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Abstract 

We characterize the graphs for which all 2-connected non-bipartite subgraphs have a strongly 
connected orientation in which each directed circuit has an odd number of edges. We also give 
a polynomial-time algorithm to find such an orientation in these graphs. Moreover, we give an 
algorithm that given any orientation of such a graph, determines if it has an even directed circuit. 

The proofs of these results are based on a constructive characterization of these graphs. 
(~) 1998 Elsevier Science B.V. All rights reserved 
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I. Introduction 

A directed graph D = ( V ( D ) , A ( D ) )  is strongly connected if between any ordered 

pair o f  nodes (u, v) there exists a directed uv-path in D. A strongly connected directed 

graph without directed circuits with an even number o f  arcs is called strong odd. An 

orientation of  an undirected graph G = ( V ( G ) , E ( G ) )  is a directed graph D obtained 

from G by replacing each edge in G by a directed edge (arc). In this paper we prove 

the following result: 

Theorem 1. Let G be a 2-connected non-bipartite graph. I f  G contains neither an 
odd-K4 nor an odd chain as a subgraph, then G has a strong odd orientation. 

Here, an odd-K4 is an undirected graph as depicted in Fig. l(a). A string is a graph 

H for which there exist subgraphs Ht . . . . .  Hk, with k >_-2, such that E(H1 ) . . . . .  E(Hk) 
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Fig. 1. Dashed and dotted lines denote pairwise openly disjoint paths. Dashed lines correspond to paths with 
at least one edge, whereas dotted lines may have length 0. The word odd in a face indicates that the length 
of the bounding circuit is odd. 

partition E(H) and such that for i # j ,  

[v(/4i) n v(Hj)l = { 
2 if k = 2 ,  

1 i f k ¢ 2  and [ i - j l = l ( m o d k ) ,  
0 else. 

H1 . . . . .  Hk are the beads of  the string. If  k > 2 ,  hi, i+l denotes the unique node in 

V(Hi) n V(/-/i+]) (indices modulo k). I f  k = 2 ,  hl,2 and hz, l denote the two nodes in 

V(H1 )N V(H2). The nodes hl,2 . . . . .  hi:, ] are called the links of  the string. A chain is a 

string in which each bead is a path or an odd circuit. An m-chain is a chain in which 

exactly m beads are odd circuits. A full (re-)chain is an (m-)chain in which all beads 

are odd circuits. An odd (even) chain is a full m-chain with m odd (even). Fig. l (b)  

exhibits a 3-chain. Unless stated otherwise, by subgraph of G we do not mean just 

induced subgraph but any graph H with V(H)C_ V(G) and E(H)C_E(G). 
It can be easily checked that odd-K4's and odd chains have no strong odd orientation; 

hence, Theorem 1 can also be stated as: 

Let G be an undirected 9raph. Then each 2-connected non-bipartite subgraph of 
G has a stron9 odd orientation i f  and only i f  G contains neither an odd-K4 nor an 
odd chain as a subgraph. 

Fig. 2 illustrates that graphs containing an odd-K4 may have strong odd orientations. 

In Theorem 1, non-bipartiteness is essential since strongly connected orientations o f  
bipartite graphs always will have even directed circuits. 2-connectedness is almost 

essential; it can be replaced by: G is connected and each block ( =  maximal 2-connected 

subgraph) o f  G is non-bipartite. 
Our proof o f  Theorem 1 consists of  two major phases. First, in Section 3, we derive 

strong odd orientations for three special types of  graphs with no odd-K4 and no odd 
chain. In the second phase, in Section 4, we make use o f  a constructive characterization 

o f  graphs with no odd-Ka and no odd chains (Theorem 7 and Corollary 8 in Section 4), 
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Fig. 2. A strong odd orientation of a graph with an odd-K4 (depicted in bold). 

which says that these graphs can be decomposed into graphs of the three special types. 

In both phases we make use several times of a small orientation lemma (Lemma 3 in 

Section 2). 
For technical reasons we prove the result in a bit wider context than that of ordinary 

undirected graphs; namely that of  signed graphs (cf. Section 2). Not because this 
yields a stronger result - -  essentially it does not - -  but rather to facilitate stating the 
arguments. 

The results of  these paper are motivated by the following computational problem 
proposed by Bang-Jensen [2]: 

(1) Given a graph, f ind  a strong odd orientation o f  it. 

We have no clue, as to the complexity of  this problem. We do not even know if it 

is equivalent with the related well-known even circuit problem: 

(2) Given an oriented graph, does it contain an even directed circuit? 

The proof of  Theorem 1, however, yields the following result: 

Theorem 2. Both (1) and (2) are solvable in polynomial time for  graphs with no 

odd-K4 and no odd chain. 

