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CHAPTER I 

PATTERN FORMATION 

I. 1 Introduction 

In the world around us most diverse forms and shapes can be 

observed. Many are caused by man himself not only in a continuous 

process of innovation and technical application restructuring his 

natural environment but also in a less objective way in the 

consti tuUon of social forms in which individual life takes part. But, 

just as biological life forms, much of the structures are produced by 

nature in the form of some ordering in time and space. The cooperation 

of elementary components produces an entity with an individual, 

recognizable structure which is more or less stable and reproducible. A 

structure has properties and fulfill laws which can not be derived from 

the constituents alone. 

In science the naive immediate experiences are ordered in a systematic 

way. The main research of natural science was directed towards the laws 

which constitute structures and their functional relationships. In 

recent years, the research of I. Prigogine and H. Haken has initiated a 

shift in attention to the natural aspects of the emergence of structure 

on macroscopic level in multi particle systems. 

A complete mathematical characterization of such a system, say one 

liter of ethyl alcohol would entail the specification of coordinates 

and momenta for each molecule in the sample, plus additional variables 

describing the internal state of each molecule. At least 1023 numbers 
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2 CHAPTER I 

(atomic, microscopic coordinates) are needed to describe this system! 

However, structures are observed macroscoplcal ly on scales which are 

slow and coarse compared to the atomic scale of time and distance. Only 

those few particular (combinations of) atomic coordinates which survive 

time and spatial averaging are macroscopically observable. Some 

sciences, e.g. mechanics, are concerned with the study of one or more 

of these surviving coordinates, other are concerned wl th the 

macroscopic consequences of multiple actions on microscopic level, e.g. 

thermodynamics. But as a consequence of the coarseness of macroscopic 

observations, the microscopic coordinates do not appear explicitly in a 

macroscopic description of the system. 

characterized by macroscopic quantities 

density (e.g. Callen, 1985). 

In that case processes are 

i.e. temperature, particle 

Under certain conditions multi particle systems perform a well 

organized collective motion or function which results in ordered 

phenomena on a macroscopic scale. Structure formation is conceived of 

as the transition between an disordered state and an ordered one. The 

disordered state is characterized by random or non-identifiable 

behavior. The transition between those states ls called pattern 

formation. 

Prigogine's and Haken's ideas add up to a theory of change which is not 

only relevant for physical and related chemical and biological systems 

but also for the understanding of systems where the physical aspects 

are not decisive for the determination of structural laws. Such a 

common denominator seems hardly likely. Already ln physics, the 

Newtonian model offers total determinism and thermodynamics a movement 

towards a final uniform state. 

Newtonian determinism means no essential difference in going backward 

or forward in time: the time evolution is fixed, each stage is 

unambiguously determined by the (complete description of the) initial 

state. In the disorder movement of gas molecules complete information 

on all possible states is present. On macroscopic scale all those 

disorder (chaotic) states look the same. If the movement becomes less 

chaotic, a pattern could be detected. Different time paths can give 

rise to the same ordered structure: the initial state is not uniquely 

reachable by :reversing time. Such a time .lrreverslble process is not 
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possible in a Newtonian world. 

The second law of thermodynamics provides a time arrow for physical 

processes, however just in the direction of disorder. This applies only 

for isolated systems which have no exchange of matter and energy with 

their environment. It ls precisely in non-isolated physical systems 

that processes occur which resemble pattern formation; e.g. in 

biological- and social systems. In the latter case, the time evolution 

is in the direction of higher ordered structures. The same development 

can take place in physical systems. A continuous influx of energy 

and/or matter provide conditions under which pattern formation can take 

place (see below, paragraph 2). A particular aspect is that those 

conditions do not specify the pattern itself. The observed form can not 

be deduced uniquely from the external influences only. It looks as if 

the elements organize themselves to react coherently to changes in the 

environment. This aspect of the process ls labelled self-organization. 

From all possible reactions, one particular form is chosen throughout 

the whole system. The emergence of structure in itself and the 

multiplicity of ordered structures which can arise in a self-organizing 

way are two of the fascinating aspects of this type of pattern 

formation. 

In Prigogine' s theory and in Haken' s approach, denoted by the term 

synergetlcs, the basic conditions for such a process are: a 

non-isolated system, many subsystems, intrinsic fluctuations. (An 

introduction to the work of Prlgogine can be found in Prigogine and 

Stengers (1984) and to the work of Haken in Haken (1981)). The 

impossibility of a complete microscopic description of multi particle 

systems (continuously extended systems as fluids), the fundamental 

uncertainty with respect to position and velocity, as well as other 

considerations, has given rise to a statistical approach. The system is 

subdivided in ensembles; the elements belonging to an ensemble are 

assumed to be indistinguishable. This so called mezoscopic scale is 

large compared to microscopic distance- and time scales but small 

compared to those of the observed macroscopic pattern. 

The evolving macroscopic patterns are a consequence of microscopic 

interactions. Based on the assumption that micro behavior is a scaled 

down version of the macro one, pattern formation is now described as a 
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spatial and/or time redistribution of some macroscopic quantities 

defined for the ensembles, e.g. temperature, particle density and 

concepts such as phase. Apart from intrinsic fluctuations, the 

mezoscopic approach generates spontaneously more 'fluctuations' since 

not all microscopic elements will be in the same (averaged) state. 

Those fluctuations test continuously the stability of some distribution 

(macroscopic pattern) and can induce a transition to a new pattern if 

stability is lost. 

These conditions are apparently present in social systems: inter

dependence of different groups, fluctuations as a manifestation of 

individual behavior deviating from average group behavior, the openness 

to innovation and information. Wl th the introduction of statistical 

mechanical concepts, Prlgogine' s methods and Haken' s synergetlcs are 

used in the study of change and ordering in social systems, see e. g. 

Weidllch and Haag, 1983. 

Before part of Prlgogine's theory and Haken's synergetic approach will 

be exposed in paragraph I.3, some examples of pattern formation 

processes will be given in the next paragraph. The examples are 

selected on the basis of a criterion of elementary conditions and no 

attempt has been made to bring all pattern formation processes under 

the common denominator of self-organization. 

I.2 Examples 

The first examples are typical for pattern formation induced by 

lowering of the temperature and removal of energy from the system. 

Physics, phase transitions at low temperatw-e 

The most obvious example is water vapor. At elevated temperature 

its molecules move freely without mutual correlation. A liquid drop ls 

formed when temperature is lowered; molecular motion becomes highly 

correlated. Finally, at still lower temperature, at the freezing point, 

water ls transformed into ice crystals. The molecules are now arranged 

in fixed order. 
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The different aggregate states are called phases and the change of one 

phase to the other is called a phase transition. Though the same kind 

of molecules are involved, the mechanical, optical, electrical, thermal 

properties of the three phases differ wildly. 

A similar type of ordering occurs in ferromagnets. At the atomic 

level, the magnet may visualized as being composed of many elementary 

atomic magnets, called spins. At high temperature, the spins point in 

random directions. When added up, their magnetic moments (practically) 

cancel each other and no magnetization results. Below a critical 

temperature, the elementary magnets may line up, giving rise to 

magnetization. 

In some alloys physical properties such as elasticity are changed 

under the influence of external forces (stress) (Falk, 1983, 1984). 

Spatial differentiation by binary phase decomposition ls applied in the 

so-called WORM, write once, read many, optical disk drives used as high 

capacity data storage devices. The state of the memory is given in 

terms of the properties belonging to one of the phases. 

In superconductors below a certain temperature electrical 

resistance vanishes completely and abruptly (Berggren and Huberman, 

1978). (For a general reference on phase transition, see Domb and 

Green, 1972-1976). 

Physics, Fluids 

Fluid dynamics provides beautiful examples of pattern formation. A 

standard type is given by Benard instability (convection instability). 

Here a thin layer of fluid is heated from below such that the bottom of 

the layer has a constant and uniform temperature; similarly, heat is 

withdrawn at the top of the layer in such a way that the temperature 

there is also constant and uniform but lower than at the bottom. The 

fluid is subject to gravity only and incompressible. 

The most important feature of the model is that only one property, 

density, is directly altered by the temperature difference. Due to this 

temperature difference (temperature gradient) a vertical flux of heat 

is created. For a small temperature gradient, this heat transport 

occurs at the particle (m1croscop1cal) level and no fluid motion is 

observable, that means no macroscopic motion is visible. When the 
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temperature gradient ls increased, suddenly at a critical temperature 

gradient a macroscopic motion of the fluid sets in. 

The fundamental unit of this pattern consists of two long rolls which 

rotate in opposite directions; in each unit, the fluid rises in the 

center along one side of a roll, cools down at the upper surface and 

sinks at the periphery along the other side of the roll. As the 

temperature gradient increases, more complicated patterns arise, such 

as the Benard cells: see Haken (1978) for more details. Convective 

systems can be observed in nature: atmospheric convection where cloud 

streets or mare's tails (long straight streaks of cirrus clouds) are 

produced by cells of the roll type extending over thousands of square 

kilometers. On a much smaller scale, the drying of lacquer (varnish) 

shows convective patterns, see e. g. Velarde e. a. (1980). 

A related phenomenon ls the so-called Taylor instability. In an 

experimental setup liquid is filled in between two coaxial cylinders. 

The outer cylinder ls kept fixed while the inner cylinder can be 

rotated. At slow rotation speeds, the fluid forms coaxial streamlines: 

by means of the friction between fluid and cylinder, the fluid ls 

carried along with the inner cylinder. \./hen the rotation speed is 

increased, a new kind of motion appears: the fluid motion becomes 

organized in the form of rolls such that the f luld moves outwards and 

inwards in horizontal periodical ordered layers. At a second critical 

speed value, the rolls start to oscillate with one basic frequency, at 

higher speed with two frequencies, eventually at still higher speed 

chaotic motion sets in (Haken, 1978). 

Chemistry 

Temporal, spatial and spatio-temporal reactions: usually, when 

reactants are brought together and well stirred, a homogeneous end 

product arises. However, some reactions show specific patterns. In 

Chapter IX an example of a spatial precipitation pattern, Liesegang 

rings, will be given. Temporal oscillating systems date from an 

accidental discovery in 1958 by the Russian chemist B.P. Belousov. A 

few years after its publication, A. M. Zhabotinsky modified slightly 

Belousov's recipe and started a systematic study of the reaction which 

is now commonly called the Belousov-Zhabotinsky reaction (see Epstein 

e. a., 1983). 
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In Belousov's experiment, citric acid and sulfurlc acid ls dissolved in 

water with potassium bromate and a cerium salt. Oscillations are 

clearly visible as the cerium changes back and forth from an oxidized 

state (yellow) to a less oxidized state which is colorless. The 

reaction is maintained by an influx of new reactants from the external 

environment with at the same time removal of final products (see e.g. 

Winfree e.a., 1984). 

Biology 

Animal grouping: insect swarming, fish schooling. The interior of 

an insect swarm consists of a number of subswarms, each moving in a 

random direction. Insects at the leading, peripheral and rear edges 

show a consistent orientation inwards to the centre of the swarm. This 

behavior at the edges provides a mechanism to keep the swarm together. 

The swarming activity depends on the external factors such as animals, 

human beings and special ground conditions. 

Fish schooling is more organized: neighboring fish orient themselves 

similarly. Moreover there seems to exist a critical density below which 

no aggregation takes place (Okubo, 1980). 

Pattern formation in algal cell cultures: swimming micro organisms 

may spontaneously form regular convection patterns. Local stimuli 

affect their orientation and speed. Reaction to a light source ls a 

common occurrence which ls called positive phototaxis if the swimming 

direction is towards the light source; regulation of speed is called 

kinesis (Okubo, 1980). 

Termite nests (chemotactlc interaction): from a multitude of 

disorderly movements arises the construction of walls and pillars. 

Initially termites move randomly, dropping small quantities of earth 

mixed with a hormonal substance by which they are attracted. Above some 

threshold, deviations in the concentration induce a preferential 

direction such that more earth and hormones becomes accumulated at 

those points amplifying the initial critical fluctuation. The termites 

start to interfere with each other and start building large structures 

(see e.g. Courtois, 1985). 

Slime mold aggregation: lntercellular interaction depends on the 
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stage of the cell's life cycle. Immediately following germination, the 

cells disperse as if acting under mutual repulsion. When a source of 

food (bacteria) is present, the cells move toward it with a high 

positive chemotactlc coefficient. After exhausting their food supply, 

the amoebae first tend to distribute themselves uniformly over the 

space; later they begin to aggregate in a number of "collecting 

points". At each center a slug forms, migrates and eventually forms a 

multicellular fruiting body. This final process ls understood as 

follows. The single cells are capable of spontaneous emission of a 

certain kind of molecules (cAMP) ln the form of pulses into their 

surroundings. These pulses can be amplified by the cells themselves an? 

the single cells can measure the direction of the gradient. In this 

way, higher concentrated areas can be detected and the cells migrate 

towards them (Keller e.a., 1970; Hagan e.a., 1981). 

A similar mechanism is found in morphogenesis. Cell 

differentiation is assumed to be dependent on the position of the cell 

in a morphogenetlc field which is generated by the gradient of a 

characteristic substance. This chemical gradient provides each cell 

with a different chemical environment which induces a spatially 

differentiated evolution (Turing, 1952). 

The nervous system seems to process information in terms of 

competitively and cooperatively correlated interactions of neurons. The 

brain processes information in a parallel manner by neural excitation 

and self-organization (the network hypothesis). In the case of vision, 

the contour of a spatial structure is projected on the retina where the 

information ls transmitted by correlated nerve pulses. Just like its 

original ls build of interrelated elements, it ls the cohesion between 

the elementary nerve pulses which reveals the original structure. 

Adjustments in the pattern recognition process occur in a self-learning 

way (Amari, 1982; Rinzel, 1977). 

Geology. 

Distribution of minerals or pore space in rocks. 

Metamorphic layering: if pressures and temperatures are 

intermediate between those at the surface and the molten state, rocks 

can become segregated into bands, under the combined effects of stress, 
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dissolution, crystal growth and transport of mineral dissolution 

products along grain boundaries (McBlrney e.a., 1979). 

Stylolites (crenated fracture lines): if a porous rock is 

subjected to an overall stress, grains in a region of higher porosity 

will be subjected to higher stress and hence be more soluble; ln such 

areas the porosity increases whereas grains in lower porosity areas 

will grow. The self-enhancing process causes cementation of regions 

which are separated by dissolution seams (Ortoleva, 1979,1984). 

Dendritlc growth, snowflake patterns: branching growth of an 

solidifying crystal. When a crystal solidifies outward from an initial 

seed, the process does not generate a smooth boundary: any part of th~ 

boundary that gets in front of its neighbors gains an advantage in 

picking up new water molecules and therefore grows much faster. Tips or 

dendrites are formed, moving rapidly outward and giving birth to 

subbranches (Langer, 1982). 

Other examples are: stalactites, downward growth of calcium carbonate 

formed at the roof of a cave by trickling of water containing calcium 

compounds. Stalagmites: upward growth on the floor. Deviations from a 

(more or less) flat surface are enhanced since the enlarged boundary 

will contain more water and, by evaporation, grows faster. On the roof, 

the gravitation has a positive effect: the water seeks the lowest 

level. On the floor, gravitation has a smoothing effect which can be 

overcome by fast evaporation. 

Convective patterns (see Benard convection}: convection in oceans 

ls caused by heating of the water by solar radiation which penetrates a 

few tens of meters. On the surface the water is cooled by evaporation 

and conduction. Since heat is introduced at a level below which it is 

removed, a layer of water, several meters deep, can become unstable and 

give rise to convection. 

Convection in the earth's mantle: the heat that drives the 

cl.rculat:l.on is liberated not at a boundary but rather throughout the 

volume of the material, mainly as a result of the decay of radioactive 

elements. A temperature gradient ls formed because heat is lost from 

the system only on the surface so that tempera turc increases with 

depth. Observable effects of this convection are the creation of a 

chain of rifts in the sea floor and the drift of the continents across 
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the surface of the earth (see references in Velarde e.a., 1980). 

Economics 

Spatial distribution of populations. Regional growth or 

stagnation, urban development, intra-urban redistribution generates a 

macro-structure based on micro behavior. During the initial growth 

phase the area ls attractive and can accept additional population, but 

if carried far enough, the influx of people overcrowds the area, 

reduces the attractiveness, reduces the population inflow, and 

increases the outflow until population growth stops. By this process 

population rises and falls to maintain the attractiveness of the area 

in balance with that of the surrounding environment. 

Shifts in manufacturing procedures, transport costs, mobility can cause 

redistribution of capital and labour with its consequences for the 

attractiveness of an area and the overall migration pattern. A 

prosperous area generates new industry, managers and skilled labor 

beyond those who can remain employed within the cl ty area. These men 

and enterprises leave to start nuclei of rising economic activity at 

other places which are perturbations of the existing distribution 

(Forrester, 1970,1974). 

Product cycles: life cycles of interacting commodities. 

Perturbations in product structures are brought about by innovations. 

The application of technological inventions can start the development 

of a new product or the rationalization of existing manufacturing 

procedures. A successful lnstallment of a new industrial branch can 

have positive cooperative effects on the general welfare in the form of 

lower unemployment and attraction of production of related commodities. 

H0wever the extension of production with new products ls more costly 

than extension by rationalization which goes along with a reduction of 

labour costs per product. If the firms want to keep their profit 

margins, product rationalization leads to either higher production at 

lower selling prices or lower production at the same old prices. The 

willingness to undertake investments and the availability of capital 

resources depends on the (expected development of the) macro state of 

the economy. With a shift to lower production, rationalization reduces 

employment and linked with that, spending-power. In such a situation 
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expansion by new products becomes more difficult. 

The interdependence of micro behavlor and macro structure does not 

necessarily give rise to collective changes from, say, full-employment 

to under-employment. The economic state can stay close to equilibrium; 

only in response to large fluctuations with collective, cooperative 

behavior on the mlcroscale (and external factors), a transition to a 

new state will occur. 

In the model of Mensch (Mensch e. a., 1985) two different types of 

product dynamics are distinguished: intrinsic dynamics describing the 

"natural" fate of the product as a technological maturing process and 

evolution of its market share and interaction dynamics describing the 

life cycle of a product as it ls influenced by interaction with 

competing commodities of different stages of maturity. This interaction 

process can lead to a synchronization such that clusters of products 

adapt to the same development stage. If this clustering is effective it 

will give rise to the self-organization of temporal structures in the 

form of groups of products at the same maturity level, and furthermore, 

it explains collective behavlor between different industrial branches 

with its macroscopic effects. The decisions taken on the basis of 

expected development generate an autocatalytlc process. Very subjective 

expectations can give rise to singular phenomena such as the Dutch 

"tulip mania" in the eighteenth century. Azarladis (1981) terms such 

expectations as self-fulfilling prophecies. 

I.3 Order by fluctuations 

The phenomena alluded to above have some specific features in 

common. The pattern formation is not merely a transformation or 

deformation. The structure obtains properties which can not be derived 

uniquely from the foregoing stages. There does not exist a one-to-one 

mapping between the states before and after the change in external 

conditions; the system has undergone a structural change. In some cases 

structures are maintained in a dynamic way by a continuous influx of 

energy, e.g. fluid dynamics; others are first generated dynamically and 
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then fixed by solidification, e.g. precipitation patterns, crystal 

growth and morphogenesis (cell dlfferentlatlon). 

All examples mentioned above concern systems with many elementary 

components. Moreover, the transition' to an other state is triggered by 

intrinsic fluctuations. Consider for instance a parcel of fluid in the 

Benard instability. Because of the elevated temperature at the bottom, 

a parcel has a density less than the average density of the entire 

layer. But as long as the parcel remains in place nothing will happen: 

l t is surrounded by fluid of the same density and so has neutral 

floating power (buoyancy). All forces, viscosity and buoyancy with heat 

diffusion, are in balance: the system is and stays in equ111br1um. 

But molecules of a fluid are constantly in motion, so any small 

displacement can happen. Suppose now that the parcel is given a slight 

upward motion. The parcel becomes surrounded by cooler and denser 

fluid: as a result of positive floating power it tends to rise, and so 

on. Thus an initial upward movement is enhanced in an autocatalytlc way 

by the density gradient which is caused by the temperature gradient. 

Similar reasoning applies to a parcel at the top. 

If thermal diffusion ls fast enough, the buoyant force will be so small 

that it compensates the viscous drag and the heat input is carried 

through the layer in a purely conductive way without any specific flow 

pattern; the initial state is not altered significantly, the system 

stays in a state of near-equilibrium. 

However with sufficiently high density differences between fluid parcel 

and lts environment, the viscous drag can not cancel the upward 

buoyancy; the initial upward displacement of the parcel is now 

amplified by the density gradient and this amplification, in turn, 

gives rise to forces which cause further upward movement. As long as 

the fluid moves faster than it loses heat by diffusion, the movement 

can be sustained. The initial small deviations are enhanced as a result 

of the buoyancy and the system evolves to a state far-from-equilibrium. 

The continuous influx of heat at the bottom and simultaneous withdrawal 

at the top keeps the system away from equilibrium. In the 

far-from-equilibrium state the forces acting on the system's elements 

are not in balance, on the contrary those forces give rise to an 

autocatalytic reaction which keeps the system far away from 
equilibrium. 
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This Benard instability ls a typical example of a d1ss1pat1ve 

structure: the added energy is converted into a vertical movement, the 

"remainders" are removed at the top. This process can only be sustained 

under the continuous influx of energy (or matter in other cases). In 

biological systems such a dissipative mechanism ls obvious. The human 

body has a temperature higher than its environment. The metabolism 

inherent to dissipative structures transforms matter into energy to 

keep the system in a state far-from-equilibrium. 

Such systems must be distinguished from conservative (Hamiltonian) 

systems which do not waste energy or matter (or charge, or momentum). 

Similar conditions to those in dissipative structures prevail. However 

the pattern formation in most conservative systems is initiated by 

removal of energy and, in contrast with a dissipative evolution as in 

the Benard instability, there exists a new equilibrium state towards 

which the system tends. The phase transition phenomena mentioned in 

paragraph I. 2 are examples of such processes (phase transition at 

thermal equilibrium). The spatial structure of atoms in a molecule are 

the result only of forces acting on the elementary components at the 

given temperature. 

So the two processes differ quite substantially with respect to the 

interpretation of the final state: equilibrium versus 

far-from-equilibrium. A second aspect is that, e. g. in crystals, the 

position of the particles is fixed (or almost fixed) whereas in Benard 

instability the pattern is fixed indeed, but the position of the 

particles ls not. In general, dissipative structures have more degrees 

of freedom than conservative structures. 

In mathematical terms: the steady states of the dynamical equation(s) 

define the pattern, but far from equilibrium those states are not 

equilibrium solutions of the underlying physical reactions. A simple 

example of a non-linear autocatalytic reaction scheme taken from 

Nicolls and Prigogine (1977), page 170, can 11 lustra te the processes 

mentioned above. Suppose a substance A is converted into a substance B 

via an 'intermediate X which can autocatalyze its own production; the 

reaction scheme ls 
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kl 

A + 2X ~ 3X (I. la) 
2 

(I. lb) 

The system is open to interaction with infinite reservoirs of reactant 

A and B so that the concentrations of A and B are kept constant in the 

system. The rate equation of X is: 

dX - -k X3 + k AX2 - k X + k B 
dt - 2 1 3 4 

(I. 2) 

Now, this equation can have different steady state solutions which are 

equilibrium solutions if the reactions (I.la) and (I.lb) are in 

equilibrium; that ls if X satisfies the following conditions: 

k AX2 = k x3 (I. 3a) 
1 2 

kX = k B (I. 3b) 
3 4 

Assuming the reaction rates k to be fixed, then only (the 
I 

concentrations of) A and B determine the number of solutions of (I. 2) 

(and the stability properties). To make the point clear, all k1 are 

taken equal: an equilibrium solution exists if A = B, and in this case 

it is also the only steady state solution of (I.2). 

But suppose the initial equilibrium ls at B = 0.01 =A. Now the system 

is moved away from equilibrium by putting more A into the system and 

holding Bat 0.01. Of course the equilibrium conditions of (I.3) are no 

longer fulfilled but still the equation will have only one solution if 

A is small (near-equilibrium state). No structural change will happen 

until A crosses the threshold at which equation (I.3) has three 

positive steady state solutions (with at the same time an exchange of 

stability). The system will branch into one of the two new structures. 

Important is that those new structures are only present under far-from

equi l ibr lum conditions (e.g. A= 2.0). 

So far the degree of ordering is not quantified. In the 19th century 

the quantity entropy was introduced in thermodynamics. When heat Aq at 

temperature T is added reversibly, entropy increases according to the 
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formula ~S = ~q/T where S denotes entropy. This thermodynamic notion of 

entropy can be expressed in statistical mechanical terms. 

Consider independent but distinguishable particles. At a fixed 

temperature, for a closed system, the particles are in some way 

distributed over the possible energy levels. One particular ordering of 

the particles is called a complexion. Let the number of all possible 

complexions be denoted by H, then the entropy S of the system can be 

written as: S = kbln H, where kb is the Boltzmann constant. 

It was pointed out by Boltzmann that entropy was really a measure of 

disorder and order. The temperature is an average quantity (in kinetic 

gas theory it is identified with the average kinetic energy of 

particles). The temperature does not alter by bringing together two 

systems with the same temperature. (Temperature is an intensive 

variable, just as concentration and density.) However, the entropy will 

be larger since the number of possible positions, and with that the 

uncertainty about the positions of particles, increases. (Entropy ls an 

extensive variable. ) So the two notions are complementary: the entropy 

measures the number of possible states, the temperature describes the 

deviations from the average state. 

The notion of entropy is strongly connected with the so-called second 

law of thermodynamics: in an isolated system the entropy increases 

monotonically until it reaches its maximum in a state known as thermal 

equilibrium. At a given temperature, the number of complexions becomes 

maximal which gives maximal uncertainty about the possible position of 

a particle in (phase) space. This rules out the possibility of pattern 

formation in isolated systems. The principle of maximum entropy defines 

the most probable state of the isolated system as the state with 

maximum entropy. 

Consider now a system which is in equilibrium, but whl.ch can exchange 

energy with the environment (a closed system in Prigogine' s terms; 

systems exchanging not only energy but also matter are called open 

systems). The system will tend to get to its lowest energy level; the 

(total) energy U will become as small as possible. On the other hand 

entropy will try to become as large as possible (second law). These are 

opposite directions: lowering energy wlll diminish the number of 

complexions (possible energy levels) which decreases entropy. In 
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thermodynamics the so-called free energy potential which quantifies the 

state of the system, expresses both tendencies. This free energy 

functional, more specific the Helmholtz free energy functional, is 

defined as 

F = U - T·S. (I. 4) 

where F denotes the free energy, U total energy, T temperature and S 

entropy. 

At equilibrium F is minimal, which for an isolated system coincides 

with S maximal since U will not change. At a given temperature T, the 

probability that a system is in a state of energy e is given by the 

Boltzmann distribution function: 

P(e) = ~xp(-c/k T) z b 

where Z is the partition function: 

Z = [ exp(-c/kbT) 

" 

(I. Sal 

(I. Sb) 

(Z is not only some normalization factor, but links free energy with 

entropy, temperature, pressure etc.). 

With increasing temperature, the contribution of entropy to the free 

energy becomes comparable with that of the energy U to F, and according 

to (LS) the various energy levels become equally populated. However 

wl th decreasing temperatures, the entropy contribution diminishes and 

only low levels of energy are occupied to a non negligible extent. So 

for a non-isolated system, there exists a possibility to form low 

entropy, ordered structures provided T is low. This is called the 

Boltzmann ordering principle: the most probable state is defined as the 

state with minimal free energy. It is responsible for pattern formation 

properties in phase transitions, like in the case of the 

vapor-water-ice cycle. Equilibrium structures, as are most conservative 

systems, are characterized by Boltzmann ordering. 

This type of low temperature pattern formation does not fit with 

pattern formation in far-from-equilibrium processes. In Benard 

instability, heat influx brings ordering. For non-isolated systems in a 

non-equilibrium state, Prigogine has formulated a new, nonequill.brium 

ordering principle. The entropy change dS during time interval dt is 
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expressed as the sum of two contributions dS = des + d1S, where d6 S is 
the entropy flux due to exchanges with the outer world, and d 1S is the 
entropy production due to processes inside the system, such as 
diffusion, heat conduction; the second law implies d1S ~ 0 and d 1S = 0 
in equilibrium, hence such processes are irreversible. With the 
external "production" d S the system can attain a steady state with a 

" lower entropy than the initial one, and this state can be maintained 
provided that d0 S = -d 1S < 0. As a consequence, such a situation can 
only occur under non-equilibrium conditions since at thermal 
equilibrium both d 1S and d6 S would vanish. 
Note that for instance in Benard instability, the imposed temperature 
gradient induces a supplementary ordering in the system which means a 
lowering of entropy; also the cAMP gradient in slime mold aggregation 
gives rise to a spatial ordering. In Prigogine' s theory, the final 
state ls now defined as the state with minimal entropy production; see 
for relation between statistical mechanics and thermodynamics e.g. 
Powles, 1968; for thermodynamics e.g. Buckingham, 1972; for 
far-from-equilibrium processes Prigogine e.a. 1967, 1968 and Nicolls and 
Prigogine, 1977). 

So far the notions have been given in a thermodynamical context. Social 
systems are most highly open systems. Such systems show not only 
cooperative aspects but also autocatalytlc effects. Multiplier effects 
are well known in economics, cooperation in producing and merchandising 
goods is practically a necessary condition. 
In the works of Haken with his accent on cooperation (and the physical 
concept of phase transition), physical pattern formation processes and 
structure evolution in social systems are brought under the common 
denominator of synergetics. (For a general introduction see Haken, 
1978,1981; also Weidllch and Haag, 1983.) The basic notions are 
(again): multiple elements, randomness (based on ignorance or intrinsic 
fluctuations), openness and cooperation translated ln terms of 
autocatalytic growth processes. 

In physical systems entropy is a measure of order and disorder and for 
isolated systems, based on the principle of maximum entropy, lt 
provides a way of determining the most probable configuration. This 
concept resembles strongly the Shannon information entropy which is 
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defined as the expected information included in an (encoded} message. 

