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0. INTRODUCTION AND SUMMARY 

This monograph deals with a number of rather basic models from queueing 
theory. In particular, the attention is focused on the development of computational 
algorithms. 

The question may arise whether after about 75 years of research in queueing, it 
is still possible to make a substantial contribution to the theory and to come up with 
some new results. To account for our positive answer to this question, and to place 
the present work in its proper context, we first give a short historical survey of the 
origin and the development of queueing theory and subsequently discuss the current 
state of affairs. 

It is the Danish mathematician A.K. Erlang who is considered to have founded 
queueing theory in the beginning of this century. He was involved in queueing prob
lems that occurred in automatic telephone exchanges. An example is the problem of 
finding the loss probability, i.e. the fraction of the incoming calls finding all trunks 
busy, as function of the offered traffic in a telephone switching system with a certain 
number of trunks. These systems were typical loss queueing systems with no waiting 
room. Erlang's name is still attached to some important concepts in queueing theory 
such as the Erlang delay probability and the phase method of Erlang. 

Until 1940, the majority of the contributions to queueing theory was made by 
people active in the field of telephone traffic problems; cf. the book of Kosten[73]. 
After the second world war, the field of operations research rapidly developed and 
queueing applications were also found in production planning, inventory control and 
maintenance problems. In this period, much theoretically oriented research on queue
ing problems was done. The emphasis on theoretical aspects is, however, not surpris
ing in view of the lack of computing facilities at that time. 

In the fifties and sixties, the theory reached a very high mathematical level; see 
e.g. Cohen[69] and Takacs[62]. Advanced mathematical techniques like transform 
methods, Wiener Hopf decomposition and function theoretic tools were developed 
and refined. This research resulted in a number of elegant mathematical solutions. 

Simultaneously with the progress in the mathematical theory of queueing, 
another important development was taking place in the fifties. The rise of the com
puter and other technically advanced digital equipment created a new field for applied 
queueing theory. In fact, on the one hand the computer enabled numerical work to be 
done, while on the other hand quantitative results of queueing models were needed 
for the design and performance evaluation of computers and telecommunication 
installations. 

Unfortunately, the gap between theory and practical applications had grown 
too wide. Many solutions were given in a form resulting in numerically unstable solu
tion procedures or in a form wholly unsuitable for computations. A famous example 
is, as Kendall[64] stated, ' the Laplacian curtain which has hitherto obscured much of 
the detail of the queue-theoretic scene'. The fact that many theorists neglected the 
numerical aspects of their work and the lack of time of practitioners to explore the 
numerical possibilities of new analytical results have prevented the application of 
potentially useful methods. 
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An important impulse to computational queueing analysis was given by 
research workers with an electrical engineering and computer science background; cf. 
Kleinrock[75] and Kiihn[72]. Their aim was primarily to develop algorithms that 
were fast and easy to implement. 

In the last ten years, much effort has been spent on numerical work for queue
ing models. In the course of this work many approaches have been explored besides 
the continuing attempts to implement the existing theoretical results. Rather than on 
the search for explicit results, the attention has been focused on algorithmic solution 
procedures. The most frequently used technique, which is essentially based on 
Erlang's phase method, is to model a queueing system as a continuous time Markov 
chain. By writing down the equilibrium equations, a system of linear equations for the 
state probabilities is obtained. These linear equations can effectively be solved by a 
proper application of iterative methods such as successive overrelaxation and 
aggregation/ disaggregation; cf. Takahashi and Takami[76] and Groenevelt, van 
Hoorn and Tijms[82]. Obviously, this is a purely numerical approach not providing 
any qualitative insight. Such insight is indeed provided by the matrix geometric 
method developed by Neuts[81]. However, we feel that for numerical purposes alone 
the iterative methods mentioned earlier are in general to be preferred because of their 
ease of implementation and their effectiveness. 

In view of the computational problems associated with exact solutions of com
plex queueing models, a lot of effort is being put into the development of approxima
tions, using intuitive reasoning and heuristic methods. In particular, for the mul
tiserver queue with Poisson input several good quality approximations have been 
found. These approximations will be reviewed later. 

The effort put into the derivation of approximations for queueing models is 
justified by the fact that the models investigated are often themselves approximations 
of real world applications. In such applications, modeling and measurement errors 
may reduce the need for exact solutions. 

In this monograph, we give for a wide class of queueing models recursive com
putational schemes for the state probabilities and other performance measures. The 
ultimate goal is all the time to obtain practical useful results and therefore the 
analysis is exact whenever possible and approximate whenever exact methods lead to 
intractable results. We want to emphasize the power of recursive methods and the 
need to think 'recursively' when developing numerical methods. We have not avoided 
the job of doing the actual numerical calculations in order to find out whether the 
proposed methods are indeed useful for practical purposes. Many numerical results 
and illustrations will be given. 

As method of analysis we use the regenerative method first put forward by 
Hordijk and Tijms[76] and later applied to the MIG/ 1 queue with variable service 
rate in Federgruen and Tijms[80]. This is a unifying and intuitively appealing 
approach which uses results from the theory of regenerative processes. In the analysis 
we use up and down crossing properties of the queue length process. These up and 
down crossing properties are in fact the counterpart of the continuity theorem in phy
sics concerning the principle of conservation of flow. A well known relationship 
derived with these properties is the equality of arriving customer and departing custo-
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mer distributions in systems where customers arrive one at a time and leave one at a 
time. Also, throughout this monograph we shall in our analysis frequently use the 
fundamental property that 'Poisson arrivals see time averages'. We devote an appen
dix to the essence of this property, since by doing so we can streamline many of our 
derivations. The main organization of this monograph is as follows. 

In Chapter 1, we introduce the regenerative method on the basis of the stan
dard M/G/l queue, i.e. the single server queue with Poisson input and general service 
times. We derive a recursive algorithm for the steady state probabilities of the 
number of customers in the system. We show that our algorithm is to be preferred 
above the classical algorithm obtained from the embedded Markov chain approach. 

In Chapter 2, we consider an extension of the M/G/l queue. We assume that 
the arrival rate of customers depends on the number of customers in the system. As 
special cases, we discuss the M/G/l queue with finite capacity and the machine repair 
problem with a single repairman. Also, we give an algorithm to compute the waiting 
time distribution. 

Chapter 3 is devoted to an approximate analysis for the intrinsically difficult 
M/G/c queue, i.e. the multiserver queue with Poisson input and general service times. 
Based on an approximation assumption concerning the residual service times of ser
vices in progress at a service completion epoch, we give a complete analysis for this 
model. In addition to algorithms. for the state probabilities and the moments of the 
queue length and waiting time, we deal with the waiting time distribution function 
and the output process. Also asymptotic results for the state probabilities and the 
waiting time distribution will be given. At the end of Chapter 3 we give extensive 
numerical results and discuss the quality of the approximations. We not only validate 
our own general purpose approximations, but also review the various other approxi
mation formulae for the mean queue length given in the literature. 

In Chapter 4, we discuss briefly the extension of the results of Chapter 3 to an 
M/G/c queue with a state dependent Poisson arrival process. Again, we give special 
attention to the finite capacity model and the machine repair model with multiple 
repairmen. 

In Chapter 5, we consider the Mx/G/l queue. In this model the customers 
arrive in batches rather than singly and the batch size distribution depends on the 
state of the system. We give an algorithm for the state probabilities. In this model 
the arriving customer and the departing customer distributions clearly are not equal, 
since customers arrive in batches and leave singly. Using a batch arrival queueing 
model, we discuss as application an approximate method to compute the waiting time 
distribution in the M/G/l queue with bounded sojourn time. We conclude this 
chapter with another application, namely the modeling of customer behaviour in tele
phone switching systems. In particular, we focus on the call completion rate, i.e. the 
fraction of customers who complete their calls successfully. Essentially, we consider 
here a discrete version of a queueing model in which the service time of a customer 
depends on his waiting time in the queue. 

In Chapter 6, we analyze the SPP/G/l queue. The arrival process in this model 
is a switched Poisson process (SPP), i.e. the rate of the arrival process alternates 
between two values. The limiting distribution of the interarrival intervals is hyperex
ponential, but the arrival process is in general not a renewal process. We end 
Chapter 6 with several numerical examples. 
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To avoid unnecessary interruptions of the text, we have shifted some details to 

appendices. In Appendix A, we discuss the 'Poisson Lemma', which forms the 

essence of the property 'Poisson arrivals see time averages', and review a number of 

basic results from probability theory and renewal theory. In Appendix B, we present 

some numerical auxiliary routines required for the implementation of the algorithms 

to be presented. Appendix C is devoted to the details of the algorithms given in 

Chapter 3. In Appendix D, we display the exact results for multiserver queues we 

have used for the validation of the approximations in Chapter 3. 
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I. INTRODUCTION TO THE REGENERATIVE METHOD 

In this chapter, we present the regenerative method. By this technique a wide 
class of queueing systems can be systematically and thoroughly studied. The method 
is based on probabilistic arguments and leads in many cases to recursive and numeri
cally stable algorithms for the steady state probabilities of the number of customers in 
the system. Moreover, the basic elements of the method allow of a clear and intuitive 
interpretation, thus increasing the insight in the system. 

The origin of the regenerative method can be found in Hordijk and Tijms[76], 
but there the method has not yet crystallized into its present form. See also Feder
gruen and Tijms[SO] where the method has been applied to the MIGi I queue with 
variable service rates. 

As the name of the method suggests, we consider regeneration cycles of the 
queueing process. In a cycle, we define quantities strongly related to the state proba
bilities. We derive for these quantities two sets of recurrence relations which can be 
solved efficiently. One of these sets of relations is obtained using an up and down 
crossing argument. For clarity of presentation, we explain the regenerative method 
on the basis of the standard MIG/ I queue. We review step by step all components 
of the method. The extension of the results of this chapter to e.g. the MIG/I queue 
with server vacations is straightforward. 

At the end of the chapter, we compare the regenerative method to two other 
techniques, the embedded Markov chain approach and a method based on up and 
down crossing properties of the queue length process. 

1.1. The M/G/l queue 

We consider a single server queueing system with an infinite waiting capacity 
where customers arrive according to a Poisson process at rate A. The service time S 
of a customer has a general probability distribution function F(t)=Pr{SE;;t}. the 
traffic intensity p=AES is less than one, i.e. the queue is stable 

We are interested in the characteristics of the system when it is in statistical 
equilibrium. Unless stated otherwise we assume for the sake of convenience that at 
epoch 0 the system becomes empty after a service completion. We focus on the fol
lowing steady state probabilities. 

p,, =Jim Pr{ at time t there are n customers in the system }, n ;;a.O 
t-«; 

q,, =Jim Pr{ the k1h customer leaves behind n customers in the system upon ser-
k-x 

vice completion }, n ;;.o 
'TT,, = Jim Pr{ the k1h customer sees upon arrival n customers in the system }, 

k-"' 
n ;;.o 

These limits are well defined and are independent of the initial state of the queue 
length process; cf. Stidham[72]. At an arbitrary epoch (or seen by an outside 
observer) the distribution of the number of customers in the system is given by (p,, ), 
at an arrival epoch by ('TT,,) and at a departure epoch by (q,, ). 

Although the probabilities (p,, ), (q,,) and ('TT,,) are defined as limiting probabili
ties, we can interpret them without referring to the MIG/I queue at a remote time 
when the system has reached the steady state. We can relate these steady state 
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probabilities to the behaviour of the system in a busy cycle. Therefore, we exploit the 
property that for the MIG/I queue the process describing the queue length is a 
regenerative process. As regeneration points we can take the epochs at which the 
server becomes idle, i.e. the epochs at which a customer completes service and leaves 
no customers behind in the system. Indeed at these epochs the future behaviour of 
the queueing process is independent of its past. Moreover, the continuation of the 
process beyond a regeneration epoch is a probabilistic replica of the whole process 
starting at epoch 0. The time period between two successive regeneration points is 
called a busy cycle. Now, we study the behaviour of the queueing system during a 
fixed busy cycle; see Figure 1. I. 

0 T 

Figure 1.1 A sample path of the queueing process. 

Recalling that we have assumed that at epoch 0 a customer has completed ser-
vice and the system is empty, we define the random variables 

T = the next time the system becomes empty 
T11 the amount of time in (O,T] that n customers are present, n ;;;.o 
N the number of customers served in (O,T] 

N11 = the number of service completion epochs in (0,T] at which n custo
mers are left behind by the customer just served, n ;;;.O 

The following theorem supplies the justification for focusing on a busy cycle and the 
random variables associated with it. 

Theorem I. la 

ET11 EN11 

Pn = ET , q" = EN , n ;;;.o (I.I) 

Proof The theorem can be proved by the theory of the regenerative processes; cf. 
Stidham[72] and Ross[70]. See also Appendix A. 

D 
Theorem I. la gives another, more intuitive interpretation of (p 11 ) and (q11 ), 

namely Pn equals the fraction of time the system is in state n and q11 is the fraction of 
customers who upon departure leave n customers behind in the system. 
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Figure 1.2 A service starting while j customers are present. 
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The next step in our analysis for the state probabilities is to partition the busy 
cycle (O,T] by means of the service completion epochs, i.e. to look at an embedded 
process within the busy cycle. N1 counts in a busy cycle the number of departures 
leaving the system in state j. Consequently, in a busy cycle, the number of new ser
vices starting with j customers present is equal to N1. Noting that the number of 
customers present during a particular service time is always larger than or equal to 
the number of customers present at the beginning of that service time, define for 
O~j ~n (see Figure 1.2) 

the expected amount of time during which n customers are in the 
system until the next ~ervice completion epoch, given that at epoch 
0 a service is completed with j customers left behind in the sys
tem. 

Then, using Wald's equation (cf. Ross[70] and Appendix A), ENiA1,, is the expected 
amount of time in (O,T] that n customers are present, when we restrict ourselves to 
the services starting with j customers present. 

In every busy cycle only the first service starts not immediately after the com
pletion of another service, but this first service starts when a customer arrives at the 
empty system. Hence EN0 = 1. Also note that because of the single arrivals A 011 =A 111 , 

n;;;, J. We summarize the above observations in the basic relation of the regenerative 
method. 

Theorem l. lb 

ET,,= ~EN1 Ai,, , n ;;;.1 
j =O 

(1.2) 

D 

A second set of relations between ET,, and EN11 is found by using an up and 
down crossing argument for 'level' n; see Figure 1.3. We shall show that 
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(\ 

lr---8-8_0_· .-. 8----.· 1....--8-8-· .--. 
\_) 

Figure 1.3 Up and downcrossings of level n. 

in the busy cycle (O,T] the number of transitions from the set of states 
{O, 1, ... , n } to the set of states { n + l ,n + 2, ... } is equal to the number 
of transitions from {n + l,n +2, ... } to {0,1, ... , n }. 

Theorem 1.lc 

EN. =.\ET. , n ;;;.o (l.3) 

Proof Direct transitions between {0,1, ... , n} and {n + l,n +2, ... } occur only 
between the two neighbouring states n and n + 1. A downcrossing from n + 1 to n 
can only occur at service completion epochs at which n customers are left behind in 
the system. Hence, EN. equals the average number of downcrossings from n + l to n 
in a busy cycle, and consequently from {n + l,n +2, ... } to {O,l, ...• n }. 

The second part of the proof follows by applying the Poisson Lemma (cf. 
Appendix A) to the busy cycle (O,T] and by noting that upcrossings of level n are 
generated by arriving customers finding the system in state n . Hence the expected 
number of transitions from {0,1, ... , n} to {n + l,n +2, ... } in (0,T] equals the 
expected number .\ET. of arrivals finding the system in state n. Note that ET. can 
be written as 

T 

ET,, = E [Pr{ system in state n at epoch s } ds 

Since the number of downcrossing EN11 equals the number of upcrossings .\ET11 , the 
theorem follows. 

D 

In this stage of the analysis, we have sufficient material to formulate a prelim
inary version of the algorithm to compute the steady state probabilities (p.) and (q,, ). 
For the numbers (ET.) and (EN.) two sets of linear equations have been derived, cf. 
Theorems l. lb and l. l c, while in Theorem 1.1 a the connection to the desired charac
teristics of the model has been made. 
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Algorithm 1.2 

I. Evaluate the constants A111 , Q.,;;;;,j .,;;;;,n 

2. Put EN0 = 1 and ET0 = 1 /i\ 

3. Assume ENo, ... , EN11 -i. ETo, ... , ET11 _1 have been computed, solve for EN11 

and ET11 

n -I 

ET/I =EN11A11n + ~ EN1AJn 
j=O 

EN11 =i\ET11 

4. Return to step 3 if necessary. 

5. Normalize ET11 by ~11~0ET11 to obtain p,, and normalize EN,, by ~,~0EN,, to 
find q,,. 

D 

We here note that the algorithms for the various queueing models to be 
presented have in essence the same simple structure. The evaluation of the constants 
A111 is in general the difficult step and will be extensively discussed later. Depending 
on the specific properties of the model, further simplifications are possible. 

Now, we proceed with the analysis of the M/G/1 queue, exploiting its specific 
structure. 

Theorem 1. ld 

ET-ET0 =ENES 

EN=i\ET 

( 1.4) 

( 1.5) 

Proof The first part follows by summing Equation (1.2) for n ;;.1 and by noting that 
~,~1A111 =ES, j ;;.Q where A 00 =0. 

'.X) Xl 11 '.X) '.X) 

ET-ETo = ~ET11 = ~ ~EN1A1,, = ~EN1 ~A1,, =ENES 
n=I 11=lj=O j=O 11=j 

The second part follows trivially by summing (1.3) for n ;;.Q. 
D 

Theorem l.ld has the following intuitive interpretation. ET- ET0 is the 
expected amount of time in (O,T) the server is busy and ENES is the total expected 
service time of all customers served in (O,T]. Clearly,these two quantities are equal. 
The second equality states that the expected number of customers served in (O,T) is 
equal to the expected number of customers arriving in (O,T]. By Theorem l.ld, we 
have 

ET= ETo 
1-p 

Hence, po= ET0 /ET= 1 -p. Together with ET0 = I/ i\ this yields the well known 
formula for the expected length of a busy cycle. 

ET=--1-
i\( I - p) 
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By (I.I), (1.3) and (1.5), we have p 11 =q11 for all n ;;;.Q. Since in this model cus
tomers arrive one at a time and are served one at a time, we also have (q11 )=('1Tn ). 
This yields for the MIG/I queue the well known (cf. for example Hordijk and 
Tijms[76]) 

Corollary 1.3 

'lTn =pn =qn , n ;;;.Q 

Next we turn to the characterization of the constants A111.Let 

Lemma 1.4 

Ajn =an-j, 1.;;;;j,;;;;n 

Ao11=A1n=an-I • n;;:.I 

(1.6) 

( 1.7) 

(1.8) 

( 1.9) 

Proof Assuming that at epoch 0 a service starts with j customers present, define the 
indicator function XJn (t ), I,;;;;) .;;;;n 

1 
I , if at time t there are n customers present and 

x111 (t)= the service started at epoch 0 is still in progress 
0 , otherwise 

Then, by the definition of A111 

Also, 

Pr{x/11(t)=l}=Pr{S>t}Pr{n -j customers arrive in (O,t)} 

(At)" -j 
=(1-F(t))e-Ai . , 1.;;;;j,;;;;n 

(n - J )! 

This proves the first part of the lemma. From the definition of A111 and the fact that 
the customers arrive singly, it follows that A 011 =A 111 • 

0 
By putting together all pieces of information obtained in Theorem I.I, Corol

lary I .3 and Lemma I .4, we get 

Po= 1-p 

II 

Pn =°Apoa,.-1+'h2:,pja11-J, n;;:.J 
j=l 

which leads to the simplified 

(I.I 0) 

(I.II) 
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Algorithm 1.5 

I. Evaluate the constants an, n ;;;.o 
2. Assumepo=l-p,pi, ... ·Pn-I have been found, compute 

n-1 
Pn =(A/Joan-I +A ~pjan -j) / (1-Aao) 

j=I 

3. Return to step 2 if desired. 
D 

The actual computation of the constants an, n ;;;.O depends on the choice of the 
service time distribution function F(t ). To compute the numbers an , we refer to the 
algorithms given in Appendix C for the approximate M/G/c queue. These algo
rithms are exact for the case of a single server. See also Section 2.4. 

1.2. Other approaches for the M/G/l queue 

In the literature, the analysis of the MIG/ 1 queue is usually done by the 
embedded Markov chain approach; cf. Cooper[72] and Allen[76]. We shall show 
how the computational scheme obtained by this method can be rewritten in the 
numerically stable scheme (l.11). Next, we discuss briefly another probabilistic 
approach directly resulting in 1.6. 

The embedded Markov chain approach 

It is easily seen that the queue length process embedded at the service comple
tion epochs is a Markov chain. To know the state of the system at an embedded 
point, it is sufficient to know the state of the system at the previous embedded point. 

Define 

00 k 

f3k = [ e->.t (;\n dF(t), k ;;;.o (1.12) 

i.e. f3k is the probability of k arrivals during a service time. Then, it is well known 
that the steady state probabilities (qn) satisfy the system of linear equations 

n +I 

qn =qof3n + ~qjf3n+I-j, n ;;;.O 
j=I 

Rewriting (1.13) in a recursive form leads for n ;;;.o to 
n 

qn+1=(qn -qof3n - ~qjf3n+I-j)/ f3o 
j=I 

(1.13) 

(l.14) 

To demonstrate that (1.13) is equivalent to (I.II), note first by partial integration that 

f3k =;\(ak-1-ak), k ;;;.o with a- 1=1 / ;\ (1.15) 
k 

and hence ~ {3j = 1-;\ak. Then, by summing ( 1.13) for Ooe;;;k oe;;;n we get 
j =O 

n n n n+l n+I 

~qk =qo~f3k + ~ ~qjf3k+l-j =qo(l-Aan) + ~ qj(l-Aan+l-j) 
k=O k=O k=Oj=I j=I 

from which (1.11) follows with Pn replaced by qn. 
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For numerical purposes ( 1.11) is better suited than ( 1.14) because it avoids tak
ing differences repeatedly. 

regenerative embedded Markov 
n explicit method chain approach 

p=0.2 

0 8.0000000000000 I 0 - I 8.0000000000000 10- I 8.000000000000010- 1 

5 2.5600000000000 Jo- 4 2.559999999999910- 4 2.5600000000460 Jo- 4 

10 8.1919999999999 J0- 8 8.1919999999996 J0- 8 8.192000460639110- 8 

15 2.621440000000010- 11 2.621439999999810- I I 2.621900639503610- I I 

20 8.3886079999999 J0- 15 8.3886079999992 J0- 15 1.299500303790410- 14 

25 2.6843545600000 Jo- 18 2.6843545599997 10- 18 4.609079392465210- 15 

p=0.5 

0 5.000000000000010- 1 5.0000000000000 Jo- 1 5.0000000000000 Io- 1 

10 4.882812500000010- 4 4.882812500000010- 4 4.882812499914410- 4 

20 4.768371582031210- 7 4.768371582031210- 7 4.768371496121810- 7 

30 4.656612873077410- IO 4.656612873077410- IO 4.656526963100210- !O 

40 4.547473508864610- 13 4.547473508864610- 13 4.461563531142610- 13 

50 4.4408920985006 J0- 16 4.440892098500610- 16 -8.1469085624310- 15 

p=0.9 

0 1.0000000000000 ] o- I 1.0000000000000 Jo- 1 l .00000Q0QQQQQ0 ] o- I 

50 5.153775207319510- 4 5.1537752073192 J0- 4 5.153775207324610- 4 

100 2.656139888758110-6 2.656139888757810- 6 2.6561398892295 10- 6 

150 1.368914790585410-8 1.368914790585210- 8 1.3689148379367 J0- 8 

200 7.0550791086517 10- 11 7 .055079108650610- I I 7.055126463307810- 11 

250 3.636029179584710-!3 3.636029179583910- 13 3.640764648268810- 13 

Table 1.4 Comparison of computation schemes. 

For comparison of both schemes. we have computed in Table 1.4 the state probabili
ties in the M/M/ 1 queue in three different ways. In the first column, the explicit for
mula p,, =(1-p)p" has been used and in the second and third columns the schemes 
(1.11) and (1.14) have been employed respectively. It appears that the probabilities 
computed with ( 1.14) have an absolute error as big as the machine precision ( here 
10- 14), whereas with scheme (l.11) only a relative error of the machine precision is 
incurred. 
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The up and down crossing approach 

The recursive relation (l.l I) can directly be obtained from the following up and 
down crossing argument. For each n;;;. I, we have 

the fraction of services at the end of which n customers are left 
behind= 

the fraction of services having the property that at its beginning at 
most n customers are present and during its execution the number 
of customers present exceeds n (l.16) 

To prove this statement, let n be fixed and let w be any realization of the queue 
length process. Form;;;. I define 

d(m,w) = { the number out of the first m services at the end of which n 
customers are left behind I w } 

u (m ,w) = { the number out of the first m services having the property 
that at their beginning at most n customers are present and 
during their execution the number of customers present 
exceeds n I w } 

Then, d(m,w) denotes the number of downcrossings of level n in the realization w of 
the queue length process restricted to the first m services. Similarly, u (m ,w) is the 
number of upcrossings of level n . 

It is obvious that for any m and w and independently of the initial state of the 
queue length process 

ld(m,w)-u(m,w)l ..;l ( l.17) 

Now, divide both sides of ( 1.17) by m and let m ~ oo. Then d ( m ,w) / m and 
u(m,w)/m converge to the corresponding fractions in (1.16) and also (1.16) follows. 

Noting that by (l.15) ~t''=n-;+dh =A.a11 -; is the probability that level n is 
exceeded in a service starting with j customers present, the up and down crossing 
relation (l.16) gives for n ;;;.1 

?C n x " 

q,, = qo "2. fik + "2. qJ "2. f3k =A.qoan -1 +A "2, q; a"-; 
k=n J=I k=11-J+I /=I 

Finally ( l. ll) is found by replacing q" by p11 • 

D 

Remark 1.6 

Both alternative methods lead to computational schemes in terms of (q11 ) but do 
not provide automatically the relation between (p11 ) and (q11 ). 
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2. THE M/G/l QUEUE WITH STATE DEPENDENT ARRIVAL RATE 

In this chapter we consider a rather wide class of single server queues with state 
dependent arrival processes. This class covers a number of standard queueing sys
tems, including the MIG/I queue. We will give a unifying treatment of the class of 
queueing systems with state dependent arrival processes; cf. also Tijms and van 
Hoorn[8 l b,81 c ). 

We assume that the arrival rate of customers depends on the state of the sys
tem. New customers arrive according to a Poisson process at rate Aj when j custo
mers are in the system. The service time S of a customer has a general probability 
distribution function F(t )= Pr{S=s;;;t }. A sufficient condition for a stable queue is 
limsup"_00 '11.11 ES< I. It is no restriction to assume an infinite waiting capacity, i.e. 
every arriving customer actually enters the system. 

This class of queueing systems contains a number of important models as spe
cial cases. For the MIG/I queue having only place for K customers, the arrival pro
cess of entering customers can be modeled as a state dependent arrival process with 
A.;=A.forO=s;;;j<K andA.j=O,j~K. 

Another example of a queueing system with state dependent arrivals is the finite 
source model which is variously called the machine repair model or the cyclic queue 
model. This model is one of the most useful queueing models for practical applica
tions. The population of potential customers for this system consists of K identical 
machines and there is a single repairman. For each machine the operating time 
between breakdowns is exponentially distributed with mean 1 /A.. The repair time 
has a general probability distribution function F. The arrival process of the broken 
down machines can be modeled as a state dependent arrival process with 
'11.j =(K-j)'l\, j <K and Aj =O, j ~K, where state j denotes the number of machines 
broken down. 

In the literature, this class of single server queues has received relatively little 
attention, except for the finite capacity M/G/ 1 queue. The state probabilities in this 
latter model are closely related to those in the MIG/ 1 queue with an infinite waiting 
capacity; cf. Keilson[65) and Cooper[72). 

The machine repair problem has mainly been studied for exponential repair 
time; see e.g. the studies of Ferdinand[71] and Shum[76]. With the assumption of 
exponential repair time, the model essentially reduces to a birth and death queueing 
model. 

Though the general model may seem rather complicated for an exact analysis, 
it has some pleasant characteristics. In the first place, the arrival process has a Mar
kovian nature. Secondly, it is easily seen that the queue length process at departure 
epochs is a Markov chain. These two features make the model very suitable for 
applying the regenerative method. 

After having derived the basic results in Section 2.1, we consider in the Sections 
2.2 and 2.3 the two special models discussed above. The two models are special cases 
in the sense that we make assumptions on the arrival rates (A.;). 

In the Sections 2.4 and 2.5 we make assumptions on the service time distribu
tion, namely that it is of phase type. Moreover, in Section 2.5 we focus on computa
tional methods for the waiting time distribution. 
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2.1. The basic theorem 

For the analysis we adopt the same notation and definitions as in Chapter 
and using the regenerative method we derive 

Theorem 2.1 

ET. EN. 
Pn = ET , q. = EN ' n ;;;.Q 

n 

ET.=~ ENjAjn , n ;;a.I 
j =O 

EN. =An ET. , n ;;;.Q 

ET-ETo=ENES 
00 

EN= ~A.ET. 
n =O 

(2. I) 

(2.2) 

(2.3) 

(2.4) 

Proof In this proof, we focus on relation (2.3). The other relations can be proved 
similarly as in Theorem I. I. 

Equation (2.3) expresses for this model the up and down crossing property of 
the queue length process in the busy cycle (O,T). Since the expected number of down
crossings of level n is (trivially) equal to EN., it is sufficient to prove that An ET. is 
the expected number of arrivals finding the system in state n in (O,T]. 

The most simple and intuitively appealing way to show this is to note that we 
may associate with each state n an interrupted Poisson process having intensity An if 
the system is in state n and intensity 0 otherwise. In fact, the overall arrival process 
is decomposed into infinitely many processes of which only one at the time is 'active', 
i.e. has positive intensity. Next, for each n, we apply the Poisson Lemma to the 
arrival process associated with state n ; cf. Remark A.3 in Appendix A. Hence, 
An ET. is the expected number of arrivals in (O,T] finding the system in state n. 

0 

An algorithm derived from Theorem 2. I looks very much like Algorithm I. I in 
Chapter I. Replacing in Algorithm I. I ET0 = l /A by ET0 = I/ Ao and AET11 by 
An ET. gives a recursive and numerically stable scheme to compute the distributions 
(p.) and (q. ). 

In applications of this model, the distribution ('1Tn) is of interest too. This dis
tribution describes the system from the point of view of an arriving (and by assump
tion also entering) customer. For example, I -'IT0 is the delay probability. Note that 
also in this model ('1Tn)=(q.). By Theorem 2.1 we have the 

Corollary 2.2 
00 

q. ='1T11 =AnP11 I ~ AkPk , n ;;;.o. 
k =O 

(2.5) 

0 
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Remark 2.3 The normalization factors ET and EN cannot be computed immediately 
as in Chapter I. However, for models with finite capacity or for models where 
A11 =A,,

0
,n ;:;.n 0, we find ET after having computed ET0 (= I/ A0 ), ET1 , ... , ET110 - 1. 

By (2.3) 

oo "0- 1 

EN= ,LA11 ET11 = _L (A11 -A110)ET11 +A110ET 
n =O 11 =O 

and so, using (2.4) 
n 0 -1 

ET=(ETo+ ES _L (A,, -A,, )ET,,)/ (l-A11 ES) 
n =O 0 0 

(2.6) 

D 

2.2. The M/G/1 queue with finite capacity 

In the literature on queueing theory, the analysis of the M/G/ I queue is natur
ally followed by that of the MIG/ I queue with only K waiting places; cf. 
Cooper[72]. Here we relate the finite M/G/I queue to a queueing model with state 
dependent Poisson arrivals. 

Let the M/G/l queue with capacity K be defined as an ordinary MIG/I queue 
where arriving customers finding K customers in the system are rejected. These cus
tomers are lost and do not return. For this model, we denote the steady state distri
butions at arrival, arbitrary and departure epochs by (1111 ),(P,,) and (Q,,) respectively. 

The modified model is defined as the M/G/1 queue with state dependent 
arrival rate with A1 =A, j <K and A1 =O, j ;:;.K. Since the blocked customers in the 
original model do not affect the system, both models have the same arrival process of 
entering customers. Hence, (P,,)=(p,,) and (Q,,)=(q,,), where (p,,) and (q,,) are the 
steady state distributions in the modified model. 

