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CHAPTER O. INTRODUCTION 

This thesis deals with definability theory. Definability theory 

is the result of the confluence and common development of 

recursion theory and axiomatic set theory. 

Recursion theory developed in the 1930's as an attempt to give 

a rigorous meaning to the notion of a mechanically or 

algorithmically computable function. Such a function is, in a 

natural sense, more constructive and less complex than an 

arbitrary function. Work of Church, Kleene and Turing showed 

that there are several equivalent characterizations of the class 

of recursive functions. Subsequently, their work was further 

developed, extended and generalized. In particular, several 

suggestions were given to do recursion theory on an ordinal 

larger than w (the ordinal of the natural numbers}. 

Axiomatic set theory developed in the first decade of the century, 

after the Russell paradox established the inconsistency of naive 

set theory. Naive set theory starts from the idea, that any 

collection of objects forms a set, and that such a collection 

can be given by a property, or more precisely, by a formula in a 

formal language, the language of set theory, which is the 

language of predicate logic with equality, enriched with a binary 

relation G, the element relation. Thus, naive set theory expresses 
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the idea, that if ~(x) is any formula of this language, then 

{x: ~(x)} (the collection of all x such that ~(x)) is a set. 

The inconsistency arises, if we consider {x : x ~ x}. 

Therefore, axiomatic set theory uses the so-called cumulative 

hierarchy to build up sets from the bottom. We start from 0 

(the empty set), have levels indexed by the ordinal numbers, 

and form the next level by taking subsets of sets in the previous 

level. Now, Zermelo-Fraenkel set theory (ZF) takes all subsets 

of a given set, uses the power set operation to go from one 

level to the next, but does not specify the power set operation, 

does not say what constitutes a subset of a given set. 

Then, we get the levels V of the cumulative hierarchy, and the 
a 

universe of set theory V = U{V : a an ordinal}. 
a 

Then, GOdel defined and used the constructible universe L in the 

1930's. He uses a hierarchy as in the construction of V, but 

restricts the power set operation, taking only subsets of a 

given set that are definable, i.e. given by a formula of set 

theory, thus going back to the idea of naive set theory. Then, we 

obtain the levels L (a an ordinal) of the constructible hierarchy. a 

Now, Takeuti discovered in the early 1960's that a set is a 

recursive subset of an ordinal a just in case it is definable by 

a restricted formula over La' so that recursion theory over 

ordinals becomes the same as definability theory over the 
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constructible hierarchy. Thus, the link between recursion theory 

and axiomatic set theory was forged. 

Central to definability theory is the notion of an admissible 

ordinal. This notion arises out of the notion of a recursive 

ordinal in the work of Church and Kleene. This work can be seen 

as the recursive counterpart to the classical theory of ordinals; 

the least nonrecursive ordinal w1 c is the recursive analogue of 

w1 , the least uncountable ordinal. In the same way, an admissible 

ordinal is the recursive analogue of a regular cardinal. To be 

a little bit more precise, an ordinal K is a regular cardinal 

if no sequence of ordinals of length less than K can be cofinal 

in K (i.e. can have sup K), and an ordinal K is admissible if 

no sequence of ordinals of length less than K, that is definable 

by a restricted formula over L , can be cofinal in K. 
K 

The first admissible ordinal is w, and the second is w1 c. 

The important advance made possible by the definition of admissible 

ordinal is that it allows one to study recursion on important 

ordinals (like w1 c) which are not cardinals, but countable. 

Kripke and Platek introduced admissible ordinals in the 1960's, 

and Barwise [1975) clearly establishes the importance of the 

notions of admissibility and definability. 

Then, we can study large cardinals (cardinals that cannot be shown 

to exist in ZF) by studying their recursive analogues. 
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Thus, Richter & Aczel [1974] study recursively inaccessible, 

recursively Mahlo and reflecting ordinal~, and in Kranakis [1980] 

we find recursive analogues of indescribable, weakly compact, 

Ramsey and Erdos cardinals (also see Phillips [1983] for some of 

these). Kaufmann [1981] started the study of recursive analogues 

of measurable cardinals, with which this thesis is mainly 

concerned. Work on this subject is also done in Kranakis [1982b], 

Kaufmann & Kranakis [1984] and Phillips [1983]. 

Measures were first studied by Lebesgue in connection with the 

real line. It was soon shown, using the axiom of choice, that 

not all sets of real numbers can be Lebesgue-measurable, and 

Ulam and Tarski showed in the 1930's that the property of having 

a total measure on a set is a property of the cardinal of that 

set. A cardinal admitting a total measure, or equivalently, a 

complete nonprincipal ultrafilter, was called a measurable 

cardinal, and it soon turned out that measurable cardinals, if 

they exist, must be very big, much bigger than any cardinals 

studied until then. One of the theorems about these cardinals 

says, that if K is measurable, P is a property expressible by 

a ITI formula, and K has this property, then K is the Kth cardinal 

with this property. Thus, the property of measurability cannot 

be expressed by a ITi formula, is ITi-indescribable, and 

consequently it is very difficult to imagine a process which 
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builds up from smaller ordinals to give the first measurable 

cardinal. Results like these have led many people to believe 

that measurable cardinals should not exist, but so far, much 

work in this direction has led to many results, but not to a 

proof of non-existence. In the meantime, the class of measurable 

cardinals has become the most studied and most intriguing class 

of large cardinals. 

This monograph studies recursive analogues of measurable 

cardinals, using techniques from definability theory and 

admissibility theory on the constructible hierarchy. 

We will see that there are different possibilities to pick 

recursive analogues, that some properties of measurable cardinals 

still hold, such as the existence of end extensions, that other 

properties do not hold, such as the equivalence between the 

existence of ultrafilters and the existence of normal ultrafilters, 

and that in general we have more differentiating and refined 

notions. Thus, an analogue of Fodor's theorem, proved in 

chapter II, immediately leads to certain definability questions 

that have no meaning in the classical case. Also, we will see 

that these recursive analogues can be shown to exist in ZF, 

so without assuming any large cardinal axioms. 

Recursive analogues of measurable cardinals are ordinals, 

mostly countable, that have filters, that 
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are complete ultrafilters, or normal ultrafilters, only on a 

Boolean algebra of definable subsets, not on the whole power set. 

These so-called definable filters and ultrafilters are defined 

in chapter I. In chapter II, we first look at definable filters, 

define an analogue of the co-finite filter on w, and use it to 

relate the existence of definable filters to admissibility. 

In the second half of chapter II, we study definable normal 

filters, look at definable closed unbounded and stationary sets, 

and find the surprising result that in this setting, closed 

unbounded sets never form a normal filter. In chapter III, we 

discuss definable ultrafilters and definable normal ultrafilters. 

In the first section we relate their existence to the existence 

of certain end extensions, and in the second section we prove an 

extension theorem: on a countable ordinal, we can extend a 

definable filter to a definable ultrafilter, and extend a 

definable normal filter to a definable normal ultrafilter, This 

is of course completely contrary to the ciassical case. 

Another difference we find is that the existence of a definable 

normal ultrafilter is not equivalent to the existence of a 

definable ultrafilter, 

Finally, in chapter IV we see that definable ultrafilters 

cannot really be too definable, so e.g. there is no definable 

normal filter for which the membership relation is first 

order definable. 
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CHAPTER I. PRELIMINARIES AND NOTATION 

§1. Set theory 

1. 1 Lower case Greek letters a, S, y, fl, K, A, JJ, \J, ~, P, C5 

stand for ordinal numbers; w is the least infinite ordinal and 

w1 is the least uncountable ordinal. 

Lower case Latin letters n, m, k, 1 stand for non-negative integers, 

IMPORTANT: Throughout this thesis, K is an ordinal such that 

WK = K, and n an integer with n>O. 

1.2 Capital Latin letters X,Y, Z, A, B, c, ... stand for sets. 

Our set-theoretic notation is standard. We mention: 

X-Y = {x e X : x ~ Y}; 

Px 

{f 

{Y 

f :X--->Y}; 

Y £ X}, the power set of X; 

f: £X->Y means that dom(f) £ X and ran(f) £ Y; 

id is the identity function, 

f-l(Z) = {x e X : f(x) e Z}, and 

fJx is the function f restricted to the set X. 

1.3 Let a be an ordinal and X i a. 

x is bounded in a if 3S<a xs;_ s. 

x is cofinal or unbounded in a if x is not bounded 

x is closed in a if VB<a sup (X n Bl e x. 

in a. 
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If <xS : S<a> is a sequence of subsets of a, then we define their 

diagonal intersection S~aXS by: 

0 E S~aXS iff VS<a 0 E x 6, and if ~>O, ~<a, then 

~ E S~ax~ iff VS<~ ~ E x~. 
f: i_a~>a is regressive if VS E dom(f) f(S)<S. 

f: X~>a means that ran(f) is cofinal in a. 

§2. The constructible hierarchy 

2.1 The Levy hierarchy of classes of formulas of set theory 

(i.e. in the language {E}) is defined as follows: 

Lo = IT 0 = the set of all formulas with only bounded quantifica-

tion (where the bounded quantifiers are Vx € y and 3x € y), 

and for m<w 

/,m+l {3x 1 3x2 ••• 3xkcp k<w, cp e IT } , and 
m 

IT {lfx 1Vx 2 ••• Vxkcjl k<w, cp e ;:: } . 
m+l m 

L ~ L • w m w m 

Some other classes of formulas are defined as follows (m<w) : 

~m { cp 1jJ cp e l: I 1jJ e IT } ; 
m m 

I> { <P v 1jJ cp E ;:: , ~) e IT } ; 
m m m 

E the set of Boolean combinations 
m 

closure of L under -i, A, V. 
m 

of L formulas, i.e. the 
m 

Letters cp, ijJ, 8 will stand for formulas, and letters ~, ~ for a 

class of formulas • ..,~= {,cp : cp € ~}. 

2.2 If M <M,E> is a structure for the language of set theory 
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(i.e. J::.1 is a set and E a binary relation on M), A £rt and N £ M, 

then we say A € <I>'1~, A is <I> 1·~, or A is <I>-definable on M with 

parameters from N if there is a~€ <I> and constants a 1 , ••• ,ake 

such that for all x 1 , ••• ,xn €.M: 

<Xp •.. ,xn> e A <=> Ml= ~(xl' .. .,xn,al' ... ,ak). 

H 
If N = M, we write <I>M or even <I>M for <I>' 'M. 

Also we define ('., 1·~ = L: A~ !I IT :I~, for m<w. 
m m m 

If ~ is a formula with parameters from N, we say ~ € <I>MN if 

{<x 11 ••• ,x >€Mn: Ml=~(~)}€ cp1\.J. Likewise for <PH, <I>M. 
n 

If <I> is a class of formulas or ('., for some m<w, we write 
m 

f: .Q1_!_>M if f (as a binary relation) is cp!L 

OrdM = {a € M Ml= "a is an ordinal"}. 

2.3 G6del's constructible hierarchy is defined as follows: 

L =PL!IL:L, 
a+l a w a 

LA = a~ALa, if A is a li~itordinal, and 

L = U{L : a an ordinal}. 
a 

We often write L for <L ,e>. 
a a 

Certain drawbacks of this construction led J~nsen to define a 

new hierarchy <J : a an ordinal> such that again 
a 

L = U{J : a an ordinal} which leads to the so-called fine­
a 

structure theory (see e.g. Devlin [1974]l. The only result we 

need from fine-structure theory is part of the 

L: -uniformization theorem, which says that every L: J relation 
n n a 

N 
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can be uniformized by a L J function, i.e. 
n a 

VR € J m(\ /, J 
a na 

m-1 3f € l, J (f: J ~>J .& dom(f) 
n a a a 

-+ -+ -+ -+ 
& Vx [3Y R(x,y) <-> R(x,f(x))] (m> 0) • 

dom(R) & 

Our assumption that for an ordinal K we always have WK=K ensures 

that J =L and so that the L -uniformization theorem holds on L • K K n K 

§3. Recursive analogues of cardinals 

3.1 If Mis a structure for set theory, we say 

M l=L -collection 
n 

if for all formulas 4' € L M we have 
n 

M 1~~ Va (VxEa 3; <jJ 
-+ 

-+3b VxEa ]y€b <jl). 

