wats82]. A prototype processing element became operational in 1981. This

machine will be treated in detail in the next section.
A similar machine but optimized for signal processing is the Data Driven Signal

Processor (DDSP) developed by ESL Inc [Hoge82], which can accommodate a maximum

of 32 processing elements. The optimization is probably due to a special allocation

algorithm combined with an unorthodox communication topology, that appears to be a
combination of a ring and a tree.

30 2. Dataflow Machines

In Japan several tagged dataflow machines are in various stages of construction. The
machine constructed at the Electrical Communication Laboratory of NIT is optimized
for list processing [Amam82]. The processing elements are divided into two classes:
control modules, which provide storage for nodes and tokens, and structure memories,
which provide storage for structures. Functional units are integrated with the structure
memories rather than with the control modules, since most nodes are expected to
operate on structures. The design is guided by the primitive operations available in
pure Lisp and all structures are lists. The central structure operation cons is
implemented "lenient": a pointer token is generated before its arguments are available.
This provides the same advantages as other non-strict structures such as I-structures.

Non-strict data structures are also supported by the Electro Technical Data-Driven
Machine-3 (EM-3), another LISP based machine [Yama83]. This non-strict mechanism
is extended to increase the concurrency of a procedure call. At the start of a procedure
invocation pseudo-results are sent to the consumers of the results of the procedure call.
Concurrent with the execution of the procedure body, most nodes will process these
pseudo-results just as if they were normal tokens. When a node requires the actual
value, its execution is delayed until it becomes available. This mechanism seems to
provide the same computational capability as lazy evaluation. A hardware prototype
composed of 8 processing elements is under construction.

The Distributed Data-Driven Processor built at Systems Laboratory [Kish83] is
distinguished by a centralized tag manager. Although this manager may introduce a
bottleneck, it uses the tag space rather densely and simplifies the restoration of tags
after a procedure invocation. Token matching is by means of a hardware hashing
mechanism similar to the one described in the next section. The machine has a
dedicated unit for non-strict structures. A prototype comprising 4 processing elements
communicating through a two-way ring has been constructed. The study of simple
hand-coded benchmarks revealed that simple allocation results in a reasonable
utilization, which can be markedly improved by more sophisticated allocation schemes.

The table in figure 2.17 summarizes some of this information for the most important
dynamic machines.

Feature FormIV Id Paged MDM DFM-1 EM-3 DDDP

MS 2S IL 0 2L 0 lL lL
Top E c ? E ? E B
Power L M H H H M M
Data St NS St no NS NS NS
Dyna c CT CT T T T T
Space H M H s ? s H

figure 2.17. A comparison of some interesting dynamic machines.

The features are as follows:

MS Machine structure is one level (1l), two level (2l), two stage (2S), or other (0).

Top Topology of communication unit is equidistant (E), bus (8), or cube (C).

Power Computational power per processing element is high (H), medium (M), or low (l).

Data Hardware data structure support for streams (St) or general non-strict data structures (NS).

Dyna Dynamic mechanism uses code copying (C) and/or tags (T).

Space Space management is static (S), hardware supported (H), or by means of a software

manager (M).

2. 5. The Manchester Data Flow Machine 31

2.5. The Manchester Data Flow Machine
Around 1976 John Gurd and Ian Watson started a research project on data flow
computing at the University of Manchester. They conceived a two level machine as
shown in figure 2. l 4(b). Since they believe that the construction of an asynchronously
operating packet communication network serving more than a few dozen processing
elements is not realistic at present, the emphasis of their work has been on constructing
a powerful processing element. This machine is described in detail, since it is the target
machine for the compiler to be described in chapter 8. The description in this section
is based on [Gurd80, Kirk81, Wats82, Silv83] and on personal communication.

2.5. l. OVERVIEW

The group developed the tag concept to increase parallelism for reentrant graphs,
independently from similar work elsewhere. The structure of their processing element
(figure 2.18) is similar to that shown in figure 2.13. It is a pipeline of four units: token
queue, matching unit, fetching unit, and functional unit. Each unit works internally
synchronous, but they communicate via asynchronous protocols. More than thirty
packets can be processed simultaneously in the various stages of the pipeline. To
maximize communication speed the data paths are all parallel (up to 166 bits wide)
transmitting a complete packet at a time. Consequently the sizes of packets, and thus
of tokens, are fixed.

r---,
I
I

L-
token
queue

memory
for tokens

fetching
unit

memory
for nodes

...

pre­
processor

.

Figure 2.18. Functional diagram of a processing element in the Manchester Dataflow

Machine.

' . - J

The token queue is a simple FIFO buffer currently accommodating 32 K tokens. It
serves to smooth the irregular output rates of two other units in the pipeline: the
matching unit and the functional unit.

The matching unit accepts tokens from the token queue and sends complete sets of
input tokens to the fetching unit. Currently it can store 1 M tokens Since in this
machine the number of input arcs of a node is limited to two, the destination node is
either a single-input or a dual-input node. Each token carries information to distinguish
the two cases. In the former case the token is simply passed on to the fetching unit (a
bypass.) In the latter case a match operation is performed, as described below. A match
operation may or may not result in the production of an output packet and this
accounts for the variable rate of this unit.

The fetching unit combines the set of input tokens with the description of the
destination node into an executable packet. The node space is divided into segments to
provide rudimentary protection in case of multi-programming. The prototype currently
accommodates 64 K nodes. Each node may contain up to two destination descriptions,
each consisting of an address and an indication whether the destination node is single-

32 2. Dataflow Machines

or dual-input. One of the descriptions may be replaced by a literal, a constant input
token for one of the two input arcs. Such a curried node is then single-input.

The functional unit consists of a preprocessor and a set of functional elements
connected via a distributor and an arbiter. The preprocessor executes instructions that
require access to a counter memory. Most counters are used to monitor performance.
One counter, called the activation name counter, is used for the generation of unique tag
areas and can be manipulated by the program proper. Although this is not a functional
operation, the instruction set is such that this in itself cannot lead to non-functional
programs. The functional elements are micro-programmed bit-slice processors. The
processing time per instruction varies from 3 to 30 micro-seconds, with an average of 6
micro-seconds. This variation, combined with the fact that an instruction may produce
0, I, or 2 tokens, accounts for the irregular rate of the functional unit.

The prototype is connected via a rudimentary communication network to a v AX
111780, which serves as host computer. Since the loading of the node memory and the
micro-programs for the functional units and several other control functions are all
accomplished through the use of special packets, no other communication paths than
the ones shown in figure 2. I 8 are needed.

output input
Figure 2.19. The Manchester Dataflow Machine with three processing elements.

Figure 2.19 illustrates the structure of a multiprocessor with 3 processing elements. The
communication unit consists of 2 X 2 routing elements, each of which may accept a
token from one of its input lines and send it to one of its output lines. For n - l
processing elements logz n layers of Vi n routing elements each are needed. The
communication unit is equidistant: the distance between any pair of processing
elements is the same as that between the output and input of one processing element.
The routing of tokens is determined by the destination address and/ or the tag,
depending on which allocation strategy is chosen. Since the communication unit has no
locality properties that the allocation policy could take advantage of, only an even load

2.5. The Manchester Data Flow Machine 33

distribution over the processing elements has to be ensured. At present a pseudo
random distribution is envisioned, implemented by hashing on both address and tag.

2.5.2. THE MATCH OPERATION

When a token destined for a dual-input node arrives at the matching unit, it performs a
match operation, i.e. searches its memory for a token with the same destination and tag.
In a datafiow machine matching implements the synchronization of and the
communication between concurrent threads of execution. An efficient implementation
is crucial for the performance of the whole machine. The introduction of matching
functions, described below, requires the matching unit to support the storage of data
structures. These two factors make this unit the most interesting part of the machine.
The unit can be considered to implement a sparsely occupied virtual memory with the
pair <destination,tag> as memory address. The search consists of retrieving the
addressed memory cell. If it is empty the match fails. If the cell contains a token
destined for the same input port, a fatal condition, known as token clash, has arisen due
to unsafety of the graph and the execution is aborted. If the cell contains a token
destined for the other port, the two tokens are partners and the match succeeds. They
are combined into a packet and sent to the fetching unit. What extra action is to be
taken in case of failure or success is determined by a field in the incowing token,
known as the matching function.

Matching Functions.
There are four success actions:

Extract The token is removed from memory.
Preserve The token is left in memory.
Increment The value of the token in memory is incremented.
Decrement The value of the token in memory is decremented.

The four fail actions are as follows:
Wait The incoming token is stored at the memory location.
Defer The incoming token enters a "busy-wait" cycle: it is passed as a special

packet through the rest of the processing element and the
communication unit, until it reaches the matching unit again, where the
match operation will be repeated.

Abort The incoming token is combined with a special "empty" token into a
packet and sent to the fetching unit.

Generate As Abort but a copy of the incoming token is placed in memory as if it
were a preserved partner.

Not all combinations are allowed. Normally only the combination Extract-Wait is
used, i.e. the partner is removed if present, otherwise the incoming token is stored in
the matching store. The matching function Preserve-Defer may be used to implement a
memory function (see figure 2.20). Data structures can thus be stored without a
separate structure memory. Storing large data structures, however, may burden the
matching unit considerably. The storage facility is quite primitive: reference counts and
garbage collection have to be implemented in software. A separate structure store that
provides these facilities directly is being implemented. The other combinations are not
discussed in detail. Suffice it to say that Increment-Defer and Decrement-Defer are
useful when an indivisible semaphore action is needed as in e.g. resource management.
Extract-Abort allows testing of the state of the matching unit, whereas Preserve­
Generate is useful in case special action needs to be taken the first time an arc is

34 2. Dataflow Machines

traversed. The indication that a token should bypass the matching unit because the
destination is a single input node is sometimes also referred to as the matching function
Bypass.

"A" "B"

Figure 2.20. The storage of a token.

Token x is "stored" by sending it to the first input port of a dynamic node (see also figure
2.11). The address tokens entering this node at the other port carry a Preserve-Defer
matching function (PD). The Preserve action makes them into requests to send a copy of the
stored token to the designated node. The Defer action is needed since several requests may
arrive before token x is stored. If the stored token becomes garbage it has to be collected by
means of a request to send the token to a sink. This request should carry a normal Extract­
Wait matching function.

The extra success actions are optimizations (see figure 2.21), and do not add to the
power of the machine. The extra fail actions, however, introduce the possibility of
non-deterministic graphs, where the output is dependent on the relative timing of node
firings. It also allows the construction of safe but non-functional (i.e. history sensitive)
graphs. The Defer action in fact changes the concept of safety: more than one token
with the same tag are allowed on a port as long as they have Defer matching functions.
Deferment is essential for the efficient implementation of data structures, but, if busy­
waiting occurs, taxes the resources of the machine. Bohm [Bohm84] has shown that all
special matching functions can be simulated with a so called "there box", which is
equivalent to an Extract-Abort matching function.

Preserve Increment Decrement

~-? ~-~ ~-~
Figure 2.:11. Equivalence of matching functions and cycles.

The success actions of the special matching functions can all be implemented by cyclical
graphs.

2.5. The Manchester Data Flow Machine 35

Realizing the Virtual Matching Memory.
Since the virtual matching memory is occupied so sparsely it cannot be implemented

directly, but has to be mapped onto a physical memory of realistic size. An associative

memory could be used but it was determined that simulating this by means of a

hardware hashing mechanism is more cost-effective. The 54 bit matching key (18 bits

for the destination and 36 bits for the tag) is hashed to a 16 bit address to access a 64K

memory. Each cell has room for one token including destination address, tag, and an

extra bit to indicate an empty cell. If the accessed cell is empty the match fails. If it

contains a token, its address, tag, and port are compared with those of the incoming

token leading to either success, failure, or token clash. When the incoming token has to

wait upon failure it has to be stored at the same address. At present 20 of these

memory banks work in parallel, so 20 tokens that hash to the same address can be

accommodated simultaneously. When a token needs to be stored for which all 20 slots

are occupied, it is diverted to the overflow unit (presently simulated by the v AX 111780),

which handles the tokens in a conventional manner. The matching unit uses an extra

64K bit memory to indicate which hash keys have overflowed and routes each failing

token hashed to an overflowed address to the overflow unit to continue its search for a

partner. Other tokens can be processed concurrently, since the order in which

matching occurs does not affect the computation.

search

token

r---,
' '
; bypass 1

'

single .
dual input~--~

Generate

Hash

Key

A
N

K

---ffiiiichlng store

' '
L---~

Figure 2.22. Matching Unit.

matched

tokens

For each token destined for a dual input node a hash key is generated based on destination

address and tag. In the second stage of the pipeline the 20 slots of the memory banks are

accessed in parallel. If the partner is present the match succeeds. If the match fails the token

is stored unless all slots are already occupied. In that case the token is diverted to the

overflow unit and a overflow bit is set. A token for which the match fails and the

corresponding overflow bit is on is always sent to the overflow unit.

Since the processing of overflowed tokens is slower than normal matching, a small

fraction of overflowed addresses (less than I %) may have a considerable effect on the

overall performance. When such level of overflow is reached, 60 % of t_he memory is

occupied on average.

36 2. Dataflow Machines

2.5.3. INSTRUCTION SET
To give an impression of the architecture of a typical dataflow machine as perceived by
the machine language programmer the instruction set is presented in some detail. More
information on the instruction set can be found in chapter 8.

Operators.
Operators are instructions that implement arithmetical, logical, and relational
operations that could also be found in a conventional architecture. Since each token
carries a type indication, polymorphic operators (such as an addition operation that can
handle reals and integers) could have been included. Instead the architects decided to
implement strong typing, where operators check whether the input tokens conform to
rather strict type restrictions. They hoped that its inherent redundancy would lead to a
more robust system. As a consequence the machine has a large set of standard types
and a great number of operators (two thirds of the 77 instructions listed in [Kirk8 l]).
In a parallel computer it is not so simple to abort a computation when an error
condition is detected. Instead a standard type Error is included, which is transmitted
by each operator throughout the graph and will eventually appear in the output.

Flow Control.
Characteristic for a datafiow machine are the flow control instructions. The DUPLICATE
instruction, which simply copies its input to two outputs, is essential since the number
of output tokens per node is limited to two. The KILL instruction acts as a sink.
Conditional flow is directed by BRANCH instructions, which send their first input token
to one of the output arcs depending on the value of the second input token. The
various branch instructions direct tokens of type Error to a fixed output port, making it
possible to write programs that terminate rapidly whenever an error is detected. The
implementation of procedure returns requires dynamic nodes with an output arc that is
not fixed but determined at run time (see figure 2.11).

Tag Manipulation.
The tag is divided into three fields. The iteration level is used to separate subsequent
activations of a loop body, the index is used to separate elements of a data structure,
and the activation name is used to separate tag areas. Through clever encoding the sizes
of these fields are determined at run time although the total tag size is fixed. The fields
are not distinguished outside the functional unit, but there are separate instructions to
manipulate the different fields.

The activation name space is considered to be an unordered set of unique names.
The GENERATE-ACTIVATION-NAME instruction generates a new activation name by
causing the preprocessor to increment its activation name counter and prefixing its
value by the processing element identifier. Consequently the activation names are
unique, but their supply is rather limited (programs with too many procedure calls
cannot be supported). Other schemes have been proposed that do not make use of the
central counters, but generate and recycle activation names locally in the graph
[Catt8 l].

Since tokens of this type may not be converted to any other type, the non­
functionality of this instruction is harmless. The iteration level and index may be set to
an integer and they may be subject to arithmetic. The special operations on iteration
level can be seen as optimizations of the more general activation name operations,
taking advantage of the restrictions that make iteration equivalent to tail recursion.

2.6. Feasibility of Dataflow Machines 37

Data Structures.
A data structure can be sent over an arc with each element as a separate token
distinguished by the index field of the tag. The elements can be produced and accessed
in any order and concurrently. Retrieving a single element of a data structure in
copying mode (acceptable for small structures) is accomplished by sending all tokens of
a structure to a node that transmits the token with the proper index field and discards
all other tokens. The storage of data structures is accomplished by matching functions
as shown in figure 2.20. Many algorithms exhibit a pipeline type of parallelism, calling
for implementation with streams, which are produced and consumed in order. With the
aid of special instructions (see [Bowe8 l]) this type of processing can be made quite
efficient. Other instructions facilitate the interaction between subsequent iterations and
subsequent data structure elements.

2.5.4. STATE OF THE PROJECT

The first prototype processing element, which became operational in the fall of 1981,
has been subjected to numerous performance studies, and unsatisfactory parts have
been improved. For a set of benchmark programs a performance of one to two million
instructions per second has been reached [Gurd85]. Since the prototype is implemented
in medium performance technology, an upgrading to around ten million instructions
per second for one processing element seems feasible. Before an expansion to a four
processing elements machine is attempted, an emulator is being constructed to study
the behavior of the communication unit. The emulator consists of 16 pairs of micro­
processors, each pair emulating one processing element, connected via a synchronously
operating packet switching network. A separate structure store has been constructed
and is now being installed. In the following section some conclusions are drawn based
on the experiences gained so far.

2.6. Feasibility of Dataflow Machines
We saw in the previous section that a processing element for a datafiow machine can be
constructed with a speed of close to ten million instructions per second. Since dataflow
machines are in principle extensible, a machine consisting of more than a hundred
processing elements could conceivably reach a speed in the range of a billion
instructions per second. It is too early to tell whether this potential can indeed be
realized; much work needs to be done on allocation schemes and experience needs be
gained with data structure support and networks that connect many processing
elements. But even if a machine with such a performance could be constructed, the
question remains whether the amount of hardware needed for such a machine would
not be better used by an alternative architecture. In fact most of the objections raised
against the datafiow approach are concerned with factors that are believed to reduce the
effective utilization of a datafiow machine to an unacceptably low level. A well argued
case is made by Gajski et al. [Gajs82]. They claim that most programs do not contain
enough parallelism to utilize a realistic datafiow machine except when large arrays are
processed in parallel. They also claim that the handling of large data structures
involves considerable overhead in the form of either excessive storage or excessive
processing requirements. With several prototypes operational the validity of such
objections can now be judged on the basis of actual experience. In this section this
question is addressed with respect to the Manchester Dataflow Machine, concentrating
on underutilization and overhead. To facilitate the description, these will be treated
together as resource waste. Roughly speaking wasted resources are considered to be
those that are needed beyond those in a reasonably high performance sequential

38 2. Oataflow Machines

computer.
Most of the hardware of the Manchester Dataflow Machine can be classified as being

used either for processing or for storage. All functional elements together form the
processing hardware. Storage consists of data and instruction memories in the token
queue, the matching unit, and the fetching unit. The rest of the hardware we classify as
being used for communication. The total resource waste in this machine can be
estimated if we know the relative sizes of the three categories and the level of waste
within each category. As a rough measure of the amount of hardware we use the
number of printed circuit boards ignoring differences in board and chip density.

A multiprocessor consists of a number of processing elements connected with a
communication switch. The amount of hardware in the switch per processing element
grows logarithmically with the size of the machine. A machine containing a few dozen
processing elements would require about 2 printed circuit boards per processing
element for the switch alone. One processing element is currently implemented with
about 15 printed circuit boards for processing, 22 for storage, and 9 for internal
communication. We can say that about 50 % of the hardware is devoted to storage, 30
% to processing, and 20 % to communication.

The amount of communication hardware is relatively small, especially considering
that most of it is needed for the asynchronous communication between the units. Since
the same architecture could have been implemented synchronously, we concentrate on
the other two categories.

2.6. l. PROCESSING

Processing power is wasted either because a functional element is idle or because it is
performing overhead computation, i.e. computation that would not be needed in a
sequential implementation. We treat these two factors in order.

Underutilization of Functional Elements.
A functional element is idle because of a poor hardware balance, lack of parallelism in
the program, or poor distribution over the processing elements. Balancing the
hardware amounts to adjusting the number of functional elements to the speed of the
matching unit and providing enough buffering to smooth irregularities. This has been
done by analysis and by experiment [Gurd83, Gurd85] and it has been concluded that
the functional unit should contain between 12 and 20 elements.

In such a configuration there are 30-40 stages in the pipeline that can concurrently
be active. The parallelism in a program should thus be at least 30 per processing
element to avoid starvation of functional elements and preferably more to
accommodate the smoothing buffers. Experiments with simple programs run on one
processing element indicate that an average parallelism of 50 is sufficient. A reasonably
sized multiprocessor would therefore need programs with an average rate of parallelism
close to a thousand. Experience so far suggests that realistic programs can indeed
achieve such rates of parallelism. Programs with a regular type of parallelism, for
which the average rate of parallelism is close to the maximum rate, do not create
problems. Such programs, however, run well or even better on more conventional
parallel computers. For programs with irregular parallelism the amount of parallelism
is occasionally so high that the resources of the machine gets flooded by intermediate
results, i.e. the matching unit overflows. While originally the extraction of parallelism
out of programs was an important research topic, currently attention has ·shifted to the
opposite: the search for a throttle, a mechanism to dynamically limit parallelism if
resources tend to get overloaded. In the Machester processing element this could be

2. 6. Feasibility of Dataflow Machines 39

implemented by replacing the FIFO token queue by a more sophisticated mechanism
that would classify tokens in different categories and favor a particular category
depending on machine load. A suggestion for this also appears in [Veen80]. An
effective classification would need assistance from the compiler.

Distributing the work load over the processing elements is in general a complicated
allocation problem that needs to take the locality of instruction and data access into
account. In the Manchester machine the problem is simplified, since all communication
paths are of equal length so there is no physical locality that the allocator needs to
exploit. The architects expect that a pseudo random distribution based on a similar
hashing technique as used in the matching store will provide an even distribution.

Overhead Computation.
Even if the functional elements are sufficiently utilized, processing power can still be
wasted if many instructions are in fact overhead. One source of this type of overhead
mentioned in [Gajs82] is the distributed nature of flow control. A manifestation of this
problem is the separate branch instructions that need to be executed for each data item
that enters a conditional expression compared to the single jump instruction in a
control flow computer. Nested conditionals aggravate the problem considerably.
Another manifestation in a tagged architecture is the tag manipulation instruction that
is needed for each data item entering a reentrant subgraph. Possibly the largest source
of overhead computation is in the handling of large data structures. Whenever a
complete data structure is transmitted where a pointer to a stored copy could have been
used, as many overhead instructions are executed as there are elements in the structure.

For certain numerical programs an indication of the amount of overhead
computation is provided by the floating point fraction, i.e. the fraction of executed
instructions that perform floating point operations. 1 Studies of benchmark programs
run on conventional super computers at Lawrence Livermore National Laboratory
showed that assembly language programmers achieve a floating point fraction of 30 %,
whereas FORTRAN compilers reach 15-20 % [Gurd85]. Straightforward compilers for the
Manchester Dataflow Machine achieve a floating point fraction of 3 % for large
programs. There is, however, much room for optimization and a good compiler can
reduce this overhead considerably. Recent work on optimization in Manchester has
achieved floating point fractions of 15 % for realistic programs [Bohm85]. We will
return to this issue in chapter 9.

2.6.2. STORAGE

An even distribution of the work over a multi-processor is greatly simplified if each
instruction is available on each processing element. Because of all the copies of the
program, most instruction storage would be wasted. This waste is, however,
insignificant compared to the waste in data storage.

The processing element that is currently operating contains an enormous amount of
memory, practically all of it situated in the matching unit. The total hardware cost of
the machine is dominated by the cost of this 15 M byte high speed data memory. This
memory is so large because large data structures (and sometimes several copies) need to
be accommodated and because its effective utilization is less than 20 percent.

I. The Manchester Datafiow group calls the inverse of this figure the MJPS/MFLOPS ·ratio.

40 2. Dataflow Machines

The latter is due to a combination of two factors:
o Each token carries a destination and a tag in addition to its data. Two thirds of each

cell is thus dedicated to overhead.
e The occupancy needs to be limited to less than 60 percent to avoid serious

performance degradation due to overflow.
Many of the large data structures that have to be accommodated have a long life time.
It would be much more efficient to store all elements of such a structure consecutively
without tags and destination. An access to an element would then require a pseudo­
associative access to the structure and within that area a conventional access to the
element. This would practically eliminate the first overhead. A separate structure store
based on this principle is now being installed [Sarg85]. It will appear in the
multiprocessor as an extra processing element specialized in structure operations. This
structure store needs to allocate memory only during structure creation, a relatively
infrequent operation. This allows for efficient memory management which will
significantly reduce the second source of storage waste.

2.6.3. CONCLUSIONS

The major resource waste occurs in the data memory due to the per token mapping of
virtual to physical matching memory. The pseudo-associative memory that is needed
for this, with its relatively slow overflow mechanism, necessitates a far too low
utilization. A secondary problem is the amount of control information accompanying
each data item. The structure store will probably alleviate both of these problems. ll
this undertaking is successful, the token memory could be greatly reduced in size. It is
interesting to speculate on the effects. If the amount of data storage could be reduced
to a quarter of what is currently needed, the situation would change considerably: half
of the hardware of the machine would then be devoted to processing with the rest
evenly divided between storage and communication. The 25 % overhead in
communication seems acceptable as long as the functional elements are utilized
efficiently. Three factors are most important for this: sufficient parallelism, efficient
code (i.e. few overhead instructions), and an even distribution over the processing
elements. The first two issues depend greatly on the compiler. Even distribution needs
extensive research in allocation schemes. Static allocation (i.e. allocation that does not
take the current load distribution into account) probably requires a good compiler that
provides locality information. Some experience with static allocation is reported in
[Kish83]. It seems probable that in a large general purpose machine a dynamic
allocator will be needed. Elaborate allocation schemes that exploit locality have been
proposed by Arvind [Arvi83]. A mechanism to dynamically adjust the activity in a
processing element (a throttle) seems essential. Such a mechanism could also benefit
greatly from information provided by the compiler about the structure of the program.

In summary, allocation and distribution schemes should be a focal point of further
research. The quality of compilers could also greatly effect the performance. We come
back to this in the next chapter on programming.

2.6. Feasibility of Dataflow Machines 41

References
Amam82. AMAMIYA, M., R. HASEGAWA, 0. NAKAMURA, AND H. MIKAMI (Jun 1982).

A List-Processing-Oriented Data Flow Machine Architecture, AFIPS National
Computer Conference 82, 143-151.

Arvi77. ARVIND AND K.P. GosTELOW (1977). A Computer Capable of Exchanging
Processors for Time, Information Processing 77, 849-853, North Holland.

Arvi83. ARVIND, ET.AL. (1983). The Tagged Token Datafiow Architecture, Technical
Report, MIT - Laboratory for Computer Science.

Bohm84. BOHM, A.P.W. (Feb 1984). Datafiow Computation, dissertation,
Mathematical Centre CWI Tract 6, Amsterdam.

Bohm85. BOHM, A.P.W. AND J. SARGEANT (Sep 1985). Efficient Datafiow Code
Generation for SISAL, Parallel Computing 85.

Bowe81. BOWEN, D.L. (Apr 1981). Implementation of Data Structures on a Data Flow
Computer, Ph.D. Thesis, Dept. of Computer Science - Victoria University of
Manchester.

Broc79. BROCK, J.D. AND L.B. MONTZ (Ju! 1979). Translation and Optimization of
Data Flow Programs, CSG Memo 181, MIT - Laboratory for Computer
Science.

Burk81. BURKOWSKI, F.J. (May 1981). A Multi-User Data Flow Architecture, Eigth
International Symposium on Computer Architecture.

Calu82. CALUW AERTS, L.J., J. DEBACKER, AND J.A. PEPERSTRAETE (Dec 1982).
Implementing Code Reentrancy in Functional Programs on a Datafiow
Computer System with a Paged Memory, International Workshop on High­
Level Language Computer Architecture.

Catt81. CATTO, A.J. (Jun 1981). Nondeterministic Programming in a Datafiow
Environment, Dissertation, Dept. of Computer Science - Victoria University
of Manchestei.

Comt80. COMTE, D., N. HIFDI, AND J.C. SYRE (Oct 1980). The Data Driven LAU
Multiprocessor System: Results and Perspectives, IFIP80, 175-180.

Com79. CORNISH, M. ET.AL. (Nov 1979). The TI Data Flow Architectures: The Power
of Concurrency for Avionics, Third Conference on Digital Avionics Systems,
19-25.

Davi77. DAVIS, A.L. (1977). Architecture of DDMI: A Recursively Structured Data
Driven Machine, Technical Report, University of Utah, Salt Lake City, Utah.

Davi79. DAVIS, A.L. (Jun 1979). A Data Flow Evaluation System Based on the
Concept of Recursive Locality, Proceedings National Computing Conference,
1079-1086, AFIP.

Denn69. DENNIS, J.B. (1969). Programming Generality, Parallelism and Computer
Architecture, Information Processing 68, 484-492.

Denn74. DENNIS, J.B. AND R.P. MISUNAS (Dec 1974). A Preliminary Architecture for
a Basic Data Flow Processor, Second International Symposium on Computer
Architecture, Computer Architecture News, 3.4, 126-132.

Denn80a. DENNIS, J.B. (Nov 1980). Data Flow Supercomputers, Computer, 13.4, 48-
56.

Denn80b. DENNIS, J.B., G.A. BOUGHTON, AND C.K.C. LEUNG (May 1980). Building
Blocks for Data Flow Prototypes, Seventh International Symposium on
Computer Architecture, 1-8.

42 2. Oataflow Machines

Gajs82. GAJSKI, D.D., D.A. PADUA, D.J. KucK, AND R.H. KUHN (Feb 1982). A
Second Opinion on Data Flow Machines and Languages, Computer, 15.2, 58-
69.

Gold72. GowsnNE, H.H. (1972). The Computer from Pascal to von
Neumann, Princeton University Press.

Gost80. GOSTELOW, K.P. AND R.E. THOMAS (Oct 1980). Performance of a Simulated
Dataflow Computer, IEEE Transactions on Computers, C-29.10, 905-919.

Gurd80. GuRD, J. AND I. WATSON (Jun & Jui 1980). A Data Driven System for High
Speed Parallel Computing, Computer Design, 9.6&7, 91-100 & 97-106.

Gurd83. GuRD, J. AND I. WATSON (1983). Preliminary Evaluation of a Prototype
Datafiow Computer, Ninth IFIP World Computer Congress, 545-551.

Gurd85. GURD, J.R., c.c. KIRKHAM, AND I. w ATSON (Jan 1985). The Manchester
Prototype Dataflow Computer, Communications of the A CM, 28.1, 34-52.

Hazr82. HAZRA, A. (Oct 1982). A Description Method and a Classification Scheme for
Data Flow Architectures, Third International Conference on Distributed
Computing Systems, 645-651.

Hock8l. HOCKNEY, R.W. AND C.R. JESSHOPE (1981). Parallel Computers: Architecture,
Programming and Algorithms, Adam Hilger, Bristol.

Hoge82. HOGENAUER, E.B., R.F. NEWBOLD, AND Y.J. INN (Aug 1982). DDSP - A
Data Flow Computer for Signal Processing, International Conference on
Parallel Processing, 126-133.

John80. JOHNSON, D. ET.AL. (1980). Automatic Partitioning of Programs m
Multiprocessor Systems, Spring COMPCON 80, IEEE.

Karp66. KARP, R.M. AND R.E. MILLER (Nov 1966). Properties of a Model for Parallel
Computations: Determinacy, Termination, Queueing, SIAM Journal of Applied
Mathematics, 14.

Kirk81. KIRKHAM, C.C. (May 1981). Basic Programming Manual of the Manchester
Prototype Dataflow System, 2nd Edition, Datafiow Research Group -
Manchester University.

Kish83. KISHI, M., H. YASUHARA, AND Y. KAWAMURA (Jun 1983). DDDP: A
Distributed Data Driven Processor, Tenth International Symposium on
Computer Architecture, 236-242.

Leco79. LECOUFFE, M.P. (Apr 1979). MAUD: A Dynamic Single-Assignment System,
Computers and Digital Techniques, 2.2, 75-79.

Marc83. MARCZYNSKI, R.W. AND J. MILEWSKI (Jun 1983). A Data Driven System
Based on a Microprogrammed Processor Module, Tenth International
Symposium on Computer Architecture, 98-106.

Mira77. MIRANKER, G.S. (1977). Implementation of Procedures on a Class of Data
Flow Processors, International Conference on Parallel Processing, 77-86.

Misu78. MISUNAS, D.P. (1978). A Computer Architecture for Data Flow Computation,
Technical Memorandum I 00, MIT - Laboratory for Computer Science.

Mont80. MONTZ, L.B. (Jan 1980). Safety and Optimization Transformations for Data
Flow Programs, Technical Report 240, MIT - Laboratory for Computer
Science.

Rodr69. RODRIGUEZ, J.E. (Sep 1969). A Graph Model for Parallel Computation,
Technical Report 64, MIT - Project MAC.

Rumb75. RUMBAUGH, J. (1975). A Data Flow Multiprocessor, Sagamore Computer
Conference on Parallel Processing, 220-223.

2.6. Feasibility of Dataflow Machines 43

Sarg85. SARGEANT, J. (Apr 1985). Efficient Stored Data Structures for Dataftow

Computing, Ph.D. Thesis, Dept. of Computer Science - Victoria University of

Manchester.
Silv83. SILVA, J.G.D. DA AND I. WATSON (Jan 1983). Pseudo-Associative Store with

Hardware Hashing, IEEE Proceedings Pt. E, 130.1, 19-24.

Smit78. SMITH, B.J. (1978). A Pipelined Shared Resource MIMD Computer,

International Conference on Parallel Processing.

Swan77. SWAN, R.J., S.H. FULLER, AND D.P. SIEWIOREK (1977). Cm* - A Modular,

Multi-Microprocessor, National Computer Conference, 637-644.

Syre77. SYRE, J.C., D. COMTE, AND N. NIFDI (Aug 1977). Pipelining, Parallelism and

Asynchronism in the LAU System, International Conference. on Parallel

Processing, 87-92, IEEE.
Syre80. SYRE, J.C. (1980). Etude et Realisation d'un Systeme Multiprocesseur MIMD

en Assignation Unique, These, Universite Paul Sabartier de Toulouse.

Taka83. TAKAHASHI, N. AND M. AMAMIYA (Jun 1983). A Data Flow Processor Array

System: Design and Analysis, Tenth International Symposium on Computer

Architecture, 243-250.
Trel82a. TRELEAVEN, P.C., R.P. HOPKINS, AND P.W. RAUTENBACH (Feb 1982).

Combining Data Flow and Control Flow Computing, Computer Journal, 25.l.

Trel82b. TRELEAVEN, P.C., D.R. BROWNRIDGE, AND R.P. HOPKINS (Mar 1982). Data­

Driven and Demand-Driven Computer Architecture, Computing Surveys, 14.1,

93-143.
Veen80. VEEN, A. (1980). Data Flow Computers, in Colloquium Hogere

Programmeertalen en Computerarchitectuur - Syllabus 45, 99-132, ed. P. Klint,

Mathematical Centre, (in dutch).
Veen81. VEEN, A. (Oct 1981). A Formal Model for Data Flow Programs with Token

Coloring, IW 179, Mathematical Centre.
Vegd84. VEGDAHL, S.R. (Dec 1984). A Survey of Proposed Architectures for the

Execution of Functional Languages, IEEE Transactions on Computers, C-

33.12, 1050-1071.
Wats82. WATSON, I. AND J. GURD (Feb 1982). A Practical Data Flow Computer,

Computer, 15.2, 51-57.
Weng79. WENG, K.S. (May 1979). An Abstract Implementation for a Generalized Data

Flow Language, Technical Report 228, MIT - Laboratory for Computer

Science.
Yama83. y AMAGUCHI, Y., K. TODA, AND T. YUBA (Jun 1983). A Performance

Evaluation of A USP-Based Data-Driven Machine (EM-3), Tenth

International Symposium on Computer Architecture.

44

Chapter 3

Dataflow Programming

Programming a parallel computer efficiently requires a subtle skill: a small, semantically
inconsequential modification can make a program run many times faster. This is
unfortunate since it makes efficiency considerations overly important, which is not
conducive to a clear programming style. Moreover a considerable effort is often
required to bring a parallel computer to an acceptable level of performance. There are
two strategies to facilitate the construction of efficient programs.
® Enrich the programming language with constructs for which particularly efficient

translations are available and remove constructs that tend to degrade performance.
A frequently chosen form of language improvement is the creation of a library of
standard functions that have been coded efficiently by other means. The most radical
approach is to design a completely new language specifically tailored towards the
particular machine.

© Construct a compiler that performs an analysis sufficiently sophisticated to generate
efficient code. This approach is the popular one for commercially available machines.
All pipelined vector computers, for instance, have FORTRAN compilers that vectorize,
i.e. recognize certain array operations within loops that can be executed efficiently by
vector instructions. The patterns that such a compiler recognizes should cover broad
categories, because if they are restricted to special cases, programming may become
even more complicated. Programs then need to be in a form that will trigger the
optimizations and the idiosyncracies of the compiler need to be mastered in addition
to those of the machine.

The next two sections give examples of both approaches in the context of datafiow
machines. Since datafiow machines have been designed specifically for the efficient
support of a new way of programming, the emphasis has been on the development of
special languages. These are treated in the first section. The next section considers the
merits of using a sophisticated compiler to translate imperative languages. The
concluding section compares the two approaches.

3. 1. Declarative Languages 45

3.1. Declarative languages
The original impetus for the development of datafiow machines came from concern

about the inadequacies of existing languages to deal with concurrency. Consequently,

the architecture of datafiow machines is to a large extent language based. However,

datafiow graphs, the languages they were originally based on, are too low a level for

practical programming and higher level equivalents, called data.flow languages, were

developed. The following restrictions make it easy to translate these languages into

datafiow graphs.
® They are all single assignment languages: an identifier appears only once as the target

of an assignment. In most datafiow languages the single assignment rule is a static

restriction: an assignment within a loop or a recursive procedure that gets executed
repeatedly, is acceptable. An exception to the rule is sometimes made for initializing

loop variables. Conditional assignment such as in "if test then x : = 7 ti'' is usually

not allowed, since x would not be defined if test fails. Conditionals only appear as
part of the expression on the right-hand side of a definition. A consequence of the

single assignment rule is that a data structure has to be created in a single expression.
It cannot be modified, although parts of it can be retrieved and used to create new

data structures.
An identifier is thus a short-hand for the value computed by the expression on the

right-hand side of the assignment. In fact variable and assignment are misnomers
and one rather speaks of value name and definition. An advantage of the single

assignment rule is that a value name can be uniquely associated with an output port

of a node in the datafiow graph.
® Functions are strictly. functional, i.e. two applications of a function with the same

arguments deliver the same value. There are no hidden communication channels

between function applications. Constructs that can maintain a global state, such as
own or global variables, are therefore not allowed.

An important consequence of these restrictions is that the evaluation of an expression is

free of side-effects, i.e. each result of an expression has to be explicitly indicated by the

programmer. Datafiow languages belong to the family of declarative languages .1

Declarative languages are not very strict about the order of definitions: reordering

definitions in a syntactically correct program may sometimes transform it into an

incorrect one, but never into a syntactically correct but semantically different one.
An example of a datafiow language is VAL, developed at MIT [Acke79]. It introduces

a powerful iterative construct containing reduction operators, which allow concise

expression of certain operations that occur frequently in numerical applications. In VAL

the difficult topic of error handling has been thoroughly worked out. It lacks, however,

important features like recursion and I/O primitives.
Handling I/O, and especially interactive I/O, is problematic in a declarative

language, since it involves communication with a non-functional environment in which

order of actions is important. The designers of the datafiow language ID solved this

problem elegantly by means of streams and resource managers [Arvi78]. The data

structure stream is similar to a one-dimensional array except that its elements can only

be produced and consumed in consecutive order. A resource manager is a non­

functional procedure with internal state similar to a SIMULA class object. Interaction

with resource managers is by means of messages that can be non-deterministically

merged into streams. This makes it possible to write programs for operating systems,

1. In the literature this group of languages is sometimes called applicative or functional.

46

data base managers and interactive I/O, which all require non-deterministic primitives. Other examples of dataflow languages are LAU [Comt80], LAPSE [Glau78], MAD [Bowe81], and VALID [Amam82]. In fact dataflow languages proliferated to the point where almost each machine design was accompanied by a new language. Fortunately, the last couple of years have seen a concentration of this effort in language design culminating in the definition of SISAL. We first treat this language in some detail and continue with a discussion on the implementation on dataflow machines of the closely related group of functional languages.