The distributions (11,,) and ('1T11 ) are not equal. Indeed, in the original model 
the distribution (1111 ) is related to all customers, namely both accepted and rejected 
customers. Moreover, since the arrival process is Poisson, (1111 ) = (P11 ). In the 
modified model we have by the corollary of Theorem 2.1 that ('IT,, )=(q,, ). Note that 
the above also holds for the multiserver M/G/c queue with capacity K. 

Next, we proceed with the analysis of the modified model. The special form of 
the sequence (A,,) allows a number of simplifications in Theorem 2.1. Define as in 
Chapter I 

00 k 

a,= [(1-F(t))e->..' (An dt, k;:;.Q 

Then, for J.,,;;;;j.,,;;;;n.,,;;;;K-1 we have A111 =a11 - 1 and also A 011 =a11 -i. l.,,;;;;n.,,;;;;K-1, 
since the 'boundary' K has no influence in this range of indices. After inserting (2.3) 
in (2.2), we get 

II 

ET11 =AEToa11 -1+A_LET1a11 -;, l.,,;;;;n.,,;;;;K-1 
/=I 

(2.7) 

Starting with ET0 = I /A, ET1 , ... , ETK-J are computed recursively using (2.7). 
Next ET is found from (2.4) (also cf.(2.6)) 



18 

K-1 

ET==ETo+i\ES ~ET" 
n =O 

(2.8) 

By dividing ETo, ... , ETK-I by ET the state probabilities po, ...• pK 1 are com
puted and PK== I -'2.,~=-o1p,,. Note that q,, ==p,, I ( 1-pK ), o.;;;n .;;;K - I and qK ==O. 

D 
For i\ES< I, there exists a simple relationship between the steady state distribu

tions in the MIG/ I queue with capacity K and the infinite capacity M/G/ I queue; 
cf. Cooper[72]. Indeed, the computational schemes for the numbers ET0 , .•. , 
ET K - i are identical in both models. Only the normalization factor ET is differently 
computed. 

For sake of convenience, we mark the random variable T and the distributions 
(p,,) and (q,,) with a superscript (K) or ( oo) to indicate the system they refer to. From 
the above it follows that (pn<K>) and (p,!'"'>) are proportional for n ==O, ... , K -1, i.e. 
for some cK 

pjK>==cKPn(oo), O.;;;n .;;;K-1 

Obviously, cK ==E'f'< 00 > /E'f'<KI and using expression (2.8) for E'f'<KI, we find 
K-1 

CK== I /(pD001 +p ~Pn(oc)) 
II =O 

The blocking probability pkK>, expressed in terms of (p,!"' 1) is given by 
K-1 K-1 

pkK>==(pD"' 1+(p-I) ~p,! 00>)/(pD"'>+p ~p,I"'>) 
,, =O n =0 

(2.9) 

(2.10) 

(2.11) 

Finally, by the proportionality of p,!KI and p,! 001 for n ==O, ... , K - I and the 
equality of the arriving customer and departing customer distributions (7r,\K>) and 
(qjK>), we have for O.;;;n .;;;K - I 

K-1 

'/TAK)==qjK>==pj"'> I ~pj"'I (2.12) 
"=O 

The interpretation of (2.12) regarding (7r,\Kl) is the following. The probability that an 
arriving customer sees n customers upon entering a M/G/ I system with capacity K 
equals the conditional probability that an arriving customer sees n customers in an 
infinite capacity MIG! I queue, given that he sees less than K customers. 

2.3. The machine repair model with a single repairman 
In this section we discuss the finite source model known as the machine repair 

model , the machine interference model or the cyclic queue model. We consider a 
closed queueing system consisting of K identical machines and a single repairman (cf. 
Figure 2.1 ). A machine operates between breakdowns during an exponential time 
with mean I / i\. When a machine breaks down, it joins the queue for repair. If the 
repairman is free, he immediately begins to repair the machine, otherwise the machine 
must wait for repair. The repair time S has a general probability distribution func
tion F (t ). We define the state of the system as the number of machines that are not 
working. Thus the arrival rate of broken down machines to the repair facility is 
i\i == (K - j)i\, O.;;;j .;;;K. 



single 
repairman 

K machines 

1111 

queue 

Figure 2.1 The machine repair model. 
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The machine repair model is also known in computer science. In that context, 
there are K jobs cycling in a system consisting of K terminals and a CPU (central 
processor unit) with a work queue. A job is sent from a terminal to the CPU after an 
exponentially distributed 'think time' and after being processed by the CPU the job 
enters another think phase at a terminal; cf. Shum[76]. 

For the constants A,;n in Theorem 2.1 we prove 

Lemma 2.4 
00 

A1n= [(1-F(t)')</>jn(t)dt, l.;;;;.j.;;;;,n.;;;;.K. 

where 

<f>Jn (t )= [~ = j] (1-e ->.t(n -J>)e->.t<K -11) 

Proof The lemma follows by noting that 
00 

(2.13) 

where, conditionally that at epoch 0 a new service starts with j machines broken 
down, XJn (t )= 1 if at time t this service is still in progress and n machines are broken 
down and XJn(t)=O otherwise. Then, <f>Jn(t) is the binomial probability that n -j 
machines fail in (O,t) given that at epoch 0 K - j machines are working. 

D 

We define the system response time R of a machine as the time interval 
between the instant when the machine breaks down and the instant when the machine 
is put into operation again. Hence, R is the sum of the waiting time in the queue and 
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Figure 2.2 The doubly normalized response time ER. 

the service time of a machine. By Little's law, we have 

A.'(ER+ I /A.)=K (2.14) 

where>..' =~/:=oAnPn is the throughput i.e. the average arrival rate of machines to the 
queue. By combining (2.3) and (2.4) in Theorem 2.1, it follows that 

>..' = I-po 
ES 

In Figure 2.2 and Table 2.3, we give some numerical results for the expected 
doubly normalized response time ER, defined as 

ER=__§!!_= I 
KES (l-p0) w, 

where w =KA.ES. See also Ferdinand[71] where asymptotic properties of this perfor
mance measure have been derived for the case of an exponential repair time distribu
tion. Incidentally, the formula for ER in his paper is incorrect. 

In Figure 2.2, we have displayed ER for several values of K. Here the repair 
time is exponentially distributed. In Table 2.3, ER is computed for various other ser
vice distributions, namely 

I: deterministic repair time (C.f=0.0) 
2: Erlang - 2 repair time (C}=0.5) 
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w c} K=lO K=20 K=30 K=40 

0.25 0.0 0.1138 0.0576 0.0386 0.0290 
0.5 0.1205 0.0613 0.0411 0.0309 
1.0 0.1269 0.0649 0.0437 0.0329 
1.5 0.1330 0.0685 0.0462 0.0348 
2.0 0.1389 0.0720 0.0486 0.0367 

0.50 0.0 0.1350 0.0706 0.0479 0.0363 
0.5 0.1503 0.0801 0.0548 0.0417 
1.0 0.1643 0.0890 0.0613 0.0469 
1.5 0.1766 0.0972 0.0675 0.0518 
2.0 0.1878 0.1049 0.0733 0.0565 

0.75 0.0 0.1681 0.0956 0.0678 0.0528 
0.5 0.1925 0.1130 0.0815 0.0642 
1.0 0.2136 0.1284 0.0938 0.0745 
1.5 0.2302 0.1411 0.1043 0.0835 
2.0 0.2448 0.1526 0.1139 0.0918 

1.00 0.0 0.2180 0.1458 0.1161 0.0990 
0.5 0.2484 0.1694 0.1361 0.1167 
1.0 0.2732 0.1889 0.1527 0.1314 
1.5 0.2911 0.2036 0.1655 0.1430 
2.0 0.3064 0.2164 0.1767 0.1531 

0.75 0.0 0.3105 0.2677 0.2564 0.2525 
0.5 0.3378 0.2833 0.2656 0.2579 
1.0 0.3605 0.2978 0.2753 0.2646 
1.5 0.3759 0.3085 0.2832 0.2705 
2.0 0.3888 0.3181 0.2905 0.2761 

0.50 0.0 0.5024 0.5000 0.5000 0.5000 
0.5 0.5094 0.5005 0.5000 0.5000 
1.0 0.5187 0.5019 0.5002 0.5000 
1.5 0.5253 0.5034 0.5005 0.5001 
2.0 0.5313 0.5052 0.5010 0.5002 

0.25 0.0 0.7500 0.7500 0.7500 0.7500 
1.5 0.7504 0.7500 0.7500 0.7500 
1.0 0.7502 0.7500 0.7500 0.7500 
1.5 0.7504 0.7500 0.7500 0.7500 
2.0 0.7507 0.7500 0.7500 0.7500 

Table 2.3 Numerical results for ER. 

3: exponential repair time (C§= 1.0) 
4: hyperexponential repair time (C}·= 1.5) and (C}=2.0), where 

-p. I -p. I 

F(t)=1-p 1e 1 -p2e 2 withp1/J.L1=pz/µz. 
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2.4. Algorithms for the quantities A111 

In this section, we give computational schemes for the quantities A111 when the 
service times have a phase type distribution. By exploiting the memoryless property 
of the exponential distribution and the property that min (X i,X 2) has an exponential 
distribution with mean 1 / (µ, 1 + µ,2) if X 1 and X 2 are independent exponential random 
variables with mean values 1 / µ, 1 and 1 / µ,2, we .obtain a recursive scheme to compute 
the quantities A 111 • We demonstrate the ideas on the hand of three basic cases. Next 
the extension to general distributions of phase type is obvious. 

For clarity of presentation, we repeat the definition of A111, 

A111 = the expected amount of time during which n customers are in the 
system until the next service completion, given that at epoch 0 a 
service is completed with 1 customers left behind in the system 

We consider only the range of indices l..:;;;1.,;;;;n since A 0,, =A 111 , n ;;;;.1. Clearly, in the 
definition of A111 with n ;;;;.1, the completion of a service at epoch 0 coincides with the 
start of a new service. 

Case 1: F(t)=l-e-"' 

Let 1 ;;;;.1 be fixed and suppose that at epoch 0 a new service starts with 1 custo
mers present. With probability A.1 / (A.1 + µ,) an arrival occurs before the completion 
of the service. Further, by the memoryless property of the exponential distribution, 
the service in progress can be considered to start afresh at the arrival epoch. Hence, 

- A.1 
Ai,, - ;--------+ Ai+l.11, l..:;;;l<n 

. "J µ, 

Also, since the expected time until either the next arrival or the next service comple
tion occurs is equal to 1 / (A.1 + µ,), it follows that 

1 
A1111 =;------+ 

1\11 µ, 

Hence, starting with A 1111 , the numbers A,, -1,,, •...• A 111 can recursively be computed. 

-µI -µ.,t 
Case2: F(t)=p 1(1-e 1 )+p 2(1-e - ) 

In this case, the service time is with probability p, exponentially distributed 
with mean 1 / µ,;, i = 1,2. Thus, using Case 1 twice, we can compute A),11 and AP1 

where in Case 1 the parameter µ, is replaced by µ, 1 and µ,2 respectively. Next, A1,, is 
obtained as the weighted sum of AA1 1 and AP>. namely 

A111 =p1A),1 1+p2AP1 • l..:;;;1.,;;;;n 

D 

Case 3: F(t)=Pr{X1+X2..:;;;t}, where X1 and X2 are independent exponential ran
dom variables with means 1 / µ, 1 and 1 / µ,2• 

In this case, the service consists of two phases. First an exponential phase X1 

and next an exponential phase X2• The computation of Ai,, is done in two steps. We 
first compute the auxiliary quantities 8 111 . defined as 



B1n the expected amount of time that n customers are in the system in 
the sewnd phase of the service, given that the second phase starts 
with j customers present. 
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By this definition, B1n is related to a service period consisting of a single exponential 
phase with mean 1 / µ2 and is computed according to the scheme of Case I with µ 

replaced by µ2• Next turning to A1n, note that with probability ,\i / (,\i + µ,) an 
arrival occurs before the end of the first phase of the service while with probability 
µ1 / (i\1 + µ1) the second phase of the service starts before an arrival occurs. Hence, 
we get the scheme 

,\ /Li 
Ajn = ~Aj + 1.n + -,-. --B1n , I,,;;;} <n 

l\i +µ, /\; +µ, 

I µ, 
Ann = -,\--+ -,\--B11n 

n+/J.I II+µ, 

from which the A1n are computed recursively, starting with A 1111 . 

2.5. The waiting time distribution and its moments 

In this section we focus on computational methods for the waiting time distri
bution. We assume that the service discipline is FIFO (first in first out), that is, ser
vice is in order of arrival. Define the random variable 

Wq = the waiting time of an arbitrary arriving customer in the queue, 
excluding his service time 

and the waiting time distribution function 

Wq(t)=Pr{Wq ,,;;;:,r} 

For practical purposes it is often not enough to know the steady state distribu
tions of the number of customers in a queueing system, but also the moments of the 
waiting time distribution or the distribution itself are required. Unfortunately, for 
models like the M/G/l queue with state dependent arrival rate it is in general not 
possible to relate directly these performance measures to the distributions (p 11 ) or (q11 ). 

An exception is the mean waiting time, which follows from the mean queue length by 
using Little's law: 

x x 

EW" = ~ (n - l)p" I~ i\"p" 
n =I n =O 

Moreover, this equation holds for any work conserving service discipline; cf. Klein
rock[75]. To obtain results for higher moments of Wq, it is unavoidable to make 
assumptions on F(t). 

In the analysis for the waiting time the crucial point is to know the remaining 
service time of the service in progress (if any) at an arrival epoch. For exponential 
service times we know that the remaining service time has the same exponential distri
bution as the original service time. For general distributions of the service time, we 
must put more information in the state description in order to be able to describe 
when a service expires. However, we can elegantly handle this problem by consider
ing phase type distributions and by defining properly a continuous time Markov 
chain. 
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We consider the following phase type distributions 

" 
F(t)= "'2,r1Em1.µ (t) 

I =I I 
(2.15) 

with 

111,-1 i 

E (t)=I- ~ e -µ11 (µit) 
"'1.'11 ..::... · 1 , 

i =O I· 

i.e. F(t) is a finite mixture of Erlang distributions with different scale parameters µ1• 

Hence, a customer entering service has with probability r1 a service time consisting of 
I consecutive phases, each having an exponential distribution with mean I / µ1• 

1,,,-;;/ ,,;;;s. We note that any probability distribution function G (t) concentrated on 
[O, oo) can be approximated arbitrarily closely by a function as (2.15); cf. 
Schassberger[73). In fact, we can even find a mixture of Erlang distributions with 
identical scale parameters; cf. Bux and Herzog[77) for an algorithm to determine 
such a mixture. 

A continuous time Markov chain representation for the queue length process in 
a system with a service distribution as (2.15) follows by defining the state (n ,i ,/) of 
the system by 

n = the number of customers present, 
the number of remaining phases of the service in progress, and 

I = the index of the scale parameter µ1 for the phases of the service in progress, 
with the convention that state 0 describes the situation of an empty system. 

If an arriving customer finds the system in state (n ,i ,I) his waiting time is the sum of 
i phases with mean I/ µ1 and n - I new services. Define for n ;;;.1, 1,,,-;;/ ,,;;;s. 
J,,;;;i ,,;;;m1 

p~f > = the steady state probability that at an arbitrary epoch the system 
is in state (n ,i ,I) 

'TT,\i> = the steady state probability that an arriving customer finds the sys
tem in state (n ,i ,I). 

Then, the waiting time distribution Wq(t) follows from the probabilities 'TT,\~> 

Wq(t)=7To+ °'2,'TT,\i>W(t In ,i ,/) 
11,i.I 

(2.16) 

where the function W (t In ,i ,I) is the conditional waiting time distribution function of 
a customer finding upon arrival the system in state (n ,i ,I). Hence, W (t In ,i,I) is the 
convolution of a residual service time and n - I new service times 

W(t ln,i,/)=E1.µ/t)*F( 11 - 1>'(t). 

The moments of Wq can easily be computed from 2.16, e.g. 

EW / = °'2, 'TT,\:>[ i (i ~I) +(n - I)( ~ES+ ES2+ (n -2)(ES)2)) 
11.l.i µ1 µ, 

(2.17) 

Analogously to (2.5) it follows that 
x; 

(/)-\ (/)/ ~ \ 'TT,,; - ",,p,,; ..::... "IP i for all n ,i J (2.18) 
i =O 
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i.e. 'lT,\~ 1 equals the average number of arrivals per unit time who see the system in 
state (n ,i ,/)divided by the average number of arrivals per unit time. 

By writing down the equilibrium equations of the continuous time Markov 
chain, we get a system of linear equations for the probabilities p,if 1. For n ;;;.1 and 
I.;;;/ .;;;r we have 

" (A,,+µ, )p,if>=ll.,, -1pYl u +µ1p,i'.J + 1 +r18;.,,,1 ~ µ,p,i~\1 , I .;;;i .;;;mi 
k =I 

(2.19) 

wherep,if>=Ofori=m1+1 andpbl>=r18;_,,,1 and8;.;=I ifi=j and8;,1=0ifi-=/=j. 

This equation is obtained by equating the rate at which the system leaves the micro
state (n ,i ,/)to the rate at which the system enters this state. Note that state (n ,i,l) is 
left by an arrival at rate A,, or by the completion of a service phase at rate µ1, while 
state (n ,i ,I) is entered at rate A,,_ 1 by an arrival from (n - 1,i ,/) or at rate µ1 by the 
completion of a phase from (n ,i + I,/) unless i = m1 or by the start of a new service if 
i = m1 after the completion of a service phase in one of the states (n + I, I ,k ), 
I .;;;k .;;;s. 

Equation (2.19) is simplified by noting that 
s 
~ (k) -\ """'µkpn +I.I -1\,,p,, 

k = 1 

which expresses that the rate at which the system leaves the set of states with 
0, ... , n customers present is equal to the rate at which the system enters that set. 
Using this relation, we can write (2.19) as 

(\ + ) (/)-\ (/) + (/) + " \ 1,;::·,;:: "" µ1 tp,,; -1\,,-!fl,,-1.; µ1p,,_,+1 r1u;.,,,1"11P11 , _,,,1 ~m1 (2.20) 

To compute the state probabilities p~f >, we can do much better than solving the 
large system (2.19) of linear equations. If we first compute recursively the state pro
babilities (p,,) with the algorithm discussed in Section 2.4, we can next compute recur
sively the state probabilities p,if > from (2.20). For fixed n and /, first compute p,i'.J,1 
and next p,,V 1,i =m1 -1, ... , I. 

Theoretically, it is possible to obtain from the probabilities 'lT,\f> the distribution 
Wq (t) using (2.16). However, the computation of the conditional distribution func
tions W(t In ,i ,/) is a tedious and laborious task. Also, in practice it is not recom
mended to compute Wq(t) in such a detailed way in view of the fact that the model 
itself is typically an approximate description of a queueing system in reality. 

A good alternative is to approximate Wq (t) or the functions W ( t I n ,i ,I) by 
fitting distribution functions based on the first few moments, assuming that the 
coefficient of variation is not too large. For example, in Kiihn[76], the (two parame
ter) Weibull distribution function 1-e-<ad, a ,b >0 is suggested to approximate the 
waiting time distribution function in various queueing models, based on the exactly 
computed first two moments. In Kiihn[72] it is also suggested to use mixtures of 
exponential distributions as the parametric family of functions. Note that the 
moments of W(t In ,i ,/)can easily be computed from the '1T,\i 1• 

If F (t) is a mixture of Erlang distributions with the same scale parameter µ, the 
computational effort can greatly be reduced. In this case we drop the upper index of 
'lT,\i 1 and we take m1 =I. Define for n ;;;.o 
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z,, = steady state probability that n service phases are in the system at 
an arrival epoch 

Once the distribution (z 11 ) has been computed from ('IT,,,), W,/t) can be written as 
'XO 

Wq(t)=zo+ ~z11E11.µ(t) 
II =I 

For the computation of (z 11 ) from (7r11;) we define for k .I ;;;;.1 

r/k l = the probability that k successive service times consist together of I 
exponential phases with mean 1 / µ. 

With the convention that r/ll=r1 and ri' l=O for I <k or I >sk, we have 

-~ (k) Z11 - 'TTJ\irn -i , n ;;;;.1 
k .i 

and 

zo='ITo 

For r/k l we have the recurrence relation r/kl = ~r; r/i·~;- 1 l , k;;;;.2. 

V(t) V1(t) V2(t) V3(t) V4(t) 

p=0.8, C}=2.0 

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 
1.0 0.8405 0.8267 0.8453 0.8832 0.7656 
2.0 0.7332 0.7262 0.7247 0.7568 0.6077 
3.0 0.6337 0.6325 0.6214 0.6395 0.4955 
4.0 0.5394 0.5416 0.5311 0.5352 0.4120 
5.0 0.4549 0.4580 0.4518 0.4445 0.3477 
6.0 0.3814 0.3848 0.3821 0.3669 0.2966 
7.0 0.3181 0.3219 0.3211 0.3011 0.2552 
8.0 0.2634 0.2678 0.2679 0.2460 0.2211 
9.0 0.2164 0.2212 0.2217 0.2002 0.1926 

10.0 0.1763 0.1811 0.1818 0.1622 0.1686 

p= 1.5 , C}=2.0 

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 
2.0 0.9712 0.9637 0.9648 0.9814 0.8203 
4.0 0.9186 0.9047 0.9047 0.9212 0.6812 
6.0 0.8288 0.8170 0.8169 0.8229 0.5695 
8.0 0.7079 0.7055 0.7052 0.6977 0.4781 

10.0 0.5684 0.5784 0.5777 0.5603 0.4026 
12.0 0.4286 0.4468 0.4459 0.4255 0.3399 
14.0 0.3038 0.3226 0.3217 0.3052 0.2875 
16.0 0.2027 0.2158 0.2152 0.2064 0.2437 
18.0 0.1277 0.1326 0.1323 0.1316 0.2068 
20.0 0.0762 0.0740 0.0741 0.0790 0.1758 

Table 2.4a Several approximations for V (t ). 

(2.21) 
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V(t) V1(t) V2(t) V3(t) V4(t) 

p=0.8 , C}=0.5 

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 
1.0 0.7975 0.8001 0.7909 0.7997 0.6355 
2.0 0.5973 0.5920 0.5927 0.6102 0.4480 
3.0 0.4471 0.4461 0.4461 0.4558 0.3363 
4.0 0.3337 0.3340 0.3343 0.3356 0.2621 
5.0 0.2481 0.2490 0.2492 0.2443 0.2094 
6.0 0.1834 0.1844 0.1846 0.1761 0.1702 
7.0 0.1346 0.1355 0.1356 0.1260 0.1403 
8.0 0.0978 0.0985 0.0986 0.0895 0.1168 
9.0 0.0700 0.0706 0.0706 0.0632 0.0982 

10.0 0.0491 0.0496 0.0496 0.0443 0.0831 

p= 1.5 , C}=0.5 

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 
2.0 0.9984 0.9983 0.9983 0.9998 0.8460 
4.0 0.9929 0.9917 0.9916 0.9961 0.7172 
6.0 0.9746 0.9697 0.9696 0.9755 0.6088 
8.0 0.9194 0.9108 0.9106 0.9125 0.5174 

10.0 0.7866 0.7852 0.7851 0.7771 0.4401 
12.0 0.5595 0.5763 0.5768 0.5615 0.3747 
14.0 0.3022 0.3200 0.3206 0.3128 0.3192 
16.0 0.1150 0.1118 0.1117 0.1187 0.2721 
18.0 0.0292 0.0185 0.0181 0.0263 0.2320 
20.0 0.0048 0.0009 0.0009 0.0028 0.1980 

Table 2.4b Several approximations for V (t ). 

In Table 2.4, we give some numerical results for the complementary waiting 
time distribution for the delayed customers, V (t ), defined as 

V(t)=Pr{Wq>t IWq>O} 

We have computed V(t) for the M/G/l queue with capacity K = 15. The service 
time distribution is the following mixture of Erlang distributions 

F(t )=pE 1,µ(t) +(1-p )Es.µ(t) , 

where s = 8 and ES= p / µ + s (I - p) / µ = I. We consider the following four cases 

I: C§=0.5 , p=0.8 (p =(14-v'52) I 21 'µ =(10+ v'52) I 3) 

2: C}=0.5, p=l.5 (p=(l4-v'52)/21,µ=(10+v'52)/3) 

3: Cs2=2.0, p=0.8 (p=6/7,µ=2.0) 

4: C}=2.0, p=l.5 (p=6/7,µ=2.0) 

We have computed V(t) according to (2.21), i.e. 

I (K-1).1 

V(t )= I -?To J~' zi(I- Ei.µ(t )) 
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Note that Pr{W 4 >0} = l -'1T0. Further, we have computed four approximations for 
V(t) (denoted by V;(t ),i = l, ... , 4), namely 

K I . h . 
l - ·' -(a .I) /11 

V1(l)= -- ~ ~'1T11; e 111 

l-'1To 11=li=I 

where a11 ; and b11; are chosen to fit a Weibull distribution to the conditional waiting 
time distribution Pr{ W4 ,,-;;;1 In ,i} by matching E{W 4 In ,i} and E{W /In ,i }. 

The second approximation is given by 

l K-1 -(a ,tn 
V2(l)= -- ~ '1T11 e " 

l-'1To 11=1 

where a11 and b11 are chosen to fit a Weibull distribution to the conditional waiting 
time distribution Pr{W 4 ,,-;;;1 In } by matching E{Wq In} and E{W 4 2 In}. Note that 

E{W/ln}=±~E{W4kln,i}, k=l,2 
i =I '11'n 

The third approximation is 

V3(l)= e-<anh, 

where a and b are chosen to fit a Weibull distribution to the conditional waiting time 
distribution Pr{Wq ,,-;;;1 I W 4 >0} by matching E{W4 I W 4 >0} and E{W,/ I W 4 >0} 
Finally, 

Note that here only the first moments E{W 4 In} are matched. 

In Table 2.4, we see that V" V 2 and V 3 are good approximations for V and 
that V 4 is plainly a very bad approximation. The difference between V 1 and V 2 is 
remarkably small, though V 1 is a more detailed approximation than V2• Further, V 3 

requires much less computing time than V, V 1 and V 2 and is for that reason a very 
useful approximation. 

Remark Let the random variable X have a Weibull distribution function 
Pr{X,,-;;;1} =I -e-<anh. Then 

'XJ 

EXk = J 1k ah 1h - le -<ad d1 = + f(l + k / b) 
o a 

Hence, to find a and b when EX and EX2 are given, we need a numerical procedure 
to compute the gamma function and a numerical procedure to find b, the zero of 

f(l+2/x) _ EX2 

(f(l+l/x))2 (EX)2 

Next, a= E~ f(l +I/ b ). 

0 
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3. APPROXIMATIONS FOR THE MIGIC QUEUE 

The subject of this chapter is the standard MIGlc queue. We shall present an 

approximate analysis in order to obtain practically useful results for this multi-server 

queueing system. See also Tijms, van Hoorn and Federgruen[8la], Tijms and van 

Hoorn[8 lc] and van Hoorn and Tijms[82]. 

We consider a queueing system with c > l servers and an infinite waiting capa

city. Customers arrive according to a Poisson process with intensity A. and the service 

time Sofa customer has a general probability distribution function F(t)=Pr{S,,;;;t}. 

The utilization factor p=A.ES / c is less than one. 

In the literature much effort has been spent on exact solution methods for the 

MIGlc queue. So far, however, practically useful exact results have been obtained 

only for special cases such as the MIMlc queue and the MIDlc queue. The MIMlc 

queue can be solved as a birth and death process, while the MIDlc queue can be 

solved using the embedded Markov chain approach; cf. Crommelin[32]. In general 

we may not expect that an exact analysis of the MIGlc queue will ever yield compu

tationally tractable results. To explain this, note that in order to set up the analysis 

of a queueing system, it is necessary to define the state of the system. The state 

description should contain sufficient information to describe the future probabilistic 

development of the system, given the state of the system. In particular, for the 

MIGlc queue this implies that the state description of the system at an arbitrary ser

vice completion epoch should contain the information about the residual service times 

of the other services in progress at that epoch. 

In the supplementary variable technique, which was first introduced by Kosten 

(cf. Kosten[73]) the state of the system is described by one discrete variable for the 

number of customers present and by a continuous variable for each server represent

ing the elapsed service times of the services in progress (if any). In Hokstad[80] and 

Ishikawa[79], this technique is employed to the MIK21c queue and the Gl/E< le 

queue respectively (K2 indicates a distribution with rational Laplace transform, where 

the denominator has degree 2). However, the algorithms obtained in this manner are 

numerically unstable and not reliable for higher values of c and k . 

In de Smit[81], the solution of the Gl/H"' le queue is given in the form of a 

Wiener Hopf type equation which is subsequently solved by using a factorization 

method. 

Another exact approach is to consider service distributions of phase type. Then 

the queueing process can be represented as a continuous time Markov chain with a 

discrete valued state description which gives the number of customers present and the 

status of the phases of the services in progress. See Heffer[69] for a first analysis using 

this approach; cf. also the table books by Hillier and Yu[82] and by Sakasegawa[78]. 

In Takahashi and Takami[76], an efficient decomposition method is introduced 

which solves iteratively the equilibrium state equations of the Markov chain represen

tation of the queueing process. This algorithm is also applicable to Gl/Glc queues 

where both interarrival and service time distribution are of phase type. However, the 

computing time for this exact method increases rapidly with the number of servers 

and the dimensionality of the state space representation. 
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The above mentioned exact methods for special cases of the M/G/c queue have 
in common that they require a very skillful implementation to control the numerical 
reliability and that the computing times go up very rapidly with increasing number of 
servers. 

As an alternative for an exact analysis, in recent years considerable attention 
has been paid to the development of approxii:nations for various operating charac
teristics of the M/G/c queue. In Hokstad[78], an approximate formula for the gen
erating function of the queue length distribution is derived using the supplementary 
variable technique. Our approximations deal both with the queue length distribution 
and the waiting time distribution. As a by-product we obtain an approximation for 
the mean waiting time. For this important performance measure, there have been 
obtained several other approximations in the literature. We mention here the good 
quality approximations in Boxma, Cohen and Huffels[80], Cosmetatos[76] and 
Takahashi[??]. The various approximations for the mean waiting time will be dis
cussed at the end of this chapter. 

The chapter is built up in the following way. In Section 3.1 we formulate the 
approximation assumptions which form the basis of the analysis. Using the regenera
tive method we derive a basic recursion relation for the steady state probabilities. In 
Section 3.2, this basic result, is transformed into a tractable form, which is very suit
able for practical computations. 

The next four sections build on the recursion relation in Section 3.2 and are 
devoted to the derivation of approximations for other performance measures of the 
M/G/c queue, including the waiting time distribution and the output process. Also, 
asymptotic results for the queue length and waiting time distributions are obtained. 

In Section 3.7, the validation of the approximations is done using a large 
number of exact results taken from Kiihn[76] and Groenevelt, van Hoorn and 
Tijms[82]; cf. also Appendix D. The computational aspects of the algorithms derived 
in this chapter are extensively discussed in Appendix C. 

3.1. The approximation assumption and the basic result 

As method of analysis for the state probabilities Pn and q,, , we use the regen
erative method. As regeneration points we choose the epochs at which the system 
becomes empty. Assuming that the system is empty at epoch 0, define 

T = the next epoch at which the system becomes empty 

T,, the amount of time in (0,T] during which n customers are in the 
system, n ;;;.O 

N = the number of customers served in (0,T] 

N11 = the number of service completion epochs in (O,T] at which n custo
mers are left behind by the customer just served, n ;;;.o. 

Like in Chapter l, we focus on the embedded process within the busy cycle 
induced by the service completion epochs. For the case of a single server, as in 
Chapter l, this process is a Markov chain. However this is in general not true for 
multiple servers. To get implementable results, we have to compromise between 
mathematical and practical standpoints. Therefore we make an approximation 
assumption in order to construct a simple embedded Markov chain on the service 
completion epochs. We wish to choose this approximation assumption in such a way 
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that at each service completion epoch the future behaviour of the queueing process 
depends only on the number of customers left behind at that service completion epoch 
and not on the elapsed service times of services in progress, if any. 

We distinguish between the case in which one or more servers are free and the 
case in which all servers are busy at the service completion epoch. 

