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CHAPTER I 

INTRODUCTION 

I.I. THE PROBLEM OF STIFFNESS 

The subject of this monograph is the numerical solution of initial 

value problems for systems of ordinary differential equations. Numerical 

methods for such problems have already been known for a long time. The 

oldest and most simple one is Euler's method (cf. example I.I.I). More 

sophisticated and accurate methods have been proposed afterwards, and now

adays very efficient procedures exist for a large class of problems arising 

in practice. Still there is a class of problems, the so-called stiff 

problems, for which the numerical procedures are less efficient and 

reliable. With such problems we shall be concerned in the following. In 

this section it will be explained what is meant by stiffness. 

We consider an initial value problem for an autonomous system of s 

ordinary differential equations 

(I.I.I.a) U' (t) f(U(t)) (05t5T) , 

(J.1.1.b) U(O) = u0 • 

This problem may be real or complex. The function f: I<s + I<s , the vector 

u0 E I<s and the positive number T are given. Here I< stands for 

either the set of real numbers lR or the set of complex numbers ~ , and s 

is a positive integer. It will always be assumed that the problem (I.I.I) 

is such that there exists a unique solution U • 

For the numerical solution of (I.I.I) we shall deal with step-by-step 

methods, which produce approximations un to the solution U at grid-
points t • These gridpoints are defined by t = t + h (l5n5N) , n n n-1 n 
t 0 = 0, where the numbers hn > 0 are the stepsizes and tN= T. If all 

stepsizes are equal, say h h (15n5N) , the grid {t } is said to be 
n n 

uniform. For convenience this will be assumed in the subsequence. 
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Application of a step-by-step method to a concrete problem (I.I.I) 

results in a difference scheme from which the approximations u 
n 

can be 

computed one after another. We shall deal only with one-step-methods where 

for the computation of un only un-l 

j $ n-2 

is needed and not the u. with 
J 

During the numerical integration errors will be introduced. Such errors 

are mainly caused by the fact that the differential equation is replaced by 

a difference scheme; these are the so-called local discretization errors 

(see section 3.1). Also by the computer arithmetic errors will be produced 

in the computation of un from un-I . The introduction of these local 

errors, which are small if the stepsize is chosen properly, does not lead 

to a bad overall result if the effect of such small errors remains small. 

Thus if we have two sequences {~ } , {u } satisfying the difference 
n n 

scheme, and ~k = U(tk) , uk ~ U(tk) , we like to know whether l~k+n-uk+nl 
remains small for all n ,if l~k-ukl is so. We call a numerical scheme 
stable if there exists a constant a > 0 such that 

(J.I.2) (n=I ,2, ... ,N-k) 

for all $ k < N . Here I· I stands for some given norm 

on I<s • 

If a numerical scheme is known to be stable with a moderate stability 

constant a , and the local errors are small, then also the global errors 

JU(tn)-unl (I$n$N) will be small. 

For the stability analysis it is often assumed that the function f 

appearing in the right-hand side of the differential equation satisfies a 

Lipschitz condition 

(I. J.3) Jf(~)-f(x)I $ LJ~-xl (for all x, x E ][{s ) , 

which implies 

(J.1.4) JU(t+t.t)-U(t+t.t) I $ eLt.t IU(t)-U(t) I (0$t<t+l>t$T) 

for any two solutions U,U of the differential equation (I.I.I.a). There 

exists a rather satisfactory theory by means of which one can predict how 

well a numerical scheme will approximate the exact solution U of (I.I.I), 



provided that the product TL is not too large and hL is sufficiently 

small. Important contributions to this theory can be found in the books 
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by DAHLQUIST (1959), HENRICI (1962) and STETTER (1973). Actually the 

Lipschitz condition (1.1.3) only needs to hold on some tube around the 

solution U . Many practical problems meet this requirement with a Lipschitz 

constant L such that TL is not very large. In such a case the require

ment on hL will not lead to an excessively large number of steps. 

In (1.1.4) equality is possible for functions f satisfying (1.1.3) 

(e.g. with lKs = JR. 1 , f(x) = Lx (xElR)). If this is the case and uN,uN 

are good approximations to U(tN),U(tN) , respectively, we therefore have 
~ LT~ 
luN-uNI ~ e lu0-u0 1 , and the stability inequality (1.1.2) will only hold 

with a > eLT . From this observation it can be seen that if TL is very 
~ 

large and (1.1.4) is not pessimistic any numerical scheme will encounter 

serious problems. 

Suppose the norm I ·I is generated by an inner product <·,·> on 

lKs , and suppose, instead of or in addition to (1.1.3), that f satisfies 

a so-called one-sided Lipschitz condition 

(1.1.5) 
~ ~ ~ 2 

Re <f(x)-f(x),x-x> $ Slx-xl (for all x,x E lKs ) , 

with S E 1R given. This condition implies that we have for arbitrary 

solutions U,U of(l.1.1.a) 

(1.1.6) IU(t+L:.t)-U(t+L:.t) I s est:.tlu(t)-U(t) I (Ost<t+L:.tST) 

(see e.g. DAHLQUIST (1959)). Even if the Lipschitz constant L is very 

large, :the one-sided Lipschitz constant S may be close to zero or 

negative. The inequality (1.1.4) is then much too pessimistic. As an 

illustration we consider the following simple problem. 

EXAMPLE I.I.I. Let I , and let f be defined by 

f(x) AX (for X E ii: ) 

where A ~ a: satisfies Re As 0 , IA.I = 106 . With <x,y> = xy (for 

x,y E a:), (1.1.5) holds with S = 0 , whereas we have to take 

for (f.1.3) to hold. 

The method of Euler is given by 

L = 106 
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u = u I + hf(u 1) n n- n- (I :Sn:SN) , 

obtain here the approximations u from which we 

the solution 

computed with 

At n 
U(t) = e u0 of (I.I.I). For two sequences of approximations 
different starting values ; 0 ,u0 , we have 

(I :Sn:SN) 

If hL is large, say h = I0-3 , then ll+hAI Rl 103 and N = 103 • Thus 
we have the unfavourable result 

A completely different behaviour shows up with the Backward Euler 
method where the approximations are computed according to 

u u I + hf(u ) n n- n 

For this case we obtain u - u 
n n 

have 

for all stepsizes h > 0 • 

(i:Sn:SN) • 

(lsnsN) 

We thus see from this example that there are numerical methods, such 
as the Backward Euler method, which may produce stable approximations with 
a stability constant a Rl no matter how large hL is. If the solution 
U we want to approximate is smooth (slowly varying) then the local 
discretization errors will be small for stepsizes h 'which are of moderate 
size. For such a problem we then may obtain accurate approximations, even 
if hL is large. 

Suppose the solution U of (I.I.I) is smooth, and (1.1.5) holds with 
8 < 0 . We call this solution 

Rl 
U stiff if for any open region V c l<s 

containing {U(t):O:St:ST} the Lipschitz constant L of the restriction of 
f to V is such that TL is very large. 

Many numerical methods, for instance Euler's method, are unsuited to 
solve stiff problems (problems with a stiff solution), due to the fact that 
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a large value of TL will casue an extremely large stability constant 

unless hL is sufficiently small. Such a restriction on h leads to a 

very large number of steps. On the other hand there are methods, for example 

the Backward Euler method, for which the requirement on hL is unrealistic, 

and for such methods we may obtain accurate approximations to stiff sol~tions 

with a moderate number of steps. 

Stiff initial value problems are encountered in many practical 

situations, for instance in control theory, chemical kinetics and diffusion 

processes. A detailed discussion and more examples can be found in 

WILLOUGHBY (1974) and BJUREL et al. (1970). Very often in these situations 

the solution U of (I. I.I) is such that U(t) varies wildly for a short 

period, the so-called transient phase. After this phase U(t) becomes 

smooth. We then only call the latter part of the solution stiff. In the 

transient phase the use of a small stepsize is inevitable for keeping the 

local errors small. Since this period is only very short this does not 

lead to an extremely large number of steps. After the transient phase a 

larger stepsize can be used, provided that the scheme remains stable, and 

there a numerical method which is suited for stiff problems is recommended. 

REMARK 1.1.2. Instead of (I.I.I) we could also consider the more general 

(nonautonomous) problem 

(I. I. 7. a) U'(t) = f(t,U(t)) (O:St:ST) , 

(1.1.7.b) U(O) = u0 

where f: lR x JKs + I<s and u0 E KS • We will restrict ourselves to 

(I.I.I) for the sake of simplicity. The analysis presented in this mono

graph could also be given for nonautonomous problems (I.1.7), but this 

would only complicate the results in some chapters without leading to new 

insights. Moreover, any nonautonomous initial value problem (1.1.7) can 

be converted to an autonomous problem by adding the differential eguation 

U~+l(t) =I , with initial value Us+l(O) = 0, to the system and replacing 

f(t,U(t)) by f(Us+l(t),U(t)) • After this conversion we obtain an initial 

value problem for an autonomous system of s+I differential equations. 
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1.2. SOME STABILITY AND CONTRACTIVITY CONCEPTS 

In this section some stability concepts will be introduced which 

indicate whether a given method is suited for stiff initial value problems. 

For stiff problems we would like to have schemes which remain stable with 

a moderate stability constant cr no matter how large L and T are. In 

the following we therefore take T = 00 and consider classes of problems 

which are such that there is no (uniform) upper bound for the Lipschitz 

constants of the functions f in such a class. 

Suppose the differential equation (I.I.I.a) is dissipative, i.e. for 

any two solutions U,U of (I.I.I.a) and arbitrary t ~ 0, h > 0 we have 

(J.2.1) Ju(t+h)-U(t+h) I s; Ju(t)-U(t) I • 

A numerical scheme is said to be contractive if for arbitrary starting 

vectors u0 ,u0 , the following discrete version of (1.2.1) holds, 

(I. 2.2) J';:i' u I s j';:i' -u I n+I- n+I n n (n=0,1,2, •.• ). 

For dissipative systems contractivity is a natural requirement. Moreover, 

contractivity implies stability (in the sense of (1.1.2)) with stability 

constant cr = I • 

As we shall see in chapter 5 the stability properties of a method for 

general stiff problems can be predicted to some extent by knowledge of 

the behaviour of the method on the class of simple one-dimensional linear 

problems where lKs = IC 1 and 

(1.2.3) f(x) AX (for x E IC ) with >. E IC • 

The one-step methods we will consider are such that for these testproblems 

we get a scheme of the type 

u 
n 

(n=l,2,3, • •• ) 

where ~: IC + IC is a rational function which only depends on the method. 

For such schemes contractivity and stability (in the sense of (1.1.2) with 

N = 00 ) are equivalent: if l~(h>-) I 5 I we have contractivity, and if 

IHh>.)J >I then l~n-unJ + 00 (n+ 00 ) whenever ~Of. u0 • 



The following definition is due to DAHLQUIST (1963). It is concerned 

with the class of problems where f satisfies (1.2.3) with Re A~ 0 • 
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DEFINITION 1.2.1. A one-step method is said to be A-stahle if the contract

ivity relation (1.2.2) holds for all dissipative problems satisfying (1.2.3) 

and arbitrary stepsizes h > 0 • 

A-stability has been established for many numerical methods. A funda

mental contribution to this subject is given by WANNER, HAIRER and N0RSETT 

(1978). 

For general one-step methods A-stability is no guarantee that the method 

also produces stable results for arbitrary nonlinear stiff problems. It can 

be shown, see e.g. SPIJKER (1982 B) and section 5.3 of this monograph, that 

if the method is A-stable, the differential equation (I.I.I.a) is linear 

and dissipative, and the norm I· I on I<s is generated by an inner product, 

then the contractivity relation (1.2.2) will hold for arbitrary stepsizes 

h > 0 . The situation with arbitrary norms is totally different. For results 

in this direction we refer to NEVANLINNA and LININGER (1978,1979), BRENNER 

and THOMEE (1979) and SPIJKER (1982 A). 

We shall confine ourselves to the case where the norm I ·I is 

generated by an inner product <·,·> • 

DEFINITION 1.2.2~ A one-step method is said to be B-contractive if the 

contractivity relation (1.2.2) holds whenever h > O, and f satisfies 

(1.1.5) with s = o. 

A similar concept, G-stability, was introduced by DAHLQUIST (1975) for 

multi-step methods. Definition 1.2.2 is due to BUTCHER (1975), who used the 

term B-stability. For the schemes which arise if a one-step method is 

applied to a nonlinear problem, there is no equivalence between stability 

and contractivity. Therefore we have chosen the term B-contractivity in 

definition 1.2.2. 

In the definitions 1.2.1, 1.2.2 no restriction is imposed on the step

size. If a dissipative problem is solved numerically with a B-contractive 

method the stepsize has only to be chosen in such a way that the local 

errors remain small, and we need not worry about an unfavourable error 

propagation. 
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1.3. THE SCOPE OF THE STUDY 

In this monograph we shall mainly be concerned with implicit Runge

Kutta methods and semi-implicit one-step methods for nonlinear stiff initial 

value problems. These methods can be viewed as generalizations of explicit 

Runge-Kutta methods, and they constitute the class of one-step methods which 

are mostly used for stiff problems. 

First, in chapter 2, useful technical results will be obtained. 

In chapter 3 we take a closer look at the implicit Runge-Kutta methods 

and the semi-implicit methods, which have to be provided with a suitable 

approximation to the Jacobian f' • Some restrictions on the semi-implicit 

methods will be motivated in this chapter. 

In chapter 4 we consider the following subject. If an implicit Runge

Kutta method is used for the numerical solution of a nonlinear initial 

value problem, at each step of the integration a nonlinear system of 
aigebra:ic equations has to be solved. The approximations un are only 

well defined if the algebraic equations are uniquely solvable. It is known 

(see e.g. GRIGORIEFF (1972)) that there exists a unique solution if the 

·product of the stepsize h with the Lipschitz constant L of f is 

sufficiently small. The implicit methods however are intended to deal with 

cases where hL is not small. 

Using only the one-sided Lipschitz condition (1.1.5) and continuity 

as assumptions on f , and thus allowing L to be arbitrary large, suffi

cient conditions, on the coefficients of the Runge-Kutta method and the step

size h , for having a unique solution to these algebraic equations will be 

presented in section 4.3. Similar results obtained in CROUZEIX, HUNDSDORFER 

and SPIJKER (1983) and DEKKER (1982) are slightly generalized. By a 
combination of these sufficient conditions with results of FRANK, SCHNEID 

and UEBERHUBER (1982 A), it can be shown that for many B-contractive Runge

Kutta methods the numerical approximations are always well defined for 

dissipative problems, without any restriction on the stepsize. This is a 

useful completion of the B-contractivity concept for these methods. 

If we deal with linear differential equations or with semi-implicit 

methods only linear systems of algebraic equations have to be solved. These 

cases are considered in the sections 4.2 and 4.4. 

In chapter 5 the error propagation in implicit and semi-implicit 

methods applied to nonlinear stiff initial value problems is studied. We 

shall assume that it is known in advance how the methods behave on the 
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scalar, linear testproblems (1.2.3), and consider questions of the following 

type. Suppose a method is A-stable. Can we then also apply this method to 

nonlinear, nonscalar, dissipative problems without having an unfavourable 

error propagation? 

For a rather large class of implicit Runge-Kutta methods (the B-co-,1-

tractive ones) the answer is already known to be affirmative. The implicit 

Runge-Kutta methods are therefore only considered shortly in section 5.5. 

For the semi-implicit methods much less is known at present. It will be 

shown in section 5.4 that if we use a Rosenbrock method (a semi-implicit 

method using an exact Jacobian approximation) for approximating a slowly 

varying solution U of (I.I.I), and the variation of the Jacobian f' is 

restricted, the error propagation will not differ much from the case where 

we deal with a testproblem (1.2.3). Also for semi-implicit methods using a 

fixed Jacobian approximation we get this positive result, provided that the 

Jacobian approximation is good enough. These results indicate for what 

kind of nonlinear initial value problems the semi-implicit methods are 

suited. In this analysis essential results of HAIRER, BADER and LUBICH 

(1982) (on semi-implicit methods using a constant Jacobian approximation) 

and of HUNDSDORFER (1981) (on a small class of Rosenbrock methods) are 

generalized. Besides it will be proved that such positive results are not 

valid for all choices of the Jacobian approximation in semi-implicit 

methods. 

For some simple implicit and semi-implicit methods the bounds on 

the error propagation obtained in chapter 5 are used in chapter 6 to derive 

convergence results where the initial value problem may be arbitrarily 

stiff. 
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CHAPTER 2 

PRELIMINARIES 

2.1. GENERAL NOTATIONS AND CONVENTIONS 

In this section we introduce some notations that will be used through
out all chapters. 

The set I< stands consistently for either the set of real numbers 
lR or the set of complex numbers E . The set of natural numbers 
{1,2,3, ••• } is denoted by lil. Further we define lR+= {l;:~ElR,~>-0} and 
t {c:cEt,Re C$0} • 

· (m) (m) (rn) . Let m E lil. The vectors e 1 , e2 , ••• , em will 
vectors in lRm; the j-th. component of e~m) equals 

l. 
0 otherwise. Generally we simply write e. instead of 

l. 
in lRm all of whose components equal I will be denoted 

stand for the unit 

if j=i,and 

e~m) • The vector 
l. 

by e(m) or e . 

Let X and Y be finite dimensional normed vectorspaces over I<. 
Then L(X,Y) denotes the space of linear operators from X to Y On 
L(X,Y) we will consider the operator norm which is induced by the norms 
on X and Y We denote L(X,X) shortly by L(X) • For given A E L(X) , 
BE L(X,L(X)) , we define ABE L(X,L(X)) by (AB)x = A(Bx) (for x EX). 

If A = (a .. ) is an n x m matrix with entries a. . in I< , we shall l.J l.J 
also write A E L(i(ll,I<n) • Thus no distinction will be made between a 
linear operator and its usual matrix representation. 

by 

on 

The identity operator in L(lRm) will be denoted by I(m) or simply 

I • 

Let s E lil, A E L(I<s) , and let «,-> stand for an inner product 
I<s with corresponding norm Ix! = <x,x) (for x E I<s). We then also 

use l•I to denote the induced operator norm of A, 

(2.1.1) IAI = sup{IAxl:xEI<s,lxl=I} • 

The logarithmic norm µ[A] of A (w.r.t. the inner product «,'>) i.s 
given by 



(2.1.2) µ[A] 
s 

sup{Re<x,Ax>:xEJK , lxl=l} 

I I 

(cf. STROH (1975)). The set of eigenvalues (in IC) of the ooerator A will 
be denoted by cr(A) 

Let A be an sn x sm matrix and B an sm x sk matrix, which are 

both partitioned into blocks 

A =(~II 
Anl 

A •. ,B .• E L(I<s) , 
lJ lJ 

B =(~I I 
Bml 

The blocks A.. are called the block-entries of 
lJ 

[A] .. to denote these blocks. The block-entries 
lJ 

C = AB E L(I<sk, lKsn) are given by 

m 

c .. 
lJ 

A • ~e shall alsa write 

C .. E L(I<s) of 
lJ 

s (see e.g. GANTMACHER (1959)). If D1,D2 , ... ,Dm E L(JK), then D = 

= diag(D 1,n2 , ••• ,Dm) E L(JKsm) stands for the block-diagonal matrix with 

blocks n1,n2 , ••• ,Dm on the diagonal. 

The Kronecker product (cf. MARCUS and MINC (1964)) of two matrices 

A and B will be denoted by A ® B • 

Let g: lKs + lKs (or L(JKs) ) be a given function. The Gateaux

derivative of g will be denoted by g' (see section 2.3.J for more 

details). We shall also write Dxg(x) instead of g'(x) (for x E JKs ). 

If ~: IC + IC is such that 

by ~ (oo) 

lim ~(r;) 
lr;l+ 00 

exists, we denote this limit 

Finally, if m,n E lN and m > n , we use the conventions 

n 

l 
i=m 

n 
0 and JI 

i=m 
I . 
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2.2. RATIONAL FUNCTIONS 

2.2.1. Half-plane bounds for rational functions 

Consider a rational function w defined by 

(2. 2. I) 
-I w<r;> = Cq(r,;)J p(r,;) ( 1,; E 0:) ' 

where q(r;) = qo + qlr; + •.. + qkr,;k' p(r;) =Po+ P1s + •.• + pkr,;k' k E :JN' 

and all coefficients qj,pj are in lK. We assume that qk ! 0 , and that 

a > 0 is a given number such that w is analytic on {r,;:r,;EO:,Re r;<cr} 
Further we put 8 = a-I 

We define the function 'I': lR + lR by 

(2.2.2) 'l'(t) = sup{ I w(r;) I: 1,;EO:,Re r;st,w is regular in r,;} 

From the maximum modulus theorem it follows that 'l'(t) equals 

sup{Jw(r;)J:r,;EO:,Re r;=t} whenever t <a. 

( t E :JR) • 

LEMMA 2.2.1. Assume pk = O . Then there is a constant w > 0 such that 

'l'(t) s w (1-8t)-I (for -oo < t s !a ). 

PROOF. Let l be the largest index such that p l ! 0 • Then 

k -I -I ,t -I 
[qkz; (l+O(r,; ))J [pi (l+C(r; ))J 

Hence there exists a p > 0 such that 

(for I r; I > P ) • 

Since l - k ~ -I , there is an w1 > 0 such that 

(2.2.3) I w(r;) I -I 
~ w 1 ( 1 +e I r; I ) (for I r; I > P ) • 

If Re r; s t < -p , then clearly lr;I ~ -t > p • Hence we obtain from 

(2. 2.3) 



-I J ljl(i;;) I s w1 (I-et) (for Re i;; s t < -p ) • 

Now assume that Re I; s t and -p s t s icr • Then 

Jljl(i;;) I s 'l'{icr) s 'l'{!cr) (J+ep) (1-et)-I 

The lemma thus holds with w = max{w 1,'l'(icr)(l+ep)} 

13 

D 

LEMMA 2.2.2. Assume that 1jl is not constant and 'l'(O) = I • Suppose further 
that i;;0 E o: is such that Re i;;0 = 0 and J 1j1(1;0 ) I = I • Then 1jl' (i;;0 ) /ljl(i;;0 ) 

is reaZ and positive. 

iT PROOF. Consider i;; = i;;0 + p e with p > 0 and 

with 

Suppose ljl'(i;;0) = 0 Then there is a j ~ 2 

ljl(j)(I';) ~ 0. We easily see that 
0 J ljl (i;;) I > I 

1! < T 31T 
2 - s T · 
such that 

for some TE [¥, 3;J 

and p > 0 sufficiently small. This contradicts the assumption of the lemma. 

We thus have 

1jl ( 1;) ljl(i;;o) + p iT ljl' (i;;o) + O(p2) e 

with ljl'(i;;o) ~ o. Hence 

J ljl ( i;;) I = I + P 
-.- iT 

Re[~(i;;0 )1jl'(i;;0 )e J 
2 

+ O(p ) 

Since J ljl(i;;) I s I for all T E [!! 31TJ 
2' 2 , we obtain 

(for all T E 

Thus 

ljl(i;;0) ljl'(i;;0) is real and positive. 

(p + O) 

(p + 0) 

[ :!! 31TJ 
2' 2 ) . 

LEMMA 2.2.3. Assume that 1jl is not constant and 'l'(O) s I • Then, for 
any i;;0 E o: with Re i;;0 = O , there are p0 ,A0 > 0 such that 

D 
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liJi(r;) I s + >.0;; (for all r; s +in with i; s o , I r;-r;0 1 s Po J. 

PROOF. If 11Ji(r;0) I < 

Assume I iJi ( r;0 ) I 

the assertion is trivial. 

I . We then have for r; = s + in with s s 0 , 

I 
I iµ(r;) I = I iJi(in)+s J iµ' (in+TS)dT I s 

I 0 

s I !+[iJi(in)J- 11; J iµ' (in+TS)dTI ' 
0 

provided that lr;-r;0 1 s p1 • Here p1 is taken small enough to ensure that 

iJi(in) # 0 • In view of the previous lemma we thus have 

(2.2.4) (for r; = s + in , s s o , I r;-r;0 I s p 1) 

where >. 1 is real and positive, and w is a function with lim w(r;) = 0 
r;-+r;o 

From (2.2.4) it follows that, for any 1.0 E (0,>. 1) , we can select a 

p0 > O such that 

(for r; = s + in , s s o , I r;-r;0 I s p0 ) . 

THEOREM 2.2.4. Assume P(t) < 

A > 0 and t* < 0 such that 

for all t > 0 . Then there are constants 

P(t) s ~(t) (for t s OJ, 

where the function ~ is defined on (-00 ,0] by 

~ ( t) + At if t * < t s 0 ' 

~ ( t) I + At* if t s t * 

PROOF. From the assumption it follows that there exist numbers R > 0 and 

c E (O,l) such that liJi(r;)I s c whenever lr;I ~ R. 

We know, from lemma 2.2.3, that for all n e lR there are positive 
0 

numbers p(n0) and >.(n0) such that liJi(r;) I s I + >.(n0)t; (for r; = 
= s + in ' s s 0 ' I r;-inol s p(no) ) • For no E lR we denote the sphere 

{r;:r;E«:,lr;-in0 Is p(n0)} by B(n0). Since the set J = Un:nElR,lnlsR} 

is compact, there is a finite covering B(n 1),B(n2), ••. ,B(nn) of J . It 

a 



can be seen, using simple geometrical arguments, that there is an r > 0 

such that I',;= t;; +in belongs to some B(n.) if li:I:;; r, 11,;I:;; R 
J 

We take A min .A(n.) • Then 
lsjsn J 

11/J(i,;)I:;; I+ .At; (for 1,; t;; + in , -r :;; t;; :;; 0 , I 1,; I :;; R ) • 

Put ~(t) = max{l+At,~(-r),c} (t:;; O). It follows that ~(t) :;; '?t(t) for 

all t :;; 0 . Furthermore ';; has the desired form. 

REMARK 2.2.5. For rational functions ljJ satisfying ljJ(?,;) = el',; + 0(1,;2) 

(?,; + 0), a result similar to theorem 2.2.4 can be found in CROUZEIX and 

RAVIART (1980). 

If we assume that ljJ is such that ~(t) < I (for all t < 0 ), 

ljJ(i,;) = el',; + 0(1,;2) (1,; + O) , and 11/J(in) I < I (for all n E 1R with 

n ~ 0 ), it has been shown by HAIRER, BADER and LUBICH (1982) that ~(t) 

et+ 0(t2) (t + O), and thus ~(t) I + t(l+O(t)) (t + 0) 

2.2.2. Rational functions with operator coefficients 

Let ljJ,q and p be as in section 2.2.1 (see (2.2.1)), and let 

s E :JN • On the space I<s we consider a norm I ·I generated by an inner 

product <',·> 

Let A E L(I<s) • We shall say that ljJ(A) exists whenever q(A) = 
k q0I + q 1A + ••• + qkA is regular. For such A we define ljJ(A) by 

(2.2.5) 

It is well-known (see e.g. GANTMACHER (1959)) that the spectrum 

cr(q(A)) of q(A) is given by 

cr(q(A)) = {q(.A):AEcr(A)} • 

We thus see that q(A) is regular iff cr(A) does not contain a zero of 

q • This leads to the following lelllllla. 

15 

[J 

LEMMA 2.2.6. Let ' E 1R. The matrix ljJ(A) exists for any A E L(I<s) with 

s ~ 1 and µ[A] :;; 1: iff q has no zeros in {1,;:1,;E~,Re 1,;Sl:} 

PROOF. If µ[A]:;;', it follows from (2.1.2) that Re A:;;' for all 
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A E o(A) • Thus if q(~) ~ 0 whenever Re ~ s T , and µ[A] s T , then 
q(A) is invertible. 

On the other hand, suppose q(A0) = O with AO = ~O + in0 E E , 
~O s T • If I< = E we take s = I and A = AO • If lK = lR we take 

2 s = 2 • Let d1,d2 E lR be o:tthonormal w.r.t. the inner product <•,•:it. 
We define A E L(lR.2) by 

By some calculations it follows that µ[A] = ~O , and 

Hence q(A) = 0 • 

The following theorem is based on a result of J. VON NEUMANN ( 1951), 
·who proved that if IAI s I , then lw(A)I s sup{lw(~)l:~EE,l~lsl}. In 

c 

fact this result holds on arbitrary Hilbert spaces. Using the Cayley 
transformation it can be seen that this result is equivalent to the 
following theorem 2.2.7 (see e.g. CROUZEIX and RAVIART (1978)), A more 
direct proof of this theorem can be found in HAIRER, BADER and LUBICH (1982). 
In the subsequence we will use the function ~ defined by (2.2.2). 

