
CWI Tract 9

Models of the lambda calculus

C.P.J. Koymans

Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

1980 Mathematics Subject Classification: 03840, 68F20
ISBN 90 6196 275 7

Copyright © i 984, Mathematisch Centrum, Amsterdam
Printed in the Netherlands

ACKNOWLEDGEMENTS

The present text is an almost unaltered version of my Ph.D. thesis,

written at the State University of Utrecht under guidance of Prof.

D. van Dalen and Dr. ·H.P. Barendregt. I thank both of them for their

teaching and support.

CONTENTS

ACKNOWLEDGEMENTS

CONTENTS

INTRODUCTION

CHAPTER I. LAMBDA CALCULUS MODELS: LAMBDA ALGEBRAS AND LAMBDA MODELS 9

1. I. Synta.c:Uc.a.i.. Mpew 06 lambda c.a.i..c.utM model .theo1ty 9

1.2. The app!toac.h o0 c.ombina..to1ty logic. 20

I. 3. The equi_va.i..enc.e 06 .the CJW.de and c.ambina.toJty ve1U>ian'6 31

J. 4. Lambda madeb.i 35

I • 5. Ex;ten,&io na.i..i.ty 51

1.6. Hamama1tphJJim-0 and embedding-0 54

CHAPTER 2. CATEGORICAL DEFINITIONS OF THE MODELS

2. 1 . Ca.tegoltic.a.i.. madw

2. 2. The Ka1toubi c.o n'6.tltuc:tla n

2. 3. CaJt.te-0ian c.loud monaid-0

2.4. Lambda a.i..gebJr..aJ.i VeJL6M lambda monoid-0

2. 5. Lambda modw, c.anc.Jte.te modw and ex:ten-0iona.i..i.ty

59

59

69

79

89

96

CHAPTER 3. DERIVED LAMBDA ALGEBRAS AND THE CONSTRUCTION OF 1000 101

INSIDE lPw

3. I. Ve!Uved lambda. a.lgebJtM bi gen.e!tal 101

3. 2. Modeil; -i..ru.,[de the Ka1toubi-en.vei.ope 06 a lambda. a.lgeb!Ul 115

3.3. Ve!Uved modw an.d appll.oximati.on. 124

3. 4. The model. 'IP 00 13 1

CHAPTER 4. THE HYPERGRAPHMODEL 13 9

4. 1. Fun.damen.:tai.. de6bu.tioru. an.d pll.opelr.tieA 139

4. 2. J/w ca.n.n.o.t be expan.ded .to a lambda. model. 143

REFERENCES 151

GLOSSARY OF SYMBOLS 159

INDEX 171

INTRODUCTION

Although the theory of the pure, untyped lambda calculus as a formal

system was rather well developed around 1940, it took the mathematical

connnunity about thirty.years to produce the first models that were not of

a syntactic nature. Before 1970 only the socalled term models existed,

which were proven to be non-trivial by the Church-Rosser theorem for the

lambda calculus, already published in 1936. The fact, that it took such a

long time to define mathematical models calls for explanation. An evident

problem was that the lambda calculus is formulated as an ~ntyped theory,

whereas the concept it tries to formalize, namely function application, is

of a typed nature. (It is therefore no surprise that the typed variant of

the pure lambda calculus has plenty of models that are easy to define.)

But if we compare this situation with that of set theory, we conclude that

although the €-relation on sets has a typed nature, it was no problem to

find models for the type free formulation of set theory as given by the

Zermelo Fraenkel axioms. In fact set theory has as its intended model the

universe of all sets as supplied by the cumulative hierarchy. Hence it was

not only the type free aspect of the lambda calculus that caused trouble.

The intended interpretation of lambda terms is that of algorithms,

that can themselves be considered as data and given as input to other al

gorithms. What seems reasonable at first sight is to identify the notion

of algorithm with that of set theoretic function. In order to get the type

free effect we would like to have AA ~A, where A is the domain of algor

ithms and AA is the full set theoretic function space. But this is clearly

impossible because of Cantor's theorem, if card (A)> 1.

Another reason why lambda calculus does not fit in nicely with con

ventional systems is that it produces inconsistencies when combined with

ordinary logic, viz. with negation. This was already experienced by Frege.

He had a logical system, which essentially incorporated the full lambda

calculus, see Aczel [1980]. This made the derivation of Russel's paradox,

in the form of a fixed point of negation, possible.

The first solution to the problems as sketched above was given by

Scott [1972]. He knew of it by the end of 1969. His idea was to identify

an algorithm not with an arbitrary, but with a restricted kind of function,

2

namely a continuous function. In order to do this he needed a category of

topological spaces with continuous maps such that for any two spaces A,B

a function space [A+ B] could be formed, that had all important properties

of ordinary set theoretic function spaces. A suitable category is that of

complete lattices, where on each such complete lattice L an induced top

ology, the socalled Scott topology, can be defined. Call Uc:L open if

(I) U is upwards closed, and

(2) If sup (D) EU then there is a finite D0 :: D such that sup (D0) EU.

A function f: L1 + L2 is continuous if and only if

f(sup D) = sup{f(sup Do) I Do::D, Do finite}.

If L1 ,L2 are complete lattices, then so is [L 1 +L2], being the lattice of

all continuous functions from L1 to L2 with the pointwise ordering.

Now Scott started with an arbitrary complete lattice D0 and defined induc

tively D 1 = [D +D] , n E w. Clearly D0 can be written as a retract of D1: n+ n n

\P0 (a)(b) =a, for a,bED0 ,

1/Jo (f) = f (J.), for f E [D0 + D0 J.

This retract can be lifted to every level
(j)

D~D
n~ n+I

by defining induc-

tively n

forfE[D+D],
n n

for g E [D I + D I]. n+ n+

Let D00 be the (projective) limit of the sequence

Then it turns out that D00 is also the colimit (=direct limit) of the se

quence

and that D00 ~ [D00 + D00] •

Hence D00 induces in the obvious way a lambda calculus model, denoted by ID00•

3

Once this first model was known, model theory of the lambda calculus

developed rapidly. In Plotkin [1972] the graphmodel lPw, based on a set

theoretic application, was introduced. This model was rediscovered by Scott

and its usefulness shown by interpreting the lambda-calculus-based elemen

tary programming language LAMBDA in it, see Scott [1976]. The graphmodel

found its way into the semantics of programming languages, see Milne

and Strachey [1976]. In the meantime Plotkin developed domains more suit

able for interpretation of parallellism and nondeterminism in computations,

see Plotkin [1976]. The cleanest and easiest set theoretical construction

of a model was given in Engeler [1981]. A more detailed account of this

important period can be found in appendix B of Scott [1976] or in his

Turing award lecture, published as Scott [1977].

Meanwhile several people started to think about the general notion of

a lambda calculus model. This turned out not to be so straightforward as

might be expected. All "mathematical" models, constructed by Scott and Plot

kin, interpreted lambda abstraction terms (that are terms of the form

>uc.M(x)) by considering the function d >+ M(~) and showing it to belong to

a suitably defined function space [X+X], that can be embedded into X again.

As we saw, because of cardinality reasons, if card(X) >I then [X +X] cannot

consist of all set theoretical functions from X to X. All models ID00 and

also the graphmodel resolve this difficulty by letting [X +X] consist of

all continuous functions with respect to a suitable topology, the Scott

topology. But this kind of interpretation has the following consequence

for the models ll1l concerned: Every lambda abstraction term (1-x.M) is com

pletely determined by its applicative behaviour d 1+ (Ax.M)~ = M[x := ~].
If this holds we say that ll1l is a weakly ex.t.en.-6-lon.ai. model. We can express

this by the following axiom:

Vd E l!IRl(llJl I= M(~ = N(~) '* ll1l I= 1-x.M(x) = 1-x.N(x).

This seems to be a reasonable assumption for a general lambda calculus

model, were it not that the structure of all closed lambda terms (which

certainly should be a model) does not satisfy the above axiom. This is an

immediate consequence of the w-incompleteness of the lambda calculus, as

proved in Plotkin [1974].

Because of these facts the intuitive notion of model gave rise to

two technical notions. The most comprehensive notion is that of a £.ambda

4

aJ.gebJta., that includes the closed term model mentioned above. The second

notion is that of lamqda. model., being the subclass of the lambda algebras

that satisfy the axiom of weak extensionality. In this text the unquali

fied term "model" will be used to denote the most general case, hence that

of a lambda algebra.

Many people contributed to the general definition of a lambda calcu

lus model. We refer the reader to Barendregt [1977],[1981], Berry [1980],

[1981], Hindley and Longo [1980], Koymans [1979],[1982], Meyer [1980],

[1982], Obtufowicz [1977],[1979], Obtufowicz and Wiweger [1978] and Scott

[1980]. All of these definitions, except Berry's, are reviewed in Cooper

stock [1981]. Any of the definitions, proposed in the pap_ers above, belongs

to one of the following three classes.

!. Env.-Utonmen.t modeRJ, (see Hindley and Longo [1980], Koymans [1979] for

lambda algebras and Meyer [1980] for lambda models).

This approach is the most straightforward one, just postulating the

existence of an interpretation map, satisfying the theory of the lambda

calculus. In fact, an environment model is a structure IDl = (X, •) with

for every assignment (sometimes called environment) p: variables +X a

mapping

[•] p : lambda terms + X

such that

Moreover IDl satisfies

p(x) '

[M]p•[N]p

A f- M = N * Vp ([M] = [N]) •
p p

In this case IDl is a lambda model if

If IDl is a lambda model it can be equivalently described as a functional

domain in the terminology of Meyer [1980].

2. F,{Ju,t o4deJt model/., (see Barendregt [1981] for lambda algebras and

Meyer [1980] and Scott [1980] for lambda models).

At first sight lambda calculus is an ordinary equational theory, but

in fact it is not. For the operation of lambda abstraction has the

strength of a universal quantifier (assuming the axiom of weak exten

sionality), since

1-x.M = Ax.N - Vx(M= N).

Moreover this axiom of weak extensionality does not hold in full gener

ality, therefore the reductfon as given above is not always possible.

An adequate first-order definition can only be given after a purely

equational theory is constructed, that is proof theoretically equival

ent to lambda calculus. Such a theory is supplied by strong combinatory

logic. Then a first-order model is a structure fill= (X, • ,s,k), such that

fill satisfies the well-known axioms for the combinators S and K:

fill F sxyz xz(yz) A kxy = x.

Moreover fill has to satisfy an extra set Ai3 of five equations between

terms in s,k , e.g.

fill F s(ks) (s(kk)) s (kk) (s (s (ks) (s (kk) i)) (ki)) ,

where i = skk.

The addition of the set of axioms Ai3 to combinatory logic makes this

theory essentially equivalent to lambda calculus.

Now fill is a lambda model if

fillF Vx(ax=bx) +la= lb

where I = s (ki).

3. Caxego!Llcal. model/., (see Berry [1981], Koymans [1982] for lambda al

gebras and ObtuXowicz [1979] for lambda models; also see Meyers [1974]

for the case of typed lambda calculus).

The most important advantage of this approach is that we can retain

5

6

the function interpretation of lambda abstraction terms without being
forced to accept the axiom of weak extensionality. The reason is that
category theory is an instrument that allows us to look at functions
as transformations or algorithms with an intensional meaning.
The description of a lambda algebra now consists of a cartesian closed
category C with a reflexive object U; reflexivity of U means that the
f . u . f . u<J unction space U is a retract o U, notation U U.
Let

be the corresponding section and projection respectively. The interpret
ation of the untyped lambda calculus is now possible since every ele
ment of U can be considered as a function by making use of the function
morphism (fun-operator) F and every function on U can be considered as
an element of U by applying the graph-morphism (graph-operator) G.
The basic 13-axiom of lambda calculus is satisfied because F o G = iduU·

In this case the structure defined is a lambda model if the category C
has enough points in the following sense:

Vf,g: A+B(f#og + 3x:T+A(fox#ogox)).

Here T is the terminal object in C.

For each of these three approaches it is easy to describe the charac
teristics of extensional models. Extensionality is the property that all
elements of the domain (not only, as in the weakly extensional case, the
lambda abstraction terms) are determined by their applicative behaviour.
That is, !lJl is ex.te.iv.,,[on.at if

Va,bE l!!Jll (VdE l!!Jll (ad=bd) + a=b).

All of the three ways of introducing lambda calculus models have their
advantages and disadvantages. The environment models are simple to define
and lead to the easiest approach to certain kinds of models like the term
models and the filter models. For this last kind of model, see Barendregt,
Coppo and Dezani-Ciancaglini [1983). A disadvantage is that their defi
nition depends on the notion of provability and hence is rather syntacti-

7

cal. The first-order structures have the advantage that they clearly indi

cate the model theoretic status of lambda calculus models and provide the

connection with classical universal algebra. On the other hand it is often

quite hard to show directly using the first-order axioms that a certain

structure is a model. This is clearly recognizable for the socalled hyper

graphmodel as defined in Sanchis [1979], which is the subject in chapter

4 of this book. The categorical models are important because they unify

the notions of lambda algebra and lambda model and because they are the

most natural structures for the lambda calculus from a mathanatical point

of view. For instance the models ID00 and lPw are most easily understood in

the context of the category CLATT of all continuous lattices with Scott

continuous mappings as morphisms. For a comprehensive treatment of continu

ous lattices we refer the reader to Gierz et al. [1980]. On the other hand

the categorical approach introduces quite a lot of extra structure which

in some cases is just unnecessary.

When we consider just models for combinatory logic the first two ap

proaches, the envirornnental and first-order one, are clearly equivalent.

There is also some work being done in the categorical direction in this

case, see Longo and Moggi [1983]. It is hoped that this kind of categori

cal analysis will give a better understanding of the quite complicated

axiom set AS.

Some functorial aspects of the constructions, given in this book,

interrelating the three approaches to model theory were analyzed by Adachi

[1983] and Yokouchi [1983].

OveJLv~ew.

The first chapter of the present text extensively reviews the basic

definitions and properties of the envirornnental and first-order structures,

with all useful variants. The central topic of (weak) extensionality is

treated and moreover the correct notion of homomorphism is defined.

The third approach to lambda calculus structures, that of categorical

models, is the subject of chapter 2. The idea of interpreting lambda calcu

lus in a cartesian closed category is quite natural and goes back to Scott.

The fact that every lambda algebra, as defined by the envirornnental or first-

8

order approach, can be represented in this categorical context, cf. the
orem 2.4. 10. of this text, was first proved in Koymans [1981], published
as Koymans [1982]. The construction, needed to prove this fact, makes use
of a method of enlarging the class of objects in a category, quite similar
to the method used in Karoubi [1978].

Chapter 3 is an illustration of how categorical techniques may be suc
cessfully applied to analyze an observation of Scott [1974], defining an
extensional lambda calculus model, by a method resembling the construction
of ID00, but now inside another model (in Scott's article the graphmodel
JPw). We introduce the notion of a derived lambda algebra and characterize
the theory of this derived model by defining a translation on the set of
lambda terms. This results in the determination of the theory of JP00 (the
model in Scott [1974]) and of all intermediate models (lPn)nEw used in
this construction. It turns out that Th(JP00) = Th(IDoJ, while all inter
mediate models lPn,nEw, are elementarily equivalent to JP 0 = JPw. The ma
terial of this chapter was first presented in Koymans [1983].

Chapter 4 of this book pays attention to the particular properties of
the socalled hypergraphmodel of Sanchis [1979]. This structure has the same
domain as the graphmodel, but its application is a rr:-variant of ordinary
graph application. Sanchis's original motivation was to study generaliza
tions of certain kinds of recursion theoretic reducibilities like (hyper)
enumeration and Turing reducibility. These generalizations can best be for
mulated in terms of application in Scott's graphmodel for the ordinary r.e.
case and in the new hypergraphmodel for the hyperarithmetical case. In his
article Sanchis shows that the hypergraphmodel is combinatory complete,
hence that it is a model for combinatory logic, but the question whether a
lambda calculus interpretation can be given remains unanswered. We will
show that it is not possible for the hypergraphmodel to be considered as
a lambda model by defining a suitable interpretation for abstraction.
This in contrast with the ordinary graphmodel lPw. The results in this
chapter were first presented in Koymans [1983A].

9

CHAPTER I

LAMBDA CALCULUS MODELS: LAMBDA ALGEBRAS AND LAMBDA MODELS

I . I . Syn-ta.c.tic.al. M pect.6 06 lambda. c.al.cufu.6 model :the.011.y.

Since the subject matter of the present text is the modeltheory of the

pu.!l.e, untyped lambda calculus, it is appropriate to look at the syntax of

the lambda calculus (as a theory) first. It will be convenient to extend

the expressive power of the language slightly, since we want to talk about

the elements of the models we will be considering.

I. I. I. Definition (syntax of the lambda calculus).

Let C be a set of constants and Vars= {v0,v1, ... } a denumerably in

finite set of variables; x,y,z, •.. range over Vars.

(i) The set 1\(C) of lambda :teJzm-O with constants from C is induc

tively defined by

Vars c 1\(C)

C c 1\(C)

M,N E 1\(C) => (MN) E 1\(C)

ME 1\(C) => (h.M) E 1\(C)

(application)

(abstraction).

(ii) We say that Ax. binds all occurrences of x in (Ax.M).

FV(M) is the set of free variables of M; these are all vari

ables not bound by any AX. occurring in M.

M is ef.o-Oed if FV(M) = ~.

M[x := N] denotes substitution of N for all free occurrences of

x in M. As usual, a substitution is only legitimate if no free

variables of N become bound by some abstraction in M after sub

stitution. From now on we will assume that all substitutions

are legitimate.

Both FV(M) and M[x := N} have a straightforward inductive defi-

10

nition.

(iii) The theory A(C) is the set of equations between lambda terms,
generated by the following axioms and rules (where M,N,L E A(C))

M M

h.M Ay.M[x := y] (a-axiom)

(h.M)N M[x:=N] (S-axiom)

M=N => N=M

M= N, N=L => M=L

M=N => ML= NL, LM= LN

M=N => Ax.M = Ax.N (!;-rule).

In the a-axiom we need the restriction that y </. FV(M). The so
called a-convertible terms (which are provably equal without
the S-axiorn) differ only in their bound variables; it is a
standard convention that these terms are identified as will
be done mostly in this book.

Let T be a set of equations between lambda terms.

(iv) T I- M = N means that M = N can be derived from the equations in
T and the axioms and rules of (iii).

A(C) I- M = N, or even I- M = N, is the same as r/J I- M = N.
(v) T is a A(C)-:theo~lj if T is a set of closed equations such that

T I- M = N => (M = N) E T

for all closed lambda terms M,N.

0

This definition is the usual one of the syntax of the lambda calculus,
except that a set of constants is introduced. The only purpose of this is
to be able, when considering models, to talk formally about the elements of
these models in our lambda theories.

1.1.2. Notations. We adopt the usual notational conventions. Unessential
brackets are left out.

Application is associated to the left:

MN 1 ••. Nn stands for (... (MN 1) ..• Nn) •
Abstraction is associated to the right:

h 1 ..• xn.M stands for (h 1 .•. (Axn.M) ..•) .

A0 (c) = {ME A(C) I FV(M) = 9)} is the set of closed lambda terms.

A0 (c,Jt) = {ME A(C) I FV(M) c {Jt}}.

We write A,A,A0 ,A0 (i), ••. instead of A(9)),A(9)),Ao(9)),A0(9),i), ••..

If i is a sequence of distinct variables we have a notion of simul

taneous substitution M[i := N].
D

11

The first impression one has is that lambda calculus is a purely equa

tional theory, but a closer look reveals that the variable binding term

operator Ax. has the internal strength of a quantifier. This will be seen

more clearly when we discuss the notion of weak extensionality. Neverthe

less, if one gives up weak extensionality, there exists an equivalent formu

lation of lambda calculus that is purely equational, see section 1.2.

The next definition will lead in a natural way to a notion of model

for the lambda calculus. The disadvantage of this definition is that it is

rather crude. The advantages are its naturalness and its usefulness when de

fining certain kinds of models, e.g. term models and filter models. Despite

its naturality the definition is of a rather recent date, cf. Hindley and

Longo [1980], Berry [1980] and Koymans [1979].

The following definition is used only temporarily.

1.1.3. Definition. A pttoto lambda algebtta is a structure Sfil= (X,[.]), where

[.]:AO(!)+ X and!={~ I a EX}, such that

(a) [a] =a for all aEX,
0 (b) Th (!W) f- M = N ~ [M] = [N] for all M,N EA (!).

Here Th(m) {M=N I M,NEAO(_!) "[M] = [N]}.

(Hence (b) can be equivalently formulated as Th(Wl) is a A(_!)-theory.)

D

Note that in this definition, the domaiµ of the function[·] is a set

of closed lambda terms. It is easy to extend this to all lambda terms,

using assignments, in the following way.

1.1.4. Definition (satisfaction).

Let lJJl = (X,[·]) be a structure with [·] : AO(!) + X.

(i) An Mf.>,ignment in X is a mapping p : Vars + X.

l 2

Let Ass (X) be the set of assignments in X. If p E Ass (X),

xEVars and dEX then p(x/d)EAss(X) is defined by

p(x/d)(y) =d if y::x,

p(y), if y °{'.x.

(ii) Define[.].:/\(~) xAss(X)-+X by

[M(~)] = [M[lt := p(i)]].
p --

We observe the convention that M(~) is an informal notation for

a term M with FV (M):: GO. In this case M[lt : = ~] may be denoted

as M(~).

(iii) fill,p F M=N <= [M]p = [N]p.

(iv) fill,p I= ((>, for a first-order formula tp over the equations of

the lambda calculus, is defined in the usual way.

(v) fill!= tp - VpEAss(X)(Wl,p I= tp).

D

Let us note a few easy conse~uences of this definition.

I. I. 5. Lenma. Let fill = (X,[•]) be a pro to lambda algebra, M,N E /\(!) and

p, CT E Ass (X) .

(i) If ME J\o(~) then [M]p [M].

(ii) [x] p = p (x) .

(iii) If p ~FV(M) = CT ~FV(M) then [M]p [M] 0 •

(iv) If Th (!m) I- M = N then IDl I= M = N.

Proof:

(i),(ii) and (iii) are easy.

(iv) Note that, comparing with I .1.3.(b), only the fact that Mand
0 -+ N may be open is new. Now let M,N E J\ (!,x). Then

Th(!!)?) I- M = N "* Th(!!)?) I- /Qt. M = /Qt. N

=> Th(!!)?) I- (J1.M)_! = (J1.N)! , for all 1E X,

Th(!!)?) I- M[i" : = 1J -+ -+
!EX, => = N[x := ~], for all

=> IDl I= M[lt : = ~] N[lt := 1] , for all ~EX,

=> ilJl,p I= M= N , for all p E Ass(X),

=> IDll= M=N.

D

If one looks at definition l.J.3. it seems to be too general. To show

that this is not the case we will treat first-order logic in this way and

see that this leads to the usual definition.

1.1.6. Intermezzo. Let L be an algebraic first-order language with func

tion symbols {fi I iEI} and constants{~ I kEK}. Now let

!lJl = (X ,[·]) with [·] a mapping from the closed first-order terms,

with constants from X, to X. Assume as before that [a]= a for all

a EX and Th (lm) I- s = t => !lJl I= s = t for closed terms s, t. Then de

fine, if f is an n-ary function symbol, ? : Xn -+ X by

!lJl Define furthermore for a constant symbol c that c [c].

Then we want to show that it follows that

[f(t., ••• ,t H = P<[t1], ••• ,[t]) -l n n

for all closed terms t 1, ••• ,tn.

Indeed, lDl I=

Hence Th (IDl) f

Therefore, by

t. [t.] for 1 o;;;;i.;;;;n.
l. l.

t. [t.] for 1 o;;;;i.;;;;n.
l. _i_

a well-known rule of equality, we get

Going back to fill again we find that

That is [f(t 1, ... ,tn)] = [f([t 1],. .. ,[tn])].

Applying the definition of ? to the right-hand-side of this equal

ity gives us the desired result. The upshot of all this is that the

whole interpretation of terms is determined by {?!I i E I} and
l.

{~I kE K} and that this interpretation can be defined inductively

as usual.
D

Using the ideas of this intermezzo it is possible to make definition

1.1.3. a little less crude by noting that application is just a binary

operation.

13

14

1. I. 7.

1.1.8.

Definition. Let IDI = (X,[·]) be a proto

operation . : x2 ...,_ x is defined by

a.b = [a b] (app.Uc.ation.) .

Fact. Let IDI = (X,[.]) be a proto

corresponding binary operation.
0 Then for all M, NE f\ (~) we have

[MN] = [M] · [N] .

lambda

lambda algebra. A binary

0

algebra and • : x2 _,. x the

Proof: Cf. the corresponding proof for the first-order case in inter
mezzo I. I .6.

D
The only situation where we really made use of the strength of Th()m)

is in the proof of this fact. On the other hand, adding the binary oper
ation to the definition of a proto lambda algebra eliminates the need for
Th(,!!R), which is the content of the next lemma.

1.1.9. Lemma. Let ID/= (X,•,[.]) be a structure with•: x2 -+x and
[.]: l\O(!)->-X, such that for all a EX and M,NE/\O(!)

(a) [!:I:_] = a,

(b) [MN] [M] ·[N],

(c) A(!) I- M=N =:> IDll=M=N.

Then 0 for all M,NEfl (~)

Th(,!W)!-M=N =:.IDll=M=N.

Hence (X,[·]) is a proto lambda algebra and • is the binary oper
ation as given in definition J.J.7.

Proof: Let us show that the following stronger property holds: for
0 ->-

a 11 M ,NE f\ (!,x)

Th()m) I- M = N =:. IDI I= >.Jt.M = >.it.N.

This is shown by induction on the length of proof of M = N from
Th(,!!R). The lambda calculus axioms are treated by (c). If

(M = N) E Th (.1]]1) then M ,NE f\ O (~_) and ;\ (!) I- >-*.M = (;\y*. y)M and simi

larly for N. Hence by (c), (b) illl F 1-it.M = ;_;t,N. Note that in the

case of the s-rule everything is automatically clear by the way

the above property is stated. Let me do finally one other rule.

Assume M=N => ML=NL is the last rule applied. Then by induction

hypothesis !fill= >-i.M = A~.N, where* is such that M,N,LEAO(!,i).

We have to show that illl I= ;\~.ML = !-it.NL. But we notice that

;\(~I- >-*.ML= (1-yi.yiL)(;*.M) and similarly for N. Hence the re

sult follows by some applications of (c) and (b).

The last part of the lemma follows easily.

D

Because of this lemma the final version of the definition of a proto

lambda algebra takes the following form.

1.1.10.Definition. A ;:JJLo.to lambda. alge.b!ta. is a structure!JJl= (X,•,[.]),
2 0 where • : X -+ X and [• D : f\ (X) -+ X are such that for all a EX and

M, N E f\ O (!) -

(a) [~] = a ,

(b) [MN] [M] • [N] ,

(c) ;\(!)I- M=N =>!fill= M=N.
D

15

Now that we made the role of application more explicit, one would hope

that something similar could be done for abstraction. The first thing that

comes to mind is to extend lambda calculus to a first-order theory, while

interpreting the s-rule as being equivalent to the axiom

\fx(M= 1'1) -+ h.M = h.N (S).

Because of the 8-axiom we really have an equivalence here. The s-axiom,

also called the axiom of weak extensionality, states that functional lamb

da tenns (these are lambda abstraction tenns') are detennined by their appli

cative behaviour. But this is not generally valid. Instead, every lambda

tenn should be considered as a program that has its own intensional charac

ter apart from its input-output behaviour. Perhaps the strongest evidence

for this is the following proposition due to Plotkin.

16

I.I.I I. Proposition (Plotkin terms).
0 There exist terms F ,GE/\. such that

(a)

(b)

0 for all Z E /\. we have A I- FZ = GZ,

A If Fx = Gx for a variable x.

Proof: See Barendregt [1981], eh. 17 §3.
D

This proposition tells us that the s-axiom does not hold in the so
called closed term model. Now we will introduce these term models formally.
Together with the filter models they show how easily the crude interpret
ation of definition I.I.JO. works.

1 .1 .12. Definition (open term models).

Let T be a /..(C)-theory.

Let =T be the equivalence relation on A(C) defined by

M =T N => T !- M = N.

[M]T denotes the equivalence class of M.

Let X = A(C)/=T and define• :x2 +x by

(This does not depend on the choice of representative.)
Furthermore for any ME AO Q~) let

[M] = [M']T,

where M' is obtained from M by replacing every constant of the form
[N]T by N (if necessary modulo some renaming in M to avoid binding
free variables of N). Note again that this does not depend on the
choice of representative of [N]T. Finally the open tvcrn mode.£ of T
is the structure l!R(T) = (X, • ,[·]) .

D

I. l .13. Lemma. Let T be a /..(C)-theory. Then IDl(T) is a proto lambda algebra.

Proof: We check the conditions in definition I.I.JO.

(a) [[N]T] = [N]T by definition.

(b)

(c)

[MN]= [M'N']T = [M']T. [N']T = [M]·[N].

Let M,N EA O (llUl(T) I) and suppose that J..(1l.1l(T)) I- M = N. Choose
0-+ -+ -+ -+

Ml ,N1 EA (x) and LE A(C) such that M::: Ml [x := [L]T] and

N::: N1 [)t := [t]T]. Then clearly A I- M1 = N1 and hence

T I- M1 [)t : = tJ N1 [it : = tJ .
Therefore,

. [MD [M1 [i := [t]T]]

[Ml[~:= tJ]T

-+ -+
[NI [x := L]]T

-+ -+
[N1 [x := [L]TJD

[N].

Hence lUl(T) I= M= N, what had to be shown.

17

D

Since the Plotkin terms talk about closed terms, we should go on by

defining the socalled closed term models. But there exists a general proce

dure to define "closed" submodels of given models.

1.1.14. Definition (interiors).

Let lUl = (X, • ,[.]) be a proto lambda algebra. Define

x0 = {[MD I ME Ao} and [M]o [M] for any ME A0 cx0). The ,&,;te.M,oJt

of lUl is the structure wP = (XO,•,[·] O).

1.1.15. Lemma. The interior of a proto lambda algebra lUl is well-defined

and again a proto lambda algebra.

D

Proof: That wP is a proto lambda algebra, once it is well-defined,

follows easily from definition I .1.10. To show well-definedness

we have to check first of all that XO is closed under • . But

[M].[N] =[MN] Ex0 , whenever M,NEA0 . Furthermore we want to show
0 0 0 0 0 -+ -+ 0

that [M] EX for any MEA (!.._).Let M1 EA (x), NEA such that

M::: M1 [i := [N]]. Then

[M]O [M1 [t := [N] H
-+ -+ 0

[M1[x:=N]]EX.
D

18

I.I. 16. Definition (closed term models).
Let T be a \(C)-theory. The clo~ed teJrm modelwfJ(T) is the interior
of the open term model !!Jl(T).

D

Equivalently, a definition like J.1.12. could be given, restricting
all terms to just closed terms. (Strictly speaking this would only give an
isomorphic copy.) Let us now state formally the earlier introduced and very
important concept of weak extensionality.

I. I .17. Definition. Let !!Jl be a proto lambda algebra.
(i) !!Jl is weakly exte.n.6ioruit if .!!Jll= t;, where t; is the following

axiomscheme:

'v'.x(M= N) -+ Ax.M = Ax.N,

0 where M,N EA (!!Jl,x).

(ii) A p!toto i.ambda model is a weakly extensional proto lambda
algebra.

1.1 .18. Corollary (to the existence of Plotkin terms in I. I. I I.).

D

wfJ(A) If t;, that is wfJ(A) is a proto lambda algebra, but not a proto
lambda model.

Proof: Let F,G be the Plotkin terms in proposition I.I.II. Take
M= Fx, N= Gx. Then for all ZE AO

[F[Z]] [FZ]

[GZ] , by proposition 1.1.11.,

[G[Z]].

Hence .!!JlO (A) I= 'v'.x (M = N).

But on the other hand

wfJ(\) I= Ax.M = \x.N ---
[h. Fx] = [Ax. Gx]

A ~ \x.Fx = \x.Gx

A ~ Fx = Gx.

Hence by proposition I.I .l l.(b) wfJ(A) ~ \x.M Ax.N.
We conclude wfJ (A) If E;.

D

On the other hand we can extend lemma 1.1.13. as follows.

1.1.19. Proposition. Let T be a \(C)-theory, then

(i) !Dl(T) is a proto lambda model.

(ii) roP (T) is a proto lambda algebra.

Proof:

19

(i) By lemma l.1.13. !Dl(T) is a proto lambda algebra. It remains to

show that !JR(T) I= !;. Hence let M,NE /\O(!Dl(T), x) and suppose

!JR(T) I= Vx (M = N) •

This implies that

By definition of interpretation in!Dl(T) we get [M']T = [N']T.

Therefore [\x.M']T = [\x.N']T and again by definition of inter

pretation

!JR(T) I= \x.M = \x.N.

(ii) Apply lelllllla 1.1.15.
D

The combination of 1.1.18. and 1.1.19. shows us that !!Jl{\) is an example

of a proto lambda model, whose interior is not a proto lambda model.

For another kind of model that is easy to define using the notion of

proto lambda algebra, we refer the reader to the socalled filter models,

see Barendregt, Coppo, Dezani-Ciancaglini [1983].

