


CWI Tracts 

Managing Editors 

J.W. de Bakker (CWI, Amsterdam) 
M. Hazewinkel (CWI, Amsterdam) 
J.K. Lenstra (CWI, Amsterdam) 

Edltorlal Board 

W. Albers (Enschede) 
P.C. Baayen (Amsterdam) 
R.J. Baute (Nijmegen) 
E.M. de Jager (Amsterdam) 
M.A. Kaashoek (Amsterdam) 
M.S. Keane (Delft) 
J.P.C. Kleijnen (Tilburg) 
H. Kwakernaak (Enschede) 
J. van Leeuwen (Utrecht) 
P.W.H. Lemmens (Utrecht) 
M. van der Put (Groningen) 
M. Rem (Eindhoven) 
A.H.G. Rinnooy Kan (Rotterdam) 
M.N. Spijker (Leiden) 

Centrum voor Wlskunde en Informatics 
Centre for Mathematics and Computer Science 
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

The CWI is a research institute of the Stichting Mathematisch Centrum, which was founded 
on February 11, 1946, as a nonprofit institution aiming at the promotion of mathematics, 
computer science, and their applications. It is sponsored by the Dutch Government through 
the Netherlands Organization for the Advancement of Pure Research (Z.W.O.). 



CWI Tract 7 

Few-distance sets 

A. Blokhuis 

Centrum voor Wiskunde en Informatics 
Centre for Mathematics and Computer Science 



1980 Mathematics Subject Classification: Primary: 05-02 
Secondary:05B25,05B35,06C10,51K99,51M10, 52A40 
ISBN 90 6196 273 0 

Copyright © 1984, Mathematisch Centrum, Amsterdam 
Printed in the Nehterlands 



i 

·ACKNOWLEDGEMENTS 

I would like to thank Jaap Seidel for his continuous support and 

patience during the period of my research. I am also grateful to the 

following people for the interest they showed in my work during their stay 

in Eindhoven: Tor Helleseth, Arnold Neumaier, Navim Singhi, David Klarner, 

Clement Lam and John Jarratt. I thank the Centre for Mathematics and Computer 

Science to publish this monograph in their series CWI Tracts. 





CONTENTS 

Chapter 1. Introduction 

Chapter 2. The addition formula for Rp,q 

2. 1. Introduction 

2.2. Polynomials and tensors 

2.3. Differential operators 

2.4. Bilinear form spaces 

2.5. Harmonic polynomials 

2.6. The addition formula 

2.7. Applications to few-distance sets in Rp,q 

2.8. Examples 

Chapter 3. Equiangular lines in Rd,l 

3. 1. Introduction 

3.2. The theorem 

Chapter 4. Few-distance sets in Ed and Hd 

4. 1. 

4.2. 

4. 3. 

4.4. 

Introduction 

Preliminaries and notation 

The bound in Euclidean space 

The bound in hyperbolic space 

Chapter 5. Few-distance sets mod p 

5.1. Introduction 

5.2. The mod p-bound, first version 

5.3. The mod p-bound, second version 

Chapter 6. Association schemes, Delsarte spaces and the mod p-bound 

6. l. 

6.2. 

6.3. 

6.4. 

6.5. 

6.6. 

Introduction 

Association schemes 

The Bose-Mesner algebra 

Delsarte spaces 

The mod p-bound in Delsarte spaces 

Examples 

5 

6 

7 

8 

10 

14 

16 

18 

21 

21 

26 

26 

27 

30 

33 

33 

34 

36 

36 

37 

39 

44 

44 

ii-£ 



iv 

Chapter 7. Isosceles point sets 

7.1. Introduction and notation 

7.2. The structure of isosceles sets 

Chapter 8. Graphs related to polar spaces 

8. I. 

8.2. 

8.3. 

8.4. 

8.5. 

8.6. 

8.7. 

Introduction 

Preliminaries and notation 

Examples of Zara-graphs 

Regularity properties of Zara-graphs 

The poset of singular subsets 

Zara-graphs and Mr-spaces 

Final remarks 

References 

Index 

List of symbolS 

46 

46 

50 

51 

52 

55 

58 

62 

65 

66 

69 

70 



CHAPTER 

INTRODUCTION 

The vertices of a regular (2s+l)-gon in the plane form a set of 

points on the circle with the property that the distance between different 

points assumes only s different values. It is easy to see that 2s+J 

is the maximal cardinality of such a set since, starting with any point on 

the circle, there are at most two points at a prescribed distance away 

from it. If we denote by f(s,d) the maximal number of points on the 

unit sphere in d-dimensional space Rd , constituting an s-distance set, 

then exactly the same reasoning yields an exponential bound in d by the 

inequality f(s,d) ,,; I + sf(s,d-1). If s is small compared to d , all 

known examples indicate that the proper bound should be polynomial in d, 

of degree s. Using ingredients from the theory of harmonic analysis, 

especially the addition theorem for Gegenbauer polynomials, Delsarte, 

Goethals and Seidel [DGS] showed that this is the case. Koornwinder [K] 

gave a simpler argument, yielding the same absolute bound and avoiding 

harmonics. His method is to associate with an s-distance set x on the 

unit sphere in Rd an independent set of IXI polynomials of degree s 

in d variables. Hence the cardinality of x is bounded by dim Pol(s,d) 

i.e., the dimension of the space of polynomials of degree at most s, in 

d variables. 

Koornwinder's method is applicaUle in many cases, however if we 

consider sets of vectors with few inner products in an arbitrary inner 

product space, this method does not depend on the signature of the inner 

product. With the harmonic method we can do better in case of an 

indefinite inner product, i.e., the vector space Rp,q provided with .tJhe 

inner product (x,y) = x 1y 1 + x2y2 + .. +xpyp - xp+IYp+J - .. -xp+qYp+q , 

of signature (p,q). This is done in chapter 2, which is joint work 

with Bannai, Delsarte and Seidel [BBDS] . First we prove a generalized 

version of the addition formula, which is of independent interest. Then 

we apply it to few-distance sets in indefinite inner product spaces. 

For example theorem 2.8. I. reads as follows: Let X be a set of unit 

vectors in Rd-I, I 
' 

such that the inner product between different 
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elements of X assumes only s different values (all different from l). 

( d+ss-l) Then card (X) 5 

We conclude this chapter with examples, e.g.: The maximal number of vec

tors in R9 • 1 having inner products {O,~ !} is exactly 165. 

Another way to obtain better bounds is to start with Koornwinder's 

method, but to show that one can actually construct a larger independent 

set of polynomials. In chapter 3 this approach yields an essentially 

sharp bound on the number of equiangular lines in Rd,! viz. theorem 

3.2. I. : Let X be a set of equiangular lines in Rd,! at angle 

arccos (a) • Then 

(i) if d < l/a 2 

(ii) if (d+l)a2 2 card(X) 5 4d(d+l) . 

The first case is proved using the eigenvalue method and is called the 

special bound. 

In chapter 4 , we apply the same idea to improve the bounds for 

s-distance sets in Euclidean d-space, Ed , and hyperbolic d-space, Hd . 

In these cases we get the following result: Let x be an s-distance 
d d d+s set in E or H , then card(X) 5 ( ). 

s 
The bound for can also be derived from the results in chapter 2. 

It is still an open question whether an harmonic analysis approach could 

give the bound for Ed as well. 

An interesting idea, due to Frankl and Wilson [FW] , is to consider 

sets of points with few distances modulo a prime. In chapter 5 a 

useful number theoretic lemma is combined with Koornwinder's argument to 

give a.a. the following result (theorem 5.3.1.): Let X be a set of 

vectors in Rd such that there are integers a 1, ... ,as with 

(i) (x,x) ~ a. (mod p) , (x,x) E Z for all xEX , I 5 i 5 .s. 
l_ 

(ii) (x,y) - ai (mod p) for some i, 

Then card(X) 5 (d+s). 
s 

In chapter 6 , the same lemma is applied to the more natural 

question of few-distance sets modulo a prime in Delsarte spaces, a notion 



due to Neumaier [NI] and Delsarte. Since the basic text is not generally 

available, we repeat the basic theory of Delsarte spaces and association 

schemes in this chapter. As a corollary of the mod p bound for Delsarte 

spaces we obtain the result of Frankl and Wilson and also the following 

theorem: Let X be a collection of subsets from an n-set, such that 

for any Ix /'; y I ET , where T is the union of t non-zero 

residue classes mod p. Then card(X) 

This chapter finishes with a series of examples meeting this bound. Part 

of the work in this chapter is joint work with Singhi. 

In chapter 7 a relation between two-distance sets and a problem of 

Erdos is demonstrated. Isosceles sets are sets of points , such that each 

triple among them determines an isosceles triangle. We show that an 

isosceles set in Ed can be decomposed in a collection of "mutually 

orthogonal" two-distance sets. As a result the following bound is 

obtained (theorem 7.2.5.): Let X be an isosceles set in Ed, then 

card(X) s !Cd+l)(d+2) . Equality implies that X is a two-distance set 

or a spherical two-distance set together with its center. 

Crucial in the proof of the decomposition theorem is the following 

graph-theoretical proposition: Let the edges of the complete graph on n 

vertices be colored by k colors, such that 

(i) each triangle has at most two colors 

(ii) the induced graph on each color is connected. 

Then there are at most two colors. 

In chapter 8 , which contains joint work with Wilbrink and Kloks, 

the same proposition plays a key role in the study of the structure of 

graphs satisfying the following two regularity conditions: 

(i) There is a constant K, such that every maximal clique has 

size K. 

(ii) There is a constant e, such that for every maximal clique C 

and every vertex p not in C , there are exactly e vertices in C , 

adjacent to p. 

These graphs were introduced by Zara [Z] in an attempt to characterize 

polar spaces (in the sense of Veldkamp and Tits). The main result in 

3 
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this chapter is theorem 8.5. 11 : Let G be a coconnected Zara-graph of 

rank r, then the reduced graph of G, say G', is again a coconnected 

Zara-graph and the partially ordered set of closed cliques in G' is an 

Mr-space in the sense of Neumaier [N]. 



CHAPTER 2 

THE ADDITION FORMULA FOR Rp,q 

§2. I Introduction 

In [DGS] , the authors investigate few-distance sets 0n the sphere 

in Euclidean d-space, Rd. If a two-distance set is considered, then a 

"lifting" process results in a set of equiangular lines, either in Rd+l 

cf. [vLS] , or in Rd,l . In this way the 5 points of the regular 

pentagon correspond to the 6 diagonals of the icosahedron. This is one 

of the reasons to study the problem of few-distance sets and sets of lines 

with few angles in the more general setting of an arbitrary inner product 

space. 

If we want to apply the same techniques as in [DGS] we need a 

generalization of the addition formula for Gegenbauer polynomials. The 

addition formula reads as follows: 

c(d-2)/2(( )) 
yk k. x,y fk .(x)fk .(y) 

,1 ,1 

r.(d-2) /2 
Here _k is a Gegenbauer polynomial, with a scaling factor yk , 

while x and y are unit vectors in provided with the standard 

inner product (x,y). The { fk . } form an orthonormal basis of the space 
, l. 

of the homogeneous harmonic polynomials of degree k, with respect to the 

inner product 

<f,g> f f(x)g(x)dw(x) 
I S1 I S1 

Here S1 stands for the unit sphere in Rd . 

5 
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From this representation of the inner product the difficulty in deriving a 

generalized addition formula becomes apparent: In the case of an indefi

nite space we no longer have a compact unit sphere, so we have to define 

the inner product on the space harm(k) of homogeneous harmonic polynomials 

of degree k in d variables in a different way. To do this we introduce 

differential operators and the algebra of symmetric tensors ,cf. [BBDS] 

It turns out that the new inner product gives back the "old" addition 

formula in the Euclidean case, while in the indefinite case we still get 

Gegenbauer polynomials, the only difference being that the inner product 

on the space harm(k) is no longer positive definite. This fact enables us 

to improve the bounds for few-distance sets in indefinite space. In the 
d I most interesting case of hyperbolic s:pace, R ' , we obtain equality in a 

number of examples. 

The main objective in this chapter is to give the setting for the 

more general inner product. The application to few-distance sets is 

essentially the same as in [DGS]. 

§2.2. Polynomials and tensors 

Let V denote a real d-dimensional vector space and let 

I 2 d * (v ,v, ..• ,v) be any basis of V. Let S denote the algebra of 

polynomial functions on V; thus s* consists of the functions 

f : V ~ R that are represented by polynomials in the coordinates with 
I d respect to the basis (v, ... ,v ). Next let S denote the symmetric 

algebra on V , consisting of the symmetric tensors 

s = 

with s E R 
a 

being non-zero. 

Let Aut 

an element OE 

The group Aut 

and a=(a 1,a2 , ... ,ad) , only a finite number of the 

v denote the automorphism group of v. The action 

Aut V will be written in the form XEV 
(J 

EV ~ x 

v acts as an algebra automorphism group on both s 
according to the following rules. The image f(J of a polynomial 

is defined by f 0 (x) 
-1 

= f(x 0 ) The image of a symmetric tensor 

* 

s 
a 

of 

and 

f E 

s E 

* s 
s 

s 



is defined by 

(J 
s 

al I a ad d 
'I. sa"" (v ) ••. 0 (v )a 

a 

§2.3. Differential operators. 