THEOREM 2.2. 7. Let T € lR • Suppose A € L(l<s) is suah that µ[A] s T 

and ljl(A) exists. Then 

I w (A) I $ ~ ( T) • 

From theorem 2.2.7 we obtain the following corollaries 2.2.8-2.2.10. 
In these corollaries the existence of $(A) is always guaranteed by lemma 
2.2.6. 

COROLLARY 2. 2. 8. Let o > 0 • Suppose qk ~ 0 and w is anal-ytia on 
{~:~EE,Re ~<o} • Then there is a aonstant w > 0 suah that 

lw(A)I s w 
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whenever 11. E L(I<s) with µ[11.J s T s !a • 

PROOF. Since ~ is analytic on {s:sE~,Re ss!a} and qk ~ O , ~(!a) is 

finite. We take w =~(!a) • The proof now follows from theorem 2.2.7. a 

COROLLARY 2.2.9. Let a > 0 and -I 
8 = a • Suppose 

~ is analytic on {s:sE~,Re s<o} Then there is a constant w > 0 such 

that 

-I 
l~(s)I s w (I-ST) 

whenever 11. e: L(I<s) with µ[Ji.] s T s !a . 

The proof of this corollary follows directly from lenuna 2.2.1 and 
theorem 2.2.7. 

By combining the theorems 2.2.7 and 2.2.4 we arrive at the following. 

COROLLARY 2.2.10. Asswne ~ is analytic on ~ and ~(t) < I for all 

t > 0 • Then there are constants A. > 0 and t * < O such that 

whenever 11. E L(I<s) with µ[Ji.] s T s O • Here 'i¥ is defined as in 

theorem 2.2.4. 

As a particular application of theorem 2.2.7 and lemma 2.2.6 we 

consider ~(s) = (1-Ss)-I (for s E ~ ), where 8 > 0 • It is easily seen 
that ~ is analytic on {s:sE~,Re s<S- 1} and ~(t) = (1-St)-l (for 

-I t < 8 ). Thus we obtain 

COROLLARY 2.2.11. Let A E L(I<s) with µ[A] s T < 8-I. Then I - 811. 

is invertible, and 



18 

2.3. DIFFERENTIATION 

2.3.1. Basic properties 

In the following the differentiation concept of Gateaux will be used. 
For the definition of the Gateaux-derivative and its basic properties we 
refer to ORTEGA and RHEINBOLDT (1970) and MARTIN (1976). 

Let X and Y be finite dimensional vector spaces. The results of 
this section will be used later on with X = I<s , and Y = I<s or L(I<s) • 
On X and Y we consider norms which will both be denoted by l·I 

Consider a function g: X + Y • The Gateaux-derivative of g will be 
denoted by g' • For any x E X , g' (x) E L(X, Y) and g" (x) = (g')' (x) E 

E L(X,L(X,Y)) . The norms lg'(x)I and lg"(x)I are given by the operator 
norms on L(X,Y) and L(X,L(X,Y)) . We shall also write Dxg(x) for 
g' (x) 

Let x E X • If · g is Gateaux-differentiable on an open neighbourhood 
of x , and g' is continuous at x , we simply call g aontinuously 
differentiable at x • It is well known that g is continuously differ-

. entiable at x iff all partial derivatives of g exist on a neighbourhood 
of x and are continuous at x • If V c I<s is open, and g is 
continuously differentiable at each point of V , we call g continuously 
differentiable on V • 

The following version of the mean-value theorem will be used frequent
ly in subsequent chapters. 

THEOREM 2.3.1. Let V c X be open and aonvex. Suppose g is aontinuously 
differentiable on V , and x,x E V • Then 

g(;;) - g(x) 
I 
f g'(x+t(i-x)) (i'-x) dt. 
0 

The proof of this theorem can be found in ORTEGA and RHEINBOLDT (1970). 
From theorem 2.3.1 the following two lemmata 2.3.2 and 2.3.3 can be 

derived. 

LEMMA 2.3.2. Let V c X be open and aonvex, and let o > 0 be given. 
Suppose g is aontinuously differentiable on V • Then I g(i)-g(x) I s 
s olx-xl (for aU x,x EV) iff lg'(x)I s (j (for au x E v ). 

For the next lennna we consider a function f: X + X , and we assume 



that the norm I •I on X is generated by an inner product <·,·> • We 

then have the following analogue of lemma 2.3.2. 

LEMMA 2. 3. 3. Let V c: X be open and convex, and let 13 E lR. Suppose f 

is continuously differentiable on V . Then Re <f (X)-f (x) ,i-x> 5 13 li-xl 2 

(for all i,x E V) iff µ[f'(x)J 5 13 (for all x E V ). 

We now derive some simple rules for the differentiation of products 

and inverses, which will be used in the next section. Relations similar to 

(2.3.1) and (2.3.3) can be found in DEN HEIJER (1979, lemma 4.2.2). 

Let Ve: JKs be an open set, and k E :N • We consider given functions 

It is assumed that A3 is invertible for all x E V . The functions 
w,U,V,W are defined on V by 

V(x) 
-I 

A3 (x) k W(x) = A1 (x) 

(for X E V ) • 

LEMMA 2.3.4. Suppose A. (i=l,2,3) and f are Gateaux-differentiable 
l. 

on V . Then also w, U, V and W are Gateaux-differentiable on V . For 

arbitrary x " V and v E X we have 

(2. 3. 1) w' (x)v ~A) (x)v] f(x) + A1 (x) [f'(x)v] , 

(2.3.2) U' (x)v CA) (x)v] A2(x) + A1(x) [AZ(x)v] 

(2.3.3) V' (x)v = -1 -I -A3 (x) [A)(x)v] A3(x) 
' 

k 
Al (x)l-1 Al (x)k-l (2.3.4) W' (x)v = l LA) (x)v] 

l=l 

PROOF. For t > 0 we have 

w(x+tv) - w(x) = [A 1(x+tv)-A 1(x)] f(x) + 

+ A1(x) [f(x+tv)-f(x)] + [A 1 (x+tv)-A 1(x)] [f(x+tv)-f(x)] . 

19 
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For converges to Aj(x)v, and similarly 

for f We thus see that w is Gateaux-differentiable at x, and (2.3.1) 

holds. 

In a similar way it can be shown that U and V are Gateaux

differentiable on V , and that (2.3.2) and (2.3.3) hold. From (2.3.1) it 

can be shown, by induction with respect to k , that W is Gateaux-

differentiable on V , and that W' is given by (2.3.4). o 

2.3.2. Differentiation of rational expressions of operator valued functions 

k k Let p(r;) =Po+ plr; + ... + pkr; , q(r;) = qo + ql(r;) + ... + qkr; 

(r; E IC) where k E JN, p. ,q. E IC (l:>j:>k) and qk f. 0 • Let V be an open 
J J 

in I<s . Assume that A: l{s + L(ICs) is continuously differentiable on set 

V , and q(A(x)) is invertible for all x E V . We consider the function 

R: l{s + L(ICs) defined by 

(2.3.5) 
-I 

R(x) = [q(A(x))] p(A(x)) 

·LEMMA 2.3.S. R is continuously differentiable on V , and for all x E V, 

v E Ks we have 

(2.3.6) 
k j 
I \' ' -I l-1 R'(x)v = l l [q(A(x)) A(x) ][A'(x)v] 

j=I l=I 

. l . { 
[p.A(x)J- -q.A(x)J- R(x)] 

J J 

PROOF. We define P,Q: l{s + L(ICs) by P(x) = p(A(x)) , Q(x) = q(A(x)) 

(x E I<s) . From lemma 2.3.4 it follows that P,Q and R are Gateaux 

differentiable on V , and that 

R' (x)v -Q(x)-I [Q' (x)v] Q(x)- 1P(x) + Q(x)-I [P'(x)v] . 

In view of (2.3.4) we obtain 

Q' (x)v I q. ! A(xyt'--I [A' (x)v] A(x)j-l , 
j=I J l=I 

and a similar expression for P'(x)v This leads to (2.3.6), from which 

we see that R' is continuous on V D 



By using the fact that 

~ i k k 

l l . . . ' 
j=I .l=I l=I j=;f'. 

we can rewrite (2.3.6) as 

(2.3. 7) 
~ -I l-1 R' (x)v = l [q(A(x)) A(x) ] [A' (x)v] [ljJ .e.<A(x))] 

f.=I 

where the rational functions ljJ.e. (l~.t':s:k) are defined by 

I k . f. . f. 
q(<;;)- l [p.<;;J- q(<;;)-q.<;;J- p(<;;)J (<;; E IC) • 

j=.l J J 

We take a closer look at the degree of the numerator of the ljJ f. • At 

first sight this degree seems to be larger than k , which would imply 

lim iJi.e.{<;;) = oo. This is not so. 
<;;+ 00 

For arbitrary <;; E IC the iJi.e.(<;;) satisfy the recurrence relation 

Further we have 

-I 
ljJI (<;;) = q(<;;) 

-I k 
q (z;) Y. 

k 
l 

k . I ' I l [pJ.<;;J- q(<;;)-qJ.<;;J- p(z;)J 
j=I 

(p.q.-q.p.) <;; 
i+j-1 

j=l i=O J l. J l. 

-I k j-1 q (z;) l (pjqO-qjpO) z; 
j=l 

Thus we see that 

and in view of the recurrence relation we get 

(l~.t':s:k-1) • 

21 
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-I iJ!,e_<r;) =o<r; ) <r; +<») (I$ .&k) 

Since we also have 

-I l-1 
q (r;) r; -I O(r; ) (r; + oo) (I $;[$k) ' 

(2.3.7) leads to the following result. 

THEOREM 2. 3. 6. Let R be d,e fined by ( 2. 3. 5) . R is aontinuous 7,y different
iah 7,e on V , and for aU x E V , v E lKs we have 

k 
R'(x)v L $l(A(x)) [A'(x)v] 1/Jl(A(x)). 

l=I 

Here $,t,1/!,t are rational functions, which can be written with d,enorrrinator 
q, and which satisfy 4l(00 ) = 1/Jl(00 ) = 0 (J$;f$k) . 

2.4. SOME MATRIX RESULTS 

2.4.J. Notation 

In this section we will use the following notation. Let s e ll . On 
the space lKs we consider the inner product <·,•> and the related norm 

l 
lxl = <x,x> 2 (for x E I<s ). For arbitrary me lN we denote by (·,·) the 

Euclidean inner product on JR.1Il. For a given positive definite diagonal 

matrix D = diag(d 1, •.• ,dm) we define the inner product [·,·Jn and norm 

II ·II D on lKsm by 

m 

I 
i=I 

d. 
i 

<x . , y . > , 11 x 11 D 
i i 

sm T T T T for x,y E lK , where x = (x 1 ,x2, ... ,xm) , Y 

and all xi,yi are column-vectors in the I<s. 

Further we use in this section the following convention. Let m E lN , 
A= (a .. ) E L(JR.m), b = (b.) E JR.m, and let I(s) be the s x s unit-

iJ i 

matrix. Then the Kronecker products A® I(s) , b ® I(s) will also be 

denoted by A,b, respectively. Thus for v 

v. E lKs (or L(I<s) ), w = Av is given by 
i 

T T T T . = (v 1,v2•···•v) with all 
T T m T T . 

w = (w1 ,w2, ... ,wm) with 



w. 
l. 

m 

l 
j=I 

a .. v. E I<s (or 
l.J J 

2.4.2. Matrix results for implicit Runge-Kutta methods 

23 

(JSiSm) • 

In this section we shall prove some results which will be of much use 

in the study of stability properties of implicit Runge-Kutta methods. 

Let m E lN and cr E lR. We consider the following condition on an 

arbitrary matrix A E L (lRm) 

(2. 4. I) There is a matrix D 

(Isism) such that 

(v,DAv) ~ cr(Av,DAv) 

with d. > 0 
l. 

(for all v E lRm ) • 

The class of regular matrices A E L(lRm) satisfying (2.4. I) will be 

denoted by A (cr) • 
m 

Let A E L(lRm) • We note that DA + ATD is positive definite for 

some positive definite diagonal matrix D E L(lRm) iff there is a cr > 0 

such that A E A (cr) • 
m 

The following lennna is a slight modification of a result of DAHLQUIST 

(1975, lennna 2.2). This lennna can be proved in the same way as Dahlquist's 

lennna. 

LEMMA 2.4. I. Let cr E lR. Suppose A E L(lRm) satisfies (2.4. I). Then 

2 
Re [w,Aw]D ~ crllAwJID (for aU W E JKsm) • 

The next lennna can be obtained as a corollary to theorem 4. 3. I. Here 

we give a short direct proof. 

LEMMA 2.4.2. Let cr E lR, A E Am(cr) , and let Z = diag(z 1 ,z 2, .. .,zm) 

with zi E L(I<s) , µ[zi] St < cr (lsism) Then I - AZ is invertible. 

PROOF. Suppose that u E I<sm is such that (I-AZ)u 

and therefore 

-I 
[u,A u]D [u,Zu]D , 

0 • Then A- 1u = Zu 
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where D is the matrix arising in (2.4.1). 

Since 
2 

$ Tll ul~ • 

all zi satisfy µ[zi] s T , it follows that Re [u,Zu]D S 
-1 

Further we see from (2.4.1) and lemma 2.4.1 that Re [u,A u]D 2 

2 crllullJ. Thus we obtain 

2 
T II ullD , 

which can only hold if u = 0 . 

LEMMA 2. 4. 3. Let a E lR , A E A (cr) , and Z.et D be the matrix arising 
m 

in (2.4.1). There is a constant w > 0 such that 

II (I-AZ)- 1 llD s (cr-T)-l w , 

llZ(I-AZ)- 111D s w + (cr-T)-l w2 

for aU matrices 

( lsism) • 

z z. E L(lKS) ' µ[z.] $ T < a 
l. l. 

a 

PROOF. Let 

Then 

u E I<sm with u .,;. 0 , and let 
-1 

v = (I-AZ) u , w 
-1 

Z(I-AZ) u • 

-1 -1 A v - w= A u , 

and hence 

-1 -1 
Re [v,A v]D - Re [v,w]D = Re [v,A u]D 

We have Re [v,A- 1uJD s llvllD llA- 1 llD llullD • Using the fact that 

µ[zi] s : (lsism) and w = Zv , it easily follows that Re [v,w]D s 
L --1 L 

ST llvilD. Further we see from lennna 2.4.1, that Re [v,A v]D 2 crllvllD 

Thus we obtain 

This proves the first inequality of the lemma with w 

Writing 

w A-l (v-u) , 
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we see that 

This yields the second inequality. 0 

a E lR and m E JN with m <: 2 • In the following we deal with Let 

the class 

eT A = 0 
I 

B (r;) consisting of the matrices A E L(lRm) which are such that 
m 

(the first 

A 

belongs to A 1(a) • m-

row of A is zero), and 

a2m 
), L(l,_m-I) 

a 
mm 

LEMMA 2.4.4. Let a,o > o and A E B (r;) • Then I - AZ is regula:r, and 

there a:re constants w1 ,w2 > O 

e L(l<s, l<sm) satisfy 

I [ (I-AZ)- 1eJ. I 
]_ 

m 
suah that the s x s 

-I bloaks of (I-AZ) e E 

for all Z = diag(z 1 ,z2, .•• ,zm) with 

and lzi-zll ~ o (l~i~m) 

z. E L(l<s) ' µ[z.] ~ T ~ ~[J ' 
]_ ]_ 

PROOF. Let and e = ( I , I , ••• , I ) T E lRm- I With 

the convention introduced in section 2.4.1 we 

as operators in L(I<s,l<s(m-I)) . Suppose w 

w. E L(Ks) , is such that (I-AZ)w = e • Then 
]_ 

can regard a 1 and e also 
T T T T = (w 1 ,w2, ••• wm) , with all 

WI = I ' and 

T T T T Here w = (w2,w3, ••• ,wm) and 

we know from lemma 2.4.2 that 

and I - AZ is regular. 

0 . 

Z =_~iag(z2 ,z 3 , ... ,zm). Since A E Am_ 1(cr), 

I - AZ is regular. It follows that 

Let z1 E L(lKs(m-I)) stand for the block-diagonal matrix with blocks 
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z 1 on the diagonal. We have 

Hence 

(2.4.2) 

Let D = diag(d 1,d2, •.• ,dm-l) be a positive definite matrix such that 

(v,DAv) ~ o(Av,DAv) (for all v E lRm-l ), From lemma 2.4.3 we know there 

exists a constant w > 0 such that II (I-AZ ) -I II s (o-T)-I w. 

Let w1,w2, .•• ,wm-I be rational functions sugh that 

<w 1(i:;),w2 (1:;), ... ,wm-l(1:;))T =(I-Ai:;)-! (e+a 1i:;) (l:;EIE) . It follows from lemma 

2.4.2 that all w. are analytic on {l:;:l:;EIE,Re i:;<o} , and, since A is 
l. 

regular, all wi(I:;) remain bounded when li:;I + 00 • By corollary 2.2.8 we 

therefore know that there exists a constant such that 

(Jsism-1) • Moreover, by using lemma 2.4.6 it can easily be shown that 
-- -I - - T T T T 

(I-AZ 1) (e+a 1z1) = <w 1<z 1) ,w2 <z 1) , ... ,wm-l(z 1)) • 

The proof of the lemma now follows from (2 ,1,. 2) • D 

The following lemma can be viewed as a corollary of lemma 2.4.6, 

corollary 2.2.9, and a result proved by CROUZEIX and RAVIART (1980). Since 

this reference is hardly available, the proof of Crouzeix and Raviart is 

incorporated in the following. 

LEMMA 2.4.5. Suppose A E Bm(o) 

I - AZ0 is regular, and there 

bloak-elements of bT(I-AZ )-I 
0 

for all 

T T 
with a > 0 , and let b = em A • Then 

is a aonstant w > 0 suah that all s x s 

E L (JKsm, I<s) satisfy 

-I 
(o-T) W 

PROOF. The existence of (I-AZ0)-I follows from lemma 2.4.4. 

We introduce the rational functions $. (lsism) satisfying 
T -1 i. T -1 

b (I-Al:;) = ($ 1(i:;),$2 (i:;), ... ,$m(I:;)) (i:; E II) . We then have b (I-AZ0) 

= ($ 1(z0),$2(z0), .•• ,$m(z0)) . This result can easily be proved by using 



lemma 2.4.6. 

In view of corollary 2.2.9 it is now sufficient to show that all 

are analytic on {s:sEO:,Re s<cr} , and ~.(00) = 0 (l5i5m) 
l 
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~. 
l 

The fact that all ~i are analytic on the given set follows as in the 

proof of lemma 2.4.4, since det(I-As) = det(I-As) (s E 0:) • 

Further we have 

The degree of the polynomial det(I-As) equals m - 1 (not smaller). Thus 

all entries of (I-As)-l remain bounded when lsl + 00 , and we see that 

~i(oo) = 0 (l5i5m) , c 

2.4.3. Miscellaneous results 

In this section some results on matrices are collected which are of 

a different type than the lennnata of section 2.4.2. We start with a result 

which has been used already in the proofs of the lennnata 2.4.4 and 2.4.5. 

Let m E JN, and let V: 0: + L(O:m) be a matrix-valued function such 

that the entries v .• (s) of V(s) are rational functions, with real 
lJ 

A E L(I<s) coefficients, in the variable s For (s E JN) we denote by 

V(A) the sm x sm matrix with block-entries v .. (A) E L(I<s) • We shall 
lJ 

say that V(A) exists if all v .. (A) exist (cf. section 2.2.2). 
lJ 

LEMMA 2.4.6. Let V be as above, and let W be a matrix-valued funation 
suah that W(s) = V(s)-l (whenever s E o: and V(s)-l is defined). 

Suppose A E L(I<s) and V(A) exists. Then 

W(A) exists iff V(A) is regular. 

Further if V(A) is regular, we have W(A) = V(A)-l • 

PROOF. We denote the entries of W(s) by wij(s) (l5i,j5m, s E O:). 

1. Let w(s) = det(V(s)) (s E 0:) • Suppose W(A) = 0 for some A E cr(A) 

Let x E O:s and u E O:m be nonzero vectors such that Ax = AX and 

V(A)u = 0 • Then we have 

V(A)(u®x) (V(A)u) ® x 0 , 
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and thus V(A) is singular. 

2. Assume V (A) is regular. From the above we see that 1jJ ( ·) - I is 

analytic on o (A) . It follows that all 

thus W(A) exists. 

w •• 
1J 

are analytic on o (A) , and 

3. We now assume that W(A) exists. It will be shown that V(A)W(A) 

= I E L(lKsm) , which yields the proof of the lemma. 

The block-entries of V(A)W(A) are given by 

m 
l v. (A) w k (A) 

n=I Jn n 
( l$j ,k$m) • 

Let r be a continuously differentiable, simple, closed curve in ~ with 

a positive orientation, such that o(A) is contained in the interior of 

r , and all vjk'wjk are analytic on and inside r By applying Cauchy's 
integral formula for matrices (see e.g. DUNFORD and SCHWARTZ (1958)), we 

obtain 

m 
\ v. (A) wk(A) =-1-! (i;;I-A)-l 
l JU n 2ni 'f 

n=l r 

m 
l v. ( ?;;)w k ( ?;;) ] di;; 

n=l JU n 

l ! (rI-A)-l o d = 2Tii 'f .,, jk ?;; 
r 

(l:;j ,k$m) • 

Here ojk stands for the Kronecker delta. We thus see that V(A)W(A) 
the identity operator in L(lKsm) • 

is 

D 

Suppose f: lKs + l{s is a continuously differentiable function such 

that Re <f(i)-f(x),i-x> $ 0 (for all x,x E lKs ). We know, by a combination 

of lemma 2.3.3 and theorem 2.3.1, that there exists a A E L(l<s) such 
~ ~ rl ~ that f (x) - f (x) = A (x-x) and µ[A] :;; 0 namely A = Jo f' (x+t (x'-x)) dt • 

With the following lemma we see that such a A also exists if f is not 

continuously differentiable. 

LEMMA 2. 4. 7. Suppose u, v E l<s with 

there exists a A E L(l<s) suah that 

v # 0 a:nd Re <u,v> :;; O • Then 

µ[A] :;; O and u = Av • 



PROOF. Let w0 = v - u , w1 = v + u . Then it is easily seen that 

(2.4.3) , and 

We define M E L(I<s) by 

Mx (for x E I<s ) • 

Then Mw0 = w1 , and using (2.4.3) it can easily be shown that IM] s 

and M + I is regular. 

Let A= (M+I)-I (M-I) • Since M(v-u) = v + u , it follows that 

(M-I)v = (M+I)u , arid therefore Av = u . Further we have for arbitrary 
X E ]KS , 

Re <x,Ax> Re <(M+I)y,(M-I)y> 

Here y stands for (M+I)-lx . Thus µ[A] s 0 . 
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a 

. COROLLARY 2.4.8. Let s E lR. Suppose u,v E KS with v " 0 , Re <u,v> $ 

s Slvl 2 • Then there exists a A E L(lKs) such that µ[A] s S and 
u = Av 

~ 

PROOF. Let u = u - Sv . Then Re 

a A E L(I<s) with 

<u,v> s 0 . From the above leIIllila we know 

there exists 

We take A = A + SI . Then 

µ['K.J $ 0 

µLA] s S 

and 

and 

~ 

u A.v 
u = Av • 

In the following leIIllila we consider two matrices V,W E L(Ksm) with 

block-entries V .. ,W .. E L(I<s) (lsi,jsm) • 
l.] l.J 

LEMMA 2.4.9. Asswne V .. = 0 (for 
l.J 

Let £ 1,£ 2, •.• ,Em > O be such that 

W. . = 0 (for I s i < j s m) ';l. . 
l.J l.J 

i-1 
[W .. J S £, II (l+Ek) 

iJ J k=j+I 

s i s j s m), and W := (I-V)-I • 

I V • • I < £ • ( I s j < i s m) • Then 
l.] - J 

I /or ( I s i = j s m) , and 

(lsj<ism) • 

PROOF. In order to find a relation between the block-entries 

we consider the following equation with unknown u (and given 

V.. and 
l.] 

v ) ' 

a 

W •• 
l.J 
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(I-V) u = v • 

T T T T T T T T s sm Here u = (u 1,u2, •.. ,um) and v = (v1,v2 , •.. ,vm) E L(K ,I< ) • This 

equation can be solved recursively. We obtain 

(2. 4. 4) v. + 
l 

(2:>i:>m) • 

Suppose 1::; j::; m, vj =I, vk = 0 (fork~ j ). Then ui 

(1=>i=>m) • From (2.4.4) we therefore get 

(2.4.5) w .. 0 if i < j W .. I if i j lJ lJ 

i-1 
w .. l Vik Wkj if i > j 

lJ k=J 

= w .. 
lJ 

Let 1 :> j :> m , sn 

. from (2.4.5) that 

jW. . I (O:>n:>m-j) . Then s0 and it follows 

n-1 

I e:j+k s~ 
k=O 

We define the numbers 

n-1 

J+n,J 

I ' nn k~O e:j+k nk 

(I :>n:>m-j) • 

by 

(l:>n:>m-j) • 

Then n1 = e:j and nn = (l+e:j+n-I) nn_ 1 (2:>nsm-j) . By induction it is 

easily s~en that sns nn (O:>n:>m-j), and 

j+n-1 
n = e:. IT (1+e:k) 

n J k=j+1 
(l:>n:>m-j) • a 

COROLLARY 2.4.10. Let the assumptions of lemma 2.4.9 hold with 
(1sjsra) . Then iW .. I s (l+e:)i-J (1sj:>ism). 

e:. e: > 0 
J 

lJ , . 

For the next lemma we consider rational functions a.. and b. 
lj l 

(Jsi,jSJ!1). We put A(i,;) = (a •. (!,;)) E L(JKm) and b(i,;) = (b 1.(1,;)) E ]Km 
lJ 



(for I; E !L ) • 

LEMMA 2.4.11. Asswne a .. = 0 (for I 5 i 5 j 5 m ), and all a .. ,b. are 
1J 1J 1 

analytic on a;- • Then the statements (i) and (ii) are equivalent. 

(i) a .. (oo) = b. (oo) = 0 (l5i,j5m) 
1J 1 -I 

(ii) sup_ IC(I-A(r;)r;) ] .. I < 00 (l5i,j5m) , and 
l;EIL 1 J 

sup_ 
/;E !L 

I [b(r;) Tr;(I-A(r;) r;)-I J. I 
1 

< 00 (l5i5m) 

PROOF. Let 7; E a; , V(r;) = (v .. (r;)) = A(r;)r; and W(r;) = (w .. (r;)) = 
1] 1J 
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--- -I 
= (I-A(r;) 7;) Using the relation (2.4.S) it can be shown inductively that 

w .. = 0 (for 
1] 

5 i < j 5 m ) , w. . = I (for I 5 j 5 m ) , and 
JJ 

w .. (r;) = v .. (7;) + u .. (r;) 
1J 1] 1J 

(l5j<i5m) , 

where u .. (7;) is a sum of products of the entries v1_0 (r;) with k 5 i , 
1] JM, 

l ~ j and (k,l) # (i,j) . 

Therefore if (i) holds, we easily see that (ii) also holds. 