3.1.1. SISAL
SISAL (Streams and Iteration in a Single Assignment Language) is a result of a collaboration between the University of Manchester Dataflow Group, Lawrence Livermore National Laboratory, Digital Equipment Corporation, and Colorado State University. It is meant as a common high level language for numerical programs to be run on a variety of uni- and multi-processors. It is syntactically similar to PASCAL. A compiler for the Manchester Dataflow Machine has been completed and compilers are planned for a CRAY, a HEP, and a VAX. This would allow easy portability between these machines and greatly facilitate comparative performance studies. SISAL is derived from VAL but includes recursion and streams. The description below is taken from [Glau84] with some additional information from [McGr83].

SISAL provides three data structuring facilities. A record is like its PASCAL equivalent except that the complete record has to be defined at once, since the selective update of a field would violate the single assignment rule. Instead there is an operation that creates a copy of a record with one field replaced by a new value. There are similar restrictions for an array: instead of updating one element, a new array has to be created that is a copy of the old array with one element replaced. A stream is an array on which only a restricted set of operations is defined such that it is guaranteed to be created and accessed in order. This has the advantage that in certain implementations an expression that consumes a stream may overlap in execution with the expression producing the stream (pipelined parallelism). Streams in SISAL are always finite. Each expression delivers a value or a sequence of values. The most simple expression is the let expression, consisting of two sections: the defining section contains local definitions to be used in the result section. For example
rootl , root2 : =

let

in

d : = sqrt(b * b - 4 * a * c);
t:=2*a

(-b + d) I t, (-b - d) I t
end let

computes two roots of a quadratic equation. The value names used in the result section should be defined in the defining section or previously in the surrounding expression. A value name can be defined only once (single assignment rule) and should follow normal sequencing constraints (no use before a definition) to facilitate the detection of cyclic dependencies.

3. 1. Declarative Languages 47

In conditional expressions all branches have to be present and have to deliver the
same number of values:

small,big : = if a < b then a,b else b,a end if

A powerful iterative construct is provided in two varieties. In the most general form all
iterations are conceptually performed in sequence. Values computed in the previous
iteration are accessible by prefixing the value name by old. These so called loop names

are initialized in a separate initial section of the expression. Each loop returns a value,
specified in a rerums section. This value may be a stream or an array, each element of
which is to be provided by one iteration. The power of the rerums section is
significantly extended by the provision of reduction operators, which may specify that
the result is the sum, the product, the least, or the greatest of a series of values, each of
which is computed in one iteration. Since these reduction operators are based on
associative and commutative operations, they can be executed in the order that is most
efficient on the target machine. If the operation must be treated as non-associative
(because of rounding errors, overflow, or underflow) the order may be specified. The
reduction operators make possible concise expression of many numerical algorithms.

A program to compute some Fibonacci numbers can be specified as follows:

fibnumbers : =
for

initial
fib I : = I ; fib2 : = 1

repeat
fibl, fib2 : = old fib2, old fibl + old fib2

while
fib2 < max

retmns array of fib2
end for

If the number of iterations is determined before the loop starts and iterations are not
dependent on each other (i.e. the body does not contain old), the more restrictive
variety of the iterative construct, which is equivalent to a /oral/ expression, can be used.
In this variety loop names range over a fixed set such as the elements of an array. The
primitives available to specify this range, together with the reduction operators,
facilitate the use of the forall variety in a wide range of circumstances by removing the
need to use the qualifier old in the loop body. As an example, the computation of
innerproduct and sum of two vectors A and B may be described as follows:

InnerProduct, Sum Vector : =

for ElemA in A dot ElemB in B
prod : = ElemA * ElemB;
sum : = ElemA + ElemB

returns
value of sum prod,
array of sum

end for

The first line of the for expression specifies the ranges of loopnames; the keyword dot
specifies that the elements of A and B should be distributed over ElemA and ElemB in

pairs.

48 3. Dataflow Programming

The language is currently under revision. A compiler for the Manchester Datafiow
Machine has been written, which provides a fairly complete implementation of the
version just described. In this first compiler the code generator is straightforward: for
most constructs a simple implementation is chosen and no attention is paid to
optimizations. A more efficient implementation is presently being developed.

3.1.2. FUNCTIONAL LANGUAGES

Another group of declarative languages is formed by the functional languages, 1 which
enjoy a growing popularity, at least in academic circles. In these languages the
evaluation of expressions is also free of side-effects due to the exclusion of global
variables and multiple assignments. The main difference, compared with datafiow
languages, is that functions play a more central role and appear as objects that can be
manipulated. It is usually possible to define a higher order function: i.e. a function that
produces a function as a result. Iterative constructs are seldom provided. Non-strict
data constructors, i.e. built-in functions that do not require all arguments to be
evaluated, make computation on infinite data structures possible. For example, if
append is a non-strict operator that places an item at the head of a list and we define

IntegersFrom(n) = append(n, IntegersFrom(n + 1))

then "IntegersFrom(l)" represents the infinite list of integers. However, calculating the
sum of the first 10 elements of this list is a finite operation. Non-strict operators
require demand driven (or lazy) evaluation in which only those operations that are
necessary to produce the required output are performed. The necessary operations are
determined by a process known as demand propagation.

Since there is considerable interest in the execution of functional languages on
parallel machines, we take some time to describe their implementation on datafiow
machines. This desc1i.ption is based on [Rich82] and [Ping83]. In such an
implementation a second graph is superimposed on the datafiow graph, similar to the
first graph but with all its arcs reversed. It is called the demand graph, and the tokens
flowing through it are known as demands. The difference between demands and normal
tokens is conceptual; for the machine they are indistinguishable. An initial demand is
sent to the root node of the demand graph. Demands then propagate through the
demand graph until they reach constants or input expressions where they initiate
normal data driven execution. Figure 3.1 shows examples for the demand subgraphs of
some strict and non-strict operators. Note the complicated mechanism needed for a
shared expression, i.e. an expression whose value is used by more than one expression.
If the demands were simply propagated the expression would be evaluated more than
once (string reduction). This can be avoided if demands are shared between
expressions (graph reduction). Complications arise, however, since it is not clear
whether all demands will eventually arrive, due to the conditional propagation of
demands by non-strict operators. The mechanism illustrated in figure 3. l(d) is
expensive compared to the simple DUPLICATE node in data driven execution and has the
additional disadvantage that tokens may be left in the matching store when the
program terminates.

I. Functional languages are also known as applicative languages.

3. 1. Declarative Languages

(a)

head

(c)

!eh right

Y? (b)

re~ult demand

tail

(d)

Figure 3.1. Demand subgraphs for some operators.

' ' 1 test

' ' .T
demand

result

' ' ' ' ' __ J

result

demand result demand

These are subgraphs as used in the SASL implementation on the Manchester Dataflow

Machine.
(a) For a strict operator a one-node subgraph is created that simply distributes the demand to

its operands.
(b) A demand for a conditional expression is sent to the test expression, which will be

evaluated. Its result determines to which subexpression a demand will be propagated.

(c) The non-strict APPEND operator forms a new list by prefixing an element head lo an

existing list tail. Its demand subgraph consists of a SEPARATE node. Assuming that demands

for a list element are tagged with the sequence number of the required element, the SEPARATE

node sends a demand for the first element to the left and other demands to the right with

their sequence number decremented.

(d) The subgraph for shared values. By means of special matching functions the PASS-FIRST

macro propagates the first demand to arrive and absorbs the next one. A copy ol the

computed value waits at the SYNCHRONIZE node for the second demand to arrive.

49

In the implementation described so far, a portion of the demand graph is constructed

for each operator in the dataftow graph. Pingali&Arvind [Ping83] have looked at

optimizations. If large strict expressions transmit a demand directly to their inputs, the

demand graph can be substantially reduced in size. This can be accomplished by

strictness analysis. The demand graph for most conditional expressions could also be

optimized by transferring the BRANCH nodes in the demand path to the dataftow path

of the input arcs, in the same way as for a normal data driven implementation (see

figure 2.5). In fact this normal implementation has a demand driven nature at

conditional points: tokens entering one of the branches are stopped until the condition

has been evaluated. For other non-strict operators similar optimizations are possible,

thereby reducing conditional propagation of demands and the need for an expensive

mechanism for shared values. The work so far indicates that an efficient

implementation of a functional language on a dataftow machine requires a

sophisticated compiler.
It is interesting to note that the situation for reduction machines, especially designed

for the execution of functional languages, is not all that different. The architects of the

50 3. Dataflow Programming

ALICE machine [Darl81], for instance, expect that a realistic implementation requires a
sophisticated compiler that uses data driven execution except where demand driven
execution is mandatory due to infinite data structures. Since the efficient
implementation of data structures on a fine-grain parallel machine seems to be
problematic in general, it is not clear whether infinite data structures complicate the
problem fundamentally.

3.2. Imperative languages
Dataftow graphs originated from dissatisfaction with attempts to incorporate
concurrency into existing languages. Most of the work on implementations of high
level languages on datafl.ow machines has focused on languages that were expected to
be easy to translate into datafl.ow graphs. Not much attention has been paid to the
question whether any of the languages that were the source of the original
dissatisfaction could be implemented efficiently on datafl.ow machines. Although there
is general agreement about the value of such a translation, it is commonly assumed to
be too complex to be practical. The source of this complexity is to be found in the
imperative nature of these languages.

Imperative languages have well developed mechanisms (assignments, pointers, global
variables) to facilitate the use of side-effects: not all inputs and outputs of a statement
need to be explicitly indicated. The evaluation of an expression may, for instance,
involve the evaluation of a procedure that changes the value of a global object.
Practically all widely used programming languages are imperative: FORTRAN, COBOL,

BASIC, PASCAL, ADA, and even the commonly used varieties of LISP. A datafl.ow
machine that does not accept any of these languages can hardly be called a general
purpose computer. Since continuity is often as important as efficiency, a machine that
would render all existing software useless would not be very attractive.

r-------------------,
'

'

Functional
Languages

Declarative Languages

Dataftow
Languages

L--------- ---------J

r---------------,
'

Imperative
Languages

Figure 3.2. Relationship between dataflow machines and high level languages.

Dataflow graphs. developed as a means to express concurrency, lead to the development of
dataflow machines for their execution and to dataflow languages for the effective expression
of algorithms. A declarative program is much easier to translate into dataflow graphs than an
imperative program.

3.2. Imperative Languages 51

The facilities in an imperative language that make side-effects attractive are, roughly
speaking, the same that make the translation of an imperative program into a datafiow
graph problematic. The following features are frequently encountered in imperative

languages:
Jumps

The regular control flow patterns implied by structured statements as conditional,

iteration, and procedure call may be disturbed by escapes or goto's.
Aliasing

One memory location can be addressed and modified through different access paths.

The multiple paths can be created by pointers, call-by-reference parameters, explicit
aliasing (e.g. the EQUIVALENCE statement in FORTRAN) or through array indexing

("a[i]" may address the same location as "a[j]").
Multiple Assignment

A variable can appear as the target of several assignments.
Global Objects

Through global objects a nested procedure invocation may exchange information
with another one without this being visible at intermediate levels.

Selective Modification of Data Structures
A selective update operation may replace a single element of a large data structure.

The jumps in a program can be removed by transforming them into conditional or
iterative constructs, but at the cost of possibly introducing many superfluous
dependencies between statements. Multiple assignment and global objects by
themselves are not hard to deal with, but the presence of recursion and especially
aliasing complicates the problem considerably. The efficient implementation of data
structures requires recognition of the access patterns.

Despite the recognized value of a translation of imperative programs into dataflow

graphs, the literature on the subject is quite limited.
® Long before dataflow graphs were introduced, Miller&Rutledge [Mill66] described

how a program can be transformed into a specification for a hardware device, which

is equivalent to a datafiow graph. Their method, which is applicable to assembly
languages as well as higher level imperative languages without recursion, breaks the
program into basic blocks and constructs a data flow segment for each basic block.

The segments are connected with gates inserted at places where conditional control
flow occurs. Concurrent execution of loop iterations is prevented by locking. All
accesses through "computed addresses" (e.g. arrays) are sequentialized.

® Whitelock [Whit78] constructed a compiler for the Manchester Dataflow Machine
that accepts a quite restricted subset of PASCAL. The most essential among the
restrictions are the exclusion of jumps, aliasing, indirect recursion, pointers, and data
structures. Attempts to extend the compiler so it could accept arrays have
unfortunately been abandoned.

® Allan et al. defined a new language based on PASCAL, excluding all "features
incompatible with the notion of functionality" [Olde78, Alla80]. Among the
casualties were jumps, pointers, global variables, and data structures that can be

modified. They defined and simulated a conceptual model of a datafiow machine,
which they used as the target for a compiler. Their compiler cannot handle recursion
and is rather conservative in its data flow analysis.

® The work of Ottenstein [Otte81] is not focused on one particular language, but gives

a rather comprehensive treatment of the features common in imperative languages.
The method he describes is similar to the one to be presented in chapter 5. It
transforms a program into a representation in which both control flow and data

52 3. Dataflow Programming

dependency is encoded. He suggests the possibility of generating code for dataflow
machines and provides a few examples, but no implementation of this suggestion has
been reported.

® Kuck and his colleagues [Kuck8 I] have worked for many years on the analysis of
FORTRAN programs and the generation of high quality code for parallel machines.
Their analysis could be a good starting point for an implementation on a dataflow
machine, but their interest has so far been confined to vector processors.

3.3. Imperative versus Declarative Languages
With the staggering number of programming languages already available, the reasons
for introducing yet a new one should be very strong indeed. Declarative languages
have been introduced largely because they are supposed to make the construction of
correct and clear programs much easier. This section does not discuss this hotly
debated issue, but considers the merits of two additional advantages often cited by
advocates of the programming of dataflow machines in declarative languages:
declarative programs are easier to translate and contain more inherent parallelism than
imperative programs.

A declarative program is indeed easier to translate into an efficient dataflow graph
than an imperative program. This is due to the difference in their "underlying
computational model", i.e. the way the meaning of a program is most naturally
described. A program in an imperative style, i.e. one which relies strongly on side
effects, is best understood as a sequential composition of statements each of which
affects the computational state, i.e. the function that maps variables to values. A
declarative program is best described by associating a function with each statement,
and interpreting the composition of statements into a program as function composition.
While the computational state corresponds directly to the memory in a conventional
computer, function composition corresponds to the way a dataflow graph is composed
out of subgraphs.

An imperative program can be transformed into a declarative one by replacing each
jump by an appropriate conditional or loop and adding the computational state to the
interface (all inputs and outputs) of each statement. If such a transformed program
would be directly translated into a dataflow graph an almost linear graph would result:
each statement would be dependent on its predecessor and there would be little
parallelism. A type of analysis, called data flow analysis, is needed to determine the real
interface. Part of the interface of an imperative statement may be hidden due to side­
effects. To limit the amount of analysis two statements are sometimes assumed to be
dependent, while further analysis could determine that they are not. Such assumptions
introduce superfluous data-dependencies, which reduce the parallelism of the translated
program. A good analyzer therefore spends a lot of effort to avoid superfluous data­
dependencies.

In the first approximation no such problems are encountered when a declarative
program is translated: the interface of each statement is explicitly specified. In a way
the analysis has already been done by the programmer and no data flow analysis is
required to generate a dataflow graph with reasonable parallelism. Since wide interfaces
(i.e. many input and output variables) are bothersome to deal with, programmers tend
to formulate their algorithms in a way that minimizes the width of interfaces. If no
data structures are involved, this tendency reduces data dependencies between
statements. This is the reason why it is often claimed that the average declarative
program is inherently more parallel than its imperative equivalent. Inherent parallelism
is, however, not a well-defined concept: a programmer working with vector processors

3.3. Imperative versus Declarative Languages 53

will often attribute a different level of inherent parallelism to a program than an

architect of a tagged dataflow machine. The actual parallelism that a program exhibits

during execution depends on the machine and on the compiler. When the inherent

parallelism of a program is assessed, a type of machine and a type of compiler is tacitly

assumed. Inherent parallelism is in the eye of the beholder, and the beholder often

assumes a straightforward compiler. However, already a modest amount of dataflow

analysis can often raise the level of parallelism substantially.
When a declarative program that manipulates large data structures is to be translated

into an efficient dataflow graph, analysis similar to that needed for imperative programs

is required. This is not surprising, since the computational state could be represented

by a data structure that can be treated just as a conventional memory, if the right

operators are available to structure, copy, and manipulate data structures. A
declarative program can therefore have an "imperative nature". A good indicator is the

volume of the interface of the average statement (i.e. the amount of data flowing

through it): in a program with an imperative nature this is high compared to the

number of primitive operations that the statement represents. In such a program most
input items of each statement are transmitted to its output without modification: the

real interface is much smaller than the one explicitly indicated. Data flow analysis is

needed to determine the real interface, just as for the translation of imperative

programs. The operations on data structures that are available and the way they are

implemented are therefore of crucial importance for the behavior of declarative

languages on dataftow machines.
In summary, a translator for imperative programs clearly needs to analyze its input

program extensively, whereas a translator for declarative programs would also benefit

from an analysis of data structure accesses. In the next few chapters a new method for

flow analysis and its use for the translation of imperative programs into dataflow

graphs is presented, but we start with a short review of existing methods of flow

analysis.

References
Acke79. ACKERMAN, W. AND J.B. DENNIS (Jun 1979). VAL - A Value-Oriented

Algorithmic Language Preliminary Reference Manual, Technical Report 218,
MIT - Laboratory for Computer Science.

Alla80. ALLAN, S.J. AND A.E. OLDEHOEFT (Sep 1980). A Flow Analysis Procedure for
the Translation of High-Level Languages to a Data Flow Language, IEEE

Transactions on Computers, C-29.9, 826-831.
Amam82. AMAMIYA, M., R. HASEGAWA, 0. NAKAMURA, AND H. MIKAMI (Jun 1982).

A List-Processing-Oriented Data Flow Machine Architecture, AF/PS National

Computer Conference 82, 143-151.
Arvi78. ARVIND, K.P. GOSTELOW, AND W. PLOUFFE (Dec 1978). An Asynchronous

Programming Language and Computing Machine, Technical Report l 14a,
University of California, Irvine, Information and Computer Science Dept.

Bowe81. BOWEN, D.L. (Apr 1981). Implementation of Data Structures on a Data Flow

Computer, Ph.D. Thesis, Dept. of Computer Science - Victoria University of
Manchester.

Comt80. COMTE, D., N. HIFDI, AND J.C. SYRE (Oct 1980). The Data Driven LAU
Multiprocessor System: Results and Perspectives, IFIP80, 175-180.

54 3. Oataf/ow Programming

Darl81. DARLINGTON, J. AND M. REEVE (1981). ALICE: A Multi-Processor Reduction

Machine for the Parallel Evaluation of Applicative Languages, Conference on
Functional Programming Languages and Computer Architecture, 65-75.

Glau78. GLAUERT, J.R.W. (1978). A Single Assignment Language for Data Flow
Computing, M.Sc. Dissertation, Dept. of Computer Science - Victoria University of
Manchester.

Glau84. GLAUERT, J.R.W. (1984). High Level Dataflow Programming, in Distributed
Computing, 43-53, ed. G.P. Jones, Academic Press.

Kuck81. KucK, D.J., R.H. KUHN, D.A. PADUA, B. LEASURE, AND M. WOLFE (1981).

Dependence Graphs and Compiler Optimizations, Eigth Annual Symposium on
Principles of Programming Languages, 207-218.

McGr83. McGRAW, J. ET.AL. (1983). SISAL: Streams and Iteration in a Single­
Assignment Language - Language Reference Manual Version 1.1, Lawrence Livermore
National Laboratory, Livermore.

Mill66. MILLER AND RUTLEDGE (1966). Generating a Data Flow Model of a Program,
IBM Technical Disclosure Bulletin, 8.11, 1550-1553.

Olde78. 0LDEHOEFT, A.E., S. ALLAN, S. THORESON, C. RETNADHAS, AND R.J. ZINGG
(1978). Translation of High Level Programs to Data Flow and their Execution on a
Feedback Interpreter, Technical Report 78-2, Department of Computer Science -
Iowa State University.

Otte81. OTTENSTEIN, K.J. (1981). An Intermediate Program Form Based on a Cyclic
Data-Dependency Graph, CS-TR 81-1, Department of Mathematical and Computer

Science - Michigan Technological University.
Ping83. PINGALI, K. AND AR.VIND (1983). Efficient Demand-driven Evaluation (I & II),

Technical Memo 242-243, MIT - Laboratory for Computer Science.
Rich82. RICHMOND, G. (1982). A Dataflow Implementation of SASL, M.Sc.

Dissertation, Dept. of Computer Science - Victoria University of Manchester.
Whit78. WHITELOCK, P.J. (1978). A Conventional Language for Data Flow Computing,

M.Sc. Dissertation, Dept. of Computer Science - Victoria University of Manchester.

55

Chapter 4

Program Flow Analysis

Due to the changing nature of efficiency demands, program analysis will be an

important subject in the years to come. The efficient production of software is not the

same as the production of efficient software and as long as neither the cost of

programming nor the cost of computing power can be ignored there will be a need for

both types of efficiency. With the ratio of programming versus processing cost

constantly increasing, emphasis has shifted from computing efficiency to programming

efficiency and modem software methods call for programs that are easy to understand,

verify, and maintain. Many efforts have been directed towards producing tools to bring

software practice closer to this goal without sacrificing too much computing efficiency.

The availability of cheap microprocessors has lead to a flurry of activity in the

development of new tools. Programs that embody knowledge about the programming

language have been developed to facilitate editing, testing, debugging, verification, and

documentation. All these activities can be performed more easily within a

programming environment that has more structural information available about the

program being worked upon than merely its syntactic structure. Some form of flow

analysis is usually required to obtain this structural information.

Program analysis also plays an essential role in bridging the gap between language

and architecture. A program with a complete set of input data specifies a computation.

The computation can be performed by an interpreter, but such a direct interpretation

is, in general, highly redundant in the sense that the same result could be achieved by a

much shorter computation. Usually intermediary programs, which we call language

processors, are employed to reduce this redundancy. A compiler, for instance,

transforms the program into a form which can be executed more efficiently. A so-called

optimizing compiler is nothing more than a compiler that carries the transformation a

bit further. Reducing the redundancy of the interpretation process involves the

transformation into a more abstract form that is closer to the "meaning" of the

program. This is the basic mechanism of program analysis.
The first phase, lexical and syntactic analysis, is well understood. A class of

languages has been identified for which efficient parsers can be written and the syntax

56 4. Program Flow Analysis

of most programming languages is confined to this class. If a more elaborate
transformation is required, a more powerful but less well understood analysis has to be
performed. In most traditional methods two separate phases can be distinguished:
control flow analysis, which is concerned with the order in which instructions are to be
executed, and data flow analysis, which is concerned with the data dependencies in a
program. Because the latter phase is the more complicated one, the complete analysis
is often simply referred to as data flow analysis. In the method to be presented in the
next chapters, and in other recently developed methods, this separation into two phases
is dropped.

Before we can compare different methods of program flow analysis we need to have
some notion of its applications. The next section elaborates on this concept of
application by giving an example and a general model. The final section is a short
overview of some of the existing methods. As a preliminary, we give a condensed
presentation of the standard graph terminology used extensively in the rest of this
thesis.

GRAPH TERMINOLOGY

A (directed) graph is a pair <N, A>, where N is a finite nonempty set of nodes and
A is a relation on N. Each pair <x JI >EA is called an arc from node x tc node y; x
is the tail and y the head of the arc. x is a predecessor of y and y a successor of x. A
node without predecessor is called a source; a node without successor a sink. All other
nodes are interior.

A path is a finite sequence of two or more nodes, such that there is an arc between
each pair of subsequent nodes in the path. If there is a path from x toy, we say x is
an ancestor of y and y is a descendant of x . In a connected graph each pair of nodes
has a path between them or has a common ancestor or descendant. A tree is a
connected graph, where no node has more than one predecessor. For trees the words
root, leaf, parent, and child are used instead of source, sink, predecessor, and successor.

A cycle is a path in which the first and last nodes are the same. A graph is acyclic if
it has no cycles. Each graph can be uniquely partitioned into subsets, where two nodes
belong to the same subset if and only if there is a cycle to which they both belong.
Such a subset is called a strongly connected component. The acyclic condensation of a
graph is obtained when each strongly connected component and its internal arcs are
replaced by a single node. A graph is irreducible if it contains three nodes x, y, and z,
such that there is a path from z to x not containing y and a path from z to y not
containing x. All other graphs are reducible.

4.1. Applications
Program flow analysis is usually applied to obtain an answer to a specific question.
Constant propagation, for instance, is concerned with the question: "Which expressions
can be evaluated independently of the input of the program?" Live-dead analysis is
concerned with the question: "What will be the life span of each value created during
program execution?" These separate concerns we will call applications of flow analysis
or simply applications. In the literature this notion is sometimes referred to as a
technique or problem.

57

EXAMPLE OF AN APPLICATION

Before discussing applications in general terms a simplified version of the Value

Approximation application will be presented as an example. This application, which
will receive a more elaborate treatment in chapter 7, is concerned with the question
"What is the value, or range of values, of each particular variable occurrence?"
However, this range is, in general, not effectively computable, so a reasonable upper
bound has to take its place. In this simplified version we assume that data can only be
of three types and that the value domains that appear in figure 4.1 are sufficient to
describe the desired information. To make the application more interesting we assume
that we are dealing with a language in which not only the value but also the type of a
variable may vary. The analysis should label each item with the value domain that
most precisely describes the range of values that an item can have. 1 If, for instance, an
item could take on the values 5 and 8, its value domain should be Integer. If it could
also be 6.5 its value domain should be Numeric.

Figure 4.1. The assertion semilattice for the Value Approximation application.

Each box represents a possible value domain. A phrase like a// reals represents an infinite

set of boxes. The partial order defined on the value domains is indicated by the arrows. The
value-domain Unknown, which is less than all other elements, is called the bottom element.

The analysis of a program starts with associating initial assertions with all arcs in a
graph representation of the program. These assertions contain information about the
values of variables and they should be valid regardless of which execution path is
followed. Each assertion has the form "When control reaches this point variable V 1 is
X i. ... , variable Vn is X,, ", in which each X; is a value domain. The initial assertions
contain only local information, which can be deduced from considering the operation
represented by its tail in isolation. In fact, most of them contain no information.

The aim of the analysis is to obtain assertions for each arc as a result of the
interaction of the initial assertions. The final assertions should not be weaker than the
initial ones. This notion assumes a partial ordering of the assertions, which is also
illustrated in figure 4.1. A set with a partial order and a bottom element is called a
meet semilattice. The meet operation maps a pair of elements to their greatest lower
bound. A chain is a monotonically increasing sequence of elements. A semilattice is
bounded if all its chains are finite. The infinite semilattice in figure 4.1 is bounded.

The interaction between assertions is expressed in propagation rules, which are
associated with nodes and specify how assertions are transformed when an operation is

1. In some cases even this approximation is not computable or would require unduly

sophisticated analysis. In that case a less precise value domain is accepted.

58 4. Program Flow Analysis

executed. Figure 4.2 shows one such propagation rule and the assertions whose
interaction it specifies.

a:= 6

b := 5 X a

initial and second assertion
the value of a is 6

propagation rule
if a has a value then b is 5 X value of a

if a is Integer. Real, or Numeric then so is b
otherwise b is Unknown

initial assertion
the value of each variable is Unknown

second assertion
the value of a is 6 and of b is 30

Figure 4.2. A segment of a (condensed) program graph.

Assertions and propagation rules are from the Value Approximation application. The second
set of assertions is derived from the initial assertions by one application ol the propagation
rule.

The assertions described so far are global assertions: each assertion describes the total
"state" of the program: when control reaches a particular point, it asserts something
about every program variable. The initial assertions do not contain much information
and can thus be encoded compactly, but when the information is propagated and
combined, the assertions grow. The global assertions are wasteful in that every point
receives information about the total state whereas only a small part of that information
is relevant locally. The method described in the next chapter avoids this problem by
choosing a different set of assertions that only encodes information that is of local
interest. Not only do global assertions require a lot of storage, they also take up
considerable processing time. One way of coping with this complexity is to limit the
information per assertion to a few independently computable bits per variable. These
can then be encoded by bit vectors for efficient storage and processing. Most of the
applications considered traditionally lend themselves to this kind of representation and
are therefore called bit vector type applications. In these applications propagation rules
can be expressed in so called data flow equations, that specify the relation that should
hold between the bit vectors of each node in the control flow graph. Solving the global
flow problem is then equivalent to finding some solution satisfying the set of data flow
equations. When comparing the computational complexity of different methods, it
should be kept in mind that the size of the bit vectors (and consequently the cost of a
bit vector operation) is usually proportional to the program size.

ABSTRACT APPLICATIONS

In the early days of optimization, particular applications of flow analysis and their
relative merits were focal points of research. Later [Kild73] it was realized that many
applications share some of the most important problems and the emphasis shifted to
research in methods that can be useful for many applications. Such generalized analysis
methods need some general notion of an application.

4.2. Existing Methods 59

Each flow analysis problem can be seen as the assoc1at1on of a set of assertions

concerning local properties with particular points in a program, and the propagation of

this information through the program so that it can be checked for consistency or

combined into more global assertions. We will consider an application to be a pair

<A ,P >, where A is a set of assertions and P a set of propagation rules. Each

assertion provides information about a particular property of a program and a

propagation rule specifies the interaction between assertions.
Assertions are associated with arcs and propagation rules with nodes. In the general

case the propagation rules associated with a node with p incoming and q outgoing arcs
is a function from AP +q -l>AP +q. The inputs and outputs of the function are the old

and new assertions associated with the arcs. Two special cases are distinguished. In a

forward application the information flows in the same direction as control and each
propagation rule is a function from AP +q -l>A q. In a backward application the

information flows in the opposite direction and each propagation rule is a function
from AP +q ->AP.

A solution consists of the association of a (final) assertion with each arc in the

program satisfying all propagation rules. Not all solutions are good ones: a trivial

solution for the problem illustrated in figure 4.2 could be the minimum assertion "The

value of each variable is Unknown". The information contained in the initial assertions

should not be lost, and to capture this notion a partial ordering is associated with the
set of assertions and it is usually assumed that it forms at least a meet semilattice. This

implies that there is a minimum assertion, which is implied by all other assertions and a

meet operation, which extracts the information that two assertions have in common. A

good solution is one which implies all initial assertions. It is desirable to obtain not just

a good solution, but a maximum one, i.e. a good solution that is not implied by any

other solution.
One way of obtaining a solution is by propagating information through the graph,

each time using the propagation rule of a node to update the assertions on the

associated arcs, until a stable situation is reached. In such an iterative method only

individual assertions are changed and the propagation rules remain untouched. If

assertions are never replaced by smaller ones (guaranteed if all propagation rules are

order-preserving) and if the assertion lattice is bounded, it is certain that a good
solution will be reached. A maximum solution will be reached when the application is

distributive [Kild73]. Other, so called elimination methods summarize the effect of a

whole subgraph by replacing a set of propagation rules by a new one. These methods
are usually faster than iterative methods, but the class of applications that they can

handle is more restricted. The set of propagation rules has to be closed under

functional composition and pointwise meet. Cycles present problems because the effect

of unbounded paths must be expressible as a propagation rule and it must be

computable in a bounded number of steps. Rosen and Graham&W egman have

investigated the minimum requirements that guarantee a good solution using such a
method [Grah76, Rose80].

4.2. Existing Methods
As indicated in the previous section, a flow analysis problem is solved in two steps.
e Assertions and propagation rules are associated with certain points in the program.
® Information is propagated through the program by combining assertions and/ or

propagation rules into new ones until a stable situation is reached.
The initial assertions and propagation rules describe the local effect of separate

operations. This is trivial for atomic operations, but the local effect of a procedure call

60 4. Program Flow Analysis

can only be determined through extensive analysis. Flow analysis that does not
concern itself with the relationship between procedures is called intraprocedural, all

other analysis is interprocedural. If interprocedural analysis is omitted a conservative

approximation of the effect of a procedure call must be used, which limits the quality of
the information that can be obtained. In the rest of this chapter strategies for

interprocedural and intraprocedural analysis are discussed separately.

4.2.1. INTERPROCEDURAL ANALYSIS

Interprocedural analysis is an active area of research and we give only an indication of

its problems rather than attempt to survey its present state. Important articles in this

field are [Alle74, Bart78, Rose79].
A normal procedure call (i.e. not a coroutine call) consists of two transfers of

control: from the calling to the called procedure and back to the calling procedure.

These jumps are not independent, since a call will never be followed by a return to

another procedure. One consequence of this is that not every path through the call

graph (the graph that expresses calling relationships between procedures) is a valid

control path. The challenge of interprocedural analysis is to exploit this information

about the control flow patterns to obtain a better solution. A simple but expensive

method is in line expansion: each procedure call is replaced by a copy of the procedure

body and only the intraprocedural analysis of the root procedure is required. Its

obvious drawbacks are that much analysis is duplicated and that recursion cannot be
handled.

A popular approach is to split the analysis into two phases. In the first phase a
summary of the effect of each procedure is constructed by a rough analysis of its body,

ignoring any procedure calls. A transitive closure algorithm is then used to incorporate

all direct and indirect procedure calls into the summaries. In the second phase the final

analysis is performed using the summary information whenever a procedure call is

encountered. The quality of the method depends on the quality of the information

gathered in the first phase, which in turn is limited by the fact that the local effect of a

procedure call is necessarily overestimated.
In [Shar8 l] two methods are described which aim at removing this deficiency. The

functional approach analyzes each procedure and expresses its effect in a set of relations

between assertions at entry and exit points. Since these relations are interdependent,

iteration is required to arrive at a fixed point. This method belongs to the elimination

methods and is only useful for a restricted class of applications (see previous section).

In the call string approach procedure call and return are treated as separate jumps, but

an identification of each procedure call encountered during information propagation is

tagged onto the propagated information. When a return is encountered this call string

tag is used to select the correct control path. A generalization of both methods is

described in [Jone82].
Most methods simplify the problem of interprocedural analysis by excluding those

language features that lead to serious complications. One complication is aliasing,

which arises when different access paths (such as variable names) refer to the same

object. It can occur if the language allows pointer values or call-by-reference

parameters. A second complication arises when it is statically (i.e. during analysis)

difficult to determine which procedure is being called. This can occur if the language

allows variables or parameters to have procedures as values or when operators and

procedure names are overloaded. An extensive treatment of these problems appears in

[Weih80] where it is shown that obtaining precise information in the presence of

procedure variables is P-Space hard.

4.2. Existing Methods 61

4.2.2. lNTRAPROCEDURAL ANALYSIS
The many strategies that have been proposed for flow analysis fall into groups
distinguished by the level of program representation operated upon. It is still a matter
of debate which level is most appropriate. The choice is between the source text, the
generated code, or any of the levels in between. Analysis of the source text always
incorporates some form of lexical and syntactical analysis. Analysis of the generated
code is the natural domain for machine dependent optimization; the work that has been
done in this area is rather ad hoe and does not have much general applicability.
Therefore, most general methods operate on some intermediate level. Ideal would be a
representation in which all information that is not helpful for the analysis has been
removed and all information that can be helpful is easily retrievable. Although many
intermediate representations can be devised, two levels are of particular importance to
flow analysis:
® In a branch level representation the hierarchical structure of the program has been

lost and the control flow is entirely encoded by jumps. An example is the
representation in three address code, where each instruction corresponds to a typical
machine instruction; the difference with assembly level is that register allocation has
not yet been performed. Analysis methods that work on this level are called low

level.
0 In a syntax level representation the program has the form of a graph supplemented

with tables. The graph is usually a tree such as a parse tree. The nesting of
statements, which has an important influence on the analysis, is directly reflected in
the graph structure, which is not cluttered by lay-out, variable names, and other
details not relevant to flow analysis. Analysis methods that work on this level are
called high level.

As Rosen, who first coined the terms for this distinction [Rose77], points out, there has
traditionally been a bias towards low level methods. This is partly due to the fact that
flow analysis was almost always aimed at optimization and the programs whose
optimization was most crucial were written in FORTRAN. The relation between control
flow hierarchy and syntax is virtually absent in FORTRAN IV and the structure encoded
in a parse tree is therefore of little help for flow analysis.

Both representations contain references to variables. Some of these represent an
update of the value of the corresponding memory location; this is called a definition.

Other references refer to the present value of the memory location; this is called a use.

During program execution the outcome of each use is determined by at most one
definition: the last definition that assigned a value to the particular variable. This does
not have to be the same definition at every run of the program. Associating each use
with all definitions that could affect its outcome is called use-definition chaining. For
languages that allow a variable to be updated at more than one location in a program
this is not a trivial process and is called use-definition or data-dependency analysis. An
elaborate data-dependency analysis can serve as the backbone of flow analysis, as will
be shown in the next chapter.

Low Level Methods.
In a branch level representation each procedure is represented by a list of instructions.
Some of these are labeled and some prescribe a transfer of control to a labeled
instruction of the same procedure. This representation can thus be treated as a graph,
called the program graph, in which each instruction is a node and each arc a possible
transfer of control, including the default transfer to the next instruction. Each
procedure can be partitioned into a set of basic blocks, where each block is a set of

62 4. Program Flow Analysis

consecutive instructions guaranteed to be executed in a strictly linear fashion. In the
control flow graph of a procedure each node corresponds to a basic block and each arc
to a possible transfer of control.

Most low level methods are remarkably alike. The most general method for
intraprocedural analysis consists of the following steps:

Control Flow Analysis:
Partitioning of each procedure into basic blocks
Construction of the control flow graph
Analyzing the control flow graph

Data Flow Analysis:
Intrablock analysis
Global data flow analysis

Control flow analysis is needed because in a branch level representation the control
flow structure is not explicitly available: the transfer of control is exclusively indicated
by unrestricted jumps and the control flow patterns that this may lead to have to be
uncovered by analysis. The partitioning of each procedure into basic blocks and the
construction of the control flow graph is rather straightforward. Analysis may then be
performed on this graph to obtain structural information to be used in the global data
flow analysis. The data flow analysis phase is initialized by attaching assertions and
propagation rules to arcs and nodes of the program graph. The analysis within a basic
block is straightforward and usually all blocks are first analyzed separately and
assertions attached to each block summarizing the information of all instructions in the
block. The methods differ in the way global data flow analysis is then performed in the
control flow graph.

The simplest method is the arbitrary order iteration in which all basic blocks are
processed in arbitrary order and the information for each block is updated to take into
account all incoming and outgoing arcs. The whole process is repeated until no
information is updated in one complete iteration. Under reasonable conditions (the
assertion lattice is bounded and all propagation rules are order preserving) this process
is guaranteed to terminate and to produce a good solution, although not necessarily the
maximum one. In the worst case n iterations are needed, each consisting of a number
of assertion updates on the order of n. 1 One usually says that the complexity of this
method is quadratic, counting only the number of assertion updates.2 So much
theoretical work has been focussed on finding an alternative with a lower worst case
complexity for this part of the algorithm, that it has made the development of the field
somewhat lopsided. Kennedy gives a good survey of this work [Kenn8 I].