To any vector w E V corresponds the directional deriv'ltive 

which is the linear operator on s* defined by 

3 
w 

7 

lim 
h+O 

-I 
h [f(x+hw) - f(x)] , ( 1) 

for and f E s*. We extend this definition to the whole algebra 

s 
(). 

}_ 

by associating the differential operator () 
s 

al ad 
l:sa3l ... ad , where 

() . 
vi 

to the symmetric tensor 

Note the property a = 3 a for all s and t in S. 
s©t s t 

A nonsingular linear pairing < I > between S and s* is defined by 

<slf> (3 8 f) (0) S E S f E S* . 

<s®tlf> = <sla f> . 
t 

(2) 

Let hom(d,k) denote the space of the homogeneous polynomials of degree 

k in d variables. For later use we prove the following lemmas. 

LEMMA 2 • 3 • I • For all x E V , and f E hom(d,k) we have 

k! f (x) 
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PROOF. For k=l the statement follows from the definition of <l f. 
x 

Indeed <x If> a f(O) = f(x) since f is linear. For k>l we have 
x 

k-l 
<0 x I a f> 

x 
(k-1) ! (axf) (x) 

Now if f is homogeneous of degree k then (a f) (x) 
x 

kf (x) since 

(d f) (x) 
x 

lira h-I [f((l+h)x)-f(x)] 
h-+O 

lim h-J ((J+lt)k-l)f(x) 
h-+O 

This finishes the proof. 

LEMMA 2.3.2. For all o E Aut V , s E s and f E s* we have 

<s[f> 

PROOF. First note that for X E v we have d fo = (a f) 0 
0 x x 

By induction on the degree of s we then can prove a fo ea f) o 
so s 

and this implies <s0 !f0 > = <slf> 

§2.4. Bilinear form spaces. 

D 

lJ 

Let B(.,.) denote any nondegenerate symmetric bilinear form on V. 

Then B induces a vector space isomorphism B: V-> v* (the dual of V), 

given by x-> B(x,.) for all x E V. This vector space isomorphism 

naturally extends to the algebra isomorphism B: S -> s* given by 

al 1 ad d 1 al d ad 
L:s a 0 v •.• 0 v -> I: s a B ( v , . ) ... B ( v , . ) 
a a 

It is clear from the definition that we have, for all x,y in V 



<xlBy> B(x,y) <ylBx> 

More generally we have 

LEMMA 2.4.1. <slBt> <tlBs> for s,t E S . 

PROOF. 
i i 

B(v,v)=<Pi 

Let 
1 2 d 

v ,v , ... ,v be an orthogonal basis of V , with 

Then <slBt> = 0 

we have, with <ji 

<slBt> 

and let 

t 

if there is an index i with a.lb. 
a. i i 

Il<ji. l: 
l 

d 
<ji II a. ! 

i=I 1 

d 
<P n b.! 
i=l l 

while if s 

Since tensors of the form 

proof is finished. 

constitute a basis for s 

9 

(3) 

t 

(4) 

the 
D 

The isomorphism B allows one to interpret the pairing in (2) 

between S and s* as an inner product on the space s* ; the defini-

tion of this inner product is as follows: 

<f,g> -I <B fig> for f,g E s* 

From (3) it follows that this inner product is symmetric, i.e., 

<f,g> = <g,f> • To any polynomial g E s* let us now associate the 

(5) 

differential operator 3 defined by 
g 

a 
g 3 -1 

B g 
Then multiplication 

and differentiation with respect to a given polynomial are adjoint opera

tions with respect to the inner product defined in (5) , in the sense that 

<gh,f> <h' 3 f> g 
for f,g,h E s* (6) 



JO 

Let Aut B denote the automorphism group of the bilinear form B, i.e., the 

subgroup of Aut V containing all o such that B(x0 ,y0 ) = B(x,y) for 

all x,y E V. Using <s 0 if0 > = <slf> together with the property 

B(s0 ) = (Bs) 0 for all o EAut B , one can show that the inner product 

defined in (5) is invariant under Aut B, i.e., 

THEOREM 2.4.2. o ~Aut B mid f,g E s*.o 

§2.5. Harmonic polynomials. 

We now fix a bilinear form B of inertia (p,q), with p+q = d, so 

that 
1 d 

B is nondegenerate. Thus for a suitable basis v , ... ,v of V 

we may write 

Let 

B(x,y) 

al 1 ad d 
s=®v ... ®v Then the polynomial 

f Bs 
a I+ .• +ad 

(-1) p+ 

corresponding to s is: 

Hence, given a polynomial g , we may write the associated differential 

operator as follows: 

() 
g 3 -I 

B g 

Here 3. stands for 
]_ 

form: 
3 i 

v 

g (3) with 3 

The inner product 

<f,g> (f(3)g) (O) . 

(5) takes the following 

Let us mention in particular the differential operator associated to the 

quadratic form B itself: S(x) := B(x,x) : 
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aS is called the Laplacian (associated to the bilinear form B). 

Define the space ha~ to consist of the polynomials f ~ s* which 

are homogeneous of degree k and satisfy the Laplace equation aSf = 0 ; 

thus 

Ker aSn hom(d,k) • 

Let us mention the following important decomposition (cf. [VJ page 446) 

of hom(d,k) into the kernel and the image of the operator sas 

hom(d,k) har~(k) ~ S(.)hom(d,k-2) 

The orthogonality of the summands on the right hand side of (7) is an 

immediate consequence of (6) • When no confusion is possible we shall 

write hom(k) instead of hom(d,k). 

The monomials a 
x with 

d 
i:: 

i=l 
a. = k 

]_ 

orthogonal basis for the space hom(k); furthermore we have 

a a 
<x ,x > 

a 1+ ••• +ad 
(-1) p+ 

d 
ll 

i=I 
a.! 

1 

form an 

(7) 

as a direct consequence of (4). This leads us to the following decompo

sition of hom(k) 

hom(k) 

d 
Here horn+ (k) <x 

a 
L = 0 (mod 2)> a. 

i=p+I 
]_ 

d 
and horn (k) a 

L I (mod 2)> <x a. -
i=p+I 1 
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Clearly the restriction of the innerproduct to hom+(k) is positive 

definite, while the restriction to hom-(k) is negative definite. We 
+ 

will show that ha~(k) splits in a similar way into subspaces ha~(k) 

and hann;(k) , and we shall compute the dimensions of these subspaces. 

Let H denote the projection 

pect to the decomposition 

H: hom(k) ~ ha~(k) , with res-

hom(k) harll\i(k) @ S(.)hom(k-2) . 

LEMMA 2.5.1. If f E hom+(k) then also 

f E hom-(k) implies Hf E hom-(k) . 

PROOF. Analogous to [VJ , page 445 (13), one can prove that Rf 

may be written in the following form: 

Rf 
Lk/2J 

l: 
i=O 

(8) 

for some constants co, ... ,cLk£2J It therefore suffices to show that 

sa 6f is in hom+(k) , resp. horn (k) 
' 
if f is. This however follows 

x~<l~f hom+(k) -
from the fact that is in 

' 
resp. horn (k) , if f is, 

]_ J 
for all i ,j. 

The lemma gives us the following decomposition: 

ha~(k) 

where hart{ (k) := 
£ 

horn (k) n ha~(k) for E = +/- • 

Finally we shall use this information to determine the dimensions of 

harm;(k) and hann;(k), and hence the inertia of the inner product. 

THEOREM 2.5.2. The dimensions of the spaces considered in this 

section are as follows: 

D 



(ii) 

(iii) 

(iv) 

dim ha=i,(k) 

k/2 
dim hom+(d,k) = L 

j=O 

dim hom-(k) 
(k-1)/2 

r 
~j'50 

(p+k-2~-l)(q+2~-1) k-2] 2] 

( p+k-2j-2)(q+2j) 
k-2j-1 2j+I 

(v) dLm harm;(k) = dim hom+(d,k) - dim hom+(d,k-2) = 

(Vi) 

k~2 (p+k-2~-l)(q+2~-I) _ (k-i)/ 2 (p+k-2j-3)(q+2j-I) 
j=O k-2J 2J j=O k-2j-2 , 2j , 

d!ilm harm;(k) dim hom-(d,k) - dim hom-(d,k-2) 

(k-i)/2 (p+k-2j-2)(q+2j) -
j=O k-2j-I 2j+I 

(k-i)/ 2 (p+k-2j-4)(q+2j) 
j=O k-2j-3 ,2j+l, 

PROOF. (i) is well-known ; (ii) follows from the decomposition 

hom(d,k) = har~(k) l B(.)hom(d,k-2) 

explicit basis of hom+(k): Write a= 

To see (iii) we construct an 

where a= (a 1 , .. • , a p+q) , 

13 

and (ap+I' ... ,ap+q) 

d 

a a+ a_ and 
Then x = x .x 

iff 

a = 

d 
E a. = k 

]_ 

i=l 

k/2 

and r 
i=p+I 

a. = 0 (mod 2) . Hence 
]_ 

r dim hom(p,k-2j).dim hom(q,2j) . 
j=O 

The proof of (iv) is entirely similar. Statements (v) and (vi) follow 

from the following decomposition: 

homE (d,k) E E 
har~(k) @horn (d,k-2) E= +/- D 
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§·2.6. The addition formula. 

Let B be a bilinear form of inertia (p,q) . For any vector x E V 

the map f + f(x) defines a linear functional on the space har~(k) ; 

Hence there exists a unique polynomial ; E ha~(k) with the following 

"reproducing" property : 

<x,f> f (x) for all f E har~(k) (9) 

Note that for all a EAut B we have a 
x since for all f E har~(k) 

-1 
<x0 ,f >= f(x0 ) f 0 (x) <';?,f>. 

Next write q(x,y) ;(y). Since x0 = i 0 we have 

q(x,y) for x,y E V and a EAut B • 

Consider an "orthonormal" basis {fk,i;~,j I i=I, .. ,µk;j=I, .. ,vk} , 

i.e., a basis of ha~(k) such that 

<fk .,fk >:=o. <1t. .,2. >=-o. 
,1 ,u 1U -k,J -k,V JV 

<fk . ,2. .>··= 0 for all i,j ,u,v 
,1 -k,J 

The harmonic polynomial x has the following expansion in this basis 

µk 
x = L <x,fk .>fk . -

i=I ,1 ,1 

"k 
L 

j=l 

Combining this with (9) yields 

µk 
q(x,y) L fk . (x) fk . (y) -

i=I ,1 ,1 

"k 
L ~ . (x)gk . (y) 

j=I ,J ,J 

(10) 
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Next we show that we may identify the function q(x,y) in terms of 

the Gegenbauer 

[x,y] := B(x,y) 

and f E hom(k). 

polynomial of order (d-2)/2 and degree k in 
k 

By lemma 2.3.1. we have<® x,f> = k!f(x) 
k 

The polynomial corresponding to © x is 

k 
[ x,.] E hom(k) 

hence 

k 
<[x,.] ,f> k!f(x) . 

the variable 

for x E V 

As before, let H denote the projection H: hom(k) + har~(k) , according 

to decomposition (7). From the uniqueness of the harmonic polynomial x 

and the orthogonality of decomposition (7) we then have : 

x 
k 

k! H[x,.] . ( 1 1) 

For the explicit determination of x we need the following identity for 

f E hom(k), which is easy to verify (cf. [VJ page 446): 

In view of (8) we may write 

k 
H[ x,.] 

i i k 
L: ~\B a6 [x,.] 

i=O 

m 

with a0 = 1 and m = Lk/2J 

(12) 

To determine the other coefficients ai , apply a6 to both sides and use 

(12). From this one can derive the following recurrence relation: 

ai + (2i+2)(d+2k-2i-4)ai+l 0 • 

Together with the following observation 
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i k k! k 2· . 
as [x,.J = (k-2i)! [x,.J - 161(x) 

we obtain along the lines of [VJ page 458 : 

where yk = [(d-2)(d) ... (d+2k-4)J-l , and ~d-2 )/ 2 is a Gegenbauer 

polynomial. The Gegenbauer polynomial cP is defined as follows 
m 

m m-2 m-4 
cP(t) = _?_-i-(p(+m))~tm- m(m-12!.___ + ~(m-l)(m··2)(m-3)t ± •. ] 

m m.r P 22(n+m-1) 2 .l.2.(p+m-l)(p+m-2) 

(cf. [VJ page 458). An alternative definition is the following ([VJ p. 492) 

l: 
m=O 

We now may combine (10),(11) and (13) to obtain the generalized 

addition formula. 

THEOREM 2. 6 . 1 . 

"k 
fk . (x) fk . (y) - l:; g. • (x) g. • (y) 

' 1 ' 1 j = 1 -K 'J -K 'J 

Here µk = dim harm;(k) "k = dim harm;(k) (cf. theorem 2.5.2) , while 

yk = [ (d-2)d ••. (d+2k-4) J-l . 