Note that, by Corollary 8, graphs with no odd-K4 and no odd chain are recognizable 
in polynomial-time. We conclude this section with a short overview of related results. 

1.1. Results on the even circuit problem 

The complexity of  even circuit problem (2) is a well-known open problem 2 although 
it has been shown that the problem of determining whether a specified arc is contained 
in an even directed circuit is NP-hard (Klee, Ladner and Manber [9]; Thomassen [15]). 

2 Recently, this problem has been resolved: McCuaig [12] and, independently, Robertson, Seymour and 
Thomas [12A] derived a polynomial-time algorithm. 
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On the other hand, Thomassen [15] has given a polynomial-time algorithm for the even 
circuit problem in directed planar graphs. Moreover, Galluccio and Loebl [3] have given 
an algorithm to determine whether all directed circuits in a directed planar graph are of 
length p mod q for arbitrary 0 ~< p < q. In the case of undirected graphs, a polynomial 
time algorithm has been given to determine whether all circuits in a graph are of length 
p mod q (Arkin, Papadimitriou and Yannakakis [1]). Note that forbidding odd directed 
circuits instead of even ones, yields a trivial problem: a graph has a strongly connected 
orientation without odd directed circuits if and only if it is bipartite. 

The even cycle problem is polynomially equivalent with any of the following prob- 
lems: recognizing even 9raphs, i.e. directed graphs for which every subdivision contains 
an even directed circuit (Seymour and Thomassen [14]); recognizing bipartite graphs 
with Pfaffian orientations (Vazirani and Yannakakis [18]); recognizing those minimally 
non-bipartite hypergraphs that have as many edges as vertices (Seymour [13]); and the 
following problem: given a 0, 1 n × n matrix A, is there a - l, 0, 1 n x n matrix B such 
that perm(A) = det(B) (Vazirani and Yannakakis [ 18]). Seymour and Thomassen [ 14] 
gave an NP-characterization of even graphs. Vazirani and Yannakakis [18] show that 
for any graph the problems of finding a Pfaffian orientation and of checking whether 
a given orientation is Pfaffian are equivalent. Little [11] fully characterized the class 
of Pfaffian bipartite graphs in terms of forbidden subconfigurations. The class includes 
bipartite graphs with no subdivision of K33 (Little [10]), so in particular planar bipar- 
tite graphs (Kasteleyn [8]). We mention that the problem of determining whether the 
permanent and determinant of a matrix are equal is NP-hard (Valiant [17]). 

1.2. Other orientation results for  9raphs with no odd-K4's 

There are two other orientation results in which odd-K4's play a role. The first one 
is: An undirected graph contains no odd-K4 and no 3-chain if and only if it has an 
orientation such that on each circuit the number of forwardly oriented edges differs at 
most one from the number of backwardly oriented edges (Gerards [6]). The other is: 
Each undirected graph with no odd-K4 and no 3-chain can be oriented such that on 
each circuit the number of forwardly oriented edges minus the number of backwardly 
oriented edges is a multiple of the length of a shortest odd circuit in the graph (Gerards 
[4]). (The existence of such an orientation is equivalent with the existence of an 
adjacency preserving map from the vertices of the graph to the vertices of a shortest 
odd circuit in that graph.) 

2. Preliminaries 

2.1. An orientation lemma 

In proving Theorem 1 we will use several times the following easy fact. A one node 
cutset {v} lies between s and t if  the graph G - v (obtained by deleting v) has exactly 
two components, one containing s and one containing t. 
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Lemma 3. Let G be an undirected graph and let s, t E V(G) such that all one node 
cutsets lie between s and t. Then G has an acyclic orientation such that each node 
in G is on a directed st-path in D. 

Proof. First suppose that G has a one node cutset {v}. Let V~ be the node set of  the 

component of  G - v containing s and Vt the node set of the component containing t. 
Now applying induction to the subgraph of G induced by Vs U {v} with v instead of t 
and to Vt U {v} with v instead of s, we obtain the desired orientation for G, s and t. 