In case we have axiom !; at our disposal it is possible to simplify

the definition of a proto lambda algebra, which is then in fact automati

cally a proto lambda model. This is so, because axiom!; makes proofs by

induction on length of proof in the lambda calculus possible.

1. I. 20. Proposition. Let !JJl = (X, • ,[·]) be a structure with

•: x2-+x, [.]: /\O(!)-+X satisfying

(a)

(b)

[~] = a for all aEX,
0 [MN] = [M] ·[N] for all M,NE /\ (_~),

20

(c) [Ax.M(x)TI ·a

(d) 1UI I= t;.

0 [M(x :=~H for all MEI\ (!,x) and aEX,

Then fill is a proto lambda model.

Proof: To verify condition 1.1.10.(c) we use induction on the
length of proof of M = N in A(!} to show

A~) I- M = N => fill I= M = N

for any M,N EA(!).

For the s-rule we use assumption (d).
For the S-axiom we use assumption (c), together with the fact
that [M[x := NH = [M[x := [NTI JD for all M,N E AO(!), which is easily
proved by induction on M, again making use of (d).

D
The approach towards semantics as followed in this section will hence

forth be referred to as the crude approach.

1.2. The app~oach 06 combina:to~y logic.

In section l.l. we tried to handle the semantics of the lambda calcu
lus in a direct correspondence with its syntax, hence including the vari
able binding term operator AX. This last operator gave some trouble in that
its interpretation need not always satisfy the very natural axiom of weak
extensionality, see corollary 1.1.18. The purpose of this section is to
look at this problem from another side by eliminating the use of AX. in
favour of some new constants, the socalled combinators. The method for this
elimination goes back to some ideas of Schonfinkel [1924], see Curry and
Feys [1958]. We then arrive at the (at the syntactic level) completely
equivalent theory of strong combinatory logic, that has the advantage of
being equational in the pure sense. This means that all known modeltheory
can be applied to this situation.

I. 2. l. Definition (basic combinators of the lambda calculus).

hyz.xz(yz).

;\xy.x.
D

21

The basic fact that opens the way for carrying out the above sketched

program is the following fact.

1.2.2. Fact. For any lambda term ME A(C) with FV(M) = {*} there exists

another term N built up from *• the constants from C occurring in

M, SA and KA using only the operation of application, such that

A(C)l-M=N.

Proof: will be given in 1.2.10.

Fact 1.2.2. suggests the following formal system.

1.2.3. Definition (syntax and rules of combinatory logic).

Let C be a set of constants.

(i) The set Cl(C) of combinatory terms with constants from C is

inductively defined by:

Vars c Cl(C)

c c Cl(C)

S,K E Cl(C) (b111i,i,c. c.ombinataM)

P,Q E Cl(C) => (PQ) E CE(C).

D

(ii) CL(C) is the theory defined by the following axioms and rules,

where P,Q,RE Cl(C):

p p

SPQR PR(QR) (S-axiom)

KPQ p (K-axiom)
p Q => Q p

p Q, Q R => p R

p Q => PR = QR, RP = RQ,

(In fact the first axiom is redundant.)

Let T be a set of equations between combinatory terms.

(iii) T I- P = Q means that P = Q can be derived from the equations in

T and the axioms and rules of (ii).

CL(C) I- P = Q, or even I- P = Q, is the same as r/J I- P = Q.

(iv) T is a CL(C)-theory if T is a set of closed equations, closed

under derivation. D

22

We observe that all occurrences of variables in combinatory terms are
free and that the notion of (simultaneous) substitution can be defined in
the obvious way.

1.2.4. Conventions. As always unessential brackets are left out and appli
cation is associated to the left.

Cl0 (c) = {P J FV(P) = ~} is the set of closed combinatory terms.
a 0 cc) (Jt) = ct0 cc.~) = {PI FV(P) ::.fit}}.

D

The strength of the system of combinatory logic is that the operation
of abstraction Ax. in the lambda calculus can be sinrulated in CL, using
only the two basic combinators S and K.

l.2.5. Definition (ab~bta.c,t,lon in CL).

(i) For every variable x a map <x>: Cl(C) + Cl(C) is defined induc
tively by

<x>x SKK

<x>P

<x>(PQ)

KP if xlt FV(P) ,

S(<x> P) (<x> Q), if x E FV (PQ).

D
Notice that abstraction in CL behaves very well with respect to sub

stitution, that is

(<x> P) [y := Q] - <x>(P[y := Q]).

1.2.6. Lemma. Let PE Cl(C), then

(i) FV(<x> P) = FV (P)\ {x}.

(ii) I- (<x>P)x = P.

Proof:

(i) Obvious.

(ii) By induction on P.

(a) f- (<x>x) x SKKx Kx(Kx) = x.

(b) If xltFV(P), then

f- (<x>P) x = KPx = P.

23

(c) If x E FV (PQ), then

I- (<x> (PQ)) x = S (<x> P) (<x> Q) x

by the induction hypothesis.

(<x>P) x((<x>Q)x) = PQ,

D

The fact that abstraction can be simulated in combinatory logic gives
us the possibility of the following translations.

1.2.7. Definition (~:tandaJr.d tJtantila:ti..on6).

(i) A: Cl(C) + /\(C) is defined inductively by:

A(x) = x , for x a variable,
A(c) = c for c EC,

A (S) SA
A(K) KA

A(PQ) A(P)A(Q).

(ii) CL: /\(C) + Cl(C) is defined inductively by:

CL(x) = x , for x a variable,
CL(c)=c ,forcEC,

CL(MN) CL(M)CL(N)

CL(Ax.M) <x> CL(M).

As notations we use MCL for CL(M) and PA for A(P).
Notice that this notation is consistent with the one introduced in defi
nition 1.2.1.

1.2.8. Lemma. For all PECl(C), ME/\(C) we have FV(P) = FV(PA),
FV (M) = FV (MCL).

D

Proof: Induction on the structure of P, respectively M, using lemna
1.2.6. (i).

1.2.9. Lemna. Let P,QECl(C), ME/\(C).

(i) A(C) I- (<x>P)A =Ax.PA.

(ii) CL(C) 1-P=Q ~ A(C) 1-PA=QA.

(iii) A(C) I- M = (MCL)A.

D

24

Proof:

(i) By induction on the structure of P. The most difficult case
is P =QR, where x E FV(P):

(ii) Easy induction on the proof of P = Q in CL(C).
(iii) Induction on the structure of M, using (i).

D
1.2.10. Proof of 1.2.2. This is an immediate corollary of 1.2.9.(iii).

It is clear that M and (MCL)A contain the same constants from C.
D

From fact 1.2.2. and lemma 1.2.9.(ii) we can conclude that every
lambda term can be represented as a combinatory term in such a way that
combinatory logic does not prove anything, not provable in lambda calculus.
But does it prove enough? The answer to this is "no:".

1.2.11. Lemma. There exist M,NEJ\O such that A I- M=N, but CL If MCL NCL"
So a fortiori 1.2.9.(ii) <= does not hold.

Proof: Take M Ax.x and N = Ax.(Ay.y)x.

Then MCL = SKK and NCL = S(K(SKK)) (SKK). However, CL If MCL = NCL
(this follows from the familiar Church-Rosser theorem for CL, see
Barendregt [1981], 7.2.4.).

Taking P = MCL' Q = NCL one sees, using 1.2.9. (iii) that 1.2.9.(ii)
<= doesn't hold.

D

In order to bring the theory of combinatory logic closer in strength
to the lambda calculus, we give the following definition.

1.2. 12. Definition (strong combinatory logic).

D
1.2.13. Proposition. CLS(C) is a CL(C)-theory with the following properties.

(i) CLS(C)/-P=Q - A(C)l-PA=QA forallP,QECl(C).
(ii) A(C) !- M=N - CLS(C) !- MCL = NCL for all M,NEJ\(C).
(iii) CLS(C) I- P = (PA)CL for all PE Cl(C).

Proof:

(i) => is clear by induction on the length of proof of P=Q.

<= holds by definition.

In fact (i) can be read as saying that CLS(C) is a CL(C)

theory, if one restricts CLS(C) to closed equations.

(ii), (iii) follow from (i), using 1.2.9.(iii).

The theory CLS(C) can be finitely axiomatized over the usual axiom

schemes and rules of CL(C). The method is due to Curry.

1.2. 14. Definition.

Let AS consist of the following five axioms:

(Al) K S(S(KS) (S(KK)K))(K(SKK))

(A2)

(A3)

(A4)

(AS)

S S(S(KS) (S(K(S(KS))) (S(K(S(KK)))S))) (K(K(SKK)))

S (KK) = S (S (KS) (S (KK) (S (KS) K)))(KK)

S (KS) (S (KK)) = S (KK) (S (S (KS) (S (KK) (SKK))) (K(SKK)))

S (K (S (KS))) (S (KS) (S (KS))) =

S (S (KS) (S (KK) (S (KS) (S (K (S (KS))) S))))(KS) .

1.2. 15. Proposition.

25

D

D

CLS(C) can be axiomatized over CL(C) by the set of axioms AS, that

is

Proof: See Barendregt [1981], chapter 7.3., where the history of

the set of equations AS can be traced back.
D

Needless to say that one look at definition 1.2.14. im:nediately re

veals the modest practical usefulness of the set of axioms AS. This in

contrast with its theoretical importance. If one looks at the proof of

proposition 1.2.15. one gets a better understanding of their meaning. A

clear insight in these axioms and their complexity is however still lack

ing.

Now that lambda calculus has been "translated" into an equational theory

one can approach the semantics along these lines, as will be done in the

26

remainder of section 1.2.

l .2.16. Definition. An a.pplic_a;Uve -6.tfu.tc:tu.'1.e is a structure 9.Jl = (X, •)
where • : x2 +X is a binary operation.

0

Although formally an applicative structure is nothing more than a non
empty set with a binary operation, this terminology has been chosen since
in lambda calculus models this operation is intended to be application of
functions to arguments.

We note that the language belonging to an applicative structure is
just the language of combinatory logic without the two basic combinators
S and K.

l.2.17. Definition. Let 9.Jl = (X,-) be an applicative structure.
(i) The set of .tvuM OVefl. fill, that is X(l!Jl), is defined induc

tively by

Vars c 5r (9.Jl)

X c X(l!Jl)

P,QE5r(l!Jl) '* (PQ)EX(l!Jl).

(Hence 5!:(9.Jl) = {PEC-l(!) I S,K do not occur in P}.)

(ii) [.]. : 5!:(9.Jl) x Ass (X) +X is defined inductively as usual by

[x]p

[a]
- p

[PQ] p

p(x) ,forxEVars,

a

(iii) Satisfaction is defined as usual, cf. 1.1.4.(iii), (iv), (v).

0
We observe the notational conventions of J.2.4.

As such, applicative structures are not of interest for the subject of
this text. For instance groups and other algebraic structures give exam
ples of applicative structures. The important property that distinguishes
the applicative structures that are useful for our purposes from others is
the property of combinatory completeness, which says that any series of
applications in whatever order can be represented in a canonical form.

27

1.2.18. Definition. Let ID!= (X, •) be an applicative structure. ID! is called

eambina.:toJr.y eomple,te. if for every PE '.t(IDI) with free variables among

~we have

ID! I= 3yV°i(yi: P).
0

In order to state this property in another way we present the follow

ing definition.

1.2.19. Definition. Let ID!= (X,•) be an applicative structure and qi: Xn+X

a mapping.

(i) qi is !Le.p!Le.J.ie . .n:tab.te. OVe.!L ID! if 3y Ex v-;. Ex (y-;. = qi(-;_)) •

(ii) qi is ai,gebJta),e OVe.!L ID! if it is definable in iJJI, that is if

there exists a term P(-;_)E'.t(IDl) with variables among~= x 1, ..

• • ,xn such that

ID! I= p (i\:) = qi(~) for all 'il:E X.

0

1.2.20. Observation. Let ID!= (X, o) be an applicative structure.

(i) Every representable function over ID! is algebraic over ID!.

(ii) ID! is combinatory complete - every algebraic function over

ID! is representable over ID!.
D

The connection of combinatory completeness with combinatory logic as

explained in the following proposition was implicitly present already in

Schonfinkel [1924].

1.2.21. Proposition. Let ID!= (X,•) be an applicative structure.

!Dlis combinatory complete - there exist elements s,kEX such

that

ID! I= ~xyz xz(yz) A !::_xy = x.

Proof: ~ : (a,b,c) i+ ac(bc) and (a,b) >+a are just two examples of

algebraic functions that should be representable, if ID!

is combinatory complete.

<= We can expand ID! to a model of combinatory logic. Then

if P(i°)E'.t(IDl) let f=[<:it>P] and use lerrma 1.2.6.(ii)

to show that :In I= fi° = P. 0

28

1.2.22. Definition. A c.ambinato4y ltfgebl!.a., or a mode.£ 06 CL, is a struc

ture llJ1 = (X,•,s,k) with •: X2 +x and s,kEX such that for all

a,b,cEX we have

sabc ac (be),

kab a.
D

If one extends the definition of satisfaction in 1.2.17. with the ob

vious stipulations that [S] =sand [K] =k thenlm= (X,•,s,k) is a com-p p
binatory algebra if and only if fill I= CL.

Much of the work in this section has been done to allow us to proceed

now directly to the following important definition.

1.2.23. Definition.

(i) A c.ombinatMy .lambda ltfgebl!.a., or a mode.£ 06 CL6, is a combi

natory algebra fill = (X, •, s, k) such that

(In fact, by proposition 1.2.15. this comes down to a finite

extra set of axioms.)

(ii) A c.ombinato4y .lambda mode.£, or a weakly ex.tew.,iona.l mode.£ 06
CL6, is a combinatory lambda algebra fill such that

fill I= I; CL '

where !;CL is the following axiomscheme

'v'x(P = Q) -+ <x> P = <x> Q ,

with P,QEC.l(!!Jl,x).
D

Just as in proposition I. 1.20. it is possible to simplify the defi
nition of a combinatory lambda model.

1.2.24. Proposition. Let llJI: = (X, • ,s,k) be a combinatory algebra. AsslUlle
furthermore that

(a) s = [<xyz>.xz(yz)],

1.4.

(b) k = [<xy> . xD ,

(c)lJJ?l=i;:CL'

Then lJJ1 is a combinatory lambda model.

Proof: We have to show that lDl I= CLS.

In order to do this it is clearly sufficient to show:

(I) Ai-M=N => lJJ?l=MCL=NcL forallM,NE/\.

(2) lJJ1 I= (PA)CL = P for all PE Cl.

29

Proof of (I): By induction on the length of proof of M = N, using (c).

To verify the 13-axiom we need to know that

for all M,N E /\,

This can be easily proved, again using (c), by induction on M.

Proof of (2): By induction on the structure of P, using (a) respec

tively (b) for the case P:: S respectively P:: K.
D

Some more simplifications concerning i;:CL will be presented in section

We end this section by considering the term models. They form an im

portant class of structures inbetween syntax and semantics. Although the

reader readily supplies any details for himself we will define some notions

for ease and future reference.

1.2.25. Definition (open term models).

Let T be a CL(C)-theory.

Let =T be the equivalence relation on Cl(C), defined by

p =T Q - T f- p = Q.

[P]T denotes the equivalence class of P.

Let X = Cl(C)/=T and define •: x2 +x by

30

(This does not depend on the choice of representative.)

The open teJrm model. 06 T is the structure

D

J.2.26. Definition (interiors).

Let lm= (X,•,s,k) be a combinatory algebra.

Define x0 = {[p] IP E c.e.0 }.

Then the iYLtvUo!f. 06 IDl is the structure

onO 0
"'' = (X ,•,s,k).

0 0 Note that since s = [S], k = [K] with S,KE Cl , we have s,k EX

D

0 2 0 Clearly also • : (X) -+X • Therefore the interior of a combinatory algebra

is welldefined.

I. 2. 27. Lemma.

(i) If lm is a combinatory algebra, respectively a combinatory

lambda algebra, then so is wP.
(ii) There exists a corobinatory lambda model lm such that ID'tO is not

a combinatory lambda model.

Proof:

(i) These assertions follow from the fact that CL and CLS are

equational theories.

(ii) Take lm = lm(CLS) and use the combinatory versions of the Plot

kin terms of proposition I.I.II.
D

1.2.28. Definition (closed term models).

Let T be a CL(C)-theory.

The do1.>ed tvun model. of T is im0 (T), the interior of the open term

model of T.
D

1.2.29. Examples.

(i) lm(CL) andlmO(CL) are both combinatory algebras, but not combi

natory lambda algebras.

(ii) im0 (cL6) is a combinatory lambda algebra, but not a combinatory

lambda model.

31

(iii) IDl(CLB) is a combinatory lambda model.
D

1.3. The equivai..enee 06 the CJlUde and eombinato~y vvu,ion/.i.

The purpose of this section is to show that the approaches of sections

I.I. and !.2., viz. the crude and the combinatory approach, are equivalent.

This will be the first indication that the notion of lambda algebra (and

of lambda model) is rather natural. This will be done by giving a bijec

tive correspondence between proto lambda algebras and combinatory lambda

algebras.

1.3.1. Construction. Let (X,•) be an applicative structure.

(i) Let IDl = (X, • ,[. D) be a pro to lambda algebra.

Define IDl' = (X,•,s,k), where

(ii) Let~= (X,•,s,k) be a combinatory lambda algebra.

Define W+ = (X,•,[.D), where

D

Note that this construction does not change the underlying applica

tive structure.

The constructions ' and + are inverses of each other.

I • 3 . 2. Theorem.

(i) Let IDl be a proto lambda algebra.

Then IDl' is a combinatory lambda algebra and IDl' + = !l)l.

(ii) Let W be a combinatory lambda algebra.

Then w+ is a proto lambda algebra and w+• w.

Proof:

(i) 0
Claim: For every PE Cl ~)

Proof: This is clear by induction on the structure of P, using

the definition of s and k.

32

Now assume CLB (~) I- P = Q, P ,Q E c.e.0 (~).
Then by 1.2.13.(i) A(~ I- PA= QA.

llJll llJl llJl llJl I Hence [P] =[PA] = [QA] = [Q] •

We conclude that l!R' is a combinatory lambda algebra.

llJl I+ llJll
Furthermore [M] = [MCL] , by definition,

flJl
[MCL A] , by the claim,

'
[M]rm.

Therefore llR •+ = l!R.

(ii) We use lerrma I. I. 9. to show that 1Jt is a proto lambda

algebra:
91+ IJl IJl Condition (a): [~] = [~L] = [~] = a.

Condition (b): [MN]

0 Condition (c): Let M,N EA (?S_).

A(?S_) 1- M = N "* CLB(~ I- MCL = NCL

"* [MCL]IJl = [NCL]IJl

* [M] = [N].

m+ IJl m Furthermore [SA] =[SA CL] = [S] = s and similarly for K.
' This means 91+' = 91.

D

What is important is that not only this correspondence exists but
also that it preserves the central properties of lambda algebras and models
that were discussed in the first two sections, notably the notions of weak
extensionality, term models and interiors.

This will be shown now.

1.3.3. Theorem. Let f!Jl, respectively 91, be a proto lambda algebra, respec

tively combinatory lambda algebra.

(i) IDl I= I; <==> IDl' I= !;CL'

(ii) IJl I= !;CL

(iii) ('fJJi°}' =

(iv) (IJlo) +

<==> 'Jt I= I;.

(!Jn') 0.

(ilt)O.

Proof:

(i) =>:Assume P,QECl(!), FV(PQ)~{x} andi!H' I= 'v'x(P=Q).

Then IDl I= 'v'x (PA = QA). Since IDl I= I;, we have

i!HI= Ax.PA= \x.QA. Equivalently, by 1.2.9.(i),

IDll= (<x>P\ = (<x>.Q)A.

Therefore iJJl' I= <x>P =<x>Q.

(ii) =>: Similarly.

33

(i) (ii) <=: These follow from (i) (ii) => by using IDl'+ = lJJl and IJl+• = IJl.

(iii) Let ilH = (X, • ,[.]) •

(iv)

o o o I o ThenIDl (X 1,·,[.D), x1 = {[M] MEA}.

(!U10)' (X~,·,[S\],[KAD).

FurthermoreIDl' = (X,•,[SA],[KA]),

(IDl')o = (X~,·,[SA],[KA]), x~ = {[P]IDl'I PEct0 }.

0 0
It remains to be shown, that X1 = X2 •

But [P]IDl' = [PA] and [MD = [MCL A], hence this is clear. ,
0 +

We have (IJl) ({(IJl+)•)O)+,by theorem 1.3.2.,

(((IJl+) 0) 1
) +'by (iii),

,by theorem 1.3.2.
D

Also term models correspond; to show this we need the obvious corre

spondence between theories.

1.3.4. Definition.

(i) If T is a A-theory, let TCL be the CLS-theory, defined by

TCL = {P=Q! (PA=QA)ET}.

(ii) If T is a CLS-theory, let TA be the A-theory defined by

TA = {M = N I (MCL = NCL) E T}.
D

34

By looking more carefully to the equivalence of combinatory logic and

lambda calculus as studied in section 1.2. it can be shown that TCL is

really a CLS-theory, TA really a :\-theory and that TCL,:\ = T, T:\,CL = T.

!.3.5. Proposition.

(i) If T is a

(ii) If T is a

:\-theory, then (l!Jl(T)) ' = l!Jl(TCL) •

CL-theory, then (l!Jl(T))+ =llll(TA).

(The notion of isomorphism, =, is the obvious one. See also section

I. 6.)

Proof:

(i) There is the obvious correspondence [M]T +-+

(ii) Use the correspondence [P]T +-+ [PA]T ·
:\ D

Now that we have proven the equivalence of the combinatory and crude

approaches, we may state the following convention.

1.3.6. Convention. From now on, when we talk about lambda algebras or lamb

da models, we move freely between the combinatory and crude versions

of the theory, if no confusion arises. There will be no essential

difference between M and MCL' or P and PA. Depending on the context

it should be clear what is meant. Both combinatory lambda algebras

and proto lambda algebras will be referred to as just lambda al

gebras. The same convention applies to lambda models. Moreover the

following abuses of notation will be used frequently.

Let l!Jl = (X, • ,[.]) be a lambda algebra.

l!Jl may stand for l!Jl, I l!Jl I or X.

M may stand for M, [M] or [MCL].

a may stand for a or a.

For example :\x.ax El!Jl stands for

[h . ax] E I l!Jl I •

Let us state a few properties of the by now familiar combinatory

algebras, lambda algebras and lambda models.

1.3.7. Proposition.

D

(i) {combinatory algebras} c {lambda algebras} c {lambda models}.

35

(ii) (l.!Dl(CL) I,•) is an applicative structure, that can be expanded

to a combinatory algebra, but not to a lambda algebra.

(iii) (l.!DlO (Jt) I,•) is an applicative structure, that can be expanded

to a lambda algebra, viz. 'iIJlO (Jt), but not to a lambda model.

(JC is the A-theory, equating all unsolvables, see Barendregt

[1981].)

Proof: See Barendregt and Koymans [1980].

For more relations between lambda algebras and lambda models, see

section I. 6.

1.4. Lambda mode.l6.

D

The structures that are most easy to handle are certainly the lambda

models. The first real mathematical lambda calculus structures that were

discovered, viz. ID00 of Scott [1972] and 1Pw of Plotkin [1972] and Scott

[1974], were both weakly extensional and hence lambda models. ID00 was even

extensional, see section 1.5. The most important advantage of lambda models

is that lambda terms can be interpreted as real functions; these are exten

sionally characterized by their applicative behaviour in contrast with the

notion of algorithm that has an intensional character. We approached lambda

models in sections I.I. and 1.2. via the detour of lambda algebras. The pur

pose of this section is to simplify the description of lambda models and to

concentrate on their particular properties.

The main idea for carrying out this program, is making full use of the

strength of the axiom of weak extensionality. First of all we want to re

state this axiom in such a way that it is first-order, with only application

as a nonlogical symbol, besides the constants S and K.

1.4.1. Definition.

(i) I = hy 1 ••• y .xy 1 ••• y • n n n
(ii) I= 10 , 1=1 1•

Let 'iIJl be a combinatory algebra.

(1'1'1') w I 1 f [TI'iIJl e use n a so or <xy 1 ••• yn> xy 1. ··YnJJ ,

i = [ID, I = [I].

36

(iv) The Meyer-Scott axiom is the following statement

Vxy(Vz(xz = yz) + lx = ly) (MS).

1.4.2. Lemma. Let IDl be a combinatory algebra.

(i) 9J1 I= !;CL => IDl I= MS.

(ii) If fill I= I (<x> P) = <x> P for all PE ct0(.tm,x) then

!D1 I= MS => lDl I= !;CL"

(iii) If !D1 is a lambda algebra then

!D1 I= !;CL - fill I= MS.

Proof:

(i) Suppose iIR I= !;CL' a,b E IIDll and WI I= Vz(_~z = £_z).

(ii)

By (!;CL) !D1 I= <z> ~z = <z> £_z.

Hence !D1 I= la = lb.

We conclude that fill I= MS.

Suppose fill I= MS

a=[<x>.P],b

By (MS) fill I= I~

and !D1 I= Vx(P = Q) with P ,Q E ce.0 (l!Jl,x). Let

[<x>.Q]. Then fill I= Vz(~z = £.z).

1£_, that is !D1 I= l(<x>P) = l(<x>Q).

By the assumption about IDl this implies

lml=<x>P =<x>Q.

Therefore !D1 I= !;CL has been shown.

(iii) Suppose !Dl is a lambda algebra.

D

Since CLS(Wl) I- l(<x>P) =<x>P for all PECt0 (!D1,x) it follows
that !D1 I= I (<x> P) = <x> P for all PE ct0 (.i1Jl,x).

The assertion now follows from (i) and (ii).
D

The following observation will show us a natural way to produce a
theorem of Meyer [1980]. We would like to replace !;CL by MS. But in the
assumptions of lemma 1.4.2. (iii) we still need that fill is a lambda algebra
and hence that IJJl satisfies the rather complex axiomset AS. This axiomset
can be eliminated in the style of proposition 1.2.24., replacing !;CL by MS.
But does the conclusion of lemma 1.4.2. (iii) still hold then? Looking at
lemma 1.4.2.(ii) we see that this holds for an arbitrary combinatory algebra,

0 if only we are able to prove that fill I= l(<x>P) = <x>P for all PEC! (!D1,x).
But this can easily be attained by the use of two extra axioms.

1.4.3. Theorem (adaptation of Meyer [1980]).

LetIDl= (X,•,s,k) be a combinatory algebra such that

(a) s = t 3s,

(b) k = 12k'

(c) IDl I= MS.

Then IDl is a lambda model.

0 Proof: For any Q,RECl (!)we have

IDll= SQR = J3SQR = <x>. SQRx = l(SQR) and

IDll= KQ = J 2KQ = <x>. KQx = I (KQ).

Since (<x> P) is always of the form SQR or KQ, we may conclude
0 !ml= I (<x> P) = <K> P, for all PE Cl (!,x).

By (c) and lenma 1.4.2. (ii) we have IDl I= l;CL"

Now we can finish the proof by applying proposition 1.2.24. For by

the now established validity of ~CL we have

s = 13s = <xyz>. sxyz = <xyz>. xz(yz),

k 12k = <xy>. kxy = <xy>. x.
D

37

In the original version of this theorem, Meyer used other expressions

than 12 and 13 which have the advantage of being shorter (when written out

ins and k), but the disadvantage that the proofs involved get more compli

cated. Scott [1980] used even shorter expressions. An important difference

is that Meyer's method tries to avoid any specific properties of s and k,

in contrast to Scott's method, cf. corollary 1.4.10. Now we will compare

these two methods.

1.4.4. Definition. Let IDl= (X,•,s,k) be a combinatory algebra and EEX.

(i) (Meyer) M is inductively defined (E) E by n n w
M EM M

El = E, = s(kE) (s(kE)) • n+I n

(ii) (Scott) (E!)nEw is inductively defined by

s ES s
El = E, = s(kE). n+l n

(iii) MSE is the Meyer-Scott axiom where

Vxy (Vz (xz = yz) + Ex = Ey).

is replaced by E, that is

D

38

1.4.5.A. Lenma (Meyer's case).

Let ID?= (X,•,s,k) be a combinatory algebra and EEX.

If ID? I= MSE and Vab E X(Eab = ab), then for all a,b EX, n;;;.1 (writing
M

En for En)

(a)

(b)

(c)

En+ lab = En (ab),

E(Ena) = Ena'

Vx 1 .•. xn E X(ax 1 ..• xn

Proof:

(a) c ab
n+l

s (kc) (s (kE)) ab
n

E (s (kE) a) b
n

s(kcn)ab

E (ab).
n

(b) If n =I: Eax = ax for all x,

hence C(Ea) = Ca.

If n>I: c a= s(kE) (s(kE 1))a n n-
= E (s (kE n- I) a)

+--+ E a
n

E b.
n

and hence the result fol lows by the case n = I.

(c) +: By induction on n;;;. I it follows from (a) that

Enax 1 ..• xn = ax 1 ... xn.

Hence the result.

+ : By induction on n ;;;.1:

Basis: For n=I it holds by assumption.

Induction step: Assume ax 1x 2 ... xn+l = bx1x 2 .•• xn+l'

Then by IH, En(ax 1) = En(bx 1).

By (a) we have cn+laxl = cn+lbx 1.

Therefore E(E 1a) = E(C 1b).
n+ n+

By (b) finally E 1a = E 1b. n+ n+
D

In Scott's case the proof of the corresponding lemma is more compli

cated and uses a special property of s. On the other hand it does not need

the assumption that Eab = ab for all a, b EX.

1.4.5.B. Lemma (Scott's case).

Let ID?= (X,•,s,k) be a combinatory algebra and EEX.

If fillF MS and s = s 3s, then for all a,b EX, n;;;.I (writing s for
S s n

s)
n

(a) sn+lab sn (ab),

(b I) s(sab) sab,

(b2) Sa I a,

(b3) s(sna) sna,

(c)
-+

Vx 1 ••• xn E X(ax

Proof:

(a) sn+lab

(b I) sab s 3sab

s 2 (sa)b

s(sab).

blt) +-+ s a s b.
n n

(b2) Since for all xEX we have lax ax we conclude by MSS that

s(la) = Sa.

On the other hand, since la <x> ax

(b I) to show s (la) = la.

Hence Sa = la.

(b3) For n = I: sax = lax = ax, by (b2).

Therefore s(sa) = sa by MSs.

For n>J: sna s(ksn_ 1)a

s (s (ks n- l) a) , by (b I) ,

s(sna).

s(ka)i we may apply

(c) Follows from (a) and (b3) exactly as in lemna 1.4.5.A.

39

D

Now we will proceed with a quite general lemma that is applicable to

both Meyer's and Scott's case.

1.4.6. Lemma. Let fill= (X,•,s,k) be a combinatory algebra and (sn)n;;;.J an

arbitrary sequence of elements of X. If the following conditions

are satisfied for all a,b EX, n;;;, I

(a)

(b)

(c)

s = s 3s,

k = s 2k,

fill F MS ,
SI

40

(d)

(e)

then lDl is a lambda model and I
n

(1).

Then the first part of the theorem easily follows because (a), (b)

and (c) transform into s= 13s, k= 12k and IDll= MS and therefore the

orem 1.4.3. applies.

In order to prove (I) we first show

E 1 (I a) = 1 a
n n

Proof of (2): We have sab E3sab

E2 (sa)b

E1(sab)

(2).

and similarly ka = E1(ka).

Therefore, since any <x> P is

we conclude El (<x>P) = <x>P

In particular E1 (Ina) Ina.

End of proof of (2).

of the form SQR or KQ
0 for all PE Cl (!,x).

Proof of (!):We proceed by induction on n.

Basis: ax = lax for all x EX, hence

E1a = E1 (1a) by MSEI

E 1a = la by (2).

hence

Induction step: En+lax En(ax), by (d),

In (ax), by IH,

ln+lax, for all xEX.

Hence El (E la) = El (I la) by MSE . n+ n+ I
This means En+la = ln+la by (e),(2).

End of proof of (l).

The second assertion in the theorem, viz. In = EIEn = !En' follows

easily: Apply MS to (I) to get !En= Jin. But]En EIEn by (I) and

11 I because .lDl is a lambda model. n n
D

Now we can put these results together.

1.4.7. Theorem (Meyer [1980], Scott [1980)).

Let!!Jl= (X,•,s,k) be a combinatory algebra and £EX.
M S

Let (sn)n> 1 be either (£n)n> 1 or (£n)n> 1

If (a)

(b)

(c)

(d)

s = s 3s,

k = £2k'

!!Jl I= MSS'

(Only in Meyer's case) £ab=ab for all a,bEX,

then !!Jl is a lambda model and 1 = ££ = 1£ for all n;;;;.1.
n n n

41

Proof: Apply lenma 1.4.6. together with lemma 1.4.5.A. (for Meyer's

case) or lel!ID1a 1.4.5.B. (for Scott's case).
D

Although Meyer's definition of (£) ---i • is a little more complicated
n n?' ·

than Scott's definition, it has the advantage that with it we may avoid any

extra properties of s,k (as e.g. s =£3 s) in the definition of a lambda model.

This will be shown in 1.4.8. - 1.4.10. From now on £ means £M.
n n

1.4.8. Definition.

(i) A combina;to.1r.y algebM wU:h £is a structure !!Jl = (X,·,s,k,£)

such that (X,•,s,k) is a combinatory algebra and£ is such

that !!Jl I= MS£ and Vab E X(£ab = ab).