The uncertainty in a message depends on the amount of information 

conveyed by this message. The Shannon information entropy ls defined as 

S = - l P(m)log(P(m)) (I. 6) 

where the sum is over all messages. Maximal uncertainty coincides with 

equal probability for all messages; hence maximal uncertainty goes 

along with maximal entropy (Hamming, 1980). The name of entropy for the 

quantity defined in (I. 6) is not chosen arbitrarily; by way of the 

Boltzmann distribution function P (I.Sa) the statistical entropy can be 

formulated as in (I.6), in terms of summation over all energy levels. 

This concept of information entropy as a measure of uncertainty ls used 

in the social sciences (Thell, 1967). In a similar way, the more 

physical interpretation in the sense that the most probable 

configuratl~n of a system is that with maximal entropy, is applied to 

non-physical systems. In regional science, entropy maximization as a 

selection procedure amidst the numerous possible spatial states, has 

lead to the general formulation of so-called gravity models (Nijkamp 

and Paelinck, 1974). 

It is a surprise that the result of fluctuations and interaction is a 

coherent, stable pattern. In Benard instability only a differentiation 

in vertical direction ls induced by the temperature gradient. A fluid 

parcel cannot move simultaneously upward and downward, so some 

selection must take place but why in a spatial coherent way? How does 

the system evolve from the chaotic phase to the ordered phase? How does 

the system select a specific mode? By which factors does the system (or 

its elements) organize itself in the observed mode? How is cooperation 

between the elements established? These are questions which arise in 

relation to self-organization. A mathemat.l.cal system description can 

provide insight in the formal mechanism of pattern formation. 
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1.4 Implementation 

All the systems which have been mentioned so far are generally 
composed of very many subsystems. Accordingly, these systems must be 
described by many variables. For implementation l t is important to 
choose the variables on the adequate level of description. In the 
paragraphs above temperature and density were used; as mentioned there, 
these are average quantities which can only be formulated for sets of 
elements, for example a liquid. Individual atoms or molecules are found 
at the microscopic level; the appropriate variables would be their 
positions, velocities and mutual interactions. 
At the mezoscopic level the liquid is described by ensembles of many 
atoms or molecules. Such ensembles are assumed to be large compared to 
scales on microscopic level but small compared to the evolving 
macroscopic pattern. The mezoscopic scales allow for averaging out 
individual behavior and the introduction of such quantities as 
temperature, density, mean local velocity. At the same time a 
mezoscopic description introduces (supplementary} randomness into the 
system description (and reduces entropy since its assumes that 
particles belonging to the same ensemble are indistinguishable). 
Moreover, in physical systems the concept of ensembles allows for the 
merging of trajectories (time-paths) since exact position (and 
velocl ty) of particles is unknown. By Llouville' s theorem, at the 
microscopic level the entropy is a conserved quantity for an isolated 
system. Defining the system in average quantities over ensembles, the 
entropy, or rather minus the Boltzmann H-function, formulated as in 
(I.6), is a monotone increasing function of time (Kac and Logan, 1979). 
(The thermodynamic entropy ls this coarse-grain entropy. l 
The macroscopic level ls the observer's level where the pattern is 
unveiled. In the study of pattern formation processes, one looks at the 
evolution from a chaotic, uniform state to a ordered, non-uniform 
state. On the macroscopic level, this evolution is observed as a change 
in symmetry properties of the system. The initial state has complete 
symmetry, the final state has less symmetry. At the symmetry-breaking 
point, fluctuations drive the system away from the unstable uniform 
solution, or in general the reference state, and branches (or jumps) to 
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another, mostly not uniquely given less symmetric state. 

With spatial interaction between the ensembles, the evolution ls 

modeled by partial differential equations. The symmetry-breaking 

property must allow for a change in quantitative (symmetric and 

non-symmetric) and qualitative (stability) properties of the solutions 

of the model at some specific parameter values. 

Those values are denoted as b1furcat1on points; at such a point, the 

curve which represents solutions in the parameter space, branches 

(bifurcates). The structural change in mathematical properties at the 

bifurcation point, resembles the structural change of the system 

studied at the onset of pattern formation. In bifurcation theory one 

studies when and how, for a given model, changes in the properties of 

solutions occur. Perturbations in stability theory play somewhat the 

role of fluctuations generated by a mezoscopic description. 

Multiplicity of solutions, autocatalytlc reaction ln self-organizing 

systems, far-from-equilibrium condl tions, also present at the 

transition from one equilibrium state to another, make non-linear 

modellng necessary. Only at near-equilibrium, linear approximations are 

valid. 

Even very simple non-linear evolution equations can show a richness 

and compleidty in pattern formation which resembles "almost" the 

abundance of forms in nature. Or in the words of P. Ortoleva: 'In 

nonlinear partial differential systems almost anything can happen. And 

what ls beautiful is that it does. However depressing this thought 

might be to those who like simple generalizations, it also serves to 

point out the beauty and great variation of the manifestations of the 

nonl.l.near in the blo-, geo- and other spheres around us.' (Ortoleva, 

1979). It may be one of the reasons why it seems so "easy" to apply 

non-linear dynamics to social science: the multiplicity and complexity 

of outcomes, possibly simulated by computer, seems to resemble 

analogous properties of social systems. 

The mathematical model which is formulated and studied in the following 

chapters, ls based on the reduction of spatial pattern formation to 

spatial separated subsystems which cooperate to form a common spatial 

structure. Moreover, apart from the non ordered mixed state, the 

ensembles (groups) can only be in one of two possible states; the 
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pattern ls characterized by a binary phenomenon: the upward- and 
downward movement of water in Benard instability, precipitation and 
non-precipitation, conglomeration areas and rural areas, orientation of 
elementary magnets, the decomposition of a market in firms which are in 
the excess-supply "phase" and which are in the excess-demand "phase". 
In the mixed phase no pattern ls observed, the two states are randomly 
distributed (or not even present) over the given domain. 
Pattern formation means now a decomposition of the (spatial) domain in 
separate sectors or groups of ensembles where all mezoscoplc elements 
belong to the same phase. In the formulation of H.J. Maresquelle: 'eine 
Erschelnung E (entweder Konvektionssalile, oder Amobenaggregation) kann 
liberal! vorkommen; doch, wenn einmal irgendwo E vorhanden ist, wlrd E 
in der nachsten Nahe unmoglich. Jedes E-bezirk wlrd von elner "non 
E"-Hemmungszone umgeben.', (Maresquelle, 1977). Structure is now a 
binary system E - non E. The same structure is found in Conway's 
well-known Game-of-Life of Conway or in general in cellular automata 
(see e.g. Wolfram, 1983; Vichniac, 1986). Here the rules of life and 
death are made without reference to any specific, say physical 
property. The approach is purely formal. 

A second way ls found ln models which give the evolution of the E - non 
E structure as the time evolution of the average E density of ensembles 
(groups, cells). In general, the models are taken to be continuous in 
time and space. For example, Meinhardt and Gierer in modeling chemical, 
biological (and even economic) processes, distinguish between a 
substance which activates growth and a substance which inhibits growth 
(see e.g. Meinhardt, 1977; Gierer, 1979; Mlmura, 1982). The evolution 
of the density of the substances, called activator and inhibitor, ls 
given in the form of reaction-diffusion equations: 

au 
at = D6u + f(u) (I. 7) 

with u = (u1 , u2 ), D = (d1J) being a diagonal matrix with du > O and 6 
the Laplace operator in the spatial domain. The nonlinear reaction term 
f(u) models growth and decay of the substances; the diffusion term 
models spatial interaction (as in slime mold aggregation where the cAMP 
gradient induces spatial inhomogeneities). The pattern (the 
"E-profile") is given by the distribution of the activator substance 
over the spatial domain. 
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Already in 1952 Turing has pointed out the importance of 

reaction-diffusion equations with respect to modellng morphogenetic 

processes (Turing, 1952). The models developed by Meinhardt and Gierer 

resemble the so-called Brusselator and Oregonator of the Brussels 

school of Prigogine used in simulating far-from-equilibrium phenomena 

(see e.g. Nicolls and Prigogine, 1977). 

The problem is that it is not always possible to discriminate between a 

inhibitor and activator substance; phase transition is formulated in 

terms of the concentration of particles ln one of the phases; city 

growth is initiated by attracting people and stopped at overpopulation; 

the pattern of a river delta results from erosion power as a function 

of the stream width. Only one variable is involved which is synonymous 

with the local density of Maresquelle's E-phenomenon. 

In this case, pattern formation is conceived of as a process l.n which 

space becomes divided in areas with either a high or low frequency of 

the E phenomenon. If it is assumed (in this context) that particle 

density is constant, then the observed pattern can be described by the 

density of particles which are in state E. We will denote those 

particles as mass. The disordered state is characterized by an uniform 

distribution of mass, and pattern formation can now be seen as a mass 

redistribution process. 

Spatial decomposition w.lll take place due to the following specific 

conditions: 

a) an autocatalytic mechanism such that "mass" will increase at 

locations which have already initially a higher mass density; 

b) neighbouring particles tend to evolve to the same state; 

c) a conservation condition, which implies that not all particles 

can be in the same state at the same time. 

The conditions a and b may be initiated by environmental changes. 

In Chapter II a specific evolution equation ls derived, based on Thom's 

river basin model (Thom, 1976). The time evolution of the positions of 

N watersheds (particles) is described in a formal way. 

By assuming that N is large, the model is transformed into a continuous 

one which gives the time evolution of a mezoscopic variable, the local 

particle density u(x,t). The evolution equation is: 
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(I. 8) 

Equation (I.8) ls a mass conserving evolution with only nearest 
neighbor interactions. The autocatalytic effects can be obtained by 
negative diffusion which, instead of smoothing out, gives a clustering 
of mass (see Chapter II, § 3). The system (I.8) is denoted by the name 
of anti-diffusion. It depends on the specification of tf> (and on the 
level of u) whether diffusion or anti-diffusion occur. A phase 
transition can be initiated by environmental changes, so in general the 
specification of tf> will include some parameters which represent 
environmental conditions. 

Although derived in a quite different context, this equation is a 
particular form of a phase transition model based on the minimization 
of the Glnzburg-Landau free energy functional which defines free energy 
(I.4) as a function of particle density only, see Chapter III, § 4. 
In Chapter IV a stochastic formulation is given in the form of a Markov 
process. The deterministic evolution equation derived in Chapter II, ls 
the most probable path equation of this stochastic process. By defining 
different spatial interactions, a whole class of mass conserving 
evolution equations can be found, e. g. diffusion- or migration-like 
mass exchange processes. 

Existence and stability of non-trivial solutions are investigated in 
Chapter V. To find an answer to the question how the system will evolve 
if the uniform distribution ls unstable, some bifurcation analysis ls 
applied in chapter VI. Although all systems belonging to the class of 
evolution equations defined in chapter IV have the same properties with 
respect to existence and stability of stationary solutions, their 
transient behavior can be different. In chapter VII it ls proven that 
every non-trivial, non-monotone stationary solution of this class of 
evolution equations is unstable. This conclusion is not valid for the 
discrete versions. 

Numerical simulations (discrete system) are reported in chapter VII I. 
We have followed the time evolution of a randomly disturbed uniform 
initial state. By applying the so-called simulated annealing procedure, 
it ls possible to simulate a stochastic time evolution. In both cases, 
deterministic and stochastic time evolution, the final patterns are (ln 
general) non constant, non monotone functions. 
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In chapter IX we give a review of a periodic precipitation phenomenon, 

the so-called Llesegang rings. Two mathematical models are exposed, one 

being based on the anti-diffusion equation. Numerical simulations of 

both models are reported. 

A model for (human) migration is introduced in chapter X. In contrast 

with the anti-diffusion equation (I.8), mass redistribution (migration) 

in unit time ls not restricted to mass exchange between neighboring 

locations only, but still the same two phases can be distinguished: 

smoothing out of people ("diffusion", the uniform distribution is 

stable), and clustering of people ("anti-diffusion", the uniform 

distribution ls unstable). The parameters of this migration model are 

estimated using Dutch migration data (1970-1985); the estimated 

parameter values show a change which can be interpreted as a transition 

in the migration pattern from "diffusion" to "anti-diffusion". 
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THOM'S RIVER BASIN MODEL 

II.1 Introduction 

In Thom (1976) the following situation ls described. Rain ls 
steadily falling on a sandy hill; at the top brooklets form and 
disappear almost continuously. Down the hill, the slope is gentler and 
erosion is less severe: the pattern of watersheds and brooklets becomes 
more stable. Surviving brooks compete with each other for the available 
space. The result will be an almost regular pattern at the bottom of 
the hill. Such pat terns can be observed in nature, e. g. ln Death 
Valley, California (USA): 

Figure II.1: Drainage pattern In Death Valley, California (USA) 

- 25 -
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The model proposed by Thom is written in terms of the position sn(t) of 

the n-th watershed at time t (s < s < s ). Suppose the eroding 
n-1 n n+1 

power of a stream is proportional to its basin width an, 

a = s - s , then the position s is governed by the following 
n n n-1 n 

differential equation: 

s = -c ( s - s ) + c ( s - s ) • c > 0 
n n+i n n n-1 

(I I. 1) 

where denotes derivatives with respect to time t and c ls a 

proportionality factor. 

Since erosion power will be less than proportional at greater values of 

the basin width a, the proportionality factor c is a function of a. A 
first, reasonable looking, graph of c as function of the basin width a 

could be as depleted in figure (II.2). 

figure H.2: Graph or c as function or th<> basin width a. 

This function c(a) also incorporates the idea that a certain water mass 

is needed for effective erosion. 

Any equidistant distribution with basin width a for all streams is a 
0 

stationary solution of (II.1). By performing some linear stability 

analysis the character of the equations becomes more clear. Consider 

two streams with watersheds at +a and -a and at u near 0 on R. Taking 
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Taylor expansions of c(a-u) and c(a+u) around a, the time evolution of 
u becomes: 

u = 2(c(a) + ac'(a))u + u2 ( ..• ) + ... (II. 2) 

For c(a) + ac' (a) < O and u small, u will tend to zero: the system is 
stable. With c as in figure (II.2), there wlll be a basin width ae such 
that c(a) +a c'(a) = O and for a> a stability will be obtained. c c c c 
On the contrary, if the stream width is in the range where 
c(a) + ac' (a) > 0, broader streams will grow at the cost of smaller 
ones. The deviation u will not tend to zero. 
Since smaller streams coincide with higher density of the watersheds, 
local maxima of the watershed spatial distribution function will grow 
when the system is unstable with respect to uniform distributions. Thus 
an uniform unstable distribution, randomly disturbed, will tend in time 
to a non-uniform distribution. If the uniform solution ls unstable then 
equation (II.1) models a pattern formation process. 
Now, as mentioned in chapter I with respect to self-organization, at 
least two questions are open: (l) how does a more or less regular 
spacing of the watersheds with a characteristic distance a arise from 

0 

the initially uniform, unstable situation, and (11} how does the model 
select between different possible a 's. Indeed, what is observed e.g. 

0 

in the Death Valley pictures alluded to above, ls a characteristic wave 
pattern for the watersheds. The "equilibrium restoring force" for a 
spacing a is c(a) +a c'(a) and one could argue that there would be 0 0 0 0 

a natural tendency towards a spacing wl th a 
0 

such that 
-(c(a

0 ) + a
0 c' Ca)) is maximal. Other arguments favor the largest a

0 

for which c(a) +a c'(a) is still negative (the so called marginal 0 0 0 

stability hypothesis). 

As formulated, the model describes the evolution for a fixed, time 
Independent number of watersheds. It is unequal to the arising or 
disappearance of watersheds. In the following section a continuous 
model will be derived resulting in the time evolution of a mass density 
function. In such a multi-particle system, local maxima will represent 
watersheds. Redistribution of mass goes along with "growth or 
destruction of watersheds". 
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II.2 The small amplitude continuous scaling limit of Thom's river 

basin equation 

In a multi-particle system the transition from a discrete model to 

a continuous model assumes that the discrete values are values of 

continuous, slowly varying functions in time and space. Two different 

ldentlf ication procedures are used below. The first method identifies 

the subindex n with a fixed, time independent spatial location x = n·l, 

where l is the grid length. 

The second one ls based on the observation that the inverse of the 

basin width a is equal to a scaled watershed density. Otherwise stated: 

the basin width a is identified with specific volume as used in 

thermodynamics (Wldom, 1972). In both cases the scaling parameter 1 is 

essential ln justifying the deletion or inclusion of terms in the final 

equation: a fourth order derivative term must be included. This term ls 

analogous to the viscosity terms in standard reaction-diffusion 

equations; in thermodynamics 1 t ls just the van der Waals-Korteweg 

addition to usual visco-thermoelastic stress (Wldom, 1972). 

II.2.1 Density approach 

Assume some quantity of mass is distributed on a spatial domain I 

and identify s with values of a cumulative distribution function at 
n 

fixed positions denoted by the subindex n. 

Let there exist a density function IJ' such that 
n 

IJ' (t) = s (t) - s (t) 
n n n-1 

(H. 3) 

(Without restriction the assumption can be made that IJ' ls the deviation 

from some (non-stable) uniform density p = p for each n). 
n o 

Let <{>(a)= ac(a), then using (II.1) and CII.3) one finds: 

0- = -<{>(IJ' J + 2</>(IJ' ) - <f>(IJ' ) 
n n+l n n-1 

Observe that for any reasonable function F of n 

8 exp(s00)F(n) = F(n+s) 

(II.4) 

(II.5) 
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so 

u = -~Cexp(aa Ju ) + 2;cu l - ;CexpC-aa )u l n n n n n n 
(II.6) 

Expand ~ in a MacLaurln series: ~(s) 

to find 

~(O) + ~'(O)s + ~''(O)s2 + ... 
2 

u 
n 

-~'Col{ a2
u + .2. a4cr + ··} 

an2 12 an4 

-~'''Co>{ a2u3+ ···} 
6 an2 

a2u2 
where one uses: 2 ( 2 2u ~ + 2 au) 

an2 an an2 

(II. 7) 

a a Now write x = l·n with l a scaling parameter; so an - lax and rescale u 

as l·u to obtain to the fourth order in 1 

(II. 8) 

Observing that for an unstable uniform density ~'(0) will be positive 

(see equation (II.2)); without restriction ~, (0)12 can be taken equal 

to 1 and the final equation becomes: 

(II. 9) 

2 with 7 > 0, r 1 - l and r 2 - 1 . No-flux boundary conditions are 

supplied to complete the system. 

a2u a4u Note that the sign of the coefficients of the linear terms - 2, - and 
ax ax4 

so on, will always have the same sign. 

II.2.2 Basin width as specific volume 

The second approach is based on the observation that the inverse 

of the basin width a is proportional to the watershed density. 

Let v (t) s (t), a (t) s (t) - s (t). 
n n n n n-1 
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Let cfl(a) = ac(a) then (II. 1) becomes: 

v ( t } = -cfi (a l + c/I (a l 
n n+l n 

(II. 10) 

Let v and a be functions defined on Ixll(, 
(Whitman, 1974): 

[O, L] c IR st!Ch that 

v(s (t), t) v (t) (II.11a) 
" n 

(II.11b) 

a Denoting the partial derivative with respect to sn by an' one finds 

a ( t) = exp (!.a aa ) a ( s • t) n+l 2 n+l n n 

a (t) = exp(-!.a £_)acs ,t) 
n 2 n an n 

and the following approximations are obtained: 

aa 1 3 a3 a a -a =a-+-a -+ 
n+1 n an 6 an3 

a + a 1 2 a2 a 2a+-a + .. n+l n 2 an2 

Now use (II.12a,b) and (II. 13a,b) to find: 

a + a aa aa - da "' _n+_1 ___ n 
at. + an·v - dt 

v(s.,...1 , tl - v(s,._1 , t) 

2 

So the continuity equation for a becomes: 

a (.!.J aa _ 2 .. 
at - a an 

av "'-·a an 

(II.12a) 

(II. 12b) 

(II.13a) 

(II.13b) 

(II.14) 

Given the definition of the function a, a mass (watershed) distribution 
function p can be defined: 

l 
p(x,tl = a(x,t) 

which reduces (II.14) to the standard mass continuity equation. 

(II. 15) 

Take a such that if'' (a ) > O (unstable equidistant distribution) and 
0 0 

expand if' as a Maclaurin series in a = a , to get: 
0 
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v(s , tl = -If>' (a )(a -a ) - ~,,(a )(a -a )(a +a -2a )+ 
n o n+l n 2 o n+l n n+l n o 

- ~111 (a ) (a -a ) (a2 +a a +a2-3a (a +a )+3a2) -
6 o n+1 n n+l n+l n n o n+l n o 

(II.16) 
Use (II.13a,b) to find: 

v(s ,t) = -lf>'(ao)[aaaan + ~aJaJa ··] - ~''(a >[2a(a-a )aa + 
n 6 an3 2 0 0 an 

1 3 a 3 a ] 1 , , , [ 2aa 1 3 2a 3 a ] + -a (a-a )- . . - ::If> (a ) 3a(a-a ) - + -a (a-a l - .. 
3 0 an 3 6 0 0 an 2 0 an 3 

(II.17) 

Let 
I 

p0 =ii and u(x,t) = p(x,t) - p0 

0 

then by (I I. 15) 

a-a 
0 

a a Write x = l·sn so that again an= lax· Using (II.14) with (II.17) and 

neglecting all terms of higher than seventh order in l, 

equation is of the form (after additional time scaling): 

au 82 [ 2 3] a4u - = - -u + r u + r u - r-
at 8x2 1 2 ax4 

where is made use of the fact that If>' (a ) < O and hence r > 0. 
0 

the final 

(II.18a) 

The equation is supplemented by the zero mass flux boundary condition 

-:x[-u + r u2 + r u3 - ra2u] = 0, 
1 2 ax2 

the natural boundary condition 

aul = o ax 
x=O,L 

and the initial condition 

u(x,0) = u (x), 0 < x < L 
0 

From (Il.18c) it follows that (II.18b) can be replaced by 

3 

~1 =O 
8x3 x=O,L 

(II.18b) 

(I I. 18c) 

(II.18d) 

(II.18e) 
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By writing (II. 18a) as au 
at 

a2 [-u + r u2 + r u3 - ra2u2]• 
ax2 1 2 ax 

the 

a4u identification of r-- as a viscoelastlcity term ls obvious since 
ax4 

(II. 18a) ls a reaction-diffusion equation with the local action 

distributed by diffusion. 

II.3 Anti-diffusion 

Neglecting non-linear terms in (II.18a), the equation is reduced 

to 
au 
at (II. 19) 

Thus for r small (or zero), the equation is the negative of a standard 
Ficklan diffusion equation: the mass flow ls along the gradient of u. 

In contradiction to Fickian diffusion, local maxima of u will therefore 

grow rather than flatten out. For this reason, the name of 
anti-diffusion was attached to this equation (Hazewlnkel et al., 1986). 

The time evolution is a mass redistribution by mass transport only. 

With no-flux boundary conditions mass conservation is achieved. 

The general structure of the system described by equations like the 

anti-diffusion equation, is a multi-particle system with a time scale 
where specific individual micro action can be averaged out. All 

particles are assumed to have the same properties and accordingly react 

identically to a given environment. The micro actl vities determine the 
macro structure and as far as observables are concerned the model can 

be formulated in macroscopic variables only. Note that working with a 

scaling limit contains the idea that the micro behavior is a scaled 
down version of the macro one. 

In most cases the system behavior will depend on the environment, as 

expressed by exogenous environmental variables, such as temperature, 

pH, governmental action. Changes in the environment can cause loss of 

stability of the current distribution and evolution towards a new 

equilibrium will occur. Environmental dependence is formulated by a 

functional relationship between those environmental variables and the 
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coefficients of the non-diffusion term, especially the linear term (see 
chapter I I I ) . 

The general framework of equation (II.18), the anti-diffusion system 

(AD), ls the time evolution of a (probability) density function u 

defined on some event space E; then (II.18) will describe a system 

where the probability of an event E will increase in time if initially 
0 

the probability of E was higher than that of nelghboring events 
0 

(neglecting competition). The evolution is directed to increase the 

occurrence of situations which are already more likely. The density u 

will become more and more concentrated around local maxima. The time 

evolution ls self-fulfilling. Thresholds on growth are supplied by the 

non-linear terms. The fourth order viscosity term connects the 

evolution in neighborlng points: events, phenomena which are closely 

related will have an almost similar probability to occur. 

The name anti-diffusion ls used as a description of the macroscopic 

mass redistribution process only: as in a standard Ficklan diffusion 

process only nearest neighbor interactions are considered, see equation 

(II.4); the difference is that action leads to mass clustering. 

In the context of chemical-physical clustering mechanism the evolution 

equation (II.18) ls well known under the name Cahn-Hilliard equation 

(see also chapter IX). Secondly, animal grouping and migration is 

modeled with an anti-diffusion term. The inclusion l.s motivated by 

phenomenological similarity between clustering in biological and 

chemical systems (Cohen et al., 1981). In the same context Okubo (1980) 

distinguishes between neutral diffusion (Ficklan) and density dependent 

diffusion; the last type is subdivided in attractive (anti-diffusion) 

and repulsive diffusion (where the coefficient of u is positive). 

II.4 Other examples of anti-diffusion equations 

The first example ls derived from Langer (1982) where the growth 

of solidification patterns in an eutectic environment is studied. The 

eutectic growing ls characterized by the coexistence of two solid 
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phases denoted by « and (3. The solidification front advances in the 

liquid phase in the form of parallel plates of the two solid phases 

(see figure Il.3). 

Liquid 

rJ'rJ'rJ~ l+-i\---+I 
Solid 

x 

Figure II.3: Schematic Illustration of eutectic growing 
with solld phases a and b. 

The two solid phases compete for the space and the system's 

characteristic quantities are the widths i\« of the a-phase and i\(3 of 

the (3-phase. Langer's model is formulated in the lamellar spacing i\ 

defined as i\ = i\« + i\(3 which should be compared with the basin width a 

of Thom's river basin model. Roughly the analogy is: i\ = width of 

river, i\ = width of stretch of dry land between rivers; so that 

width of drainage basin of a river. 

The advancement velocity v of the solidification front depends on the 

temperature G, assumed to be constant, and the supercooling grade AT at 

the liquid-solid interface; AT depends on i\. The relation ls formulated 

as follows: 

G·l,; = -AT(i\) (I I. 20) 

where l,;(x,t) is the profile of an initially undeformed solidification 

front. 

Let y(x,t) be the sideways (horizontal) displacement of lamellae 

positioned at x, then: 

i\Cx,t) = i\ (1 + 8
8Y> 

0 x (II. 21) 

where i\0 is the original uniform spacing. 

Now the assumption is made that lamellae must grow in a direction 

locally perpendicular to the solidification front l,;(x,t) which gives: 
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ay _ a<; 
at - -v ax• v > 0. 

Combining {II.20), (II.21) and (II.22) gives the equation for?..: 

2 

7t. ~ ~LlT(lt.) 
o G ax2 

The functional form of LlT(lt.J is given as follows: 

( 7t. i\,. ) LlT(lt.) = a X + X .. 
where i\ is some 

" 

0 

stable spacing 
i\ 2 

= i\:( 1 - i\; ) 
0 

(a > 0) (Langer, 1982). Since 

(I I. 22) 

{I I. 23) 

(I I. 24} 

the equation (II.23) behaves like an anti-diffusion form if lt.0 < i\6 . 

The second example stems from Haken (1983). In Haken's approach, 
the cooperative aspects of pattern formation are translated in 
competition between the modes implemented by the slaving principle: 

linearly unstable modes {order parameters) slave the linearly stable 
modes by expressing those stable modes as functions of the unstable 
ones. Those relations are obtained by assuming that stable modes are in 
equilibrium and can be found as a solution of the non-linear evolution 
equations of those modes (adiabatic approximation) (Haken, 1978,1983). 

For Benard instability the eigenvalues 7t. of the unstable modes k are 
given as: 

(II. 25) 

where variable a measures the distance from critical temperature and k 
c 

ls the critical mode (k = lk jJ. The inclusion of the gradient 
0 c 

operator V ls motivated by taking into account finite band width 
excitations (Haken, 1983). 

Given (II.25) the leading term in the evolution equation of an unstable 
mode uk is given by 

c 

uk = (a - (k: + (lkc + '17) 2 ) 2]uk + .. 
c c 

(I I. 26) 
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The function w ls defined as follows 

lk •x 

w(x) = [ e c 

k 
c 

(II. 27) 

where the sum is taken over all critical k vectors which have the same 

absolute value k but point in different directions. 
0 

Using the transformation: 

] 
2 lk • x 

+ 'J2 e c 

where 'J2 = A is the Laplace operator, the first order approximation of 

the time evolution of w ls 

(I I. 28) 

Since the coefficient of the diffusion term ls -2k2 , the equation 
0 

(II.27) is clearly an anti-diffusion form with a fourth order 

derivative term. The equation is supplemented with a quadratic and a 

cubic term In w derived from the second and third order approximation 

term ln the time evolution of uk {II.26): 
c 

+ v2J2] w + Mi -Bw3 (II. 29) 

with A and B positive constants. 

In the same context of Benard lnstabi 11 ty, Swift and Hohenberg 

have derived an evolution equation similar to (II.29). They consider a 

fluid bounded by infinite horizontal plates separated by a distance 1 

and at temperatures T1 and T1 + AT, respectively (Swift and Hohenberg, 

1977). Let T(x,y,z;t) be the temperature; the deviation a(x,y,z;t) of 

the temperature given for an uniform gradient AT/l, is defined by 

0(x,y,z;t) = T - T1 - (AT/l)z (I I. 30) 

The important variables are: a (x, y, z; t) and the z component of the 

fluid velocity, denoted by u"'(x,y,z; t); the so called Swlft-Hohenberg 

model is formulated ln a variable w as a linear combination of the 

lowest vertical modes of the fourier transforms of e and u . 
"' 
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The final one-dimensional equation is written as 

aw 
at 

3 
w' 0 < c < 1, ~i > 0 (II.31) 

(See Swift and Hohenberg (1977) and Saarloos (1987).) We shall return 
to the Swlft-Hohenberg equation (II.31) in chapter VII and compare it 
with the anti-diffusion system (II. 18a). 





CHAPTER Ill 

GENERAL PROPERTIES OF THE ANTI-DIFFUSION EOUA TION 

III.1 Introduction 

For the anti-diffusion system as defined in chapter II, equation 

(II.18a-b), some general properties can be derived by comparing the 

system with a standard reaction-diffusion system of the form: 

au [ 2 J a2 u] - = - -u + r u + r u - -r-
at 1 :a ax:a • 

with no-flux boundary conditions. 