So, we may assume G to be 2-connected. Let (~ be a maximal 2-connected subgraph 
of G containing s and t, for which such an orientation, /3 say, exists. This is well 

defined as G is 2-connected and hence contains a circuit through s and t. If  G = G we 

are done, so suppose this is not the case. Number the nodes of  G such the tail of  each 

arc in /9  has a lower number than the head of that arc. Let R be a uv-path in G with 
V(R)N V(G) = {u, v} and E(R)NE(G)  = 0 (R exists as G is 2-connected). Without loss 

of  generality u received the lower number. Orient the edges on R so that R becomes a 

directed uv-path. Clearly, the directed graph obtained is 2-connected, acyclic and has 
each node on a directed st-path. But it is larger than G - -  contradiction! [] 

2.2. Signed graphs 

A soned graph is a pair (G,2;), where G = ( V ( G ) , E ( G ) )  is an undirected graph 

and 2 is a subset of  E(G). Edges in 2; are called odd, the other edges are called even. 
A collection of edges or a subgraph is called odd (even) if it contains an odd number 
of odd edges. We call a signed graph (G,2;) bipartite if there exists a set U C V(G) 

such that S = 6(U) := {uv E E(G) [ u E U, v E V(G) \U} .  Obviously, a signed graph is 
bipartite if and only if it has no odd circuits. Note that (G,E(G)) is bipartite if  and 
only if G is a bipartite graph in the usual sense. We say that a signed graph (H, O) 
is contained in (G, 2;) if  V(H) C_ V(G), E(H)  C_ E(G) and O = 2; n E(H).  

A strong odd orientation of a signed graph (G, 2~) is a strongly connected orientation 
of G in which no directed circuit is an even circuit in (G, 2;). It is easy to see that 
Theorem 1 is equivalent to: 

(3) Let (G, 2;) be a non-bipartite signed graph with G 2-connected. I f (G,  Z)  contains 
neither an odd-K4 nor an odd chain, then (G, 2Z) has a strong odd orientation. 

Here, odd-K4 and odd chain are defined similarly as in case of  ordinary graphs, with 

the understanding that in case of  signed graphs 'odd'  refers not to the cardinality of 
an edge set but to the number of odd edges contained in it. Similarly, we extend the 

notions of  string and of full, m-, and even chains to signed graphs. 
Clearly, the strong oddness of  orientations does not depend as much on 2;, the 

collection of odd edges, as on the collection of odd circuits. I f  (G, 2;) is a signed 
graph, and 2~ C_ E(G), then (G, 2;) and (G, 2~) have exactly the same odd circuits if  and 
only if (G,2; /k ~)  is bipartite or, equivalently, if and only if ~ = 2; A 6(U) for some 
U C V(G). We call the replacement of  2; by 2~ = 2; A 6(U) a re-signing on U. 
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3. Special  cases 

We first show the result for three subclasses of signed graphs with no odd-K4 and no 
odd chain, namely 'almost bipartite signed graphs', 'planar signed graphs with exactly 

two odd faces' and chains that are not odd. As we shall see in Section 4, these special 

classes generate the general case. 

3.1. Almost bipartite graphs 

A signed graph is called almost bipartite, if  it contains a node, called a block node, 
that is in each odd circuit. Deleting a block node yields a bipartite signed graph. 

Lemma 4. Let (G, S) be an almost bipartite signed graph. I f  G is 2-connected and 
( G, Z) is non-bipartite, then (G, Z) has a strong odd orientation. 

Proof. Let u be a block node of (G, Z). Re-sign such that Z becomes a subset of  
6(u). Construct a new graph G' by splitting u into two new nodes s and t, where odd 

edges in 6(u) now become adjacent to s and even edges in 6(u) to t. As (G,S)  is 
non-bipartite neither 6(s) nor 6(t) is empty. Moreover, as G is 2-connected, all one 

node cutsets of  G' lie between s and t. Applying Lemma 3 to G', yields an orientation 

of G' that induces a strong odd orientation of (G, S). [] 

3.2. Planar with two odd faces 

Lemma 5. Let (G, Z) be a signed graph. I f  G is 2-connected, planar, and can be 
embedded in the plane such that exactly two of its faces are bounded by odd circuits 
in (G,Z), then (G,Z) has a strong odd orientation. 

Proof. Let G* be the planar dual of  G and s and t be the nodes of G* corresponding 

to the two faces of  G bounded by odd circuits. As G is 2-connected so is G*. Hence, 
by Lemma 3 there exists an acyclic orientation D* of G* such that each node is on a 

directed st-path in D*. Take as orientation D of G, the directed dual of  D* by using 

the right-hand rule. 
Because, D* is acyclic, D has no directed cuts, hence D is strongly connected. I f  C 

is a directed circuit in D then it corresponds in D* to a directed cut. This implies that 
s and t lie in the plane on different sides of C. Hence, exactly one of the faces inside 
C is bounded by an odd circuit. As C is the symmetric difference of the boundaries 
of  the faces inside C, circuit C is odd. So, D is a strong odd orientation of G. [] 