(ii) Let !!Jl be a combinatory algebra with £.

Define <J:>(.!JJ?) = (X,·,s,k), where s = s 3s and k s 2k.

(iii) Let W = (X,•,s,k) be a lambda model.

Define ~(W) = (X,•,s,k,1).
D

1.4.9. Proposition. Let !!Jl= (X,•,s,k,£) and !!Jl' = (X,•,s',k',£') be two com

binatory algebras with £ (with the same underlying applicative struc

ture).

(i) <l:>(!!Jl) = <l:>(!!Jl') ~ ££ = £'£'.

(ii) <l:>(.!JJ?) is a lambda model with T d~f [l~<l:>(IDI) = ££.

Proof: It is easy to see that <J:>(!!Jl) and <:!?(ml') are combinatory al

gebras.

(i) <=:Suppose££=£'£'. We will show by induction on n that

£na = £~a for all a EX (*).

Basis: £a= ££a= £'£'a s'a (**).

42

Induction step: En+lax En(ax) ,by 1.4.5.A.(a),

E' (ax) , by IH,
n

E' ax ,by l.4.5.A.(a). n+l
Therefore by MSE,E(En+la) = E(E~+la).

By (**), E(E~+la) = E'(E~+la).

Therefore E(E 1a) = E'(E' 1a) and making use of lemma · n+ n+
1.4.5.A. (b) we may conclude E a = E' 1a. This proves (*). n+I n+

Now E3S = E;s ,by(*),

Ejs',by lemma 1.4.5.A.(c).

Similarly E2k = Ezk'.

We conclude \P(,\W) = \P (ilJI') •

(ii) We apply (i) <= to ilJI and ilJI' :=: (©(,\W), E). Clearly, since now

E 1 = E, we have EE= E'E'. Therefore (by (i) <=)

(i) =>

<l>(ilJI) = <l>(ml'). But this just tells us that the conditions

for theorem I. 4. 7. are fulfilled in the case of <l>(ilJI).

Therefore <r>@l) is a lambda model and moreover 1 = EE.

Suppose <J>(l!J() = <l>(ilJI'). Then clearly by (ii)

E 1 E 1 •

0

Let us remark here that the other way around is easy. If)ff is a lambda

model, then 'f'(!n) is a combinatory algebra with E and <I>('f'(!ll)) =?ff. Hence

('f',<l>) defines the class of lambda models as a "retract" of the class of

combinatory algebras with E.

1.4. 10. Corollary (Meyer [1980]).

Let ilJI = (X, •) be a combinatory complete applicative structure and

EE x. If

(a) ilJll:MSE,

(b) 'v'ab EX (Eab = ab),

(c) EE = E

then there exists a unique pair (s,k) such that (X,•,s,k) is a

lambda model with l =E.

Proof: Choose arbitrary s,kEX such that ilJI*= (X,•,s,k,E) is a

43

combinatory algebra with E. Then <l:>(!m*) = (X,•,s,k) is a lambda

model with I= EE= E. Suppose W = (X,•,s',k') is another such

lambda model with I'= E. Then W = <J)(IJl(W)) = ©(!fil*) by proposition

1.4.9.(i).
D

We will refer to a structure (X,•,E) satisfying J.4.10. (a),(b),(c)

as a MeyeJL lambda model. This gives one more example of the many equiv

alent definitions of the concept lambda model. The most important feature

of this description is that it is first-order and moreover relatively

simple, as compared to the equational definition of lambda algebras in

section I . 2.

In order to get to the easiest definition of a lambda model we should

leave the realms of combinatory manipulations and look at models as naively

as possible. The only defect is that this approach is not first-order.

1.4.11. Definition. Let (X,•) be an applicative structure.

(i) [Xn->- X] = {f: Xn-+ X I f is representable}.

(ii) F: X+ [X->-X] is defined by F(a) (b) = a.b •

(iii) (X,•,F,G) is a iJunctional domaA.n if G: [X+X] -+X is a map

such that Fo G = id [X+X].

I . 4. 12. Remarks .

D

(i) • and F are interdefinable and therefore we will also talk

about functional domains (X,•,G) or (X,F,G).

(ii) The basic idea here is that the function G chooses a canoni

cal representative for any function that is representable.

(iii) We call F also the function-operator or fun-operator and G

the graph-operator.

Let us try to build an interpretation for lambda terms in a func

tional domain.

J.4.13. Definition. Let!fil= (X,•,G) be a functional domain.

(i) Define a partial map [.D: AO(~)-;rX by:

[dD = d , for d E X;

D

44

[MN] [M] .[N]

t

, if both [M] ,[N] -1-

, otherwise;

[;\x.M] = G(di+[M(5!_)]), if for all d one has [M(5!_)] .J.

and (di+[M(5!_)]) E [X-+X],

= t , otherwise.

(ii) IDl is called a (6unctiona£) lambda. mode£, if [.] is a total

map.
D

1.4. 14. Proposition.

(i) For each functional lambda model IDl = (X, • ,G) the correspon

ding .IDl = (X, • ,[.]) is a lambda model.

(ii) A lambda model IDl = (X, • ,[.]) defines a functional lambda

model by putting G(f) [Ax • .!!:.x], where a EX is any represen-

tative of f E [X-+ X].

(iii) The constructions in (i) and (ii) are each others inverse.

Proof:

(i) Routine to verify (6) and (~).

(ii) Note that the definition of G does not depend on the choice

of a because of weak extensionali ty. FoG = id is easy. As to

totality, let the partial map defined by G be [.]G. Then one

shows by induction on the structure of ME /\O(~_) that [M]G .J.

and [M]G = [M]. The only difficult case is M = Ax.N.

Consider the function d 1-+ [N(d)]G = [N(d)]. This function is
- G -

representable by [Ax.N]. Hence [Ax.N] is defined and we have
G Px.N] = Px.[Ax.N] x] = [;\x.N].

(iii) As we just saw in (ii), starting with a lambda model brings

us back to the same lambda model. Now let IDl = (X,·,G) be a

functional lambda model and IDl' = (X, • ,G') the result of trans

f arming IDl into a lambda model and back to a functional lambda

model again. Let f E [X-+ X], representable by a EX.

Then G' (f) [h.ax]

= G(d 1-+ [~5!_])

= G(d 1+ a.d)

= G(f).

Hence IDl = IDl'.
D

45

Because of this proposition, functional lambda models will be called

also just lambda models.

The following proposition gives a connection between the notions of func

tional lambda model and combinatory algebra with E.

I .4. 15. Proposition. Let 1lJl = (X, • ,F ,G) be a functional domain.

Then 1lJl is a lambda model <==>

(a) (X, •) is combinatory complete, and

(b) Go FE [X-+ X].

In this case we have l = G (Go F) .

Proof:

=> : Assume 1lJl is a lambda model.

Then (a) is clearly satisfied. To show (b) let us compute [I]

in !JJl:

For any d E I IDll we have

[/..y.iy] = G(e >+ [i~])

= G(e f+ de)

= G (F (d)).

[Axy.xy] -1- means that (d >+ [A.y.iy])

Moreover we have l = G(GoF).

Go FE [X +X].

<= Assume (a), (b). It is easy to show by induction on M(:i) E /\(_~)

with

(I)

(2)

FV(M) c'2t= x 1 ••• x that
- n

+ n +
for all d EX [M(i)] -1- and

+ -+ n
(d >+ [M(~]) E [X -+X].

hardest case: Let me do the

Assume M(lt) =

VdE Xn Ve EX

A.y.N(~,y). By induction hypothesis we know that

[N(i,~)] -1- and moreover that there exists some
+ + -+ n

aEX such that ade = [N(i,~)] for all dEX ,eEX.

Then (e>+ade) =F(ad)E[X+X] and hence

[M(~)] = G(F(ad)) = E(ad), where E = G(GoF). Therefore

[M (~)] + for all d E Xn and this shows (l). Moreover d >+ E (ad)

is algebraic and hence representable by (a). This shows (2).

D

46

1.4.16. Corollary. There exists a bijective correspondence between func
tional lambda models (X,•,G) and Meyer lambda models (X,·,E),
given by E = G (Go F) and G(F (a)) = Ea.

Proof: Combine corollary 1.4.10. and propositions 1.4.14., 15.
A direct proof can also be given.

D

Finally we want to talk about a fifth equivalent way of defining a
lambda model, originating with Scott, and intimately connected with the
functional domain approach. As was noticed by Scott the graph-operator Gin
a functional domain is completely determined by its range, being a subset
of X.

1.4.17. Lemma. Let (X,•,G) and (X,·,G') be functional domains.
If Ran(G) = Ran(G') then G = G'.

Proof: Suppose Ran(G) = Ran(G') and let fE[X+X]. We want to show
G(f) G' (f). Since Ran(G) = Ran(G') we can pick gE [X+X] such
that G (f) = G' (g) • It suffices to show that f =g. Therefore pick
aEX. Then f(a) = G(f).a = G'(g).a = g(a).

Scott's axiomatization of lambda models can be given now by trans
lating the properties of Gin proposition 1.4.15. into properties of
R = Ran(G).

D

1.4.18. Definition. Let (X,•) be a combinatory complete applicative struc
ture and R::x. (X, • ,R) is a Sc.oft lambda model. if

(a) Va,bER (VxEX(ax=bx) + a=b)

and there exists an element EE X such that

(b) VxE X (ExE R),

(c) Vx,yE X (Exy = xy).
D

1.4. 19. Proposition. There exists a bijective correspondence between func
tional lambda models (X,•,G) and Scott lambda models (X,•,R) given
by R Ran(G) and

G(f) Ea, where Eis any element of X, satisfying 1.4. 18.(b),(c)
and a is any element of X, representing f.

47

Proof: Routine.
D

Scott's original definition of a Scott lambda model made use of the

combinators sand k instead of the combinator I.

I. 4. 20.

1.4.21.

Definition. Let (X' •) be an applicative structure and

Define R1 = R and Rn+! = {a ER I Vx EX (ax ER) } , n >I.
n

Proposition. Let ex,·) be an applicative structure

Then (X, • ,R) is a Scott lambda model -
(a) Va,bER(VxEX(ax=bx)->- a=b) and

there exist elements s E R3 , k E R2 such that

(b) sxyz = xz(yz) ,for all x,y,zEX,

(c) kxy = x ,for all x,yEX.

Proof:

and

Rex.

D

Rex.

=> • Suppose (X, • ,R) is a Scott lambda model, corresponding to the

ordinary lambda model (X,•,s,k). It is easy to check that sER3,

k E R2 because in general

R {a EX I a= a}.
n n

<=:Let sER3 , kER2 satisfy (b),(c). Then take i=skkER and

l=s(ki)ER2 . This I satisfies 1.4.18.(b),(c).
D

As an example of the usefulness and flexibility of the notion of func

tional lambda model we will show how the gf111phmode1.JPw can be introduced in

this way. Let us first mention some difficulties: since in a functional do

main, we have that [X +X] is embedded into X (by the mapping G which has a

leftinverse F), we get by Cantor's theorem that [X+X] i=Xx, if card (X)>l.

Here XX is the full set theoretical function space. Hence we have to re

strict the functions in an appropriate way to get [X +X]. A second diffi

culty is to satisfy the conditions in proposition l.4.15. to show that we

get a functional lambda model. In particular (X,•) should be combinatory

complete. Both difficulties can be solved by putting an appropriate top

ology on X and by taking [X +X] to consist of all continuous mappings on X.

If this topology is well-chosen, we can really embed [X+X] into X and we

48

can show combinatory completeness by demonstrating that every algebraic

function is continuous and every continuous function is representable, so

all three classes of functions coincide. Suitable structures on which such

a topology can be introduced are the complete partial orders.

l .4. 22. Definition. Let (X,<) be a p~ OJtdeA (po).

(i) A subset Dex is clUte.ued if D=F!l> and for every x,yED there

exists z ED such that x,y<z.

(ii) (X,<,J.) is a c.omple.te. p~ otideA (cpo) if J.EX is the least

element of X and every directed set Dc:X has a supremum

sup DEX.

1.4.23. Definition (the Scott topology).

Let (X,<,J.) be a cpo. U~X is Sc.oft open if

(a) Vx,yEX(xEU A x<y-+ yEU),

(b) VD:=x (D directed" sup DEU-+ DnU=F!{l).

l.4.24. Lemma. Let (X,<,J.) and (X' ,<' ,J.') be cpo's.

(i) {u:=x I U is Scott open} defines a topology on X.

(ii) f: X-+X' is continuous -

VD c X (D directed -+ f (sup D) sup f (D)) •

Proof:

(i) Easy.

D

D

(ii) Note that continuous functions are monotonic and use the fact

that for any yEX' {z I z'j!'.;'y} is open.

From now on we will write X for (X,<,J.), making no notational dis

tinction between the partial order relations and bottom elements of the

different cpo's.

1.4.25. Definition. Let X,Y be cpo's.

(i) Define a partial ordering on xxy by

0

<xl,yl> <<x2,y2> - xl<x2 "Y1<Y2·
(ii) Define a partial ordering on [X-+ Y] = {f: X-+ Y I f is continu-

ous} by f<g - VxEX(f(x)<g(x)). D

1.4.26. Lenma. Let X,Y be cpo's.

(i) xxy is a cpo.

(ii) [X->-Y] is a cpo.

Proof:

(i) Take supxxy D = (supX D0 , supy D1), where

D0 {x EX I 3y E Y <x, y> E D} and

D1 {yEY \ 3xEX <x,y>ED}.

(ii) Take sup[]F = (x >->-sup {f(x) I fEF}).
X->-Y Y

1.4.27. Lemma. Let X,Y,Z be cpo's.

49

0

f: xxy->- Z is continuous - f is continuous is both arguments sep-

arately.

Proof: Easy, using lemma 1.4.24.(ii).
0

1.4.28. Definition. Let X,Y,Z be cpo's.

(i) ev: (X->-Y]XX->-Y is defined by

ev(f,x) = f(x).

(ii) A: [zxx -+ Y] -+ [Z ->- [X -+ Y]] is defined by

A(g) = (z ,_,_ (x ,_,_ g(z,x))).
0

1.4.29. Lenma. Let X,Y,Z be cpo's.

(i) ev: [X->-Y]xX+Y is continuous.

(ii) A(g) is welldefined for any g E [zxx +Y] and A itself is con-

tinuous.

Proof : Routine.
D

1.4.30. Theorem. Let CPO be the category of cpo's with continuous maps as

morphisms. Then CPO is a cartesian closed category.

Proof: Routine.
D

1.4.31. Example (the graphmodel, Plotkin [1972], Scott [1974]).

Pw = {X I X~w} partially ordered by inclusion is a cpo with r/J as

bottom element. Let (en)nEw be a standard coding of finite subsets

so

of w and (n,m) o-+ <n,m) be a standard coding of pairs of natural

numbers. Define

A•B {mEw 3n(e cB A (n,m) EA)}. n-

It is easy to see that • : Pw2 + Pw is continuous.

By lenma 1.4.29. (ii) /\.(•) = F: Pw+ [Pw+Pw] is continuous. Define

G: [Pw+Pw] +Pw by

G(f) = {<n,m) I mE f(e) }.
n

Again it is clear that G is continuous.

Trivially every representable function is algebraic and, since • is

continuous, every algebraic function is continuous. That every con

tinuous function is representable and hence that the three concepts

coincide in this case, follows from the following fact:

For let f: Pw+Pw be continuous. Then:

F (G(f)) (A) G (f) •A

{m I 3e cA ((n,m) E G(f))} n-

{m I 3e c A (m E f (e)) } n- n

{m I m E U {f (e) I e c A}}
n n-

{m I mE f(A) }, by continuity of f,

f (A).

We may conclude that Fw = (Pw, • ,F ,G) is a functional domain. More

over (Pw,•) is combinatory complete, since the concepts of represen

tability and algebraicity coincide with the concept of continuity.

Since F,G are continuous, so is GoF; hence GoF is representable. By

proposition 1.4.15. it follows that lPW is a lambda model, the so

called gJz.aphmodel.
D

This is the first example where we see that lambda calculus can be

interpreted in a cartesian closed category. In this case the category, CPO,

51

is concrete or set-like which makes the resulting structure a lambda model.

In general, as will be seen in chapter 2, we will get all lambda algebras in

a natural way by interpreting in more general cartesian closed categories.

Loosely speaking we can say the following. In combinatory algebras

every algebraic function is representable. In lambda algebras this represen

tation of algebraic functions can be given uniformly (by the interpretation

of lambda terms). In lambda models there is even a canonical representative

for every representable function, the association of a canonical represen

tative to any representable function being representable itself.

In this section we will study the ultimate structures in this hierarchy,

the extensional lambda models, in which every representable function has a

unique representative.

l.5. !. Definition. Let (X,·) be an applicative structure.

(X, •) is called ex:te.Yl-6.-toviaf if for all a, b E X

VxEX(ax=bx) -> a=b.
D

The following proposition shows that extensionality is a very strong

pro~erty.

l.5.2. Proposition. Let (X,•) be an extensional combinatory complete ap

plicative structure. Then there exists a unique pair (s,k) E x2

such that (X,•,s,k) is a combinatory algebra. Moreover this is a

lambda model.

Proof: Unicity follows because we have by induction on n:

If
,
x = x 1, .. .,xn then for all a,b EX
, -+ -+

Vx(ax =bx)-+ a=b.

Hence Vxyz(s 1xyz = s 2xyz) -+ s 1 = s 2 and similarly fork.

Existence follows because of combinatory completeness. Let (X,·,s,k)

be this combinatory algebra. Then (X,•,i) is a Meyer lambda model

52

as one easily checks. Hence (X,•,s,k) is a lambda model.
D

Of course we call a structure !Dl = (X, •, •.•) extensional if the corre

sponding applicative structure (X,•) is extensional. The property of exten

sionality can be characterized as follows in a combinatory algebra.

1.5.3. Proposition. Let !Dl = (X, •,s,k) be a combinatory algebra.

Then !Dl is extensional - !Dl is weakly extensional and !Dl I= I =I.

Proof:
0 => : Suppose !Dl I= P = Q,P ,Q E Cl Q~,x).

Then !Dl I= (<x>P)x = (<x>Q)x. By extensionality !Dll= <x>P =<x>Q.

Hence !Dl is weakly extensional.

Furthennore lxy=xy=Ixy in!Dl. Hence by extensionality, applied

twice, !!JI I= l = I.

<= Suppose Vx(ax =bx). Then !Dl I= Vx(~x = E_x). By weak extensionality

!Dl I= <x>.ax = <x>.bx. That is la= lb. Since I= i we get

a= ia = I a= I b = ib =b.
D

In the formulation of functional domains we get the following charac

terization of extensionality.

I

1.5.4. Proposition. Let !Dl= (X,•,F,G) be a functional domain. Thenllll is

extensional - GoF = idX. Hence, if !!JI is extensional, !Dl is a func

tional lambda model precisely when !Dl is combinatory complete.

Proof:

=> • Suppose !Dl is extensional. For all a EX, we have:

FoG(F(a)) = F(a),

hence G(F(a)) .x = a.x for all xE X; then by extensionality

G(F(a)) = a.

Suppose GoF = idX and VxEX(a.x=b.x). This means F(a) =F(b).

But then a = G(F(a)) = G(F(b)) = b.

The rest follows by proposition l.4.15., since the identity is rep-

resentable in any combinatory canplete structure.

1.5.5. Example. IPw is not an extensional lambda model. By proposition

1. 5.4. it suffices to show that GoF*idpw· But for all AE Pw

G (F(A)) {<n,m) [mEF(A)(e)}
n

53

D

We see that GoF :::_ idPw' but for most A (for instance if A is finite

nonempty) G (F(A)) *A.

1.5.6. Example (construction of an extensional lambda model).

Let D0 be an arbitrary cpo. By induction on n E w we will define

cpo's D 1 and maps (j) E [D +D 1J, y E [D 1 -+D] as follows:
n+ n n n+ n n+ n

Basis: D1 = [D0 -+D 0],

<Po (d) (e I+ d),

y0 (f) f(l.).

(Both (j)O and y 0 are clearly continuous.)

Inductionstep: Dn+Z = [Dn+I + Dn+I]'

(j)n+I (f) (j)n of o yn'

Yn+l(g) ynogo(j)n.

Now consider the following projective system in CPO:

Do ..io ___ DI D3 +--- .••..

D

Let D00 with ('Tin: D00 ->-Dn) be a limit cone for this diagram. (In CPO

this kind of limit exists.)

f . 2
De 1ne • : D00 + D00 by: for any x,y E D00

x•y =the least element zED00 such that for all nEw

TI (z) ~TI l(x)(TI (y)).
n n+ n

(Looking carefully at the definition of the limit in CPO one checks

that this is welldefined.) The structure (D00,•) turns out to be ex

tensional and combinatory complete. For a detailed account of this,

we refer the reader to Barendregt [1981).

D

54

1.6. Homomo1tphi.-6m~ and embedc:U.ng~.

In any situation where one defines some class of structures one wants

to know what is the correct corresponding notion of morphism. In the case

of lambda algebras and lambda models the correct notion of morphism is

most easily recognized in the combinatory versions, since these are quite

familiar from universal algebra. Starting with this we will derive equiv

alent conditions for all the definitional variants we gave.

1.6.1. Definition. Let (X,•) and (Y,·') be two applicative structures.

(i) A map <.p: X->-Y is a mMphJAm (06 applic.ative ~.tfluc.:tu.!t~) if

for all x,yEX

<.p(x.y) = <.p(x) •' <.p(y).

LetWl= (X,',s,k) and 91= (Y,•',s',k') be two combinatory algebras.

(ii) A map <.p: X->-Y is a homomo1tphi.-6m if it is a morphism of appli

cative structures and moreover <.p(s) = s', <.p(k) = k'.

Notation <.p: 9Jl->- 91.

(iii) lP: m->- 91 is an embedrilng if lP is injective.

Notation lP: Wl'->-91.

(iv) (jJ: m ...,. 91 is an .U..omo1tphi.-6m if there exists a ijJ: 'JC-+ m such

that lj!o<.p = idX and (/)o\j! = idy. Notation <1>: nn~w.

(v) m is embeddable in 91 if there exists a (j): rol<-+91.

Notation rol'->-91.

(vi) an is .U..omo!tplUc. to 91 if there exists a <.p: Wl.::+91.

Notation 9Jl e; 91.

(vii) 91 is a homomo!tplUc. -image of IDl if there exists a <.p: !In-+ 91 with

lP surjective as a map, also denoted i.p: !Ul-»-91, Notation Wl-»-91.

0

Definition 1.6.1. fixes the notion of homomorphism for all variants

of the definition of lambda algebra or lambda model.

As always in universal algebra we have that bijective homomorphisms are

automatically isomorphisms.

1.6.2. Definition. Let <.p: X->-Y be any map.

(i) For ME/\.(!) we define MlPE /\(Y) by induction on M's structure

as

!!:..(fJ = (fJ(a) , if a EX,

x(fJ = x

(MN)'-P M'-PN'-P

C\x.M)(fJ A.x.M'-P.

(ii) For PE Cl(!) we define P(fJ E Cl(!) inductively as

!!:.(fJ = (fJ(a) , if a EX,

x(fJ = x, s'-P = S, K(fJ = K

(PQ) (fJ = Pc.pQ(fJ.

(Note that it then follows that (<x>P)(fJ <x> P'-P.)

SS

D

1.6.3. Lemma. Let!Dl= (X,•,[.]) andW= (Y,•',[·]') be two lambda algebras.

Then c.p: X-+ Y is a homomorphism =
(fJ([M]) = [MlPn ' for all ME AO(!) .

Proof:

=> : By induction on the structure of PE ClO(!) it follows that

c.p([P]) = [PlPn '. Then

c.p([M]) (fJ([MCL])

[Mc.p] '
CL

[MlPn I.

(Here it is used that (Mc.p)CL

nition 1.6.2. (i) ,.(ii).)

(MCL)(fJ which is clear by defi-

<= (fJ(s) =(fJ([S]) =[slPn• =[S]' = s'. Similarlyc.p(k) k'.

Moreover (fJ preserves application, since

[c.p(a) c.p(b)]' = c.p(a)•'<.p(b).
D

For the definitional variants of Meyer lambda model and functional

lambda model the corresponding facts are slightly more complicated. Let

me give the case for the Meyer lambda model. From now on, ab may stand

for a•b or a•'b, depending on the context.

l .6.4. Proposition. Let !Dl = (X,',E) and W = (Y, ·', E') be two Meyer lamb

da models. A map (fJ: X-+ Y is a homomorphism =

56

Proof:

~ is a morphism of applicative structures,

~(e:) = e:' and moreover there exist s 0 ,k0 €X

such that (X,•,s0 ,k0),(Y, ·',~(s0),~(k0)) I= CL.

.,. : Let (X,•,s,k) be the combinatory lambda model corresponding

tolUlby corollary 1.4.10. Similarly let (Y, •',s',k') corre

spond to !ll. Then we have by definition of homomorphism that

~(s) = s' and ~(k) = k'. Moreover E=s(ki) and e:' = s'(k'i'),

hence ~(e:) = e:'. Finally s 0 = s and k0 = k satisfy the last part

of the assertion.

Take s 0 ,k0 € X as given by the assumption above. Then

IDb = (X, 0 ,s0 ,k0 ,e:) and !110 = (Y,·'.~(s0),~(k0),e:') are combina

tory algebras with e:. Consider the operation ® of definition

1.4.8. Let ©Q!Jl0) = (X,•,s,k) and ~(!110) = (Y,•',s',k'). These

correspond to the original Meyer lambda models ll1l and !ll, by

proposition 1.4.9. and corollary 1.4.10.

By definition of© there are terms P8 (x,y,z), PK(x,y,z) built

up using • only such that

s P8 (s0,k0 ,e:), k = PK(s0 ,k0 ,e:) and

s' P 8(~(s 0) .~(k0) ,e:'), k' = PK{~(s0) .~(k0) ,e:').

Making use of the fact that ~(E) = e:' we conclude that ~(s) = s'

and ~(k) = k' •
0

That the strange condition on existence of s 0 ,k0 €X in proposition

I .6.4. is really necessary is part of the following lemma.

1.6.5. Lemma. Let lDl= (X,•,e:) and !ll = (Y,•',e:') be two Meyer lambda models.

(i) If card(Y) >1 then there exists a map~: X+Y preserving • and

e: such that ~ is not a homomorphism.

(ii) If ~: X+Y is surjective and preserves • and e:, then~ is a

homomorphism.

Proof:

(i) Consider the map~. defined by ~(x) = e:' for all x€ X.

Then <P(xy) = t:' = t:'t:' =(()(x)(()(y)

and (()(t:) = E 1 •

57

Now assume (()(k) = t:' satisfies the K-axiom in !Jl. Then we have

in !Jl, that for all y E Y y = iy = t:' iy = i, hence card (Y) = I,
quad non.

(ii) Take any s 0,k0 Ex, such that (X,•,s0 ,k0) I= CL. Let d,eEY.

Since (() is surjective there are a,b EX such that (()(a)= d and

tp(b) = e. Then <P(k0)de = (()(k0)(()(a)(()(b) = <P(k0ab) =(()(a) =d.

Hence <P(k0) satisfies the K-axiom in !Jl. Similarly (()(s 0) satis-

fies the S-axiom.
D

Our next goal is to show that every lambda algebra can be represen

ted as a retraction of a lambda model, a result due to Barendregt and

Koymans [1980] and Meyer [1981], [1982].

1.6.6. Theorem. Let ID/be a lambda algebra. Then there exists a lambda mo

del !Jl such that 9Jl~!Jl.

Proof: Let T = Th(l!ll) = {M=N!M,NEJ\O@Jl) AIDll= M=N}. This Tisa

;\(l!ll)-theory. Consider !Jl = 9Jl(T). By proposition I. I. 19. !JI is a

lambda model.

Define ((): l\Dll _,. l!nl by <P(a) = [~]T
and ijJ : l!nl _,. IIDll by i)!([M]T) = [Mao],!Dl,

ao

where ao is any element of 9Jl and Mao is M with all free variables

replaced by ao.

It should be-Clear that (() and ijJ are homomorphisms and moreover

that ijJ ((()(a)) = a for all a EIDl.
ao D

As was shown in Barendregt and Koymans [1980] a similar correspon

dence between lambda models and extensional lambda models does not hold.

I. 6. 7. Proposition. There exists a lambda model Wl such that

(a) for no extensional lambda model !Jl we have 9Jl<-+!Jl or !Jl-»-9Jl,

(b) for no nontrivial extensional lambda model !Jl' we have

fill---»- !Jl'.

Proof: See Barendregt and Koymans [1980], corollary 4.11. The fact

58

that !H -»-Wl is impossible follows because !H F I =I => IDl F I =I,

which does not hold for the Wl, constructed in this paper.
D

In proposition 1.6.7. with nontrivial we mean a structure (X,•, •..)

such that card(X) >I. Clearly the singleton structure is formally an ex

tensional lambda model. But in almost all considerations from now on this

trivial model will be excluded without mention. If we do this we can state

the following theorem which tells us that recursion theoretically and al

gebraically speaking combinatory algebras are not so trivial.

1.6.8. Theorem. Combinatory algebras are

(a) never commutative,

(b) never associative,

(c) never recursive (hence never finite).

Proof:

(a) If ik = ki, then for all x, y

x = kxy = ikxy = kixy = iy = y.

(b) If kii = k(ii), then for all x

x =ix= kiix = k(ii)x= ii= i.

(c) This follows from the fact that CL is essentially undecidable.

D

59

CHAPTER 2

CATEGORICAL DEFINITIONS OF THE MODELS

In this chapter we want to investigate in more detail in how far lamb

da calculus can be conceived of as a theory of functions. In 1.4.!4. we saw

that if one considers functions in the traditional set theoretic way we end

up with the definition of a lambda model. These structures are weakly ex

tensional, which is not surprising since set theoretic functions are given

by their input-output behaviour. But as we saw in chapter I there are legit

imate structures for interpreting lambda calculus that do not satisfy weak

extensionality. We saw essentially two different ways to arrive at these

socalled lambda algebras, the crude and the combinatorial approach. What

we want to show in this chapter is how we can arrive at the definition of

lambda algebras, but still making use of the function-concept. It is clear

that we have to choose a more intensional view of functions and hence

nothing seems more appropriate than a category theoretic approach. It turns

out that this is both completely natural and completely general. The idea

of interpreting lambda calculus in certain categories goes back to Scott

[l 980].

2. I . Ca.leg otL,lc.ai mofi.ehi.

The following definitions introduce some notation that will be used

throughout the chapter.

2. l. 1. Definition.

(i) C is a cartesian closed category (c.c.c.), that is

C is a category such that

(a) there exists a terminal object TE IC I satisfying for all

AE !Cl there exists a unique !A E C(A,T);

60

(ii)

(b) for every A,B E IC I there exists a product AXB E IC I and

maps pAB E C(AxB,A), qAB E C(AxB,B) such that for every

C E IC I and f E C(C,A), g E C(C,B) there exists a unique

(f ,g) E C(C,AXB) satisfying

For fEC(A,B), gEC(C,D) define

fXgE C(AXC,BXD) by

fxg = (f o PAC' go qAC);

(c) for every A,BE !Cl there exists a function space BAE !Cl

and a map ev : BAXA+ B such that for every C E IC I and
AB

every f E C(CxA,B) there exists a unique AABC(f) E C(C,BA)

satisfying

B

ex A

For AE IC I, define AnE ICI by induction on nE w as

AO = T
'

An+! = AnxA.

Note that
J_

A = TxA=A, but A1 ~A.

(iii) Define by induction on nEw, for maps f.: A+A., J<:;;;i.;;;n,
]_]_

61

•
• A '

Note that x associates to the left.

D

Whenever no confusion arises we leave out the subscripts of ev, A, ! ,

p, q, •.•. Now let us note the following equations.

(f,g)oh =(foh, goh)

[f 1 , ..• ,fn] ah= [f 1 oh, .•• ,fn ah]

fxg a (h, k) = (f a h, go k)

A(h o gxid) = A(h) a g

(I)

(2)

(3)

(4).

In order to interpret lambda calculus we need an object U and maps F,G in

analogy with the functional modeldefinition 1.4.11.

2. 1.2. Definition.

(i) Let UE ICI, FEC(U,Uu), GEC(Uu,U), such that Fis an epimor

phism. Then we call (C,U,F,G) a eate.go!Ueal. .f.o.mbda ~.butc;tu~e..
(ii) U is called a ~e{ilex-tve obje.et if F o G = id u· In this case

u
(C,U,F,G) is called a eate.go!Ueal. lambda alge.b~. Then we

u have a retraction (G,F): U <I U:

U G
u ---- u.

F D

u The fact that F is an epimorphism tells us that the function space U

in C is really the "set of all representable functions on U".

As a last preparation we specify how to handle sequences of distinct

variables.

2. J.3. Definition. Let f,6,8, .•. denote finite sequences of distinct vari

ables; (> denotes the empty sequence.

62

(i) If b. = x 1, ... ,xn then

(ii)

#b.= n '

Xb. = u#b.

lb. I = {x 1,. .. ,xn} ,

b.\x = x 1 ~ ••• ,xi-I ,xi+I, ••• ,xn, if x=xi ,

, if xt lb.I,

b.;x = b.\x,x

If b. = x 1, ••• ,xn and I ..;;i..;;n then 7T~.
induction on n.