'¥ > 0 (IJI.1) 

The main difference is the mass-conserving property of the 

anti-diffusion system which restricts the solution space essentially. 

Since the anti-diffusion equation is a one variable system, it can be 

formulated as a gradient system. In the second part, a Lyapunov 

functional ls defined, which ls similar to the Glnzburg-Landau free 

energy functional. 

III.2 A priori bounds for stationary solutions for r 2 positive 

Let the spatial domain be I = [O,L] c R. The evolution equations 

which interest us together with the boundary conditions are 

- 39 -
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au a2 [ a2 u] at = - q'i(uJ - r-2 • r > o 
ax2 Bx 

(II I. 2a) 

(III.2b) 

(II I. 2c) 

Mass conservation ls expressed by r ~~ dx = 0 thus fu(x,t)dx = f u(x,O)dx = M0 • 

0 0 0 

Regarding u as a deviation from some uniform density p(x,O) = p0 , M0 

equals zero. Thus the initial condition u(x,O) = u is such that 
0 

f u0 (x)dx=O (III.2d) 
0 

A stationary solution u(x) of (III.2) will satisfy 

82 u q'i(u) - 7- = ax + f3 
8x2 

(II I. 3a) 

But given the boundary conditions (III.2b), a= 0 and (3 satisfies: 

Hq'i(u) dx = (3 (I I I. 3b) 

Thus stationary solutions are similar to stationary solutions of a 
standard reaction diffusion equation: 

~~ = -{q'i(u) - "182u} 
8x2 

(III.4) 

except that for (III.4) (3 is always equal to zero. The only constant 
solution of (HI.2a-d) is the null solution u=O, see (III.2d). 
Equation (III.4) is not mass-conserving, so non-zero constant solutions 
are possible. These differences play an essential role in the proof of 
stability of non-constant solutions, see chapter VII. 
Similarity and difference between stationary solutions of (III.3) and 
(III. 4) are elucidated by using the characterization exposed in Fife 
( 1979). Writing 

f(u) "' rq'i(s}ds 
0 

(III. 5) 
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equation (III. 3a) can be integrated once to obtain the equivalent 
equation 

f(u) - !¥u2 = Qu + a 
2• " ,... 1' 

where fl is defined in (IIl.3b) and 

1 2 - -ru 
2 xlx=x 

0 

where the derivative of u is evaluated at x with u(x ) 
0 0 

Definition III.1: 

O (u 

(II I. 6a) 

(II I. 6b) 

" 
au) 
ax · 

The set Sh consists of nonzero length line segments in the 
(u,f)-plane which satisfy: 

1) the line segment ls horizontal, 

11) the line segment lies strictly under the graph of f, except 
at its endpoints; 

111) each finite endpoint must lie on the graph. (III.7al 

For a reaction-diffusion system (III. 4), defined on IR, the following 
theorem gives a characterization of nonconstant stationary solutions: 

Theorem III.2 (Fife, 1979): 

There is a one-one correspondence between segments in Sh and the 
nonconstant solutions of (III.4) defined on IR, modulo shifts in x and 
reversals of sign. The correspondence is such that the segment in Sh 

overlays an interval on the u-axls which is the range of the 
corresponding solution. a 

Definition III.3: 

The set S consists of nonzero length line segments in the 
(u,f)-plane which satisfy: 

i) the line segment lies strictly under the graph of f, except 
at its endpoints; 

11) each finite endpoint must lie on the graph. (II I. 7bl 

The proof of theorem III. 2 in Fife (1979}, page 91-92, is directly 
applicable for solutions of (III.3) by writing ~(u) = ~(u) -~ and 
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applying the proof to the equation ~Cul - 82 u <r- = O with the set S 
8x2 " 

of 

line segments lying under the graph of f. Note that the set S is 
" containing all (not only horizontal) line segments. 

In figure III.1 we have depicted the graph of f(u) = r\6(s}ds with 
0 

~(u) = -u + 3u2 + u3 ; S contains the line segments in the area OAB . .. 

A 0 
a. ----"\,•---~-0::--------- --------------- -

-·· 

\ 
\ 

\ 
\ 

\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

B 

• ,.,,OO-..._,hr-'--'--M.,.__,'-'-....,,..C.oo--'---'-i-a.""oo~'--'"-,,h, ,,.' ,--'\ 
u \ 

FI gure II I. 1 

Graph of f (u). 

Bounded stationary 

solutions are represented 

by I lne segments lying In 

the area OAB. 

By property i) of (III.7b) no internal point of the range of a solution 
can be a maximum or a minimum. 

The one-one correspondence between line segments and nonconstant 
stationary solutions ls lost if the systems are defined only for 
x e [0,L] c ~. However, stationary solutions of a system with no-flux 
boundary conditions can be extended beyond x = 0 and x = L as an even 
function ln x = 0 respectively x = L. Continued extensions this way 
will yield a periodic function which is a solution of the system 
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defined on IR. The line segment corresponding uniquely with this 
function is already determined by the original no-flux solution: the 
line segment is given by the right hand side of (III.Ga) with «1 and~ 

given by (III. 6b) and (III. 3b) respectively. If the original function 
ls bounded then the maximum value and minimum value satisfy 
f(u) = ~u + u1 and hence define the endpoints of the line segment. If 

the original function is unbounded then the extended one ls unbounded 
also. 

Consider figure III. 1: all bounded stationary solutions of (III.2) 
defined on [0, LI with no-flux boundary conditions, are represented 
uniquely by line segments S , lying in the area AOB where AB is the 

a 
common tangent to the graph of f. In this way a priori bounds u0 and u1 

can be calculated; they may only be attained by solutions of systems 
defined on IR (Fife, 1979). Since f(u1 ) - f(u0 ) = tf>(u0 )(u1 - u0 ), the 
bounds u0 and u1 are determined by the so called Maxwell equal area 
condition: if u0 < u2 < u1 with tf>(u2 ) = tf>(u0 ) = tf>(u1 ) then 

Ju2tf>(u) - tf>(u0 ) du = -Ju1tf>(u) - tf>(u0 ) du 
u u 

0 2 

(In first-order phase transitions, the Maxwell equal area condition 
ls the condition for the spatial coexistence of two phase; the two 
phases are equally attractive (Widom, 1972). l 
For tf>(u) as defined in (III.5) u0 and u1 are given as the solution of 
the equations: 

tf>(u) = tf>(u) & tf>'(u) = tf>'(u l & tf>(u} = -u + 
0 1 0 1 

2 3 r u + r u 
1 2 

with u "" u . 
0 1 

As a summary, the following corollary is formulated: 

Corollary IU.4 

If the evolution equation 

r 2 > 0, '¥ > 0, defined on 

au= ~[-u + 
at Bx2 

[O,LJ c IR with no-flux 

(III.8) 

boundary 

conditions and initial condition ~u(x,O)dx = 0, has a stationary 
0 

solution u, then this solution u is characterized by a line segment in 
the set s,. (III. 7b); a priori bounds on bounded stationary solutions 
are given by u0 and u1 defined in (III.8).o 
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III.3 A Lyapunov functional for the anti-diffusion equation 

Consider the functional V defined on the space of functions u: 

V(u) = r'- f(u) + !7u2 dx J0 2 x 
(III.9) 

where f(u) is defined in (III.5). The time evolution of V ls 

=~ = [,(u)ut + 7uxuxt dx 
0 

(III.10) 

where u - au u 
t - at . xt 

By partial integration and using the boundary conditions (III.2b) one 

obtains: 

And, again by partial integration: 

dV = _r'-[l!__f,(u) 
dt J0 .BX\ 

82 }] 2 
- 18x~ dx (III.11) 

Thus, given the evolution equation (III.2), 

dV 
dt :s 0 (III. 12a) 

and 

=~ O <l=9 M~(u) - 1::~} = O almost everywhere (III. 12b) 

The right hand side of (III. 12b) defines precisely the stationary 

solutions of (III.2a-b) (see (III.3)). Thus the time evolution is 

characterized by minimization of V; i.e. V ls a Lyapunov functional for 

the anti-diffusion system (III.2} (just as it ls a Lyapunov functional 

for the reaction diffusion system (III.4)). Now the idea is that 

1) if V attains its minimum for some feasible u, this u will be 

a stable stationary solution of (III.2) since, by (III.12a), 

for small deviations the system will be driven back to this 

minimum; 

ii) the stationary solutions are ordered in time in the following 

sense: a stationary solution u2 is re'i!.chable On forward 

time) from the stationary solution u only if V(u) < V(u.). 
1 2 • 
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If the system is (re)written such that u(x) = 0 for all x ls a 

solution, then instability of this null solution implies that V does 

not attain a minimum at u a 0. So, if it is possible to prove that V 

attains a minimum, the existence of a stable nonconstant stationary 

solution is proven; non constancy follows from the fact that the 

solution space is restricted to functions with ~u(x)dx = 0. 
0 

In chapter V an exact formulation will be given, here the result is 

stated somewhat loosely: 

for lf>(u) = -u + r u2 + r u3, with r > 0, V attains its minimum 
1 2 2 

for square integrable functions with (generalized) partial derivatives 
au of first order ax which are also square integrable. 

If ~ = 0, the graph of a solution u consists of line segments with 

u(-) = u1 or u(-) u2 or u( ·) = u3 

lf>(u1) = lf>(u2) = lf>(u3) = ~ 
with the condition ~u(x, ·)dx = O 

0 

(III.13) 

Consider such a solution u with "spatial distribution" \, i\2 and i\3 
C\ 2: 0, 1 = 1,2,3); the value i\n denotes the total length of the 

domain where u = u. This domain 

intervals so that ; = J x (x)dx, 
n A 

indicator function. 

may well consist of several disjoint 

where A = {xl u(x) u } and x is the 
n 

Hence the stationary solutions given in (III.13) can be written as: 

lf>(u1 ) = lf>(uj) for all i,j = 1, .. ,3 

i\u +i\u +i\u =O 
11 22 33 

i\ +i\ +i\ =L 
1 2 3 

For this configuration, the value of V is 
3 

V(u) = r i\ f (u ) 
l n n 

n=1 

CIII.14a) 

(III.14b) 

(III. 14c) 

(III. 15) 

Hence V(u) is given by the ordinate of a point lying in the convex 

polytope with vertices Cu ,f(u )), n = 1,2,3. (points P, Q and R in n n 

figure III.2) and by (III.14b) that point must be on the line u = O. 
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0 

f(u) 

...................... 

A----

-1 

s 
P"""----+---~ Q 
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............. _ ........ _ 
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0 

Figure III.2: Graph of f(ul. The functional value V of a solution 

(u1 ,u2 ,u3 ) Is given by the ordinate of a point on ST (; = O). 

u 

B ·----------. 

From the condition \ ~ u = 0 it follows directly that for any 
L n n 

'non-binary' solution there exists a binary solution with endpoints on 

the branches OA, OB respectively, which has a V value less or equal to 

the V value of the non-binary solution. A 'binary' solution is of 

course one with just two values. 

For any binary solution with u u1 or u = u2 , the V value is given by 

the intersection of the line u = 0 and the line segment connecting 

(u , f(u ) ) and (u , f(u ) ). Hence the lowest value of V is attained by 
1 1 2 2 

the intersection of the line u = 0 and the common tangent AB at the 

graph of f, see figure II I. 2. This lowest value is the minimum of V 

(and thus stable). 

For those piece wise constant solutions at r = O the volume fractions 

are well described by the condition ~u(x,·)dx = 0. However the spatial 
0 

configuration is arbitrary. The discontinuities do not necessary 

disqualify such solutions but they are irrelevant for the description 

of pattern formation as self-organisation with an internally dictated 

non-random frequency; in particular all frequencies occur and higher 
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frequencies are favored. This does not fit in well with the 

physico-chemical idea that nelghborlng particles show some cohesion in 

behavlor with respect to one another. Viscosity! Hence we are mainly 

interested in the case 1 > 0. 

For ; ~ 0 we can write the functional value V of a stationary solution 

u, by using (III.6a-b) as 

V(u) = Jru2 + o: dx 
" 1 

(III.16) 

Note that a 1 is given by the intersection in the u-f plane of the line 

segment corresponding with the stationary solution and the line u O· . 
e.g.: suppose the line segment PQ in figure III.2 represents a 

stationary solution then a 1 is the ordinate of point S. For 1 fixed, 

and fixed o:1 , the lowest V value is attained by functions with the 

smallest variation. This seems to suggest that minimal solutions are 
d monotone. Since dt V(u) < O if u ls not a stationary solution, this 

would result in u eventually going to a monotone solution. We wi 11 

return to this question in chapter V and in chapter VII. 

III.4 The Ginzburg-La.ndau free energy functional 

In the previous chapter two examples of anti-diffusion equations 

were mentioned. This was rather meagre since there exists a wide range 

of physico-chemical applications which are based on an evolution 

minimizing the same functional V as defined in (IH.10). whether for 

conserving systems or not. In that case V ls called the Ginzburg-Landau 

functional which describes the free energy of the systems as function 

of the concentration u. In this context, f(u) in equation (III.10) :l.s 

called the free energy density function; it defines the free energy of 

a homogeneous system with density u. The gradient term in (UL 10) is 

called the gradient energy and it takes account of spatial 

inhomogeneities. 

Based on this free energy functional, phase transitions are modeled. 

With no mass conservation, the evolution equation is a 
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reaction-diffusion equation as (III.1), see chapter IV. But especially 

phase decomposition in binary mixtures where u(x,t) is a perturbation 

of the concentration of one of the phases, is modeled by the 

anti-diffusion equation, in this context better known as the 

Cahn-Hilliard equation (Cahn, 1958, 1966, 1968; Novick-Cohen et al., 

1984; Coutsias et al., 1984). See Wldom (1972) for an extensive review 

and discussion of the validity of the functional relationship between 

free energy and mass density. 

As mentioned in chapter I, paragraph 3, thermal equilibrium structures 

are defined by the minima of the free energy. The dependence of the 

equilibrium state (e. g. vapor, liquid or crystal phase) on 

environmental parameters (e.g. temperature) ls obtained by making the 

coefficient of the quadratic term of f(u) (linear term of f>(u)) a 

function of those parameters. For example, temperature dependence ls 

incorporated in the anti-diffusion equation by setting: 

<f>(u) = -r (T)u + r u2 + r u3 , 
0 1 2 

(III.17) 

where r (T) = (T - T)/T with T the critical temperature. For high 
0 c c c 

temperature the coefficient of u is positive and the diffusion term is 

as a standard Flckian diffusion term. At the critical temperature Tc, 

the (linear) diffusion becomes negative. If the viscosity coefficient 7 

is small, the system will be unstable with respect to any perturbation 

and decomposition in high and low density areas will set in (see 

splnodal decomposition, chapter IX). 



CHAPTER IV 

A STOCHASTIC MODEL 

IV.1 Introduction 

For a one variable (one order parameter) system defined on a 

spatial domain, the state of the system is given by the density 

function of the order parameter; this parameter shall be denoted as 

mass. Elements of the system are named particles. Observable structures 

are equivalent with a profiled density function. 

Assuming a multi-particle, open system, structures are the result of 

particle-particle and particle-environment interactions which take 

place on the microscopic level. The environment is mostly given in the 

form of macroscopic variables such as temperature, pH etc. . The 

stability of a structure will depend on these macroscopic quantities. 

At the loss of stability, transitions of one structure to another are 

initiated by fluctuations. Most complex systems have an intrinsic 

mechanism allowing to test for stabi 11 ty continuously: thermodynamic 

fluctuations, Brownian motion. 

If fluctuations are incorporated in the system description, the state 

is no longer given by the density function but by the probabll ity 

distribution of the densities. Denoting the density by p, the 

probability function is given as P(p,t) and P(p,t)dp defines the 

probability that at time t the density p lies between p and p + dp. 

In this chapter it is assumed that the variation in time of P is 

governed by a Markovian master equation. The connection between the 

- 49 -
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microscopic and the macroscopic level is achieved by assuming that the 
(transition) probability of a particle to move from one spot to another 
depends on a similar functional V(p) as defined in chapter III, 
equation (III.9). It will be shown that, assuming the existence of such 
a V, the functional form itself is hardly restrictive with respect to 
the system specification. 

Under some restrictions on the probability function P, the mean value 

and the most probable path equation are derived. Both resulting 
equations are similar and define a class of evolution equations which 

contain as a special case the anti-diffusion equation derived in 
chapter II. 

IV.2 Stochastic formulation 

A multi-particle system is considered with mass distributed over a 
one dimensional spatial domain. Let p(x,t) be the mass density at any 

time t and any position x. The evolution of p is seen as a stochastic 

process based on individual stochastic behavior and described by a 

markovian master equation. The system ls divided into N mezoscopic 
equidistant cells which are much- larger than the microscopic length 
scale (size of a particle) and much smaller than any macroscopic length 
scale (size of the total system). A similar discretization ls performed 
on the time scale such that individual particle kinetics can be 

neglected: the population of a cell may be seen as a sum of identically 
distributed independent random variables . 

Let pn be the mass density in cell n. Then P(p1 , .... ,p11 , t) is the 
probability density function of (p1, ... ,pN). On a macroscopic scale the 
centres of the cells form a continuum and if in the following 
continuous functional notations are used (e.g. P(p(x),t), they must be 
understood as the large N limit of a function of N variables. 
The master equation for P is: 

BP(p,t) 
• at - f W{p(x) ~ p(x) + o(x)}P(p(x),t) + 

aTxl 

+} W{p(x) - o(x) 7 p(x)}P(p(x)-o(x),t) + 
sTxl 

(IV. la) 
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where 

is the probability that in unit time the density change in cell n lies 

between o and o +do, n = 1, ... N. If P(p + o,t + lltlp,t) is the 
n n n 

probability that the system be in state p + o at time t + lit if the 

system was in state p at time t then 

a 
W{p ~ p + o} = BlltP(p + o,t + lltlp.t)lllt=O (IV. lb) 

To make W explicit the following assumptions are used: 

a). There exists a quantity V(p) which characterizes the 

macroscopic structure p of the system at any time t. 

b). Changes in p which increase V are less likely than those 

which decrease it. 

c). Small changes are more likely than larger ones. 

d). All changes can be superimposed. 

Then a possible form for W is 

W{p(x) ~ p(x) + o(x)} =a exp[-J o2~x)dx] x 

exp[-~V(p(xl+o(x)) - V(p(x))}] 

(a, ~. LI are positive constants) (Metiu et al., 1979). 

(IV.2) 

(IV.3) 

The formulation (IV.3) is not a necessary consequence of the 

assumptions but it makes the equations tractable. A drawback is that 

the range of o is not restricted; the possibility that p becomes 

negative ls not excluded. For large particle systems formulation (IV.3) 

is an adequate approximation with LI small. (See chapter VIII, section 5 

where a simulated annealing procedure is applied with truncated normal 

error terms. ) 

Note that by assumption b), the time evolution is characterized by 

minimizing V. First we describe V. 

Let f be the contribution to V per unit volume, thus 

V(p) = J f(p)dx (IV.4) 

(f is called a generalized potential (Novick-Cohen et al., 1984). l To 

include spatial lnhomogenei ties, f will be assumed to depend not only 
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on the density p but also on its higher derivatives; expanding f in 
Taylor series in these higher derivatives around the uniform (average) 
density, gives 

where 

f=f(p,0, ... ,0) +[L1 (~~) +[ 
I I I , J 

Kt (_te__) + 
1 • 1 ax ax 

l J 

L 
I 

K1 
1,J 

K2 
I, j 

1 r K2 (ap ap) 2 l l,J 8X 8X + .. 
I , j I J 

Bf(p,O, . .. ,0)/8(8p/8x1 ), 

A 2 
Bf (p, o, ... , o )18 (8 p/Bx 1ax J l, 

Bf(p,O, ... ,O)IB(Bplax1 )a(ap1ax1). 

(IV. Sa) 

(IV. Sb) 

(f(p,0, ... ,0) is the contribution of uniform density per unit volume to 
the potential V). 

Assume the media are isotropic, i. e. there is no preferred direction, 
then L1 = O and the K 's are multiples of the Kronecker delta i5 I, j A I, j 
(Novick-Cohen et al., 1984). Thus f can be written as 

(IV. 6) 

Neglecting higher order terms in (IV.6), Vis found as 

f 1 2 V(p) = f(p) + K ~P + -K (Vp) dx 
Q 1 2 2 

(IV. 7a) 

where Q is the spatial domain. The natural boundary condition is 
ap av = 0 on the boundary of Q (IV. 7b) 

where v is the unit normal to the boundary. 

By Green's identity, the boundary condition (IV. 7b) implies that the 
contribution of the Laplacian term~ vanishes in (IV.7a) (John, 1982). 
Hence (IV.7a) is reduced to 

V(p) = J f(p) + ~¥(Vp) 2 dx 
Q 2 

(IV.8} 

where ¥ = K2 . If ~ > 0 then the formation of spatial inhomogeneities 
has its costs. In physico-chemical literature equation (IV.8) ls called 
the Ginzburg-Landau free energy functional (see chapter III and IX). 
Apart from isotropy the definition of V does not involve any 
constraints on the system. Of course assumption a) that V as a global 
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quantity, expressed in p only, characterizes the phases of the system, 

is more restrictive; at the least this assumes that the system is 

'homogeneous' with respect to all parameters of the system since f 

depends only on p and does not vary with the local cells. 

Inclusion of specific cell qualities can be accommodated by letting f 

also depend on x e Q. In the following Q ls supposed to be decomposed 

into a disjoint union such that f(p,x) can be assumed to depend only on 

p for x e Q 1 all i. Let f 1 (p) = f(p,x) for x e Q 1 • Let ;i: 1 (x) be the 

indicator function of n1,then V can be written as: 

V(p) =Jn ~(x1Cx)f1(p)) + ~~(~p)2 dx (IV.9) 

(In order to avoid burdening the notation too much, in the following V 
is used as defined in (IV.8).) 

IV.3 Mass kinetics 

The next set of assumptions involve restrictions on the mass 

kinetics. The changes in pT = (p1 , ... ,pN) are given by the array 
T N a = 1a1 •.... ,aNJ e R. 

There are essential two ways to introduce specific mass 

kinetics. Explicit formulation of the mass flows between cells, see 

section IV.5, or implicit formulation by a global restriction on a. In 

this paragraph the second approach is followed by comparing a model 

with unrestricted changes to one with restrictions. 

Let the unconstrained model be formulated by a mass distribution array 
T N • T N ~ = (~1 •....• ~N) ER with mass changes c = (c1, .... ,c11 J ER. 

Consider also two types of symmetric positive NxN matrices K: 

A) K = (K(n,m)) is strictly positive; especially 

K(n,m) = 8(n - m) with o the Dirac delta function (K is 

identity matrix). 

BJ K = (K(n,m)) with l:=t K(n, m) 0. 
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Now we relate the two models as follows: 

Kc 

p 1<.cr Ko- + M 
p 

where M is zero if K is of type A and M 
p p 

(IV. 10a) 

(IV. lOb) 

£:=l pn if K is of type B. 
Note that the positivity condition of K ensures that o changes which 

increase V are less likely than changes which decrease V if the same 

holds for changes c. By (IV. 10a) it follows that r:=l on 0 if K is of 
type B. Hence we refer to the constrained model as case B and 

consequently to the unconstrained model as case A. 

For a continuous formulation, the operator K will be defined as: 

Kc= JK(x,y)c(y)dy (IV. 11) 

where K(x,y) is symmetric and positive; type A: K(x,yl = o(x-y), the 

Dirac delta function, and for type B JK(x, y)dx O; The formulation 

above is different from Metiu et al., (1979) where the inverse of K is 

involved which need not to exist in all cases. 

The properties of the unconstrained and constrained model (case B) are 

related as follows. Denote the probability density function P in case B 

by PP and for case A by Po-; similar the transition probability density 

function W(p ~ p + ol with W0 (o,p) for case B and 

Wc(c,cr) = W(cr ~a- + c) for unconstrained changes c. 

The complete original of A ~ RN under a transformation ~ is denoted as 

~- 1 (A). Using theorem 6.8 in Kingman and Taylor (1983) one finds: 

I f(p)P (p)dp = J f(X.cr)P <T(o-)dcr (IV. 12a) 
R p S 

where S = J<-1 (R), and with E = K-1 (DJ, 

J g(o)W0 (0,p)do = J g(KcJWc(c,p)dc 
D · E 

(IV.12b) 
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IV.4 Mean value equations 

Given the probability density function P(p1 , .•• ,pH) the mean-value 

of pT, ls defined as 

(IV. 13a) 

Consequently the time evolution of '?.which is called the mean value 

equation, ls 

8 - J BP atP = Pat dp (IV.13b) 

Let P = P = P(p) with p defined in (IV. lOb). Then using CIV.1) one 
p 

finds: 

T:tP =Jn [-J
0
pW{p ~ p+a)PP(p,t)da + J

0
pW{p-a ~ p)PPCp-a,t)da]dp 

(IV.14a) 

where R = {P e R"I E pn = M } and D = {a e R"I E an = o}. 
n=l P n=l 

Since 

the righthand side of (IV.14a) can be written as: 

(IV.14b) 

Using (IV. 12a) one finds for (IV. 14b): 

= Js J
0

(aw8 ca,Ku)Pu(u,t))dadu (IV. 15a) 

where S K-1 (R) and thus S = R". Apply (IV.12b) to (IV.15a) to get: 

(IV.15b) 

where E = K-1 (D) and so E = R". 

Commonly used in the derivation of a closed form of the mean value 
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equations (IV.14a) is the approximation of I W{p -t p + o}P(p, t)dp by 
p 

W{p -t p + o} where p is the mean value of p (Weidlich and Haag, 1983; 

Kanaroglou et al., 1986a, 1986b). The approximation is only valid if P 

is unimodal and symmetric which rather contradicts the long run 

behavior of P in bifurcating systems with multiple solutions. But the 

use of this approximation is motivated by the argument that in most 

cases, especially in the field of socio-economic systems, the 

environmental parameters which define the qualitative and quantitative 

properties of the system, are changing long before the system can reach 

its final state (Weidlich and Haag, 1983). Using this approximation 

gives: 

(IV.16) 

where IT is the mean of IT. 

From (IV. 12a) it is obvious by taking f(p) = p that p 

W (c,X;) = W (c,p) where W is evaluated at p and use equation (IV.2a) c c c 
to find: 

o: exp[-J c2~x)dx] ·exp[-~V(p(x)+dx}) - V(p(x})}] 

(IV. 17) 

Since a is taken small only small values of c are allowed to contribute 

to the sum (integral) over c; therefore it is reasonable to expand V in 

a power series of c and to retain only the first order approximation: 

where 

oV V(p + c} - V(p) = <-::,c> 
op 

.;v .;v .;v T 
5=<5 ..... 5). 

p pt pll 
the derivative of v and <., . > is the 

standard Euclidean inner product. Then the integration over c in 

(IV. 16) can be performed to find the 'expected' value of Kc. This 

results in the following evolution equations (see appendix C): 

a = -M(K~Pv) 'atP u (IV. 18a l 

where M, the mobility constant, is positive (M = ~(2nal"/2a). In 
2 

(IV. 18a) the upper bar denoting mean values is omitted. 

Using the continuous form of K, equation (IV.18a) is written as: 
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ap _ J oV •at - -M K(x,yJ 0P dy (IV.18b) 

supplemented with no-flux boundary conditions. 

For a one dimensional spatial domain, the variation term 

ov J ov <op'c>o = op(x)c(x)dx 

is given by: 

ov J <0P,c>0 = ~(p)c(x) + •Pxcxdx (IV. 19a) 

where ~(p) = df(p)/dp (see appendix E) (p = ap c = ac)· with no-flux 
K 8X' X 8X ' 

boundary conditions we can write (IV.19a) as 

and hence 

ov _ ~Cpl _ 0a2 p 
op - ax2 

IV.5 Most probable path equations 

(IV. 19b) 

(IV. 19c) 

The most probable path equations are defined as follows 

(Metiu et al., 1979; Haken, 1978): 

The conditional probability G(p, t!p0 , t 0 J that the density profile p 

changes from p0 (x) to p(x) in the time interval t - t 0 , is defined as: 

P(p,t) = G(p,t p ,t )P(p ,t)dp I I 0 0 0 0 
(IV. 20) 

The most probable path is defined as the path leading from p0 to p such 
that G is maximal. In appendix C it is shown that G(p,tip0 ,t0 J can be 

written as a path integral. The final result for a path from p0 to p 

via changes of the form o = Kc, the restricted case with p = H~ at any 
time, is 

I 0 0 G(p,t p ,t) J exp[-({<-rp(t') - E(o),Q~ 1 (Lp(t') - E(oJ )>}]7)' (p) 

p t 

(IV. 21) 
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where E(o) = Jow{p ~ p + o}do and Q5 = Jcoor)W{p ~ p + o}do. 

The time integral is essentially a summation over time interval 4t's 
generating a time sequence t 0 , t 1 , t 2 , ... , tL with L.4t = t - t 0 ; 

consequently p means (pJ+l - pJ )/4t where the upper index j gives the l n n 

time indication. The symbol Jv'(p) denotes the path integral defined as 

I L-1 0 the limit of the multiple integral dp ... dp . The consequence of 
this result (IV. 21) is that G consists of the weighted sum of all 
successive path sections leading from p0 to p. The weights are maximal 
if Tp(t') - E(o) is zero (Q5 is strictly positive). 

Calculating the mean-value E(o) as KE(c) where E(c) is the mean value 
of the unrestricted changes c, the evolution equations are given by: 

-i:p 
n (IV.22) 

where K is symmetric and positive. (See appendix C.) 

This result is equivalent to the mean value equation (IV. 18a). Since 
the mean value equation was derived under the condition that P is 
unimodal and symmetric in the maximum of P, the mean value time path 
coincides with the most probable time path if this condition holds. 

IV.6 Migration dynamics 

In the foregoing sections equal grid spacing was assumed. In the 
case of population migration, the spatial domain will be subdivided in 
areas with no equal spacing. Suppose the spatial domain is divided in L 
subspaces with area \, 1 = 1, .. , L. As a consequence not only the 
density array (p1 , .. ,pl) must be considered but also the array of 
population numbers (n1 ,. .,nl) with n 1 the population number of area 1 

and p1 = n 1/A 1 , l = 1, .. ,L. 