3.3. Chains 

Lemma 6. Even chains have a strong odd orientation, and so do non-bipartite chains 
that are not full. 
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Proof. Let C be an odd circuit with non-empty intersection with all the beads. Orient 
the edges on C such that C becomes a directed circuit. Orient the other edges in G such 
that all non-bipartite beads, which are odd circuits, become directed circuits. Clearly, 
this yields a strongly connected orientation. The only possible directed circuits are C, 
the odd-circuits forming the non-bipartite beads, and possibly C' := G\C (if it forms 
a circuit). So, the orientation is odd unless C' is an even circuit in (G,Z). However, 
if C' is a circuit, then (G,Z)  is a full chain; if, moreover, [C'N Z] is even, then [Z[ 
is odd, so (G, Z) is an odd chain. [] 

4. Proof of Theorem 1 

As announced we will prove Theorem 1 by proving (3). If (G,Z) contains (Gl,Z1) 
and (G2, •2 ) with E(GL ) U E(G2) = E(G), E(G1 ) N E(G2) = 0, and V(G1 ) U V(G2 ) = 
V(G), then we write ( G , Z ) = ( G 1 , Z 1 ) ® u  (G2,~'2), where U : = V ( G I ) N  V(G2). In 
proving Theorem 1 we make use of the following decomposition theorem. 

Theorem 7 (Gerards et al. [7], cf. Gerards [5, Theorems 3.2.3 and 3.2.5]). Let (G,Z) 
be a signed graph containing no odd-K4. I f  G is 2-connected then one of  the following 
holds: 

(4) (G,Z) is almost bipartite or can be embedded in the plane such that exactly 
two o f  its faces are bounded by odd circuits. 

(5) (G,Z)  is - -  up to re-signing - -  one o f  the two signed graphs in Fig. 3. 

(6) ( G , Z ) = ( G I , Z 1 ) O u  (Gz, Z2) such that one of  the following holds: 

(a) [UI =2 ,  (G2,z~2) is bipartite and IE(G2)I ~>2; 
(b) IUI--2 and IE(GI)I, IE(G2)I >/3; 
(c) I UI = 3, (G2, Z2) is bipartite, IE(G2)I >~4 and (G, Z)  contains no 3-chain. 

Since in this paper we are considering a proper subclass of signed graphs with no 
odd-K4, namely those with no odd chain, we need a slight refinement of Theorem 7. 

Corollary 8. Let (G, Z) be a signed graph containing no odd-K4. I f  G is 2-connected 
then one o f  the following holds: 

(7) (G, Z)  is almost bipartite or can be embedded in the plane such that exactly 
two o f  its faces are bounded by odd circuits. 

(8) (G,Z)  is - -  up to re-signing - -  the signed graph in Fig. 3(a). 
(9) (G, Z) = (G1, Z l ) Ou ( G2, Z2 ) such that one of  the following holds: 

(a) IUI =2 ,  (Gz, Z2) is bipartite and IE(G2)I~>2; 
(b) IUI =3, (a2,~:=) is bipartite, IE(G2)I>~4 and (G,Z)  contains no 3-chain. 
G is a string, with beads H1 . . . . .  Hk and links hl,2 . . . .  ,hk, l such that the following 
hold for each i = 1 . . . . .  k: 

(a) I f  Hi is non-bipartite in (G, Z), there exists an odd circuit in Hi containing 
both h i - l , i  and hi, i+l. 

(lo) 
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(a) (b) 

Fig. 3. Bold edges are odd, thin edges are even; in (a) arrows indicate a strong odd orientation. 

(b) I f  Hi is bipartite & (G,Z),  it consists of  a sing& edge between hi-l,i and 

hi, i+l. 
Moreover, i f  k = 2 both Hi and 1-12 have at least 3 edges. 

Proof.  Let (G,Z)  be a signed graph with no odd-K4. Assume (7 ) - (9 )  do not hold. 

Then, by Theorem 7, (6b) applies, or (G, Z) is the graph in Fig. 3(b). Hence, G is a 

string with at least two non-bipartite beads. Let the beads H1 . . . . .  Hk be chosen such 
that k is as large as possible. Because (9a) does not hold, (10b) follows. So it remains 

to prove (10a). From maximality of  k and 2-connectedness of  G we easily get: 

(11) I f  Hi is non-bipartite, then there exists an odd circuit C in Hi and two 
(possibly zero-length) node-disjoint paths P1,P2 (in Hi) f rom {hi-l,i, hi, i+l} 
to V(C). 