Suppose (ii). Let i,j be such that a .. (00 ) i 0, a,_ 0 ( 00 ) = 0 for 
1] M-

k 5 i , l ~ j , (k,l) # (i,j) . This implies that u.. is bounded on IL 
1] 

whereas Iv .. (00)1 = 00 • Hence w .. is not bounded on a;-, and (ii) is 
1J 1J 

contradicted. We thus have a .. (00 ) = 0 (l5i,j5m) • 
1] 

Now let w1,w2, ••• ,ljim be rational fun~tions such that 

(l/J 1(r;),lji2 (r;), ••• ,ljim(r;)) b(r;)T r;(I-A(r;)r;)- (r; E IL) , and let i be such 

that bi (00 ) # 0 , bk(00 ) 0 for k > i • Since wklr;) = 0 for k < l 

wkl(r;) = I for k = l , we see that ljim,ljim-J' .•. ,ljii+I are bounded on IL , 
but 11/J.(oo)J = oo. Cl 

1 
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CHAPTER 3 

RUNGE-KUTTA METHODS AND GENERALIZATIONS 

INTRODUCTION 

Consider the initial value problem 

(3.1.1) U' (t) = f(U(t)) (t;?:Q) , U(O) 

where f: lKs + lKs and u0 E lKs are known. Let h > 0 be a given step

size. Application of a one-step method for the numerical solution of 

(3.1.1) results in a scheme which we write as 

(3. I. 2) (n=O, I, 2, •.• ) 

Here G(. ;h,f) is defined on some suitable subset of lKs, and depends on 

the stepsize h and the function f • If h and f are fixed we will 

also write G(·) instead of G(•;h,f) 

The one-step method which determines the function G(·;·,·) (in the 

above sense) will be called the method G • The restriction to a constant 

stepsize h in the above is merely made for notational convenience. If 

we deal with a nonuniform grid {t :t0=0,t.=t. 1+h. (iEJN)} , application n i i- i 

of method G to the problem (3.1.1) yields the scheme un+I = G(un;hn+l'f) 
(n=O, 1,2, •.• ) 

We recall that the local disaretization errors )i<tn) of method G 

w.r.t. the solution U of (3.1.1) are defined by 

U ( t I ) = G (U ( t ) ; h, f) + h f ( t ) n+ n n n (n=0,1,2, ••. ) 

The order p of the method G is the largest integer such that lh(tn) 

= O(hp) (h + 0 , uniformly in n) whenever f is sufficiently often 

differentiable (cf. HENRICI (1962)). 

The best· known class of one-step methods is formed by the explicit 



Runge-Kutta methods. With these methods G(·) 

(3.1.3.a) G(x) 
m 

x + l 
i=I 

b. hf(y. (x)) , 
l. l. 

where the internal vectors y. (x) E Ks satisfy 
l. 

(3.1.3.b) y i (x) 
i-1 

x + l 
j=I 

a. . hf (y. (x)) 
l.J J 
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G(·;h,f) is defined by 

(I ,,;i,,;m) • 

Here m , the number of stages, is a positive integer, and a .. ,b. 
l.J l. 

are 

real parameters. 

Explicit Runge-Kutta methods are frequently used for non-stiff initial 

value problems. However, because of their restricted stability properties 

(see remark 5.3.1), these methods are not suited for stiff problems. For 

this reason generalizations of the explicit Runge-Kutta methods have been 

introduced. Such generalizations will be considered in the following 

. sections. 

3.2. IMPLICIT RUNGE-KUTTA METKODS 

Let m E lN , A = (a .. ) E L ( lRm) and 
l.J 

b =(b.) E lRm. This set of 
l. 

parameters determines a Runge-Kutta method where G(·) = G(·;h,f) is 

defined by 

m 
(3.2.1.a) G(x) x + l bi hf(yi(x)) , 

i=I 

m 
(3.2.1.b) yi(x) x + l a .. hf (y. (x)) (1,,;hm) 

j=I l.J J 

(for x E I<s, with h > 0 and f: I<s + I<s as in section 3.1). If A is 

strictly lower triangular, (3.2.1) reduces to (3.1.3), an explicit Runge

Kutta method. If a .. + 0 for some i and j with I,,; i,,; j,,; m, we 
l.J 

call the Runge-Kutta method implicit. 

With implicit Runge-Kutta methods the problem of solving the internal 

vectors yi(x) from the system of algebraic equations (3.2.1.b) is no 

longer trivial, and in practical computations some numerical iterative 
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method is used for this purpose. This numerical method should also be 

convergent in cases where the product of h with the Lipschitz constant L 

of the function f is large, because the implicit Runge-Kutta methods are 

intended to treat such cases. For this reason one generally uses some modi

fication of Newton's method, rather than direct (functional) iteration (see 

e.g. SHAMPINE (1980), FRANK, SCHNEID and UEBERHUBER (1982 B)). 

By the work of Butcher (see e.g. BUTCHER (1965), GRIGORIEFF (1972)) it 

is known that by choosing the parameters a.. and b. in a suitable way, 
l.J l. 

one can construct an implicit Runge-Kutta method with order 2m , but not 

higher. These methods with maximal order (for a given m ) are frequently 

called Gauss-methods. Other important classes of implicit Runge-Kutta 

methods can be found for instance in ALEXANDER (1977) and CHIPMAN (1971). 

In recent years much research has been devoted to the stability and 

contractivity properties of implicit Runge-Kutta methods. Many implicit 

Runge-Kutta methods are known to be B-contractive or A-stable. A short 

review and references are given in chapter 5. 

REMARK 3.2.1. For a nonautonomous initial value problem 

U' (t) f(t,U(t)) (t:<!O) , U(O) = u0 , 

with f: 1R x I<s + I<s , u0 e I<s , a one-step method yields a scheme of the 

type 

u +I = G(t ,u ) n n n 
(n.;,0, 1,2, .•. ) , 

where G(·,·) = G(·,·;h,f) depends on f and the stepsize h • For 

Runge-Kutta methods G(·,·) is then defined by 

m 
G(t,x) x + l b. hf(t+cih'yi(t,x)) ' i=l l. 

m 
y. (t,x) x + l a .. hf(t+c.h,y.(t,x)) ( l:Si:Sm) 

l. j=l l.J J J 

(for t ;:: 0 and x E I<s). Generally it is assumed that ci = ail + 

method for nonautonomous problems a. 2 + +a. (l:Si:Sm). The Runge-Kutta 
l. im 

is then again determined by the choice of the real m x m matrix 

A= (a .. ) and the vector b = (b.) E 1Rm 
l.J l. 



3.3. SEMI-IMPLICIT METHODS 

3.3.1. Description of the methods 

The use of an implicit Runge-Kutta method for solving a nonlinear 

initial value problem (3.1.1) numerically, involves at each integration 

step the solution of a nonlinear system of algebraic equations. If we use 
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a modified Newton method for this purpose the Jacobian f'(x) , or an 

approximation J(x) to f' (x) , i's needed. To avoid the nonlinear equations 

while retaining favourable stability properties, one can also incorporate 

the Jacobian directly in the method. This idea, which orginates with 

ROSENBROCK (1963), leads to the following generalization of the explicit 

Runge-Kutta methods. 

Let G(·) = G(·;h,f) be defined by 

m 
(3.3.1.a) G(x) x + l bi(hJ(x)) hf (y. (x)) • 

i=I l. 

i-1 
(3.3.1.b) yi(x) = x + l a .. (hJ(x)) hf(y.(x)) (15i5m) 

j=I l.J J 

(for x E :JKs, with h > 0 and f: :JKs + :JKs as in section 3.1). Here 

J(·) = J(·;h,f): :JKs + L(:JKs) is a given function depending on h and f 

and the a .. ,b. 
l.J l. 

are rational functions with real coefficients (which we 

shall call the coefficients of G ) • 

The class of methods (3.3.1) has been introduced by VAN DER HOUWEN 

(1977). In practical computations J(x) will be an approximation to 

f'(x) • If some of the denominators of the rational functions a .. and 
l.J 

bi are not identically equal to one, a method of the type (3.3.1) is 

called a semi-impliait.method. To compute G(x) for a given x E Ks, we 

then have to solve linear systems of algebraic equations of the form 

q ( hJ (x) )v = w where w E Ks is known and q is a denominator of one of 

the a.. or b .• Unless the matrix J(x) has a special structure this is 
l.J l. 

generally done by making an LU-decomposition of the matrix q(hJ(x)) . 

If p E 1R is such that all rational functions a.. and b. only have 
l.J l. 

a pole at p , it is sufficient to make a single LU-decomposition of 

pI - hJ(x) to solve all the linear systems arising in (3.3.1). A class of 

semi-implicit methods which have this favourable property is formed by the 

ROW-methods. These methods are given by 
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(3.3.2.a) 

(3.3 .2.b) 

G(x) 
m 

x + l 
i=I 

B. hF. (x) , 
l l 

(I-yhJ(x)) Fi(x) 
i-1 

f(x + l 
j=I 

i-1 
+ l 

j=I 

i-1 
y. . hJ (x) F. (x) + l 
lJ J j=I 

a •. hF. (x)) + 
lJ J 

a .. F. (x) 
lJ J 

( l~i:>m) • 

The real numbers a . . ,B. ,y .. ,o .. and y are parameters defining the lJ l. lJ lJ 
method. By taking 

y. (x) 
l 

i-1 
x + l 

j=I 
a •. hF. (x) 
lJ J 

(l:>i:>m) , 

it can be seen by some calculations that (3.3.2) can also be written in the 
form (3.3.1) with coefficient functions 

- - - -I A(~)= (a .. (~))= A(D-C~) lJ 

a .. ,b. lJ l. 

T 
b(~) = (b 1 (~),b2 (~), ••• ,bm(~)) 

defined by 

- m where A € L(lR. ) is strictly lower triangular with entries a .. , b € lRm 
lJ 

has components Bi , C € 

diagonal and entries y ij 

L(lRm) is lower triangular with numbers y on the 
below the diagonal, and D E L(lRm) is lower 

triangular with diagonal elements I and entries a .. below the diagonal. lJ 
The ROW-method (3.3.2) can therefore be considered as a special semi-

implicit method (3.3.1), with 

b. 

l/y being the only pole of all a .. and 
lJ 

l 

In (3.3.2) it is no restriction to take either all y.. or all a .. 
lJ lJ 

equal to zero (see KAPS and WANNER (1981), and VERWER, SCHOLZ, BLOM and 
LOUTER-NOOL (1982)). For actual computation it is convenient to take the 

y" 
l.J 

equal to zero, since then the matrix-vector products 
not have to be computed. 

J (x)F. (x) 
J 

do 

By ROSENBROCK (1963) semi-implicit one-step methods have been 
proposed which use more than one Jacobian evaluation per step. Since each 
new Jacobian {or Jacobian approximation) also involves a new LU-decomposi
tion, these methods are unattractive from a computational point of view. 
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With the semi-implicit methods (3.3.1) we have the freedom of choosing 

an appropriate approximation J(x) = J(x;h,f) to the Jacobian f' (x) • If 

the exact Jacobian f'(x) is easily available we can take J(x) = f'(x) • 

We call the semi-implicit method (3.3.1) with J = f' a Rosenbroak method. 

A second choice is to keep J fixed during the whole integration (or 

a large part of it). This case is also of much practical interest since 

solving the linear systems to compute the y i (un) and un+l = G(u ) n 
from 

a given u will generally be rather expensive. If J(un) remains n 
constant for n = 0, 1,2, ••• 

' 
the amount of computational work is reduced 

considerably since the LU-decompositions of the denominators can be used 

throughout the integration proces, provided that the stepsize is not 

changed. If, for example, we know in advance that 

(3.3.3) f(x) Ax + w(x) (for x E 1Ks ) , 

where A is a linear operator from 1Ks to ICs and w: 1Ks -+ I<s has a 

small Lipschitz constant near the solution U of (3.1.1), the choice 

J(·) = A seems very attractive from a computational point of view. 

The situation (3.3.3) occurs for instance if an initial-boundary value 

problem for the semi-linear parabolic equation 

a a2 
at; u(x,t) = - 2 u(x,t) + g(u(x,t)) 

ax 
(O~x~ I , t<!O) 

is solved by the method of lines, and g is a smooth function near the 

solution. 

A strategy which has been followed by VERWER and SCHOLZ (1982) is to 

use the semi-implicit scheme u 1 = G(u ) (n<!O) with an exact Jacobnan n+ n 
which is re-evaluated after every v steps. This corresponds with the 

choice J(ukv+l) = £'~~) (for l = O,l, ... ,v-1 and k = 0,1,2, ... ). The 

scheme which arises then can be viewed as an application of a Rosenbrock 

method·with vm stages and with stepsize vh, by looking at the vectors 

ukv+ I' ukv+2' • • • 'ukv+v-1 as internal vectors y.(uk) • 
l. v 

For the order conditions for the general semi-implicit methods (3.3.1) 

the reader is referred to VAN DER HOUWEN (1972), N0RSETT and WOLFBRANDT 

* (1979). The maximal attainable order p (m) for a given m is known for 

m ~ 3 • These orders are 
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* 4 ' p (3) 5 • 

Let q*(m) stand for the maximal order which can be reached with an 
* m-stage ROW-method. We have q (m) s m+I (see STEIHAUG and WOLFBRANDT 

(1979)). It was shown by KAPS and WANNER (1981) that order 5 is not possible 
for m = 4 . For the ROW-methods we have the following results: 

REMARK 3.3.1. There are two options to adapt the semi-implicit methods to 
nonautonomous problems U'(t) = f(t,U(t)) (t~O) , U(O) = u0 . The first one 
is to use a nonautonomous version G(t,x) of the G(x) given by (3.3.1), 
where we read J(t,x) ~ Dxf(t,x) instead of J(x) , and replace f(yi(x}) 
by f(t+c.h,y.(x)) in (3.3.1). The second possibility is to convert the 

1 1 

nonautonomous problem. to an autonomous one (see remark 1.1.2). After this 
conversion (3.3.1) can be applied directly. 

These two options yield different results - see VERWER (1981 A) for 
·a more detailed discussion. Note that with the ordinary Runge-Kutta methods 
these options would lead to the same result because of the choice 

=ail + ai2 + ••• +aim (Jsism) (cf. remark 3.2.1). 

3.3.2. Perturbed semi-implicit methods 

c. 
1 

In this section we will motivate a condition on the coefficient 
functions a .. ,b. of the semi-implicit methods (3.3.1), that will be l.J 1 

convenient (though not strictly necessary) for the analysis in chapter 5. 
This condition is related to the BS- and BSI-stability concepts of FRANK, 
SCHNEID and UEBERHUBER (1982 A), add to the A-stability concept of CROUZEIX 
and RAVIART (1980), for implicit Runge-Kutta methods. 

We will consider the following class of functions f: IC +IC that was 
involved in the definition of A-stability (see section 1.2), 

(3.3.4) f(x) (for x E IC) with A E IC 

Further h > 0 will be an arbitrary stepsize, and we assume that 
J(x;h,f) =A (for all x E IC) for f given by (3.3.4). 

If a semi-implicit method G of the type (3.3.1) is used for the 
solution of an initial value problem, at each step linear systems of 
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algebraic equations have to be solved. In dealing with stiff problems it 

is natural to require that solving these linear systems will not give rise 

to numerical difficulties for the class of simple testproblems where f is 

given by (3.3.4). To meet this requirement we have to assume that 

(3.3.5) the rational functions a.. and b. (Jsi,jsm) are 
l.J l. 

analytic on <C 

We then know that G(x) = G(x;h,f) is defined for the class (3.3.4) (see 

also section 4.4). Further we will impose conditions on the method G to 

ensure that small perturbations will not disturb the computation of G(x) 

and the internal vectors yi(x) too much. 

Let f: <C + <C be given by (3.3.4), and let x E <C . For s E <C we 

denote by A(s) 

a .. (s) , and by 
l.J 

the strictly lower triangular m x m matrix with entries 

b(s) the column vector in <Cm with components b.(s) 
T i 

Further y(x) will stand for (y 1(x),y2 (x), •.. ,ym(x)) • Then G(x) = 

= G(x;h,f) is given by 

(3.3.6) G(x) T x + h\ b(h\) y(x) 

y (x) ex + h\ A(h\) y (x) • 

Besides (3.3.6) we consider the slightly perturbed version 

(3.3.7) 'G(x) 
T~ 

x + h\ b(h\) y(x) + w0 , 

y(x) ex + h\ A(h\) y(x) + w . 

Here w0 E <C and w E <Cm are small perturbations, for instance due to 

roundoff errors. From (3.3.6), (3.3.7) we obtain the relations 

y(x) - y(x) (I-hAA(h\))-I w 

G(x) - G(x) 
T ~ 

h\ b(h\) [y(x)-y(x)] + w0 · 

The requirement that the computation of G(x) and y(x) cannot be dis

turbed unduely by small perturbations w0 ,w for arbitrary f satisfying 

(3.3.4), thus leads to the following condition. 
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(3. 3. 8. a) 

(3.3.8.b) 

sup_ 
i'.;E 0: 

sup_ 
i'.;E 0: 

-I 
l[(I-1;A(i'.;)) J .. I <"' 

. l.J 

< "' 

(Isi,jsm) , 

(I sism) • 

From lemma 2.4. II we see that this condition is equivalent to 

(3.3.9) a .. (00)=0 
l.J 

(for ISj <ism) and b. (00 ) 

l. 
0 (I sism) . 

Summarizing the above we obtain the following result. 

THEOREM 3.3.2. Suppose (3.3.4)-(3.3. 7) a:nd h > 0 . Let II· II be an 

arbitrary norm on a:m • There are positive aonstants a0 and a suah 

that IG(x)-G(x)I::; o0 (1w0 1+11 w II) , lly(x)-y(x)ll::; ollwll for all It E O:

w0 E 0: and w E O:m iff (3.3.9) holds. 

EXAMPLE 3.3.3. Consider the methods given by 

-I G1 (x;h,f) = x + (I-hf'(x)) hf(x) 

G2(x;h,f) = x + hf(x+(I-hf'(x))-lhf(x)) 

-I (m = 2, a21 (i'.;) = (1-i'.;) , b 1(1,;) = 0, b2 (1,;) =I ). Both methods can be 

viewed as a linearization of the Backward Euler method (method (3.2.1) 

with m = , A= I and b = I ). If f is linear and there are no 

perturbations, G1 and G2 will yield the same numerical results. 

However, if we consider perturbations w0 ,w as in (3.3.7) for the 

simple class of testfunctions (3.3.4), we get with the first method 

~ -I 
G1(x) - G1(x) = w0 + hlt(l-h!t) w 

whereas we obtain with the second method 

2 
(w0 E a: , w E a: ) • 

Thus for IA.I +"' , the effect of the perturbations remains bounded with 

method G1 ,which satisfies (3.3.9). For method G2 we have 
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(for I'- I + 00 ) • 

In view of the foregoing we will confine ourselves in subsequent 

chapters to semi-implicit methods satisfying (3.3.9). Most well-known semi

implicit methods, such as the ROW-methods, do satisfy (3.3.9). 

We note that (3.3.9) can be viewed as a BS + BSI-stability requirement 

on the semi-implicit methods for the class of problems (3.3.4). Also for 

the S-stability analysis in VERWER (1977), (3.3.9) was assumed (but not 

motivated as in this section). 

3.4. ADAPTIVE RUNGE-KUTTA METHODS AND TRANSLATION INVARIANCE 

The methods we have encountered thus far constitute the class of one
step methods which are mostly used for solving stiff problems, and we shall 
restrict ourselves to this class in the subsequent chapters. 

A further generalization of the explicit Runge-Kutta methods was 

proposed by LAWSON (1967) (see also GRIGORIEFF (1972)). Modifications of 

Lawson's methods were given by EHLE and LAWSON (1975), FRIEDLI (1978) and 

STREHMEL (1981). In their general form these so called adaptive Runge-Kutta 
methodB are given by the following function G • For f: I<s + lKs and 

h > 0 given, we define G(·) = G(·;h,f) by 

(3.4.1.a) G(x) 

(3.4. I .b) g. (x) 
l. 

(3.4.1.c) Yi (x) 

m 
~(hJ(x))x + l Bi(hJ(x)) hgi(x) , 

i=I 

f(y. (x))-J(x) y. (x) 
l. l. 

(l:s:i:s:m) , 

i-1 
~(yihJ(x))x + l 

j=I 
a .. (hJ(x)) hg.(x) 

l.J J 
(l:s:i:s:m) 

(for x E I<s ) • Here ~ is a rational approximation to the exponential 

function, the a.. and $. are rational functions, and the y. are real 
l.J l. l. 

parameters. By some manipulation it can be seen that (3.4.1) can also be 

written in the form 

(3.4.2.a) G(x) 

(3.4.2.b) y. (x) 
l. 

m 
co(hJ(x))x + l b.(hJ(x)) hf(yi(x)) ' 

i=l l. 

i-1 
c. ( h J (x)) x + J 1 a .. (hJ (x) ) hf (y . (x) ) 

l. J"' l.J J 
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where the a .. ,b. and c. are rational functions. This seems like a real l.J ]. ]. 
generalization of (3.3.1) where all ci are identically equal to one. In 
this section it will be shown however, that if not all c. can be taken 

]. 

identically equal to one, method (3.4.2) suffers from a drawback which 

is not present in the methods (3.3.1). 

The first adaptive Runge-Kutta methods given by LAWSON (1967) are of 

the type (3.4.2) and cannot be written as (3.3.1). With many of the sub

sequent modifications the a .. ,S. and y 1• in (3.4.1) were chosen such l.J ]. 
that the methods can be written as (3.3.1). 

EXAMPLE 3.4.1. Lawson's generalization of Euler's method is given by 

G(x) = $(hJ(x)) (I-hJ(x))x + $(hJ(x)) hf(x) , 

where $ is a rational approximation to the exponential function. Unless 

$(~) = (1-~)-I (~E~), this method of the type (3.4.1) cannot be written 

in the form (3.3.1). 

EXAMPLE 3.4.2. By FRIEDLI (1978) and STREHMEL (1981) the following method 

was considered. 

I G(x) = $0 (hJ(x))x + [$ 1 (hJ(x)) -;;$2(hJ(x))] hg 1 (x) + 

+ ~$ 2 (hJ(x)) hg2(x) , 

y I (x) = x 

where g.(x) = f(y.(x)) - J(x) y.(x) (i=l,2), c E lR, $0 is a rational 
]. ]. ]. 

approxim~tion to the exponential function, $ 1 (~) = i[$U(~)-1], and 

$2(~) = ~[$1(~)-I] (~e~) • 

By some manipulation it can be seen that this method can be written 

in the form (3.3.1) with m = 2 and 

a21(~) = c$1(c~) 'bi(~) 

b2 (~) = ~$2 (~) (~E~) • 
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We will show in the subsequence that those adaptive Runge-Kutta methods 

which do not fit into the form (3.3.1) are not translation inva:t>iant. With 

this we mean the following. 

DEFINITION 3.4.3. A one-step method G is said to be transZation invariant 

if 

G(x;h,f) = G(x-w;h,g) + w (for all x E I<s , h > 0 ) 

for arbitrary w E I<s and f, g: I<s + I<s satisfying f (x) 

(for aZZ x E I<s) 

g(x-w) 

Translation invariance is a very natural requirement. Consider the 

initial value problems 

VI (t) g(V(t)) ( t~O) , V(O) 

and 

U' (t) f(U(t)) (t~O) , U(O) = u0 , 

where u0 = v0 + w , and w,f,g are as in defintion 3.4.3. The solutions 

U,V satisfy U(t) = V(t) + w (t~O). If the method G is translation 

invariant, the numerical approximations {u } ,{v } to U,V , respectively, 
n n 

will satisfy un = vn + w (n=0,1,2, .•• ) 

If a method G is not translation invariant, the translation vector 

w will enter into the local discretization error of the method w.r.t. 

the solution U of the above initial value problem. Hence this local 

discretization error will not only depend on derivatives of U and on the 

function values of f and its derivatives near this solution. In 

particular, a method which is not translation invariant will also not be 

B-convergent (see chapter 6). This will generally lead to a bad behaviour 

for stiff initial value problems. 

EXAMPLE 3.4.4. Consider again Lawson's generalization of Euler's method 

(see example 3.4.1) with ~(O) ~(~) ~ (1-~)-I 
Let f(x) = A(x-w) (for x E ~ with A,W E ~ given and w ~ 0 • 

Assume J(x) =A (for all x E ~ ). The local discretization error 
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-I 
lh(t) = h [U(t+h)-G(U(t))J w.r.t. the stationary solution U(t) - w , 

equals 

Suppose L E lR and L » I • Then lh ( t) is small for all A E a: with 

Re A$ 0 , IAI $ L iff hL is small. Thus if we deal with a stiff initial 

value problem, the stepsize h has to be exessively small in order to 

ensure a small local error. 

By some simple calculations it can be shown that all methods of the 

type (3.3.1) are translation invariant, provided that 

(3.4.3) J(x;h,f) = J(x-w;h,g) (for all X E lKs , h > 0 ) for 

arbitrary W E I<s and f,g: ]KS -+ lKs satisfying 

f (x) = g(x-w) (for all X E I<s ) . 

Note that f'(x) = g'(x-w) if f and g are as in (3.4.3). The following 

theorem shows that the above is not true for those adaptive Runge-Kutta 

methods which cannot be written as (3.3.1). 

THEOREM 3.4.5. Asswne (3.4.3). Let G be a method of the type (3.4.2). 

Then G is tPanslation invaPiant iff G is equivalent to a method 

of the type (3.3.1). 

PROOF. Suppose the method G, given by (3.4.2), is translation invariant. 
~ 

By G we denote the method given by (3.3.1) with the same coefficient 

functions a .. and b. as G 
l_ 1-J 

We have G(O;h,f) = G(O;h,f) for all h > 0 and f: I<s -+ ]Ks • Since 

both G and 'G are translation invariant it follows that G(x;h, f) 

= 'Gcx;h,f) for all X E I<s 
' h > 0 and f: I<s -+ I<s • Thus G and G 

always yield the same numerical approximations. a 



CHAPTER 4 

THE EXISTENCE OF UNIQUE SOLUTIONS TO 

THE ALGEBRAIC EQUATIONS IN IMPLI~IT AND SEMI-IMPLICIT METHODS 

4.1. INTRODUCTION 

If we approximate the solution of the initial value problem 

U'(t) = f(U(t)) (t~O) , U(O) = u0 , using an implicit Runge-Kutta method, 

at each step of the integration a system of aLgebPaic eqaations of the 

following type has to be solved (cf. (3.1.2), (3.2.1.b)). 

(4.1.1) y. (u ) 
l. n 

u + 
n 

m 

l 
j=l 

a .. hf(y. (u )) 
l.J J n 

(lsism) • 

It is known (see e.g. GRIGORIEFF (1972)) that if f: J.<s + J.<s (s~l) 

satisfies a Lipschitz condition 

lfCx)-f(x)I s Ll°i-xl (for all i,x € lKs ) , 
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and the product hL is sufficiently small, then (4.1.1) has a unique 

solution. However, if the initial value problem is stiff such a restriction 

on h is embarrassing. 

In this chapter we consider the question whether the system (4.1.1) 

has a unique solution for all continuous functions f: J.<s + J.<s satisfying 

a one-sided Lipschitz condition 

(4.1.2) Re <f (i')-f (x) ,x-x> 
,.., 2 

s f31x-xl (for all 'X,x e: K 8 ) • 

Here f3 € lR , <-, • > is an arbitrary inner product on J.<s and I ·I s.tands 

for the corresponding norm •. 

If we deal with semi-impiicit methods the similar question arises 

whether all the linear systems that have to be solved to compute an 

approximation un+l from a given un have unique solutions. This question 

is much easier to answer and will only be considered in section 4.4. Until 
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then we turn our attention to the implicit Runge-Kutta methods. 

Instead of (4.1.1) we shall consider in the subsequence the more 
general system 

(4. I. 3) y. 
]. 

m 

l 
j=I 

a .. hf. (y.) 
l.J J J 

(I :dsm) , 

where all functions f.: lKs + lKs are continuous and satisfy 
J 

(4. I. 4) Re <f. ('X)-f. (x) ,x-x> 
J J 

(for all x,x 

By taking f.(x) = f(x+u) (xElKs) and replacing y. by y.(u) - u J n J J n n 
(isjsm) , the system (4.1.3) reduces to (4.1.1). An advantage of (4.1.3) 
over (4.1.1) is that also perturbed systems (4.1.1) or the systems which 
arise for nonautonomous problems (see remark 3.2.1) can be dealt with. 
These cases are covered by considering 

m 

l a .. f(t +c.h,y.(u )) (I sism) y. (u ) 
J n 

u + 
n j=I l.J n J J n 

+ v. 
1 

with perturbations v. E lKs , and 
]. 

f: lR x lKs + lKs, instead of (4.1.1). 
Such perturbed equations were considered by FRANK, SCHNEID and UEBERHUBER 
(1982 A,B) for proving B-consistency of some implicit Runge-Kutta methods. 

In this chapter we use the notations and conventions that were intro
duced in section 2.4.1. Let A= (a .. ) E L(1Rm) • With the convention 
that the Kronecker product A® I(s)l.Jwill also be denoted by A , the 
system (4.1.3) can be written as 

(4.1.5) 

where y 
~ ][(Sm• 

y - h AF(y) = 0 

and F(y) 

If m = I , the system (4. 1.5) is essentially the same as the system 
of algebraic equations that arises if a linear multistep method is used to 
compute the approximations u • For this case several authors have n 
discussed the existence and uniqueness of solutions; see e.g. DAHLQUIST 



(1975), DESOUR and HANEDA (1972), and WILLIAMS (1979). Their results can 

also be used for diagonally implicit Runge-Kutta methods, i.e. a .. = 0 
iJ 

whenever i < j • 
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The question whether the system (4.J.1) has a unique solution for 

stiff initial value problems was considered in CROUZEIX and RAVIART (1980), 

and HUNDSDORFER and SPIJKER (1981). The results of these papers were 

combined in CROUZEIX, HUNDSDORFER and SPIJKER (1983). Results similar to 

those in CROUZEIX and RAVIART (1980) were obtained by DEKKER (1982). 