Most other methods are only applicable to programs that have a reducible control
flow graph. Well-structured programming languages guarantee reducible control flow
graphs, but even in a language such as FORTRAN almost all programs are reducible
[Cock77]. A variation of the arbitrary order iteration, but still an iterative method, is
described in [AhUl76]. It is shown that for reducible control flow graphs an order of
processing called node listing can be found that reduces the complexity to the order
n log n . If the set of propagation rules for the application is rich enough, elimination

I. In complexity measures n will refer to the size of the program in some reasonable metric, e.g.
the number of lexical tokens.
2. It should be stressed that often the cost of an update of a global assertion is also of the order
of n, in which case the complexity of this method is more properly characterized as cubic.

4.2. Existing Methods 63

type methods, which operate directly on propagation rules, can be used. The best
known example is interval analysis [Alle76] : to uncover its loop structure the control
flow graph is structured into nested subgraphs called intervals. For forward
applications the nested intervals are then processed from the inside out, each time
replacing a whole interval by one node with assertions and propagation rules that
summarize the complete effect of the interval. For backward applications the order is
reversed. The worst case complexity of this method is still quadratic.

Faster methods have been designed, but we will limit ourselves to citing their
references. Graham and Wegman [Grah76] developed the path compression method,
which has a worst case complexity of order n log n, but is in practice usually linear.
Tarjan [Tarj81] and Rosen [Rose80] introduced restrictions on the class of applications
that allow an almost linear algorithm. For a somewhat more restricted class of control
flow graphs, linear methods using graph grammars are available [Farr75].

High Level Methods.
In a syntax level representation each procedure is represented by a graph. The obvious
representation is a parse tree, where each interior node corresponds to an application of
a rule in the grammar of the language. If the language contains no jumps, all
information about the structure of the control flow is available directly in this tree.
Consider, for instance, the node corresponding to a while statement: the descendants of
this node form exactly the set of instructions that belong to the cycle in the control flow
induced by the while statement. For such languages the parse tree can thus serve the
same role as the analyzed control flow graph in low level methods. Even if there is no
complete correlation between the control flow and the parse tree, because the language
contains jump statements, a high level method might still be advantageous. In some
cases the jumps are restrained in a way that requires only slight adjustments to the
algorithm (e.g. no backward jumps). In other cases the language is rich enough to
make it a reasonable assumption that difficult jumps occur so infrequently that an
expensive analysis can be afforded for each occurrence. A high level method dealing
with frequent unrestricted jumps is described in [Bom84].

For applications that are meant to generate messages for the programmer, choosing a
representation close to the source text offers another advantage besides the virtual
disappearance of control flow analysis. If such an application is implemented as a low
level method, expressing the information in terms of the source text would require some
form of transformation back to the source text.

A convenient way to operate on a tree is to process its nodes during a recursive

descent traversal. All nodes of the tree are processed depth first starting at the root.
The algorithm applied at each node contains a recursive application of the same
algorithm to each of its children. The nature of processing at a node in the parse tree
is usually determined by the type of the node (its syntactic category). Since the tree is
determined by a grammar, the description of the algorithm can conveniently be
combined with the grammar to obtain an attribute grammar.

Rosen has given an extensive theoretical treatment of high level methods. In
[Rose77] it is shown that the a priori assumptions made in recursive descent methods
are valid for all programming languages without backward jumps. In such languages
the effect of each operation can be summarized by a graph whose structure is
determined by the type of operation. When arbitrary jumps are allowed the structure
of a graph sometimes has to be derived during analysis. Although this- increases the
cost, it does not effect the structure of the method.

64 4. Program Flow Analysis

Despite the intuitive appeal of high level methods, the pertinent literature is limited.
The first full scale application of the recursive descent method was the optimizing
compiler for the BLISS language [Wulf75], a well-structured language with only forward
jumps. In that compiler the detection of feasible optimizations occurs during the
construction of the parse tree and the actual optimization during a second traversal of
the tree.

The application of attribute grammars was first investigated by Jazayeri&Babich. In
[Babi78] one forward and one backward application are described for a simple language
with iteration and unconstrained jumps. The anomalies in the control flow induced by
these language features are dealt with by repeating the complete tree traversal until the
assertions stabilize. It is shown that the number of iterations is bounded by the
number of loops and backward jumps. Also the MUG2 compiler generating system
[Wilh81] uses (modified) attribute grammars extensively.

Ferrante&Ottenstein [Ferr83] recently developed a high level method that transforms
the program into a new representation. For each procedure a so called extended data
flow graph is constructed, which encodes both data flow and control flow dependencies.
The incoming arcs of each node represent either a operand or the predicate that
controls its execution. They show that this is an attractive program representation by
describing four applications: code motion, constant propagation, common
subexpression elimination, and detection of induction variables. Their method is being
extended to include unrestricted jumps, but so far it has been limited to intraprocedural
analysis. Their approach is quite similar to the one described in the next chapters.

References
AhUl76. AHO, A.V. AND J.D. ULLMAN (Dec 1976). Node Listings for Reducible Flow

Graphs, Journal for Computing Systems Science, 13.3, 286-299.
Alle74. ALLEN, F.E. {Aug 1974). Interprocedural Data Flow Analysis, Proceedings

IFIP Congress 74, 398-408.
Alle76. ALLEN, F;E. AND J. COCKE (Mar 1976). A Program Data Flow Analysis

Procedure, Communications of the ACM, 19.3, 137-147.
Babi78. BABICH, W.A. AND M. JAZAYERI (1978). The Method of Attributes for Data

Flow Analysis, Acta lnformatica, 10, 245-272.
Bart78. BARTH, J.M. (Sep 1978). A Practical Interprocedural Data Flow Analysis

Algorithm, Communications of the ACM, 20.9, 724-736.
Born84. BORN, R. VAN DEN (Feb 1984). Struktuur Behoudende Data Flow Analyse op

Programma's met GOTO-Statements, Noot CS-N8401, Centre for
Mathematics and Computer Science, Amsterdam, (in dutch).

Cock77. COCKE, J. AND K. KENNEDY (Nov 1977). An Algorithm for Reduction of
Operator Strength, Communications of the ACM, 20.11, 850-856.

Farr75. FARROW, R.K., K. KENNEDY, AND L. ZUCCONI (Nov 1975). Graph
Grammars and Global Program Flow Analysis, Seventeenth Annual IEEE
Symposium on Foundations of Computer Science.

Ferr83. FERRANTE, J. AND K.J. 0TIENSTEIN (Jan 1983). A Program Form Based on
Data Dependency in Predicate Regions, Tenth Annual Symposium on
Principles of Programming Languages, 217-236.

Grah76. GRAHAM, S.L. AND M. WEGMAN (Jan 1976). A Fast and Usually Linear
Algorithm for Global Flow Analysis, Journal of the ACM, 23.1, 172-202.

4.2. Existing Methods 65

Jone82. JONES, N.D. AND S.S. MUCHNICK (Jan 1982). A Flexible Approach to
Interprocedural Data Flow Analysis and Programs with Recursive Data
Structures, Ninth Annual Symposium on Principles of Programming Languages,
66-74.

Kenn81. KENNEDY, K. (1981). A Survey of Data Flow Analysis Techniques, in
Program Flow Analysis - Theory and Applications, 5-54, ed. S.S. Muchnick &
N.D. Jones, Prentice Hall.

Kild73. KILDALL, G.A. (Oct 1973). A Unified Approach to Global Program
Optimization, First Annual Symposium on Principles of Programming
Languages, 194-206.

Rose77. ROSEN, B.K. (Oct 1977). High-Level Data Flow Analysis, Communications of
the ACM, 20.10, 712-724.

Rose79. ROSEN, B.K. (Apr 1979). Data Flow Analysis for Procedural Languages,
Journal of the ACM, 26.2, 322-344.

Rose80. ROSEN, B.K. (Feb 1980). Monoids for Rapid Data Flow Analysis, SIAM
Journal on Computing, 9.1, 159-196.

Shar8 l. SHARIR, M. AND A. PNUELI (1981). Two Approaches to Interprocedural Data
Flow Analysis, in Program Flow Analysis - Theory and Applications, 189-234,
ed. S.S. Muchnick & N.D. Jones, Prentice Hall.

Tarj81. TARJAN, R.E. (Jul 1981). Fast Algorithms for Solving Path Problems, Journal
of the ACM, 28.3, 594-614.

Weih80. WEIHL, W.E. (Jan 1980). lnterprocedural Data Flow Analysis in the Presence of
Pointers, Procedure Variables, and Label Variables, RC 8060, IBM.

Wilh81. WILHELM, R. (1981). Global Flow Analysis and Optimization in the MUG2
Compiler Generating System, in Program Flow Analysis - Theory and
Applications, 132-159, ed. S.S. Muchnick & N.D. Jones, Prentice Hall.

Wulf75. WULF, W., R.K. JOHNSON, C.B. WEINSTOCK, S.0. HOBBS, AND C.M. GESCHKE
(1975). The Design of an Optimizing Compiler, Elsevier North-Holland, New
York.

66

Chapter 5

The Demand Graph Method

This chapter introduces a new method for flow analysis called the demand graph
method. The name is derived from the representation of a program as a so-called
demand graph, a data structure that plays a central role in the analysis. An analyzer
that uses this method consists of four phases: syntactic analysis, demand graph
construction, demand propagation, and extraction. The first two phases can be shared
by analyzers that implement different applications. These therefore constitute the
general part and the remaining two phases the application specific part.

The first section explains why a new method was developed and how it is related to
other methods for flow analysis. The second section gives an outline of the whole
process.

5.1. Evolution of the Demand Graph Method
As we saw in the previous chapter, early work in flow analysis was exclusively
concerned with optimization; the emphasis was on experimenting with specific program
transformations. Later work concentrated on improving the methods for obtaining the
required information. It was soon realized that the study of flow analysis algorithms
could be separated from the study of particular applications. This separation, however,
was not visible in the implementation. Although implementations for different
applications have much in common, extracting the general part of one implementation
so that it could be used in a new application was hard because the general and the
specific parts were intimately intertwined. An analogy from the related field of parsing
may clarify this. Although two recursive descent parsers for two different languages
have much in common, it is hard to extract the general part from one such parser to
use it in the construction of a new one. A new methodology, generating a parser on the
basis of the grammar, was needed to separate the general from the specific. Similarly,
in the field of flow analysis, the demand graph method provides a general framework in
which the implementation of various flow analysis applications can be smoothly
integrated.

5. 1. Evolution of the Demand Graph Method 67

The borderline between general and application specific is to some degree arbitrary.
Since most ambitious applications require a more or less elaborate data-dependency
analysis (or use-definition analysis), it was decided that the general part of the method
should perform such an analysis and express its result in a data structure that would be
convenient for a wide range of applications. The contribution of the method is mainly
this new data structure and the separation of use-definition analysis from the rest of an
application. It makes applications easier to program, but, of course, difficult problems

in certain applications do not disappear simply because another program representation
has been chosen.

It would have been desirable if the experiment would not have been tied to a

particular language; yet developing a language independent method was considered too
ambitious a project. Instead a locally developed and mostly locally known

programming language, called SUMMER, is used, but the techniques developed in
implementing the method for this language are transferable to implementations for
other imperative languages. Since SUMMER has no unrestricted jump, an exception is
made for languages such as FORTRAN IV, in which goto is the dominant control flow
instruction.

For the reasons described in the previous chapter, a high level method was chosen.
In summary, the input languages considered interesting are well-structured and the
method should be useful for a wide variety of applications, including those that express
their results in messages to the users. Since propagation rules and initial assertions in a

high level method are related to the syntax rules of the language, attribute grammars
form an attractive formalism: the description of the flow analysis algorithm is
intertwined with the grammar, such that each production rule is followed by a set of
attributes and a set of attribute rules. The attributes describe the set of assertions that

can be attached to nodes of that type in the parse tree. The attribute rules are the
propagation rules that specify how attributes are influenced by other attributes attached
to parent or child. Attribute grammars are attractive because they describe the flow
analysis algorithm purely in terms of local effects. There is a reasonable match between

the connectivity of the parse tree and the locality properties of many applications, but
major discrepancies still remain. It is not uncommon to find a long path between the
node in which information originates and the nearest node in which it is used, forcing

all intermediary nodes to retain and transmit information that is irrelevant to them. In
use-definition analysis, for instance, when a use is encountered, the information about
all previous definitions in the program has to be available and therefore transmitted
through all nodes. Ganzinger [Ganz74] attacks this problem by proposing modified

attribute grammars, which allow global attributes. This constitutes a relaxation of the
strong modularization imposed by the original attribute grammars, akin, in purpose as
well as consequence, to the introduction of global variables in a well-structured

programming language. One consequence is that in this method the programmer needs
to be more specific about the evaluation order in order to guarantee a correct
maintenance of global attributes.

The approach used in the method proposed here is to construct a graph, whose
connectivity, compared to that of the parse tree, is in better accordance with the locality

properties of many applications. For a well-structured language the structure of the
parse tree reflects to a great extent the control flow. Many applications, however, are

more sensitive to data dependencies in the program and therefore a representation more
directly reflecting the flow of data is more appropriate. One such representation is the
data flow graph described in section 2.2.

68

The step from tree to graph is important. In the type of languages that we are
considering the order of statements is significant: interchanging two statements in a
program may alter its meaning. However, in general this evaluation sequencing is
overspecified: sometimes statements may be reordered without affecting the meaning of
the program. The meaning is therefore better expressed by a partial ordering of
statements. Such a partial ordering can easily be expressed in a data flow graph.

In the demand graph method a program is represented as a data flow graph with all
the arcs reversed. I have called this representation a demand graph. Roughly speaking
a demand graph can be obtained from a parse tree by adding appropriate arcs from
uses of variables to their definitions and removing all unnecessary sequencing
constraints. Not all data-dependencies can be determined during static analysis, since
they are influenced by conditional control flow. We refer to this problem as (static)
ambiguity. In those cases, rather than a simple data-dependency a more elaborate
subgraph is inserted that is attached to all relevant definitions. The nodes of this
subgraph encode the static ambiguity.

5.2. language-Independent Aspects of the Demand Graph Method
This section presents an overview of the four phases of the demand graph method. The
description in this section limits itself to the general structure of the method and to the
analysis of constructs that are commonly found in imperative languages. Features of
the implementation due to peculiarities of the input language will show up in the next
two chapters, which are devoted to a more detailed description of the most important
phases (i.e. demand graph construction and demand propagation).

5.2.l. SYNTACTIC ANALYSIS

The lexical and syntactic analysis is standard and any parser that converts a program
text into a parse tree representation is suitable. The present implementation uses the
existing parser, which produces a condensed form of a parse tree, called the (abstract)
syntax tree. 1 A syntax tree is a more convenient starting point for the analysis than a
parse tree, because many of the nodes that are artifacts of the particular grammar and
that are irrelevant to the meaning of the program have been removed. Figure 5.1
illustrates the difference by depicting an expression, its parse tree, and the
corresponding syntax tree.

During syntactic analysis some rudimentary information may be collected to
facilitate demand graph construction. In the current implementation the call graph is
constructed and the syntax tree of each procedure is descended to record uses and
definitions of global variables. At the end of the syntactic analysis the transitive closure
of this information is computed to be used during the construction of demand graphs
for recursive procedures (see below).

!. In the literature the two types of trees and their names are often confused. We will follow the
terminology used by Aho&Ullrnan [AhUl77].

5.2. Language-Independent Aspects of the Demand Graph Method

x:=a+S;
y := x x 7

(a)

<expression> : : = <expression> (';' <expression>)* I
<unit> [<dyadic-operator> <expression>].

<dyadic-operator>::=':=' I'+' I 'X'.

<unit> :: = <constant> I <identifier>.

<constant>::= '5' I '7'.

<identifier> :: = 'a' I 'x' I 'y'.

Figure 5.1. From source text to syntax tree.

(a) Expression and grammar: a fragment of a program source and the relevant part of a
grammar.
(b) Parse tree. For each application of a production a node is produced. Each interior node
is labeled with a non-terminal and leaves are labeled with a terminal. The exact program and
the relevant part of the grammar can be reconstructed from this representation.
(c) Syntax tree. Interior nodes are labeled with operators and leaves are labeled with
operands.

69

70 5. The Demand Graph Method

5.2.2. DEMAND GRAPH CONSTRUCTION
A syntax tree can be converted into a demand graph by adding extra nodes and arcs
that encode data dependencies, and by removing control flow nodes and arcs that are
not essential to the meaning of the program. Since an elaborate data-dependency
analysis already implies the detection of unnecessary sequencing constraints, the latter
part of the transformation is simple. The new data-dependency connections are such
that superfluous nodes and arcs are not reachable from the source-ofdemands, which is
the common ancestor of all nodes corresponding to output expressions. The demand
graph is defined as all nodes and arcs reachable from the source-of-demands, so code
that does not contribute in any way to the output of the program is left out
automatically. For reasons of symmetry all nodes of the demand graph have a
common descendant, the sink-ofdemands. Nodes that do not in any way construct a
new value are not part of the demand graph. This is fully determined by their type:
VARIABLE and ASSIGN nodes, for instance, are left out, while a PLUS node constructs a
new value and may therefore become part of the demand graph.

Figure 5.2 shows an example of the transformation of a syntax tree into a demand
graph.

previous definition of a

::=:

,.L ..)y ~
::=:

... ~ ~
subsequent

use
: ® :

: ' : (b) of y

Figure 5.2. From syntax tree to demand graph.

(a) The same syntax tree as in figure 5.1 , but now drawn with the leaves on top and the root
at the bottom and with the right-hand side of an ASSIGN node (nodes marked with ':=')on the
left and the left-hand side on the right. In this way the normal evaluation order of expressions
is in better correspondence with a left-to-right and top-to-bottom order in the illustration.
(b) The corresponding demand graph. Only the solid nodes and arcs are part of the demand
graph. The arcs in this figure that are not in (a) are data-dependency arcs, e.g. the new arc
from the ® node to the 0 node is the data-dependency arc for x.

It is interesting to note that the demand graph for this expression is indistinguishable
from that for the expression y: = (a + 5) X 7 (provided that the value of x is not used
later in the program). This phenomenon of identical demand graphs for different
expressions occurs frequently. The demand graph construction defines an equivalence
relation on the set of programs. In that sense it extends the parsing process:
abstracting from the representation of a program and drawing closer to the function it
represents.

Converting control flow information into data flow information can be an elaborate
transformation. The perfect demand graph, i.e. a graph without any superfluous
sequencing constraints, may for some programs be incomputable. In practice a safe

5.2. Language-Independent Aspects of the Demand Graph Method 71

approximation has to be constructed, but how close this approximation should be to
the ideal depends on practical considerations. Extra analysis can often improve an
approximation, but the closer the approximation, the smaller the set of applications for
which the extra analysis is beneficial.

The syntax tree is processed with a recursive descent algorithm: it starts at the root
of the main program and processes all descendants mostly from left to right, calling the
appropriate analysis1 procedure, depending on the type of the node. Generally
speaking the order of processing corresponds to the control flow except when control
flow is cyclical.

Chainers.
The complicated part of demand graph construction is the building of appropriate use­
definition graphs. This is controlled by a set of objects called chainers and cocoons.

Chainers are created and destroyed in conjunction with cocoons, which are described
below. During demand graph construction one chainer is always designated as the
current chainer. In straight-line code the use-definition chaining is simple and only the
current chainer is involved. It contains information about all the definitions
encountered so far during the analysis of the straight-line segment. When a definition
is encountered the chainer is informed that the current value of the variable can now be
obtained from the last encountered node that produces a value (we say the variable now
lives at this node). When a use is encountered the chainer is requested to construct an
arc from the parent node to the node where the variable currently lives.

As an example we will follow the (simplified) processing of the tree fragment of
figure 5.2. In this description the term value node refers to a node that constructs a new
value, while chainer refers to the current chainer.

e process 0
e process first operand G

41 process right-hand side ®
111 process left operand @

41 ask chainer to construct arc from parent node ® to node where a lives
<11 process right operand G)

41 inform chainer that a value node is encountered
_e inform chainer that a value node is encountered

e process left-hand side@
e inform chainer that x now lives at the last encountered value node

e process second operand G
e process right-hand side @

e process left operand @
e ask chainer to construct arc from parent node @ to node where x lives

e process right operand(!)
e inform chainer that a value node is encountered

e inform chainer that a value node is encountered
e process left-hand side(!'.)

!II inform chainer that y now lives at the last encountered value node

Note that arcs are only created from a use to the previous definition of the same
variable. If in a straight-line segment the sequence use-definition-use-definition for one
variable occurs, the first use is connected to the first definition and the second use to

I. If the meaning is sufficiently clear from the context we use analysis as a synonym for demand
graph construction.

72 5. The Demand Graph Method

the second definition. The two definitions are unrelated and the fact that the two
groups employ the same variable name has no influence on the demand graph. It is as
if the variable name in the second group has been changed to enforce a single
assignment discipline. This is the case for a full definition, i.e. a definition that
completely replaces the old value of the variable by a new value. The use-definition
chains are somewhat different for a partial definition, which is a modification of part of
a structured object, e.g. an update of an array element. For a partial definition an
additional arc is constructed to the previous definition to reflect the fact that not all
information, previously stored in the object, has been lost.

Cocoons.
Some expressions need special treatment because of their effect on the use-definition
chaining. Examples are conditionals, loops, and procedure bodies. Whenever during
the traversal of the syntax tree, one of these special expressions is encountered, a new
object, called a cocoon, and one or more chainers are created. These objects constitute
a new environment in which the subgraph corresponding to the expression can be
constructed in isolation from the rest of the demand graph. There are different kinds of
cocoons corresponding to the different kinds of special expressions. Each special
expression contains one or more subexpressions, called branches. For each branch a
chainer is created, which is designated as the current chainer when that branch is
analyzed. When all branches have been analyzed, a series of separate demand graphs,
one for each branch, is available, and a series of chainers, each containing all the
necessary information about the "input" and the "output" of a branch. The output
information concerns the exposed definitions, i.e. definitions that are not obscured by a
later definition in the same branch and that consequently may represent a value that is
referred to from outside the expression. Input gives rise to an exposed use, i.e. a use of
a variable that has no previous definition in the same branch.

After all branches have been analyzed the cocoon is dissolved, which involves the
creation of two series of interface nodes, one for the input and one for the output, and
the connection of these to the subgraphs and the surrounding graph. For each variable
for which some branch contains an exposed use an input interface node is constructed
and for each variable for which some branch contains an exposed definition an output
interface node is constructed. The type of interface nodes and the way they are
connected depends on the type of the cocoon. Figure 5.3 gives a summary.

expression input output
if and case MERGE BRANCH

while ENTRY-LOOP EXIT-LOOP

procedure PARAMETER RESULT

procedure call CALL-IN CALL-OUT

Figure 5.3. Interface nodes created during demand graph construction.

Conditionals.
When conditional control flow is involved the use-definition chaining becomes less
straightforward than suggested in the previous section. After a conditional expression
like

if test then a : = 7 else a : = 9 fi

it is not clear to which definition a subsequent use of a should be linked. There are not

5.2. Language-Independent Aspects of the Demand Graph Method 73

one but two "previous definitions", i.e. definitions that for some possible control flow
path would be the previous definition of a . This static ambiguity is encoded in a

BRANCH node to which subsequent uses are linked rather than to the definitions

directly. Since these BRANCH nodes play a crucial role in the demand graph method we
will take a moment to reflect on their significance.

outlink outlink

~" j\
inlink inlink

failure

(a) (b) (c)

Figure 5.4. BRANCH and MERGE nodes.

(a) A BRANCH node has an incoming value arc, an outgoing control arc, which leads to a node

that will provide a signal, and a number of outgoing out/ink arcs, which lead to the previous

definitions.
(b) A MERGE node has an outgoing value arc, an outgoing control arc, and several incoming

in/ink arcs.
(c) A group of BRANCH or MERGE nodes connected to the same control may be drawn

connected to avoid clutter. Control arcs may be drawn on either side of the node.

Most methods for use-definition analysis would treat the previous definitions of a
particular variable as an unstructured set and would simply connect a use to each one
of them. In this way information about the conditions under which a particular
definition from the set will be selected is lost and cannot be used in subsequent
analysis. Such an encoding would make it hard, for instance, to uncover the fact that
after the expression

ifx <= Othenx := 1-xfi

x is positive.
In the demand graph method the set of previous definitions of each variable, the

conditions under which a definition is selected, and the relations between them are
treated as a whole. The information is coded as an acyclic graph considered to be part
of the demand graph with the effect that at each point in the program the set of

previous definitions of a variable is always represented by one single node. The
algorithm can without ambiguity refer to the "defining node" of a variable: as soon as

ambiguity arises it is removed by encapsulating it in a BRANCH node. Ambiguities are
thus not allowed to propagate, a strategy which has proven to be quite advantageous.

Only when aliasing is involved the propagation cannot always be confined, as we shall
see later.

Figure 5.5(a) shows the cocoons and chainers involved in the construction of the
demand graph for a simple conditional expression. Note that the test expression is

analyzed outside the cocoon, since, during program execution, its evaluation is at the
same level as the surrounding expression, i.e. it is evaluated whenever its surrounding
expression is evaluated. Figure 5.5(b) shows the resulting demand graph; note that the
BRANCH node fully encodes the effect of the conditional construct. The IF node is
therefore left out of the demand graph.

74

if test then a : = 7 else a : = 9 fi ;
x :=a+ 5

·· r---------------------,: ,: : : ; I:
d ~ ~ ~I~

!I , , : ! '
d Ch2~ l Ch3j I i
L""::'::"" :.:"".::·::·::·::·:.: - - ..'."" _:·::·:.:·:.: .. _:··::·::·:.. ..J :

"" cc I

Vi _gel
... ~~.i.:

(a)

5. The Demand Graph Method

I ; I

I test I

subsequent
use
of x

j Chd
: ... :

(b)
Figure 5.5. Analyzing a simple conditional expression.

(a) The syntax graph with the chainers and cocoons that are involved in its analysis. Ch1 is
the current chainer when, during analysis, the conditional expression (represented by the
node marked with IF) is encountered. The conditional cocoon CC (the dashed box in the
figure) is then created with the two chainers Ch2 and Ch3, which serve in turn as current
chainer during the analysis ol the two branches. After the branches have been analyzed Ch2
and Ch3 contain the information that the (j) and the @ nodes are exposed definitions of a.
The cocoon CC is then dissolved, which involves the creation of a BRANCH node for each
variable that is defined in any of the branches (in this case only a) and connecting it to the
exposed definJtions in each branch. The surrounding chainer Ch1, which is designated as
the current chainer again, is then informed that the variable now lives at the newly created
BRANCH node.
(b) The resulting demand graph. The left operand of the <:!) node is 7 or 9 depending on the
outcome of test. This static ambiguity is encoded by the BRANCH node which has outgoing
arcs to the two constants and to the controlling expression that will resolve this ambiguity at
run time.

The input interface nodes of a conditional expression are MERGE nodes. They are
included in the demand graph for reasons of symmetry and to facilitate its reversal into
a data flow graph. Figure 5.6 illustrates the analysis of the conditional expression

if test
then x:=xXx
else x:=y;

t: = 3

which has exposed uses for x and y. Since the expression assigns the constant 3 to the
variable t in the else branch but does not define t in the then branch, a subsequent use
of t should be connected to the definition of t previous to the conditional expression as

5.2. Language-Independent Aspects of the Demand Graph Method 75

well as to the constant 3. To encapsulate this ambiguity in one BRANCH node the

conditional expression is considered to use t. The effect is the same as if the dummy

assignment "t : = t" would have appeared in the then branch. This simulated use of t

in the then branch we call an induced use.

test

previous definitions
x y

: : .
: : . .
: :

i j
: :

I else I
:00000 OOOOHOOOOOOOOOOOOOHOOOOOOOOOOOOOOO••o:

x

subsequent uses

Figure 5.6. A conditional expression with exposed and induced uses.

(a) x is defined in both branches, while t is only defined in the else branch. Since the use ol

y in the else branch has no previous definition in the same branch it is an exposed use.

Similarly for the uses of x in the then branch.
(b) The resulting demand graph. BRANCH nodes encode the static ambiguity for x and t. The

BRANCH node for the latter variable induces an exposed use in the then branch, since that

branch does not contain a definition for t. Each exposed use is connected to a MERGE node,

which in turn is connected to the previous definition in the surrounding expression. Multiple

exposed uses of the same variable in one branch are connected to the same input port of a

MERGE node. An input port of a MERGE node may have no incoming arc, whereas each

output port of_a BRANCH node has an outgoing arc. Each MERGE and BRANCH node has an

arc leading to the controlling expression test.

The treatment of case expressions and other conditional expressions is a generalization

of the treatment of if expressions. Generalized BRANCH and MERGE nodes, with an

arbitrary number of outgoing or incoming arcs, serve as interface nodes. Figure 5.7

shows the general structure of the demand graph for a conditional expression. There is

a BRANCH node for each variable that is defined within the expression and there is a

MERGE node for each variable for which any of the branches of the expression contains

an exposed use.

76

Loops.

previous definitions

controlling
expression

branch
l

Figure 5.7. General conditional expression.

branch
2

subsequent uses

5. The Demand Graph Method

branch
n

Each demand path enters a conditional expression through a BRANCH node pointing to the
controlling expression and to the exposed definitions in one or more branches. For each
variable for which a branch contains an exposed use a MERGE node is created. Some paths
may lead directly from a BRANCH node to a MERGE node just as in the previous figure. Note
that not all input ports of a MERGE node need to have an incoming arc.

A loop expression is treated almost exactly like conditional expressions. The test and
the body are the two branches for which isolated demand graphs are constructed. The
interface nodes are called ENTRY-LOOP and EXIT-LOOP nodes. Their connections to the
subgraphs are such that cycles may be created. Figure 5.8 shows such a cyclic data
dependency. The demand path for x may bypass the @ node or include it an
arbitrary number of times, just as the body of the loop may be executed an arbitrary
number of times. As we will see later, cyclic graphs require special mechanisms during
demand propagation. Interpreting a cyclic graph with a naive machine model in mind
may lead to similar problems.

5.2. Language-Independent Aspects of the Demand Graph Method

x := 1;
while x < 10
do x:=xX2
od

Figure 5.8. The demand graph for a loop.

subsequent use of x

The subgraph for the body appears on top and that for the test at the bottom. After these

branches have been analyzed in separate chainers the cocoon is dissolved, which involves

the creation of the interface nodes for the cyclic demand path for x. The arc enterin;;i the

EXIT-LOOP node (marked with EX) from below corresponds to the value of x after termination

of the loop. The EXIT-LOOP node corresponds to a value of x immediately after the test and

the ENTRY-LOOP node (marked with EN) corresponds to a value immediately before the test.

At the latter point the value of x is either the value before the loop, if the body is not executed

at all, or the value defined in the body. The outcome of the test determines which of the two

values is taken. The value used in the body is again the value immediately after the test, i.e.

the value represented by the EXIT-LOOP node.

77

Of course, if the value of the constants appearing in this example are taken into

account, it can easily be deduced that the body is executed exactly four times. This

illustrates the particular point of separation between the general and the application

specific part that has been chosen for the current implementation. Through simple

constant propagation this whole graph could have been replaced by a @ node.

Constant folding, however, is considered to be an application and values of constants

have no bearing on the demand graph. All analysis that uses the value of constants is

reserved for the application specific part.

Procedure Calls.
The effect of a procedure call on the demand graph depends exclusively on the exposed

uses and definitions of the procedure body. Some of these are immediately visible: the

input parameters and the return values. When the language contains global variables,

or an equivalent mechanism, the complete set of exposed uses and definitions of a

procedure body can only be determined through use-definition analysis. Therefore,

whenever a call is encountered of a procedure that has not yet been analyzed, the

analysis of the calling procedure is suspended and the called procedure is analyzed to

determine its exposed uses and definitions. Output interface nodes are called RESULT

nodes (see figure 5.9). For each RESULT node a local output interface node is created

and the two nodes are connected. Input interface nodes are called PARAMETER nodes,

which are connected to local input interface nodes. After the creation of the interface

nodes the analysis of the calling procedure is resumed by connecting the local input

interface nodes to the appropriate definitions and informing the chainer about the local

output interface nodes.

78

procedure
A

r-------------,

L. _____________ .J

procedure
B

' __ J

Figure 5.9. lnterprocedural demand paths for global variables.

5. The Demand Graph Method

procedure
c

' J _ __...- -·-·-- I

: (___RESLIL!_ _ _) :

~----~

In this illustration Dg and u_, indicate a definition and a use of one and the same global
variable g. Procedure B is called by procedure A and C. Since procedure B contains both
an exposed use and a definition of global variable g, its cocoon creates a PARAMETER and a
RESULT node. These are connected to local interface nodes (indicated by G)) at each
calling site, which act as local uses and definitions of the same variable. Since procedure C
contains no definition of g the local interface nodes for the call of B are in turn exposed use
and definition, resulting in a PARAMETER and a RESULT node.

Each procedure is analyzed at most once: when a call is encountered of a procedure
that has already been analyzed, only the local interface nodes have to be created and
connected to the PARAMETER and RESULT nodes. In the end each PARAMETER node has
arcs leading to all calling sites. When the program is recursive, at some point a call is
encountered of a partially analyzed procedure. Repeating the partial analysis of the
called procedure is of no use, since no new information would be obtained, but
continuing the an_alysis of the called procedure requires information about the use and
definitions of global variables. In this case the information about global variables,
collected in the previous phase (see section 5.2.1), is used to create the interface nodes
when they are needed. This information is a (safe) approximation to the exposed uses
and definitions of the called procedure. The analysis of the calling procedure is
resumed and eventually the analysis of the called procedure will be completed at which
point its demand graph is connected to the already created PARAMETER and RESULT
nodes. The information that is used is approximate in the sense that it considers each
occurrence of a global variable as an exposed use. This may lead to unnecessary
PARAMETER nodes, but, fortunately, they do not become part of the demand graph,
since they are not reachable from the source-of-demands.

Escapes.
An escape from an expression is a forward jump to the point just beyond the
expression being escaped from. Many languages have a mechanism to escape from a
loop body or a remm expression to escape from the current procedure. SUMMER has an
escape mechanism with an even broader scope. Since expressions immediately
following an unconditional escape are never executed, an escape should always be

5.2. Language-Independent Aspects of the Demand Graph Method 79

embedded in a conditional. The expressions following the conditional expression are
executed whenever the escape is not executed. The effect of an escape can therefore be
taken into account during analysis by adding complementary conditionals (see figure
5.10). The same effect can be obtained by the creation of conditional cocoons. The
controlling expressions of these cocoons, or rather their demand graphs, have to be
created. By means of auxiliary names, which we call pseudo-variables, the existing
cocoon mechanism creates exactly the right subgraphs.

procedure A
expression 1
if test1
then

procedure A
expression 1
if test 1
then

procedure A
returned : = false
expression 1
if test1

Ii

expression2
if test2
then

expression3
return

Ii
expression 4

expression2
if test2
then

expression3
II
if ~test2
then expression4
Ii

then
expression2
if test2
then

Ii

expression3
returned: = true

expression5 Ii
if ~returned
then expression 4
II

(a)

if ~(test 1 & test2)
then expression 5
II

(b)

Figure 5.10. Effect of escapes.

Ii
if ~returned
then expression5
Ii

(c)

(a) Procedure with return. Procedure A contains a return expression. expression4 and

expression5 may not be executed depending on the outcome of test1 and test2 . The tests

are assumed to be free of side-effects.
(b) The equivalent program without return. The controlling expression of the additional

expressions can become arbitrarily complex.
(c) Pseudo variables. Using an auxiliary variable simplifies the additional expressions.

Obviously, the name of the auxiliary variable should not be in the name space of normal

variables.

Aliasing and Indirection.
The combination of aliasing with other features in the language may lead to
considerable complications, which have been only partly explored. In the current
implementation the aliasing due to first order pointers (no pointers to pointers or to
structures containing pointers) in combination with conditionals and loops have been
investigated. The complications due to higher order pointers (including cyclic data
structures1) and interprocedural aliasing have not been studied.

In straight-line code the presence of first order pointers is quite easily dealt with.
Indirection is incorporated in the use-definition chaining by admitting objects, in

l. A data structure is cyclic if the graph of pointers that implement the data structure contains a
cycle. ·

80 5. The Demand Graph Method

addition to variables, as keys for the chainers. Recall that when a (direct) assignment is
encountered the chainer is informed that the variable now lives at the last encountered
value node. When an indirect assignment is encountered the chainer is informed that
the object pointed to by the variable now lives at this value node.

Both loops and conditional expressions introduce the possibility of conditional
aliasing. Conditional assignment to a pointer variable is a serious complication, since
the ambiguity introduced by the conditional may be propagated through the analysis
indefinitely, necessitating the introduction of ambiguity nodes, whenever the pointer is
referenced (see figure 5. ll). This would seriously increase the complexity of the graph
and consequently the computational complexity of the method. However, an algorithm
has been developed that detects and exploits locality properties in the reference patterns
to reduce the number of additional nodes due to conditional aliasing. A detailed
explanation of this algorithm will appear in section 6.7.

a : = if test then reference to x else reference toy fi.

definition of x
indirect definition through a
use of x

Figure 5.11. Conditional aliasing.

At the point where x is used it is ambiguous where the variable lives: at the previous definition
of x or at the indirect definition through a. The effect of the conditional expression may be
propagated to all uses of a and x.

5.2.3. DEMAND PROPAGATION

When the complete demand graph has been constructed, a graph representation of the
program is available that lacks most of the irrelevant sequencing specifications of the
original program. An analysis in this graph follows the same basic outline as other flow
analysis methods described in the previous chapter: propagation rules and initial
assertions are associated with the graph and information is propagated by application
of the propagation rules. Again, if the assertion lattice is bounded and the propagation
rules are order preserving a steady state will be reached. Both the type of assertions
and the method of propagation, however, are different.

If an expression directly depends on data computed in another expression, the nodes
in the graph corresponding to the two expressions tend to be close together. In those
applications in which the assertions are concerned with data, the locality properties of
the demand graph can be exploited to reduce the amount of information that has to be
retained by each node. Each arc in the demand graph can limit its local information to
assertions about the data item it represents. Global assertions, as described in the
previous chapter, can be avoided and it becomes feasible to retain much finer
information per variable. In the Value Approximation application, for instance, the
information to be transmitted over an arc only concerns the data item that it represents
(see figure 5.12). For most nodes the assertions associated with incoming arcs are
identical. To simplify the description we will assume that for such a node the
assertions associated with the incoming arcs are replaced by one assertion associated
with the node itself.

5.2. Language-Independent Aspects of the Demand Graph Method

7 9 7 9

test test

(a) (b)

Figure 5.12. Demand propagation in the Value Approximation application.

(a) The demand graph of figure 5.5 with the value domains of initial assertions indicated on

the right of each node. At the CONSTANT nodes ((/) and ®l the values are known exactly, at

the @ node it is known that the value is Numeric (Integer or Real). Note that the asse11ions

only characterize one value, in contrast with the global assertions of figure 4.2.
(b) The final assertions after demand propagation. The value domain at the BRANCH node is

Integer, which is the meet of 7 and 9 in the semi-lattice of figure 4.1. The final assertion

associated with the @ node results from the propagation rule associated with the node.