Consider first the case in which j customers are left behind at a departure 
epoch where l .,,;;,j .,,;;,c - 1. Then all of these j customers are in service. 
We now assume that their residual service times are independent random 
variables having the same distribution as a generic random variable with dis
tribution function F, (t ). In this case the next service completion may be 
generated by a newly arriving customer who completes service before any 
of the j services in progress is completed. 

Next consider the case in which j customers are left behind at a service 
completion epoch where j ;;;;.c. Then at this epoch one new service starts 
while c -1 other services are in progress. We now make the assumption 
that the time until the next service completion has distribution function 
F(ct ). Clearly, in this case, future arrivals do not influence the next ser
vice completion. 

For the distribution function Fe (t ), we take 
I 

Fe(l )= - 1-j(l- F(x )) dx 
ES 0 

(3.1) 

i.e. the equilibrium or excess lifetime distribution of F(t ). This distribution is well 
known in renewal theory. 

To motivate the specification of the approximation assumption, note that if not 
all c servers are busy, the M/G/c queue can be treated as a M/G/oo queue for which 
the renewal theoretic result is valid that at an arbitrary epoch the remaining service 
times of services in progress (if any) are independent random variables with common 
probability distribution function Fe (t) given by (3.1 ); cf. Takacs[62]. If all c servers 
are busy we treat the M/G/c queue with service time S as a MIG/ I queue with ser
vice time S / c; cf. also Newell[73]. 

Note that the approximation assumption is exactly satisfied both for the 
M/G/c queue with exponential service time and the M/G/c queue with c =I or 
c =oo. 

Next we define for Q.,,;;,j .,,;;,n, 

A1,, = the expected amount of time during which n customers are present 
until the next service completion epoch, given that at epoch 0 a 
service is completed with j customers left behind in the system. 

The quantities A 1,, are well defined owing to the approximation assumption. 

Then, by partitioning the busy cycle (0,T] by means of the service completion 
epochs and using Wald's Theorem, we obtain a recurrence relation between ET,, and 
EN,,. This is stated in 
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Theorem 3.1 

ET,, EN11 

p,, = ET ' q" = EN ' n ;;;.O 

II 

ET,,=~ EN.iA.i11 , n ;;;.I 
j =O 

EN,, =ft.ET,, , n ;;;.I 

Proof The proof is identical to that of Theorem 1.1. 

Corollary 3.2 The distributions (p,,) and (q,,) are equal. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

D 

D 

Remark 3.3 Note that (3.2), (3.4) and (3.5) are exact and do not involve the approxi-
mation assumption. 

D 

In its present form Theorem 3.1 is not very useful for numerical purposes. The 
quantities A111 hide a number of computational difficulties. Note e.g. that for 
j <n ..;;c -1 an explicit expression for A 1,, involves a (n - j +I)-dimensional integral 
because of the phenomenon that any of n - j newly started services may be com
pleted before each of the services in progress. 

Fortunately, by the special form of the approximation assumption, we can 
succeed in eliminating the multidimensional integrals so that the ultimate recursive 
scheme is well suited for numerical purposes in practice. 

3.2. The algorithm 

Theorem 3.4 

_(ft.ES)" Pn - 1 po , O..;;n ..;;c - I 
n. 

(3.6) 

11 

p,,=Apc-lan-c+A~pJ/311 -j, n;;;.c (3.7) 
J =<· 

where 

x k 

a,= j(l-F,.(1))1
-

1(1-F(t))e ->.i ~dt , k ;;;.o 
0 k. 

(3.8) 

x k 

{3,=[(I-F(ct))e->.t(~? dt. k;;;.O (3.9) 

I 
po= 

'~1 (ft.ES)" + (ft.ES)' 
11-0 n! c!(l-p) 

(3.10) 
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Proof We first derive an expression for the Ai,, and then use its special structure to 
prove the theorem by induction. Define . 

M1,,(t)=Pr{ n -J customers arrive in (0,t) and each service started 
beyond time 0 is still in progress at time t, given at epoch 0 
there are j customers are present} (3.11) 

Recalling the approximation assumption, it now follows that 

A111 = j(l-Fe(t))' Mi11 (t)dt, 1.,,;;,j<c, n ~} 
0 

'.)() 

A1,,= j(l-F(ct))M111 (t)dt, c.,,;;,;.,,;;,n 
0 

'.)() 

Ao11=[(1-F(t))M1 11 (t)dt, n~I 

(3.12) 

(3.13) 

(3.14) 

The first part of the integrand expresses the fact that the services in progress at a ser
vice completion epoch expire after t, the second part is the probability that n custo
mers are present before the next service completion (cf. Lemma 1.4). 
By considering what may happen in the interval (0,ot ), we find for O.,,;;,j .,,;;,c - I, n > j 

M111 (t +ot )=(I -Mt )Min (t) +Mt (I - F(t ))Mi+ l.11 (t )+ 0 (ot) 

Note that if an arrival occurs in (O,ot) a new service starts when j <c. Letting ot -+0, 
we get 

(3.15) 

For c.,,;;,; .,,;;,n, an arriving customer joins the queue and Mi,, (t) equals the probability 
of n - j arrivals in (O,t ), i.e. 

M (t)=e-M (At)"-J , c.,,;;,;.,,;;,n (3.16) 
l" n -J! 

Clearly, for n ~I 

M 1111 (t)= e->-r (3.17) 

Define for 1.,,;;,; .,,;;,c - I the auxiliary quantities 

(3.18) 

Then 

A1,, =Bi+J.11 - A~S Bi,, , J.,,;;,j.,,;;,c -I, n >J (3.19) 

as easily follows by multiplying (3.15) with (I - Fe (t ))' and applying partial integra
tion to the left hand side. 

To prove the theorem, assume that po. ... , p,, - I satisfy (3.6), n .,,;;,c - I, then 
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11-I 11-l . 

p11 (l-M 1111 )= ~Ap;A1,, =ApoAo,, + ~Ap;(B;+1.11 - 'EIS B1,,) 
.1=0 .1=1 I\ 

(3.20) 

n-1 11-l 

= ~ AJJ1B1+1.11 - ~ Ap;-1B111 =Ap,,-1B,,,, (3.21) 
j =O j =I 

Note that (3.20) is equivalent to (3.3) by insertipg ET,, =p11 ET and EN,, =Ap,, ET. In 
(3.21) the induction assumption is used and A 011 is replaced by B 111 . With partial 
integration, it follows that 

ES l-M 1111 =-B1111 . 
n 

Now, p,, also satisfies (3.6). 

The second part of Theorem 3.4 follows by deriving in a similar way that 
'l':.FJAJ71A1,,= Ap,.-1Bcn· By substituting (3.16) in (3.13), we find A111 =/311 -1, 
c.,;;;;,; .,;;;,n and with B"" =an-c the recurrence relation follows. 

Finally, after summing (3.7) over n ;;;;.c, it follows that 

~ pp,·-1 ,,,:,.,p,,=--
n=c 1-p 

(3.22) 

since 'l':.k°''=oak = 'l':.t'=of3k =ES/ c. The expression for p0 is now obvious. This ends 
the proof. 

D 

The computational scheme for the state probabilities is very simple and the 
computational complexity depends only on the evaluation of the constants ak and f3k. 
For the evaluation of the integrals ak and f3k several methods are available in numeri
cal analysis. The selection of a method should be based on the properties of F (t ) and 
the associated equilibrium distribution F, (t ). In some cases, numerical integration can 
be avoided. In Appendix C we give details for a number of important distributions. 

A closer look at Theorem 3.4 learns that po. ... , Pc - I and hence also the delay 
probability are equal to the corresponding probabilities in the M/M/c queue with the 
same utilization factor p. This approximate result also appears at other places in the 
literature. In particular, the resulting Erlang formula for the delay probability is suc
cessfully used as approximation in practice. A plausible explanation for this result is 
the observation that the approximation assumption in fact imposes a memoryless pro
perty to the system at service completion epochs. A service surviving k times (say) 
other services starts k times afresh with distribution function F, (t ). 

In the next four sections, we proceed with the analysis of the approximate 
M/G/c model. With Theorem 3.4 as starting point we focus successively on the gen
erating function of the distribution (p,, ), the waiting time distribution, the departure 
process and asymptotic properties of the queue length distribution and the waiting 
time distribution. 
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3.3. The generating function and the moments of the queue length 
In this section, we determine the generating function of the probabilities p11 for 

n ~c. From this generating function, we can easily compute the moments of the 
queue length and the waiting time distributions. Also, in Section 3.4, we use the gen
erating function to derive an integral equation for the waiting time distribution func
tion. 

Assuming that the system is in the steady state, we define the random variables 
Lq = the queue size at an arbitrary epoch (excluding the customers in service) 
W q = the waiting time of an arbitrary customer in the queue (excluding his ser

vice time) 

Further, define for lzl,,,;;;I the generating functions P(z)=~1~,p11 z 11 -', 
a(z) = ~i'0=oak zk, /3(z )= ~t'=of3k zk and let 

Pw = the probability that an arbitrary arriving customer has to wait in 
the queue 

From (3.22) it follows that 

(3.23) 

The distribution of Lq follows directly from (p,,), namely Pr{Lq=n}=p11 +,, n>O 
and Pr{Lq =O} =p0 + · · · +Pc· Hence the generating function of Lq is equal to P(z) 
up to an additive constant. 

From (3.8) and (3.9), we obtain directly that 

"° 
a(z)= [(1-Fe(t))'- 1(1-F(t))e -Al(l-=idt 

/3(z)= j(l-F(ct))e->.t(t-=>dt 
0 

To find P (z ), note that (3.7) is an equation of convolution type, and multiplying it 
with z" -c and summing over n ~c yields 

P (z )="Ape -1a(z )+ "h/3(z )P(z) 

and so 

_, a(z) 
P(z )-"Pc-1 '/3 I-" (z) 

By differentiation of (3.25) and after some algebra, we get 

CYt ES2 
ELq =P' (l)= Lq(exp ){(1-p) ES + p 2(ES)2 } 

EL (L - l)=P"(l)= p2Pw {(1- ) c2y2 + ~} + _i_ ES2 EL 
q q 1-p P (ES)2 P 3(ES)3 1-p (ES)2 q 

where 

Yk= fktk-t(l-Fe(t))'dt, k=l,2. 
0 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 
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In (3.26) Lq(exp) denotes the mean queue length in the M/M/c queue with traffic 
intensity p and is given by 

where 

Lq(exp )= ___E_Pw(exp) 
1-p 

(AES)" 

P ( ) - c!(l-p) 
w exp -

(' - I (AESt + (AES)'' 
n~o n! c!(l-p) 

(3.29) 

In addition to (3.26) and (3.27), higher moments of Lq can also be obtained. The 
moments of W q are for FIFO service discipline related to those of Lq by the relation 
(cf. Marshall[71], and the derivation in Section 3.4). 

ELq(Lq-l)···(Lq-k+l)=AkEWqk, k;;;.J (3.30) 

Remark 3.5 The approximation for the mean queue length is a linear interpolation of 
the exact light traffic value and the exact heavy traffic value of the mean queue length 
for the M/G/c queue; cf. Burman and Smith[SI] and Kollerstrom[79]. Hence, the 
approximation assumption leads to results that are very close to the exact results in 
light traffic and heavy traffic situations. 

3.4. The waiting time distribution 

In this section we derive a relation between the distributions of W q and L" and 
an integral equation for the waiting time distribution function. As a by-product we 
get relation (3.30). We assume that service is in order of arrival. Define for t ;;;.o 

Wq(t)=Pr{Wq .;;;1} 

and 

V(t)=Pr{Wq.;;;t IWq>O} 

i.e. V (t) is the distribution function of the waiting time of customers who have to 
wait. Using that Pr{Wq>O}=Pw, it follows that 

V(t)= Pr{O<Wq.;;;t} =I- 1-Wq(t) (3.31 ) 
Pw Pw 

For an arbitrary customer C" let C 2 be the first customer entering service after 
the service completion of customer C 1• The waiting time spent in the queue by custo
mer C 2 is W q. By definition, with probability qn, the customer C 1 leaves n customers 
behind in the system. If O.;;;n .;;;c -1, then it is obvious that C2 is not among these n 
customers since they all started their service before the departure of C 1• Hence, if 
O.;;;n .;;;c - I the customer C 2 immediately enters service upon arrival and his waiting 
time W q is zero. Hence, the event that customer C 1 leaves behind n customers with 
n ;;;.c occurs only if the waiting time W" of customer C2 is positive and n -c arrivals 
occur during this time. This yields 

q,, =Pr{Wq >0 and n -c arrivals occur during W"}, n ;;;.c (3.32) 
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So far, the reasoning has only used the fact that customers singly arrive and are singly 
served under a FIFO discipline. Now, using the equality of (pn) and (q11 ) and the fact 
that the arrival process is Poisson, we get from (3.32) 

"' (;\t )" -c 
p 11 =[e-Ai 1 dPr{O<Wq~t}, n;;;;.c 

n -c. 
(3.33) 

Taking generating functions in (3.33) and noting that Pr{O<Wq~t}=PwV(t), leads 
to 

P(z)/Pw= [ e->-i(l-=ldV(t). 

Using the change of variable s =;\(1-z) and using (3.25) we get for the Laplace 
stieltjes transform of V (t) 

To derive an integral equation of renewal type for V(t ), we introduce 

w(s)= [ e-si dV(t), 

cp(s)= [ e-st d{I-(1-F.(t))c}, 

and 

i/;(s)= [ e-st dFe(ct) 

Using Pc -1 = l=.e_Pw(cf. (3.23)) it easily follows that 
p 

w(s) = (I - p)cp(s) 
1-pi{;(s) 

Consequently 

w(s) =(I - p )cp(s) + pw(s )i{;(s) 

Equation (3.35) is the Laplace-Stieltjes transform of the integral equation 

V(t )=(1-p){ I -(I - Fe(t))'} + p [ V(t -x) dF,,(cx) 

=(1-p){ I -(I - Fe(t ))'} +;>.. j V(t - x )(I- F(cx ))dx 
0 

(3.34) 

(3.35) 

(3.36) 

This Volterra integral equation of the second kind is useful for numerical purposes. In 
Appendix B, we show how this equation is efficiently solved by discretizing the time 
parameter. 
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3.5. The departure process 

An important characteristic of a queueing system is the departure process of 
customers from the system. To illustrate this, in a network of queues the input to a 
particular queue in the network is the output of one or more other queues plus traffic 
from external sources. Except for some special cases (see e.g. Pack[78], Heffes[76]) no 
tractable results are available for non-Markovian multiserver queues. 

In this section, we give for the approximate M/G/c queue in steady state a 
derivation of the stationary interdeparture distribution, i.e. the distribution of the time 
between two successive departures from the system. From this distribution, the 
moments of the interdeparture intervals easily can be computed. Note that the inter
departure distribution does not completely specify the output process since the depar
ture process is not renewal. 

Under the assumption that epoch 0 is a service completion epoch, define the 
random variable 

TD = the time until the next departure 
and the complementary distribution function 

Q(t)=Pr{TD >t} 

The distribution of the number of customers left behind in the system at epoch 0 is 
(qn ). Also, by the approximation assumption, the knowledge of the number of custo
mers left behind at epoch 0 gives enough information to describe the time until the 
next service completion. Hence, by conditioning on the number of customers left 
behind at epoch 0 and by using the equality (qn)=(pn), we find 

c-1 .oo oo 

Q(t)= ~p;(l-Fe(t))' ~ M;,n +;(t)+ ~p;(l-F(ct)), 
i=O n =O i=c 

where the functions Mjn (t) are defined by (3.11 ). The factor 
(l-Fe(t))'~n00=oM;.n+;(t) for example is the probability that the i services in progress 
at epoch 0 and any service started after epoch 0 expire beyond time t. Let 

c -1 00 

R(t)= ~p;(I-Fe(t))' ~Mi.n+;(t) 
i ::::Q n =O 

After some algebra, the following differential equation can be derived using the pro
perties of Pn, O,,;;;n ,,;;;c, Fe (t) and Mjn (t ). 

:t R (t)= -A.R (t)+Apc-1(1-Fe(t))'-'(I-F(t)) (3.37) 

Finally, integration of (3.37), R (O)= 1- Pw and Q (t )= R (t )+ Pw(I - F(ct )) yield 
I 

Q(t )=(I - Pw )e->-1 -;\p, -1 J e ->-u -"l(I - Fe(u))'- 1(1- F(u )) du 
0 

+ Pw(l - F(ct )) (3.38) 
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The moments of TD are given by, m ;;;.1 

' m-i N A."'ES"' ETo"'=!!!....:__{1-pPw+(l-p)Pw ~ --:-y,+Pw } 
A"' ,~ 1 1! e"'m! 

(3.39) 

with Y; defined by (3.28). In particular. we have ET D =I /A, in agreement with the 
fact that customers enter and leave the system at the same rate. After some algebra. 
the second moment of TD can be rewritten as 

(3.40) 

3.6. Asymptotic properties of the state probabilities and the waiting time 

The recurrence relation (3.7) for the state probabilities and the integral equa
tion (3.36) for V(t) are both defective renewal equations. In the discrete renewal 
Equation (3.7) the numbers A.{3,, k ;;;.o sum to A.ES/ e = p< 1 and in (3.36) the func
tion pF" (ex) is not a proper probability distribution, since lim, -xPFe (ex)= p< I. In 
order to apply the limiting theorems from renewal theory, we reduce the Equations 
(3.7) and (3.36) to proper renewal equations using a 'standard trick' (cf. Feller[66,68]). 
Next we apply the key renewal theorem to obtain the limiting behaviour of p11 for 
n -HXJ and V (t) for t-> oo. Define 

v· (t)= 1- V(t) 

Then v· (t) satisfies (cf. 3.36) 

v·(t)=G(t)+ jv•(t-x)dH(x) (3.41) 
0 

with G(t)=l-pFe(et)-(1-p){l-(l-F"(t))'} and and H(r)=pF,(cr). Note that 
H (f) has density A.( 1- F(et )). The following lemma forms the basis of the standard 
trick to transform (3.41) into a proper renewal equation. 

Lemma 3.6 There exists at most one ~>0 satisfying 
x 

j e~' dH(t)= 1 
() 

where H (t) is defined as above. 

Proof Let 

x 

k(x)=je'1 dH(f)-I. x;;;.o 
ll 

(3.42) 

The function k (x) is a monotone increasing function with k (0)= p- I <0 and 
lim,_xk (x )= oo. Hence. k (x) has at most one positive root. However, a root need 
not to exist. For example, when F(r) is a log-normal distribution function, then there 
exists no ~ satisfying (3.42). 

Suppose that a number~ exists satisfying (3.42). then 

e~' dH (f)=A. e~' (I - F(cr l) dr 

D 
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and apparently ;\ e<1 ( 1- F(ct )) is the density of a (proper) probability distribution. 
Define 

V"' (t)= e<1 v·(t) 

and multiply (3.41) with e<1 , then V"' (t) satisfies 

V"' (t )= e<1 G(t)+ j V" (t -x )e<' dH(x ). 
0 

(3.43) 

By applying the key renewal theorem (cf. Appendix A) to (3.43) we get the asymptotic 
result for t---" oo 

x 

[et' G(x )dx 
V" (t )~ _'° ____ _ 

jx e<' dH(x) 
[) 

and finally, for t---" oo 

[ e<' {1-pF,.(cx )-(1-p)(l -(1- F,.(x ))')} dx 
1- V(t )~ e -<r ------------------

"' j>-.x e<'(l-F(cx))dx 
0 

(3.44) 

The asymptotic results for the state probabilities are obtained in a similar way by 
applying the discrete version of the renewal theorem; cf. Feller[68]. This results for 
n --'>OO in 

x 

J e-iu<I -~ 1(1-F,.(x ))'- 1(1-F(x ))dx 
~ -11-I 0 P11 f c -1) Pc - I ---x------------

. h -1 ~ Wit 1)- + f· 

1 x e -Axil -~ 1(1- F(cx )) dx 
c 

(3.45) 

For the M/G/c queue with phase type services, Takahashi[8 I] has shown that 
the distribution (p,,) has a geometric tail and that the waiting time distribution has an 
exponential tail. In support of our approximation, the same coefficients ~ and 1J are 
involved in Takahashi's asymptotic expansion. However, our approximate results 
(3.44) and (3.45) also hold for general service distributions for which a ~ satisfying 
(3.42) can be found. 

Not only for reasons of completeness we have analyzed the asymptotic 
behaviour of the model. Also, for practical purposes these results are valuable. The 
computational effort to compute the tail probabilities of (p,,) or the tail of the waiting 
time distribution V(t) increases with n and t respectively. Hence it is worthwhile to 
compute p,, or V(t) from the asymptotic formulae (3.45) and (3.44) for n and t 
sufficiently large. 
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3.7. Numerical results 

In this section, we present some numerical results for the M/G/c queue and 
discuss the quality of the approximations. We give results for a wide range of the 
parameters c , p=;\ES / c and C§, the number of servers, the utilization factor and 
the squared coefficient of variation of the service time respectively. We consider 
deterministic service times (D), hyperexponential service times (H2) and service times 
which are a mixture of Erlang distributions with the same scale parameter (Eu) and 
(E1.3). The mean service time is normalized to one. For a complete specification of 
these distributions we refer to Appendix C. 

The exact results for the M/D/c queue have been taken from Kiihn[76). We 
have computed the exact results for the M/G/c queue with phase type service distri
butions using a specialization of the method of Takahashi and Takami[76]; cf. 
Groenevelt, van Hoorn and Tijms[82] and Appendix D. 

The Tables 3.1, 3.2 and 3.3 concern the delay of probability Pw, the mean 
queue length ELq and the coefficient of variation of the queue length cv (Lq) 

cv(Lq )= yELq 2 / (ELq)2- l 

The top numbers are the exact values and the second top numbers are the approxima
tions. It is clearly demonstrated that the approximations are very close to the exact 
results for the whole range of parameters covered in these tables. In Tijms and Van 
Hoorn[81c], another approximation is given for the M/D/c queue which improves in 
almost all cases the current approximation. This other approximation is obtained with 
the same technique as used in this chapter, but is based on a modification of the 
approximation assumption made in Section 3.1. The modified formulae for the delay 
probability and the mean queue length, denoted by Pw and ELq are given by 

- 111 l=.e_ 
Pw =Pw(exp ){1-(- -1) } 

112 p 

- p 111 l=.e_ 
ELq =Pw(exp){ 2(1 ) +(- -1) } 

where ( with ES= D ) 

D 

-p 112 p 

71 1= c-l [<1-.!_y-2e->-.rdt and112=e-p 
D D 

In Table 3.4, we give some results for the coefficient of variation cv of the 
interdeparture time TD. The top numbers in this table give the simulated actual 
values of cv with a 95 % confidence interval and the second top numbers the approxi
mate value of cv corresponding to (3.40). 

In Figure (3.5) and Table (3.6), we give some results for V (t ), the complemen
tary waiting time distribution for the delayed customers. Our approximation for 
V(t), (Appr.) has been obtained by solving the integral equation (3.36) using the 
numerical procedures given in Appendix B. For the case of deterministic service 
times we compare our results with the exact results (Exact) given in Kiihn[76]. For 
the other cases, we compare our approximate results both with the asymptotic results 
(Asym.) using Takahashi[81] and with simulation results (Sim.). For each example, we 
have simulated one million customers. In the table, the notation 0.77(1) means that 
the 95 % confidence interval of the simulated value is 0.76-0.78. It can clearly be seen 
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p=0.5 p=0.8 p=0.9 p=0.95 

c Pw ELq cv(ELq) Pw ELq cv(ELq) Pw ELq cv(ELq) Pw ELq cv(ELq) 

2 0.3233 0.1767 3.1099 0.7019 1.4454 1.5149 0.8471 3.8654 1.2305 0.9227 8.8230 1.1098 
0.3333 0.1944 2.9864 0.7111 1.5170 1.4711 0.8526 3.9647 1.2068 0.9256 8.9401 1.0973 

3 0.2253 0.1308 3.7165 0.6325 1.3294 1.6137 0.8077 3.7204 1.2712 0.9018 8.6638 1.1285 
0.2368 0.1480 3.5307 0.6472 1.4238 1.5512 0.8171 3.8606 1.2371 0.9070 8.8320 1.1103 

5 0.1213 0.0766 5.0503 0.5336 1.1562 1.7872 0.7478 3.4965 1.3392 0.8692 8.4106 1.1593 
0.1304 0.0869 4.7784 0.5541 1.2560 1.7063 0.7625 3.6600 1.2960 0.8778 8.6171 1.1362 

10 0.0331 0.0237 9.6101 0.3847 0.8787 2.1627 0.6469 3.1013 1.4744 0.8116 7.9496 1.2184 
0.0361 0.0254 9.1516 0.4092 0.9523 2.0574 0.6687 3.2555 1.4234 0.8256 8.1639 1.1921 

15 0.0104 0.0080 17.072 0.2955 0.7011 2.5095 0.5771 2.8196 1.5868 0.7695 7.6098 1.2657 
0.0113 0.0081 16.401 0.3192 0.7501 2.3841 0.6026 2.9491 1.5320 0.7870 7.8032 1.2387 

25 0.0012 0.0010 50.183 0.1900 0.4773 3.1957 0.4793 2.4116 1.7817 0.7063 7.0870 1.3437 

0.0013 0.0009 48.899 0.2091 0.4954 3.0291 0.5079 2.4966 1.7206 0.7284 7.2388 1.3166 

50 0.0776 0.2143 5.1230 0.3355 1.7787 2.2034 0.6012 6.1944 1.4972 
0.0870 0.2073 4.8400 0.3639 1.7947 2.1254 0.6291 6.2635 1.4698 

100 0.0176 0.0540 10.941 0.1953 1.1094 2.9888 0.4751 5.0778 1.7404 
0.0196 0.0470 10.345 0.2169 1.0719 2.8714 0.5065 5.0471 1.7096 

200 0.0013 0.0043 41.131 0.0837 0.5196 4.7067 0.3351 3.7631 2.1488 
0.0014 0.0033 39.237 0.0945 0.4672 4.4966 0.3653 3.6418 2.1065 

Table 3.1 Exact and approximate results for the M/D/c queue. 



p=0.5 p=0.8 p=0.9 

c Pw ELq cv(ELq) Pw ELq cv(ELq) Pw ELq cv(ELq) 

2 0.3308 0.2556 2.9251 0.7087 2.1478 1.4846 0.8512 5.7732 1.2194 
0.3333 0.2604 2.8997 0.7111 2.1689 1.4751 0.8526 5.8032 1.2145 

3 0.2338 0.1844 3.5176 0.6432 1.9638 1.5849 0.8145 5.5441 1.2615 
0.2368 0.1891 3.4739 0.6472 1.9919 1.5702 0.8171 5.5867 1.2539 

4 0.1710 0.1371 4.1411 0.5914 1.8165 1.6747 0.7844 5.3542 1.2980 
0.1739 0.1409 4.0813 0.5964 1.8466 1.6566 0.7878 5.4025 1.2889 

5 0.1279 0.1038 4.8113 0.5484 1.6929 1.7580 0.7584 5.1899 1.3309 
0.1304 0.1067 4.7361 0.5541 1.7229 1.7372 0.7625 5.2406 1.3207 

8 0.0576 0.0481 7.2147 0.4508 1.4089 1.9859 0.6960 4.7914 1.4166 
0.0590 0.0492 7.0910 0.4576 1.4341 1.9593 0.7015 4.8408 1.4046 

10 0.0352 0.0298 9.2491 0.4021 1.2650 2.1274 0.6625 4.5761 1.4668 
0.0361 0.0303 9.0883 0.4092 1.2863 2.0979 0.6687 4.6219 1.4542 

15 0.0110 0.0095 16.564 0.3122 0.9955 2.4657 0.5952 4.1402 1.5787 
0.0113 0.0096 16.282 0.3192 1.0082 2.4296 0.6026 4.1753 1.5652 

20 0.0036 0.0032 28.798 0.2497 0.8046 2.7973 0.5427 3.7965 1.6787 
0.0037 0.0032 28.330 0.2561 0.8111 2.7550 0.5508 3.8214 1.6645 

25 0.0012 0.0011 49.267 0.2033 0.6613 3.1322 0.4995 3.5114 1.7714 
0.0013 0.0011 48.512 0.2091 0.6635 3.0837 0.5079 3.5273 1.7566 

30 0.1678 0.5499 3.4760 0.4628 3.2676 1.8592 
0.1729 0.5492 3.4210 0.4714 3.2758 1.8439 

40 0.1173 0.3895 4.2047 0.4029 2.8662 2.0256 
0.1212 0.3856 4.1357 0.4116 2.8624 2.0091 

50 0.0840 0.2820 5.0055 0.3554 2.5446 2.1844 
0.0870 0.2770 4.9210 0.3639 2.5320 2.1667 

Table 3.2 Exact and approximate results for the M/E2/c queue. 

p=0.95 

Pw ELq 

0.9248 13.210 
0.9256 13.245 

0.9056 12.957 
0.9070 13.009 

0.8895 12.745 
0.8914 12.804 

0.8754 12.559 
0.8778 12.623 

0.8407 12.097 
0.8442 12.163 

0.8216 11.841 
0.8256 11.905 

0.7819 11.309 
0.7870 11.362 

0.7496 10.872 
0.7554 10.915 

0.7219 10.497 
0.7284 10.529 

0.6976 10.166 
0.7045 10.188 

0.6560 9.5971 
0.6636 9.6003 

0.6209 9.1152 
0.6291 9.1031 

cv(ELq) 

1.1052 
1.1026 

1.1248 
1.1209 

1.1416 
1.1369 

1.1566 
1.1515 

1.1950 
1.1892 

1.2170 
1.2111 

1.2649 
1.2589 

1.3062 
1.3004 

1.3434 
1.3379 

1.3777 
1.3724 

1.4401 
1.4353 

1.4968 
1.4924 

+:>. 
w 
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p=0.5 p=0.8 p=0.9 p=0.95 

c Pw ELq cv(ELq) Pw ELq cv(ELq) Pw ELq cv(ELq) Pw ELq cv(ELq) 

2 0.3378 0.5056 2.8595 0.7152 4.5290 1.5103 0.8551 12.356 1.2382 0.9269 28.455 1.1161 
0.3333 0.4896 2.9194 0.7111 4.4444 1.5317 0.8526 12.230 1.2489 0.9256 28.304 1.1214 

3 0.2418 0.3436 3.4586 0.6536 4.0635 1.6206 0.8211 11.763 1.2864 0.9093 27.795 1.1391 
0.2368 0.3333 3.5575 0.6472 3.9814 1.6492 0.8171 11.629 1.2996 0.9070 27.629 1.1455 

4 0.1783 0.2439 4.0796 0.6044 3.7015 1.7176 0.7931 11.281 1.3276 0.8945 27.248 1.1586 
0.1739 0.2397 4.2144 0.5964 3.6413 1.7491 0.7878 11.171 1.3409 0.8914 27.104 1.1648 

5 0.1341 0.1779 4.7422 0.5630 3.4045 1.8064 0.7689 10.869 1.3643 0.8815 26.772 1.1759 
0.1304 0.1776 4.9151 0.5541 3.3686 1.8394 0.7625 10.791 1.3769 0.8778 26.663 1.1813 

8 0.0609 0.0758 7.1037 0.4680 2.7435 2.0455 0.7101 9.8859 1.4586 0.8494 25.607 1.2196 
0.0590 0.0792 7.4160 0.4576 2.7664 2.0812 0.7015 9.9008 1.4681 0.8442 25.608 1.2223 

10 0.0373 0.0450 9.0981 0.4198 2.4201 2.1921 0.6783 9.3637 1.5132 0.8317 24.967 1.2444 
0.0361 0.0482 9.5301 0.4092 2.4693 2.2296 0.6687 9.4302 1.5207 0.8256 25.034 1.2455 

15 0.0116 0.0134 16.272 0.3293 1.8357 2.5386 0.6138 8.3252 1.6335 0.7946 23.645 1.2979 
0.0113 0.0150 17.137 0.3192 1.9222 2.5823 0.6026 8.4895 1.6368 0.7870 23.851 1.2952 

20 0.0038 0.0043 28.288 0.2652 1.4396 2.8749 0.5628 7.5233 1.7396 0.7642 22.575 1.3436 
0.0037 0.0049 29.874 0.2561 1.5406 2.9268 0.5508 7.7553 1.7399 0.7554 22.889 1.3380 

25 0.0013 0.0014 48.425 0.2171 1.1530 3.2124 0.5204 6.8697 1.8371 0.7381 21.663 1.3845 
0.0013 0.0017 51.215 0.2091 1.2573 3.2743 0.5079 7.1500 1.8353 0.7284 22.067 1.3763 

Table 3.3 Exact and approximate results for the M/H2/c queue (C§= 2.25). 
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c D(Cg=O.O) E2(Cg=0.5) Eu(Cg=0.5) H2(Cg=2.0) 

2 0.7438 (±.0072) 0.8836 (±.0058) 0.8979 (±.0064) 1.065 (±.0077) 
0.6849 0.8543 0.8455 1.121 

3 0.8074 (±.0073) 0.9136 (±.0069) 0.9294 (±.0064) 1.043 (±.0077) 
0.7308 0.8725 0.8632 1.106 

4 0.8418 (±.0080) 0.9321 (±.0063) 0.9502 (±.0046) 1.030 (±.0072) 
0.7617 0.8856 0.8760 1.096 

5 0.8644 (±.0068) 0.9474 (±.0051) 0.9635 (±.0068) 1.021 (±.0064) 
0.7847 0.8959 0.8861 1.089 

10 0.9303 (±.0040) 0.9734 (±.0029) 0.9859 (±.0041) 1.007 (±.0038) 
0.8522 0.9273 0.9182 1.065 

15 0.9527 (±.0054) 0.9849 (±.0047) 0.9921 (±.0041) 1.006 ( ± .0039) 
0.8884 0.9273 0.9370 1.051 

Table 3.4 The coefficient of variation of the output process. 