11'/!;. = q "f . 'i l. = n, x.
1 = 7Tb.\:itn op, if i=Fn.

x.
].

n-1 n-1 n-1
Here q: U XU-+U, p: U xU-+U

].

Xb.-+ U is defined by

Think of 7Tb. as the mapping: (a 1, ••• ,a) 1+ a .• x. n 1
].

(iii) Let f y 1, ••• ,ym with lfl c lb.I. Define

b.
rrr: xt>. -+ xr by

b. b. b.
rrr = [7T , ••• ,7T].

Y1 ym

If y. = x (')' l..;;i..;;m, then think of the mapping]. <P].
b.

rrr: (al, ... ,an) I+ (aq>(l)' ... ,aq>(m»·
D

The following equations can be easily derived from these definitions,

where b.= x 1, ... ,xn' 181 ~If!~ lb.I, yE lfl, xt lb.I and iE {l, •.• ,n}.

b.
o [f 1, ... ,fn] f. (5) 7T

x.].
].

rrt>. 0 [f 1, ••• ,fn] [f.] =<!,f.) (6)
x.].].

].

7Tr b. b.
(7) o rrr = 7T

y y

r t>. rrt>. (8) rr8 o rrr e
rrt>., x
r,x IT~ x i~ (9)

63

(l O)

(I I).

Now, at last, we can define the interpretation of lambda calculus with res

pect to the categorical lambda structure (C,U,F,G). Sometimes we will write

C in stead of (C,U,F,G).

2. 1.4. Definition.

(i) For any AE ICI let •A: C(A,u) 2 -+ C(A,U) be defined by

f•Ag=evo(Fof,g),

(ii) Let Wl = (X, •) be the applicative structure with

X = C(T,U) and •T .

(iii) Define, forMEJ\(!IJl) and Ill.I ::FV(M), [M]L\.:XL\.-+U by induction

on M as follows.

(iv) Let 9Jl(C) = (X,',[.]), where[.]=[.]()'
D

Finally we note the following equation, for any h: B-+A and f,g: A-+U.

(f o h) .B (go h)

2. 1.5. Lerrma.

(i) If Ill. I :: If I _:: FV(M), then

L\.
[MDL\.= [M]r o rrr.

(ii) Let Ill.I={~}::. FV(M) and If!:::. FV(N). Then

+ + +
[M[x := NlD r = [M] L\. 0 [[N] r].

(12).

64

Proof: The properties are intuitively clear if one thinks of the

heuristic meaning: [M(i)] 6 = "~ 1+ M(~) ".

(i) By induction on ME J\.(}JJt).

Li
[x] L} = TIX

r 11
Tix o ITr , by (7)'

r 11
a o IT() o ITr , by (8) ,

[MN] Li [M] Li 0 Xli [N] Li

Li Li
([M] r o ITr) "M ([N] r o ITr) ' by

<[M] r ·xr [N] r)
Li

o ITr ' by (12) '

Li
[MN]r o ITr.

Px.M] 6
Li

Go J\.([M] li;x) o ITL'i\x

li·x Li c o J\. ([M] r o ITr •) o IT 11 \ ' by ;x ;x x

Go i\.([M] r ;x o IT~~~ x idu)
Li

0 ITli\x

11\x Li
c a J\. < [M] r ; x) o ITr\ x a IT 11 \ x

(IH)'

(IH),

by (9) '

' by (4)'

' by (8)'

(ii) By induction on ME J\.(JJHJ.

The only difficult case is when M'=Ay·L. Let 111' I= FV(M)=:: 1111,
+ + +

say 11' = x'. Let N' be the corresponding subsequence of N.

Note that y rf_ 111' I and y rf_ FV(N'). (By the conventions on substi

tution.) Then

65

[M[;:=NHr = [Ay.L[;' :=N', y:=y]]r

[. [-+' , J]) r
= G 0 A (L x : = N ' y : = y r; y 0 nr\y

= GoA([1] 6 ,;yo [[N']r;y' [y]f;y]) oTI~\y' by (IH),

= G 0 A([L]6' ;y 0 ([[N']r\y] 0 p,q)) 0 n~\y' by (i), (JO)'

= GoA([1] 6 ,;yo [[N']r\y]xidu) oTI~\y
(11)'

.... , r
= GoA([1] 6 ,;y) o [[N]r\y]oTir\y , by (4),

= co A([L] 6 , ;y) o [[N'] rJ 'by (i), (2),

6 -+
= c o J\ ([L] 6 , ; Y) o n 6 , o rn N] r J ' by (5)'

,by(i).

2. 1.6. Corollary.

(i) If 161 = FV(Ax.M) and lfl = FV(N) U 16\xl then

r
[M[x:=N]]r = [M]6;xo<TI6\x' [N]r>.

(ii) If 161 = FV(h.M) and x,y If.. 16 I then

[M[x :=y]], = [M], •
Li;y u;x

Proof:
• -+

(1) Let 6\x = y. Then

[M[x :=N]]r = [M[y :=y, x :=N]]r

= [M] 6 ;x o [[y]r, [N]r], by 2.1.5. (ii),

-+
= [M] 6; x 0 < [[Y] r J, [N] r >

r
= [M]6;x 0 <TI6\x' [N]r>.

(ii) [M[x :=y]] 6 ;y = [M]L'l;xo(TI~~~· [y]L'l;y), by (i),

= [M] 6 ;xo(p,q), since ti\x = ti = 6\y,

D

66

= [M]L:l·x' since (p,q)
'

id.
D

2. 1.7. Proposition. Let (C,U,F,G) be a categorical lambda structure. If

[(\y.xy)y] = [xy]
x,y x,y

then U is a reflexive object with respect to F,G, i.e. (C,U,F,G) is

a categorical lambda algebra.

Proof: We may compute as follows.

[d
x,y

[y]
x,y

[xy]
x,y

[Ay.xy]
x,y

q a p

q '

evo(Foqop,q)

GoFoqop,

ev o (F a q) x id,

[(l..y.xy)y]
x,y

ev a (F o G o F o q o p, q) = ev a (F o G o F o q) x id.

Hence we have ev o (F o q) x id = ev o (F o Go F a q) x id. By applying f\

we get F o q = Fa Ga F o q. Now q : Txu.;..u is an isomorphism and F is

epi, hence Fa G = id.
D

Here we see that the 6-axiom forces U to be a reflexive object. On the

other hand this is sufficient for proving soundness of the lambda calculus.

2. J.8. Theorem. Let (C,U,F,G) be a categorical lambda algebra. Assume

A.(!IR(C)) f- M=N and IL:ll:: FV(MN). Then [M]L:I = [N]L'I.

Proof: By induction on the length of proof of M = N. We need only

check the 6-axiom because the rest is easy. (In particular the~

rule trivially holds, since [M]L'I gives an intensional interpretation

of the function 11 A.:t.M11 E C(Un ,U).) Therefore we have to show

[(A.x.M)N] /'\

Now [(A.x.M)N] /'\

[M[x :=N]]L'I' whenever 11'11:: FV((A.x.M)N).

t.
(Go /\([M]L:I;) o IIL'l\x) 'XL:I [N]t.

t.
ev o (/\([M] D.;) a IID.\x' [N] t.), since Fa G = id,

evo/\([M]D.;x)xida<IT~\x' [N] 6 >, by (3),

'by 2.1.6.(i).

2.1.9. Corollary. Let (C,U,F,G) be a categorical lambda algebra.

Then lDl(C) is a lambda algebra.

Proof: This is clear from theorem 2.1.8. and lenma 1.1.9.

We call !!Jl(C) the lambda algebra generated by C.

2.1.10. Definition. Let (C,U,F,G) be a categorical lambda·algebra and

p: Vars -+ llDl(C) I an assignment. Let tJ. = x 1, ••• ,xn. Then define

67

D

D

D

2.1.11. Lemma. Let (C,U,F,G) be a categorical lambda algebra and ME/\(lDl(C)).

Assume p : Vars -+ llDl(C) I and I ti. I ::i FV (M). Then

Proof: Let tJ. = x 1, ••• ,xn

Then [M] = [M[~ := p(~) JD
p --

[M] ti. o [[p (i)]]

ti.
[M] ti. o p •

-+
x.

, by lemma 2.1. S. (ii),

As the last part of this first section we want to investigate when

lDl(C) is (weakly) extensional.

D

2.1.12. Definition. Let C be a category with terminal object T. Let AE ICI

be any object. Then C has enough point6 at A if

Vf,gE C(A,A) (f*g-. 3xE C(T,A) (f o x*g ox)).
D

2.1.13. Proposition. Let C be a categorical lambda algebra.

(i) C has enough points at U - !!Jl(C) is weakly extensional.

68

(ii) l!Jl(C) I= I= I - Go F idU.

Proof:

(i) ,. Let M,NEJ\O(ll!Jl(C) l,x) and assume

[M(~)] [N(~)] for all dEll!Jl(C)I =C(T,U).

Then, by lemma 2.1.5. (ii), [M] o [d] = [N] o [d] for all
I x x

dEC(T,U). Since U = TXUE!!U, Chas also enough points at

u 1• Therefore [M] = [N] and hence [Ax.M] = [Ax.N].
x x

+= It suffices to show that for every f: u+.u there exists an

a: T + U such that

(I) for all d: T+U (a·d

and (2) [ax]x = f o qTU.

f 0 d)

(Since then

\t'x(fox go x) ,. \t'd(a·d = b·d)

,. [Ax· ax] = [Ax. bx]

• [ax] [bx]
x x

,.. f g .)

But an easy computation shows that a = Go J\(f o qTU) satis

fies (I) and (2) above.

This proof may be seen in a better perspective after read

ing section 2.4.

(ii) We have by easy calculations [I]

and [I]

Go J\(q)

Go J\(G o F o q),

where q: TXU+U.

Hence

!Dl(C) I= I = I - Go J\(G o F o q) = Go J\(q)

- J\(G o F o q) = J\(q), since F o G id,

-GoFoq=q

- Go F = id since q is iso.
D

2.1.14. Corollary. Let C be a categorical lambda algebra, such that
- U -I F: U--;;;+ U and G = F • Assume moreover that C has enough points

69

at U. Then fill(C) is an extensional lambda model.

Proof: This is clear from proposition 2.1 .13. by proposition I .S.3.

D

2.2. The KaJtoub~ conJ.itJtuct,{on.

Let C be a categorical lambda algebra. In the category C there may

exist objects that are not at all related to the reflexive object U. But

every object in C, that is important for the interpretation of lambda cal

culus, is in fact a retract of U. To be specific, if we restrict our atten

tion to the sub-cartesian-closed-category of C, generated by the reflexive

object U, then every object in there is a retract of U. This will be proved

now.

2. 2.1. Definition. Let C be a category and A,B EI Cl. We say that A is a

Jr.et/w.ct of B with -6ect,[on g: A+ B and p!r.o j ect,[on f: B +A if

f o g = id A. In this case g: A<--->-B is a monomorphism and f: B---»A is

an epimorphism,

g
A ~---B.

f

Notation (g,f): A <lB, or if g and f don't matter A <lB.

2.2.2. Proposition. Let C be a categorical lambda algebra.

(i) T,uxu and UU are all retracts of U.

(ii) If A and B are retracts of U then so are AxB and BA.

Proof:

D

(i) T <l U: To prove this it clearly suffices to show that C(T,U) =l=r/J,

since then, if aEC(T,U), (a,!U): T <Ju.

But [;\x.x] EC(T,U), hence C(T,U)=l=r/J.

UU <JU: This is clear because by definition of reflexive object

(G,F): UU <JU.

uxu <lU: Since u2 = TXUXU ~ uxu it suffices to show that u2 <lu.

Now let g [AZ. zxy] u2 + u,
x,y I

f I [wK] w U + U,

70

(ii) Suppose

[w(KI)E u1 -+ u.

Then

[x]
x,y

w

[(wK) [w :=h. zxy]]
x,y

[wK] o [[Az. zxy]]
w x,y

fl 0 [g].

Similarly [y] = f 2 o [g].
x,y

by 1 emma 2. I . 5. (ii) ,

2
Defining f: U-+U by f = [f 1,f 2] o [id] we get

f 0 g [£ 1,f 2]o[g]

[fl 0 (g], f2 0 [g]]

[[x]
x,y'

[y]]
x,y

iduz •

Hence
2

(g,f): u <Ju.

A and B are retracts of U,

AxB<lU: Clearly (gAxgB, fAxfB): AxB<luxu. Furthermore by (i)

UxU <JU. Since <l is transitive we get the result.
A A U

B <JU: Define g: B -+U by

g = A (gB o ev AB o idxf A)

U A
and f: U +B by

f = /\.(fB o evUU o idxgA).

Then (g,f): BA <Juu, since

fog /\.(fB o evUU o idxgA) o g

f\.(fB o evUU o gXid o idXgA), by (4),

/\.(fB o gB o evAB o idxfA o idxgA)

11.(evAB)

idBA •

Moreover by (i) UU <l U and by transitivity of <lwe have

BA <l U.
D

71

This proposition gives us an indication that all important inf or

mation about the categorical lambda algebra C lies in the monoid of endo

morphisms of U. In fact, morphisms h: A-+B, where (gA,fA): A<lU and

(gB, fB) : B <l U, can be represented by the endomorphism h' = gB o h o f A E C (U, U) .

Then h can be recovered as h = fB oh' o gA. Moreover the objects A, which are

retracts of U, can themselves be represented in C(U,U) as follows: let

(gA,fA): A<lU, then pA=gAofA is an idempotent in C(U,U) that conveys all

important information about A in the sense that "A~ range (pA)".

The remainder of this section focuses attention on the reconstruction

of a category from a given monoid. This will be done in such a way that if

the given monoid is cartesian closed (to be explained in .the next section),

then the corresponding category gives rise to a categorical lambda algebra.

We may consider a monoid as a category with only one object. In accord

ance with the above observation we will try to embed this category in another

one in such a way that in the new category all idempotents split, that is to

say that all idempotents can be represented by a retract as indicated above.

Let us now formalize these ideas. We show the constructions not only

for categories with one object, but for arbitrary categories.

2.2.3. Definition. Let A be a category.

(i) a: A-+ A is called idempo.tent if

2
a(d~faoa)=a,

A

a

(ii) We say that an idempotent a: A-+ A .6p.u..t.6 if there exists an

object BE IAI and a retraction (r, s): B <l A such that a= r o s

A
___ a __ ,._ A

~/ (s or

B

Now suppose R,r,s are mappings defined on all idempotents a: A-+A

in A, such that (r ,s) : R <l A represents a, that is r o s = a. a a a a a

72

We suppose that R.d = A, r .d = sidA = id A.
. i A 1 A

(iii) For idempotents a,b: A+A we define

ac b <=> boa o b a,

We now can formulate the axiom of partial splitting:

(APS): For all idempotents a,b: A+A, whenever a~b, then

R R
a a~b '

r rbora~b a

and s Sa i' b o Sb• a

If (APS) is satisfied we call the expansion (A,R,r,s) a c.ai

egohy wi.;t.h expLi_c,i,t ~pLLt:ting. When no confusion arises we

will write A instead of (A,R,r,s).

(iv) CAT is the category of all categories, where morphisms are

functors.

CATES is the category of all categories with explicit split

ting, where morphisms are functors that preserve the ex

plicit splitting exactly (not only up to isomorphism).

U: CATES-+ CAT is the obvious forgetful functor.
D

In order to understand this definition a few remarks are in place. For

instance ac b says that the splitting of b is just a partial splitting of

a, in other words the idempotent b has a larger range, ~· than the idem

potent a. Indeed we have

73

A _____ a ___ _.,_ A

'bl a' lrb
Rb------..-~

If ac b then a~ b is the unique a' that makes the above diagram commute;

a~ bis itself an idempotent. Hence a tb is the remaining idempotent if

one splits a partially through the retract defined by b. Now the axiom of

partial splitting says, that the total splitting of a can be achieved by

composing the partial splitting of a through b with the total splitting of

the remainder a ~ b:

s
a

_____ a ___ --i-A

r
a

Now we define a functor K: CAT + CATES (the socalled Karoubi-functor)

that embeds a given category into a category with explicit splitting by

adding just enough retracts for all idempotents, while not making any un

necessary identifications.

This can be stated more precisely in the language of adjoint functors. For

the theory of adjoint functors we refer the reader to MacLane [1971].

2.2.4. Theorem. There exists a functor K: CAT+ CATES such that K ~ U.
Moreover the unit T) of this adjunction defines for each AE ICATI a

full and faithful embedding T)A: A+ UK(A).

Proof:

(a) Definition of K: Let AE ICATI and define

IK(A)I = {(A,a) I a: A+A is an idempotent rn A},

74

K(A)((A,a),(B,b)) = {fEA(A,B) lbofoa = f}.

Note that the condition b o f o a = f is equivalent to the con-

junction of b of = f and f = f o a. For, if b o f o a

b of = b o b of o a = b of o a f and similarly f o a

other way around, if b o f = f f o a, then b o f o a

A----f __ _,,.B

·l~"'"J
A f B

It is clear that this gives a category where

id(A,a) = a,

f, then

f. The

foa=f.

((B,b)_!_..(c,c)) o ((A,a)_f_>(B,b)) (g 0 f) (A,a) -- -..(C,c) .

We still have to define the explicit splitting on K(A). Let

f: (A,a) + (A,a) be an idempotent, that is aof=foa=f=fof.

Then Rf= (A,f), sf= f, rf = f,

Now the conditions for a category with explicit splitting as

formulated in definition 2.2.3. are all satisfied, as one

easily checks.

(b) Definition of the unit n (this natural transformation defines

for every A a universal arrow from A to UK(A), for the forget

ful functor U: CATES+ CAT, see MacLane [1971], chapter 4.):

Let nA: A+ UK(A) be the functor defined by

nA(A) = (A,idA),

f f
nA CA--B) = CnA (A) ----- nA CB)) .

It is clear that nA is a full and faithful functor for all

A E !CAT I.

Now we want to show the following universal property:

For any BE I CATES I and any functor H: A + UB there exists a

unique (explicit splitting preserving) H: K(A) + B such that

H = uH o nA,

Thus let B and H be given.

K(A)

I

3! IH
I

t
B

(c) Uniqueness of H: Suppose H satisfies the condition above. Look

at the following diagram (a: A + A idempotent)

A a A

"d ~A/. .. d
i A i A

A -----<~--a_,.. A

-~ a //

a~ /a
A

Since H preserves explicit splitting and because we know by

assumption that H((A,idA)) = HA and also

H ((A, id A)~ (A, id A)) = H(A~A), we get the following ex

plicit splitting in B

75

76

HA Ha HA

~~
11ia

We may conclude that H((A,a)) (*) '

- a H((A,idA)___,...(A,a)) sHa

- a
H((A,a)--+(A,idA)) = rHa

Now let (A,a)2-.,..(B,b) be given. Then b of o a= f,

f

Hence H((A,a)~(B,b)) = H((B,idB)~(B,b)) o

H((A,idA)~(B,idB)) o H((A,a) ~(A,idA))

We conclude that H is uniquely determined.

(d) Existence of ii: Take (*) and (**) as definitions of H. Then

H((A,idA)) = 11JidA = Ri~A HA and

H((A,idA).--!_(B,idB)) sHidB o Hf o rHidA

i~B o Hf o idHA

Hf.

Hence uH o nA = H.

Finally we need to check that H is indeed a functor and that it

preserves explicit splitting.

(di) H is a functor:

77

- a H ((A,a)-(A,a))

idl)ia

= idH((A,a)).

Now let f g (A,a)---.+(B,b) ______,..(C,c) be given.

~
g 0 f

tt(g) o iiCf)

sHc o Hg o Hb o Hf o rHa

sHc o H(g o b of) o rHa

sHc o H (g o f) o rHa

ii (g 0 f).

Therefore H is a functor.

(d2) H preserves explicit splitting:

To show finally that H preserves explicit splitting we make use

of the axiom of partial splitting in B. For, let

f (A,a) (A,a)

~/
(A,f)

be a splitting in K(A).

78

Taking its image under H we arrive at

Now note that Hf cHa and that Hf ~ Ha sHa o Hf o rHa.

By (APS) in B we have

It follows that sHf ~ Ha

had to be proved.
D

2.2.S. Remark. The original construction of Karoubi [1978], chapter I the

orem 6.10., deals only with additive categories and embeds every cat

egory fully and faithfully in another one in which every idempotent

has a kernel. To establish the connection with this theorem, note

that p is idempotent if and only if (id-p) is idempotent and that

ker(id-p) is the same as the equalizer of p and id, which is again

the same as the section of the retract belonging to p.

By adding the structure of splitting to the category we were able

79

to define the Karoubi-construction as a left adjoint to the forget

ful functor.
D

The Karoubi-construction will mainly be applied to a category with only

one object, that is to say to a monoid. It is worth repeating the defi

nition for this case.

2.2.6. Definition. Let M = (X,*,u) be a monoid. Then the Kcvwubi-evive£ope. 06

M (notation K(M)) is the Karoubi-functor applied to M considered as

a category, that is

IK(M) I

K(M)(a,b)

{a EX [a* a = a},

{m E X [b * m * a = m} ,

id a = a , m o n = m * n.
D

2.2.7. Definition. Let C be a category. An object UE ICI is called uviivVc

.6a1. if each object AE ICI is a retract of U, that is A<lU.

2.2.8. Lemma. Let M = (X,*,u) be a monoid.

(i) mEK(M)(a,b) - b*m=m=m*a.

(ii) u E IK(M) I is universal.

Proof:

(i) '*: b*m = b*b*m*a = b*m*a =m.

Similarly m * a = m.

<= : b * m * a = m * a = m.

(ii) Indeed uE IK(M) I, since u*u = u.

For any aE IK(M) I we have (a,a): a<!u.

2. 3. CaAf:uia.n ci..Med monoid.6.

D

D

In this section we will transfer the cartesian closed structure of a.

categorical lambda algebra C to the monoid C(U,U), thereby arriving at the

notion of cartesian closed monoid. By proposition 2.2.2.(i) the objects

uxu and UU are both retracts of U. The construction will depend on the par-

80

ticular choice of these retracts.

2.3.l. Notation. Let C be a categorical lambda algebra. Consider retracts

(g ,f): uxu<Ju and (g U'f u): UU<lu. We will always assume
uxu uxu u u

that g u = G and f U = F; otherwise we consider this new categori-
U U

cal lambda algebra. We say that these retracts are eanol'Ueal, if

moreover

(This is exactly the retract defined in proposition 2.2.2. (i).)

The next definition gives the cartesian closed structure of the monoid

C(U,U) inherited from the cartesian closed structure of the category C.

2.3.2. Definition. Let C be a categorical lambda algebra.

Let X = C(U,U) and define binary operations*,(.,.) on X, a unary

operation L(·) on X and constants u,p,q,e in X by

u =

p

q

(m,n)

e =

L(m)

idu

Puu 0 fuxu

quu 0 fuxu

,form,nEX,

gUxU o (m,n),for m,nEX,

evuu 0 (fuuxidu) 0 fuxu

guu a A(m o guxu), for m Ex.

Let M(C) (X,*,u,p,q,(-,·),e,L(·)) be the induced structure.

The next lanma shows that this definition captures a notion of "car

tesian-closedness" for a monoid.

2.3.3. Lemma. Let C be a categorical lambda algebra. Then in M(C) for all

m, n, 1 E IM (C) I

(a) P* (m,n) = m, q* (m,n) = n,

(b) (m, n) * 1 = (m * 1, n * 1) ,

(c) e*(L(m)*p,q)=rn*(p,q),

D

(d) L(e* (m*p,q)) L(e)*m,

(e) e*(p,q)=e,

(f) L(m * (p,q)) = L(m).

Proof:

(a) p * (m,n) = Puu o fuxu o gUxU o <m,n)

(b)

(c)

= Puu o < m, n >

= m '

similarly q * (m,n) = n.

(m,n) * 1 guxu o < m, n > o 1

guxu o < m o 1, n o 1 >

(m * 1, n * 1).

e * (L(m) * p,q) evuu o (fuuxidu) o fuxu o guxu o < L(m) o p,q>

evUU o ((fuU o guU o A(m o guxu)) x idU) o fuxu

= m 0 guxu 0 fuxu

=m*(p,q).

81

(d) L(e* (m*p,q)) guu o /\(evuu o (fuuxidu) o fuxu o (m* p,q) o guxu)

guuo/\(evuuo (fuuxidu) o(mopuu•quu>)

(e)

(f)

guU o /\(evUU o ((fuU o m) x idU))

guU of uU o m,

L(e) = guu o /\(evuu o (fuuxidu) o fuxu o guxu)

e * (p,q)

L(m * (p,q))

evUU 0 (f uUxidU) 0 f UxU 0 gUxU 0 (PUU' qUU) 0 fUxU

ev uu o <\uxidu) o fuxu

e.

guU 0 /\(m 0 guxu o(PUU'qUU) 0 fUxU 0 gUxU)

guU o /\(m o guxu)

L(m).
D

It is worth to collect these properties in a formal definition for an

arbitrary monoid. We will reformulate properties (c) and (d) in such a way

82

that they are equivalent to the old (c) and (d) under the assumption of (e)

and (f), but that moreover the first four properties, (a), (b), (c) and (d),

are sufficient to construct a categorical lambda algebra from a monoid with

extra structure that satisfies them. The role of the peculiar properties

(e) and (f) will be illustrated in proposition 2.3.8.

2.3.4. Definition.

(i) A c.afite.1.iian. clo1.ied mon.oJ..d is a structure
2

M (X,*,u,p,q,(·,·),e,L(·)), where u,p,q,eEX, *,(·,·): X +X

and L (·): X-+ X, such that (X, * ,u) is a mono id and for all

a,b,cEX

(a) p * (a,b) a, q * (a,b) = b,

(b) (a, b) * c (a * c , b * c) ,

(c) e*(L(a*(p,q))*p,q) =a*(p,q),

(d) L(e *(a* p,q)) = L(e * (p,q)) *a.

(ii) A cartesian closed monoid M is 1.i:table if moreover

(e) e * (p,q) = e,

(f) L(a*(p,q)) =L(a).

From now on we call M(C) the c.afite.1.iian. clo1.ied mon.oJ..d J..nduc.ed by the

categorical lambda algebra C. M(C) is stable by lemma 2.3.3.

We will use the following abbreviations:

a®b (a*p,b*q),

a a* (u®u) =a* (p,q).

Then 2.3.4.(c),(d),(e),(f) can be reformulated as

(c) e * (L(a) ®u) a ,

(d) L(e*(a®u)) L(;)*a,

(e) e = e,

(f) L(~) = L(a).

At first sight a cartesian closed monoid pays only attention to the

product- and exponentiation -structure. It seems to forget about the ter

minal object. But this is treated implicitly as is seen from part (d) of

the next lemma.

D

2.3.S. Lemma. Let M be a cartesian closed monoid. Then for all a,b,c,dEIMI

(a) (a t9 b) * (c © d) = (a* c) t9 (b * d),

(b) L(a) = L(~) * L(;),

(c) L(H (b©u)) = L(a) *b,

(d) L(q) *a = L(q).

Proof:

(a) (a©b) * (c©d) (a*p,b*q) * (c*p,d*q)

(a*c*p,b*d*q), by 2.3.4.(a),(b),

(a* c) © (b * d).

(b) L(;) = L(e * (L(a) ©u)), by 2.3.4. (c),

= L(;) * L(;) , by 2.3.4. (d).

(c) L(a* (b ©u)) L(;* (b©u)), by (a),

L(e* ((L(;) * b) ©u)), by (a), 2.3.4.(c),

by 2.3.4. (d), L(;) * L(a) * b

L(;) * b by (b).

(d) L(q) *a L(q) *a because q = q,

L(q * (a @u)), by (c),

= L(q).

83

0

Now, given a cartesian closed monoid M, we want to define a cartesian

closed category C with a reflexive object U. The ground for this construc

tion has been laid in section 2.2.

2. 3. 6. Definition. Let M = (X,*, u, p, q, (-', •), e ,L (-)) be a structure with

(X,*,u) a monoid. Then K(M), the KaJr.aub~-envei.ape 06 M, is the cate

gory K((X,*,u)) together with the following structure:

(a) T = L(q), with for any a E IK(M) I the map ! = L(q).
a

(b) For any a,b E IK(M) I let

axb a@b,

Pab a* p,

qab = b * q.

For any cE IK(M) I, m: c+a, n: c+b, let (m,n)

(c) For any a,b E IK(M) I let

ba =L(b*e*(u©a)),

fN ab = b * e * (u ©a) •

(m,n).

84

For any c E IK(M) I, m: cxa -+ b, let

f\ b (m) = L(m).
a c

(d) Let U = u, F = uu L(e), G = uu = L(e).

(e) The retracts uxu <lu and UU<l U are given by

u@u = (p,q),

uu L(e).
D

2.3.7. Theorem. Let M = (X,*,u,p,q,(·,·),e,L(·)) be a structure with (X,*,u)

a monoid. Then Mis a cartesian closed monoid - K(M) is a cate

gorical lambda algebra.

Proof: For convenience we will write here C for K(M).

(=>) : We will show that the structure given in definition 2.3.6. (a)

(c) is cartesian closed and that 2.3.6. (d) defines a reflex

ive object in C.

(a) TE ICI, since L(q)*L(q) = L(q), by lemma 2.3.5.(d).

Now
mEC(a,T) - L(q)*mot:a=m

<=> L(q) = m, by lemma 2.3.5.(d).

Hence C(a,T) = {! }.
a

(b) axbE ICI, since

(axb) * (axb)

pab E C(axb,a), since

a*pab* (axb)

(a®b) * (a@b)

(a*a)®(b*b), by 2.3.5.(a),

a®b

axb.

Pab"

Similarly qab E C(axb,b).

Now let m: c--ra, n: c-+b.

(m,n} E C(c,axb), since

(axb) * (m,n) * c (a® b) * (m,n) * c

(a*m* c,b* n* c)

(m,n)

= (m,n).

For 1 E C(c,axb) we finally have

p ab o 1 = m A qab o 1 = n (pab'qab) * 1 = (m,n)

(a @ b) * 1 = (rn, n)

- 1 = (m,n).

~ ./
(c) First note the fact that b * e * (u@ a) = b * e * (u@ a).

baE ICI, since

ba*ba L(b*e* (u@a)) *ha

L(b *e* (u@a) * (ba@u)), by 2.3.5.(c),

L (b * e * (b a @ u) * (u @ a))

L(b* (b*e* (u©a)) * (u©a)), by 2.3.4.(c),

L(b*e* (u©a))

ba.

ev ab E C(baxa,b), since

b * ev ab * (b axa) b * b * e * (u ©a) * (b a@ a)

b * e * (b a © u) * (u @a)

b * (b * e * (u ©a)) * (u@ a)

ev ab.

Now let mEC(cxa,b). Then J\(m)EC(c,ba), since

ba*J\(m)*c L(b*e* (u©a)) *L(m)*c

85

L(b*e* (u©a)* ((L(m)*c) ©u)), by 2.3.5.(c),

L(b*e* (L(m) ©u) * (c@a))

L(b*m* (c@a)), since m = m,
J\ (m) •

For nEC(c,ba) we finally have

ev b o (nx id) = m - b * e * (n@ a) = m a a
- L(b*e* (n©a)) = L(m)

- L(b*e*(u@a)*(n@u)) L(m)

- ba*n = L(m)

- n = i\(m).

(The second equivalence holds because of 2.3.4. (c) and the fact

that m = m.)

(d) UE ICI since u*u = u.

L(u*e* (u ®u))

L(e).

86

Hence (G,F): UU<'.l U.

We conclude that K (M) is a ea tegorical lambda algebra.

(<=):We have in K(M)

puu = u * p = p and

Furthermore, if a,bE IMI, then a,bEK(M)(u,u) and hence

(a,b) = (a,b)EK(M)(u,uxu).

Now 2.3.4.(a),(b) follow easily from the universal property

of products in K(M)

a* c

u ---u
c

Also in K(M)

uu = L(e) and ev = e
uu

e
L (e) xu -------.,_u

/\(i) xid
u

uxu

L(:i).

By the universal property of exponentiation in K(M) we con

clude

e* (L(~) ©u) =a for all aE IMI

and

L(e* ((L(e)*b) ©u)) = L(e)*b for all bE !Ml.

From the first equation it follows that e* (L(e) @u) e.

Hence the second equation reduces to

L ce * (b © u)) = L <e) * b •

Now we can prove 2.3.4.(c),(d) by observing that for all c

we have

e* (c®u).

87

D

2.3.8. Proposition. Let M= (X,*,u,p,q,(·,·),e,L(·)) be a cartesian closed

mono id and let M = M (K (M)) •

(i) M is a stable cartesian closed monoid.

(ii) M = (X,*,u,p,q,(·,·),;,L(·)) where L(a)

(iii) M = M - M is stable.

(iv) K(M) = K(M).

Proof:

(i) This follows from lemma 2.3.3.

L(~).

(ii) IMI = K(M) (u,u) = {a E IMI [u *a* u = a} = IMI.

a* b (in M) = a o b (in K(M)) = a* b (in M).