Let furthermore o be the change in population of area l caused by the lj 

flow between area i and area j; 

o with i < j, j 
lj 

= 1, .. ,N, are 

hence o = -o . Suppose the changes 
jl I j 

independent. Such a change in the 
population causes density changes denoted and defined as 
p 1J = o /A with p 

I j I j I 



A STOCHASTIC llODEL 59 

Let the transition probability W of a change from 
IJ 

(p1 , •• ,p1 , •• ,pJ, . .,pL) to (p1 , . .,p1 + o1j' . .,pJ - o1 j' .. ,pL) be given 
as: 

W = a:·exp(-o2 It. )·exp(-l!fvc..,p + p , .. ,p + p , .. ) - V(p)}l 
lj lj lj 2\. ! lj j JI J 

(IV.23) 

where b. ls a positive, (i-j)-flow specific weighting factor (a: > 0). IJ 
The total change o1 in the population n1 of area i is the sum over all 
independent changes o , j = 1, .. , L. So a total population change in 

lj 

area i is build up from (L-1) independent mass-flows between area i and 

area j, j °"' i. 

Applying now again the procedure of calculating the mean value equation 
and/or most probable path equation on the system with 0. S(L2 - L) 
independent changes o1j' results in the following deterministic 

eCiuation: 

i;n 
I 

-M [ f lf!(l j){_!_.oV 
1 l ' A op 

J=1 I I 

Al.~V }]• 1 = 1, .. ,L 
j pj 

(IV. 24a) 

where M1 is a positive scaling factor and w(l,j) is a positive 
symmetric weighting matrix with 

lf!(j,l) = lf/(l,j) =~for 1 < j. 
IJ 

(IV.24b) 

Equation (IV.24a-b) will be called the general migration equation. Note 

that it is assumed that the functional V is still written in the 
density p rather than in the population number n. 

For equal spacing with area A (IV.24a) reduces to 

"P1 = -M [ [ wO,JJ{~v - ~v }]· 1 = 1, .. ,L 
J=1 pi pj 

(IV. 24c} 

with M = M /A2 • In the following chapter it will be shown that the 1 

evolution equations (IV. 24c) are a particular form of the equations 

(IV. 22); however the stochastic formulation is different and defines 
consequently a different error structure. 
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IV.7 Specific most probable path equations 

In the discrete case the matrix K with 

K 

defines 

{ 

K(i,i) = 2, i = 2, .. ,N-1 
K(l,1) = 1; K(N,N) = 1 
K(i,j) = -1 if Ii - JI = 1 
K(i,j) = 0 if i j > 1 

the anti-diffusion equation 

(IV. 25) 

where the condition 

K(l, 1) = K(N,N) 

a2p 
Laplacian 

gives the no-flux boundary conditions. The 

is approximated by (p - 2p + p )lh2 
n+l n n-1 

where 
ax2 

p(x) = p(nh) = p with h the grid spacing (see chapter VII I). The 
n 

matrix K defined in (IV.25) shall be denoted as D2 . The discrete 

Laplace operator is given as -D2 . 

Define the NxN matrix W such that W(i, j) 

equation (IV.22) can be written as 

o ( i, j) - K ( i, j) . Then the 

. {oV [N . oV } •P = -M ~ - w(n 1)~ n op . op 
n 1=1 I 

(IV. 26) 

Use E7=1w(n,i} = 1 and W(n,i) = w(i,n) to find that 

. [ LN . {ov ov }] •P = -M w(n i) ~ - ~ 
n • op op 

I= 1 n I 

(IV.27) 

which is of the same form as the migration equation (IV.24c). 

The change in p 
n 

is build up from fluxes generated by the weighted 

potential differences {~V - ~V } between grid point n and each other 
Pn P, 

grid point i. 

The condition of positivity of K gives the condition that all 

eigenvalues of w must be less than or equal to 1. This condition is met 
if w is symmetric with all elements w(i, j) non-negative and the row 

elements adding up to 1: the eigenvalues are real and by Gerschgorin's 

theorem (Dahlquist et al., 1974), each eigenvalue A lies in the union 
I 

of the circles: I z - l/J(n, n, ) I :s r with r 
n n 

A :s max (r + l/J(n,n)J = 1. 
1 n n 

r==1 lifJCn,m)I. Hence 
m*n 
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Above ~ is given as ~(i,j) = o(i,j) - K(i,j), but in general ~ can be 

defined as: ~(i,J) = li(i)-o(i,j) - K(i,j) with li(i) a positive 

constant: hence the only restrictions on the matrix ~ are symmetry and 

~(i, j) ii!: 0. 

Example 1: ~(i,j) = 1/N for all i, j. 

Example 2: ~(i,j) can be constructed from a distance matrix with 

elements exp(-~D(i,j)) with D(i,j) = D(j,i) ii!: 0 and ~ positive, see 

chapter X. 

In the continuous case the anti-diffusion equation is found by setting 

K(x,y) = o(x,y) - ~(x,y) with 

~(x,y) = 0 if Ix - YI >A 

~(x,y) = 2~ if Ix - YI ~A 

Then, for small A, the integral JL oV 
~(x,y)~(y)dy can be approximated by 

0 p 

Using the approximation: 

a 1 2a2 
f(p(x+A)) = f(p(x)) + Aaxf(p(x)) +-A -f(p(x)) 

2 ax2 
in (IV.28) one finds for (IV.18b) 

8p 1 282 ( a2p) T- = =MA - ~(p(x)} - '¥-
at 2 ax2 ax2 

(IV. 29) 

Note that A2/T has the right dimensions to be able to identify MA2/2T 
82 

as a diffusion coefficient. The operator satisfies the positivity 
ax2 

condition. 

The exact anti-diffusion operator K(x,y) is defined as: 

K(x,y) := -J t 2exp(-i(y - x)t)dt (IV. 30) 

If K is the identity transformation (K(x,y) = o(x - y), the Dirac 

a-function) then equation (IV.18b) is reduced to the standard reaction 

a { 82 
} diffusion equation: •a~= M -~(p) + '¥ax~ . 
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IV.8 Deviations from the most probable path 

The most probable path equations are not sufficient in describing 
the full characteristics of the system. If the probability density 
P(p,t) has two or more maxima (multimodal), the most probable evolution 
becomes meaningless, since two different density profiles may have 
nearly equal weights but the most probable evolution takes into account 
only the one whose weight is slightly larger. Furthermore, jumps to 
other solutions branches will not occur. The initial state defines 
completely the evolution. 

Deviations can be incorporated by adding a random variable to the 
deterministic equations (IV.22) or (IV.24). The result is the so-called 
Langevin equation. The standard Langevin equation was proposed by 
Langevin in 1908 as a generalization of Einstein's theory of Brownian 
motion. It describes the motion of a particle in viscous fluid. 
Langevin's equation was the first mathematical equation describing 
non-equilibrium thermodynamics (Haken, 1978). The standard form is 

dp(t) = ~dw(t) - ~t (IV.31) op 

where ~dw(t) corresponds to microscopic 

Brownian force (T is temperature). The second 

"drag" force is generated by the viscosity of 

fluctuations 
oV 

term - ~t, 

the fluid. On 

caused by 

called the 

the short 
time scale the Brownian fluctuations are dominant; at the long time 
scale the drag force dominates (Powles, 1968; Haken, 1978). 
For equation (IV.22) the Langevin equation may be written as: 

where R is an N array of random variables with 

<R(t)> = 0 

<R (t)R (t1 )> = Q(i,j)·o(t - t 1 ) 
I J 

and for equation (IV.24c) with L equidistant cells 

where 

[ L {oV <p1 = -M [ ~(i,j) ~ 
j=l pi 

s 
jl 

-s 
!j 

and S 
IJ 

R with 
n 

n = j-i + (i-l)L for 

(IV. 32a) 

(IV.32b) 

(IV.32c) 

(IV. 32d) 

:5 i < j, 
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i 1,2, .. ,L-1 and Risa 0.5(L2 - L) array of random variables with 

<R(t)> = 0 

<Ri(t)Rj(t1 )> = Q(i,j)·a(t - t 1 ) 

(IV. 32e) 

(IV. 32f) 

The structure of the stochastic term is a direct consequence of the 

definition of the transition probability W as formulated in paragraph 

IV.3, respectively paragraph IV.5. In both cases the mass conservation 

properties are retained. In the following only equation (IV.32a) with 

(IV.32b) and (IV.32c) is considered only. 

Defining P(p, t) as the probability density function for the system 

(IV.32a-c), the time evolution of P is given approximately by the 

so-called Fokker-Planck equation. (The Fokker-Planck equation is exact 

in the case of Gaussian random variables (Haken, 1978).) 

aP N a [ 11 { av 1 N a } ] Tat= L ap- L K(n,l) Hap + 2 L Q(l,m)ap- P 
n= 1 n 1=1 1 m= 1 m 

The term between the square brackets 

j with jn = L K(n, l){M~V + .!. ~ 
1=1 p I 2 =1 

:~ = o ~ (<vp,j> = o with VP 

is called the probability 

Q(l,m)~}p and hence 
Pm 

(~ ..... ~>.) 
Pi . PN 

(IV. 33) 

current 

(IV. 34) 

If Q(l,m) = Q·a(n - m) then (IV.34) implies that the stationary 

solutions of P are given for j = O only (Haken, 1978). 

Let K such that the null space N = [i), with LT= (1, .. ,1). Hence the 
It 

Langevin equation (IV.31a) is mass conserving and the solution space of 

p is restricted to the subspace \M p = M . Writing a stationary ln=t n p 
solution P(p) of the Fokker-Planck equation in the form 

P(p) = N·exp[-2M 'l'(p)/Q] (IV. 35) 

where N is a scaling constant, then 'l'(p) 

constant. 

V(p) - ~<i,p>, with ~ 

Critical (stationary) points of P(p) (IV.35) are given for p satisfying 

av ap = ~t (IV.36a) 

or equivalently: 

Kav = o 
esp (IV. 36b) 
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The same characterization was found for the stationary solutions of the 
anti-diffusion equation (see chapter II). A stationary point defined by 
(IV.36b) will be a strict local maximum of P(p) if 

c:.2v <p,~-2 ·p> > 0 on the subspace l:=lpn = Mp. 
op 

(IV. 37) 

This ls just the condition that the stationary point (IV. 35) is a 
strict minimum of V. 

So multiple strict minima of V will give multiple maxima of P. At the 
change of one minimum to two or more minima of V, the distribution 
becomes multimodal giving rise to large variances. For example, with a 
bimodal symmetric distribution, the system will be mostly in one of the 
peaks. The deviations of the mean value will be large. By observation 
it may be possible to determine in which peak the system is in fact 
(and assume wrongly that the distribution is unimodal). However, a 
fluctuation can carry the system spontaneously to another peak. This 
behavior can not be simulated neither by the mean value equation which 
is based on unimodali ty, nor by the most probable path equation which 
restricts the evolution to the most probable branch. 



CHAPTER V 

EXISTENCE AND ST ABILITY OF STATIONARY SOLUTIONS 

V.1 Introduction 

In chapter IV, the most probable path equations are derived in the 
form: 

-r:p = -M(K oV) n 
n op ' 

n 

1, .. N (V. la) 

where K is a symmetric and positive NxN matrix, i.e. <x,Kx> <:: 0 all 
x e ~N. with null space NK = [t], tT = (1, 1, ... , 1); pn is an element of 
an N dimensional vector p; M and T are positive constants. 

In continuous form the equation is written as 

ap J ov •at = -M K(x,y) 0P(y)dy (V. lb) 

where 

oV 82 p op = lfJ(p) - r-2 , r > o 
ax 

(V.2) 

with .,, cubic in p. 

In this chapter some concepts of linear stability analysis in relation 

to asymptotic stability are introduced in section V.2. In the next two 

sections it is shown that systems (V. la) have the same stationary 
solutions with the same stability properties independently of K. The 

same statements holds for system CV.lb) for varying K. Moreover, it ls 
proven that both systems have stable, non-constant solutions if the 
null solution is unstable. 

- 65 -
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V.2 Linear stability analysis 

Let the general evolution equation be given as: 

au 
Bt(x, t) = G(u;7) (V.3a} 

(7 is the parameter (vector) controlling the structure of G) defined on 
D c Rq, with initial conditions 

Yx e D: u(x,t) = u (x) (V.3b) 
0 0 

and boundary conditions of 

Dirichlet type: Yx e BD & Yt e R: u(x,t) = c (V.3c) 
0 

or of 
Neumann type: Yx e BD & Vt e R V u(x,tl> = c (V.3d) 

n o 
where V is the spatial derivative in the direction of n, the normal to n 

the boundary BD of D, and c is some constant. With the boundary 
0 

conditions, the system may not always be solvable. 

The basic concepts of stability are due to Lyapunov (Sattinger, 1973). 
This Lyapunov stability means that solutions belonging to neighbouring 
conditions evolve in a neighbourhood of each other. For partial 
differential equations stability analysis involves the structure of the 
equations (system), boundary and initial conditions of the solutions. 
To be more precise, stability definitions will be given for the general 
evolution system (V.3). 

With II· II is denoted the norm on some function space; for finite 
dimensional systems defined on ~N. the norm can be the standard 
euclidean norm. To discriminate between solutions belonging to 
different initial conditions we shall write u(x, t, u ) instead of u(x, t) 

0 

for solutions of (V.3a-d). 

Definition V.1 

A solution u of system (V. 3a-c, d) is called stable if 'ef c > 0, 
v t e R, 3 11 > 0 llu - u II < 11 '* y t > t llu - u II < c 0 o1 0 1 
where u (x, t,u l is a solution of (V.3a-c,d) with initial 1 ol 
condition u (V.4) ol 
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Definition V. 2 

A solution u of system (V. 3) is called attractive if 

3 11 > O : llu - u 01 11 < lJ => lim llu - u1 II = O 
t~ 

with the same notations as in (V.4) 

Definition V.3 

(V.5) 

A solution u is called asymptotically stable if u ls both stable 

and attractive. (V.6) 

Definition V.4 

A solution is called unstable if u is not stable. (V. 7) 

Global stability of a solution u does not involve any condition on the 

initial values. This is a rare case, at least for nonlinear systems, 

since it means that all solutions are attracted to a single stable 

solution. Note that stability does not imply asymptotic stability. 

Definition V.5 (Nicolls, 1981) 

The system (V.3) ls structurally stable (in norm, within the 

family of evolution equations parameterized by 7) if 

\I c > 0, \I t e IR, 3 11 > 0 : 
0 

117 -71 11 < lJ => \I t > t 0 : llu - u1 II < c where u and u1 are 

solutions with respectively parameter 7 and 71 and 11711 denotes a 

norm in parameter space. (V.8) 

This ls called by Nicolls structurally stable and so shall we do 

in the following. 

The first four definitions are related to the initial conditions 

whereas the fifth condition involves the structure of the equations and 

the boundary conditions as well, since both can depend on a parameter 

(vector) 7. 

Stability analysis requires a general solution of the system which ls 

often impossible to obtain. A first step ls to restrict oneself to 

infinitesimal perturbations only around the asymptotic solution; after 

llnearlzatlon the global analysis becomes a local linear problem. 
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Lyapunov's theorem states the equivalence of both analyses for general 

systems (Iooss et al., 1980). 

Let us first describe the linearization procedure. 

Consider system (V.3) having a reference solution u such that: 
s 

Let the evolution operator G act on the function space X. Let G be 

Frechet-differentiable at (u , 7) in u. The derivative with respect to 
s 

u is denoted as: 

d G(u ,7) = G' (u ,7). (V.10) 
u s s 

The Frechet-derivative of an operator is the natural generalization of 

the concept of a derivative of functions defined on finite dimensional 

spaces to operators on infinite dimensional normed linear spaces ( see 

Appendix E and references there). This means, among other things, that 

d0 G(u6 ,7) is a linear operator acting on the function space X. 

Furthermore, an analogon of the Taylor expansion exists provided higher 

derivatives exist. 

Assume that U6 is a solution of (V.3a-d) for all 7. Then by replacing u 

with u - u5 , and assuming a bit of analyticity, the right hand side 

G(u;7) of (V.3a) can be arranged to get 

(V.11) 

where B and A are linear transformations defined on M, and N is the 

nonllnear part in u such that N(0;7) = O and d N(0;7) = O; So 
u 

duG(O; iJ'} = B - 7fA. (The anti-diffusion equation is easily written in 

the form (V.11)). The boundary conditions are of the same type as those 

of the original equation except that c = 0 (homogeneous case). The 
0 

null solution u = 0 represents the reference state u = u and the 

evolution equation of u is: 

au 
at L·u + N(u;i-) 

The first, linear, approximation to (V. 12) ls: 

au 
at 

where L 

L·u 

d G(O, 7f) 
u 

B - 7fA. 

s 

(V. 12) 

(V. 13) 
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The relationship between the linear problem (V. 13) and the nonlinear 

one (V.12) is given by the following Lyapunov theorem (Nicolls, 1980): 

Theorem V.6 

If the null solution of (V.12) is asymptotically stable, then us 

ls an asymptotically stable solution of (V.3). If the null 

solution of (V.12) ls unstable then u ls an unstable solution of 
B 

(V. 3). 

This theorem is an analog of the Poincare-Lyapunov theorem for finite 

dimensional vector spaces. For infinite dimensional function spaces it 

is only proven for systems with one component (Grasman, 1982). 

Let M be the set of u for which the evolution problem (V.11) is well 

defined. (M may be infinite dimensional, 1. e. a Hilbert space. ) The 

spectral problem associated with the linear operator L (V.13) is 

L·v = AV 

which defines the eigenvalues A and eigenvectors v of L in M. As long 

as each solution u of (V.13) can be expressed as a linear combination 

(maybe infinite) of terms proportional to exp(A t)v with A eigenvalue 
n n n 

and vn eigenvector of L in M, the (linear) stability properties of the 

reference state us are given by the (real part of) the eigenvalues An 

of L. The problem is that it may not be possible to write u as such a 

linear combination. 

However, in the case of anti-diffusion system (V.1b), with 

oV = ef>(p) - .//P, the linear operator L can be written as -KH with H 
op 8x2 

the second derivative of V evaluated at the reference state p = u 
s 

82 
(Hv = ef>'(u5 )v - 7~2v); now it is possible to use the property that the 

8x 
operator H has a complete orthonormal set of eigenvectors which form a 

basis in L2 (Coddington and Levinson, 1955; Gohberg and Goldberg, 

1981). With K positive and even strictly positive on the specific 

solution space we will use, it is possible to show that the stability 

of the reference state u5 depends only on the eigenvalues of H. 
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V.3 Stationary solutions (finite dimensional) 

If p = p, n = 1, ... ,N with p constant is a stationary solution 
n o o 

of (V. 1) then the equations can be written in terms of u 
n 

•u = -M(K ov) n 
n OU ' 

n 

1, .. N (V. 14) 

with initial condi lion such that <u, t> = 0 where <-, · > denotes the 

standard Euclidean inner product and tT = (1,1, .. ,1) e !RN. 

Define the linear subspace IR: of IRN by 

IR: = {u e IRNI <u,t> = 0} (V. 15) 

Since the equations (V.14) are mass conserving, all solutions of (V. 1) 
N must belong to IR.,. The positive constants i: and M in the system 

equations (V. 1) are taken such that i:/M = 1. 

We want to show that existence and stability properties of stationary 

solutions of (V.14) are independent of K (as long as K belongs to the 

same type of symmetric, positive matrices as defined in Chapter IV, 

section 3). A stationary solution of (V. 14) is given by 

<K0V v> = o for all v e IRN 
ou' (V. 16a) 

Denote the null space of K as N K. If N K 2 [ t] then some stationary 

solutions of (V.l) are given by 

~t, for some ~ E IR (V. 16b) 

If Nk = [t] then (V. 16b) defines the only stationary solutions. 

Condition (V. 16b) is independent of K, so all systems with NK [tJ 

have the same stationary solutions. 

In what follows K is taken such that the null space of K is [t]. 

The second observation is that all systems (V.1) have the same Lyapunov 

function V(u) as well, since 

dV 
dt (V. 17a) 
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dV = O 
dt 

oV 
- ou = (3 L , (3 E IR 

since K is positive with null space NK [t]. 

Let the discrete V(u) be defined as: 

(V. 17b) 

(V. 18a) 

where 0 2 is defined by (IV. 25) (-02 is the discrete Laplace operator, 

subject to no-flux boundary conditions, see chapter IV, section 7) and 

h is the spatial gridspacing (see also chapter VIII). As before we set 

df(u) = ~cul with f(O) O and 
du V' ' 

tjJ(u) = 2 3 
-u + r u + r u 

1 2 
(V.18b) 

It follows, by a Taylor expansion of (V. 18a), that for fixed u E IR11 

V(u + v) = V(u) + d V(v) + ~2V(v,v) + o(<v,v>) 
u 2 u 

for v E IR11 , <v,v> ~ 0, where 

d V(v) 
u 

and 

/5V v> 
ou' 

(V. 19a) 

(V. 19b} 

(V. 19c) 

where tjJ'(u) denotes the derivative of tjJ evaluated at u and His the 
n n 

Hessian of V, i. e. (::~), evaluated at u. It is possible to write 

d V(v) and d2V(v,v) as in (V.19b) and (V.19c), because of the 
u u 

definition of 02 which includes already the no-flux boundary 

conditions: see chapter IV, section 7 and chapter VIII. The critical 

points of V on IR: are the critical points of V subject to the condition 

<u, t> = 0: 

oV 
<0u,v> = {3<t,v> for some (3 e IR 

Condition (V.20a) is equivalent with 

<K0V v> = 0 
ou' 

(V.20a) 

(V.20b) 

Hence critical points of Von IR11 are stationary solutions of (V.1) and .. 
vice versa. 
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The equivalence of stability properties of stationary solutions of mass 

conserving evolution equations (V. 1) can now be established. 

Let u0 = (u01 , ... ,u0N) be a stationary solution of (V.14). Taking 

u = u0 + v with r:=lvn 0 and substituting this in (V.14), gives to 

the first order in u: 

vn = -(KHv) , n = 1, ... ,N 
n 

where H is the Hessian of V evaluated at u u . 
0 

Two cases are now distinguished: 

(V. 21) 

a) The Hessian H has a negative eigenvalue A with corresponding 

eigenvector v, then 

d<v,v> ---a:r-- = -<v,KHv> - <KHv,v>= -2;\<v,Kv>, ;\ < 0 (V.22a) 

Since K is strictly positive on IR:, <v,Kv> 2: µk<v,v> where µk is the 

smallest eigenvalue of K. Hence 

(V.22b) 

So <v, v> = llvll 2 is a monotone increasing function of t hence the null 

solution of (V. 21) is unstable, and by theorem V. 6, the stationary 

solution u = u of (V. 14) is unstable. 
0 

b} The Hessian H is strictly positive. Let the smallest eigenvalue 

of H be given by A1 , then 

111/Hvll 2 = <v,Hv> 2: \<v,v> = \11vll 2 all v e IR: 

where i/H is the positive square root of H. 

d<v,Hv> 
dt 

-2<v,HKHv> 

(V.23a) 

(V.23b) 

Let again µl< be the smallest eigenvalue of K (µk > OJ then 

<v, HKHv> <: µ" <v, HHv>. ilHHilH and HH have the same eigenvectors as H, 

hence <v,HHv> 2: ;\1 <v,Hv> all v e IR:. So we find that 

d<v Hv> 
dt ~ -2;\1µk<v,Hv> < 0 if v * 0. (V.23c) 

Which means that <v, Hv> = lli1Hvll 2 is monotone decreasing in t. Suppose 

lim lli/Hv11 2 = oi > 0, then follows from (V. 23c} that 
t~ 

(V.23d) 
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and there will be a t such that llv'Hvll 2 is negative. So o: must be zero 

and lim Uv'Hvll 2 = 0. Hence by (V. 23a) the null solution of (V. 21) is 
t~ 

asymptotically stable and by theorem V.6 the stationary solution u = u0 

of (V.14) is stable. 

The case that H has a zero eigenvalue will give the possibility of 

bifurcating solutions and is treated in appendix A. 

As a summary the following theorem is formulated: 

Theorem V.7 

All systems with the evolution equations 

T~n = -M(K~~) , n = 1, .. N; T and M positive constants 
n 

with K symmetric, positive and N 
K 

[t]' and with the same 

initial condition Ju(x,O)dx = 0, are identical with respect to 

stationary solutions and the stability properties of these 

solutions. 

The existence of a stable non-trivial solution can be established as 

follows. Assume that the null-solution (u = 0, n = 1, .. , N) ls not a 
n 

minimum of V and let~ be given by (V.18b). Using the definition of V 

in (V.18a) where D2 is a positive operator, one finds that 

N 

V(u) <:: l f(un) 
n=l 

[ {-~u~ 
n=1 

1 3 1 "} + -r u + -r u 
31n 42n 

Hence, if r 2 > 0, there exists a constant R such that V(u) <:: 0 for u 

with <u, u> > R. Since v is continuous and the domain 

{u e IRN"l<u,u> :s R} is compact, V attains its minimum on this domain. 

This minimum is not at the null solution and not on the boundary 

<u,u> = R; so there exists a point u with not all u equal to zero 
dV(u) n 

where V attains its minimum. Since ~ < O if u is not a stationary 

point (see V. 17a and V. 17b), it follows that there must exist a minimum 

of V which is a non-trivial stable solution of (V.14). This conclusion 

can be formulated as the following theorem: 
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Theorem V.8 

All systems with evolution equation 

YUn = -M(K~~) , n = l, .. N, Mand Y positive constants 
n 

with K symmetric, positive and HK= [t], and with V(u) 

V(u , ... ,u l = \N {f(u l + ~(r1h2 )(u102u)} and 
1 N ln=t n 2 n 

f(u) = -.!u2 + ~r u3 + ~r u4 with r > 0 where D2 a positive 
2n 31n 42n 2 

mapping from RN to RN (V ls C2), have a non-trivial stable 

stationary solution if the trivial solution is not a minimum of V. 

V.4 Stationary solutions (infinite dimensional) 

For the discrete system theorems V.8 and V.9 are proven under the 

condition that V is c2 and bounded from below and that the matrix K is 

positive and symmetric. The main object of this section ls to show 

under which conditions the results for the discrete model hold also for 

the continuous model. Written in terms of u = p - p0 with p 0 (x) = p0 

constant, the model equation is 

au r av 
Tat = -MJ_ K(x,ylau(y)dy, Y and M positive constants 

0 

(V.24a) 

l!N a2 u 
au - ef> Cul - r-2 , r > o 

ax 
(V.24b) 

and 
ef>(u) = -u + r u2 + r u2 

1 2 
(V.24c) 

no-flux boundary conditions being assumed. In the following we take the 

positive constants Y and M such that y/M = 1. The equation (V.24a) ls 

called an integro-differential equation with kernel K(x,y). 

Definition V.9 

A mapping f: (0,T) ~ E, where Eis a Banach space, defined by 

t ~ f[t], f[t] e E, is called a E-valued function. 

Since E ls a normed space, the definition of contlnul ty of f is 
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straightforward; the derivative ~i of f is defined as the Frechet 

derivative which is the natural extension of the notion of derivative 

from finite dimensional spaces to infinite dimensional ones (see also 

appendix E). 

It is now possible to write the evolution equation (V.23) as 

with 

~u[t] -K<W 
dt OU 

Ku= ~K(x,y)u(y)dy 
0 

(V.25a) 

(V.25b) 

The advantage of this approach is that in a certain sense separation of 

variables is achieved. Furthermore, in Sobolev theory, the required 

boundary conditions are expressed by the fact that a function must 

belong to a specific Sobolev space. 

If u satisfies (V.25) then 

d 
<dtu[tJ,v>o 

oV -<K0u,v>0 for all v belonging to the solution 

space. (V.26a) 

Definition V. 10 

A weak solution on (0, T) of the evolution equation (V. 24a) is 

defined as a function u which satisfies (V.26a) (and the initial 

conditions. ) 

A function u is a weak stationary solution if 

hence 

oV 
<Kou'v>o 

KoV 
ou 0 

0 for all v 

a. e. 

(V.26bl 

(V.26c) 

To proceed, a solution space must be chosen. In Appendix E, definitions 

of Hilbert spaces L2 of square integrable functions, and H"', the 

Sobolev space of functions with square integrable (generalized} 

derivatives to the order m, are given. 

Since the operator ~~ involves the Laplace operator (see (V.2)), the 

functions must be differentiable to the fourth order if K self is also 

the Laplace operator. However this is not needed for weak solutions. 

Note that <a2u,v>0 = <au,av>0 is correct and well defined for functions 
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u and v belonging to the Sobolev space H2 . So for weak solutions the 

function space will be H2 (Q) which gives also the desired no-flux 

boundary conditions. 

Let Q = (0,L) c R. With the mass conservation property of the system, 

the solution space is taken as: 

(V.27a) 

where the symbol 1 denotes the function v(x) = 1 all x. 

If K is not the Laplace operator but for instance given by 

K(u) = u - ~~udx, then the solution space is H! which is defined as: 
0 

H!Co,Ll = { u e H1 CO,Lll <u,1>1 = <u,1>0 = o} 

The following assumptions are made with respect to K: 

i) K(x,y) = K(y,x); K is symmetric. 

11) K ls positive. 

iii) <u, Ku> 0 = 0 - u( ·) = constant a. e.. .Qn a 

(e.g. H!l the operator K is strictly positive: 

(V.27b) 

reduced space 

<u,Ku> > 0. 
0 

(V.28) 

a2 u The negative diffusion operator K(u) (x)=-- satisfies all conditions 
ax2 

(V.28). The same holds for K(u)(x) = u(x) - ~~u(y)dy. 
0 

A stationary solution defined by (V.26b) is an element u e H! with 

av 
au = ~. ~ is constant 

which identifies all stationary solutions independently of K. 

The functional V is given by: 

V(u) = f"f(u(x)) + ~rlu (x)j 2dx Jo 2 " 

with 

(V.29) 

(V.30a) 

(V.30b) 

Si dV(u) _ J av du[t]d 
nee err- - au· dt x, it follows directly from (V.26a) (and 

condition iii of V.28) that 
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dV(u) < O 
dt -

dV(u) = 0 oV a a . constant d t ~ OU = ,_,. p ls 

(V.31a) 

(V.31b) 

So V is a Lyapunov functional. We now show that critical points of V on 

H! are stationary solutions of (V.26a) and vice versa. 