From now, take i =  1. In H1, choose C, P1 and Pz as in (11) such that IE(P1)I+IE(P2)I 
is as short as possible; assume [E(P1 )1 >~ IE(P2)I • We prove that P1 has length 0, which 

proves (10a). So assume P1 has positive length. Moreover, assume that Pl goes from 
hk, l to u E V(C). Because of the maximality of k,/-/1 is 2-connected. Hence, it contains 
a vw-path P with v E V(P,) \{u}  and w E (V(C) u V(P2))\{u} that is internally node- 

disjoint with V(P1)U V(P2)t3 V(C). As C is odd, the union of P1, P2, P and C 
contains an odd circuit C1 containing v. By the choice of  C, P1 and P2 we get that 
V(CI )A  V(P2)= ~. Hence, we are in the situation as depicted by Fig. 4. Since there 
are at least two non-bipartite beads, at least one of H2 . . . . .  Hk is non-bipartite. Hence, 
by (11), there exists an odd hl,2hk, l-path Q1 and an even h~,zhk, l-path Q2 that are 
internally node disjoint with H1 (so lie in /-/2 t3 • .. t3/ark). But this implies that either 
QI or Q2 closes an odd-K4 with P1, Pz, C and C1 - -  contradiction! [] 

Proof  of  Theorem 1 

(12) Assumin9 (3) wrong, let (G,Z)  be a counterexample with ]E(G)] as small as 
possible. 
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Fig. 4. The shaded areas indicate the beads. Dashed and dotted lines denote pairwise openly disjoint paths. 
Dashed lines correspond to paths with at least one edge, whereas dotted lines may have length 0. The word 
odd in a face indicates that the length of the bounding circuit is odd. 

By Lemmas 4, 5 and 6 and Theorem 7 and because the orientation in Fig. 3(a) 
is strong odd, (G,2~) satisfies (9) or (11), but is not a chain. We consider three 

cases. 

Case 1: ( G , Z )  satisfies (9b) but not (9a). 

Let (G, 2:) = (G1, Z1 ) ®(u,,u2,u~} (G2, Z2) with (G2, $2) bipartite and IE(G2)I ~>4. As- 
sume that we have chosen (Gl,z~l) and (G2,Z2) such that IE(Gz)I is as small as 
possible. We may assume - -  by re-signing - -  that $2 = 0 .  Let (G1,Z1) be obtained 

by adding to (G1 ,ZI )  three new even edges: el =ulu2,  e2=u2u3 and e3=ulu3.  As 
(9a) does not apply for (G ,S ) ,  (G2,2~2) contains a circuit C (even, o f  course) with 

at least three nodes, and three node-disjoint paths from {Ul,U2,U3} to C. From this it 
can be proved that i f  (G1, Z1 ) would contain an odd-K4, then so would (G, Z), and if 
(G1 ,EI )  would contain an odd chain then ( G , Z )  would contain a 3-chain or an odd- 

K4; we leave the details to the reader. Moreover, ((~1, Zi ) inherits 2-connectedness and 

non-bipartiteness from (G, Z). Hence, (G1, Z1 ) has a strong odd orientation/31. In/31,  

the circuit {el,e2,e3} is not directed (it is even in (G1,E1)).  So we may assume - -  
by renumbering the indices in {ul, uz, u3 } - -  that ulu2, u2-u3, u1-/~3 E .4(/31 ). Let D1 be 
the orientation of  G1 obtained from/31 by deleting UlU2,U2U3 and ulu3. 

Claim 1. G2 is the graph in Fig. 5. 

Proof  of  Claim 1. I f  G2 has a one node cutset u that does not lie between ul 
and u3, then it separates u2 from ul and u3. So in that case the claim follows 
because (9a) does not hold and G2 was chosen such that it has a minimal number 
of  edges. 



120 A.M.H. Gerards, F.B. Shepherd~Discrete Mathematics 188 (1998) 111-125 ul ) 
u 2 

Fig. 5. 

Hence we may assume that in G2 each one node cutset lies between u 1 and u 3. 

Apply Lemma 3 to G2 with s :=  Ul and t :=  u3; call the resulting orientation D2. It is 

not hard to see that the orientation D of  G obtained by taking the union of  D1 and 

DE is strongly connected and that none of  its directed circuits is even in (G, Z). This 

contradicts (12). [] 

We define two orientations D uu2 and D u:u in (G, Z). In both the edges in E(G1 ) are 
. . . . ,  - . _ +  

oriented as in D1 and the edges in E ( G 2 ) \ { u u 2 }  are oriented as: ulu ,  uu3 and UtU3. In 

D u~2, uu2 is oriented from u to u2 and in D ~2~ from u2 to u. We will show that either 

D uu2 or D u:u is strong odd, contradicting (12). 

Claim 2. B o t h  D uu2 a n d  D ~'-u have  no  even d i r e c t e d  circuits.  