With a similar interpretation we also have

u = idu u,

p puu 0 fuxu P* (u ® u)

p,

q ~u o fuxu q * (u ® u)

q,

(a,b) guxu o (a, b) (u ® u) * (a,b)

(a,b),

e = ev a (f uXid) o f uu u u uxu
e* (u®u) * (L(e) ©u) * (u©u)

e * (L (e) © u)

= e' by 2.3.4.(c),

L(a) g o/l(aog)
uu uxu L(e) *L(a*u®u)

L(e) * L(a)

L(a), by 2.3.5.(b).

(iii) M = M - e = e and L = L

- e = e and L (~) L(a) for all a EX

- M is stable.

(iv) It makes no difference in definition 2.3.6. whether we take e

and L ore and Las one easily checks. D

88

We refer the reader to Yokouchi [1983] for an analysis of the con
ditions under which K(M(C)) ~ C holds for a categorical lambda algebra C.

The next interesting question is to analyse under which conditions M
is such that the retracts in K(M), as defined in 2.3.6.(e), are canonical.

This analysis was given by Adachi [1983] and Yokouchi (1983]. These con

ditions are given in the next definition.

2.3.9. Definition. A cartesian closed monoid M is canon,i,cai_ if

(a) p

(b) q

e * (u,L (L(q * p))),

e* (u,L(L(q))),

(c) u ®u = L(e* (e* (q,p* p),q* p)).

2.3.10. Proposition.

(i) Let c be a categorical lambda algebra. Then

c has canonical retracts - M(C) is canonical.
(ii) Let M be a cartesian closed monoid. Then

K(M) has canonical retracts - M is canonical.

Proof:

D

(i) Easy (but tedious) calculations. The amount of calculation

can be considerably reduced by using lemma 2.4.5. in the next

section.

(ii) K(M) has canonical retracts - Mis canonical, by (i),

- M is canonical.
D

In the remainder of this text we will mostly use cartesian closed

monoids that are stable and canonical. We will state the convention that

the construction of M(C) out of C will make use of the canonical retracts.

2.3.11. Definition.

(i) A lambda monoid is a canonical, stable cartesian closed monoid.

(ii) If C is a categorical lambda algebra (with canonical retracts)

then M(C) is called the induced lambda monoid.
D

2. 4. Lambda algeb!UL6 vvu..tu.> lambda mono,LdJ.,.

It turns out that the lambda monoid M(C) induced by the categorical

lambda algebra C is determined completely in terms of the lambda algebra

iDl(C) generated by C. Using the Karoubi-construction we will then proceed

to show that the other way around also the lambda monoid M(C) determines

the lambda algebra Wl(C).

89

Since both constructions are in fact independent of C this will show

that any lambda algebra fill is the lambda algebra generated by some categori

cal lambda algebra, viz. K(fm), the Karoubi-envelope of the cartesian closed

monoid constructed from IDl.

Defining M(C) in terms of llll(C) depends on the existence of the follo

wing retract in C.

2.4.1. Definition. Let C be a categorical lambda algebra.

(i) Define a: C(U,U) + C(T,U) by

a(m) = Go J\.(m o qTU).

Intuitively, a(m) = ["A:K.m(x)"D.

(ii) Define S: C(T,U) + C(U,U) by

S(a) evo(Foao!U,idU).

In fact, S(a) [axD o [id].
- x

2.4.2. Lemma. (a,S): C(U,U) <I C(T,U) is a retract.

Proof: S(a(m)) evo(FoGol\.(moqTU) o !U,idU)

= moqTUo(!U,idU)

= m.

Because of the injective mapping a we have that

IM(C) I == (a IM(C) I) ':: /llll(C) I.

In fact the whole structure of M(C) is definable inside !JJl(C).

2.4.3. Proposition. Let C be a categorical lambda algebra. Then for

aE /!lJl(C)/,m,nE IM(C)J.

(i) aErange(a) - a= [Ax.~d·

(ii) a(m * n) = [:\x.a(m) (a(n)x)D

(iii) a(u) = [:\x.xD.

D

D

90

(iv)

(v)

Cl (p)

Cl (q)

[Ax.xK].

[Ax.x(KI)].

(vi) et((m,n)) = [Ax. [et(m)x,et(n)x]]. (Here [M,N]

(vii) et(e) = [Ax .xK (x (Kl))].

(viii) et(L(m)) = Pxy.et(m) [x,y]].

Proof: Routine calculations, e.g.

(iv) Px .xK] = Go I\([xK])
x

= Gol\(pUUofuxuoqTU), see 2.3.1.,

et(puuofuxu)'

Cl (p) ' by 2. 3 . 2.

Az.zMN.)

D

Inspired by this proposition we define a structure M(l!Jl) for an arbi

trary lambda algebra ml.

2.4.4. Definition. Let ilJl be a lambda algebra. Define

IM(lJJl) I {a E IIDll I a [AX ·_'.:X]}'

u [Ax.x],

p Px.xK],

q [h.x(KI)]

e [Ax.xKCx(KI))];

and for all a,b E IM(IDl) I

a*b [AX ·_'.:(~_x)]

(a,b) [Ax. [_'.:X , E_x]]

L(a) Pxy. ~[x ,y]].

This defines a structure M(IDl).

2.4. 5. Lemma. Let ilJl be a lambda algebra. Then M('!IJ1) is a lambda mono id.

Proof: Routine calculations, e.g.

p * (a,b) Ax.p((a,b)x)

Ax.(a,b)xK

Ax.ax

a'

which proves part of property 2.3.4.(a).

D

D

Note that, since M(C) ~ M()!Jl(C)) (by proposition 2.4.3. and definition

2.4.4.), leIIIllla 2.4.S. gives an easier proof for proposition 2.3.!0., be

cause computations in M(C) can now make use of lambda calculus equations,

which are valid in !IJl(C).

In general we have the following situation

IM(C) I ---·- IM(Wl(C)) I c IIDl(C) I .

i3
In the case that C = K(M), where M is a lambda monoid, this reduces to

IMI IM@Jl(K(M))) I c IIDUK(M)) I,

where a(a)

i3

Go /\(a o qTU)

L(e) * L(a * q)

L(a*q).

Finally, when M = M(!!R) , then this reduces to

a(a) L(a * q)

/..xy. a (q [x, y J)
A.xy • a ([x , y] (Kl))

A.xy.ay

ka, for aE IMI {a E ltml I a A.x.ax}.

91

Our next purpose is to show that the mapping a: a>+ ka with domain IM(Wl) I

can be extended to the whole of l!IRI, resulting in an isomorphism between

~and !IJl(K(M()!R))). In order to accomplish this we have to know how the inter

pretation in K(M) looks like.

2.4.6. Definition. Let M be a cartesian closed monoid. For any ME/\(IMI)

and I~:='.. FV(M) we define 16: Ml E IMI by induction on M as follows

ill: al a*L(q),

16,y: xl 16 : x I * p , if y 1' x ,

q ,ify=x,

16: MNI e* (16:MI, 16:NI),

16: /..x.MI L(i6,x: Ml),where x<L6.
D

92

2.4.7. Proposition. Let M be a cartesian closed monoid.

Then for the interpretation[.] in K(M) we have

[M]t; = IL'i: Ml, for all ME 1\<Wl(K(M))).

Proof: Let us first note the following property:

L';
'Tlx*P ,if y #-x,

q 'if y = x.

(*) follows from
PXL:;, U (XL'i) * p,

qXL'i,U u * q = q,

~* (XL'i) ~-x x

Now we prove the result by induction on M.

[~h=aonf')
a* L(q)

16: al.

[x]6 = IL'i: xl by induction on L'i, using (*).

[MN]L'; = ev o (F o [M]t;,[N]t;)

e * (u ® u) * (L(e) * [M]t;,[N]LJ

= e * ([M] L';, [N] L';)

IL'i: MNI

[Ax. M] L'; = G 0 J\ ([ML)
D,X

L(~) * L([ML)
L\,X

L([M]L'i,x)' by 2.3.5. (b), since [M]L'i,x

L(IL'i,x : MI), by induction hypothesis,

IL'i : AX.MI .

2.4.8. Definition. Let A,B E i\(C). Then

AnB and AB~n are defined by induction on nEw as

[ML ,
D,X

D

93

D

2.4.9. Proposition. Let fill be a lambda algebra and M(!!Jl) be the corresponding

lambda monoid. If ME A(IM(l!Jl) I) and 6 = x 1, ••• ,xn with 161 =:: FV(M),

then

16:MI Az.M[~ := ~, ... ,x. -]_

c-n-i := zK (Kl), ...].

Proof: By induction on ME A (IM(l!Jl) I) •

16: al a* L(q)

Az.al.

lf,x : x I q
n n

Az. z(KI)

Az.x [x := zK-n-n(Kl)],
n n

and for i<n, using induction on n,

lf,x : x. I
n i

lr: xi I * p

-n-1-i
Az. (Aw.x. [x. := wK (Kl)]) (zK), by IH,

]_]_

-n-i
Az.x.[x. := zK (Kl)].

]_]_

16 : MN I = e * (16 : MI, 16 : NI)

16: Ax.Ml

A z . e [It. : M I z, I L'. : N I z]

Az.16: Mlz (16: Nlz)

+ + + -+
Az.M[.'.: := .'.:l, ...] N[.'.: := .'.:l, ... J, by lH,

-+ -+
Az.(MN)[.'.: := .'.:l, ...].

L(16,x: Ml)

Azy.16,x: Ml[z,y]

Azy.M[~ := al, ... ,x. [] ~n+l-i) _ _ i := z,y K (Kl , ...

.. .,x := [z,y](Kl)]

94

+ + ~n-i Azy.M[a := aI, .•. ,x. := zK (KI), ... ,x := y]
- - l_

+ + ~n-i Az.(h.M)[a := aI, ..• ,x. := zK (Kl), ...].
- - l_

D

From now on let .!!Jl(M) denote .!!Jl(K(M)). Then combining propositions
2.4.7. and 2.4.9. we may show the main result of this chapter, which says
that any lambda algebra .!!Jl can be represented as the lambda algebra induced
by a categorical lambda algebra, viz. K(M(Wf)).

2.4.10. Theorem. Let .!!Jl be any lambda algebra. Then a(a)

isomorphism from .!!Jl onto .!!Jl(M(Wf)).

ka defines an

Proof: Let us put .!!Jl' = .!!Jl(j\{ (.!!JI)) •

b E lllli'I - b: L (q)

- b * L(q)

- Az.bI =

- 3a E IWll

This shows that a is surjective.

Clearly a is injective, since ka

Hence a is a bijective mapping.

Then we know

+u in K(M (jJJI))

b in M(jJJI)

b in lJJl

(b = ka).

ka' '* kax ka'x '*a a'.

It remains to show, by lemma 1.6.3., that a preserves interpret
ation, that is

fill -+ ~ Tiffi1 1
a([M]) = [M[~ := a(a) Jr·

for all ME AO(jJJI).

Indeed
+ -->- .!!Jl' [M[a := a(a)]]

+ _,_
I<): M[~ := ka]I, by 2.4.7.,

+ --+
Az.M[~ := ka I] by 2.4. 9.'

k[M[; := ;]]fill

a([Mfl).
D

As a corollary to this theorem and proposition 2.3.8. we may state
that the category of lambda algebras is equivalent to the category of lamb-

95

da monoids. For a further functorial analysis of the constructions in this

chapter we refer the reader to Adachi [1983) and Yokouchi (1983].

2.4.11. Summary. Let C be a categorical lambda algebra, 9JI a lambda algebra

and Ma lambda monoid. Then we have the following constructions

We

We

(I)

c 1m (2.1.4.) i.w

:1~(2.2.60) M(2.4.4.)
M(2.3.2.),

' ' ' , _,,.. M

write l.W(M) for l.W(K (M))

and K(Wl) for K (M OJJl)) •

showed the following facts

M (K(M)) = M (proposition 2 .3. 8.)

(2) M (C) =M t!m(C)) (remark after lemma 2.4.5.)

(3) M !Wl(M)) = M (follows from (1) and (2))

(4) IDI CM (i!)l)) = IDI (theorem 2. 4. 10.).

We mention here again that in general K(M(C)) ~ C, because C may

contain many objects that are not a retract of the reflexive object

U. On the other hand, if we restrict attention to C~ U, the sub

cartesian closed category of C, generated by U, and if we fix re

tracts for every object in C ~ U then we may show C ~ U = K (M (C)) .

For details we refer to Yokouchi [1983].

Since we are mostly interested in the connection between 9JI and

K<Wl) we work with the following notation.

For a,bE ll.WI, aob = Ax.a(bx).

IK(Wl)I = {aE ll.Wi I aoa =a},

K(.ll)l)(a,b) = {fE ll.Wl lbofoa = f}.

T = KI is the terminal object in KOJJl), !a = KI,

axb = Ax.[a(xK),b(x(KI))], pab = Ax.a(xK), qab \x.b{x(KI)),
a

b = \x.b ox o a, evab = Ax.b(xK(a(x(KI)))).

(f,g) = Ax.[fx,gx], A(f) = \xy.f[x,y]. D

96

2. 5. Lambda modei.J.i, c.onc.Jtete. modei.J.i and exte.n6-lon.a.LUy.

We remind the reader of definition 2.1 .12. We just say that a cate

gory has enough points, if it has enough points at every object.

2.5.1. Lemma. Let IDl be a lambda algebra. Then

(i) IDl is a lambda model - K<)Dl) has enough points.

(ii) IDl I= l = I - K<)Dl) I= Go F = i~.

Proof:

(i) =i>: Let a,bE IK<)Dl)I, f,gEKl)Dl)(a,b).

Suppose Vx E K<)Dl) (T ,a) (fox = g ox).

Let d E Jl!JlJ. Then k(ad) E K<)Dl) (T ,a).

Hence f o (k(ad)) = go (k(ad)),

so k(f(ad)) k(g(ad)),

so (foa)d (go a)d.

But f o a= f, go a= g since f,g: a->- b.

Therefore Vd E l!Dll (fd = gd) .

By weak extensionality \x.fx = Ax.gx. But

f = b of = Ax. (b o f)x = Ax.fx and similarly g = \x.gx.

We conclude f = g. Hence K<)Dl) has enough points.

4=: IDl~ IDl(K<)Dl)), which is weakly extensional by proposition

2.1.13.(i).

(ii) IDl I= I = I - IDl(K<)Dl)) I= I = I

- K(.IDl)l=GoF idU by proposition 2.1.13.(ii).

D
2.5.2. Corollary. Let IDl be a lambda algebra. Then

IDl is an extensional lambda model - K<)Dl) has enough points and
G: UU~U with F = G-l.

Proof: By proposition 1.5.3. and the above lemma.
D

In many cases the categorical lambda algebra C is such that the objects

of C are sets with a certain structure and the arrows of C are just ordi

nary functions, satisfying some property. For instance the category CPO

has as objects complete partial orders and as arrows continuous functions

with respect to the Scott topology.

If one works in such a category the generated lambda algebra is in

fact a lambda model and the definition of interpretation can be simpli

fied.

2.5.3. Definition. Let C be a categorical lambda algebra.

C is ~;(Jr)_c;ti;.y eoncJLeXe (via H) if H: C + Set is a functor such

that for all A,B €I Cl

(a) H is faithful,

(b) His full on C(T,A),

(c) HT is a singleton set, say HT {*},

H(AxB) HAxHB,

H(pAB) PHA,HB' H(qAB) qHA,HB'

(d) H(BA) c HBHA,
- A

97

H(ev AB) = evHA,HB ~ H(B) x H(A).
D

2.5.4. Remark. The fact that H is full and faithful on C(T,A) implies

HA=Set({*},HA) = Set(HT,HA) =C(T,A),

hence H=C(T,-).

On the other hand we have (for an arbitrary categorical lambda

algebra C)

(a) C(T,-) is faithful <=> C has enough points,

(b) C(T,-) is always full on C(T,A),

(c) C(T,T) = {idT},

C(T,AxB) =C(T,A) x C(T,B),

(d) Chas enough points = (f >+ (a>+ evAB o(f,a))):

C(T,BA) + C(T,B)C(T,A) is an injective mapping.

Hence, for C to be strictly concrete, the important condition is

that C has enough points. In definition 2.5.3. we demand that H

commutes with products and exponentation exactly (and not only up

to isomorphism) for easiness of interpretation.

2.5.5. Definition. Let C be a strictly concrete categorical lambda al

gebra via H. Define

X = HU,

D

98

a•b = HF(a)(b) for a,bEX,

[.] : AO(IXI) + X by induction as

[~] = a , for a EX,

[MN] [M] ·[N]

[;\x.M] HG(d 1+ [M[x := .:!_]]).

Letfill(C,H) = (X,·,[·]) be the c.onCJLete model induced by C,H.

2.5.6. Theorem. Let C be a strictly concrete categorical lambda algebra

via H. Then fill(C,H) is a lambda model isomorphic to IDl(C).

D

Proof: Let fill= fill(C), V1 = IDl(C,H). We show that (!): Ifill! + Ifill, defined

by (!)(a) = Ha(*), is an isomorphism between fill and V?.

(!)is bijective, since His full and faithful on C(T,U).

Let us note the following properties of H:

H((f,g)) = (Hf,Hg), for

H(fxg)

Hf H (p o (f, g))

Hp o H((f ,g))

po H((f,g))

and similarly

Hg = q o H ((f , g)) .

HfxHg, for

H(fxg) H((f o p,g o q))

(Hf o Hp,Hg o Hq)

(Hf o p , Hg o q)

HfxHg.

If j : H (BA) _§,___ HBHA, then j o H (l\f) = A (Hf) , for

ev o(j o H(Af)) x id ev o jxid o H(l\f)xid

ev ~ H (BA) xHA o H (l\f) x id

H(ev) o H(Af) x H(id)

H(ev o J\f x id)

Hf,

hence j o H (l\f) = J\(Hf).

Using these properties we will show that if~= x 1 , ..• ,xn
+
d = d 1, ... ,dn and MEA(lfilll), then

+
x,

The proof is by induction on M (we skip the case M= x):

H([~]L) (*,d) = H(a o rf>) (*,d)

= (Haorf))(*,d)

= Ha(*)

= tp(a)

= [alll(~ := !nw.

H([MN]li.) (*,d) = H(ev o (F o [M]t,.,[N]li.)) (*,d)

(H (ev) o (HF o H[M] li.,H[N] li.)) (*, d)

+ +
ev ((HF (H[M]t,.(*,d)), H[N]t,.(*,d)))

[Mlll[;t := !H91 · [Nlll[~ := 1H91

tp + + 91
= [(MN) [x := _<!]] •

Writing (*,d-) for ~\x(*,d) and~- for li.\x we have

H([h.M]li.) (*,d) = H(G o A([M]li.;x) o ~\) (*,d)

+
= HG o HA[ML (*,d-)

u;x

= HG(A(H[M]li.;x) (*,d-))

= HG(e ._,_ H([ML) c<a-,e))
u.; x

[tp[+ -+ = HG(e ,_,. M x- := _<!- ,x

= [,\x.Mlll[Jt- := <l-nw
tp _,. _,. 91

= [(;\x.M) [x := _<!]] •

Now we can finish our proof by noting that

tp([M]lW) = H([M](» (*)

= [M~W.

Because of this theorem we will write IDl(C) instead of 9Jl(C,H).

99

D

100

2.5. 7. Example. CPO is a strictly concrete category via the forgetful
functor which assigns to every complete partial order its under
lying set. In this category we may define several interesting cate
gorical lambda models, such as

(I) Fw = (Pw,·,fun,graph), the graphmodel. See Scott [1976)

and example 1.4.31.
-1

(D00 ,-,(j),lj)). See Scott [1972] and example 1.5.6.
(3) 'Il'w (Tw ,·,fun, graph). See Plotkin [1978] or Barendregt and

Longo [1980).
D

101

CHAPTER 3

DERIVED LAMBDA ALGEBRAS AND THE CONSTRUCTION OF ID00 INSIDE lPw

Using the theory of categorical interpretations as studied in chapter

2, we will show how to assign, under a certain basic assumption, to a re

tract V<lU of a given model U an induced reflexive object structure such

that it becomes a socalled deJri,ved lambda. a.lgebJt.a. of U. The theory of this

derived model can be obtained by an associated translation of lambda terms.

An important example of this construction occurs when the considered

retract v<Ju is the retract UU<lU of U onto its function space. In this

case we talk about the canonical derived lambda algebra of U.

In the category of complete partial orders it is possible to take the

limit of the iteration of this construction. When starting for instance

with the lambda model lPw, we arrive in this way at an extensional derived

model lP00 <I lPw, which is elementarily equivalent to the model ID00• This

technique of "constructing ID00 inside lPw" was defined in Scott [1974],

[1976].

3. 1 • VeJri,ved lambda. a.lgeb.l!.M in. gen.eJLai..

For the remainder of this section we fix a categorical lambda algebra

C (C,U,F,G).

3.1.1. Definition. Let (g,f): A<lB be a retract in C.
- A B - B A Define g: A +B and f: B +A by

g = A(g o ev o id x f) and f A(foevoidxg).
D

Note that f, resp. g, depend on the pair (g,f) and not only on f,

resp. g. A more precise, but also more cumbersome, notation for g would be
f

g •

102

Similarly f would become fg.

3.1. 2. Lemma. Let (g,f): A<IB be a retract in C.

Then so is (g,f): AA<IBB.

Proof: Calculate

f o g A (f o ev o id x g) o g
A(f o ev o id x go g x id)

A (f o ev o g x id o id x g)

A (f o g o ev o id x f o id x g)

A(ev)

id A.
A D

3.1.3. Remark. The assignment (g,f) >+ (g,f) is functorial in the following

sense.

Let Ret(C) be the category with

objects: retracts (g,f): A<IB,

morphisms (from (g,f): A<IB to (g',f'): A'<IB'):

pairs of retracts (p, p'): A <JA'

and (q, q ') : B <I B'

such that

g

f'

q 0 g = g I 0 p and f 0 q I = p I 0 f' .

Then H(g,f) = (g,f) (for objects and both components of morphisms)

defines an endofunctor Ret(C) o+ Ret(C).
D

For the remainder of this section, fix a retract (r,s): v<Ju. We will

try to induce a reflexive structure on the object V as follows.

3.1.4. Definition. Define F': V-+VV and G': VV -+V by

F' = s o F o r and G' = s o G o r

s

U G
u -+----------------- u

F " \, r

G' I
vv v ------F'

We are interested in the case that this definition turns V into a

reflexive object.

3. 1.5. Definition.

(i) The following statement is called the blUlic lUl~wnp:tlan:

(BA) (G',F'): vv<Jv.

(ii) If (BA) is satisfied, then (G' ,F'): VV <Jv induces a lambda

algebra, the socalled deJU_ved lambda algebJUI of the lambda

algebra (G,F): UU <Ju (with respect to C and (r, s): V <Ju).

There is an important case in which (BA) holds.

3.l.6. Example. IfwetakeV=Uu, r=G, s=FthenF'=FoFoG F and

G' = FoGoG =G. Hence by lemma 3.1.2. (BA) is satisfied.

The lambda algebra induced in this way is called the canonical
deJU_ved lambda algebJUI.

I 03

D

D

D

The aim of the remainder of this section is to give a necessary and

sufficient condition for (BA) to hold and to establish a relationship (via

translation) between the original model and the derived model (with res

pect to (r,s): v<lu).

104

We remind the reader of the useful retract (a,8): C(U,U) <IC(T,U),

defined in 2.4.l.

3.1.7. Definition.

(i) c5 rosEC(U,U).

(ii) d a(o) E C(T,U).

To distinguish between the original model and the derived model we

let 9J1 = .ID7(C,U,F,G) be the original lambda algebra and (if (BA) is satis

fied) we let l'R = ID7(C,V,F' ,G') be the derived lambda algebra. From now on

we will use P,Q,R, ... as metavariables for lambda terms.

3.1 .8. Lemma. Let a,bE IID71, PE/\IJJR), J/l.J::FV(P).

(i) 9J1 9J1
[~P] /I. = S(a) o [P] /I..

In particular

9J1 9J1
[~P]/I. = c5 o [P] 6 .

(ii) a·b B(a) ob.

(iii) aob a(S(a) o S(b)).

Proof:

(i) [~P]~= [_~dxo [[p]~], by lemma 2.I.5.,

[~]x o [id] o[P]~

S(a) o [P]~, by definition 2.4.1.

Furthermore S(d) = 8(a(c5)) = cS.

(ii)

(iii) a o b

9J1
[~£]()

9J1
S(a) o [E._] 0 , by (i),

S(a)ob.

9J1
[;\x. ~ (~x)]0

G o /\([a (bx)]ID7)
-- x

9J1 Go /\(S(a) o S(b) o [x]), by (i),
x

a(S(a) o S(b)), by definition 2.4. l.

D

D

105

We now have gathered enough material to characterize the basic assump

tion, completely in terms of ID?.

3. I • 9. Theorem. (BA) - llJl I= dd o d o i = dd.

Proof: Let us introduce the following abbreviations:

hence

H

D

R

u u FoOoG:U+U,

o o ev a id x o : UU x U-+ u ,
d

[d xy]
x,y

Note that the right-hand-side of the equation dd o do dd = dd

can be written as Go /\(Go /\(R)) and similarly the left-hand

side as Go /\(Go /\(L)).

In order to compute the values of R and L, we have to calcu

late successively:

[dy]
x,y

0 0 q , by lennna 3.1.8.(i).

[x(dyH ev o (Foqop, 0 0 q}
x,y

ev o ((F a q) x o).

[d(x(dy))]
x,y

o o ev o ((F o q) x o) ,

R = D o ((F o q) x id) (I) .

And also [;\.y. d (x(dy))]
x

G o /\ (R).

[dCixH
x,y

o o G o /\ (R) o p.

[d (d (ddx) (dy))]
x,y

o o ev o (F a o a G a /\ (R) o p, o o q}

o o ev o id x o o ((H o /\ (R)) x id),

so L = D o ((H o /\ (R)) x id) (2) •

Furthermore we will need r 0 s /\ (r o ev o id x s a s x id)

/\(r o ev o s x id o id x s)

/\ (r a s o ev a id x r o id x s)

106

/\ (8 o ev o id x 8) ,

so r o s = /\(D) (3).

Now everything can be put together to give

(BA) - F' o G' = id

- -- soForosoGor id

- -- soHor = id

- /\ (s o ev o (id x r) o ((H o r) x id)) id - s o ev o ((H o r) x r) = ev - r o s o ev o ((H o ;:) x r) o (s x s) r o ev o s x s - 8 o ev o ((H o r o s) x 8) = r o s o ev o (id x r) o (id x s)
(3)

Do ((H o/\(D)) x id)= D -(*) - Do ((H o /\ (D) o F o q) x id) D o ((F o q) x id)
(I) - Do ((Ho /\(R)) x id) = R
(2) - L = R

- IDl I= dd 0 d 0 dd =i.
The equivalence labeled (*) holds, because (F o q) x id is (split)
epi with right inverse (!,G)Xid.

From now on, if we talk about the lambda algebra W, it is tacitly
understood that the basic assumption holds.

D

The relationship between the interpretation in the derived structure
Wand the original lambda algebra ml can be given by the following trans
lation.

3.1.10. Definition. A translation P >+Pd: /\(W)+/\(IDl) is inductively de
fined by

d
x

d
c

(P;)d

(Ax.P)d

dx

roe ,forcEIWI C(T,V),
d(PdQd)
- d
~(:\x.P).

D

An innnediate consequence of this definition is the fact that

FV(Pd) = FV(P) for all PE A(IJJ).

107

Recall the definition of (An)nEw in 2.1. I. (ii). Now, if f: A-+- B, we

naturally define by induction on n E w mappings fn: An+Bn as:

3.1.11. Proposition. Let /J. = x 1 , ... ,xn~FV(P). Then

d !lJl IJ1 n
[P D /J. = r o [PB /J. o s

Proof: Using lemma 3.1.8.(i) several times, the proof proceeds by

induction on the structure of P.

/J. !lJl
roso(7Tx)

/J. IJ1 n
r o (7Tx) o s

r o [xD~ o sn

d !lJl !lJl
[~D/J.=[rod/J.

roco! n
u

[(PQ)dD!!Jl = [d (PdQd)D!!Jl
/J. - /J.

d !lJl d !lJl
cS o ev UU o (F o [P D /J., [Q D /J.}

IJ1 IJ1 n
r o s o evuu o (F or o [PD /J., r o [QD /J. > o s by IH,

- IJ1 IJ1 n
r 0 evvv 0 s x id 0 (F 0 r 0 [PD /J., [QD /J.} 0 s

r o evvv o (F' o [PD~, [QD~> o sn

r o [PQD~ o sn.

For the last step in this induction we introduce the following

I 08

3. l. 12.

abbreviations:

Then

II = (II11)9Jl , II'
11\x

(II11)ffl k = # (11\x).
11\x

[C:\x.P/]~ = [i_C\x.Pd)]~

d 9Jl
cS o Go J\([P]ll·x) o II

'
fJ1 k

ooGoJ\(ro[P]ll·xo(s Xs)) oII' by IH,
'

fJ1 k cS o G a J\ (r o [P L a id x s) a s a II o;x

cS o Go J\(r o evVV o J\([P]~.) x s) o II'
'

- W n r o s a G a r o J\ ([P] A) o IT' o s
u ;x

r o G' o J\([P]~·x) o II'
'

n
0 s

Theorem. Let P, Q E J\ (ffl) , LI

(]_') []ffl [dTI9Jl n P 11 =so Pn 11 or

(ii) W F P = Q - 9Jl F Pd
d 0

= Q , for P, Q E J\ (ffl) .

Proof: Immediate by proposition 3.1 .II.

n
0 s

D

D

The construction of the derived model ffl, as we introduced it, depends

on the representation of the original model 9Jl as a categorical lambda al

gebra (C,U,F ,G) and on the retract (r,s): V<IU in C. But in fact, as we

will show now, the derived model fJ1 depends only on the structure of 9Jl as

a lambda algebra and on the element d E 19Jll, representing the retract

(r,s): v<lu.

3.1.13. Lemma. There exists a retract (p,o): IWl<119Jll defined by

p(y) ray,

o(x) sox.

109

Proof: o(p(y)) soroy y.
D

Now it is easy to transport the lambda algebra structure from 1911 to

p(1911) via the injection p.

3.1.14. Proposition.

(i) p(1911) = Fix(d) = {x E l!ml I d.x x}.

(ii) For all a,b E 1911 we have

p(a •91 b) = d(p(a)p(b)).

0 (iii) For all PE A (91) we have

Proof:

(i) xEp(l91l) - 3yE 1911 (x r o y)

- 3y E 1911 (x r o y 11 - x = r o s ox = 8 0 x - x = dx.

(ii) p(a. 91 b) r o [~£D
91

y s ox)

[<~£) dDIDl ' by proposition 3.1.11.,

d(p(a)p(b)).

(iii) follows immediately from proposition 3.1 .11.
D

Now we will state in a definition the properties of dE l!ml needed to

produce a derived model in general, not depending on any representation of

l!Jl as a categorical lambda algebra C.

3. I . 1 5. Definition. Let l!Jl be a lambda algebra. An element d E l!ml is called

de!UvabR..e if

d o d = d and i o d odd dd.
D

The fact that these two properties completely determine the retracts

110

of the reflexive object in a categorical lambda algebra, that give rise

to a new reflexive object, can be stated as follows.

3. I . 16. Theorem. Let f!J/ be a lambda algebra.

(i) A derived model 91 of iJ)I, represented as a categorical lambda

algebra C, is completely determined (up to isomorphism) by

the element d E liJJll representing the retract (r, s): V<JU.

This element d is derivable.

(ii) Every derivable d E liJJll corresponds to some derived model fil.

To be more specific: 91 is the derived model induced by the

retract (d,d): d<JI inK(}m).

Proof:

(i) The first statement clearly follows from proposition 3.1 .14.

The fact that d is derivable follows from theorem 3.1 .9.

(this shows ddododd = dd) and lemma 3.1.8.(iii):

do d a(S(d) o S(d))

a(o o o)

a(o)

d.

since cS is idempotent,

(ii) Let d E liJJll be derivable. Since do d = d we know that d is an

object in K()!Jl). Therefore we can draw the following diagram

G=l
----~~I=U

F=l

s=d

Then cS r o s = d o d = d and

a (cS) G o /\ (cS o qTU)

I o l\.(d o q)

;\xy. d (q[x ,y])

;\xy. dy

kd.

111

Therefore a(o) = kdEK(lDl)(T,I) corresponds exactly to dE l!ml

under the isomorphism l!Jl(K(l!Jl)) ~ !lJl of theorem 2.4.10.

Now since dd o d odd = dd in l!Jl, it follows by theorem 3. I. 9.

that the basic assumption is satisfied and hence that the

above diagram defines a derived lambda algebra.
D

In many cases it is easier to consider p(~) as the derived lambda al

gebra instead of ~. Since ~ and p(~) are isomorphic we will not formally

distinguish between them. In this way the construction is quite simple, as

we will show now.

3. I. 17. Corollary. Let !lJl be a lambda algebra and d E ll!Jll a derivable el

ement. The derived lambda algebra induced by d, notation
d l!Jl(d) = (ll!Jl(d) I, •d ,[•]) , can be described as follows:

(a) ll!Jl(d) I = Fix (d);

(b) a.db = d(ab) for all a,bEFix(d);

(c) For all PE 11.0(l!Jl(d)) we have [P]d = [Pd], where the translation

p ..- pd : 11.(l!Jl(d)) -+ 11. (lDl) is defined by

d
x

d
c

(PQ)d

(;\x.P)d

dx

For future use in section 3 we now show how to construct new deri

vable elements from old ones.