We say Ml= X-L -collection if the above only holds for all </JEL MX. n n 

Definition: K is L -admissible if L l0
" L -collection. 

n K n 

We shall need the following theorems. 

Theorem (e.g. Kranakis [1980], Kaufmann & Kranakis [1984]) 

If K is L -admissible, then L L and TI L are closed under bounded n n K n K 

quantification. 

Theorem (e.g. Kranakis [1980], from Devlin [1974]) 

If K is I, -admissible, then the L -recursion theorem holds on LK, n n 

i.e. if G € I, L is m+2-ary, then there is ~ unique m+1-ary L L n K n K 

function f such that v~ € L va<K f(x,a) = G(x,a,{<B,f(~,B)>:B<a}). 
K 

3.2 Some more definitions: 

Definition (see Devlin [1974)) 
/I, 

L I= /I, -separation <=> .., 3f: a onto, n>K for some a<K. 
K n 
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Definition (see Richter & Aczel [1974]) 

Let ~ be a set of formulas and X £ K. 

K is ~-reflecting on X if for all $ € ~L L I= $ => ::h€X L I= $. 
K K 0. 

Definition: Let M, N be structures for set theory, and m<w. 

M -< N, M is a l. -substructure of M, if M C l.J and for all $ € l. 
m m m 

(and hence for 

Ml=$(~) <=> 

-+ 
all$ €B) and a 

m 

NI=$(~). 

€ M we have 

Definition: Sm = {a.<K : L -< L }. Kranakis [1980] shows that Sm 
K 0. mK K 

is defined by a TI formula (without parameters, and uniformly in K) • 
m 

3.3 Recursive analogues of partition cardinals are studied by 

Kranakis [1982a] and Phillips [198] J. We will use two of their 

notions. 
{:, t:,n 1 

Definition: K~>(cf) 
<K 

if for all .A.<K and all f: K~>.A. there 

an a.<.A. such that f-l ({a.}) 
TI 

Definition: CK~>(cf) 1 
- <K 

is 

if 

cofinal in 

for all .A.<K 

K. 
TI 

and all 
n f: ~K~>.A., if 

dom(f) is cofinal in K, then there is an a.<.A. such that f- 1 ({a.}) 

is cofinal in K. 

3.4 If we want to discuss recursive analogueL of measurable 

cardinals, we need the notions of an end extension and a filter: 

Definition: Let M=<M,E> and N=<N,F> be structures for set theory. 

M ( 'J, f.l is an end extension of M, if M £ N and 
-e 

Va € M Vb € N (bFa -+ b € M) • 

is 
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f . 1~11 (blunt 11 De ini tion: r e I 
N is a blunt end extension of H, if 

N M 
Ord -Ord has a minimal element. 

Definition: M <>{ N if f~ ( ,1J and M <><{ IJ. 
m,e e m 

Definition: a set F i Px is a filter on X if 

i. x E F, 

ii. if Y E F and Y i z i X, then Z E F, 

iii. if Y,Z E F, then ynz E F; 

Fis proper if 0 ~ F and Ff {X}; 

Fis nonprincipal if YxEx x-{x} E F. 

3.5 Finally we define the filters we will study in this thesis: 

Definition: Let F be a proper nonprincipal 

let <P be a set of formulas or qi = /', 
m 

i. We say F is a <Ii-filter on K if 

YA<K Y<x a<;\> E <PL n AF (\ E F. 
a K a<Axa 

ii. F is a $-normal filter on K if 

Y<x 
a A x E F. 

a<:'K a 

filter on K and 

iii. F is a <P-ultrafilter on K if F is a <P-filter on K and 

Yx E <PL (\PK 
K 

X E For K-X E F. 

iv. F is a <P-normal ultrafilter on K if F ~s a <P-normal filter 

and a <P-ultrafilter on K. 
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CHAPTER II. FILTERS AND NORMAL FILTERS 

In this chapter we investigate filters, as defined in I.3.5. 

We establish some basic properties, and consider the similarities 

and differences with filters in the classical sense. Some results 

are improvements of results in § 5 of Kaufmann & Kranakis [ 1984] . 

§1. Filters 

First we look at 6 - and n -filters. We define a n -filter H, which 
n n n 

is minimal in the sense that it is included in every 6 - and IT -
n n 

filter. In 1.4 we characterize those ordinals K that have a 6 - or 
n 

IT -filter in terms of admissibility. In the remainder of the 
n 

paragraph we consider the problem of the I -filter. It is not known 
n 

whether there are ordinals that have a 6 -filter but not a I -filter. 
n n 

This problem relates to others questions, as the question in 

Kaufmann [1981] and question 3}6 in Kaufmann & Kranakis [1984]. 

This relationship is explained in III.2. Although I cannot solve the 

problem, some suggestions are given that might help to solve it. 

1.1 Definition 

H = {x i K : K-X is bounded in K}. 

For all K, this is a nonprincipal proper filter on K. We will 

find out, when it is a n - respectively a 6 -filter. 
n n 

1.2 Lemma 

If Fis a 6 1 -filter, then H s;_ F. 
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Proof 

Let :\<K. Then K-:\ =n{K-{a}: a<-x}e f, and if x e H1 there is a 

:\<K such that K-:\ i X. 

We need a lemma from Kranakis [1982a] for theorem 1.4: 

1.3 Lemma 

The following are equivalent: 

i. K is I 1-admissible 
/'; n+ 

ii.~> (cf) 1 
<K 

Now we can characterize those ordinals K that have a /'; -filter or 
n 

a IT -filter. Also see Phillips [1983], III.1.2,a. 
n 

1.4 Theorem 

The following are equivalent: 

i. K is I 1-admissible 
n+ 

ii. there is a/'; -filter on K 
n 

iii. there is a IT -filter on K 
n 

Proof 

iii + ii: immediate. 

ii+ i: This improves Kaufmann & Kranakis [1994], 5.1 and 5.2. 

Let F be a /'; -filter on K, To show K is I 1-admissible, we 
n ~ 

use 1.3, so suppose, for a contradiction, that :\<K, 
/'; 

f: K~:\, but for each a<:\ we have that f-l({a}) is bounded 



in K. Then for each a<A K-f-l ({a}) € H i. F (by 1. 2), so 

0 =f1{K -f-l({a}) : a<A} € F, a contradiction. 

i ~ iii: We show H is a n -filter on K. 
n 

A 
Let A<K and <x : a<A> € n L (\ H. We have to show 

a n K 

(\{x : a<A} € H. Take <P € n L such that 
a n K 

s € x <=> L I= <P (a, s) (for a<A, f;<K). 
a K 

Then by definition of H LK I= Va<A 38 vt;..:_B <jl(a,s) 0 

Since K is : 1-admissible, there is a y<K such that 
n+ 

LK I= Va<A 3B<y Vt;..:_S <jl(a,t;), so 

LK \= Va<A Vt;..:_y <jl(a,t;), or 

LK I= Vt;>y (Va<A <jl(a,f;)), which means fl{xa 

17 

Note that it follows from the theorem that H is a n -filter on K 
n 

iff K is I 1-admissible. 
n+ 

Now we turn to I -filters. It is obvious by 1.4 that if there is a 
n 

[ -filter on K, then K is I 1-admissible. 
n n+ 

To prove theorem 1.8, we need to borrow a result from III.1, and 

we also need a lemma from Phillips [1983]. 

1.5 Lemma (from III. 1. 9) 

If K is [ 2-admissible, then {a<K 
n+ 

is cofinal in K. 

there is a [ -filter on a} 
n 
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1.6 Lemma (Phillips (1983], II.2.5) 

The following are equivalent: 

i. K is E 2-admissible 
II n+ 

n 1 
ii. (K-~> (cf) 

- <K 

1.7 Lemma 

The following are equivalent: 

i. H is a E -filter on K 
n 

ii. K is E 2-admissible 
n+ 

Proof 

ii+ i: by the proof of 1.4 

i + ii: To show K is E 2-admissible, 
II 

n+ 

f: 
n . 

for A.<K and i._K~.~>A some suppose 

we use 1. 6, so 

that for all a<A. 

f-l({a}) is bounded in K· We have to show that dom(f) 

bounded in K· 

-1 
But look, <K-f ({a}) 

A. 
a<A.> € L L n H, so 

n K 

let 

is 

-1 
K-dom(f) = n{K-f ({a}) : a<A.} € H,which means dom(f) is 

bounded in K· 

1.8 Theorem 

Let K be the least ordinal that has a L -filter. 
n 

Then H is not a L -filter on K. 
n 

Proof 

Combine 1.5 and 1.7. 

1.8 shows, that the filter H cannot help us to characterize those 
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K that have a I -filter. If K is the least ordinal that has a I -
n n 

filter, then H is not closed under I L intersections on K. 
n K 

Therefore, any I -filter will contain some extra I L sets. We will 
n n K 

show in III.2.14 that these I L sets we are committed to must be 
n K 

of a certain form. This leads us to define a filter V, slightly 

larger than H, which is a good candidate for a I -filter (see 1,14). 
n 

First of all, we have the following characterizations of ~ - and 
n 

II -filters. 
n 

1. 9 Theorem 

Let F be a nonprincipal proper filter on K. 

a. The following are equivalent: 

i. F is a ~ -filter on K 
n /1 

ii. 'VA.<K 'Vf:i_K-n->A. (K-dom(f) ft F => 3a<A. K-f-l ({a}) ~ F). 

b. The following are equivalent: 

i. F is a II -filter on ~ 
n I 

ii. 'VA.<K 'Vf:i_ K-n->A. (K-dom(f) ~ F =>3a<A. K-f-l ({a}) ~ F). 

Proof 
/::,. 

a. i +ii: if A.<K and f:i_ K~-n->A., then K-dom(f)=~(K-f- 1 ({a}). 

ii+ i: we will first prove two claims: 

Claim 1 H i F 
6 

Proof Let A.<K. Define f: i K-n->Aby f= id!}.. Then 

K-f-l({a})= K-{a}E F for a<A.,since Fis nonprincipal. 

Thus K-A.= K-dom(f) € F, whence Hi F. J:l 

Claim 2 K is I 1-admissible. 
n+ 
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Proof We use 1.3, so suppose, for a contradiction, that 

!:; -1 
A<K and f:K~-n->A, but for each a<A f ({a}) is bounded in K. 

Then, for each a<A, K-f- 1 ({a}) €Hi F,so 0=K-dom(f) € F, 

which contradicts the fact thati F is p;r-oper. a 

Now we can show that F is a !:; -filter, so let A<K and 
n 

<x 
a 

Define f: i K +A by f(~) ~a <=> ~ ~ xa and~€ 6QaxS (a<A) 

Since K is L -admissible (by claim 2}, we find f is 6 L . 
n n K 

If a<A then K-f- 1 ({a}) ) x €F, so n x =K-dom(f) €F. 
- a a<A a 

b. i + ii: as in a. 

ii + i: let A<K and <x :a<A> € TI L n AF . Define a E L 
a n K n K 

relation R by R(~ 1 a) <=> a<A and ~~X . By the L -uniform.t-a n 

zation theorem there is a L L function f:l:_K-·->A such that n K 

dom(f) dom(R) = K- n X and V~€dom(f) R(~,f(~)). Then for a<A a 

each a<A K-f- 1 ({a}) ) x €F so n x =K-dom(f) €F. - a a<A a 

1.lORemark 

Result 1. 9 leads us to consider the following property for a 

filter F: 
TI 

n -1 * · VA<K Vf: l:_K~~ ->A (K-dom (f) ~ F => 3a<A K-f ({a}) ~ F) • 

As in 1. 9, it is easy to show that F has property *, if F 

is a E -filter on K. Howevec, the converse does not necessarily 
n 

hold. In the case of normal filters, we can define a similar 

property, and then III.1.6 shows that the converse does not hold. 



1.11 Lemma 

If F is a TI -ultrafilter on K, then F has property * 
n 

Proof 
TI 

n 
Let A<K, f: £K~~>A and suppose for a contradiction that 

K-dom(f) t F but Va<A 
-1 

K-f ({a}) € F. Then we have 

dom(f) E F, since F is a TI -ultrafilter and dom(f) is 
n 

TI L (~ € dom(f) <=> 3a<A f(~)=a, use that K is I -
n K n 

admissible by 1.4). 