81

Information propagation involves the exchange of information between the incoming
and outgoing arcs of a node until the total information stabilizes. Just as in the
methods described in the previous chapter, there are many ways in which this
propagation can be organized. The most simple method, arbitrary order iteration,
cannot be used, since the arcs in the demand graph are uni-directional and a node can
only initiate a communication with its successors. The information propagation
therefore has to start at the source-of-demands. A recursive descent algorithm in a
spanning tree of the graph can often be used. The analysis starts by requesting the
source-of-demands to deliver the required information about the complete program.
Each node reacts to such a request by transmitting requests for information to its
successors. Local information may accompany requests, which are called demands. In
an acyclic graph each chain of demands will eventually reach the sink-of-demands,
unless it encounters a node that is able to reply immediately, because it has already
consulted its successors in response to a previous demand. The information acquired
from the successors is combined with the local information into a reply. All
information that passes through a node is accumulated: the locally stored information
never decreases.

Demand chains grow in a direction opposite to the control flow. For backward type
applications the demand is accompanied by backward flowing information and for
forward type applications the forward flowing information is contained in the reply.
Some applications have both a forward and a backward component and the two
information flows interact. A full scan iteration could be used to accommodate this:
the full recursive descent is repeated until the information stabilizes. However, when
more than one iteration is needed it is usually due to a few isolated parts of the
program where the two information flows interact locally. In the demand graph this
locality can be easily exploited by giving priority to local information propagation.

82 5. The Demand Graph Method

In cyclic graphs special precautions need to be taken, the nature of which depends
on the application. Often the recursive descent of a spanning tree of the graph does
not produce sufficiently strong assertions. Demand propagation may then be organized
in such a way that the demand graph acts as a network of independent objects, which
exchange messages with their direct neighbors. Analysis also starts with an initial
demand to the source-of-demands and each node may react by sending demands to its
successors. The main difference with the recursive descent method is that the order in
which outstanding demands are processed is not determined and that the receipt of a
demand and the construction of a reply are separate events. A reply can be postponed
until all backward flowing information has been received. This postponement may lead
to deadlock, so when all activity ceases because all replies are postponed, a central
mechanism selects a node to break the deadlock by sending a partial reply. The effect
is that subgraphs without complications are processed first and that the complications
due to cycles in the remainder of the graph can be resolved more easily with the help of
the already collected information.

5.2.4. EXTRACTION

In most applications the information eventually returned by the source-of-demands at
the end of the demand propagation, is not the total or even the main result of the
analysis: the information stored in the nodes of the graph as a side-effect of the
demand propagation is far more important. The final phase of the analysis therefore
consists of extracting the relevant information from selected nodes in the graph and
transforming this into the form required by the application. Nodes in the syntax tree
that are left out of the demand graph may also be used in this process. For
conventional code generation, for instance, it is convenient to recursively descend the
complete syntax tree, visiting the nodes in the normal evaluation order, and using the
information available in the demand graph to optimize the code.

References
AhU177. AHO, A.V. AND J.D. ULLMAN (1977). Principles of Compiler

Design, Addison-Wesley, Reading, Mass ..
Ganz74. GANZINGER, H. (Nov 1974). Modi.fizierte Attributierte Grammatiken, Bericht

7420, T~hnische Universitat Miinchen.

83

Chapter 6

Demand Graph Construction

Constructing the demand graph is the key phase of the demand graph method: it

converts a program representation in which control flow is predominant into a
representation in which data flow is explicit. Because this transformation requires an
interpretation of control flow operators, a detailed description cannot be as language

independent as the broad outline in the previous chapter. The first section of this
chapter therefore describes the features of SUMMER that are referred to subsequently.
The rest of the chapter explains the process in more detail than the previous chapter

did, but a complete treatment of the algorithm would require a level of detail that
would render the description nearly incomprehensible. The algorithm is full of cross­
connections due to interaction between features of the input language. A compromise
has therefore been struck between clarity and completeness. Readers who would like
more detail are referred to appendix II.

After a preliminary discussion of mechanisms used for the translation of all language
features, section 6.3 describes demand graph construction for a basic subset of the
language. Section 6.4 deals with conditional control flow, which covers a great part of
the language, since in SUMMER the handling of control flow is distributed over many
operators. Interprocedural analysis is covered in the next section, whereas the
concluding sections are devoted to arrays and aliasing. The reader who would like to

read about the algorithm that handles conditional aliasing without digesting the whole
demand graph construction process can skip most of this chapter, skim section 6.6, and
then proceed to section 6.7.

El. "I. The SUMMER Programming language
SUMMER is both the input and the implementation language of the analyzer. It has been
designed and implemented in the late seventies by Paul Klint and Marleen Sint at the
Mathematical Centre. It is a well-structured and clearly defined language originally

intended for string processing. It includes string handling and pattern matching
facilities similar to those in other string processing languages such as SNOBOL. An
abstract data type mechanism is available to hide the internal representation of data

84 6. Demand Graph Construction

structures. In the current implementation programs are, for a large part, interpreted,
which allows for a friendly interface to the programmer. Unfortunately, the low speed
of this interpreter makes it impractical to use SUMMER for problems that require a
significant amount of computation. This lack of efficiency is one of the reasons why the
use of this language has not spread far beyond where it was conceived. It should thus
be considered a research language.

Since some of the original reasons for choosing SUMMER as the input language for the
analyzer (see [Veen80]) have lost their relevance, in hindsight I somewhat regret this
choice. Nevertheless, the main value of the project is in the development of methods
that are useful for the analysis of a variety of languages, including popular well­
structured imperative languages. Choosing a research language has the advantage that
one does not commit oneself to a choice among the popular languages, provided that
the research language is rich enough to be a fair representative of the whole class.
SUMMER qualifies in this respect: it includes many of the features that make flow
analysis for imperative languages troublesome (and interesting). The following
description of the language is not meant to be complete but rather to cover enough of
the language to make this and the following chapter intelligible. Readers who would
like more details are referred to [Klin80] and [Klin82].

EXPRESSION ORIENTATION

SUMMER has an expression oriented syntax, in the sense that almost every syntactic
construct can be viewed as an operator that glues expressions together forming a new
expression. This is not only true for ordinary operators like '+' or constructs like
if ... ilien ... else ... fi, but also for the';' and':=' operators. Almost any expression can be
used as an operand in a larger expression. A typical example is

x : = 2 * case window of
Open: val
Close: val +
Unknown: 0

esac

Some operators construct a new value (such as the numeric addition '+' or the string
concatenation 'II'), whereas others yield the value of their right operand (such as ';',
': = ', or relational operators). This combined with proper priority rules facilitates
concise expressions like:

x:=y:=5;
ifa<x<bilien ...

A complicating factor is that in certain contexts expressions yield "addresses" instead
of values. For example in

if test then x else y fi : = val

the if expression computes a target for the assigrunent.
Since ': =' is just another operator, sub-expressions may include assignments. In the

following example ind is incremented before it is used as a subscript

ar[ind : = ind + I] : = nextval;

The incrementing of the value of ind during the evaluation of the subscript is called a
side-effect. Side-effects may be hidden due, for instance, to the call of a procedure that
updates a global variable. This flexibility towards side-effects is a useful feature that, in

85

some cases, allows more concise and clear programming. It makes, however, SUMMER

imperative to the extreme and in fact the reliance on side-effects, by some considered to
be detrimental to clear programming, is pervasive in SUMMER programs. Since the
language is designed to be as orthogonal as possible, nothing prevents the programmer
to abuse this feature to produce horrifying constructs like

(x : = 53 ; y) : = val - if (y : = y + 1) < 0
then k
elsex>y
fi

Because of these side-effects, the order in which expressions are evaluated has to be
strictly defined to prevent ambiguity. Evaluation order is left-most inside-out except
for an assignment where the right-hand side is evaluated before the left-hand side.

Iteration may be specified by a while or a convenient for expression. Of course, the
controlling expressions may contain side-effects.

FAIL MECHANISM

Although SUMMER does not provide arbitrary jumps (goto's) the evaluation of an
expression can be aborted by an escape mechanism, precluding the side-effects of the
unevaluated sub-expressions. A familiar escape mechanism is the return expression:
when such an expression is encountered during execution, the evaluation of the current
procedure body is aborted and the evaluation of the calling expression is resumed. In
addition to this, SUMMER provides a similar but more powerful escape through its fail

mechanism. Conditional constructs and loops are not controlled by boolean values but
by fail signals. In fact each expression may yield a fail signal instead of a value. If an
expression fails (i.e. its evaluation yields a fail signal) the evaluation of the surrounding
expression is aborted and the fail signal is transmitted until it is caught by a
surrounding construct, such as an if or while expression. Since this fail signal is also
transmitted across procedure calls, one failing operand may cause the abortion of a
series of nested procedure invocations.
An expression can only fail if
• It is a relational operator.
• It is a call of a built-in procedure (e.g. the opening of a file may fail).
e It is a call of a procedure that may fail or that contains an freturn expression.
® Any of its sub-expressions can fail unless that sub-expression is

- the test branch of an if or while expression
- the left operand of the 'I' (boolean OR) operator

The ';' operator is special in that failure of its left operand is not transmitted, but
results in a run-time error. In all other respects the';' operator is equivalent to the'&'
(boolean AND) operator. The right operand of the 'I' operator is evaluated only if its
left operand fails. One consequence is that the expression

A&BI c
is equivalent to

if A then B else C fi

provided that B cannot fail. Arbitrary control flow can thus be constructed without
using explicit if constructs. The flow analysis has to take these escapes into account,
which may be hidden in any sub-expression.

86 6. Demand Graph Construction

Defensive programming is facilitated by the assert expression: if its operand fails, an
error message is issued and the execution of the program is aborted. It is a natural
means for specifying the conditions that should hold before or after an expression.

DATA TYPES

In SUMMER data items are called objects. They have a value and a type. A type can be
simple (real, integer, string) or structured (array, table, or a user defined type). Arrays
are one-dimensional sequences of objects which are indexed by their sequence number.
They may contain elements of arbitrary and mixed type; the equivalent of a multi­
dimensional array can thus be easily constructed. The range of an array may be
extended. A table is a generalization of an array: it can be indexed with objects of
arbitrary type rather than only integers. It can thus serve as an associative memory.

The data abstraction mechanism is used extensively in the implementation of the
analyzer. A class declaration defines a new data type. Each object of such a type
contains a fixed number of data fields, which can be selected by means of the dot
notation. Classes may be "active": the class declaration may include local procedures
that are associated with procedural fields. An access to such a field 1 (which from the
outside is indistinguishable from a data field) triggers the execution of the associated
procedure. Within such a class procedure the object itself is referred to with the
keyword self.

The subclass mechanism provides a means to share properties between classes. A
class that is declared to be a subclass of a previously declared class (called its
superclass) inherits all the properties of the superclass unless explicitly redeclared. In
this way a (tree-like) hierarchy of types can be defined, descending from general to
more specific.

ALIASING

Variables have to be declared, but may possess values of different types during their
life-time. Each variable is a pointer to an object. The expression 'a : ='ape'' has the
effect that a is made to point to a new object of type string and value 'ape'. The effect
of a subsequent assignment 'b: =a' is that b is made to point to the same object and a
and b are different names (or access paths) to one shared object. They are called
aliases. For simple data types this aliasing has no consequences, since there are no
operations that can change such an object (there is, for example, no operator like
replace-first-character for a string). Structured objects, however, can be changed and
any such change realized along one access path is visible along all others. Since
aliasing occurs so frequently the analyzer should handle it efficiently.

OVERLOADING

Since different classes may use the same names for their fields, a particular field
selection may refer to any of a series of procedures depending on the type of the object
from which the field is selected. If, for instance, the programmer had declared a class
SET with the '+' operator2 associated with a procedure that computes the union of two
sets, the '+' in 'a + b' may refer to integer addition, real addition, or set union
depending on the types of a and b. We say that the '+' symbol is overloaded: one

!. We will refer to a procedural field p of class C as "field p of C', or "procedure p" or simply as
"pof C'.
2. Procedures may also be specified as monadic or dyadic operators.

6.2. Overall Structure 87

name may refer to different operations depending on the context. At run time the type
of the left operand is used to resolve this ambiguity. To resolve this statically the type
of the operand would also have to be known statically.

6.2. Overall Structure
The class mechanism in SUMMER proved to be convenient for the implementation of the
demand graph method. The information contained in a node and the way it is
manipulated is determined by the type of the node. The graph can be viewed as a
message exchanging network in which each node may exchange information with each
neighbor. Although neighbors may be of arbitrary types, the communication protocol
should be standard. These requirements map easily onto the class mechanism. Each
type of node has a corresponding class declaration, which specifies procedural fields (for
type specific operations) and data fields (for type specific information and pointers to
neighbors). A node can send information to a neighbor by calling one of its message
receiving fields transmitting information through the parameters. Overloading is
essential for the standard protocol, since one name is used for all the procedural fields
that implement message receiving.

NEGATE TYPE
NOT STOP

ASSERT STRING
BRANCH

RETURN INTEGER
LINK-OUT

GET REAL
ACCESS-BRANCH

SINK CASE

ALWAYS MERGE
NEVER LINK-IN
VOID CASE-SELECTOR

STAND-JO CASE-CONSTANT

CONSTANT VARIABLE
IF

PROCEDURE

PROC-CALL
CALL-OUT

CALL-IN

PARAMETER
RESULT

FRETURN

PLUS
DIVIDE OVER

TIMES
CONCATENATE

ARRAY-ACCESS

SEQUENCE

WHILE-LOOP

FOR-LOOP
FOR-CONTROL

EXIT-LOOP
ENTRY-LOOP

ASSIGN

PUT
AND

OR

Figure 6.1. Type tree for nodes in the demand graph and syntax tree (simplified).

LESS
NOT-LESS

GREATER
NOT-GREATER

EQUAL
NOT-EQUAL

The connections in this tree indicate subclass relations. NODE is the superclass of all nodes.
All leaves (basic types) that are children of the same superclass are depicted together in one
box. Nodes that are part of the syntax tree but not of the demand graph are in italics.

88 6. Demand Graph Construction

THE TYPE TREE
The subclass mechanism can be used to express the properties that the different nodes
have in common. Figure 6.1 depicts the type system used to implement the demand
graph. The subclass relation between the types induces a tree with the most general
type (NODE) at the root and the most specific ones (e.g. PLUS) as leaves. A type system
formed as a graph would have been somewhat more convenient, but SUMMER does not
allow this.

CONSTRUCTION OF THE SYNTAX TREES
As already mentioned in the previous chapter, the syntactic analysis is performed by
the parser of the existing SUMMER compiler. It checks the input program for syntactic
correctness and converts it into a forest of syntax trees, one for each procedure.
Appendix I gives the syntax of the subset of SUMMER that is accepted by the analyzer as
currently implemented and specifies the syntax trees produced by the parser.

During the construction of the syntax trees global summaries of the effect of each
procedure are compiled. This information is used during demand graph construction to
break recursive cycles in the procedure call graph. Each summary consists of two lists,
one for the uses and one for the definitions of global variables. The lists summarize
both the effects of the procedure body itself and of any procedure called directly or
indirectly. Uses and definitions cannot be distinguished without contextual
information, as the following contrived, but legal, expression illustrates:

if Ul = 0 then DJ else (D2 : = U2 ; DJ) fi : = (D4 : = U3 ; U4)

Each Ux in this example is a use and each Dx a definition. Since the distinction
between left-hand side and right-hand side of an assignment is not sufficient in this
respect, we speak of address context and value context. A variable is a definition when
it occurs in an addre5s context, and a use when it occurs in a value context. An
operand that is expected to deliver neither a value nor an address is in a void context.

When the syntax tree of a procedure has been constructed, it is completely traversed
to determine the context of each of its nodes by recursively calling the find-context
procedure of each node. When a use of a global variable is encountered it is recorded
in the list of global uses. Since a definition of a variable may induce a use (see figure
5.6), a global variable that gets defined is entered in both global lists. The find-context
procedures also determine whether a procedure may fail and, if so, record this in the
list of global definitions.

The analysis algorithm will be presented in a notation that resembles SUMMER but is
somewhat more readable: indentation is used for structuring so that closing keywords
and many semicolons can be omitted. Details of algorithms are often replaced by
imprecise specification in words. User defined types are in SMALL CAPITALS. All
variables are either parameters or belong to the class instance. The find-context
procedure of global variables illustrate this:

6.3. Naive Demand Graph Construction

find-context(in-context) of GLOBAL-VARIABLE

add to global uses
if in void context

warning 'superfluous variable'
if in address context

is-a-use : = False
add to global definitions

if in value context
is-a-use : = True

89

At the end of this phase, when all syntax trees have been constructed, the transitive
closures of the global uses and definitions are computed. This is implemented by a
recursive descent algorithm in the call graph similar to the one described in [Tarj72].

ATIACH PROCEDURES

The conversion from syntax tree to demand graph is achieved during a recursive
descent of the tree starting at the root of the tree of the main program. The algorithm
is best understood if each node is considered to be an active object that can locally
alter the graph by adding new arcs and nodes. This process, by which a node of the
syntax tree takes its proper place in the demand graph, is called attaching the node to
the demand graph. It is implemented by a collection of attach procedures. All nodes
of the syntax tree have an attach procedure, including those that will not become part
of the demand graph. These attach procedures together with the chainer and cocoon
mechanism implement the construction of the demand graph. The construction is
started by attaching1 the main program node and proceeds by recursively attaching all
of its descendants in an order corresponding to the normal evaluation order.

In the rest of this chapter the attach procedures of several types of nodes are
described. The next section is limited to the implementation of the basic mechanism,
whereas in subsequent sections the implementations are discussed capable of treating
complicating features such as control flow, arrays, and aliasing. Because of this
incremental presentation some procedures are described more than once. Simplified
versions, for which a final version will be presented later, are marked as such. All final
versions can be found in appendix II.

6.3. Naive Demand Graph Construction
In this section the basic mechanism for use-definition analysis is explained, ignoring the
complications due to procedure calls, conditional expressions, iterations, data
structures, and escape mechanisms. The cocoon mechanism is not used for this naive
implementation: we assume that the demand graph is constructed in the context of one
single chainer. This chainer, responsible for the use-definition administration, contains
a table deflist, which associates each variable name with its most recently encountered
defining node. Each chainer provides two basic fields, which in this section are
considered to be implemented as follows:

I. In the rest of this chapter we use "attach" as a synonym for "calling the attach procedure of."

90

use(name) of CHAINER

return defiist[name]

def(name,node) of CHAINER

deflist[name] : = node

6. Demand Graph Construction

(Simplified)

(Simplified)

Although originally intended for the administration of variables, the same mechanism
turned out to be useful for a few other problems. The range of name is therefore
extended beyond variable names to include a number of pseudo-names, some of which
we shall encounter shortly.

ASSIGNMENTS, VARIABLES, AND CONSTANTS
Data-dependency analysis for simple expressions without conditional control flow is
straightforward. For instance, during the attachment of the expression

(y := 5;
x := y)

the first ASSIGN node informs the chain er that y now "lives" on the CONST ANT node G)
by calling

def ('y', G))

and the second ASSIGN node informs the chainer about the new definition of x

def('x', use('y'))

However, because both sides of an assignment can be arbitrarily complex, the calls on
use and de/ have to be issued separately by the nodes on both sides. Information has to
be transmitted between the two sides and, for reasons that will become clear in the next
section, the chainer is used as an intermediary, storing the information under the
pseudo-name Value. In a first approximation the following scheme will do

attach of SEQUENCE

attach all children in order

attach of CONST ANT

def(Value, self)

attach of ASSIGN

attach right-hand side
attach left-hand side

attach of v ARIABLE

if is-a-use
def(Value, use(name))

else
def(name,use(Value))

attach of ARITHMETIC-DYOP

attach left operand
attach right operand
def(Value, self)

(Simplified)

(Simplified)

(Simplified)

(Simplified)

6.3. Naive Demand Graph Construction 91

The scheme as described so far cannot handle expressions in which either side of an
assignment contains other assignments. Consider, for instance, the expression

(x : = 5 ; a) : = (y : = 6 ; y + I)

which assigns 6 toy, 5 to x, and 7 to a in this order. The problem is that during the
attachment of the central ASSIGN node other ASSIGN nodes have to be attached. An
extra pseudo-name Address is therefore introduced, which points to the target of the
currently processed ASSIGN node. When the analysis of an ASSIGN node switches from
value context to address context, the information in the chainer is transferred from one
pseudo-name to the other. By saving the Address pointer locally in each ASSIGN node a
stack of Address pointers is maintained, when descending a complicated tree.

Figure 6.2 depicts the processing of the above expression. Note that all CONSTANT
nodes make a connection with the sink-of-demands, the common descendant of all
nodes in the demand graph. This node is created at the start of the demand graph
construction and stored in the chainer under the pseudo-name Sink.

Figure 6.2. Attaching the expression (x := 5 : a) := (y := 6 : y + 1).

The syntax tree appears on the left and the resulting demand graph on the right. In this and

subsequent illustrations D x and U x stand for the previous definition and the subsequent use
of variable x.

INPUT AND OUTPUT
A special role is reserved for the output expression put. Each part of a program that
does not contribute in any way to its output is, in a sense, superfluous. Nodes that are
not reachable from any PUT node are in the same sense superfluous. This is easily
detected if demand propagation can start at a node that is guaranteed to be an ancestor
of all PUT nodes. The demand graph constructor provides this node, known as the
source-of-demands, by creating a rooted JO-graph that links PUT nodes together
reflecting their order of execution (see figure 6.3). This graph is constructed with the
aid of the pseudo-name Standard-JO, which represents the output stream. Output
expressions can be viewed as the concatenation of a new string to the output stream
produced so far:

put(a) ~ Standard-10 : = Standard-IQ II a

where Standard-JO refers to the output stream and 'II' indicates string concatenation. A
PUT node is therefore implemented as if it were a dyadic operator with a reference to
the pseudo-name Standard-JO as its left operand. This arc will point to the previous

92 6. Demand Graph Construction

PUT node or, as we shall see in the next few sections, to an interface node of an
expression that contains such a node.

EXECUTION

Always

Possible

Possibly

Repeated

Mutual

Exclusive

Always

Figure 6.3. Ordering of PUT nodes in a graph ..

sink of demands

source of demands

The graph depicts the reverse of the partial ordering of execution of output expressions. The
10-graph ends in a dedicated node of type STANDARD-JO.

When not only the order of output actions is to be preserved, but interaction (input
and output on the same medium) as a whole, the GET nodes (which represent input)
have to be part of the 10-graph. For this reason a GET node is treated as if it were a
monadic operator with two incoming arcs

x: = get [x, Standard-IQ] : = get(Standard-IO)

which indicates that get has the current IO-stream as argument and delivers two values:
the next input string and the new 10-strearn.

6.4. Conditional Control flow
As we have seen in section 6.1, conditional control flow is guided not by the evaluation
of a boolean expression, but by the generation of a fail signal. The handling of such
signals can by itself lead to hidden control flow jumps. Control flow and the handling
of fail signals are therefore intricately interwoven. For the sake of clarity we start with
treating conditional expressions as if they were controlled by simple boolean
expressions.

6.4. Conditional Control Flow 93

BRANCH, MERGE AND LINK NODES

When conditional control flow is involved, the use-definition chaining becomes less

straightforward than suggested in the previous section. Figure 6.4 shows the embedding

of an if expression in its surrounding graph. The figure corresponds to an expression

like

if condition
then a : = a + l ; b : = a + b
elsea:=a+5
fi

Exposed uses are connected to previous definitions via MERGE nodes . Subsequent uses

are linked to exposed definitions via BRANCH nodes. A BRANCH node always has an

out/ink arc for each branch. If the particular branch does not contain a definition for

that variable, the arc will lead to the MERGE node. This is what we have called an

induced use in the previous chapter.

Figure 6.4. BRANCH, MERGE, and LINK nodes.

previous definitions

MERGE nodes
LINK-IN nodes

exposed uses

exposed definitions

LINK-OUT nodes
BRANCH nodes

subsequent uses

The branches of an if expression are completely surrounded by BRANCH and MERGE nodes.

The LINK nodes are tagged with an integer position that corresponds to the value of the fail

signal: 0 stands for success and 1 for failure. LINK-IN nodes are created when the first

exposed use is encountered, while the other interlace nodes are created when the cocoon is

dissolved.

MERGE nodes are not strictly necessary, but surrounding each special expression by

interface nodes facilitates demand propagation for many applications. This makes it

easy to detect which nodes are part of the same expression. MERGE nodes may have

one or two incoming arcs each passing through a LINK-IN node which can tag the

demand signal with a position indication. In this way the MERGE node can distinguish

demands coming from different directions. BRANCH nodes are provided with LINK-OUT

nodes. Although included originally for reasons of symmetry they turned out to be

94 6. Demand Graph Construction

convenient for the implementation of the alias algorithm to be described in section 6.7.
Many applications simply ignore LINK-IN, LINK-OUT, and MERGE nodes. LINK nodes
and sometimes even MERGE nodes will be omitted from most illustrations.

CONDITIONAL COCOONS
BRANCH nodes are created by means of the cocoon mechanism. During the attachment
of an IF node a CONDITIONAL-COCOON with two chainers is created and the two
branches are attached each in its own chainer. A stack of chainers is maintained; its
top is the current chainer to which calls of use and def are directed. The controlling
expression, which is attached outside the cocoon, stores the controlling node in the
chainer under the pseudo-name Success, as we will see later.

attach of IF

attach condition
create CONDITIONAL-COCOON

link control of cocoon to use(Success)
attach then-branch within then-chainer
attach else-branch within else-chainer
dissolve cocoon

Chainers have to be somewhat more elaborate than the ones described in the previous
section, since they now have to handle exposed u~es. These can easily be detected,
since the first time a use is encountered for a variable for which the current chainer has
not yet recorded a definition, the dejlist is empty for that variable. The cocoon to
which the chainer is connected is asked to create an appropriate entry node; a
CONDITIONAL-cocooN will create a LINK-IN node. This entry node is recorded in a
separate table use!ist and all exposed uses of that variable are made to point to this
entry node.

use(name) of CHAINER

if name in <leftist
return deflist[name]

else if name not in uselist
uselist[name] : = cocoon.entry-riode(position)

return uselist[name]

(Simplified)

The dejlist always-contains the last definition of a variable, so when a branch has been
completely analyzed it contains all its exposed definitions. The uselist then contains the
entry nodes to which all exposed uses have been connected. When both branches have
been analyzed, these lists are sufficient to create the appropriate interface nodes.

Dissolving a CONDITIONAL-COCOON starts with the creation of the interface nodes.
Since the creation of BRANCH nodes may induce new exposed uses, this has to occur
before the creation of MERGE nodes. The interface nodes are then connected to the
surrounding expressions by first popping the chainer stack, issuing a call of use for each
MERGE node, and then a call of def for each BRANCH node.

CASE EXPRESSIONS
A case expression is treated very similar to an if expression, since the latter can be
considered to be a case expression with only one non-default branch. BRANCH and
MERGE nodes can in fact have an arbitrary number of outlinks or inlinks. H these
nodes are used to interface a case expression they are connected to a CASE-SELECTOR
node, which represents the comparison that determines during execution which branch
is to be taken.

6.4. Conditional Control Flow

case control of
7: 9:
5:
default :

esac

Figure 6.5. The control part of the demand graph for a case expression.

BRANCH and MERGE nodes can have an arbitrary number of link nodes corresponding to the

alternatives in the case expression. The CASE-SELECTOR node represents the expression that

determines which alternative is to be selected.

f AIL URE MECHANISM

95

As described in section 6.1 an expression may deliver a fail signal instead of a value,
causing a jump to the nearest surrounding expression that can catch the fail signal.
This may be a convenient mechanism for the programmer, but it complicates the
analysis considerably. It has two consequences for the demand graph. First, nodes
that can generate signals have to be connected to expressions that can catch the signals.
Secondly, the demand graph has to encode "hidden jumps": if the head of an
expression may fail, side-effects in its tail should be treated carefully.

Let us first ignore the second problem and concentrate on the separation of values
from signals. Fortunately, with the exception of a few built-in classes and functions
(get, integer, real), the nodes that create a value are distinct from the ones that generate
a signal. We call these two sorts of nodes value and signal nodes. We can also separate
arcs that carry values from the ones that carry signals.

Figure 6.6. Separation of value and signal arcs.

s

s

conjunction

s t
signal va ue

Left the syntax tree and right the demand graph for the expression a < b < c. Signal arcs

(marked with s) ·can only lead to signal nodes such as 0 and value arcs to value nodes

such as (±l. The value of the expression is the value of c. The signal generated by the

expression is a conjunction of two signals, which is encoded by a BRANCH node as we shall

see below.

As illustrated in figure 6.6 this separation of value and signal nodes requires new arcs in
certain expressions. These are made via the chainer by means of the two pseudo-names
Value and Success. Just like value nodes announce themselves by issuing a call
defiValue,seff), signal nodes issue a call defiSuccess, self). New arcs to value nodes can

96 6. Demand Graph Construction

be made by calling on use(Value), whereas signal nodes are accessible via use(Success).
The second problem, that of encoding hidden jumps, can be solved by means of the

same CONDITIONAL-COCOON that was used for the if expression. The expression

A&B

where A and B are expressions, is equivalent to

if A then B else fail fi

B is only evaluated when A succeeds. A similar transformation applies to all dyadic
operators <dyop>:

A <dyop> B

becomes

if tmp : = A then tmp <dyop> B else fail fi

To obtain the effect of this transformation a conditional cocoon could be created
whenever a dyadic operator is encountered. The cocoon would introduce MERGE and
BRANCH nodes for all values that would enter and leave the right operand, just as with
an if expression.

This scheme provides a correct implementation of the evaluation mechanism, but
would give an explosive growth of the number of nodes in the demand graph. The
introduction of a new cocoon is therefore postponed until it has been determined to be
necessary. A dyadic operator creates a cocoon, when it detects that its left operand
may fail, signalled by a def of Success.

attach of DYOP

attach left operand
if Success in <leftist

install cocoon
treat-right-operand within then-chainer

dissolve cocoon
else

treat-right-operand

(Simplified)

Each type of dyadic operator has its own version of the procedure treat-right-operand.

AND AND OR NODES

Because of the general failure mechanism the '&' operator is the most rudimentary
dyadic operator: it simply glues two expressions together without generating any values
or signals. In fact in SUMMER programs one often encounters an '&' operator where in
other languages a ';' would be found. AND and OR nodes are left out of the demand
graph just as SEQUENCE nodes are: their function is fully interpreted during demand
graph construction. Figure 6.7 illustrates the translation of an AND node into BRANCH
and MERGE nodes for the pseudo-name Success.

6.4. Conditional Control Flow

Figure 6. 7. Translation of the AND node.

The AND node is translated into BRANCH and MERGE nodes. The left operand of the AND node
may fail, so the right operand is attached within the then chainer of a coNDITIONAL-cocooN.
This creates an exposed definition of Success, which causes an induced use and the creation
of the rightmost MERGE node. This node is connected to the defining node of Success in the
surrounding expression, which happens to be the same 0 node that controls the cocoon.
This connection of BRANCH and MERGE nodes for Success is equivalent to a conjunction, as
will be shown in the next figure.

97

For the benefit of certain applications each CONDITIONAL-COCOON checks whether any
branch contains side-effects, i.e. whether the deflist of its chainer contains anything
beyond the pseudo-name Success. This information is recorded in each interface node
created by the cocoon. Figure 6.8 summarizes the translation from AND and OR nodes
into BRANCH and MERGE nodes.

a b a b a b a b

y \(y y
a&b if a then b else a fi alb if a then a else b fi

Figure 6.8. Translation of AND and OR nodes.

By connecting the three outgoing arcs of a BRANCH node to two operands it can serve as
AND or as OR node. The LINK and MERGE nodes have been omitted from the figure.

98 6. Demand Graph Construction

CONDITIONAL EXPRESSIONS IN ADDRESS OR VALUE CONTEXT
The shuffling of the Address and Value pointers by the ASSIGN node, which may have
appeared overly complicated in the previous section, provides, in combination with the
CONDITIONAL-COCOON, exactly the right interface nodes when conditional expressions
appear outside a void context. Figure 6.9 shows the two basic cases.

a : = if test then x else y fi if test then x else y fi : = a

(a) (b)

Figure 6.9. Conditional expression in value and address context.

(a) In a value context the VARIABLE nodes will both issue a call of def for Value, resulting in
one BRANCH node. The calls of use issued by the VARIABLE nodes cause the creation of the
MERGE nodes.
(b) In an address context a VARIABLE node issues both a call of use for Address and a call of
def for the variable name. For the two definitions two BRANCH nodes are created, which in
turn induce two uses. A total of three MERGE nodes are therefore needed. This graph is
more complicated than the one in (a). because the expression has a stronger effect on the
use-definition relationships.

ITERATION

The treatment of while and if expressions are remarkably alike. When a WHILE-LOOP
node is encountered, a LOOP-COCOON with two chainers is created. Since both the body
and the test expression may contain side-effects, each is attached within its own
chainer. When the cocoon is dissolved the interface nodes that are created are
connected in a way that may lead to cycles, reflecting the cyclic data dependencies that
a loop may introduce.

6.4. Conditional Control Flow

Figure 6.10. The interlace of a while expression.

The demand path is illustrated for a variable x that is both used and defined in the test as well
as the body. For the first iteration, the exposed use of the test (node D) should be connected

to the previous definition in the surrounding expression (node A). For subsequent iterations

node D should be connected to the exposed definition of the body (node C). This ambiguity

is encoded by the ENTRY-LOOP node, which functions like a BRANCH node. The exposed use

of the body (node B) and the subsequent use in the surrounding expression (node F) are

connected to the exposed definition of the test via an EXIT-LOOP node, which functions like a

MERGE node.

99

Figure 6.10 illustrates this process for the most general case: a variable that is defined
and used in both branches. In other cases some arcs or nodes may be left out. In the
usual case, where the test does not define variables, the EXIT-LOOP node is directly
linked to the ENTRY-LOOP node. An EXIT-LOOP node is created for each variable that
occurs in the loop. In the case when the loop does not define the variable a cycle is
created consisting only of the two interface nodes and their link nodes. When the
expression as a whole does not use the variable (i.e. it is always defined before it is
used) the ENTRY-LOOP node is omitted. Figure 6.11 shows the complete demand graph
of an example loop.

A for loop is a while loop with an empty test part and a special control node. The
analysis of the two kinds of loops and the resulting demand graphs are almost identical.
In the rest of the thesis we will ignore the differences.

100 6. Demand Graph Construction

fac: = n;
while (n : = n - l) > I
do fac : = fac * n od

Figure 6.11. Demand graph for a loop that computes a factorial.

From this and subsequent illustrations link nodes have been omitted. The test expression
uses and defines n and produces the signal that controls the interface node. The body uses
both variables and defines lac. The use of tac in the body induces a use in the test, which in
turn causes an ENTRY-LOOP node to be created.

6.5. Multiproc:edural Graphs
The use of procedures may complicate the demand graph in several ways:
Global Variables

An expression may contain "hidden" uses or definitions due to global variables in
any of the procedures that it calls.

Return Expressions
A subexpression may not be evaluated due to a return expression in a previous
subexpression.

Recursion
The demand graph of an expression may have itself as a component.

Recursion will not be covered here; the previous chapter already explained how it is
handled with the aid of the summaries of global uses and definitions collected during
syntax tree construction (see also section 6.2). The other two issues are treated in this
section.

GLOBAL VARIABLES
As already discussed in section 3.3, a procedure with global variables has a partially
hidden interface: an exposed use of a global variable is a hidden parameter, a definition
a hidden return value. Each program can be transformed into an equivalent one
without global variables by replacing these hidden inputs and outputs by extra
parameters and return values. During the construction of the demand graph a similar
transformation takes place: hidden inputs and outputs are made explicit by interface
nodes. Each input corresponds to a PARAMETER and each output to a RESULT node.
When a PROC-CALL node is encountered, the interface nodes of the called procedure are
connected to a corresponding set of local interface nodes at the calling site. These in
turn are connected to the rest of the calling expression. Figure 6.12 shows the details of
this interface.

6.5. Multiprocedural Graphs

I x: = P(3)

y: = P(S)

Figure 6.12. The interface of procedure calls.

proc P(f)
(g:=g+l;

return (f • g)
) ;

On the right a procedure P that uses and defines the global variable g. On the left two calls
of P without intervening definition of g. The input and output interface nodes of a procedure
are called PARAMETER and RESULT nodes. These are connected to their local counterparts at
the calling site (CALL-IN and CALL-OUT nodes), so each PARAMETER node has as many
outgoing arcs as there are calls of the procedure. Note that the distinction between the
exposed uses of a global variable and one of a parameter has disappeared. The same is true
for a definition of a global variable and an explicit return value. It is also interesting to note
that cycles may be created even without recursion.

101

The interface nodes of the called procedure are only available if its demand graph has
already been constructed. If this is not the case the procedure is analyzed first before
proceeding. The effect is that procedures are analyzed depth first with respect to the
calling graph, so that a definition of a global variable in a deeply nested procedure
becomes visible in all intermediate layers. In case of recursion the summaries compiled
during syntax tree construction have a similar effect: if one member of a strongly
connected component of procedures in the calling graph defines a global variable, it
becomes visible in all members of the component.

102 6. Demand Graph Construction

RETURN ExPRESSIONS

The evaluation of a return expression has two effects:
• If there is an operand it is evaluated. If it fails the procedure fails, otherwise its

value becomes the return value of the procedure.
e The evaluation of the current procedure is aborted and evaluation of the calling

expression is resumed.
An fretum expression is equivalent to a return expression with failing operand. The
attach procedures of RETURN and FRETURN have to simulate these two effects.

The first effect is simulated by means of two new pseudo-names: Return-value and
Return-signal. When a RETURN node is attached these pseudo-names are made to point
to the defining nodes for Value and Success entered by the operand. If there is no
operand, Return-signal is made to point to a CONSTANT node Always, which encodes the
boolean value true.

The second effect, that of the escape, is simulated by means of the pseudo-name
Returns causing the appropriate cocoons to be generated. If an expression contains a '
return or fretum expression, its attachment causes a definition of Returns, just as an
expression that may fail causes a definition of Success. This pseudo-name has the same
function as the pseudo variable in the transformation illustrated in the previous chapter
in figure 5.IO(c). Its effect on the demand graph is the creation of exactly those
BRANCH and MERGE nodes that encode the boolean expressions of figure 5.IO(b).

attach of RETURN

def(Returns, Always)
if' there is an operand

attach operand
def(Return-value, use(V alue))
def(Return-signal, use(Success))

else
def(Retum-signal, Always)

The mechanism for handling failure escapes, described in the previous section, is
extended to handle return escapes. A similar mechanism using the pseudo-name Exits
handles ASSERT and STOP nodes, which represent escapes on program level rather than
procedure level.

Procedures are attached within a separate chainer and a PROc-cocooN. When this
cocoon is dissolved- Return-value and Return-signal are converted back into Value and
Success, and all inputs and outputs are connected to PARAMETER and RESULT nodes,
which are stored in tables in the PROCEDURE node.

dissolve of PROC-COCOON

for each [name,node] in deftist
if name is global variable

outputs[name] : = RESULT(node)
else if name is Return-value

outputs[Value] : = RESULT(node)
else if name is Return-signal

outputs[Success] : = RESULT(node)
for each [name,node] in uselist

if name is global variable
inglobals[name] : = node

else if formal parameter
formals[position of formal] : = node

6.6. Arrays 103

When a PROC-CALL is attached, CALL-IN and CALL-OUT nodes are created to form the
local interface. Default definitions for Returns and Return-value are provided by the
attach procedure of PROCEDURE.