Writing df(u) ~(u), the Taylor expansion of V for fixed u e H! is 

V(u + v) - V(u) = d V(v) + ~2V(v, v) + o( llvll 2 ) 
u 2 u 0 

(V.32) 

2 for v e H.. Uvll 0 ~ 0, where 

(V.33a) 

and 

(V.33b) 

2 The critical points of V on H., are critical points subject to the 

condition <u, 1> 2 = <u, 1> 0 = 0. Then by Ljusternik' s theorem (Groesen, 

1976), the critical points are given by 

2 duV(v} = (3<1,v>2 = (3<1,v>0 for some (3 e R, all v e H* (V.34) 

Suppose u e H! is a critical point, then it is possible to prove that u 

satisfies the no-flux boundaries conditions. We follow the procedure 

given in Diekmann (1982). Let q(x) be the solution of 

82 
r--::;q = ~(u) - (3, q(O) 

8x2 
q Col = o Cr > OJ 

x 
(V.35a) 

Let v e C2 with v (0) = v (L) 
" x 

O and v(L) = 0 then by partial 

integration of the right hand side of (V.33a), one finds: 

Jq(x) + u(x))vxxdx = 0, (V.35b) 

hence 

(V.35c) 

So u is at least twice differentiable and ru \l>(u) - (3 and now 
'"' partial integration of d V(v) yields: 

u 

u (O)v(O) - u (L)v(L) = 0 for all v e H2 
x x •' 

(V.35d) 
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and thus u (0) = u (L) = 0. Since u is twice differentiable, q in 
x x 

(V.35a) is four times differentiable and by (V~35c) the same holds for 

u. Since 7u = ef>(u) - f3 
xx 

J(ef>(u) - ,-u I v dx = 0 
xx x x 

2 all v e H., 

Then again by partial integration one finds: 

u (O)v(O) - u (L)v(L) = O all v e H2 
xxx xxx • 

(V.36a) 

(V.36b) 

and so u (0) = u (L) = O. So if u ls critical point then u 
xxx xxx 

satisfies the no-flux boundary conditions and we can write in (V.34) 

hence a critical point is given by: 

(V.37) 

If K satisfies condition iii) in (V.28) then (V.37) is equivalent with 

liV 2 <K0u,v>0 = 0 for all v e H. (V.38) 

Hence critical points of V on H~ are stationary solutions of (V.26a) 

and vice versa. 

Corollary V.11: 

If u e H;co,L) is a critical point of V then u e H~(O,L). 

Proof: 

Let u e H! be a critical point of V. By the Sobolev lemma (see 

appendix E) there exists a constant C such that lul 0 :s Cllull 1 where lul 0 

is a supremum of I u(x) I on [O, LI. For u e H! we can apply the same 

reasoning of (V.35a-d), so 7u = ef>(u) - f3 with ef>(u) given by (V.24c). 
. xx 

The integral ~(ef>(u) - {3) 2dx is bounded because lul 0 is bounded, hence 
0 Ju2 dx is bounded and so u e H2 . a 

~ * 

2 Since K ls symmetric and strictly positive on H0 , the time evolution ls 
2 characterized by minimization of Von H0 , see (V.30a) and (V.30b). This 
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implies that we can link the stability properties of a stationary 

solution u with the properties of u as a critical point of V. Let u be 

a stationary solution then 

if there exists v e H2 such that d2V(v, v) < 0, then u is not a 
• u 

minimum of V (see theorem 8. 1 in Diekmann (1982)); 

if V is minimal at u, then d2V(v,v) ~ 0 for all v e H2 (see 
u .. 

corollary 8.2 in Diekmann (1982)). 

Theorem 5. 3 of Koornwinder (1982) gives a sufficient condition for u 

being stable. This theorem is formulated for u e H1 (0,L): 

Theorem V. 12: 

If there exists an a > 0 such that d2V(v, v) ~ a( !vl )2 for all 
u 0 

v e H1 (0,L) where sup-norm Iv! denotes the supremum of lvCxll on 
0 

[O,L], then u is stable. 

The proof in Koornwinder (1982) is as follows: the condition 

d2V(v, v) ~ a( lvl )2 means that V attains a strict local minimum in u 
u 0 

with respect to the c0 topology; as H1 (0, Ll is compactly embedded in 

c0 ([0,L]), V attains also a strict local minimum at u in H1 (0,L). 

In this case, the stability of a stationary solution is related to the 

sign of 

inf{d2V(v,vll v e H1 , !vl = 1} (V.39) 
u 0 

Since H2 (0,L) is compactly embedded in H1 (0,L) (see Wloka, 1969) the 

same reasoning can be applied to solutions in H2 . And the same holds if 

we restrict the solution spaces to functions u with Judx = 0. Hence we 

get: 

Corollary V.13: 

If u is a stationary solution with d2V(v, v} ~ a( !vl )2 for all 
u 0 

v e H!(O,L) then V attains a strict local minimum on H!(o,L) in u 

and u is stable. (V.40) 

The stability of a stationary solution is now related to the sign of 

inf{d2V(v,vll v e H2 
u ... jvj = 1} 

0 
(V.41) 
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The number defined by (V. 39) has the same sign as the smallest 

eigenvalue A of the Sturm-Liouville problem 

,-v + (A - 4>' (u) )v(x) = 0, v E C2 ( [O, L]) n H1 (0, L) 
xx 

(V.42) 

2 1 see Koornwinder (1982), page 150-153. Since H. c H the same reasoning 

can be applied with respect to the number defined in (V.41); hence the 

sign of this number is the same as the smallest eigenvalue A of the 

Sturm-Liouville problem defined in (V. 42), but now the eigenvectors 

must belong to H! or rather to H! since, if v is an eigenvector then 

and 

hence 

xx 
_!.((A - 4>' (u) )v(x) 

7 
v 

<v,v>2 s {i + (1/7) 2 CIA - 4>' (ull 0 >2}Jv2 (x)dx + Jv:(x)dx s 

s C <v,v> with C = 1 + (l/7J 2 CIA - f' (u)j )2 
0 1 0 0 

(V.43a) 

(V.43b) 

(V.43c) 

1 2 Thus if v e H9 (0,L) is an eigenvector of (V.42), then also v e H.CO,L). 

The relation between the stability of a stationary solution and the 

eigenvalues of the Sturm-Liouvllle problem (V.42) can also be found by 

applying the principle of linearized stability (theorem V. 6) to the 

model formulation (V. 24a-24c). Let u be a stationary solution of 
0 

(V.24a-24c); let v = u - u, then in first order approximation the time 
0 

evolution of v is 

where 

av 
at -KHv 

Hv 4>'(u )v - 7v 
0 xx 

(V.44a) 

(V.44b) 

Since H ls self-adjoint and has a complete set of orthonormal 

eigenvectors which is an basis in L 2 ( [0, L) (Coddington and Levinson, 

1955; Gohberg and Goldberg, 1981, see also appendix E) we can apply the 

same procedure with respect to the relation between the eigenvalues of 

H and the stability of the null solution of (V. 44a) as in CV. 22a-b, 
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V23a-d). So again two cases are distinguished: 

a) H has a negative eigenvalue ii. with eigenvector v; then 

d 
dt<v,v>0 = -<v,KHv> 0 - <KHv,v>0 = -2il.<v,Kv> 0 2: -2il.µk<v,v> 0 > 0 

(V.45) 

where µk is the smallest eigenvalue of K; since K is strictly positive 

µ > 0. Hence llvll 2 = <v, v> is monotone increasing in t; so the null 
k 0 0 

solution is unstable and by theorem V.6 the stationary solution u = u0 

of (V.24a-c) is unstable. 

b) H is strictly positive. Let il.1 be the smallest 

(positive) eigenvalue of Hand vH be the positive square root of H then 

for all v 

llvHvll 2 = <v, Hv> "" ii. <v, v> = ii. llvll 2 
0 0 1 0 1 0 

(V.46a) 

and 
(V.46b} 

where µk is the smallest eigenvalue of K which is positive because K is 

strictly positive on H2 • So llv'Hvll 2 is a monotone decreasing function of 
• 0 

t and by the same arguments as before, see (V.23c-d), limllv'Hvll 2 = 0. 
t~ 0 

Then by (V. 46a) limllvll 2 = O so the null solution of (V. 44a) is 
t~ 0 

asymptotically stable and the stationary solution u = u of (V. 24a-c) 
0 

is stable (theorem V.6). 

The case that H has a zero eigenvalue is treated in chapter VI and 

appendix A. 

So we can formulate the following theorem: 

Theorem V.14: 

All systems with the evolution equations defined on H!(O,L) by 

•:~ = -M~K(x,y){~(u(y)) - ruYY}dy, T, Mand 0 positive constants, 

with no-flux boundary conditions, and with K symmetric, positive 

and NK = (u], u(x) = 1 all x, and with the same initial condition 

Ju(x,O)dx = 0, are identical with respect to stationary solutions 

and the stability properties of these solutions. 

The existence of a non-constant stable solution based on the existence 

of a minimum of V at a non-zero u was formulated for the discrete 
2 1 system in theorem V.8. Since H.(O,L) c H.(O,L) and by corollary V.11 it 
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is sufficient to prove the existence of a minimum of V defined as a 

functional on H!. The existence can be concluded from theorem 5.10 page 

140 in Chow and Hale (1982): 

Theorem V.15: 

Let f: X ~ R, with X a Banach space, be C1 and satisfy condition 

(C). If f is bounded above (below), then f attains its maximum 

(minimum). 

Condition (C) is a compactness condition (Chow and Hale, page 130): 

Definition V.16 (Condition C) 

Let X be a Banach space and f: X ~ R be C1 ; f satisfies condition 

(C) if, for any sequence {v} c X such that lf(v JI is bounded and 
n n 

Id f(v l I ~ 0 as n ~ oo, there exists a convergent subsequence of 
v n 

{v }. 
n 

Now it is to be shown that V defined in (V.31) satisfies the conditions 

of theorem V. 15. 

It is obvious that V ls C1 and bounded from below if r 2 > O; since for 

r > 0 there exists a constant M 2: 0 such that 
2 1 

-~u2 + ~r u3 + ~r u4 > -M for all u e R. 
2 31 42 1 

Hence V(u) > -M ·L. 
1 

(V.47) 

1 
To prove condition (CJ for V, assume {un} is a sequence in H.(O,L) with 

IVCu ll is bounded and Id V(u JI ~ 0 if n ~ oo. 
n u n 

Let M > 0 such that IVCunll < M, then one uses (V.47) again to find 

that 

f\'il'ju i2dx < M + M ·L J _2 nx 1 
0 

(V.48) 

where u := (8u /Bx). 
nx n 

For functions v e H1 (0,L) Friedrich's inequality holds (Groesen, 1978): 
0 

(V.49} 

If v E H1 (0,L) then v(O) 
0 

v(L) 0. Of course the inequality is true 



EXISTENCE AND STABILITY 83 

L 

if u is zero everywhere. A non-zero function u E H! (with J udx = 0) 
0 

must have a zero, say at x = a. Define a function v as an even 

extension of u in x = 0 and x = L as follows: v(x) u(x) if x E [O, LI, 

v(x) = u(-x) if x e [-a,O] and v(x) = u(2L-x) if x e [L,2L-a]. Then the 

function v satisfies the condition of Friedrich's inequality and by the 

definition of v, Friedrich's inequality holds also for u e H!. 

By equation (V.49) the norms generated by<·, ·>1 and the inner product 

<u, v> :=J u (x)v (x)dx are equivalent. So instead of <·, ·> the inner xO x x l 
product < ·, · > can be used on the function space H1 . Then by (V. 48) 

xO " 
the sequence {u } is bounded in H~. 

n 

Given the specific form of V, <duV(u),v>xo can be written as: 

(V.50a) 

wh0re T is a compact operator (see definition in Appendix E) defined by 

<Tu,v> = u(x)v(x) - r u (x)v(x) - r u (x)v(x) dx J 2 3 (V.SOb) 
xO 1 2 

By the definition of a compact operator and since {u } is bounded, the 
n 

sequence {Tu } contains a convergent subsequence (see Appendix El. 
n 

Using in (V.SOa) that Id V(u ) I ~ o if n -* m, 
u n 

implies that {u } 
n 

contains a convergent subsequence which proves condition (CJ for V for 

u E H1 • • 
1 Now theorem (V.15) is applicable; so V attains its minimum on H.,.(0,L) 

2 and hence on H.,. (0, L). 

If the null solution is unstable then V(O) is not a minimum of V; so if 

r 2 > 0 then V attains its minimum for u not identical zero; since u 
2 . dV(u) belongs to H*(O,L) the function u can not be constant. Since --err-< 0 

if u is not a stationary solution (see V. 34a and V. 34b), the system 

(V. 26a) must have a non-trivial stable stationary solution if V does 

not have a minimum at u = 0. 





CHAPTER VI 

BIFURCATION ANALYSIS 

VI.1 Introduction 

The object of this chapter is to introduce some general 

bifurcation analysis tools which are applicable to the anti-diffusion 

system. Let the general evolution equation be given as in chapter V 

au 
at(x,t) = G(u;r) (VI. la) 

(r is a parameter (vector) controlling the structure of G) defined on 

D c Rq, with initial conditions 

Vx e D: u(x,t) = u (x) (VI.lb) 
0 0 

and boundary conditions of 

Dirichlet type: Vx e aD A Vt e R u(x,t) = c (VI. le) 
0 

or of 

Neumann type: Vx e ao A Vt e R: V u(x,t) = c (VI. ld) 
n o 

where V is the spatial derivative in the direction of n, the normal to 
n 

the boundary ao of D, and c is some constant. 
0 

In full generality bifurcation theory is concerned with the way 

the solutions of an equation (like VI. la), involving a parameter, 

change in dependence of that parameter. One important topic is the way 

the set of equilibrium solutions, i. e. the solutions of G(u; i-> = 0, 

changes as r varies, and which stability properties the various 

solutions have. 

- 85 -
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An evolution system such as (VI. 1) can have many types of solutions: 

stationary (time independent) constant, space-periodic, time-periodic 

and so on. The set of solutions will as a rule depend on the parameter 

(vector) r: the dependence on r can involve (besides G(u;r)) also the 

boundary conditions. In dependence on the parameter r the nature of the 

set of equilibrium solutions can change, e.g. a stable one may become 

unstable, and new solutions may appear. In this section the main object 

is the study of stationary solutions of (VI. 1) in dependence of the 

parameter r. The basic references are Sattinger (1973) and Iooss et 

al. (1980). 

An equilibrium solution is a pair (u,r) satisfying (VI.1). Roughly 

speaking, bifurcating solutions are equilibrium solutions which form 

intersecting branches in a space MxlR, where M ls a suitable space of 

functions in which solutions lie. One equilibrium solution bifurcates 

from another at r = r if there are two distinct branches of 
c 

equilibrium solutions (u1 ,r) and (u2 ,r) of an evolution problem, 

continuous in rand such that (u1 ,rc) = (u2 ,rc). The point re ls called 

a bifurcation point. So bifurcation theory studies the relation between 

a (bifurcation) parameter and the equilibrium solutions, 

quantitatively and qualitatively. 

Solutions will be real valued functions defined on a spatial 

domain D c: IRq, q e IN. In general u will belong to a linear function 

space M supplemented with an appropriate norm 11·11. As a rule this space 

will be a Banach-space, see appendix E. As in chapter V, we will denote 

the derivative in u and r by duG respectively d7 G. 

The first question is to know under which conditions a solution 

(u5 ,75 ) ls guaranteed not to be a bifurcation point, which means that 

(u ,7 l lies on a unique simple curve (u,r) of solutions for 
s s 

75 - o < r < 78 + o with o > 0. The answer is given by a theorem based on 

the implicit function theorem. 

Definition VI.1 (Iooss et al., 1980) 

A regular point of G(u;r) = 0 is one for which the implicit 

function theorem applies: d G * 0 or d G * 0. 
u r 

If (u9 ,79 ) is a regular point then we can find a unique curve r 7(u) 

or u = u(rl through that point. 
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Definition VI.2 (Iooss et al., 1980) 

A singular point of G(u;rl = O is a point at which duG d G 
7 

0. 

Assuming branches of solutions bifurcate in a continuous way, the 

Lyapunov stability or instability of an equilibrium solution and 

bifurcation are strongly connected (however the instability of an 

equilibrium solution is not in all cases a necessary condition for 

bifurcation). 

The following theorem relates the existence of bifurcating branches 

with the eigenvalues of the linearized system, i. e. the linear 

stability of an equilibrium solution. As in chapter V (see equation 

(V. 11)) we assume that u = u is a solution for all rand replace u with 
s 

u - u to arrange the right hand side of (VI. la) as 
s 

G(u;rl = Bu -rAu + N(u;rl (VI. 2) 

where B and A are linear maps ·from X to Z, with X, Z Banach spaces and 

N is nonlinear in u such that N(O;rl = 0 and d N(O;r) = 0. So 
u 

d G{0; 0 ) = B - rA. 
u 

The linear stability of the null solution is determined by the 

eigenvalues of (B - 0A). If the null solution becomes unstable at 

r = r , then dim N (B - r A) ;,:: 1; r 
c c c 

is called an eigenvalue of (B,A) 

(Chow et al., 1982). (N(C): null space of C; see appendix El. Suppose 

now this eigenvalue to be simple: dim N(B - r A) = 1 = codlm R(B - r A) 
c c 

(~ is range) and AN(B - r A) © R(B - r A) = Z then the following 
c c 

theorem applies: 

Theorem VI.3 

Let X and Z be real (or complex) Banach spaces, A be an open set 

in R (or t) and Ge Cm(X x A,Z), m;,:: 2. Suppose that 

G(u;rl Bu - rAu + N(u;rl (VI. 3a) 

N(O,r) 0, d N(O,r) = 0. (VI. 3b) 
u 

If r is a simple eigenvalue of (B, A) with eigenvector u *' 0, 
c 0 

then (u,rl = (O,r l is a bifurcation point of G(u;r) = 0. 
c 

Moreover, there exist ~-l functions 

rCel 

u(c) 

(VI.4a) 

(VI. 4b) 
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for real c near zero such that G(u(c);7(c)) = 0. All zeros of G 

near (0, 7 ) are either the trivial solution u = 0 or given by 
c 

(VI. 4a-b). Finally, if G is an analytic function of u, 7 near 

(0,7c), then u(c),7(c) are analytic near zero. 

Proof: see proof of Theorem 5.3, page 189 in Chow et al. (1982). 

The branching solutions given by (VI.4a-b) can be constructed by 

expanding u and 7 in powers of a small parameter c, the so-called 

Poincare-Lindstedt series (see Appendix A). This expansion gives 

information about the way the branches cross each other at the critical 

point which in turn defines the stability properties. These stability 

properties are summarized in the following definitions and theorems. 

Definition VI.4 (Sattinger, 1973; Nicolls, 1981) 

Consider two branches (u ,7) and (u1 ,7) depending on a scalar 
s s 

parameter 7, crossing each other at a critical point 7 = 7c 

(u = u1 ). Suppose that u is asymptotically stable for 7 > 7c. A 
s s s 

solution u(7) is called 

- subcritlcal if it ls branching for 7 > 7 
c 

- supercritical if it ls branching for 7 < 7 
c 

and the branch (u1 ,7) is said to be a 
s 

- subcritlcal branch if all its elements (u1 ,7) are subcritical. 
s 

- supercritical branch if all its elements are supercritical. 

- transcrltlcal branch if some elements are sub- and other are 

supercritical. 

As in most bifurcation studies and applications the crossing of the 

eigenvalue is (assumed to be) strict: 

Definition VI. 5 

If the branch (u6 ,7) becomes unstable because of an eigenvalue 

wc(7) crossing zero, this bifurcation is called transverse if 

dw 
Re -d c(7 ) 'll! 0. 

7 c 
(VI. 5) 

Condition (VI.5) is called the transversallty condition and the 

eigenvalue transverse. 
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Definition VI. 6 

A double point of the curve G(u;a-) = 0 is a singular point through 

which pass two and only two branches of G(u; a-) = 0 possessing 

distinct tangents (Iooss et al., 1980). 

Definition VI. 7 

~ 

A regular turning point is a point at which du7(u) changes sign 

and d G(u;7) ~ 0 (see figure VI.lb below where the branch 
7 

bifurcating from the null solution has a regular turning point. ) 

(Iooss et al., 1980.) 

Figure YI. la: 

Supercrl tlcal branching 

from the null solution at 

~ ................................................. . a singular double point 

(0, 1). 

BIFURCATIOO PARAf'IUEA 

Figure VI. lb: 

Subcrltlcal branching from 

the null solution . 

................................................. ------ Also depicted are regular 

turning points where the 

unstable bifurcating 

branch becomes stable. 

BlFlJACl!Tt00 PAAAM£TER 
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Definition VI. 8 

A singular double point of the curve G(u;rl = 0 is a double point 

at which d r(u) changes sign on one branch (see figure VI. la-b 
u 

where the bifurcation from the null solution occurs at a singular 

double point.) (Iooss et al., 1980.) 

The exchange of stability at a double point (where only two branches 

intersect) can now be formulated by the following theorem. See 

Sattinger (1973) and Iooss et al., (1980); see also appendix A where 

the exchange of stability is calculated for the anti-diffusion system. 

Theorem VI.9 

If a branch (u , rl which is asymptotically stable for r < a , 
s c 

looses its stability at a simple critical point because of a 

transverse eigenvalue w (r) crossing the imaginary axis, then: 
c 

1) supercritical bifurcating branches are stable and 

subcritical are unstable. 

2) bifurcating solutions from a stationary state will be 

stationary if Im(w (r )) = 0 and time periodic if Im(w (1 )) * 0. 
c c c c 

Figure VI. 1 gives an illustration of these notions applied to the 

null solution of the anti-diffusion model. 

VI. 2 The anti-diffusion equation, stability and bifurcation from the 

null solution 

The anti-diffusion system equations defined for x e [O,L] c Rare 

(see Chapter III, equation III.2) 

and 

au 
at - <f>(u) - .~ ' a2 [ a2 ] 

ax2 ax2 
.. > 0 

1>(u) = -u + r u2 + r u3 with r > 0. 
1 2 2 

No-flux boundary conditions are assumed. 

(VI.6a) 

(VI. 6b) 
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If at initial time t = 0, Jucx,O) dx 0, then the mass conserving 

property is expressed by: 

Jucx,t)dx = O for V t e R (VI.6c) 

The solution space is a linear subspace 

L! = {u e L2 I <1,u>0 = 0} 
L2 of L2 which ls defined by .. 

(VI. 7) 

and <u, v> 0 = J uv dx . Sul table differentiation conditions define the 

specific solution space. 

With initial condition (VI.6c) the null function u(x) = 0 is a 

stationary solution of system (VI.6a). Llnearizing the right hand side 

of (VI.6a) in u = 0 gives: 

av = L[~'(O)v - ra2v] 
at ax2 ax2 

where ~'(O) is the derivative of~ in u = O; so ~'(0) 

of (VI.6b). Define: 

LCrl = L[~' (OJ - rL] 
ax2 ax2 

82 
Note that L = B - rA with Bv = =---::f>'(O)v 

Bx2 

84 
and Av = -v. 

8x4 

(VI. 8) 

-1 in the case 

(VI. 9) 

82 
The eigenmodes (vectors) of the operator - form an orthonormal and 

ax2 

complete set in L2 (see appendix E (E.12)): 

knx uk(x) = cos(~)/Nk fork= 0, 1, 2 .... (VI. 10a) 

where Nk ls given by some normalization. 

For u with Judx = 0, k = O is excluded. Hence the eigenmodes of LCrl 

are also given by (VI. lOa) with k ~ 0. And the eigenvalues of the 

operator L(r) are: 

w"Crl = p:[-~' Col - -r p:] (VI. 10b) 

where 

2 (kn) 2 Pk = L . k = 1,2, ..... . (VI. 10c) 

Applying the principle of llnearized stability (see theorem V. 6 in 

chapter V) the stability of the null solution depends on the sign of 
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the eigenvalues (see also theorem V. 14, chapter Vl. Since the zero 

eigenvalue is simple, using (VI.10b) in relation to the theorems of the 

foregoing section, the linear stability properties of the null solution 

are easily established. The following theorem is a summary of the 

qualitative properties of the null solution and bifurcating branches. 

Theorem VI.10 

If ~'(0) = -1 then the stability properties of the null solution 

of system (VI.6) are as follows: 

a) if 7 s 0 then all eigenvalues wk (VI.10b) are positive. The 

null solution is unstable in all eigenmodes. The eigenvalues are 

monotone increasing functions of k. 
L2 

b) if 0 > "2 then all eigenvalues wk are negative. The null 
1l 

solution ls stable. 
L2 

c) if 0 < 0 < 2 then 
1l 

cl) there are a finite number R of posl tl ve eigenvalues wk 

with 1 s k s R, k e ~ and R the largest integer such that 

0 (R~)2 < 1. 

c2) there exist a maximal eigenvalue wm; the maximal 

eigenvalue ls reached for a finite frequency (non-zero wave 

length). (VI. 11) 

Note that the maximal eigenvalue w is not necessarily given for m = 1. 
m 

This is specific for the anti-diffusion system. For the migration 

mass-conserving systems as formulated in chapter IV, we will find that 

this maximal eigenvalue is always given for m = 1 (see Appendix A). 

A zero eigenvalue is simple and with (Vl.8), theorem (VI.3) applies to 

the null solution of (VI.6): for each 0 such that one of the 
c 

eigenvalues (VI. 10b) becomes zero, the point (0, 7 ) is a bifurcation 
c 

point. Furthermore this bifurcation is transverse: 

dwk 4 (kn) 4 d7 = -p1c = - L , k = 1, 2, .. 

To apply theorem (VI.9) the direction of the bifurcating branch must be 

known. To this end the equations (VI.4a-b) are constructed by means of 

the Poincare-Llndstedt series (Sattlnger, 1973). These series are 
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described in terms of a decomposition consisting of the null-space of 

the linear operator L(r) defined in (VI.9) and a part perpendicular to 
c 

the null space of the adjoint operator of L(r ), which in this case is 
c 

L(rc) itself again. The method of finding the elements of the 

decomposition is the infinite dimensional analogy from the following 

finite dimensional problem: for which y e RN does equation Ax = y with 

A a singular linear transformation from RN to RN, have a solution?The 

condition is, of course, that y e R(A), the range of A and this 

condition is equivalent with the condition that y must be perpendicular 

to the null space N(Ar) of Ar: if y has a solution x then 

<Ax,z> = <y,z> for all z e RN; if z e N(Ar). the null space of Ar, one 

must have <x,O> = <x,Arz> = <y,z>, hence <y,z> = 0. For infinite 

dimensional problems the solvability condition is given by a condition 

similar to the Fredholm alternative (see appendix E). 

In Appendix A, section 2, the solutions for small E, are calculated for 

the anti-diffusion system. The solutions are: 

r 

u(x) = ±/3cos(p x) - ~/32cos(2p x) + O(c2 ) 
k 6 k 

(VI. 12a) 

where 

(VI. 12b) 

with 

(VI.12c) 

The sign of the denominator in (Vl.12b) gives the bifurcation 

direction. For negative r 2 the bifurcation ls always subcritical (the 

bifurcating solution is unstable); for r 2 positive both cases can 

occur: restricting to r 2 = 1, the bifurcation is supercritical if 

r 2 < ~ , and subcritical for r 2 > ~. The stability properties of the 
1 2 1 2 

bifurcating branch follow from Theorem VI. 9 (see also section A. 2 of 

Appendix A) . 

VI.3 Vave amplitude equations 

As mentioned above, the eigenmodes (eigenvectors) of the 

linearized anti-diffusion system 
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d G(0;'¥)V = L[</>' (O)v - '¥Lv] 
u ax2 ax2 

(VI. 13) 

form an orthonormal basis of L2 . The eigenvectors are given by 

(VI. lOa). This gives the possibility to perform some Fourier analysis. 

By restricting to only three modes k, 2k and 4k (and neglecting all 

other modes), a closed form for the evolution equations of the 

amplitudes of these three modes k, 2k and 4k is derived. This reduced 

system can still give important information about the behavior of the 

original complete system. (The well known Lorenz system was also 

derived as a truncation of a partial differential equation for fluid 

convection (Holden et al., (1986)). 

For a two mode system (k,2k) the equilibrium points are calculated; as 

is the stability of these solutions. It is shown that bifurcation 

qualities are similar to those derived in appendix A for the whole 

system. 

Let </>' (0) = -1 and assume a deviation u(x, t) from the null solution in 

the following form: 

00 

u(x,t) = l a (t)cos(nn:x/L) 
n 

(VI. 14a) 
n=-oo 

with a(t)elR, a (t) = a (t) for all t. These n -n n 
conditions on a0 are compatible with the mass-conserving quality of the 

anti-diffusion system and with the no-flux boundary conditions. 

Inserting (VI.14a) in (VI.6a) with (VI.6b) gives the evolution 

equations for the amplitudes a : 
n 

- '¥P ) a + -r 2 1 ( 
n n 2 1 

(VI. 14b) 

1 ( l: ) -r a a a a 
16 2 I k m n 

l+k+m=n 

(VI. 15) 
So we find that 

a. c t> 
n 

-v p2 
n n 

n = ... ,-2,-1,1,2, ... (VI. 16 l 
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where Vn is the partial derivative of V with respect to an. Since 

and 

dV 
dt 

"' [ 
n=-CO 

"' v ~ 
n n [ 

n=-oo 

dV = 0 ~ V2 = 0 for all n, 
dt n 

the functional V is a Lyapunov function. 