0.1 

E;? (c~ = 0.5) 

D (c~ = 0.0) 

0.01 
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0.001 
0 2 t .. 3 

Figure 3. The complementary waiting time distribution 1- V(t ), c =5 p=0.8 . 
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. t 0.1 0.25 0.5 0.75 1.0 1.5 2.0 3.0 

p=0.5 

D A ppr. 0.7653 0.4475 0.1311 0.0293 0.0061 
Exact 0.7366 0.4231 0.1192 0.0215 0.0046 

A ppr. 0.7682 0.4927 0.2160 0.0902 0.0370 0.0062 
Ez Asym. 0.9668 0.5638 0.2294 0.0934 0.0380 0.0063 

Sim. 0.77(1) 0.49(1) 0.216(7) 0.092(5) 0.038(4) 

A ppr. 0.7730 0.5043 0.2240 0.0928 0.0374 0.0060 
E1.3 Asym. 1.060 0.6096 0.2425 0.0965 0.0384 0.0061 

Sim. 0.76(1) 0.49(1) 0.22(1) 0.096(5) 0.040(3) 

A ppr. 0.7834 0.5586 0.3450 0.2308 0.1619 0.0847 0.0454 
H2 Asym. 0.3351 0.2788 0.2052 0.1511 0.1112 0.0602 0.0326 

Sim. 0.80(1) 0.58(2) 0.36(1) 0.23(1) 0.15(1) 0.073(7) 0.037(5) 

p=0.7 

D 
A ppr. 0.8511 0.6115 0.2932 0.1277 0.0549 0.0101 0.0019 
Exact 0.8244 0.5809 0.2722 0.1122 0.0489 0.0090 0.0017 

A ppr. 0.8534 0.6527 0.3988 0.2387 0.1421 0.0502 0.0177 0.0022 
Ez Asym. 0.9213 0.6743 0.4008 0.2383 0.1416 0.0500 0.0177 0.0022 

Sim. 0.85(1) 0.65(1) 0.40(1) 0.24(1) 0.144(7) 0.052(4) 0.019(2) 

A ppr. 0.8566 0.6616 0.4069 0.2429 0.1438 0.0502 0.0175 0.0021 
E1.3 Asym. 0.9526 0.6946 0.4102 0.2423 0.1431 0.0499 0.0174 0.0021 

Sim. 0.85(1) 0.65(1) 0.40(1) 0.242(5) 0.143(4) 0.050(3) 0.017(2) 

A ppr. 0.8639 0.7063 0.5302 0.4153 0.3327 0.2190 0.1456 0.0646 
H2 Asym. 0.6164 0.5457 0.4456 0.3638 0.2970 0.1979 0.1319 0.0586 

Sim. 0.87(1) 0.73(1) 0.55(1) 0.42( 1) 0.33( 1) 0.21(1) 0.14(1) 0.059(7) 

p=0.9 

D A ppr. 0.9475 0.8474 0.6673 0.5159 0.3982 0.2372 0.1413 0.0502 
Exact 0.9354 0.8297 0.6498 0.4985 0.3854 0.2297 0.1369 0.0486 

A ppr. 0.9484 0.8671 0.7368 0.6231 0.5265 0.3758 0.2682 0.1366 
Ez Asym. 0.9621 0.8695 0.7346 0.6206 0.5243 0.3742 0.2671 0.1360 

Sim. 0.94(1) 0.86(1) 0.73(1) 0.62(1) 0.52(2) 0.37(2) 0.26(1) 0.13(1) 

A ppr. 0.9496 0.8709 0.7417 0.6272 0.5297 0.3776 0.2692 0.1368 
Eu Asym. 0.9690 0.8754 0.7391 0.6240 0.5269 0.3756 0.2678 0.1361 

Sim. 0.95(1) 0.87(1) 0.74(1) 0.63(1) 0.53( 1) 0.38(1) 0.27(1) 0.14(1) 

A ppr. 0.9525 0.8909 0.8096 0.7446 0.6888 0.5927 0.5111 0.3803 
H2 Asym. 0.8893 0.8507 0.7901 0.7339 0.6816 0.5879 0.5071 0.3774 

Sim. 0.95(1) 0.89(1) 0.81(1) 0.74(1) 0.68(2) 0.58(2) 0.49(2) 0.36(2) 

Table 3.6The complementary waiting time distribution 1- V(t), c =5· 
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Pw<O.l O.lo;;;;Pw<0.7 Pw;;;.0.1 

error< 1% 3% 5% 1% 3% 5% 1% 3% 

L9 (Ap.) 34 85 100 45 90 100 92 100 
L9 (Box) 75 98 100 lCiO 100 100 100 100 
L9 (Cos) 47 100 100 79 100 100 100 100 
L9(Tak) 70 100 100 89 100 100 100 100 
Pw(Ap.) 11 70 99 40 92 100 97 100 

#Cases 88 230 198 

Table 3.7 The quality of various approximations (C}<l). 

Pw<0.1 

error< 3% 5% 10% 1% 3% 5% 1% 3% 

L9 (Ap.) 35 45 75 25 75 94 88 100 
L9 (Box) 95 100 100 38 100 100 100 100 
L9 (Cos) 0 15 55 0 29 60 73 100 
L9(Tak) 85 95 100 19 83 100 92 96 
Pw(Ap.) 80 100 100 23 90 100 94 100 

#Cases 20 48 48 

Table 3.8 The quality of various approximations (Cj= 1.5625,2.25). 

Pw<0.1 Pw;;;.0.1 

error< 3% 5% 10% 3% 5% 10% 1% 3% 5% 
L9 (Ap.) 17 28 28 34 56 70 65 92 98 
L9 (Box) 39 39 61 54 62 72 56 85 90 
L9 (Cos) 0 0 0 0 4 24 33 69 90 
L9(Tak) 33 50 78 10 32 84 46 83 88 
Pw(Ap.) 0 33 100 20 58 100 58 96 100 

#Cases 18 50 48 

Table 3.9 The quality of various approximations (Cj=4.0,9.0). 
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seen, in particular in Figure 3.5, that the approximations are accurate enough for 
practical purposes and at least as accurate as the results obtained by time consuming 
computer simulation. The computation time for the approximate results was about 2 
seconds CPU time for each example and practically independent of the values of c, p 
and C}. The asymptotic results required per example between 2 and 15 seconds CPU 
time whereas the simulation of one example with one million customers took on the 
average 180 seconds CPU time (on a Cyber 175). 

In the Tables 3.7, 3.8 and 3.9 we have summarized the conclusions regarding 
the quality of various approximations for the mean queue length in the M/G/c 
queue. Beside our approximation Lq(Ap.) we have tested the approximations given in 
Boxma, Cohen and Huffels[80], in Cosmetatos[76], and in Takahashi[77], denoted by 
Lq (Box), Lq (Cos) and Lq (Tak) respectively. The latter three approximations are spe
cial purpose approximations for ELq (and EWq ) only; see Appendix C for a brief 
description. The approximation given in Nozaki and Ross[78], which is also found by 
Hokstad[78], and the various diffusion approximations (see Halachmi and Franta[78] 
and Kimura[81]) turned out to be inferior to the above mentioned approximations 
and will not further be discussed. 

The validation is based on the exact results for the 748 different M/G/c sys
tems displayed in Appendix D. We have classified the cases by distinguishing 
between three ranges for C§ and three traffic levels. The traffic levels reflect light 
traffic (Pw<O.l), moderate traffic (O.l~Pw<0.7) and heavy traffic (Pw;;;.0.7) situa
tions. We found the classification based on Pw better than the usual one, which 
depends only on p, since it takes into account the effect of the number of servers. 
Indeed, it makes quite a difference for a customer to enter a 2-server or a 20-server 
system with the same server utilization. More importantly, the classification being 
based on Pw, we can aggregate the information on the different systems over the 
values of c and p. A disadvantage is that Pw is not a priori known. 

The results in the Tables 3.7, 3.8 and 3.9 are self-explanatory. As overall con
clusion we may state that for C}< 1 all approximations are very accurate. For C§ 
larger than I but not too large Lq(Box) and Lq(Tak) are superior, whereas the 
approximation Lq(Cos) deteriorates. Lq(Ap.) seems to be the best approximation in 
heavy traffic when c§ becomes larger. 

The practical applicability of Lq (Ap. ) and Lq (Box) is increased by replacing 
the factor y 1 (cf.(3.28)) appearing in both approximations by y1 when C§< 1.5, where 

- -c2 ES +(l-C 2) ES Y1 - s c + l s -c-

Note that y1 is a linear interpolation between the values of y1 for deterministic and 
exponential service times respectively. It was numerically verified that y1 approxi
mates very well y 1 provided C}< 1.5. 

In the Tables 3.10 and 3.11, we demonstrate the sensitivity of the various 
approximations for service distributions, having the same first two moments but 
different higher moments. We give results for the mean queue length ELq. In Table 
3.10, we consider hyperexponential service time distributions with the same squared 
coefficient of variation C§ but different ratios p 1 / µ1• Note that in the extreme case 
p 1 /µ 1=1, the distribution becomes an exponential distribution whereas in the other 
extreme case p 1 / µ1 =O, the distribution has a positive mass in zero. Then, the service 
time is zero with probability (C§-1)/(C:}+l) and exponentially distributed with 
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probability 2/(C§+1). In the latter case, the queueing systems may be interpreted as 
a batch service model, where the batch size is a truncated geometric distribution. 
Table 3.10 indicates that the approximation of Lq(Tak) performs best for the skew 
distributions with p 1 / µ. 1 ~1. 

p=0.5 p=0.9 

Pi/ P.1= 0.05 0.5 0.95 0.05 0.5 0.95 

C§=l.5625 

Lq(Ex.) 0.1620 0.1525 0.1395 8.7562 8.6737 8.4910 
Lq(Ap.) 0.1592 0.1520 0.1493 8.7095 8.6338 8.6062 
L9 (Box) 0.1610 0.1547 0.1522 8.7504 8.7040 8.6847 
Lq(Tak) 0.1625 0.1550 0.1450 8.7698 8.7116 8.5873 

C§=2.25 

L 9 (Ex.) 0.2033 0.1779 0.1435 11.090 10.869 10.311 
L 9 (Ap.) 0.1982 0.1776 0.1719 11.008 10.791 10.731 
L9 (Box) 0.2011 0.1806 0.1737 11.076 10.910 10.848 
Lq(Tak) 0.2039 0.1835 0.1560 11.115 10.965 10.587 

C§=4.0 

L 9 (Ex.) 0.3099 0.2375 0.1483 17.039 16.400 14.672 
Lq(Ap.) 0.3004 0.2409 0.2290 16.887 16.261 16.135 
Lq(Box) 0.3054 0.2336 0.2128 17.010 16.333 16.067 
Lq(Tak) 0.3104 0.2512 0.1752 17.091 16.679 15.506 

Table 3.10 Sensitivity of ELq for hyperexponential service times with different ratios 
p I I P.1, c = 5. 

Cj=0.5 C§= 1.0 C§=l3/12 

E1.3 E2 E1,3 M E1.3 H2 

p=0.5 

L9 (Ex.) 0.1052 0.1038 0.1318 0.1304 0.1346 0.1337 
Lq(Ap.) 0.1085 0.1067 0.1314 0.1304 0.1340 0.1336 
Lq(Box) 0.1046 0.1036 0.1311 0.1304 0.1345 0.1342 
L9 (Tak) 0.1042 0.1030 0.1315 0.1304 0.1347 0.1341 

p=0.9 

L9 (Ex.) 5.1999 5.1899 6.8745 6.8624 7.1395 7.1319 
L9 (Ap.) 5.2599 5.2406 6.8730 6.8624 7.1296 7.1254 
L9 (Box) 5.1900 5.1837 6.8672 6.8624 7.1395 7.1374 
L9 (Tak) 5.1853 5.1773 6.8714 6.8624 7.1423 7.1368 

Table 3.11 Sensitivity of ELq for the shape of the service time distribution, c =5. 
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In Table 3.11 we demonstrate the insensitivity of EL9 for the shape of the ser
vice time distribution for a few cases with C} = 0.5, 1.0, 13 / 12. The pairs of service 
time distributions in this table have the same first two moments but a different shape. 
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4. THE M/G/C QUEUE WITH STATE DEPENDENT ARRIVAL RATE 

In this chapter, we give an extension of the results of Chapter 3. Using the 
same approximation assumption as in Chapter 3, we derive approximations for the 
steady state probabilities in the M/G/c queue with a state dependent Poisson arrival 
process. The arrival rate is 'l\1 when j customers are in the system, and we assume 
that limsup11 _ 00A11 ES/ c <I. It is no restriction to assume an infinite waiting capa
city, i.e. each arriving customers actually enters the system. 

After having derived an algorithm for the steady state probabilities, we discuss 
two important special models, namely the finite capacity M/G/c queue and the 
machine repair model with multiple repairmen. The validation of the approximations 
in this chapter has not yet been completed and will be reported later. 

4.1. The basic theorem 

For the analysis of the M/G/c queue with state dependent arrival rate, we 
adopt the same notation and definitions as in Section 3.1. Notably. we make the same 
approximation assumption. As generalization of Theorem 3.4, we formulate 

Theorem 4.1 

_(ES)" 11-1 

p,, - - 1-poilA; , Oo;;;n o;;;c - I 
n. .1~0 

II 

P11 =\-1Pc·-1am + °'2:.A1P1f3111 • n ;;a.c 
/·::::(' 

'.>C 

rr,, =q,, ='A,,p,, / "2:, AkPk , n ;;a.O 
A ~o 

where 
'.>C 

a, 11 = [(1-F,.(t))'- 1(1-F(t))Mrn(t)dt. n ;;a.c 

'.>C 

/3;11 = [(1-F(ct>}M;11 (t)dt, co;;;jo;;;n 

M;11 (t )=Pr{ /1 - j customers arrive in (0,t) J there are j customers present 
at epoch 0 }, c o;;;.i o;;;n 

(4.1) 

(4.2) 

(4.3) 

Proof To prove the theorem, we duplicate the whole analysis in the Sections 3.1 and 
3.2, except that we replace A by the appropriate A,, notably in (3.4), (3.5) and (3.15 ). 
For the functions M 1,, (t ), c o;;;j o;;;n, we cannot obtain explicit expressions in general 
and also for p0 a formula cannot be found. Equation (4.3) is the analogon of (2.5) for 
the multiserver case. 

D 

Remark 4.2 The quotients p,, / p 0• Oo;;;n o;;;c - I are equal to the corresponding quo
tients in the M/M/c queue with state dependent arrival rate A1 . 

D 
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4.2. The M/G/c/ queue with finite capacity 

In this section, we consider the M/G/c queue with finite capacity K. As we 
have argued in Section 2.2, the distributions (pn) and (qn) in the M/G/c queue with 
capacity K are identical to the corresponding distributions in the M/G/c queue with 
state dependent arrival rate >..1, where >..1 =A., j =O, ... , K-1 and A.1 =O, j ~K. For 
the latter model, we can simplify the results of Theorem 4.1 considerably. Equation 
(4.1) reduces to 

(A.ES)" Pn = po , O~n ~c - I 
n! 

(4.4) 

and M1n (t) is explicitly given as 

M (t)= e->--i (A.t)"-J c ~j ~n ~K-1 
Jn n - j! ' 

00 ('At)" - J 
M1K(t)= ~ e->-.i ., , c~j~K 

n=K n -1 · 

Hence, acn =an -n f3Jn = f3n - J, c ~j ~n ~K - I where ak and f3k are defined by (3.8) 
and (3.9) respectively. Also, we have 

ES K-1 ES K-1 
a,.K = - - ~ acn and /31K = - - ~ f31n 

C n =c C n =j 

Using the above in ( 4.2) with n = K and also using ( 4.2) for n = c, ... , K - 1, we find 
after some algebra 

K-1 

PK =ppc-1-(l-p) ~Pi (4.5) 
J =c 

Hence, by using Equation ( 4.1) for n = 0, ... , c - I, Equation ( 4.2) for 
n =c, ... , K-1 and Equation (4.5), we can compute recursively the quotients 
Pn /Po , O~n ~K and next we find po by noting that ""2:.,~ =oPn /po= I/ Po· 

For the case p=A.ES / c < 1, it is straightforward to derive a relationship 
between the steady state distributions (pn<Kl) and (pJxl) in the M/G/c queue with 
finite and infinite capacity respectively. In analogy with the analysis in Section 2.2, 
we find 

pJKl=cKp,!"'l, O~n ~K -1 

where CK= I I {1-p+p""i:.f=o1 Pr)} and 
K-1 

prl=cK{p«~l -(I -p) ~ pj"')} 
j=c-1 

(4.6) 

(4.7) 

Note that the formulae for cK in the single server case and the multiserver case are 
identical. 

Letting the random variable W q be the waiting time in the queue for an arbi
trary arriving customer, we find with the same arguments as used in Section 3.4 

qn =Pr{Wq >0 and n -c arrivals during Wq}, c ~n ~K-1 
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Hence, we have 
'.Xl 

qn = [ e -t.r (i\l )n -c 
n -c ! dPr{O<W" ,,;;;1} , c ,,;;;n ,,;;;K -2 (4.8) 

(4.9) 

In (4.9), the sum accounts for the blocked customers. The Equations (4.8) and (4.9) 
define the waiting time distribution implicitly once the distribution (q,,) is known. 
However, by prescribing a representation for Pr{O<W" ,,;;;1} containing several 
degrees of freedom, we can find an approximation for the waiting time distribution 
function. We have not yet done this, but it will be the subject of further research. 

4.3. The machine repair model with multiple repairmen 

In this section, we discuss the machine repair model with K machines and c 
repairmen. For a description of this model, we refer to Section 2.3. 

Let Pn be the steady state probability that at an arbitrary epoch n machines are 
broken down, O,,;;;n ,,;;;K. Then, the sequence (i\i) is specified by i\1 = (K - j )i\ 
O,,;;;j,,;;;K-I and i\J =O, j~K. Theorem 4.1 can now be simplified to 

Theorem 4.3 

Pn = [~ ](i\ES)"po, O,,;;;n ,,;;;c - I 

" 
p,,=(K-c+l)i\p,-1acn+'2,(K-j)i\ptf3i,,, c,,;;;j,,;;;K 

j =(" 

where a,n and {31,, are defined as in Theorem 4.1. Now, Mi,, (l) is explicitly given as 

Mjn(t)= [~=j](l-e-t.r)n-J e-Al(/\-11) 

Proof The theorem follows directly by noting that Mi,, (l) is the binomial probability 
that in the interval (0,l) n - j machines fail, given that K - j machines are working at 
epoch 0. 

D 
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5. THE Mx / G / 1 QUEUE. 

In this chapter we give an analysis for the steady state probabilities in a general 
class of single server queues with batch arrivals. See also van Hoorn[81 ]. 

In many practical queueing situations customers arrive in batches rather than 
singly. For example, at airports or train stations, passengers often arrive in groups at 
the check-in counters. 

In communication networks the batch arrival model is also important. For 
example, messages sent through a data network are not handled as a whole, but only 
piecewise. At the entrance of the network, a message is split up into unit packets of a 
fixed number of bits and the packets are switched separately. Thus, the service time 
or processing time of a unit packet is likely to be deterministic. Applications of this 
kind can be found in Manfield and Tran Gia[8 l] and Manfield and Tran Gia[82], 
where the Glx/M/l queue and the Mx/M/l queue are investigated respectively. 

Batch arrival queues are not only interesting in their own right, but are also 
very useful to model practical situations which are difficult to solve analytically or 
allow of no analytical treatment at all. We demonstrate this on the M/G/l queue 
with bounded sojourn time and a queueing system in which the service time of custo

mers depends on their waiting time. Incidentally, the model defined in Chapter 2 can 
also be seen as a special case of the batch arrival model where a batch consists of 0 or 
1 customer. 

In Section 5.4 we define a batch arrival model that is a discrete version of the 
M/G/l queue with bounded sojourn time. The latter model is a M/G/1-like queueing 
system where a customer is only accepted if the sum of his estimated waiting time W q 

in the queue and his service time S is less than a number K. Otherwise the customer 
is not admitted to the system. The analytical solution for the waiting time distribu
tion in this system is given as an integro-differential equation, which can be solved 
numerically by discretization. Hence, there are two ways to solve the M/G/l queue 
with bounded sojourn time, namely to discretize the model, as we suggest in Section 
5.4, or to discretize the exact solution of the model. 

In Section 5.5, we use the batch arrival model to describe a number of peculiar
ities of customer behaviour in telephone switching systems. It appears that a queueing 
system where the service time of a customer depends on his waiting time in the queue, 
is appropriate to model 'impatience characteristics' of customers. In this application, 
an analytical approach is hardly possible. 

Further, the chapter is organized as follows. In Section 5.1, we define the gen

eral model and give its solution using the regenerative method. In Section 5.2. we 
focus on some special choices for the service time distribution, whereas in Section 5.3 
we treat the case of a uniform batch size distribution, i.e. here the standard Mx/G/ 1 
queue is analyzed. 



56 

5.1. The model and the regenerative analysis 

The model 

We consider a single server queueing system at which batches of customers 
arrive according to a Poisson process at rate A . The number of customers in a batch 
is distributed as a random variable GU> when j customers are in the system. We allow 
that Pr{GUl=O}>O and hence it is no restriction to assume that the queueing system 
has an infinite capacity. We can model various finite capacity queueing situations by 
taking Pr{GUl=Q} =I, j ~K for some K. The customers of a batch are served indivi
dually and have a service time S with a general probability distribution function 
F(t)=Pr{S..;t }. To have a stable system we assume that limsup n~oo A.EG<">ES<I. 

It is no restriction to assume that all customers in a batch actually enter the 
system. Indeed, for the analysis of the system 'server + queue' only the entering cus
tomers are relevant since they interact with the system. In practice, this assumption is 
usually not fulfilled and it may occur that batches are partially or totally blocked. 
Then, it is of interest to know the blocking probability. However, by a proper choice 
of the distribution of the batch size GU>, it is always possible to define a modified 
model having the same characteristics as the original model restricted to the entering 
customers. After having analyzed the modified model, we can find the characteristics 
of the original model using the results of the modified model. We illustrate this with 
the following example. 

Example 5.1. 

Let model I be a single server queueing model with batch arrivals having a 
finite capacity K. The arrival rate is A. and the batch size is distributed as a random 
variable H. When upon arrival there are not enough waiting places for all customers 
in a batch, the whole batch is not admitted to the system. We define model 2, the 
modification of model I, as follows. Model 2 has the same service process as model 
I, a uniform arrival rate A. of batches of customers and a state dependent batch size 
GU> when j customers are in the system, where ( see Figure 5.1 ) 

Pr{GU>=k} =Pr{H=k}, O..;j ..;K-1 , I ..;k ..;K-j 

Pr{GU>=Q} =Pr{H=O} + Pr{H>K-j} , O..;j ..;K -1 

Pr{GU>=Q} =I , j ~K 

\ 
Pr{H=O}+ Pr{H>K-j} 

Figure 5.1 In model 2 the batch size is state dependent. 
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The analysis 

The regenerative method is also very suitable to derive an algorithm for the 
steady state probabilities in a batch arrival queueing system with a Markovian arrival 
process. For clarity of presentation, we repeat the necessary definitions. For n ;;;;.Q we 
define 

Pn the steady state probability that 11 customers are in the system at 
an arbitrary epoch 

qn the steady state probability that at an arbitrary service completion 
epoch n customers are left behind in the system by the customer 
just served. 

We assume that at epoch 0 the system has become empty after a service completion 
and define the random variables 

T = the next time the system becomes empty 

Tn the amount of time in (O,T] that 11 customers are present, n ;;;;.Q 

N the number of customers served in (O,T] 

Nn = the number of service completion epochs in (O,T] at which n customers 
are left behind by the customer just served 

Finally, let for O~j ~n 

A1n = the expected amount of time during which n customers are in the 
system until the next service completion epoch, given that at epoch 
0 a service is completed with j customers left behind in the system 

The following theorem supplies the basic relations for the model in its general form. 

Theorem 5.3 

Pn =ETn /ET, qn =ENn /EN, n ;;;;.Q 
n 

ETn = 2;EN1A1n , n ;;;;.1 
j=O 

n 

ENn =A 2; ETk Pr{G<kl;;:;.n +I -k} , n ;;;;.Q 
k =O 

ET-ETo=ENES 
00 

EN=ll.2; ETkEG<kl 
k =O 

(5. I) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

Proof Equation (5.1) is as before a general result and follows from the theory of the 
regenerative processes. Relation (5.2) is obtained by partitioning the busy cycle (O,T] 
by means of the service completion epochs and (5.4) is an immediate consequence of 
it. 

To prove (5.3) we resort again on an up and down crossing property of the 
queue length process. Consider the macro states M 1 = {O, I, ... , n } and M 2 = 
{ n + l,n + 2, ... } . Then, in a busy cycle the average number of transitions from M 1 

to M 2 is equal to the average number of transitions from M 2 to M 1; see Figure 5.2. 
The latter number is simply equal to ENn, since transitions from M 2 to M 1 occur at 
departure epochs when the system is left behind in state n . 
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Figure 5.2 Up and downcrossings of level n . 

Direct transitions from M 1 to M 2 occur when a batch arrives, seeing n or less 
customers in the system, that is large enough to bring the number of customers in the 
system above n. Let O.,;;;,k .,;;;,n, then according to the Poisson Lemma , ,\ETk is the 
average number of batches arriving while the system is in state k in (O,T] and 
,\ETkPr{G(kJ;;;.,n +1-k} is the average number of batches generating a transition 
from state k to M 2 in (O,T]. By conditioning on k, we have 

the average number of transitions from M 1 to M 2 in (O,T] 

=,\ET0Pr{G<0>;;;.,n +l}+ · · · +.\ETkPr{G(kl;;;.,n +1-k}+ · · · +.\ET11 Pr{G(n);;;.,l} 

Note that in this derivation we use the assumption that any customer is admitted to 
the system. This completes the proof of (5.3) and (5.5) follows by summing (5.3) over 
n ;;;.,o. 

D 

Remark 5.4 From Theorem 5.1 it is clear that the distributions (p11 ) and (q11 ) are not 
equal in general. 

D 

Remark 5.5 For practical purposes it is of interest to know the distribution of the 
number of customers in the system at an arrival epoch. Since we allow that 
Pr{GUl=O}>O, we distinguish between zero and non-zero batches. We are primarily 
interested in non-zero batches, since these batches typically interact with the system. 
Therefore, we define for n ;;;.,o 

7T11 the steady state probability that an arbitrary non-zero batch sees upon 
arrival n customers in the system 

7T11 = the steady state probability that an arbitrary batch sees upon arrival n 
customers in the system. 

Using the property 'Poisson arrivals see time averages' (cf. Wolff[81] or Appendix A) 
we have 7T;=p11 , and 
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00 

'1Tn =pnPr{G(nl;:a.l} / ~pkPr{G(kl;:a.l} (5.6) 
k=O 

Note that ('1Tn ):;t=(qn) as is intuitively clear since customers arrive in batches and leave 
singly. 

D 

To compute the distributions (pn) and (qn) we formulate the 

Algorithm 5.6 

I. Evaluate the constants Ajn, Q.;;;;,j .;;;;,n 

2. Put ENo= 1 and ETo= 1 / APr{G<0>;;.1} 

3. Assume that ENo. ... , ENn-i. ETo. ... , ETn-I have been computed, solve for 
ENn and ETn 

n-1 

ETn =ENnAnn + ~ ENjAjn 
j=O 

n-1 

ENn =AETnPr{G<n>;:a.l}+A ~ ETk Pr{G<k>;;.n + 1-k} 
k =O 

4. Return to step 3 if necessary 

5. Normalize ETn by ET=~k°=oETk to findpn and normalize EN=~k""=oENk to 
obtain qn. 

The complexity of step 1 in the algorithm depends on the distribution of the 
batch size G<il, j ;;.o and on the distribution F(t) of the service time S. Step 5 can be 
simplified if the batch size distribution is independent of the state of the system. In 
the next section, we treat a number of important cases and give schemes to compute 
the quantities Ajn . 

For the constants Ajn the following integral representation holds. 

Lemma5.7 
00 

Ajn = [(1-F(t)}ajn(t)dt, 1.;;;;,j.;;;;,n 

A - n Pr{G<O>=k} A 
On - ~ p {G(O) I} kn , n ;:a.1 

k =I r ;;;. 

(5.7) 

(5.8) 

where ajn(t)=Pr{ n -j customers arrive in (O,t) I j customers present at epoch 0} 

Proof The proof of (5.7) goes analogously to the proof of Lemma 1.4. The second 
part of the lemma follows by noting that Pr{G<0>=k} / Pr{G<0>;;.1} is the probability 
that the first non-zero batch entering the system in (O,T] consists of k customers and 
hence is the probability that the first service in (O,T] starts with k customers present. 

D 
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5.2. Algorithms for the quantities A Jn 

In this section, we pay some attention to the evaluation of the constants AJn , 

the difficult step in Algorithm 5.6. To show in which way to extend the algorithms of 

Section 2.4 to batch arrival processes, we consider the case of an exponential service 

time distribution. Next it will be obvious how to deal with other phase type service 

distributions. Finally, for a general service distribution, we discuss a representation of 

the numbers A Jn which could be used for numerical purposes in some cases. 

Case 1 F(t)=l-e-µi 

By exploiting the memoryless property of the exponential distribution and the 

property that min (X1,X2) has an exponential distribution with mean I/ (µ 1 + µ2) if X1 

and X2 are independent, exponential random variables with mean values 1 / µ1 and 

1 / µ2, we obtain a recursive scheme for the A Jn . Put for abbreviation 

gP>=Pr{GUl=k} for all j ,k 

Then, for any fixed n ~ 1 

A. n-J 
AJn = ~+ ~ gP>AJ+k.n' 1.;;;.j<n 

I\ µ k =O 

1 A. gbn > 

Ann= A+µ + A.+µ Ann 

Here A.gp> /(A+µ) is the joint probability that a batch arrives before the completion 

of the service and that the size of this batch is k given j. After some rewriting, we 

get 

A. n-J . 
A· = ~gkU>A·+k 1.;;;.1·<n 

;n A(l-gbil)+µ k"';I 1 .n ' 

A = . 1 
nn A.(1-gon>)+µ. 

From these relations we can recursively compute A Jn for j = n, ... , I. 

Case 2 General service time distribution 

Though we handle here the case of a general service distribution, we do not 

give recommendations how or when to use the representation below for the A Jn . 

Nevertheless, from a theoretical point of view the derivation is interesting. 