§2.7. Applications to few-distance sets in Rp,q. 

In this section we shall use the generalized addition formula and 

the knowledge of the inertia of the inner product on ha~(k) to obtain 



bounds on the size of 

particular Rp,l and 

s-distance sets of unit vectors in 
RI ,q . 

and in 

where 

there 

Since 

LEMMA 2.7.1. Let A be a v x m matrix, I t = diag(ls,-lt), 
s, 

s + t = m , and suppose AI At 
s,t I 

v 
Then v :s; s • 

PROOF. Suppose that v > s • then certainly rank (A) > s, 

exists an X E RV with the property that (xtA)I (At_x)< 
s,t 

AI At I this implies that xtx < 0 contradiction. s,t v 

Let X be a set of points ,on the "unit sphere" of V Rp'q: 

S := {x E Rp,q I B(x,x) I} 
p,q 

and 

0 

with card(X) = v. Again we shall write [x,y] for B(x,y). 

Let A:= 

A' := A 

Hx,yJ I 

u{ I} 

Fk 

Gk 

D 
Cl 

x,y E X 
' xh} and suppose that r/. A. Also put 

We define the following matrices : 

Fk(x,i) [ fk . (x)] 
,i XEX i=I, •. ,vk 

Gk (y ,j) = [gk . (y)] 
j=l, .. ,vk ,J yEX ; 

[d (x,y)J X 
Cl XE yEX if [x,y] = a , 

0 otherwise. 

As a direct consequence of the addition formula the following holds 

C'~(d-2) /2 
Yk-k 

<P(t) = JI t-a 
ClEA I-a 

Define the "annihilator polynomial" <P of X: 

17 
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and expand ~ in the "normalized" Gegenbauer polynomials Qk 

where s = card(A) . 

Then s t t 
l: ~k{FkFk - GkGk} l: ~ (a)D I 

k=O m:A' a v 

i. e., 
s 

H . E9 ~ I Rt I 
k=O k µk,vk v 

[Fo;F 1 ;Go;Gl; ;F d;Gd] 
µk vk 

Here H ... and I diag(I , (-l) ) 
µk,vk 

The following theorem is now an irrnnediate consequence of lerrnna 2.7. I.: 

THEOREM 2.7.2. Let X be a set oj' unit vectors in Rp,q, such 

that, for x,y E X, [x,y] asswnes only s different values, all 

different from l. Let ~ l: ~kQk be the expansion of the annihila-

tor polynomial in the normalized Gegenbauer polynomials. Then 

s 
card(X) :>: l: Ok where Ok µk if ~ > 0 

k=O 
Ok vk if ~ < 0 

o 0 if ~. 0 D 

Here dim harm; (k) , dim harin:;(k) (cf. theorem 2.5.2). 

§2.8. Examples. 

In this section we shall compute the bounds explicitly for the case 

p=d-1, q=I. According to theorem 2.5.2. , µk and vk have the follo

wing values: 

dimharni;(k) ( d+k-2) 
k-1 

( d+k-3) 
k-J I • 

Hence we get the following absolute bound: 



THEOREM 2.8.1. Let X be a set of unit vectors in Rd-l,l such 

that the inner product between different elements of X assumes only s 

different values, all different from I, then 

( d+ss-1). card(X) '.". 

s 
PROOF. Card(X) '.". E µk 

k=O 
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D 

In certain cases we can improve the bound, using the expansion of 

the annihilator polynomial in Gegenbauer polynomials explicitly. We give 

the first Gegenbauer polynomials: 

I 2 1 
Q2(t) = 2 (x - d) 

Q3(t) 
1 3 3 
6 (x - d+2 x) 

Q4(t) 
I 4 6 2 3 ) 
24 (x - -- x d+4 + -(d+2) (d+4) 

Q5(t) 
l 5 10 3 15 

120 (x - -- x + (d+4) (d+6f x) d+6 

EXAMPLE 2.8.2. Let X be a set of unit vectors in R9 ' 1 with 

inner products {O,-!,+!}. The annihilator polynomial in this case is 

~(t) ~t(t+~)(t-!) 

Sinde d=lO the annihilator polynomial is an exact multiple of Q3. 
+ 

Hence the bound of theorem 2.7.2. yields card(X)'.". dim harm9 1 (3) = 165 

Equality is realized by the following set of vectors in 

RIO,!, in the orthoplement of the vector (3;1 JO) 

8 (O;l,-1,0) and 

, 

There are 90 vectors of the first type, which fall in 45 antipodal 

pairs, and 120 of the second type. This system can be regarded as an 

extension of the rootsystem E8 in the following representation : 
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7 ::_ (O;l,-1,0) and 
3 6 ::_ (1;1 ,o) 

in the orthoplement of the isotropic vector (3;1 9) in R9 • 1 • 

EXAMPLE 2.8.3. Let X be a set of vectors with inner products 

{+l/3,-1/3} in R9 ' 1. The annihilator polynomial (9t2-l)/8 is a multiple 

of Q2• We get card(X) 5 dim harm; 1 (2) = 36. Equality is realized by 

the following vectors in R9 • 1 in the orthoplement of (212;1 9) : 

This system can be seen as a subsystem of the previous example in the 

following way: Fix a vector and consider all vectors with inner product 

+! with this vector. Now project this system on the orthoplement of the 

fixed vector. 

. 3, I . h NON-EXAMPLE 2.8.4. Let X be a set of vectors in R , wit 

inner products {0,::_!,::_!/3}. Then ~(t) = t(4t2-1)(4t2-3)/3 is an exact 

multiple of Q5 . From this we get that card(X) 5 21 • However this 

bound cannot be achieved, as was established by Bussemaker using a 

computer search. 

EXAMPLE 2.8.S. Let X be a set of vectors in R25 • 1 with inner 
' 

products {O,+!,+!} • Then ~(t) is a multiple of Q5 and we get 

card(X) 5 ( 2;). -This example is analogous to example 2.8.2. in the follo

wing sense. Example 2.8.2. is a system of vectors that is an extension 

of a (1,1)- dimensional lower extremal system. 
. 24 . d d . . . f h system in R in ee exists, consisting o t e 

In this case the extremal 

( 2 ~) antipodal pairs of 

vectors closest to the origin in the Leech lattice. 

can be extended in a certain sense to (2;) vectors in 

Whether this system 

R25 • 1 is unknown. 

EXAMPLE 2.8.6. Let X be a set of vectors in R24 • 1 , with ianer 

products {0,::_1/3} . The annihilator polynomial is a multiple of Q3 , 

and the bound yields 2600 = (26 ) . There do exist 2300 vectors with the 
3 23 prescribed inner products in R • So far the best we can realize in 

R24 • 1 is 2324, viz. the following set of vectors: ( 8;42 ,o22 ) ,giving 

( 2 ~) vectors, and the vectors (0;(::_1) 24) where the +I positions corre

spond to a word in the extended binary Golay code, 2048 pairs. 



CHAPTER 3 

EQUIANGULAR LINES IN Rd,! 

§3.l. Introduction. 

Let Rd,! be the (d+l)-dimensional vector space over the reals, 

provided with the following inner product: 

21 

If two lines through the origin span a plane on which the inherited inner 

product is positive definite, we can define their angle to be arccos[ (x,y)[ 

where x and y are unit vectors along the lines. A set of equiangular 

lines is a set of lines, such that for each pair the angle is defined and 

equal to the same value, arccosa say. Using an argument based on an idea 

of Koornwinder [K], and on eigenvalue techniques of van Lint and Seidel 

[vLS] we obtain sharp bounds on the cardinality of sets of equiangular 

lines in Rd' 1• 

§3.2. The theorem 

THEOREM 3.2.1. Let X be a set of equiangular lines in Rd,! at 

angle arccos(a) , then 

(i) if d < l/a 2 then 

(ii) if (d+l)a 2 ?: I , then card(X) $ !d(d+I) , 

and equality in (i) can only be realized if the set is in a positive 

definite subspace of dimension d • Also, an infinite series of sets 

realizing equality in (ii) exists. 

PROOF. Let U be a set of unit vectors, one along each line of X. 

The Gram matrix G of the set u has at most d positive eigenvalues. 
-I 

I) eigenvalues than or equal 
-1 Hence C = a (G - has v-d less to -a 

with v = card(X). Call the other eigenvalues A I' "2' .. ,Ad 
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Since the matrix c has zeros on the diagonal and +l elsewhere 

0 tr C s Al + "2 A -
v-d + ... + 

d a 

v(v-1) tr c2 2 A2 
l 

+ ... + A2 
d 

v-d 
+ --2 

a 

As a consequence the following inequalities hold: 

(v-d) 2 
---2- s 

a 

In case d < l/a2 this is equivalent to 

v s 2 2 d ( l -a ) / ( l -da ) . 

v-d s d(v(v-l)--2) 
a 

Note that equality can only occur if Ad+l' ... '"v are all equal to -1/a 
and this implies that the subspace <U> is actually positive definite. 

To prove the second part we proceed as follows. For each u E U 
define F : Rd' I -+ R by 

u 

2 2 Fu(x) = (u,x) - a (x,x) 

and define d+I additional functions 

(x, x) 

We will show that the set F = {F ,f0 ,f. I i=l, .. ,d ,u EU} is indepen-u 1 

dent. This implies our claim, since all these functions are homogeneous 

of degree 2 and therefore card(F) s 4(d+l)(d+2). 

Suppose there is a dependency relation for the functions in F 

a F (x) + 
u u 

d 
L aifi(x) + a0f 0 (x) -

i=l 
0 • (I) 

2 For u,v E U always F (v) = (I-a )o , hence when we insert u E U in 
U UV 

this relation the following results: 
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2 a (I-a ) + I a.u0u. + a0 
u i=I i i 

d 
0 (2) 

Comparing coefficients of in (I) yields 

2 2 
0 I au(uo + a ) - ao 

UEU 
(3) 

2 2 
I a (u. - a ) + ao 0 

UEU u 1 
(4) 

-2 l: auuOui + a. 0 (5) 
uEU 1 

Now add (3) and (4) 

l: 
2 

I 
2 

auuO a u. 
UEU UEU u 1 

Summation of both sides of this equation, and putting (u,u)=I yields: 

2 2 
d l: auuO l: au (l+u0) 

UEU uEU 

From (3) one obtains 

(a2 l 
l: (6) ao = - d+I) a 

UEU u 

Now if (d+l)a2 = this implies a0=0 . Otherwise we can multiply (l) by 

a and sum over u (using u 
(5) and (6)) to obtain 

2 2 d 
2 d+l 2 

l: au ( 1-a ) + ~ L: a. + (d+l)a2-J ao 
UEU i=I 1 

This is a sum of squares since (d+l)a2 - I > O, 

0 

hence all a. 
1 

are 0. 

2 
If (d+l)a = I we get the same relation except for the term involving a0 
and we are done as well. So card(U) = card(F)-(d+l) ~ ~d(d+I) . D 

An infinite series of sets realizing the bound is provided by: 
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In Rd+l,l the vector w=(212;1d+l) satisfies (w,w) = d-7 . Therefore 

we may identify wl. with Rd' 1 for d > 7. The set of ~d(d+l) vectors 

of the form 

is in wl. and spans a set of equiangular lines at arccos(l/3). For d=7, 

wl./<w> is isomorphic to R7 and the construction yields 28 equiangular 

lines. More on this system can be found in [LS] and [vLS] This represen-

tation is due to Seidel (unpublished). For a=l/5 , d=23 , there exists a 

set of 276 lines (cf. [LS]). With the help of the Steiner system 

4-(23,7,1) they can be nicely described as a set of lines in R23 • 1 as 

follows: (For details about Steiner systems see [CvL] ) 

23 vectors (3 2;-1 1 ,1 22 ) 

253 vectors : ( 2;1 7 ,o 16 ) 

where the positions of the seven ones in the last type corresponds to the 

blocks of the Steiner system 4-(23,7,l). 

Related to this example are sets of lines at arccos(l/5) in R22 

R21 realizing the bound in part (i) of the theorem. For a < l /5 

case of equality is known. 

REMARK 3.2.2. In the case (d+2)- 1< a 2 < (d+l)-J we have 

2 2 d(l-a )/(1-da ) < ~d(d+I) . 

and 

no 

This set of values for a is excluded however by the following theorem. 

THEOREM 3.2.3. If v < 2d+2 then 
-I 

a is an integer. 

PROOF. This is essentially theorem 3.4. from [LS], due to Neu

mann. Let A= a- 1(G-I) where G is the Gram matrix of U. Then A 

is an integral matrix, and has eigenvalue -a-I with multiplicity m=v-d-1. 
-I 

Therefore, -a is an algebraic integer, and every algebraic conjugate is 

an eigenvalue with the same multiplicity m. Since 2m=2v-(2d+2) > v, 

there is at most one eigenvalue of multiplicity m, which implies that 
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-1 -I 
-a is rational, and hence an integer •. (In fact one can prove that a 

is an odd integer.) 
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CHAPTER 4 

FEW-DISTANCE SETS IN Ed AND Hd 

§4. I. Introduction. 