3 .1.18. Lemma. Let !lJl be a lambda algebra.

If d E ll!Jll is derivable then so are dd and d odd o d.

Proof: Let d be derivable. Then we have the following diagram in

KIJJJl):

D

112

We note here that dd E IKQJJl) I and hence dd odd = dd.

By taking the canonical derived model of the first derived model

we get by composition (since the operation (g,f) ~ (g,f) is func

torial by remark 3.l .3.) a derived model of the form

The derivable element corresponding to this derived model is
d 0 dd 0 dd 0 d = d 0 dd 0 d.

To show that dd is derivable there seems to be no other way than

by direct calculation:

We already saw that dd odd = dd.

Ax abl (ab2 x)
• 1 2

A.x.a 1 o (a2 ox o b2) o b 1

A.x.(a 1 oa2) oxo (b2 ob 1)

b2 0 bi
(a 1 oa2) .

Hence dd is indeed derivable.

3.l.19. Examples.

(i) For every n E w we have the derivable element

1 n A.xy 1 • • • y n · xy 1 • • • y n ·

(ii) As an example of a derivable element d that is not an n
expansion of I we may take

d = A.xz.zC\y.x(Aw.wy)),

which can be written as

d = Ax. O..y.x (y))

if we put (p) = \z.zP for a fresh variable z.

113

D

(iii) For any derivable d we can construct more derivable elements

by iteration, using lemma 3.J .18.

The last part of this section describes what kind of extensionality

properties a derived model has.

D

3.1.20. Proposition. Let llJI be a lambda algebra and d E lllJll a derivable el

ement. Then

(a) llJl(d) I= I = I <=> llJI I= d o dd o d d,

(b) llJl(d) is weakly extensional <=>

d VabE lllJll (VxE IIDll(ax=bx)+d a

Proof: We consider the following diagram in K(llJI)

1--------1

,, 11 ,, d " a' d ~ d

i 0 d

l 14

(a) IDl(d) F I I -
d d (d 0 d) 0 (d 0 d) d, by proposition 2.1.13. (ii),

d 0 dd 0 d = d.

(b) IDl(d) is weakly extensional

- K (WI) has enough points at d, by proposition 2. I. 13. (i),

- Vf,g: d+d(\lx: T+d(f ox= go x) + f = g)

- Vab E IIDll (\Ix E /!Dll (do a o do K(dx) = do bod o K(dx)) -+

doaod=dobod)

d d d - Vab E l!Dll (Vx E l!Dl/ (K(d ax) = K(d bx)) + d a

VabE l!Dll (\lxE J!IJl/(ax =bx)+ dda = ddb).
D

3.1.21. Corollary. Let9Jlbe a lambda algebra and dE IIDll a derivable element.
(i) If dd d then IDl(d) F I = I.

(ii) If 9Jl is a lambda model then so is !IJl(d).

Proof:

(i) By proposition 3.1.20.(a).

(ii) Suppose a,bE IIDll and \lxE IIDl/(a.x = b.x). Since!IJlis weakly
extensional we then have la = lb. Now note that dd o J = dd o II

Iod d d d d d = (do I) = d . Hence d a = d (la) = d (lb) = d b. Apply-
ing proposition 3.J.20.(b) we conclude that!Dl(d) is weakly
ex tensional.

D
d Since the property d = d will play an important role in section 3.4.

we will supply a name for it.

3.l.22. Definition. Let !Dlbe a lambda algebra. An element dE l\IJll is called
-6tfwngly erten-6Iana1- if d = d o d = i.

0

Clearly any strongly extensional element is derivable. Models derived
from strongly extensional elements have the nice property, that the trans
lation of definition 3.1 .10. commutes with application and abstraction.

3. I . 23. Lemma. Let 9Jl be a lambda algebra and let d E IIDll be strongly ex ten
sional.

(i) IIDl(d) I is closed under application (in IDl).

Hence roll= (PQ)d = PdQd, for all P,QEJ\O(!Dl(d)).

(ii) fill I= (A.x.P)d = A.x.Pd, for all PE J\O (fill(d) ,x).

Proof:

(i) Suppose a,b E l!Dl(d) I Fix (d). Then da a, db

Hence ab dab

b.

ddab since d is strongly extensional,

d (a(db))

d (ab) E IIDl(d) I.

The second statement follows, because

(PQ)d = d (PdQd) = PdQd in fill.

(ii) Calculate in fill:

d d
P ,Q E l!Dl(d) I and so

It is easy to show by induction on P that

d d
,\x.dP [x :=dx] = A.x.P .

Then (,\x.P)d d (,\x. Pd)

dd(t..x.Pd)

d ,\x.d ((A.x.P) (dx))
d

A.x.dP [x := dx]

,\x.Pd.

3.1.24. Corollary. Let fill be a lambda algebra and let dE JlJJll be strongly

extensional. Then [PDd = [P~dD, where P~d equals P with all

variables x replaced by dx.

Proof: By lemma 3.1.23.

3. 2. Mode,U ,[vu,,[de. the. Kaf1.oub,[-e.nve.£ope. 06 a .lambda a.lgebJta.

115

D

D

As shown in section 3. I., derived models in a general category C can

always be represented as derived models in the category K(!Dl), where lJR is

the original model.

It is therefore appropriate to look at (arbitrary) models defined

inside K(j)JI).

116

3. 2. l . Convention. For the remainder of this section, let ml be a lambda

algebra, K(ID1) its Karoubi-envelope and

g bb _____ b

f

a retract in K(ID1), defining a lambda algebra 91.
D

Note that W doesn't need to be a derived model of ml. Without further

qualifications, notations like • ,o etc. refer to application, composition

etc. in ml, not in W.

Now we will express the interpretation in W in terms of ml.

3.2.2. Definition. A translation ': /\(W) -+/\(J!Jl) is defined by induction on

PE /\(W)'

x' bx

c'

(PQ) I

(:\x.P)'

3. 2 . 3 . Theorem.

cl if cE IWI
f_P'Q'

!1(;\x.P').

(i) IWI = K(T,b) = {Kc I be = c}.

K(T,b),

(ii) For any PE /\(W) such that Ill I::_ FV(P), Li = x 1 , .•. ,x11 we have

Proof:

(i)

W '[~(n-1)] [P] Li = ;\z.P xn := z(KI), •.. ,x 1 := zK (KI) .

K(T,b) {m I b o m o KI = m}

{m I :\x.b(mI) = m}

{Kc I K (b (Kc I)) = Kc}

{Kc I be = c}.

(ii) As a basis step for a proof by induction on P it will be

shown that

9l ~i [x .] A = :\x. b (xK (KI)) , 0 ~ i < n.
n-i u

D

For
w {',,

[x ,] A = TI
n-1 u x .

n-1

i times
(*) --------= b o q op o ... op

~i
A:x.b(q(xK))

~i
A:x.b(xK (Kl)).

(*):We used the fact that in general

p o (a1 xa2) op
al ,a2

pa a op, since dom(p)
I' 2 al,a2

w {',,
Furthermore [~]b. = c o IT()

co Kl

\z.c(Klz)

\z.c' .

Now we may proceed with the proof by induction,

[PQ]~ =
w w

ev o (f o [P]b., [Q]b.)

evbbo (fo [Az.P'[...]]Jfill, [Az.Q'[...]]fill),

by induction hypothesis,

AZ. b ((f p' [. .•]) (bQ' [.•.]))

h.bb(fP' [•••])Q' [...)

\z.fP' [...]Q' [•..]

Az • (PQ) I [••• l .

117

For the last step in this inductive proof, assume that y<!. lb.I

and let

* stand for zK (Kl) , ..• , x I zK-n(Kl), x ·= := n

stand for x := z(Kl) , ..• ,xl := zr(n-J)(KI).
n

118

Then

(iii)

+ w + w [Ay.P(x,y)L =go A([P(x,y)L) u u;y

go /\(/..z.P' [y := z(KI),. ~.])

/..z.g(/..y.P'[y :=z(KI),.~.][z := [z,y]])

AZ. g (Ay. p I [y : = y' •••])

/..z.g(/..y.P')[•••]

;\z. (Ay.P) I [•••].

0

Analogous to lemma 3.1.13. and proposition 3.1.14. we can embed the
domain of W into the domain of flJl, thereby arriving at the following situ
ation.

3.2.4. Proposition. The model W can be described (up to isomorphism) as

IWI Fix (b) = {c E lflJll I be = c};

[P]W = [P']flJl, for PEAO(W), where P' is as before except that

now r;:_' = <::_;

Proof: Look at the retract (p,a): !WI <l ll!n(K(.!l)l)) I, defined by

p(c) = c for c E !WI,

a(a) b o a for a E lflJl(K (.ll)l)) I •

Now take the image of this retract under the isomorphism

flJl(K WJl)) ="" fill ,

Ka +-+ a .

D

119

Using these facts about the relation between 91 and !fil, we can give con

crete descriptions of derived models of 91, taken in the category K(!fil).

It will be shown that this situation is perfectly general in the sense

that every derived model of 91 can be represented inside K(}m).

3.2.5. Calculations.

(i) The retract (a, S) : K (llJl) (b , b) <I K (llJl) (T, b) is given by

a(m) G o J\(m o qTb)

go A.xy.m(b(q[x,y]))

K (g (mob))

K(gm)'

and S(x) ev o (F o x o ! , idb }

;\y. f (x (!y)) (by)

f (xI) 0 b

f (xI) since f: b-+bb.

Under the isomorphism

K(}m) (T,b) == Fix(b)

as used in proposition 3.2.4. we have

a(m) = gm and S(x) = fx.

(ii) We suppose now that we have a retract (r,s): a<lb of the model

91 inside the Karoubi-envelope of !fil,

a

It is easy to compute the following morphisms:

- s r=;\x.roxos=r

120

Ax.Sox or= Sr cf. the remarks after 3.1.1 .,

g' A:x.s(g(roxos)),

f' A:x. so f(rx) or.

Now let o = ros.

Claim: (BA)

Proof: f ' o g'

hence

0 0 0
- 0 ofooogoo =o

A:x . s o f (r (s (g (r o x o s)))) o r ,

(BA) - f' o g' = idaa

- Ax.sof(o(g(roxos))) or

(*)
- Ax.sof(o(g(ooxoo))) or

(**)
- A:x.oof(o(g(ooxoo))) oo

0 0 0 - 0 ofooogoo = 0.

A:x.aoxoa

A:x.soxor

A:x.ooxoo

(*) * follows by applying both sides of the equation

to so x or,

(*) .,. follows by applying both sides of the equation

to r ox o s,

(**) """ follows because r o s 6'

(**) .,. follows because s o 6 sandoor=r.

It is possible to prove this claim using theorem 3.1 .9. and

proposition 3.2.4., realizing that in this case dW = a(o) =go

by (i).
D

From now on we will use the definition of the model W as given in

3.2.4. The next proposition describes what the Karoubi-envelope of W

looks like.

3.2.6. Proposition. K(W) is given by

(a) IK(W) I = {xE IWI I fx o fx = fx A g(fx) = x},

(b) K(W)(x,y) = {mE !WI I fyofmofx = fm A g(fm) =m}.

Proof: First of all, let us compute x o yin W:

x ow y [Az.x(yz)]W

g C\z. fx (fy(bz)))

g(fxofyob)

g(fx 0 fy).

Now, for x,y,mE !WI:

(a) x E I K (W) I - x ow x = x

- g (fx o fx) = x

- fxofx = fx /\ g(fx) = x,

(b) m E K (W) (x , y) y oW m ow x = m

- g(fyofmofx) =m

- fy o fm o fx = fm 11 g(fm) = m.

3.2.7. Corollary. There exists a full and faithful embedding

F: K(!H)+K(Wl), given by

F(x) = fx ,

F(m: x + y) = fm: Fx + Fy .

121

D

Proof: Proposition 3.2.6. shows that F is welldefined, injective on

objects and faithful.

F is indeed functorial:

Let m: x + y , n: y + z, then

and

F (n 0 91 m) F (g (fn o fm))

f (g (fn o fm))

fn o fm

F(id: x +x)

F (n) o F (m)

F(x: x +x)

fx: Fx + Fx

id: Fx + Fx.

122

It remains to prove that F is full.

Let m E K(}m) (Fx,Fy), then m = fy o m o fx,

hence
bomob

b o fy o m o fx o b

fy o ma fx

= m.

It follows that f(gm)

Therefore gmEK(!Jl)(x,y) and F(gm) m.
0

Since we want to iterate the process of taking derived models, it

would be convenient if we could reduce a double derivatjon to a single one.

This transitivity of derived models follows easily, once a derived model

of W has been represented in K (fill).

3.2.8. Theorem. Let lJJl be a lambda algebra and W the lambda algebra defined

by the reflexive object b in K(}m),

)>- b •
f

Let d E IWI be a derivable element and W(d) be the corresponding de

rived lambda algebra. Then W(d) can be represented in K(!JJI) by

g

f

fd

y
fd

fd

Proof: In K(W) the derived lambda algebra W(d) can be represented
w by the retract (d ,d): d <lI where I = [I] = g(h.bx) = gb.

Applying the embedding functor F of corollary 3.2.7. to this re

tract we get the retract (fd,fd): fd <1b, given above.

We have to show that the element in W that represents this retract

is indeed d. But according to the calculations in 3.2.5.(i) this

element is cx(o) = a(fd a fd)

g(fd 0 fd)

d by proposition 3.2.6.(a),

since d E IK(!H) I.

123

D

3. 2. 9. Corollary. Let !H be a derived lambda algebra of IDl and !H' a derived

lambda algebra of !H. Then !H' is a derived lambda algebra of fill.

If d defines !H in.!Ul, that is !H = l!R(d), and d' defines !H' in !H, that

is !H' = !H(d '), then dad' a d defines !H' in IDl, that is !H'

IDl(d o d' o d). In other words l!R(d)(d') = l!R(d ad' o d).

Proof: Consider the following diagram in K~),

!H = IDl(d)

fd I fd I ll f = dd 0 d !1

(fd 1 /d~I ====:!:::,,._ fd I !H' !Jl(d I)

fd' = {ddod)d' =dodd'od =dod'od, since

d I E l!HI Fix{d).
D

This corollary describes iterations of derived models in general.

There are particular cases in which this description is quite easy, even

in the general case of an arbitrary categorical lambda algebra C.

3 .2.10. Definition. Let IDl be a lambda algebra, induced by a categorical

lambda algebra C. The canonic.al deJl,[ved 4equence (with respect to

(G, F): UU <lU) is defined by

F
n

0

124

One should not confuse this canonical derived sequence with any of

the sequences (£n)n;;.. l or (ln)n;;.. I as defined in chapter I.

3. 2 .11. Lemma. (G , F) : U +I <lU represents the n-th canonical derived
~~- n n n n U
model of the model (G,F): U <lU.

Proof: By induction on nEw. The case for n=O is clear.

Now let n = k+I. By induction hypothesis (Gk,Fk): Uk+l <lUk is the

k-th canonical derived model. Construct the following diagram in C,

Then G'

F'

Fk o Gk o Gk

Fk o Fk o Gk

k-th derived model

(k+l)-st derived model.

Hence (Gk+I ,Fk+I): Uk+2 <lUk+I is the (k+I)-st canonical derived

model.
D

3.2.12. Remark. By taking b=I and f= g =I in K<Jm), definition 3.2.10.

gives the canonical derived sequence as defined in Scott [1980A].

In this article Scott constructed, in the case of the lambda model

lPw, the limit for this sequence, which turned out to be an exten

sional lambda model, lP00 , inside lPw. This construction will be

analyzed in sections 3.3. and 3.4.
D

3.3. Ve!U.ved modei-6 and app~ox,ima,tlon.

In this section we will consider derived models of categorical lambda

models,
G

[X ~ X]~X ,
F

125

in the category CPO of complete partial orders with continuous maps (with

respect to the Scott topology) as morphisms.

We remind the reader that

[X-+Y] = {f: X-+Y If continuous}

is an exponential YX in CPO and that F,G are continuous maps such that

F o G = id[X-+ X]. Hence [X-+ X] is also the set of representable functions

on X.

In the remainder of this chapter we will make use of the concept of

the Bohm:t:Jtee of a lambda term, see Barendregt [1981], chapter 10. We will

freely use notations introduced there.

Moreover in a CPO lambda model it is possible to interpret J\..l.-terms,

see Barendregt [1981], chapter 14.3., by stipulating that [i] =i.

3. 3. I. Definition. Let lDl = (CPO,X,F ,G) be a categorical lambda model.

(i) lDl ha-6 app11.oxA..ma.:Uon, if there exists a map (•). : X x w-+ X, such

that for all x,y EX and n,m E w

(a)

(b)

(c)

(d)

(e)

(•) : X-+ X is continuous ,
n

n..;;m .,. (.) .;;;;(.) ,
n m

x = sup{ (x) I n E w},
n

(x)o Y.;;;; (tl)o,

(x) +lY ..;;(x(y)) • n n n

(ii) lDl is .6.t!Uct if lDl I= A.x.i = L

From now on we will write "CPO lambda model (X,F,G)" instead of

"categorical lambda model (CPO,X,F,G)".

3.3.2. Proposition. Let lDl= (X,F,G) be a CPO lambda model.

Then there exists a continuous G': [X-+X]-+X such that

IDl' = (X,F,G') is a strict CPO lambda model.

Proof: Let G'(f) if VxEX(f(x) = i),

G(f) , otherwise.

The fact is clearly proven once we have shown that

F(G'(f)) =f.

D

126

If 3xE X(f(x) *J.), then G' (f)

if Vx E X (f (x) = J.), then

F(G'(f)o:;;; F(G(f))

VxE X (F (G' (f)) (x) ,,.;;f(x)

Therefore F(G'(f))

G(f) and the result follows;

f hence

J_).

f.

3.3.3. Theorem. Let fill= (X,F,G) be a strict CPO lambda model, that has

approximation (•). : X x w + X. Then

(a) The app1toxA.ma.ti..on. .theOJr.em holcU in fill, that is

(b) p J;Q ~ fill I= p,,.;;q.

Proof: For all x EX we have

J.x = (Ax.J.)x = J..

Now the proof of this theorem follows just as given in Barendregt

[1981], 19.I.1.-19.1.11., for the special case of JPw.

Notice that in this proof we do not need ((x)) = x . () and n 111 min n,m
(x) 0 y = (xJ.) 0 , which hold for JPw, but only the weaker

((x)) .;;;; x . () and (x) 0 y.;;;; (xJ.) 0 , which follow easily from n m min n,m
definition 3.3. I.

3.3.4. Corollary. Let fill= (X,F,G) be a strict CPO lambda model with ap

proximation. Then fill satisfies l8 (the theory of Bohmtree equality)

and hence is sensible.

Proof: By proposition 3.3.3.(b).

3.3.5. Definition. Let fill= (X,F,G) be a CPO lambda model.

(i) fill is a clo.6UJt.e model if Go F >idx.

(ii) fill is an e:den..6ion.al model if Go F = idx.

Note that fill is a closure model iff fill I= I;;;. I and fill is an extensional

model iff ID~I= I = I.

There are some other properties of lPw and ID00 that carry over to

D

D

D

D

J 27

more general lambda models with approximation.

3.3.6. Proposition. Let fill= (X,F,G) be a strict closure model with approxi

mation. Then for all P,QE Al

(i) PnSQ =>filll=P,,;;;;;q.

(ii) If, moreover, fill is extensional and nontrivial then

p ns nQ - fill I= p,,;;;;;q.

In particular Th (Wl) = Jf *.

Proof:

(i) Just as in Barendregt [1981], 19.1.12.-19.1.14.

(ii) Just as in Barendregt [1981], 19.2.5. - 19.2.12.

Now that the constructions used for lPw and ID00 have been trans-

D

ferred to arbitrary CPO lambda models with approximation, it is interesting

to see whether the process of derivation preserves this approximation struc

ture. As we will see, in some cases in which the derivable element d has

certain closure properties, this is true.

3.3.7. Definition. Let fill= (X,F,G) be a CPO lambda model.

(i) aE X is c.i0.6U!le-de.!Uvable if I.;;;a = a a a.;;;aa.

(ii) a EX is .t..t.!Uc.t if aJ_ = .L.

3.3.8. Lemma. Let fill= (X,F,G) be a CPO lambda model.

(i) If a EX is closure-derivable, then a is derivable. Even

stronger, we have aa o a = a a aa = aa.

(ii) If a is (closure-) derivable, then so is aa

(iii) If fill is a strict model and a EX is strict, then so is aa.

(iv) If fill is a closure model, then

I .;;;a /\ a is derivable => a is closure-derivable.

Proof:

(i) Let a EX be closure-derivable. Then

We may conclude aa o a = a o aa = aa.

D

128

(ii) If a is derivable, then so is aa by lemma 3.1.18.

Now let a be closure-derivable. Then

(a) aa>a>I hence aa>I,

(b) a a a
since a o a a a o a = a,

a
(c) a,,;;;;aa and hence by monotonicity aa,,;;;;(aa)a

By (a),(b) and (c) we conclude that aa is closure-derivable.

(iii) Let fill be strict and a EX be strict. Then

aaJ. = aoJ.o a= Ax.a(J.(ax))

Hence aa is strict.

Ax.aJ.

Ax.J., since a is strict,

J. , since fill is strict.

(iv) fill is a closure model, hence fill I= r,,;;;; I.
Then in fill

aa = Ax.aoxoa>A.x.Ioxol

and hence, using the fact that a is derivable,

a a = a a o a o a a > I o a o I = Ax. ax = a.
D

After these preparations we can show that taking derived models pre
serves approximability in the case of a closure-derivable element. First
we describe what a derived model in CPO looks like.

3.3 .. 9. Proposition. Let fill= (X,F,G) be a CPO lambda model.

Let aE lfilll be derivable. Then (X(a),<,J.) is a cpo, where a

X(a) Fix(a).,

J_ aJ.
a

Let moreover F (x) (y) a• (x• y) for x,y E X(a), a
G (f) a a•G (x >+ f (a •x)) for f E [X(a) -+X(a)].

Then l!Jl(a) (X(a) ,F ,G) a a is (isomorphic to) the derived model
fill induced by a.

of

Proof: Clearly (X(a), ,,;;;;) is a partial order. Now for all x E X(a)
we have J. = aJ.,,;;;; ax = x. Hence J_ is the least element in X(a). a a

For X(a) to be a cpo it suffices to show that for all directed

D cX(a) we have supX(D) E X(a).

But

supx(a·D)

supx(D)

Hence supX(D) E X(a).

by continuity,

since n::xCa).

Now consider the following diagram in GPO

G

[X(a) +X(a)] --~-x(a)
F

a

where sa(x) = a•x and ra(x) = x.

129

An easy computation shows that the derivable element corresponding

to this diagram is a.
0

3.3.10.Theorem. Let fill= (X,F,G) be a GPO lambda model with approximation

(•) •. Let a EX be a closure-derivable element in fill and let fill(a) be

the corresponding derived model. Then fill(a) also has approximation,

defined by

[x] a•(x) , for all xEIDl(a). n n

Proof: We will verify conditions (a)-(e) in definition 3.3. l.(i).

(a) Since [•] = s o (•) o r we have that [•] is a continuous n a n a n
mapping for all n E w.

(b) Let n.;;;m. Then (x) .;;; (x) • By monotonicity it follows that n m
[x] = a(x) .;;;a(x) [x] •

n n m m
(c) Let x E X(a). Then

(d)

x = a•x = a•supX(x)n supX a•(x)n = supX(a)[x]n.

Denoting application in fill(a) by • we get for x,y E X(a), a

a(a(x) 0 y)

a(a(x) 0 (ay)) since y E X(a),

130

a (a o a) (x) 0 y

a
a (x) 0 y by 3.3.8. (i)'

a((x) 0 y) since y E X(a),

.;::;; a (xJ.) 0

.;::;; a (a (x (aJ.))) 0 , since a;;;.I,

[x • J_] 0 . a a

(e) Similarly for all x,yEX(a) we have

[x]n+l ·a y a (a (x) n+ 1 y)

a((x)n+l y)

.;::;; a(x(y)n)n

, as above,

.;::;; a(a(x(a(y)n)))n since a;;;.r,

[x • [y]] .
a n n

Finally we want to take the notion of strictness into account, re

sulting in the following theorem about derivation and approximation.

3.3.JJ. Theorem. Let IDlbe a strict GPO lambda model with approximation.

D

Let a E IIDll be a strict closure-derivable element. Then the derived

model IDl(a) is a strict closure model with approximation.

Proof: Suppose that a is strict and closure-derivable and that

(•). defines an approximation in IDl. IDl(a) has approximation [• l. ,
by theorem 3.3.10.

Now

[Ax .J.fl(a) a (Ax. aJ.)

a(:\x.J.)

aJ.

[J.f!R(a).

Therefore IDl(a) is strict.

by corollary 3.1.17.,

since a is strict,

since IDl is strict,

Also

[l]!Ul(a) a(A.x.aC\y.a((ax) (ay))))

a a.a

a(Ax.ax)

[I]!Ul(a).

by lemma 3.3.8.(i),

, since a is closure-derivable,

Hence .!m(a) is a closure model.

3. 4. The model.. 'IP00 •

As an application of the method of taking derived models, we will

131

D

now show how to find an extensional lambda model, defined entirely inside

JPw. Since this model is a hybrid between lPw and ID00 it will be denoted by
1P00• The original construction of 1P00 appeared in print in Scott [1974].

The first analysis of the theory of lP00 was given by Laarhoven [1975].

In this section we will use the theory of derived models to show that

the theory of 1P00 is in fact Jf*, hence equals the theory of any of the
ID00-models of Scott (1972]. 1P00 is defined as the limit of a sequence

(lPn)nEw of models, which will be shown to have the same theory as lPw.

This is no more strange than two converging sequences (xn)nEw and (yn)nEw

of real numbers with xn*Yn for all n E w and yet lim x = lim y .
n-t-oo n n-?oo n

Since the construction will not only be applicable to lPw, but also
to other CPO lambda models, we will start with such an arbitrary !lJl= (X,F,G)

in CPO and try to construct the model lm00•

3.4.l. Definition. Let (Dn)nEw be the sequence of closed lambda terms,
defined by induction on n E w as follows

D
D n

n
Af.D ofoD

n n
D

132

This is the notation, as given in Scott [1980A], for the canonical

derived sequence in KOJJl), for any lambda algebra l!Jl, with respect to

(g,f): bb<lb, where b =I= D0 and g = f = bb =II= I= DJ. Then it fol-

lows for arbitrary nEw, that bn Dn and gn fn = Dn+J"

3.4.2. Observation. By lemma 3.2.JJ. we know that the n-th element of the

canonical derived sequence represents the n-th canonical derived

model. We may draw a diagram in K(l!JlO(A)):

DJ
= DJ.....------DO = I

n,11 n, ~: DI l 1 DI

D2.....------DJ

11 11

From this diagram we read off that

D E IK(l!Jlo(A)) I ,
n

D +I E K(l!Jlo C\)) (D , D J) and n n n+

D I E KCmf (A)) (D J, D) n+ n+ n

These equations can also be proved directly by induction on n.
D

For the remainder of this section let us fix a CPO lambda model l!Jl.

We write d = [D]roz. The n-th canonical derived model will be denoted by n n
l!Jln =l!Jl(dn). We are going to define a kind of limit model for this sequence.

In order to do this we need to know that the sequence (dn) nEw is directed.

3.4.3. Lemma. Letl!Jlbe a closure model. Then for all nEw we have

d <d · 1· n n+

Proof: By induction on n E w.

For n = 0 we have d0 =I .;;;; I = d 1, since llJl is a closure model.

Now assume by induction hypothesis dn <dn+l ·

Then dn+Z = Ax. dn+ 1 o x o dn+ 1

;;;;. Ax.d ox o d
n n

Because of this lemma we are able to consider the limit (supremum)

of the sequence (dn) nEw. For any closure model llJl let d00 = sup{dn / n E w}.

Next we want to show that d00 not only induces a derived model, but even

an extensional one.

3.4.4. Lemma. Let l!Jlbe a (strict) closure model.

(i) Vn E w (d is (strict) closure-derivable).
n

(ii) d00 is (strict) closure-derivable and strongly extensional.

Proof:

(i) By lemma 3.3.8.(ii),(iii).

(ii) Clearly I <d00 , since I <d for all n.
n

Furthermore

d00 0 d00 = sup{d / nEw} o sup{d / mEw} n m

And also

sup{d od /n,mEw}, by continuity, n m

sup{d / n E w}
n

sup{Ax.d oxod / nEw}, by continuity, n n

sup{d 1 / nEw}
n+

133

D

D

134

Now we may define IDb, = !Dl(dcJ. According to lemma 3.1.23. we have

I filb,I Fix (<l.x,) ,

ab , for a, b E l.!Ul00 i,

Moreover IDb, is an extensional lambda model by corollary 3.J.21.
If IDl is a strict closure model with approximation, then we can say

even more.

3.4.5. Proposition. Let IDl be a strict closure model with approximation.
(i) Vn (.!Uln is a strict closure model with approximation).
(ii) IDb, is an extensional model with approximation.

Proof:

(i) By theorem 3.3.11. and lemma 3.4.4.(i).

(ii) By theorem 3.3.11., lemma 3.4.4.(ii) and corollary 3.1.21.

Let us remark here that if .!1Jl is non trivial, then so is filb,. For,

D

J.. = do).E lfilb,I and if c=FJ.., then c =le.;;; d00c E lfilb,I. Hence lfilb,I contains at
least the two different elements J.. and d00c.

3.4.6. Corollary. Let .!1Jl be a nontrivial strict closure model with approxi
mation.

(i) For all nEw, P,QEIU we have

P nc: Q * IDl I= P .;;;q •
~ n

(ii) For all P,QE!\J..

p nsn Q - .!Ulool=P.;;;Q.

* In particular ThC!lJW = JC = Th(IDcJ.

Proof: By propositions 3.3.6. and 3.4.5.
D

In certain cases we can sharpen the result of corollary 3.4.6.(i) by
getting an equivalence instead of an implication. In fact it is the case

that if this equivalence holds for .!lJl then it also holds for any IDln. In

particular all of this is true for JPW.

First of all we need more information about the translation M ~ M1

corresponding to taking the canonical derived model.

3.4.7. Proposition. Let MEJ\l..

(i) If M is unsolvable, then so is M1•

(ii) BT(M1) is constructed from BT(M) by replacing eveJLy node of

the form

by

Proof:

(i) Semantic proof: If M is unsolvable, then by corollary

135

3. 4. 6. (i) we have (JPw) 1 I= M = l.. Hence JPw I= M1 = 1-1 l..

By the characterization theorem for JPw we have M1 is

unsolvable.
I l Syntactic proof: Clearly M =sn M • If M is S-solvable, then

Mis Sn-solvable, hence S-solvable (see Barendregt [1981],

proposition 15.1.7.).

(ii) If Mis unsolvable, then so is M1 by (i).

Hence BT(M) = 1- = BT(M1). Now assume Mis solvable, say
-+ I + I I M = :\x.yM1 .•. Mn. Then clearly M = :\xz.yM1 ... Mnz.

Hence

BT(M)

and

136

The proposition follows.

Because of this proposition it is natural to introduce an operation
I I I A >+ A on Bohm like trees such that BT (M) = BT (M) as follows.

3.4.8. Definition. Let AEm. Define A1 Em by making at every node a EA,
such that A(a) *l., the smallest possible, nontrivial 11-expansion.

D

D

It is clearly possible to define A1 as (A;X) for some suitable X,
but since there is no gain in clearity doing so, we won't bother. For the
notation (A;X), see Barendregt (1981], definition 10.2.10.

Similarly the following lellllila can be proved formally by making exten
sive use of the properties of (A;X). But intuitively this lellllila can be
easily understood by drawing the relevant Bohm trees.

3.4.9. Lellllila. Let A,BEm.

(i)

(ii)

(iii)

A< A1•
11

Al.;,::: BI n
A 1 cB 1

(iv) If c 1 Em such that A1 ~ c 1 =:B 1

cEm such that c 1 = c 1•

then there exists a

Proof:

(i)

(ii)

(iii)

(iv)

Clear by definition 3.4.8.

I I Suppose A <. B • Then, by (i) , A, B <. B I •
11 ll 1

Therefore 00 ll(B) ~ A,B . Clearly also I Al=: I BI.
We conclude A~ B.

Suppose A(a) = (A~.y,k).
l -+ a I I Then A (a)= (Axz .y,k+I) = B (a) and A (a*(k)) a l (z , O) = B (o:*(k))

Therefore B(a) = (A:it.y,k) = A(a).

Let

C(a) = t , if c1 (a) t,

B (a) , otherwise •

Note that C 1 (a) = .l implies a E I BI , since otherwise there

13 7

exists a rightmost branch in c1, ending in i, which contra

dicts A1 ~ c1•

From this observation it follows easily that c1 cl.
D

3.4.10. Corollary. For all P,QEJ\l.

Proof: Suppose P 1 n C Q1• Then there exists c1E lB such that
I I~

BT(P) .._:: c1 cBT(Q) . By lemma 3.4.9. (iv) we may pick a CE58 such n -
that c1 = c1• Applying lemma 3.4.9.(ii), (iii) this gives

BT(P) .._:; CcBT(Q). n -

Hence P ns Q.