We now give a short outline of this chapter. In the sections 4.2 and 

4.3 we deal with implicit Runge-Kutta methods. The case where the 

differential equation is linear with constant coefficients will be 

considered in section 4.2. In section 4.3 sufficient conditions (on A , h 

and S ) will be given that ensure the existence of a unique solution to 

(4.1.5). These results slightly generalize some results given in CROUZEIX, 

HUNDSDORFER and SPIJKER (1983) and DEKKER (1982). Finally, in section 4.4, 

the semi-implicit methods will be considered. 

4.2. IMPLICIT RUNGE-KUTTA METHODS FOR LINEAR DIFFERENTIAL EQUATIONS 

In this section we assume that the functions f. , arising in (4.1.5), 
J 

are of the form 

(4.2.1) f. (x) 
J 

f\.x + w. 
J 

where f\. E L(I<s) and w. E: Ks (J:Sj:Sm) • This case occurs if the 
J 

differential equation is linear with constant coefficients, U'(t) 

f\.U(t) (t~O) - or more general U'(t) = f\.U(t) + w(t) (t~O) 

For these functions f. 
J 

necessary and sufficient conditions (on A , 

h and S) for the unique solvability of (4.1.5) can be given quite easily. 
. . ( T T T) T sm and Writing w = w1 ,w2, ••• wm E IC , z0 = hf\. 

z0 = diag(z0,z0 , ••• ,z0) E L(Ksm), (4.1.5) reads for this case 

(4.2.2) (I-AZ0)y = hAw • 

Obviously this system has a unique solution if f the sm x sm matrix I - AZ0 

is regular. 

In the following lemma we use the sets c c.: a: 
r 

defined by 
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c I 1 1 {s:sEO: s- -1>1-1 r ' 2r 2r 
or s=O} if r < 0 

c {s:sEO:,Res>O or s=O} if r = 0 r 

c 1 1 
s=O} if {s:sEO: Is- -1<1-1 or r > 0 r ' 2r :lr 

THEOREM 4.2.1. The followirzg three statements are equivalent. 
(]..)I AZ' ' h Z d" ( )EL(lKsm) - 0 ~s reguvar w enever 0 = iag z0 ,z0 , •.. ,z0 

with z0 E L(lKs) , s ~ 1 , 11 Cz0 J s hS . 

(ii) I - Aso is regular for au so E a: with Res 0 $ hS . 

(iii) cr(A) c ChS . 

PROOF. We observe that Az0 can be written as A® z0 for z0 = 

= diag(z0 ,z0 , ... ,z0) . It follows (see e.g. MARCUS and MINC (1964)) that 
the spectrum cr(AZ0) equals cr(A)cr(z0) = {\v:\Ecr(A),vEcr(z0)} . This fact 

will be used in the subsequence. 

Obviously (i) implies (ii) if lK = a: • Assume lK = 1R and I - As0 
is singular, so= 1;0 + in0 with 1;0 s hS . Let d 1,d2 be vectors in the 

JR.2 which are orthonormal w.r.t. the inner product <·,·> As in the proof 
2 of lemma 2.2.6 we define z0 E L(lR ) by 

By some calculations it can be seen that µ[z 0J = 1;0 and so E cr(z0) . 

Hence E cr(A)cr(zo) ='cr(AZO) ' I - AZO is singular. Thus (i) also implies 
(ii) if lK = lR • 

Now suppose (ii) holds, and let z0 E L(lKs) with µ [z0J ,;; h S. Then 

Rev s hS for any v E cr(z0) . It follows that r/. cr(A)cr(z0) Hence (i) 
holds. 

The equivalence of (ii) and (iii) follows by some elementary calcu-

lations. 0 

We note that for S = 0 the above equivalence of (i) and (ii) was 

given already by SPIJKER (1982 A). 



4.3. GENERAL RESULTS FOR IMPLICIT RUNGE-KUTTA METHODS 

4.3.1. A sufficient condition for the existence of a unique solution 

to (4. 1 • 5) 

In this section sufficient conditions on A,h and S will be given 

that ensure the existence of a unique solution to (4.1.5) for nonlinear 

functions f .• 
J 

The basic assumption on the matrix 

(cf. (2.4.1)). 

A = (a .. ) 
l.J 

is the following 

(4. 3. 1) There is a positive definite diagonal matrix 

D E L(:JRm) such that (v,DAv) <:: cr(Av,DAv) (for all velRm) • 

Here a E lR is a given number. 

THEOREM 4. 3. 1 • Suppose the funations f. Cl1'e aontinuous and satisfy 
J 

(4.1.4), A satisfies (4.3.1), and hS <a. Then the system (4.1.5) 

has a unique solution y* E I<sm , and lly*llD s (cr-hS)-l hllF(O) llD 

PROOF. Consider the functions ~.~: I<sm + I<sm defined by 

Hy) y - hAF(y) ' ~(y) y - hF(Ay) 

We will first show that ~ has a unique zero. 

I. Suppose I - ZA is singular, Z = diag(z 1,z2, ••. ,zm) ' 
z. E L (I<s) 

l. ' 
µ[zi J s hS (lsism) It will be shown that this leads to a contradiction. 

Take y E 
I<sm such that y 1' 0 ' 

y = ZAy 

lemma 2.4.1 we see that 

Re[ZAy,Ay]D = Re[y,Ay]D <:: crllAyllD 2 • 

Since µ[zi] s hS (Jsism) , it also follows that 

2 
Re[ZAy,Ay]D :S hSllAyllD . 

which contradicts the assumption hS < a • 

Then Ay 1' 0 ' 
and using 

Thus I - ZA is regular whenever Z= diag(z 1,z2, ••• ,zm) with 

49 



so 

2. Suppose 'l'(Y) = 'l'(y) (Y',yEI<sm) . Then y-y = hF(Ay) - hF(Ay) . From 

corollary 2.4.8 we know there exists a matrix Z = diag(z 1,z 2 , ..• ,zm) with 

z. E L(I<s), µ[z.] ~ hB (l~i~m) such that hF(Ay) - h F(Ay) = Z(Ay-Ay) . 
l. l. 

From part I of this proof it follows that y = y . 

Thus 'l' is one-to-one. 

3. We will now show that [['Jl(y)[[D-+"' (for l[y[[D-+"' ). 

For arbitrary y,y E ][(sm we have 

Re['Jl(y)-'Jl(y),Ay-Ay]D = Re[y-y,Ay-Ay]D -

- h Re[F(AY)-F(Ay),Ay-Ay]D 
~ 2 

::: (a-hB) [[Ay-Ay[[D 

Using the Schwarz inequality it follows that 

ll'¥cY)-'¥(y)[ID ~ (cr-hB) llAy-Ay[[D 

Hence we obtain for any y E ][(sm , 

[['Jl(y)llD::: (a-hB) [[Ay[[D- [['Jl(O)[[D= 

= (cr-hB) [[Ay[[D - h[[F(O)[[D 

On the other hand we have 

Thus we get for any y E ][(sm the relation 

(4.3.2) 

Suppose there is a constant K0 > 0 and a sequence {yk} in ][(sm 

such that llykllD-+"' while [['Jl(yk) llD ~ K0 (for all k E lN ). From 
-1 

(4.3.2) it follows that [[Ayk[ID ~ (cr-hB) ( K0+h[[F(O)[[D) = K1 . Let 

K2 = sup{h[[F(y)llD:yEI<sm ,lly[[D~K 1 } • We then obtain from (4.3.2), 



II '¥(yk) II D <: llykll D - K2 , which contradicts the boundedness of 

{II '¥(yk) II D} . 

Thus lim ll'¥(y) llD 
llyllD+oo 
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4. From the results of the parts 2 and 3 of this proof, it can be seen that 

'¥ is a local homeomorfism at each point y E I<sm . From the norm-coercive

ness theorem (see e.g. ORTEGA and RHEINBOLDT (1970)) it now follows that '¥ 

has a unique zero yo E I<sm. Moreover, using relation (4.3.2), it follows 

that 11Ay0 11D $ (cr-hS)- 1 hllF(O) llD 

5. Between the functions w and '¥ the following relations exist. 

w(Ay) 

w(y) 

A'¥(y) (for all y E lKsm), 

0 implies '¥(hF(y)) = 0 . 

It follows that w also has a zero, namely y* Ayo Further we see 

that if w(y) = w(y) = 0 , then F(y) = F(y) (since '¥ is injective), 

and y - hAF(y) = y - hAF(;) , Hence y = y o 

COROLLARY 4.3.2. Suppose (4.3.1) holds with a positive a. Then the system 

(4.1.S) has a uniq~e solution whenever h > 0 and the functions f. are 
J 

continuous and dissipative. 

We note that if DA + ATD is positive definite for some positive definite 

diagonal matrix D, then A is regular and (4.3.1) holds with a positive 

a. On the other hand (4.3.1) may hold with a constant a> 0 for a 

singular matrix A . If for instance all entries a. . of A equal a > 0 , 
-1 1J 

we may take D = I and a = (ma) . Therefore corollary 4.3.2 is a 

proper extension of theorem I in CROUZEIX, HUNDSDORFER and SPIJKER (1983). 

Theorem 4.3.1 also contains the following result that was stated in 

the same paper. 

COROLLARY 4.3.3. Suppose (4.3.1) holds with a= O. Then the system 

(4.1.S) has a unique solution whenever h > O, and the functions f. are 
J 

continuous and satisfy (4.1.4) with S < 0. 

REMARK 4.3.4. The B-contractive Runge-Kutta methods which are interesting 

from a practical point of view are such that B = diag(b 1 ,b2, ••• ,bm) 

is positive definite and BA + ATB - bbT is positive semi-definite (see 
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section 5.5.2). The matrix BA+ ATB is then positive semi-definite and 

corollary 4.3.3 is thus applicable. 

By FRANK, SCHNEID and UEBERHUBER (1982 A) it was shown that many 

well-known B-contractive methods satisfy the condition of corollary 4.3.2, 

and for these methods the system (4.1.5) has a unique solution as soon as 

the functions f. are continuous and dissipative. 
J 

In CROUZEIX, HUNDSDORFER and SPIJKER (1983) an algebraically con-

tractive method and dissipative functions f.: ~ + ~ were given such that 
J 

(4.1.5) has no solution. This shows that the requirement cr - hB > 0 in 

theorem 4.3.1 is essential and cannot be replaced by the weaker condition 

cr - hB <': O • 

4.3.2. Some extensions of the sufficient conditions 

For some special matrices A the sufficient conditions given in 

theorem 4.3.1 admit an obvious extension. 

Let ~ be the (m-l)x(m-1) matrix that results if we remove the 

k-th. row and column from A • Using theorem 4. 3. 1, the proof of the 

· following result is straightforward. 

COROLLARY 4.3.5. Suppose that the k-th. row or the k-th. aolwrm of A 

only contains zeros. If the requirement of theorem 4.3.1 holds for ~ 

(instead of A), the system (4.1.5) has a unique solution. 

Matrices A with a zero column or row occur if the Runge-Kutta 

method is a collocation method where the collocation points are based 

on Lobatto or Radau points (see e.g. GRIGORIEF'F (1972, pp. 37-38)). 

If the Runge-Kutta method is diagonally implicit (i.e. a .. = 0 
l.J 

for i < j ), we are actually dealing with m equations of the type 

(4.1.5)-with aii instead of A, and m = • These equations can be 

solved one after another. In this case theorem 4.3.1 can be applied 

with m = I . 

As an illustration of the above we consider the following example 

(see also DAHLQUIST (1975)). 



EXAMPLE 4.3.6. For the trapezoidal rule we have 

This method is diagonally implicit, and the first row of A is zero. 

Theorem 4.3.1 is not directly applicable. However, the implicit equation 

that has to be solved reads 

Taking y = y2(un) - un - ! hf (un) , F(x) 

equation is tranformed into 

f(x+u +!hf(u )) (xE][{s), this 
n n 

y hF(y) • 

From theorem 4.3.1 it. can now be seen that if hS < 2 and F satisfies 

(4.1.4) (i.e. f satisfies (4.1.2)) this equation has a unique solution. 

REMARK 4.3.7. Suppose S = 0 and h > 0 . The question what conditions 

have to be imposed on A to ensure that the system (4.1.5) has a unique 

solution whenever (4.1.4) holds can be answered completely in two 

restricted cases. 

In the first case we assume that ][{s = lR 1 . Then the following 

result can be proved. 

(4.3.2) The system (4.1.5) has a unique solution for all continuous 

functioas f.: lR + lR satisfying (4.1.4) with S = 0 
J 

(l$j$m) iff all principal subdeterminants of A are 

nonnegative. 

Also if m $ 2 (and ][{s is arbitrary) the question can be answered 

completely. Using essentially the same technique as in the proof of 

theorem 4.3.1, the following equivalence can be proved. 

(4.3.3) If m $ 2 , the statements (i), (ii), (iii) and (iv) are 

equivalent. 

(i) System (4.1.5) has a unique solution for all continuous 

functions f. (l$j$m) satisfying (4.1.4) with S = 0. 
J 
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(ii) I - AZ is regular whenever 

with z . E L ( l{s) ' s ?: I ' µ [ z . J 
1 1 

Z = diag(z 1,z2, ... ,zm) 

S 0 (ISiSm) . 

(iii) I - AZ is regular whenever z diag(s 1,s2, ..• ,sm) 

with si E ~ , Re si s 0 (lsism) . 

(iv) All principal subdeterminants of A are zero, or all 

principal subdeterminants of A are nonnegative and 

trace (A) > 0 . 

It is a conjecture that the above statements (i), (ii) and (iii) are also 

equivalent if m > 2 . 

By (4.3.3) it is shown that the condition on A imposed in (4.3.2) 

is not sufficient to ensure the existence and uniqueness of solutions 

to (4. 1.5) in the general case I<s ,;, lR 1 • 

We note that the above results (4.3.2) and (4.3.3) can be extended 

to include arbitrary 13 E lR . 

4.4. Semi-implicit methods 

We now consider the case that a semi-implicit method (3.3.1) is used 

to approximate the solution U of U'(t) = f(U(t)) (t?:O) , U(O) = u0 
We assume that the approximation J(•) = J(·;h,f) to f' satisfies 

(4. 4. I) µ[J(x)] s 13 (for all x E }{s ) . 

Note that if the function f is continuously differentiable then the 

one-sided Lipschitz condition (4.1.2) is equivalent to µ[f 1 (x)] s 13 (for 

all x E I<s ) - see lemma 2. 3. 3. The assumption ( 4. 4. I) is therefore a 

natural one. 

Let 1jl stand 

semi-implicit method 

for one of the coefficient functions a .. , b. 
1J 1 

G If we compute from a known un RJ U(tn) a 

of the 

consecutive approximation un+I RJ U(tn+h) , we have to solve linear systems 

of the type 

q(hJ(u ))v = p(hJ(u ))hf(y.(u )) 
n n J n 

where v e }{s is the unknown, y. (u ) has been computed already, and 
J n 

p,q are polynomials such that ljl(s) = p(s)/q(s) (sE~) Clearly this 

linear system has a unique solution iff q(hJ(u )) is regular, i.e. 
n 



~(hJ(u )) exists (cf. section 2.2.2). Using lemma 2.2.6 the question 
n 

whether is uniquely determined can be answered very easily. 

COROLLARY 4.4.1. Let h > 0 and 13 E lR be given. The linear systems of 

algebraic equations arising in (3.3.1) all have unique solutions whenever 

s E :JN and J(-): I<s-+ L(I<s) satisfies (4.4.1) iff all rational functions 

a.. b. are analytic on {s:sE~,Re s~hS} . 
l.J l. 
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CHAPTER 5 

CONTRACTIVITY AND ERROR PROPAGATION PER STEP 

5. 1. INTRODUCTION 

In this chapter we consider again the initial value problem 

(5.1.1.a) U' (t) = f (U(t)) (t<:O) , 

(5.1.1.b) U(O) 

where f: Ks + l<s and u0 E Ks are known. Further <-, • > will stand 

for an arbitrary inner product on l<s , and lxl = <x,x>~ (for all x E l<s). 

The one-step schemes for the numerical solution of (5.1.1) are written 

as 

(n=0,1,2,. .. ) . 

Here h > 0 is the stepsize and 

methods where G(•) = G(·;h,f) 

Ks by 

un ~ U(nh) (n=0,1,2, .•• ) . We consider 

is defined on some suitable subset of the 

(5.1.2.a) G(x) 
m 

x + I 
i=l 

b.(hJ(x)) hf(y.(x)) , 
l. l. 

where the internal vectors y. (x) E Ks satisfy 
l. 

(5.1.2.b) y i (x) 
m 

x + .I 
J=l 

a .. (hJ(x)) hf(y.(x)) 
l.J J 

( 1 sism) • 

The functions a.. and b. are rational functions with real coefficients 
l.J l. 

and J(•) = J(•;h,f): Ks + L(l<s) is a given function. Generally we will 

have J(x) ~ f' (x) (x E IZs) , 

The semi-implicit methods of section 3.3 fit into the form (5.1.2) 

with a .. = 0 
l.J 

for 1 s i s j s m • If all a .. 
l.J 

and b 
i 

are constant, 



(5.1.2) defines a Runge-Kutta method. 

Let B E m., and let V c l{s be open and convex. Assume f is 

continuous and satisfies the one-sided Lipschitz condition 

(5. J.3) 
,....., ,....., ,....., 2 

Re <f(x)-f(x),x-x> $ Slx-xl (for all x,x E V ) • 

As is well known (see e.g. DAHLQUIST (1959)) (5.1.3) implies that for 

any two solutions U,U of the differential equation (5.1.1.a) with 

trajectories in V , we have 

(5. I .4) IU(t+h)-U(t+h) I $ e8hlU(t)-U(t)I 

for arbitrary h > 0 and t ~ 0 . The reverse also holds. In (5.1.4) the 

Lipschitz constant of f is not involved. This makes the estimate useful 

for stiff problems. In particular if B = 0 , we have for all h > 0 

and t ~ 0 , 

(5. I .5) IU(t+h)-U(t+h)I $ IU(t)-U(t)I • 

We see that an error in the initial value 

amplified. 

will then not be 

In this chapter we want to investigate in which cases the properties 

(5.1.4) and (5.1.5) carry over to the numerical approximations computed 

from a method (5.1.2). For this purpose we first take a look at the class 

of simple test problems where I<s =~I and f is linear, 

(5. 1.6) f(x) AX (for x E ~ ) with A E ~ , Re A $ B • 

This is· a special case of (5.1.3). About the behaviour of numerical 

solutions for such simple functions f much is known already. We shall 

therefore not study this case for specific methods, but simply make 

assumptions about the numerical approximations for the problems (5.1.6). 

The main question we consider in this chapter is the following. 
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To what extent do the conclusions about the nwner>ical appPoximations which 

can be dxoawn foP the simple test pPoblems (5.1.6) CazTY oveP to nonscalaP 

and nonlineaP diffePential equations satisfying (5.1.3)? 
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We introduce some terminology for methods G given by (5.J.2). 

DEFINITION 5. J. J. Let f: I<.s -+ I<s , and let V be an arbitrary subset of 

JKs • Asswne h > 0 

be contractive on V 

and G(•;h,f) is defined on V. Method G is said to 

(for f and h ) if 

IG(~;h,f)-G(x;h,f)I ~ l'i-xl (for all x,x E V ) . 

If the above holds for all h > 0 the method G is called 

unconditionally contractive on V (for f ). 

In the subsequence we will generally impose conditions on f such that 

G(·;h,f) is continuously differentiable at a given point of interest 
s x0 E JK • For these cases we also consider 

DEFINITION 5. I. 2. Let f: JKS -+ ][{s and XO E l{s • Ass.wne h > 0 ' and 

G(·;h,f) is defined on an open neighbourhood of x0 and continuously 

differentiable at x0 . Method G is said to be locally contractive at 

x0 (for f and h ) if 

If this holds for all h > O we call method G unconditionally 

locally contractive at x0 (for f ). 

From lemma 2.3.2 we obtain a result that gives a justification for the 

term "locally contractive". 

COROLLARY 5. I . 3. Let f: ][{s -+ ][{s ' h > 0 ' and let v c: ][{s be open and 

convex. Asswne G(·;h,f) is defined and continuously differentiable on 

V • Then G is contractive on V (for f and h ) iff G is ZocaUy 

contractive at each point x0 E V (for f and h ) • 

If a method G is unconditionally contractive on V for f , then 

the analogue of (5.1.5) holds for the numerical approximations; if {~} , 
n 

{u } are two sequences in V computed from method G with starting 
n 

. vectors ~O' u0 E V and arbitrary h > 0 , then 
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lri 1-u 11 ~ I~ -u I 
n+ n+ n n (n=O, 1,2, .•• ) • 

With the above terminology we can reformulate the important concepts 

of A-stability and B-contractivity. A method G is A-stable if G is un

conditionally contractive on a: for all functions f satisfying (5.1.6) 

with S = 0 • If G is unconditionally contractive on I<.s for all f 

satisfying (5.1.3) with S = 0 , G is said to be B-contractive. 

In spite of the simplicity of the class of functions f (scalar and 

linear) involved in the definition of A-stability, numerical experience has 

shown that A-stable methods generally work rather well on much more 

complicated stiff problems. In the present chapter we shall mainly be 

concerned with methods which are A-stable but not B-contractive. For such 

methods conditions on dissipative functions f will be imposed which 

guarantee unconditional contractivity. Also conditional contractivity 

results will be presented where the restriction on the stepsize h is such 

that the product of h and the Lipschitz constant L of f may be 

arbitrary large. 

We now give an outline for the rest of this chapter. 

The subsequent analysis will be based on a result of section 5.2 

where a useful expression for G'(x;h,f) will be derived. 

In section 5.3 we shall consider linear systems of differential 

equations. For such systems far reaching conclusions can be drawn 

from the behaviour of the methods for the simple scalar testproblems 

(5.t.6). 

In section 5.4 semi-implicit methods are considered. We shall mainly 

deal with Rosenbrock methods (J(x)=f'(x)) , and semi-implicit methods 

using a fixed Jacobian approximation. Although these methods are not 

B-contractive, it will be shown that they can be unconditionally 

contractive for dissipative functions f which, in some sense, do not 

differ too much from a linear function. For arbitrary nonlinear stiff 

systems conditional contractivity results are presented. Further it will 

be shown that these contractivity results do not hold for the semi-implicit 

methods with J(x) = f'(x+chf(x)) , c, 0 

Finally, in section 5.5, we review soce results on B-contractive 

implicit Runge-Kutta methods, and give a short analysis for a class of 

implicit Runge-Kutta methods which are not B-contractive. 
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5.2. PRELIMINARY RESULTS 

Consider a method G defined by (5.1.2). Let s E lN, f: lKs -+- I<s 

and h > 0 be given, and let V c l(s be an open, convex set. We assume 

that G(x) and the vectors y.(x) (l~i~m) 
l 

for any point x E V (i.e. the a .. (hJ(x)) 
lJ 

system (5.1.2.b) has a unique solution). 

are well defined by (5.1.2) 

and b.(hJ(x)) exist, and the 
l 

Throughout this chapter the following notations will be used frequent

ly. For a given z E L(Ks) and x E lKs we write 

A(z) 

( 

y 1 (x) 

y (x) = _Y ~ (x) E lKsm and F (y (x)) 

y (x) 

f(y 1 (x))) 
f(y~(x)) E l{sm. 

f(y (x)) m m 

Further e will stand for 
= ( I , I , ••• , I ) T E lRm , I ( s) 

e(m) & I(s) E L(I<s,I<sm), where e(m) = 

is the s x s unit matrix, and & 

Kronecker product. Note that for any vector v E I< 8 we have 

ev = e(m) ® v 

With the above notation we can rewrite (5.1.2) as 

(5.2.1.a) G(x) T x + b(z) hF(y(x)) 

(5.2.1.b) y(x) ex+ A(z) hF(y(x)) 

where z stands for hJ(x) • 

For fixed x0 e V we use the notations 

z0 = hJ(x0) , zi = hf'(yi(x0)) (l~i~m) , 

denotes the 

Z d . ( ) d Z d' ( ) E L(.,.,.sm) • = iag z1,z2····•zm an 0 = iag zo,zo·····zo ..... 



Further we write for arbitrary v E lKs , 

where D b.(hJ(x0)) stands for the Gateaux-derivative of the function 
X L 

bi(hJ(•)) at x0 In a similar way we write 

D~(z0 )v E L(lKsm) for the matrix with block-entries 

D a .. (hJ(x0))v E L(lKs) (Jsi,jsm). 
X LJ 

In the following theorems useful expressions will be presented for 

G'(x0) = G'(x0;h,f) • These expressions will be starting point for the 

analysis of the error propagation in the subsequent sections. 

THEOREM 5. 2. I • Let v c lKS be open and aonve:x:, h > 0 J and XO E v 
Assume f and J(·) = J(·;h,f) are aontinuously differentiable on V, 

and there e:x:ists an open neighbourhood E of x0 suah that G(x) , 

y.(x) (lsism) are well defined by (5.2.1) and the veators y.(x) (l~ism) 
L L 

d.epend aontinuous Zy on x (for x E E ) • Assume further that y i (x0) e V 
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(lsism) and I - A(z0)z is regular. Then G(·) = G(•;h,f) is aontinuously 

differentiable at x0 , and for any v e Ks we have 

(S. 2. 2) 
T -I 

G'(x0)v = v + b(z0) Z(I-A(z0)z) ev + 

T 
+ [Dxb(z0) vJ hF(y(x0)) + 

+ b(z0)T Z(I-A(z0)z)-I [DxA(z0)vJ hF(x0)) . 

PROOF. Let v E J{s and let t > 0 be small enough to have x0 x0 + 

+ tv E V n E and yi{i0) E V (lsism) • We put z 0 = hJ(x0) , 

0 
z. = f hf'(y.(x0) + T(yi{i0)-yi(x0)))dT (lsism) , 

L I L 

and z = diag(zl ,z2, ••• ,zm) • 

In view of the mean-value theorem 2.3.1 we have 
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Using (5.2.1.b) we thus obtain 

y(i0) - y(x0) = e[i0-x0J + A(z0) Z[y(~0)-y(x0)J + 

+ [A(~0)-A(z0)J hF(y(i0)) . 

Since Z + Z for t + 0 , I - A(z0)z is regular for t > 0 sufficiently 

small. We then have 

(5.2.3) 

Further we obtain from t5.2.l.a), 

(5.2.4) 

By using (5.2.3) and the relation 

I 
A(~o) - A(zo) = b DX A(hJ(xo+TtV))tv dT ' 

I we see that for t + 0 , t[y(x0+tv)-y(x0)J converges to 

(5.2.5) 

Hence y is Gateaux-differentiable at x0 , and y' (x0)v is given by 

(5.2.5). It follows that the derivative is a continuous function at x0 
In a similar way, by using (5.2.4), it can be shown that G is 

continuously differentiable at x0 , and (5.2.2) holds. 

TtlEORIM 5.2.2. Assume that the aonditions of theorem 5.2.1 hold, and 

I - A(z0)z0 is regular. Then we have for COJY v E Es , 

a 

(5.2.6) T -I -I G '(x0)v = Hz0)v + b(z0) (I-A(z0)z0) (z-z0) (I-A(z0)z) ev + 

T T -I + [Dxb (z0) v J h F(y(x0)) + b (z0) z (I-A(z0)z) [DxA(z0)v J hF(y(x0)) , 



where 

(S.2.7) 

PROOF. If w1 and w2 are two rational functions, then w1 (z0) and 

w2 (z0 ) will conunute. Using this fact it is easily seen that 

Further we have 

Z(I-A(zo)Z)-I - (I-ZoA<zo))- 1zo 

-I -I 
(I-ZOA(zo)) (Z-Zo) (I-A(zo)Z) 

-I -I 
z0 (I-A(z0)z0) - (I-z0A(z0)) z0 o 

t'rom these relations and (S.2.2) the proof easily follows. 

In formula (S.2.6) several contributions to G'(x0)v can be seen. 