Using Koornwinders argument one obtains the same bounds for s-dis

tance sets in Ed , cl-dimensional Euclidean space, and Hd , cl-dimensional 

hyperbolic space , viz. 

In both cases it is possible to reduce the bounds using the trick of finding 

an additional set of independent functions. As a consequence we get the 

following 

THEOREM 4. I. I. Let X be an s-distance set in 01' Hd , then 

card(X) D 

§4.2. Preliminaries and notation. 

The vector space Rd together with the usual metric, coming from the 

inner product (x,y) = x 1y 1 + .•• + xdyd, will be called Ed ,i.e., 

cl-dimensional Euclidean space. By Hd we denote d-dimensional hyperbolic 

space. Hd can be realized as follows Let Rl,d be a (d+l)-dimensional 

vector space over R provided with the inner product 

The points of Hd are the I-dimensional subspaces <X>, with <x,x> > 0. 

Distance is defined by 

d(<X>,<y>) h I <X,y> I . arcos ~~-1~~-1 

<X,X>2 <y ,y>2 



If we take for x and y unit vectors with positive first coordinate, 

this becomes d(x,y) = arcosh(-<x,y>). Vectors in Rd or RJl,d will be 

denoted by u,v,x,y,z, where x=(x1,x2 , ••• ,xd) 

By b,c, •. ,g we denote vectors of length d or 

integral entries. 

or x=(x0 ,x 1, ..• ,xd) . 

d+J with nonnegative 

The monomial is denoted by the symbol e 
x An 
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appropriate greek letter will denote the sum of the entries of an integral 

vector (S = b0 +b 1+ ... +bd etc.) . Also 

Let o(j) be the elementary symmetric function in the variables a 1 , •• , as' 

of degree j. So 

s 
L: o(j)ts-j 

j=O 

Denote by CJu(j) the elementary symmetric function o:fi degree j in the 

variables (u,u) - ai ; i=l, ... ,s • So 

Note that 

s 
II (t+(u,u)-ai) 

i=I 

s 
i: 

j=O 
o (j)ts-j. 

u 

(Ju (j) 
j s-i i j-i 
L: ( •• ) (-1) (u,u) a(i) 

i=O J-i 

Finally if V is a vector space with basis A , we write p= l: [p,aJa 
aEA 

for p E V , so [p,a] are the coordinates of p relative to the basis A. 

§4.3. The bound in Euclidean space. 

THEOREM 4 . 3. 1 . Let X be an s-distance set in Ed then , 

card(X) 
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PROOF. Let a 1,a 2 , .•. ,as be the squares of the distances that occur 

in X . For each u E X define the polynomial 

Fu (x) 
s 
I! { (x-u, x-u)-a i} 

i=I 

s 
I! { (x,x)-2(x,u)+(u,u)-a.} 

i=I 1 

For u,v E X 

mials F (x) 
u 

we have F (v) = 0 iff u#v . This implies that the polyno
u 

are independent. We may expand Fu as follows: 

F (x) 
u 

s . 
E a (s-j)[(x,x)-2(x,u)]J 

j=O u 

(I) 

The summation in (I) is over all nonnegative integral d-vectors g and 

nonnegative integers E , such that E+g 1+g2+ +gd ~ s. 

The F are linear combinations of the functions in the set 
u 

0 b {(x,x) x I o+ s = s or o= 0 and s <S} 

The following bound is a direct consequence of this: 

card(X) 

We now proceed to show that in fact the set 

is independent. This yields the desired result 

card(X) + (d+s-I) ~ 
s-1 

Suppose then, there is a dependency relation: 

b E a F (x) + E ~x 
uEX u u b:S<s 

0 (2) 



LEMMA 4.3.2. Relation (2) irrrplies 

with 13 <s 
b 

a u 
u 

0 
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PROOF. We shall use induction. First consider the part of (2) that 

is homogeneous of maximal degree 2s in x. From the explicit expansion 

(I) of Fu we see that this only happens for £ = s, o = 0 , and we 

obtain a 
u 

= o. 

b 
a u 

u 

So the lemma is true for 

0 ' for all b with 

13 = 0. Now suppose 

0Sl3<t<s. 

Consider the part of (2) that is homogeneous of degree 2s-t in x. 

This yields 

Since 

a 
u £;g 

2£+y=2s-t 

0 . 

a (s-£-y) 
u 

( s ) (u u)s-E-y ( s-1 ) ( )s-E-y-1 
s-£-y ' - s-E-y-1 u,u + 

we may, after changing the order of summation, use the induction hypothesis: 

Hence 

~ s-£-y-i ug 
l. au(u,u) 

uEX 

l: 
£;g 

2£+y=2s-t 

0 

Finally, substituting x=v , multiplying by 

all v E X yields: 

for all i > 0 . 

and summing over 
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L: 
s;g 

2 E:+ y=2s-t 

0 • 

This is a sum of squares, with all coefficients of same sign, therefore 

0 if 2s-t 

and in particular 

l: if y t . D 
UEX 

We now proceed with t~e proof of the theorem. From (2) it follows in par-
ticular, with Tf = rr (-a.) 

i=I 1 

+ l: 
b 0 a Tf ~u u 

b: S<s 

The second term of the left hand side is O, by lemma 4.3.2., so finally 
we arrive at a 

u 
0 for all u E X. This finishes the proof of 

theorem 4. 3. I . 

4.4. The bound in hyperbolic space. 

THEOREM 4.4. 1. Let X be an s-distance set in then 

D 

PROOF. We use the representation of Hd described in 4.2., ~ach 
point will be identified with a unit vector in Rl,d with positive first 
coordinate. Let a 1 ,a2 , ... ,a8 denote the different values of <u,v> for 
distinct u,v E X. For each u E X define 

F (x) 
u 

s 
rr (<u,x> - ai) ' 

i=l 
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and consider these polynomials as elements of the ring 

Since 
2 2 2 in this ring, a basis is formed by the set XO l+x 1+ +xd 

{x 
e 

I {O,I}} The F independent and they are linear combina-eo E are 
u 

tions of the basis elements e with From this it follows that x E $ s 

card(X) 

In this case we will show that in fact the following set is independent: 

e 
{Fu (x) ' x I UEX ' E $ s ' eo I} 

From this we get card(X) We shall write 

E. 
]_ 

{e I c 5 s , e 0 i} , i=O, I E 

f e Also, [x ,x] will be abbreviated by [f,e] (see 4.2. last line). 

Suppose then we have the following dependence relation: 

Then, with 1f 

L: 
UEX 

a F (x) + 
u u 

d 

e 
a x 

e 
0 • 

TI (I-a.) , we have in particular 
i=I i 

a 1f + 
u 

e 
a u 

e 0 ' for all 

(3) 

(4) 

The F (x) may be represented relative to the basis {xel eEE} as follows: 
u 

F (x) 
u 

<P s- f f q,-f o 
L: (f)a(s-q,) (-1) <Pu x (-1) 

f:<fi5S 

L: (-1) 8 -fOa(s-q,)(<P)uf [ L: [f,e]xe] 
f 

f:<fi5S eEE 
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Note that [f ,e] = 0 either for all eEE0 or for all eEE 1 depending on 
whether f 0 is odd or even. So, comparing coefficients of the respective 
basis elements we get: 

(-l)s-l i:: a i:: c:)[f,eJufo(s-~) 
UEX U f;~'.Ss 

and 

0 

+ a 
e 

0 (5) 

(6) 

Multiplication of (5) by e 
v and of (6) by and sunnnation 

over e E E yields: 

Since l: [f,e]ve 
eEE 

f 
v this together with (4) implies 

s-1 ~ f f (-!) l: (f)o(s-~) l: a u v 
f:~'.Ss uEX u 

- a 11 
v 

0 • 

Finally, after multiplication by a 
v 

and sunnnation over all vEX 

(-l)s-l l: (:)a(s-~)[ Z auuf]Z 
f:~'.Ss uEX 

Now (-1)811 > 0 since a. > for all i. 
]. 

of squares, and a = 0 for all UEX. This u 
theorem 4. 4. I . 

- 11 i:: 
uEX 

2 
a 

u 

Therefore 

finishes 

we 

the 

o, 

have again 

proof of 

a sum 

D 
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CHAPTER 5 

FEW-DISTANCE SETS MOD p 

5.1. Introduction. 

In [FW] the authors proved the following theorem: 

THEOREM 5.1.1. Let F = {F.li EI} be a aolleation of subsets of an 
l. 

n-set, and let µ0 ,µ 1, ••• ,µs be distinct residues modulo a prime p, suah 

that IF. I 
l. 

h, 1 Sh Ss 

k , with k = µ0 (mod p) , and 

Then !Fi s (n) • 
s 

IF.nF.I = µll.(mod p) 
l. J 

for some 

In this chapter we shall generalize this theorem to arbitrary bilinear form 

spaces in two ways. Central to the proof is the following lemma, where ZM 

denotes the set of all Z-linear combinations of elements from the set M. 

LEMMA 5. 1.2. Let M be a nonempty finite set of real numbers. If 

M c pZM for some prime p, then M = {O} • 

PROOF. QM is a finite dimensional vector space over Q, the field 

of rational numbers. Write the elements of M as vectors expressed in 

some fixed basis of this vector space. For 

minimal exponent of p in all coordinates of 

m E QM let v (m) be the 
p 

m relative to this basis, 

where the exponent of p in 0 is to be taken +00 • Since 

v (m+n) ~ min(v (m),v (n)), we have the following : p - p p 

Hence M 

min v (m) 
mEZM p 

{O} . 

min v (m) 
IDEM p 

min v (m) 
mEpM p 

5.2. The mod p-bound , first version. 

I + min v (m) 
mEM p 

Let V = Rd be equipped with a bilinear form B , say 
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B(x,y) 

THEOREM 5.2.1. Let X be a set of vectors in V such that there 

are a0,a1, ••• ,as E Z all distinct mod p with 

(i) B(x,x) a0 for all X E X 

(ii) B(x,y) = ai(mod p) for some i, 

card(X) s (d+s-1) + (d+s-2) 

S i S s if x f y E X; 

then d-1 d-1 

PROOF. Let Pol(s,d) denote the set of all polynomials of degree at 

most s in d variables restricted to the "sphere" B(x,x) = a0 . Then 

dim Pol(s,d) (d+s-1) + (d+s-2) (unless 
d-1 d-1 q=O or d, and a0 ~ 0 resp. 

s 
a0 s O). Again we associate to x EX the polynomial f (y)= TI ((x,y)-a.) 

x i=I 1 

where (x,y) = B(x,y) We then have : 

f (x) ¥ O(mod p) 
x 

f (y) = O(mod p) x 

for all x E X 

for X f y E X • 

Assume there is a relation 

yields: 

L m f O. Inserting xEX in this relation 
XEX x x 

- L m f (x) E pZM 
yf x y y 

where M = {m I x E X} 
x 

Since f (x) ¥ 0 (mod p) this implies that 
x 

mx E pZM for all x hence Mc pZM. Lennna 5.1.2. now yields that 

M = {O}, i.e., the polynomials are independent. This finishes the proof. D 

5.3. The mod p-bound second version. 

THEOREM 5.3.1. Let X be a set of vectors in V such that there 

are a 1, .•. ,as E Z with 

(i) B(x,x) E Z and B(x,x) ¥ a. (mod p) for all 
l. 

X E X and s i s s; 



then 

(ii) B(x,y) = ai(mod p) 

card(X) ::; (d+s) 
d 

for some 
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i , I ::; i ::; s and x#yEX 

PROOF. The proof is entirely similar to the previous one. The only 

difference is that one takes instead of Pol(s,d) the space of all polyno

mials of degree at most s, i.e., no longer restricted to the "sphere". 

EXAMPLE 5.3.2. Let X be a set of vectors in Rd all with norm 17. 
Assume the inner products that are allowed are 0,2,3,5,6. The bound in 

theorem 5.2.1. with p=3 yields card(X)::; !d(d+3). So far the best 
,I 

bound was 

For more significant and realistic examples we refer to the end of the next 

chapter. 
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CHAPTER 6 

ASSOCIATION SCHEMES, DELSARTE SPACES AND THE MOD p-BOUND 

§6.J Introduction. 

The theorem of Frankl and Wilson of the previous chapter deals with 

collections of k-subsets of an n-set, i.e., sets of points in the 

Johnson scheme J(n,k). This scheme as well as the Hamming scheme are 

examples of Q-polynomial association schemes. These schemes have central 

properties in common with finite dimensional projective spaces over the 

real or the complex numbers. Neumaier [NI] proposed a common generaliza

tion which he calls Delsarte spaces. It is our aim in this chapter to 

present the basic facts concerning association schemes and Delsarte spaces, 

to prove the generalization of Frankl and Wilson's theorem for Delsarte 

spaces and to give examples meeting the bound, in particular for the 

Hamming scheme. 

§6.2. Association schemes. 