. -1 
Likewise, we have dom(f)-f ({a}) is IT L for a<A. 

n K 

But then <dom(f)-f- 1 ({a}) : a<A> €TI L ()AF, so 
n K 

n -1 0 = a<A (dom(f)-f ({a}) € F, contradiction. 

1. 1 2 Definition 

v· = {x i K: x € L L & VY 2 x (Y € 6 L ~ y €ff)}. 
n K n K 

P = {z i K : 3X i z (X E V')}. 

1.1 3 Lemma 

Let K be I -admissible. Let X € V (\TI L . Then X € H. 
n n K 

Proof 

Suppose X t H, then K-X is cofinal in Kand I L . By a 
n K 

well-known fact (see e.g. Kaufmann & Kranakis t*] .) 

there is a Y £ K-X.,such that Y is cofinal in K and 6 L . 
n K 

Thus K-Y is 6 L , K-Y 2 X and K-Y ~ H, so X ~ V. 
n K 

21 
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1.14 Lemma 

Let K be E 1-admissible. Then V is a IT -filter on K. n+ n 

Proof 

First note H i V, so V is nonprincipal. Now let Z1 , Z2 € V. 

Take X1 , X2 € V such that X1.£Z 1, X2i_Z 2and X1, X2 are L L • 
n K 

Suppose Y ) X1 nx2 and Y € /:, L • We'll show Y € H, which 
- nK 

gives that V is a nonprincipal proper filter on K. 

Define Y' = y u (K-X1), then Y' .2 X2, so Y' € v. Also 

Y' is IT L , so by 1.13 Y' € H. Therefore, we can take A.<K 
n K 

such that {a<K: A..::_a} i Y'. But then Y .2 x1-A. € V (the last 

fact is easy to check), so Y €H. 

To show V is a IT -filter, take A.<K and <X : a<A.> €IT L ()AV. 
n a n K 

If a<A., x E vnIT LI so by 1.13 x EH. By 1.4, His a IT -filter, 
a n K a n 

soa~A.XaEH.£V. 

1.15 Theorem 

Let K be E 1-admissible. Then V has property * of 1. 10. 
n+ 

Proof 
IT n Let A.<K and f: i_K~>A. and suppose for each a<A. we have 

-1 
K-f ({a}) E V. Let Y .2 K-dom(f) and Y be /:, L • We have 

n K 

to show that Y €H. 

<Y0 : (3<A.> € IT L by 
µ n K 

Define 

<=> s €Y or Ja<A. (a#(3 &f(s>=a>. 

(K-f- 1 ({(3})) for Claim _1: Y (3 .2 
Proof: f(s)~(3 => s€ dom(f} or 3a<A. (a#(3 & f(s)=a) 



=> ~€ Y or ;Ja<A (a~B & f(~)=o.) 

=> ll 

By the claim YB € V, so YB € H by 1.1 3 • 

Since H is a nn-filter, we have 8QAY8 € H. 

The proof is finished if we show 

Claim 2: ('\ Y = Y 
B<A 8 

Proof: Obviously S~AYS 2 Y. Conversely, let~ €S~AY8 . 

Then VB<A (~ € Y or :P<A (a#B & f(~)=o.)), so 

~ € Y or VS<A 3cl<A (a#B & f(~)=a). 

But the second alternative cannot happen, so~ € Y, ll 

1 . 1 6 Corollary 

Let K be L 1 -admissible. Then n+, 

VA<K Vf: £K Da >A (K-dom(f) ~ V => 
-1 

?b<A K-f c{a}> ~ V>. 

Proof 
D 

Let A<K and f: £K--n->A and suppose for each a<A 

K-f- 1 ({a}) € V. Take <P € L L and w €TI L so that 
n K n K 

f(~)"'a <=> L 1°= </J(~,a) V W(~,a). 
K 

Now for a<A X = {~<K : L I= ~(~,a)}) K-f- 1 ({a}) € V, 
a K -

and xa is ITnLK, so xa € H by 1.13. Then by 1.4 a~Axa € H, 

so we can take a<K so that {y<K : a<y} ( n<,x , or - -a/\a 

L I= v~_>a Va<A ,cp(~,a). Then g=ft{y<K : o<y} is IT L and 
K - n K 

it is easy to see that Va<A K-g- 1 ({a}) € V. Then by 1.15 

K-dom(g) € V, so (K-dom(g))-0 € V and K-dom(f) € V. 

23 
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1.17 Notes 

i. We think that under certain circumstances V is a I: -
n 

filter, even a ~ -filter, although probably not for each 
n 

I: 1-admissible. 
n+ 

ii. Phillips [1983), III.3.1, shows that if there is a 

D - or 13 -filter on K, then K is a limit of I: -n n n+l 

admissibles. 
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§2. Normal filters 

The most well-known {classical) normal filter is the closed 

unbounded filter on a regular cardinal. This leads us to study 

definable closed unbounded sets, and sets which are stationary with 

respect to these c.u.b.'s. Surprisingly, we find in 2.18 that in 

this setting, closed unbounded sets never form a normal filter. 

We do however in 2.9 derive a recursive analogue of Fodor's theorem. 

2.1 Definition 

Let X i K, ~ a set of formulas or ~=~ • 
n 

i. X is a ~-cub if X is closed unbounded and ~L • 
K 

ii. x is ~-stationary if for all q>-cubs c we have x n c'f9). 

Note: if X is ~-stationary, X does not need to be ~L -
K 

definable. 

For theorem 2.4 we need a lemma from Kranakis [1982a]: 

2.2 Lemma 

The following are equivalent: 

i. K is E -admissible 
n 

n-1 
ii. K is ITn+l-reflecting on SK • 

The next theorem shows that on a E -admissible ordinal, cubsets 
n 

are closed under "E "-normal intersections, as one would expect. 
n 

For later reference, we isolate a lemma used in its proof. This is 

2.3. 
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2.3 Lemma 

Let C be E L and closed in K. Let o € Sn-l and 
n K K 

L I= "C is unbounded". Then o €c. 
0 

Proof 

Take~€ EL defining C (i.e. f, € C <=> L I= ~(f,)) such that 
n K K 

L J= Va 3f,>a ~(f,). This means 
0 

v~. 3c c I "'(C)) . o€Sn-1 f 1 h ~<o s<O (s>a & L = ~ s • But since it ol ows t at 
0 K 

Va<o 3f,<o (f,>a & L I= ~(f,)), so 
K 

Va<o 3f,<o (f,>a & F, € C). 

This formula says that C is unbounded in o, so since C is closed 

in K we have 0 € C. 

2.4 Theorem 

Let K be En-admissible, <CS : S<K> € EnLK and CS is cub 

for B<K. Then S~KCS is a En-cub. 

Proof 

Take <CS : S<K> as stated, and take ~ € E L such that 
n K 

<=> L I= ~(6,f,). It is not hard to see that 
K 

S~KCS is closed, and, using the fact that K is En-admissible, 

that S~KCS is EnLK. So all that remains is to show that 

S~KCB is unboun,ded. Fix µ<K. We'll find a o € B~KCS-ii. 

since each c 6 is unbounded, we have 

L I= vs Va ~f,>a ~(S,f,). This sentence is rr lL' so using K n+ K 
n-1 

2.2 there is a 0 € SK , o>µ with 

L J= VS Va 3f,>a ~(6,f,). This means 
0 



\fB<er Leri= "Cs is unbounded". Therefore, by 2.3, 

VB<er er E c 6, which means er E B~Kc 6 • 

2.5 Example 

27 

Let K be E -admissible, but less than the least E 1-admissible. 
n n+ 

Then L J'f E 1-collection, and from this it follows that there is 
K n+ E 

cf n+l . 
a A<K and an f: A ' >K (see Devlin [1974]). 

Simpson [1970] showed that this implies that there is a A<K and 
TI 

an f: A cf, n >K (for a proof, see Phillips [1983], II.2.3). 

Now let Ao be the least A for which such an f exists. 

Claim 1: Ao = w. 

Proof: Suppose not, so Ao>w. Then there is no ~<Ao and a 
~ E E 

cf, n+l cf, n+l 
g: >Ao, for if there was, f 0 g: >K, which 

contradicts the choice of Ao· But this means that Ao is En+l-

admissible, and that contradicts the choice of K. 

Therefore, we have f: 
TI cf, n 

111-~~~.>K. 

Claim 2: we can assume that f is increasing. 

Proof: if f is not increasing, define f' by: 

f I (n) = t;, <=> Vm<n f (m) ~t;, & 3m~n f (m) 
TI 

= 

Then also f': cf, n 
>K, and f' is increasing 

use I . 3. 1) • !l 

Now define c, D i_ K by: 

t;, 

t;, E c <=> lim(t;,) & 3n,m<w (f (n) E;, + m)' and 

D {t;, + 1 : t;, E c}. 

Again by I.3,1, C and D are TI L 
n K 

. Since ran(f) 

(for n<w) • 

(to see f' 

is co final 

is 

in 

TI L 
n 

K, 

K 
, 
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c and D are cofinal in K; since the order type of C and D is w, 

we trivially have that C and D are closed in K. 

Thus C and D are II -cubs, but C n D = {3. 
n 

2.4 and 2.5 give, that on a L -admissible ordinal, L -cubsets 
n n 

"behave as" unrestricted cubsets on a regular cardinal, but 

II -cubsets do not. One might think, that 2.4 shows that the 
n 

L -cubsets form a definable normal filter, but that is not the 
n 

case, as 2.18 shows. 2.8 :gives, how much we can say in this 

direction. 

2.6 Definition 

{x £ K : 3c £ x c is a /.: -cub}. 
n 

2. 7 Examples 

n-1 
i. If K is L -admissible, then S € F • 

n K n 

<=> L I= Pow 
K 

(Here CdK = {a.<K : L I= "a. is a cardinal"} and Pow is 
K 

the power set axiom) • 

Proof: Kranakis [1982a]. 

2. 8 Lemma 

Let· K be L 1-admissible; <A 
n+ a. 

Then A A € F 1• 
a.~K a. n+ 



Proof 

Let <A : a<K> be as stated, and take ~ € TI L so that a n K 

B € Aa <=> LK I= ~(a,Bl. Fix a<K. Since Aa € Fn-l' there 

is a I 1-cub C ( A , so there is a 8 € I 1L with n- - a n- K 

B € c <=> L I= 8(Bl. We will also use the letter 8 for 
K 

an effective (GOdel) code of 8. 

Now L I= ~(a,8), where ~(a,8) is TI L, equivalent to: K n K 

"v"A r (Yo<"A 3y<"A (o<y & 8 (yJ > J + 8 ("Al] & 

& Yo 3y>o 8(yl & YB (8(BJ -+ ~(a,Bll". 

Thus L I= Ya 38 € I 1L ~(a,8) ahd by the I 1-uniformi-
K · n- K I n+ 

' h h . f t' f n+l ~ L th t zation t eorem t ere is a unc ion : K >~ 1 so a 
n- K 

L I= \la ~(a,f(a)). 
K 

Define~€ c <=> L I= 8(~), where 8=f(a), then ea is 
a K 

cub, c ( A and <C 
a - a a 

Then by 2.3, using the In+ 1-admissibility of K, aQKca is 

a I 1-cub. But AC ( A A , so AKAN € Fn+l" n+ a<:'K a - a<:'K a a<:' u. 