Figure 6.13 may clarify the process. In simple expressions, such as this one,
superfluous nodes may be created: the BRANCH node pointing to Always and Never
functions as an identity node. The body of the procedure is in effect transformed into

g := ifO < gthengelse2fi

If the return had appeared in the else branch of the original if expression, the arcs
would have been interchanged and the BRANCH node would function as a boolean NOT.

proc P()
(if 0 < g then return fi ;

g := 2
)

Figure 6.13. The effect of a return escape.

2

Procedure P may or may not assign a new value to global variable g. This ambiguity is
encoded in the BRANCH node on the right, which is controlled by the boolean value produced
by the left BRANCH node. The latter has an arc to Always, which is the definition of Returns
issued by the RETURN node, and an arc to Never, which is the default definition for Returns.
The return expression has no operand, so there is no path for Return-value. To avoid clutter
the path for Return-signal has been omitted from the illustration.

6.6. Arrays
The objects we have encountered so far (strings, integers, reals), cannot be changed: the
only way to give a variable another value is to assign a new object to it. An object of
type array, however, can be modified by means of the update operation, which is written
as an assignment. For instance, after

a : = [0, 'abc', 3.5] ;
a[l] : = 'xyz'

the element with index l has been updated and a now has the value [O,'xyz',3.5]. As a
consequence of this selective update operation, objects may be partly redefined and
cyclic data structures may come into existence. Partial redefinitions complicate the
demand graph, since aliasing can no longer be ignored: an update of an array is visible
through all its aliases. Cyclic data structures are possible because an arbitrary object
can be assigned to an array element. After, for instance,

104

a : = ['pqr'] ;
a[OJ: = a

6. Demand Graph Construction

the original value of the only element of a (i.e. 'pqr') is replaced by the value of a itself,
i.e.· a is an array with itself as only element. Cyclic data structures complicate the
aliasing problem considerably; they have been omitted from the current
implementation. The same holds for interprocedural aliasing.

In this section the handling of arrays and simple aliasing is treated. Handling
conditional aliasing efficiently is a difficult problem and the next section will be devoted
to the rather complicated algorithm that has been developed for this.

ARRAY AND ARRAY-ACCESS NODES
An assignment to a variable is a complete redefinition: none of the information of a
previous assignment will be available any more. Several assignments to the same
variable are therefore unrelated and do not have to be kept in order. In contrast, the
update of an array element is a partial redefinition of the array: previous updates may
still have an effect on subsequent retrieves. The order of several updates on the same
object has to be maintained. 1 This is reflected in the demand graph by linking all
updates of the same object into a chain. Since the order of several retrieves between
two updates is irrelevant, each retrieve is linked to its previous update.

Chainers are used to maintain information about updates. Each update is stored in
the de/list under a key that uniquely identifies the object. A variable name cannot be
used for this purpose, since it represents just one. name for an object for which there
may be several aliases. Another object may be assigned to a variable, while the original
object remains unchanged and still accessible through one of the aliases, as in the
expression

a:= [3];
b :=a;
a[OJ: = I ;
a:= 0;
b[O]: = 2

where the two updates are to the same object and so have to be linked to each other,
independent of the intervening reassignment to a. In straight-line code the defining
node of a variable provides a unique identification of an object. When crossing cocoon
boundaries, however, this way of identification is not sufficient. A new field origin is
therefore defined for each node. For nodes that may represent an array object this field
points to a node that uniquely identifies the object. For nodes that only represent
simple objects origin has the value Simple.

The creation of a new object of type array is represented in the syntax tree by an
ARRAY node. It has outgoing arcs to nodes that represent the initial values; these arcs
are omitted from the illustrations. Since the ARRAY node represents the creation of a
completely new object, it is itself a unique identifier for that object, so its origin field is
made to point to itself.

I. Strictly speaking two updates of an array with different subscripts do not have to be kept in
order. Detecting this would require a kind of analysis that is deferred to the application specific
part, keeping with the principle that the form of the demand graph, is not influenced by values of
constants (see the remarks made about loops in section 5.2.2).

6.6. Arrays

attach of ARRAY
origin : = self
def(V alue, self)
def(origin, self)

105

(Simplified)

The expression 'a[O]' may be either a retrieve or an update depending on the context.
Both type of accesses are represented by ARRAY-ACCESS nodes. A call of the procedure
find-context (see section 6.2) marks these as either retrieve or update. Figure 6.14 gives
an example.

b :=array ... ;
b[S] := 11;
a:= b;
a[6] := 12;
x: = a[7];
y: = b[8];
a[9] : = 14

Figure 6.14. Unconditional aliases in straight-line code.

next

update

Variables a and b both point to the same array. All ARRAY-ACCESS nodes (in the figure marked

wtth RET for a retrieve and with UPD for an update) are linked to each other through their

previous-update field. It is as if each update node represents a new array that is the

combination of the new element and the array represented by the previous update. Note that

the relative ordering of several retrieves between two updates is lost.

106 6. Demand Graph Construction

The attach procedure of an ARRAY-ACCESS node determines the defining node of the
object (object-source) through which the unique identification can be found to be used
by procedure connect-to-previous-update. In addition an update defines itself as the
currently last update.

attach of ARRAY-ACCESS (representing an update)
source : = use(Address)
attach index
attach object
object-source : = use(V alue)
connect-to-previous-update(object-source.origin)
def(object-source.origin, self)

connect-to-previous-update(object-origin) of ARRAY-ACCESS
previous-update : = use(object-origin)

(Simplified)

(Simplified)

As long as no conditional aliasing is involved, procedure connect-to-previous-update can
simply retrieve the previous update from the chainer. This treats unconditional aliases
in straight-line code correctly, since they point to the same defining node and so
accesses through two different aliases get the same object-source.

ACCESSES FROM WITHIN A CONDITIONAL
If two names a and b are made aliases of each other, in the rest of the same straight­
line code deflist['a'] will be equal to deflist['b']. If after this a conditional expression is
encountered, the aliasing should also be reflected in the subgraphs constructed for its
branches. This means that these subgraphs can no longer be constructed in isolation.
To detect that names are aliases, the procedure use is extended such that, whenever an
exposed use of an array is encountered, the origin information is imported from the
environment. The environment is the current chainer of the surrounding cocoon. The
effect is that, for each exposed use in a nested expression the stack of chainers is
searched until a definition is encountered. 1 The origin of this node is then copied to the
entry nodes created at all intermediate levels. So the fact that a and b are
(unconditional) aliases is reflected in the equality of deflist['a'].origin and
deflist['b'].origin. When the cocoon is dissolved, BRANCH nodes are created for each
object for which the conditional expression contains an update. No adaptation is
required of the cocobns as described in the previous sections.

I. This search will not extend beyond the current procedure, since interprocedural aliasing is not
allowed.

6.6. Arrays

Al

a:= array ...
b :=a;
b[5] : = I I ;
if b[6] > I2
then

a[7): = I3 ;
b[8]:= 14

fi ;
x := b[9)

figure 6.15. Updates within a conditional.

12

The left-most arc of each access is the object-source arc; the next one the previous-update

arc. The then-branch contains two updates of the same object through the two aliases a and

b. For the two names two separate LINK-IN nodes are created but both have the same origin

A1. The second update therefore gets linked to the first update, which in turn is an exposed

use of the origin node A 1. When the cocoon is dissolved, a MERGE and a BRANCH node for

the key A 1 are ci:eated. The MERGE node is linked to the last update of the object before the

conditional expression. A subsequent access is linked to the new BRANCH node.

ACCESSES FROM WITHIN A LOOP

107

The two branches of a while expression are treated almost identical to the branches of
an if expression. The only difference is that while in the latter case, the branches are
alternatives, in the while expression the test is always executed before the body. The
environment for the body is therefore the test; for the test it is the surrounding
expression. Otherwise an array defined in the test would not be treated correctly. A
typical loop that updates all elements of an array is shown in figure 6.16. This example
is free of aliases. Since the variable i takes on a different value in each iteration, the
updates in the body are, strictly speaking, independent and do not have to be linked to
each other. The cycle could therefore be removed. This requires, however, a type of
analysis that belongs to the application domain, since it involves taking the values of
constants into account. We will come back to this issue in section 8.6.

108

Figure 6.16. Updates within a loop.

6. Demand Graph Construction

a : = array(IO,O) ;
i := 0;
while i < 10
do a[i] : = i ;

i: = i +

The update in the body gets its origin information by searching the test expression anLI the
surrounding expression for the previous definition of a. The object-source arcs and the
corresponding nodes have been left out of the figure. The cycle that links the update to itself
indicates that updates of subsequent iterations have to be kept in order.

6.7. Com:litional Aliasing
If the aliasing between two variables is determined by a condition that is not evaluated
statically, we call these variables conditional aliases. For instance, after

a:= [O];
b := [l];
c : = if test then a else b fi

it depends on the success of test whether c and a denote the same object or not. After
this expression an access through c has to be linked to either the previous update
through a in case test succeeds or to the previous update through b in case test fails.
Since this ambiguity cannot be resolved statically, it has to be expressed in the demand
graph. For this purpose we introduce ACCESS-BRANCH nodes that provide paths to the
alternative updates and to the node that determines the proper path at run time. These
nodes behave exactly like the BRANCH nodes we encountered before. Consider the
example in figure 6.17. It appears at first that an ACCESS-BRANCH node has to be
created for every access through a, b, or c. If the aliasing relation involves more than
one condition, each access requires a graph of several ACCESS-BRANCH nodes. Such a
subgraph linking an access to previous accesses of conditional aliases we call an alias
access graph.

The alias access graphs grow with the complexity of the aliasing relation. This
suggests that the number of nodes that are needed just to encode the access path
ambiguity, is proportional to the product of the number of accesses and the average
complexity of the aliasing relation. Since in any program conditional expressions are
abundant and, in addition, in SUMMER programs aliasing is wide-spread, the average
complexity of the aliasing relation is very high. Consequently, the size of the demand
graph for an average SUMMER program would be dominated by the number of ACCESS­

BRANCH nodes. This makes the direct encoding of the aliasing relation into the demand

6. 7. Conditional Aliasing 109

graph impractical in the general case, but an efficient algorithm that constructs
reasonably small alias access graphs for all programs in a restricted, but interesting,
class would still be of great value.

a:= array .. .
b: = array .. .
c : = if test then a else b fi
update of a
update of b
update of c

Figure 6.17. ACCESS-BRANCH nodes.

test

The conditional expression makes a and c as well as b and c conditional aliases of each
other. An update of c (marked with UPDc) is linked to the previous updates of both its
conditional aliases via an ACCESS-BRANCH node (marked with AB). The latter node also points
to the expression that controls the aliasing.

For many programs the number of ACCESS-BRANCH nodes can indeed be reduced
substantially. Note for instance that, in the example above, two accesses through c
without intervening access through either a or b can be connected without an ACCESS­

.BRANCH node. Moreover, accesses through a and b do not have to be connected to
each other, since a and bare not aliases of each other, although they have a conditional
alias in common. A reasonable assumption to make is that, in a typical program,
complicated aliasing relationships may be created, but that locally the number of names
through which an object is accessed is rather limited. To make the handling of
conditional aliasing practical an algorithm is needed that exploits this locality to
construct small alias access graphs in a reasonably short time.

THE LACAP ALGORITHM

We present an algorithm that constructs small alias access graphs in a time that is
proportional to the number of ACCESS-BRANCH nodes. It has been called the LACAP

algorithm after a set of pointers in the demand graph (the last accessed conditional alias
pointers) whose selective maintenance is the key to its efficiency. It can handle all
aliasing in programs without interprocedural aliasing or multi-dimensional arrays, but
in this presentation we initially assume that all conditional aliases are due to if
expressions. Including conditional aliasing caused by case or while expressions is
straightforward as we shall see later.

The first problem is how to represent the aliasing information. Fortunately most of
the aliasing information is already available in a convenient format. As we saw in the
previous section the dejlists together with the origin information form a mapping from

110 6. Demand Graph Construction

variable names to nodes such that unconditional aliases are mapped to the same node.
For each conditional alias a BRANCH node with its LINK-OUT nodes is formed. If we let
each LINK-OUT node copy its origin pointer from its successor, subgraphs are formed
consisting of BRANCH, LINK-OUT, and ARRAY nodes. These graphs, which contain all
necessary alias information, we call alias graphs. Figure 6.18 shows an example.

(a, b, d, and e are arrays)
c := iftl then a else b fi;
f := ift2 then d else c fi;
g := ift3 then c else e Ji;

a

Figure 6.18. An Alias Graph.

b

e

A set of conditional expressions and the resulting alias graph. The outgoing arcs of each
node point to previously created nodes. Alias graphs are consequently acyclic. They consist
of ARRAY nodes as sinks and BRANCH and LINK-OUT nodes as internal nodes. Each BRANCH
node has its corresponding LINK-OUT nodes as successors and each LINK-OUT node points
with its origin field to either a BRANCH node or an ARRAY node. The variable names under
ARRAY and BRANCH nodes indicate the mapping through deflist and origin.

Note how not all variables in this graph are conditional aliases of each other. c is a
conditional alias of a, but b is not: for no value for any condition could b and a
become aliases of each other. g and f, however, are aliases, since if t 2 fails and t 3
succeeds g and/will point to the same object (the one c is pointing to).

During demand graph construction alias graphs change frequently and can grow with
sudden jumps: the analysis of a conditional assignment can cause the connection of two
arbitrary large alias graphs. An algorithm that relies on information that has to be
maintained globally per alias graph is therefore unfeasible. The LACAP algorithm stores
information in the nodes of the alias graph that does not have to be updated each time
the alias graph grows, but only during the construction of an alias access graph. We
give a functional description of the algorithm before we describe its implementation

FUNCTIONAL DESCRIPTION
When, during analysis, an access is encountered the LACAP algorithm traverses part of
the alias graph, starting in the node to which the variable being accessed is mapped (the
accessed node). For each BRANCH node visited it creates a corresponding ACCESS­
BRANCH node in the alias access graph. To construct a small alias access graph the part
of the alias graph to be visited has to be limited. To indicate the paths that have to be
followed a pointer, called lacap, is associated with each node of the alias graph. Each

6. 7. Conditional Aliasing 111

pointer has one of three values Laca, Ancestor, or Descendant. It has the value Laca for

a node that is a Last Accessed Conditional Alias (a LACA), i.e. a node through which an

access has been made but no subsequent access through any of its conditional aliases.

If the accessed node is a LACA, no alias access graph needs to be constructed (i.e. the

alias access graph is empty). For a node that is not a LACA the lacap pointer indicates

in which direction a LACA can be found: it has the value Descendant if a LACA may be

found through one of the descendants and Ancestor otherwise.
The lacap values within one alias graph have to be consistent. To define this

consistency we introduce two relations between nodes of an alias graph:

1111 A node a is more recently accessed than a node b, different from a, if there has been

no access to an object through a name mapped to b after the last access through a

name mapped to a.
e We say that a is linked to b, if in the alias graph one of two conditions hold

® a is an ancestor of b
® a is not a descendant of b, but they have a common descendant

So in figure 6.18 B 3 is linked to all nodes except L 3 , A 3 , and B 3 itself.

With each node N a lacap is associated that has one of the following values:

Ancestor (for ARRAY, LINK-OUT, and BRANCH nodes)
if a node x linked to N has been more recently accessed than both N and all nodes

that N is linked to.
Descendant (for BRANCH nodes)

if N is linked to a node x that has been more recently accessed than both N and all

nodes that are linked to N.
Laca (for ARRAY and BRANCH nodes)

otherwise
The definition of lacap implies that within one alias graph there may be several LACAs,

but they are never linked to each other.
This state of the laca.ps amounts to an invariant to be maintained by the algorithm.

Two actions may affect this invariant: an access or a change of the alias graph. The

latter is easy to deal with through proper initialization. Alias graphs can only change

through the addition of a BRANCH and its LINK-OUT nodes. When a BRANCH node is

created it has no ancestor and no access through it can yet have been made, so its lacap

is initialized to Descendant; the same holds for the lacap of a LINK-OUT node. When an

ARRAY node is created, it is the only node of an alias graph, so its lacap is initialized to

Laca.
When an access is encountered, the lacap of the accessed node and its surrounding

nodes may have to be updated to maintain the invariant. The algorithm traverses the

graph from the accessed node towards the LACAS it is linked to. The lacaps of the

nodes in the other direction already have the correct value. The lacaps guide the

algorithm to avoid the paths along which no LACA is to be found, visiting only nodes

where the lacap needs to be updated and their direct neighbors. Other nodes can be

avoided because when a node is reached whose lacap already has the correct value, the

invariant implies that all nodes that can only be reached through that node also have

the correct values.
Since the algorithm creates an ACCESS-BRANCH node whenever it visits a BRANCH

node, and the time spent per visit is bounded by a constant, the time complexity of the

LACAP algorithm is proportional to the size of the alias access graph that it creates.

This size is small, if the accesses through conditional aliases show locality in the sense

that, on the average, two subsequent accesses through conditional aliases correspond to

nodes in the alias graph that are close together.

112 6. Demand Graph Construction

Ex.AMPLE
We follow the algorithm for a series of subsequent updates. We restrict ourselves to the
more simple case where the alias graph is a tree. Refer to figure 6.19 for the alias
access graphs that are created and the lacap value8 after each update.

d

(a, b, and dare arrays)
c : = if tl then a else b fi ;
f:= ift2thendelsecfi;
a[i] : = 0 ;
c[j] : = l ;
f[k]: = 2;
b[l] : = 3 ;
c[m] := 4;

L-L-A-A-A-A

a

L-L-L-A-A-A

D-D-D-A-0-D

f

(a)

Figure 6.19. A series of updates in one alias graph.

(a) A subtree of the alias graph shown in figure 6.18. A string on the right of each node
indicates the values of its /acap pointer at different times during analysis. The string encodes,
from left to right, the initial value and the value after the analysis of each of 5 updates: 'A'
stands for Ancestor, 'D' for Descendant, and 'L' for Laca.
(b) The alias access graphs created for 5 subsequent updates: of a, of c, of f, of b, and again
of c.

Update of a
Initially only the ARRAY nodes are LACAs. An access through one of them can be
connected directly to its previous update, since none of its conditional aliases are
accessed yet.

6. 7. Conditional Aliasing 113

Update of c
The algorithm starts in the accessed node B 1, creates the ACCESS-BRANCH node AB 1

and descends the alias graph towards the LACAs A 1 and A 2 reversing the lacaps of L 1

and L 2 on the way. All descendants and aricestors of B 1 now have their /acap

pointing towards it.
Update off

ACCESS-BRANCH node AB 2 is created and the alias graph is descended, this time
starting at B 2 , but the descent can stop at Bi, since its lacap shows that no accesses
through descendants of B 1 occurred after the previous update of c.

Update of b
The alias graph has to be traversed in the opposite direction. ACCESS-BRANCH nodes
are created while climbing the graph.1 The node AB 3 is created when B 1 is reached.
Its left branch is linked to the previous update of b, since when t 1 succeeds b has no
aliases. If t 1 fails c is an alias of b and maybe f too, depending on t 2 . This is
encoded in AB 4 , which is created when the alias graph is climbed one stage further
to B 2 •

Update of c
The lacap values are different from those at the time the analysis reached the previous
update of c, since the ambiguity (represented by AB 5) now involves th~ previous
update through c and b, but not the one through a.

The reader may convince himself that the alias access graphs that are created are
sufficient by choosing a success/fail value for each condition and applying this set of
values to both the original program and to the access graph. This -partitions a set of
conditional aliases into sets of direct aliases, as indicated in the following figure.

t 1 t 2 alias sets

succeeds succeeds {c,a} {f,d} {b}
succeeds fails {c,a,f} {d} {b}
fails succeeds { c,b} { f,d} {a}
fails fails {c,b,f} {d} {a}

Figure G.20. A truth table for the two conditions in the previous figure.

If this procedure is followed, each alias access graph is reduced to a single arc. If the
linking of the ARRAY-ACCESS nodes is correct for all sets of condition values, the alias
access graphs are at least sufficient (if not necessarily minimal).

IMPLEMENTATION
We discuss the implementation of the algorithm, again restricting ourselves to the case
where each alias graph is a tree. We saw in the previous section that an ARRAY-ACCESS
node made a link to the previous update by the expression

connect-to-previous-update(object-origin) of ARRAY-ACCESS

previous-update : = use(object-origin)
(Simplified)

This connection may now involve the creation of an alias access graph, so the accessed
node of the alias graph is requested to provide the connection:

1. Each node in the alias graph has an extra arc to its predecessor to make climbing the graph
(i.e. traversing towards the ancestors) possible. These extra arcs have been mrjtted from the illus­
trations.

114 6. Demand Graph Construction

connect-to-previous-update(object-origin) of ARRAY-ACCESS

previous-update : = object-origin.alias-access-graph

alias-access-graph of ARRAY and BRANCH

return node returned by descend
set lacap to Laca

The descend procedures of the alias graph nodes maintain the lacap invariant and create
the appropriate ACCESS-BRANCH nodes.

descend of ARRAY and BRANCH

case lacap of
Laca:

return node returned by use(self)
Descendant:

return new ACCESS-BRANCH node with each
LINK-OUT node linked to descend of corresponding child

Ancestor:
return node returned by ascend(use(self)) of parent

set lacap to Ancestor

(Simplified)

Note that if the accessed node is a LACA, no ACCESS-BRANCH nodes are created and the
call of alias-access-graph is equivalent to a call of use. If no conditional aliasing is
involved, each ARRAY node is the single node of a (degenerate) alias graph and will
always be a LACA.

When the accessed node is not a LACA, surrounding nodes need to be accessed to
maintain the invariant and ACCESS-BRANCH nodes are created on the way. We
distinguish two cases, the simpler of which is when a LACA can be found via a
descendant. In that case alias-access-graph calls descend, which creates an ACCESS­
BRANCH node and calls on descend of its two LINK-OUT nodes.

descend of LINK-OUT

case lacap of
Descendant:

return node returned by descend of child
Ancestor:

ret~rn node returned by use(parent)
set lacap to Ancestor

(Simplified)

The first update of c in figure 6.19 illustrates this case. B 1 is the accessed node so
alias-access-graph of B 1 calls descend of B 1 which creates the node AB 1 and calls on its
children L 1 and L 2 to provide the appropriate connections. The LINK-OUT nodes
transmit the descend signal to the ARRAY nodes, which return a link to their previous
updates by calling use(selt). The new ACCESS-BRANCH node will be connected to these
two ARRAY-ACCESS nodes and the lacap pointers are updated to reflect that the previous
update through any of this set of aliases was through B 1•

A LINK-OUT node with its lacap set to Ancestor prevents a series of descend calls to
enter a path along which no LACA is to be found. See for instance the last update of c
in figure 6.19, where the lacap of the LINK-OUT nodes have opposite values, due to the
previous updates through c and b. The descend procedure of LINK-OUT takes care of
this situation by returning the previous update of its parent rather than transmit
descend to its child.

We now turn to the more complicated case where a LACA is to be found among the
ancestors of the accessed node. In that case the descend procedure of the accessed node

6. 7. Conditional Aliasing 115

calls procedure ascend of its parent including its previous update as a parameter.
LINK-OUT nodes simply transmit the ascend signal to their parents adding an extra

parameter to indicate the direction from which the ascend reaches the BRANCH node.

ascend(default-access) of LINK-OUT

return node returned by ascend(default-access, self) of parent

set lacap to Descendant

(Simplified)

The update of b in figure 6.19 provides an example. This update should be linked to

the updates of c, off, and of b. First descend of the accessed node A 2 detects that the

graph has to be climbed and calls ascend of its parent L 2• This LINK-OUT node

transmits the ascend signal to its parent Bi, which creates a new ACCESS-BRANCH node

AB 3• The branch that does not correspond to aliasing with the accessed node A 2 (t 1

succeeds) is linked to the default-access. The other branch is linked to the node

delivered by a recursive call of ascend. However, if no LACA is to be found among the

ancestors, i.e. a LACA is reached or a descendant along another branch is a LACA, this

branch is linked to the previous update of the current node.

ascend(default-access, requesting-node) of BRANCH

return new ACCESS-BRANCH node with each
LINK-OUT node linked to either:

if branch corresponds to requesting-node
if lacap = Ancestor

ascend(use(self)) of parent
else

use(self)
else

default-access

ALIAS GRAPHS THAT ARE NOT TREES

(Simplified)

When we drop the restriction that alias graphs should be trees, three complications

arise.
e During an ascend all predecessors have to be accessed rather than just the one parent.

o Conditional aliasing may be due to two nodes having a common descendant in the

alias graph. A descend of the graph that reaches a node with lacap set to Ancestor

therefore has to be followed with an ascend along the other incoming paths. The
descendants of the particular node do not have to be visited, since their contribution

to the alias access graph has already been created during a descend for a former alias

access graph and can be shared. To retrieve the proper ACCESS-BRANCH node all
nodes created during a descend are stored in the deflist. Since these do not represent
real definitions they are especially marked so as to be discarded when the cocoon is
dissolved.

e During the construction of one alias access graph the same node may be reached
along two different paths causing the creation of erroneous nodes. A marker

uniquely identifying each request is therefore transmitted through all calls and
remembered in each node.

The final versions of the procedures can be found in appendix II.
This mechanism is illustrated in figure 6.21. The update of f initiates a descend

along B 2 and B 1 just as described before. The node AB 1 created by B 1 is stored in the

deflist as the last update of c. For the update of g a descend is started in B 3 resulting

in the creation of node AB6• The descend on the right branch along L 6 and A 4 is as

described above and results in a link to the last update of e. Along the other path the

116 6. Demand Graph Construction

traversal changes direction in B 1 and calls on ascend of L 4• This node transmits the
signal to B2, which creates AB1•

l-A·A

l-l-A

f g

Figure 6.21. Aliasing due to a common descendant.

(a) The alias graph of figure 6.18. It contains the tree of figure 6.19(a) with the same initial
lacap values. g and fare conditional aliases, because they are both ancestor of B1.
(b) The alias access graph for an update of ffollowed by an update of g. The latter has to be
linked to the former in case t3 succeeds and t2 fails.

CROSSING COCOON BOUNDARIES

The lacap administration is local to a chainer: the different branches of a conditional
can be analyzed in an arbitrary order and thus the /acap values should be the same at
the start of each branch. Therefore, /acap values are stored in the current chainer.
When the value of a lacap is requested but not available in the current chainer it is
imported from the environment.

6. 7. Conditional Aliasing 117

This leads to two problems when a cocoon is dissolved:
e The access history as expressed in the local /acap administration of the different

branches has to be exported to the surrounding chainer. This is accomplished by

simulating an access in the surrounding expression to each node that is a LACA in any
branch.

e When a BRANCH node for an array object is created, a new alias graph is in effect
created combining two smaller alias graphs. In some cases (nested conditionals or
the creation of an array within a conditional) the /acap states of the constituent alias
graphs have to be made consistent with each other by simulating accesses within the
separate branches.

The details of the algorithm dealing with these special cases will not be presented.

CASE ExPRESSIONS, LOOPS, AND PROCEDURES
Case expressions lead to BRANCH nodes with more than two outgoing arcs. The
algorithm as presented above is already formulated independent of the number of
descendants of BRANCH nodes and is therefore capable of handling general conditional
expressions.

The inclusion of conditional aliasing due to loop expressions is nearly as simple,
since the demand graph created for a loop is similar to that created for an if expression,
with ENTRY-LOOP nodes serving the role of BRANCH nodes. To extend the algorithm

described above to include loops, all references to "BRANCH nodes" are simply replaced
by references to "BRANCH and ENTRY-LOOP nodes."

The algorithm is extended to include arrays that cross procediire boundaries by
treating PARAMETER and CALL-OUT nodes as if they were ARRAY nodes. Interprocedural
aliasing, however, cannot be handled.

REFERENCES
Klin80. KLINT, P. (1980). An Overview of the SUMMER Programming Language,

Seventh Annual Symposium on Principles of Programming Languages, 47-55, ACM.
Klin82. KLINT, P. (1982). From SPRING to SUMMER, Mathematical Centre,

Amsterdam.
Tarj72. TARJAN, R.E. (1972). Depth-First Search and Linear Graph Algorithms, SIAM

Journal on Computing, 1.2, 146-160.
Veen80. VEEN, A. (1980). Using Conventional Languages to Exploit Data Flow

Machines, Dissertation proposal, Internal memo.

118

Chapter 7

Demand Propagation

Once a demand graph has been constructed initial information can be deposited in the
nodes and the information propagation can start. The design of the demand
propagation part of an application is concerned with the following issues:
Assertion Space

A choice must be made as to what information is collected and how it is represented.
Assertion Lattice

A partial order and minimum element has to be defined to structure the assertion
space into a semilattice.

Initial Assertions
Some nodes should be initialized with an assertion larger than the minimum one.

Propagation Rules
The set of propagation rules determines the direction of information flow: forward,
backward, or mixed.

Propagation Control
A scheduler must be designed that determines the order in which nodes are
processed. The processing order should be efficient and fair, i.e. each node whose
neighboring assertions have changed will eventually be processed.

Termination is guaranteed under the following conditions:
® The assertion lattice is bounded, i.e. each of its chains is finite.
® Each propagation rule is order-preserving, i.e. it never replaces an assertion with a

smaller one.
® A node that has been processed is only rescheduled for processing, if any of its

neighboring assertions changes.
It is awkward to describe the application specific part without being able to refer to a
specific application. The Value Approximation application, briefly discussed in chapter
4, is used as the principle example in this chapter. It is presented in the first section
making two assumptions that greatly simplify the application: the demand graph is
acyclic and forward propagation of information is sufficient. In the next sections these
restrictions are removed. The second section considers complications due to cycles. In

7. 1. Forward Propagation through an Acyclic Graph 119

the third section backward information flow is introduced with a simple application
that has no forward component at all. The concluding section returns to the Value
Approximation application and treats the interaction between forward and backward
information flow.

7 .1. forward Propagation through an Acyclic Graph
The Value Approximation application includes traditionally separate applications such
as constant folding, constant propagation, and static type analysis. During constant
folding and propagation some of the computation is performed statically that would
normally be done at run-time.

In a language like SUMMER in which the types of variables do not have to be declared
and may even vary, type checking is usually postponed until run-time. Doing part of
this at compile-time (static type analysis) has two advantages. Type conflicts, i.e. using
an operator on a value for which it is not defined, is the most common run-time error.
Static type analysis therefore makes programs more robust. Also, more efficient code
can be generated, since some of the run-time type checking overhead can be avoided.
The static messages about type conflicts are especially useful for programs with many
user defined types. Unfortunately, the demand graph construction algorithm as
currently implemented cannot handle user defined types. Most of the mechanisms for
demand propagation described in this section would, however, remain the same if user
defined types were included. An earlier version of this application has been
implemented by van Dijk&Veldkamp [Dijk83].

ASSERTION SPACE

We already mentioned in chapter 4 that, in general, the range of values of each
particular variable occurrence cannot be determined precisely, but has to be
approximated. The choice of assertion space determines to a large extent the accuracy
of the approximation. The choice made in this application is that each assertion
describes the range of values of a data item by one of the value-domains of figure 7.1.
Note that this set of assertions does not allow the recording of the disjunction of two
constants: if it has been determined that a particular arc will either carry an integer 7
or an integer 9, this has to be summarized by the value-domain Positive Integer. This
entails loss of information, but such loss is essential to refrain from a complete
(symbolic) execution-Of programs in general.

constants
all values from the set of integers

all values from the set of reals
all values from the set of strings

Undefined True False
approximations

Positive Integer Integer
Positive Real Real
String Defined

Numeric
Boolean

Figure 7.1. Value-domains for the Value Approximation application.

The number of value-domains is infinite, since it includes the sets cl integers. reals, and
strings.

In addition to the value-domain, each assertion contains two more components. One
boolean component (is-an-array) records whether the arc will carry an array value; if so
the value-domain encodes information about the elements of the array. This

120

component is sufficient, since only one-dimensional arrays (first-order pointers) are
allowed. A second component (message) provides space for a possible type conflict
message.

In a forward application the assertions belonging to all incoming arcs of a node are
identical. Therefore, assertions are associated with the node rather than with its
incoming arcs.

ASSERTION LATTICE

The ordering of assertions is implied by the ordering of their components. Only the
ordering of the value-domain component is non-trivial. This ordering is depicted by
the tree in figure 7.2. Constants represent the most precise information and
consequently the greatest (or strongest) assertions; the other value-domains are smaller
(or weaker) approximations. A bottom element Unknown is added to make a meet
semilattice. The meet operation, taking the greatest lower bound of two value-domains,
is needed whenever a path in the demand graph diverges as in BRANCH and PARAMETER
nodes.

greater

all
positive all

all
all

all

Figure 7.2. The semilattice of value-domains of the Value Approximation application.
Each box represents a possible value-domain. A phrase like "all positive reals" represents an
unordered and infinite set of boxes. The semilattice is therefore infinite. but it is bounded
since each of its chains is finite. The bottom of the lattice (Unknown) corresponds to the
smallest assertion: it is consistent with all possible values. The meet of two value-domains is
the greatest of their common ancestors in the tree.

7. 1. Forward Propagation through an Acyclic Graph 121

INITIAL ASSERTIONS
CONSTANT nodes could simply be initialized with the most precise assertions and all
other nodes with the bottom assertion. This would, however, complicate the reporting
of type conflicts. Ideally each error should result· in exactly one message. One way to
prevent multiple messages originating from one error, is to selectively disable type
checking in nodes that are dependent on a node that has detected a conflict. This
could be implemented by adding a top element Error. This disabling may, however,
prevent the detection of other errors. More errors can be detected, if a node that
detects a type conflict leaves its assertion at its current value. This requires strong
initial assertions as listed in figure 7.3.

node initial node initial
value-domain value-domain

CONSTANT the particular constant GET String
CASE-CONSTANT the particular constant OVER Integer
RELATIONAL-DYOP Boolean STRING String
ARITHMETIC-DYOP Numeric REAL Real
NEGATE Numeric INTEGER Integer
CONCATENATE String TYPE String
CASE-SELECTOR Integer ALWAYS True

NEVER False

Figure 7.3. Value-domains of initial assertions.

Nodes not listed here receive the bottom assertion.

PROPAGATION RULES
If static type analysis is implemented as a forward application, it is simply a less precise
form of constant propagation. Forward propagation of type information in an acyclic
graph may provide exact type information except where the type of a value is
dependent on conditional control flow. This occurs rather infrequently. In many
languages an input expression may deliver an arbitrary type, but in SUMMER this is not
a problem, since input is always a string.

Forward propagation rules are encoded in procedures forward, which are called by
the propagation control subsection. Figure 7.4 gives a few representative examples.

122

ARITHMETIC-DYOP
new-assertion : =

if both operands are constants
folded constant

else
meet of assertions of two operands

if current-assertion < = new-assertion
lurrent-assertion : = new-assertion

else
set message "possible type conflict detected"

BRANCH
if control is constant

current-assertion : = assertion of particular branch
else

7. Demand Propagation

current-assertion : = meet of assertions of all value branches

PARAMETER
current-assertion : = meet of assertions of all inputs

ARRAY
current-assertion : = meet of assertions of initial-values

with is-an-array set to Yes

ARRAY-ACCESS
if this a retrieve

current-assertion : = assertion of previous-update
with is-an-array set to No

else
current-assertion : = meet of assertions of previous-update and source

Figure 7.4. Some forward propagation rules.

The test on a constant control operand in BRANCH nodes seems a bit excessive, but in
combination with special propagation control for this node (see below) and with
constant folding in DYOP it has the effect of providing conditional compilation without
extending the language: in the expression

if compiler-switch = I then A f:i

expression A is compiled conditionally. Van Dijk&Veldkamp have experimented with
other features that make the language more convenient to use without changing its
syntax or semantics. Subgraphs corresponding to expressions of the form

assert type(a) = 'integer'

are recognized and the information that a is of type integer is propagated to subsequent
nodes. In this way the programmer could reap the benefits of strong typing in selected
parts of his program.

7.2. Propagation in a Cyclic Graph 123

PROPAGATION CONTROL

The demand graph is defined as all nodes reachable from the source-of-demands.

Determining the demand graph requires a propagation of demands from the source-of­

demands backwards. A node can receive forward flowing information only after it has

been determined to be part of the demand graph.
Forward propagation in an acyclic graph can be implemented by a recursive descent

traversal of a spanning tree of the demand graph. The initial demand is sent to the

source-of-demands. The first time a node receives a demand, it addresses each operand

in turn by sending it a demand and waiting for its reply. Replies contain the forward

flowing information. After all replies have been received they are incorporated into the

current assertion by procedure forward, and the node replies by sending its assertion to

the node that issued the demand. The sink-of-demands has no operand so it can reply

immediately thus initiating forward information propagation. If a node receives a

second demand, it also replies immediately. The only exceptions are BRANCH nodes

with a constant control operand; such a node propagates a demand only to the branch

indicated by the control value.

7.2. Propagation in a Cyclic Graph
In a cyclic demand graph, some nodes receive a second demand before completing the

processing of the previous demand. When the propagation control mechanism

described in the previous section is used, a node that receives such a so called cycling

demand simply replies with its current assertion. This guarantees termination, but the

final assertions that it will produce in cycles are insufficient in strength. Figure 7.5

illustrates this point. The EXIT-LOOP node is the first node to receive a cycling demand.

If it would simply reply with its current assertion (value-domain = Unknown) the

application would not deduce that variable a is Integer and the PLUS node would report
a possible type conflict.

a:= 0;
while ...
do

a:= a+ I
od. ,
put(a)

Figure 7.5. A cycle in the demand graph complicating type determination.

The type of variable a does not change in the loop. When demand propagation is started at

the PUT node, the EXIT-LOOP node receives the first cycling demand. If it would reply with its

current assertion the type of a would not be determined. Instead the EXIT-LOOP node

propagates the cycling demand to the ENTRY-LOOP node, which replies with the hypothesis

that the type of a remains Integer inside the loop. This hypothesis is propagated forward until

it reaches the same ENTRY-LOOP node, where it is verified.

124 7. Demand Propagation

The application should make an effort to reach stronger assertions. The best
approximation within the assertion lattice is not computable in general. Most practical
cases are, however, quite simple: on most cycles the value of a variable changes, but its
type is left intact. An application that produces the correct type information except
for·those variables that change type on a cycle, would therefore be sufficiently precise.

Whether the type of a variable is left intact on a cycle can be verified by induction
on the number of iterations. For example, before the first iteration of the loop
expression in figure 7.5 the type of variable a is Integer. If the type of a is Integer after
n iterations, it will still be Integer after n + I iterations. The process used during
demand propagation has a similar structure. A particular node on the cycle generates
the proper hypothesis assertion. This assertion is propagated forward until it reaches
the same node, which checks whether the propagated assertion corresponds to the
hypothesis. The forward propagation of the hypothesis once around the cycle
corresponds to the induction step. It is important to choose the proper hypothesis: a
cycle usually leaves only those types intact that are acceptable to the operators on the
cycle. The proper assertion can be derived from information outside the cycle, as we
will show below.

To implement this strategy the propagation control must support the special
handling of cycling demands without compromizing termination. Most nodec; react to a
cycling demand as they do to their first demand: they propagate demands to their
successors. The remaining nodes are cycle breakers; these are nodes that have outgoing
arcs corresponding to alternative control flow: BRANCH, ENTRY-LOOP, and PARAMETER

nodes. In programs without infinite recursion each cycle contains-at least one cycle
breaker.

ENTRY-LOOP nodes are cycle breakers for loops. When a cycling demand arrives at
an ENTRY-LOOP node, it derives a hypothesis assertion from the assertion returned by
the outgoing arc entry (i.e. the previous definition before the loop). A strong value­
domain that is not expected to be preserved on the cycle (like Small Integer or a
constant) is replaced by a weaker one. The hypothesis assertion is then replied to the
demanding node. Eventually, the ENTRY-LOOP node receives a reply from its outgoing
arc last. If the value-domain in this reply is still of the same type as the hypothesis, the
cycle does not affect the type and the hypothesis is verified. If, however, the types
differ, the current value-domain is .set to Unknown. To ensure that the propagation
rules preserve order, an extra component is added to each assertion to mark whether it
is tentative because it is based on a hypothesis.