Let X be a finite set with cardinality n. An s-class associa

tion scheme on X is a partition of X x X into s+I symmetric relations 

r0 ,r 1, ••• ,r8 having the following properties : 

(i) ro is the identity 

(ii) There are constants k=O, I, .•• ,s such that for all XEX: 

(iii) There are constants k 
a .. ' i ,j ,k 0,1, ... ,s with V(x,y)Efk: 

The a~. 
l.J 

valencies. 

l.J 

k [{z Ex I (x,z) Er./\ (z,y) Er.}[= a .. 
l. J l.J 

are called the intersection numbers of the scheme, the vk the 

Note that (iii) implies (ii) since vk = ~k 
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Another way to characterize the defining properties of an association 

scheme is by means of the adjacency matrices A0 , ..• ,As defined by 

Ai (x,y) if (x,y) E r i 

0 otherwise 

Since r 0 is the identity AO I. The ri partition X x X , hence 

Property (ii) 

+ ... +A 
s 

J 

and (iii): A.A. 
]. J 

Since the relations rk are symmetric , so are the matrices ~ . The 

vector space <A0 ,A1, .•• ,As>R is therefore a commutative algebra called 

the Bose-Mesner algebra of the association scheme. 

EXAMPLES 6.2.2. Let X be the collection of all k-subsets of an 

n-set. Put (x,y) E ri if lx~yl = 2i, for i=O,l, ..• ,k 'where k $ ~n. 

This defines an association scheme called the Johnson scheme J(n,k). This 

scheme has the following intersection numbers 

h 
a .. 

l.J 

Next let X be the collection of all subsets of an n-set , and put 

(x,y) E ri if lx~yl = i, for i = 0,1, ... ,n. This association scheme 

is called the Hamming scheme H(n,2) and has the following intersection 

numbers: 

h a .. 
l.J 

if i+j+h is even , 

0 otherwise . 

§6.3. The Bose-Mesner algebra. 

An important role in the theory is played by the basis of orthogonal 

minimal idempotents (cf [D],[BM]). They are precisely the projectors on 
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the common eigenspaces of the matrices A0 ,A1, ... ,As' and are denoted by 

The Bose-Mesner algebra is also closed under 

Schur (or Hadamard) multiplication, defined by AoB(x,y) = A(x,y).B(x,y) . 

This implies the existence of constants 

Moreover b~. ~ 0 f 11 · · k · 1-J or a i,J, since 

E.®E. which is positive semidefinite. 
]_ J 

parameters. Summarizing 

(i) E.E. o .. E. 
]_ J l_J ]_ 

(ii) A.oA. o .. A. 
]_ J l_J ]_ 

The matrices p = (pik) and Q 

by the following relations 

s 

~ E pikEi 
i=O 

b~. such that 
l_J 

E. oE. is a principal minor of 
]_ J 

The b~. are called the Krein 
l_J 

s k 
E.oE. l: b .. Ek 

]_ J n k=O 1-J 

s k 
A.A. E aij~ ]_ J k=O 

(qik) ' 
i,k=O,l, ... ,s are defined 

s 
E. E qki~ ]_ n 

k=O 

Note that pik 

= tr Ei = qOi 

is an eigenvalue of ~ with multiplicity 11· = rk E. = 
]_ ]_ 

The lli are called the multiplicities of the scheme. 

Let t, = diag(11.). so 11 ]_ ]_= 

valencies are related as follows : 

THEOREM 6 . 3. I. 

PROOF. 11 ipik 

/', p 
11 

The multiplicities and the 

Define a graph on x by x ~ y if (x,y) E rl. If (x,y) E ri iff 

d(x,y) = i in this graph the scheme is called metric. The .Johnson scheme 

and the Hamming scheme are examples of metric schemes. In a metric scheme 

a~. = 0 
1-J 

if i+j < k because of the triangle inequality (similarly 

if i+j < k, etc.). As a consequence there are polynomials f 0 ,f 1, ... ,fs, 
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Thus the elements of the k-th column of P are polynomials of degree k 

in the elements of the "first" column. Therefore metric schemes are also 

called P-polynomial. Of more importance to us is the notion Q-polynomial. 

An association scheme is called Q-polynomial, if there exist polynomials 

Q-polyno-

mial schemes are sometimes also called cometric. As a consequence of 

theorem 6.3.1., which can also be written in the form Pt6µP n6v, or 

n6 Qt6 Q we get 
µ v 

s 
l: µzpzkPzm nvk'\,m 

z=O 
and s 

l: vzqzkqzm nµk'\,m 
z=O 

That means, that in case the scheme is P-polynomial the fk are orthogonal 

polynomials with respect to the weight 

Q-polynomial scheme. 

µ • 
z 

And similar in case of a 

Let A be a matrix and 

matrix defined by f o A(x,y) 

f a polynomial. Then f o A is the 

f(A(x,y)). The following is an alternative 

definition of Q-polynomiality: There exist polynomials g0 ,g 1 , •• ,gs , with 

gk of degree k, such that Ek= gk o E1 • 

§6.4. Delsarte spaces. 

In this section we present the theory of Delsarte spaces from Neumaier 

[NI]. A finite Delsarte space is the same as a Q-polynomial association 

scheme. 

Let (X,d) be a metric space with finite diameter lo 
' 

together 

with a finite measure w We put w(X) w. Write c 

X,y E x, 

We define 

then 0 <:; c s 0. There is an 
xy 

the measure µ on co, aJ by 

µ(A) 
-] 

w w({{x,y}ic E A}) 
xy 

xy 
induced measure 

Ac[O,ol. 

For every polynomial f the following holds: 

f f(a)dµ(a) 
[O,o] 

f(c )dw(x)dw(y) . 
xy 

2 d (x,y) for 

w on x x x. 
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If X is finite, w and µ are taken to be multiples of counting measures, 
and all integrals are finite sums. Suppose X has s non-zero distances, 
i.e. , s+ I is the smallest cardinal of a set T satisfying µ ( [O, 6 J\ T) = 0. 
We call s the degree of X. 

THEOREM 6.4. I. There exists a family {qi}, i=O,l, .. ,s, ifs< 00 , 

resp. i=O,I, .•• if s is infinite, of orthogonal polynomials, with 
deg(qi) = i ,i.e., the qi satisfy 

J q.(a)q.(a)dµ(a) o .. 
[0,cS] 1- J 1-J 

PROOF. (f,g) = ff(a)g(a)dµ(a) is a positive definite inner product 
on the space of all polynomials of degree at most s, since (f ,f) = 0 
implies f(a) = 0 a.e .. Using Gram-Schmidt on the basis {J,x, ... ,xs} 
(if s is finite) yields the family {qi}. 

The following definition is the analogue for metric spaces of the 
notion of Q-polynomiality. 

DEFINITION 6.4.2. (X,d,w) is a Delsarte space if for each pair of 
nonnegative integers i, j, there exists a polynomial 
most min{i,j} such that for all a,b E X 

J ci cj dw(x) 
X ax bx f .. (c b) . 

lJ a 

f .. 
1-J 

of degree at 

THEOREM 6.4.3. Let X be a Delsarte space with degree s. Then for 
aU i,j E {O, I,. .• ,s} and a,b E X : 

J q. (c )q. (cb )dw(x) 
X l ax J x 

-I 
q.(O) q.(c b)cS .. 

i i a lJ 
(I) 

PROOF. By induction: assume (I) is true for all i ~ i 0 , j ~ j 0 , 

but (i,j) f (i0 ,j 0 ). The definition of Delsarte space implies the existence 

of constants u~ . such that 
1 oJo 

J q. ( c ) q. ( cb ) dw (x) x :Lo ax Jo x 
(2) 
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Here m = min(i0 ,j 0). Take i 0 $ j 0 without loss of generality. For h<i0 , 

multiplication of (2) by qb(cby) followed by integration over b yields 

(using the induction hypothesis and changing the order of integration): 

whence 

0 = J q. (c ){f q. (~ )qh(cb )dw(b)} dw(x) 
x 1 0 ax x Jo x y 

0 for all h < i 

J q. (c b)q. (cb )dw(x) 
x 1 0 a Jo x 

Therefore 

h -1 
u .. qh(O) qh(c ) 

1 0Jo ay 

Finally let a = b and integrate over a: 

Hence 

cS •• w wfq.(a)q.(a)dµ 
l.J ]. J 

io Ju .. q. (O)dw(a) 
1 0Jo 1 

q. (O) f 0 
]. 

and 

Jf q. (c )q. (c )dw(a)dw(x) 
1 ax J ax 

proving (I) • 

Let H(t) denote the space of all functions on X , that can be 

written as linear combinations of functions in the set 

D 

{ci I a E X} and 0 s i s t 
ax 

Then H(t) is a positive definite inner 

product space when we define (f,g) = fx f(x)g(x)dw(x) . 

The subspace of H(t) generated by the functions x + qi(cax) , a EX, 

is called harm(i) . From theorem 6.4.3. we have the following decompo-

sition: 

H(t) harm(O) ~harm(!) ~ ... ~ harm(t) . 



42 

THEOREM 6.4.4. Dim harm(i) 
2 qi(O) w > 0 for 0 ~ i ~ s. 

PROOF. Consider an orthonormal basis {sh I h E L} . For certain 

functions ph , and a finite set ~ c X : 

l: ph(b)q. (c. ) (3) 
bE~ l. DX 

Also for certain functions 

q. (c ) 
i ax (4) 

where for each a EX only finitely many rh(a) F 0 . Using (3),(4) and 
theorem 6.4.2. one obtains 

Jq. (c )sh(x)dw(x) 
i ax 

J l: ph (b) q. ( c ) q. (c. ) dw (x) 
x bE~ l. ax l. DX 

(5) 

where for each a EX only finitely many sh(a) F 0. Hence for all x EX 

and 

card(L) 

J L sh(x) 2dw(x) 
hEL 

L J sh(x) 2dw(x) 
hEL X 

2 
qi(O) w 

The precise relation between Delsarte spaces and Q-polynomial 

D 



association schemes is provided by 

THEOREM 6. 4. 5. A fini-te metric space with dista:ace matrix C is a 

Delsarte space (with respect to the discrete measure) iff its distribu

tion scheme is a Q-polynomial association scheme. 
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PROOF. The distance matrix of a finite metric space X is defined by 
2 

C(x,y)= d (x,y) for x,y E X. The associated distribution scheme_ has as 

relations the distances that occur in X. We will show that the minimal 

idempotents can be labeled in such a way that Ek = gk o C , for the 

following polynomials gk of degree k:gk(x)= qk(O)qk(x). 

By theorem 6.4.3. : 

f qk(c )q. (cb )dw(x) 
X ax J x 

Multiplying this equation by qk(O)qj(O) yields 

so 

(~ o C) kj 

Therefore E0 ,E 1, ••• ,Es are s+I mutually orthogonal idempotents forming 

a basis. For the if part, and the implicitly used fact that the distibu

tion scheme is an association scheme we refer to [NI]. 

A Delsarte space is a metric space. This seems to suggest that only 

Q-polynomial schemes that are metric, i.e., P-polynomial, are Delsarte 

spaces. However the two "metrics" are different: 

REMARK 6.4.6. Every finite scheme can be realized as the distribu

tion scheme of a spherical metric space. 

For the proof we refer again to [NJ]. 

In case of a Q-polynomial scheme, dim harrn(i) is equal to µ .=rk E .• 
]_ ]_ 

For a number of infinite Delsarte spaces dim harm(i) has been computed by 

Haggar [HJ. 



44 

§6.5. The mod p-bound in Delsarte spaces. 

THEOREM 6.5.1. Let X be a Delsarte space and B a set of points 

in X Suppose there is a prime p, and integers a 1, ••• ,at; O(mod p) 

sueh that for aU a f. b in B : cab = ai (mod p) for some i: Is is t. Then 

t 
card(B) s E dim harm(i) 

i=O 

t 
PROOF. H(t) has finite dimension E dim harm(i) , and the inner 

i=O 

product ((!) in theorem 6.4.2.) is nondegenerate. Hence for all x E X, 

there is an x E H(t) satisfying <i,f> = f(x). We will show, using 

lemma 5.1.2. that B := {b I b E B} is an independent subset of H(t). 

Suppose 

E ~b= 0 
bEB 

for certain coefficients ~· For each a E B define fa(x) = 

t 
where F(u):= II (ai-u) Since F is a polynomial of degree 

i=I 

f is in H(t). Taking the inner product of f with (6) yields a a 

E m. f (b) 
bEB t> a 

0 • 

t 
Now f (b) = O(mod p) 

a if b 1' a and fa(a) = II a. ; O(mod p). 
i=I i 

F(c ) , 
ax 

t 

Let M = {~ I b E B} , then ma E pZM with a arbitrary. Therefore 

M cpZM and we may apply lemma 5.1.2., so M = {O}. 

§6.6. Examples. 

(6) 

The Johnson scheme J(n,k) is a Delsarte space if we define c =!JxtiyJ. xy 

In this case dim harm(i) = (~) - (.n 1). Hence we get the following bound 
l. i-

J:. 
for a t-distance set mod p: E [(~) - (.n )] = (n) This is exactly 

i=O i i-1 t 



Frankl and Wilsons result (cf. theorem 5.1. I.). 