First there is the part $(z0)v which is present even if f is linear. 

D 

T -I -I 
The second part is b(z0) (I-A(z0)z0) (z-z0) (I-A(z0)z) ev • This part 

vanishes if Z = z0 , i.e. f'(yi(x0)) = J(x0) (l$i$m) , which is the case 

if f is affine and J = f' The remaining contribution is zero if 
T 

Dxb(z0) = 0 and DxA(z0) = 0 . This happens if we are dealing with an 
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ordinary Runge-Kutta method, or if J is constant (e.g. if f is affine, 

J = f' ). For the case that f is affine we therefore obtain the following 

result. 

THEOREM 5.2.3. Let f (x) = Ax + w and J(x) = A (for all x E lKS ), 

with A E L(lKs) and w E lKs • Put z0 = hA • Asswne all aij (z0 ) and 

bi(z0) (l$i,j$m) exist, and I - A(z0)z0 is regular. Then G(x;h,f) is 

defined for all x E lKs , and 

G(i;h,f) - G(x;h,f) = $(z0) (i-x) (for all x,x E ]KS ) ' 

where $(z0) is given by (S.2.7). 
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PROOF. From the assumptions it can easily be seen that G(x) and y(x) 
~ -I ~ 

are well defined by (5.1.2) and y(x) - y(x) = (I-A(z0)z0) e[x-x] 

for all x, x E :JKs (cf. (5. 2. 3)). Thus y (x) depends continuously on 

x (for any x E :JKs ) • 

Application of theorem 5.2.2, with V = :JKs, yields 

(for all x E :JKs ) . 

The proof now follows from the mean-value theorem 2.3.1. D 

COROLLARY 5.2.4. Suppose the conditions of theorem 5.2.3 hold with 
s w = 0 • Then G(x;h,f) = <t>(z0)x (for all x E 1K ) • 

PROOF. The proof follows from theorem 5.2.3 by noticing that G(O;h,f) 0, 

or, more directly, from (5.2.1.a) and (5.2.1.b). o 

In the following lemma it will be shown that <t>(z0 ) is a rational 

expression in z0 . This is a generalization of a result obtained by 

STETTER (1973; pp. 132,152) for Runge-Kutta methods. 

LEMMA 5.2.5. Assume z0 E L(:JKs) is such that all aij (z0 ) 

(lsi,jsm) exist, and I - A(z0 )z0 is regular. Let ~(z0 ) 

by (5.2.7), and let the rational function ~ be defined by 

(5.2.8) 

and bi(z0) 

be defined 

(for all <: E ~ such that a .. ((;) , b.((;) (lsi,j~) are recular, and 
l.J l. 

I - A(<:)<: is invertible). Then 1/J(z0 ) exists, and ~(z0 ) = <t>(z0 ) . 

PROOF. For all appropriate <: we have 

m 
I + l 

i,j=I 
b.(<:)<: w .. (<:) , 

l. l.] 

where the w .. ((;) are the entries of W(<:) = (I-A(<:)<:)-I • By using lemma 
iJ -I 

2.4.6 we see that w .. (z0) is the i,j-th. block of (I-A(z0)z0) • It 
l.] s 

follows that ~(z0 ) E L(:JK ) exists, and 



Hence 

In view of the above, the function defined by (5.2.8) will also be 

denoted by cp 

the method G 

This rational function is called the stability funation of 

5.3.LINEAR DIFFERENTIAL EQUATIONS 

In this section we will assume that the Jacobian approximation J , 

which is used in (5. 1. 2), is such that J (x) = f' (x) (for all x E I<s ) 

if f is an affine function (i.e. f' is constant). 

Suppose 

f(x) Ax (for x E I<s ) 

where A c L(Ks). In section 5.2 we have seen that the methods G given 

by (5.1.2} are such that 

(5. 3. 1) G(x;h, f) cj>(hA)x (for x E I<s , h > 0 ) 

where cp is a rational function with real coefficients, the stability 

function of the method. Methods with this property are said to have a 

rational struature (cf. SPIJKER (1982 B)). 

For a given stability function cp we define <1>: lR + lR by 

(5.3.2) <I> ( t) sup{lcj>(s)I !sE~,Re s$t,cp is regular at s} ( t E lR) • 

With this notation a method G, with stability function cp , is A-stable 
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a 

iff <!>(O) ~ 1 • Note that cp is an approximation to the exponential 

function: cj>(s) = es + O(sp+l) (s+O) , where p is the order of the method. 

If p ~ 0 we therefore have <l>(O) ~ 1 • 

REMARK 5.3.1. If the method G is explicit (all 

and a .. = 0 (l$i$j$m) ) and has order ~ 1 , cp 
1J 

Therefore such a method cannot be A-stable. 

a .. , b. are polynomials 
1J 1 

is a nonconstant polynomial. 

DEFINITION 5.3.2. Let cj> be the stability funation of method G • If 

<l>(t) < 1 (for all t < 0 ), G is aalled strongly A-stable. In aase G is 
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A-stahle and 1$(00 )1 = 0, G is said to be L-stahle. 

Note that if a method G is A-stable, the stability function $ has 

no essential singularties in ~ • From the maximum modulus theorem it 

therefore follows that G is strongly A-stable iff G is A-stable and 

!$(00)! <I • 

REMARK 5.3.3. Suppose :Ks = ~ 1 , h > 0 and f(x) 

,\ E ~ , Re ,\ s S • He re S E lR is a given number. 

,\x (for x E ~ ) with 

Let u0 ,u0 E ~ be arbitrary. Consider the solutions U,U of the 

differential equation U'(t) = ,\U(t) (t~O) with initial values u0 ,u0 , 

respectively. Then 

For the numerical approximations u 1 

in view of (5.3.1), 

(provided that $(h.\) is defined). 

G(u0 ;h,f) we have 

Suppose S < 0 . Then ehS < I , and therefore the "error" 

damped out by the differential equation. If the numerical method 

stronely A-stable, the numerical approximations will show a similar 

behaviour. For an L-stable method this damping out is strong if hS << 0 , 

becauce we have for such a method <I> (hS) + 0 (if hS + - oo). 

There is however a drawback with strongly A-stable (and L-stable) 

methods: they may be too stable. Since we have l$(oo)! <I , there is a 

is 

,\ > 0 such that 1$(hJ..)I <I whereas !eh,\! >I • For this ,\ the 

numerical scheme is thus contractive although the difference between two 

exact solutions of the differential equation increases. Consequences of this 

too stable behaviour have been investigated by LINDBERG (1974). 

The following result shows that the conclusions about the error 

propagation in the numerical schemes that can be drawn from the one

dimensional linear testequation (5.1.6) carry over to arbitrary systems of 

linear differential equations with constant coefficients. For this it is 

essential that we deal with a norm which is generated by an inner product 

(see e.g. SPIJKER (1982 B)). 



COROLLARY 5.3.4. Let G be a method of the type (5.1.2), and' let s E lR 

and h > 0 . Asswne f(x) = Ax + w and J(x) = A (for au x E I<s ) 

where w E Ks and A E L(JKs) satisfies µ[A] $ S . Then 

I G(;;h, f)-G(x;h, f) I $ <P(hS) J';-xJ 

whenever G(X;h,f) and G(x;h,f) are defined. 
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The proof of this corollary follows directly from the theorems 5.2.3, 2.2.7 

and lemma 5.2.5. We note that if all a .. , b. (l$i,j$m) are analytic on 
1J 1 

{~:sE~,Re s$hS} , and I - A(s)s is regular for all s E ~ with 

Re s $ hS , then it follows from the lemmata 2.2.6 and 2.4.6 that G(x;h,f) 

is defined for all x E ICs in the above corollary. 

In particular we get for dissipative linear differential equations with 

constant coefficients the following result. 

COROLLARY 5.3.5. Let G be an A-stable method of the type (5.1.2). Let 

f(x) = Ax + w and J(x) = A (for aU x E Ks ) where w E I<s and 

A E L(ICs) with µ[A] $ 0 • Then any two sequenaes of nwneriaal 

approximations {~ },{u }. aomputed from this method with stepsize h > 0 
n n 

and startirzg veators ~0,u0 , respeatively, satisfy the aontraativity 

relation 

I~ -u I $ I~ -u I n+I n+I n n (n=0,1,2, ••• ). 

REMARK 5.3.6. The nonlinear methods of LAMBERT (1974) and WAI!BECQ (1978), 

which do not fit into the form (5.1.2), have no rational structure 

(although such methods are often called rational methods). For these methods 

the nice conclusions of the corollaries 5.3.4 and 5.3.5 cannot be drawn. 

5.4. SEMI-IMPLICIT METHODS 

5.4.1. Negative B-contractivity results 

In this section we consider the class of semi-implicit methods (3.3.1). 

We shall mainly deal with the Rosenbrock methods and semi-implicit methods 

using a fixed Jacobian approximation. To begin with it will be. shown that 

these methods cannot be B-contractive. 

The following theorem was proved by VANSELOV (1979) for a bit more 
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restricted class of methods. We note that by SANDBERG and SHICHMAN (1968) it 

was shown before that the simple Rosenbrock method given by G(x;h,f) = 

= x + (I-hf' (x))-l hf(x) is not B-contractive. The proof presented here is 

a straightforward generalization of Vanselov's proof. 

In the following theorems we will assume that the order of G is at 

least one, to exclude the trivial method G(x;h,f) = x (for all x E I<s 

(sE N ), h > 0 , f: JKs ->- :n<s ) • 

THEOREM 5. 4. I. Let G be a Rosenbrock method of the type (3. 3. I) with 

order ~ I • Then G is not B-contractive. 

PROOF. Beside the Rosenbrock method G given by 

G(x;h,f) 

y. (x) 
l. 

m 
x + I 

i=I 
b.(hf'(x)) hf(y.(x)) , 

l. l. 

i-1 
x + I 

j=I 
a .. (hf' (x)) hf (y. (x)) 

l.J J 

we also consider the explicit Runge-Kutta method G 

m 
G(x;h,f) x + I s. hf (y. (x)) 

i=I l. l. 

i-1 
y. (x) x + I a .. hf (y. (x)) 

l. j=I l.J J 

(I SiSm) , 

(I sism) , 

with a .. = a .. (0) (ISj<ism) , S. = b. (0) (lsism) • Note that since the 
l.J l.J l. l. 

order of G is at least one the a .. and b. can be defined in 0 (no 
l.J l. 

essential singularities), and we have s1 + s2 + ••• +Sm= I (see e.g. 

VAN DER.HOUWEN (1977)). Therefore the order of G is also at least one, and 

the stability function ~ of G is a nonconstant polynomial (cf. remark 

5.3.1). It follows that there are numbers S < 0, h > 0 and x0 f 0 such 

that, for f(x) = Sx X E JR) , 

Let £ > 0 be such that £ < lx0 1 

sis m, yi(x0) f x0 • We take 

and 



f(x) f (x) + g(x) (x E 1R ) , 

where g is a differentiable real function such that g(x0) = 0 

g'(x0) -S, g(x) = 0 (for lx-x0 1 > E ), lg'(x)I ~ S (for all x E 1R). 

Then 

Therefore 
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although 1 is dissipative. a 

THEOREM 5.4.2. Let G be a semi-implicit method of the type (3.3.1) with 

a constant Jacobian approximation J • Suppose the order of G is at 

least one. Then G is not B-contractive. 

PROOF. Consider the dissipative function f: 1R + 1R defined by 3 f(x) = -x 

(x e 1R). Assume J(x) = J 0 E 1R (for all x E 1R), and let h > 0 be 

arbitrary. Using (3.3. I) it is easily seen that G(x) = G(x;h,f) is a 

polynomial in x , and G(x) = x + 0(x2) (x + O). Since the order of G 

is at least one, G(x) is not identically equal to x , and therefore the 

degree of G(x) is larger than one; Hence 

IG(x;h,f)-G(O;h,f)I > lxl 

for x E 1R sufficiently large. a 

Within the B-contractivity framework, i.e. we consider nonlinear 

functions f satisfying the one-sided Lipschitz condition (5.1.3), 

contractivity results and results on the error propagation per step for 

semi-implicit methods will be derived in the subsequent sections. There we 

will impose some additional conditions on the functions f • Some results 

in this direction can be found in the papers of SANDBERG and SHICHMAN 

(1968), TRIGIANTE (1977) and HUNDSDORFER (1981), for some simple Rosenbrock 

methods (covered by the methods considered in example 5.4.20). 

For rather general semi-implicit methods using a fixed Jacobian 
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approximation J and functions f which are known to be of·the type 

f(x) Jx + g(x) 

where g is a function with a small Lipschitz constant on the lKs , nice 

results have been obtained by HAIRER, BADER and LUBICH (1982) and, 

following the same line, by STREHMEL and WEINER (1982 A). These results are 

not valid for semi-implicit methods where J(x) may be varying on the lKs , 

such as the Rosenbrock methods. 

A different approach was followed by VERWER (1977), who considered the 

general semi-implicit methods (3.3.1) for the nonautonomous, I-dimensional, 

linear S-stability model problem 

f(t,x) A(x-g(t)) + g'(t) ( t E 1R ' x E IC) 

with A E IC and g: 1R + a: a smooth function. Similar investigations have 

been carried out afterwards by STREHMEL (1981), STREHMEL and WEINER (1982 B). 

Although this model problem is more general than the A-stability model 

problem (5.1.6), it is still rather restricted (see e.g. remark 5.4.28). 

In VERWER (1982) a more general nonlinear model problem was considered, 

consisting of two coupled differential equations of the singularly 

perturbed type. This system contains a small parameter e; , and if e; t_ends 

to zero the stiffness is more and more increased. Verwer was concerned with 

certain accuracy and boundedness properties which hold uniformly in e; • 

A similar boundedness property was considered by VAN VELDHUIZEN (1973,1974, 

1981,1983) for a 2-dimensional linear nonautonomous model problem (the 

D-stability model problem). 

These results of van Veldhuizen and Verwer are not covered by the 

results in this chapter. For instance the so-called internal A-stability 

concept of VERWER (1977), which was shown to be useful through numerical 

experiments, hardly shows up in our results (cf. example 5.4.11). The more 

restriced model problems seem to be better suited to detect differences 

within the class of Rosenbrock methods. The investigation carried out in 

this chapter is more devoted to the question what extra conditions on the 

nonlinear functions f satisfying (5.1.3) have to be imposed to ensure 

a favourable error propagation, for instance contractivity. 



5.4.2. An upper bound for IG'(x;h,f)I 

In view of the negative results of the previous section (the theorems 

5.4.1, 5.4.2) there is a need for a theory that shows for what kind of 

nonlinear functions f the error propagation will be favourable. In this 

section an upper bound for IG'(x;h,f)i will be given. Using this upper 

bound positive results will be obtained in the subsequent sections. 

We consider a semi-implicit method G of the type (3.3.1) satisfying 

(3.3.5) and (3.3.9). Let 'e be the largest number such that all a .. 
-I i.J 

b. 
]. 

are analytic· on {~:~E~,Re ~$6 } • From (3.3.5) it follows that 

6 > 0 • 

and 
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With the notation introduced in section 5.2 the method G is given by 

(for x0 E lKs with h > 0 , f: lKs + ::Ks , s E lN ). Here y(x0 ) = 
_ ( ( T TT . _ T T TT 
- Y1 xo) , ... ,ym(xo)) 'F(y(xo)) -(f(yl(xo)) ,f(y2(xo)) , .•• ,f(ym(xo))) 

and z0 stands for hJ(x0) • As in section 5.2, hf'(yi (x0)) will be denoted 

by zi (lsism) , z = diag(z 1,z2, .•• ,zm) , and z0 = diag(z0,z0 , ••• ,z0) E 
E L(1Ksm) 

Let f3 E lR and let a.,y,cS,e: 

notational convenience we put 

t.(t,~) li(t) + e:(t)~ 

Further we define 

(5.4.1) 

lR+ + lR be given functions. For 

(for + 
t,~ E lR ) , 

if f3 $ 0 • 

Let h E (O,h0) • On the functions f and J(') = J(·;h,f) the 

following assumptions (5.4.2)-(5.4.7) will be made. This set of assumptions 

will be denoted by (A). 

(5.4.2) I • I is an inner product-norm on I<s , s E lN , x0 . E l<s , 
s r 0 > o , and v0 = {x:x€JK , lx-x0 i<r0}. 
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(5.4.3) 

(5.4.4) 

(5.4.5) 

(5.4.6) 

(5.4.7) 

f: I<s + I<s and J: Es + L(I<s) are continuously 

differentiable on V0 • 

µ[J(x0)J s 13 • 

I (I-h0J(x0))- 1hJ'(x0) I s y(h) 

l(I-h0J(x0))-1h(J(x0)-f'(x))I s ~(h) + E(h) lx-x0 1 

(for all x E V0 ) • 

In the applications in the subsequent sections the assumptions (5.4.4), 
(5.4.6) and (5.4.7) will be replaced by more simple, concrete ones, which are 
however more restrictive. 

From section 4.4 it can be seen that the assumptions h e (O,h0) , 
(5.4.2) and (5.4.5) together imply that G(x0 ;h,f) is defined. From the 
same assumptions and the corollaries 2.2.8 and 2.2.9 it also follows that 
there is a constant w > 0 , only depending on the coefficients of the 
method G , such that 

(5.4.8) -I max {I a .. (z0) I, lb. (z0) I} s w(l-hef3) , and 
lsi,jsm iJ 1 

For h E (O,h0) we define recursively for i 1,2, ••. ,m, 

i-1 
(5.4:9.a) p. (h) = w l a. (h) 

' 1 j=I J 

(5.4.9.b) a. (h) = a(h) + -I 
pi(h) 0 p.(h) + A(h,p.(h)) 

' 1 1 1 

(5.4.9.c) t. (h) -I = 9 w + w A(h,p.(h)) 
1 1 

LEMMA 5.4.3. Suppose the semi-irrrpliait method G satisfies (3.3.5) and 
(3.3.9). Suppose fu:r>ther that h € (O,h0) , (A) , pm(h) < r 0 • Then all 
yi(xo) €Vo 'and 



lyi(x0)-x0 1 s pi(h) 

-I 
I (I-ez0) hf(yi(x0))1 s cri(h) 

(IS ism) , 

PROOF. The vectors y, = y.(x0) (lsism) satisfy 
l. l. 

i-1 
(5.4.10) l 

j=I 

If yi E v0 we obtain by Taylor expansion 

I 
hf(yi) = hf(x0) + b hf'(x0+t(yi-x0)) dt(yi-x0) 

I 
= hf(x0) + z0 (yi-xO) + b [hf'(x0+t(yi-x0))-z0J dt(yi-xO) 

Hence 

(5.4.11) 
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The assertion of the lemma clearly holds for i = I , since y1 = x0 . 

Using (5.4.8)-(5.4.11) and p.(h) s p (h) (lsjsm) , the assertion is easily 
J m 

proved for i = 2,3, ... ,m by induction. a 

COROLLARY 5.4.4. Under the assumptions of lemna 5.4.3 it follows that 

G(·;h,f) is aontinuously differentiable at x0 

PROOF. From the assumptions h E (O,h0) , (5.4.2), (5.4.3) and (5.4.5), and 

lemma 5.4.3, it can be seen that there exists an open, convex region 

E c V0 containing XO such that the following holds: y 1(x),y2(x), .•• ,ym(x), 
G(x) are defined and depend continuously on x (for all x EE ). 

The proof is now an immediate consequence of lemma 5.4.3 and 

theorem 5.2.1. a 

From lemma 5.4.3 and (5.4.7) we obtain 
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COROLLARY 5.4.5. Under the asswrrptions of lemma 5.4.3, we have 

(I s:is:m) 

LEMMA 5.4.6. Let the asswrrptions of lemma 5.4.3 hold. Then 

la .. (z0)z.I s T.(h) , lb.(z0)z.I s T.(h) (lsi,js:m) 
l.J J J l. l. l. 

For the i,j-th. s x s block 
-I 

-I 
[ (l-A(z0) Z) J •. 

l.J 
of the sm x sm matrix 

(l-A(z0)z) we have 

m-1 
l[(I-A(zo)Z)- 1J .. I $ IT (l+Tk(h)) 

l.J k=j 

PROOF. We have 

(I si ,jsm) . 

Using (5.4.8), (5.4.9) and corollary 5.4.5 we thus get la .. (z0)z.I s 
l.J J 

s T.(h) . In the same way it follows that lb.(z0)z. I s T.(h) 
J l. l. l. 

From lemma 2.4.9 we see that 

IC(I-A(z0)z)- 1J .. I s T.(h) 
l.J J 

i-1 
IT ( l+Tk (h)) 

k=j+I 
if i > j ' 

whereas [(I-A(z0)z)- 1J .. equals I if i j , and 0 if i < j The 
l.J 

upper bound of the lemma thus follows. a 

Using the above lemmata and the expression for G'(x0 ;h,f) given in 

theorem 5.2.2, we are now able to give an upper bound for IG'(x0 ;h,f)I . 

THEOREM 5.4.7. Suppose the semi-implicit method G satisfies (3.3.5) and 

(3.3.9), and h E (O,h0) , (A) , pm(h) < r 0 • Let .~ be the stability 

function of G , and let <I> be defined by (5. 3. 2). The1•e are polynomials 

(in two variables) P,Q and R, with nonnegative coefficients which only 

depend on the coefficients of the method G , such that 



(5.4.12) JG' (x0;h,f)I s ~(hS) + o(h) P(a(h)£(h),o(h)) + 

+ a(h) E(h) Q(a(h)E(h),o(h)) + a(h) y(h) R(a(h)E(h),o(h)) 

REMARK 5.4.8. In the following proof it will also be shown that there is a 

polynomial S , only depending on the coefficients of the method G , such 

that the condition 

can be written as 

(5.4. 13) a(h) S(a(h)E(h),o(h)) < ro . 

PROOF (of theorem 5.4.7 and remark 5.4.8). 

We start by estimating the terms appearing on the right-hand side of 

the expression (5.2.6) for G'(x0;h,f) . We will use the letmnata 5.4.3, 

5.4.6, and corollary 5.4.5. 

We have 

m -1 l bi (z0) (I-ez0) [ (I-A(z0)z0 ) Jij 
i,j 'k=l 

-1 -1 
(I-ez0 ) (z j-z0)[ (I-A(z0 ) Z) J jk I s 

3 
s m 

max 
lsjsm 

max Jbi(z0)(I-ez0)J ~a~ 
lsism lsi,JSm 

-1 
I (I-ez0 ) (zj-z0 ) I 

m-1 
s n1 ~(h,pm(h)) IT (l+rk(h)) , 

k=l 

3 -1 m-1 where n1 = m w(l+e w) • Here we have used the fact that the i,j-th. 
block of (l-A(z0)z0)-l is a rational expression in z0 (see e.g. letmna 

2.4.6), and that two rational expressions in z0 cotmnute. Besides the 
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norms of [(I-A(z0)z0)- 1Jij are estimated by (1+6- 1w)m-l (see corollary 

2.4.10 and (5.4.8)). 

Using theorem 2.3.6 and corollary2.2.8 it can be seen that there is an 

w' > O such that all i[D~~i(z0 )v](I-ez0 ) I and i[Dxaij(~0 )v](I-Sz0 ) I 

are bounded by w'I [(I-6z0) hJ' (x0)vl for arbitrary v E lK • Therefore 

with n2 = mw' • 

The last term on the right-hand side of (5.2.6) is estimated in a 

similar way. Note that A(z0) , and therefore also DxA(z0)v , are strictly 

lower block-triangular. 

m m m-1 
=I 2 2 ~ b.(z0)z.[(I-A(z0)z)- 1J .. [D a.k(z0)v]hf(yk(x0))1 <; 

i=I j=2 k=I l. l. l.J x J 

3 s m max lb.(z0)z.I 
I sism i i 

max i[(I-A(z0)z)- 1J .. I 
lSiSm l.J 

2Sj Sm 

-1 
max I [Dxajk (z0)v] (I-6z0) I max I (I-6z0) hf (yk (x0)) I s 

1sj,ksm lsksm-1 

m-1 
s n3 y(h) om_ 1(h) 'm(h) IT (l+Tk(h)) 

j=2 

with n3 = m3 w' • We define o0 (h) = 0 for the case that m = I • 

Let cr.(h) (ISiSm) be defined by 
l. 

(5.4.14.a) a. (h) 
l. 

i-1 i-1 
+w[ 2 cr.(h)] [6- 1+o(h)+a(h)E:(h)w 2 8.(h)]. 

j=l J j=I J 

In view of (5.4.9) we have oi(h) = u(h) cri(h) (lsism) , and 
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(5.4. 14. b) 1: i (h) 
-I e w + w[o(h)+a(h)e(h)w 

i-1 
l 

j=I 
a. (h) J • 

J 

Thus we see that the 8. (h) and 1:. (h) can be written as polynomials 
l. l. 

in a(h)e(h) and o(h) . We further have 

c. (h ' pi (h) ) 
i-1 

0 (h) + a (h) dh) w l a. (h) 
j=I J 

Inserting this in the above estimates for the terms of (5.2.6), we obtain 

(5.4. 12) with 

m-1 
(5.4.15.a) P(a(h)e(h),o(h)) = n1 IT (l+1:k(h)) , 

k""I 

(5.4. 15.b) 

(5.4. 15.c) 

m-1 
Q(a(h)e(h),o(h)) = n w I 8.(h) 

I . I J J= 

m-1 
IT (I +l:k (h)) , 

k=l 

m-1 
R(a(h)e(h),o(h)) = n2 a (h) + n3 a 1(h) T (h) IT (1+,k(h)) • 

m m- m k=2 

Since pm(h) = wa(h) [cr 1(h)+cr2(h)+ ... +8m-I (h)] , we also see from the 

above that the condition pm(h) < r 0 can be written as (5.4.13) with 

(5.4. 15.d) 
m-1 

S(a(h)e(h),o(h)) = w I 
j=I 

a. (h) • 
J [J 

REMARK 5.4.9. If m = I , we have P = n1 , R = n2 and Q = S = 0 . Here 

P,Q,R and S are the polynomials arising in theorem 5.4.7 and remark 

5.4.8, and n1,n2 are the constants defined in the proof of theorem 5.4.7. 

Thus condition (5.4.13) is always fulfilled, and (5.4.12) reads 

EXAMPLE 5.4.10. Consider the one-stage method G, with one parameter 

e E (0,1] , given by 

-I G(x;h,f) = x + (I-h6J(x)) hf(x) • 
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The stability function of this method equals 

-I 
qi(;;;) = (1-8;;;) (1+(1-El)<;;) (;;; ( a: ) • 

By some calculations it follows that 

-I -I 
<!>(t) = max{e (l-6),(l-8t) (l+(l-6)t)} (for 

-I 
t < e ) . 

We can take 11 1 and 11 2 6 (namely m = I , w and w' = e ) • 

Hence 

IG'(x0 ;h,f) I s l(hB) + a(h) + ea(h)y(h) 

whenever (A) holds and I - 2h8B > 0 (i.e. h E (O,h0 )) . 

In this case the stepsize restriction I - 2h 6B > 0 can be weakened 

to I - h8B > 0 

EXAMPLE 5.4.11. Consider the two-stage method with 

-I 
(1-e ;;;) n. 

l. 

(for i;; E 0: ) , 

(for i 

where e > 0 and n 1 , n 2, i; E lR • With e = I - ! 12 , n 1 = O , n 2 = I , 

i; = ~(12-1) we obtain a well known method proposed by ROSENBROCK (1963) 
I I 2 

With e = 2 + 613 , n1 = 3/4 , n2 = 1/4 and i; = -:/3 the third order 

method of CALAHAN (1968) appears. 

From (5.4.14), (5.4.15) with m = 2, w = max{in 11,ln21,li;I}, 

w' ew , we obtain for this example 

P(a(h)E(h),a(h)) 
-I 

[111(1+6 w)] + [111w] a(h) , 

Q(a(h)E(h),a(h)) 
-I 2 

[111w(l+e w)J + [111w J a(h) 

R(a (h) E (h), a(h)) 
-I -I 

[112(l+e w)+l136 w] + [(112+113)w] a(h) + 

+ [(112+113)w2J a(h)E(h) , 

s (a(h)E(h),a(h)) = w , 



. h " 8 (I 0-I ) " 20 d " 80 Wi0 th these. P,Q and wit "I = w + w , .. 2 = w an .. 3 = w . 

R we get an upper bound for G'(x0 ;h,f) from theorem 5.4.7. 