29 

Notice that the definition of the function f in the proof of 2.8 

increases the complexity, so that a diagonal intersection from 

F 1 can only be put in F 1 • It is shown in 2.18, that it is n- n+ 

impossible to get every intersection in F 1 , but it is an open 
n-

question whether 2.8 can be improved to get the intersection in 

F • The following theorem 2.9 gives a recursive analogue of n 

Fodor's theorem (see e.g. Jech (1978]). 
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2.9 Theorem 

I 
Let K be I 1-admissible, f:( K~~n->K regressive and dom(f) 

n+ -
-1 I 1-stationary. Then there is an a<K such that f ({a}) 

n+ 

is I 1-stationary. 
n-

Proof 

-1 
Suppose not, then K-f ({a}) € F 1 for each a<K. Also 

n-

<K-f-1 ({a} l : a<K> €IT L, so by lemma 2.7 we have that 
n K 

A (K-f-l({a})) € F 1 • But since f is regressive, 
a~K n+ 

A (K-f- 1 ({a})) K-dom(f), contradicting the fact that dom(f) 
a~K 

is I 1-stationary. n+ 

In Fodor's theorem (2.9) we again have that complexity is 

increased by two quantifier switcheso 2.20 gives, that we 

cannot do without any increase. Again it is open whether a 

lesser increase is sufficient. 

Our next theorem (2.11) extends 2.2 and gives a characterization 

of I -stationary sets. For later reference, we first give a lemma 
n 

used in its proof. 

2.10 Lemma 

Let ~ € IT 2L and {a E Sm 
m+ K K 

L I= ~} be cofinal in K. Then L I= ~. a K 

Proof 

Let ~ be as stated" Write ~ as VF, 3n ~([,,n), with~ E IT L • 
m K 

Let F, 0 <K. Since {a E Sm 
K 

L J= ~} is cofinal in K, we can take a 

an a E sm with a>F, 0 and L I=~' or L J= VF, 3n ~([,,n). 
K a a 



Therefore, there is an no<a with L I= w<~orno>· a 

Then, since a e Sm, L I= w<~orno>r so 
K K 

LI= Jn w<~orn>· Finally, since ~o<K was chosen arbitrarily, 
K 

L I= v~ 3n w<~rn>, so LI=~-
K K 

2.11 Theorem 

Let K be Ln-admissible, X i K. 

n-1 n K is TI 1-reflecting on S X <=> X is L -stationary. 
n+ K n 

Proof 

=>: Let C be a L -cub and ~ € L L such that 
n n K 
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~ e c <=> LI=~(~). Then L I= Va 3~>a ~(~), so by assumption 
K K 

there is a n-1 ('\ with L I= Va 3~>a ~(~). a e s x 
K a 

By 2.3, a € C. Therefore, C ('\ X ,, 0. 

n-1 
<=: Let ~ e IT lL and L I= ~· Put c = {a € s 

n+ K K K L I=~}. a 

Since K is L -admissible, we have by 2.2 that C is unbounded 
n 

in K· Since Sn-l is IT 1L , we have that C is IT 1L • 
K ~ K ~ K 

To show c is closed, let S<K be such that 8 = sup (C ('\a> • 
c ( sn-1, and sn-l is closed, 8 e sn-1 • 

- K K K 
Since 

It is n-1 n n-1 
easily seen that s S ( s , so {a e 

K - 8 

is cofinal in $. Then by 2.10 LSI=~' so we have 8 € C, and 

C is closed. 

We've shown that C is a IT 1-cub, so since X is L -stationary, 
n- n 

('\ n-ln 
C X 'f 0 and so there is a a € S X with L I= ~· 

K CJ 
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2.12 Corollary 

xeF <=> n-1 
K is not IT 1-reflecting on S -x. 

n n+ K 

The next corollary was first stated by Wimmers for n=1 and 

extended by Kranakis [*] to the general case {n~l). 

However, the proof given here is much simpler than theirs. 

2.13 Corollary 

If K is E -admissible, then each E -cub contains a IT 1-cub. 
n n n-

Proof 

E -cub and let~€ EL so that~€ C <=> L != ~(~). 
n n K K 

Let c be a 

Define D {a.€ sn-l : L I= V8 3~>8 ~{~)}. 
K a. 

By 2.2, D is unbounded in K, and by 2.10, D is closed. 

Thus D is a IT 1-cub. By 2.3, D £c. 
n-

The following result improves a result of Kaufmann & Kranakis 

(1984], 5.3. 

2.14 Theorem 

Let F be a IT -normal filter on K. Then F ( F 
n ~1-

(so each IT -normal filter contains all E -cubs). 
n n+l 

Proof 

Note K is E 1-admissible by 1. 4. Let X € F 1• By 2. 1 3 
n+ n+ 

there is a IT -cub C £ X. For a.<K, define 
n 

~ € X <=> 3Y<~ (y>a. & y € C). Then <x 
a. a. a.<K> € II L 

n K 



and since C is unbounded, X € H for each ~<K. Thus 
Cl. 

A X € f. But if ~ € A X , then va.<~ ~ € X , so 
a.<::'K Cl. a.<:.°K Cl. Cl. 

Va.<~ 3y<~ (y>a. & y € C), which means that C is unbounded 

in ~, so ~ € C by closedness. So we have A X ( c, 
a.<:."K Cl. -

whence X € f. 

2. 1 5 Theorem 

Let F be a ~ 1 -normal filter on K with Sn € F. 
K 

Let ~ € IT 3L and L I= ~· Then {a. € Sn L I= ~} € F. 
~ K K K Cl. 

Proof 

Write ~ as V~ $(~) with$ € En+2LK. Suppose 

x ={a.€ Sn : L I= v~ $(~)}~f. Define, for ~<K, 
K Cl. 

X~ = fo<K 

nn 
SK ~~KX~ 

La. I= VJ(~)}. Then <X~ : ~<K> € ~ 1 LK and 

x, so since S~ € f, we can take ~o<K with 

n 
X~ 0 ~f. But then it is easy to see that SK-x~ 0 is cof inal 

in K. Also sn-x ={a.€ Sn: L I= ,$(~ 0 )}. 
K ~O K Cl. 

By 2.10, L I=-, $(~ 0 ), a contradiction. 
K 

2.16 Note 

By 2.14, any ITn-normal filter contains S~, so 2.15 applies to 

any IT -normal filter. 
n 

2.17 Corollary 

If there is a 61 -normal filter on K containing Sn, then K is 
K 

IT 3-reflecting on Sn so in particular K is L 1-admissible 
n+ K' n+ 

33 
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and a limit of E 1-admissibles. 
n+ 

Proof 

It follows immediately from 2.15 that K is TI 3-reflecting on Sn. 
n+ K 

Then by 2.2 K is E 1-admissibleo To show that K is a limit of . n+ 

E 1-admissibles, use the fact that there is a IT sentence 
n+ n+3 

<jJ such that for any ordinal a, 

L I= <P a 
<=> a is E 1-admissible 

n+ 

(this follows from characterization 2.2, see Kranakis [1980], 

II.2.5.c; this sentence is also used in 2.20). 

2.18 Corollary 

Fn+l is never a ~ 1 -normal filter on K. 

Proof 

2.7.i gives that s~ E Fn+l" Suppose that Fn+l is a ~1-

normal filter on K. Then by 2.15 and 2.17 

{a E Sn : a is l. 1-admissible} E F 1 . We'll show K 
K Af Af 

is IT 2-reflecting on {a E Sn : a is not E 1-admissible}, 
Af K Af 

thus getting a contradiction with 2.12. 

So take <jJ E IT 2L with L I= <jJ. Since K is E 1-admissible 
n+ K K n+ 

(by 2.17), K is TI 2-reflecting on Sn (by 2,2), so we can 
n+ K 

take a E Sn with L J=~ <jJ. Define f: w--->Sn as follows: 
K a K 

f(Ol=a 

f(m+l)= the least ~ such that S>f(m) & S E S~ & LB I= <jJ. 

(for m<w). (Notice that such S always exists since 

{B E S~ : LB I= <jJ} is cofinal in K). 



Since l, 1-recursion holds on K (see Devlin [1974], thm. 18), 
n+ 

we find that f is l, 1L • Put y = tl f (m). 
n+ K m<:w 

Claim 1: y<K. 

Proof: Since K is I 1-admissible, there is no 
I n+ 

cf, n+l 
f: >K (Kranakis [1980], II.1.6.a, from Devlin 

[1974], thm. 40). Therefore, ran(f) is bounded in K. a 

Claim 2: y e Sn and L I=~-
K y 

~: by 2.10. [] 

Claim 3: y is not l, 1-admissible. 
n+ 

Proof: Let ljJ be a I 1L -formula such that L !=~ ljJ(m,S) <=> 
n+ y y 
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<=> 3a 0 , ••• ,a [a=a 0<a 1< ••• <a =S<y & Vi<m (a.esn & L != ~)]. 
m m i y ai 

Then L I=~ Vm<w :=!B ljJ (m, Sl, but 
y 

L 1~~ Vo 3m<w VS<o -,ljJ (m, Sl • [] 
y 

Combining the claims gives that K is IT 2-reflecting on 
n+ 

a is not l, 1-admissible}. 
n+ 

2.19 Remark 

If there is a IT -normal filter on K, then 
n 

N = ll {F : F is a IT -normal filter on K} is the "least" 
n 

IT -normal filter on K, and will play the role H plays for 
n 

the ITn-filters. We found Fn+l * N by 2.14 plus 2.18. 

2.20 Example 

There is a ITn+ 3 sentence ~ such that for any ordinal a, 

Lal=~<=> a is In+ 1-admissible (see 2.17). 



36 

Thus we can take ljJ e I 2 such that 
n+ 

L !=Vs ljJ(s) <=>a is I 1-admissible. Now let K be I 1-admissible. 
a n+ n+ 

/::, 
Define f: .£.ic~-1 ->K by 

f(a) "' 6 <=> 6<a & L I= -r ljJ <Bl & Vy<6 ljJ (y) • a 

Then f is regressive and dom(f) = {a<K : a>O & a is not 

I 1-admissible}. We saw in 2.18 that K is IT 2-reflecting on 
n+ n+ 

dom(f), so by 2.12 dom(f) is I 1-stationary. 
n+ 

Now fix 6<K. If f- 1 ({6}) were I 1-stationary, 
n+ 

is cofinal in K, so {a e Sn: L I=..., ljJ(6)} is cofinal in K. 
K a 

But then by 2.10 LK!=-, ljJ(6), which contradicts the In+l-

admissibility of K. 

Therefore we must have that for all 6<K, f- 1 ({6}) is not 

I 1-stationary. This shows that in Fodor's theorem 2.9 we 
n+ 

cannot do without any increase in complexity. 

Lastly we'll state normal analogues of 1.9: 

2.21 ProEosition 

Let F be a nonprincipal proper filter on K. 

a. The following are equivalent: 

i. F is a 6 -normal filter on K. 
n 6 

ii. for all regressive f: .£,ic~-n->K (K-dom(f) ~ F => 

=> 3a<K 
-1 

K-f ({a}) ~ F). 

b. The following are equivalent: 

i. F is a IT -normal filter on K. 
n 
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L: 
ii. for all regressive f: ,D<~-n->K (K-dom(f) ~ F => 

=> 
-1 

K-f ({a}) ~ f). 

Proof 

As the proof of 1.9, using diagonal intersections instead of 

regular intersections. 
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CHAPTER III. ULTRAFILTERS 

In this chapter we discuss ~-ultrafilters and ~-normal ultrafilters. 

In §1 we review some basic facts, in particular the connections 

with L -end extensions. This is based on work by Kaufmann [1981), n 

Kranakis [1982b] and Kaufmann & Kranakis [1984]. 

In §2 we prove our main extension theorem (2.1 and 2.2), which says 

that on a countable ordinal, W-(normal) filters can be extended 

to ~-(normal) ultrafilters (under easy conditions on~). The rest 

of the paragraph mainly deals with consequences of these theorems, 

and also gives some improvements of chapter II. 

§1. Basic facts 

We define "ultrapowers", give a f:ios-type theorem, and give methods 

to go from ultrafilter to ultrapower and back. In 1.8, we give a 

correct version and correct proof of a result of Kaufmann & 

Kranakis [1984]. 

1.1 Theorem (Kaufmann [1981], thm. 1; Kranakis [1982b], thm. 2.4) 

The following are equivalent: 

i. there is a 6 -ultrafilter on K 
n 

ii. there is a IT -ultrafilter on K 
n 

iii. L has a L 1-end extension 
K n+ 

Proof 



Since the proof uses constructions we will use more often, I 

will give it here: 

ii + i is immediate; 

i + iii: If F is a l'l -ultrafilter on K, define M(F) = <M,E> 
n 
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as follows: M consists of equivalenceclasses [f] of functions 
ti 

f: K'~~n~>L under the equivalencerelation given by 

f - g 

[f] E 

<=> 

[g] 

K 

{~<K: f(~)=g(~)} € F, and 

<=> {~<K: f(~) € g(F,)} €F. 