With this result we can give the promised sharpening of corollary

3.4. 6. (i).

D

3.4.11. Corollary. Let .!Dlbe a nontrivial strict closure model with approxi

mation, such that for P ,Q E Ai

.!Dll= p...;q - P nc Q.

Then for all nEw,P,QEhl we have

Proof:

(<0=) this is corollary 3.4.6.(i).

(=>) It is clearly enough to show this for n = I, since

11\+1 = (,!!Rn) 1 • But

.!Dll I= P .._:; Q => .!Dl I= PI .._::q I

=> Pini;;QI

=> p n~ Q , by corollary 3. 4.10.,

=I> .!Dll= p.._:;q.

D

138

Let me now state the results for lPw in a separate theorem.

3.4.12. Theorem. Let lP (lPw) , lP00 = (lPw) 00 •
n n

(i) For all n E w, the model lP n is a strict closure model with

approximation and

lP '-p,.;::q PTJ'.::°:Q·
n r- ""' - '-::-

In particular Th(lP) = Th(lPw).
n

(ii) lP00 is an extensional lambda model with approximation and

In particular Th(lPcx/ = Th(IDcx/.

Proof: lPw has approximation given by

(x) = xn {O, .•. ,n} for x~w, nEw. n

We refer the reader to Barendregt [1981], 18.2.14.

Clearly lPw is strict and nontrivial. Moreover, by example

1.5.5., lPw is a closure model.

(i) We have

JPw I= p,;;;q - P Tl~ Q

by a theorem of Hyland, see Barendregt [1981], 19.1.9.

The result follows by corollary 3.4.11.

(ii) Apply corollary 3.4.6.(ii).

Note that the sequence

D

approximates the Nafw.jhna tltee NT(P), as introduced in Nakajima [1975].

Theorem 3.4.12.(ii) fits in nicely with the following result of Nakajima

(cf. Barendregt [1981], 19.4.4.):

NT(P) ~NT(Q) - IDOO I= p,;;;q.

139

CHAPTER 4

THE HYPERGRAPHMODEL

In Sanchis [1979] a model for combinatory logic is introduced, which

is a rr:-variant of the wellknown graphmodel lPw for lambqa calculus, as de

fined in example 1.4.31. It was unclear in howfar this socalled hypergraph

model satisfied the laws of lambda calculus. In this chapter it will be

shown that the hypergraphmodel can not be expanded to a lambda model. The

question whether it can be expanded to a lambda algebra remains open.

4.1. Fundamen:tai. defi~l'Ui and p4opeJ!,tlu..

It is the purpose of this first section to introduce the hypergraph

model for combinatory logic of Sanchis [1979] and to give the necessary

facts about it and the ordinary graphmodel lPw as a preparation for the

next section in which it will be proved that the Meyer-Scott axiom fails

for the hypergraphmodel. We will stay quite close to the original presen

tation of Sanchis, introducing some more notation where convenient.

4.1.1. Notations.

(i) 2 (•,•): w -+w is a bijective coding of pairs of natural numbers

onto natural numbers.

n >+ e : w -+ {e_!:.:w I e is finite} is a bijective coding of fi
n

nite subsets of the natural numbers by natural numbers.

(ii) For n,m,pEw let (n,m,p) = (n,(m,p».

This gives a bijective coding of w3 onto w. In any of the stan-

dard ways we may define an injective coding of the set of all

finite sequences of natural numbers into w.

Let (a(O), ••• ,a(k-1)) be the code of the sequence a: k-+w.

If f: w-+w and pEw then f(p) = (f(O), ..• ,f(p-1)).

140

(iii) Seq = {f(p) Ew If: w+w A pEw} is the set of all sequence

numbers.

a,$,y ••• are variables that range over Seq.

a-< 8 means that a codes a sequence that is an initial segment

of (or equal to) the sequence 8 codes.
D

Unless stated otherwise, in this chapter, n,m,p, ••• range over w;

f,g,h, ••• range over ww; A,B,C, ••• , X,Y,Z, ..• range over Pw and a,$,y, •••

range over Seq.

4.1.2. Definition. Let A~w and aESeq. Then the a-~Uc.e. 06 A is defined by

Aa = {(n,m) I (a,n,m) EA}.
D

The operation A>+ (Aa)aESeq decomposes any set of natural numbers into

a tree of such sets. This will become important in the definition of appli

cation in the hypergraphmodel. To have all tools at hand we will repeat

here also the definition of application in lPw.

4.1.3. Definition. Let the binary operations • : Pw2 +Pw and : Pw2 +Pw be

defined by

A!B

{m I 3e c:B{(n,m)EA)}, n-

{m I Vf3p3e c:B((f(p),n,m)EA)}.
n-

Now we have two applicative structures,

lPw (Pw,•), the graphmodel, and

llW (Pw,!), the hypergraphmodel.

Both structures can be expanded to combinatory algebras.

4. I . 4. Theorem.

(i) lPw is combinatory complete. Indeed, it can be expanded to a

lambda model.

(ii) llw is combinatory complete.

Proof:

D

(i) This follows from the fact that lPw can easily be represented

141

in the category CPO in such a way that a continuous graphfunc

tion can be defined. This was done in example 1.4.31.

(ii) This is a result of Sanchis [1979), §2 theorem 4.
D

Reading this theorem, a natural question to ask is whether llw can be

expanded to a lambda model. An approach as in 4.1.4.(i) seems quite in

effective, since the hypergraphapplication ! : Pw2 + Pw is hopelessly non

continuous with respect to the Scott topology on (Pw,=>· In fact it will

turn out that llw cannot be expanded to a lambda model.

4.1.5. Notation. We will make use of the following notation, introduced by

Sanchis:

(AB) A•B

[AB] A!B

When using this notation we need to be very precise about writing

brackets.

4.1.6. Remark. In order to get a better understanding how hypergraph

application works, we may realize that

m E [AB] - Vf3p (in E (Af (p) B))

D

- There exists a bar lB in the tree of sequence num

bers such that Va E lB(m E (Aa B)) •

This means that A codes a whole tree of sets (A) ES , the tree a a eq
of its a-slices. This tree can be applied pointwise in the ordinary

graphapplication-sense, resulting in another tree of sets. This

tree then determines the result by looking at its bars.

The remainder of this section gives some more preparations for the

next section.

4.1. 7. Lemma.

(i) Both • and ! are monotonic in both their arguments.

(ii) If {A. I i EI} is any set of elements of Pw then
l

D

142

Proof:

(U A.) • B
iEI 1

u(A.•B).
iEI 1

(i) Immediate from definition 4.1.3.

(ii) For all m E w

m E (U A.) • B
iEI 1

- 3e c:B ({n,m) E u A.)
n- iEI 1

- 3iEI 3e c:B((n,m)EA.)
n- J.

- 3i EI m E (Ai• B)

- mE u (A.•B).
iEI 1 D

Notice that the fact that graphapplication preserves arbitrary unions

in its first argU111ent is a kind of supercontinuity in that argument, also

called additivity. Indeed, continuity states that the union preserving

property holds for directed sets {A. I i EI}.
1 PW Let me remind the reader of the following property of I = [;\xy.xy] •

For all AE Pw

This follows immediately from example 1.5.5., since (IA) = G(F(A)).

In the hypergraphcase we have the following analogous definition.

4.1.8. Definition.

(i) The operation : Pw+Pw is defined by

A= {<a.,n,m) I 3S-<a. 3ekc:e (($,k,m)EA)}.
- n

- 2
(ii) The binary operation n: Pw +Pw is defined by

n(A,B) = A nii.

Notice that is a kind of saturation operation since

Aa. u { o As) I s-< a.L

Also note that in general n(A,B) =F- A nB.

D

4. I .9. Proposition. Let A,B::w.

(i) VX cw [Ax] = [AX].

(ii) VXcw (ri(A,B)X] = [AX] n [BX].

Proof:

(i) Let x::w, m E w. Then

mE[Ax] _. Vf3p3e cx(<f(p),n,m>EA)
n-

_. Vf3p3en::x 313-< f (p)3ek::en {(j3,k,m) EA)

_. Vf3q3ek::x((f(q),k,m>EA)

_. m E [AX].

(ii) Let x::w, mEw. Then mE [AX] n [BX]

143

_. Vf3p 1,p 2 3e ,e _::x(<f(p 1),n1,m>EAA (f(p 2),n2 ,m>EB)
nl n2

(*)
_. Vf3p3en::;X(3p 1 ~p 3e ce (<f(p 1),n 1,m>EA)

n 1 - n

A 3p 2 ~p 3e ce (<f(p 2),n2 ,m>EB))
n 2 - n

- Vf3p3e cxC<f(p),n,m)EAnii)
n-

_. mE[ri(A,B)X].

4. 2. }{w c..anno:t be expanded :to a .f.ambda model.

D

In order to refute that llw can be expanded to a lambda model we will

make use of the Meyer-Scott axiomatization of lambda models as given in

section I .4.

Let us recall this axiomatization:

llw can be expanded to a lambda model _.

There exists an element EE Pw such that

VA,x::w [[EA]X] [AX] and

For all A,B::_w

VX([AX] = [BX]) * [EA] [EB].

144

Hence in order to show that the hypergraphmodel cannot be expanded to
a lambda model it is sufficient to derive a contradiction from (MS£).

The fact that (;1S£ 2) holds implies the corresponding statement for in

clusion.

4.2.l. Lemma. If (MS£) holds then also

(MS£ 3) For all A,B::w

VX([AX] ::'.[BX]) => [EA] c: [EB].

Proof:

'v'X([AX] =[BX]) - \IX([AX] n [BX] = [AX])

- 'v'X([i)(A,B)X] =[AX]), by proposition 4.1.9.(ii),

- [di(A,B)] = [EA], by (MS£),

=> [£AJ::[£B], by lemma 4.1.7.(i),

- [EA]:: [£B], by proposition 4. I .9. (i) and (MS£ 2).

(In fact the arrow=> in this proof is also an equivalence, since

[£A]c:[£B] implies 'v'X([AX]::[BX]) by monotonicity and (MSE l).)
0

Now our purpose is to construct for a given set C two other sets AC

and BC that are quite similar in their applicative behaviour. In fact AC

and BC will differ on only one argument, viz. C. Although AC and BC are so
very similar, [£AC] has to be different from [EBC], if (MS£) holds. The
proof that (MS£) is contradictory will depend heavily on this discrimi
nating power of £.

4.2.2. Definition. Let c::w, pEw.

Define functions fC: Pw->-Pw and gp,C: Pw->-Pw as follows:

fC(X) r/J if x::c.

w
' if X$C.

gp,C(X) r/J if x'l!cne, - p
w

' if x:::.cne p
0

4. 2.3. Lemma. For all C::_w, p E w we have that fc and gp,C are continuous

functions.

Proof: In any complete partial order (X,.;;;,~) it is the case that

{x j x,,:;;z} is open. Hence fC is continuous.

In (Pw,5:) the compact elements are the finite sets. Hence

{X IX=> c n e } is open. Therefore g c is continuous.
- p p,

4.2.4. Definition. Let Ccw.

Define Ac

and BC

Seq x graph (f C) ::_ w

ACU u {(p)}xgraph(g C)
pEw p,

ACU{((p),n,m) I (n,m)Egraph(gp,C)}.

(Here graph is the graph-operator in lPw; recall furthermore that

(p) is the code for the single term sequence p.)

4.2.5. Proposition. Let Ccw.

(a) For all Xcw we have

[ACX] = r/J , if X ::_ C,

w if xg;c.

(b) For all Xcw we have

[BCX] = r/J , if x1c,
w , otherwise.

Proof:

(a) Since for all a E Seq we have (AC) a

that [ACX]= fc(X).

graph(fc), it is clear

(b) Since AC::_BC, the proposition is clear for X!ifC. Therefore

suppose xcc. There are two cases.

145

D

D

Case I: xc;;:c. Then there exists a p such that x~cn e . On the
p

other hand we have (BC) (p) = graph(fc) U graph(gp,C).

By lemma 4.1.7.(ii) we conclude

146

Furthermore, if lth(a) =I= I, then also

Therefore there exists a path through the tree of

sequence numbers, labelled 0 at every node. We con

clude that

Case 2: X=C. Then for a.U pEw we have X=>Cne, hence
- p

((BC) (p) • X) = w.

Therefore [BCX] = w.
D

In Il'w all representable functions are continuous and hence are deter

mined by their applicative behaviour on the finite subsets of w. Due to

the existence of AC and BC this is far from true in 1l:lw. We will state

this more formally now.

4.2.6. Definition. Let !!Jl = (X, •) be an applicative structure. DcX is call

ed deMe (in Wl) if for all a,b EX

Vd E D(a•d = b•d) -->- Vx E X(a•x b•x).

If we restrict our attention to CPO lambda models (X,•,.;;;,~) we ob

serve that a set D cX is dense in (X, •) if and only if all (Scott-) con
tinuous functions from X into X are determined by their values on D.

Furthermore, we notice that density as defined above implies topological

density with respect to the Scott topology.

4.2.7. Corollary.

(i) The collection of finite subsets of w is dense in IPw.

(ii) The only dense subset in 1Hw is the full Pw.

Proof:

(i) By continuity of application and the fact that every set is

the directed supremum of its finite subsets.

(ii) Immediate by proposition 4.2.5.

D

D

4.2.8. Proposition. Let C,D=W·

(i) vx=w([ACX]:: [BCX]).

(ii) If C~D then VX=w([BDX]:: [ACX]).

Proof:

(i) Since Ac=Bc this is clear by lemma 4. I. 7. (i).

(ii) Suppose c1n and let xcw.

If [ACX] = w then clearly [BDX]:: [ACX].

Therefore assume [ACX] = r/J, hence Xc C.

Then X~D and thus [BDX] = r/J.

Also in this case [BDX]:: [ACX].

Thus in all cases [BDX]:: [ACX].

147

D

By making use of our hypothetical E under the assumption (MSE) we can

make these inclusions independent of any Xcw.

4.2.9. Corollary. Suppose (MSE) holds.

(a) [EAC] ¥ [EBC] , for all Ccw.

(b) [EBD]_:: [EAC] , if C,D::w, such that C'jD.

Equality holds only if D= {d} for some dEw (and hence C=!/J).

Proof: The inclusions in (a) and (b) follow from proposition 4.2.8.

by applying (MSE3), cf. lemma 4.2.1.

The fact that the inclusion in (a) is strict follows from (MSE I)

and proposition 4.2.5. For, if (EAC] [EBC], then

l/J = [Ace] = [[sAC]C] = [[EBC]C] [BCC] = w.

A contradiction. Hence [EAC] *[EBC].

Now assume that D is not a singleton set in order to prove strict in-

clusion in (b). Let d E n\c. Then [BD {d}] = l/J and [AC {d}]

fore, again by (MSE I), [E:Bn]*[EAC].

w. There-

0

Now the crux in the proof of contradicting (MSE) lies in the exis

tence and nonexistence of certain chains in (Pw,::). It is a quite remark

able fact that, although w is countable there exists an uncountable chain

148

of subsets of w. Intuitively this seems to be impossible since whenever

C,D are in the chain C, such that say C1D, we may choose an element d E w

with d ED, d t C. By doing this for all pairs of sets in the chain we seem

to find uncountably many natural numbers. Pictorially the idea is as fol

lows:

chain C

I t t

But, as the next lellJllla shows, it is sometimes impos.sible to choose un

countably many di66e1Lent natural numbers in this way.

4.2.10. LellJllla. There exists an uncountable chain C in (Pw,=)·

Proof: Since w~(Q it is clearly sufficient to give an uncountable

chain C in (P(Q,=). Consider the function f: lR+P(Q, given by

f(r) = {qE<Qlq<r}.

Let C = Ran(f)', then C is an uncountable chain in (P(Q,=), order

isomorphic to (lR, <) •
0

Now let C be this uncountable chain in (Pw,=) and assume that (MS£)

holds. Since C 1+ [£AC] is a contravariant embedding from (Pw,c) into it

self, we have another chain V = {[£AC] ICE C}. But this chain has the

following peculiar property: for any element X = [£AC] E V there exists a

companion, namely [£BC], such that this companion is larger than X, but

smaller than all YE V such that X1Y. This makes it possible to pick natu

ral numbers nc E [£BC]\[£AC] for all c EC, which are all different.

Pictorially, we have

[£AC] [£BC] [£AC.] [£BC.] [£AC.] [£BC.]
k k J J l. l.

- - chain V

nc nc. nc.
k] l.

This idea is worked out in the next theorem.

149

4.2.11. Theorem. There is no expansion (Pw,!,£) of lHw to a lambda model.

Proof: Suppose (Pw,!,£) is a lambda model. Then (MS£) is satis

fied. By le1111Da 4.2.10. let C be an uncountable chain in (Pw,=)·

Define for C E C

nC is welldefined by corollary 4.2.9.(a). Now let us show that

the mapping C 1+ nC is injective in order to derive a contradiction

from the fact that C is uncountable and w is countable. Suppose

C,DEC such that C:;!:D. Since C is a chain we have C1D or D~C.

Assume the former, without loss of generality. Then by corollary

4.2.9.(b) we have [£BD]=[£Ac].

But then

Hence nDE [£AC]. Since ncf/. [£AC] by definition, we conclude nc:;!:nD.

This shows the injectivity of the mapping C 1+ nC and thereby

finishes the proof.
D

ACZEL, P.

[1980]

ADACHI, T.

[1983]

REFERENCES

F !Le.g e. 1.>:tJtu.dU!Le.6 and .the. no:tlo It!.> o 6 p!Lo po1.>ilio n, :tJtu..th and

I.> e..t.
Barwise, Keisler and Kunen [1980], pp. 31-59.

151

A c.a.te.go!Uc.ttl c.hMade!Uza:tlon 06 lambda c.alc.ul.u.1.> mode.l!.>.
Research report on Information Sciences C-49, Department of

Information Sciences, Tokyo Institute of Technology.

BARENDREGT, H.P.

[1977]

[1981]

The. .type. 61Le.e. lambda c.alc.ul.u.1.>.
Barwise [1977], pp. 1091-1132.

The. lambda c.ttlc.ul.u.1.>. I.tl.> 1.iyn.tax and !.> e.man:tlc.1.>.
Studies in Logic and the Foundations of Mathematics, volume

103. North-Holland, Amsterdam, etc.

BARENDREGT, H.P.; COPPO, M. and DEZANI-CIANCAGLINI, M.

[1983] A 6-lUeJt lambda model and .the. c.omple..te.ne.&1.> 06 .type. aMignme.n.t.
Journal of Symbolic Logic, volume 48/4, pp. 931-940.

BARENDREGT, H.P. and KOYMANS, K.

[1980] CompaUng Mme. c.la!.>1.>e.& 06 lambda c.alc.ul.u.1.> mode.l!.>.
Seldin and Hindley [1980], pp. 287-301.

BARENDREGT, H.P. and LONGO, G.

[1980] Equ.a.LU:y 06 lambda .teJtml.> in .the. model fD.
Seldin and Hindley [1980], pp. 303-337.

BARWISE, J. (editor)

[1977] Handbook 06 Ma.the.ma:tlc.ttl Logic..
Studies in Logic and the Foundations of Mathematics, volume

90. North-Holland, Amsterdam, etc.

152

BARWISE, J.; KEISLER, H.J. and KUNEN, K. (editors)

[1980]

BERRY, G.

[1980]

[1981]

The Kleene Sympo~iwn (proceedings).

Studies in Logic and the Foundations of Mathematics, volume

IOI. North-Holland, Amsterdam, etc.

On the deM.-rU:Uon 06 lambda c.alc.u1-lL6 model;.,.
Rapport de Recherche 46, Institute National de Recherche en

Informatique et en Automatique (INRIA).

Published in Draz and Ramos [1981], pp. 218-230.

Some ~yntamc. and c.atego!Uc.al c.oMttluc.tioM 06 lambda
c.alc.u1-lL6 ma del;., .

Rapport de Recherche 80, Institute National de Recherche en

Informatique et en Automatique (INRIA).

BOHM, C. (editor)

[1975] A.-c.alc.u1-lL6 and c.ompute!t ~ cienc.e theOJty.
Proceedings of the Rome symposium. Lecture Notes in Computer

Science, volume 37. Springer-Verlag, Berlin, etc.

COOPERSTOCK, D.

[1981] Af'.teJtnative auoma.L[zatioM 06 model;., 06 the lambda c.alc.u1-lL6.
Technical Report 151/81, Department of Computer Science,

University of Toronto.

CURRY, H.B. and FEYS, R.

[1958] Combinato~y logic., volwne 1.

Studies in Logic and the Foundations of Mathematics. North

Holland, Amsterdam, etc.

DIAZ, J. and RAMOS, I. (editors)

[1981] I nteJtna.tiona.l Colloquium on Fo!tmaUzation 06 P!LOgM.mming
Conc.e.pt6 (proceedings).

Lecture Notes in Computer Science, volume 107. Springer

Verlag, Berlin, etc.

DOLD, A. and ECKMANN, B. (editors)

(1975]

ENGELER, E.

(1981]

Logic_ Con6Vtenc_e f(.[el 1974 (proceedings).

Lecture Notes in Mathematics, volume 499. Springer-Verlag,

Berlin, etc.

Algeb.luUi and c_ombina.tofr.).,.

Algebra Universalis 13, pp. 389-392.

GIERZ, G.; HOFMANN, K.; KEIMEL, K.; LAWSON, J.D.; MISLOVE, M. and

SCOTT, D.S.

[1980] A c_ompendiwn 06 c_ori:UnuoU-6 fu:ttic.eA.

Springer-Verlag, Berlin, etc.

HEIJENOORT, van J. (editor)

[1967] F~om F~ege to Godel.

Harvard University Press, Cambridge.

HINDLEY, R. and LONGO, G.

[1980]

KAROUBI, M.

[1978]

Lambda. c.ai.c.u£U-6 modei.J.i and e:deYll.lionaLUy.

Zeitschrift fur Mathematische Logik und Grundlagen der

Mathematik 26, pp. 289-310.

K-theo~y, an i~oduc.tion.

Springer-Verlag, Berlin, etc.

KARPINSKI, M. (editor)

[1977]

KOYMANS, K.

(1979]

Fundamentcil6 06 computation theo~y (proceedings).

Lecture Notes in Computer Science, volume 56. Springer

Verlag, Berlin, etc.

Lambda. ealc.u£U-6 modei.J.i, thw defiinition and c.atego!Ueal

tec.hniqueA Ul>ed in model c.oYll.l~uc.tioYll.l.

Master thesis, Department of Mathematics, University of

153

154

[1981]

[1982]

[1983]

Utrecht. Manuscript.

Modw 06 :the lambda c.alc.ul.u.6.
Preprint 223, Department of Mathematics, University of

Utrecht. Published as Koymans [1982].

Modw 06 :the lambda c.a!c.ul.u.6.
Information and Control, volume 52/3, pp. 306-332.

Ve.JUved A-ca!c.ul.u.6 modw and :the c.oru..:tJtu.c.tion 06 V00 iru.ide
Pw.
Preprint 283, Department of Mathematics, University of

Utrecht.

[I 983A] The hype.Jig!W.phmodel 6oJi c.ombina:tOJr.lj logic. ,to no:t a lambda
model.

Preprint 288, Department of Mathematics, University of

Utrecht.

LAARHOVEN, M.A.M.

[1975] Ge:typeeJLde- en nie:t ge:typeeJLde eueru.ionele A-c.a!c.ul.u.6-
modellen in Pw.
Master thesis, Onderafdeling der Wiskunde, Technische

Hogeschool Eindhoven.

LAWVERE, F.W. (editor)

[1972] TopoJ.ie.6, AlgeblW.ic. Geome.:Uty and Logic..
Proceedings of the Dalhousie conference. Lecture Notes in
Mathematics, volume 274. Springer-Verlag, Berlin, etc.

LONGO, G. and MOGGI, E.

[1983]

MACLANE, S.

[1971]

Godel nu.mbvungJ.i, p!U..nc.ipal mOJr.phi-OmJ.i, c.ombina:tOJr.y algebtr.a.-0.
A c.a:tegony-:theone:tic. c.h~c.:te.JUza:tion 06 6unc.tional c.om
ple:tene.6-6 .

Nota Scientifica S-1983-21 (preliminary draft), Dipartimento

di Informatica, Universita di Pisa.

Ca:tego!U..e.6 6on :the won!U.ng ma:thema:tic.ian.

MEYER, A.R.

[1980]

[1981]

[1982]

MEYERS, A.

[1974]

155

Graduate Texts in Mathematics 5. Springer-Verlag, Berlin, etc.

What b.> a model 06 :the lambda c.alc.ulU6 ?

MIT/LCS/TM-171, Laboratory for Computer Science, Massachusetts

Institute of Technology.

What b.> a model 06 :the lambda c.alc.ulU6 ? (expanded version).

MIT/LCS/TM-201, Laboratory for Computer Science, Massachusetts

Institute of Technology. Published as Meyer [1982].

What b.> a model o 6 :the lambda c.alc.utU6 ?

Information and Control, volume 52/1, pp. 87-122.

CaJI:te6..i.a.n c.lo-tied c.atego!Ue6 and \-c.alc.uU.

Master thesis, Department of Mathematics, University of

Bristol.

MILNE, R. and STRACHEY, C.

[1976]

NAKAJIMA, R.

[1975]

A :theOJr.y 06 p!togMmming language heman:tic.6

(part a and part b).

Chapman and Hall, London; Wiley, New York.

InMnUe noJtmal 6oftm}., 601t :the \-c.alc.ulU6.

Bohm [1975], pp. 62-82.

OBTUiOWICZ, A.

[1977]

[1979]

Func.:to!Ual h eman:tic.6 o 6 :the :type 61tee A- Sn c.alc.utU6 .

Karpinski [1977], pp. 302-307.

On :the c.o Mb.>:ten:t ChWLc.h alg eb/r..a,{_c. :theo!Ueh, alg eb1taic.

:theo!Ue6 06 :type \-Sn, and non:t!Uvial modelh 06 :the :type 61tee

lambda c.alc.ulU6.

Institute of Mathematics, Polish Academy of Sciences.

Typescript.

156

OBTULOWICZ, A. and WIWEGER, A.

[1978]

[1982]

PLOTKIN, G.

[1972]

[1974]

(1976]

[1978]

SANCHIS, L.E.

[1979]

Ca.tego!Lic.at, fiun.c.to!Liat and atgeblt.LUc. a.&pect6 06 :the. :type.
6Jte.e. lambda c.alc.ulu.6.
Preprint 164, Institute of Mathematics, Polish Academy of

Sciences. Published as Obtulowicz and Wiweger [1982].

Ca.te.go!Lic.at, 6un.c.to1Liat and atge.blt.LUc. a&pe.ct6 06 :the. :type
6Jte.e lambda c.alc.ulu.6 •
Universal Algebra and Applications, Banach Center Publi

cations, volume 9, pp. 399-422. PWN, Polish Scientific Pub

lishers, Warsaw 1982.

A -0e.:t-:the.011.etic.al de.MrU.:Uon 06 app.Uc.ation.
Memorandum MIP-R-95, School of Artificial Intelligence,

University of Edinburgh.

The. J.-c.atc.ulu.6 L6 w-inc.omple.:te..
Journal of Symbolic logic, volume 39/2, pp. 313-317.

A powe.Jtdomain c.on-0:tJtuc.:tion.

SIAM Journal on Computing, volume 5/3, pp. 452-487.

Tf w a& a unive.Mat domain.

Journal of Computer and System Sciences, volume 17/2, pp.

209-236.

Reduc.ibi.u:tiv., in :two mode.l-0 6oJt c.ombina.toJty logic..
Journal of Symbolic Logic, volume 44/2, pp. 221-234.

SCHONFINKEL, M.

[1924] Ube.ft die BalL6:teine. de.ft Ma:thema.ti-Oc.he.n Logik.
Mathematische Annalen 92, pp. 305-316. Translated in English

as On :the. bull.ding bloc.k-0 ofi Ma:the.matic.al Logic., by

S. Bauer-Mengelberg, with an introduction by W.V. Quine, in

van Heijenoort [1967], pp. 355-366.

SCOTT, D.S.

[I 9 72] Co ntinuo U6 £.a.:tti.c.et. •

Lawvere [1972), pp. 97-136.

[I 97 4] Vctta typet. a6 £.a.:tti.c.et. •

Dold and Eckmann [1975), pp. 579-651.

[I 9 7 6] Vctta typet. a6 £.a.:tti.c.et. •

Expanded version of Scott [1974).

SIAM Journal on Computing, volume 5/3, pp. 522-587.

[1977] Log.le. and p1Wg1r.ammfog la.nguaget..

Communications of the ACM, volume 20/9, pp. 634-641.

[1980) Rei.a.,tlng theo!U.et. 06 the A-c.a.lc.ui.U6.

Seldin and Hindley [1980], pp. 403-450.

[I 980A] Lambda ca..lc.ui.U6: Some modeh, .t.ome philo.t.ophy.

Barwise, Keisler and Kunen [1980), pp. 223-265.

SELDIN, J.P. and HINDLEY, J.R.

[1980] To H.B. CuJVLy: '£6.t.ay.t. on c.ombinato4y logic., lambda c.alc.ui.U6

and 6Mm~m.

Academic Press, London, etc.

YOKOUCHI, H.

157

[1983] CMtet.~ c.lo.t.ed .t.:tJtu&Ultet. in modeh 06 the lambda c.alc.ui.U6.

Department of Information Sciences, Tokyo Institute of

Technology. Typescript.

159

GLOSSARY OF SYMBOLS

This glossary is divided into the following groups of symbols:

2. Metava!Ua.btv.,

a. General

b. Synt=

c. Models and monoids

d. Categories

3. GeneJtai, no:t.a.tlo n6

a. Sets, functions and sequences

b. Categories

4. Syntax
a. General

b. Lambda calculus

c. Combinatory logic

d. Axioms and rules

5. Modw

a. General

b. First-order and environmental models

c. Functional domains and Scott models

d. Derived models

e. Graph- en hypergraphmodel

6. Ca:tego.!Uv.,

a. Cartesian closed categories

b. Interpretations in categories

c. Karoubi construction and retracts

7. Monoid6

8. Comple.te paJLt.lal_ o!LdeJu., c.omple.te and c.oilinu.ou.6 lati:ic.v.,

9. TJLan6lation6 and c.od,Lng-6.

160

I. Abb)[.e.v-i.atio n6

ea

ccm

c/..a

cl

A.a,A.m

p/..a

IH

c.c.c.

cpo

A.

po

BA

CAT

CATES

CL

CLATT

CPO

MS

MS
E:

combinatory algebra

cartesian closed monoid

combinatory lambda algebra

complete lattice

lambda algebra, lambda model

proto lambda algebra

induction hypothesis

cartesian closed category 59

complete partial order 48

lambda calculus 10

partial order 48

basic assumption 103

category of all categories 72

category of categories with explicit splitting 72

combinatory logic 21

category of continuous lattices 7

category of complete partial orders 49

Meyer-Scott axiom 36

Meyer-Scott axiom for E: 37

2. Meta.va!U.able6

a. General

X, Y,Z, •••

a,b,c, ,x,y,z,

f,g,h, ••• ,(j),l/J, •••

n,m,p, •••

a,f3,y , ••.

A,B,C, ••.

b. Synta.x

x,y,z, •••

M,N,L, •••

sets

elements of sets

functions, maps

natural numbers

sequence numbers

subsets of w

variables (for A. and CL)

lambda terms

P,Q,R, •.•

r ,1::,.,e, •••

combinatory terms

(in chapter 3) lambda terms

finite sequences of variables

c. Models and monoids

llJl,91, •••

M,N, • ••

a,b,c, •••

m,n,l, •••

p,o, ...

structures, models

mono ids

elements of M as objects in K(M)

elements of M as arrows in K{M)

assignments

d. Categories

A,B,C, •••

A,B,C, •••

f,g,h, .••

a,h,c, •••

categories

objects

arrows

idempotent arrows

reflexive objects u,v, ...