This result can be improved a little by using the internal stability 

function $ 1 (~) =I+ a21 (~)~ (~ E ~) , and ~ 1 (t) = 

= sup{l$ 1 (~)1 :~E~,Re ~St} . We have used in this section the estimate 
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1$ 1 (~)1 s I+ la21 (~)~1 , but this may be crude, for instance if it is known 

that $1 is L-acceptable (i.e. ~ 1 (0) s I , $1(00 ) = 0 ). For this example 

we give a more precise analysis. 

We suppose that (A) holds, y1(x0) E v0 and h E (O,h0) • By writing 

out (5.2.6) we get 

-I G' (x0)v = $(z0)v + {n 1 (I-ez0) (z 1-z0)+ 

-I -I 
+n2(I-0z0) (z2-z0 )(I+~(I-0z0 ) z1)+ 

-I -I 
+n2(I-0z0) z0 (~(I-0z0 ) (z 1-z0))}v + 

-I -I 
+ {n 10(1-0z0) [hJ'(x )vJ (I-0z) hf(x0) + 

() 0 

-I' -I + n20(1-0z0) [hJ'(x0)vJ(r-0z0) hf(y2(x0))} + 

-I -I -I + {n 2~0(I-0z0 ) z2(I-0z0) [hJ'(x0)v](I-0z0) hf(x0)} 

* * Since p2 (h) s p2(h) , t 1 (h) s t 1 (h) these estimates are sharper than the 

ones obtained from the lemmata 5.4.3 and 5.4.6. We also have 

which follows from 



80 

(see (5.4. 11)). Inserting these estimates in the expression for G'(x0) 

yields the upper bound 

-I 
JG'(x0)J s w(hS) + {[Jn 1J+Jn 2 1w 1(hS)+ln2se IJ+ln2slo(h)} o(h) + 

+ {[Jn2sJw 1 (hS)]+Jn2s 2 Jo(h)} a(h)E(h) + 

+ {[Jn 1el+ln2sl+Jn2elw 1 (hS)J+2Jn2seJo(h)+2Jn2s 2eJa(h)£(h)} 

a (h) y (h) • 

This result is only a slight quantitative improvement over the result 

we obtained directly from theorem 5.4.7. In particular it does not reveal 

the importance of the internal A-stability concept (see VERWER (1977)), 

which has been shown to be useful by means of numerical experiments in 

VERWER (1977). More restricted model problems (see e.g. VAN VELDHUIZEN 

(1981), VERWER (1982)) seem to be better suited to deal with refinements on 

theorem 5.4.7. 

5.4.3. A general contractivity result 

In this section theorem 5.4.7 will be applied to obtain contractivity 

results for semi-implicit methods. In the subsequent sections these results 

will be used for concrete choices of the Jacobian approximation J • The 

contractivity results show what kind of extra conditions on the dissipative 

functions f are sufficient to have for the numerical approximations the 

analogue of property (5.1.5), 

JU(t+h)-U(t+h)J s JU(t)-U(t)J (for all t ~ 0 , h > 0 ). 

A requirement on the method will be that the method is A-stable. 

Otherwise we cannot even get a contractivity result for the class of 

simple dissipative testproblems (5.1.6). It will turn out that we have to 

require a bit more than A-stability, namely strong A-stability (cf. 

definition 5.3.2), if we deal with nonlinear functions f (see the theorems 
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5. 4. 18' 5. 4. 24) • 

We shall be concerned with a semi-implicit method G which satisfies 

(3.3.5) and (3.3.9). The pasitive constant e is defined as in section 

5.4.2. 

Let ci0 ,y0 ,o0 ,e:0 :<! 0 and s0 E lR be given constants, and let ho be 

defined by (5.4.1) with S = s0 . We consider the following set of 

assumptions (A0) on the functions f and J(·) = J(·;h,f) • (A0) 

consists of (5.4.2) and the assumption that (5.4.3) and the following 

conditions (5.4.16)-(5.4.19) hold for all h E (O,h0) . 

(5.4.16) If (x0) I :> ci0 , 

(5.4.17) µ[J(xo)J $ So ' 

(5.4.18) IJ' (x0) I $ Yo ' 

(5.4.19) I J (x0)-f' (x) I $ 00 + e:0 1x-x0 1 (for all x E V0 ). 

From corollary 2.2.11 we see that (5.4.17) implies 

for all h E (O,h0) . Therefore (5.4.4)-(5.4.7) hold with a(h) = 
-I -I -I = (J-hes0> hci0 , s = s0 , y(h) = (J-hes0> hr0 , o(h) = (J-hes0> ho0 

and e:(h) = (J-heS0)-l he:0 . The results of section 5.4.2 will be applied 

with these choices. 

THEOREM 5.4.12. Let G be a strongly A-stable semi-implicit method 
satisfying (3.3.5) and (3.3.9). Then the following hold.s. 

(B0) There are constants c0 ,c 1,c2 ,c3 > 0 such that G is 

unconditionally locally aontractive at x0 for f , 

whenever (A0) holds with s0 < o, ci0/(IS0 ir0) $ c0 , 

ci 0y0/s~ :> c 1 , ci0 €0/$~ $ c2 and o0/IS0 1 :> c3 • 

These constants c0,c 1,c2 and c3 only depend on the coefficients of the 
method G . Moreover there exists a constant c; > 0 , only depending on 

the coefficients of G , such that 
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(C0) For any given c0 ,c 1,c2 > 0 and c3 E (O,c;) , there is a 

K > 0 such that G is locally contractive at x0 for f 

and all h > 0 with hl80 1 s K, whenever (A0) holds 
2 

with 80 < 0. ao/(18olro) $co. aoyo/80 $cl. 
2 

a0E0/80 s c2 and 60/180 1 s c3 

Here K only depends on c0 ,c 1,c2,c3 and on the coefficients of G. 

PROOF. In this proof we apply theorem 5.4.7 with a(h),S,y(h),6(h),E(h) as 

indicated above this theorem. 

From theorem 2.2.4 it is known that there are constants A > 0 and 

t* < 0 such that the function ~ , defined on (- 00 ,0] by ~(t) = I + At 

(for t* s t s 0 ), ~(t) = I +At* (for t < t* ), satisfies 

Ht) s ~(t) (for all t s 0 ). 

Suppose 80 < 0 , 

c~O) . We denote by 

(e- 2c~O) ,e- 1 c~O)) of the 

polynomials P,Q,R,S , respectively. These are the polynomials arising in 

theorem 5.4.7 and remark 5.4.8. By taking c0 > 0 such that c0s0 s r 0 , 

it is easily seen that (5.4.13) holds for all h > 0 whenever 

a0/(180 1r0) s c0 . 

Further we see from theorem 5.4.7 that 

where k 

h > 0 if 

we obtain 

IG'(x0;h,f)J s ~(-K) + (I+ok)- 1 k(c0/i80 J) P0 + 

-2 2 2 -2 2 2 
+ (I+ek) k (a0E0/80) Q0 + (I+ek) k (a0y0/80) R0 , 

• It follows that IG'(x0 ;h,f)I s I for all 
2 

and a0y0/80 are sufficiently small. Hence 

For proving (C0) we also suppose that 

a0/i80 ir0 s cciO) If k = hi80 J satisfies 

(5.4.13) will hold. From (5.4. 12) we see that 



where 2 M only depends on a0y 0 /B0 
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and 

holds with c* = A/P(O,O) 
3 Cl 

REMARK 5.4.13. Statement (C0) is equivalent to the following statement 

(D0) , which seems at first sight to be a bit stronger. 

For 

such 

all 

* c0 ,c 1,c2 > 0 , c3 E (O,c3) given, there is a K > O 

that G is locally contractive at x0 for f and 
I I 

h > o with h·maxfo0 /(r0c0),(a0y0/c 1 )~,(a0E 0/c2)~,o0/c3 } :s; 

:s; iZ , whenever 
2 

aoyo/Bo :s; cl , 

The equivalence of (;co) 

following fact: if (AO) 
if B' > Bo ' then (AO) 0 

(A0) holds uJith B0 > o , a0/ C~B0 I r 0) s c0 , 

a0 c0 /B~ s c 2 and o1/I B0 1 s c 3 • 

and (DO) can easily be proved by using the 

holds with constants a0,B0,y0,00,E0,r0 ' 
and 

also holds with constants aO,BO,yO,oO,EO and 

REMARK 5.4.14. If m = we may take c0 = c2 = 00 in the statements 

(B0) , (C0) and (D0) This can be seen from remark 5.4.9 and the proof 

of theorem 5.4.12. 

The reason for this is that the condition a0/(JB0 ir0) :s; c0 is only 

needed to ensure that all the intermediate vectors y 1 (x0) ,y 2 (x0), ... , 

ym(x0) are in v0 , and EO is only used to give an upper bound for 

IJ(x0)-f' (yi (x0)) I (i=2,3,. . .,m) • If m = I , there is only one inter

mediate vector y 1(x0) , and y1(x0) = x0 . 

5.4.4. Rosenbrock methods 

The previous results will now be applied for concrete choices for the 

Jacobian approximations J(•) = J(•;h,f) • The first choice we consider 

is J(x)·= f'(x) , i.e. we are dealing with a Rosenbrock method. 

We consider a Rosenbrock method G satisfying (3.3.5) and (3.3.9). Let 

6 > 0 be defined as in section 5.4.2. 

Suppose s0 E lR and a0 ,y0 ,o0 ,y0 E lR-"': We will consider functions f 

that satisfy the set of assumptions (A1) consisting of (5.4.2) and 

(5.4.20)-(5.4.23). 
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(5.4.20) f is twice continuously differentiable on V0 • 

(5.4.21) 

(5.4.22) 

(5.4.23) If" (x) I ~ Yo (for all x c v0 ). 

Then holds with o0 = 0 and EO = y0 (see (5.4.16)-(5.4.19)), and 
-I 

(A) holds with 
-I 

= (I-has) hy0 

8 = s0 , o(h) = 0 , a(h) = (l-h88) ha0 and y(h) = E(h) 

(see (5.4.3)-(5.4.7)). Further we will take the same step-

size restriction as in the previous sections; we take h E (O,h0) where 

h0 is defined by (5.4.J) with 8 = s0 . 

In order to ensure that all the internal vectors yi(x0) are in V0 

and G(·;h,f) is continuously differentiable at x0 we will require 

(instead of (5.4. 13) for the general case) 

(5.4.24) 

Here s 1 (!;;) = S(i;;,O) (for i;; E lR+) where S is the polynomial defined by 

(5.4.14.a) and (5.4.J 5.d). If m = then s1 is identically equal to 

zero, and in case m = 2 s1 is constant. 

By application of theorem 5.4.7 we obtain the following result. 

THEOREM 5.4.15. Let G be a Roseribrock method satisfying (3.3.5) and 

(3.3.9). Assume h E (O,h0) , (A1) and (5.4.24). Then we have 

(5.4.25) 

where P 1 is a polynomial satisfying P 1(0) = 0 

The above polynomial P1 can be calculated from (5,/f,14), (5.4.15) and the 

relation P 1 (!;;) = i;;Q (!;;, 0) + i;;R(!;;, O) (for i;; E lR + ) • Note that P 1 only 

depends on the coefficients of the method G • 

For fixed h E (O,h0) and s0 E lR, the inequality (5.4.25) shows 

that the effect of the nonlinearity of the function f is small if 

c.v.0y0 is small. It will be shown in example 5.4.29 that if the product 

a0y0 is allowed to be large the error propagation with the Rosenbrock 

method G may be unfavourable, no matter how good the method works on 



linear stiff systems. 

From theorem 5.4.12 we obtain 

THEOREM 5.4.16. Let· G be a strongly A-stable Rosenbrook method 

satisfying (3.3.5) and (3.3.9). Then the following statements hold. 

G is unconditionally There are c0 ,c 1 > 0 suah that 

loaally aontraative at x0 for 

with s0 < o, a0/(IS0 1r0) $ c0 

f whenever (A 1) holds 
2 and a 0y0/s0 $ c 1 

(Cl) For any given cO,cl ;?: 0 there is a K > 0 suah that G 

is loaally aontraative at XO for f and aU h > 0 

with hi s0 1 $ K , whenever (Al) holds with SO < 0 , 

a0/(1 s0 1r0) $ co and ~oyo/s~ $ cl 
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In view of remark 5.4.14 we may take c = 00 

0 
in statement if m = I. 

We consider the following application of theorem 5.4.16. Let 

f: I<s + I<s be twice continuously differentiable. Suppose U is a solution 

of the differential equation U'(t) = f(U(t)) (t;?:O), that converges to a 

stationary solution u* satisfying 

µ[f' (u*)J < 0 . 

Let further G be a strongly A-stable Rosenbrock method satisfying (3.3.5) 

and (3.3.9). We define 

-I 
l(h,x) = h [V(h,x)-G(x;h,f)] Ch > 0 , x E I<s ) 

where V(h,x) stands for the solution at t = h of the initial value 

problem V'(t) = f(V(t)) (t;?: 0) , V(O) = x. It can be proved that, for 

x sufficiently close to u* , both .V(h,x) and G(x;h,f) are defined for 

arbitrary h > 0 , and depend continuously on x • Since G(u*;h,f) = u* 

and V(h,u*) = u* (for all h > 0 ) , we have 

lim l(h,x) 
* x-> u 

0 (for all h > 0 ). 
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The local discretization error of method G w.r.t. U at time t 

equals 1.(h,U(t)) Thus we see that as U(t) approaches u* , the local 

error will permit a (rather) large stepsize. The following corollary of 

theorem 5.4.16 shows that if the numerical approximation un to U(t ) 
n 

is close to u*, a large stepsize will not lead to an unfavourable 

error propagation. 

COROLLARY 5.4.17. Let G be a strongly A-stable Rosenbrock method satis

fying (3.3.5) and (3.3.9). Suppose f: JKs ~ I<s is twice continuously 

differentiable on JKs, and u* E I<s is such that f(u*) 0 , 

µ[f'(u*)J < 0. Then there exists an open neighbourhood V of u* such 

that G is unconditionaUy contractive on V for f • 

PROOF. Let 13 0 = ~µ[f'(u*)], y0 = 2lf"(u*)I, and let r 0 > O be such 

that µ[f'(x)] s 130 , lf"(x)J s y0 for all x E lKs with lx-u*I < 2r0 

We take V c I<s such that V is open and convex, u * E V c {x:xEJKs, 

lx-1/i<r0}, a0/(!130 Jr0) s c0 and a0y0 /13~ s c 1 , where c0 ,c 1 are as in 

statement (B 1) of theorem 5.4.16, and a 0 = sup{Jf(x) I :xEV} • 

Then (5.4.20)-(5.4.23) are fulfilled for any x0 E V . From theorem 

5.4.16 it thus follows that G is unconditionally locally contractive at 

each point x0 E V. In view of corollary 5.1.3 the proof is completed. o 

In theorem 5.4.16 it has been required that G is stronElY A-stable. 

It will now be shown that this requirement is essential. 

THEOREM 5.4.18. The conclusions (B 1) and (c 1) of theorem 5.4.16 do not 

hold on the class of A-stable Rosenbrock methods satisfying (3.3.5) and 

(3.3.9). 

PROOF. Consider an arbitrary Rosenbrock method G with m = I , b 1 ~ 0 , 

which is A-stable but not strongly A-stable. Let 130 < 0 a~d a0 ,y0 ,H > 0 

be arbitrary, and let h E (O, I-1) be such that b 1 (1;;) is regular at 

1;; = h/30 , and b; (h/30) 

A-stable and ~(1;;) = I 

We take Ks = JR2 

product. Let x0 = 0 E 

f 0 Note 

+ l;;bl (1;;) 

On the 
1R2 

' 
(J > I 

that 

1;; E {[; 

1R2 we 

' 
and 

bl(oo) exists in 1R since G is 

) 

consider the Euclidean inner 

let f: 1R2 ~ 1R2 be defined by 



This can be written as 

f (x) f 0 + f'x + Hf"x]x 
0 0 

2 (for x € lR ) 

L(:R2 ,1(1Rh) is defined where f 0 = a0e 1 , f0 = diag(B0 ,aa0 ) , and f0 € 

by [f0uJv = y0[<u,e 1><v,e2>+<u,e2><v,e 1>Je 1 (for 
T T e 1 = (1,0) and e2 = (O,J) 

we have f(x0) = f 0 , f' (x0 ) = f0 , f"(x) = f0 
By some calculations it follows that lf(x0)1 = a0 , 

2 u,v € lR ). Here 

(for all x € ll2 ) • 

µ[f' (x0) J = a0 
and lf"(x)I = y 

0 
2 (for all x € lR . ) • Thus we see that the assumption 

is fulfilled with ro > 0 arbitrary. 

From formula (S.2.6) we obtain 

for arbitrary v € lR2 • Further we have in view of theorem 2.3.6 

where k € :N. and the c.,d. are rational functions with b'1 (~) = 
l. l. 

= c 1 (~)d 1 (~) + c2 (~)d2 (~) + ••• +ck(~)~(~) ( ~ € t ). Taking v = e2 
we thus outain 

Hence 

Since G is merely A-stable, we have a1-im i 4>(hcrB0) I I . Therefore 
le' (x0;h,f) I > if a is chosen sufficiently large. 
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The above theorem is a slight extension of a result given in 

HUNDSDORFER (1981). In the same paper a 2-dimensional example was presented 

showing that if µ[f'(x)J s 0 on some open region around x0 and 

a0y0 > 0 is arbitrarily s~all we need not have contractivity for strongly 

A-stable methods. Therefore the requirement s0 < 0 in theorem 5.4.16 is 

also essential. 

For the cases that s0 = 0 or G is A-stable but not strongly 

A-stable, we shall derive in the following remark a stability result on 

finite intervals for sufficiently small stepsizes. In this result the 

Lipschitz constant of the function f is not involved (in contrast to the 

classical stability results for nonstiff initial value problems such as in 

HENRICI (1962)). 

REMARK 5.4. 19. Let ao,yo,ro > 0 and so $ 0 Let further T > 0 and 

v c: JKS be open and convex. Suppose f: JKS -+ l{S is such that (Al) holds 

for any XO E v We consider solutions u on the interval [0,T] of the 

differential equation U'(t) = f(U(t)) (OStST) with trajectories in V . 
Let ~ ,u E V (ISnST/h) be two sequences computed from an A-stable n n 

Rosenbrock method G satisfying (3.3.5) and (3.3.9), with stepsize 

h F (O,H] and starting vectors ~0 ,u0 E V . Here H E (O,T] is such that 

(5.4.24) holds whenever h E (O,H] • 

If s0 = 0 or G is not strongly A-stable, theorem 5.4.16 cannot be 

applied. ttowever, we do have in view of theorem 5.4.15 and l~mma 2.3.2, 

I~ -u I 
n n 

and therefore 

I~ -u I n n 

for all n E lN with s n s T/h. Since P1(0) = 0, it follows that 

there exists a constant c > u , which only depends on a0y0 ,s0 and the 

coefficients of G , such that 

JU -u I 
n n 

(for all h E ( 0, H] , I s n s T /h ) • 

Thus we have stahility on the finite interval [0,T] • 



This result has only practical value if the interval [0,T] is not 
too long, because the stepsize has to be restricted in order to get a 

d b . 1 . f chT mo erate sta 1 1ty actor e 

EXAMPLE 5.4.20. Consider the Rosenbrock method G given by 

G(x;h,f) x + (I-h0f'(x))- 1 hf(x) 

with 0 E (0,1] • By example 5.4.10 (with J(x) = f'(x) , a(h) 
-1 -i = (l-h0B0) ha0 , B = Bo , y(h) = (l-h0B0) hy0 and o(h) = 0 ) we see 

that 

whenever <.Al) holds and 
(1-0t)-I (l+(I-0)t)} (for 

-I 1 - h0B > 0 • Here ~(t) = max{0 (1-0), 
t < 0-I ). If 0 ~ the method is A-stable. 

For 0 ~ l we have strong A-stability. 

Suppose 0 > l . By some calculations (see e.g. HUNDSDORFER (1981)) 
it can be shown that if 

and 
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then IG'(x0;h,f)I s I for all h > 0 and f satisfying (A1) • Thus we 
may take c0 = m, c 1 = 20 - 1 in statement (B 1) of theorem 5.4.10. 

If 0 = l we get no contractivity results. Using the stability 
property discussed in remark 5.4.19 it will be shown in section 6.3 that we 
do have convergence of the numerical approximations computed from this 
method to the exact solution U of (5.1.1) on a finite interval. This 
solution U may be arbitrarily stiff. 

5.4.5. Semi-implicit methods with a constant Jacobian approximation 

In this section we regard semi-implicit methods G satisfying (3.3.5) 
and (3.3.9), which use a constant Jacobian approximation (i.e. J(x;h,f) 
does not depend on x ). 

Let a0,o0 ~ 0 and B0 E lR be given constants. We will use again the 
stepsize restriction h E (O,h0) where h0 > 0 is defined by (5.4.1) with 
0 as in section 5.4.2 and B = Bo • Further we will assume that (A0) 
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holds with y0 = EO = 0 (see (5.4.18), (5.4.19)). This assumption will 

be denoted by (A 2) • 

We might also take the assumption (A0) with Yo = 0 and E0 ~ 0 , 

but this would only complicate the results without providing new insights. 

If it is known that f(x) = Ax + w(x) (for x E lKs) where A E L(lKs) 

and w: :Ks + lKs has a small Lipschitz constant near the solution U of 

(5.1.1), the assumption (A2) is a natural one. 

Results similar to the theorems 5.4.21 and 5.4.22 in this section have 

been obtained by HAIRER, BADER and LUBICH (1982) for the ROW-methods, and 

by 8TREHMEL and WEINER (1982 A) for a class of adaptive Runge-Kutta methods. 

In these papers it was assumed, in addition to (A2) , that r 0 = 00 • It will 

turn out in the subsequent that this extra condition makes the assumption 

if(x0)i ~ cr0 unneccessary. However the class of functions f satisfying 

(A2) is reduced considerably if we take r 0 = 00 

Let h E (O,h0) ' 
and let 82 UJ = 8(0,l';) (for i;E'JR+) where 8 is 

the polynomial defined by (5.4. 14.a), (5.4.15.d). In order to ensure that 

the internal vectors yi(xo) are in Vo ' and G(- ,h,f) is continuously 

differentiable at x0 we will assume 

(5.4.26) 

(cf. lemma 5.4.3, corollary 5.4.4 and remark 5.4.8 with cr(h) = 
-I -I = (J-hes0) hcr0 , s = s0 , y(h) = o, o(h) = (J-hes0) ho 0 , E(h) = o ). 

Again (5.4.26) will always hold if m = I , since then 8 = 0 . If m = 2 
2 

82 is constant. 

From theorem 5.4.7 we obtain the following result that shows what kind 

of effect on the errorpropagation the use of a constant J will have in 

case the function f is nonlinear. 

THEOREM 5.4.21. Let G be a semi-inrpZicit method using a constant Jacobian 

appro~-imation, such tlza.t (3.3.5) and (3.3.9) hoZd. Assume h E (O,h0) , 

(A2) and (5.4.26). Then we have 

(5.4.27) 

where P2 is a poZynomiaZ with P2 (0) 

coefficients of G • 

0 , which onZy depends on the 



+ The above polynomial P2 can be defined as P2 (~) = ~P(O,~) ( ~ E 1R ) , 
where P is the polynomial defined by (5.4.14), (5.4.15.a). 

As a consequence of theorem 5.4.12 we get the following contractivity 
result. 
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THEOREM 5.4.22. Let G be a semi-irrrpliait method using a aonstant Jaaobian 
appro:cimation, such that (3.3.5) and (3.3.9) hold. Suppose G is strongly 
A-stable. Then we have 

(B2) There are c0 ,c3 > 0 suah that G is unaonditionally 
loaally aontraative at x0 for f whenever (A2) holds 
with B0 < o, a0/(IB0 ir0) $ c0 and o0/iB0 1 $ c3 • 

Furthe!'Trlore there e:x:ists a aonstant 
aoeffiaients of G ) suah that 

* c3 > 0 (only <iepending on the 

(C2) For any given c0 > 0 , c3 E (O,ci) , there is a K > 0 suah 
that G is loaally aontraative at x 0 for f and all 
h > o with hi B0 i $ K, whenever (A2) holds with B0 < O , 

a0/CIB0 ir0) $ c0 and o0/IB0 1 $ c3 

In the statement (C 2) the condition hiB0 1 $ K may be replaced by 
h max{a0/(r0c0),o0/c3} $ K (see remark 5.4.13). For r 0 = m we thus obtain 
a basic result of HAIRER, BADER and LUBICH (1982) (proved by them for the 
ROW-methods). 

COROLLARY 5.4.23. Let G be a semi-irrrpliait method using a aonstant 
Jaaobian appro:x:imation, suah that (3.3.5) and (3.3.9) hold. Suppose G is 
strongly A-stable, and r0 = m • Then there is a aonstant c; > 0 suah 
that 

* For any c3 E (O,c3) there is a K > 0 such that G is 

loaally aontraative at x0 for f and all h > 0 with 
M 0 $ K , whenever (A2) holds with B0 < o and 
o0/l B0 1 $ c3 • 

* From the proof of theorem 5.4.12 it follows that c3 can be taken 
as A/PZ(O) , where P2 is the polynomial arising in (5.4.27) and A > 0 
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is such that ~(t) s I + At + 0(t2) (t+O) • 

Note that if m = I , we may take c0 = 00 in theorem 5.4.22. This 
follows from remark 5.4.14. Thus in that case there is no need for a bound 
on if(xo)I • Also if ro = m' the requirement if(xo)I s ao vanishes. 
The reason for this is that the condition on a0 /(IS0 ir0) was only needed 
to make sure that the vectors yi(x0) a~e in V0 • 

By a counter example the following result was proved by HAIRER, BADER 
and LUBICH (1982). 

THEOREM 5.4.24. The aonaZusions (B2) and (c2) do ~ot hold on the aZass 
of A-stable semi-impZiait methods using a aonsta:nt Jaaobia:n o:ppro:x:imation 
J. and satisfying (3.3.5) and (3.3.9). 

REMARK 5.4.25. In case G is not strongly A-stable or s0 = 0 , we have 
no contractivity results of the type (B2) , (C2) or (D2) • As with the 
Rosenbrock methods (cf. remark 5.4.19) we do have stability on finite 
intervals. 

Let G be an A-stable semi-implicit method using a constant Jacobian 
approximation, such that (3.3.S)and (3.3.9) hold. Suppose a0 ,o0 ,r0 > 0 
and s0 s 0 • Suppose further that V c lKs is open and convex, and T > 0 

If (A2) holds for all x0 € V ,and h € (O,T] is such that (5.4.26) is 
valid, we have 

whenever the ~ ,u € V (lsnsT/h) n -n 
Here P2 is the polynomial arising 

Since P2 (0) = 0 we have 

are computed from G with stepsize h • 

in theorem 5.4.21. 

(h + 0 ' nh = t ) 

It follows that we have the stability relation 

(I S n S T/h) 

with a stability factor c which only depends on T,S0,o0 and the 
coefficients of G • 



Note that this stability relation is suited for stiff problems since 
the Lipschitz constant of f is not involved. 
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EXAMPLE 5.4.26. We consider the counterpart of the Rosenbrock method treated 

in example 5.4.20 (see also HAIRER, BADER and LU~ICH (1982)). The method 
is given by 

G(x;h,f) 

with J 0 depending on h and f , and 

(with the appropriate a(h) ,B,y(h) and 

a E (0,1] • From remark 5.4.10 

o(h) ) it is easily seen that 

whenever (A2) holds and I - h6Bo > O • Here ~(t) 

= max{a- 1 (I-a), (J-at)-J (l+(J-a)t)} (for t < a- 1 ) • 

Suppose 6 > i . If we have 

Bo < 0 and o0/IB0 1 s 26 - I • 

then ~(hB0 ) + (l-h6Bo)-I h00 s I for all h > 0 • Thus we may take 
c = co and c3 = 26 - I in statement (B2) of theorem 5.4.22. 0 

For a > ! and h > 0 close to zero, we have 

Therefore we get no contractivity result at all if o0/IB0 1 > I • By some 
calculations it can be shown that if 26 - I < oo/ I Bo I s I • we have 
contractivity at x0 for all stepsizes h > 0 with 

* -I -I Thus we may take c3 = I and K = a (26-1) [c3-(26-I)] (for c3 E 

E (26-1,J] ) in statement(C2) of theorem 5.4.22. 
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5.4.6. A third choice for J(·;h,f) 

In this section we will regard a choice for the Jacobian approximation 

where we do not have a bound for the error propagation per step without 

the Lipschitz constant of f being involved (as in the theorems 5.4.15, 

5. 4. 21). 