Proof  of Claim 2. Suppose C is an even directed circuit in D uu2 or D":". As (G1, $1 ) 

comes from (G,Z)  by contracting the even edge UEU and because /)1 has no even 

directed circuits, C is not a circuit in G1. Hence, in G, C contains the nodes u and u2 

but not the edge uu2. So it contains UlU and u~3. Replacing in C these two arcs by 

ulu3 yields an even directed circuit i n / ) l  - -  contradiction! [] 

Claim 3. E i t h e r  D "u2 or D ~2~ is s t r o n o l y  connected .  

Proof  of  Claim 3. It is easy to see that if  in D1 there is a directed u3u2-path, D u:u is 

strongly connected. (Because/)1 is strongly connected.) Similarly, if in D1 there is a 
directed u2ul-path, then D uu: is strongly connected. 

Hence, we may assume that neither Ul nor u3 is in the strongly connected component 

W of  D 1 containing u2. Let vw be an edge in G1, with v E W and w $ W. (This edge 

exists as G1 is connected.) I f  vw E A ( D 1 ) ,  then there exists a directed WUl-path in D1, 

hence also a directed u2ul-path (as v is in W). So D uu: is strongly connected. On the 
- - - +  

other hand, if  wv EA(D1) ,  then there exists a directed uaw-path in D1, hence also a 
directed uaul-path. So in that case, D u2~ is strongly connected. [] 
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Hence, Case 1 cannot hold. 

Case 2: (G, S )  satisfies (9a). 

Let (G, 2;) = (G1, Z 1 ) • {,,,,: } (G2, Z2 ) with (G2, Z2 ) bipartite and I E(G2 )1 ~> 2. From 
this we have a contradiction against (12). As the proof  is just a simplified version of  

the proof  in Case 1 we omit it. 

Case 3: (G, 2 )  satisfies (10). 

Let Hj . . . . .  Hk be the beads of  G, satisfying the conditions in (10). As ( G , S )  con- 
tains no odd chain, k is even or one of  the beads is bipartite. Assume the num- 

bering of  the beads is such that Hk has the maximum number of  edges. Define 

Gl : = H I  U . . .  UHk_j ,  Xj : = X N E ( G I ) ,  G2 :=Hk, X z : = X N E ( G 2 )  , ul :=h~ Lk and 
u2 :=hk,1. Then ( G , S ) =  (GI,SI)®{u,,u.,} (G2,Z2); by Lemma 6, ( G , S )  is not a chain, 
so IE(G, )l, ]E(G2)[/>3. 

For i =  1,2, we define (Gi,-ri)  by adding to (Gi, Si)  two edges e ° and e~ from ut 

to u2, where e ° is even and e~ is odd (so 2, : = Z i  U {e~}). For j = 0 , 1 ,  ((~2,$2) j is 
obtained from (G2,2"2) by deleting e~. From (10) (and the fact that ]E(GI)] ~>3) we 

deduce: 

(13) ( 0 ~ , 2 ~ ) , ( 0 2 , 2 2 ) ° , ( ~ 2 , 2 2 )  ~ and (G2,22)  are non-bipartite, 2-connected and 

contain no odd-K4. Moreover, (0~,2~),(02,22) ° and (G2,22) 1 contain no odd 
chain. Finally, i f  all beads are non-bipartite, then also ((~2,22) contains no 

odd chain. 

Claim 4. For i =  1,2, the circuit {e °, e~ } will be a directed circuit in each strono odd 

orientat ion/) i  o f  (Gi, S-i). 

Proof  of Claim 4. L e t / ) l  be a counterexample. Assume, both e ° and el are directed 

from ul to u2 in / )1 .  As /)l is strongly connected there exists a directed Uzul-path in 
/)1. This path closes a directed even circuit with one of  e ° and ell - -  contradiction! [] 

Let /)l be a strong odd orientation of  (G1, S1 ). We may assume that e I is directed 
from ul to u2 and e ° from uz to ul ( i f  not, reverse all orientations). Let DI be the 
restriction of / )1  to E(G1 ). 

Claim 5. Dj contains a directed ulu2-path or a directed u2ul-path. 

Proof  of  Claim 5. Let W be the set o f  nodes reachable in Dl by a directed path from 
- - - +  

ul. I f  u2 C W we are done, so suppose this is not the case. Let uv EA(Dt) ,  with u ~ W 
and v E W (uv exists as G1 is connected). As /)1 is strongly connected, there exists 
in DI a directed u2u-path as well as a directed vuj-path. Together with uv these paths 
close a directed u2ul-path in Di.  [] 
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We consider three cases. 

Case 3A: D1 contains a directed path f rom ul to u2 as well as a directed path .from 

u2 to Ul. 