The integral representation (5.7) suggests to focus on the arrival process to get 
an expression for aJn (t ). Consider a Markov chain with countable state space 

{O, 1,2, ... }, where state n denotes the number of customers present, and with transition 
matrix T, given by 

gOO) gfO) g10) g!O) 

gol) g p> giI> 

T= go2> gf2> 
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Then, by conditioning on the number of arriving batches in (O,t ), ajn (t) is given by 
the (j ,n )-element of the matrix 

00 f")\( \k 
[a](t)= ~ e->-.r ~Tk (5.9) 

k=O k ! 

Next, after integration of (5.9), Ajn is given by the (j ,n )-element of the matrix 

00 00 k 

[A]= k~ol (1- F(t )) e ->-.r (~? dtTk (5.10) 

The coefficients of the powers of T in (5.10) are identical to the numbers ak in the 
M/G/l queue; cf. (1.7). As said before, the value of (5.10) for computational pur
poses is dubious. The representation (5.10) can be used for numerical purposes if the 
matrix T is small or if T is diagonizable. The numerical results in Section 5.4 have 
been obtained by using (5.10). We omit further details. 

5.3. The Mx / G / I queue with uniform batch size. 

In this section, we give an analytical treatment of the standard Mx/G/l queue 

with uniform batch size. Let the random variable G denote the batch size and let 
gk =Pr{G=k }, k ;;;;>0. The capacity of the system is infinite. It is no restriction to 

assume that g0 =0, otherwise we take >..* =A.(l-g0) and g;=gk /(l-g0). The 
assumption of a uniform batch size permits a number of simplifications in the algo
rithm. The numbers A jn depend now only on the difference n - j, } ,,;;;;j ,,;;;;n. Also 

from (5.5) it follows that EN=A.EGET and hence by (5.4) po= 1-A.ESEG. Define for 
k;;;;>O 

00 

ak = [(1-F(t))Pr{ k customers arrive in (O,t)} dt 

Also, define for I z I ,,,;;;; I the generating functions P (z )="2-n"'=oPnZ", Q (z )="2-n""=o qn z", 

G(z)=°'2.n00=1gnz", and a(z)="2-n""=oanz". We have 

and 
00 

a(z) = [ (1- F(t )) e -Al(l-G(:)) dt 

Note that e -Al(l-G(z)) is the generating function of the number of arrivals in (O,t) 

according to the compound Poisson arrival process. 

By taking generating functions in (5.2) and (5.3) and by noting that ET11 =pn ET 
and EN" = qn A.EGET, we easily get after some algebra 

and 

P(z )-po=A.EGqoG (z )a(z )+(Q (z )-qo)A.EGa(z) 

A.EGQ(z)=A.P(z) l-G(z) 
1-z 

Finally, with p=A.ESEG, we find for P(z) 

P(z)=(l-p) 1-A.a(z)(l-G(z)) 
1-A.a(z )( 1-G (z)) / ( 1-z) 

(5.11) 
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From (5.11) we obtain the following well known expansion for the mean queue size 
ELq. 

EL =_t_ l+C§ + P (EG2 -1) 
q 1-p 2 2(1-p) EG 

The formula for ELq consists of two parts, the first of which is equal to the mean 
queue length in a M/G/I queue with traffic intensity p. The second part reflects the 
additional effects of variability of the batch size to the mean queue length; cf. also 
Cosmetatos[78]. 

The computation of the numbers a1, l ;;;.o, is essentially identical to the compu
tation of A1n in Section 5.2. For the important special case of constant service time 
D, we prove a very simple computational scheme for the a1. Define for l ;;;.o 

a1(t)=Pr{ l customers arrive in (O,t)} 

Then 
D 

a1= [a1(t)dt 

In Adelson[66] a simple recurrence relation for a1 (t) is derived. 

'At 1 . 
a1(t)=-:- ~ 1 g;a1-;(t), l;;;.I 

} i=I 

ao(t)= e-'At 

Also, by conditioning on the first arrival in (O,t) we get for a1 (t) the identity 

I j 

a1(t)= {~1 g;'Ae->..<i-u>a1-;(u)du 

After integration of 5.14 and using 5.12 and 5.13, we obtain 

1-1 I 
a1 = ~ a;g1-; - 7\a1(D) 

i =O I\ 

ao= !..(1-e-w) 
'A 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

The numbers a1 are computed very efficiently by applying first 5.13 to compute ai (D) 
and next 5.15. However, the scheme 5.15 need in general not be numerically stable, 
since loss of accuracy can occur by taking successive differences. To circumvent this 
difficulty, note that 5.15 is in fact a discrete renewal equation. By applying the 
discrete renewal theorem (cf. Appendix A) it easily follows that 

where the renewal quantity m1 is recursively computed by 
j 

m1 = ~gkmJ-k , l;;;.I with m 0= I 
k =I 

(5.16) 

In relation 5.16 the number a1 is expressed as the difference of two expressions which 
are both computed in a stable way. 
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5.4. The M/G/l queue with bounded sojourn time 

In this section, we present a method to approximate the waiting time distribu

tion in the M/G/l queue with bounded sojourn time. For that purpose we use the 

batch arrival model analyzed in this chapter with a suitable choice of the batch size 

distribution. 

The M/G/l queue with bounded sojourn time is a queueing model of M/G/l 

type where arriving customers are refused if their waiting time plus service time 

exceeds a fixed amount K. Let W q be the waiting time which an arbitrary customer 

faces upon arrival and let S be the service time which this customer would like to 

receive. Then this customer is admitted to the system if W q + S.;;;K and is rejected if 

W q + S> K. In a telecommunication application, the model describes a storage buffer 

emptying at constant rate and receiving messages from a high-speed data channel. A 

message is rejected if its length plus the length of all messages in storage would 

overflow the buffer capacity K. 

The M/G/l queue with bounded sojourn time has been studied by Cohen[69] 

and Gavish and Schweitzer[77], who arrived at an analytical solution for the waiting 

time distribution in the form of an integro-differential equation. An explicit solution 

of this equation can be given for the case of an exponential service time distribution. 

For a general service distribution the equation can only be solved numerically. 

Our approach is to approximate the M/G/l queue with bounded sojourn time 

by a finite capacity Mx/D/l queue, where the whole batch is not admitted to the sys

tem if there are not sufficient waiting places for all members of the batch. Therefore, 

we approximate the service time distribution F(t) by a discrete distribution which is 

characterized by the probabilities (g;) where 

g;=F(iD)-F((i-l)D), i;;;.l 

and D is the grid size of the discretization. Then, with probability g; an arnvmg cus

tomer brings i unit packets of work into the system, where each packet has a fixed 

length D. A customer is admitted to the system if his number of packets plus the 

number of packets he sees in the system upon arrival does not exceed N with 

N =K /D. Note that the approximate model for the M/G/l queue with bounded 

sojourn time now satisfies the conditions in Example 5.1 in Section 5.1. By following 

the same procedure as in Example 5.1 we fit the above model in the framework of the 

model discussed in Section 5.1. 

After having computed the distributions (pn) and ('TTn) in the modified model 

(cf. Relation (5.6)), we can easily compute some interesting performance measures for 

the original model. Note that ('TTn) gives an approximation for the actual waiting time 

distribution of an entering customer in the original system. 'lTn is an approximation 

for the probability that an entering customer has to wait an amount of time between 

(n -1 )D and nD. Similarly, (pn) gives an approximation for the virtual waiting time 

distribution. Define for the original system 

P;d/e = the fraction of time the server is idle 

Pjoin the probability that an arbitrary customer enters the system 

Ewait = the expected waiting time of an entering customer (excluding ser

vice time). 
These performance measures are approximated by 
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P;d/e =po 
:v I 

Pjoin = ~ Pr{G<k»O}pk 
k =O 

N I 

Ewait = ~ wk(k -1h)D 
k =I 

We have computed the approximations using Equation (5.10). In Table 5.3 we 
compare for a number of values of the buffer capacity K and the offered load p=AES 
the numerical results of our method to the exact analytical results according to Gav
ish and Schweitzer[77) for several values of D, the grid size of the discretization of the 
exponential service time distribution. The mean service time is taken equal to I. It 
turns out that for rather crude discretizations the approximations are close to the 
exact results. 

In Table 5.4 we demonstrate that the quantities Pidle, Pjom and Ewait are very 
sensitive for the distribution of the service time. For several values of K and p we 
consider Erlang-3, exponential and hyperexponential ( C§ = 3) service time distribu
tions. In the results in Table 5.4 we have taken N =40. This sensitivity is intuitively 
clear by noting that , roughly said, customers with a short service requirement are 
more likely to enter the system than customers with a longer service requirement. 
When the service time distribution is hyperexponential, the majority of the customers 
has a very short service time, while in the case of an Erlang service time distribution 
the services are longer and more concentrated around the mean service time. 

P;d/e pjoin Ewait 

p= 0.8 1.0 4.0 0.8 1.0 4.0 0.8 1.0 4.0 

K=0.6 

N=20 0.9030 0.8804 0.6098 0.4379 0.4347 0.3938 0.0190 0.0235 0.0820 
N=40 0.9047 0.8824 0.6079 0.4387 0.4357 0.3954 0.0186 0.0231 0.0831 
exact 0.9066 0.8844 0.6059 0.4396 0.4367 0.3970 0.0182 0.0226 0.0840 

K=2.0 

N=20 0.5838 0.5060 0.0445 0.7943 0.7773 0.5780 0.2683 0.3306 0.9793 
N=40 0.5884 0.5095 0.0397 0.7977 0.7807 0.5694 0.2675 0.3320 1.024 
exact 0.5932 0.5131 0.0347 0.8009 0.7839 0.5594 0.2661 0.3327 1.073 

K=6.0 

N=20 0.2705 0.1643 0.9580 0.9341 0.6198 1.430 1.941 4.743 
N=40 0.2830 0.1717 0.9589 0.9341 0.5967 1.429 1.967 4.880 
exact 0.2956 0.1790 0.9599 0.9340 0.5652 1.427 1.993 5.041 

Table 5.3 The performance measures for various grid sizes D ( = K / N ). 
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P;dJe Pjoin Ewait 

p= 0.8 1.0 4.0 0.8 1.0 4.0 0.8 1.0 4.0 

K=0.6 

Er!. 0.9168 0.8976 0.6671 0.2565 0.2535 0.2164 0.0189 0.0233 0.0781 

Exp. 0.9047 0.8824 0.6079 0.4387 0.4357 0.3954 0.0186 0.0231 0.0831 

Hyp. 0.8881 0.8620 0.5474 0.5546 0.5508 0.4976 0.0212 0.0264 0.0959 

K=2.0 

Erl. 0.4652 0.3778 0.0136 0.7926 0.7567 0.4195 0.3857 0.4719 1.154 

Exp. 0.5884 0.5095 0.0397 0.7977 0.7807 0.5694 0.2675 0.3320 1.024 

Hyp. 0.6375 0.5616 0.0445 0.8547 0.8443 0.6633 0.2103 0.2666 1.013 

K=6.0 

Er!. 0.2295 0.1123 0.9698 0.9289 0.4543 1.549 2.332 5.041 

Exp. 0.2830 0.1717 0.9589 0.9341 0.5967 1.429 1.967 4.880 

Hyp. 0.4138 0.3014 0.9570 0.9482 0.6893 0.9246 1.274 4.841 

Table 5.4 The sensitivity of the performance measures for the service time distribution 
(N =40). 

5.5. Dependency of service time on waiting time in switching systems: a queueing 
analysis with aspects of overload controlt 

In this section, we use the batch arrival model defined in this chapter for a case 
study concerning a telephone switching system. We model certain aspects of customer 
behaviour in such a system and in particular we give curves for the call completion 
rate. It turns out that we have developed an approximation for a queueing system 
where the service time of a customer depends on his waiting time in the queue. Pos
ner[73] gives an exact analytical solution for the latter model, but, unfortunately, this 
solution is not suitable for computational purposes. 

Problem formulation 

A telephone switching system is a medium that connects a customer (sub
scriber) initiating a telephone call with another customer. For that purpose, a net
work of wires, exchanges and processor units is available. A call set-up is a sequence 
of actions processed by the system. First the dial tone is given to the customer, next 
digit for digit links are selected and the connection is built up piecewise and finally a 
talk phase is entered by the customers. In the mean time, control messages are travel
ling within the system, not recognizable by the customers and also actions are taken 
for the accounting of the call. 

In overload situations, i.e. when more traffic is offered to the system than it is 
dimensioned for, the behaviour of the customers very strongly affects the system per
formance. Reactions of customers can influence the system in various ways. On the 
one hand, a customer may abandon his call with a certain probability when he is 

t This section is the result of joint research with dr. Phuoc Tran Gia, University of Siegen/Stuttgart; cf. also 
Tran Gia and van Hoorn{82]. 
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confronted with large delays during the call set-up phase (e.g. waiting for dial tone, 
post dialling delay). In this case, an ineffective amount of work has been offered to 
the processor and hence the call completion rate of the system decreases. On the 
other hand, rejected customers may reattempt their call after a certain time. The 
repeated attempts will further inflate the overload. 

In this study, we determine the performance limitations of switching systems in 
overload situations, where we do not take into account repeated attempts. To meas
ure the performance of the system, we use the call completion rate, which is the 
number of successfully completed calls per unit time. 

Modelling approach 

We model the processor of a telephone switching system as a single server 
queue with an infinite waiting capacity where calls (customers) arrive according to a 
Poisson process. 

We observe a test call entering a switching system. The call sees an amount of 
work waiting for processing. Concretely this work may stand for the number of sub
calls or telephonic events buffered in the processor queue. Based on this observation 
and in order to simplify the analysis without losing essential effects, we consider the 
amount of work in the processor queue as a discrete number of phases which are 
assumed to be independent and identically distributed random variables having a dis
tribution function F(t ). 

The number of phases the test call sees upon arrival corresponds to its waiting 
time before entering service. Depending on the duration of its waiting time, the test 
call decides to bring a number of phases into the system. These phases can be inter
preted as the number of subcalls and the corresponding call handling effort the 
switching system must spend for the call attempt. From the point of view of analysis 
we can consider the decision to be taken at the arrival epoch of the call, although in 
reality it is taken at the instant the customer enters service. 

Calls with incompleted dialling or abandoned calls usually offer a small number 
of phases to the system while successful calls with completed dialling often have 
offered a larger number of phases to the system. Therefore, according to the number 
of phases chosen by a call we define the probability that it will become a bad call or a 
successful call. 

Considering all arguments discussed above, we have modelled the system as a 
single server queueing system of type Mx/G/l with state dependent batch arrivals. In 
this model the following assumptions are made: 

D Call arrivals follow a Poisson process at rate i\. 
D A call that sees k phases in the system (including the phase in service) will offer 

j phases to the system with probability g/ >. 
D A call having chosen j phases becomes a successful call (completed call) with 

the conditional completion probability cj. 

D The service time of an arbitrary phase has distribution function F(t) = Pr{S.;;;1 }. 
We define the performance measures 

Pcompl = the probability that an arbitrary call is completed successfully 
Y the fraction of calls that are completed successfully 
EL the mean number of phases in the system at an arbitrary epoch. 
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These performance measures are computed from the distribution (pn ), the steady state 
distribution of the number of phases in the system at an arbitrary epoch. 

00 00 

Pcompl = "'2,pk "'2,gjk>cj 
k =O j =O 

Y=APcompl 

00 

EL= "'2,kpk 
k =I 

Specification of cJ and g/k > 

From practical considerations, the number of service phases chosen by a call 
may vary between fixed numbers N 0 and N 1• For the probabilities cJ we have made 
the following choice, containing the parameters y and Nlim as degrees of freedom; cf. 
Figure 5.5. 

y 

N1im N1 
j~ 

Figure 5.5 The conditional completion probability. 

, Nlim~)~N1 

, otherwise 

In practical situations, the number of subcalls produced by the majority of the suc
cessful calls varies between certain limits, here represented by N lim and N 1• If the 
number of subcalls generated by a call is less than N /im, the probability for it to be 
completed successfully decreases but need not be zero. 

The batch size distribution is the factor that takes into account the dependency 
between the service time of a customer and his waiting time. When a customer sees 
upon arrival k phases in the system, his waiting time is approximately the convolu
tion of k service times. He is supposed to have a certain patience, i.e. he is willing to 
wait a reasonable time, say -r , before entering service. If his waiting time is short, he 
will choose a service time consisting of a relatively large number of phases, 
corresponding to a large number of subcalls. If his waiting time is longer than -r he 
will tend to bring a smaller number of phases into the system because he abandons 
his call sooner. The length of the patience T could be obtained by measurement in a 
real system. Here we choose -r=3N 1ES. In Figure 5.6 a typical example is given for 
the average number of phases chosen by a customer. For details on the specification 
of gJk > we refer to Tran Gia and van Hoorn[82]. 
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Figure 5.6 The mean number of phases chosen by a customer. 
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Figure 5.7 The completion probability for calls. 
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Figure 5.8 The normalized call completion rate. 
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For the numerical results, except for those in table 5.13, we have taken an 

exponential distribution of the service phases. In the next 3 figures, we have depicted 

some numerical results for the performance measures as function of the normalized 

traffic intensity p0 =AN 0ES. 

Figure 5.7 shows the completion probability for an arbitrary call. The curves 

are drawn for different values of y. It should be recalled that y represents the com

pletion probability for calls that have a relatively long waiting time and choose the 

minimum number N 0 of phases. It can be seen here that the call completion proba

bility decreases rapidly above a certain level of the offered traffic. A degradation of 
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Figure 5.9 The mean number of phases in the system. 
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the system performance is said to have occurred. This effect is shown more clearly in 
Figure 5.8. where the normalized call completion rate Y N 0ES is depicted. 

The mean number of phases in the system is shown in Figure 5.9, where 
different values of the ratio N 1 /N 0 are considered. For higher values of N 1/N 0 the 
curve can clearly be recognized as a superposition of two segments. The first segment 
of the curve corresponds to lower traffic levels where the batch size is almost always 
equal to N 1• The second segment corresponds to higher traffic intensities where the 
majority of customers chooses N 0 phases. 
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Figure 5.10 On the call completion rate in a switching system. 

In Figure 5.8 it is shown that the system performance, say the normalized call 

completion rate, decreases rapidly above a critical level of the offered load. Above this 

critical level, the queue becomes large and customers must wait a long time before 

they enter service. Then they loose patience, tend to abandon their call and as a 

result, the call completion rate decreases. 

In order to avoid this effect, the system may stop accepting all calls at a certain 

load level. The idea behind it is that if the switching system accepts fewer calls it is 

able to handle them well. As illustrated in Figure 5.10 we can save processor time 

and increase the amount of good calls if we allow the system to reject calls according 

to a scheme which will be described in the following. It should be noted here that the 

phenomenon of repeated attempts of blocked calls is not taken into account. A sim

ple but effective overload control scheme is to stop accepting calls when the number 

of phases in the systems is larger than L 1 (say). Then the capacity of the system is 

limited to L 1 + N 1 phases. 

In Figure 5.11, it can be clearly seen that for a suitable choice of L 1 the system 

performance is improved considerably. 

Table 5.12 compares the call completion rate in a system with overload control 

for different service time distributions of phases. For the given batch statistics the 

difference caused by the phase distributions is not essential. This argument justifies a 

Markovian phase modelling approach, which entails a simpler analysis and less com

puting effort. 
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Figure 5.11 The performance of the overload control scheme. 
The normalized call completion rate. 

offered Phase service time distribution 
traffic 

Po E3 M H2 
(C}=3.0) 

O.l 0.099980 0.099974 0.099949 
0.3 0.294192 0.293271 0.290380 
0.5 0.425019 0.421388 0.412192 
0.7 0.445664 0.443856 0.439294 
1.0 0.405236 0.407232 0.412044 
1.2 0.375811 0.379266 0.387623 
l.5 0.338031 0.343039 0.354784 
2.0 0.290323 0.297062 0.312029 

2.0 -Pe 

Table 5.12 The call completion rate with overload control for different service time 
distributions of phases. ( N 0 =4, N 1=8, Nlim=5, y=O.l, L 1=5N 1). 
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6. THE SPP/G/1 QUEUE: A SINGLE SERVER QUEUE WITH A SWITCHED 
POISSON PROCESS AS INPUT PROCESS 
•This sector has been published in OR spectrum (1983), 5, 207-218. 

In this chapter, we give an analysis of a non-standard queueing model. namely 
the SPP/G/l queue. The arrival process of customers is a switched Poisson process 
(SPP), i.e. the intensity of the arrival stream is alternately ,\1 and ,\2, governed by 
some random mechanism. The model is interesting since this arrival process covers 
both renewal and non-renewal processes with coefficients of variation larger than one. 
For the renewal case, the interarrival distribution is in fact hyperexponential; cf. Kuc
zura[73]. With our model, the consequence of a 'renewal assumption' can be investi
gated . In practice, one often assumes that the arrival process is renewal and fits a 
hyperexponential distribution to the interarrival time by matching the first two 
moments, provided that the coefficient of variation of the interarrival time is at least 
one. In Section 6.6 we discuss sensitivity questions with respect to the renewal 
assumption and the influence of the third moment of the interarrival time. 

A special case of the switched Poisson process is the interrupted Poisson pro
cess (IPP), which has alternately a positive and a zero intensity; cf. Kuczura[73]. In 
Heffes[73], an analysis is given for the IPP/M/c queue, which is in fact a special case 
of the Gl/M/c queue. In Yechiali and Naor[71], the queue length distribution is stu
died in a Markovian queueing model with two possible arrival rates. The model is a 
generalization of the SPP/M/l queue in that with each arrival rate a service rate is 
associated. 

In Section 6.1, we describe the model in detail and give the analysis using the 
regenerative method. The analysis presented here demonstrates the power of the 
regenerative method to investigate systematically rather complex queueing models. 
The properties of the arrival process are derived in Section 6.2. Also, in Section 6.2 
some preparatory work is done for the generating function analysis in Section 6.3. 
Section 6.4 concerns some computational aspects of the algorithms formulated in the 
Sections 6.1 and 6.5. Section 6.5 deals with the SPP/G/ 1 queue having only place for 
a finite number of customers. Finally, in Section 6.6 we present a few numerical 
results for the delay probability and the mean queue length. We investigate the sensi
tivity of these performance measures for the service time distribution, the third 
moment of the interarrival intervals and the degree of correlation between successive 
arrivals. Also, we discuss the quality of the two moment approximations for the 
delay probability and the mean waiting time given in Kramer and Langenbach
Belz[76]. 

6.1. The model and the regenerative analysis 

We consider a single server queueing system with an infinite capacity. The 
arrival process of customers is a switched Poisson process. That is, the arrival process 
is alternately in the phases 1 and 2 during exponentially distributed times with means 
1 / w1 and 1 / w 2• If the arrival process is in phase i, then independently of the phase 
process, customers arrive according to a Poisson process with intensity A; , i = 1,2. 
See Figure 6.1. To avoid trivialities we assume that w1 and w2 are strictly positive and 
that at least one arrival intensity is non-zero. The service time S of a customer has a 
general probability distribution function F(t)=Pr{S~t }. We assume that the traffic 
intensity p =A* ES is less than 1, where A.' is the average arrival rate and is given by 

A.' =(A.1w2+.\2w1)/(w1+w2) 
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Figure 6.1 The arrival rate 

t~ 

,---
' ' I 
' ' I 

We consider the non-Markovian process whose state is given by the pair (n ,i), where 
n denotes the number of customers present and i the phase (or level) of the arrival 
process, n ;;a.Q, i = 1,2 . 

0 
.\1 

G 
,\I 

G 
,\I 

---+ ---+ ---+ • • • <Ill---- <Ill---- <Ill- - - - • 

w, IT w, w1ll w2 w,lf W2 

@ <Ill- - -- G <Ill- -- - G <Ill---- • • • ---+ ---+ 
.\2 .\2 .\2 

Figure 6.2 The state transition diagram 

This process considered on suitable embedded epochs becomes Markovian. In Figure 
6.2 the state transition diagram is depicted. The straight arrows and the correspond
ing transition rates represent transitions which may occur at 'random' epochs ( i.e. at 
epochs at which an arrival occurs or the phase of the arrival process changes ) and 
the dotted arrows represent transitions at service completion epochs. As method of 
analysis for this queueing model with a two dimensional state, we use the regenerative 
method and up and down crossing arguments. We focus on the following steady state 
probabilities. For n ;;;.o, i = 1,2 let 

Pn; = lim Pr{ at epoch t the system is in state (n ,i) } 
1~00 

q11 ; = lim Pr{ the k th customer leaves behind the system in state (n ,i) upon 
k-oo 

service completion } 
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'1T11 ; = lim Pr{ the k th customer sees upon arrival the system in state (n ,i) } 
k-oc 

Using standard results from the theory of the regenerative processes (cf. Stidham[72]), 
it can easily be verified that these limits are well defined and are independent of the 
initial state. After having derived a recursion scheme for the probabilities (p11;) and 
(q11; ), we give a direct relation between ('1T11;) and (p11; ). 

We assume that at epoch 0 a customer has completed service and has left 
behind the system in state (0, I) and define the random variables 

T = the next time the system is left behind by a customer in state (0, 1) 

T 11; = the amount of time the system is in state (n ,i) in the busy cycle 
(0,TJ, n ;;;;.o, i = 1,2 

N = the number of customers served in (O,T] 

N11; = the number of service completion epochs in (O,T] at which the cus
tomer served leaves behind the system in state (n ,i ), n ;;;;.o, i = 1,2 

Note that there are other possibilities to define a busy cycle. 

In the next theorem, which can be proved using the theory of the regenerative 
processes (cf. Ross[70], Stidham[72]), we relate the above defined random variables to 
the steady state probabilities (p11;) and (q11; ). 

Theorem 6.1 

ETni ENni 
Pn; = ET , qn; = EN , n ;;;;.o , i = 1,2 

For O.,,;;,j .,,;;,n, k ,I= 1,2 we define the quantities 

AJ: = the expected amount of time during which the system is in state 
(n ,/) until the next service completion epoch, given that at epoch 0 
a service is completed and the system is left behind in state (j ,k ). 

(6.1) 

D 

In the multi-indexed quantity AN , the superscripts concern the arrival intensity and 
the subscripts the number of customers. Then, by partitioning the busy cycle (O,T] by 
means of the service completion epochs and using Wald's Theorem, it readily follows 
that 

Theorem 6.2 
n II 

ET";=~ EN11A)i + ~ EN12Ai~;, n ;;;;.1 , i = 1,2 (6.2) 
j =O j =O 

D 

By using an up and down crossing argument, we derive a second set of relations 
between the numbers (ET11;). and (EN11; ). Let S be an arbitrary subset of the state 
space, then the following property holds. 

in the busy cycle (0,T], the number of transitions out of S is equal to the 
number of transitions into S. 

We apply this property to the set of states S111 ={(0,1),(1,l), ... ,(n,1)}. Note that a 
transition from (n, 1) to (n + 1, 1) can only be caused by an arrival, while a transition 
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from (n ,I} to (n ,2) can only be caused by a switching of the arrival rate; see also Fig
ure 6.3. By th.! Poisson Lemma we have that in the busy cycle (O,T] the expected 
number of transitions from (n,I) to (n +l,I) is equal to >.1ETn 1 and the expected 
number of transitions from (k,I) to (k,2) is equal to w1ET.u, Oo;;;;ko;;;;n. Also, the 
expected number of transitions in (O,T] from (n +1,1) to (n,I) is equal to ENnt· Sum
marizing, we get 

the expected number of transitions out of the set Sn 1 in the busy cycle (O,T] 

= >-1ETn1+w1(ET01+ · · · +ETn1) 

= the expected number of transitions into the set Sn 1 in (O,T] 

= ENn1+w2(ET02+ · · · +ET11 2) 

18 8 • • • 8F8 • • • 

G 2 G 2 • • • G 2 8 • • • 

Figure 6.3 The rate out of Sn 1 equals the rate into Sn 1. 

A similar relation applies to the set Sn 2={(0,2},(l,2), ... ,(n,2)}. Hence we have the 
following 

Theorem 6.3 

n II 

A1ETn1+w1~ETkl=ENn1+w2~ETk2, n;;;;.O 
k =O k =O 

n n 

A2ETn2+w2 ~ ETk2=EN,,2+w1 ~ET kl , n ;;;;.O 
k =O k =O 

Now, we can easily obtain some useful relations which we formulate in 

Theorem 6.4 

00 "'2 ~ 
~Pn1=--=I- ~p,,2 

11=0 W1+w2 n=O 

EN=>.* ET, where>.* =(>.1w2+A2w1) / (w1 +w2). 

Pot +p02= I->.' ES 

(6.3) 

(6.4) 

D 

(6.5) 

(6.6) 

(6.7) 

Proof The first equation follows by an up and down crossing argument for the set of 
states S1={(0,l),(l,l},(2,l), ... }. S 1 is left at rate w 1 l':,~ 0p,, 1 and entered at rate 
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w2~n"°=opn 2 • Clearly these rates are equal and since the probabilities sum:up1;to1one,i 
(6.5) follows. By adding (6.3) and (6.4) and summing over n ;;;.Q, we geti 

DO 

N~:kt;') U:sh1g' :c6'.s)'uarld ''th~:';fitst"plir( ~f t>flJe&rern 6:r,· 'fr 'toll8wsJ;\hiii' 
EN'i;'ET'='1)(1!,'1l+;';('i.\f') l"' '('lJiftl.J.fJw'"'1'(;Jd;!·'X.*"1?i 'Ih l ;the' sailie''waS 1)'\/ lradinti"'/(f2)' rot' 

J . ~ I 2 , 2 I I 1 U ... ,·~ J. . I . J• J o \ . 
i';::(f21 an'1fsdmfu'ir\.1Vo~et1 h;;f;1:yw~ 1fi'rtd 1 ·UI ii.UC •;;i) . '.!: · .. ! . iii !:Li•;,. ':li 

' :.~\?/::·df?)'i rr;~;u)Jrf! j;ti i.in -r.:·-r" · ',, 
2 DO n 

ET-ET01 -ET02 = ~ ~ ~EN1k(Ap+Ap) 
k =In= lj =O 

Note that ~n"°=J (A)n1 + AJJ)=ES, j ;;;.Q, i = 1,2, whet~?'A'~ 1~0:1'1< ,1'~ f'.2.''l~Y'~fiArigi'~g:· 
theLorder 1'o'f': SU!tflrtiati(Jnstwei:ger: ET ~ET-Oi""'El'02oENES:,! •ThiS,:expressi'oll!t implies 
(6lli)JLl ;}ii ' 

Next 1.J)d 1 6dMl5fft'e':)ffi~ np~s'\ilr~l 8t>fliih~ifl1W tl1~ Th~brefu'.~1 '6.t:·· J ··6.4'.11 'This' yleltls 
the !foUowin:g1 algGrithm1 fqr ·thee'pt'0b1ab~Hties· (J'AI) an$. (q;,r); 'I 

·Jd~ ,\•'._,1 ty1;f.~!$Crf'(},-'.lf.; 

Algol!ith~;;6;S : ' 

( 11 i ''EHfi:\.a'tb'the:~~hs'fa11ff1Afj~'o1Ji,j'~>l 1, 1k\/lf<i:21)1 

2. C~rµp~te p 91, .an,<!, 1?03: u,sil}g l}t;l~ti<;>l},\(6~7). .a~g ~.el,ati,o.~ (6.2,~),, to b~ .. ~erived 
~~r~~tg/·N~~t;' 'list' '(g'.3J"~rid''{6.4f~ith' ~'~b' and il~ir/ '(6.'6), corn' rite 01 'ana q~~'.'i'.'' Ji" i\ '.!);;;;~~ Jil ... , ;;:::.'.."YY>fj 'L'·liTli. :))'ii : I /()i•IF' Hg\ p q 

L ;iuv1i~:/1AWr1 ~hM R,q;,j ,-,£~3~f;~;~ ~ii? ti~l~. rii~%!'r6~i!'.f. =~;~~h~~1iJ~~~:9,01}}f1Uff~l C?,fl,lc 
K'"(8,V1, 5Jir)',J':1,,.!i~ry,i.g,.:: v,ffott ·}:!~ 1:1;j f>/1 ,:"lfl~,:;:u~<':: :_,,,9,i\!:1 · ,,,.1 :;;r, 

4. 