Then L ~ 1 MCF) is a consequence of a ~os-type theorem: 
K n+ ,e 

for all <fi € E 1 and [f1], ••• ,[f] € M we have 
n- n 

M(F) I= </J([fl], .•• ,[f ]> <=> {~<K: L I= </J(fl(~), .•• ,f (~))}€F. 
n K n 

ii + iii: If F is a IT -ultrafilter on K, we define UltF = 
n 

<M,E>, where M consists of equivalenceclasses of functions 
L 

f: (K----E.->L with dom(f) € F, - and E are as before, and the 
- K 

~os theorem now holds for all <fi €E. 
n 

iii + ii: If L "< 1 M and c € OrdM-K (such c always exists) , 
K n+ ,e 

define a IT -ultrafilter on K by: f (M,c) = {x i K : 
n 

there is a <tiaJ: L such that V~ <K (LK !9P ( ~) => ~€X) and M l9P ( c) }. n K 

1.2 Theorem (Kranakis [1982b], thm. 3.3) 

The following are equivalent: 

i. there is a l'l -normal ultrafilter on K 
n 

ii. there is a IT -normal ultrafilter on K 
n 

iii. L has a blunt L 1-end extension 
K n+ 

Proof 
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If M is a blunt end extension of L , thenr maybe after first doing 
K 

a transitive collapse on the well-founded part of M, we can assume 

that K E M. Then F(M,K) is a TI -normal ultrafilter on K (this is 
n 

easy to check) • 

On the other hand, if F is a !:!. -normal 
n 

ultrafilter on K, then 

M (F) is blunt; and if F is a IT -normal ultrafilter on K, then 
n 

uitF is blunt. In each case we have that the minimal element of 

the new ordinals is the equivalence class of id!K. This follows 

from characterization II.2.21. 

For theorems 1.6 and 1.8, we need lemma 1.3. The idea for 1.3 came 

from Kaufmann & Kranakis [1984], 2.5. 

1.3 Lemma 

i, Let F be a I -filter on K, A<K and <x 
n a 

Then K-aQAxa ~ F. 

ii. Let F be a I -normal filter on K, and <x 
n a 

Then K- A X ~ F. a<:k a 

Proof 

As the proof is similar in both cases, we will only prove (i). 

So let <x 
a 

AF n n a<A> E IT L , put X = <'X , and suppose K-X E F. 
nK a/\a 

Now define a I L relation R on K2 by: 
n K 

R(/;,a) <=> a<A & I; ~ X • Then dom(R) = K-X. 
a 

By the I -uniformization theorem, there is a I L function 
n n K 

f: £K-+A with dom(f) = K-X and VI; E dom(f) R(Cf(/;)). 

Put Y 
a 

(K-X)-f- 1 ({a}), for a<A. Then 



~ € y 
a 

<=> 3S<A <S~a & f(~) = Sl, so <Y : a<A> € I L • 
a n K 

Now Y ) x -x € F, so, since F is a I -filter, 0 = n Y E F, 
a - a n a<A a 

contradiction. 

1.4 Corollary (Kranakis [1982b], 4.4) 

i. Each I -ultrafilter is a TI -ultrafilter 
n n 

ii. Each I -normal ultrafilter is a IT -normal ultrafilter. 
n n 

1.5 Corollary 
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Let F be a I -normal filter on K, and X € F 1 (as defined in II.2.6). 
n · n+ 

Then K-X ~ F. 

Proof 

If x E F 1' then there is a sequence <x : a<K> € KH n IT L such that 
n+ a n K 

x. This follows from II.2.14: if C is a IT -cub with C i X, 
n 

let ~ € x <=> 3y<~ (y>a & y E c) V ~ € x. 
a 

The proof is done if we note that H.£.. F (II.1.2), 

1.6 Theorem (Kranakis [1982b], 4.7) 

The following are equivalent: 

i. there is a I -ultrafilter on K 
n 

ii. there is a ~ -ultrafilter on K 
n 

iii. L has a I 1-end extension satisfying K-I -collection 
K n+ n 

Proof 

It follows easily from 1.4, that if F is a I -ultrafilter on K, 
n 

then F is a ~ -ultrafilter. Next, if F is a I -ultrafilter, then 
n n 
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UltF I= K-L -collection, and if M is such that 
n 

L o{ 1 MI= K-L -collection, and c € OrdM-K, then F<M,c) is a 
K n+ ,e n 

L -ultrafilter on K. 
n 

1.7 Theorem (Kranakis [1982b], 4.7) 

The following are equivalent: 

i. there is a L -normal ultrafilter on K 
n 

ii. there is a ~n-normal ultrafilter on K 

iii. L has a blunt L 1-end extension satisfying (K+1)-L -collection. 
K ~ n 

Proof 

As 1.6. 

Kaufmann & Kranakis [1984], 5.10 states: 

If F is a L -normal filter on K, then {S € Sn 
n K 

ultrafilter} € f. 

S has a IT -normal 
n 

However, their proof uses the unproven assumption Sn € F. 
K 

It is not clear whether this can be proved in general (for a proof 

under the assumption that K is countable, see §2), so we cannot use it. 

Then a slightly weaker version of this theorem still holds, which was 

first observed by I.Phillips. A version of his result is given here. 

1.8 Theorem 

Let there be a L -normal filter on K. 
n 

Then {S € Sn 
K 

Proof 

S has a IT -normal ultrafilter} is cofinal in K. 
n 
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n-1 
Let F be a E -normal filter on K. Note S € F by II.2.14 (since F 

n K 

is a TI 1-normal filter) and K-Sn ~ F by 1.5. 
n- K 

Define I = {B<K : for all rrn-formulas ~ with parameters from LB we 

have LK I= ~(8) => 3Y<B LB != ~(y)} (this is related to the 

invisibility of Bon K, see Kranakis (1980] or Phillips [1983]). 

Claim 1 : I € F. 

Proof: Enumerate the TI formulas with parameters from L and one free 
n K 

variable in a sequence «f.> 0 : o<K>. Clearly, the function O 1+ ~ 0 

can be chosen in E1LK, so S 

parameters from L } € F. 
a 

Then define <T~ : o<K> € L L by: 
u n K 

Be T0 <=> LK I= ~ 0 (Bl + 3Y<B LB I= ~0 (Y>. 

Then O~KT 0 (\ s i I' so we are done if we show T 0 € F for o<K. 

So fix o<K. If L I=\/-[,-,~~([,), we are done. 
K _u 

Otherwise, t~ke B0 <K such that LK I= ~ 0 (B 0 l. 

Now if B>B 0 and B E sn-l K , 

I n-1 
3y<B LB = ~ 0 (y}. Therefore T0 2 SK -(B 0+1), so T0 €F. 

Claim 2: I(') Sn is cofinal in K. 
K 

n 
~: Suppose not, then there is a Bo<K such that I-Bo£ (K-SKl-Bo. 

But then K-Sn E F, contradiction. o 
K • 

Our proof is finished if we show 

B E I(') Sn => B has a rr -normal ul trafil ter, 
K n 

or, equivalently (by 1.2) 

B € I('\ Sn => B has a blunt E 1-end extension. 
K n+ 

So fix B € In Sn. Let <jJ be the set of all finite conjunctions of 
K 
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ITn+1 formulas with parameters from Ls such that Ls I= $. 

Of course ~ € LK. 

n-1 I Claim 3: V$ € ~ 3~>S (~ € SK & L~ = $). 

~: suppose not, so take $ € ~ such that 

LK I= V~>S (ljJ(~) -+ L~ !=-,$), (*) 

where 1jJ is a IT 1-formula such that L I= 1jJ CO <=> Li:- o( 1 L • 
n- K c., n- K 

{*} is a IT -formula, so by definition of I there is a y 0<S such that 
n 

Ls I= V~>Yo Cl/i <~l -+ L~ !=...,$). 

But since S € Sn we have 
K 

LK I= V~>Yo (l/J (~) -+ L~ !=--,$) , which contradicts 

LK I= w<Sl & Ls I=$. o 

n-1 
Now for each $ € ~. let CJ.($) = the least a.>S such that CJ.€ S and 

K 

L != $. Since $1+a.($) is L: L , and IG is L: 1-admissible (by II.1.4), 
CJ. n K n+ 

we have CJ. = sup{a.($) : $ € ~} < K. 

n-1 
Since S is closed, L -< LK. Our proof is finished if we show 

K CJ. n-1 

Claim 4: La -( 1 L • 
µ n+ CJ. 

Proof: let $ be a IT 1 formula with parameters from La such that 
~ n+ µ 

LS I=$ but La.I=-, <j>. Write...,$ as 3x l/J(x) for some l/J € ITnLS. 

Take u € L with L I= l/J(u). By definition of CJ., there is a 6 € ~ 
CJ. CJ. 

with u € LCJ.( 6 ). But now 6&$ €~and y = a.(6&$) ~a.(6) and 

L I= 6 &$. Since L -< 1 L and lji(u) is IT we must have L I= l/J(u), 
y y n- CJ. n y 

but this contradicts L I= Vx 1 \jl (x) • o 
y -



1.9 Corollary 

If K is I 2-admissible, then 
n+ 

{a<K a has a I -normal ultrafilter} is cofinal in K. 
n 

Proof: 

If K is I 2-admissible, then Sn+l is cofinal in K (Kranakis 
n+ K 

[1980] or [1982a]), and if a€ s~+l, then 

blunt I . L .( 1 L = I -collection, so by 1. 7 we have that F (L ,a) 
a n+ ,e K n K 

is a I -normal ultrafilter on a. 
n 

1.10 Example 
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By 1.8, there is an ordinal K that has a IT -normal ultrafilter, but 
n 

no I -normal filter. If F is a IT -normal ultrafilter on such a K, 
n n 

then F has the property (*) that for all regressive 
rr 

f: _(K.......E~>K (K-dom(f) ~ F => 3a<K K-f- 1 ({a}) ~ f), 

by II.1.11 and II,2.21, but Fis not a I -normal filter. 
n 
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§2. Extendin9 filters to ultrafilters 

In this paragraph we prove two extension theorems: on a countable 

ordinal, we can extend each <!>-filter to a i!>-ultrafilter (2.2) 

and each <!>-normal filter to a <!>-normal ultrafilter (2.1), if 

i!> satisfies some easy conditions (which are satisfied by ~ , 
n 

~ and I1 ) • 
n n 

As a corollary, 2.4 follows, a result that was known before. 

In fact, the basic idea for 2.1 and 2.2 comes from Kranakis' 

proof of 2.4 (see note 2,5). 

2.6 through 2.17 deal with consequences of 2.2, and the rest of 

the paragraph with consequences of 2.1. 

IMPORTANT NOTE: Throughout this paragraph, we assume that K 

is a countable ordinal. 

2.1 Theorem 

Let i!> be a set of €-formulas, or i!>=~ , such that i!>L is 
n K 

closed under disjunction and bounded universal quantification, 

and {K-fo} a<K} ( i!>L • 
- K 

Let G be a <!>-normal filter on K. 

Let X i K be such that K-X € i!>L and K-X ~ G. 
K 

Then there is a <!>-normal ultrafilter F on K with X € F 

and G II i!>L i F. 
K 



Proof 

Let ~' G, and X be as in the statement of the theorem. 