This case is only possible if all the beads are non-bipartite. So, (G2,Z2) contains no 

odd-K4 and no odd chain. Let/32 be a strong odd orientation of  (G2, z~2), where e I is 

oriented from ul to u2 and e ° from u2 to Ul; let D2 be the restriction 0f/32 to E(G2). 

It is easy to see now that the union D of  D~ and D2 is a strong odd orientation of  

(G, 27) - -  contradiction! 

Case 3B: D1 contains a directed path f rom uj to u2 but none f rom u2 to ul. 

Whereas in Case 3a our main concern was to prevent D to have directed even circuits, 

now we have to make sure that D becomes strongly connected. Note that the directed 

ulu2-path in D1 is odd. 

Let/32 be a strong odd orientation o f  (G2, 2~2) ° such that e I is oriented from Ul to u2. 

D2 is the restriction 0f/32 to E(G2) and D is the union of  D1 and D2. Again it is easy 

to check that D is a strong odd orientation o f  (G, Z), yielding again a contradiction. 

Case 3C: D1 contains a directed path from u2 to ul but none from ul to u2. 

It is not hard to see that this case can be reduced to Case 3b. 

We conclude that (12) leads in all cases to a contradiction. Hence, (3) and Theorem 1 
are true. [] 

5. Algorithms - -  Proof  of  Theorem 2 

In this section we prove Theorem 2. All steps in the proof of  Theorem 1 in 

Section 4 - -  including the proofs of  Lemmas 4 - 6  in Section 3 - -  are algorithmic. So 

if the graph contains no odd-K4 and no odd chain, then (1) is solvable in polynomial 

time. 
A bit less obvious is the existence of  a polynomial algorithm for solving (2) for 

orientations of  graphs with no odd-K4 and no odd chain. It relies on the fact that 

the strong odd orientations derived in the previous section are, though not uniquely 

determined, more or less forced. 

Lemma 9. There exists a polynomial-time algorithm to decide (2) in any directed 

9raph that is an orientation o f  a 9raph with no odd-K4's and no odd chain. 

Proof.  Let (G ,S)  be a signed graph with no odd-K4 and no odd chain. Let D be 

an orientation of  (G, 27). We want to check whether D has a directed circuits that is 

even with respect to Z. Clearly, we may restrict ourselves to the blocks o f  G and 
the strongly connected components o f  D. So assume G 2-connected and D strongly 
connected. We consider several cases. 
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Case 1: (G,S)  is either almost bipartite, planar with two odd faces, the graph o f  

Fig.3(a), or a chain. 

If  (G, S) is almost bipartite, let G' be as in the proof of  Lemma 4. It is easy to prove 

that D is strong odd if and only if the corresponding orientation of G' is as in Lemma 
3. Similarly, when (G, Z) is planar with two odd faces, D is strong odd if and only if 

the dual directed graph D* is as in Lemma 3 (see the proof of  Lemma 5). So in both 

these cases we can check the existence of even directed circuits in polynomial time. 
When (G, 2;) is as in Fig. 3(a) we can just check all its circuits. If  (G, S) is a chain, 

then all the beads are either paths or odd circuits. If  one of these odd circuits is not 

directed, D cannot be strong odd (compare with Claim 4). If  all these odd circuits are 
directed, there are at most two other directed circuits in D whose eveness can easily 
be checked (compare with the proof of Lemma 6). 

If  Case 1 does not hold we know that either (9) or (10) hold. In that case we will 
proceed recursively, by decomposing (G,Z)  as in the proof of  Theorem 1. The only 
difference is that now the orientation is prescribed. 

Case 2: ( G , S ) = ( G I , S 1 ) ® u  (G2,$2) as in (9). 

Re-sign (G ,S )  such that $ 2 = ~ .  For i = 1 , 2 ,  Di denotes the restriction of D to 

(Gi, Z,i). If  D2 contains a directed circuit, which is easily checked, D is not strong 
odd. If  that is not the case, add for each pair of  nodes u, v E U such that there exists a 

directed uv-path in D2, an even edge uv to (G1,2~l) and an arc ~v to D1. Let (Gl, ,~l)  
be the resulting signed graph and / ) l  be the resulting orientation. If  I UI--2, (Gt,,~) 
contains no odd-K4 and no odd chain; moreover , / ) l  is strong odd if and only if D is 
strong odd. The same holds if  lU L = 3, provided that we know that (9a) does not hold. 

So, if we decompose according to (9a) until this is no longer possible, and then 
according to (9b), we can deal with (9) in polynomial time. 

Case 3: Cases 1 and 2 do not apply. 