II - J <:· , .. , .~.(·•.,.,, .-,! .. ':·.' " 

Pn I =A.* qn 1An~1 +A.* qnzAn~1 +A.* ~ (q;1A1~ 1 +qj2/i.A1}' ;u 

,·.'.,;',)//:~-( ~i'\ 
n-1 

\ \ i' 

_,. A 12+'' A 22+'* ~( A 12+ A 22) Pn2-l\qn1 nn l\qn2 nn l\,..::...qil j~ qj2 jn 

\.~)) \ ,f\} '·:!ff:~A-1(\;i''" : ... :--\·_<_'··i ~·· .'i-·1·· 
n -I 

A.* qn I j~li-1tit4lv)p!t,IC""W?f.n2."t2~ ('f1R1<,r;,-w._'Jj?d\ 
k =o 

n-1 

A.* qn2= -wipn 1 +(A.2+w2)p,,2 + ~ (W'ljJk2-w1pk 1) 
k =O 

::·:. ~ .). "!f.;'j :~t.;L;_,;:_" 

Return to step 3 if necessary. 
•\I 

,, 

The computational effort to compute the distributions (J'n;) and (q111 ) li~s mainly 
in step 1 and step 2. For the eva\u1,1tiop of, ~he cons.tants~;tJ: ;.).ver~f!<Ii}b,Section 6.4. 
To start the algorithm, the initial values p 01 and p 02 are required, but so faf'we have 
only one relationship betweempbi111aµd ~62;;na;melyi ,Equat·ion' ~6; 7). ;,A: second 1 rielatiorl 
is provided by a standard method in queueing theory, namely by using the generating 
functions of the state probabilities; see Section 6.3. Once we have computed (p111 ), we 
can directly find the arriving customer distributions (7T11; ), i = 1,2. 
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Theorem 6.6 

A; 
'fl'n; = ~Pn; , n ;;;;..o, i = 1,2 (6.8) 

Proof The steady state probability 'fl'11; at arrival epochs can be interpreted as the long 
run fraction of customers who find the system in state (n ,i ). By the theory of the 
regenerative processes, 'fl'n; is also equal to the expected number of customers who find 
the system in state (n ,i) in the busy cycle (O,T] divided by the total expected number 
of arrivals in (O,T]. Hence, 'fl'n; ="A; ETn; />..'ET and the theorem follows 

D 

6.2. Properties of the arrival process 

The way in which the arrival process has been introduced in the previous sec
tion does not give a clear understanding what this process really looks like. Impor
tant characteristics are its coefficient of variation and its autocorrelation coefficient, 
which contains information about the dependence between successive arrivals. 

In this section, we investigate _the switched Poisson process we introduced in 
Section 6.1. We give the stationary distribution of the interarrival time and explicit 
expressions for its coefficient of variation and its correlation coefficient. As a prepara
tion for the generating function analysis in the next section, we first focus on the pro
babilities 

af'(t) = Pr{ j customers arrive in (O,t) and the arrival process is in phase 
I at epoch t I the arrival process is in phase k at epoch 0 }, 
J ;;;;..o, k ,1=1,2. 

Note that the arrival process is Markovian since all distribution functions involved 
are exponential. By standard arguments, we get the following systems of Chapman
Kolmogorov differential equations, i = 1,2 

:t a/(t)=-("A1+w1)a/(t)+w1a/;(t)+"A1a/i:-1(t), j;;;;..O (6.9) 

:t a/i(t)=w2a/(t)-("A2+w2)a/i(t)+"A2a/---1 (t), j ;;;;..Q (6.10) 

with a".! 1(t)-o and a~1 (0)=8k1 , k,1=1,2. For Jz I o;;;;l, k,/=1,2 we define 

"' ak1 (t ,z )= ~ af'zl 
j =O 

Multiplying (6.9) and (6.10) with zk and summing over k ;;;;..Q yields for i = 1,2 

; 1 a Ii (t ,z )= -("A1(l -z )+w1)a 11 U ,z )+w1a 2; (t ,z) 

:t a 2; (t ,z )=w2a Ii (t ,z )-("A2(1-z )+w2)a 2; (t ,z) 

The solution of this system of linear differential equations is 



a;;(t,z)= () 1 ( ) { [r2(z)-(.\;(l-z)+w;)]e -ri<=lt 
r2 z --r 1 z 

-[r1(z)-(A;(l-z)+w;)]e -r2<= 11 }, i=l,2 

where 

rLZ(z )=V2{A1(1-z )+w1 +;\2(1-z )+w2 
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( 6.11) 

(6.12) 

± V(;\1(1-z )+w1 +A2(l -z )+wz}2-4[(A1(1-z )+w1)(;\2(1-z )+w2)-w1w2]} 

The functions ak1 (t ,z ), k ,I= 1,2 contain the information of the arrival process and 
will be used in Section 6-3 to derive the generating functions of (p11;) and (q11; ), i = 1,2. 
In particular, we note that aa' (t) = ak1 (t ,0). 

Next, we turn to the determination of the limiting distribution of the interar
rival time. Let T1 be the epoch of the first arrival and let T 11 + 1 be the time elapsed 
between the nth and the n + 1 th arrival, n ;;;:;;. 1. Define now 

G(t)= limPr{T11 ,,;;;t} 
ll-+00 

It is easily verified that G (t) is independent of the initial state. Let the random vari
able X(t) be the state of the arrival process at epoch t, where X(t)=i if the current 
arrival rate at epoch t is A;, i = 1,2. Further, define 

Then t11 is the epoch of the nth arrival. By conditioning on the state of the arrival 
process at epoch t and by noting that lim11 ~ 00 Pr{X(t11 - 1)= 1} = ~,;'°= 0 '1T,, 1 = 
A1w2/(A1w2+A2w1), we get 

2 

G(t )= lim ~Pr{ 1"11 ,,;;;1 I X(t 11 -1)=i} Pr{X(t,, -1)=i} (6.13) 
n--+OOi=l 

A1W2 11 12 A2W1 'I 22 
;\ A {1-ao (t)-ao (t)}+ A ;\ {1-a() (t)-a 0 (t)} 

1W2 + 2W1 1W2 + 2W1 

= 1 _ A1W2 (r2-A1)e _, 1, -(r1-A1)e -rzi 

A1w2+;\2w1 r2-r1 

A2W1 (r2-A2)e -' 1' -(r1-;\2)e -' 2' 

A1w2+A2W1 r1-r1 

where r I= r 1(0) and r2 = r2(0). Recall that aa' (t) =a kl (t ,0). Hence the distribution 
G(t) is hyperexponential with mean 1 /;\* (cf. 6.6) and squared coefficient of varia
tion C}, which is after some algebra found to be 

2_ 2w 1w2(A1 -;\2)2 
Ca -1 + 2 (6.14) 

(A1A2+A1w2 +A2w1)(w1 +w2) 

Though the function G (t) already gives some insight in the arrival process, there is 
another aspect which influences strongly the queueing process, namely the dependence 
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between successive arrivals. The autocorrelation coefficient of the sequence of interar
rival intervals measures this effect. Let 8 be defined as 

8 l. E'Tn'Tn+i-(E'Tn)2 
= 1m -----'-~-

n-oo ET,7-(E'Tn)2 

After some algebra (see below), it follows that 

O = 1'-ii\2 C}-1 
i\1i\2+i\1w2+i\2w1 2C} 

(6.15) 

Note that the only cases where the arrival process is a renewal process are the cases 
i\1i\2 =O and i\1 =i\2. 

Since we already know that (cf.(6.14)) 

I I · 2 2- C} im E.,.n =-.-and hm E.,.n -(E.,.n) - -;-2 , 
n-oo i\ n-oo i\ 

the difficult element in the computation of 8 remains to compute Jim,, _ 00 ET,, .,.,, +I· 
Now, let n be fixed, then 

E'Tn 'Tn +I= ViE(Tn +'Tn + 1)2- 1/2(E'T11 ) 2- Y2(E'Tn + 1)2 

and hence it is sufficient to focus on E(Tn +T,,+ 1)2. We get 
2 

Pr{ 'Tn +.,.,, + 1 ~x} =~Pr{ 'T11 +.,.n+1 ~x I X(t,, )=i }Pr{X(t,, )=i} 
i=I 

2 

=~Pr{ in the interval (O,x) at least two arrivals occur I X(O) = i }Pr{X(t,,) = i} 
i=I 

2 

= ~ { 1-ab1 (t )-ab2 (t )--a~ 1 (t )-a;12(t) }Pr{X(t,, )=i} 
i=I 

Using 

at'(t)=-aa ak1(t,z)I and limPr{X(tn)=I}= i\ i\iw~ , 
Z z =O n-"" 1w2+ 2W1 

it is only a matter of straightforward but tedious algebra to compute 
limn_00 E('Tn +Tn+ 1)2 and next to compute 8. 

6.3. The generating functions and the mean queue length 

After the preparatory work in Section 6.2, we derive in this section the generat
ing functions of the probabilities (p,,;) and (qn; ), i = 1,2. From these functions we 
deduce a second relation between the probabilities p 01 and p 02 , beside Relation (6.7). 
We conclude this section with a formula for ELq, the mean number of customers in 
the queue at an arbitrary epoch (excluding the customer in service). 

Before actually determining the generating functions we give a representation of 
the quantities Af;! appearing in the basic Relation (6.2). 
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Lemma 6.7 For 1.;;;1.;;;n,k,I=1,2 

Af,! = [ (1- F(t ))a:l_j(t) dt (6.16) 

Proof First, remark that for 1.;;;1 .;;;n, A f,! only depends on j and n through the 

difference n - 1. Secondly, note that 
co 

Af,!= [Ex(t)dt 

(letting 1 ,n ,k ,l fixed) where under the assumption that at epoch 0 a service starts 

while the system is in state U ,k ), x(t) = 1 if at epoch t this service is still in progress 

and the system is in state (n ,/). Otherwise, x(t)=O. Now (6.16) follows, since 

Ex(t)=Pr{x(t)= 1} =(1-F(t))a;l_j(t) 

0 

The quantities A a~ are computed in an other way than the AN for 1~1. A~~ 

does not satisfy ( 6.16), since in state (O,k) first an arrival should occur before a service 

can start. If the system is in state (0,1), then with probability A. 1/(A.1+w1) an arrival 

occurs before a switching to the arrival rate A.2. Hence, for k = 1,2 

A lk= _A._,_A lk + _w_,_A 2k 
On A.,+w, In A.,+w, On 

(6.17) 

and 

(6.18) 

Define for I z I .;;; 1 the generating functions 
co co 

aN (z )= °'2:,AJ,: zn -j and a(J1(z )= °'2:,A a~ z" -I 
n=j 11 =I 

It readily follows. that 
co 

ak1(z)= [(1-F(t))ak1(t,z)dt, k,l=l,2 (6.19) 

lk( A1(A.2+w2)a1k(z)+A.2w1a 2k(z) 
a0 z ) = , k = I ,2 

A.1A.2+A.1w2+A.2w1 
(6.20) 

ik( A.1w2a1k (z )+A.2(A1 +w,)a2k (z) 
a0 z)= , k=l,2 

A1A.2+A.1w2+A2W1 
(6.21) 

Next, it is straightforward to derive a system of four equations for the generating 

functions of (pn 1), (pni), (qn 1) and (qni). Define for I z I.;;; 1, i = 1,2 the generating 

functions 
00 00 

P1(z)= °'2:,p.1zn and Q1(z)= °'2:,qn1z" 
n =O n =O 

These generating functions essentially follow from the Equations (6.2), (6.3) and (6.4). 

By rewriting (6.2), (6.3) and (6.4) in terms of the probabilities (p.1 ) and (qn1) using 



82 

(6.1) and (6.6) and next by taking generating functions, we obtain 
2 

Pk(z)-pok =~{A.' qo;zal/Cz)+A.* (Q;(z)-qo;)aik (z)}, k = 1,2 
i=I 

W2 • W1 
A.2P2(z)+ l-zP2(z)=A. Q1(z)+ l-zP,(z) 

After a cumbersome but straightforward derivation, we get from this system of equa
tions 

where 

{ P 1(z )+ P 2(z) }g(z )=(po1 +po2)((1-z )g(z )-z 2) 

00 

+ zp02 [(a 11 (t ,z )-a 21 (t ,z )) dF(t) 

00 00 

g(z)= ~[e -rz<z)r dF(t)-z )([e -r,(z)r dF(t)-z) 
1-z 

(6.22) 

(6.23) 

To find a second relation between p 01 and p 02 we proceed as follows. The func
tion P 1(z)+P2(z) is regular for I= I .;;;l since it is a probability generating function. 
Hence, a zero of g(z) is also a zero of the right hand side of (6.22). If we can find a 
zero, say z 0, of g(z) with l=ol .;;;l, then (6.22) supplies a second equation for p 01 and 
p 02 beside (6.7). Now, consider the function g 1(z) defined by 

00 

g 1(z)= e 1 dF(t)-z l -r (z)r 

Since g,(0)>0 and g 1(1)<0, g 1(z) has a zero z0 with 0<z0<1. Hence, zo is also a 
zero of g(z ). Substituting z0 in (6.22) and after some rewriting, we obtain 

{r1(zo)-(A.2(l -zo)+w1 +w2) }po1 + {r1(zo)-(A.1(l - zo) +w1 + w2)}po2 =O (6.24) 

It can be easily verified that the Equations (6.7) and (6.24) are independent, unless 
A.1 =A.2 or w1w2 =O. We have excluded the trivial case w1w2 =O and if A. 1 =A.2, the arrival 
process reduces to an ordinary Poisson process. 

Remark It is not necessary to prove that g(z) has a unique root for I z I .;;; 1, since we 
already know the existence and unicity of the distribution (p,,; ), i = 1,2. 

D 
The actual computation of z0 may be done using a numerical standard procedure. 

Finally, from (6.22) we obtain by differentiation a formula for ELq, the mean 
number of customers in the queue (excluding any customer in service) 
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EL= p (C 2-l+p(C 2+1)) 
q 2(1-p) a S 

C0
2- l A1A2ES ;:\' qo1 +qo2 

+ 2(1-p) Wt+w2 + wt+w2 ( 1-p -l) (6.25) 

where C0
2 is given in Section 6.2 and C} is the squared coefficient of variation of the 

service time. The first term in (6.25) is equal to the bound given in Marshall[68] (cf. 
also Whitt[82]) for the mean queue length in a GI/G/l queue with a DFR (decreas
ing failure rate) interarrival distribution. The mean waiting time follows by using 
Little's Law. 

6.4. The computation of the quantities AN 

The first step in Algorithm 6.5 involves the computation of the quantities AN . 
In this section, we focus on an exponential service distribution, to be considered as a 
representant of the class of phase type service distributions. The computational 
scheme we obtain can easily be generalized to cover more interesting phase type dis
tributions; cf. Chapter 2.4. For deterministic service times, a computation scheme can 
be derived from the differential Equations (6.9) and (6.10). We omit details. 

Let F(t)=l-e-µi and assume that at epoch 0 the system is in state (n,l). 
Then, a state transition occurs by an arrival, a service completion or a switch of the 
arrival rate. By the memoryless property of the exponential distribution, the first 
transition from state (n,l) is caused by an arrival with probability At/(At+w1+µ.) 
and by a switching of the arrival rate with probability Wt/(A1+w1+µ.). Hence, we 
have for l .,;;;;,j .,;;;;,n, k = 1,2 

A lk- At Atk Wt A2k 
Jn - , + + J+t,n +, + + Jn 1't Wt J.I. "t Wt J.I. 

A .2k = w2 A tk + A2 A .2k 
Jn A2+w2+µ. Jn A2+w2+µ. J+t,n 

and 

Atk= l3tk + Wt A2k 
nn At+Wt+µ. At+Wt+µ. nn 

A2k= l32k + Wz A" 
nn A2+w2+µ. A2+w2+µ. nn 

where l3u=O if i'i::J and l3;J=l if i=j. For fixed n and k, we solve AJ~k and Ai~k 
recursively for j =n ,n -1, ... ,1 starting with An~k and An~k. As we have remarked 
before, AN depends on j and n only through the difference n - j. In particular, 
AN= A t'.n -J + t for l .,;;;;,j .,;;;;,n, k ,I= 1,2 and hence it is sufficient to compute A tf,, n ~ 1, 
k ,I= 1,2. The numbers Ad,} and AJ; follow from (6.17) and (6.18). 

6.5. The finite capacity case 

In this section we discuss the SPP/G/l queue with a finite capacity K. There 
are only K - 1 waiting places and customers who see upon arrival K customers in the 
system are lost and do not influence the system. 

With some minor modifications, the analysis of the infinite capacity model car
ries over to the finite model. Since obviously Pn; = 0 for n > K, i = 1,2 and q., = 0 for 
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n ~ K, i = I ,2, Equation ( 6.2) holds now only for l.;;;; n ,,;;;;; K, i = I ,2 and the Equations 
(6.3) and (6.4) only hold for O.;;;;n .;;;;K. The average arrival rate of entering customers 
is not longer equal to ~:, hence in (6.6) and (6.7) we replace A.* by A'. It will appear 
that we do not need A.' explicitly. The quantity p=A.* ES is now interpreted as the 
offered traffic, whereas A.'ES is the carried traffic. Note that Lemma 6.7 remains valid 
for J.;;;;j,,;;;;n .;;;;K-1, k,l = 1,2 but that for n =K, k ,l = 1,2 

00 

AJ'k = j (I - F(t )) 2. a:'..1(t) dt 
0 n =K 

(6.26) 

Indeed, to have K customers present at epoch t at least K - j customers should 
arrive in (O,t ), including customers who will be blocked. From (6.26), we derive for 
J.;;;;j .;;;;K, k ,l = 1,2 

K-1 
A J'k = ci1 (I)- 2. A J',! 

n =j 

and similarly for k ,l = I ,2 
K-1 

A tk =at'(l)- 2, A~~ 
n =j 

(6.27) 

(6.28) 

Inserting (6.27) and (6.28) in (6.2) (with obviously ENK 1 = ENK2 =O) yields after some 
algebra for i = 1,2 

2 K-1 K-1 
ETK; = 2, {ENokat;(l)+ 2, ENnkak;(I)- 2, ETn;} (6.29) 

k=I n=I 11=1 

Below we present the modified version of Algorithm 6.5 for the finite capacity 
SPP/G/I queue. Since A.' is not a priori known, we compute the numbers A.'q,,; 
instead of qn;. 

Algorithm 6.8 

I. 

2. 

Evaluate the constants AJ{, O.;;;;n .;;;;K -1, k ,l = 1,2 

Compute po1 and p02 and from these A.'q 01 and A'q02 using (6.3) and (6.4), 
n: =I. 

3. Assume thatp 0;, ... ,p11 -1.;, A.'q0;, ... ,A.'qn-1.i have been computed, solve the 
system of 4 equations as in Algorithm 6.5 with A.' replaced by A' for p,, 1, Pni. 

A'qnl and A.'qn2· 

4. n: =n + 1, return to step 3 if n <K -1. 

5. Compute PK 1 and PK 2 from (6.29) 

An unanswered question in Algorithm 6.8 is how to compute the initial values 
p 01 and p 02. The generating function technique, which provided a second equation for 
Po1 and po2 in the infinite capacity model, does not work here any more. Moreover, 
since A.' is not a priori known we cannot use an analogon of Equation (6.7). To over
come this difficulty, we propose a numerical procedure to identify p 01 and p 02. This 
numerical method was first applied to similar queueing models by Herzog, Woo and 
Chandy[75]. 
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Step 2 in Algorithm 6.8 

2a. Apply Algorithm 6.8 to compute (Xn;) instead of (pn;) and use the initial values 
Xo1=1 , Xo2=0. Compute x.1 =l:.:=oXn i. x.2=l:.:=0Xn2· 

2b. Analogously, compute (Yn;) with initial values y 01 =0,y 02 =1. Compute 
J.1 ="i:.:=oYn J, J.2="i:.:=0Jn2· 

2c. Solve poi and p 02 from the following system of linear equations. 

w1(po1X.1 +po'J)'.1)=w2(po1X.2 +po'],)'.2) 

Po1(x.1 + x.2)+po2(Y.1+y.2)=1 

The first equation is in fact the balance e'luation w1l:.:=0Pn 1 =w2l:.:=0Pn2 and 
the second is the normalization equation l:.n =O (pn 1 + Pn 2) = 1. 

D 

To see why the above procedure works, note that Algorithm 6.8 is linear in 
(pn; ). Hence, Pn; can be written as a linear combination of the initial values p 01 and 
po2. In the steps 2a and 2b, we compute precisely the coefficients Xn; and Jn; in Pn 1 
and Pn 2 of poi and p 02 respectively. Next, in step 2c, the balance relation and the nor
malization equation provide 2 equations for poi and p 02. Obviously, Pn; is found to be 
Pni =po1Xn; +po'J)'ni· Finally, note that the carried traffic equals X'ES= 1-po1-po2 by 
Little's formula. 

In the next section we discuss our numerical experience with the Algorithms 6.5 
and 6.8. 

6.6. Numerical results 

The Algorithms 6.5 and 6.8 are not numerically stable for all values of the 
parameters Ai. X2, w1 and w2. The instability is introduced by the use of the Equa
tions (6.3) and (6.4) in the algorithms. Unfortunately, we have not yet obtained a 
clear insight when the algorithm can be used safely. 

In this section we present numerical results for the delay probability 

Ilw = l-?To1-?To2 

and the mean queue length ELq as function of the traffic intensity. We consider 
deterministic service times (C}=O) and hyperexponential service times (C};.ol, 

-,.., -11i1 
F(t)=l-p1e -p 2e withp 1/µ1=p 2/µ2). We have normalized the mean ser-
vice time to one. For sake of convenience we write the limiting distribution of the 
interarrival time G(t) (cf.(6.13)) as 

In the Figures 6.4-6.7 the arrival process is a renewal process, i.e. X2=0. For 
fixed C0

2 and p=X* ES, together with the additional condition u 1 / r 1 =u2/ r 2 ,we find 
all parameters of the arrival process as follows 

x = 2Ca2 x· c}-1 x· x· 
1 C}+ 1 ' "' 1 = C}(C}+ l) ' "'2= C} 

Note that Ilw is decreasing in C} for fixed C} and increasing in C} for fixed C}, 
whereas ELq is increasing in both cases. 
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In the Figures 6.8, 6.10 and the Tables 6.9 and 6.11 we show the consequence 
of a renewal assumption concerning the arrival process. We have fixed C§ and C} 
and have taken the autocorrelation coefficient 8 as parameter. To specify the parame
ters of the arrival process we use again the condition u 1 /r 1 = u 2 / r 2 . The parame
ters A1 , A2 , w1 and w2 are displayed below the Tables 6.9 and 6.11. Beside our 
(exact) results we show the approximate results for the Gl/G/l queue according to 
Kramer and Langenbach-Belz[76] given by (for C};;a. l) 

and 

2 
Il (KLB)= +(C 2-l) 4p(l-p) 

w p a Ca2+p2(4C}+C§) 

c 2-1 
-(1-p)-a __ 

2 c2+4c2 
EL (KLB)= P (C 2+C 2)e a s 

q 2(1-p) a S 

These approximations are designed for the renewal case 8 = 0 and they indeed perform 
well. Note that in particular ELq is very sensitive for 8. 

In the Figures 6.12, 6.14 and the Tables 6.13 and 6.15 we investigate the 
influence of the higher moments of the interarrival time on Il w and ELq. As param
eter we have taken k defined as 

k= u1/r1 
u, / r1 +u2/ r2 

Further we have fixed C§, C02 and A2 =0. The parameters Ai, A2, w1 and w2 are given 
below the Tables 6.13 and 6.15. The limiting case k =O corresponds to a batch Pois
son process as arrival process with a geometric batch size distribution and the case 
k =I corresponds to Poisson input. This can clearly be recognized in the Figures 6.12 
and 6.14. Note that Ilw is very sensitive fork. 
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PI o 0.00 0.05 0.10 0.15 0.20 0.25 KLB 
0.10 0.0375 0.0380 0.0385 0.0391 0.0398 0.0405 0.0326 
0.20 0.1657 0.1692 0.1734 0.1788 0.1856 0.1950 0.1479 
0.30 0.4204 0.4318 0.4466 0.4669 0.4967 0.5462 0.3830 
0.40 0.8629 0.8903 0.9278 0.9829 1.0736 1.2628 0.7998 
0.50 1.6049 1.6616 1.7422 1.8679 2.0970 2.7036 1.5099 
0.60 2.8696 2.9789 3.1395 3.4013 3.9193 5.6269 2.7365 
0.70 5.1782 5.3867 5.7002 6.2298 7.3430 11.660 5.0004 
0.80 10.093 10.517 11.164 12.285 14.743 25.249. 9.8639 
0.90 25.428 26.524 28.223 31.216 37.953 68.229 25.140 
0.95 56.534 58.996 62.829 69.627 85.062 155.41 56.213 
0.99 306.42 319.85 340.83 378.18 463.47 855.17 306.07 

f..1/P 1.3846154 1.4172254 1.4537643 1.4945814 1.5399754 1.5901673 
/..zip 0.0000000 0.0781592 0.1523895 0.2223416 0.2877169 0.3482943 

w1/P 0.1709402 0.1572277 0.1373266 0.1100458 0.0742993 0.0292445 

W2/ p 0.4444444 0.3473876 0.2565196 0.1730312 0.0980084 0.0322939 

Table 6.9 Sensitivity of ELq in the case of correlation between successive arrivals 
(C}=4.0,C}=2.25). 

P I o 0.00 0.05 0.15 0.20 0.30 0.35 KLB 
0.10 0.0095 0.0095 0.0095 0.0096 0.0096 0.0097 0.0113 
0.20 0.0459 0.0463 0.0472 0.0476 0.0486 0.0491 0.0549 
0.30 0.1302 0.1324 0.1373 0.1402 0.1467 0.1506 0.1521 
0.40 0.3051 0.3143 0.3371 0.3516 0.3907 0.4188 0.3401 
0.50 0.6596 0.6932 0.7865 0.8552 1.1037 1.4033 0.6873 
0.60 1.3720 1.4755 1.7948 2.0662 3.4515 7.3393 1.3335 
0.70 2.8061 3.0735 3.9442 4.7343 9.3339 25.075 2.6085 
0.80 5.9639 6.6020 8.7162 10.669 22.324 62.987 5.5085 
0.90 15.830 17.616 23.560 29.075 62.132 177.78 15.029 
0.95 35.775 39.866 53.499 66.154 142.06 407.70 34.771 
0.99 195.73 218.29 293.45 363.25 782.01 2247.7 194.56 

f..1/P 1.6000000 1.6204201 1.6638367 1.6868661 1.7356288 1.7613781 

/..zip 0.0000000 0.0329133 0.0961633 0.1264673 0.1843712 0.2119553 

w1/P 0.1500000 0.1354822 0.1016288 0.0821681 0.0379372 0.0131039 

w2/P 0.2500000 0.2111844 0.1383712 0.1044986 0.0420628 0.0135628 

Table 6.11 Sensitivity of EL" m the case of correlation between successive arrivals 
(C}=O.O,C}=4.0). 
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PI k 0.01 0.25 0.50 0.75 0.90 0.99 KLB 
0.10 0.0845 0.0444 0.0375 0.0331 0.0303 0.0281 0.0326 
0.20 0.2670 0.1872 0.1657 0.1491 0.1370 0.1265 0.1479 
0.30 0.5744 0.4607 0.4204 0.3844 0.3548 0.3258 0.3830 
0.40 1.0681 0.9253 0.8629 0.8005 0.7419 0.6772 0.7998 
0.50 1.8596 1.6916 1.6049 1.5082 1.4053 1.2735 1.5099 
0.60 3.1720 2.9823 2.8696 2.7307 2.5615 2.3020 2.7365 
0.70 5.5261 5.3177 5.1782 4.9889 4.7231 4.2060 5.0004 
0.80 10.484 10.260 10.093 9.8459 9.4417 8.3431 9.8639 
0.90 25.859 25.621 25.428 25.115 24.518 21.765 25.140 
0.95 56.984 56.740 56.534 56.187 55.469 50.437 56.213 
0.99 306.88 306.63 306.42 306.04 305.22 295.79 306.07 
A.,/ p 16.1100473 1.7757869 1.3846154 1.1906825 1.0852147 1.0097901 

A.zip 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

w,/p 22.6753926 0.5422681 0.1709402 0.0488591 0.0107062 0.0001519 

W2/ p 1.5006831· 0.6989910 0.4444444 0.2562329 0.1256374 0.0155123 

Table 6.13 Sensitivity of EL" for the third moment of the interarrival time 
(C.f=4.0,C}=2.25). 

PI k 0.01 0.25 0.50 0.75 0.90 0.99 KLB 
0.10 0.1472 0.0155 0.0095 0.0071 0.0062 0.0056 0.0113 
0.20 0.3749 0.0818 0.0459 0.0333 0.0281 0.0253 0.0549 
0.30 0.6821 0.2461 0.1302 0.0893 0.0736 0.0652 0.1521 
0.40 1.1082 0.5703 0.3051 0.1965 0.1562 0.1356 0.3401 
0.50 1.7249 1.1250 0.6596 0.3995 0.3027 0.2550 0.6873 
0.60 2.6749 2.0388 1.3720 0.8083 0.5725 0.4613 1.3335 
0.70 4.2916 3.6337 2.8061 1.7392 1.1279 0.8442 2.6085 
0.80 7.5749 6.9035 5.9639 4.2706 2.5904 1.6820 5.5085 
0.90 17.525 16.845 15.830 13.601 9.3665 4.4786 15.029 
0.95 37.500 36.817 35.775 33.351 27.543 11.055 34.771 
0.99 197.48 196.79 195.73 193.19 186.41 112.84 194.56 

A.,/ p 37.1136678 2.4278775 1.6000000 1.2521225 1.0983154 1.0099685 

A.zip 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

w,/p 23.4270747 0.5598400 0.1500000 0.0338443 0.0058671 0.0000656 

w2/ p 0.6487038 0.3920784 0.2500000 0.1342374 0.0596765 0.0065801 

Table 6.15 Sensitivity of EL" for the third moment of the interarrival time 
(C§=O.O,C}=4.0). 
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Appendix A 

The Poisson Lemma 

In this monograph we shall frequently use Poisson processes as components of 
the queueuing models to be analyzed. In the Chapters 1 and 3 we consider a Poisson 
arrival process of customers with uniform rate A., whereas in the Chapters 2 and 4 the 
arrival intensity varies with the state of the system. That is, the intensity is A.1 when j 
customers are present. The batch arrival process studied in Chapter 5 is a compound 
Poisson process. Batches of customers arrive in a Poisson stream with uniform rate A. 
and the batch size distribution is state dependent. Finally, in Chapter 6 a so called 
switched Poisson process is introduced to describe the arrival process. Here the 
arrival rate is alternately A. 1 and A.2 governed by some random mechanism, which is 
independent of the number of customers in the system. Note that all the above men
tioned arrival processes are Markovian of nature. 

One crucial step in the analysis of the queueing models defined in these 
chapters is due to a property of Poisson processes. We derive below the 'Poisson 
Lemma' which states this property. To prove the Poisson Lemma, we copy the 
derivation given in Wolff[82] with only some small modifications. Incidentally, the 
Poisson Lemma is the crucial step in Wolff's proof of 'Poisson arrivals see time aver
ages' and is somewhat obscurely hidden in his paper. 

Let N={N(t), t~O} be a stochastic process and A={A(t), t~O} be a Pois
son process at rate A., both defined on some probability space (Q , F , P ). N(t) 
represents the status of a system at t ~O and A an arrival process of customers to the 
system. For example, if N(t) is the number of customers in the system at epoch t, it 
will increase with unit jumps at customer arrival epochs. In general, we let N(t) take 
on values in an arbitrary measurable space and the interaction between A and N is 
unspecified. 

For an arbitrary set B in the outcome space of N (called the state space) such 
that {N(t) E B} is measurable for every t ~O. define 

U(t)= {I , if N(t)~B 
0 , otherwise 

Y(t)= jU(s)dA(s) 
0 

We assume that the sample paths of U are left continuous and have right hand limits 
with probability one and that (w,t) EQ X [O,oo ). With these definitions Y(t) is the 
number of arrivals in the interval [O,t] while the process N is in state B. 

Note that with probability one U has only a finite number of discontinuities on 
any finite interval. Hence, for each w in a set that has probability one, Y(t) can be 
approximated arbitrarily closely by a function of the form 

11-l 

Y11(t)= LU( ~){A«k +l)t )-A(~)} (A.I) 
k =ll n n n 

for sufficienly large n. Although we did not specify the interaction between A and N, 
these processes are typically dependent, especially in a queueing context. However, 
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we assume that the system has no anticipation, i.e. we do not want the future incre
ments of A to depend on the past of U. We make the 

Lack of Anticipation Assumption A.l 

For each t ;;.o { A(t + u )-A(t) , u ;;.o} and {U(s) , Q,;;;;s ,;;;;t} are independent. 