Enumerate all ~ E ~L with two free variables in a sequence 
K 

<~ : l<m<w> such that each formula occurs infinitely many 
m 

times in the list (note that this is the only place where 

we use the countability of K). By induction, we will define 

a sequence <z 
m 

m<w> of sets such that K 2 Zol Zil··· and 

K-Z e ~L -G for m<w. 
m K 

Put Zo=X. Now suppose Z0 ) ••• ) Z have been defined, and 
- - m 

K-Z € ~L -G. To define Z 1 we look at ~ 1 • 
m K m+ m+ 

For a<K define X = {~<K : L I=~ 1 (~,a)}. Note that a K m+ 

<X : a<K> E ~L • 
a K 

case 1: Z (1 /I. X f 0. Put Z 1=z • Then K-Z l E ~L -G m a<'.K a m+ m m+ K 

and Z ) Z 1 are obvious. 
m - m+ 

case 2 : z n /I. x = 0. 
m a<::K a 

claim: 3a<K (K-Z ) U X ~ G. 
m a 

proof: otherwise < (K-Z ) u x : a<K> e KG(\ ~L , so 
m a K 
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K~Zm = (K-Zm) ua~Kxa = a~K((K-Zm) u Xa) e G, contradiction.a 

In this case we put Z = Z -X with a as in the claim. m+l m a' 

Then z ) z and K-Z = K- (Z -x ) = ( K-Z ) u "' ,-, m - m+l' m+l ' m a m xa € '¥LK-,J. 

Next we will define F. First we define two subsets of F by: 

{A€ ,~L : 3m<w z c A}; 
K m-

{ B € ~L K : Vm<w z m " B f 0}. 

Then we define F by: 

F = {x i K : 3A e F1 3B E F2 (Ai x v Bi x v AliB ix)}. 
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Claim 1 : A1 , A2 e F 1 => A1 n A2 e F l • 

Proof: Since ~L is closed under disjunction, .,q,L is closed 
K K 

under conjunction, so A1 (\ A2 E ,~L • 
K 

By definition of F1 , there are m1 , m2<w such that Z ( A1, 
m1-

z ( A2 • Take m0 = max{m1 ,m2}, then z ( A1 r'IA2 • Cl 
m2- mo-

Claim 2: B1 , B2 e F2 => B1 ('\ B2 e F2 • 

~: This is a simple case of claim 7. Cl 

Claim 3: K e F, 0 f F. 

Proof: Since x e ,~L and Zo = x, we have x e F1· Since x i K, 
K 

Ke f. Suppose A e Fl' Be F2· Then A# 0, since all the z # 0 
m 

(for K-Z e G), and also B # 0, which is obvious from the 
m 

definition of F2 • If m is such that Z ( A, then Z ('\ B # 0, so 
m- m 

A('\ B # 0. Therefore 0 e F. Cl 

It follows from Claim 1 - 3 that F is a proper filter on K· 

Claim 4: If B e ~L -F, then K-B e F. 
K 

Proof: Let B e ~L -F. Then Bf F21 so there is an m<w with 
K 

z ('\B = 0. But that means z ( K-B, so K-B e F1 _c F. Cl m m-

Claim 5: x e F and G n ~L ( F. 
K-

Proof: X Zo e F1 ( F. If B e ~L , but B f F, then, as we saw in 
- K 

claim 4, there is an m<w sith Z ( K-B. But that means 
m-

B ( K-Z e G. so B ~ G. Therefore G('\~L ( F. Cl 
- m K -

Claim 6: F is nonprincipal. 

~: Gis nonprincipal, so {K-fo} : a<K} ( Gn ~L ( F. 
- K-

Claim 7: If <x : a<K> € ~L fiKF, then A x € F. 
a K a<'K a 

Cl 

Proof: Suppose <x : a<K> e ~L I but A x ~ F. By assumption 
-· -~ a K a<'K a 
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A X E ~L , so there is an m0<w such that Z ( K- A X • 
a<K a K ·. m0- a<K a 

Take ~ E 9L such that ; E X <=> L J= ~(;,al. Since this ~ occurs 
K a K 

infinitely times in the list <~ : 12_m<w>, it occurs with index 
m 

k+l>m 0 • Then Z ( Z ( K- A X , so there is an a<K with 
k - m0- a<k a 

zk+l = zk-xa. Thus zk+l lixa = Ql, so xa f, F. o 

We have proved that F is a ~-normal ultrafilter on K with X E F 

and G n ~r. i F. 
K 

2.2 Theorem 

Let ~ be a set of €-formulas, or ~=~ , such that ~L is closed under 
n K 

disjunction and bounded universal quantification, and 

{K-{a} : a<K} ( ~L . Let G be a ~-filter on K. 
- K 

Let X i_ K be such that K-X E ~L -G. 
K 

Then there is a ~-ul trafil ter on K with X E F and G () ~L i F. 
K 

Proof 

Enumerate all pairs <~,A>, with~ E ~L , having two free variables, 
K 

and A<K, in a sequence <<~ ,A > : 12_m<w>, such that each pair 
m m 

<~,A> occurs infinitely many times in the list. 

Again, we define a descending sequence <Z : m<w> such that 
m 

K-Z E ~L -G for m<w. We put Z0 = x, and if Z0 ) ••• ) Z are defined, 
m K - - m 

we set X 
a 

{;<K : L J=~ 1 (;,al} for a<A 1 . 
K m+ m+ 

If Z () ~ X f Ql, we put Z 1 = Z , and otherwise we put 
m a< m+ 1 a ro+ m 

Z 1 = Z -X , where a<A 1 is such that (K-Z ) U x ~ G. 
m+ m a m+ m a 

We define Fas in 2,1, and we will have that Fis a ~-ultrafilter 

on K with X E F and G () ~L i F. 
K 
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2.3 Note 

The assumption that K is countable is necessary in 2.1 and 2.2, 

for there is a (real) normal filter on W1 1 namely the closed 

unbounded filter, but L has no I 2 -end extension, so by 1.1 there 
W1 

is no 6 1-ultrafilter on L (See Kranakis (1982b], 2.10.) 
W1 

Now we will consider consequences of 2.2. In 2.4, we take 

Q = 6 and 1> = TI ; in 2.6 we take 1> = I . In 2.7 and 2.8 we 
n n n 

see what happens when 1> h. and G = H (as defined in II.2.1); 
n 

in 2.9 we have the case that 1> = TI or 1> = I and G = H. 
n n 

This leads us again to consider the difference between the IT 

filters H and v (as defined in II.1.12). We do this in 2. 11 

to 2.17; 2.13 states a theorem for the TI -case, while 2.14 -
n 

2.17 consider the I -case. 
n 

2.4 Corollary 

The following are equivalent: 

i. K is I 1-admissible 
n+ 

ii. there is a 6 -ultrafilter on K 
n 

iii. there is a IT -ultrafilter on K 
n 

Proof 

-
n 

By II.1.4, any of the statements (i), (ii), (iii) implies that 

K is I 1-admissible. Then, by I.3.1, I L is closed under bounded 
Af nK 

universal quantification, so we can take~= I , IT or~ in 2.1 n n n 

or 2.2. The corollary then follows from II.1.4. 
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2.5 Note 

The equivalence of i and ii in 2.4 was first proved by Kaufmann 

[1981] and the equivalence with iii was shown by Kranakis [1982b], 

using a construction like the one in 2.2. The basic idea for this 

construction comes from MacDowell & Specker [1961]. 

2. 6 Corol_lary 

The following are equivalent: 

i. there is a I -filter on K 
n 

ii. there is a I -ultrafilter on K 
n 

iii. there is a ~ -filter on K 
n 

iv. there is a ~ -ultrafilter on K 
n 

Proof 

i <=> ii and iii <=> iv by 2, 2; iv ~~> ii is immediate and ii ~=> iv 

by 1.4. 

2.7 Theorem 

The following are equivalent: 

i. K is I 1-admissible 
n+ 

ii. () {F : F is a to -ultrafilter on K} H 
n 

Proof 

ii+ i: use II.1.4, 

i + ii: If K is I 
n+ 1

-admissible, then H is 

Let x E t\ L , and X ll H, then by 2.2 there 
n K 

a to -filter on K. 
n 

is a to -ultrafilter F 
n 

on K with K-X E F, so x ll F. By II.1.2H i F for each to -ultrafilter 
n 

on K. Finally, observing that if F is a to -(ultra)filter on K, then 
n 

so is {x i K : 3Y i x (YE to L (IF)}, gives ii. 
n K 

F 
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2.8 Corollary 

Let K be I 1-admissible, X E 6 L • 
n+ n K 

The following are equivalent: 

i. there is a 6 -ultrafilter F(')nK with x e F 
n 

ii. X is cofinal in K 

Proof 

x is cofinal in K <=> K-X ~ H. 

Theorem 2.7 tells us, that whenever His a 6 -filter, it is the 
n 

intersection of the 6 -ultrafilters. Theorem 2.9 will show that 
n 

this situation also occurs in the I -case: whenever H is a 
n 

I -filter, it is the intersection of the I -ultrafilters 
n n 

(using II,1,7). However, 2.9 also shows that this is not the case 

for n : H is a n -filter iff K is L 1-admissible, but H is the 
n n ~ 

intersection of the n -ultrafilters iff K is L 2-adrnissible. 
n n+ 

2.9 Theorem 

The following are equivalent: 

i. K is I 2-adrnissible 
n+ 

ii. n {F : F is a IT -ultrafilter on K} = H 
n 

iii. (\ {F : F is a I -ultrafilter on K} = H 
n 

Proof 

i -+ iii: since each 6 1-ultrafilter is a l, -ultrafilter, this 
n+ n 

follows from 2.7. 

iii -+ ii: each I -ultrafilter is a TI -ultrafilter (by 1.4). 
n n 
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ii+ i: Suppose K is not L 2-admissible. -Then by II.1.6, there is 
II n+ 

a f: .£.K~>A, for some A<K, such that dorn(f) is cofinal in K, but 

-1 
each f ({a}) for a.<A is bounded. Now let F be a 

on K. If dom(f) € F, then <dom(f)-f-1 ({a.}) : a.<A> 

-1 
(for F, € dom(f)-f ({a.}) <=> 38<A (8~a. & f(f,) 

~ = n, (dom(f)-f- 1 ({a.}>> e F, contradiction. 
Q.<A 

IT -ultrafilter 
n 

€ II L n AF 
n K 

8>)' so 

Therefore we must have K-doro(f) € F, and since F was chosen 

arbitrarily, (K-dom(f)) € ('\ {F : F is a II -ultrafilter on K}-H. 
n 

2.10 Notes 

i. It follows from 2.9, that the X in theorem 2.1 or 2.2 cannot 

alway~ be chosen in ~L • 
K 

ii. If K is L 2-admissible and X €EL, then we have: 
n+ n K 

X is cofinal in K <=>there is a~ -ultrafilter F.on K with X €F. 
n 

(this follows from 2.9.iii, since each L -ultrafilter is a 
n 

~ -ultrafilter). 
n 

2.9 raises the following question. If K is L 1-admissible, but 
n+ 

not L 2-admissible, how large can the intersection of the 
n+ 

II -ultrafilters be, and how large can the intersection of the 
n 

L -ultrafilters be (when and if they exist)? 
n 

This problem is considered in 2.13 and 2.14. It is necessary 

though, to throw away some unwanted sets that might stray in. 

That is formulated in 2.11 and 2.12. 
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2. 11 Definition 

Let G £ PK. Define Gmin {X £ K 3YeGn4L Y_(x}. 
n K 

2.12 Lemma 

Let G be a TI -filter (respectively a Z -filter, 4 -filter, TI -
n n n n 

normal filter, Z -normal filter, 4 -normal filter) on K. 
n n 

min 
Then G is a TI -filter (respectively a Z -filter, 4 -filter, 

n n n 

TI -normal filter, Z -normal filter, 4 -normal filter) on K. 
n n n 

Proof: easy. 

2.13 Theorem 

Let K be L:: 1-admissible. Then 
n+ 

,,.... { K}min 
1 1 F : F is a TI -ultrafilter on £ V 

n 

(v1here V is as defined in II. 1. 12) • 

Proof 

Put G ll{F : Fis a TI -ultrafilter on K}. Then G is a TI -filter 
n n 

on K. By definition 2.11, it is enough to show Gilt L ( V. 
n K --

If X € TI L and K-X is cofinal in K, then by 2.2 there is a TI -
n K n 

ultrafilter Fon K with K-X € F (us:i.2'.lg the TI -filter H, see II.1.4). 
n 

Therefore G n TI L == H n TI L 
n K n K 

".)(')TI L (II.1.13). 
n K 

Now let X € Z L • If K-X contains a cofinal ~ L set Y, then there 
n K n K 

is a TI -ultrafilter F on K with Y € F, so also K-X € F. 
n 

Therefore, if X € L L flG, then K-X contains no cofinal ~ L set, 
n K n K 

which means X € P by II. 1. 11. Then G ll ,J, L ( V follows, 
'tn K -



The following theorem was suggested by I. Phillips, 

2.14 Theorem 

Let there be a r. -filter on K. Then 
n 

rt{F : F is a r. -ultrafilter on K}min i V. 
n 

Proof 

Take X € TI L , and suppose K-X is cofinal in K. Take ~ € IT L 
n K n K 

55. 

with a€ X <=> L j= ~(a). Since there is a r. -ultrafilter on K, 
K n 

there is an M such that L c( 1 Mj= K-l. -collection by 1.6. K n+ ,e · n 

We have LKj= Va. 38>a-, ~(8), so Mj= Va. 38>a-, ~(8). 