3. GeneJtai. no.mti.anf.i

a. Sets, functions and sequences

lllJll

w

µn.(j){n)

PX
.;.
X\Y
X/f':I

card(X)

f 0 g

idx
Ran{f)

nx
7

t

domain of the structure llJl

set of natural numbers

the smallest n E w such that q>(n)

power set of X

set of functions from X to Y

{x EX I x </. Y}, difference of sets

X, divided out by the equivalence relation I':!

cardinality of X

composition, f following g

identity function on X

range of f

restriction of f to X

partial function

undefined

161

162

+ x

f(~) ,fu)
~EX

{~}
-+ x I-+

()

b. Categories

!Al

A(A,B)

-I
f]

defined

sequence x 1, ... ,xn

abbreviation for f(x 1), ••• ,f(xn)

abbreviation for x 1 EX, ... ,xnEX

abbreviation for {xl,. .. ,xn}

notation for the function f

empty sequence

identity, identical

isomorphism, isomorphic

set of objects of A
set of arrows from A to B

composition, f following g

identity arrow on A

inverse of f

mono (morphism)

epi (morphism)

iso(morphism)

adjunction

unit of adjunction

4. Syntax

a. General

C set of constants

X = {.'.: I a EX} set of constants from X

Vars={v0,v 1, .. } variables

FV free variables

M[x := N] substitution

M[~ := N] simultaneous substitution

M(~) implicit substitution, M[it := ~]
P~ d restriction of P to the range of d

Ass(X) set of assignments in X

p(x/d) assignment, changed at one variable

I identity term

9

11

9

9

9

11

12

115

12

12

35

I
T

Sn

T
[]T

T 1+T 2

~

BT(P)

NT(P)
p[k]

(A;X)
c: nc: nc:n
,....,, ', ',

,.;;;;
n

oon(A)

n-expansion of I

n-th n-expansion of I

iterated function application

iterated application to an argument

provability

theory

theory of Sn-equality

equivalence modulo provability in T

equivalence class modulo =T

union of theories

set of Bohm-like trees

theory of Bohm-tree equality

Bohm-tree

Nakajima-tree

k-th level Bohm-approximation

n-expansion of Bohm-like tree A

Bohm-inclusions

infinite n-expansion

infinite n-normal form

b. Lambda calculus

A
A(C)

I\ (c)

l\O(C)

l\O(C,~)
I\ o am,~)

0 0 + A,1\,1\ ,I\ (x)

Th (fill)

SA,KA
D

n
M'

abstraction

lambda calculus with constants

lambda terms with constants

closed lambda terms with constants

lambda terms

abbreviation

abbreviation

theory of fill

with variables among ~

for l\O (ll!Jl l,i)
0 0 -->-for A(0),l\(0),I\ (0),1\ (0,x)

basic combinators of A

n-th canonical derived term

interpretation of M in term model

lambda bottom terms

theory equating all unsolvables

theory equating all solvably equivalents

163

35

35

92

92

10,21

10,2!

135

16,29

16,29

25

136

126

125, 135

138

126

136

126, 127

136

136

9

10, 11

9

11

l l

18

11

11

20

131

16

125

35

127

164

5.

c. Combinatory logic

Cl(C)

CL(C)

c.e.0 (c),Ct0 cc,i)

_,.
<x>P,<x>P

S,K

combinatory terms with constants

combinatory logic with constants

closed combinatory terms, combinatory terms

with variables among i
strong combinatory logic

finite axiomatization of CL6(c)

abstraction in CL

terms over l1Jl

basic combinators

d. Axioms and rules

a a-axiom

B B-axiom

t, [,-rule

axiomscheme of weak extensionality

t,CL axiomscheme of weak extensionality (for CL)

MS Meyer-Scott axiom

MSE Meyer-Scott axiom for E

MSE I, 2 Meyer-Scott axioms in hypergraphmodel

MSE3 Meyer-Scott axiom with inclusion

Model/.>

a. General

IDOO Scott's inverse limit model

lPw graphmodel

'Irw Plotkin's universal domain

lHw hypergraphmodel
l1Jl

interpretation (in IDl) [•],[·] map

[.] . interpretation map with assignment

I= satisfaction

application

0 composition

axb,ba,T product, exponent, terminal

21

21

22

24

25

22

26

21

10

JO

10

18

28

36

37, 143

143

144

2,53

50, 140

100

140

l l ,31, 63

12

12

14

95

95

P q ev ' ab' ab' ab' · a
(f,g),J\.(f)

!!Jl(T)

!!JlO (T)

!!Jlo= cxo,.,[.]o)
\j): !!Jl ~ 9(

\j): ID/~91

\P: !!Jl~W

fill~W

!!Jl~W

fill-w

!!Jl(C)

!!Jl(C,H)

IDl(M)

K(IJJfJ

projections, evaluation, unique arrow a->-T

pairing, abstraction

open term model

closed term model

interior

homomorphism

embedding

isomorphism

!!Jl is embeddable in W

!!Jl is isomorphic to W

W is homomorphic image of IDl

Aa generated by C

concrete model given by C,H

Aa generated by M
Karoub i -envelope of !!Jl

b. F-irs t-order and enV1~ronrnen ta l mode ls

fill' cAa associated with pAa !!Jl
w+ pAa associated with cAa W

q;i (IDl) Am associated with ea with £: !!Jl

'¥(91) ea with £: associated with Am W

s,k interpretation of S,K

i, I, In interpretation of I, I, In

£: I-like element
EM Meyer's £:-sequence n
s

Scott's £:-sequence £:
n

f:n either f:M or £: s
n n

s,k abbreviations for £:3s,£:2k

c. Functional domains and Scott models

set of representable functions

function-operator

graph-operator

set of functional elements

set of n-th order functional elements

165

95

95

16,30

18,30

17,30

54

54

54

54

54

54

63

98

95

95

31

31

41

41

28

35

37

37

37

38-42

41

43

43

43

46

47

166

d. Derived models

d
IDl(d) =<I IDl(d) I, ·d ,[• D)
lDl(a) =(X(a),F ,G)

a a
lDl = IDl(d) n n
l1Jl00 = lDl(dcc)

lP
n

]pOO

d

Fix(d)

D
n

d
n

doo

P~d

[.]

BA

(G',F'): vv<lv

0

d

lDl = lDl(C,U,F,G)

91 = lDl(C,V,F' ,G')

F: K(91) + KO'Dl)

(r,s): V<IU

(p,a): 1911<1 l!JJll

(G ,F): U 1<Ju n n n+ n

e. Hypergraphmode l

lPw, lHw

I . ' .
(AB), [AB]

Seq

lth(a)

a-< S

Aa
18

A

derived model, defined by d

derived CPOA!n, defined by a

n-th canonical derived model

limit canonical derived model

n-th canonical derived graphmodel

ID00 inside lPw

derivable element

fixed points of d

n-th canonical derived term

interpretation of Dn

limit of the d 's
n

P restricted to the range of d

derived approximation

basic assumption

retract of the derived model

arrow representing r o s

element representing o
original model

derived model

full and faithful embedding

retract, inducing derived model

retract of domains

retract of n-th canonical derived

model

graph-, hypergraphmodel

graph, hypergraph application

graph, hypergraph application

set of sequence numbers

length of the sequence a

a is an initial segment of S

a-slice of A

bar

saturation of A

111

128

132

134

138

138

109

109

131

132

133

115

129

103

103

104

104

104

104

121

102

108

123-124

140

140

141

140

146

140

140

140

141

167

fi saturated intersection 142

fC,gp,C special continuous functions 144

Ac,Bc special elements of llw 145

D dense set 146

c,v uncountable chains !48

6. Ca-te.go!Ue.-6

a. Cartesian closed categories

c
c~u

AxB,BA,T

PAB'p'qAB'q

evAB'ev,J\ABC'J\
I

"A
(f,g),fxg

11 11
Tfx,rrr
[fl, ... ,fn]
An,fn

cartesian closed category

sub-c.c.c., generated by U

product, exponent, terminal

projections

evaluation and abstraction

unique arrow from A to T

pairing and product of maps

generalized projections

generalized pairing

iterated product

59

95

59,60

60

60

59

60

62

61

60, 107

b. Interp1°etations in categories

(C,U,F,G)

u
F,G

ml(C)

!lJl(C, H)

6; x

categorical lambda structure (algebra) 61

reflexive object 61

fun-, graphmorphism 61

Aa generated by C 63

concrete model induced by C,H 98

application for A-elements 63

length of /::,. 62

(#6) times iterated product of U 62

set of elements of /::,. 62

/::,. with x left out 62

/::,. with x transferred to the back 62

(intensional) interpretation in a c.c.c. 63

assignment as tuple of elements 67

168

\a inside a Karoubi-envelope

canonical retract

canonical retract

section, projection of C(U,U)<JC(T,U)

l !6

80

80

89

c. Kar•ouh'i construction and retracts

CAT

CATES

u
(A,R,r,s)

R,r,s

R
a

acb

a~b

K

KCM)
K (Jl)l)

F: K (W) + K (llJ1)

(g,f): A<J B
- - A B (g,f): A<JB

Ret(C)

7. Monoid6

M = (X,*,u)

*

u

p,q,e

category of all categories 72

category of categories with explicit splitting 72

forgetful functor CATES + CAT 72

category with explicit splitting 72

idempotent splitting structure 71

range of the idempotent a 72

a is a partial splitting of b 72

a partially split through b 72

Karoubi-functor 73

Karoubi-envelope of a monoid 79

Karoubi-envelope of a \a 95

full and faithful embedding 12!

retract 61,69

retract, induced on the functionspace 101

category of retracts in C 102

mono id

monoid application in general

unit of a monoid

M(C)

M(f!R)

in M(C)

in M<JIJl)

projections and evaluation in general ccm's

in M(C)

in M<JIJl)

79

79

80

90

79

80

90

82

80

90

(m,n),L(m)

(a,b) ,L(a)

M(!Ul)

MCC)
l!Jl(M)

KCM)

M
L

1.6: Ml

a®b

pairing and abstraction in M(C)

in general ccm' s

in MW)

lambda monoid induced by /..a l!Jl

ccm induced by c.c.c. C
/..a induced by lambda monoid M

Karoubi-envelope of monoid M

abbreviation for M(K(M))

abstraction in M
interpretation in a monoid

product in a monoid

restriction of a to paired arguments

8. Complete po.Jr;tio.,l 011.dvu.,, complete and c.o ntinuoiM R.a.:ttic.v..

cpo

~

..I.

sup

D

u

ev

A

L

D
n

d
n

doo

<.P '1jJ n n

<.Pn,Yn
1T

n
[X->- Y]

complete partial order

partial ordering

bottom element

supremum

directed set

Scott open in a cpo

Scott open in a complete lattice

evaluation in CPO

abstraction in CPO

complete lattice

complete lattice in the Scott sequence

cpo in the Scott sequence

Scott's inverse limit model

Scott's inverse CPO limit model

interpretation of Dn in CPO/..m

limit of the sequence dn,nE w

retraction pairs in the Scott sequence

retraction pairs in the Scott CPO sequence

projection from D00 onto Dn

set of continuous functions from X to Y

169

80

82

90

90

80

95

79

87

87

91

82

82

48

48

48

48

48

48

2

49

49

2

2

53

2

53

132

133

2

53

53

2,48

170

9.

(x)
n

[x]
n

T na1v.ila.:tfo YL6

A,CL

PA,MCL
M'-P,p'-P
pd

P'

(n,m>

(n,m,p)

e n

and

(a(O), ... ,a(k-1))

f(p)

approximation in CPOAm

approximation in derived CPOAm

c.oding;.,

standard translations Cl-+A,/\-+Cl

abbreviation for A(P),CL(M)

image of a term under a homomorphism

interpretation of p in the range of d

interpretation of p w.r. t. Aa inside

coding of pairs of natural numbers

coding of triples of natural numbers

coding of finite subsets of w

coding of finite sequences in w

K 0JJI)

coding of initial segment of a function

125

129

23

23

54,55

106

l 16

50, 139

139

49,139

139

139

A

a-axiom

a-convertible

a-slice

abstraction

- (in CL)

adjoint functor

algebra

canonical derived lambda

categorical lambda

combinatory

combinatory -with E

combinatory lambda

derived lambda

lambda ~

INDEX

proto lambda (final definition)

proto lambda (preliminary definition)

algebraic (over fill)

application

applicative structure

approach

combinatory

crude ~

approximation

~ theorem

assignment

assumption, basic

axiom

a-

/3-

E; -

K-

of partial splitting

171

10

10

140

9

22

73

103

61

28

41

28

103' 111

3-4,34

15

I 1

27

9, 14

26

31

20

125

126

4, 11

103

72

10

10

15, 18

21

172

B

Meyer-Scott

s- -

13-axiom

basic

assumption

combinators

combinators (of the lambda calculus)

Bohmtree

bound variables

c

calculus, syntax of the lambda

canonical

~ cartesian closed monoid

~, derived lambda algebra

derived sequence

representative

retracts

cartesian

case

closed category

closed monoid

canonical ~ closed monoid

stable ~ closed monoid

Meyer's

Scott's

categorical

lambda algebra

lambda structure

model

category

~ with explicit splitting

cartesian closed ~

strictly concrete~

36

21

10

103

21

20

125

9

9

88

103

123

43

80

59

82

88

82

38

38

61

61

5

72

59

97

CL(C)-theory

closed

closure

combinatory terms

term

term model

term model (for CL)

~ -derivable

~ model

coding

of finite sequences in w

of finite subsets of w

of pairs of natural numbers

of triples of natural numbers

combinators

basic

(of the lambda calculus) basic

combinatory

algebra

algebra with E

approach

complete

lambda algebra

lambda model

terms

closed - terms

strong ~ logic

syntax of ~ logic

complete

~ partial order

combinatory ~

concrete

~ model

strictly ~ category

continuous

Scott ~ functions (for complete lattices)

Scott - functions (for cpo's)

173

21

22

9

18

30

127

126

139

49' 139

50, 139

139

21

20

28

41

31

27

28

28

21

22

5' 24

21

48

27

98

97

2

48

174

convertible, a

CPO lambda model

crude approach

v
dense

derivable

~ element

closure-~

derived

~ lambda algebra

canonical lambda algebra

canonical

directed

sequence

domain, functional

E

element

derivable

strict

embeddable

embedding

endomorphism

enough points

envelope

Karoubi

Karoubi

Karoub,i-

environment

(of l!Jl)

(of M) as a c.c.c.

(of M) as a category

~model

epimorphism

explicit splitting

extensional

~model

strongly

10

125

20

146

109

127

103, I 11

103

123

48

43

l 09

127

54

54

71

6 '67

95

83

79

4

4

69

72

6 '51

126

114

weakly

weakly -model of CLS

F

filter model

first order model

free variables

fun-operator

function

- -operator

- space

Scott continuous

Scott continuous

functional

- domain

~ lambda model

functor

G

adjoint

Karoubi- -

graph-operator

graphmodel

H

homomorphic image

homomorphism

hypergraphmodel

I

idempotent

image, homomorphic

in tensional

interior

(for CL)

(for complete lattices)

(for cpo's)

17 5

3 '18

28

6 '19

5

9

43

43

60

2

48

43

44

73

73

43

47,49

54

54

140

71

54

6

17

30

176

interpretation map

isomorphic

isomorphism

K

K-axiom

Karoubi

- -envelope (of lDl)

- -envelope (of M) as a c.c.c.

- -envelope (of M) as a category

- -functor

L

>.(C)-theory

lambda

- algebra

- model

-monoid

- terms

canonical derived - algebra

categorical - algebra

categorical - structure

combinatory - algebra

combinatory -model

GPO - model

derived - algebra

functional -model

Meyer - model

pro to - algebra (final definition)

proto - algebra (preliminary definition)

proto - model

Scott -model

syntax of the - calculus

logic

strong combinatory -

syntax of combinatory

4

54

54

21

95

83

79

73

10

3 - 4 ,34

4 ,34

88

9

103

61

61

28

28

125

103' 111

44

43

15

11

18

46

9

5 ,24

21

M

Meyer

model

- -Scott axiom

- 's case

- lambda model

- of CL

- of CLS

categorical

closed term

closed term (for CL)

closure -

combinatory lambda -

concrete -

GPO lambda -

environment

extensional

filter -

first order

functional lambda

lambda -

Meyer lambda

open term

open term (for

pro to lambda

Scott lambda

strict

weakly extensional

CL)

- of CLS

mono id

~ of endomorphisms

canonical cartesian closed -

cartesian closed -

lambda

stable cartesian closed -

monomorphism

morphism (of applicative structures)

177

36

38

43

4

28

28

5

18

30

126

28

98

125

4

126

6'19

5

44

4 ,34

43

16

29

18

46

125

28

71

88

82

88

82

69

54

178

N

Nakajima tree

nontrivial

0

object

open

reflexive

terminal -

term model

term model (for CL)

Scott -

operator

order

p

fun- -

function~

graph- ~

variable binding term -

complete partial ~

partial~

partial

order

axiom of ~ splitting

complete - order

Plotkin terms

points, enough

product

projection

pro to

lambda algebra (final definition)

lambda algebra (preliminary definition)

lambda model

138

58

61

59

I 6

29

48

43

43

43

20

48

48

48

72

48

15, 16

6 , 67

60

69

15

11

18

R

reflexive object

representable (over ID?)

representative, canonical

retract(ion)

retracts, canonical

rule, I;-

s

S-axiom

satisfaction

Scott

~ 's case

continuous functions (for complete lattices)

continuous functions (for cpo's)

~ lambda model

~ open

topology

topology

(for complete lattices)

(for cpo's)

section

sequence

~ numbers

canonical derived ~

simultaneous

~ substitution

~ substitution (in CL)

slice, a-

splitting (of idempotents)

stable cartesian closed monoid

standard

strict

~coding of finite subsets of w

~ coding of pairs of natural numbers

translations

element

~model

179

61

27

43

61,69

80

10

21

11

38

2

48

46

48

2

48

69

140

123

11

22

140

71

82

49

50

23

j 27

125

180

strictly concrete category

strong combinatory logic

strongly extensional

structure

applicative

lambda categorical

substitution

~ (in CL)

simultaneous

simultaneous (in CL)

supremum

syntax

T

term

~ of combinatory logic

- of the lambda calculus

closed

closed - model

closed -model (for CL)

open - model

open ~model (for CL)

variable binding - operator

terminal object

terms

- over IDl

closed combinatory

combinatory

lambda -

Plotkin

theory"

CL(C)

A (C)

topology

Scott

Scott

(for complete lattices)

(for cpo' s)

97

5 '24

114

l 5

26

61

9

22

11

22

48

21

9

9

18

30

16

29

20

59

26

22

21

9

'16

21

10

2

48

translations, standard

tree

Bolun -

Nakajima

trivial

u

unit

universal

v

variable

w
weakly

- binding term operator

bound -

free -

extensional

- extensional model of CL$

x

!;-axiom

!;-rule

181

23

125

138

58

73

79

20

9

9

3 , 18

28

15'18

10

MATHEMATICAL CENTRE TRACTS
I T. van der Walt. Fixed and a/mast fixed points. 1%3.
2 A.R. Bloemena. Sampling from a graph. 1964.
3 G. de Leve. Generalized Markovian decision processes. part
/: model and method. 1964.
4 G. de Leve. Gen(ralized Maikovian tkcision processes, part
II: probabilistic background. 1964.
5 G. de Leve. H.C. Tijms, P J. Weeda. Generalized MarkDVian
decisian processes, applications. 1970.
6 M.A. Maurice. Campact ordered spaces. 1964.
7 W.R. van Zwet. Convex transformations of random variables.
1964.
8 J.A. Zonneveld. Automatic numerical integratian. 1964.
9 P.C. Baayen. Universal morphisms. 1964.
IO E.M. de Jager. Applications of distributions in mathematical
physics. 1964.
11 A.B. Paalman-de Miranda. Topological semigroups. 1964.
12 J.A.Th.M. van Berckel, H. Brandt Corstius. R.J. Mokken,
A. van Wijngaarden. Formal properties of newspaper Dutch.
1965.
13 H.A. Lauwerier. Asymptotic expansions. 1%6, out of print;
replaced by MCT 54.
14 H.A. Lauwerier. Calculus of variations in mathematical
physics. I %6.
15 R. Doornbos. Slippage tests. 1%6.
16 J.W. de Bakker. Formal definition ofprogrammi"[;
~a~ges with an application to the definitian of AL OL 60.

17 R.P. van de Riel. Formula manipulation in ALGOL 60,
part I. 1%8.
18 R.P. van de Riel. Formula manipulatian _in ALGOL 60,
part 2. 1%8.
19 J. van der Slot. Some properties related to campactness.
1%8.
20 P.J. van der Houwen. Finite difference methods for solving
partial differential equations. 1%8.
21 E. Wanel. The campactness operator in set theory and
topology. I %8.
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra,
part}. 1%8.
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in
numerical algebra, part 2. I %8.
24 J.W. de Bakker. Recursive procedures. 1971.
25 E.R. Paerl. Representations of the Lorentz group and projec
tive geometry. 1%9.
26 European Meeting I %8. Selected statistical papers. part I.
1%8.
27 European Meeting 1968. Selected statistical papers, part 11.
1%8.
28 J. Oosterhof!. Combination of one-sided statistical tests.
1%9.
29 J. Verhoeff. Error detecting decimal codes. 1%9.
30 H. Brandt Corstius. Exercises in cmnputationa/ linguistics.
1970.
31 W. Molenaar. Approximations to the Poisson. binomial and
hypergeometric distribution functions. 1970.
32 L. de Haan. On regular variation and its application to the
weak ftmvergence of sample extremt•s. 1970.
33 F.W. Steutel. Preservation of infinite divisibility under mix·
ing and related topics. 1970.
34 I. Juhasz, A. Verbeck, N.S. Kroonenberg. Cardinal June··
lions in topology. 1971.
35 M.H. van Emden. An analysis of complexity. 1971.
36 J. Grasman. On the birth of boundary layers. 1971.
37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, E.W.
Dijkstra, P.J. van der Houwen, G.A.M. Kamsteeg-Kemper.
F.E.J. Kruseman Aretz. W.L van der Poel. J.P. Schaap·
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 lnformatica
Sympo.sium. 1971.
38 W.A. Verloren van Themaat. Automatic analysis of Dutch
compound words. 1972.
39 H. Bavinck. Jacobi series and approximation. 1972.
40 H.C. Tijms. Analysis of(s,SJ inventory models. 1972.
41 A. Verbeck. Superextensions of topological spaces. 1912.
42 W. Vervaat. Success epochs in Bernoulli trials (with applica
tions in number theory). 1912.
43 F.H. Ruymgaart. Asymptotic theory of rank tests for
independence. f973.

44 H. Bart. Meromorphic operator valued functions. 1973.
45 A.A. Balkema. Monotone transformations and limit laws.
1973.
46 R.P. van de Riel. ABC ALGOL, a portable language for
formula manipulation systems, part/: the language. 1973.
47 R.P. van de Riel. ABC ALGOL, a portable language for
formula manipulation systems, part 2: the compiler. 1973.
48 F.EJ. Kruseman Aretz, P.J.W. ten Hagen. H.L
Oudshoom. An ALGOL 60 compiler in ALGOL 60, text of the
MC-compiler for the EL-X8. 1973.
49 H. Kok. Connected orderab/e spaces. 1914.
50 A. van Wijngaarden, B.J. Mailloux. J.E.L Peck, C.H.A.
Koster, M. Smtzoff. C.H. Lindsey. LG.LT. Meertens. R.G.
Fisker (eds.). Revised report an the algorithmic language
AWOL 68. 1976.
51 A. Hordijk. Dynamic programming and Markov potential
theory. 1974.
52 P.C. Baayen (ed.). Topological structures. 1914.
53 M.J. Faber. Metrizability in generalized ordered spaces.
1974.
54 H.A. Lauwerier. Asymptotic analysis, part I. 1974.
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part I:
theory of design.<, finite geometry and coding theory. 1974.
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2:
graph theory, foundations, partitions and combinatorial
geometry. l 914.
57 M. Hall, Jr.. J.H. van Lint (eds.). Combinatorics, part 3:
combinatorial group theory. 1974.
58 W. Albers. Asymptotic expansions and the deficiency con
cept in statistics. 1975.
59 J.L Mijnheer. Sample path properties of stable processes.
1975.
60 F. Gobel. Queueing models involving buffers. 1975.
63 J.W. de Bakker (ed.). Foundations of computer science.
1975.
64 W.J. de Schipper. Symmetric closed categories. 1915.
65 J. de Vries. Topological transformation groups, I: a categor
ical approach. 1915.
66 H.G.J. Pijls. Logically convex algebras in spectral theory
and eigenfunction expansions. 1976.
68 P.P.N. de Groen. Singularly perturbed differential operators
of second order. 1976.
69 J.K. Lenstra. Sequencing by enumerative methods. 1977.
70 W.P. de Roever, Jr. Recursive program schemes: semantics
and proof theory. 1976.
71 J.A.E.E. van Nunen. Contracting Markov decision
processes. 1976. ·
72 J.K.M. Jansen. Simple periodic and non-periodic Lome
functions and their applications in the theory of conical
waveguides. 1977.
73 D.M.R. Leivant. Absoluteness of intuitionistic logic. 1979.
74 H.J.J. te Riele. A theoretical and computational stu& of
generalized aliquot sequences. 1976.
75 A.E. Brouwer. Treelike spaces and related connected topo
logical spaces. 1977.
76 M. Rem. Associons and the closure statement. 1976.
77 W.C.M. Kallenberg. Asymptotic optimality of likelihood
ratio tests in e.xponential families. 1978.
78 E. de Jongc. A.CM. van RoolJ. J111rudm:11011 to Ru..·.\:.
spaces. 1977.
79 M.C.A. van Zuijlen. Emperica/ distributions and rank
statistics. 1977.
80 P.W. Hemker. A numerical stu4>· of stiff two-point boundary
problems. 1977.
81 K.R. Apt. J.W. de Bakker (eds.). Foundations of computer
science II, part/. 1976.
82 K.R. Apt. J.W. de Bakker (eds.). Foundations of computer
science II. part l. 1976.
83 L.S. van Benthem Jutting. Checking Landau's
"Grundlagen" in the A UTOMATH system. 1979.
84 H.L.L. Busard. The translation of the elements of Euclid
from the Arabic into Latin by Hermann of Carinthia (.'). books
vii-xii. 1977.
85 J. van Mill. Supercompactness and Wallman spaces. 1977.
86 S.G. van der Meulen. M. Veldhorst. Torrix I. a program
ming system for operations on vectors and matrices over arbi
trary jields and oj variable size. 1978.
88 A. Schrijver. Matroids and linking systems. 1977.
89 J.W. de Roever. Complex Fourier transformation and
analytic functionals with unbounded carriers. 1978.

90 L.P.J. Groenewegen. Characterization of optimal strategies
in dynamic ,games. l981.
91 J.M. Geysel. Transcendence in fields of positive characteris
tic. 1919.
92 P J. Weeda. Finite generalized Markov programming. 1979.
93 H.C. Tijms, J. Wessels(eds.). Markov decision theory.
1977.
94 A. Bijlsma. Simultaneous approximations in transcendental
number theory. 1978.
95 K.M. van Hee. Bayesian control of Markov chains. 1978.
96 P.M.B. Vitanyi. Lindenmayer systems: structure, languages,
and growth functions. 1980.

97 A. Federgruen. Markovian control problems; functional
equations anil algorithms. 1984.
98 R. Geel. Singular perturbations of hyperbolic type. 1978.
99 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Boas
(eds.). Interfaces between computer science and operations
research. t\178.
100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennia/·congress of the Wiskundig Genao/Schap. part
I. 1979.
IOI P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap. part
2. 1979.

:g~8~. van Dulst. Reflexive and superreflexive Banach spaces.

103 K. van Harn. Classifying infinitely divisible distributions
by functional equations. llmr.
104 J.M. van Wouwe. Go·spaces and generalizations of metri
zahility. 1979.
l 05 R. Helmers. Edgeworth expansions for linear combinations
of order statistics. 1982.
:~9A. Schrijver (ed.). Packing and covering in combinatorics.

107 C. den Heijer. The numerical solution of nonlinear opera
tor equations by imbedding methods. 1979.
108 J.W. de Baldcer, J. van L.eeuwen (eds.). Foundations of
computer science Ill, part I. 1979.
109 J.W. de Bakker, J. van L.eeuwen (eds.). Foundations of
computer science Ill, part 2. 1979.
110 J.C. van Vliet. ALGOL 68 transput, part I: historical
review and discussion of the implementation model. 1979.
111 J.C. van Vliet. ALGOL 68 transput, part II: an implemen
tation model. 1979.
112 H.C.P. Berbee. Random walks with stationary increments
and renewal theory. 1919.
113 T.A.B. Snijders. Asymptotic optimality theory for testing
problems with restricted alternatives. 1979.
114 A.J.E.M. Janssen. Application of the Wigner distribution to
harnwnic analysis of generalized stochastic processes. 1979.
115 P.C. Baayen, J. van Mill (eds.). Topological structures II,
part I. 1979.
116 P.C. Baayen, J. van Mill (eds.). Topological structures II,
part 2. 1979.
117 PJ.M. Kallenberg. Branching processes with continuous
state space. 1979.
118 P. Groeneboom. Large deviations and asymptotic efficien
cies. 1980.

l 19 F.J. Peters. SP'!rse matrices and sUbstructures. with a novel
implementation oj finite element algorithms. 1980.
120 W.P.M. de Ruyter. On the asymptotic analysis of large
scale ocean circulation. 1980.
121 W.H. Haemers. Eigenvalue techniques in design and graph
theory. 1980.

122 J.C.P. Bus. Numerical solution of systems of nonlinear
equations. 1980.

:~~01. Yuhasz. Cardinal functions in topology - ten years later.

124 R.D. Gill. Censoring and stochastic integrals. 1980.
125 R. Eising. 2-D systems, an algebraic approach. 1980.
126 G. van der Hoek. Reduction methods in nonlinear pro
gramming. 1980.

127 J.W. Klop. Combinatory reduction systems. 1980.
128 A.J .J. Talman. Variable dimension fixed point algorithms
and triangulations. 1980.
129 G. van der Laan. Simplicial fixed point algorithms. 1980.
130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J.
Sint, A.H. Veen. ILP: intermediate language for pictures.
1980.

131 R.J.R. Back. Correctness preserving program refinements:
proof theory and applications. 1980.
132 H.M. Mulder. The interval function of a graph. 1980.
133 C.A.J. Klaassen. Statistical performance of location esti
mators. 1981.
134 J.C. van Vliet, H. Wupper (eds.). Proceedings intema·
tional conference on ALGOL 68. 1981.
135 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methods in the stiu!Y of language, part I. 1981.
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methods in the- study of language, part II. 1981.
137 J. Telgen. Redundancy and linear programs. 1981.
138 H.A. Lauwerier. Mathematica/ models of epidemics. 1981.
139 J. van der Wal. Stochastic dynamic programming. succes
sive approximations and nearly optimal strategies for Markov
decision processes and Markov games. 1981.
140 J.H. van Geldrop. A mathematical theory ofpure
exchange economies without the no-critical-point fiypothesis.
1981.
141 G.E. Welters. Abel-Jacobi isogenies for certain types of
Fano threefolds. 1981.
142 H.R. Bennett, D.J. Lutzer (eds.). Topoloe>· and order
structures, part I. 1981.
143 J.M. Schumacher. Dynamic feedback in finite· and
infinite-dimensional linear systems. 1981.
144 P. Eij~enraam. The solution of initial value problems using
interval anthmetic; formulation and analysis of an algorithm.
1981.
145 A.J. Brentjes. Multi-dimensional continued fraction algo
rithms. 1981.
146 C.V.M. van der Mee. Semigroup and factorization
methods in transport theory. 1981.
147 H.H. Tigelaar. Identification and informative sample size.
1982.
148 L.C.M. Kallenberg. Unear programming and finite Mar
kovian control problems. 1983.
149 C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg.
W.K. Vietsch (eds.). From A to Z, proceeding-' of a symposium
in honour of A. C. Zaanen. 1982.
150 M. Veldhorst. An analysis of sparse matrix storage
schemes. 1982.
IS I R.J.M.M. Does. Higher order asymptotics for simple linear
rank statistics. 1982.
152 G.F. van der Hoeven. Projections of lawless sequences.
1982.
153 J.P.C. Blanc. Application of the theory of boundary value
problems in the analjsis of a queueing model with paired ser
vices. 1982.
154 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational
methods in number theory, part I. 1982.
155 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational
methods in number theory, part l/. 1982.
156 P.M.G. Apers. Query processing and data allocation in
distributed database systems. 1983.
157 H.A.W.M. Kneppers. The covariant classification of two.
dimensional smooth commutative formal groups over an alge
braically closed field of positive characteristic. 1983.
158 J.W. de Baldcer, J. van L.eeuwen (eds.). Foundations of
computer science IV, distributed systems, part I. 1983.
159 J.W. de Baldcer, J. van L.eeuwen (eds.). Foundations of
computer science IV, distributed systems, part 2. 1983.
160 A. Rezus. Abstract AUTOMATH. 1983.
161 G.F. Helminck. Eisenstein series on the metaplectic group,
an algebraic approach. 1983.
162 J.J. Dik. Tests for preference. 1983.
163 H. Schippers. Multiple grid methods for equations of the
second kind with applications in fluid mechanics. 1983.
164 F.A. van der Duyn Schouten. Markov decision processes
with continuous time parameter. 1983.
165 P.C.T. van der Hoeven. On point processes. 1983.
166 H.B.M. Jonkers. Abstraction, specification and implemen
~':J~')~ techniques. with an application to garbage collection.

167 W.H.M. Zijm. Nonnegative matrices in dynamic program
ming. 1983.
168 J .H. Evertse. Upper bounds for the numbers of solutions of
diophantine equations. 1983.
169 H.R. Bennett, D.J. Lutzer (eds.). Topology and order
structures. part 2. 1983.

CW/ TRACTS
1 D.H.J. Epema. Surfaces with canonical hyperplane sections.
1984.
2 JJ. Dijkstra. Fake topological Hilbert spaces and characteri
zations of dimension in tennr of negligibility. 1984.
3 A.J. van der Schaft. System theoretic descriptions of physical
systems. 1984.
4 J. Koene. Minimal cost flow in processing networks. a primal
approach. 1984.
5 B. Hoogenboom. Intertwining functions on compact Lie
groups. 1984.
6 A.P.W. JIOhm. Datajlow computation. 1984.
7 A. Blokhuis. Few-distance sets. 1984.
8 M.H. vao Hoorn. Algorithms and approximations for queue
ing systems. 1984.
9 C.P.J. Koymaos. Models of the lambda calculus. 1984.