We now give the lemma that is of crucial interest for this monograph. 

The Poisson Lemma A.2 

Under the lack of anticipation assumption 

EY(t) =A.E J U(s) ds. for any t ;;.O 
0 

D 

(A.2) 

i.e. on any finite interval [O,t ], the expected number of arrivals who find the system in 
state B is equal to the arrival rate times the expected length of time the system stays 
in state B during [O,t ). 

Proof Note that E{A«k + l)t) -A(~)} =A.t / n since A is a Poisson process. The 
n n 

use of the lack of anticipation assumption in Equation (A. I) implies 
n -I 

EY11 (t )=A.E ~ _t__U( ~) 
k =On II 

Now, we let n ~oo and apply the dominated convergence theorem (U(kt / n ),;;;; I) 

EY(t )= }~rr;, EY,, (t )=A.E [U(s )ds 

D 
Remark A.3 The assumptions made to prove the Poisson Lemma are rather general. 
Notably, the interaction between the processes A and N remained unspecified. There
fore the Poisson Lemma can be applied in more situations than a first glance at the 
conditions of the lemma suggests, and in particular the lemma can be applied in situa
tions seemingly not satisfying these assumptions. To illustrate this we consider the 
following 

D 

Example A.4 

Let N, A and B be defined as in the problem formulation of this section and 
define an 'interrupted' Poisson process A'(t) by 

A'(t) is a Poisson process at rate A.>0 if N(t) E B 

A'(t) is a Poisson process at rate 0 if N(t) tJ_ B ( if N(t) tJ_ B then A'(t) pro-
duces no arrivals ) 

We compare the following two systems. The first system is described by the triple 
(N,A.B) with the specification that arriving customers finding N(t) E B enter the sys
tem and otherwise are lost. The second system is described by the triple (N,A',B) 
with the specification that all arrivals of A' enter the system. Obviously, both systems 
behave identically, though an outside observer sees the difference. Indeed, in the first 
system blocking may occur, in the second not. Hence, 
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EY'(t)=EY(t), 

where Y'(t )= J U(s )dA'(s ). Note that A'(t) satisfies the lack of anticipation assump
o 

tion. 
0 

Some results from renewal theory 

Below we review some results from renewal theory. For more details see e.g. 
Ross[70] and Feller(66,68]. 

Let {X11 , n ~ l} be a sequence of nonnegative, independent and identically 
distributed random variables, distributed as a random variable X with distribution 
function F(x)=Pr{X,.;;;x}. To avoid trivialities we assume that F(O)<l and EX<oo. 
Let 

II 

S0 =0, S11 =~X;, n~I anddefine N(t)=sup{n:S11 ,.;;;t} 
i=I 

It follows from the strong law of large numbers that S11 / n ~EX with probability 
one. Hence, S11 ,.;;;r only finitely often and so N(t )< oo with probability one. The pro
cess {N(t), t ~O} is said to be a renewal process. We say that a renewal occurs at t 
if S11 =t for some n. A particular important renewal process is the well known Pois
son process; cf. Ross[70]. Define the renewal function M (t) by 

M(t)=EN(t) 

i.e. M (t) is the expected number of renewals in (O,t ]. The following theorems are well 
known; cf. Feller[66] and Ross[70]. 

Theorem A.5 

"' M(t)= ~F"*(t) 
11=) 

where F"' (t) is the n -fold convolution of F with itself. Further, 

M(x)=F(x)+ J M(x -y)dF(y), y ~O 
0 

Theorem A.6 If g(t) satisfies the renewal-type equation 

g(t)=h(t)+ [g(t-x)dF(x) 

where h (t) is a given function, which is bounded on finite intervals, then 

g(t)=h(t)+ J h(t -x)dM(x) 
0 

0 

0 
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Theorem A.7 (Key Renewal Theorem) 
If h (t) is directly Riemann integrable and X is non lattice (i.e. there exists no number 
d>O with ~n""=oPr{X=nd}=I), then 

t oc 

}~~[ h(t -x)dM(x )= E~ [ h(t)dt 

D 
We refer to Feller[68] for the discrete version of Theorem A.7 when the random vari
able X is lattice. 

Theorem A.8 Suppose (/,, ).~ 1 is a discrete probability distribution. Let the renewal 
quantities m. be defined .by 

n-1 

m,, =f,, + L m;fn-;, n ;;.o 
i=O 

and let (g. )n°"=o satisfy the discrete renewal equations 
n-1 

gn =hn + L g;f,, -; , n ;;.o 
i=O 

where (h.) is a sequence of finite numbers, then 
11-I 

g. =hn + L h;mn-i 
i=O 

Regenerative processes 

Consider a stochastic process {X(t), t ;;.O} with state space {O, 1,2, ... } having 
the property that there exist time points at which the process (probabilistically) res
tarts itself. That is, suppose that with probability one there exist a time T 1 such that 
the continuation of the process beyond T1 is a probabilistic replica of the whole pro
cess starting at 0. Note that this property implies the existence of further times 
T2,T3, ••• having the same property as T1• Such a stochastic process is known as a 
regenerative process; see e.g. Ross[70], Stidham[72]. It follows that {Ti,T2, ••. } forms a 
renewal process and we say that a cycle is completed every time a renewal occurs. 
Theorem A.9 If T1 has an absolutely continuous component and ET1 < oo, then for all 
j ;;.O 

lim Pr{X(t )= . } = E{ amount of time in state j during one cycle } 
r~oc 1 E{ length of one cycle } 

D 
Theorem A.10 (Wald's equation) 

If {Xn , n ;;.1} is a sequence of independent and identically distributed random 
variables, distributed as a random variable X with EX<oo and if N is a stopping time 
for Xi,X2, ••• , such that EN< oo, then 

N 

ELX;=ENEX1 
i=l 

N is a stopping time if the event {N = n } is independent of X,, + i.X,, + 2, .... n ;;. J. 
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Appendix B 

Appendix B Some numerical auxiliary routines 

In this appendix, we present several numerical auxiliary routines we have used 
to obtain our numerical results. These routines are easy to implement and we recom
mend to use them for the range of applications covered in this monograph. Clearly. 
our recommendation does not hold beyond the scope of this monograph. 

Two quadrature procedures 

In numerical analysis, various procedures are available to compute the integral 
of a known function over a finite or infinite interval. Below we give details of two so
called 'quadrature rules of Gauss type', which are particularly suited for the evalua
tion of the integrals we are interested in. 

Let f (x) and w (x) be functions defined on the interval [a ,h ]. A Gauss quadra
ture rule of order n has the following form 

ff(x)w(x)dx = .±wJ(x1 )+E,,(j".w) 
a /::::-I 

(B.0) 

where x 1 • 1.;;;n are the zeros of the n '" orthonormal polynomial associated with 
w (x) and w1 , J .;;;j .;;;n are appropriately chosen weights such that £,, (l .w )=0 if f 
is a polynomial of degree less than 2n. We refer to Davis and Rabinovitz[67] for the 
theory behind these quadrature rules and for the determination of the orthonormal 
polynomials and the associated weights. The abscissae and weights. given in the 
Table B.I have been computed using a numerical procedure from the Numal library: 
cf. Hemker[8 I]. By neglecting the error term £,, (l ,w) we obtain an approximate 
integration formula for the function f (x )w(x) which is easy to implement. If f (x) is 
smooth enough. the error incurred by neglecting £,, (f .w) is very small. 

Gauss Laguerre quadrature 

For the special choice w(x )=e 1 • a =O and h = x. we obtain the Gaus~ 
Laguerre quadrature rule. In Table B. I. we have displayed the abscissae .\·, and the 
numbers ln(tt·1 ) for j = l, ... ,11 and n =64. Since for given j the situation may occur 
that w1 is very small while f (x1 ) is very large. it is better to rewrite (B.0) in the fol
lowing form in order to prevent computer overtlow. 

'-

fl<x )e 1 dx~.±exp{ln(1r 1 )+1n(l(x 1 ))) 
ll /· I 

(8.1) 

Using the numbers of Table B. I. the integration rule B. I is exact for polynomial func
tions f (x) of degree up to 127. 
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Gauss-Laguerre weights Gauss-Legendre weights 

n x,, ln(w11 ) x" w" 
I 2.3480957917134 102 -2.3182437850894 I 02 4.8782485366824 10- 1 4.8690957009140 10- 2 

2 2.1803185193534 102 -2.1534789782750 I 02 4.6350343910606 lO I 4.8575467441507 10- 2 

3 2.0467202848507 102 -2.0216260196083 102 4.3926859035193 10- I 4.8344762234803 lO -2 

4 1.9315113603708 102 -1.9076805878736 102 4.1517778978800 10-I 4. 7999388596462 10- 2 

5 1.8285820469144 102 -1.8057598116541 102 3.9128817812998 10- 1 4. 7540165714832 10- 2 

6 1.7347494683646 102 -1.7127779920295 102 3.6765641889560 10- I 4.6968182816212 10- 2 

7 1.6480860265513 102 -1.6268582454498 102 3.4433856400488 10- 1 4.6284796581316 lO - 2 

8 1.5673107513271 102 -1.5467494840814 I 02 3.2138992083114 10·- I 4.5491627927418 10- 2 

9 1.4915166590003 102 -1.4715638562595 102 2.9886492101798 IW 1 4.4590558163756 I 0 2 

10 1.4200312148997 102 -1.4006418445125 102 2.7681699137324 10- I 4.3583724529325 10- 2 

II 1.3523378794950 102 -1.3334761898845 102 2.5529842714645 10- 1 4.2473515123650 10- 2 

12 1.2880287876921 102 -1.2696658953300 I 02 2.3436026799003 10- I 4.1262563242624 10- 2 

13 1.2267746026857 102 -1.2088868651852 I 02 3.4747913212030 10- 4 1.7832807217413 10- 3 

14 1.1683044505128 102 -1.1508723302485 I 02 1.8299416140337 10- 3 4.1470332605916 10- 3 

15 1.1123920752448 102 -1.0953993223793 I 02 4.4933142616337 10- 3 6.5044579689874 10- 3 

16 1.0588459946883 102 -1.0422790456449 I 02 8.3318730576956 10- 3 8.8467598263756 10- 3 

17 1.0075023196946 102 -9.9134984540436 101 1.3336586105051 10- 2 1.1168139460140 10-· 2 

18 9.5821940015556 101 -9.4247196120305 101 1.9495600173983 10- 2 1.3463047896727 10- 2 

19 9.1087375613167 101 -8.9552353599709 101 2.6794312570804 10-2 1.5726030476030 10- 2 

20 8.6535693349431 lO I -8.5039753007138 lO I 3.5215413934036 10- 2 1.7951715775701 10- 2 

21 8.2157303778352 101 -8.0699929924172 101 4.4738931460753 10- 2 2.0134823153533 10- 2 

22 7.7943677434410 101 -7.6524466936750 101 5.5342277002449 10- 2 2.2270173808387 I o- 2 

23 7.3887187232516 101 -7.2505838748843 101 2.1405217689868 10-I 3.9953741132719 10- 2 

24 6.9980980377179 101 -6.8637286273331 101 6.7000300922960 10- 2 2.4352702568714 10- 2 

25 6.6218873251250 lO I -6.4912713308123 101 I. 9442232241380 lO - I 3.8550153178614 10- 2 

26 6.2595264400126 101 -6.1326601014306 101 7.9685351873714 10- 2 2.6377469715058 10- 2 

27 5.9105061918992 101 -5.7873936579321 101 9.3367342438604 10- 2 2.8339672614263 10- 2 

28 5.5743622413340 101 -5.4550153293154 101 1.7551726437267 10- 1 3.7055128540241 10-- 2 

29 5.2506699341321 101 -5.1351079891438 101 1.0801382052833 10- I 3.0234657072405 10- 2 

30 4.9390399025600 101 -4.8272897489907 101 J.5738184347288 10- I 3.5472213256884 10- 2 

31 4.6391142978678 101 -4.5312102785146 101 1.4005907491419 10- 1 3.3805161837143 10- 2 

32 4.3505635466396 101 -4.2465476473522 101 1.2359004636973 10- I 3.2057928354854 10- 2 

33 4.0730835444433 101 -3.9730056048317 101 8.7640995363027 10- I 3.2057928354854 lO - 2 

34 3.8063932165649 101 -3.7103112297503 10 1 8.5994092508581 I 0 - 1 3.3805161837143 10- 2 

35 3.5502323891173 101 -3.4582128960368 101 8.4261815652712 10- I 3.5472213256884 lO 2 

36 3.3043599236411 101 -3.2164785101613 101 8.9198617947167 10- 1 3.0234657072405 10-- 2 

37 3.0685520767529 101 -2.9848939849485 101 8.2448273562733 10- 1 3.7055128540241 10- 2 

38 2.8426010527532 101 -2.7632619213515 101 9.0663265756140 10- I 2.8339672614263 10 - 2 

39 2.6263137227092 lO I -2.5514004760939 10 1 9.2031464812629 10- I 2.6377469715058 10- 2 

40 2.4195104875935 101 -2.3491423982025 101 8.0557767758620 10- I 3.8550153178614 10- 2 

Table B.l The abscissae and weights of two quadrature rules of Gauss type. 



99 

Gauss-Laguerre weights Gauss-Legendre weights 

n Xn ln(wn) x" wn 

41 2.2220242665953 101 -2.1563342224120 101 9.3299969907704 10- 1 2.4352702568714 10- 2 

42 2.0336995948761 101 -1.9728356125174 101 7.8594782310132 10- 1 3.9953741132719 10- 2 

43 1.8543918170890 10 I -1.7985188524692 101 9.4465772299755 10- 1 2.2270173808387 10- 2 

44 1.6839663652650 101 - J.6332684889832 10 I 9.5526106853925 10- 1 2.0134823153533 10- 2 

45 1.5222981111526 101 -1.4769811360914 101 9.6478458606596 10- 1 1.7951715775701 10- 2 

46 1.3692707845520 101 -1.3295654608594 I 0 1 9.7320568742920 10- 1 1.5726030476030 10- 2 

47 1.2247764504275 101 -1.1909423813103 101 9.8050439982602 10- 1 1.3463047896727 10- 2 

48 1.0887150383888 101 -1.0610455239124 101 9.8666341389495 10- 1 1.1168139460140 10- 2 

49 9.6099391927968 10° -9.3982201228247 10° 9.9166812694230 10- 1 8.8467598263756 10- 3 

50 8.4152752394547 10° -8.2723369446582 10° 9.9550668573837 10- 1 6.5044579689874 10- 3 

51 7.3023700026174 10° -7.2325897239877 10° 9.9817005838597 10- 1 4.1470332605916 10- 3 

52 6.2704990468662 10° -6.2789548611926 10° 9.9965252086788 10- 1 1.7832807217413 10- 3 

53 5.3189992545552 10° -5.4116405303448 10° 7.6563973200997 10- 1 4.1262563242624 10- 2 

54 4.4472663433132 10° -4.6311451432444 10° 7.4470157285355 10- 1 4.2473515123650 10- 2 

55 3.6547526501790 10° -3.9383459116074 10° 7.2318300862676 10- 1 4.3583724529325 10- 2 

56 2.9409651567547 10° -3.3346369368340 10° 7.0113507898202 10- 1 4.4590558163756 10- 2 

57 2.3054637393076 10° -2.8221528889635 100 6.7861007916886 10- 1 4.5491627927418 10- 2 

58 1.7478596260595 10° -2.4041494787846 10° 6.5566143599512 10- 1 4.6284796581316 10- 2 

59 1.2678140407463 10° -2.0856926100797 100 6.3234358110440 10- 1 4.6968182816212 10- 2 

60 8.6503700464830 10- 1 -1.8750137659721 10° 6.0871182187002 10- 1 4.7540165714832 10- 2 

61 2.2415874175622 10- 2 -2.8778987074406 10° 5.8482221021200 10- 1 4.7999388596462 10- 2 

62 1.1812251208346 10- I -2.1284302322291 10° 5.6073140964807 10- 1 4.8344762234803 10- 2 

63 2.9036574400281 10- 1 -1.8483526536354 10° 5.3649656089394 10- 1 4.8575467441507 10- 2 

64 5.3928622122800 10- 1 -1.7864910691569 10° 5.1217514633176 10- 1 4.8690957009140 10- 2 

Table B.1 (Continued) 

Gauss Legendre quadrature 

For the special choice w(x )= 1, a =O and b = 1, we obtain the Gauss Legendre 
quadrature rule 

I II 

[f(x)dx '::::::!1~1wJ(x;) (B.2) 

The abscissae x1 and the weights w1 for j = l , ... ,n and n = 64 are given in Table B. I. 
Hence, the Formula (B.2) is exact for polynomial functions f (x) of degree up to 127. 

The numerical solution of an integral equation 

Consider the Volterra integral equation of the second kind 

/(t)=g(t)+ J f(x)k(t-x)dx 
0 

(B.3) 

to be solved for /(t), where g(t) and k(t) are known differentiable functions. Choose 
a step length h and let / 11 denote f (nh ), etc. In addition to f 0( = g0), a second initial 
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value f 1 can be obtained using Day's starting procedure. Letting g ,, = g (h / 2) and 
k v, = k (h / 2), define the numbers 

a1 =g1 +hgok1 

a2= g1 +h (gok 1+a1ko) / 2 

a3 = g'n + h (gok '~ + l/2goko + 1lia2ko) / 4 

then 

f 1 =g1 +h (gok 1+4a3k1;2+a2ko)/6 

Next, to solve (B.3), we rewrite the integral as a finite sum using repeatedly Simpson's 
rule. Therefore, we distinguish between n even and n odd. For n even, we get 

(B.4) 

and for n odd 

(B.5) 

where dn1 =3-(-1Y, l~J~n-1, dno=dn 11 =1 are the weights of Simpson's 
integration rule. Once f o, ... ,f11 - I have been found, / 11 is computed from (B.4) if n 
is even and from (B.5) if n is odd. Hence, for a fixed step length h, the function 
values f (nd) are computed by a simple, recursive scheme. By repeatedly halving the 
step length, f(t) can in principle be computed in any desired accuracy. For more 
details, see Delves and Walsh[74]. 

The numerical solution of a differential equation 

Consider the ordinary differential equation 

1;-=f(x,y), y(O)=yo (B.6) 

to be solved for y, where f (x ,y) is a known continuous function in x and y. Choose 
a step length h and let y 11 denote y (nh) and x,, denote nh. If y,, is known, we com
pute y,, + 1 using a Runge Kutta step. Define the numbers 

then 

k1=hj(Xn,Yn) 

k1=hj(xn + 112h,y11 +V2k1) 

k3=hf(x11 +l/2h,y11 + 1/2k2) 

k4=hf(x,, +h,y,, +k3) 

(B.7) 

Hence, for a fixed step length h, the function values y (nh) are computed by this 
straightforward scheme. By successive halving of h, any prescribed accuracy can in 
principle be obtained; cf. e.g. Stoer and Boelirsch[SO]. 
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Appendix C 

Numerical aspects concerning the M/G/c queue 

In this appendix, we focus on the computational aspects of the algorithm and 
formulae presented in Chapter 3, which chapter deals with an approximate analysis 
for the M/G/c queue. The gap between application-oriented research and its actual 
execution in practice is in general larger than expected at first sight. The theorist is 
often only willing to do that minimum amount of numerical work needed to support 
his theoretical methods, partly due to the fact that numerical validation is not always 
rewarding in academic circles. The potential user is willing to spend some time to 
explore the computational possiblities of a research paper, but time constraints or lack 
of skill in numerical analysis often prevent him from applying the methods of the 
research paper if this paper leaves the numerical details to the reader. 

In our opinion, when presenting an algorithm one should in principle give the 
details of each step and indicate for which parameter range the algorithm works well 
and is reliable. A statement like 'this integral equation can be numerically solved by 
standard methods' is not helpful to someone who has never solved an integral equa
tion. A suggestion for the method to be used should be welcome, but also comments 
on the special cases in which numerical difficulties may arise. 

Here, we follow the intermediate approach of giving the relevant numerical 
details to the reader. First, we discuss the numerical details of the algorithm for the 
state probabilities and for the formulae for the moments of the queue length. Next, 
we turn to the integral equation for the waiting time distribution. 

The state probabilities and the moments of the queue length in the M/G/c queue 

For completeness, we repeat the approximation formulae for the state probabil
ities (see Theorem 3.4). 

where 

(A.ESt Pn = 1 po , O.;;;n .;;;c -1 
n. 

n 

Pn=A.pc-I<Xn-c+A.'2,p;/311-J' n~c 
j =c 

~ k 

f3k = [o - F(ct ))e -M (~ l dt 

I 
po= c-I (A.ESY + (A.ES)' 

i~O i! c!(l-p) 
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Also, the delay probability and the first two moments of the queue size are given by 
_ _ P _ _ (A.ES)' 

Pw- l-p Pc-1- c!(l-p)Po 

C'f1 ES2 
ELq==Lq(exp){(l-p) ES +p 2(ES)2} 

P2P c2y ES3 2 ES' EL (L -I)= _w_{(I- )-2-+ ----} +-P- ----EL q q 1-p P (ES)2 P 3(ES)3 1-p 2(ES)2 q 

where 

"' 
Yk= [ktk- 1(1-Fe(t))'dt, k;;c.1 (C I) 

(;\ES)' L (exp)= __e___ Pw = P po 
q I - p c !(I - p) (C2) 

Once po , ak , f3k and 'lk have been obtained, the other calculations are trivial. Note 
that for n ;;c.c Pn is recursively computed from po, ... ,pn -1 by writing 

n -I 

Pn = (Apc-l<Xn -c +;\ 'L.PJ /3,, -j) I (I -A/30) 
j=c 

To compute p 0, we propose the scheme ( in PASCAL style written) 
po:== I ; sum:== I ; 
for i : = I to c - I do 
begin p;: =;\ES/i p;- 1 ; sum:= sum +p; 
end; 
sum : = sum + PPc -1 /(I - P) ; 
for i: ==O to c - I do p;: ==p; /sum 

The evaluation of ak, /3k and 'lk depends on the type of the service time distribution. 
We shall specify the actual computations for deterministic, Erlangian and hyperex
ponential service times. Recall that Fe(t) is given by ( cf(3.I)) 

I 

Fe(t)== ~S [(1-F(x))dx 

Deterministic service time 

Assume 

Thus 

F(t)= {O, t <D 
I, 1;;;.D 

F(t)=={t/D, t<D e I, t ;;c.D 

See Figure CL Note that ES==D and Cg=O. 

In the deterministic case, the expressions for a, , /3k and YA reduce to integrals 
over a finite interval. We propose to use Gauss-Legendre quadrature (cf. Appendix 
B) to compute ak, whereas the numbers f3k and 'lk are explicitly given as 
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Fe(t) 

F(t) 

o-l'-~~~~~~-"1r--~~~~~~-, 

0 t- 2 

Figure C.1 F(t) and F,(t) for deterministic service time. 

D/c k k k 
IJ.= f -'A1 ~d1=!..{1-"" -pL_} 
1-'k {i e k ! ;\ ;-:-o e k ! 

D 

y = f ktk- 1(1-t /D)'.dt= k!c! Dk 
k -b (k+c)! 

Erlangian service time 

o~-==::........~~~~---,,---~~~~~~--., 

0 t-

Figure C.2 F (t) and F, (t) for Erlang-3 service times. 

We consider a mixture of Erlang-I, Erlang-2 and Erlang-3 distributions with the same 
scale parameter µ. See Figure C.2. The extension to other mixtures is straightforward. 
Hence we assume that 

F,(t)= 
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where vi=(p 2+2p 3)µ/(pi+2p 2+3p 3), v2=1/ip 3µ2 /(pi+2p2+3p3). Also, note that 
ES=(pi+2p 2+3p 3)/µ and C}=(2pi+6p2+12p 3)/µ2-1. The above mixture of 
Erlang distributions has three degrees of freedom. As usual, we take ES= 1. Further, 
we consider the special choices with p 3 = 0 or p 2 = 0. Then, we can fix the parameters 
when cj is given. 
For the case of p 3=0, we obtain from ES= 1 

_2C}-y2(1-C}) 1/2 cz 1 
Pi- EO; SEO; 

C}+l ' 

For the case of p 2=0, we get from ES= 1 

= 1+6C}-y13-12c} 113.;;;cz.;;;l3/l2 
Pi 4(C}+.l) , s 

or 

1 +6C}+ y13-12C} 
pi= 4(C}+l) , l.;;;Cj.;;;13/12 

Hence, by taking a mixture of Erlang-I, Erlang-2 and Erlang-3 distributions with the 
same scale parameter, we can obtain squared coefficients of variation between 113 and 
13112. For the evaluation of the ah we suggest to use Gauss-Laguerre quadrature. 
The polynomial in the integrand has degree 2c + k, hence the usage of the numbers of 
Table B.1 will yield an exact evaluation of ak for a wide range of values for c and k, 
while for practical purposes a good approximation will in general be obtained for 
parameter values outside this range. 

For fik, we need not use Gauss-Laguerre quadrature since we also have the 
explicit formula 

a "A.k (k+l)uic (k+l)(k+2)u 2c2 

1-'k = {1 + + } ("A.+cµl+i X+cµ (X+cµ)2 

To compute Yk again Gauss-Laguerre quadrature can be used. 

Hyperexponential service time 

Figure C.3 F(t) and F, (t) for hyperexponential service times ( Cj =4.0). 

For hyperexponential services, we have 



105 

(p -µlr -µ2') 
F(t)= I - 1e +pie , t :;;;;.o 

where o,;;;;p 1.p2,;;;; I and p I +p2= I. It follows that 
-µI -µI 

Fe(t)=l-(q1e 1 +q2e 2 ), t:;;;;.O 

where q1=(p1/JJ.1)/(p1/JJ.1+p2/µ-i) and qi+q2=1. We have ES=pi/JJ.i+pi/µ,2 
and C § = 1p i / JJ.i 2+1p 2 / µl- I. See Figure C.3 for an example. Note that 
Fe(t):;;;;.F(t). 

The hyperexponential distribution has the three parameters pi. /J.i and µ,2 as 
degrees of freedom. The coefficient of variation is always at least one, where for 
C§= I the hyperexponential distribution reduces to an exponential distribution. For a 
given value of C§ and ES= I we can fix the parameters by the usual normalization 
qi= l/iES = 1/i. In fact qi measures the contribution to the mean of the 'branch' with 
parameter /J.i. For the choice qi=r, we get for ES=! 

pi= ~ {C§+4r-l+y(C}-l)((C}-1)+8r(l-r))} 
2(Cs +I) 

In particular, if qi= V2, we have 

I Vcffis-1 pi=-{!+ --} 
2 C}+l 

For the numbers ak, f3k and 'lk the following explicit expressions are easily obtained 

c -i [c - I] Ak 
<Xk = i~O i qi; q{-1-i {p1 (A+(i + J)µ,1 +(c - J -i)µ,i)' +I 

+p2('+· +( ') )k+I 
I\ I /J.J C -1 /J.2 

The implementation of these expressions is straightforward. 

The waiting time distribution 

To compute the waiting time distribution, the following Volterra integral equa
tion has to be solved for V(t)=Pr{Wq <t I Wq >0}. 

V(t)=(l -p){l-(1- Fe(t ))'}+A. j V(t - x )(I - F(cx ))dx 
0 

For Erlangian and hyperexponential service distributions, we suggest to solve the 
integral equation directly by using the scheme given in Appendix B. Obviously, for 
large t the computing effort increases. Therefore, it is worthwhile to use the asymp
totic expansion of V(t) (cf. Section 3.6) to save computing time by building in a test 
to check wether the tail of V (t) has already an exponential form. It turns out from 
our numerical investigations that the tail behaviour is rather rapidly exponential. 
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For the deterministic case , F(t) and Fe (t) are not differentiable for all t, and 
hence the numencal procedure can not blindly be used. Then, the distribution func
tion V(t) has points of inflection at the values t =k ES/ c , k;;., I. Hence, we should 
successively solve the integral equation in the intervals [(k - l)ES / c , k ES/ c] , 
using the value V ((k - I )ES/ c) as starting value in the corresponding interval. 
However, for the deterministic case there is an alternative way to compute V(t ). By 
differentiation of V (t ), we get the differential equation 

{
c(l-p)(1-t)'- 1+A.V(t) , O.;;;r.;;;ES/c 

i!___V(t)= c(l-p)(l-t)'- 1+A.{V(t)-V(t-ES/c)}, ES/c.;;;r.;;;ES dt 
A.{V(t)-V(t-ES/c)} , r;;.,ES 

We proceed now as follows using the numerical procedure described in Appendix B. 
l. Choose N >0 and let h =(ES/ c) /N and V11 = V(nh). 

2. Compute Vo. ... , V N using (B. 7) with V 0 = 0 as initial value. 
3. To compute ViN, ... , V<k+l>N, k;;;.1 consider V<k-l)N• ... , ViN as belong

ing to the known part of the differential equation (taking when necessary 
V((n + \!2)h )= \/2( V11 + V,, + 1) ) and use (B.7) with ViN as initial value. 

Other approximations for the mean queue length in the M/G/c queue. 
For completeness, we give here the approximations for the mean queue length 

ELq in the M/G/c queue we have tested in Chapter 3. In the following, we assume 
that c and pare fixed. Let Lq(exp) and Lq(det) denote the exact values for ELq in 
the M/M/c queue and the M/D/c queue respectively. Lq(exp) is explicitly given by 
(C.2), whereas Lq (det) has been tabulated for c up to 250 in Kiihn[76]. In Cosmeta
tos[75], the approximation Lq(Cosd) for Lq(det) is suggested 

(V4+5C -2) Lq(Cosd)=\!2Lq(exp){I +(1-p)(c -1) 6 } 
I pc 

Cosmetatos[76] proposes as approximation for ELq the following linear interpolation 
between Lq (exp) and Lq (det) 

Lq(Cos)=(l-C})Lq(det)+C}Lq(exp) 

The approximation of Boxma, Cohen and Huffels[80] requires the evaluation of 
Lq (exp), Lq (det) and the constant y1 and is given by 

L (Box)= I+ C} 2Lq(exp )Lq(det) 
q 2 2ALq(det)+(l-A)Lq(exp) 

where A={ ESS2 -c-1}/(c-l)andy1 isgivenby(C.l). 
E YI 

In the approximation of Takahashi[??] we also need to evaluate Lq (exp), Lq (det) and 
in addition the root a of the equation 

_I_ 

Lq(exp )=(f(a+ 1w- 1 Lq(det), a.;;;2 
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Then Takahashi's approximation is given by 

[ ES")"~t Lq(Tak)= -- Lq(det) 
(ES)" 

Remark The practical applicability of the latter two approximations is increased by 
using Lq(Cosd) in stead of the exact value Lq(det). We have done so in the com
parison of the approximations in Section 3.7. 

0 
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Appendix D 

In this appendix we display the exact results for a number of M/G/c systems 
with phase type service time distributions. These results have been computed with a 
specialization of the method described in Takahashi and Takami[76] and can also be 
found in Groenevelt, van Hoorn and Tijms[82]. We give numerical results for the fol
lowing quantities. 