So (G,S)  satisfies (10). Let H1 . . . .  ,Hk be the beads of G, satisfying the conditions 

in (10). As (G,S)  contains no odd chain, k is even or one of the beads is bipartite. 

In each Hi, search for a directed hi-1,ihi, i+l-path Ri and a directed hi, i+lhi-l,i-path Li 
(indices modulo k). I f  Ri does not exist we set Ri := 9. We do the same with L i. 

Claim. I f  for  some i = 1 . . . . .  k, Ri and Li are both non-empty and have the same 

parity with respect to S, D contains an even directed circuit. 

Proof  of Claim. Suppose the claim is false with i = 1. Let Yo . . . . .  Ym be the nodes on 
V(RI ) A  V(LI ), numbered in the order in which they are visited when traversing RI 

from Y0 = hk. 1 to Y,n = h 1,2. 

(14) Traversing L1 f rom hi,2 to hk, i the nodes on V(R~)fq V(LI) are visited in the 

order: Ym . . . . .  y0. 
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hk hi, 2 

(a) 

h k al,2 

(b) 

Fig. 6. 

I f  not, RI and Li would contain a configuration as in Fig. 6(a). The dashed path is Rj, 

the dotted paths are parts o f  L1. The circuits Cl and C2 in Fig. 6(a) are directed, hence 

odd. But this means that (G, Z) contains a configuration as in Fig. 4. As in the proof 

of  Corollary 8 this would yield the existence of  an odd-K4 in (G,L'). So (14) holds. 

(15) There exist odd circuits Ci . . . .  Cm and nodes xo . . . . .  X m in HI, satiafying: m 
is even; x0=hk, i E V ( G )  and Xm =hl ,2  E V(Cm); V(Ci) n V(C/+I )={xi}  for 
i = 1  . . . . .  m -  1 and V(C/)N V(Cj)=(~ for [ i - j ] > l  (see Fig. 6(b)). 

Indeed, the circuits formed by R1 and L1 are directed, hence odd; so, by (14), they form 
such a collection. From now on the orientations do not play a role in the proof of  this 

claim. Assume the odd circuits in (15) are chosen with m as small as possible. As Hi 

is non-bipartite it contains a circuit through hk,1 and hl,2. So xl is not a one node cutset 

in Hi. Hence, there exists a path P in H1 from some node y C V(Ci)\{xl  } to some 

node z E ( V ( C 2 ) U - - .  U V(Cm))\{xl }, that is internally node-disjoint from C1,. . . ,  Cm. 

If  y # hk, i or z £ {x2 . . . . .  Xm}, then using the oddness of  the circuits C1 . . . . .  Cm we can 
again derive the existence o f  a configuration as in Fig. 4. As (G, 2;) has no odd-K4, 

this is not possible. So y=hk, i and z = x j  with j E { I  . . . . .  m}. As we have chosen 

C1 . . . . .  Cm with m minimal, j is even. But this implies that (G,Z) contains an odd 

chain. Its beads are: CI, . . . ,Cj ,  together with an odd circuit consisting of: P; a path 

from xj to x,n in Cj+I U . . .  U Cm; and an Xmhk, l-path Q of  the appropriate parity in 
He U . - - U H k .  Q exists as at least one o f  H2 . . . . .  Hk is non-bipartite, As (G,S) has no 
odd chain this yields a final contradiction. 
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With this claim, the final part of  the algorithm is straightforward. Assume the 
numbering of the beads is such that Hk has the maximum number of  edges. Define 

G1 : = H 1  U ' " U H k _ I ,  ~'1 :-----z~ f q E ( G I ) ,  G2:=Hk, ~ 2 : = ~ N E ( G 2 ) ,  Ul :=hk-Lk and 

u2 :=hk, l. Then (G,S,)=(G1,X1)®{u,,u2} (G2,$2) .  AS Case 1 does not apply, (G,S) 
is not a chain, so IE(GI)I, [E(G2)I/>3. 

Define a new oriented signed graph (G1,Z1) as follows: Start with (Gi ,S l ) ,  with 
the arcs oriented as in D. If  Lk is non-empty add to (Gi, E1 ) a directed arc from ul 

to u2 with the same parity as Lk. If  Rk is non-empty add a directed arc from u2 to u~ 

with the same parity as Rk. Call the resulting directed graph Dl. Similarly we define 

(G2,$2) and D2 (where the new arcs are only added if none of R1 . . . . .  Rk-l ,  resp. 
none of Li . . . . .  Lk-1 are empty). Obviously D is strong odd, if and only if D1 and D2 

are strong odd. Moreover, (G1,S1) and ( G 2 , $ 2 )  have no odd-K4 and no odd chain 
(compare with (13)). [] 
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