The scheme described so far provides the required type information for all cycles due
to single loops free of conditional expressions. It works also for cycles that cover more
than one iteration: the induction is not on the number of iterations but on the number
of traversals through a cycle. It even works for some cycles that affect types. The
expression in figure 7.6 illustrates both these properties.

7.2. Propagation in a Cyclic Graph

Figure 7.6. A cycle covering several iterations.

a : = 5 ; b : = 'I' ;
while ...
dot:= a;

a : = integer(b) ;
b : = string(t)

oil.

put(a)

In this, somewhat contrived, expression the value of variable a inside the loop is dependent

on its value two iterations earlier. The cycle therefore covers two ENTRY-LOOP/EXIT-LOOP

pairs. A demand that enters at the rightmost EXIT-LOOP node propagates backward through

the entire cycle and eventually reaches the rightmost ENTRY-LOOP node for the second time.

This node returns the hypothesis assertion Integer, which is propagated forward through the

cycle. The hypothesis has been transformed into String when it reaches the leftmost ENTRY­

LOOP node and back into Integer when it reaches the rightmost ENTRY-LOOP node. The latter

assertion confirms the hypothesis. -

125

So far the first cycle breaker that is encountered (the ENTRY-LOOP node) is also a cycle
entry, i.e. a node that has an outgoing arc to an initializing node outside the cycle. It is
also clear which of the outgoing arcs leads to the initializing node so a demand can first
be propagated along this arc and a reply received on which to base a hypothesis before
a demand is propagated along the arc that is on the cycle.

Unfortunately, this scheme fails in case of cycles due to procedure calls. PARAMETER

and BRANCH nodes, the cycle breakers for such cycles, cannot make any a priori
assumption as to which of their outgoing arcs lead to initializing nodes and which may
be on cycles. In fact, even for ENTRY-LOOP nodes the assumption that the entry arc is
not on a cycle may be incorrect in case of nested loops.

A heuristic mechanism is implemented to identify cycle entries and their outgoing
arcs that are not on a cycle. It enables a cycle breaker to delay the processing of a
cycling demand, and consequently the construction of a hypothesis, until it has received
information from outside the cycle. To achieve this, the issuing of demands and the
processing of replies are separated, so that a node may propagate demands along all its
outgoing arcs and then process replies in the order in which they are received.
Demands and replies are handled by a central scheduler, which delays cycling demands
to a cycle breaker until there are no more normal demands or replies left to be
processed. The recursive program in figure 7.7 illustrates this mechanism.

126 7. Demand Propagation

call fac

put(fac(10))

Figure 7.7. Propagation control in recursive cycles.

proc fac(n)
return (if n = 1 then l

else n * fac(n-1)
fi)

Two cycles are involved. One consists of the nodes marked with""" and has the PARAMETER
node as cycle breaker. The latter node delays the handling of a cycling demand until no
normal demands or replies are pending. It will then have received information from the
CONSTANT node 10 on which to base its hypothesis. The same holds for the cycle marked
with "o" of which the BRANCH node is the cycle breaker.

Since cycles may contain more than one cycle breaker, not each of which is also a cycle entry, the scheduler only issues a delayed demand to a cycle breaker, if the arrival of forward information has confirmed that it is a cycle entry. If there is no such node among the cycle breakers for which demands have been delayed, no cycle entry has apparently been reached. In that case all delayed demands are propagated, in order to reach the next cycle breaker on the cycle. For programs without infinite recursion this process terminates, since in such programs each cycle has a cycle entry.

7.3. Backward Flowing Information 127

7.3. Backward flowing Information
Before discussing the interaction between backward and forward information flow, we

present a simple application, called Static Allocation, that needs only backward
information flow. The purpose of this application is to attach to each arc either the

assertion "The data item represented by this arc is accessible from outside the current
procedure" or its negation. Since objects that are not accessible from outside the
procedure can be allocated on the stack, the availability of such assertions can sharply

reduce the allocation of objects on the heap and consequently garbage collection
overhead.

An application like this consists mainly of use-definition analysis. Since this has
already been performed during demand graph construction, the demand propagation
phase is very simple. An object is accessible from outside the procedure, if the node
that creates the object can be reached from a procedure interface along a path with
only nodes that transmit objects (such as BRANCH nodes). Nodes that create a new
object and PUT nodes use but do not transmit objects. The application therefore
amounts to marking all nodes in the demand graph that can be reached from a
procedure interface along a path without a PUT node or a node that creates an object.

Figure 7.8 summarizes the Static Allocation application. The assertion associated
with each arc is stored in the node that is the tail of the arc; each node contains a

number of outgoing assertions. An assertion consists of two boolean components:
Untouched/Touched and Local/Global. The bottom assertion is (Untouched, Local). The
propagation starts as usual by sending a demand to the source-of-demands. Each node

processes a demand by calling procedure backward, which incorporates the backward
flowing information accompanying the demand into its assertions. Demands are then
propagated along all arcs of which the information has increased. Marking each

assertion that is processed as Touched ensures that each node of the demand graph will
be reached. Most nodes simply transmit incoming information along their outgoing
arcs. Nodes that create an object, PUT nodes, and nodes at a procedure interface
behave differently.

most nodes
for each assertion

set Touched
if new information has Global set

set Global

RESULT and PARAMETER
set assertion(s) to (Touched, Global)

DYOP, NEGATE, STRING, INTEGER,
REAL, CONSTANT, TYPE, GET, and PUT

set assertion(s) to (Touched, Local)

ARRAY-ACCESS
set index assertion to (Touched, Local)

Figure 7.11. The backward procedures of the Static Allocation application.

The initial assertion for all nodes is tl1e bottom assertion (Untouched.Local). Procedure

interface nodes produce Global signals. Object creating nodes and PUT nodes set their

outgoing assertion to Local. All other nodes propagate incoming Global signals· to their

descendants.

128 7. Demand Propagation

1.4. Bl-Dlrectlonal Information Flow
The Value Approximation application can also benefit from backward flowing
information: operators that accept only one or a few types can be used to derive
information about an operand at those points where forward flowing information is
insufficient. This is especially useful if the program contains many user defined types
and operations on these types. Since the demand graph construction algorithm as
currently implemented precludes user defined types we have to restrict ourselves to the
standard operators. Figure 7.9 lists these requirements; they correspond directly to the
initial backward assertions.

node outgoing assertion
arc(s) value-domain is-an-array

NEGATE operand Numeric
NOT operand Boolean
ARITHMETIC-DYOP both Numeric
OVER both Integer
CONCATENATE both String
BRANCH control Boolean
MERGE control Boolean
EXIT-LOOP control Boolean
ENTRY-LOOP control Boolean
ARRAY-ACCESS index Integer

previous-update Yes

Figure 7.9. Backward flowing initial assertions.

Each backward assertion is associated with an operand arc. It specifies the type restrictions
that the node places on its operands. All nodes or arcs not listed here receive the bottom
assertion.

Backward flowing information is kept separate from forward flowing information: each
node has an operand assertion for each of its outgoing arcs and one value assertion for
all its incoming arcs combined. Each operand assertion contains an
Untouched/Touched component to ensure that each node propagates demands at least
once.

The interaction between the two directions of information flow may be complicated,
since forward flow may induce backward flow and vice versa. The demand graph in
figure 7.10 illustrates this. Let us assume that a demand arriving at the EQUAL node
gets propagated to the CALL-OUT nodes, which, due to complicated conditions within
procedure f, cannot determine the type of their results. A subsequent demand to the
CONCATENATE node will propagate the assertion String backward to the CALL-OUT node,
which is propagated forward to the EQUAL node. Since relational operators in SUMMER

require their operands to be of the same type, it can be deduced that b should also be a
String. This information can be propagated backward to the other CALL-OUT node
where it produces a type conflict message.

7.4. Bi-Directional Information Flow

a:=f(...);
b:=f(...);
x : = 'abc' II a ;
if a= b then ...
y:=b+I

Figure 7.10. Interaction between backward and forward information flow.

Information flowing backward from the CONCATENATE node (marked with Ill adds information

at the CALL-OUT node. This gets propagated forward to the EOUAL node. Since both operands

of a RELATIONAL-DYOP should be of the same type, information about b can be deduced.

This is propagated backward to the second CALL-OUT node.

129

To implement the reversal from backward to forward flow (as in the CALL-OUT nodes in
figure 7.10) each node maintains a list of predecessors from which it has already
received a demand. Information is propagated to these predecessors when the value
assertion increases. After replies have been received for all the demands that were
propagated from one demand, they are incorporated into the current assertions by
procedure forward. The value assertion is replied to the demanding node and, if the
value assertion has increased, also to all other predecessors. If forward propagating
information increases another operand assertion (as may happen in the EQUAL node in
figure 7.10), a backward propagation along that arc is initiated.

References
Dijk83. DUK, F. VAN AND A. VELDKAMP (May 1983). Data Flow Analysis in

SUMMER, internal report, Centre for Mathematics and Computer Science,
Amsterdam.

130

Chapter 8

Generating Dataflow Code

The major application of the demand graph method, and the one for which it was
originally developed, is the generation of code for a dataflow machine. As already
discussed in the introduction, the purpose of the translation is to test the hypothesis
that an imperative language is a suitable programming language for a dataflow
machine. The application described in this chapter translates SUMMER programs into
graphs to be executed on the Manchester Dataflow Machine.

The dataflow graph to be generated is structurally similar to the demand graph: most
of the demand graph nodes can be mapped onto one instruction in the dataflow graph1

or to a small subgraph with the same number of input and output arcs. Most of the
factors that make translating an imperative program into a dataflow graph problematic
(jumps, aliasing, multiple assignment, global variables, see section 3.2) concern data­
dependency analysis, and have already been dealt with during demand graph
construction. A simple transformation from demand graph to dataflow graph is
sufficient to obtain a correct translation. Moreover, the major part of this
transformation, the mapping to the appropriate operation code and the generation of
small subgraphs, can be relegated to the existing assembler by specifying an appropriate
set of macros.

A suitable compiler, however, should produce code that is not only correct but also
of high quality, at least comparable to that of code generated by compilers for other
high level languages. High quality code is not only efficient, i.e. contains few overhead
instructions, but also highly parallel.

I. To reduce the confusion between the two graphs we will use instruction rather t.han node when
referring to the dataftow graph.

8.1. The Target Language 131

These quality requirements complicate the translation in several ways.
® SUMMER is dynamically typed, whereas the target language is strongly typed.

Generating code that would perform dynamic type checking and conversion for every
operator would produce an unacceptable overhead. Consequently, a static type
analyzer, as described in the previous chapter, is necessary.

e The handling of arrays determines to a large extent the efficiency of the generated
program. Since copying large arrays through interfaces is very costly. arrays are
stored and pointers are circulated through the graph. Moreover, selective updates are
made in situ: the array is not copied but the element is replaced in store. Care has
been taken to reduce the serialization of accesses that this brings about. As an added
benefit garbage detection is easily implemented.

411 Parallelism can often be improved by an order of magnitude by implementing
operations within loops in a parallel rather than a serial form. These loop
optimizations require pattern recognition in the demand graph.

e Other subgraphs that need to be recognized are those that consist of several nodes
but can be implemented by a single dataflow instruction.

e An efficient compiler should generate instructions with literals (a constant operand
embedded in the operator). Fully exploiting this possibility sometimes requires
constant propagation and bi-directional information exchange in the demand graph.

e The macro mechanism of the assembler is quite limited: it has no conditional
construct and its parameter mechanism is restricted. Consequently, a subgraph of
basic dataflow instructions often has to be produced directly by the code generator.

The first section of this chapter describes the target language. The next four sections
treat language features roughly in the same order as followed in chapter 6. Section 8.6
treats loop optimizations.

8.1. The Target language
The code generator produces assembly programs to be translated by the macro
assembler provided by the Dataflow Research Group in Manchester. In this chapter we
do not refer to this language directly, but use a graphical representation as illustrated in
figure 8.1. An instruction is either basic or an application of a predefined macro. The
functional behavior of an instruction is specified by the operation code, which
determines the mapping from input to output values. The operation code determines
also the number of input and output ports. Each output port may have an arbitrary
number of output arcs. 1 An input port may be replaced by a constant input, called a
literal, indicated as in figure 8.l(b). An output port without output arcs is illustrated as
in figure 8. l(c).

l. In the machine language an instruction can have at most two output arcs, but this restriction is
resolved by the assembler, which inserts extra DUP instructions. ·

132

(a) (b) (c) (d)

(0 (g) (h)

Figure 8.1. Notations used tor instructions in figures.

(a) Instruction with two input ports, one output port, and two output arcs.
(b) Instruction with two distinct output ports and a literal as input.

(e)

(i)

(c) Instruction with one unconnected output port. No token is produced on such an output
port.
(d) A use of the SYNCHRONIZE instruction where one input is used to trigger the release of the
other input. In this special case the unconnected output port is not drawn.
(e) Branching instruction; an instruction (possibly a macro instruction) whose -output is sent
either left or right. If the instruction has a control input it may be drawn on either side.
(f) An instruction that accepts any type on its first input and a specific type on its second
input. The specific input arc may be either drawn left or right.
(g) Instruction with dynamic output arc.
(h) On the left an instruction with a literal of type destination. The dashed line indicates that
the literal refers to the input port of the instruction on the right.
(i) An instruction producing tokens with the special matching function Preserve-Defer.

Each data item carries one of the type identifications listed in figure 8.2. The target
language is strongly typed: many instructions are very particular about the type of their
input tokens.

A
c
R
I
w

Activation Name
Character
Real
Integer
Context

B
D
G
0
x

Boolean
Destination
Stream number
Ordinal
Error

Figure 8.2. Some of the data types used in the Manchester Dataflow Machine.

A destination is a reference to an input port. A context is a combination of destination and
(part of a) tag. A stream number identifies an input or output stream. An ordinal is an
integer that is used as the value of an iteration level or index. A token of type error is created
in all cases where the inputs fall outside the normal range.

8.1. The Target Language 133

A basic instruction has a three character operation code and its number of both input
ports and output ports is limited to two. We divide the basic instructions into three
groups: operators, flow controllers, and tag manipulators. The, sometimes highly specific,
behavior for error tokens has been ignored in the following description.

The instruction set contains a great number of operators. Figure 8.3 lists all
operators referred to in this chapter. The only two operators in this list that are not
obvious are OST and RSR, which are used to convert between Integer and Ordinal. The
RCK instruction is an example of a "micro-coded macro": an instruction that 1s

included for efficiency reasons to replace a simple subgraph of basic instructions.

Operators

Op- range--> full name description

code domain

ADI I X I-> I ADD-INTEGERS i + j
ADR RXR->R ADD-REALS x + y
AND BXB->B AND-BOOLEANS a and b
CEI I X I---> B COMPARE-EQUAL-INTEGERS i=J
CU IXl->B COMPARE-LESS-OR-EQUAL i<=j
DRM !Xl->I x I DIVIDE-REMAIN DER [i I j, i mod j]
FLR R ->I FLOOR convert real to integer

FLT I-> R FLOAT convert integer to real

MU IX!-.! MULTIPLY-INTEGERS i x j
MLR RXR->R MULTIPLY-REALS x x y
NOT B-> B NOT-BOOLEAN not a
ORB BXB->B OR-BOOLEANS a orb
OST IXl-->0 OFFSET integer subtraction and

conversion to ordinal

RCK IXl->I RANGE-CHECK error if left input is negative
or greater than right input

RSR OX!->! RESTORE-ORDINAL ordinal/integer addition and
conversion to integer

SB! IX!-.! SUBTRACT-INTEGERS i - j

Figure 8.3. Some of the operator instructions provided by the Manchester Dataflow Machine.

The letters in range and domain indicate types as listed in figure 8.2. Note the two distinct

output ports of the DRM instruction.

134 8. Generating Dataflow Code

Figure 8.4 lists all flow control instructions referred to in this chapter. Most of these
are not type specific. The BRW and BRR instructions are the basic branch instructions
used in conditionals and loops; they differ only in the handling of error tokens. The
sns and scn instructions are the main instructions with dynamic output arcs, used for
procedure interfaces and storage of data structures. The BRT, SEP, SPL, TEX, and YZX
instructions are useful for the handling of streams. The USE instruction is specially
designed for efficient garbage collection.

Flow Controllers
Op- range-? full name description
code domain
BRT vxv v1v BRANCH-ON· TYPE send left if inputs are of equal type else right
BRW VXB-.Vl\i BRANCH-WHILE send left input to left or right
BRR \J'XB..,,\fl\i BRANCH-REPEAT send left input to left or right
DUP \i-> v DUPLICATE

IPT DXG..,,R INPUT collect input from host stream and
send to designated destination

OPT vxo v OUTPUT send left input to designated
output host stream

SCD '<Ix w \i SET-CONTEXT· copy left input to destination with
DESTINATION tag as specified by right input

SDS vxo v SEND-TO-DESTINATION copy left input to designated destination
SEP v..,,\J'IV SEP ARA TE-STREAM decrement index of input and

send left if index= I else right
SPL v-.v1v SPLIT-STREAM-AND- divide index by 2 and send left or

HALVE-INDEX right depending on odd or even index
SYN vxv vxv SYNCHRONIZE left input is copied to left and

right input to right output
TEX VXV-.VI- TEST-END-OF-STREAM- if end-of-stream no output else

-AND-INCREMENT-INDEX copy input with index incremented
USE OXA->AI- USE-COUNT yield activation name if left input = I
YZX v....,. o I- YIELO..INDEX-OF-EOS yield index if input is end-of-stream

and clear index field

figure 8.4. Some of the instructions for flow control provided by the Manchester Dataflow
Machine.

A "\>'" indicates any type. A "-" means no output. Branching instructions can be recognized
by a "I" in the domain: output is sent to only one of the two output ports.

The function of most of the tag manipulators listed in figure 8.5 is obvious. The GAN
instruction produces a unique activation name. No arithmetic is permitted on
activation names. The use of the PRO and ENM instructions can give substantial
efficiency improvement, since they can produce a whole series of tokens at once. The
behavior of the PRP instruction is complicated; it is used for access to stored data
structures.

8.1. The Target Language

Tag Manipulators

Op- range,. full name description
code domain

ADL \'Xl->V ADD-TO-ITERATION-LEVEL add integer to iteration level

ADX VXl-.V ADD-TO-INDEX add integer to index

ENM vxo-.v ENUMERATE produce series of copies of left

input with increasing iteration level

GAN \f-> A GENERATE-ACTIVATION-NAME reserve new tag area

PRO VXO->V PROLIFERATE produce series of copies of left

input with increasing index

PRP AXD->W PREPARE-ACCESS combine destination with tag into

context and set activation name

SAN \'XA--.V SET-ACTIVATION-NAME

SIL \'XO->\' SET-ITERATION-LEVEL

SIX vxo v SET-INDEX

STL \f -> \f transfer iteration level to index

STX \f -> \f transfer index to iteration level

SWA A->A SWAP-ACTIVATION-NAME swap activation name in value

with that in tag

YAN \f--> A YIELD-ACTIVATION-NAME

YIL \f-> 0 YIELD-ITERATION-LEVEL

Figure 8.5. Some of the instructions for manipulation of tags provided by the Manchester

Dataflow Machine.

135

Frequently occurring subgraphs can be specified by means of macros. Each occurrence

of the subgraph can then be replaced by a macro instruction. A macro application

looks similar to a basic instruction, except that a macro can have an arbitrary number

of input and output ports. We use macro names with more than three characters to

distinguish them from basic instructions. Figure 8.6 shows an example.

Figure 8.6. An example of a macro.

LOOP
in control -,

'

'
' 01
I

'
' L---------------~ next out

On the left an application and on the right the specification of a macro, called LOOP, to be

used for simple loop interfacing (see also figure 2.10). The macro sends the token entering

at arc in to the output arc next with its iteration level incremented as long as control indicates

that the iteration should continue. Otherwise the token is sent to out with its iteration level

cleared.

The translation from assembler to machine language is straightforward: after macro

expansion each instruction is translated into one machine instruction, symbolic names

are replaced by absolute addresses, and DUPLICATE instructions are inserted whenever
needed to satisfy the packet constraint.

136 8. Generating Dataflow Code

8.2. General Mechanisms
Except for loop optimizations, demand propagation uses only mechanisms described in
the previous chapter. In this section we briefly review these basic mechanisms. Since
the product of the translation is more interesting than its implementation, this chapter
is less concerned with algorithms than the previous two chapters.

In the following description we occasionally refer to cocooned expressions. These are
subgraphs that are completely surrounded by interface nodes all created by the same
cocoon during demand graph construction.

ASSERTIONS
Each assertion has several components. The components for type analysis are as
described in the previous chapter. Other components are for literal support, in situ
update support, and loop optimizations. These are described in the appropriate
sections.

PROPAGATION RULES
The application involves both backward and forward information propagation, but
there is almost no interaction between the two. Type analysis is restricted to forward
propagation. In situ update support uses backward flowing information. Only for
literal support in dyadic operators forward flowing information may need to be directed
backward again, as we shall see below.

Just as described in section 7.4, each node contains a value assertion for all incoming
arcs combined and an operand assertion for each outgoing arc. The mechanism can be
simpler than the one presented in section 7.4, since it does not need to support the
interaction between backward and forward flow. Only the dyadic operators need to
support a renewed backward propagation along one of the operand arcs, if warranted
by information received from the operands. The type specific actions during demand
propagation that we will encounter in the rest of this chapter are implemented by type
specific versions of the procedures backward and forward. Since the algorithms are
usually straightforward we do not treat these in detail.

PROPAGATION CONTROL
To accommodate type analysis in cycles a central scheduler handles demands and
replies. The mechanism described in section 7.2 is used to delay cycling demands to
cycle breakers.

EX'rRACTION
During extraction nodes can be visited in any order, since the dataflow program is not
order sensitive. For each node one or more lines of code may be generated, each of
which describes one instruction in the datafiow graph. Only nodes that have received
a demand generate code. At the end of the extraction phase code is generated that,
when execution starts, will enter a single trigger token into the program. This token
will be directed to the instruction generated by the sink-of-demands, which is the root
of the datafiow program. Descendants of this instruction form the trigger subgraph,
which will distribute trigger tokens to all instructions that need to be triggered: PROC­
CALL, WHILE-LOOP, ARRAY, and CONSTANT instructions. A constant that is encoded as a
literal needs no triggering. Care has been taken to minimize the trigger subgraph to
avoid the generation of unnecessary trigger tokens.

8.3. Simple Operations 137

8.3. Simple Operations
The translation of a straight-line segment is mostly straightforward: each operator
corresponds to one node in the demand graph and to one instruction in the dataftow
program. Complications are due to type mixing and strings. Taking advantage of
efficiency improvements offered by literals requires extra analysis. The proper
sequencing of I/O without reducing parallelism is also interesting. All four issues are
treated in this section.

TYPE HANDLING

For a description of the static type analyzer see the previous chapter. Only forward
propagation is employed. Cycles are handled by generating hypothesis assertions in
cycle entries (see section 7.2). During extraction each operator checks whether the
types of its operands are acceptable. If there exists a datafiow operator for which the
operands have the required type, this instruction is generated. Otherwise conversion
operators may be employed to coerce the operands into the required type. If this is not
possible, an error message is issued. Figure 8.7 shows a few examples.

DEMAND GRAPH } DATAFLOW GRAPH

Real ~""lg<r CEI Integer

NOT

or + (d)

Figure 8.7. A few examples of type sensitive monadic or dyadic operators.

(a) An integer and a real addition are available in the target language. If the operands have

different types a conversion instruction is inserted. Similar subgraphs are generated for

MINUS, MULTIPLY, DIVIDE, and GREATER.

(b) Since no equality test for reals is defined, NOT-LESS accepts only integers. The CEI

instruction is used with the operands interchanged.
(c) The integer division is implemented with a DRM operation without its remainder output

(d) The implementation of NOT-EQUAL (only defined on integers) needs two instructions.

(e) Explicit conversion nodes do not generate code if the operand already has the required

type.

138 8. Generating Dataflow Code

STRINGS
Strings play a prominent role in most SUMMER programs. They can be of arbitrary
length and cannot be encoded in a single token. They have to be represented as
streams of tokens each carrying one character value. A stream is a series of tokens
distinguished by consecutive values for the index field of the tag and terminated by an
end-of-stream token. As with all streams, the implementor is faced with the difficult
choice between storing and copying, as already discussed in section 2.3. When streams
are stored in the matching unit (see figure 2.20), pointers can be passed around the
graph. When copying is chosen, all tokens of the stream have to be copied whenever
an interface is passed. Both approaches have their merits. Copying is simpler and, as
long as streams are small (less than ten elements) and do not pass through many
interfaces, more efficient. For most programs, however, copying would give a
tremendous overhead. The advantages of storage will be even more pronounced when
the structure store currently under construction has been installed.

Storing has been chosen for the implementation of arrays (see section 8.5) and
copying for strings. Strings are copied, because the compiler is not expected to
translate programs with much string processing. There are two reasons for this: the
target machine is not very suited for string processing and the powerful pattern
matching operations on strings that SUMMER provides are only defined for data
structures for which demand graph construction has not been implemented.

index

STRING
ELEMENT

element trigger

. 'a'

CONCATENATE

left

Figure 8.8. Macros for string handling.

REPLICATE

right value stream

· 1

(a) STRING-ELEMENT places a character token with the appropriate index in a stream. Since its
first two inputs are literals it needs an input from the trigger subgraph to initiate its firing.
(b) Two strings are concatenated by merging the left stream without its end-of-stream token
with the right stream with its index incremented. The BRT instruction sends the character
tokens of the left stream to the left and its end-of-stream token to the right The increment for
the index is the size of the left stream and is deduced from the end-of-stream token. The
REPLICATE macro makes a stream of increment tokens.
(c) The REPLICATE macro makes a stream of tokens with value equal to its left input The
stream is of the same size as the right input stream. ·

8.3. Simple Operations 139

A CONSTANT node with a string value produces a STRING-ELEMENT instruction for each
character of the string, plus one for the end-of-stream token. Each of these instructions
produces one token with the proper index (see figure 8.8). Since they constitute one
stream they all have the same target. The STRING-ELEMENT instruction needs a trigger
input to initiate its firing. The outgoing arc of the CONSTANT node provides the
appropriate connection with the trigger subgraph. A demand sent along this arc
ensures that all nodes on the path to the sink-of-demands are marked as being
demanded and will consequently generate the appropriate section of the trigger
sub graph.

Operating on streams rather than on single tokens complicates the datafiow graph.
The CONCATENATE macro in figure 8.8 illustrates this. The right stream passes through
an ADX instruction to increment the index field. Just one increment token is not
sufficient since it needs to be matched with every token of the stream. An application
of the REPLICATE macro (copied from [Bowe81]) is therefore needed. This macro is
used whenever a single value needs to be matched with a stream, such as when a string
passes through an interface. The macros for comparing two strings have been omitted,
because of their complexity; they each require a dozen basic instructions.

LITERALS

A constant can be represented by a SYN instruction that has the value of the constant as
a literal and an arc from the trigger subgraph as input. In many cases a constant real
or integer can be more efficiently represented by a literal embedded in its successor
instruction. This does not only save the SYN instruction, but may also save part of the
trigger subgraph: the interface instructions that distribute the trigger token to this
cocooned expression can be omitted, if it does not contain any other instructions that
need a trigger input. This optimization is especially effective in loops, since it may
avoid the circulation of trigger tokens through all iterations.

Due to two restrictions of the target language an instruction may not be able to
incorporate a literal. The first restriction is fundamental: no instruction can have only
literal operands, since such an instruction would never become enabled. The second
restriction is due to a peculiar limitation of the instruction memory: an instruction with
two separate output ports has no space to store a literal. Unfortunately, the current
assembler is not able to handle this low level detail.

Since it depends on_ its predecessor in the demand graph whether a CONSTANT node
needs to generate a SYN instruction and send a demand along the outgoing arc,
backward information propagation is required. Each node that does not accept literals
indicates this to its operands by setting a particular component in its backward
propagating assertions. A CONSTANT node representing a real or an integer does not
propagate a demand into the trigger subgraph until it receives such a demand.
Otherwise it will communicate its value as a literal to the demanding node.

Dyadic operators are special since they accept a literal on either input arc (a
frequently occurring case) but not on both. Their backward procedure initially
communicates to both operands that literals are acceptable. If both operands return a
literal a new demand is sent to one of the operands, this time specifying that a literal is
not acceptable. A dyadic operator with two constant operands could of course be
evaluated at compile time and folded into a new constant. This would, however,
require a local restructuring of the graph. This situation was considered to occur too
rarely to be worth the effort.

140 8. Generating Dataflow Code

INPUT AND OUTPUT

Most of the analysis that is needed to support I/O has already been performed during
demand graph construction. As explained in section 6.2, PUT and GET nodes are linked
into one IO-subgraph with a STANDARD-10 node as sink. This IO-subgraph is
translated into an equivalent subgraph of the generated program. The tokens flowing
through this subgraph communicate to the input and output instructions sequence
numbers to be used by the host processor to order the I/O items. This linking of I/O
instructions does not limit parallelism, since the actual I/O and the calculation of the
sequence numbers are performed asynchronously. The order in which the I/O actions
are executed is therefore in general unpredictable.

The output and input primitives provided by the target machine are somewhat
primitive; type handling of the IPT instruction is still to be defined. In the 110 macros
in figure 8.9 it is assumed that only reals can be input, but that output can be of any
type. In the SUMMER implementation all I/O is considered to be interactive (i.e. input
and output are interrelated) and consequently to address the same stream. The
STANDARD-10 instruction provides the initial value of the sequence number which is
incremented in every GET or PUT instruction that is executed.

PUT PUT-STRING GET

scqnum value scqnum string scqnum

scqnum

scqnum scqnum value

Figure 8.9. Macros for input and output.

(a) The sequence number is transmitted to the OPT instruction through the iteration level,
since the index field is already in use to distinguish characters in a string. Incrementing the
sequence number requires two instructions due to the distinction between ordinals on which
no arithmetic can be performed and integers which cannot be used to set tags. The new
sequence number can be released before the output value has arrived.
(b) A string is output as a stream and counts as one item.
(c) The IPT instruction has a dynamic output arc; it requires an address token specifying to
which input port the 110 token is to be sent. The dashed line indicates which input port is
specified. For the correct handling of input instructions within a loop, the iteration level needs
to be restored before the input value is sent to the rest of the graph.

8.4. Control Flow
Due to the analysis performed during demand graph construction, the handling of most
control flow operators is quite simple. However, producing efficient rather than merely
correct code requires a careful checking of special cases to detect opportunities for
optimization. Fortunately, the basic instructions that are needed in the interface
macros are not type-specific, so that type analysis is only needed when strings and
arrays are involved. When a string passes through an interface, REPLICATE instructions

8.4. Control Flow 141

need to be inserted wherever a scalar interacts with the stream of character tokens (as

shown in figure 8.9). Arrays are not treated in this section.

CONDITIONAL CONSTRUCTS

The translation of if and case expression, '&' and T operators, failure and other escapes

amounts to generating the correct code for BRANCH, MERGE, and LINK-IN nodes. LINK­

OUT nodes are transparent: they transmit every assertion unchanged and do not

generate any code. We first treat the most general case, where the interface nodes are

due to a case expression.
The translation of a case expression is illustrated in figure 8.10. Each input for each

branch passes through a gate: a BRR instruction that either transmits the incoming

token into the branch or discards it depending on its control input. These gates are

generated by the LINK-IN nodes belonging to the MERGE nodes.

cnntro!

c---~---,
' CASE I

: CONSTANT :
L---

I CASE I

: CONSTANT :

b

a

Figure 8.10. The translation of a case expression.

(a)

CASE-CONST A NT

r -(~~-- - - c,- - - - - - - ~

CEI ... CEI :
I
I

I
• I

r - -, I

I ORB I I
I I
1 tree 1 1

-----~=t~~-----J

(b)

(a) The code generated for a case expression with 3 branches. The CASE-SELECTOR subgraph

monitors the condition for the default branch; each CASE-CONSTANT subgraph monitors the

condition for the other branches. Variable a. used in each branch, is passed through gates,

each consisting of one BRR instruction. Variable b is defined in all branches; in the first

branch it is assigned to a constant 5.
(b) The CASE-CONSTANT subgraph is not a macro, since the number of instructions it contains

is variable. It contains a tree of ORB instructions which calculates the disjunction of all

comparison signals. If there is only one constant the tree will be empty. The CASE-SELECTOR

subgraph is a tree of ORB instructions that yields false if the default branch is to be executed.

The boolean tokens that control the gates are produced by a CASE-SELECTOR subgraph

for the default branch and a series of CASE-CONSTANT subgraphs for the other

branches. A CASE-CONSTANT subgraph compares the value of the control expression

142 8. Generating Dataflow Code

with its case-constants and yields a boolean token indicating whether any of the
comparisons succeeded. The CASE-SELECTOR subgraph yields the disjunction of the
values produced by the CASE-CONST ANT subgraphs.

BRANCH nodes generate the output interface; usually a MERGE pseudo-instruction,
which causes the assembler to direct tokens from the different branches to the same
successor instruction. For branches that produce a literal, however, a gate is generated
with the literal as value input. We shall see below that a BRANCH node may recognize
special cases for which it can generate more efficient code.

For an if expression the controlling expression generates the appropriate boolean
value directly, so the CASE-CONSTANT and CASE-SELECTOR subgraphs can be omitted.
For if-then-else expressions a simple optimization often applies: if a MERGE node has
exactly two LINK-IN nodes and both have been demanded, the MERGE node generates
one combined BRR instruction instead of the two generated by the LINK-IN nodes.

OPTIMIZATIONS RECOGNIZED BY BRANCH NODES

Several circumstances may lead to BRANCH nodes in the demand graph. Sometimes
better code can be generated if the situation that gave rise to the BRANCH node is
recognized. This is the case for compound comparative expressions, i.e. a series of sub­
expressions without side-effects and connected by '&' and 'I' operators. Figure 6.7 in
chapter 6 provided a simple example of this. In the code normally generated for this
expression the evaluation of the sub-expressions would be serialized, because the
standard implementation of a conditional is lazy: tokens enter one of the branches after
the test has been evaluated.

The SUMMER code generator implements compound comparative expressions eagerly:
the sub-expressions are evaluated in parallel. To support this eager implementation,
each CONDITIONAL-COCOON records in each of its interface nodes whether any of its
chainers has encountered a side-effect. If there have been no side-effects, the BRANCH

node generates a boolean operator instruction instead of the code generated by the
LINK-IN or MERGE .nodes. Transforming AND and OR nodes into BRANCH and MERGE

nodes during demand graph cons~ruction (see figure 6.8) and then back again into
boolean instructions is a somewhat roundabout way to generate code. The advantage is
that the same optimization applies to programs that are equivalent but are formulated
with different operators, such as if expressions.

Another opportunity for optimization is provided by the way return escapes are
handled during demand graph construction. This may lead to BRANCH nodes with
constant boolean inputs, as for instance in figure 6.13. During extraction a BRANCH

node therefore checks its value inputs; if both are boolean constants it generates code
to either reproduce its control operand or produce its negation.

PROCEDURE INTERFACING

For procedure interfaces the standard solutions are adopted as illustrated in figure 8.11
(see e.g. [Gurd81]). A new activation name is generated, as soon as a trigger token
enters a cocooned expression that contains a procedure call, making it certain that the
call will be executed. This activation name is used in each CALL-OUT instruction to
send an address to the corresponding RESULT instruction to specify where the result
value should be sent. As soon as an actual parameter becomes available, the CALL-IN

instruction passes it through the corresponding PARAMETER instruction to the procedure
body. When a result value is produced, the RESULT instruction sends it through the
appropriate CALL-OUT instruction to the calling environment.

8.4. Control Flow 143

PROC-CALL CALL-IN CALL-OUT RESULT

trigger actual new
an

new
an

old
an value address

an body out address

Figure 8.11. Macros for procedure interfacing.

Per procedure call there is one PROC-CALL instruction and a number of CALL-IN and CALL-our

instructions and per procedure a number of RESULT instructions. PARAMETER nodes generate

no code. The CALL-IN instruction sends an actual parameter with the new activation name

into the procedure body. The CALL-OUT and RESULT instructions cooperate to send a result

value back to the calling environment with the original activation name restored.

Note that the passing of parameters and result values are both fully asynchronous: a

procedure body can start execution before all parameters are available. This is essential

to attain high parallelism. A procedure containing a PUT instruction, for instance,

could calculate its effect on the I/O sequence number independently of the calculation

of the II 0 values.

ITERATION

Figure 8.12 shows the macros involved in the translation of a while expression. The

two targets of the EXIT-LOOP instruction are provided by the two LINK-IN nodes. If

either of the two has not received a demand, the corresponding portion of the macro is

omitted.

WHILE-LOOP ENTRY-LOOP

trigger body entry

new old old
an an ii

new
an control

EXIT-LOOP

value

body

old
ii

exit

Figure 8.12. Macros for interfacing a while expression.

old
an

0

RESTORE

There is one WHILE-LOOP instruction per while expression, which generates a new activation

name to create a new environment. This is necessary for a safe implementation of nested

loops. In the ENTRY-LOOP macros this new activation name is attached to the incoming token

and the iteration level initialized. The EXIT-LOOP instruction increments the iteration level and

sends the token back into the body. When the controlling expression fails, the RESTORE

instruction sends the result token to the successor expression, with the original iteration level

and activation name restored.

144 B. Generating Dataflow Code

Because this is a tagged machine, the passing of values through the interface
instructions is asynchronous, just as with procedure calls. Each part of each iteration
can therefore proceed concurrently with each part of any other iteration on which it is
not data-dependent.

8.5. Arrays
The SUMMER code generator stores all arrays in the matching unit using special
matching functions. The mechanism has been explained in section 2.5. The elements
of an array are sent to one input port of a storage instruction, i.e. an instruction with a
dynamic output arc. To retrieve an element a token is sent to the other input port of
the storage instruction indicating to which instruction the element should be sent. By
specifying a Preserve-Defer matching function a copy of the element is made and the
element itself stays in the matching unit (see also figure 2.20). When all accesses to the
array have completed, it needs to be removed from the matching unit by a garbage
collection procedure.

The matching unit has no facilities for queuing requests; a request for an element
that is not yet available is deferred by circulating the request tokens through the whole
processing element. Extensive deferring causes a considerable waste. A retrieve of an
element with the Preserve-Defer matching function should therefore not be attempted
unless it is reasonably certain that the element is already present in the matching unit.

If it has been decided that arrays are stored, there is still a choice to be made
regarding selective updates. In applicative languages a selective update operation, i.e.
replacing one element in an array by a new value, is considered to pr<_>duce a new array
that is a copy of the old array with one element replaced. The old array remains
accessible for retrieves. The corresponding implementation is the copy update, which
creates a new array by copying the tokens of an array to a new storage instruction
replacing one element by a new value. In an imperative language a selective update
makes the old array inaccessible, so the obvious implementation is in situ update: the
element is replaced within the stored array without making a copy.

These alternative implementations can be used for both types of language with
similar trade-offs. Each method has its obvious drawbacks: copy-update gives
considerable copying overhead, while in situ update limits parallelism. For programs
with large arrays in situ update is the most attractive option, since reducing overhead is
more of a problem than attaining parallelism for this kind of programs. It is the
method adopted in the SUMMER code generator.