Therefore, we can take 8 € OrdM-K with M!=-, <!>(8). But then 

K-X € F(M,8), a r. -ultrafilter. Therefore we have 
n 

n ff : F is a r. -ultrafilter on K} nTI L 
n n K 

We finish the proof as in 2o13. 

2.15 Corollary 

Let there be a r. -filter on K. Let A<K and <x 
n a 

2.16 Ex~ple 

vnTI L • 
n K 

We do not necessarily have equality in 2 .13 or 2. 1 ·4, even if K 

is not Ln+2-admissible, For if there is a Tin-normal filter on K 

(which occurs below the least r. 2-admissible), then n+ 

K-Sn € V- n ff : F is a TI -ultrafilter on K}. 
K n 
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For we have K-Sn ft (\ { F : F is a TI -ul traf·il ter on K}, 
K n 

because, if there is a TI -normal filter on K, it contains Sn 
n K 

by II.2.14, so by 2.2 there is a TI -normal ultrafilter on K 
n 

. . n 
containing S • 

K 

On the other hand, we have K-Sn € V, because Sn does not contain 
K K 

a cofinal 6 L subset (if X were a cofinal 6 L subset of Sn 
n K n K K' 

we'd have ~ € Sn <=> 
K 

and Sn would be 6 L , a contradiction) • 
K n K 

Theorem 2.17 gives an explicit description of a subset of PK, 

which is a I -filter on K whenever one exists. In fact, this 
n 

I -filter is also a t -filter, and it is the least I -filter 
n n n 

and t -filter on K, by which I mean that it is included in 
n 

every I -filter and every t -filter on K. 
n n 

Therefore, it plays the same role for the I - and t -filters 
n n 

as H plays for the 6 - and TI -filters. 
n n 

2.17 Theorem 

Let there be a /, -filter on K. Then 
n 

f\{F: Fis a I -ultrafilter on K}min is the least I -filter and 
n n 

least ~ -filter on K. 
'n 

Proof 

Put G = (\ {F : F is a In -ultrafilter on K}. Since each In-ultnifilter 

is a t -ultrafilter, G is a t -filter on K, so (f1in is a ~ -filter 
n n 'tn 



on K by 2.12. Now let K be any L -filter on Kand X € cf1in. 
n 
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We'll show x € K. Take y c x with y € Gn~ L . Write y = snP, 
- n K 

with s € L L and p € rr L . Then p € G n rr L H n TI L , so p € K. 
nK nK nK nK 

Suppose s ~ K. Applying theorem 2.2, there is a L -ultrafilter F 
n 

on K with K-S € F, so S ~ G, contradiction. 

Therefore s € K, and x 2. y = snp € K. 

min 
Thus G is a subset of each L -filter on K, so certainly a 

n 

subset of each ~ -filter on K. 
n 

Now we turn to normal filters. We first prove lemma 2.lS, 

which is based on Kaufmann & Kranakis [1984], 2,2, This allows 

us to get 2,19, an analogue of 2.4 for the normal case. 

2.18 Lemma 

Let F be a 6 -filter (respectively a 6 -normal filter, 
n n 

6 -ultrafilter, 6 -normal ultrafilter) on K. 
n n 

Then there is a IT -filter (respectively a 11 -normal filter, 
n n 

rr -ultrafilter, rr -normal ultrafilter) F* on K such that 
n n 

Proof 

Take F to be a 6 -normal ultrafilter on K (the proof of this 
n 

case will include the proof of all other cases). 

We first define two subsets of F*: 

{A € L L 
n K 

{B € 11 L 
n K 

3X € 6 L (') F X £ A} , and 
n K 

Vx € 6 L (B £ X -+ X € F)}. 
n K 
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Then we define F* = {x i K : 3A e F1 3B e F2 A()B ix}. 

(Compare this construction with the definition of Fin 2.1.) 

We will prove that F* is a IT -normal ultrafilter on K in a series 
n 

of claims. 

Proof: The first statement follows easily from the definition of 

F1, and the second is a simple case of claim 4. a 

Claim 2: K e F*, 0 ~ F*, and F* is nonprincipal. 

Proof: K e F1 n F2 and, for each a.<K, K-{a.} e F1 n F2, so 

K e F* and F* is nonprincipal. 