Pw = Pr{W q >0} 

Tw=E{Wq IWq>O} 

Cw =cv(Wq IWq >o)= yE{WJ IWq >0} /(E{WJI W" >0})2-1 

= VPwEWJ /(EWq)2-l 

We have considered hyperexponential service times with p 1 /µ 1= 1/2ES and service 
times which are a mixture of Erlang distributions. For given values of c, p, C§ and 
with ES= I the cases are completely specified; see also Appendix C. 



c=2 c=3 c=4 

p C} Pw Tw Cw Pw Tw Cw Pw Tw Cw 

0.30 1.5625 0.1395 0.8537 1.1285 0.0708 0.5480 1.1094 0.0375 0.4010 1.0934 
2.2500 0.1404 1.0189 1.2498 0.0714 0.6308 1.2260 0.0379 0.4504 1.1991 
4.0000 0.1418 1.4264 1.4552 0.0724 0.8280 1.4570 0.0385 0.5641 1.4275 
9.0000 0.1431 2.5578 1.7207 0.0736 1.3470 1.8388 0.0392 0.8493 1.8668 

0.50 1.5625 0.3357 1.2269 1.1055 0.2395 0.7959 1.1005 0.1763 0.5851 1.0945 
2.2500 0.3378 1.4970 1.1965 0.2418 0.9476 1.1959 0.1783 0.6838 1.1897 
4.0000 0.3410 2.1641 1.3396 0.2453 1.3152 . 1.3623 0.1816 0.9193 1.3678 
9.0000 0.3447 4.0067 1.5166 0.2497 2.3017 1.6004 0.1855 1.5384 1.6470 

0.70 1.5625 0.5791 2.0883 1.0714 0.4962 1.3709 1.0745 0.4330 1.0156 1.0758 
2.2500 0.5814 2.5958 1.1293 0.4995 1.6809 1.1387 0.4368 1.2319 1.1439 
4.0000 0.5852 3.8634 1.2146 0.5047 2.4486 1.2395 0.4427 1.7633 1.2558 
9.0000 0.5901 7.3971 1.3137 0.5113 4.5660 1.3653 0.4500 3.2153 1.4037 

0.80 1.5625 0.7133 3.1595 1.0503 0.6506 2.0857 1.0545 0.6007 1.5519 1.0573 
2.2500 0.7152 3.9577 1.0903 0.6536 2.5903 1.0997 0.6044 1.9139 1.1063 
4.0000 0.7184 5.9653 1.1476 0.6584 3.8521 1.1678 0.6102 2.8149 1.1826 
9.0000 0.7226 11.607 1.2119 0.6644 7.3771 1.2478 0.6174 5.3172 1.2762 

0.90 1.5625 0.8539 6.3659 1.0265 0.8192 4.2243 1.0297 0.7906 3.1562 1.0321 
2.2500 0.8551 8.0278 1.0473 0.8211 5.3057 1.0536 0.7931 3.9510 1.0586 
4.0000 0.8569 12.234 1.0765 0.8242 8.0350 1.0884 0.7971 5.9525 1.0978 
9.0000 0.8595 24.159 1.1081 0.8281 15.750 1.1273 0.8020 11.594 1.1429 

0.95 1.5625 0.9263 12.774 1.0136 0.9082 8.4967 1.0154 0.8930 6.3607 1.0170 
2.2500 0.9269 16.156 1.0242 0.9093 10.726 1.0278 0.8945 8.0166 1.0307 
4.0000 0.9280 24.744 1.0390 0.9110 16.377 1.0455 0.8967 12.210 1.0507 
9.0000 0.9293 49.186 1.0548 0.9131 32.438 1.0648 0.8995 24.111 1.0730 

0.99 1.5625 0.9852 64.025 1.0028 0.9814 42.665 1.0032 0.9783 31.987 1.0035 
2.2500 0.9853 81.159 1.0049 0.9817 54.062 1.0057 0.9786 40.519 1.0064 
4.0000 0.9855 124.75 1.0079 0.9820 83.051 1.0093 0.9791 62.216 1.0104 
9.0000 0.9858 249.21 1.0111 0.9825 165.79 1.0132 0.9797 124.13 1.0149 -0 

'° 
Table D.1 Exact results for the M/H2/c queue. 



c=5 c =8 c = 10 ...... 
0 

p c§ Pw Tw Cw Pw Tw Cw Pw Tw Cw 
0.50 1.5625 0.1324 0.4609 1.0884 0.0601 0.2789 1.0727 0.0367 0.2199 1.0644 

2.2500 0.1341 0.5306 1.1813 0.0609 0.3110 1.1543 0.0373 0.2416 1.1380 
4.0000 0.1368 0.6946 1.3646 0.0624 0.3834 1.3324 0.0382 0.2893 1.3047 
9.0000 0.1402 1.1169 1.6750 0.0641 0.5583 . 1.6916 0,0393 0.3997 1.6690 

0.70 1.5625 0.3824 0.8042 1.0761 0.2749 0.4909 1.0744 0.2256 0.3880 1.0723 
2.2500 0.3863 0.9665 1.1467 0.2787 0.5773 1.1484 0.2291 0.4511 l.1466 
4.0000 0.3925 1.3626 1.2672 0.2846 0.7842 1.2852 0.2344 0.6005 1.2893 
9.0000 0.4002 2.4350 1.4343 0.2919 1.3305 1.4972 0.2411 0.9888 1.5240 

0.80 1.5625 0.5589 1.2331 1.0593 0.4632 0.7582 1.0626 0.4148 0.6013 1.0636 
2.2500 0.5630· 1.5116 l.1113 0.4680 0.9160 1.1205 0.4198 0.7207 1.1240 
4.0000 0.5696 2.2020 1.1942 0.4755 1.3029 1.2185 0.4274 1.0116 1.2292 
9.0000 0.5776 4.1090 1.2996 0.4847 2.3567 1.3529 0.4369 1.7971 1.3796 

0.90 1.5625 0.7659 2.5166 1.0341 0.7061 1.5601 1.0386 0.6739 1.2425 1.0408 
2.2500 0.7689 3.1413 1.0627 0.7101 1.9336 1.0719 0.6783 1.5339 1.0766 
4.0000 0.7735 4.7114 1.1056 0.7163 2.8678 1.1239 0.6852 2.2607 1.1333 
9.0000 0.7793 9.1265 l.1561 0.7238 5.4787 1.1876 0.6935 4.2849 1.2046 

0.95 1.5625 0.8798 5.0804 1.0182 0.8470 3.1625 1.0213 0.8289 2.5244 1.0229 
2.2500 0.8815 6.3940 1.0332 0.8494 3.9665 1.0391 0.8317 3.1600 1.0422 
4.0000 0.8842 9.7172 1.0551 0.8532 5.9957 1.0658 0.8360 4.7622 1.0716 
9.0000 0.8875 19.139 1.0800 0.8578 11.732 1.0971 0.8413 9.2841 l.1064 

0.99 1.5625 0.9755 25.581 1.0038 0.9685 15.976 1.0046 0.9645 12.775 1.0050 
2.2500 0.9759 32.396 1.0069 0.9690 20.218 1.0083 0.9652 16.161 1.0091 
4.0000 0.9765 49.722 1.0114 0.9699 30.999 1.0138 0.9662 24.764 1.0152 
9.0000 0.9772 99.150 1.0164 0.9710 61.737 1.0200 0.9675 49.286 1.0220 

Table D.2 Exact results for the M/H2/c queue. 



c == 15 c ==20 c ==25 

p c§ Pw Tw Cw Pw Tw Cw Pw Tw Cw 
0.50 1.5625 0.0115 0.1432 1.0494 0.0038 0.1059 1.0396 0.0013 0.0839 1.0329 

2.2500 0.0116 0.1535 1.1060 0.0038 0.1117 . 1.0840 0.0013 0.0876 1.0686 
4.0000 0.0119 0.1746 1.2384 0.0039 0.1232 1.1865 0.0013 0.0946 1.1484 
9.0000 0.0122 0.2188 1.5637 0.0040 0.1449 1.4459 0.0014 0.1067 1.3454 

0.70 1.5625 0.1440 0.2529 1.0664 0.0955 0.1865 1.0607 0.0649 0.1474 1.0555 
2.2500 0.1465 0.2875 1.1381 0.0973 0.2086 1.1280 0.0661 0.1627 1.1179 
4.0000 0.1504 0.3673 1.2863 0.1000 0.2582 1.2738 0.0680 0.1963 1.2575 
9.0000 0.1554 0.5671 1.5600 0.1035 0.3777 1.5676 0.0705 0.2742 1.5563 

0.80 1.5625 0.3246 0.3939 1.0642 0.2610 0.2914 1.0633 0.2134 0.2306 1.0617 
2.2500 0.3293 0.4645 1.1279 0.2652 0.3392 1.1283 0.2171 0.2655 1.1268 
4.0000 0.3367 0.6340 1.2458 0.2719 0.4525 1.2538 0.2231 0.3472 1.2568 
9.0000 0.3459 1.0829 1.4288 0.2803 0.7470 1.4618 0.2305 0.5560 1.4844 

0.90 1.5625 0.6086 0.8206 1.0448 0.5572 0.6108 1.0476 0.5146 0.4854 1.0495 
2.2500 0.6138 1.0047 1.0853 0.5628 0.7426 1.0914 0.5204 0.5867 1.0960 
4.0000 0.6218 1.4611 1.1516 0.5715 1.0679 1.1653 0.5295 0.8354 1.1760 
9.0000 0.6316 2.7225 1.2388 0.5820 1.9607 1.2658 0.5405 1.5135 1.2882 

0.95 1.5625 0.7911 1.6750 1.0261 0.7602 1.2513 1.0286 0.7336 0.9977 1.0307 
2.2500 0.7946 2.0882 1.0486 0.7642 1.5547 1.0536 0.7381 1.2358 1.0577 
4.0000 0.8001 3.1269 1.0834 0.7705 2.3155 1.0929 0.7450 1.8318 1.1009 
9.0000 0.8067 6.0480 1.1258 0.7781 4.4488 1.1416 0.7534 3.4985 1.1552 

0.99 1.5625 0.9561 8.5087 1.0059 0.9491 6.3765 1.0066 0.9429 5.0977 1.0072 
2.2500 0.9570 10.755 1.0107 0.9502 8.0549 1.0121 0.9441 6.4356 1.0133 
4.0000 0.9584 16.461 1.0180 0.9518 12.315 1.0203 0.9460 9.8303 1.0224 
9.0000 0.9600 32.712 1.0263 0.9537 24.443 1.0299 0.9482 19.490 1.0330 

Table D.3 Exact results for the M/H2/c queue. 



c =2 c=3 c =4 

p c§ Pw Tw Cw Pw Tw Cw Pw Tw Cw 

0.30 0.5000 0.1373 0.5614 0.9116 0.0691 0.3856 0.9122 0.0365 0.2956 0.9149 N 

0.6400 0.1376 0.6070 0.9328 0.0694 0.4138 0.9350 0.0367 0.3153 0.9382 
0.7500 0.1379 0.6416 0.9509 0.0696 0.4346 0.9537 0.0368 0.3297 0.9568 
0.8100 0.1380 0.6600 0.9614 0.0697 0.4455 0.9642 0.0368 0.3370 0.9671 

0.50 0.5000 0.3308 0.7727 0.9314 0.2338 0.5258 0.9270 0.1710 0.4006 0.9253 
0.6400 0.3315 0.8388 0.9473 0.2347 0.5678 0.9450 0.1719 0.4309 0.9446 
0.7500 0.3321 0.8896 0.9610 0.2354 0.5997 0.9602 0.1725 0.4535 0.9604 
0.8100 0.3324 0.9169 0.9691 0.2357 0.6166 0.9688 0.1729 0.4654 0.9693 

0.70 0.5000 0.5736 1.2703 0.9561 0.4880 0.8566 0.9503 0.4235 0.6484 0.9466 
0.6400 0.5744 1.3833 0.9660 0.4893 0.9302 0.9621 0.4251 0.7024 0.9597 
0.7500 0.5751 1.4712 0.9746 0.4902 0.9869 0.9721 0.4262 0.7438 0.9706 
0.8100 0.5754 1.5188 0.9797 0.4908 1.0174 0.9780 0.4268 0.7660 0.9769 

0.80 0.5000 0.7087 1.8942 0.9699 0.6432 1.2721 0.9651 0.5914 0.9598 0.9616 
0.6400 0.7094 2.0657 0.9766 0.6444 1.3847 0.9732 0.5929 1.0432 0.9708 
0.7500 0.7099 2.1996 0.9825 0.6453 1.4722 0.9802 0.5940 1.1077 0.9785 
0.8100 0.7102 2.2723 0.9860 0.6458 1.5196 0.9842 0.5946 1.1425 0.9830 

0.90 0.5000 0.8512 3.7682 0.9846 0.8145 2.5210 0.9817 0.7844 1.8962 0.9794 
0.6400 0.8516 4.1149 0.9880 0.8153 2.7504 0.9859 0.7854 2.0672 0.9842 
0.7500 0.8519 4.3864 0.9910 0.8158 2.9298 0.9895 0.7861 2.2007 0.9883 
0.8100 0.8521 4.5342 0.9928 0.8161 3.0273 0.9916 0.7865 2.2732 0.9907 

0.95 0.5000 0.9248 7.5177 0.9922 0.9056 5.0204 0.9907 0.8895 3.7706 0.9894 
0.6400 0.9251 8.2144 0.9939 0.9060 5.4833 0.9928 0.8901 4.1168 0.9918 
0.7500 0.9253 8.7611 0.9954 0.9063 5.8461 0.9946 0.8905 4.3879 0.9939 
0.8100 0.9254 9.0589 0.9963 0.9065 6.0436 0.9957 0.8907 4.5354 0.9952 

0.99 0.5000 0.9849 37.517 0.9984 0.9809 25.020 0.9981 0.9775 18.770 0.9978 
0.6400 0.9849 41.014 0.9988 0.9810 27.350 0.9985 0.9776 20.516 0.9983 
0.7500 0.9849 43.761 0.9991 0.9810 29.179 0.9989 0.9777 21.888 0.9988 
0.8100 0.9850 45.259 0.9993 0.9811 30.177 0.9991 0.9778 22.635 0.9990 

Table D.4 Exact results for the M/Eu/c queue. 



c =5 c =8 c =10 

p C} Pw Tw Cw Pw Tw Cw Pw Tw Cw 

0.50 0.5000 0.1279 0.3247 0.9250 0.0576 0.2088 0.9272 0.0352 0.1694 0.9295 

0.6400 0.1286 0.3480 0.9450 0.0581 0.2221 0.9480 0.0355 0.1795 0.9503 

0.7500 0.1292 0.3653 0.9611 0.0584 0.2317 . 0.9641 0.0357 0.1866 0.9661 

0.8100 0.1295 0.3743 0.9701 0.0586 0.2366 0.9729 0.0358 0.1903 0.9746 

0.70 0.5000 0.3724 0.5227 0.9440 0.2651 0.3327 0.9396 0.2167 0.2688 0.9382 

0.6400 0.3740 0.5652 0.9580 0.2668 0.3580 0.9555 0.2182 0.2885 0.9549 

0.7500 0.3752 0.5975 0.9696 0.2680 0.3771 0.9684 0.2194 0.3032 0.9682 

0.8100 0.3759 0.6148 0.9763 0.2687 0.3872 0.9755 0.2200 0.3109 0.9755 

0.80 0.5000 0.5484 0.7717 0.9589 0.4508 0.4883 0.9533 0.4021 0.3932 0.9509 

0.6400 0.5501 0.8377 0.9689 0.4529 0.5283 0.9652 0.4043 0.4247 0.9636 

0.7500 0.5514 0.8886 0.9773 0.4544 0.5590 0.9749 0.4059 0.4488 0.9739 

0.8100 0.5521 0.9160 0.9821 0.4552 0.5754 0.9804 0.4067 0.4616 0.9797 

0.90 0.5000 0.7584 1.5207 0.9776 0.6960 0.9562 0.9733 0.6625 0.7675 0.9711 

0.6400 0.7596 1.6568 0.9829 0.6976 1.0402 0.9798 0.6644 0.8342 0.9783 

0.7500 0.7605 1.7629 0.9874 0.6989 1.1054 0.9853 0.6658 0.8859 0.9842 

0.8100 0.7610 1.8204 0.9900 0.6996 1.1406 0.9884 0.6665 0.9138 0.9876 

0.95 0.5000 0.8754 3.0202 0.9883 0.8407 1.8933 0.9858 0.8216 1.5171 0.9844 

0.6400 0.8761 3.2964 0.9911 0.8418 2.0648 0.9892 0.8228 1.6539 0.9882 

0.7500 0.8767 3.5126 0.9934 0.8425 2.1989 0.9921 0.8237 1.7607 0.9914 

0.8100 0.8769 3.6301 0.9948 0.8430 2.2717 0.9937 0.8242 1.8186 0.9932 

0.99 0.5000 0.9745 15.020 0.9976 0.9670 9.3929 0.9970 0.9628 7.5168 0.9967 

0.6400 0.9747 16.416 0.9982 0.9672 10.265 0.9977 0.9631 8.2136 0.9975 

0.7500 0.9748 17.512 0.9986 0.9674 10.949 0.9983 0.9633 8.7605 0.9982 

0.8100 0.9748 18.110 0.9989 0.9675 11.322 0.9987 0.9634 9.0584 0.9985 

Table D.5 Exact results for the M/E1.2/c queue. ...... 
w 



,....;. c == 15 c ==20 c ==25 ...... 
.i::. 

p C} Pw Tw Cw Pw Tw Cw Pw Tw Cw 
0.50 0.5000 0.0110 0.1159 0.9356 0.0036 0.0885 0.9410 0.0012 0.0717 0.9457 

0.6400 0.0111 0.1218 0.9556 0.0037 0.0925 0.9601 0.0013 0.0747 0.9637 
0.7500 0.0112 0.1260 0.9705 0.0037 0.0953 0.9739 0.0013 0.0767 0.9766 
0.8100 0.0112 0.1281 0.9782 0.0037 0.0966 0.9809 0.0013 0.0777 0.9830 

0.70 0.5000 0.1373 0.1826 0.9372 0.0907 0.1390 0.9377 0.0615 0.1125 0.9389 
0.6400 0.1385 0.1950 0.9548 0.0916 0.1478 0.9558 0.0622 0.1193 0.9570 
0.7500 0.1394 0.2042 0.9686 0.0923 0.1543 0.9696 0.0627 0.1242 0.9708 
0.8100 0.1398 0.2089 0.9761 0.0926 0.1576 0.9771 0.0629 0.1266 0.9781 

0.80 0.5000 0.3122 0.2657 0.9470 0.2497 0.2014 0.9449 0.2033 0.1626 0.9438 
0.6400 0.3144 0.2860 0.9612 0.2516 0.2162 0.9600 0.2051 0.1741 0.9594 
0.7500 0.3160 0.3013 0.9725 0.2531 0.2273 0.9718 0.2065 0.1827 0.9716 
0.8100 0.3168 0.3094 0.9788 0.2539 0.2331 0.9784 0.2071 0.1872 0.9783 

0.90 0.5000 0.5952 0.5152 0.9670 0.5427 0.3886 0.9640 0.4995 0.3124 0.9616 
0.6400 0.5975 0.5590 0.9754 0.5452 0.4210 0.9732 0.5021 0.3380 0.9716 
0.7500 0.5992 0.5928 0.9822 0.5470 0.4459 0.9808 0.5040 0.3577 0.9797 
0.8100 0.6000 0.6110 0.9861 0.5480 0.4593 0.9850 0.5050 0.3682 0.9842 

0.95 0.5000 0.7819 1.0149 0.9817 0.7496 0.7634 0.9796 0.7219 0.6122 0.9778 
0.6400 0.7835 1.1054 0.9862 0.7514 0.8308 0.9847 0.7239 0.6659 0.9834 
0.7500 0.7846 1.1760 0.9900 0.7527 0.8833 0.9889 0.7253 0.7076 0.9880 
0.8100 0.7852 1.2142 0.9921 0.7534 0.9117 0.9913 0.7261 0.7301 0.9906 

0.99 0.5000 0.9539 5.0146 0.9961 0.9464 3.7631 0.9955 0.9398 3.0120 0.9950 
0.6400 0.9542 5.4786 0.9970 0.9468 4.1107 0.9966 0.9403 3.2898 0.9963 
0.7500 0.9545 5.8425 0.9978 0.9472 4.3832 0.9975 0.9407 3.5075 0.9973 
0.8100 0.9547 6.0407 0.9983 0.9473 4.5316 0.9980 0.9409 3.6261 0.9978 

Table D.6 Exact results for the M/E1.2/c queue. 



c=30 c =40 c =50 
p c§ Pw Tw Cw Pw Tw Cw Pw Tw Cw 

0.70 0.5000 0.0425 0.0947 0.9404 0.0209 0.0722 . 0.9434 0.0107 0.0585 0.9464 
0.6400 0.0429 0.1001 0.9584 0.0212 0.0760 0.9611 0.0108 0.0613 0.9636 
0.7500 0.0433 0.1040 0.9719 0.0214 0.0786 0.9741 0.0109 0.0633 0.9729 
0.8100 0.0435 0.1059 0.9789 0.0215 0.0799 0.9799 0.0109 0.0643 0.9784 

0.80 0.5000 0.1678 0.1366 0.9432 0.1173 0.1038 0.9430 0.0840 0.0840 0.9434 
0.6400 0.1694 0.1460 0.9592 0.1185 0.1105 0.9594 0.0849 0.0891 0.9601 
0.7500 0.1705 0.1529 0.9717 0.1194 0.1154 0.9721 0.0856 0.0929 0.9728 
0.8100 0.1711 0.1565 0.9785 0.1199 0.1180 0.9789 0.0860 0.0948 0.9796 

0.90 0.5000 0.4628 0.2615 0.9597 0.4029 0.1976 0.9568 0.3554 0.1591 0.9547 
0.6400 0.4655 0.2826 0.9703 0.4056 0.2132 0.9683 0.3580 0.1714 0.9669 
0.7500 0.4674 0.2988 0.9788 0.4075 0.2250 0.9775 0.3599 0.1806 0.9766 
0.8100 0.4684 0.3074 0.9835 0.4086 0.2313 0.9826 0.3609 0.1855 0.9819 

0.95 0.5000 0.6976 0.5113 0.9763 0.6560 0.3850 0.9737 0.6209 0.3091 0.9716 
0.6400 0.6997 0.5559 0.9823 0.6583 0.4181 0.9804 0.6234 0.3354 0.9789 
0.7500 0.7013 0.5904 0.9872 0.6600 0.4437 0.9859 0.6253 0.3557 0.9848 
0.8100 0.7021 0.6090 0.9900 0.6610 0.4575 0.9889 0.6262 0.3666 0.9881 

0.99 0.5000 0.9339 2.5111 0.9946 0.9234 1.8849 0.9939 0.9143 1.5090 0.9932 
0.6400 0.9345 2.7424 0.9959 0.9241 2.0580 0.9954 0.9151 1.6474 0.9949 
0.7500 0.9349 2.9236 0.9970 0.9246 2.1937 0.9966 0.9157 1.7557 0.9963 
0.8100 0.9351 3.0223 0.9977 0.9249 2.2676 0.9973 0.9160 1.8146 0.9970 

Table D.7 Exact results for the M/Eu/c queue. 

....... -Vi 



c=2 c=3 c =4 

.0 C§ Pw Tw Cw Pw Tw Cw Pw Tw Cw 
...... 

0.30 0.3333 0.1366 0.5113 0.8658 0.0686 0.3566 0.8686 0.0362 0.2763 0.8743 °' 
0.4000 0.1368 0.5342 0.8755 0.0688 0.3712 0.8796 0.0363 0.2868 0.8861 
0.4500 0.1369 0.5512 0.8829 0.0689 0.3819 0.8880 0.0363 0.2944 0.8949 
0.5000 0.1371 0.5679 0.8906 0.0690 0.3924 0.8966 0.0364 0.3018 0.9038 

0.50 0.3333 0.3294 0.6975 0.8958 0.2321 0.4795 0.8899 0.1695 0.3682 0.8883 
0.4000 0.3298 0.7300 0.9028 0.2326 0.5006 0.8984 0.1699 0.3837 0.8976 
0.4500 0.3300 0.7541 0.9083 0.2330 0.5162 0.9048 0.1703 0.3950 0.9047 
0.5000 0.3303 0.7781 0.9139 0.2333 0.5316 0.9114 0.1706 0.4062 0.9119 

0.70 0.3333 0.5720 1.1385 0.9335 0.4856 0.7722 0.9250 0.4207 0.5871 0.9196 
0.4000 0.5724 1.1932 0.9377 0.4863 0.8082 0.9303 0.4216 0.6138 0.9257 
0.4500 0.5727 1.2341 0.9411 0.4868 0.8349 0.9344 0.4222 0.6336 0.9304 
0.5000 0.5731 1.2748 0.9445 0.4873 0.8616 0.9386 0.4228 0.6532 0.9351 

0.80 0.3333 0.7073 1.6925 0.9545 0.6410 1.1409 0.9473 0.5887 0.8633 0.9422 
0.4000 0.7077 1.7750 0.9574 0.6417 1.1954 0.9509 0.5895 0.9039 0.9464 
0.4500 0.7080 1.8367 0.9596 0.6422 1.2361 0.9537 0.5901 0.9342 0.9496 
0.5000 0.7083 1.8983 0.9619 0.6426 1.2767 0.9566 0.5907 0.9643 0.9528 

0.90 0.3333 0.8503 3.3578 0.9768 0.8131 2.2504 0.9724 0.7825 1.6951 0.9690 
0.4000 0.8506 3.5237 0.9782 0.8135 2.3605 0.9743 0.7831 1.7774 0.9712 
0.4500 0.8507 3.6479 0.9793 0.8138 2.4429 0.9757 0.7835 1.8389 0.9729 
0.5000 0.8509 3.7720 0.9805 0.8141 2.5252 0.9771 0.7839 1.9003 0.9746 

0.95 0.3333 0.9244 6.6905 0.9883 0.9048 4.4719 0.9859 0.8884 3.3610 0.9840 
0.4000 0.9245 7.0230 0.9890 0.9050 4.6931 0.9868 0.8887 3.5267 0.9851 
0.4500 0.9246 7.2723 0.9896 0.9052 4.8589 0.9876 0.8890 3.6507 0.9860 
0.5000 0.9247 7.5214 0.9901 0.9054 5.0245 0.9883 0.8892 3.7746 0.9868 

0.99 0.3333 0.9848 33.357 0.9976 0.9807 22.249 0.9971 0.9772 16.694 0.9967 
0.4000 0.9848 35.023 0.9978 0.9807 23.359 0.9973 0.9773 17.526 0.9970 
0.4500 0.9848 36.272 0.9979 0.9808 24.192 0.9975 0.9774 18.150 0.9971 
0.5000 0.9848 37.521 0.9980 0.9808 25.024 0.9976 0.9774 18.774 0.9973 

Table D.8 Exact results for the M/Eu/c queue. 



c =5 c =8 c = 10 

p C} Pw Tw Cw Pw Tw Cw Pw Tw Cw 

0.50 0.3333 0.1265 0.3003 0.8887 0.0569 0.1958 0.8941 0.0347 0.1599 0.8986 
0.4000 0.1269 0.3124 0.8986 0.0571 0.2029 0.9048 0.0349 0.1654 0.9096 
0.4500 0.1272 0.3212 0.9061 0.0573 0.2080 0.9128 0.0350 0.1693 0.9177 

0.5000 0.1275 0.3299 0.9136 0.0575 0.2130 0.9208 0.0351 0.1731 0.9257 

0.70 0.3333 0.3694 0.4752 0.9160 0.2622 0.3052 0.9103 0.2140 0.2476 0.9088 
0.4000 0.3703 0.4963 0.9227 0.2632 0.3180 0.9181 0.2149 0.2577 0.9171 

0.4500 0.3710 0.5119 0.9277 0.2639 0.3274 0.9240 0.2155 0.2651 0.9234 

0.5000 0.3716 0.5274 0,9329 0.2646 0.3367 0.9300 0.2162 0.2724 0.9296 

0.80 0.3333 0.5453 0.6959 0.9382 0.4472 0.4429 0.9303 0.3984 0.3578 0.9269 
0.4000 0.5463 0.7282 0.9429 0.4484 0.4627 0.9360 0.3996 0.3735 0.9331 

0.4500 0.5470 0.7522 0.9464 0.4492 0.4775 0.9403 0.4005 0.3852 0.9377 
0.5000 0.5477 0.7760 0.9500 0.4501 0.4920 0.9446 0.4014 0.3967 0.9424 

0.90 0.3333 0.7562 1.3611 0.9663 0.6930 0.8584 0.9600 0.6591 0.6901 0.9568 
0.4000 0.7569 1.4267 0.9687 0.6939 0.8991 0.9630 0.6602 0.7225 0.9602 
0.4500 0.7574 1.4758 0.9706 0.6946 0.9295 0.9654 0.6610 0.7467 0.9628 
0.5000 0.7579 1.5247 0.9725 0.6953 0.9597 0.9677 0.6618 0.7708 0.9654 

0.95 0.3333 0.8741 2.6937 0.9824 0.8389 1.6911 0.9787 0.8195 1.3562 0.9767 
0.4000 0.8745 2.8260 0.9837 0.8395 1.7735 0.9803 0.8202 1.4220 0.9785 
0.4500 0.8748 2.9251 0.9846 0.8399 1.8351 0.9815 0.8207 1.4712 0.9798 
0.5000 0.8751 3.0241 0.9856 0.8403 1.8967 0.9827 0.8212 1.5203 0.9812 

0.99 0.3333 0.9742 13.360 0.9964 0.9666 8.3572 0.9955 0.9623 6.6890 0.9951 
0.4000 0.9743 14.025 0.9966 0.9667 8.7730 0.9959 0.9624 7.0215 0.9954 
0.4500 0.9744 14.525 0.9968 0.9668 9.0847 0.9961 0.9626 7.2708 0.9957 
0.5000 0.9744 15.024 0.9970 0.9669 9.3962 0.9964 0.9627 7.5199 0.9960 

Table D.9 Exact results for the M/Eu/c queue. ---.l 



c == 15 c ==20 c ==25 -00 
p C} Pw Tw Cw Pw Tw Cw Pw Tw Cw 

0.50 0.3333 0.0108 0.1107 0.9096 0.0036 0.0852 0.9187 0.0012 0.0695 0.9264 
0.4000 0.0109 0.1140 0.9204 0.0036 0.0875 0.9284 0.0012 0.0713 0.9226 
0.4500 0.0109 0.1164 0.9284 0.0036 0.0892 0.9361 0.0012 0.0725 0.9244 
0.5000 0.0110 0.1187 0.9362 0.0036 0.0907 0.9424 0.0012 0.0737 0.9268 

0.70 0.3333 0.1353 0.1698 0.9085 0.0893 0.1302 0.9102 0.0605 0.1060 0.9127 
0.4000 0.1360 0.1763 0.9175 0.0898 0.1348 0.9196 0.0609 0.1096 0.9223 
0.4500 0.1365 0.1810 0.9242 0.0902 0.1383 . 0.9265 0.0612 0.1122 0.9293 
0.5000 0.1370 0.1856 0.9309 0.0906 0.1416 0.9334 0.0615 0.1148 0.9362 

0.80 0.3333 0.3086 0.2434 0.9218 0.2464 0.1854 0.9192 0.2004 0.1504 0.9180 
0.4000 0.3098 0.2536 0.9288 0.2475 0.1930 0.9267 0.2014 0.1563 0.9259 
0.4500 0.3107 0.2612 0.9340 0.2483 0.1986 0.9324 0.2022 0.1607 0.9318 
0.5000 0.3116 0.2686 0.9393 0.2491 0.2040 0.9380 0.2029 0.1649 0.9376 

0.90 0.3333 0.5914 0.4648 0.9508 0.5386 0.3515 0.9465 0.4952 0.2833 0.9431 
0.4000 0.5926 0.4862 0.9548 0.5399 0.3675 0.9510 0.4966 0.2960 0.9480 
0.4500 0.5936 0.5022 0.9579 0.5410 0.3793 0.9543 0.4977 0.3054 0.9516 
0.5000 0.5945 0.5180 0.9609 0.5420 0.3911 0.9577 0.4987 0.3147 0.9553 

0.95 0.3333 0.7793 0.9088 0.9727 0.7465 0.6845 0.9695 0.7186 0.5496 0.9669 
0.4000 0.7801 0.9525 0.9748 0.7475 0.7171 0.9720 0.7197 0.5757 0.9696 
0.4500 0.7808 0.9851 0.9764 0.7483 0.7415 0.9738 0.7205 0.5951 0.9716 
0.5000 0.7814 1.0176 0.9781 0.7490 0.7658 0.9756 0.7213 0.6145 0.9736 

0.99 0.3333 0.9532 4.4639 0.9941 0.9456 3.3508 0.9933 0.9389 2.6826 0.9926 
0.4000 0.9534 4.6854 0.9945 0.9458 3.5168 0.9938 0.9392 2.8154 0.9932 
0.4500 0.9536 4.8514 0.9949 0.9460 3.6412 0.9942 0.9394 2.9148 0.9936 
0.5000 0.9537 5.0173 0.9952 0.9462 3.7655 0.9946 0.9396 3.0142 0.9940 

Table D.10 Exact results for the M!Eu/c queue. 
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