An in situ update changes the value of an array. Each value of an array is called an
instance. An in situ update should only be executed after all accesses to the old
instance have completed. A mechanism is therefore needed for completion detection.
During analysis the number of retrieves that will occur for each instance is counted.
Code is generated that, during execution, sends a signal to the next update when all
retrieves of the previous instance have completed. If there is no next update the array
has become garbage. So detection of garbage is a convenient by-product of completion
detection.

Figure 8.13 illustrates this point. The ARRAY instruction stores the tokens in the
matching unit and distributes a pointer to the RETRIEVE instructions and to a COUNT

instruction. The latter has a literal input 2 indicating that it should wait for 2
completion signals from RETRIEVE instructions before passing the pointer on to the next
update. The next instance has 3 retrieves. When they have all completed the COUNT

instruction passes the pointer on to a GARBAGE instruction, which removes the stored
tokens from the matching unit.

8.5. Arrays

Figure 8.13. Serializing in situ updates.

first
instance

second
instance

Part of the code generated for a program with an array to which the only accesses are two

retrieves, one update, and three retrieves, in this order. All instructions and arcs not involved

with completion detection are omitted. The array is created by the ARRA y instruction and,

when all accesses to it have completed, destroyed by the GARBAGE instruction. To prevent

an update from replacing an element that still needs to be retrieved the accesses are

serialized by completion signals issued by RETRIEVE instructions and collected by COUNT

instructions. ARRAY and UPDATE instructions create new array instances; with each instance

two signals are associated: available and completed.

145

Of course, when conditional control flow is involved the number of retrieves cannot be
determined statically. Fortunately, each control flow decision is associated with a
cocooned expression. A cocooned expression that contains retrieves can be counted as
one retrieve, provided that the code within such an expression ensures that always
exactly one completion signal is propagated to the surrounding expression. All
retrieves for one array instance are independent and can be executed concurrently. By
managing the completion signals within cocooned expressions carefully, this potential
parallelism can be preserved.

MACROS

The macros for array handling are shown in figure 8.14. As originally proposed by
Glauert, all arrays are stored on one shared storage instruction; the arrays are
distinguished by activation name and the elements within each array are separated by
the index field (see also [Sarg85]).

146

array
read

array
write

(a)

store
size

RETRIEVE

read
size

pointer index

done element

(d)

elements
ready

ARRAY

elements

(b)

old
instance

Figure 8.14. Macros for array storage and retrieval.

8. Generating Dataflow Code

size

UPDATE

index

(e)

RANGE-CHECK

pointer

(c)

new
element

index

(a) There are two storage instructions that are shared by the whole program. One is for the
array elements; the other one for their sizes. An address token arriving at the array-read port
or the read-size port causes the sco instruction to send the token to the address specified.
(b) When the ARRA y instruction receives the signal that all elements are available, it generates
a new activation name and sends the size with the new activation name to the shared storage
instruction for sizes. The activation name is proliferated to match with all the elements of the
new array, which are then sent to the other shared storage instruction.
(c) Before an array is accessed by a RETRIEVE or UPDATE instruction the validity of the index
is checked by comparing it with the stored size.
(d) A RETRIEVE instruction reads the element from the storage instruction with the Preserve­
Defer matching function so the array is not affected. When the element has been fetched the
pointer is released to serve as completion signal.
(e) An in situ update consists of a destructive read of the element followed by storage of the
new element. The two actions are serialized (by means of a sYN instruction) to avoid token
clash. The pointer is not released until both the old instance and the new element are
available.

8.5. Arrays 147

When a new array is to be created, its elements are sent to the elements input port of an
ARRAY instruction. SUMMER provides two ways of initializing an array. In the
homogeneous case all elements have the same value and are produced by a trivial
instruction not shown here. In the heterogeneous case the value of each element is
produced by a separate expression. A COLLECT instruction (see e.g. [Bowe8 l]) produces
a signal when all elements have arrived. The ARRAY instruction will then generate a
new activation name, which serves as pointer to the array. This pointer is used in
RETRIEVE instructions to fetch the proper element. In an UPDATE instruction the old
element is removed from the storage instruction after which the new element is stored.

COMPLETION DETECTION

Most of the analysis that is needed to divide the lifetime of an array into instances has
already been done during demand graph construction. Each array creation or update
signals a new instance. We call nodes that represent such actions instance headers. In
fact, we consider each node that is the destination of a previous-update arc an instance
header: ARRAY nodes, ARRAY-ACCESS nodes that represent an update, and ENTRY-LOOP,

LINK-IN, and BRANCH nodes that represent an array. Each instance needs a COUNT

instruction, and the last instance of an array also needs a GARBAGE instruction (see
figure 8.15). These are generated by the instance header. Two signals are associated
with each instance, namely the available and the completed signal. All signals have the
pointer to the array as their value. Each COUNT instruction has a required input
indicating how many completion signals to collect for the instance.

COUNT

retrieves required available

(a)

Figure 8.15. Macros involved in completion detection.

GARBAGE

pointer

(b)

read
size

(a) The pointer arriving at the available input puts the initial required count into place. This

indicates how many signals should arrive at the retrieves input before the completed signal is

released. Counting is implemented by means of the Decrement-Defer matching function.

The USE instruction produces no output until the counter value has reached 0. The token is

then released as the completion signal, as well as being circulated back into the USE

instruction with a normal Extract-Wait matching function to remove the stored token. ·

(b) Garbage collection is a destructive read using the PROLIFERATE instruction.

148 8. Generating Dataflow Code

COUNT instructions with a required input value of less than 2 are omitted, since one of
the incoming signals can be transmitted directly: if there are no retrieves, the available
signal is used, and if there is only one retrieve, its completion signal is used. The value
of the required input of the COUNT instruction is determined during demand
propagation. Each assertion contains two boolean components, Retrieve and Update.
ARRAY-ACCESS nodes are the source of the information: they set the two components
according to whether they are a retrieve or an update. The two components are simply
transmitted by most nodes, but interface nodes treat them differently.

Instance headers tally retrieve and update parents, i.e. parent nodes from which an
assertion is received with either component set. During extraction the COUNT

instruction is generated with the number of retrieve parents as required value. If no
update parent has been encountered, the GARBAGE instruction is also generated.

Counting the number of retrieve parents ensures that all retrieves from within one
cocooned expression are counted as only one retrieve in the surrounding expression,
since each such retrieve assertion passes through the same interface node. Therefore,
the instance header sees only one retrieve parent and consequently only one completion
signal is expected from the cocooned expression.

A mechanism inside the cocooned expression has to collect and combine local
completion signals. Figure 8.16 shows the code generated for a conditional without
updates. Each branch has its own COUNT instruction that collects the completion
signals within that branch. Each branch may also produce one completion signal,
which counts as one retrieve in the surrounding expression. To prevent garbage
collection from occurring more than once, garbage detection is done by the instance
header in the outermost expression. '

a : = array ... ;
if a[I] > 0
then x : = a[I] + a[2]
else x : = a[2]
fi

completed

Figure 8.16. Conditional expression with retrieves but no update.

else

The RETRIEVE instructions in each branch receive the available signal through the BRR node.
Note how all retrieves, inside and outside the conditional expression, may proceed
concurrently.

8.5. Arrays 149

LOOPS
Loops with updates are treated differently from those with only retrieves. In the latter

it is important to treat the available and completed signals separately. If they are

combined, a retrieve in one iteration cannot start until all retrieves of the previous

iteration have completed. In the code depicted in 8.17 such serialization does not

occur. The final signal that all retrieves have completed is sent to the surrounding

expression.

sum completed

Figure 8.17. A loop with only retrieves.

a:= array ;
sum:= 0.0;
while i < a.size
do sum : = sum + a[i] * a[i] ;

i := i +I

A loop that computes the inner product of a vector with itself. The pair of interface

instructions on the right provides the available signals. Because the two instructions form a

cycle, the signals for subsequent iterations can be generated rapidly, without having to wait

for completion of previous iterations. The retrieves of all iterations can therefore proceed

concurrently. The cycle involving the pair of interface instructions in the center collect the

completion signals of the retrieves and sends a signal to the surrounding expression, when

they have all completed. The third cycle constitutes a reduction operation: it sums all values

produced by the multiply instruction MLR. Nodes and arcs involved with the induction

variable i have been omitted.

For a loop with updates (see figure 8.18) the iterations are already serialized. In this

case efficiency has been preferred to parallelism and consequently the two signals are

combined. This has consequences for the Update and Retrieve components transmitted

by loop interface nodes. Fortunately, an interface node that receives a Retrieve

assertion can easily check whether the loop contains updates for that array: if it does

not, the ENTRY-LOOP and the EXIT-LOOP nodes form a tight cycle, i.e. they are only

separated by a LINK-OUT and a LINK-IN node.

150

available

Figure 8.18. Loop with updates.

8. Generating Dataflow Code

a : = array
i := 0;
while i < a.size
do a[i] := a[i] + i ·

i := i +I
od

A loop with a complete redefinition of an array: all elements of the array receive a new value.
The pair of interlace instructions on the left carry the combined Available and Completed
signal. Since there is only one retrieve per update, the COUNT instruction is omitted.

CONDITIONAL ALIASING

When the aliasing between two variables is unconditional, it has already been resolved
during demand graph construction (see section 6.6). If the aliasing is conditional,
however, code has to be generated to resolve the aliasing at execution time.

a:= array .. .
b := array .. .
c : = if test then a else b 11 ;
c[2] : = c[O) + c[IJ

(a)

Figure 8.19. Simple conditional aliasing.

(a) A portion of the demand graph with an ACCESS-BRANCH node.

/!!SI

(b)

(b) The corresponding portion of the generated code. The pair of BRR instructions passes the
appropriate pointer on to subsequent accesses. The pointer that is not selected belongs to
an array that has become garbage.

8.5. Arrays 151

The LACAP algorithm (see section 6.7) produces an ACCESS-BRANCH node for each
ambiguity due to conditional aliasing. As far as code generation is concerned, an
ACCESS-BRANCH node combines the functions of a BRANCH node and its corresponding
MERGE nodes. The subsequent access is provided with the appropriate pointer by
passing the alternative pointers through two complementary gates. Figure 8.19
illustrates this.

Garbage detection is concentrated in the code generated by the ACCESS-BRANCH

node. In the example above, the array whose pointer is not sent to the subsequent
retrieves has become garbage. However, sending a not selected pointer to a GARBAGE

instruction is inappropriate if there are more ACCESS-BRANCH nodes pointing to the
same instance header. Figure 8.20 gives an example of such a shared instance header.

(a)

Figure 8.20. Complex conditional aliasing.

(a) Demand graph for a program segment with accesses through different aliases. The left­
most ARRAY node is a shared instance header: it has incoming arcs from two ACCESS-BRANCH

nodes.
(b) The corresponding portion of the generated code. The BRR nodes corresponding to the
shared instance header are complementary and consequently do not send the pointer to a
garbage collector.

The LACAP algorithm only creates a shared instance header if it passes through a node
in the alias graph twice. This occurs only if a descend in the algorithm is later followed
by an ascend. The two ACCESS-BRANCH nodes that are created in these two phases are
complementary with respect to the shared instance header. The code generated for one
of these two nodes will pass the pointer on to subsequent instructions, where garbage
detection will take place. Therefore, ACCESS-BRANCH nodes check the number of update

152 8. Generating Dataflow Code

parents of their alternatives to see if they are shared instance headers. If one of them
is, the corresponding BRR instruction does not send a token to a GARBAGE instruction.

8.6. loop Optimizations
As the evaluation in the next chapter will show, the code generated for most language
features is of reasonable quality. Improvements can, however, be made by recognizing
special cases. The challenge is to identify those optimizations that are both easy to
implement and yield substantial quality improvements. To stay within the scope of the
current project only those optimizations that concern language features that differ
significantly in SUMMER and SISAL have been explored, namely array handling and
parallel loops. The two optimizations that yielded major efficiency improvements were
those for loop constants and for a series of updates constituting a complete array
update. Recognizing reduction operators may improve parallelism, but at the cost of
somewhat lower efficiency.

8.6.1. PARALLEL DISTRIBUTION OF LOOP CONST ANTS

A loop constant is a value imported from outside a loop that is used in the loop but
not redefined. It is represented by a series of tokens with identical values but
consecutive iteration levels. The non-optimized code passes the loop constant
repeatedly through an EXIT-LOOP instruction to increment its iteration level. Under
certain conditions the same effect can be achieved by using an ENM instruction. Most
instructions produce one or two tokens, but instructions like PRO and ENM can produce
a great number of tokens in one burst, and may thus reduce execution time
substantially. The situation is illustrated in figure 8.21. A loop 'constant can be
recognized by the presence of a tight cycle, i.e. a cycle consisting of an EXIT-LOOP node
and an ENTRY-LOOP node.

entry entry
new
an LOOP-CONSTANT

control
new loop

entry an size

ENTRY
LOOP

control

from
hody

EXIT
LOOP

to hody

(a) to hody (b) (c)
Figure 8.21. Parallel code for loop constants.

(a) A tight cycle indicates that a loop constant is imported into the loop.
(b) The code normally generated contains a cycle to increment the iteration level in a serial
fashion.
(c) If the loop size is predetermined, the LOOP-CONSTANT instruction can be used, which
generates the sequence of tokens in parallel by means of the ENM instruction.

0

0

8. 6. Loop Optimizations 153

The loop-size input to the LOOP-CONSTANT instruction indicates the number of iterations
to be executed and determines how many tokens are produced. Obviously, this loop
size cannot depend on any value computed within the loop. The LOOP-CONSTANT

instruction can therefore be used only if the number of iterations of the loop is known,
not. necessarily at compile-time, but when execution of the loop is initiated. An
obvious case is a while loop that is controlled by a RELATIONAL-DYOP node comparing a
sequence of consecutive integers with a loop constant. 1 A predetermined loop size is
recognized if this sequence of integers starts at 0 and is produced by a PLUS node that
is on a reduction cycle, i.e. a tight cycle with one extra node.

The LOOP-CONST ANT instruction does not need input from the code generated by the
control node. If that code has no other target, it is superfluous and should be
suppressed: in a correct program each instruction has a target. The control node
should not have been demanded, but on the other hand the optimization cannot be
done before demands have propagated, since the recognition of the special cases
depends on the propagated information. Because this problem is encountered in most
optimizations, a general mechanism has been implemented to cancel a previously issued
demand. Cancelling a demand causes the demanded node to remove the demanding
node from its list of predecessors. If this makes the list empty, the node does not
generate code, and in turn cancels any demands it has already issued to its operands.

Loop Constant Arrays.
If a loop contains retrieves but no updates for a particular array, the array pointer is a
loop constant. Figure 8.17 in the previous section provides an example. For a loop
with a predetermined loop size this pointer is also distributed to all iterations in parallel
by a LOOP-CONSTANT instruction. Further optimizations are possible if the index of the
retrieve ranges from 0 to the loop size:
illl The index does not have to be distributed separately, but can be derived from the

iteration level.
e The range check and completion detection can be moved out of the loop.
The completion detection can be optimized, because in this case its only function is to
generate the completion signal to the surrounding expression. Each (non-superfluous)
retrieve within a loop contributes to the calculation of some output value from the loop.
This value cannot be produced until all its contributing retrieves have completed. All
completion detection code within the loop can therefore be replaced by a signal from
the loop-exit node, i.e. the node that produces the particular output value. The ARRAY­

CONSTANT and STREAM-RETRIEVE instructions, illustrated in figure 8.22, implement this
optimization.

I. The optimizations have in fact also been implemented for the most common for loops. These
somewhat simpler cases are ignored in this presentation.

154

loop
exit

completed

ARRAY-CONST ANT

[{lop

eniry

to hody

(a)

Figure 8.22. Macros for loop-constant arrays.

8. Generating Dataflow Code

STREAM-RETRIEVE

(b)

a:= array ...
sum:= 0.0;
i := 0;
while i < a.size
do sum : = sum + a[i) * a[i] ;

i := i +I
od

(a) For a loop-constant array the range check can be done just once. The completion
detection is derived from output values of the loops that are dependent on the retrieves (one
for each retrieve).
(b) A STREAM-RETRIEVE instruction is a RETRIEVE instruction from which the range check and
completion part have been omitted. The STL instruction transfers the index field of the
retrieved element to the iteration level.
(c) The inner product program of figure 8.17 optimized for loop-constant arrays. The
elements are multiplied in parallel, but the summation is still performed in a sequential cycle.
The final sum released from the loop is the loop-exit signal for the ARRA v-coNSTANT

instruction, which triggers the completion signal for the array.

8.6. Loop Optimizations 155

8.6.2. COMPLETE ARRAY UPDATE
As in most imperative languages, the only way to modify an array in SUMMER is by

means of a selective update. In situ update is the most appropriate implementation for

this, since for all but very small arrays its overhead is much less than that of copy
update. The balance of this trade-off shifts, however, when a series of selective updates

constitutes a complete array update, i.e. an operation that modifies each element of the

array. In such a case the serialization overhead can be avoided by interpreting the

series of updates as defining a new array that bears no relation to the old one. This

optimization has been implemented for the case where the ARRAY-ACCESS node is on a

reduction cycle, its index ranges over the whole array, and the loop and the array

correspond in size. Figure 8.23 shows the COMPLETE-UPDATE macro and its effect on

the generated program.

COMPLETE-UPDATE

elements size

(a)

Figure 8.23. Complete update.

a
available

(b)

size
new
an

h
completed

a:= array .. .
b : = array .. .
i ·= 0.
while i' < b.size
do b[ij : = 2.0 • a[ij
od

old

old

available

(a) A complete update is implemented by means of an ARRAY instruction. The values

produced by the iterations are sent to the elements input port of the ARRAY instruction after

their iteration level has been transferred to their index field. A couNT instruction checks

whether all elements are available. The old array can then be destroyed and the new array

created.
(b) An application of the COMPLETE-UPDATE instruction. The pointer to the new array is the

loop-exit signal for the ARRAY-CONSTANT instruction.

8.6.3. REDUCTION CYCLES
A dyadic operator on a reduction cycle produces a series of values each of which is

based on the previous value. Two cases are recognized for optimization. In the first

case the dyadic operator is a PLUS node and one of its operands is a constant integer I

(e.g. as for variable i in figure 8.18). In this case a sequence of consecutive integers is

to be produced and a macro instruction is generated that produces the series of tokens

in parallel using the ENM instruction. This macro will not be shown.
The second case is when only the last value of the series is needed. The reduction

cycle then amounts to a reduction operator, which often provides an opportunity for

parallel code. This has been implemented for the equivalents of the SISAL primitives

156 B. Generating Datatlow Code

sum and product. Bowen [Bowe8 l] devised a clever macro that performs reduction on
streams of values in logarithmic time (provided there are an unlimited number of
processors). The macro can best be understood by comparing it with the tree in figure
8.24(a). Note that the leaves of this tree have a token with odd sequence number as left
input and the subsequent token as right input. If the nodes are numbered as in figure
8.24(b), node number k is connected to node 2k and 2k + 1. The SPL instruction in
figure 8.24(c) achieves the equivalent of these connections by manipulating the iteration
level. The SEP instruction sends the output of the reduction operator back into the
cycle except for the final result. To get the proper numbering, the first ADX instruction
increases the iteration level of each incoming token by the loop size. Unfortunately,
this requires a literal since it has to match with every incoming token. This macro can
therefore only be used if the loop size can be determined at compile-time.

REDUCE-PLUS-INTEGER
x. n

I

n/4 ... n/2- I

x1 "i ~x0_ x0

~········· ADI

~····ADI

n/2 n - I

9
sum x

(a) (b) (c)
figure 11.24. Reduction in logarithmic time.

(a) n integers x1,. .. ,xn can be summed in logarithmic time by a binary tree of ADI operators.
(b) A numbering of the operators.
(c) All the ADI operators in (a) can be replaced by a single one, provided that the tokens
originally belonging to different operators are distinguished by separate tags. The SPL

instruction makes the equivalents of the connections in the tree by proper manipulation of the
tags: it divides the index field by 2 and sends the token left or right depending on whether the
original index was odd or even. The SEP instruction sends the final sum out of the cycle.

REFERENCES

Bowe81. BOWEN, D.L. (1981). Implementation of Data Structures on a Data Flow
Computer, Ph.D. Thesis, Dept. of Computer Science - Victoria University of
Manchester.

Gurd81. GURD, J., J. GLAUERT, AND C.C. KIRKHAM (1981). Generation of Dataflow
Graphical Object Code for the Lapse Programming language, CONPAR81,
Conference on Analysing Problem Classes and Programming for Parallel Computing,
155-168.

Sarg85. SARGEANT, J. (1985). Efficient Stored Data Structures for Data.flow Computing.
Ph.D. Thesis, Dept. of Computer Science - Victoria University of Manchester.

157

Chapter 9

Evaluation

It is time to consider what the work reported in this thesis has taught us about datafiow
machines and program analysis, and in particular about the suitability of imperative
languages for the programming of datafiow machines. Recall from' the introduction
that the original goal of the compiler implementation was to verify the following two
hypotheses:
• A translator from an imperative language into datafiow machine code produces code

similar in quality to that generated from a datafiow language.
e Such a translator is similar in complexity to a conventional optimizing compiler.
The first two sections of this chapter present a quantitative appraisal of quality and
complexity. The SUMMER language has not been completely implemented; we discuss
the omissions and further extensions in the third section. The last section draws the
conclusions.

9.1. Quality of the Generated Dataflow Code
Execution time is the obvious measure for the quality of a language implementation, i.e.

the combination of a compiler with its target machine. However, an experimental
machine such as the Manchester Datafiow Machine is frequently reconfigured and
tuned and thus tends to be somewhat of a moving target. A better impression of the

quality of the compiler itself is therefore gained by considering figures that express the
consumption of key resources, i.e. those that are deemed to be crucial in any
configuration.

Currently, the crucial resource of the machine is the matching unit: both its storage

and its processing capacity form potential bottlenecks (see section 2.6). Two important
metrics for quality are therefore the number of tokens stored in the matching unit at
any one time (matching unit occupancy) and the total number of matching actions. As
long as deferment is avoided, the number of matching actions per executed instruction
does not vary much. The second metric can therefore be replaced by the total number
of executed instructions. This is also a good indicator for the consumption of
communication and processing resources.

158 9. Evaluation

The number of executed instructions becomes more informative if it is related to the
computational complexity of the algorithm, independent of language, compiler, and
machine. This gives an impression as to how much of the executed instructions are
overhead, due to compiler or machine inefficiency. Unfortunately, an objective measure
of the complexity of an algorithm (which we call its algorithmic weight) is hard to come
by: which operations to count as an inherent part of the algorithm and which as
necessary coding overhead is to some extent an arbitrary choice. For a certain class of
numerical programs the number of floating point operations is a good choice for the
algorithmic weight and consequently the fraction of the executed instructions that are
floating point operations provides a useful measure. 1 We quote a variation of this
measure, the algorithmic content, which is obtained by extending the algorithmic weight
to include operations on data types other than reals.

The algorithmic content gives an indication of the efficiency of the generated
program. As a measure of its parallelism we quote the ratio of the number of executed
instructions and the length of the critical path, i.e. the longest chain of data dependent
instructions. The Manchester dataflow group has determined that this ratio, called the
average parallelism of a program, is a good predictor of how well a program exploits the
parallelism of the machine. Since instruction storage is not a bottleneck, compactness
of the generated code is not a primary quality metric.

Of course, these metrics are highly machine dependent and they should only be used
to compare compilers for the same machine. The only other high level language
compiler currently operative is the one for the SISAL language. This compiler is
currently under revision to improve the quality of its code. This revised version,
however, does not store arrays in the matching unit, but assumes that a structure store
has been installed. It also uses an instruction set that is somewhat optimized for that
compiler. It consequently generates code for a different machine and does not provide
a fair comparison.

GATHERING THE STATISTICS
Six simple algorithms have been coded both in SISAL and in SUMMER: three programs to
compare iteration, tail recursion, and double recursion, one program for simple string
handling, and two programs that operate on arrays. The significance of the following
comparison is limited by the simplicity of these programs. A more thorough evaluation
requires the coding of large benchmarks in both languages.

The SISAL programs were translated with the most recent version of the compiler that
stores arrays in the matching unit (called SISAL-MU) and the revised version that uses
the structure store (called SISAL-SS). The SUMMER programs were translated with and
without the optimizations described in section 8.6. We indicate the various
optimizations with the following symbols: LC for loop-constants, cu for complete array
update plus loop-constants, and RD for reduction operators plus the previous two
optimizations. Optimizations that are not listed had no effect for the particular
program.

Since the Manchester Dataflow Machine is not equipped to gather the required
statistics, all programs were executed on a simulator, which simulates an idealized
processing element with an unlimited number of functional elements and without
communication delays. This has the advantage that the order in which enabled
instructions are executed is fully determined: they are all executed in parallel. H

I. The Manchester dataflow group calls the inverse of this figure the "MIPS/MFLOPS" ratio.

159

further assumes that the execution times of all instructions are the same. It records the
number of executed instructions, the length of the critical path, and the maximum
occupancy of the matching memory. A figure for the algorithmic weight of the
programs was chosen based on simple inspection. In the tables we list the following
figures:
C = algorithmic content

Algorithmic weight divided by the number of executed instructions.
P = average parallelism

Number of executed instructions divided by the length of the critical path.
M = memory requirement

Maximum matching unit occupancy divided by the average parallelism.
C gives an impression of efficiency and P of the number of concurrent activities in the
program. The product of these two figures gives an impression of the "real
parallelism", i.e. parallelism without overhead computation. M indicates how much
storage space has to be available to sustain one concurrent line of execution.

ITERATION AND RECURSION

The first programs sum the first hundred integers using iteration, single recursion, and
double recursion.

iterative

while i < IOI
dosum:=sum+i;

i := i +I
od.

recursive double recursive

proc sum(n) proc sum(lower, upper)
if n = I if lower = upper
then I then lower
else sum(n-1) + n else sum(lower,middle) +

sum(middle+ 1,upper)

We take 100 as the algorithmic weight of all three programs.
The following figures were obtained:

iterative recursive double recursive
c p M c p M c p M

SUMMER 0.10 1 4 0.05 2 168 0.02 40 14
SUMMER-RD 0.09 22 1
SISAL-MU 0.06 6 54 0.06 2 112 O.o2 49 3
SISAL-SS 0.44 l 193 0.07 2 134 0.02 47 7

If we look vertically we see that the SUMMER code does not compare badly with the
code from the unrevised SISAL compiler. For loops it is somewhat better and for
recursion slightly worse. The revision of the SISAL compiler has improved the efficiency
of its code for loops enormously.

The unoptimized SUMMER code for the iterative program is completely sequential.
The single recursive program has better parallelism, but this is due to extra overhead
instructions. The lower efficiency indicates that procedure interfaces are twice as costly
as iteration interfaces. This is because a new activation name has to be generated for
each call and attached to parameter and result. The double recursive version gives
considerable parallelism but at the cost of cutting efficiency (i.e. algorithmic content) in
half. The optimization for reduction operators produces code for the iterative program
that is better in all respects than the double recursive code.

160 9. Evaluation

STRING HANDLING

The next program produces the first hundred roman numbers separated by commas. It
contains a procedure call within a loop, with each call producing one roman number.
Each number requires several string concatenations and two procedure calls with string
parameters.

SUMMER

SISAL-MU

SISAL-SS

p M
51 22

!07 37
!03 34

The algorithmic content has not been listed due to lack of an objective measure for the
algorithmic weight. The number of executed instructions for the three generated
programs is similar and quite high. A detailed inspection of the executed instructions
for the SUMMER compiler reveals that almost half of them are DUP instructions and
another 12 % due to the REPLICATE macro that is needed whenever a string crosses an
interface. It is pleasant to see that, although the SUMMER program contains numerous
sequential output statements, its parallelism is not affected. The SISAL compilers
produce code that is twice as parallel.

ARRAY HANDLING

The following two programs operate on arrays: the first one computes the inner
product of two arrays of !00 elements, while the second one multiplies two matrices of
IO X IO elements. Matrices are stored as one-dimensional arrays, since the SUMMER
compiler cannot handle more dimensions. '

We take the number of floating point operations as the algorithmic weight. For the
first program this is 200 and for the second one 2000.

inner product matrix multiply
c p M c p M

SUMMER 0.03 9 27 0.02 58 13
SUMMER-LC 0.09 6 65 0.03 47 353
SUMMER-CU 0.03 !04 157
SUMMER-RD 0.07 40 8 0.03 !05 119
SISAL-MU 0.04 14 51 0.03 541 26
SISAL-SS 0.35 3 164 0.14 139 26

For the first program the optimizations for loop-constants improve efficiency
considerably, due to the parallel distribution of the pointers for the array retrieves. The
sequential addition, however, limits parallelism. The reduction optimizations remove
this restraint. For the second program the effect of the loop-constant optimization is
much less pronounced, since the necessary conditions for loop-constant array
optimization are not fulfilled. The efficiency of the SUMMER and the SISAL-MU code is
similar, whereas the revised SISAL compiler, which uses the structure store, produces
much more efficient code. In these figures the accesses to the structure store have been
ignored.

9.2. Complexity 161

9.2. Complexity
An important property of a compiler is its computational complexity: the relation
between compile time and the size of input programs. Determining this relation in
general is too complicated, so we will follow usual practice and limit ourselves to the
order of the asymptotic complexity, i.e. the limit of the computational complexity when
program size goes to infinity.

The translation process consists of syntactic analysis, transitive closure, demand
graph construction, and code generation. It is easy to see that syntactic analysis is of
order n, where n is the size of the input program in some reasonable metric.
Determining the complexity of the other phases is more involved.

We will estimate the computational complexity of an average case. Since we do not
have statistics on the average program we have to make a rather broad assumption. We
assume that the relative frequency of language constructs and their distribution over the
program is independent of its size. It follows that the average procedure and the
average cocooned expression is of constant size and has a constant number of variable
references.

The transitive closure algorithm computes the number of references to global
variables in a procedure or any of its descendants. It makes order n visits to nodes in
the call graph. The amount of work at each node is of order k, where k is the average
number of references to global variables in the procedure or any of its descendants.
This corresponds to the average depth of a spanning tree of a graph, which according
to [Flaj81], is of order Vn, where n is the number of nodes. Consequently, the
transitive closure has a complexity of order n Vn.

We claim without proof that the construction time of a demarid graph node is
bounded by a constant. The complexity of demand graph construction is then
determined by the number of nodes. We distinguish three classes of nodes: interface
nodes (BRANCH, RESULT, etc.), aliasing nodes (ACCESS-BRANCH), and the remaining
nodes. The number of the latter nodes is of order n. The number of interface nodes
depends on the distribution of cocooned expressions and of references to variables. For
each cocooned expression there is one interface and each has a number of nodes equal
to the number of exposed uses and definitions that occur in the expression or in any of
the cocooned expressions that it contains, either directly or indirectly. A similar
argument as above shows that the total number of interface nodes is of order n Vn.
The number of aliasing nodes is equal to the number of array accesses times the
average number of nodes in the alias graph that the LACAP algorithm visits for one
array access. The number of array accesses is of order n. The second factor depends
on locality properties of the program. The LACAP algorithm has been developed under
the assumption that, due to locality, the number of visited nodes per access is small and
independent of program size. If this is the case the number of aliasing nodes is of
order n. If the assumed locality does not materialize the average path covered)Iy the
LACAP algorithm is proportional to the depth of alias graphs, which is of order V n. So
the number of aliasing nodes is of order n V n or less.

Code generation requires a constant amount of time per generated instruction, since
on the average one instruction is generated for each demand. The only exception is
found in the handling of cycling demands for type analysis in cycles. The number of
cycling demands per node is however constant due to the bounded number of input
arcs of cycle headers. So code generation is proportional to the size of the generated
program, which in turn is proportional to the number of nodes that are demanded
during code generation. Many interface nodes are not demanded because they are not
on a use-definition path. The relation between the size of the generated program and n

162 9. Evaluation

is determined by the average number of interfaces between a use and its corresponding
definition. This in tum is proportional to the average length of a use-definition chain.
If we call this L, it follows that the size of the generated program is of order n XL. If
references to variables are uniformly distributed, i.e. there is no locality of reference, L
is proportional to nesting depth, i.e. of order yn. The size of the generated programs,
and consequently the complexity of code generation, would then be of order n yn.
Locality patterns may very well make L independent of n. The matter deserves further
investigation, since it touches upon a central issue in the debate about applicative
versus imperative languages.

In summary, the average case computational complexity of the complete translation
is of order n yn.

The complexity of a program has another aspect related to the difficulty of writing,
designing, and understanding the program. A rough indication is given by the length
of the program, although this is sensitive to programming style and language. Three
comparisons all indicate that the compiler is not excessively complicated:
® Considering the total translator for SUMMER to dataftow machine code, the program

that constructs the demand graph and generates the code is smaller than the parser
and the assembler combined.

® This total translator is about 50 % larger than the conventional SUMMER
implementation, if the latter is restricted to the implemented subset.

® The SUMMER to dataftow translator is smaller than the SISAL implementation.
Design and implementation time of a program provide another, but even less precise,
indicator of its complexity. The compiler took about 2 man-years to construct. More
than half of this was spent on the design and implementation of the demand graph
constructor. The translation to dataftow code is not significantly more complex than an
ambitious optimizer such as one that performs static type analysis. The issues that were
most time-consuming were the handling of conditional aliases and the correct
interaction of escape signals with all other language elements. Other language elements
that are often suspected of complicating the generation of parallel code, such as
multiple assignments, global variables, and data structures, did not create any
problems.

9.3. Extensions
There are two obvious ways in which the compiler could be extended: implementing the
language features that have hitherto been omitted and improving the quality of the code
by further optimizations. In the following subsection we discuss the omissions and
suggest how they could be implemented. Suggestions for further optimizations
conclude this section.

9.3.1. OMISSIONS

When the language features that have been omitted from the implementation are
implemented three serious complications will arise: cyclic data structures,
interprocedural aliasing, and overloading. We first discuss the implementation of the
omitted language features ignoring these complications, and then present suggestions on
how to attack the remaining complications.

Multi-dimensional arrays create conditional aliases of a new type: after the update
"arlUJ := ar2", "arl[i]" and "ar2" may be aliases depending on the equality of i andj.
Update nodes may thus become part of the alias graphs. The LACAP algorithm can be
extended to handle these nodes in a fashion similar as that used for BRANCH nodes.
The code generator will store a multi-dimensional array as an array of pointers. When

9.3. Extensions 163

such an array is garbage collected, each sub-array has to be garbage collected as well,
unless other pointers to it still exist.

When no overloading is involved, each user-defined data structure can be
implemented as an array equal in size to the number of data fields. A selection of a
data field amounts to a retrieve or update with the field name interpreted as a constant
index. A procedural field selection amounts to a normal procedure call with the object
itself (self) as extra input and output.

The remaining language features do not create problems. The scan and the try

construct are straightforward. So are the table data type and the string operations,
although an efficient implementation of these requires considerable effort in assembly
programming.

Cyclic Data Structures.
Cyclic data structures complicate the aliasing problem, since they create cyclic alias
graphs. The LACAP algorithm could possibly be extended to handle these, but cycles
are notoriously difficult. A more fruitful approach may be to use a procedure, similar
to that employed for recursion, to detect strongly connected components in the alias
graph, and execute the original LACAP algorithm on the acyclic condensation of the
alias graph. The problem is to restrict the search for strongly connected components
sensibly, so as to avoid excessive analysis time. Cyclic data structures also complicate
garbage collection, since completion detection as implemented amounts to static
reference counting, which is not suitable when cycles are present. Reference counting
on the acyclic condensation is, however, feasible.

Interprocedural Aliasing.
When interprocedural aliasing is allowed, the demand graph constructor has to assume
that all data structure inputs to a procedure may be aliases of each other. The
corresponding PARAMETER nodes become interior nodes of the alias graphs with all
other PARAMETER nodes of the same procedure as descendants. During the analysis of
the procedure body the LACAP algorithm may insert ambiguity nodes in the alias access
graph for each PARAMETER node in the alias graph. When the demand graph
constructor subsequently encounters a call of the procedure, the aliasing condition of
each pair of actual parameters is available and is connected to the PARAMETER nodes.
An attempt to resolve the ambiguity due to aliasing of parameters can be made during
code generation. Most parameters will never be aliases; any ambiguity nodes that may
have been created for these parameters can be ignored. Code is generated to resolve
any remaining ambiguity at run-time.

Overloading.
When a field name is overloaded, i.e. it may refer to fields of different types, it is
ambiguous, during demand graph construction, which data field is accessed or which
procedure is being called. This ambiguity is encoded in a FIELD-SELECTION node that
has the object as one of its descendants. As far as demand graph construction is
concerned (global variables, failure, etc.) the FIELD-SELECTION node for a procedural
field has the effect of the alternative procedures combined. Through static type
determination this ambiguity may be resolved during demand propagation. For any
unresolved ambiguity, code can be generated that selects the appropriate field during
execution by means of the types-fields matrix generated by the parser.

164 9. Evaluation

9.3.2. FURTHER OPTIMIZATIONS

The loop optimizations described in section 8.6 should be generalized; in the current
implementation the conditions under which the optimizations take effect are far too
specific. The complete update optimization should be employed even if a few elements
of the array remain unchanged. BRANCH nodes should take part in the optimizations to
make efficient merging and concatenation of arrays possible.

The code generated for a loop interface is about twice as efficient as that for an
equivalent tail-recursion. It is relatively easy to recognize tail-recursive calls in the
demand graph and generate a more efficient interface that manipulates iteration level
rather than activation name. This could be generalized to all directly recursive calls by
using as increment to the iteration level the number of recursive cails in the procedure
body (rather than l). In retrospect, it would have been more consistent to create the
same demand graph for loops as is created for recursion and to recognize during code
generation the recursive calls that can be implemented iteratively. The loop
optimizations would then have been equally effective for recursion.

Handling of data structures is a fruitful area for optimizations, but experiments with
these are better postponed until after the code generator has been adjusted to take
advantage of the structure store now being installed. Reports from Manchester indicate
that the structure store may improve efficiency by 40 %. Even with the structure store,
in situ update would be useful but leaves much room for improvement. Two updates of
the same array are always serialized, but this is not necessary if they access two
different elements. This may sometimes be determined at compile time by a closer
inspection of the indices. Analysis of this sort could increase parallelism, although it
would not directly improve efficiency. However, if this analysis' is performed in
(iterative or recursive) cycles, access patterns may be recognized that can be more
efficiently implemented than with in situ update. Kuck and his colleagues have done
much work in this area [Kuck81], some of which may be applicable. Their focus has
been on generating parallel code for vector machines, for which an exact recognition is
much more pressing, since such machines do not have asynchronous mechanisms to
absorb the delays of minor maladjustments. Major improvements are, however, not
expected from this type of analysis: preliminary investigations indicate that the extra
instructions needed in the parallel macros often cancel any gain in efficiency.

9.4. Ccmc!usions

PROGRAM ANALYSIS

A method has been described that transforms a program to be analyzed into a demand
graph, a representation in which all control flow constructs have been replaced by data
flow operators. Constructing a demand graph amounts to an extensive use-definition
analysis that is different from the usual approach in that it retains all information that
influences data-dependencies. Each branch in a data-dependency path represents a
static ambiguity. These ambiguities are encapsulated in ambiguity nodes, an approach
that has been very convenient, since the ambiguity can be ignored in most of the
subsequent analysis without any loss of information. The only exceptions occur when
the ambiguity concerns aliasing, which is the most characteristic feature of the
imperative style. A naive solution of the aliasing problem would require an excessive
number of nodes. A heuristic algorithm has been developed that exploits locality
properties to reduce the complexity to manageable proportions for all but exceptional
cases. This is an encouraging result, since it indicates that a worst case complexity
argument does not need to deter one from searching for a heuristic solution that is

9.4. Conclusions 165

good in most cases.
The ambiguity nodes are created by the cocoon mechanism, which, although trivial

in its original form, has proven to provide exactly the right abstraction. A cocoon is
created wherever a conditional branch in the control flow is encountered during
analysis. For each alternative control path a chainer is created to mimic memory.
Since the cocoons not only register variables of the program, but also conditions and
pointers used by the abstract evaluation function, they support the analysis of
complicating features, such as escapes and aliasing, effectively.