The Hamming scheme H(n,2) is a Delsarte space for c = Ix fly I . 
xy 

Dim harm(i) = (~) and the bound for a t-distance set mod p becomes 
1. 

t 
I: 

i=O 
(~) 

1. 

There seem to be many examples realizing this bound 
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EXAMPLE 6.6.1. Let p be any prime. B is the collection of subsets 

with even cardinality of a (2p-l)-set. No distance in Bis O(mod p) 

EXAMPLE 6.6.2. Let n = 3(mod p). Bis the collection of subsets of 

an n-set with cardinality 0 or n-1. All distances are 2 (mod p). 

EXAMPLE 6.6.3. Let n = 2 (mod 3). B consists of the empty set, 

all 2-sets and all (n-1)-sets. Distance 0 (mod 3) does not occur. 

EXAMPLE 6.6.4. Let n = 2 (mod 5). B consists of all singletons, 

3-sets, (n-2)-sets and the complete set. Distances are 1,2 and 4 (mod 5). 

EXAMPLE 6.6.5. Let n=m2+m+l be the order of a projective plane, 

pl(m-2) , and p odd. The set of all lines, together with the complete 

set realizes the bound. All distances are 4 (mod p). 

EXAMPLE 6.6.6. Let P be a projective plane of order n. We can 

define a Q-i"'.polynomial association scheme as follows : X consists of the 

points and lines of the projective plane; relation I consists of all inci

dent point line pairs; relation 2 of all point point and all line line 

pairs; relation 3 is the rest. For a,b in X the following, normalized, 

non-zero values occur : {nln, nln + n +In, nln +In+ n + !} . Unfortu

nately, these never reduce to less nonzero numbers modulo a prime. Hence 

we do not obtain new criteria for the existence of projective planes. 

In a similar way one can see that no now existence conditions for 

strongly regular graphs are obtained. 
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CHAPTER 7 

ISOSCELES POINT SETS 

§ 7.1. Introduction and notation. 

In this chapter we will solve a problem, due to Paul Erdos, related 

to two-distance sets in Euclidean space. An isosceles set is a set of 

points such that among any three of them at most two distances occur, i.e., 

every triangle is isosceles. Two-distance sets are isosceles sets. We will 

show that essentially the converse is also true. More precisely we prove 

that isosceles sets can be decomposed in a collection of mutually 

"orthogonal" two-distance sets. This gives the bound !(d+l)(d+2) for an 

isosceles set in Euclidean d-space. It also shows that maximal two-dis

tance sets yield maximal isosceles sets. Throughout this chapter X will 

denote an isosceles set in Rd, X {x1,x2 , •.. ,xv} , and we assume 

v 
aff (X) .- { l: a.x. I l: a. 

i=l 1. 1. :L 

1} 

For any subset x 1 c X , dim(X 1) will denote the dimension of aff(X 1) . 

The set x is called decomposable if there is a partition x = XI u xz ' 
with card(X2) > I and XJ 1' 0 ' 

such that any point of XJ is equidistant 

to all points of Xz (this distance may vary for different points of x,). 

§7.2. The structure of isosceles sets. 

LEMMA 7.2.l. If (X 1,x2) is a decorrrposition for X, then 

PROOF. Let P be the orthogonal projection on aff(X2). Then for 

any xl E x1 , Px 1 is the center of a sphere in aff (X2) containing X2. 
Since x2 spans aff(X2) , p maps x1 onto a single point. Therefore the 

flats aff(X 1) and aff(X2) are orthogonal. 
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THEOREM 7.2.2. Let X be an isosceles set. If X is indecomposable 

then it is a t:wo-distance set. 

PROOF. Consider the complete graph on the points of X , with the 

following edge coloring: to each Euclidean distance between different 

points x,y of X we associate a unique color c(x,y). The set of colors 

thus obtained will be called C . For each c E C , Xc denotes the indu

ced graph on the color c, that is, the graph with point set X and edges 

the pairs {x,y} with c(x,y) = c. The following two lemmas together 

provide the proof of theorem 7.2.2.: 

each 

LEMMA 7.2.3. If X is an indecomposable isosceles set, then for 

c E c the graph x 
c 

is connected. 

PROOF. Let c be a color for which Xc is disconnected and let x2 

be a connected component of Xc having more than one point. From the 

isosceles property it now follows that each point not in is joined to 

the points of x2 with edges of the same color. Indeed, if yz is a 

c-colored edge in x2 and x E X x2 then c(x,y) and c(x,z) are 

different from c since x2 
This implies that (X\X2 ,x2) 

is a component of Xc. Hence they are equal. 

is a decomposition of X , contradicting the 

assumption that X is indecomposable. D 

LEMMA 7.2.4. Let the edges of the complete graph X be colored with 

k colors, such that 

(i) for each c E C , Xc is connected ; 

(ii) in each triangle at most t~o colors occur 

Then k <:'. 2. 

PROOF. We distinguish two cases. First we assume that there is a 

color c E C for which the diameter of Xc exceeds 2. Secondly we treat 

the case that diam(Xc) <:'. 2 for all c E C. 

CASE I. Let c E C and suppose u and v have distance 3 in 

the graph x 
c 

are closer to 

Put c(u,v) = a. Let U be the set of points in X 

u than to v in the graph x 
c 

and put v = x\u. 

that 
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For any z E U there is (u,z)-path entirely in U , so by the isosceles 

property (ii) , c(v,z) = a. Similarly c(u,w) = a for all w E V. Now 

take z 1 EU and z 2 E V and let P 1 be a shortest (z 1 ,u)-path and P2 
a shortest (z2 ,v)-path. We will show that c(zl'z2 ) c: {a,c} . If z 1 - z2 
in Xc then c(z 1 ,z2 ) c. If z 1 is not adjacent to any point on P2 
then c(z 1,z 2 ) =a by the isosceles property (ii). The same is true if 
z 2 is not adjacent to any point of P 1 • Finally let z 1 have a neighbor 
z I 

I and z' 
L 

Then 

This contradicts the fact that z 1 E U (de denotes the distance in the 

graph Xc). So indeed for all 

But now for any further color 

z 1 E U and 

b the graph 

z2 E V , c(z 1 ,z 2 ) E {a,c} 

~ cannot be connected, 
since no edge of color b joins U with V. Hence k 5 2. 

CASE 2. We now assume that X is connected and has diameter at c 
most 2 for each c E C. Let a,b,c be three different colors in C. We 
shall construct an infinite subset of X, thus obtaining a contradiction. 

Let z be an arbitrary point in X , and 

Since diam(~) 5 2 there is a point b 1 

a 1 a point with 

having c(b 1 , z) 

Similarly there is a point c 1 with c(c 1,z) = c(c 1,b 1) =c. 

is both in triangle c 1a 1b 1 and c 1a 1z , c(c 1,a1) = c also. 

be a point satisfying c(a2 ,c 1) = c(a2 ,z) = a and define 

c(a 1 ,z) = a. 

c (b l , a I ) = b • 

Since 

Next let 

analogously. We will show that at each stage the new constructed point has 
edges of the same color to all previous points. Suppose the new point is ~· 
and assume that our induction hypothesis holds for a 1 ,b 1, .. ,ck-J' By 

definition c(~,z) = c(~,ck-I) = a. Comparing z~bj and ck-l~bj we 
see that c(akbj) = a. By comparison of z~cj and bj+l~cj (where 
j+l 5 k) we conclude that c(~,aj) = a. For bk and ck a similar 
proof holds. Since all points are new this procedure produces an infinite 
subset, contradiction. Hence k is at most 2. D 
The lemmas 7.2.3. and 7.2.4. together yield the proof of theorem 7.2.2. 

D 

THEOREM 7.2.5. Let X be an isosceles set in Rd , then 
card(X) 5 Hd+l) (d+2) Equality implies that X is a two-distance set, 
or a spherical two-distance set together, with its center. 
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PROOF. The proof is by induction on d. If d = then lxl s 3 

For d = 2 , Kelly proved [K] that the maximum is 6, realized only by 

the centered regular pentagon. Now let d > 2. If X is a two-distance 

set, then we have the required inequality from theorem 4.1.1. If X has 

more distances, then by theorem 7.2.2. , X is decomposable. Let (X 1 ,X2) be 

a decomposition. 

Case I. Dim(X1) F 0. It follows from lemma 7.2.1. , with dim(X) = d 

that 0 < dim(X 1) < d, since lx2 1 > I. Let dim(Xi) =di' then by induc

tion it follows that 

2 
IXI = lx 1 I + lx2 1 s L 

i=J 
!(d.+I) (d.+2) < ~ (d+l) (d+2) . 

1. ]_ 

Case 2. Dim(X 1) = 0. In this case x1 is a singleton and x2 lies 

on a sphere. If x2 is not a two-distance set it is again decomposable 

and we are in case again. Otherwise 

lxl + lx2 1 s + !d(d+3) = !(d+J)(d+2) . 

Equality therefore implies that X is a centered maximal two-distance set. 

D 
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CHAPTER 8 

GRAPHS RELATED TO POLAR SPACES 

§8. I. Introduction. 

Let P be a finite projective geometry, that is, the collection of 
all subspaces of a finite projective space. A polarity 1T on p is a 
permutation of P of order 2, reversing inclusion: 

vs, T E p (S c T) => (T1T c S1T) and 
2 1T 1 • 

A subspace S E P is called totally isotropic if S c S1T • The set S(1T) 
of all (totally) isotropic points of 1T is provided with three essentially 
equivalent structures, namely (cf. [BSJ) 

(i) A graph structure: p - q if 
1T 

p E q for p,q E S(1T) . 

(ii) The structure of the totally isotropic lines. 

(iii) The structure of the totally isotropic subspaces, partially 

ordered by inclusion. 

The set S(1T) provided with any of the structures (i), (ii) and (iii) 
is called the polar space relative to 1T . All maximal totally isotropic 
subspaces have the same dimension d and d+l is called the rank of S(1T). 
Also given a maximal t.i. subspace L and a point p E S(1T)\L there is 
a unique maximal t.i. subspace M such that p E M and Mn L has dimen-
sion d-1 (M <p1T n L,p> ). Hence the graph (i) defined on S(1T) has 
the following two properties: 

(i) 3K: every maximal clique has size K. 

(ii) 3e: given a maximal clique C and a point p .l C, there are 
precisely e points in C adjacent to p. 

In this chapter we shall investigate graphs satisfying these two conditions. 
A finite graph satisfying (i) and (ii) will be called a Zara-graph, after 



F. Zara who introduced the concept in [z]. 

§8.2. Preliminaries and notation. 

Following Higman [HiJ we use the following graph theoretical nota

tion. Let G = (V,E) be a simple graph. We write x ~ y or x Ly if 

{x,y} E E and xL = {y E V(G) [ x=y or x ~ y} . A graph G is called 

connected if for all 

such that xi ~ xi+l 

x,y E V(G) there is a sequence x=x0 ,x 1, ... ,xn=y, 

for i=O, ••. ,n-1. G is called coconnected if the 

complement of G is connected. If is a Zara-graph with parameters 
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(K 1,e 1) and G2 is a Zara-graph with parameters (K2 ,e2) , then the graph 

obtained by joining all points of G1 to all points of G2 is a Zara 

graph whenever K1+e2 = K2+e 1 . Every Zara-graph can be built from 

coconnected Zara-graphs in this way. Our main concern will therefore be 

the structure of coconnected or cc-Zara-graphs. 

Note that if G is a Zara-graph with parameters (K,e), then the 

induced subgraph on x-\{x} is a Zara-graph with parameters (K-!,e-1). 

This graph is called the residue of x, or Res (x). For arbitrary S c V, 

we define SL n xL. If S is a clique Res(S) is defined analogous-
XES 

ly, i.e., Res (S) is the induced sub graph on s-\ S. Again Res (S) is a 

Zara-graph with parameters (K-[S[ ,e-[S[). An equivalence relation ~ 

is defined on V by; x ~ y <=> xL ,_, yL. The equivalence classes [x] 

are cliques and if x and y are adjacent then all points in [x] are 

adjacent to all points in [y]. The graph G/~ is defined on V/~ by 

[x] ~ [y] whenever x ~ y and [x] # [y] . This graph is called the 

reduced graph of G. In general a graph H is called reduced if 

[x] = x for each point x E V(H). In §8.6. we will show that the 

reduced graph of a cc-Zara-graph is a (reduced) cc-Zara-graph. 