(VI. 17a) 

(VI. 17b) 

In the following all modes except ak, a_k,a2 k, a_2 k, a4 k and a_4k, are 

set to zero. Since a = a we need only to consider the modes k, 2k 
-n n 

and 4k. Introduce the notations: 

a (t) 
4k 

(VI. 18a) 

(VI. 18b) 

(r = 1 means that d G has a (simple) eigenvalue with eigenvector 
0 u 

cos(knx/L).) Then we find the following evolution equations: 

a 
1 

a 
2 

a 
4 

3 3 3 - -a r - -a a a r 
4 1 2 2 1 2 4 2 

{ 4a - 16r a - 2a2 r - 4a a r 
2 o2 11 241 

-3a2a r - 6a a2 r }p2 
142 242 k 

{ 16a, - 256r a - 8a2r 
~ 0 4 2 1 

-24a a r - 12a r p 2 3 } 2 
242 42 k 

(VI. 19a) 

(VI.19b) 

(VI.19c) 

Stationary solutions (a1 ,a2 ,a4 ) are stable if (a1 ,a2 ,a4 J is a minimum 

of V (defined in (VI.15) with the first summation only over -k, k, -2k, 

-2k, -4k, 4k). In particular the null solution is unstable if r < 1. 
0 

Furthermore: if r > 0 then V is bounded from below and V -7 "' if 
2 

la1 1 + la2 1 + ja3 ! -7 "'; V is continuous, so V attains a (finite) 

absolute minimum which gives th'e global existence of a stable 

stationary solution of the system (VI.19a-c) and the following theorem: 



96 CHAPTER VI 

Theorem VI. 11 

If r > 0 and 1 < 1 
2 0 

system (VI. 19a-c) 

(a1 ,a2 ,a4 ) * (0,0,0). 

then the 

has a 

three wave 

non-trivial 

If r < 0 then V is unbounded from below. 
2 

amplitude 

stable 

equations 

solution 

Solutions sets with (a1 ,a2 ,0) and (O,a2 ,a4 ) are qualitative the same: 

given 1 0 = 1 01 e IR the number of solutions, stability and bifurcation 

direction of solutions (a1 ,a2 ,0) are the same as for solutions 

(O,a2 ,a,l with 7f = !7 e IR. 
•JI! o 4 o1 

In the following the evolution of two modes is studied: a4 (t) ls set to 

zero for all t E IR. Then stationary solutions (a1 ,a2 ) are given by: 

(VI. 20a) 

and 

0 (VI. 20b) 

If r 2 * 0 then the solutions belong to sets S1 with: 

s 
1 

s 
2 

s 
3 

{ (a,a)i(a,a) (0,0)} 
1 2 1 2 

{ (a ,a ilea ,a2 l (0.~(1-47 Jl} 
1 2 l 2 3r o 

2 

{ (a ,a )la2 = ~(1 - 1 -
1 2 1 3r o 

2 

a r - ~a2r ) & 
2 1 2 2 2 

9r a3 + 12r a2 + (-4 - 87 + Br:) -
2 2 1 2 o 3r 

2 

Br 
_!o - 1 1 
3r o 

2 

(VI.21a) 

(VI. 21b) 

o} 
(VI. 21c l 

For this two wave system the following theorems can be formulated. To 

illustrate the theorems we give a set of figures which display the 

relation between a and a . Also is displayed the relation between 7f 
2 0 0 

and a quantity called 'amplitude'; this last quantity is defined as 

±V(a2 + a2 ) where the minus sign is chosen if a2 < 0. Unstable branches 
1 2 

are depicted as small dots, stable branches as continuous lines. 
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... 

Relation between a 
2 

and 7 . 
0 

-1, r 2 1. Relation between 
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"' < 
- - -- -- __ . _____ ------ -- ----- ---- ____ ,_._ 
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.... 
ao 

Figure VI. 3a: parameters r 1 -3, r 2 L Relation between a and r . 
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Theorem VI.12 

The bifurcation from the null solution at r 1 is subcritical if 
0 

r 2 ~ ~r ; supercritical if r 2 < ~r . 
1 22 1 22 

Proof: see appendix B, paragraph 1, Theorem B. 1. (See figure VI. 2a-b 

and VI.3a-b.) 

Theorem VI. 13 

If r > 0 and r 2 ~ ~r the branch, bifurcating subcritically from 
2 1 2 2 

the null solution at r = 1, has a turning point and becomes 
0 

stable. 

Proof: see appendix B, section 3, theorem 8.2. (See figure VI.3a-b.) 

Theorem VI.14 

If r 2 < 0 then every non-trivial solution (a1 ,a2 ) * (0,0) is 

unstable. 

Proof: see appendix B, section 2. (See figure VI.4a-b.) 

Theorem VI. 14 means that for r 2 < 0, if the null solution becomes 

unstable, the solutions become 
dV unbounded from below and dt (a1 , a) 

solution, see (VI. 18a-b).) 

... 
o. 

~ o • 

. o. 

· i.o 

'·' 

unbounded. (The functional V is 

< 0 if (a1 , a 2 ) is not a stationary 

oh.oo~~~~~--,;o~~~--f.,~oo-~~~~--f,,~ 
QO 

Flgure Vl.4a: parameters r 1 -3, r 2 -1. Relation between a end 7 . 
2 0 
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CHAPTER VII 

NON CONST ANT STATIONARY SOLUTIONS 

VII.1 Introduction 

In this chapter some analytic solutions of the anti-diffusion 

equation are introduced but none of the solutions satisfy completely 

the conditions of the system as formulated in Chapter II. Some 

solutions are only valid for an infinite spatial domain. 

The second part deals with the stability of non-constant stationary 

solutions. In contrast with the standard reaction-diffusion equation, 

non-constant monotone solutions can be stable; however, these are also 

the only ones. 

In the final section 5 the anti-diffusion equation is compared with the 

Swift-Hohenberg equation. 

VII.2 Analytic stationary solutions of the anti-diffusion equation 

For the evolution equations defined in Chapter II, equation 

(II. 18), stationary solutions must satisfy: 

- <f>(u) - ~ = 0 8
2 

[ 8
2 

] 

8x2 8x2 
(VI I. la) 

with the boundary conditions 

- 101 -
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au a 3 u 
0 

axj 8x 3 lx=O,L x=O,L 

(VII.lb) 

and 
L f u(x)dx 0 
0 

(VII. le) 

where 

q'>(u) (VIL 1d) 

Hence, given the boundary conditions, a stationary solution must 

satisfy (VII.le) and 

q'>(u) - i)'U = (3 
xx 

where u = ~ and (3 = <f>(u)dx, 82 JL 
xx ax2 0 

If v(x) is a solution of 

with 

c v + c v 2 + c v 3 - ;yv 0 
1 2 3 xx 

av 
axl x=O,L 

0 

(VII. le) 

see Chapter III, equation (III.3)) 

(VII. 2a) 

(VII. Zb) 

then u v + o with o = -~fv(x)dx, is a solution of (Vll.1) if 

(3 = -o + r o2 + r o3 = </>Col (VII. 3a) 
1 2 

c -1 + Zr o + 3r o2 <I>' Col (VII. 3b) 
1 1 2 

c r + 3r o =~,,Col (VII. 3c) 
2 1 2 2 

c r ~Ill (o) (VII.3d) 
3 2 6 

A first set of solutions of (VII.2) is of the form: 

v(x) 1 (VII. 4a) = bcos(pkx) a + 

with 

p = kn/L 
k 

(VII.4b) 

2 (VII. 4c) c -crpk 
1 

c -3c a (VIL 4d) 
2 1 

c 2c (a2 - b2) (VIL 4e) 
3 1 

This solution (VIL 4) is bounded iff a 2 > b 2. However for 'If > 0, c 
1 

must be negative. So the solutions are unbounded if c 3 > 0 which 
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coincides with r > 0. 
2 

A second set of solutions is given by: 

v(x) = 

with 
2 c aPk 1 

c -3c a 2 1 

2c (a 2 + b2) c 
3 1 

(VII. Sal 

(VII.Sb) 

(VII. Sc) 

(VII. Sd) 

Bounded solutions are possible for c3 > 0. However in this case the 

boundary condition is not satisfied. The solution (VII.S) is valid for 

an infinite spatial domain. 

For a, b > 0, by the translation v 0 v + o = u, 

u(O) = a ~ b + o and u 0 o if !xl 0 oo. 

Then, if a = 3b, the solution satisfies exactly the lower/upperbounds 

for stationary solution defined in chapter III, see (III.Sc); thus 

</J' (u(O)) = </J' (o) and </J(u(O)) = </J(o). Note that also </J' Col > 0. 

The same sort of incompatibility of analytic solutions is found in 

Tsakalakos and Dugan (198S): the solution is given as 

(VII. 6a) 

where sn is the Jacobian elliptic function, periodic with wave length: 

(VIl.6b) 

and k2 = (1 - µ2)/(1 + µ 2 ) with K the complete elliptic integral of the 

first kind (Cayley, 19S6). 

Equation (VII.6a) does not satisfy the boundary condition; if in 

(VII.6a) sn(·) is replaced by en(·) then the boundary condition is 

satisfied; however, at the same time c3 (r2) must be negative. 

The function (VII.4) and (VIl.S) are particular forms of (VII.6): if 

k2 = 1, then sn(z) = tanh(z); if k2 = 0 then sn(z) = sin(z). 
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VII.3 Eigenvalues of a linear anti-diffusion system 

Let u (x) be a stationary solution of the anti-diffusion equation 
0 

(VII. 1). Linearization of the anti-diffusion equation in u = u0 gives: 

av a2 ( at - t/>' (u )v 
ax2 0 

with t/>' (u ) - dt/> 
0 - duJu=u · 

0 

Defining the operator 

and 

we 

Kv = 
a2 

--v 
ax2 

the operator H by 

Hv t/>' (u )v 
0 

- ;r 

can write (VII. 7) 

av 
at -KHv 

a 2 v ) - ;r 
ax2 

(VII. 7) 

K by 

(VI I. 8a) 

a 2v 
(VII. 8b) 

ax2 

as 

(VII. 8c) 

As shown in chapter V, section 4 the stability of the stationary 

solution u depends on the eigenvalues of the Sturm-Liouville problem: 
0 

(VII. 9) 

with no-flux boundary conditions. The elements of H! are functions 

which have square integrable generalized first derivatives and which 

are orthogonal to the constant function u(x) = 1 for all x, hence if 

v E H: then J v(x)dx = 0. Deno;ing the smallest eigenvalue by /\; then 

the solution u 0 is stable if 1\1 is positive. 

With respect to a standard reaction-diffusion system 

au a2u 
at = -q'.>(u) + ;r 

ax2 
(VII. 10) 

we note the following: assume u = u is a stationary solution of 
0 

(VII.10) then the stability of this solution depends on the sign of the 

minimal eigenvalue 1\0 of the following eigenvalue problem: 
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82 v 
'¥ + ( ;\ - tf>' ( u ) ) v 

8x2 o 
0, v e C2 ([0,L]) n H1(0,L) (VII.11) 

where H1 is the space of function which have square integrable 

generalized first derivatives (see chapter V, section 4). But in 

contrast to the eigenvalue problem (VII. 9), eigenvectors with 

Jv(x)dx "' O are allowed. In the variational formulation the smallest 

eigenvalue ;>. is given by: 

;\ 
0 

0 

inf 
v e H1 

tf>' Cu )v +-rv dx J 2 2 

0 x 

Jv2 dx 

where the infimum is taken over all v e H1 (0,L). 

And the next eigenvalue ;>. 1 is given by: 

inf 
v e H1 

tf>' Cu )v +-rv dx J 2 2 

0 x 

Jv2 dx 

(VII.12) 

where v0 ls an eigenvector corresponding with :?.0 • And so on. (<·, ·>1 is 

the inner product in H1 .) In this way a set of orthogonal eigenvectors 

is obtained such that;>. s ;>. s ;>. s ;>.3 ... (Reid, 1980). 
0 1 2 

This construction procedure is based on the orthogonal decomposition of 

the domain X of an operator T with only isolated eigenvalues in 

subspaces M1 where THI c T has only one eigenvalue (see appendix E) . 

.. 
Similar the smallest eigenvalue ;>.1 of the eigenvalue problem (VII.9) ls 

given by 

• ;\ 
1 

(VIl.13) 

where the infimum is taken over all v e H~. And the next eigenvalue ;>.: 
is given by: 

lnf 
v e H! 

<v,v1>1=o 

Jv2 dx 
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where v 
1 

is an eigenvector corresponding with * A. And so on. And 
1 

similar as above a set of orthogonal eigenvectors can be obtained such 
* • • 

that A s A s A 
1 2 3 

The general form of a Sturm-Liouville problem is: 

Lu= (p(x)u')' + g(x)u = O (a < x < b) (VII. 14) 

where primes denote derivatives with respect to x; p(x) > 0 all x and 

p, p' and g are continuous on (a, b). (Coddington & Levinson, (1955)). 

Two theorems with respect to the Sturm-Liouville problem will be used. 

Therefore the following notations and notions are introduced. Let 

p(x)u' = w and w' = -g(x)u (VII. 15) 

Let 

u = r sin(e) and w = r cos(e) (VII. 16) 

Then the following differential equations are derived from (VII.14): 

r' (~ - g) r sin(e).cos(e) (VII. 17) 

9' = .!. cos2 (e) + 
p g sin(e) (VII.18) 

Let v a solution of (VII. 14) then there is a solution r = p(x) and 

e = w(x) of (VII.17), (VII.18) with 

p2 = (pv' )2 + v2 and w = tan- 1 (p~')· 

Since v and v' do not vanish simultaneously (v is not trivial), it 

follows that /Cxl > 0 on (a, b); it is assumed that p(x) > 0. 

Consequently v(x) = p(x)sin(w(x)) can only vanish where w(x) is 

an integer multiple of n. 

Theorem VII.1 (Comparison Theorem.) 

Let Lu = 
I 

Let p1, 

0 < p2 (x) 

Let L v = 
1 1 

Then w (x) 
2 

If g2 > gl 

(p1u')' +g1u=O, i=l,2. 

g 1 piecewise continuous on [a, bl, 

s p1 (x), and g2 (x) ~ g1 (x) on [a,b]. 

0 and L v = 0 with w (a) ~ w (a). 
2 2 2 1 

~ w 1 ( x) on ! a, b] . 

on (a,b) then w2 (x) > w1 (x) on a< x s b. 

and let 
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Proof: see Theorem 1.2, Ch. 8 of Coddington e.a. (1955). 

Let 

Lu (pu')' +(Ar - q)u = 0. (VII.19) 

where A e R, p', rand q are real and continuous over [a,b] and p > 0, 

r > 0 over [a,b]. 

Given ex, (3 e R, the values A for which there is a solution u, not 

trivial, of (VII.19) satisfying 

u(a)coscx - p(a)u'(a)sincx = 0 

u(b)cos[3 - p(b)u'(b)sin[3 0 

are called eigenvalues. 

Theorem VII.2 (Existence of eigenvalues.) 

(VII.20) 

(VII. 21) 

There are infinitely many eigenvalues A ,A, .... of (VII.19) o 1 

forming a monotone increasing sequence with An ~ m as n ~ m. 

Moreover the eigenfunction corresponding to An has exactly n 

zero's on (a,b). 

Proof: see Theorem 2.1 Ch.8 of Coddington e.a. (1955). 

Denote (Ar(x)-q(x)) by g(x,A) and the corresponding polar coordinates 

of the solution by p(x,A) and w(x,A). 

Fixing the left boundary, w(a,A) = w for each A, then holds: 
c 

i) 9 = w(x,A) is, for fixed x, a monotone increasing function 

of A. (see theorem VII.1.) 

ii) If w = O(mod n) then w' > 0. (see (VII.18)). 

VII.4 Instability of non-monotone, non-constant stationary solutions of 

an anti-diffusion equation 

The no-flux boundary eigenvalue problem (VII.11) ls a 

Sturm-Liouville problem with p(x) = 7 (7 > 0), a = 0 and b = L. 

The principal observation ls that if u 
0 

is a non-constant stationary 

solution of the anti-diffusion equation (VII. la-c) then 
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v = u = au /8x is a solution of (VI I. 11) with A = 0. However, v = u 
- 0 -

does not satisfy the no-flux boundary condition; u is an eigenvector 
ox 

with eigenvalue 0 with Dirichlet boundary conditions. But the smallest 

eigenvalue of the no-flux boundary problem (VII.11) is smaller than the 

smallest eigenvalue of the corresponding Dirichlet problem (Coddington 

e.a., 1955). This gives directly the instability of non-constant 

solutions of a reaction-diffusion equation with constant diffusion 

coefficient. 

Now suppose u is a non-constant, non-monotone solution of (VII.la-c). 
0 

Then u must have at least one internal zero on {O,L]. Assume u has 
ox ox 

exactly one zero on (0, L) and writing u in polar coordinates gives: 
ox 

u = p (x)sin w (x) with w (0) = O and w (L) = 2rr. 
ox 0 0 0 0 

Write also the no-flux boundary eigenvectors of the Sturm-Liouville 

problem (VII.11) corresponding to the two smallest eigenvalues A0 and 

A1 in polar coordinates with respectively w(.,A0 ) and w(. ,A1 ). 

Then w(O,A0 ) = w(O,A1 ) = rr/2, w(L,A0 ) = rr/2 and w(L,A1 ) = 3rr/2 (Theorem 

VI I. 2. l, and w(., \) must have at least one intersection with w0 
on 

(0, Ll. 

Corollary VU.3 

If u is non-constant, 
0 

non-monotone solution of (VI I. la-c), then 

the Sturm-Liouvllle eigenvalue problem (VII.11) has at least two 

negative eigenvalues. 

Proof: 

Suppose u0 " has one internal zero. Let w0 (x1 ) =w(x1 ,\J. Apply 

theorem VII.1. with a= x1 , b = L, p1 = p2 ='land g1 = C\ - lf;'(u
0
)), 

g2 = (0 - if;' Cu)). Since w0 > w(. •\l on (x1 ,LJ, \ > 0 would 

contradict theorem VI I. 1. . For \ = 0, g1 and g2 are interchangeable 

(p1 =p2 ); so from theoremVII.l. it would follow that w
0
(x) =w(x,\) 

on [x1 ,L]. But w(L,A l = ~rr < 2rr = w (L). Hence A < O. 
1 2 0 1 

This can easily extended to the case where u (x) has more than one 
ox 

internal zero, since again w(., \) will have at least one internal 

intersection with w . o 
0 
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Corollary VI I. 4 

Every non-constant, non-monotone stationary solution of the 

anti-diffusion equation (VII. la-c) is unstable. 

Proof: 

Let u be a non-constant, non-monotone solution of (VII. la-c). 
0 

Let v0 (x), respectively v1 (x) be eigenvectors corresponding to the 
eigenvalues A0 and A1 of the eigenvalue problem (VII. 11). 

If v is such that Jv (x) dx =O then u is unstable with respect to 1 1 0 

disturbances of the form v(x, t) a(t)v1 (x): insert v in (VII. 7) to 
find: 

act iv cxi = act> [ !lJ"', cu )v - • Lv }] 
1 ~i\. o 1 ax2 1 

(VII. 22) 

where means derivative with respect to time t. 

Using that v1 is an eigenvector with eigenvalue \ of (VII. 11) one 
finds 

a c t > v c x i = a c t ) [ LA v ] 
1 ax2 1 1 

(VII. 23) 

Multiplying both sides of (VII.23) with v1 (x) and taking the integral 

gives: 

a(t) Jvl (x)dx aA J{Lv }v dx 
1 ax2 t 1 

(VII. 24) 

where v = dv /dx. 
lx 1 

Since \ is negative as v" has at least one internal zero this proves 

the instability with respect to v1 if Jv1 dx = 0. 

If v1 is such that Jv1 (x)dx * O then since Jv0 (x)dx * 0 there ls a 

µ e IR such that Jcv (x) + µv (x) )dx = 0. Since v and v are 
1 0 1 0 

independent v1 (x) + µv 0 (x) is not identically zero on (0,L). 

Now take a disturbance of the form: 

v(x,t) = a(t)(v1 (x) + µv 0 (x)) 

Apply (VII.22) to find: 

a(t) [ L {<t>' (v) (v (x) + µv (x)} + 
ax2 1 o 
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-~ ~(v (x) + µv (x))}] 
Bx2 1 o 

(VII. 25) 

Since v0 , v1 are eigenvectors with eigenvalues A0 , A1 respectively of 

(VII. 11) one finds 

~(t){v1 (x) + µv0 (x)} = a(t)[ ::2{A1v1 + µA0 v0}] (VII. 26) 

Multiplying both sides of (VII. 26) with A v (x) + A µv (x), taking the 
1 1 0 0 

integral, and using Jv (x}v (x)dx = 0, one finds: 
0 1 

~(t)J(A v2(x)+A µ2v2 (x) )dx = a(t) [ J-(A v (x) + A µv (x) J2dx] 
1 1 0 0 1 lx 0 Ox 

(VII.27) 

Since A0 and A1 are negative the left hand integral is negative just as 

the right hand integral of (VII.27). 

This proves the instability of a non-constant, non-monotone solution of 

(VI I. la-c). o 

Since it has been shown before that the anti-diffusion equation has a 

stable non-constant stationary solution (if the trivial null solution 

is unstable) (see chapter V, section 4) it follows that the only 

possible non-constant stable stationary solutions are the monotone 

ones. 

Remarks. 

The proof depends on the observation that if u is a solution of 
0 

(VII. 1a-c) then u (x) is a solution of (VII. 11) with A = 0. This ls 
ox 

not the case if instead of the continuous form of the anti-diffusion 

equation, the discrete spatial form is used. In the latter case, 

non-monotone, non-constant stationary solutions can be stable, see 

chapter VI II, section 2. a, corollary VII I. 1. So with a large grain 

structure where the continuous form is a bad approximation of the 

intrinsic discrete structure of the system, non-monotone, non-constant 

stable stationary solutions can be found. 
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VII.5 The anti-diffusion equation and the Swift-Hohenberg equation 

The anti-diffusion system 

au 
at - <fi(u) - r~ a2 

[ a2 
] 

ax2 ax2 
(VII.28) 

with <f>(u) given by (VI I. ld), r 2 > 0, is characterized by minimization 

of the functional 

V(u) = rf(u) + ~rlu l2dx L 2 " 0 

under the restriction f u(x)dx = 0 with f(u) = fu<fi(s)ds 
0 

and 

(VII. 29) 

r > o. 

Although the evolution from a randomly disturbed null solution will be 

initially dominated (more or less) by the fastest growing 

mode(s) corresponding with the largest eigenvalue(s) of the linearized 

system, the final pattern will be a monotone one. 

In chapter II, section 4, equation (I I. 31), the Swift-Hohenberg 

equation was given in the following form: 

au 
at (VI I. 30) 

with r 1 > 0 and 0 < c < 1. (Swift and Hohenberg, 1977; Saarloos, 1987. l 
We shall the system equation (VII.30) denote by SH. 

Equation VI I. 30 need not to be mass conserving but in the line of 

chapter IV a mass conserving variant can easily be constructed, e.g.: 

au 
at 

a2 [ au2 au4 
- 2- + r 1- 4 + ( 1 - cl u + 
ax2 ax2 ax 

(VII.31) 

Let the system be defined on [O,L] c R with no-flux boundary 

conditions. In linear approximation the SH-system (VII.30) ls given by 

au 
at 

Lu 

Lu with 

The eigenvalues of L are 

w 
k 

2p2 - r p 4 - (1 - c), pk 
k 1 k 

kn/L (VII. 32a) 
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For the linearized system (VII.31) the eigenvalues are 

2[ 2 4 ] w = p 2p - 7 p - (1 - c) 
k k k 1 k 

(VII. 32b) 

Hence the instability condition of the null solution are for both 

systems the same. We will assume that the null solution ls unstable: 

3k: 2p2 - 7 p4 > (1 - c} > O 
k 1 k 

(VII.33) 

Without going in details we note the following. The Lyapunov functional 

V for the SH-system is 

V(u) = l~(1 -c)u2 + ~u4 - luxl2 + ~71luxxj2dx 
0 

(VII.34) 

Just as the AD-system, the time evolution of the SH-system ls 

characterized by minimization of the corresponding functional V. 

However, in the case of the AD-system the positive coefficient of the 

quadratic gradient term I u j 2directs the evolution to a solution with 
x 

as less variation as possible whereas in the case of the SH-system, the 

negative coefficient of the same quadratic term indicates a tendency in 

the opposite direction, i.e. away from the constant solution. 

Secondly, the functional V (VII.34) is bounded from below. By Holder's 

inequality we have: 

(VII. 35) 

(Hardy et al., (1967)). Hence 

V(u) ~ f'~(1-c)u2 - luxl 2 + ~7 lu l2dx + _!f f'u2(x)dx}2 

J 0 2 1 xx 41:\J 0 
(VII. 36) 

Since the elgenmodes of the Laplace operator form an orthonormal base 

in L2 [0,Ll we can write u e L2[0,L], using the no-flux boundary 

conditions, as 

u(x) = [ akcos(knx/L} 
k 

(VII. 37) 

The right hand side of (VII.36) involves only integrals over quadratic 

terms hence we find 

(VII.38) 
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The lowest value of the k-the term in (VII.38) is obtained either for 

a = 0 or for p2 = 1/7 with cx.2 = 2(c - 1) +2/71 ; in the latter case 
k k 1 k 

the minimum value is -~L{(l/71 ) - (1 - c)}2 Since only a finite number 

of terms can be negative, the right hand side of (VII.38) is bounded 

from below and so is the functional V. 

Now using the same arguments as in chapter V, section 4, one finds that 

the functional (VII.34) attains its minimum and consequently that the 

SH-system will have a non-constant stable solution if the null solution 

is unstable. 

Moreover, the SH-system may have stable non-monotone, non-constant 

solutions since, given the eigenvalues (VII.32a or VII.32b) of the 

linearized system one can find system parameters c, 71 and L such that 

only one eigenvalue wk with k > 1 is zero. Applying the bifurcation 

analysis of chapter VI, one gets a (stable) bifurcation branch with 

leading term cos(knx/L). Note that for the anti-diffusion system this 

is only possible for k = 1. 

Summarizing: the SH-system can be seen as an extension of the 

anti-diffusion system beyond 7 = 0. We recall from chapter II, section 

2, that the coefficients of the linear terms of the evolution equations 

based on Thom's river basin width model, will have the same sign. If 

7 < 0 in the AD-model then we have a 'negative' visco-elasticity 

effect (no cohesion between particles). This is compensated by the 

fourth order derivative term with a negative coefficient (-71 , 71 > 0) 

in the standard SH-model (VII.30) and with a positive coefficient (71 ) 

in the mass-conserving variant (VII.31). 

The anti-diffusion system and the Swift-Hohenberg system will have 

non-constant stable solutions if the null solutl.on is unstable. In the 

case of the SH-equation, the effect of negative diffusion which drives 

the system away from constant solutions, is present at all stages of 

the evolution. For the anti-diffusion system the effectiveness of the 

negative diffusion depends on l{>(u); if u reaches the stable branches of 

l{>(u) the effect of negative diffusion diminishes and dll be balanced 

by the smoothing effect of the viscosity term. An open question is how 

long it takes to reach the final monotone state. It is possible that 

the anti-diffusion system shows a time evolution with transient phases 
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which are very slowly changing and hardly distinguishable from 

stationary stable states. In physics and chemistry such slowly varying 

states are called metastable. In the numerical simulations of the 

discrete system we have found such a behavior, see the next chapter. 



CHAPTER VIII 

NUMERICAL SOLUTIONS 

VIII.1 Finite difference schemes 

The solution of partial differential equations by finite 

difference methods requires the definition of a grid on the spatial and 

time domains. The value of the derivative in each interval is 

approximated by a straight line connecting two grid points. For smooth 

curves, at least one point on the enclosed interval has a derivative 

parallel to that line. For slowly varying functions, this point is more 

or less in the centre of the interval. Taylor expansion about the 

central point provides the numerical expressions and estimates the 

errors. 

Grid spacing along axes will be denoted by 6·: spa· ing along the x-axes 

by ax with N grid points (along the y-axes by ay with M grid points). 

The grid spacing of the time domain is denoted at. In all directions 

constant spacing ls assumed. The following notations are used. For a 

two dimensional spatial domain the value of some function u in say 

x = (n-1 Mx, y = (m-1)6y and t = (j-l)at is denoted by UJ In the one 

given as u1• 
n,m 

dimensional case the value in (x,t) is 
n 

Space derivatives are approximated by central difference schemes. The 

exact difference formula are obtained by Taylor expansion. Given some 

function u(x,t): RxR ~ R the exact forward time difference formula is: 

( a 1 2 a2 ) u(x,t+at) = 1 + at8t +-at - + ... u(x,t) 
2 8t2 

(VIII. 1) 

- us -
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Hence a forward time difference 
2
scheme [ u!+l - u! ] , introduces a local 

truncation error of order ~dt2 [~]J· where the indices denote that the 
2 at 2 n 

time derivative is evaluated at x = (n-1)dx, t = (j-l)dt. 

Let ox be the central difference operator in the x-directlon: 

o UJ = Uj - uJ 
x n n+0.5 n-0.5 

o2uj = UJ -2uJ + uJ 
x n n+l n n-1 

o4UJ = uJ -4uJ +6u1 -4u1 +uJ •. 
x n n+2 n+l n n-1 n-2 

The exact formula for connecting 0 and the spatial 
x 

derivative, is given by Taylor expansion: 

o uJ dx[au]J + -2.dx3[83u]J + 
x n ax n 24 8x3 n 

{VIII. 2a) 

(VIII.2b) 

(VIII.2c) 

(partial) 

(VIII.3) 

In a similar way exact formulas for o2, o4 and for instance o2 
x x xy 

can be 

obtained (Mitchell, 1969; Dahlquist et al., 1974). 

o2uJ dx2[82u2]J 
x n ax n 

+ -2.dx4(84u]J 
12 8x4 n 

+ ..... (VIII.4) 

o:u! = 6x4 [84~JJ + ~dx6 [86~JJ + ..... . 
ax n ax n 

(VIII. 5) 

For </>(uJ). with </> a function defined on the array [u , ... , u l. the 
k 1 N 

second order central difference scheme o2</>Cu1J ls given as: 
x k 

= </>(uJ ) - 2</>Cu1) + <t>Cu1 ) 
k+l k k-1 

(VIII.6) 

[a
2 l j = dx2 ~(u) 

8x n 

And 

1 4[84 ]J + -box =-:-<!>Cul 
12 8x4 n 

+ ... (VIII. 7) 

Boundary conditions are approximated by introducing artificial 

grid points x _1, x0, xN+l and xN+2 
And then no-flux boundary condition are obtained by defining: 

(VIII.8) 

Assuming that one of these condl tions holds, the operators a2 and a4 
x x 

are mass-conserving: \N o2uJ = O and \If o4u1 = 0. (The same applies 
ln=l x n ln=l x n 
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to o2 and o4 acting on ~(uJ)). Moreover, the following relations hold: 
" " k 

(VIII. 9) 

(VIII.10) 

(In equation (VIII.10) uJ is to be interpreted as O.S(uJ + uJ).) n+O. 5 n+t n 
And 

N 

L UJ. o2uj :s 0 
n x n 

n=l 
(VII I. 11 l 

(Since \N uJ (uJ - uJ) = \N u1 (u1 - uJ ) by virtue of one of ln=t n+l n+t n Ln=l n n n-1 
the boundary conditions, the left hand of (VIII.11) can be written as: 

\11 -(uJ - uJ)2. l 
ln=t n+l n 

Using these discretizations, the one dimensional continuous 
anti-diffusion system (I I. 18) is reduced to a system of N ordinary 
difference equations : 

uJ+l = uJ + r o2 [~cuJ l 
n n x n 

(VII I. 12) 

where r = ~t/~x2 , and n = 1, .. ,N, j = 1, ... with the appropriate 
boundary conditions (VIII.8). 