For h > 0 , f: JKs + JKs we will consider J(·) J(·;h,f) given by 

(5.4.28) J(x) f' (x+chf (x)) (for X E JKS ) . 

This choice was proposed by SCHOLZ (1978). The constant c can be used to 

increase the order of consistency of the method, without introducing any 

additional computational work (see e.g. VERWER (1980)). Using a result of 

VERWER (1977) it was shown that the nonautonomous version of these semi

implicit methods are S-stable as soon as they are strongly A-stable. In 

the nonautonomous version of semi-implicit methods we replace 

J(t,x) RJ Dxf(t,x) ,and we read f(t+cih'yi (x)) instead of 

(cf. remark 3.3.1). 

J(x) by 

f(yi (x)) 

It will be shown that, in spite of the S-stability, one may expect 

numerical difficulties for these methods in dealing with stiff systems 

where f satisfies (A1) , even with a0y0 small. At first sight this 

is somewhat surprising, since 

if lei ha0 < r 0 and f satisfies (A 1) . Thus for moderate stepsizes h 

and small a0y0 , the difference between J(x0) and f'(x0) is small. 

Nevertheless it will be shown in theorem 5.4.27, that the error propagation 

for the semi-implicit methods with J(x) = f'(x+chf(x)) can be consider

ably worse than with the methods where J(x) = f'(x) . 

If we consider only scalar differential equations the situation is 

much better - see remark 5.4.28. For such equations this choice of J may 

well be favourable. 

The occurrence of the bad error propagation is caused by the following. 

We have 

(for V E JKS ) • 
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Thus J'(x0)v can be very large even if holds with small, 

due to the fact that lf'(x0) I is not restricted. The terms in the 

expression (5.2.6) for G'(x0 ;h,f) where J'(x0)v is involved will there

fore generally blow up for stiff systems. 

THEOREM 5. 4. 27. Le-t G be an arbitrary semi-irrrplicit method with m = I , 

b 1 ~ O , and J given by (5.4.28) with c 1 0 • Then we have for arbitrary 
a 0 ,y0,r0 , H > 0 and s0 < 0 , 

sup{ I G' (x0 ;h,f) I :f satisfies (A1) ,hE (O,HJ} 00 • 

PROOF. From formula (5.2.6) we obtain, for suitable h and f , 

(5.4.29) 

We take the same testequation as in the proof of theorem 5.4.18. Thus 
,.,.s = 1R2 ' ~ <., .> stands for the Euclidean inner product, x0 = 0 , and 

f(x) = f + f'x + Hf"x]x 
0 0 0 

(for 
2 

XE 1R ), 

where f 0 = a0e 1, 

+<u,e2><v,e 1>Je 1 
later. 

f0 = diag(S0 ,of_o) , [f0uJv = y0[<u,e 1><v,e2>+ 

(for u,v E 1R ) • The constant a > I will be specified 

For this function f we have 

Note that µ[J(x0)J < 0 if s0 < 0 and h > 0 is not too large. If 

a + 00 , µ[J(x0)J converges to s0 • 

In the same way as in the proof of theorem 5.4.18 we obtain 

Further we have 
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Thus we arrive at 

(5.4.30) 
2 

G'(x0;h,f) e2 = ~(hJ(x0 )) e 2 - b 1(hS0) h ca0y0e 1 + 

2 
+ b;(h80) h a0y0 (l+chcrS0) e 1 • 

Assume that ~ is bounded on ~ (otherwise we even have a scalar, linear 

counter example). Then b 1 is not constant. Take h E (O,H] such that 

b;(hS0) ~ 0. From (5.4.30) we now see that IG'(x0 ;h,f)I + 00 

(for a + oo ) • 

REMARK 5.4.28. For s = I it can ea~ily be proved, by using (5.4.29), that 

if m = I , (3.3.5) and (3.3.9) hold, µ[J(x0)J ~ 60 , (A1) , and 

x0 + chf(x0) E v0 , then 

a 

Here n and 8 are constants determined by the method. If f satisfies 

(A1) and lei ha0 < r 0 we have µ[J(x0)J ~ s0 + lei ha0y0 . It follows that 

a (conditional) contractivity result of the type (C) as in the theorems 

5.4.16, 5.4.22 holds for scalar initial value problems where f satisfies 

(A 1) • Thus here the situation is totally different from the one in the 

proof of theorem 5.4.27, where we took s = 2 . 

Thus we see that considering only one-dimensional test problems leads 

to much too optimistic results on the error propagation for such methods. 

The S-stability model problem is one-dimensional (though nonautonomous). 

Moreover if the nonautonomous form of these semi-implicit methods with 

J(t,x) = fx(t,x+chf(t,x)),is applied to the S-stability model problem 

J(t,x) will be constant. Therefore the bad error propagation as in the 

proof of theorem 5.4.27 cannot occur. 

5.4.7. Modifications of the results 

In this section we consider some modifications of the previous results. 

We consider a Rosenbrock method satisfying (3.3.5) and (3.3.9). The 

estimate (5.4.25) for IG' (x0 ;h,f)I is only applicable if bounds for 
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If (x0) I and If" (x) I (x R$ x0) are available. 

In the general situation, where no special structure of f is assumed, 
these bounds are necessary as will be s~own by the following example. 

EXAMPLE 5.4.29. Consider an arbitrary Rosenbrock method with m = I , 
b1 ¥ 0 • Let h > 0 , x0 € lR and let g: lR + lR be twice continuously 
differentiable. We assume that bj(hg'(x0)) ~ 0 

Let ~I and o2 be positive numbers, and let the function f: lR + lR 

be defined by 

(for x € lR). 

From formula (5.2.6) it follows that 

Thus we see that 

(for o1 + o2 + =) • 

If we assume that the solution of the differential equation U'(t) = 
f(U(t)) passing through x0 at time t = t 0 is slowly varying, then 

IU'(t0)1 = lf(x0)i is moderate. Thus if the initial value problem (5.1.1) 
with u0 = x0 is stiff, the assumption lf(x0)i s a0 , with a0 moderate, 
is reasonable. It will be shown at the end of this section that contractiv
i ty results are sometimes possiblefor·non-smooth solutions where lf(x0)1 
is very large. 

The second assumption, !f"(x)I is moderate for x near x0 , may be 
embarrassing for stiff problems. 

EXAMPLE 5.4.30. Consider the following simple system of .singularly 
perturbed differential equations 

Uj (t) 

Here g2: lR + lR are smooth functions with bounded second 
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Gateaux-derivatives, g2 is dissipative, and cr is a large positive 

parameter. 
T T 2 

Let f 0 (x) = (2g 1(x 1,x2),crg2 (x2)) (for x = (x1>x2) E lR ), a0 > O 

d V { lR If ( ) I } F ( (0) (O)) T lR2 . h an 00 = x0 :x0E , 0 x0 ~<:i0 . or any x0 x 1 ,x2 E wit 

g" (x ( ) ) 1' 0 we have If" (x ) I ->- co (for cr ->- co ) , whereas µ[f 0' (x0)] is 
2 2 ' cr O 

uniformly bounded for cr > 0. Thus the estimate (5.4.25) for G'(x0;h,f) 

(with x0 E V 0 , s0 = µ [ f ~ (x0)] , y 0 = xsEu:21 f~ (x) I ) is only applicable if 

an upper bound for cr is known. 

Modification 1. The results of section 5.4.4 for Rosenbrock methods will be 

modified in such a way that smooth solutions of the above singularly 

perturbed system can be treated no matter how large cr is. Such a 

modification was proposed to the author by M. VAN VELDHUIZEN. 

The assumption lf"(x)I s y0 in (A1) will be replaced by 

(5.4.31) (for all t > O , x E V0 ). 

* By (A1) we denote the set of assumptions (A1) with the above 

* ~odification. Thus (A1) consists of (5.4.2) together with the assumptions 

that f is twice continuously differentiable on V0 , lf(x0)1 s a0 , 

µ[f'(x0)J s s0 (cf. (5.4.20)-(5.4.22)), and (5.4.31). For convenience we 

will assume that s0 s 0. We then known that I - tf'(x0) is regular for 

all t > 0 (see corollary 2.2.11). 

Further we will consider again a Rosenbrock method G satisfying 

(3.3.5) and (3.3.9), and e > 0 is defined as in section 5.4.2. The general 

results of section 5.4.2 may now be applied with et (h) (I-heS0)-I ha0 ' 
-I * S = s0 ' y(h) = £(h) = 8 Yo ' 0 (h) = 0 and ho = 00 • 

In order to ensure that the intermediate vectors y i (x.0) all belong 

to V0 , and that G is continuously differentiable at x0 , we now get the 

following requirement 

(5.4.32) < r 
0 

* -I + where s1(t) = s1(e t) (tElR), and s1 is the polynomial we encountered 

in (5.4.24) (cf. also remark 5.4.8, (5.4.13)). 

From theorem 5.4.7 we obtain a modified version of theorem 5.4.15 for 
* * -I the Rosenbrock methods. The polynomial P1 is given by P1(t) = P1(e t) 



99 

+ (t e 1R), P1 being the polynomial from theorem 5.4.15. 

THEOREM 5.4.31. Let G be a Rosenbrock method satisfying (3.3.5), (3.3.9). 
* Asswne (A1) with s0 s 0 , and (5.4.32). Then 

(5.4.33) 

where the polynomial P~ is determined by the coefficients of the method 
* G and satisfies P 1(0) = 0. 

The proof of the following theorem is essentially the same as the proof 

of theorem 5.4. 12. 

THEOREM 5.4.32. Suppose G is a strongly A-stable Rosenbrock method satis
fying (3.3.5) and (3.3.9). Then the following holds. 

* (B 1) There are c0 ,c 1 > O such that G is unconditionally locally 
contractive at x0 for f , whenever (A7) holds with 
s0 < o, a 0/(IS0 ir0) s c0 and a0y~/ls0 1 s c 1 . 

Moreover there is a constant * c 1 > O such that 

* (Cl) For any co > 0 and * c 1 E (O,c 1) there is a K > 0 such 
that G is locally contractive at XO for f and all h > 0 

with hi s0 1 * holds with $ K , whenever (A1) s0 < O , 
* a0/(IS0 ir0) $ co and aoyo/ISol s cl 

EXAMPLE 5.4.33. Consider again the 6-Rosenbrock method of example 5.4.20, 

G(x;h,f) = x + (I-hSf' (x))-I hf(x) 

with 8 E (O,I] • Assuming that * (A1) holds with s0 s 0 , we obtain 

from the upper bound given in example 5.4.10, 

This estimate has the same form as the one in example 5.4.26. If 8 > ! 
* (i.e. the method is strongly A-stable) and a0y0 /1s01 s 28 - I we thus have 
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unconditional contractivity at x0 • In case 

we have contractivity for the stepsizes h > 0 
-1 * -1 

$ e (2e-1) [(a0y 0/is0 i) -(26-l)J . 

EXAMPLE 5.4. 34. Let f: lR2 + lR.2 be given by 

26 - 1 < a0y 0/IS0 1 $ 

such that h!S0 1 $ 

(for X = (:~) E lR.2 ) 

with o > 1 , and let x0 = 0 E lR.2 • On the lR2 we consider the Euclidean 

norm. 

In example 5.4.30 we have seen that the results of section 5.4.4 

cannot be applied if o is allowed. to be arbitrary large. With the modified 

results we can prove for strongly A-stable Rosenbrock methods contractivity 

at x0 uniformly for o > 0 • 

By some calculations we obtain 

T T 
lR2 ' and lR2 arbitrary. It follows for u = (ul,u2) • v = (vl ,v2) E X E 

that (A~) holds with 
1 

So -1 and y* = Is for any r = co ao = 3 • 0 ' 0 
0 > 0 

Let G be the e-Rosenbrock method of example 5.4.33. Suppose 

e > ~ + ils . Then we have unconditional contractivity for this problem 

near x0 = 0 , no matter how large o > 0 is. 

Modifiaqtion 2. We now consider an other modification of the results of 

section 5.4.4. For convenience we confine ourselves again to the Rosenbrock 

methods. This modification can however also be considered for the methods 

where J is constant. 

It will be shown that the Rosenbrock methods can be locally contractive 

at a point x0 E I<s for If (x0) I extremely large, if we have a situation 

that the (in modulus) large eigenvalues of f'(x0) are the cause for this 

large if(x0)i • Note that in example 5.4.29 this was not the case. The 

possibility of treating the case where !f(x0)i is large was pointed out by 



E. HAIRER (private communications), who also suggested a modification of 

the following kind. 

In the set of assumptions (A1) we now replace the assumption 

Jf(x0)J ::; a0 by 

(5.4.34) (for all t > 0 ). 

(A~*) stands for the assumptions (5.4.2), (5.4.34) together with the 

assumptions that f is twice continuously differentiable on VO ' 
(5.4.20), µ[f'(x0)J::; 130 and if" (x) I::; y0 (for all x E V0 ) (cf. 

(5.4.22), (5.4.23)). As in modification I we assume that 130 ::; 
. ) * . The assumption (5.4.34 may hold for moderate ~O while 

is very large. 

EXAMPLE 5 4 35 Let - (I I) T and f: lR2 + lR2 be defined by _____ ._. __ • XO - ' 

f(x) T 2 (for x = (x 1 ,x2) E lR ) . 

Then µ[f'(x0)J::; -I, Jf"(x)I::; 2 (for all x E 

holds with a~ = 15 , whereas If (x0) I RJ I 06 

2 lR ). Further (5.4.34) 

' f h ' (A**) ' d f (A ) 1 Starting rom t e assumptions 1 instea o 1 , resu ts 

similar to the theorems 5.4.15, 5.4.16 can be proved for the Rosenbrock 

methods G satisfying (3.3.5), (3.3.9). We apply the general results of 
-I * -I section 5.4.2 with a(h) 6 a0 , /3 = /30 , y(h) = E(h) = (1-h6/30) Yo , 

o(h) = o 

Let 

have 

(5.4.35) 

and h0 = "' . 
* * P1 ,s 1 be the polynomials arising in (5.4.32), (5.4.33). If we 

IOI 

then all yi(x0) E V0 and G is continuously differentiable at x0 (see 
* -I + section 5.4.2 with s1 (I;) = s(e !;i,O) (/;iElR )) • Note that (5.4.35) only 

holds if a~ is sufficiently small, unless m = I (S~ = O) • 

Using theorem 5.4.7 it follows that 

(5.4.36) 
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whenever (A7*) holds with s0 ~ 0 , and (5.4.35) is fulfilled. 

With the above upper bound (5.4.36) we can prove, in the same way as 

theorem 5.4.12, the following contractivity properties of stroggty A-stable 

Rosenbrock methods. 

THEOREM 5.4.36. Let G be a strongly A-stable Rosenbroak method satisfying 

(3.3.5) and (3.3.9). Then we have 

There are c0 ,c1 > 0 suah that G is unaonditionally 
** loaally aontraative at x0 for f , whenever (A1 ) holds 

with s0 < 0, a~/r0 s c0 and a~y0/ls0 1 s c 1 

* * Moreover there are aonstants c0 ,c 1 > 0 , whiah only depend on the 

aoeffiaients of G , suah that 

cc**) 
I 

For c0 E (O,c~) , c 1 E (O,c~) given there is a K > 0 

suah that G is loaally aontraative at x2 for f and 

aU h > 0 with hiS 0 1 s K, whenever (A1*) holds 

* * with s0 < o, a0/r0 s c0 and a0y0/is0 1 s c1 

in 

h > 

take 

The extra condition c0 < c~ in statement 

(C7) , is needed here because (5.4.35) does 

0 sufficiently small. For m = I we have 

* co = 00 • 

The same modification - replacing 

( **) . c1 which was not present 

not automatically hold for 

s7 a 0 , and we may then 

can also be used for the semi-implicit methods using a constant Jacobian 

approximation J, thus yielding contractivity results where lf(x0)1 

may be large. 

5.4.8. A numerical illustration 

The results on the various choices for the Jacobian approximation J 

will be illustrated by applying some simple semi-implicit methods to the 

differential equation 

u' (t) = 
I 

- U1(t) + yU 1(t)U2(t) , 

106 u2(t) 
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The parameter y will be used to vary the nonlinearity of the problem. All 

solutions of this equation are stable and converge to the stationary 
* T solution u = (I,O) . The second component of a solution is always damped 

out very quickly. 
T ~ -3 T As initial vectors we take u0 = (0,0) and u0 = (0,10 ) . Let 

U,U stand for the solutions of the differential equation with U(O) = u0 , 

U(O) = u0 . For the first component u 1 of the solution U we have 

U (t) = I - e-t , and for those values of y that will be considered 
I 6 3 

(y E (0,10 ))wehave lu1(t)-u1(t)I:, 10- (for all t > 0 ). The rounded 

values of u 1(t) are listed in the following table for t = 0.1,0.5,1,2 . 

t 0.1 0.5 2 

0.095 0.393 0.632 0.865 

The semi-implicit methods we will consider are given by 

-I 
G(x;h,f) = x + (I-h8J(x)) hf(x) , 

where we take 8 = ! or I , and J(x) f'(x) , f'(u0) (= diag(-1,-106)), 

f'(x+hf(x)) For the stepsize we take h 1/10 . The order of these 

methods is 2 if 8 = ! and J(x) = f'(x) or f' (x+hf(x)) , and 

otherwise. 

In the following tables the first components un,l ~ u 1(nh) and 

un,I ~ u1(nh) are listed. If J(x) = f'(x) or J(x) = f'(u0) , and y 

is not too large, these approximations also stay close to each other and 

converge to , as the exact solutions do. For J(x) = f'(x+hf(x)) the 

approximations are very inaccurate, even if y is moderate. 
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CASE I: J(x) f I (X) 

all y y = I y = 102 y = 104 y = 106 

e 
u 

n, I 
u 
n, I 

u 
n, I 

u 
n, I 

u 
n, I 

t = 0. I 0.095 0.095 0.096 0.182 -2.010-3 

t 0.5 0.394 0.394 0.394 0.521 -2.410-3 

t = 0.632 0.632 0.632 0.737 -4.010-4 

t 2 0.865 0.865 0.865 0.931 -8.010-4 

all y y = I y = 102 y = 104 y = 106 
e 

u 
n, I 

u n, I u 
n, I 

u n, I u n, I 

t = 0.1 0.091 {l .0 91 0.092 I .OOO -0.001 

t 0.5 0.379 0.379 0.380 I .OOO 0.316 

t = 0.614 0.614 0.615 I .OOO 0.576 

t = 2 0.851 0.851 0.851 I .OOO 0.836 

CASE 2: J(x) f' (uo) 

all y 1 2 104 6 y = y = 10 y = y = 10 
e 

u n, I u n, 1 u n, 1 u n, I u n, 1 

t = 0.1 0.095 0.095 0.095 0.095 0.095 

t 0.5 0.394 0.394 0.395 0.249 7. 7 106 

t = 0.632 0.632 0.629 0.083 -6.01016 

t = 2 0.865 0.869 0.860 0.084 3.61036 
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all y = I 2 4 , 6 
y y = 10 y = 10 y = 10 

e 
u n, I u 

n,I u n, 1 u n,1 u n, 1 

t = 0.1 0.091 0.091 0.091 0.091 0'.0'91 
t = 0.5 0.379 0.379 0.379 0.379 0.379 

t = 0.614 0.614 0.614 0.614 0.614 
t = 2 0.851 0.851 0.851 0.851 0.851 

CASE 3: J(x) = £' (x+hf(x)) 

all y y = 0.1 y = 1 
e 

u n, 1 u n, I u n, I 

t = 0.1 0.095 0.065 0.017 
t = 0.5 0.394 0.452 -0.025 
t = 0.632 0.737 -0.043 
t = 2 0.865 0.931 -0.087 

all y y = 0.1 y = 1 
e 

un, 1 u n, 1 un, 1 

t = 0.1 0.091 0.048 0.009 

t = 0.5 0.379 0.349 0.323 
t = 0.614 0.596 0.579 

t = 2 0.815 0.844 o .. 837 
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shows Comparison of the methods with 8 = I and those with 8 

that if t and y are large, the approximations with 8 = are better. 

This is in agreement with the results on the error propagation of the previous 

sections (cf. the examples S.4.20, S.4.26). It should be noted that also the 

local errors are responsible for this behaviour. If 8 = I the second 

component of the numerical solution will always be damped out very quickly 

since the method is then 1-stable. If 8 = this is not the case, and this 

will disturb the computation of the first component u n, I . 
Besides the bad behaviour of the methods with J(x) = f'(x+hf(x)) , 

which was predicted in theorem S.4.27, the most striking thing in these 

tables is the very robust character of the approximations un,l computed 

with 8 = I and J(x) = f'(u0) • Note that for large y we have 

lf"(~0 )11f(~0 )1 Riy101 and lf'(u0)-f'(u0)1=y10-3 Therefore the 

assumptions (A1) on the Rosenbrock method only hold with a 0 y 0 F:::l y 103 

if x0 = u0 , whereas the constant o0 , arising in the assumptions (A2) 

for the semi-implicit method which uses f'(u0) as the fixed Jacobian 

approximation, can be taken much smaller, o0 F:::l y I0-3 . 

The above tables do of course not tell us whether the semi-implicit 

methods are suited for more complicated stiff systems. Numerical tests for 

this purpose can be found for instance in GOTTWALD and WANNER (1981). 

S.S. IMPLICIT RUNGE-KUTTA METHODS 

S.S.!. An upper bound for the error propagation per step 

In this section we shall use the notation introduced in section 2.4. 

This notation is consistent with the one which has been used in the rest 

of this chapter. 

Let G be an implicit m-stage Runge-Kutta method given by 

(S.S. I.a) G(x;h,f) x + bT hF(y(x)) 

where y(x) satisfies 

(S.S. I .b.) y(x) ex + A hF(y(x)) 

for x E lKs and h > 0 , f: lKs + lKs , s E lN • Here y(x) = 
T T T T T T (y 1 (x) ,y2(x) , ••• ,ym(x) ) and F(y(x)) (f(y 1 (x)) ,f(y2(x)) , •.. 
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•• ,f(y (x))T)T are vectors in the lKsm, and A= (a .. ) E .L(lRm), m iJ 
b (b.) E lRm contain the coefficients of the method. i 

From the theorems S.2.1 and S.2.2 the following result is obtained. 

THEOREM S.S.!. Let h > 0, x0 e lKs and z0 E L(lKs) Asswne f: lKs-+ lKs 
is continuously diffePentia.ble on I<s , and (S.S.l.b) has a unique solution 
y(x) which depends continuously on x (foP all x E lKs J. Asswne fUPtheP 
that I - AZ0 and I - AZ aPe PegulaP, whePe z0 = diag(z0 ,z0 , .•• ,z0) E 

E L(lKsm), Z = diag(z 1,z2, •.• ,zm) with zi = hf'(yi(x0)) (J:s;i:s;m) • Then 
G(·) = G(·;h,f) is continuously diffePentiable at x0 , and we have 

(S.S.2) 

(S.S.3) 

whepe $ stands foP the stability function of G . 

REMARK S.S.2. Assume that f satisfies the one-sided Lipschitz condition 
(S.1.3) with V = I<s . Then the matrices z. E L(I<s) in theorem S.S. I 

i 
satisfy µ[z.] :s; hS (Isism) (cf. lemma 2.3.3). 

i 

If f is not continuously differentiable we still know from corollary 
2.4.8 that for arbitrary i,x E I<s there are z. E L(lKs) with µ[~.] s 

i i 
s hS such that hf(y. (i)) - hf(y. (x)) = ~. (y. (i)-y. (x)) (Isism) , provided i i i i i 
that y(i~,y(x) are well defined by (S.S.l.b). Let Z = diag(~1 .~2 , ••.• ~m). 
If I - AZ is regular we obtain 

G(i;h,f) - G(x;h,f) 

From theorem S.S.! we obtain a similar result, but there we also know 
that ~- R:! hf'(y.(x)) if i is close to x. This property is useful for i i 

the noniinear stability analysis of Runge-Kutta methods which are not 
B-contractive (see section S.S.3). 

Consider the function '!': lR-+ lR+ U {co} defined by 

(S.S.4) T -I . s '!'(t) = sup{]I+b Z(I-AZ) el:Z=diag(z 1,z2, ... ,zm),ziEL(I< ), 

µ[z.]:s;t(J:s;ism), sEJN, and (I-AZ)-I exists}. 
i 
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From (5.5.2) or remark 5.5.2 we see by comparison with corollary 5.3.4 

that '¥ is an analogue of ~ (cf. (5.3.2)) for nonlinear differential 

equations; similar to corollary 5.3.4 we now have 

COROLLARY 5. 5. 3. Let h > 0 ' s E lR , and suppose that 

satisfies Re <f(~)-f(x),i-x> $ Sli-xl 2 (for all x,x E 

IG(;';h,f)-G(x;h,f) I => '!l(hS) li-xl 

f: Ks + lKs 

:Ks ) • Then 

whenever G(i;h,f) and G(x;h,f) are defined by (5.5.1). 

REMARK 5.5.4. If m = 1 we obtain from (5.5.2) the relation G'(x0;h,f) 

= $(z 1) • It is easily seen that we now even have '¥ = ~ . 

EXAMPLE 5.5.5. Let m = I , A= 8 E (0,1] and b = I . Let G be defined 

by (5.5.1). If 9 = this is the implicit midpoint rule, and if 8 = 1 

the backward Euler method. The stability function of this method is given 

by 

-1 
(l-91:;) (1+(1-9)1:;) (1:;E0:) • 

We therefore have (see example 5.4.10 and remark 5.5.4) 

-1 -1 '!l(t) = ~(t) = max{9 (1-8),(1-at) (l+(l-9)t)} (for 
-1 

t < a ). 

The upper bound for the error propagation per step we obtain for this 

method from corollary 5.5.3 can also be found in BURRAGE and BUTCHER (1979). 

From corollary 5.5.3 we see in particular that if the method G is 

such that '¥(0) = , then G is B-contractive. This resul.t (even a 

stronger version) has been kr.t1W11 already as we shall see in the next 

section. 

5.5. 2. Algebraically contractive Runge-Kutta methods 

In this section some nonlinear contractivity results on implicit Runge

Kutta methods will be reviewed. 

DEFINITION 5.5.6. The Runge-Kutta method G with aoeffiaients a .. ,b. 
l.J l. 

(l=>i,j=>m) is aalled algebraiaally aontraative if all bi are nonnegative 
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and the matrix ATB + BA -bbT is positive semi-definite. Here B 

This definition is due to BURRAGE and BUTCHER (1979), who used the term 
algebraically stable, and CROUZEIX (1979). In the same papers the following 
theorem 5.5.7 was proved. 

THEOREM 5.5.7. Suppose the Runge-Kutta method G is algebraically 
contractive. Then G is B-contractive. 

For methods which are not equivalent to a method with fewer stages, 
algebraic contractivity is also necessary for B-contractivity (see 
HUNDSDORFER and SPIJKER (1981)), and we may strengthen the definition of 
algebraic contractivity by requiring that all the coefficients b. are 

l. 
strictly positive (see DAHLQUIST and JELTSCH (1979)). Further important 
contributions to the theory of algebraically contractive Runge-Kutta 
methods can be found in HAIRER and WANNER (1981), HAIRER (1982), and 
HAIRER and TUERKE (1983). 

The following theorem can easily be proved using the results of 
BURRAGE and BUTCHER (1979), or, more directly, by applying the lemma 3.2 
of DAHLQUIST and JELTSCH (1979). 

THEOREM 5.5.8. The Runge-Kutta method G 
iff I l+bTZ(I-AZ)- 1el $ 1 for all Z 
1;. E a;, Re 1;. $ 0 (1$i$m), and I - AZ 

l. l. 

is algebraically contractive 
diag(r; 1,r;2 , .•• ,1;m) such that 
is regular. 

It thus follows from the theorems 5.5.7, 5.5.8 that for t = 0 we may 
restrict ourselves to z. E a; instead of z. E L(I<:s) (s E JN) in the l. l. 
definitionof '±'(t) , without violating corollary 5.5.3. 

5.5.3. A special class of non-B-contractive methods 

There are popular Runge-Kutta methods which are not B-contractive, but 
work rather well on stiff problems. The trapezoidal ruie is the best known 
example of such a method. It is used for instance in the code TRAPEX (see 
e.g. ENRIGHT, HULL and LINDBERG (1975)). 