Let S be a clique in a graph H. Then SLL is again a clique 

since S c SLL c SL • Note that SLL (SLL)LL We call SLL the 

closure of S, in particular xLL = [x] An equivalent way of defining 

reduced is to say that each point is closed. The key theorem, _wh'.Lah allows 

us to use induction in the proofs that follow, is the fact that for each x 

in a cc-Zara-graph the residue of the closure of x, Res([x]) , is again 

a cc-Zara-graph (theorem 8.5.3.). Using this we can prove that all equi

valence classes under ~ have the same size. It follows that if G is 

a cc-Zara-graph with parameters (K,e), then G/~ is again a 
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cc-Zara-graph with parameters (K/![XJ l,e/I[ x]I). Closures of cliques are 

called singular subsets or closed cliques" The closure of the empty set is 

called the radical of G, rad(G). The intersection of two singular subsets 

is again a singular subset. For x,y E X we define: 

d(x) = lxl.I - I d(x) is called the degree of x 

;\(x,y) 

\1 (x,y) 

lxl.nyl.l-2 

lxl. n yl.I 

if x y 

if x f y 

If d, ;\ and \1 are constant the graph is called strongly regular. We 

will show that a reduced cc-Zara-graph is strongly regular. The collection 

of singular subsets forms a partially ordered set under inclusion. In a 

polar space this is exactly the structure of all totally isotropic subspa

ces. This poset will be investigated in §§8.5 and 6. Following Neumaier 

[NI] we define the notion of an Mr-space: (cf. also [N3]) 

Let p be a set of points and x 1,x2 , .. 

write x = x 1 u ••• u xr. 

r-varieties are also called 

Elements of X. are 
]_ 

blocks. x is an 

,Xr sets of subsets of P. 

called i-varieties, 

Mr-space if it satisfies: 

(i) x 1 is the set of all singletons {a} a E p • 

(ii) There are constants J=K 1 < ••• < Kr, such that an i-variety 

contains exactly K. 
]_ 

points. 

(iii) There are constants R1 > ••• > Rr=l , such that an i-variety 

is contained in exactly Ri blocks. 

(iv) The intersection of two varieties is a variety or empty. 

(v) If x is an i-variety, z a block containing x and p 

a point in z but not in x 

y c z containing x and p. 

then there is an (i+I)-variety 

The main result in this chapter is that a reduced cc-Zara-graph is an 

Mr-space for some r , called the rank of the Zara-graph. 

§8.3. Examples of Zara-graphs. 

In [Z] Zara gives the following examples of (cc-) Zara-graphs. 



I. Polar spaces. Let W be an m-dimensional vector space, m 

finite, over a finite field F, 

satisfying s2 = I. Let F0 

IF0 1 = q , then IFI = q or 

together with a field automorphism S 

denote the subfield fixed by 

IFI = q2 
S. Put 
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Let •: W x W + F be a S-sesquilinear form, nondegenerate and reflexive. 

Q : W + F is a quadratic form with an associated bilinear nondegenerate 

form 

case 

and 

The 

• 1 
: w x W +F. The following graphs are Zara-graphs. In each 

v is the set {<a> I a E V\{Q_}}, <a> isotropic, resp. singular} 

<a> ~ <b> if •Ca,b) = 0, resp. • 1Ca,b) = 0 and <a> f <b> 

following cases occur : 

(Sp). • alternating, m = 2m1 S 

(IVI ,K,e) 
ml ml 

((qm-1)/(q-J), (q -1)/(q-l), (q -1)/(q-l)) 

(Q) • Q quadratic S 

m-1 ml ml-I 
((q -l)/(q-1), (q -1)/(q-l), (q -l)/(q-1)). 

(ii) m=2m1 , maximal Witt index 

m1 m1-I m1 m1-1 
((q -l)(q -1)/(q-1), (q -1)/(q-I), (q -J)/(q-1)) 

(iii) m=2m1 , non-maximal Witt index 

m1 m1-1 m1-l m1-2 
((q +l)(q -1)/(q-I), (q -1)/(q-I), (q -1)/(q-I) 

(U) . • a non-degenerate S-hermitean form, IFI 

(i) m=2m 1 :> 4 

2 
q 

m m-1 2 m 2 m-2 2 
((q -l)(q +l)/(q -1), (q -1)/(q -1), (q -1)/(q -1)) . 
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(GO). Rank 2 polar spaces, or generalized quadrangles Gn(s,t) . 

For definition and examples of generalized quadrangles see [Th]. 

(IVI ,K,e) ((s+l)(st+l), s+I, I) 

2. Let W be a 2m-dimensional vector space over GF(2) , together 
with a quadratic form Q of maximal Witt index, for which the associated 
alternating bilinear form is non-degenerate. V = {xlxEW, Q(x) = 1} , and 
x - y if x f y and ~ 1 (x,y) = 0. 

3. V consists of all triples from a 7-set. 

(i) x ~ y if Ix n yl (35, 7, 3) 

(ii) x - y if Ix n yl I I ; (35' 5' 2) 

Note that case (i) is the same as Q(ii) with rn=6, q=2. 

4. Let W be a 6-dimensional vector space over GF(3) together 
with a non-degenerate symmetric bilinear form ~ , such that W admits an 
orthonormal basis. V = {<a> 

<a> f <b> and ~(a,b) = O; 

a E W ~ (a, a) 

(126, 6, 2). 

I} and <a> <b> if 

5. The strongly regular graph of McLaughlin (cf. [GS]); (275, 5, 2). 

6. Let W be a 2m-dimensional vector space over GF (q) , together 
with a quadratic form Q of maximal Witt inde» . V = W, and x ~ y if 
Q(x-y) = 0 and yfx; ( q2m, qm, qm-J) 

7. L2 (n). 

(a,b) - (c,d) if 

Points are all ordered pairs from an n-set, 
2 ale and bfd (n , n, n-2) . 

8. T(2n) . V 

(n(2n-I), n, n-2) 

all pairs from a 2n-set, x ~ y if x n y 

and 

0; 
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§8.4. Regularity properties of Zara-graphs. 

All examples given in the previous section are strongly regular 

graphs. As a consequence of the results in the present section we will see 

that a reduced cc-Zara-graph, i.e., {x} [x] for each point, is strongly 

regular. In the following G will always denote a Zara-graph. 

LEMMA 8.4. I. Let C be a mClXimal clique in G and pi C . There 

is a unique mClXimal clique containing p and e points of C • 

PROOF. The statement is equivalent to : two distinct maximal 

cliques intersect in at most e points; this is a direct consequence of 

property (ii) , defining e. 

G 

LEMMA 8.4.2. Let c, c 1 and c2 

such that c 1 and c2 intersect C 

be different mClXimal cliques in 

in e points. Then c1nc2 c C 

D 

then I (c 1uc2)ncl > e and there is a point 

x E c 1nc2\ C. This point is joined to more then e points of C, contra

diction. D 

As a consequence of lemmas 8.4.l and 2 we can start with any maximal 

clique C, take for each point outside C the unique clique through this 

point and e points of C. This way we obtain a collection of cliques 

c 1, .•. ,Cs inducing a partition of V\C. This collection is called the 

C-decomposition. 

THEOREM 8.4.3. Let x,y E V(G) • If x i y then d(x) d(y) 

PROOF. Let C be a maximal clique containing x. Then y i C. 

Consider the C-decomposition {c 1, •.. ,Cs} with y E c 1 and put 

For each z c c 1\ C we have 

s 
d (z) l: (e- !c 1nc.I) +K- I. 

i=2 }_ 

Indeed, the number of points in Ci\c 1 adjacent to z is e - !c 1ncil , 
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and since c 1nci c C , all these points are outside C , hence no points 
are counted twice. Rewriting this yields 

d(z) 
s 
l: 

i=Z m:x EC. 
ID 1-

I } + K - 1 

since l: 
m:x EC. 

e - I c 1 nci I . Changing the order of summation yields: 
ID 1-

d (z) 
K-e 

{ l: 
m=l 

(d(x )-(K-1))/(K-e)} 
ID 

+ K-l 
K-e 

K-e l: 
m=l 

Hence d(zi) = d(zj) 

d(xi) = d(xj) for all 

for all zi,zj E c 1\c , and by symmetry 

C\C 1 • This implies d(y) = d(x) 

COROLLARY 8.4.4. A cc-Zara-graph is regular. 

d(x ) 
ID 

D 

D 

THEOREM 8.4.5. Let G be a cc-Zara-graph. There exists a constant 
µ , such that µ (x,y) = µ for all x,y E V(G) , x f y . 

PROOF. We will show that JJ(x,y 1) = JJ(x,y2) 

x f y 1 and x f Yz . First assume 

for each triple 

with Take a 

c, containing Y1 and Yz and a clique c with X E c and 

= e Consider the C-decomposition { c 1 'cz' ... 'c s } For i=l ,2: 

µ(x,yi) l: (e - IC 1nckl) + e 
k:xE~ 

independent of i. Hence JJ(x,y 1) 

Next let Y1 
{, 

Yz . Claim: there either exists a point z with z f x, 
and z ~ y 1 •Yz or for all z x, we have Y1 

~ Z<">Yz z. To see this 
suppose z ,....., x, z ~ Y1 and z f Yz and let c be a clique containing Y1 
and Then .L nc and 

.L nc different of the cardinality z. x Yz are sets same 
Hence there is point z' .L 

adjacent This the e. a E Yznc not to x. proves 
claim. In the first case µ (x,y I) = JJ (x, z) = JJ(x,yz). In the second case 

.L .L .L .L x ny 1 = x ny 2 , hence also µ(x,y 1) JJ(x,y2). Since G is coconnected, 
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µ is constant for the whole graph. 

THEOREM 8.4.6. Let G be a cc-Zara-graph. There exists a constant 

\ such that \(x,y) = \ for x,y E V(G), x - y a:nd x~ y. 

PROOF. First recall lemma 7.2.4.: let the edges of the complete 

graph X = K be colored with k colors such that (i) for each col or c, 
n 

the induced graph on this color, x 
' c is connected; (ii) in each triangle 

at most two colors are used. Then k is at most 2. 

Now let H = G/R3 be the reduced graph of G. Note that H is also cocon-

nected. We are going to col or the edges and non-edges of H. All non-edges 

get the same color while if [x] - [y] the edge ([x],[y]) gets the 

color \(x,y) , i.e., the number of common neighbors of x and y in G. 

This coloring satisfies the hypotheses (ii) and (i) of lemma 7.2.4.: 

(ii) Triangles with less than two edges satisfy the requirements auto-

matically. Next consider [y] - [x] - [ z] 
' 

[y] f [z] in H. In G we 

have y - x z, y f z. Since Res (x) is a Zara-graph, theorem 8.4.3. 

tells us that dRes(x)(y) = dRes(x)(z). This just means \ (x, y) \(x,z). 

Hence triangles with two edges also satisfy (ii). Finally let 

[x] ~ [y] - [z] - [x] in H, or x,y,z mutually adjacent and non-equiva

lent in G. If there is a point u in G adjacent to precisely one of 

x,y,z, say to x, then by the previous reasoning \(u,x) = 1-(y,x) and 

\(u,x) = \(z,x) and we are done. If not, then, writing 1-(x,y,z) for the 

number of common neighbors of x,y and z in G: 

d(x) \(x,y) + \(x,z) - A(x,y,z) 

d(y) \(y,z) + A(y,x) - \(x,y,z) 

d(z) \(z,x) + \(z,y) - A(x,y,z) . 

Since G is coconnected it is regular and therefore A(x,y)=A(y,z)=A(z,x) 

in this case. This shows that for each triangle (ii) holds. 

(i) : Let H 
c 

be a connected component for the color c, [HI> l, 
c 

and 

suppose He has not all of the vertices of H. A point outside H 
c 

is 

joined to all points of H 
c 

with edges (or non-edges) of the same color, 

by the isosceles property and the fact that 

component. In particular a point outside H 
c 

H 
c 

is connected and a 

is either adjacent to all 
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points of He' or to no point of 

are adjacent to all points of He 

none. Note that N is certainly 

He. Let A be the set of points that 

and N the set of points adjacent to 

non-empty, since H is coconnected. 
In case A is empty H is not connected and also G is not connected, 
i.e., e=O. In this case x - y implies x ~ y and the theorem is void. 
So let 

in H 

A f 0. Now H 
c 

is not a clique, since in that case [x] and [y] 

c 
would have the same x ~ y. Take [h]E He , neighbors, 

[a] E A and construct a maximal clique c in G containing [a] and [h]. 
Let A' be the "preimage" of A in G, similarly define H' 

c 
and N1 • 

Any point n E N' has e neighbors in A'nc, hence IA'nCI ~ e. There 
is a,point h' E H'\C having a neighbor in H~nc , since H~ is connected 
and not a clique. But this point is also adjacent to all points of A' , 
therefore it has more than e neighbors in C, contradiction. So He = H, 
i.e., the induced graph on c is connected. This shows (i) and the 
theorem is proved, because since there are at most two colors, one of 
them the other one must be the constant A. D 

COROLLARY 8.4.7. Let G be a reduced cc-Zara-graph, i.e., G 
Then G is strongly regular. 

G/~ . 
D 

§8.5. The poset of singular subsets. 

In this section we study the partially ordered set of closed cliques. 
Crucial steps in the investigation that allow us to study the structure by 
induction are: 

(i) If G is a cc-Zara-graph and x E V(G) then Res([x]) is 
again a cc-Zara-graph. 

(ii) All equivalence classes of points have the same size. 