Applications that require an extensive use-definition analysis benefit most from using
the demand graph; some become trivial, as for instance the Static Allocation
application described in section 7.2. A great advantage of the demand graph
representation is that an operation is only connected to those operations that are
relevant to it. Two sets of operations that are not dependent on each other are
analyzed separately. One advantage of this is that it is often sufficient to propagate
local assertions, which contain only information that is relevant locally. Most other
analysis methods require global assertions, which cannot be both precise and of
manageable size, since they contain information on the total state of the program.
Another advantage of the separation is that a simple optimization technique is more
often successful, since the exceptional cases for which the technique fails affects only the
analysis of a small part of the program. In this respect the demand graph is similar to
the Extended Data Flow Graphs proposed by Ferranti&Ottenstein [Ferr83]. The main
difference is that the latter representation does not contain ambiguity nodes, but labels
each operation with the predicate that most directly controls its execution.
Ferranti&Ottenstein avoid cycles in the graph by marking loop controlling predicates
differently and by excluding interprocedural analysis. In contrast to their
representation, each non-trivial demand graph contains cycles, which may complicate
the analysis considerably. The solutions found so far are complicated and ad hoe (see
section 7.3); a more general and more elegant way of dealing with cycles is needed.

DATAFLOW PROGRAMMING
Dataflow computing is one of the most proIDismg approaches to create a general
purpose parallel computer that performs well on a wide variety of tasks, including those
that do not exhibit regular and predictable parallelism. Dataflow machines are mainly
programmed in so-called dataflow languages, which belong to the family of declarative
languages. These languages have been developed because none of the existing
languages was considered to be appropriate. Especially, it has been claimed that the
imperative nature of these languages makes it difficult or even impossible to generate
dataflow code with sufficient parallelism. Two arguments are usually put forward in
support of this conclusion.

The first argument is that imperative programs obscure their parallelism by
constructs that are based on sequential execution and that removing superfluous
sequencing constraints is not a practical option. The work reported in this thesis shows
that this is not a valid argument. Chapter 8 described the code generator of a compiler
that translates a subset of the imperative language SUMMER into dataflow code. The
first two sections of this chapter show that this compiler produces code of similar
quality as a compiler for a dataflow language and that it is of similar complexity as a
conventional SUMMER implementation with static type checking. These two results lend
strong support to the hypotheses mentioned in the introduction. The translation of
other imperative languages into dataflow graphs is not expected to uncover
fundamentally new issues. Languages that rely strongly on pointer operations require

166 9. Evaluation

an efficient handling of aliases, which can be modelled on the algorithm developed for
the SUMMER implementation. Unrestricted jumps should be distinguished by direction:
a forward jump can be treated as an escape and a backward jump as a loop.

The second argument, in favor of using declarative languages for dataflow machines,
is that they lead the programmer to avoid algorithms that are hard to execute in
parallel. Unfortunately no evidence for this argument has been offered so far. If this
influence on programming style can indeed be demonstrated, it remains an interesting
question to which of the differences between imperative and declarative languages it
should be attributed. Most of the constructs in a dataflow language are easily coded in
an equivalent imperative form that can be recognized by the compiler (see e.g. the
optimizations described in section 8.6). Therefore, the interesting differences amount to
constructs that are absent in declarative languages. The comparison of declarative and
imperative languages in chapter 3 lead to the conclusion that the main advantage of
using declarative languages for parallel processing is that they require the programmer
to specify the interface of each expression (its input and outputs) explicitly. The
discussion on asymptotic complexity on the previous pages indicates that, without
locality, these interfaces grow with the square root of the program size. This soon
becomes bothersome and the programmer will tend to avoid large interfaces by writing
programs with more locality. On a parallel machine locality is often conducive to
efficient execution. If, however, data structures can be manipulated as easily as scalars,
the specification of a large interface can be abbreviated to one reference to a data
structure. Some data structure operations may therefore remove the incentive for
locality and consequently jeopardize the advantage of declarative languages for parallel
processing. So it may not be so much the declarative nature of a programming
language that makes it attractive for parallel processing, but the absence of certain
operations on data structures.

A FUNCTIONAL PERSPECTIVE ON IMPERATIVE PROGRAMS
The interpretation of an imperative program usually relies on a model that manipulates
a computational state. Such a computational model is easily mapped onto traditional
uni-processors, but it is only one of the models on which program interpretation can be
based. The computational state is not a convenient concept for either parallel
processing or for reasoning about program analysis. For these purposes a functional
interpretation, i.e. a specification of the relation between input and output, is more
convenient. In this interpretation program fragments specify what is to be
accomplished rather than how: the term 'a + b' specifies a sum rather than an
addition. A functional interpretation of a program fragment includes a specification of
its input and output. In imperative programs these are not always explicit and may
have to be uncovered. The lesson learned from this project is that this does not require
a complicated analysis, except when a significant amount of aliasing is involved. The
functional interpretation initially requires a change of perspective, but is eventually just
as natural as the interpretation by means of the computational state. The sequential
nature of an imperative program is in the eye of the beholder. The semicolon symbol,
often construed as specifying the sequential execution of two expressions, may just as
well be interpreted as specifying functional composition. There is no need for parallel
processing to exclude the misconstrued semicolon.

9.4. Conclusions 167

References
Ferr83. FERRANTE, J. AND K.J. OTTENSTEIN (Jan 1983). A Program Form Based on

Data Dependency in Predicate Regions, Tenth Annual Symposium on
Principles of Programming Languages, 217-236.

Flaj81. FLAJOLET, P. AND A. 0DLYZKO (Feb 1981). The Average Height of Binary
Trees and Other Simple Trees, Rapports de Recherche 56, INRIA -
Rocquencourt.

Kuck81. KucK, D.J., R.H. KUHN, D.A. PADUA, B. LEASURE, AND M. WOLFE (Jan
1981). Dependence Graphs and Compiler Optimizations, Eigth Annual
Symposium on Principles of Programming Languages, 207-218.

168

Appendix I

From Program to Parse Tree

This appendix specifies the grammar of the subset of SUMMER that is accepted by the
demand graph constructor and indicates the mapping from program to nodes in the
parse tree.

The grammar is given in the BNF-like notation used in [Klin82]. The symbol '!'
indicates alternatives, '*' zero or more repetitions and '+' one or more repetitions.
Optional grammar symbols are enclosed between '[' and ']'. The sequence ' { a b } +' is
equivalent to 'a (b a)*'. Each reserved word in SUMMER is printed bold; literal
symbols are within quotes.

The ~symbol indicates the translation to parse tree. The name of a node type is
given in CAPITALS. If a series of nodes of the same type may be generated, the node
name is followed by the symbol '*' or '+ '. A node name may be followed by the
names of interesting output arcs: each output arc corresponds to a non-terminal in the
preceding production rule. An arc name followed by a '*' indicates a list of output
arcs.

<summer-program> :: =
(<global-variable-declaration> I <procedure-declaration>)*

<global-variable-declaration> : : =
var { <identifier> ',' } + ';'

<procedure-declaration> :: =

(proc I program) <identifier> <formals> [<expression>] ';'
~PROC-DECL(name, formals, body)

<formals> :: = '(' { <identifier> ',' }* ')'
~PARAMETER*

<expression>::=
<monadic-expression> I <dyadic-expression> I <primary>

I. From Program to Parse Tree

<monadic-expression> : : =

<monadic-operator> <expression>
I <monadic-function> '(' <expression> ')'
~ MONOP(operand)

<monadic-operator> ::='-'I" I as.sert
~NEGATE I NOT I ASSERT

<monadic-function> : : = return I type I stop I string I integer I real
~ RETURN I TYPE I STOP I STRING I INTEGER I REAL

<dyadic-expression> :: = <expression> <dyadic-operator> <expression>
~ DYoP(left-expression, right-expression)

<dyadic-operator> :: =

'&' I 'I' I ': =' I <arithmetic-operator> I <relational-operator>
~AND I OR I ASSIGN I ARITHMETIC-DYOP I RELATIONAL-DYOP

<arithmetic-operator>::='+' I'-' I'*' I'/' I'%' I 'II'
~PLUS I MINUS I TIMES I DIVIDE I OVER! CONCATENATE

<relational-operator>::='<' I'<=' I'=' I'>' I'>=' I'-='
~LESS I NOT-GREATER I EQUAL I GREATER I NOT-LESS I NOT-EQUAL

<primary> : : = <unit> <subscript>*

<subscript> :: = '[' <expression> ']'
~ARRAY-ACCESS

<unit>::=
<constant> I <variable-or-call> I <call> I <fail-return>
I <if-expression> I <case-expression> I <while-expression>
I <for-expression> I <parenthesized-expression> I <array-expression>

<constant> : : =

<string-constant> I <integer-constant> I <real-constant> I undefined
~ CONSTANT(value)

<variable-or-call> :: = <identifier>
~ VARIABLE(name) I PROC-CALL(name, undefined)

<call> : : = <identifier> '(' <actuals> ')'
~ PROC-CALL(name, actuals)

<actuals> :: = { <expression> ','}"'
~ CALL-IN(source)*

<fail-return> :: = fretum
~ FRETURN

<if-expression> :: = if <expression> then <block> [else <block>] fi
~ IF(control, then-branch, else-branch)

169

170

<case-expression> : : =
case <expression> of {(<case-constants> I (default':')) <block>}* esac

~CASE(CASE-SELECTOR(control, case-constants*), alternatives*)

<case-constants>::= {<expression>':'}+
~CASE-CONSTANT(value+)

<while-expression> :: = while <test> do <block> od
~WHILE-LOOP(test, body)

<for-expression> :: = for <identifier> in <expression> do <block> od
~FOR-LOOP(FOR-CONTROL(counter, distributor), body)

<parenthesized-expression> :: = '(' <block> ')'

<block>::= <local-variable-declaration>* {[<expression>]';'}*
~SEQUENCE(operands*)

<local-variable-declaration> :: = var { <identifier> ',' } + ';'

<array-expression> : : =
array (<size-definition> [init <initial-values> l I <initial-values>)

~ARRAY(size, initial-values)

<size-definition> : : = '(' <expression> ',' <expression> ')'

<initial-values> :: = '[' {<expression> ','} + ']'

References
Klin82. KLINT, P. (1982). From SPRING to SUMMER, Mathematical Centre,

Amsterdam.

171

Appendix II

Algorithm for Demand Graph Construction

This appendix contains most of the algorithm described in chapter 6. Only the final
versions of each procedure are shown. Each procedure refers to the section where its
explanation can be found.

BASIC OPERATIONS

use(key) of CHAINER

if key in defiist
return defiist[key]

else if key not in uselist
E : = cocoon.entry-node(position)
uselist[key] : = E
if key is not a node

E.origin : = environment.use(key).origin
return uselist[key]

def(key, node) of CHAINER

defiist[key] : = node
attach of SEQUENCE

attach all children in order

attach of CONSTANT

source : = use(Sink)
def(Value, self)

attach of v ARIABLE

if is-a-use
def(Value, use(name))

else
def(name, use(Address))

section 6.4

section 6.3

section 6.3

section 6.3

section 6.3

172 II. Algorithm for Demand Graph Construction

attach of ASSIGN

attach right-hand side
save definition of Address
def(Address, use(Value))
attach left-hand side
def(Value, use(Address))
restore definition of Address

attach of PUT

left-source : = use(Standard-10)
attach actual parameter
def(Standard-10, self)

attach of GET

OPERATORS

source : = use(Standard-10)
def(Value, link-node(O, self))
def(Standard-IO, link-node(I ,self))

attach of DYOP

attach left operand
if Success in <leftist

install cocoon
treat-right-operand within then-chainer

dissolve cocoon
else

treat-right-operand

treat-right-operand of ARITHMETIC-DYOP
left-source : = use(Value)
attach right operand
right-source : = use(Value)
def(Value, self)

treat-right-operand of RELATIONAL-DYOP
left-source : = use(Value)
attach right operand
right-source : = use(Value)
def(Success, self)

treat-right-operand of AND

attach right operand

attach of OR

attach left operand
install cocoon

attach right operand within else-chainer
dissolve cocoon

section 6.3

section 6.3

section 6.3

section 6.4

section 6.3

section 6.3

section 6.3

section 6.4

CONDITIONALS

LOOPS

attach of IF

attach condition
create CONDITIONAL-COCOON

link control of cocoon to use(Success)
attach then-branch within then-chainer
attach else-branch within else-chainer
dissolve cocoon

dissolve of CONDITIONAL-COCOON

create-branch-nodes
create-merge-nodes
export-definitions

create-branch-nodes of CONDITIONAL-COCOON

for each name that occurs in some <leftist
create BRANCH node and enter into export-list
link each outlink of BRANCH node

to use(name) in appropriate chainer

create-merge-nodes of CONDITIONAL-COCOON

for each name that occurs in some uselist
create MERGE node and link to use(name)
link LINK-IN nodes in uselists to MERGE node

export-definitions of CONDITIONAL-COCOON

for each [name,node] in export-list
def(name, node)

attach of WHILE

create LOOP-COCOON

attach test-branch within test-chainer
set control of cocoon to use(Success)
attach body-branch within body-chainer
dissolve cocoon

dissolve of LOOP-COCOON

for each name in some <leftist or uselist
create EXIT-LOOP node X
link X to use(name) in test-chainer
if name in uselist of test-chainer

let Ebe the ENTRY-LOOP node uselist[name]
link E.entry to use(name)
link E.last to use(name) in body-chainer

if name in uselist of body-chainer
link uselist[name] to X.last

if name in some <leftist
def(name,X)

173

section 6.4

section 6.4

section 6.4

section 6.4

section 6.4

section 6.4

section 6.4

174 II. Algorithm tor Demand Graph Construction

PROCEDURES

attach of PROCEDURE
if not yet done

create PROC-COCOON
push new chainer

def(Returns, Never)
def(Return-value, Void)
attach body

pop chainer
dissolve cocoon

attach of PROC-CALL
attach called procedure
treat-operands(actual parameters)
for each <name,node> in inglobals

link node to CALL-OUT(use(name))
for each <name,node> in outputs

def(name, CALL-IN(node))

treat -operands(list -of-operands)
treat-operand(first of list-of-operands)
if rest of list-of-operands is not empty

if Exits in <leftist
create CONDITIONAL-cocooN and push else-chainer

if Returns in <leftist
create CONDITIONAL-COCOON and push else-chainer

if Success in deftist
create CONDITIONAL-COCOON and push then-chainer

treat-operands(rest of list-of-operands)
pop chainers and dissolve cocoons

treat-operand(actual) of PROC-CALL
attach actual
link formal PARAMETER node to CALL-OUT(use(Value))

attach of RETURN
def(Returns, Always)
if there is an operand

attach operand
def(Return-value, use(Value))
def(Return-signal, use(Success))

else
def(Return-signal, Always)

attach of FRETURN
def(Returns, Always)
def(Return-signal, Never)

section 6.5

section 6.5

section 6.4

section 6.5

section 6.5

section 6.5

II. Algorithm for Demand Graph Construction

ARRAYS

dissolve of PROC-COCOON

for each [name,node] in <leftist
if name is global variable

outputs[name] : = RESULT(node)
else if name is Return-value

outputs[Value] : = RESULT(node)
else if name is Return-signal

outputs[Success] : = RESULT(node)
for each [name,node] in uselist

if name is global variable
inglobals[name] : = node

else if formal parameter
formals[position of formal] : = node

attach of ARRAY

attach each initializing value and
if any of their origin fields is not Simple

error 'more dimensional array'
origin : = self
def(Value, selt)
def(origin, self)

attach of ARRAY-ACCESS

if this is an update
source : = use(Address)
if source.origin is not Simple

error 'more dimensional array'
attach index
attach object
object-source : = use(Value)
connect-to-previous-update(object-source.origin)
if this is an update

def(object-source.origin, self)
else

def(Value, self)

connect-to-previous-update(object-origin) of ARRAY-ACCESS

previous-update : = object-origin.alias-access-graph

175

section 6.5

section 6.6

section 6.6

section 6.7

176 II. Algorithm for Demand Graph Construction

CONDITIONAL ALIASING

alias-access-graph of ARRAY and BRANCH
return node returned by descend
set lacap to Laca

descend of LINK-OUT

case lacap of
Descendant:

return node returned by descend of child
Ancestor:

return node returned by use(parent)
set lacap to Ancestor

descend of ARRAY and BRANCH

if request already treated
transmit to children

else
case lacap of

Laca:
return node returned by use(selt)

Descendant:
return new ACCESS-BRANCH node with each

LINK-OUT node linked to descend of corresponding child
Ancestor:

return node returned by treat-predecessor(first predecessor)
transient-def(self, node to be returned)

set lacap to Ancestor

ascend(default-access, requesting-node) of BRANCH
return new ACCESS-BRANCH node with each

LINK-OUT node linked to either
if branch corresponds to requesting-node

treat-predecessor(first predecessor)
else

default-access

section 6.7

section 6.7

section 6.7

section 6.7

treat-predecessor(current-predecessor) of ARRAY and BRANCH section 6.7
if request already treated or no more predecessors or lacap-= Ancestor

return use(self)
else

return ascend(treat-predecessor(next predecessor)) of current-predecessor

ascend(default-access) of LINK-OUT

case lacap of
Ancestor:

return node returned by ascend(default-access, self) of parent
Descendant:

node to be returned is default-access
set lacap to Descendant

section 6.7

ACCESS BRANCH node
acknowledge method
acyclic condensation
acyclic graph
algorithmic content
algorithmic weight
alias access graph
alias graph
aliasing
ancestor
AND node
application
ARITHMETIC-DYOP node
ARRAY node
ARRAY-ACCESS node
assertion
assertion lattice
assertion space
ASSIGN node
attach
attribute grammars
average parallelism
backward propagation
basic block
basic instruction
bit vector type application
BRANCH node
call graph

Index

109
16
56
56

158
158
67

110
60, 79, 86, 104

56
96
56
90

104
104

57, 59
120
119
90
89
67

158
59, 127, 139

61
131
58

13, 73, 93
60

177

178

CALL-IN node
CALL-OUT node
case expression
chain
chain er
CHAINER node
cocoon
code copying
complete array update
completion detection
complexity
conditional aliasing
conditional control flow
connected graph
CONSTANT node
contention
control flow graph
current chainer
cycle breaker
cycle entry
cyclic data structure
data-dependency analysis
dataflow graph
dataflow program
declarative language
deflist
demand graph construction
demand graph method
demand propagation
descendant
dynamic machines
dynamic node
DYOP node
effective utilization
enabling
enabling unit
ENTRY-LOOP node
escape
EXIT-LOOP node
extensibility
fail mechanism
fetching unit
firing
floating point fraction
forward propagation
functional element
functional language
functional unit
GET node
global assertion

101
101
94
57
71

90, 94
72, 94
17, 28

155
147
161

80, 108, 150
13, 92

56
90
9

61
71, 72

124
125

79, 103, 163
61
12

11, 131
45

89, 94
70, 83

66
48, 80, ll8

56
21, 28

19
96

9, 38
12
20

77, 99
78, 85, 95, 102

77, 99
9

85, 95
20, 31

12
39, 158
59, 119

23
45,48
20, 32

92
58

179

global variable 78, 89, 100
head 56
high level method 63
IF node 94
induced use 75, 93
instance header 147
interface node 72
interprocedural aliasing 163
interprocedural analysis 60, 100
interval analysis 63
ID-graph 91, 140
LA CAP 109, 151
Last Accessed Conditional Alias 111
LINK node 93
lock method 16
loop constant 152
low level method 61
macro instruction 131
matching function 33
matching space 21, 39
matching unit 20,33
meet semilattice 57
MERGE node 73, 93
OR node 96
overloading 86, 163
parallel computers 8
PARAMETER node 78, 101
parse tree 68
port 12
predecessor 56
priming 15
program graph 61
propagation control 123, 124, 136
propagation rule 57, 59, 121
PUT node 91
recursion 78, 88
recursive descent 63
reducible graph 56, 61
reduction cycle 155
reentrant graph 15
RESULT node 78, 101
RETURN node 102
safe graph 14
SEQUENCE node 90
side-effect 45, 50
signal node 95
single assignment language 45
sink-of-demands 70, 91
SISAL 46
source-of-demands 70, 91

180

Static Allocation application
static ambiguity
static machines
strict
strictness analysis
strongly connected component
structure copying
structure storing
successor
SUMMER

syntax tree
tag
tail
token
trigger subgraph
use-definition chaining
use/ist
Value Approximation application
value node
v ARIABLE node
vector processors

127
73

21, 27
12
49
56

24, 138
24, 138, 144

56
83
68

17, 29
56
12

136, 139
61
94
57

71, 95
90
IO

MATHEMATICAL CENTRE TRACTS
I T. van der Walt. Fixed and almost fixed points. 1963.
2 A.R. Bloemena. Sampling from a graph. 1964.
3 G. de Leve. Generalized Markovian decision processes. part
I: model and method 1964.
4 G. de Leve. Generalized Markovian decision processes. part
II: probabilistic background. 1964.
5 G .. de Leve. H.C. Tijms, P.J. Weeda. Generalized Markoviun
del'ision processes, applications. 1970.
6 M.A. Maurice. C<Jmpact ordered spaces. 1964.
7 W.R. van Zwet. Convex transformations of random variables.
1964.

8 J.A. Zonneveid. Automatic numerical integration. 1964.
9 P.C. Baayen. Universal morphi,·ms. 1964.
IO E.M. de Jager. Applications of distributions in mathematical
phrsics. 1964.

11 A.B. Paalman-de Miranda. Topologi("QI semigroups. 1964.
12 J.A.Th.M. van Berckel. H. Brandt Corstius. R.J. Mokken.
A. van Wijngaarden. Formal properties '!f newspaper Dutch.
1965.

13 H.A. Lauwerier. A,~rmptotic expansions. 1966, out of print:
replaced by MCT 54.

14 H.A. Lauwerier. Calculus of variations in mathematical
phrsics. 1966. ·

15 R. Doornbos. Slippage tests. 1966.

16 J.W. de Bakker. Formal definition 3·programminf;
~a9nlf.ages with an application to the d~ mition of AL Ol 60.

17 R.P. van de Riel. Formula manipulmio11 in ALGOL 60.
part I. 1968.
18 R.P. van de Riet. Formula manipulation in ALGOL 60,
part 2. 1968.

19 J. van der Slot. Some properties related to compactness.
1968.

20 P.J. van der Houwen. Finite d{fference methods.for solving
partial differemial equations. 1%8.
21 E. Wattel. The compacmess operator in set theory and
topologr. 1968.
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra.
part I. 1968.
23 T.J. Dekker. W. Hoffmann. ALGOL 60 prcx·edures in
numerifal algebra. part l. 1968.
24 J. W. de Bakker, Recursive procedures. 1971.
25 E.R. Paerl. Represemations of the Lorent: group and prtljec­
tive geometry.·. 1969.

26 European Meeting 1968. Selefted siatistical papers, part I.
1968.

27 European Meeting 1968. Sele<·ted statistical papers, part I/.
1968.

28 J. Oosterhoff. Combination of one-sided statistical tests.
1969.

29 J. Verhoefr. Error detecting decimal codes. 1969.
30 H. Brandt Corstius. Exercises in rnmpulalional linguistic.~.
1970.

31 W. Molenaar. Approximations 10 the Poisson. binomial and
~ipergeometric distribution functions. 1970.
32 L. de Haan. On ref{Ular variation and its applirntion to the
weak convergence of sample e:ctremes. 1970.

33 F.W. S1eutel. Preservation ~f infinite dh•isibili~r under mix·
ing and related topics. 1970.
34 I. Juhasz. A. Verbeek. N.S. Kroonenberg. Cardinal.fim<"­
tions in topologi·. 1971.

35 M.H. van Emden. An ana~rsis of comp/e:r:i~r. 1971.
36 J. Grasman. On the birth of boundan· larers. 1971.
37 J.W. de Bakker. G.A. Blaauw. A.J.W. Duijvestijn. E.W.
Dijkstra. P.J. van der Houwen. G.A.M. Kamsteeg-Kemper.
F.E.J. Kruseman Aretz. W.L. van der Poel. J.P. Schaap­
Kruseman. M.V. Wilkes. G. Zoutendijk. MC-25 /nformaticu
Srmposium. 1971.

38 W.A. Verloren van Themaat. Automatic ana~rsis ~f Dwch
compound words. 1972.

39 H. Bavinck. Jacobi series and approximation. 1972.
40 H.C. Tijms. Analrsis of(s.S) inventon· models. 1972.
41 A. Verbeek. Superextensions of topological spaces. 1972.
42 W. Vervaat. Success epochs in Bernoulli trials (with applirn­
tions in number theor:rJ. 1972.

43 F.H. Ruyrn5a.art. A~rmp101ic theory ~frank tests.for
independence. 1973.

44 H. Bart. Meromorphic operator valued .flm<'lions. 1973.
45 A.A. Balke013. Monorone transformations and limit lwn·.
1973.
46 R.P. van de Riet. ABC ALGOL. a portable la11guage/i1r
formula manipulation ~rstems, part I: the language. 1973.
47 R.P. van de Riet. ABC ALGOL. a portable language for
formula manipulation systems, part L the <·ompiler. 1973.
48 F.E.J. Kruseman Aretz. P.J.W. ten Hagen. H.L.
Oudshoorn. An ALGOL 60 compiler in ALGOL 60, text of the
MC-compiler for the £L-X8. 1973.
49 H. Kok. Connwed orderable spaces. 1974.
50 A. van Wijngaarden. B.J. Mailloux. J.E.L. Peck. CH.A.
Koster. M. Smtzoff. C.H. Lindsey. LG.LT. Meertens. R.G.
Fisker (eds.). Revised report on the algorithmic language
ALGOL 68. 1976.

51 A. Hordijk. Dynamic proxramming and Markm· potential
theon·. 1974.
52 P:c. Baayen (ed.). Topological structures. 1974.

53 M.J. Faber. Metri:ahili~r in generali=ed ordered spaces.
1974.

54 H.A. Lauwerier. A.~rmptotic ww(rs1s. part 1. 1974.
55 M. Hall. Jr .. J.H. van Lint (eds.). Combinatorics. part I:
theon· of designs. finite geometry and coding theory. 1974.
56 M. Han. Jr .. J.H. van Lint (eds.). Comhinatori<·s. part L
graph theorr, foundations. partitions and combinatorial
geometry. f914.
57 M. l-lall. Jr .. J.H. van Lint (eds.). Comhinatori<"s. part 3:
comhinatorial group theo~r. 1974.

58 VI_. Alb~rs. A~i·mptolic expansions and the dejkiem:r con·
cept m stallstics. 1975.
59 J.L. Mijnheer. Sample path properties ~l stable pr0<·esses.
1975.
60 F. Gobel. Q11eueing models im·oMng hujfers. 1975.
63 J.W. de Bakker (ed.). Foundations c?f' computer scienn'.
1975.
64 W.J. de Schipper. Symmetric dosed categories. 1975.
65 J. de Vries. Topological transf(Jrmarion groups. I: a rntegor-
1cal approach. 1975.
66 H.G.J. Pijls. Logical(r convex algebras in spectral theory
and eigenfunction expamiom. 1976.
68 P.P.N. de Groen. Singular(r perturbed d{lli?remial operator.\·
of' second order. 1976.
69 J.K. Lenstra. Sequencing l~r enumeratl\'e methods. 1977.
70 W.P. de Roever. Jr. Recursive program schemes: semantics
and proof theory. 1976.
71 J.A.E.E. van Nunen. Comracting Markm· decision
processes. I 976.

72 J.K.M. Jansen. Simple periodic and non·periodic Lame
functions and their applicatim1s in the theory <?/'conical
v.·aveguid<'S. 1977.
73 D.M.R. Leivant. Absoluteness <fintuitionisric logic. 1979.
74 H.J.J. te Riele. A theoretical and computational study <f
generali:ed aliquot sequencc•s. 1976.
75 A.E. Brouwer. Treelike spaces and related nmm•cted ropo·
logical spaces. 1977.
76 M. Rem. Associons and the closure statemelll. 1976.
77 W .C.M'. Kallenberg. A.~rmp101ic optimali~I' rf likelihood
ratio test.~· m exponemial families. I 978.
78 E. de Jonge. A.CM. van Rooij. lntrodut·twn to Ries.:
sp0<·es. 1977.
79 M.C.A. van Zuijlen. Emperi<·al distributiom and ran/.:
statistics. 1977.
80 P.W. Hemker. A numerical stuc{r o(st!ff nm-poim hmmdw:r
prohlems. 1977.
81 K.R. Apt. J.W. de Bakker (eds.). Foundmions rf compwa
science II. part I. 1976.
82 K.R. Apt. J.W. de Bakker (eds.). Foimdations 1frnmp111er
snence II, part l. 1976.
83 L.S. van Benthem Jutting. Checking Lmulau's
"Grwullagen" in the AUTOMATfl .~1·stem. 1979.
84 H.L.L. Busard. The• translation of the elt'mems tf Euclid
f'rom the Arahic into Latin br Herm'ann olCarinthia (?).hooks
·\·ii-xii. 1977. · ·

85 J. van Mill. Supercompacmess and Wallman spacn 1977.
86 S.G. van der Meulen. M. Veldhorst. Torri.'\ I. a proxram·
ming srstem for operations on rectors and matrice.\· m·er arhi­
trcm· fields cmJ of \'ariahle si.:e. 1978.
88 A.: Schrijver . . Matroids and linking .~ntt'ms. 1977.
89 .l.W. de Roever. Complex Fourier tran.~formatum and
cmu(rtic /Unctionals lt'ith unbounded rnrrias. I 978.

90 L.P.J. Groenewegen. Charac1erization of oplimal strategies
in dynamic.games. 1981.
91 J.M. Geysel. Transcendence infields of positive characteris­
tic. 1979.
92 P J. Weeda. Finite generalized Markov programming. 1979.
93 H.C. Tijms, J. Wessels(eds.). Markov decision theory.
1977.
94 A. Bijlsma. Simultaneous approximations in transcendental
number theory. 1978.
95 K.M. van Hee. Bayesian comro/ of Markov chains. 1978.
96 P.M.B. Vitilnyi. lindenmayer systems: structure. languages,
and growth functions. 1980.
97 A. Federgruen. Markovian control problems; functional
equations and algorithms. 1984.
98 R. Geel. Singular perturbations of hyperbolic type. 1978.
99 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Boas
(eds.). Interfaces between compute; science and operations
research. I !l78.
100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed­
ings bicentenniatcongress of the Wiskundig GenOOlschap; part
I. 1979.
101 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed­
ings bicentennial congress of the Wiskundig Genootschap, part
2. 1979.

:~~8~. van Dulst. Reflexive and superrejlexive Banach spaces.

103 K. van Ham. Classifving inflnilely divisible distributions
by functional equations. 11J7!f.
104 J.M. van Wouwe. Go-spaces and generalizations of metri­
zabi/ity. 1979.
I05 R. Helmers. Edgeworth expansions for linear combinations
of order statistics. 1982.
:~9A. Schrijver (ed.). Packing and covering in combinatorics.

107 C. den Heijer. The numerical solution of nonlinear opera·
tor equations l>y imbedding methods. 1979.
108 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science III, part J. 1979.
109 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science Ill, part 2. 1979.
110 J.C. van Vliet. ALGOL 68 transput, part I: historical
review and discussion of the implementation model. 1979.

:~t:o!.(;.;~d r;;~: ALGOL 68 transput, part II: an implemen-

112 H.C.P. Berbee. Random walks with .ftationary increments
and renewal theory. 1979.
113 T.A.B. Snijders. Asymptotic optimality theory for testing
problems with restricteO alternatives. 1979.
114 A.J.E.M. Janssen. Application of the Wigner distribution to
harmonic analysis of generalized stochastic processes. 1979.
115 P.C. Baayen, J. van Mill (eds.). Topological structures II,
part J. 1979.
116 P.C. Baayen, J. van Mill (eds.). Topological structures II,
part l. 1979.
117 P.J.M. Kallenberg. Branching processes with continuous
state space. 1979.
118 P. Groenehoom. Large deviations and asymptotic efficien­
cies. 1980.
119 F.J. Peters. SP'!rse matrices and sribstructures, with a novel
implementation ojjinite element algorithms. 1980.
120 W.P.M. de Ruyter. On the asymptotic analysis of large­
scale ocean circulation. 1980.
121 W.H. Haemers. Eigenvalue techniques in design and graph
theory. 1980.
122 J.C.P. Bus. Numerical solution of systems of nonlinear
equations. J 980.

:;~a'.- Yuhasz. Cardinal functions in topology - ten years later.

124 R.D. Gill. Censoring and stochastic integrals. 1980.
125 R. Eising. 2-D systems, an algebraic approach. 1980.
126 G. van der Hoek. Reduction methods in nonlinear pro­
gramming. 1980.
127 J.W. Klop. Combinatory reduction systems. 1980.
128 A.J.J. Talman. Variable dimension fixed point algorithms
and triangulations. 1980.
129 G. van der Laan. Simplicialfixed point algorithms. 1980.
130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J.
Sint. A.H. Veen. ILP: intermediate language for pictures.
1980.

131 R.J.R. Back. Correctness preserving program refinements:
proof theory and applications. 1980.
132 H.M. Mulder. The interval function of a graph. 1980.
!33 C.A.J. Klaassen. Statistical peiformance of location esti­
mators. 1981.
134 J.C. van Vliet. H. Wupper (eds.). Proceedings interna­
tional conference on ALGOL 68. 1981.
!35 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methodS in the study of language, part I. 1981.
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methodS in the study of language, part II. 1981.
137 J. Telgen. Redundancy and linear programs. 1981.
138 H.A. Lauwerier. Mathematica/ models of epidemics. 1981.
139 J. van der Wal. Stochastic dynamic programming. succesM
sive approximations and nearly optimal strategies for Markov
decision processes and Markov games. 1981.
140 J.H. van Geldrop. A mathematical theory of,r,.ure
J98~~nge economies without the noMcritica/Mpoint rypothesis.

141 G.E. Welters. Abel-Jacobi isogenies for certain (vpes of
Fano threefolds. 1981.
142 H.R. Bennett, D.J. Lutzer (eds.). Topology and order
structures, part I. 1981.
143 J.M. Schumacher. Dynamic feedback in finite- and
infinite·dimensiona/ linear" systems. 1981.
144 P. Eijgenraam. The solution of initial value problems using
;n~g';':al arithmetic; formulation and analysis of an algorithm.

145 A.J. Brentjes. Multi·dimensional continued fraction algoM
rithms. 1981.
146 C.V.M. van der Mee. Semigroup and factorization
methods in transport theory. 1981.
:~~r.·H. Tigelaar. Identification and informative sample size.

148 L.C.M. Kallenberg. Linear programming and finite Mar­
kovian control problems. 1983.
149 C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg.
W.K. Vietsch (eds.). From A to Z, proceedings of a symposium
in honour of A.C. Zaanen. 1982.
150 M. Veldhorst. An analysis of sparse matrix storage
schemes. 1982.
151 R.J.M.M. Does. Higher order asymptotics for simple linear
rank statistics. 1982.
~~i2?.F. van der Hoeven. Projections of lawless sequences.

153 J.P.C. Blanc. Af;'Plication of the theory of boundary value
problems in the anarysis of a queueing mOdel with paired ser­
vices. 1982.
154 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational
methods in number theory, part I. 1982.
155 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational
methods in number theory, part ll. 1982.
I 56 P.M.G. Apers. Query processing and data allocation in
distributed database systems. 1983.
157 H.A.W.M. Kneppers. The covariant classification of two­
dimensional smooth commutative formal groups over an alge·
braica/ly closed field of positive characteristic. 1983.
158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science IV, distributed systems, part 1. 1983.
159 J.W. de Bakker. J. van Leeuwen (eds.). Foundations of
computer science IV, distributed systems, part 2. 1983.
160 A. Rezus. Abstract A UTOMATH. 1983.
161 G.F. Helminck. Eisenstein series on the metaplectic group.
an algebraic approach. 1983.
162 J.J. Dik. Tests for preference. 1983.
163 H. Schippers. Multiple grid methods for equations of the
second kind with applications in fluid mechanics. 1983.
164 F.A. van der Duyn Schouten. Markov decision processes
with continuous time parameter. 1983.
165 P.C.T. van der Hoeven. On point processes. 1983.
166 H.B.M. Jonk.ers. Abstraction, specification and implemen~
~':J~~~ techniques, with an application to garbage collection.

167 W.H.M. Zijm. Nonnegative matrices in dynamic program·
ming. 1983.
168 J.H. Evertse. Upper bounds for the numbers of solutions of
diophantine equations. 1983.
169 H.R. Bennett, D.J. Lutzer (eds.). Topology and order
structures, part 2. 1983.

CW/ TRACTS
I D.H.J. Epema. Surfaces with canonical ~:i-perplane sedions.
1984.
2 J.J. Dijkstra. Fake topological Hilbert spaces and characteri­
zations of dimension in terms of negligibility. 1984.
3 A.J. van der Schaft. System theoretic descriptions of physical
systems. 1984.
4 J. Koene. Minimal cost flow in processing networks, a primal
approach. 1984.
5 B. Hoogenboom. lntertwiningfunctions on compact Lie
groups. 1984.
6 A.P.W. Bohm. Dataflow computation. 1984.
7 A. Blokhuis. Few-distance sets. 1984.
8 M.H. van Hoom. Algorithms and approximations for queue­
ing systenu. 1984.
9 C.P J. Koymans. Models of the lambda calculus. 1984.
10 C.G. van der Laan, N.M. Temme. Calculation of special

functions: the gamma funetion, the exponential integrals and
error-like functions. 1984.

},]s;;~~~~:~. ~~:4_controlled Markov processes; time-

12 W.H. Hundsdorfer. The numerical solution of nonlinear
stiff initial value problems: an analysis of one step methods.
1985.
13 D. Grune. On the design of ALEPH. 1985.
14 J.G.F. Thiemann. Analytic spaces and dynamic program­
ming: a measure theoretic approach. 1985.
15 F.J. van der Linden. Euclidean rings with two infinite
primes. 1985.
16 R.J.P. Groothuizen. Mixed ellipth--~vperbolic partial
differential operators: a case-study in Fourier integral opera­
tors. 1985.
17 H.M.M. ten Eikelder. Symmetries for dynamical and Ham­
iltonian systemr. 1985.
18 A.D.M. Kester. Some large deviation results in statistics.
1985.
)9 T.M.V. Janssen. Foundations and applications of Montague
grammer, part l: Philosophy, framework, computer science.
1986.
20 B.F. Schriever. Order dependence. 1986.
21 D.P. van der Vecht. Inequalities for stopped Brownian
motion. 1986.
22 J.C.S.P. van der Woude. Topological dynamix. 1986.
23 A.F. Monna. Methods, concepts and ideas in mathematics:
aspects of an evolution. 1986.
24 J.C.M. Baeten. Filters and ultra.filters over definable subsets
of admissible ordinals. 1986.
25 A.W.J. Kolen. Tree network and planar reclilinear location
theory. 1986.
26 A.H. Veen. The misconstrued semicolon: Reconciling
imperative languages and da1aflow machines. 1986.