Given the mass-conservation properties of o2 and one of the boundary 
conditions (VI I I. 8), 

step variable j. So at 

" \N u1 = constant and independent of the time Ln=l n 
least the important mass-conserving property is 

not lost by discretization. 

VIII.1.1 Consistency, stability and convergence 

From the equations as (VIII. 4), (VIII. 5) etc. it is clear that 
finite difference schemes introduce some errors with respect to the 
original continuous model equations. The numerical notions of 
consistency, stability and convergence deal with these deviations 
between the discrete and the continuous model. 



118 CHAPTER VIII 

Definition VIII.1 (Mitchell, 1969; Dahlquist et al., 1974): 

A difference approximation is called consistent if: 

truncation error ~ .o as dx,dt ~ O. 
dt 

Definition VIII.2 (Mitchell, 1969; Dahlquist et al., 1974): 

Let z1 = UJ - u1 be the difference between the theoretical 
n n n 

solution u and the numerical solution U of the difference 

equation. Let dt be fixed. If z1 remains bounded as j increases 
n 

for all n, then the difference equation is called stable. 

Definition VIII.3 (Mitchell, 1969; Dahlquist et al., 1974): 

Let Z(x, t) = u(x, t) - U(x, t) be the difference between the 

theoretical solutions of the differential and difference equations 

at a fixed point (x,t). The finite difference scheme ls convergent 

if Z(x,t) tends to zero uniformly as the net is refined such that 

dx, dt ~ 0 wl th x = (n-1 )dx and t = (j-1 )dt remaining fixed. The 

fixed point (x, t) is anywhere within the region under 

considera tlon. 

In most cases convergency analysis ls applied under an assumption of 

some relationship between dx and dt. 

Here these notions shall be examined with respect to the one 

dimensional space difference equations (VIII.12). 

Consistency 

Using (VIII.1), (VIII.5) and (VIII. 7) one finds for (VIII.12) a 

truncation error of order: 

dt[~dt2[82u]J - _!_dx2[~(u)]J + ~dx2[88x6~lnJ l 
2 · 8t2 n 12 8x4 n 

(VII I. 13) 

From (VIII.13) it follows that the dlscretizatlon (VIII.12) is 

consistent with the continuous anti-diffusion model. 

Stability 

There are two methods which are commonly used for examining the 
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stability of a difference scheme. Both methods are essential linear. 

Let ZJ = UJ - UJ be the difference between the theoretical solution u n n n 

and the numerical solution U of the difference equation. 

The von Neumann analysis assumes slowly varying coefficients of the 
linear difference equations; consequently these coefficients are 

considered constant in space and time. In this case an harmonic 
decomposition of the error Z at grid points at given time level (say 
t=O) can be made. To study the error propagation as t increases, it is 

sufficient to consider these independent solutions or eigenmodes of the 
linear difference equations. The eigenmodes are all of the form 
(restricting to the one dimensional space case): 

(VIII. 14) 

where l is a real spatial wave number and ~ = ~(l) is a complex number 
(!Jnil.xl depending or 1. The original error component e will not grow 

with time if the amplification factor ~ satisfies: 

I~ I ,, 1 (VIII.15) 

for all wave numbers l. This is von Neumann's stability criterion. 

(Mitchell, 1969; Press et al., 1986). The von Neumann method is of 

local character by the assumption of constant coefficients. Boundary 
conditions are neglected. However, numerical evidence supports the 
contention that if the von Neumann condition is satisfied locally, the 

difference scheme is stable (Mitchell, 1969). 

The second method, called 

equations. Let uJ = [uJ 
1' 

the matrix method, assumes again linear 

uJ]T. The difference equations with 
N 

the boundary conditions included, are written in matrix form as: 

UJ+l = B uj 
j 

(VIII. 16) 

where B is a square matrix eventually j (time) dependent. Let ZJ be j 

the error vector uJ - UJ with UJ the numerical solution vector; this 
gives: 

(VIII.17) 

Let II. II denotes a suitable norm then from (VIII.17) it follows that: 

llZJ+lll :s llB II. llZJll 
J (VIII.18) 



120 CHAPTER VIII 

The necessary and sufficient condition for stability based on a 

constant time step and proceeding indefinitely in time ls: 

llB U s 1 (VIII.19) 
J 

As said before, both methods assumes linear equations. For a non-linear 

model as (VIII.12) the right-hand side is llnearized by taken 

uJ = uJ + zJ and expanding to the first order in zJ. The vector uJ is 
n on n o 

to be assumed an exact solution of the nonlinear difference equations. 

So the von Neumann analysis is nothing more than a discrete form of a 

linear stability analysis of an exact solution. 

The null vector is a solution of (VIII.12). Since the object of this 

discretizatlon is to follow the time evolution from the unstable null 

solution to any, if present, stable (stationary) solution, the von 

Neumann stabill ty crl terion can never be met. The same holds for 

criterion (VIII.19). 

However, in this case it is possible to suppress the numerical 

instabilities corresponding to eigenvalues < -1 which are caused by 

discretization and which are not present in the continuous system. For 

this case the full matrix stability analysis will be applied to the 

model equations (VIII. 12). 

Let u1 again be a solution vector of (VIII.19). Let the boundary 
0 

condition be of the no-flux type (VIII.8). Linearizing (VIII.12) in uJ 
0 

gives the matrix BJ: 

B 
j 

(VIII. 20a) 

where AJ -D2. lb with -D2 the discrete Laplace operator which ls 

defined as 

n' • { 
D2 (1, j) 

D2(1, J) 
D2(1,j) 

2 if Ii 
-1 if 11 
0 if 11 

- JI 
- JI 
- JI 

= 0 

1 

> 1 

(VIII. 20b) 

and the boundary condition D(l, 1) = 1 and D(N,N) = 1 (see chapter IV, 

section 7); D4 = D2.D2, I = identity matrix and the matrix lb ls a 

diagonal matrix with 

lb(l, i) = ""' (u1 ) i = .,, ot ' 1, .. ,N and~· ls the derivative of~-

lb(i,j) = 0 if 1 * J (VII I. 20c) 
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Note that 

o2u = 
x n 

(VIII. 20d) 

All matrices are of order N. The eigenvalues of D2 are all non-negative 

by Gerschgorin's theorem (Dahlquist et al., 1974; see chapter V, 

section 7) and D2 is the square of a symmetric matrix D. Since for any 

two matrices P and Q the eigenvalues of PQ and QP are the same, the 

same holds for the matrices D and (-D~ - (r/8x2 )D3). Since 

-D~D - (r/8x2 )D4 is symmetric, all eigenvalues are real and the same 

holds for the eigenvalues of -D2~ - (r/tix2 JD4 (see appendix E). 

In what follows the subindex o is omitted. 

Denoting the eigenvalues of B with i\ , the system (VIII.17) will be 
j n 

stable if the spectral radius p(B1J max Ii\ I :s 1. 
n 

1 :Sn:::SN 

elements B(n,m) of the matrix B are given by 
j 

if lm-nl 2: 3 then B(n,m) 0 

if lm-nl 2 then B(n,m) -r(r/tix2 l 

if lm-nl then B(n,m) r[4>' (u~) + 4(r/tix2 )] 

if lm-nl = 0 then B(n,m) 1 + r[-24>' (u~l - 6(r/tix2 )] 

The matrix 

(VIII. 21a) 

with for no-flux boundary conditions the following additional 

definitions: 

B(m,m) 1 + r[-4>' (u~) - 2(r/8x2 )] if m 1 or m = N 

B(l, 2) r(4>' cu;) + 3(r/tix2 J]; B(N,N-1} r(4>' (uJ ) + 3(r/tix2 )] 
H-1 

B(1, 3) B(N,N-2) = -r(r/tix2 l 

8(2,1) r [4>' (u~ l + 3(<r/8x2 )]; B(N-1,N) r[4>' (u~) + 3(<r/8ili] 

(VIII. 21b) 

Bounds on the eigenvalues i\ of B can be found by applying 
n J 

Gerschgorin's theorem which applied to B states that each eigenvalue 
j 

of the NxN matrix B lies in the union of the circles: 
j 
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N 

I z - B ( n, n) I :s ( m~ 
1 
I B ( n, m) I ) 

m*n 

(VII I. 22) 

Combining (VIII.21a) with (VIII.22) gives for 3 :s n s N-2 

-1 s B(n,nl-IBCn,n-1ll-IBCn,n+llj-2rr/fJ.x2 

& 

B(n,nl+IBCn,n-lll+IBCn,n+lll+2rr/fJ.x2 s 1 (VII I. 23) 

The second part of (VIII.23) is equivalent with: 

r[-24>' (uJ) - 6__!_ +lit>' (u1 ) + 4__!_!+14>' (uJ ) + 4__!_j+2__!_]s 0 
n fJ.x2 n-1 fJ.x2 n+1 /J.x2 fJ.x2 

Now supposing that B(n, n+l) and B(n, n-1) are positive the condition 

becomes: 

[-21/>' (unJ) +tf>' (uJ l + t/>' (uJ ) + 4(r/fJ.x2 )] s O 
n-1 n+l 

and there seems to be no way to meet this condition under all 

circumstances. This must be seen in respect to the instability of the 

system, wanted at least for some u solution. 
0 

The first part of (VIII.23) is equivalent with: 

r[2t/>' (uJ) + 6__!_ +It/>' (uJ ) + 4__!_l+lt/>' (uJ ) 
n fJ.x2 n-1 !J.x2 n+1 

+ 4__!_j+2__!_]s 2 
fJ.x2 fJ.x2 

(VIII.24) 

Violating this condition will cause an instability which is intrinsic 

to time discretization and not present in the continuous time model. 

Now, in the continuous case for an appropriate form of If>, a priori 

bounds for stationary bounded solutions were found in Chapter 

III, section 2 (III.8). Assume the bounds are u0 and u1 , 

by 

max I qi' ( u l I 
u :=:u:!5:u 

0 1 

and define M 
4> 

(VIII. 25a) 

Then the left hand of (VIII. 24) is bounded by 4M + 16(0/llx2 ) and the 

following upperbound rb for r = fJ.t/fJ.x2 is obtained: 

r 
b 

2 (VIII.25b) 

Note chat the coefficients in the denominator of (VIII.25b) are the sum 

of the absolute values of the coefficients in o2 and o4 respectively 
" " 
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and consequently, the bound on r is also sufficient for the matrix 

boundary rows given by the additional definitions (VIII.21b). 

In all simulations this upperbound on r was sufficient to achieve 

convergence. (The same bound can also be found by applying von Neumann 

linear stability analysis with the condition that all eigenvalues are 

greater or equal to -1.) 

The third notion of convergence need no further investigation 

since consistency, stability and convergence are related as follows 

(Dahlquist et al., 1974): 

consistent & stable ~ convergent 

(Since essentially a procedure of linearization around some exact 

solution u, with errors expressed in the truncation error as found in 

the consistency condition, has been applied, no stricter bounds on r 

can be found this way. ) 

For the two dimensional model 

~~ = Ll[~(u} - rllu] 

the discretization with equal grid spacing h and equal grid points N in 

x- and y-direction, is based on 

(VIII. 26) 

where u = u(x,y) with x = (n-l)h, y = (m-l)h. (h = Llx = Lly. J 
n,m 

With Mt as defined in (VIII.25a), the upperbound rb on r = Llt/h2 is 

r 
b 

2 

VIII.2 The discrete anti-diffusion model 

(VIII. 27) 

In this paragraph the discretizations obtained above are applied 

to the anti-diffusion and migration model. Computational results are 

reported for the one dimensional spatial case as well for the two 

dimensional spatial domain. 
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VIII.2.1 One dimensional spatial domain 

We consider the following discrete model: 

UJ+l= Uj + ro2 [tJ>(uJ) - (q/l\x2 Jo2uj] 
n n x n xn 

(VIII. 28) 

where r = l\t/l\x2 , and n = 1, .. ,N, j = 1, ... with the no-flux boundary 

condition (VIII.8). The basic form of I/> is 

IJ>(u) = -u + r u2 + r u3 , r > 0 
l 2 2 

(VII I. 29} 

Some qualitative aspects of the discrete model are equivalent to those 

of the continuous model. 

The stability of the null solution u = 0, n = 1, .. ,N, depends on the 
n 

stability of the independent (and orthogonal) eigenmodes: 

u (n) =a cos(krr(n-0.5)/N) (VIII.30) 
k k 

Setting pi< = krr/N and denoting the eigenvalues by 1+rwk, the (linear) 

stability condition becomes: 

-1<1 + rw <1 (VIII.31a) 
k 

with 

(VIII. 3lb) 

In the following it is assumed that r satisfies the constraint 

(VIII. 25) such that 1 + rwk > -1 all k. The right hand inequality of 

(VIII.3la} is equivalent to: 

(VIII. 32a) 

which is consistent with the stability condition in the continuous 

case (see also appendix D). Let 0 be defined as 
0 

then the null solution is unstable i.f 0 < 1. 
0 

(VIII. 32b) 

The fast.est growing mode(s) are the mode(s) with wk maximal where k is 

given by 

(VIII.33) 
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For N = 96 table VIII.1 gives the unstable modes for different r (r) 
0 

and table VIII.2 gives the fastest growing mode. In the tables VIII.1 

and VIII.2, #G denotes the wave length expressed in the number of grid 

points; the column 'length' gives the wave length as #G·Ax, where Ax is 
3n the grid spacing (for N = 96, Ax = 128 l. 

unstable modes 

• • periods 
0 

modes #G length I 

0.0024 0.0043 1:sk:s15.47 "?:.6. 7 0. 164:Sl:S2.35 
0.0041 0.0073 l:Sk:Sl 1. 79 "?:.16. 8 0.412:Sl:S2.35 

Table VIII.1: Unstable modes (N=96). 

fastest growing modes 

• • periods 
0 

modes 11G length I 

0.0024 0.0043 k=l 1 18 0.444 
0.0041 0.0073 k= 8 23 0.579 

Table VIII. 2: Fastest growing modes (N=96). 

The time evolution of the discrete system is characterized by 

mini.mizing the following functional V: 

(VIII.34) 

where f(u) = Ju~(s)ds and D2 is defined in (VIII.20b). The second term 
0 

the approximation of the -(o u J2 
>< n 

(see u~(D2uJ)n = 

(VIII.10), see also chapter V for the continuous time case). Using: 

and inequality (VIII.11) one finds 

VJ+l :s VJ for r sufficiently small 
and 

VJ ~ ~(uJJ - (r/Ax2 lo2uJ ~. ~ constant, Vn, n 1, .. , N. 
n x n 

(VII I. 35) 
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The last condition is equivalent with the condition that 

J j T ( ) [u1 , ...... , uN] is a stationary solution of VIII. 28 . Hence V 

is a Lyapunov functional for system (VIII.28). 

Above all, the right hand side of the equivalence relation (VIII. 35) 

gives a very useful stop-criterion for numerical solutions. Since under 

the no-flux boundary conditions (VIII.8) \N o2u1 = 0 and~ is equal 
ln=l x n ' 

to ~ \M ~(u ) for a stationary solution. 
N ln=l n 

Furthermore, the conclusions with respect to the type of bifurcation 

from the null solutions based on Poincare-Lindstedt expansions are 

analogous with those for the continuous model (see appendix D). 

In the numerical simulations spatial grid spacing was t.x = 3rr/4N, with 

N = 48, N = 96. (Simulations with N = 192 differ not essentially from 

those with N = 96). The maximal time step tit is derived from 

rb = t.t/t.x2 , with rb given by (VIII.25). The initial condition was the 

null solution randomly disturbed such that \N u = 0. 
ln=1 n 

For the numerical simulation two different forms for the anti-diffusion 

driving function~ (VIII.29) are chosen; table VIII.3 gives in the 

third and fourth columns the bounds of the non-constant stationary 

solutions as derived in chapter III. 

lower bound upper bound 
r r 

1 2 u u 
0 1 

-1. 0 1. 0 -0.821 1. 488 
-3.0 1. 0 -1. OOO 3.000 

Table VI II. 3: Boundaries of non-constant solutions. 

For the continuous model it is proven in chapter VII that the only 

stable solution is a monotone function, where was mentioned also that 

the prove was not valid for the discrete case. 

Corollary VIII.1 

If the discrete system (VIII.28) has a stationary solution 
s s s s s 

u = (u1 ,u2 , ... ,uN) with ~' (u0 ) > 0 for all n = 1, .. ,N, 

then this solution is linearly stable if r satisfies condition 

(VII I. 25). 
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Proof: 

Let vJ = (v~, .. ,v~) be a small disturbance of the stationary 

solution u8 • Then in linear approximation the time evolution of v is 

given as 

vJ+l = {I + r [As - (7/6x2)D4]}vJ 

where As is defined by 

As -02/ll 

(VIII. 36) 

(VIII. 37) 

with IP a NxN diagonal matrix: IP(n,m) = tf>' (us)a(n-m), and -02 is the 
n 

discrete Laplacian operator, see definition (VIII.20b). 

With all tf>'(u5 ) positive, the positive square VIP of IP exists. Since the 
n 

eigenvalues of -02/ll and -vlP02vlP are the same, <v,-02/llv> s 0. Hence the 

operator between the square brackets in (VIII.36) is strictly negative 

N'" N'" { N L" on IR with IR = u e IR I u 
n=t n 

(VIII. 25), the operator between the 

= o}. If r satisfies condition 

curly brackets in (VI I I. 36) has 

(only real) eigenvalues lying between 1 and -1. o 

If r > 0 then for 1 = 0 a solution u8 with all tf>'(u8 ) positive can be 
2 n 

constructed and every spatial reordering of the solution is again a 

solution (see chapter II, section 3). Such a solution can be found as a 

pair (u0 ,u1 ) with u0 < 0 < u1 and tf>(u
0

) = tf>(u1 ) subject to the 

condition that the total sum of u-values be zero. Then for 1 small 

positive, it is possible to find a non-constant non-monotone solution 

us with all t/>' (u5 ) positive: take for simplicity r = 0 and let us 
n 1 

consists of a repeated sequence of four points (u0 ,u1 ,u1 ,u) then the 

zero mass condition gives u0 = -u1 (N ;s taken even) and u8 is a 

stationary solution if u = ±v(l - 27/6x ). For 1 sufficiently small 
0 

t/>'(u0 ) and tf>'(u1 ) will be positive. 

Since 1 is scaled by 6x2, the possibility to form stable patterns with 

all t/>' (un) positive causes also the qualitative differences between 

patterns generated with a coarse-grain grid (e.g. N = 48, figure 

VIII.l) and those generated with a finer grid (N = 96, see figure 

VII I. 2 (r = -3)). With a small number of grid points, the system 
1 

becomes easily locked in a profile with all tf>' Cun) positive. (The 

reported V-values are the functional values V(u) defined in (VIII.34).) 



128 CHAPTER VIII 

.. 

.. 

.. ·, .. 
' ... ' .. ' 

~ ' .. ' ' 0 ' . 
·•· : 

... 

... 

... 
·"' 
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Figure VIII.2: Pattern evolution for N = 98. 

Para .... t.ers as In Figure VIII.1. Time = 0.25: ---- (V -0.85) 

Final pattern: --- (V = -2.03) 
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Figure VIII.3: Initial pattern evolution (time = 0.2): 

-3: prof! le 

A second aspect is that one can have a different type of bifurcation 

(sub- or supercritical, see appendix D) from the null solution for the 

different values of r 1 . However, if more than one mode is unstable, the 

initial evolution is not determined by the type of bifurcation but by 

the fastest growing mode, see table (VIII.2). Figure VIII.3 shows that 

(for 'If = 0. 0041) the initial evolution is the same for both type of 

functions (r1 = -1 and r 1 = -3). But the similarity is lost after those 

initial stages, see figure VIII.4a and figure VIII.5. 

Although the initial evolution was always according to the fastest 

growing mode, the further evolution is characterized by a tendency to a 

less profiled pattern. The discrimination between the sometimes slowly 

varying transient phases and the final stable phases was possible by 

checking the condition for stationary solutions, i.e. 

~(uJ) - (r/~x2 )o2uJ must be equal in all grid points (VIII.35). At 
n x n 

that 

some 

iteration stages changes in V were hardly recognizable whereas the 

above criterion was clearly not met. In Figure VIII.4b the time 

evolution of Vis depicted for 0 = 0.0042, r 1 = -1. 
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Figure VIII.4a: Pattern evolution with ;!' = 0.0042, r 1 = -1. 

Time 0. 4: . - . - . (V = -0. 48); Time = 12. 4: ----- (V = -1. 71) 
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Figure VIII. 4b: Time evolution of functional V(u), see VIII. 34. 

Parameters as In figure VIII.4a. 
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Figure VIII.5: Pattern evolution for 71 = 0.0042, r 1 = -3. 

Time = 0.3: ---- (V = -3.6); Final pattern: ~~- (V = -11.43) 

Finally, stability of the final patterns was confirmed by calculating 

numerically the signs of the eigenvalues of the linearized system. In 

all figures, the patterns formed by the continuous curve are 

numerically stable. 

A solution may be classified by the lap-number z(u) defined by: 

0 } u ·u < O or u 
k+l I< I< 

(VIII. 38) 

Table VIII.4 summarizes the results for 71 

(N = 96). 

O. 0024 and 71 0.0041 

functional lap-number 
71 71 r V(u) z(u) 0 1 

0.0024 0.0043 -1 -2.03 4 
0.0041 0.0073 -1 -2.35 2 
0.0024 0.0043 -3 -10.62 6 
0.0041 0.0073 -3 -11. 43 4 

Table VIII. 4: Classification of final patterns. 
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Simulations with larger r values show an initial phase with hardly any 

profilation: the random disturbances just have to reorder themselves to 

fit (more or less) the pattern of the fastest growing mode. For r = 0. 1 

with only two unstable modes k = 1, 2, the final pattern was a monotone 

one. 

With respect to the reported patterns it is to be noted that none of 

the shown "final" patterns consists entirely of points with </J'(u) > 0. 

The numerical simulations show: 

i) initial evolution corresponding to the fastest growing mode 

defined by (VIII.33); 

ii} transient behavior to a less profiled pattern; 

iii) the transient phases can have a very slowly varying time 

evolution, looking almost stable; 

iv) the final stable pattern is not necessary a monotone 

pattern. 

In physics and engineering, a state which seems to be 'stable' in the 

sense that it is showing only very small variation over a long time 

period is called metastable. In practice, such a metastable state can 

be of more interest than the final state: either the (environmental) 

parameters of the system are changed before the final state is ever 

reached (for example in socio-economical systems) or the metastable 

state becomes solidified as, for instance, can be the case in 

precipitation patterns, see Chapter IX. In a chemico-physical context a 

metastable state is called a state which is at a local, not global, 

minimum of the free energy functional. With fluctuations inherent in 

such a system, one can expect a (maybe slow) transition from a local 

minimum phase to a global minimum phase. 

VIII.2.2 Two dimensional spatial domain 

The spatial domain is [O,L]x[O,L] c R2 . Grid spacing in both space 

directions is taken equal to h with N grid points. (h = t.x = t.y. ) The 

discrete model is: 
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(VIII.39) 

Just as in the one dimensional case a Lyapunov functional V can be 

defined: 

(VIII. 40a) 

with the properties 

VJ+t s VJ (VIII.40b) 

vJ+t VJ - <t>(uJ J - (r/h2 Ju1 = (3, f3 is constant for Vn, m. 
n,m n,m 

(VIII. 40c) 
The linear stability of the null solution is given by the time 

evolution of a disturbance in the form 

v(x,y,t) = l l ak 1cos(knx/L)cos(lny/L} 
k I 

(VIII. 41) 

where the summation is over all non-negative k and l with k + 1 "" 1, 

since the constant disturbance is not allowed. 

Using orthogonality of the eigenvectors cos(knx/L)cos(lny/L) gives the 

condition for instability: 

The simulations are restricted to N 24 with equal grid spacing h in 

x- and y-direction (h = n/32); this coarse grid introduces substantial 

deviations from the continuous model. In all simulations r is taken 

equal to rb defined in (VIII.27). Table VIII.5 summarizes some 

simulations results with respect to :he functional value V (VIII.40a). 

furctlonal r r r V(u) 0 1 

0.0024 0.0043 -1 -163.32 
0.0041 0.0073 -1 -150.76 
0.0024 0.0043 -3 -710. 94 
0.0041 0.0073 -3 -685.95 

Table VIII.5: Results two dimensional simulations. 

Figure VII I. 6 shows the time evolution for r 1 = -1, r = 0. 0041. The 

U-values reported below the contour patterns are the five u levels on 

which the contours are based. The time is given by At = r h2 . 
b 
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Figure VIII. 6: Pattern evolution anti-diffusion equation. 

0 = 0. 0041; r 1 = -1. 

Upper figure: time 0. 32; V -33.12; 

Lower figure: time 0. 68; V -76. 10. 
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Figure VIII. 6 (continued): left profl le, right contour. 

Upper figures: tlme=l.11; V -111.94; 

Lower figures: tlme=2.71; v = -134.04. 
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l.JO 

1.15 

Figure VIII.6 (continued): Final pattern. Time 7.5; V -150.77. 

VIII.3 The discrete migration model 

The homogeneous migration model was defined in Chapter IV, 

equation (IV.23c) as 

(VIII. 43a) 

We use the same deflni tion of V and the same time discretization as 

above to find the discrete time equations. If furthermore ~(n,il is set 

equal to l/N, one finds after a time rescaling: 

(VIII. 43b) 

No-flux boundary conditions (VIII.8) are added. 

The upper bound rb of r is calculated following the derivation of the 

upper bound in the case of the discrete anti-diffusion equation: 



r 
b 

1 

max I</>' (u) I 
u ~u::Su 

0 1 
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(VII I. 44a) 

(VIII. 44b) 

(u0 , u1 : bounds on stationary bounded solutions (Chapter III)). 

With respect to the discrete anti-diffusion model, the migration model 

differs only in one aspect: at an unstable null-solution the fastest 

growing mode is always given by the mode with the longest possible 

wave length, mode k = 1, see appendix D. 

In numerical simulations with as initial condition a small random 

perturbation of the null solution, the evolution was (again) along the 

fastest growing mode: till the random deviations were reordered more or 

less as a mode with wave length ~L. the amplitude of the perturbation 
2 

was hardly changing. Then occurs a fast transformation to the final 

monotone (non-constant) stationary solution. The resulting pattern was 

completely determined by the bounds u0 and u1 as given in (VIII.37). 

Only by taking a strongly profiled initial condition, the migration 

system evolves to a non-monotone pattern. 

VIII.4 Following a solution curve by continuation techniques 

In the foregoing paragraphs the time evolution was followed for 

some fixed •· The final pattern is a solution of 

G(u;ol = O (VIII. 45) 

for the chosen value of 0 with G defined e.g. by the second term of the 

right hand of (VIII.28) or (VIII.39). 

The continuation method is a technique to follow the solution branches 

of (VIII.45) for o in some interval r of ~. Since a detailed 

description of the continuation algorithm with Fortran code can be 

found in Kubicek and Marek (1983), here only the outlines of the 
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algorithm are given. 

Assume that G is twice continuously differentiable in both u and o. 

Along a solution branch u and 0 are parameterized by the arc length s. 

The unit tangent vector (u,~) satisfies the condition 

G ·u + G ·~ = 0 
u '¥ 

(VIII.46a) 

11li11 2 + ? = 1 (VIII.46b) 

If (u ,;r) is some starting point on a solution branch corresponding to 
0 0 

arclength s, then solving (VIII.45) is equivalent with solving: 
0 

u = u(s), u(s ) = u 
0 0 

;r ~(s), aCs l ;r 
0 0 

where u(s) and ~(s) satisfy (VIII.46). 

(VI I I. 47a) 

(VIII. 47b) 

Suppose (u(s ),;r(s )) is a regular point then G-1 (u(s);;r(s)) will exist 
0 0 u 

in a small neighborhood of s . Let y be the solution of 
a 

G (u(s),;r(s))·y + G (u(s),;r(s)) 0 
u • 

then 

u(s) ~(s)y 

and ~(s) can be found by solving (VIII.46b). This gives two solutions; 

choosing an initial direction in which the branch l.s to be followed, 

the solution is unique. 

When G becomes ill-conditioned in the neighborhood of a singular point 
u 

the procedure is to be repeated with an other independent variable 

instead of ;r. For the numerical application of the procedure, G ls 

approximated by a suitable G: IRnxlR ~ IRn. This allows for the 

possibility to take as independent variable one of the components of u. 

The algorithm applies a full pivoting strategy to the weighted Nx(N+l) 

matrix P· [G :G ] at each iteration step where P is some weighting 
" '¥ 

matrix. 

Having obtained say r(s), equations (VIII.47) are numerically 

integrated using Adams-Bashforth formulas of maximal order 4. At each 

stage when the independent variable is changed, the integration formula 

is reduced to the order 1. 
~ 

The numerical integration provides an estimate (u(s), 0 (s)) of the next 
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point on the branch. This estimate is taken as starting point for a 
Newton iteration which refines the estimate up to some error tolerance. 
Stability of branches is determined by counting the positive 
eigenvalues where changes in this number indicate the neighborhood of 

turning- or bifurcation points. 

Apart from the initial direction in which the branch is to be followed 
and the weighting matrix P, estimates for the starting points must be 

provided. 

In the case of the anti-diffusion model G is defined as: 

G Cu· rl = o2 [<PcuJl - cr111x2 Jo2 uJ] 
k ' x k xk 

(VIII. 48) 

using the same defined notations as above. 

Starting points, i.e. initial solutions u, can be found as follows: 
0 

i] stationary solutions obtained by numerically time evolution 
of the full discrete system. 

ii) for 

\N U - 0. 
ln=1 n 

r = o, solutions are given by <fi(u ) = <fi(u l 
l J 

with 

iii) approximations of bifurcating branches from the null solution 
u = 0 as given by the Poincare-Lindstedt series. In appendix D the n 

basic equations are calculated. 