In view of this observation we will present in this section a short 
analysis for a class of non-B-contractive Runge-Kutta methods including 
the trapezoidal rule. This analysis is similar to the one given in section 
5.4 for the semi-implicit methods. 
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Let 8 > 0 be a given constant. In the following we consider the 

class of Runge-Kutta methods that satisfy the condition 

(M) eT A = 0 T A T 
e b , and 

1 m 

-C' a23 "2m) A= • a~ E '\- 1 (1/8) , 
a~2 a~3 

We recall (cf, section 2.4.2) that A E Am_ 1(1/8) iff A E L(:JR.m- 1) is 

regular and there exists a positive definite matrix ii= diag(d 1 ,d2, .. .,dm_ 1) 

such that 

(v,iiAv) ~ (1/8)(Av,iiAv) (for all 
m-1 VE:JR. ), 

This class of Runge-Kutta methods has been considered in CROUZEIX and 

RAVIART (1980), where also some remarks on the computational efficiency 

and results on the order of such methods can be found. 

Using ei A= 0 (the first row of A is zero), it can easily be 

shown that a method which satisfies (M) cannot be algebraically contract

ive. Therefore, unless the method is reducible to a method with fewer 

stages, a method satisfying (M) is not B-contractive. 

On the function f the following assumptions (S.S.S)-(S.S.9) will be 

made. We denote this set of assumptions by (A3) • 

(S.S.S) 

(S.S.6) 

(S.S. 7) 

(S.S.8) 

(S.S.9) 

The norm I ·I on the I<s is generated by an inner product 

<.,·>' s E l'I, XO E I<s 'ro > 0 'and Do={x:xEJKs,lx-xol<ro}, 

f: I<s + I<s is twice continuously differentiable on I<s , 

lf(x0)1 s a0 , 

µ[f' (x)] s s0 (for all X E I<s ) 
' 

If" (x) I s Yo (for all X E VO ) • 

Here a0 ,y0 ~ 0 and s0 E lR are given constants. 

Further we will use the stepsize restriction h E (O,h0) where 

(5. S.10) 
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REMARK 5.5.9. By Theorem 4.3.1 and corollary 4.3.5 we know that the system 

of algebraic equations (5.5.1.b) has a unique solution whenever G satisfie~ 
(M) , f satisfies (A3) , and h E (O,h0) • 

If we assume in advance that (5.5.1.b) has a unique solution, the one

sided Lipschitz condition (5.5.8) would only need to hold for all x E V0 
in order that the following corollary 5.5.11 and theorem 5.5.12 remain valid. 

Lemma 5.5.10 would then have to be reformulated a little bit. 

LEMMA 5.5.10. Let e > O ; and let G be a Runge-Kutta method of type (M) 

We assume (A3) and h E (O,h0) • There is a constant w > 0 , which only 

depends on the coefficients of G , such that 

(l:>i:>m) 

T - T m-1 PROOF. Let a 1 = (a21 ,a31 ,. .. ,aml) , e = (1,1,. . .,1) E lR and let 

D E L(lRm-l) be a positive definite, diagonal matrix such that (v,DAv) 2 
- -- m-1 

2 (l/8)(Av,DAv) (for all v E lR ). We will use the notations and 

conventions introduced in section 2.4.1. 

From (5.5.1.b) we obtain y 1 (x0) = x0 , and 

m 
x0 + ail hf (x0) + I aij hf (yj (x0)) (2:>i:>m) • 

j,;,2 

We denote n. = y. (x0) - x0 (2:> i:>m) , n 
Ii i T T T 

= (f(n 2+x0) , f(n 3+x0) ,. • .,f(nm+x0) ) 

T T T - -
<11 2 ,11 3 , •.. ,nm) , F(n) 

and x (n) 
- -1 - - - -1 -(A) n - hF(n) - (A) a 1 hf (x0) • We then have 

Rec'ii, x <'ii) J_ 
D 

Rec'ii.<A)- 1 'iiJ_ - Re[n,hF(n)-hF(o)J_ 
D D 

Re[n,hF(O)+(A)- 1 ~ 1 hf(x0 )J_ 2 

D 

2 (e- 1-hs0)(11'ii11_) 2 - 11ii11 llhF(O)+(A)- 1 ~ 1 hf(x0 )11_ 
D D D 

Hence the solution of x(n) 0 satisfies 

11'ii11_ 
D 

:::; (1-hes0)- 1 e11;+(A)-I ~ 1 11_ lhf(x0)1 • 
D 
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From this inequality the proof follows with w 

min d. )-I 
l$i$m-I i 

- - -1-6 [[ e+(Ar a 1ii 0 

COROLLARY 5.5.11. If the assumptions of lerruna 5.5.10 hold, and 

(l-hSS0)-l wha0 < r 0 , then 

CJ 

THEOREM 5.5.12. Let 6 > O, ccnd let G be a Runge-Kutta method satisfying 

(M) • Assume f satisfies (A3) , h E (O,h0) , and (1-h6S0)-l wha0 < r 0 , 

where w is the constant from lerrona 5. 5. 10 • Then G ( · ; h, f) is continuously 

differentiable at x0 , and there are constants n1,n2 ~ 0 such that 

(5. 5. 11) [G'(xo;h,f)[ $ ~(hSO) 

-4 4 2 2 
+ n2(1-h6S0) h a0y0 

PROOF. By lenuna 2.4.4 we know that I - Ai is regular for all matrices 

Z = diag(;1,;2, ... ,;m) with ;i E L(I<s), µ[zi] $ 1/(26) (l$i$m) 

to apply theorem 5.2.2 we will show that y(·) is continuous near 

For Po > 0 we put E0 = {x:xEI<s, I x-x0 I <p 0 } and 0:0 = 
-I 

sup{[f(x)l :xEE0} . We choose p0 > 0 so small that (l-h6S0) 

In 

XO 

wha < 
0 

with 

order 

ao < ro- Po • Lemma 5.5.10 ::_an then be applied for arbitrary ~El E Eo 

replaced by Ci'0 . Let x,x E E0 • Similar to corollary 5.5.11 we then have 

lhf'(y.(x)+t(y.(i')-y.(x)))-hf'(x+t(i'-x))[ $ 
l. l. l. 

(l$i$m, t E [0,1] ). We define Z = diag(;1,;2, ... ,;m) with 

1 
z. 

l. 
f hf'(y.(x)+t(y.(i')-y.(x)))dt 
0 l. l. l. 

(l$i$m) . 

~ ~ -1 2~ ~ 

We then know that I z cz I I $ (1-hSSO) w h ao y 0 and µ[ zi] $ hSo 

(l$i$m) . Further it follows from the mean-value theorem 2.3.1 that 

hF(y(i')) - hF(y(x)) = Z(y(i')-y(x)) , and therefore (see (5.5.1.b)) 

y(i') - y(x) 
~ -1 ,,_ 

(I-AZ) e(x-x) . 



The continuity of y ( ·) on E0 now follows from lemma 2. 4. 4'. 
In view of the above we may apply theorem 5.2.2. It follows that 

(5.5.3) holds. With the same notation as in theotem 5.5.1 we thus get 
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IG'(x0 ;h,f)I s l~(z0 )1 + 

+ m max l[bT(I-AZ0)-IJil 
ISiSm 

max lzi-z0 1 
lsism 

max 
ls ism 

-I l[(I-AZ) e].I, 
l 

for all zo € L(I<s) such that I - Az0 is regular. 

By choosing zo = z. for some j € {I, 2, ••• ,m} the proof new easily 
J 

follows from the lemmata 2.4.4, 2.4.5 and corollary 5.5.11. a 

The estimate (5.5.11) for the error propagation per step is of the same 
type as the one obtained in sectionS.4.4 for the ·Rosenbrock methods 
(cf. (5.4.25)). Therefore contractivity results as in theorem 5.4.16 hold 
for the Runge-Kutta methods satisfying (M) • 

EXAMPLE 5.5.13. Consider the 2-stage Runge-Kutta method with 

( o o) ( 1-e) A = and b = 
1-e e e 

where e E (O,I] • If e = ~ we deal here with the trapezoidal rule, and 
if e with the backward Euler method. 

By choosing z0 = z2 we obtain from (5.5.3) 

where z 1 = hf'(x0) and 

that y2·cx0) = G(x0 ;h,f) 

In lemma 5.5.10 and 

that 

z2 = hf'(G(x0;h,f)). Here we have used the fact 

, which holds because bT = e~ A • 

corollary 5.5.11 we may take w =I • It follows 

whenever (A3) holds and h E (O,h0) (i.e. 1 - 2hea0 > 0 ). In this case 
the stepsize restriction can be weakened to 1 - hea0 > 0 • The stability 
function for this method is given by ~(~) = (1-e~)- 1 (1+(1-0)~) (~Et) , and 
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therefore (see also the examples 5.4.10, 5.5.5) 

<I>(t) 
-I -I 

max{6 (l-6),(l-6t) (l+(l-6)t)} (for 
-I 

t < e ) . 

In case 6 = ! (the trapezoidal rule) we have <I>(t) ~ I (for all t ), 

and therefore no contractivity result is obtained. In the same way as in 

remark 5.4.19 we do get a stability result on finite intervals. 

DAHLQUIST ( 1963) was the first who obtained nonlinaar stability results 

for the trapezoidal rule. For his results however it was necessarily assumed 

that the stepsize was constant on the whole integration interval. With the 

above bound for the error propagation per step stability can also be proved 

on arbitrary nonuniform grids. On the other hand we need, apart from 

dissipativity, additional assumptions on f (see (A3) ). The necessity of 

such extra assumptions follows from an example of STETTER (1973, pp. 181, 

182) (where a nonuniform grid was chosen). 



CHAPTER 6 

B-CONVERGENCE FOR SEVERAL a-METHODS 

6.1. INTRODUCTION 

In this chapter the results on the error propagation of chapter 5 

will be used to derive convergence results for some simple semi-implicit 

and implicit methods, where the initial value problem may be arbitrarily 

stiff. 

We consider the solution U on the interval [O,TJ of the initial 

value problem 

(6.1.1) U' (t) = f(U(t)) (05t5T) 

with T > 0 , f: I<s + I<s (sE lN) and 

Application of a numerical method 

the solution U at the gridpoints tn 

U(O) 

s 
UQ E ][( • 

G yields approximations u 
n 

to 

nh (05n5T/h) . For convenience 

we consider here again uniform grids. Of course one wants to know whether 
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the numerical approximations converge to U and how fast this convergence 

is. We are therefore looking for a natural number p (the order of 

convergence) such that IU(t )-u I = O(hp) for h f 0 and t fixed. n n n 
For the one-step methods G considered in chapter 3 convergence 

results are known, but in these results the Lipschitz constant of f may 

be involved (see e.g. HENRICI (1962), VAN DER HOUWEN (1977)). If f 

satisfies a Lipschitz condition with constant L on some tube around U , 

then there are p E lN , c > 0 

for all h e: (O,h*J and all 

and h* > 0 such that IU(t )-u I 
n n 

n with 0 ,,; n ,,; T/h • However if L is 

very large, then h* will be very small or c very large. This is due to 

the fact that the class of problems with large L contains ill conditioned 

problems (see also section I.I). These classical convergence results are 

therefore unsuited for stiff problems. 

In all of the following it will be assumed that f is twice 

continuously differentiable on I<s and satisfies the one-sided Lipschitz 

condition 
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(6. I. 2) Re <f(';;')-f(x),';;'-x> s sl';;'-xl 2 (for all 
. s 

X,X E JK ) • 

As in the preceding chapters <·,·> stands for an inner product on lKs 
! 

and I xl = <x,x> 2 (for all x E lKs) 

We will derive in this chapter some convergence results where no 

upper bound for the Lipschitz constant of f is assumed, but where the 

one-sided Lipschitz constant 8 plays a central role. Such convergence 

results, called B-convergence results (see definition 6.1.1), are useful if 

the solution U of (6.1.1) is stiff. The concept of B-convergence was 

introduced by FRANK, SCHNEID and UEBERHUBER (1981). The capital B in

dicates that we are working within the framework of B-contractivity, 

i.e. (6.1.2) holds. 

Let G denote some one-step method, and let H > 0 be an upper bound 

for the stepsizes h used to solve (6.1.1) numerically, 

0 < h s H . 

We assume that V is an open, bounded region in I<.s such that we have 

u + o(U(t )-u ) E V 
n n n 

(Osas I) 

for all numerical approximations un to U(tn) (OstnsT) computed from G 

with stepsizes h E (O,H] . Note that such a bounded V exists. Namely, 

since f is continuously differentiable, f satisfies a Lipschitz 

condition near U • From the already mentioned classical convergence 

results it follows that {u :OsnsT/h} is uniformly bounded for h E (O,H] . 
n 

If 

is 

g: 

For j = 0,1,2, •.• we define 

M. max{IU(j)(t)I :OStST} 
J 

K. sup{lf(j)(x)l:xEV}. 
J 

v encloses {U ( t) : tdO, T]} tightly, we have K0 RI M1 • Note 

the Lipschitz constant of f on v 
Further we use the following notation. For a given function 

lR+lR, p E l'1 and parameters cl ,c2, ••. ,ck we write 

that Kl 



(MO) , 

if there exist positive numbers c* and h* which depend only on 

c 1,c2, •.• ,ck such that 

for all h E (O,h*J • 

Following essentially FRANK, SCHNEID and UEBERHUBER (1981), we give 

the following definition. 
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DEFINITION 6.1.1. Method G is said to be B-aonvergent of order p w.r.t. 

U if we ha:ve for all t E [0,T] 

\U(t)-u I = O(hp\0,IT) 
n 

(h -1- 0 , nh=t) , 

where 0 stand.a for the aoUeation of aoeffiaients of G , and IT is a 

set of problem dependent parameters aontaining T , some bounds on the 

derivatives of U (M. with j ;<: 1 ), and some bounds related to f and 
J 

its derivates ( 8 and K· with j .f 1 ), whiah permit an arbitrary stiff
J 

ness with U • 

If IT only aontains T,8 and some 

optimally B-aonVe!'gent of order p w.r.t. 

M. with j ;<: 
J 

1 , we aaU G 

u • 

We thus see that with B-convergence K1 is not allowed to be involved. 

This is in contrast to the classical convergence results. Also any in

fluence of M0 is excluded. This is a very natural requirement - see 

section 3.4 where translation invariance is discussed. If G is optimally 

B-convergent w.r.t. U , then the convergence only depends on the smoothness 

of U , and, through 8 , on the stability the differential equation. 

In the subsequence three different one-step methods, each containing 

one parameter 6 E [!,lJ , will be considered. The methods are given by 

(Ml) G(x;h,f) = x + (1-6) hf(x) + 6hf(G(x;h,f)) , 

(M2) G(x;h,f) = x + (I-h&f'(x))-l hf(x) 
' 

(M3) G(x;h,f) = x + (I-h6J)-l hf(x) • 
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In (M3) the matrix J stands for a fixed approximation to f'(x) • It 

will be assumed that 

(6.1.3) µ[JJ:s;s, lf'(x)-Jioo:o (for all x E V ). 

Further we assume that the maximal stepsize H is such that 

1 - Has > o • 

This condition ensures that the algebraic equations arising in (M 1)-(M3) 

have a unique solution (see theorem 4.3.1 with corollary 4.3.5, and 

corollary 4.4.1). 

In section 6.3 it will be shown how the results on the error 

propagation of chapter 5 can be used to obtain B-convergence results. For 

these convergence results we also need bounds for the local discretization 

errors where the Lipschitz constant of f is not involved. Such bounds 

will be given in section 6.2. 

For the Runge-Kutta method (M 1) with e =!,I (the trapezoidal rule 

and the backward Euler method) B-convergence results have been given 

already in FRANK, SCHNEID and UEBERHUBER (1981). Their result on the 

trapezoidal rule will be improv.ed by using the bound for the error 

propagation given in section 5.5.3. Further B-convergence results have thus 

far only been given for B-contractive Runge-Kutta methods (cf. FRANK, 

SCHNEID and UEBERHUBER (1981,1982 B)). 

REMARK 6.1.2. For their investigations on B-contractive Runge-Kutta methods 

FRANK, SCHNEID and UEBERHUBER (1982 A,B) introduced two stability concepts, 

BS- and BSI-stability, which are related to the sensitivity of the methods 

to perturbations on the internal stages (where the vectors yi(x) are 

computed). By a complicated proof it was shown that if there is a positive 

definite diagonal matrix D such that DA + ATD is positive definite, 

then the Runge-Kutta method (with coefficient matrix A) is BS- and 

BSI-stable. A much shorter and transparant proof of this result can be 

obtained by using lemma 2.4.3 and corollary 2.4.8, or by slightly modifying 

the proof of lemma 2.4.3. 
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6.2. B-CONSISTENCY RESULTS 

The local discretization error of a method G w.r.t. the solution U 

of (6.1.1) at time t equals 

lh(t) = h-l [U(t+h)-G(U(t);h,f)] 

(see also section 3.1). 

Let 0 ~ t < t+h ~ T , h E (0,H] and x = U(t) . We write V(h) = 
U(t+h) and vh = G(U(t);h,f) . With this notation .lli(t) can be re

-I 
written as h LV(h)-vh] . 

In this section we want to find upper bounds for llh(t)I . If this 

upper bound only depends on h,0 and II , with 0 and II as in the 

definition of B-convergence (clef. 6,1.1), we will call this a B-aonsistency 

result. If II only contains T ,13 

term optimally B-aonsistent. 

and some M. with j ~ I , we use the 
J 

Method (M1J • For the Runge-Kutta method given by (M1) we have 

vh = x + (1-8) hf(x) + Bhf(vh) 

Let wh E lKs satisfy the relation 

V(h) x + (1-e) hf(x) + 8hf(V(h)) + wh • 

Then we have 

V(h) - vh = he[f(V(h))-f(vh)J + wh 

By taking on both sides the inner product with V(h) - vh , and using 

(6.1.2) and Schwarz's inequality, it follows that 

(6. 2. I) 

Note that since I - H813 > 0 and h E (O,H] , we have I - h813 > 0 . 

Taylor expansion of V(h) and V'(h) (=f(V(h))) around h = 0 yields 

V(h) -x- (1-8) hf(x) - 8hf(V(h)) = (!-e) h 2V"(O) + R 
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where 

I 2 
R = f UO-T) -e(l-T)J v'" (Th) dT • 

0 

By some calculations we thus obtain 

(6.2.2) 

A combination of (6.2.1) and (6.2.2) leads to the B-consistency result 

(6.2.3) 

We see that the 9-method (M1) is optimally B-consistent with order 2 if 

e = ! , and order I for e € (!,tJ , This corresponds with the classical 

orders of consistency. 

REMARK 6.2.1. By expanding V(h) and V'(h) only up to order 2 around 

h = 0 we obtain (instead of (6.2.2)) 

For e = I this gives a slight improvement over (6.2.2). 

Further we note that the bound for the local error given in FRANK, 

SCHNEID and UEBERHUBER (1981) for e = ! is somewhat larger than the bound 

we get from (6.2.3). 

Method (M2J. For the semi-implicit method (M2) we have 

x + (I-h9f'(x))-I hf(x) • 

With wh € I<s such that 

-1 
V(h) = x + (I-h9f'(x)) hf(x) + wh, 

we now obtain 



Taylor expansion of V(h) around h 0 leads directly~ to 

with 

(6.2.4) 

w = hf(x) + !h2f'(x)f(x) - (I-h8f'(x))-I hf(x) + h3R 
h 
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Starting from (6.2.4) we first derive an optimal B-consistency result. 

For this we rewrite (6.2.4) as 

wh = (l-h8f' (x))-I (1-28-8hf' (x)) ~h2 f' (x)f(x) + h3R • 

Since sup{l(l-8i;;)- 1(1-28-8i;;)l:i;;Ell:,Re i;;st} = max{J,l(1-6t)- 1 (l-2S-6t)I} 

it follows from theorem 2.2.7 that 

(6.2.5) -I I I 2 
i~(t)I s max{l,I (l-8h$) (l-26-6hS)I} 2hM2 + 6h M3 

On the other hand, since (f' (x)) 2 f(x) = V"' (O) - f"(x) (f(x)) 2 

we also obtain from (6.2.4) 

(6.2.6) 

This leads to a B-consistency result with order 2 if e = ! , but with K2 
involved. From (6.2.5), which is an optimal B-consistency result, we only 

get order I for all 6 E L!,IJ • Such a drop in the order has been observed 

for a large class of implicit Runge-Kutta methods by FRANK, SCHNEID and 

UEBERHUBER (1982 B). 

It will turn out in the following section that the optimal B-consist

ency result (6.2.5) does not lead to an optimal B-convergence result, due 

to the fact that the method is not B-contractive. 

Method (M3). For this method we have 

where 

-I 
vh = x + (I-h8J) hf(x) , 

s J ~ f'(x) • We assume (6.1.3). Let wh El{ be such that 
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V(h) 
-I 

x + (I-h8J) hf(x) + wh • 

Obviously we then have 

IV(h)-vhl 

From the results obtained for the method (M2) we easily get a result 

for this case by writing 

w = V(h) - x - (I-h8f'(x))-I hf(x) - 8(I-h8J)-I (hJ-hf'(x)) 
h 

(I-h8f'(x))-I hf(x) 

Using (6.2.5) we thus obtain 

(6.2.7) 
-I I 

:5 max{1,l(l-h813) (l-28-h813)l}zhM2 + 

This leads to a B-consistency result with order I. Also for 8 = ~ 

order 2 cannot be reached. If 8 = ! we can take J (1+£) f'(x) with 
~ -I 

£ > 0 sufficiently small. We then have wh = V(h) - x - (I-h8f'(x)) hf(x) 

with 6 = 8(1+£) f ! . Since the 8-method (M2) only has (classical) 

order I if 8 f ! , we get for (M3) also order for all 8 E C!,IJ 

6.3. B-CONVERGENCE RESULTS 

The bounds for the local discretization errors found in section 6.2, 

and the results of chapter 5 on the error propagation per step will now be 

used to derive B-convergence results for the 8-methods (M 1)-(M3) 

This will be done along the following line. We have 

IU(t )-u I :5 IU(t )-G(U(t 1);h,f)I + 
n n n n-

+ JG(U(tn_ 1);h,f)-G(un_ 1;h,f)I 

From section 6.2 we get an inequality 

JU(t )-G(U(t 1);h,f)I :5 h \h, 
n n-



with Ah such that l~(tn-l)I s Ah, and from chapter 5 we get an 
estimate of the form 

It follows that 

n n-1 IU(tn)-unl s 'l'h IU(t0)-u0 1 + ('l'h + ••• +'l'h +I) hAh = 

-1 n 
= ('l'h-1) ('l'h-1) hAh • 

In case 'l'h= I we read n (=lim (1,;-l)-l(z;n-l)) instead of ('l'h-1)-l('l'~-1) 
The above inequality will yi~id 1 the desired convergence results. 

The methods (M1)-(M3) all have the same stability function ~(I;) 

= (l-61,;)-l(l+(l-6)1;) (1,;EE) • The main contribution to 'l'h is given by 
<l>(hS) = sup{l~(z;)I :l,;EE,Re z;shS} • We have (cf. example 5.4.10) 

(6. 3. I) <!>(hS) = max{6- 1(1-6),(1-h6S)-l(l+h(l-6)S)} 

For 6 E (!,IJ' a+ 0' and for 6 = i 'a> 0 we see that 

<I>Cha) = (I-h6S)- 1 (I+h(l-6)S) 
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for I hS I sufficiently small (how small depends on 6 ) • It easily follows 
that we have 

(h+O , nh=t) , 

(<I>(hS)-1)-l (<I>(hS)n-l)h =a-I (eat_ I) + O(hl 6,S,T) (h+O, nh=t) 

(uniformly for all t E [0,T] ). 

If a = 0 or 6 = i , a < 0 we have <!>(hS) 
(<!>(hS)-1)-l(<!>(hS)n-l)h stands for nh • 

I , and then 

Method (M1). For this method we have (cf. example ,5.5.13) 

with <!> as in (6.3.1). Method (M1) is only B-contractive if 6 I • We 
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assume for the moment that e # I . Then 

(h+O) • 

It follows that for e E <!,I) ' 6 # 0 'and for e ' 6 > 0 ' 

-I St 6 (e -1) + 0(hl6,T,S,K0 ,K2) (h+O, nh=tE[O,TJ). 

If 6 0 or e = ! , 6 < 0 , we get by some calculations 

(h+O, nh=tE[O,T]) . 

Together with the B-consistency result (6.2.3) this leads to the following. 

THEOREM 6.3.1. Consider the irrrpZiait Runge-Kutta method • Let II 

stand for {T,S,M2 ,M3 ,K0 ,K2} • 

Suppose e E (!,I), a# 0 or e ! 2 , 6 > 0 . Then we have 

(6.3.2) (h+O, nh=tdO,T]). 

In aase 6 o , or e ! , 6 < 0 , we have 

(6.3.3) (h+O, nh=tE[O,T]). 

In spite of the optimal B-consistency result (6.2.3) we get no optimal 

B-convergence result for 8 E (!,I) since (M 1) is then not B-contractive. 

For e = I we obtain, in view of remark 6.2.1, again (6.3.2) (if 6 # O) and 

(6.3.3) (if 6 = 0), but now with II = {T,S,M2} • This optimal B-convergence 

result can also be found in FRANK, SCHNEID and UEBERHUBER (1981). 

Method (~2J. For the Rosenbrock method (M2) we have (see example 5.4.20) 

with I as iu (6.3.1). 

We obtain a B-convergence result in the samewayaswithmethod (M1). Since 

'!'h de;-ends on K0 and K 2 the optimal B-consistency result (6.2.5) does not 

lead to an optimal B-convergence result. We therefore use (6.2.6) which gives 

the order 2 if e = ! . 
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THEOREM 6.3.2. Consider the Roseribrock method (M2) , a:nd let· IT stand 

for {T,S,M1,M2,M3,K0 ,K2} . 

Asswne 8 E (!,IJ , BIO , or 8 ! , B > 0 . Then we have again 

the inequality (6.3.2). 

If B = 0 , or 8 = ! , B < 0 , then (6.3.3) holds. 

We thus see that there is hardly any difference between the results 

for the Rosenbrock method (M2) and the implicit Runge-Kutta method (M1), 

unless 8 = I • This suggests, for 8 I I , that the behaviour of both 

methods is comparable on the whole class of smooth problems (6.1.I) with 

I f (x) I ,.;; K0 and I f" (x) I ,.;; K2 for all x in a region V containing 

{U(t):tE[O,T]} . Some care has to be taken with this conclusion since we 

only have upper bounds for the global error. Moreover, for each individual 

problem this upper bound (for a class of problems) may be pessimistic 

for one of the methods. 

Method (M3). For the semi-implicit method (M3 ) we know from example 5.4.26 

that 

~h = ~(hB) + (I-h8S)-I ho 

with ~ as in (6.3.1). In a similar way as before we now get the following 

limits. 

Suppose 8 E (!,IJ , B + o I 0 , or 8 =} , B > 0 . Then 

+ 0(hl8,T,S,li) (h+O, nh=tdO,T]) • 

If 8 E (!,IJ and B +Ii 0 , then 

(h+O , nh=td 0, T]) • 

In case 8 and B :<;; 0 , we have 

+ 0 (h I 8 , T, B, 0) (h+O, nh=tdO,T]) • 
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By using the estimate (6.2.7) for the local discretization error we 

obtain the following result. 

THEOREM 6.3.3. Consider the semi-irrrplieit method (M3) with a fixed 
Jacobian J satisfying (6. 1. 3). Let II stand for the set 
{T,S,M1 ,M2 ,M3 ,o} 

Asswne e E <!,lJ , S + o # o , or e , S > 0 • Then we have 

(6.3.4) IU(t)-unl $ !(S+o)-l (e(S+o)t_l) hM2 + 

+ o (h2 I e,rr) (h+O, nh=tdO,T]) 

If e E (!,lJ and s + 0 0 then 

(6.3.S) (h+O, nh=tELO,T]) . 

Finally if 6 and S $ 0 , we get 

(6.3.6) (hi-0, nh=tdO, TJ) . 

Comparision of the theorems 6.3.2 and 6.3.3 shows that the use of 

a fixed Jacobian has to be paid for by an order reduction in case 6 = 

This corresponds with the classical order result. Moreover, and this is 

probably more serious, the global error may grow exponentially if S ~ 0 

but o > 0 is not small, whereas the solution U remains bounded. There

fore the relative error ]U(t)-u ]/IU(t)I will only be reasonable on a 
n 

short interval. 
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