Now take X E F*. Then there are A € F1 and B € F2 with AnB i X, 

and so there is a D ( A with D E F n l> L • If A('\ B 
- n K 

0, then 

K-D 2 B and K-D E ~ L -f, which is a contradiction. Therefore 
n K 

A (') B 1' 0, and so X # 0. a 

Claim 3: x e IT L -F* => K-X € F*. 
n K 

Proof: Suppose X E IT L -F*. Then X ~ F2 , so there is a D 2 X, 
~~~ n K 

D e ~ L -F. Since F is a ~ -ultrafilter, K-D € F, but then 
n K n 

K-D i K-X and so K-X € F1 i F*. a 

Claim 4: <x 
a. 

a.<K> e KF* n IT L => 
n K 

Proof: Suppose not, so <x 
a. 

a.<K> e KF* n IT L but x 
n K' 

Then x ~ F21 so there is a D 2 x, D e t- L -F. 
n K 

Let R(~,a.) be the ~ L relation defined by 
n K 

A X ~ F*. 
a.~k a. 



R(~,a) <=> a<~ & ~ ~ x , and let f E L L be a L -
a n K n 

uniformization of R. Then f~(K-D) is a~ L relation, so 
n K 

<s : a<K> E ~ L , if s = {~<K : ~ ~ D & f(~) =a}. 
a n K a 

Now note that K-S ) X , for a<K, so K-S E F. 
a - a a 
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Since F is a ~ -normal filter, D = A (K-S ) E F, contradiction, a 
n a<'K a 

The conjunction of these four claims yields the required result. 

2.19 Theorem 

The following are equivalent: 

i. there is a ~ -normal filter on K 
n 

ii. there is a Tin-normal filter on K 

iii there is a ~ -normal ultrafilter on K 
• n 

iv. there is a TI -normal ultrafilter on K 
n 

Proof: 2.1 plus 2.18 

2.20 Theorem 

The following are equivalent: 

i. there is a L -normal filter on K 
n 

ii. there is a ~ -normal filter on K 
n 

iii. there is a L -normal ultrafilter on K 
n 

iv. there is a ~ -normal ultrafilter on K 
n 

Proof: like 2.5 from 2.1. 
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2.21 Note 

By 1.8, any of the statements in 2.20 is stronger than any of 

the statements in 2.19. 

Now we'll state some more analogues of 2.7 - 2.17. Note though 

that not everything goes through in the normal case, because 

of special properties of the filter H (e.g. H* = H, and 

X ~ H <=> K-X is cof inal) • 

If~ is the symbol 6, IT or I, then we'll abbreviate 

n{F: Fis a ~n-normal ultrafilter on K} by N$. 

2.22 Provosition 

Let there be a 6 -normal filter on Ko 
n 

i. N6 is the 

ii. Nrrnrr L 
n K 

least 6 -normal filter on K. 
n 

-( (NA)*, in fact N n rr L is a subset of every 
u IT n K 

IT -normal filter on K. 
n 

Proof 

i. Obviously N6 is a 6n-normal filter on K. Let G be any 6n­

normal filter on K. We'll show N6 _(G. 

Note that if F is a 6 -normal ultrafilter on K, then so is 
n 

{X _( K : 3Y _( X y E F n 6 L } • Therefore it is enough to show 
n K 

NA n 6 L c G. So take x E NA (\ 6 L • If x ~ G' then by 2. 1 there 
u nK- u nK 

is a 6 -normal ultrafilter F on K with K-X E F, which is a 
n 

contradiction. Therefore X E Go 
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ii. First note that (NA)* is a TI -normal filter by 2.18. 
o n . 

If x € TI L and X $t G, with G an arbitrary IT -normal filter on K, 
n K n 

then by 2.1 there is a TI -normal 
n 

ultrafilter F on K with K-X E F, 

so x $t NIT. 

2. 23 Pro,eo_si tion 

Let there be a In-normal filter on K. Then NL is a ~n-normal filter, 

and N,)1 I L is a subset of each I -normal filter on K. 
[_, n K n 

Proof 

Use 1.4 for the first statement, and 2.1 for the second (like in 

2.22.ii). 

2.24 ~ 

Let there be a L: -normal filter on K. Then 
n 

{a € Sn : a has a TI -normal ultrafilter} E N~ 
K n t_, 

from 2.23 and 1.8. 

follows 

The following theorem improves II.2.14 and II.2.15, and comes 

from Kaufmann & Kranakis [1984]. 

2.25 Theorem 

i. Let F be a !::, -normal filter on K. Then 
n 

{x E f,nLK K is not TI~-reflecting on s~-x} .£F. 
ii. Let F be a rrn-normal filter on K. Then 
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{x € IT L 
n K 

K is not IT11-reflecting on sn-x} ( F. 
K -

Proof 

i. Let X € ~nLK and let K be not IT~-reflecting on S~-X. 

Let F be a ~ -normal filter on K. If X ~ F, then by 2.1 there 
n 

is a ~ -normal ultrafilter G on K with X ~ G. If ~ € l, L (or 
n n K 

IT L ) defines x, then by the ±:ios theorem M (G) I=-, ~ (K). But by 
n K 

Kaufmann & Kranakis (198~, 4.5, that means that K is IT~-reflecting 

on sn-X, contradiction. 
K 

ii. Like i, using UltG instead of M (G). 

We finish by mentioning the following corollary of 2.2, which 

uses a theorem of Phillips [1983], III.3.10. 

2 • 2 ~ Theorem 

Let F be a IT -filter on K with Sn € F. 
n K 

Then either (i) there is a IT -normal ultrafilter on K 
n 

Proof 

or (ii) K is l, 2-admissible. n+ 

Extend F to a IT -ultrafilter G by 
n 

n 
2.2, then S € G. If we put 

K 

M = UltG, we get that there is an M 
a € Ord -K such that 

Ml= ~(a), if $ € ITn defines s~. By the above-mentioned result 

of Phillips it follows that either K € M (so FUf,K) is a IT -normal 
n 

ultrafilter) or K is L, 2-admissible. 
n+ 
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CHAPTER IV. DEFINABLE FILTERS 

In this chapter we will investigate whether we can require that 

the relation "X € F", where X € <l>L and Fis a <Ii-filter, is 
K 

definable over L • This question has connections with the definability 
K 

of the homogeneous set for definable partition relations, see 

Kranakis & Phillips [*]. §1 contains the necessary preliminaries. 

§1. Preliminaries 

In this paragraph we give all definitions of concepts we will 

use in §2. First of all, we will formulate when a <Ii-filter is 

'!'-definable. 

1.1 Definition 

Let <I> be a set of formulas, or <I>=~ • 
n 

We let cr(<l>) be the Boolean algebra generated by <I>, i.e. 

i. <l>L ( cr(<l>)L , and 
K - K 

ii. if X,Y € cr(<l>)L , then K-X, x UY and xlly € cr(<l>)L • 
K K 

1.2 Exam;eles 

a(~ > 
n 

~ ; cr(Il > 
n n 

1.3 Definition 

a o:: > 
n 

E • 
n 

i) Let <I> be a set of formulas, and F a <Ii-filter on K. 
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Leto/ be a set of formulas, or o/=6 (for some m). 
ro 

If cp e O(~)LK, a formula with parameters from LK, we will also 

use the letter cp for an effective Godel code of cp, and so 

we can define a subset R of L by: 
K 

R(c/J) <=> "cp codes a O(~)L formula" & {!;:<K 
K 

L I= c/J (!;:)} e F. 
K 

We say F is o/-definable if R e o/L • 
K 

ii) In case ~=6 , we have to be a little more careful. 
n 

In that case, we look at pairs of L L and TI L formulas, and 
n K n K 

say that a 6 -filter F is o/-definable if there is a 
n 

o/-definable subset R of L L x TI L such that: 
n K n K 

YA e 6 L Ycp e L L YtjJ e TI L 
nK nK nK 

if A= {!;:<K : L I= cp(i;:)} = {!;:<K 
K 

then R(cp,~) <=> A e F. 

1.4 Exam;ple 

Let K be L 1-admissible. Then H is a L 1-definable 6 -filter 
n+ n+ n 

and a L 2-definable TI -filter on K, since 
n+ n 

{i;:<K: L I= c/J<i;:)} e H <=> L I= 3n Yi;:>n c/J(i;:). 
K K -

(In the first case, we define R(c/J,W) <=> 

"cp codes a L L formula and ~ codes a TI L formula" & 
n K n K 

& L I= 3n Yi;:>n ~(!;:)). 
K -

1.5 Definition 

T = <K,< > is a EK-tree if 
T n 
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i. < is l: L , 

T n K 

ii. {<~,a> : ~ € T } € l: L , where T is the ath level of T, 
a n K a 

iii. \fa.<K (0 f T € L ). 
a K 

1.6 Definition 

K has the l: -tree property iff every EK-tree has a branch of length 
n n 

K. For more information about the l: -tree property, and connections 
n 

with the (classical) tree property, see Kranakis [1980],[1982a], 

[1982b]. 

1.7 Definition 
l: l: 

K~n~>(K)~ iff for all h: [K] 2~n~>2 there is an I_( K of type K 

which is homogeneous for h. 

Here [K] 2 ~<n<K} and I is homogeneous means that 

3i<2 Y~,n € r (~<n + h(~,n> = il. 

1. 8 Definition 
l: 

If <I> is set of formulas, <l>=ll then n 2 
a or , K~>(K -<li)2 means 

l: n 

that each h: [K] 2--.--E.,_>2 has a homogeneous set of type K in <l>L 
K 

For more information about definitions 1.7 and 1.8, and 

connections with weakly compact cardinals, see 

Kranakis [1980], Phillips [1983] or Kranakis & Phillips [*]. 
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§2. Definable filters 

In the first section of this paragraph we prove two theorems 

(2.10 and 2.9) which say that a <1>-ultrafilter cannot be 

<1>-definable, and we also show that the definability of a 

filter is related to the definability of a branch in a rK-tree 
n 

and the definability of a homogeneous set for a definable 

partition relation. 

2o1 Lemma (Kranakis [1982b]) 

If there is a IT -ultrafilter on K, then K has the L -tree n n 
property. 

From the proof of 2.1 we can obtain: 

2.2 Lemma 

Let n,m.:_1 and let <1>=~ , L or IT • If there is a <1>-definable m m m 

IT -ultrafilter on K, then every rK-tree has a <1>-definable n n 

branch of length K. 

Proof 

K Let <K,< > be a L -tree. Define B = {a<K : {6<K T n a< 6} € F}. 
T 

Since F is <1>-definable, B is <1>-definable on L . 
K 

It remains to be shown that B is a branch of length K. 

First of all, if y,o € B, then {6<K : y< 6} E F and 
T 
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Take B in this intersection, then y<TB and o<TB, so y and 0 

are < -comparable. Then all we need is to show that B llT "f 0 
T a 

for each a<K. 

Assume on the contrary that BllT 
a 

\fB € T {~<K a 

0 for some a<K, then 

But T € L , and F is a IT -ultrafilter, so 
a K n 

II (K-{t,:<K : B< t,:}) = ll T € F B T T y~a y • a -
However, K is L 1-admissible, so L I= L -collection, 

n+ K n 

from which it follows that U T is bounded in K, and cannot 
y::_a y 

be a member of F (by II.1.2). Thus we found a contradiction. 

2.3 Lemma (Kranakis [1980], [1982a]) 

If L I= Pow (which means that L satisfies the power set axiom) 
K K L 

and K has the L -tree property, then K____E._>(K'}~. 
n 

Again, we can adapt the proof of 2.3 to get: 

2.4~ 

Let n,m~l and let $=~m' Lm or Ilm. 

Define 'I' by: 

i. 'I' = $ if L L ( $L 
nK- K 

ii. 'I' = L if $L ( L L • 
n K - n K 
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If L I= Pow and 
L K 

K--n-> (K - IJI) L 

Proof 
l: 

every l:K-tree has a ~-definable branch, then 
n 

Let h: [K] 2-_.::_>2. First we will define a l:K-tree. 
l: n 

n 
Define G: K xLK-~>LK by 

{S<a : 3u (g(S)=u & Vy<S (yeu ~ h(y,S)=h(y,a)))} 

G (a,g) if g is a function with domain a; 

{ 1} otherwise. 

Since L~I= l: -separation, we have G (a,g) e L for each a,g € 
K n 

It is easy to see that G is l: L • 
n K 

By the l: -recursion theorem there 
n 

f(a) G(a,ftD.l for a<K. 

Then we put S< a <=> 
T 

S € f(a). 

l: 
is an f: K___E.._>L 

Then it can be shown that T = <K,< > is a l:K-tree. 
T n 

with 
K 

L 

(In this proof, the assumption L I= Pow is needed to show that 
K 

TA e LK if A is a limit ordinal.) 

By assumption, we have that T has a branch B of length K, 

which is ~L • 
K 

Now define g: B--->2 by g(a) = h(a,S), where S €Band a< S. 
T 

Now, both g- 1 ({0}) and g- 1 ({1}) are homogeneous for hand 

IJIL -definable, and at least one of both has type K. 
K 

This completes the proof. 

K' 
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Finally we need two lemma's from Kranakis & Phillips [*]: 

2.5 ~ (Kranakis & Phillips [*], 5.7, or Kranakis [§], 2.9) 
L: 

There is no K with K~~n~> (K - L: ) ~. 
n 

2.6 ~ (Kranakis & Phillips 

There is no K with L J= Paw and 
K 

2o7 Corollary 

[*], 5.8) 
I: 

n 2 
K~~.~>(K-L 1Jz. 

n+ 

There is no K with L J= Paw and a L: 1-definable IT -ultrafilter. 
K n+ n 

208 Lemma 

Let n~l. 

Let ~=~ , L: , IT or t . 
n n n n 

If there is a ~-definable ~-ultrafilter on K, then L J= Paw. 
K 

Proof 

Suppose F is a ~-definable ~-ultrafilter on K, but L l=,Pow. 
K 

Then there is a A.<K with PA. nL ~ L , and it follows that there 
~ K K 

is a G: K l-l, 1 >(A2) nL " 

Then define <X 
a 

K 

a<A.> by x 
a {s<K : G (s) (a) = i}, where i<2 

is such that x e F. Since for each a<A. either {s<K : G(s) (a)=O} a 

or {s<K: G(.;)(a)=l} is in F, we have <x : a<A.> e ~L ()AF, so 
a K 

n x e F. But we must have that n x contains only one element, a<A. a a<A. a 

and that gives a contradiction. 
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2. 9 Corollary 

There is no K which has a IT -definable IT -ultrafilter. 
n n 

Proof 

2.7 plus 2.8. 

2.10 Corollary 

There is no K which has a ~ -definable I -ultrafilter. 
n n 

Proof 

2.7, 2.8 and III.1.4. 

Now we'll see what we can say in the positive direction. 

2.11 Theorem 

Let K be countable and L 1-admissible, but less than the least 
n+ 

ordinal with 6 -separation, Then there is a 6 3-definable 
n+2 n+ 

6 -ultrafilter and a :B 3-definable TI -ultrafilter on K. 
n n+ n 

Proof 
6 

By assumption, there is a function g: u · n+ 2 , onto >LK. 

We will use the construction of III.2.2 to extend H to a 

TI -ultrafilter. Using g, it is easy to give a 6n+2LK 
n 

enumeration <<~ ,A > : l<m<w> of all ~ E TI L such that 
m m - n K 

a.Il {~<K : LKj= ~(~,a)}= 0. Note that it is enough to take 
m 

only those <~,A> in III.2.2 which give emvty intersection, 

for if X = a~A{~<K : LKj= ~(~,a)}~ F, where Fis the ultra-



71 

filter to be defined, then (K-X) () aQ\ {s<K : LK J= <P (s,a)} = 0, 

and this collection will appear in the enumeration. 

Therefore, one of the {s<K: L J= <P<s,a)} will be excluded 
K 

from F. 

We take z 0 = K, and then it is proved in III.2.2 that 

L J='fm<w3B [3$ 1 , ••• ,<f> 3\ 1 , ••• ,"A ("$.and\, are right" & 
K m m i i 

B = < 13 1 , ••• , B > & Vi <m <B.<\. & Vy 3o>y , <P. < 8, B.> ) ] , 
m - ii ii 

so by the L 2-uniformization theorem we can define a 
n+ 

I L sequence <B : 1.2_m<w> such that defining z 0 = K and 
n+2 K m 

z = z -{s<K : L J= <P 1 cs,B 1>} gives a correct sequence 
m+l m K m+ m+ 

as in III.2.2. 

It follows that <z : m<w> € I 2L • 
m n+ K 

Defining the TI -ultrafilter F as in III.2.2 has the following 
n 

result: X € F()TI L <=> Vm<w 38 (o € z & 8 € X), so that 
n K m 

F is a E 3-definable TI -ultrafilter. 
n+ n 

It follows immediately that F () !::. L gives a !::. 3-definable 
n K n+ 

!::. -ultrafilter. 
n 

Finally we state a theorem for the normal case: 

2.12 Theorem 

There is no Iw-definable t:. 1-normal filter. 

Proof 

Let n<w be given. 
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Let ~ be the following first-order sentence 

(note that again we let w, x, etc. stand for codes of themselves): 

~ = 38 e In 3a Yt)J,w1.w2 e I 1 Yb,b1,b2 Yx,x1,x2 e rr1 Yc,c1,c2 

[YE: [(W(f:,b) +-rX(f:,cll & (Wi(f:,b1l +-rX1(f:,ci)) & 

+ [ (i) (Yf: W (f:,b) + 8 (W, x,a)) & 

(iv) (8 <w, x,a) & 8 <W11X1 ,al + 8 (W&W1 ,x&X1 ,all & 

(vl Yn <Yt:~nw<f:,bl -+8(W,x,al) & 

Note that then we have for each a: 

Lal=~ <=> there is a In-definable ~ 1 -normal filter on a. 

For the formula 8 in ~ defines a ~ 1 -normal filter F, given by 

X € F <=> 3Y € ~ 1L (Y ( x & 11 8 holds of Y"). 
a -

Then (i) says a € F; (ii) 0 ~ F; (iii) X € F & X i Y + Y € F; 

(iv) X,Y € F + xny € F (so F is a filter); (v) says that F 

is nonprincipal and (vi) that F is ~ 1 -normal. 

If we assume that there is an a with L I= ~' we let K be the least 
a 

such a. It follows that K is countable (use the Lowenheim-Skolem 

theorem plus the condensation lemma), so by III.2.19 and III.1.2 

LK has a blunt I2-end extension M. Note that since K € M, we 



have L € M (for L \= Yx 3y ("x is an ordinal" -+ "y 
K K · 

M satisfies the same sentence, since it is IT 2). 
L L 

Therefore Ml= Qi K, so Ml= 3a (<jl a), and L I= 3a 
K 

But that means 3a<K La\= Qi, a contradiction, 

L "), so 
x 

73 
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INDEX OF SYMBOLS AND NOTATION 

symbol 

K 

n 

X-Y 

Px 

f: _1.X-· ->Y 

id 

cf 
f: x-~>a 

I , TI , I 
m m w 

D,E 
m m 

<P-definable 

M 
<P N, <PM, <PM 
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