We start off with two simple lemmas. Throughout this section G will be a 
Zar a-graph. 

LEMMA 8.5.1. If u and v are connected by a path in G, then 
the distance of u and v in G , dG(u,v) is at most 2. 

PROOF. The points u and v are in the same coconnected component 
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of G . But coconnected components of a Zara-graph are cc-Zara-graphs. 

LEMMA 8.5.2. Let x,y,z E V(G) , where G is a cc-Zara-graph. 

Suppose Res([x]) is noft coconnected, and y,z are in different 

cc-components of Res([x]). Then Res([y]) is not coconnected, and x,z 

are in different cc-components of Res([y)). 

PROOF. We show that the following statements are equivalent: 

(i) Res([x]) is not coconnected and y,z are in different cc-compo-

nents. 

(ii) There is no point u adjacent to x and not to y,z. 

(iii) There is no point v adjacent to y and not to x,z. 

(iv) Res([y]) is not coconnected and x,z are in different 

cc-components. 

(i) => (ii) : By definition. (ii)=> (i): Lemma 8.5.1 .. 

(ii)<=>(iii): x,y and z are mutually adjacent and non-equivalent. Let 

A1(x) be the number of points adjacent to x and not to y,z. Then 

d(x) =Al (x) +A(x,y) + ~(x,z) - A(x,y,z) = 

where again (x,y,z) is the number of common neighbors of x,y and z. 

This shows that A1(x) = A1(y) . 

(iii)<=> (iv): This is the same as (i)<=>(ii) 

Triples x,y,z as in the lemma will be called trios. Note that 

the lemma says that the order of x,y,z is irrelevant. 

THEOREM 8.5.3. If G is a cc-Zara-graph , x E V(G) , then 

Res([x]) is a cc-Zara-graph. 

D 
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PROOF. It is enough to show that trios do not exist. Let {x,y,z} 

be a trio, then no point of G is adjacent to exactly one point of 

{x,y,z} • Let A 
x 

{u E V(G) u f x , u - y , u - z} A and A y z 

similar; C = {u u - x,y,z} ; N {u I u f x,y,z} Picture: 

Observe: (i) N I Ql (lemma 8.5.1.) 

(ii) There are no edges between N and 

A A and A This is shown as follows: x y z 

If x' E A then x' ,y ,z is again a x 

trio, for x' and x are in the same 

cc-component of Res([y]) and therefore 

x' and z in different cc-components. Since the points of N are not 

adjacent to y and z they are also not adjacent to x'. The proof is 

finished by deriving a contradiction. Let x' E A 
x 

Since x' and x 

have µ common neighbors, x' has less than µ neighbors in C (at most 

µ-2). On the other hand nEN and x' must have µ common neighbors in 

C • This is a contradiction, hence trios do not exist and the proof is 

finished. 

In order to investigate the poset of closed cliques we need the 

following characterization of singular subsets. Here C denotes the set 

of all maximal cliques in G. 

LEMMA 8.5.4. Let S be a clique in G , then 

PROOF. 

s~1 n{C E C I s c C} • 

n {y~ I y E C} 
CEC 
Scy1 

n{C1 I S c C E C} n{ C E C I S c C} , 

since C1 = C for all C E C. 

Notation: (S,c) is the poset of singular subsets, for C EC 

define 
s (C) { s E s I s c C} • 

D 



Let X,Y be different elements from a lattice (L,c). If X c Z c Y 

implies X=Z or Y=Z we say that Y covers X and write X < Y. A 

lattice is semi-modular if for all X,Y: (X > XAY)<=> (XvY > Y). 

The following two lemmas enable us to show that (S(C),c) is a semi

modular lattice for all C E C . 

LEMMA 8.5.5. The graph defined on C by C - D if [CnD[ = e is 

connected. 

PROOF. We show that two maximal cliques C and D are joined by 

a path using induction on [CnD[. 

(i) If [CnD[ = e then c D and there is nothing to prove. 

(ii) If [CnD[ < e take X E C\D and a clique E containing 

and e points of D, then [EnD[ = e and [CnE[ > [CnD[ , hence 

and E are joined by a path. Since E - D we are done. 

LEMMA 8.5.6. Let S E S , C E C , S c C . Then there exists a 

D E C such that S = C n D . 

PROOF. By induction on the size of s. 

(i) Is I e. This case is trivial. 

(ii) Is I < e. Choose closed cliques SI and s2 minimal with 

= n{T E SI T ~ S} respect to s c s. c c This is possible since s 
-! 

]_ 

Since s 1 and s2 are minimal, s 1 n s 2 = S and there are maximal 

cliques D1 and D2 such that 

x E D2\cc u DI) such that x is 

s. 
]_ 

not 

C n D. 
]_ 

adjacent 

i=l,2. Choose 

to all of s 1\S ( and 

x 

c 

6 J 

D 

hence to none of s 1\S). Let D3 be the closure of 
.l (x nc 1) u { x} Then 

D3nc = s. To see this, suppose y E (D3nc)\S. Then either y E SI, which 

implies y {. SI' 
.l 

y - x, or but then [y nD 1 I > e, contradiction. 

We define the binary operations A and v on S as follows : 

S A T S n T S v T n{U E S I U ~ SuT} 

S n T is again a singular subset since (SnT).l.l 
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in G 

THEOREM 8.5.7. Let G be a cc-Zara-graph, and C a maximal clique 

Then (S(C),c ) is a semi-modular lattice. 

PROOF. Let X,Y E S(C) with XnY < X and suppose XvY :o Z :o Y . 
.,, 1 

Then ZnX = YnX , for otherwise XnY c XnZ c X . Take a point z E Z\Y 
1 1 

and X\Y Apparently 
l l 

in the Zar a-graph Res (Y). x E x c z To see 

this let u be adjacent to x and Y. Since x covers x n Y u is 

joined to all of x, and if is u is joined to x and y it is joined 

to all of XvY , including z. By repeated application of theorem 8.5.3. 

Res (Y) is cc-Zara-graph, hence 
l l 

in Res(Y). This is a x = z a contra-

diction since z E z while x t z. 

The semi-modularity of the lattice S(C) allows us to introduce a 

rank fuction on S(C) satisfying rk(S) rk(T) + 1 whenever S < T 

and rk(0) = 0, cf. [Bi] By lemma 8.5.5. this rank function can be ex-

tended to the poset S . Indeed, for a given set E of cardinality e 

in S , the rank in S(C) is the same for all C :o E. All maximal 

cliques have the same rank r. This r is called the rank of the Zara

graph. 

§8.6. Zara-graphs and Mr-spaces. 

In this section the main structure theorem for cc-Zara-graphs is 

proved. We show that the poset of singular subsets of the reduced graph 

of a rank r Zar a-graph is an Mr-space (for the definition see §8.2. 

Write S =S0 u S 1 u u Sr Recall that Si is the collection of 

singular subsets of rank i. We shall prove the following properties: 

) . 

(i) There are constants R0 , ... ,Rr such that each rank i singular 

subset is in Ri maximal cliques. 

(ii) There are constants K0 , ... ,Kr such that each rank i singular 

subset has Ki points. 

(iii) The intersection of two singular subsets is again a singular 

subset. 

(iv) If x is a rank i singular subset, and CJ· a maximal clique 

containing x and p E C\x , then there is a rk (i+I) singular subset y, 
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containing x and p, and contained in C. 

Note that it follows from (ii) that all equivalence classes have the same 

size K0 , and that (i), ..• ,(iv) imply that G/~ is an Mr-space. 

Property (iv) is a consequence of the semi-modularity of the lattice S(C) 

for each c E c. Property (iii) follows from the observation that 

(S n T)u su n T.L_l_ , if s and T are singular subsets. Indeed, for 

arbitary sets A and B we have (A c B) => B_j_ c Al_ and if A 1-S a 

clique then Ac A_j__l_. Hence (S n T c (S n T)u and (S n T)ucS_j__l_ n T_l_.L 

The following theorems establish (i) and (ii). 

THEOREM 8.6. I. Let G be a cc-Zara-graph. There are constants 

Ro, ••• Rr , 

cliques. 

PROOF. 

Rank sets 

such that each S E Si is contained in precisely R. m=imal 
J_ 

By induction in i. For i 0 there is nothing to prove. 

are the equivalence classes of points. Let [ x] and [y] E s1 
x 1 y For each maximal clique c containing x, and hence [x], there is 

a unique clique containing y and intersecting c in e points. This 

establishes a one to one correspondence between the cliques containing [x] 

and those containing [y]. Since G is coconnected we are done. 

Finally let i > I , S,T E Si . If S n T f 0 then we may use the induc

tion hypothesis since Res(SnT) is again a cc-Zara-graph. Hence in this 

case S and T are in the same number of maximal cliques. However, the 

graph defined on s. by s T if s 
J_ 

n T f 0 is connected if i > I , 

since every edge of G is in a rank i set, and G is connected if the 

rank of G as a Zara-graph is greater than I. So for all S,T E s. the 
J_ 

nuniber of maximal cliques containing them is constant. D 

THEOREM 8.6.2. Let G be a cc-Zara-graph of rank r . There are 

constants K0 , ... ,Kr, such that each S E S. has K. points. 
1. ]_ 

In order to prove this we need the following lemma. 

LEMMA 8.6.3. Let G be a cc-Zara-graph of rank r , and suppose 

Is I = K. for au s E S. , i=O, .•. ,r Then the number of rank i sets 
]_ J_ 

in a given m=imal clique c equals 
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i-l 
rr 

j=O 

K - K. 
r J 

K. - K. 
i J 

PROOF of the lemma. We use induction on r, the case r=I being 
trivial, using the convention that the empty product equals I. Now let 

c. rank i sets. 
i 

Since C r > l, and C a maximal clique containing 

is partitioned into rank I sets c 1 = Kr/K 1 • Next let i > I. Counting in 

two ways the pairs S, T c C , S c: S 1 

using the induction hypothesis yields 

i-1 
rr 

j=I 

This proves lemma 8.6.3. 

T E Si satisfying S c T and 

K. 
i c.-

iKI 

PROOF of the theorem. Again we use induction on r. If r=l or 2 
the statement is true by definition. Let r > 2 , and take s € SI with 

Is I By induction Res(S) I I 
each = s. has parameters 1\-J, ... ,K0=0 So 

D 

I rank i set containing s has cardinality Ki-l + s. We all ready noticed 
that the graph defined on s. by s ~ T if s n T 1 r/J is connected. i 
Hence there allready exist constants K2 ,K3 , ... ,Kr. Count the number of 
points inside and outside a given maximal clique C, observing that G is 
regular, say of degree k. Hence, using the lemma: 

k-s+l IRes(S)! 
r-3 

K1 + IT 
r-1 

K 1 -K~ 
r-l J 

Kl -K~ j=O 
r-2 J 

To explain this note that each point in Res(S) outside C determines a 

in e points, while each e-set in S unique clique intersecting C 

is in Rr-l maximal cliques. For 
I r-1 

i > l we may put Ki-l = Ki-s' whence 

k-s+I 
K - s r-3 

K -s + __ r__ rr 
r Kr-1-s j=I 

Considered as an equation in s we see that there is only one solution. 
Indeed, rewrite the equation to get 



k+l-K 
r 

K -K 
(! + r r-1 

K -s 
r-1 

r-3 
II 

j=! 
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K - K 
r j+I 

K -K 
r-1 j+l 

and notice that is monotonic. Hence s is constant 

i.e., K1=s • This finishes the proof of the theorem. 

MAIN THEOREM 8.6.4. Let G be a cc-Zara-gra:ph of rank r , then 

G' , the reduced graph of G is also a cc-Zara-gra:ph, and the poset of 

closed cliques of G' is an Mr-space. 

§8.7. Final remarks. 

D 

D 

In the previous section it was proved that the reduced graph of a cc

Zara-graph is strongly regular. The parameters of this strongly regular 

graph can be computed in terms of K, e, and the smallest eigenvalue 

(cf. [N4] ). The integrality of the multiplicity of the eigenvalues puts 

further restrictions on the feasibility of parameter sets. Another related 

subject is the classification of completely regular two-graphs (cf. [NS]). 

To each completely regular two-graph there is related at least one Zara

graph. More about these aspects will appear in a forthcoming article b)' 

Wilbrink, Kloks and the author. The list in §8.3. contains all examples 

known to the authors of reduced cc-Zara-graphs. More about Mr-spaces can 

be found in [Nl,'3] . Neumaier gives a.o. the following examples: 

(i) All ~r subsets of an n-set. 

(ii) All ~r dimensional subspaces of a projective space PG(n,q). 

(iii) All subspaces of a polar space over GF(q). 

The graph associated with these structures is the complete graph in (i) and 

(ii). Only in case (iii) we have a "proper" Zara-graph • The structure 

of all varieties in a fixed block of an Mr-space , or the lattice 

(S(C),c) in case of a Zara-graph is a perfect matroid design [We] 

1 LL • "d . h 1 1 Our c osure operator coinci es wit the usua c osure operator for 

matroids. The singular subsets are called subspaces or flats in this 

terminology. 
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