The algorithm is applied for a system with N = 8. To visualize the 
solutions, three relations are presented: the first one gives the 
relation between the functional V as defined in (VIII.34) and r 

0 

(VIII.32b) the second one depicts the projection on the mode cos(7n/N), 

denoted as amplitude mode 7 whereas the third one gives the projection 
on mode cos(6n/N). 

Figure VIII.7 gives the bifurcation diagram obtained by starting with 
the Poincare-Lindstedt expansions at bifurcation points of the null 
solution. The diagram is far from complete, only the direct 
continuation from the start branches is shown. At the transition from 
an unstable branch in a stable branch the corresponding unstable 
branches are not shown. 
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Figure VIII.7: Bifurcation 

diagram (N = 8). 

Upper right: amplitude cos(7n/Hl 

Upper left: amplitude cos(Sn/N) 

Left: functional V value; 

solutions on the most right 

branch have one zero, the 

followln9 branch two and so on. 

dot.led curve .••••••• : unstable; 

continuous curve -- : stable; 

zero solution not. depicted. 



NUMERICAL SIMULATIONS 141 

Figure VI I I. 8 gl ves a far more complete picture: turning points and 

bifurcation points are all present. For the branch depicted with a 

turning point at er - 0.31 no continuation in the direction of lower er 
values was found; this solution with a functional value of -0.05 at the 

turning point has one maximum (z(u) = 2: the solution has two zeros) 

but the solution is asymmetric in this maximum. This ls in contrast 

wl th other one maximum solutions lying on the branch bifurcating at 

er = 0.2599 where the k = 2 mode becomes unstable. 
0 

The complexity of diagram increases with decreasing er0 which reflects 

the observation that for er 
0 

0 every redistribution of a piecewise 

constant solution ls again a solution (see figure VIII. 8). Figure 

VIII.8 is obtained by starting with a solution for er= 0 and applying 

the continuation method. Again the zero solution is not depleted. 
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Figure VUI.8: Blf'urcatlon diagram N = B. 

Lef't: amplitude cos(6n/N); right: amplitude cos(7n/N). 

QO 

dotted curve .... : unstable; continuous curve -- : stable; 
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VIII.5 Simulated annealing 

The anti-diffusion evolution is characterized by minimization of 

the functional V, defined in equation (V.22} or (V.33), under the 

restrictions Judx = 0 and the boundary conditions. Stationary solutions 

coincide with stationary points of the functional; stable solutions 

with minima of V. Hence the evolution can be conceived as minimization 

of V by a gradient method: 

du 
dt 

where ~ is the Laplace operator. 

(VII I. 49} 

Simulations with the discrete model show final states which are, in 

most cases, not monotone solutions and as such not given by the global 

minimum of V. The deterministic equation orders the states in a 

sequence of decreasing V values. To get on the branch which final state 

will coincide with a global minimum of V, some up-hill climbing must 

occur. 

One way of introducing hill climbing, while preserving the tendency to 

descend along gradients, is to introduce random fluctuations intc the 

path of u: 

(VII I. 50 l 

where w is a standard Brownian motion and T, "the temperature", 

controls the magnitude of the random fluctuations. Equation (VIII. 50) 

is a Langevin equation for the anti-diffusion system (see Chapter IV, 

section 8). 

Under suitable conditions on V (twice continuously differentiable) u 

approaches an equilibrium with density: 

P (u) = __! exp(-V(u)/T) 
T Z 

T 

where 
ZT = J exp(-V/T)du 

u 

defined on the space of functions with Judx = 0. 

The density PT is called the Boltzmann distribution, 

IV, section 8, equation (IV.34). 

(VIII. 51a) 

(VIII. 51b) 

see also Chapter 

As T ~ 0, PT concentrates on the global minima of V. Hence at low 
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temperature, one can expect to find u near a global minimum. 

At thermal equilibrium, the probability of being in a state with energy 

c was given by the Boltzmann distribution: 

P(c) = ~xp(- ~) 
z k T 

(VIII. 52) 
T b 

where kb ls the Boltzmann constant (Powles, 1968). 

In condensed matter physics, annealing ls the process of heating a 

solid and cooling it slowly so as to remove strain and crystal 

imperfections. During this process the free energy of the solid ls 

minimized. The initial heating is necessary to avoid becoming trapped 

in a local minimum. First a solid is brought into a state at which all 

particles have randomly arranged themselves in the liquid phase. Next 

it is cooled down such that at each phase of the cooling procedure, the 

solid is allowed to reach thermal equilibrium as defined by (VIII.52). 

As the temperature decreases, the Boltzmann distribution becomes more 

and more peaked around the states with lowest energy with finally, at 

zero temperature only states with minimal energy having a non-zero 

occurrence probability. The problem is that if the cooling is too fast, 

the system may be locked in a state with the free energy functional at 

a local minimum, not necessarily global. (Creutz et al., 1983; 

Laarhoven et al., 1987.) 

This physical process of reaching a minimal energy level ls transferred 

to a general minimization problem (VIII. 49). Here the evolution to 

thermal equilibrium (at constant T) is simulated by Monte Carlo (MC) 

methods: the basic idea is to sample a set of states such that the 

probability of encountering any definite state with energy E is 
c proportional to the measure factor exp(- kT} (Creutz et al., 1983). 
b 

And instead of the energy c and temperature T, a general costfunctlon 

(functional) V and control parameter c are considered. 

The dynamic variables are denoted by u (or u for a one dimensional 
n,m n 

spatial domain); let a configuration of the u be denoted by C. The 
n,m 

passage from one configuration C1 to the next one C1+1 ls determined by 

a transition matrix P(C ~ C'). In customary implementation of the MC 

algorithm, the transition involves the change of just one dynamic 

variable at a time: u ~ u' The variable can be picked at random 
n,m n,m 
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but it ls computationally more convenient to proceed through the grid 

in an orderly fashion. Hence one does not define a single transition 

matrix P(C -7 C') but a collection P (C -7 C') where P is the 
n,m n,m 

transition probability P(u -7 u' ) with all other variables kept 
n,m n,m 

fixed. 

A Markovian chain is defined by P = ... P (C' -t C'')P (C -7 C'). 
tot 1, k n,m 

The product is over all individual transition probabilities in the 

order in which one proceeds through the grid; P determines the 
tot 

change at the end of one full Monte Carlo iteration. 

The goal was to find a stochastic sequence with the property that the 

probability of finding any configuration C in the sequence becomes 

proportional to exp{-V(C)}. A sufficient condition is that each step of 

the transition matrix obeys a detailed balance requirement (Creutz 

et al., 1983): 

exp{-V(C)}P (C -t C') = exp{-V(C' )}P (C' -t C) 
n,m n,m 

(VIII. 53) 

The detailed balance condition does not specify completely the 

transition probabilities P (C -t C' ). Here the method of Metropolis et 
n,m 

al. (see Metropolis et al., 1953) and a slight modification of this 

method is exposed: 

al Hetropolls algorithm. 

The transition from u 
n1'm 

A new possible value u 

to u' is a two step procedure. 
n,m 

is selected with an (arbitrary) probability 
n,m 

distribution P0 obeying: 

r cu -t 0 l = P cO -t u l. (VIII. 54) 
o n,m n,m o n,m n,m 

Subsequently the change ll.V = V(C) - V(C) is calculated. The perturbed 

configuration C differs from the current configuration C in only one 

variable u 
n,m 

0 ; if not, then a If ll.V s 0 then the change is accepted and u' 
n,m n,m 

pseudo random number r, uniformly distributed in the interval between O 

and 1, is generated. 

if r s exp{-LlV} then the change is accepted: u' A u ; 
n,m n,m 

if r > exp{-iW} then the change is rejected: u' u 
n,m n,m 

This rule l.s known as the Metropolis criterion. 
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b) Hodifled Hetropolis algorithm. 

The method is basically the same except that after the move from u 
n,m 

to u' has been completed, the whole procedure is repeated one or more 
n,m 

times on the same grid point (n,m) (Creutz et al., 1983). 

The condition of detailed balance is fulfilled: suppose LIV ~ 0 then 

P CC~ C') = P Cu ~ 0 )·exp{-llV} = 

=nPm cO ~ u )~e;~{-nv}n,m p (C' ~ C}·exp{-V(C' )}/exp{-V(C)}. 
o n,m n,m n,m 

The formulation so far is at constant temperature (control parameter) 

(the homogeneous algorithm). For the nonhomogeneous algorithm, the 

temperature is decreased in between subsequent full Monte Carlo 

steps, i.e. after reaching equilibrium. As noted, too fast cooling may 

lock the system in a local minimum. In the application of the simulated 

annealing procedure to the anti-diffusion system, the problem is that 

the dynamic variables are continuous ones. Explicit non-homogeneous 

algorithm are formulated only for discrete variables (Hajek, 1985; 

Laarhoven et al.' 1987). (For a pure diffusion process 

du = -'i7V(u)dt + hrdw(t) with T a function of time t, Geman et al. 

C1986) give that for T(t) = c/log(2 + t) with c sufficiently high, the 

solution u converges weakly to a distribution concentrated at the 

global minima of V. They noted also that for most problems c will be 

most likely too large to be practical.) 

VIII.5.1 Solutions of the anti-diffusion model by simulated annealing 

The formulation of the stochastic version of the discrete 

anti-diffusion model in chapter IV, makes the application of simulated 

annealing rather straightforward with the exception of 

mass-conservation. The following implementation is chosen: 

i) The initial configuration is given by the null solution: 

Un = 0 for each n = 1, .. , N with N ls grid length. Cun,m = 0 for a two 

dimensional domain. ) 
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ii) For one Monte Carlo step, the current configuration C ls 

disturbed in two neighboring grid points n and n + nx with nx = 1, by 

selecting a random number Q with probability distribution P equal to 
0 

(truncated) N(O,cr2 ). The new candidate values are Q = u + Q and 

" u 
n+nx 

= u 
n+nx " - u. 

A n n 

Subsequently ~V = V(C) -V(C) with V the Lyapunov 

functional, is calculated and the Metropolis criterion is applied. 

iii) Step 11) is repeated with nx = -1. (If necessary the 

boundary-conditions u0 u1 and uN+l = uN are applied in step i and 

step ii). 

iv) Step ii) and step iii) is repeated for the grid point n + 2 

till a full round ls completed and the procedure ls restarted at n = 1. 

As a control parameter one takes T and the Metropolis criterion is 

applied to 

ex~-{V(C) - V(C)}/T} (VII I. 55) 

where C is the perturbed configuration and C is the current 

configuration. In the specification of the transition probability W 

given in (IV.2), parameter~ ls equal to 2/T. 

The acceptance rate (the fraction of iterations with accepted changes) 

depends not only on T, the control parameter, but also on er, the 

standard deviation which defines the neighborhood structure of the 

current configuration (Laarhoven et al., 1987). In Creutz et al. (1983) 

an initial acceptance rate of 80% is recommended. However, this rate 

defines neither T nor er initially. 

In both cases Q was drawn from a truncated normal distribution with 

zero mean and truncation points at Q = 0.5 and Q = -0.5. This truncated 

distribution satisfies the detailed balance condition. (Truncation was 

needed to prohibl t the transl tlon to unbounded solutions.) The best 

results were obtained for er= 1.0 with initial T = 1.0 and er= 0.1 with 

initial T = 0. 1. In both cases the initial acceptance rate was about 

80% percent. 

Even wl th lni tlally large fluctuations the system evolves to 

recognizable patterns with trough time an observable reduction in the 

lap-number z(u). If at a given temperature escapes from local minima 

are possible, then repeated escapes from global minima are also 
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guaranteed however with smaller probability. Accordingly, parameter T 

was lowered if for some iteration periods, a pattern was not changing 

essentially in the sense that the lap-number z(u) was 'stable'. 

Finally, at a "low temperature" the simulated annealing procedure was 

concluded by a deterministic time evolution (T = 0). In all cases the 

pattern was not changed essentially by the deterministic evolution. 

The best results are listed in Table VI I I. 6 for a one dimensional 

spatial domain with 96 grid points (with the same grid spacing as in 

paragraph VIII.2. 1) 

functional lap-number 
7 7 r V(u) z(u) 0 1 

0.0024 0.0043 -1 -2.51 2 
0.0041 0.0073 -1 -2.35 2 
0.0024 0.0043 -3 -13.74 3 
0.0041 0.0073 -3 -15.40 1 

Table VIII.6: One dimensional simulated annealing results. 

The results are better than those obtained by a pure deterministic 

evolution (see Table VIII.4) . 

.. 

.. 

-·· 
·•· 
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Figure VIII.9: Simulated annealing. Time evolution of the functional 

values V of the one dimensional anti-diffusion equat.lon. 

r 1 = -1; 7 = 0.0042; (Final V-value: -2.3S) 
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Figure VIII.9 gives the time evolution of V(u) in the case r = 0.0041 

and r 1 = -1 with an initial temperature T of 0.1. The time spacing was 

defined as follows: the time of one complete iteration ls equal to 

at= rb·ax2 with rb given by (VIll.25). The temperature T was lowered 

at time 0.75 (T=0.08), time 1.5 (T=0.05), time 2.0 (T=0.02), time 3.75 

(T=O. 01). Finally after time 5. 75 the temperature was set at zero. 

Between time 1.5 and 2.0 the lap-number of the profile was already 2. 

For a two dimensional spatial domain with 24 grid points in each of the 

two directions the results are given in Table VIII. 7 with initial 

temperature parameter T equal to 1.0 and Qare drawn from a truncated 

normal distribution with u = 1.0 and truncation points -0.5 and 0.5. 

functional 
r r r V(u) 0 1 

0.0024 0.0043 -1 -191. 67 
0.0041 0.0073 -1 -193.69 
0.0024 0.0043 -3 -1200.06 
0.0041 0.0073 -3 -1143.85 

Table VIII.7: Two dimensional simulated 
annealing results. 

The functional values in table VII I. 7 are again better than those 

obtained by the deterministic procedure, even for r 1 = -1 (see table 

VIII.5). The reason is that this small number of grid points defines a 

rather coarse grid; the deterministic system becomes easily locked in a 

local minimum with all u such that ~'(u) > 0. The stochastic procedure 

allows the system to escape from such a state. This effect is the more 

clear if the branches are far apart. 

Figure VIII. 10 gives at different time intervals the contours and 

profiles of the pattern for r = 0.0042 and r 1 = -1. The in the figures 

reported U-values gives the u-levels which define the contour ievels. 

The time scale is given by at = rbh with h the grid spacing in x- and 

y-direction and rb defined in (VIII.27). The number of grid points is 

24, grid spacing h = n/32. 
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Figure VIII.10: Simulated annealing: 'If = 0.0041, 1- 1 -1. 
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Figure VIIL 10 (continued) Two dimensional simulated anneal Ing. 

Upper figure: T o. 4; v -15. 86; Time 5.06. 

Lower figure: T 0.4; v -33. 54; Time 5.49. 
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figure VIII.10 (continued) Two dimensional simulated anneal Ing. 

Lett: T = 0.1; V = -157.58; Time = 10.0. 

Right: T = 0. 0 (determlnl stl c); V = -193. 55; Time 25. 0. 

The physical background of the simulated annealing procedure fits 
pretty well with the anti-diffusion system, and in general with all. 
systems based on minimizing the Ginzburg-Landau free energy functional. 
But it is to be noted that during the simulations the functional form 
of V is not changed. In these simulations, V has at least two minima: 
the two symmetric monotone solutions. At any temperature the 
anti-diffusion clustering mechanism was active. In the general 
formulation of chapter III, the Ginzburg-Landau functional itself 
depends on the temperature. So the simulations are, with respect to low 
temperature pattern formation, only partial.. 

All simulated annealing results show a final pattern which has less or 
equal zeros (lap-number) than any of the patterns obtained by 
simulations of the deterministic evolution equation. The system tends 
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to form a monotone pattern. Secondly, with respect to minimizing the 

functional V, the results of the the simulated annealing procedure are 

better then the results obtained by the deterministic time evolution. 

The reported results are in both cases the best found but with 

sufficient large variations at the initial stages, the simulated 

annealing procedure gives results which are always better than any of 

the deterministic time evolution results, whatever the initial random 

perturbation (= starting point) of the deterministic system. 



CHAPTER IX 

p A TTERN FORMATION IN PHYS I CO-CHEMICAL SYSTEMS 

IX.1 Introduction 

Spatio-temporal structures are found in many physical systems. In 

chapter I, section 2, some examples are already give. As a fine example 

of periodic precipitation patterns in chemico-physical systems the so 

called Liesegang Rings will be introduced here. The experimental setup 

and assumptions are rather simple; however, many of the factors 

involved in pattern formation are present: multiple stationary 

solutions, phase separation, dependence on temperature and other system 

parameters, different time scales, sustainment of the non-equilibrium 

state by diffusion. Related phenomena can be found in geological 

systems: magmatic crystallization bands are mentioned in McBirney et 

al. ( 1979) and Ortoleva (1979). 

The general context of the Liesegang Rings is that of binary mixtures 

which show phase separation and consequently have spatially 

differentiated properties. In this way, the onset of superconductivity 

is treated in Berggren et al. (1978). Memory properties of some alloys 

are explained as a phase transition initiated by external factors. In 

this context, memory is the exchange of properties belonging to 

different phases (Achenbach et al., 1983; Falk, 1983,1984). 

After an overview of the results of some Liesegang experiments, two 

mathematical models will be reviewed. 

The first model, called the competitive particle growth model 

- 153 -
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(CPG-model), models cluster size growth as an autocatalytic ripening 

process; the model equations are taken from Feeney et al. (1983): see 

also Ortoleva (1984). 

The second model is based on the anti-diffusion equation, in this 

context better called the Cahn-Hilliard (CH) equation (Cahn and 

Hilliard, 1958; Cahn, 1966, 1968). However so far, the CH equation has 

always occurred on its own and not as part of a system of equations. In 

paragraph IX.3.2, the CH equation is part of a three variable component 

system. 

IX.2 Liesegang rings: periodic pattern formation 

In 1896 Liesegang published an article on the phenomena of 

periodic precipitation now named after him (Liesegang, 1896). Many 

compounds are capable of producing Liesegang rings or bands. In the 

experiments described below, an OH-component is diffusing into a gel 

containing cobalt chloride. Instead of a homogeneous precipitate, one 

gets under the proper conditions a precipitation pattern of successive 

rings. After some hours the first precipitation appears. The ring 

consists of microscopically small Co[OHl 2 crystals which shows up 

sharply against its neighborhood where the Co concentration is very 

low. Only at some distance of the first ring a second ring can form. 

Again the neighborhood becomes depleted of Co and eventually a third 

ring forms still further away and so on. The final pattern consists of 

consecutive rings surrounded by depleted areas. 

IX.2.1 Liesegang ring experiments 

The experimental results here reported are taken from the work of 

L. Zwang, Dept. Chem. Path. Erasmus Univ. Rotterdam. The experimental 

setup is as follows: a tube is divided in three successive zones: one 

with an initial cobalt concentration of 50 mmol/l (Co-zone), one 
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neutral zone without Co and OH (NZ-zone), and one with an initial OH 

concentration between 0.1 and 1.0 mol/l (OH-zone). 

OH NZ Co 

Figure IX.1 Llesegang experiment setup. 

This configuration is denoted as (OH-NZ-Co, a-b-c) where a,b and care 

respectively the length of the zones in mm. The overall medium is an 

Agar-Agar 1% concentrate. 

The specific characteristics of the transient behavior in a Liesegang 

experiment are most clearly seen by· contra9ting experiments with and 

without NH CL. For an 
4 

(OH-NZ-Co, 10-15-25j configuration, table IX. 1 

gives the results of an experiment with NH4Cl (overall initial 

concentration 0.15 mol/ll and table IX. 2 gives the results without 

NH4Cl. The Co concentrations reported are measured by taking slices k, 

k = 1,2,3 .. at different locations xk ,k = 1,2,3 .. , always ordered in 

such a way that x is closer to the OH-zone then x iff i < j. 
I j 

no. [Co++] no. [Co++] 
intersection (mmol/l l intersection (mmol/l l 

1 0 1 0 
2 0 2 0 
3 0 3 0 
4 0 4 3 
5 1 5 5 
6 2 6 9 
7 7 14 
8 34 8 14 
9 49 9 55 

10 54 10 38 
11 35 11 35 
12 33 12 45 
13 45 13 52 
14 55 14 55 
15 58 15 58 

table IX. 1. Experiment table IX. 2. Experiment 

with NH Cl. without NH Cl. 
4 4 
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In both experiments it is found that in the neighborhood of the Co-NZ 

boundary (table IX. 1, intersection 9; table IX.2, intersection 10), the 

germ of a ring is formed. At the intersections 9, resp. 10, Co becomes 

more concentrated then in neighboring locations by attracting Co ions. 

In all these experiments a pH of approximately 8. 5 was a necessary 

condition of germ-formation. But the NH4Cl-and the non-NH4Cl experiment 

differ completely in their subsequent evolution. 

Whereas in the NH4Cl experiment precipitation of Co[OHJ 2 occurs only 

after some 190 minutes, in the non-NH4Cl experiment precipitation 

starts already after 40 minutes. This means that in the first case the 

depletion of the neighborhood of a germ location takes far more time 

than in the second case. 

At some distance of the germ the depletion will be less severe and a 

second germ can arise. In figure IX. 2 a time evolution of a NH4Cl 

experiment is depicted. At time t = 100 minutes a first ring is already 

clearly visible. The second ring at location 7.5 began to form at time 

t = 180 minutes. One observed that ring one was still growing further 

when ring two began to form. This observation contradicts the Ostwald 

theory which states that subsequent rings can only arise if the 

foregoing ring is completely formed and is not growing anymore 

(Ostwald, 1925). 

In figure IX. 3 a more evolved Co pattern is shown. Note that the 

concentration in a ring becomes far more higher then the initial 

concentration of 50 mmol/l. Precipitation solidifies the pattern. 

In the non-NH4Cl experiment sufficient depletion can not occur because 

of the fast precipitation. Consequently a continuous precipitate is 

formed. The time delay of precipitation caused by NH4Cl is similar to 

the effect of some electrolytes on delaying or suppressing flocculation 

(Kruyt et al., 1977; Maron et al., 1974). By adding an electrolyte to 

the system the electric double layer of a Co[OH] 2 complex becomes more 

extended so that the probability that particles will lump together 

decreases. 
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This competition between depletion and precipitation is also observed 
in the following experiments: as mentioned above, a pH - environment of 
8.5 seems a necessary condition for ring forming. The time to get from 
a pH of 8.4 to a pH of 8.6 depends on the NH4Cl concentration present 
in the system. Table IX.3 gives the results for different NH Cl 

4 
concentrations with an Agar-Agar gel and with an AgaroseEF gel. Since 
Agar-Agar is more impure than AgaroseEF, clustering is easier in the 
former case (presence of nucleation kernels) than in the latter one. 

[NH Cl] time 
4 

observed pattern (mmol/l) (minutes) 

Agar-Agar 0 5 continuous precipitate 
150 11 ring formation 
400 20 no precipitate at all 

AgaroseEF 0 8 continuous precipitate 
150 13 continuous precipitate 
400 17 ring formation 
800 30 no precipitate at all 

Table IX.3. Time to get from pH 8.4 to 8.6 at different NH 4Ci 
concentrations and the relation to precipitation. 

The reported effects A low NH Cl 
4 

on ring formation are consistent. 
concentration has two consequences: 

the fast adjustment rates for 

fast 

the 

precipitation of Co[OHJ 2 and 

OH-- concentration between 
neighboring locations. Hence depletion will last a short time and be 
less effective. A high NH4Cl concentrate will prohibit precipitation at 
all. 

The same effects are observed by varying the OH gradient. If too 
strong, the growth in pH is fast and only continuous precipitation 
occurs. If too low, even if a pH of 8.5 can be reached, the final state 
is a homogeneous one with no precipitation at all. 
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IX.2.2 Reverse spacing and·temperature 

In the above reported experiments a relative strong OH gradient 

was imposed. This introduces a predominant direction in the system with 

as a consequence the observed spacing of the rings. (In this case a Co 

gradient is not even necessary, see below. ) By making the Co gradient 

relative strong with respect to the OH gradient, reverse spacing was 

observed. 

Temperature dependence: in a (OH-NZ-Co, 15-0-45) experiment with [Co++] 

16 mmol/l and 5% NH OH and a temperature of 23°C ring formation takes 
4 

at least 30 hours. Inserting the same system in a water bath of 37°C 

ring formation occurs after a few minutes. Table IX.4 gives the 

distance of the first ring to the OH-Co boupdary in relation to the 

time at which the system is heated.up to.37°C. 

no. time T distance OH/Co 
(minutes) (mm) 

1 14 2.90 
2 31 4.80 
3 54 6.20 
4 87 8.05 
5 129 10.05 
6 157 11.24 
7 184 12.00 
8 207 12.79 
9 241 13.65 

10 275 14.34 
11 308 14.80 

Table IX. 4. Rlngformatlon and temperature. Initial temp. 
0 0 

23 C, after time T (see col. 2) temp. Is 37 C; location 

of first ring Is given In col. 3. 

The observations mentioned above are combined in the following 

experiment. At low temperature, Co is homogeneously distributed and an 

OH concentrate is injected in the centre of the system. After some time 

which allows OH to diffuse, the system is heated up and a three 

dimensional spherical precipitation pattern is observed (Leynse 

Spheres). In this process no initial Co gradient ls involved. 



160 CHAPTER IX 

IX.2.3 Interpretation 

The Liesegang experiment is a system with multiple stationary 
states: homogeneous, continuous precipitate, periodic precipitate, no 
precipitate at all. The stability of a state is continuously tested by 
thermal fluctuations inherent to the system. Slight density differences 
will occur. If the homogeneous state is unstable such small deviations 
can be enhanced by a mass flow directed towards the local density 

maxima. Since in principle all local maxima want to grow, depletion of 

the neighborhood and competition between the growing centres determine 
the evolution to some final state. Which state will be reached will 
depend on the initial fluctuations (e.g. the imposed gradient(s)) and 
the strength of competition and depletion .. 

Particles are separated from each other by a potential barrier composed 
of an attraction force (van der Waals f.orce) and a repulsing force 
(Powles, 1968; Widom, 1972). (Electric double layer effects.) In 

chapter I the Boltzmann's ordering principle was mentioned: the system 
tends to those states with lower free energy. We recall that the free 
energy F is defined by F = E -TS with E energy, T temperature and S 
entropy. At low temperature the dominant term is the energy E: in 
mixtures, as the result of the van der Waals interaction force, the 

most favored situation is that one where all molecules of the same type 
are clustered together. With the tendency to reduce the phase 
separation surface, larger clusters will grow at the cost of smaller 
ones thereby depleting the neighborhood. This provides a mechanism for 
autocatalytic growth. 

Three aspects can be distinguished: 

To get a cluster, the potential barrier must be taken. At high 
temperature, thermal fluctuations are stronger than at low temperature 

and consequently the probability to overcome this potential barrier is 
larger, but at the same time the possibility to escape is increased. 

Only if the clustered state has a lower free energy "'han the 
non-clustered one, germ (= local density maximum) growth will be 
sustained. In stability terms, the non-clustered state must be unstable 
or at least metastable, i.e. a state coinciding with a local minimum of 
the free energy functional, see IX. 3. 2.. Now it is known that the 
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stability of a mixture can depend on the pH (Maron et al. 1974; Metlu 
et al. 1975). From the experiments it seems clear that this is also the 
case of the Liesegang Rings. At a pH of approximately 8.5, the system 
becomes unstable which means that germs can form and be sustained. 
A second aspect is that the addition of an electrolyte as NH4Cl can 
make the potential barrier higher which reduces the possibility to form 
clusters (Kruyt et al., 1977). 

Thirdly, the growth rate of a germ will depend on the local 
Co-concentration as one of the constituents of Co[OH] 2 complexes. 

The Liesegang process is now interpreted as follows. (We refer to 
experiments with initially no Co++ gradient (see IX.2.2).) Initially, 

Co[OH] 2 clusters will be in equilibrium with the homogeneous Co++ 
background concentration. Since fluctuations are present in the system, 
some deviations from the equilibrium state will occur. It now depends 
on the pH-environment (i. e. the OH--concentration) whether deviations 
are sustained and germ formation will occur or not. The OH--flow may 
create locally a state which favors clustering. This state is 
characterized by a specific cluster size which is not in equilibrium 
with the Co++ background concentration. As a result of the van der 

Waals interaction force (reduction of the phase separation surface) a 

germ will grow causing at the same time a stronger deviation from the 
equilibrium cluster size defined by the Co++ background concentration. 

The tendency to restore equilibrium with the background Co++ gives rise 

to dissolution of the germ as well as to a Co++ flux towards this germ. 

(The germ creates a sink in the Co++ concentration. l If clustering is 

favored, dissolution will be weak and the mean equilibrium restoring 
effect will be a Co++ flux towards the germ causing competition between 

the growing centres. However, the OH- gradient provides a spatial 

differentiation. At the pH = 8. 5 boundary a germ can grow easier by 
depletion as it is partly surrounded by an environment which does not 
favor clustering. With the autocatalytic growth mechanism mentioned 

above, we can reason that a precipitation ring can arise where the pH 
becomes 8. 5. The pattern formation process now depends on the time 
scales of depletion and the moving boundary of the OH- surplus. Since 
the electrolyte NH4Cl influences the precipitation rate (and hence 
depletion), the process is tuned by the NH4Cl concentration. 
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IX.3 Mathematical models 

Already in 1897 Wl Ostwald sr. (1897) presented an explanation of 

the Liesegang phenomena in terms of supersaturation and diffusion. 

Ostwald' s theory was of qualitative nature only. Mathematical 

treatments of Ostwald' s supersaturation theory were put forward in 

former times by Prager (1952). Recently Keller and Rubinow (1981) 

presented a mathematical formulation of Wl Ostwald' s supersaturation 

theory. Not only diffusion but also the chemical reaction and the 

precipitation of the product are considered. Similar models can be 

found in Flicker and Ross (1974). Both are examples of 

reaction-diffusion models with an autocatalytic growth term. Flicker 

and Ross criticized the Ostwald theory because it does not predict the 

other phenomena observed in the Liesegang experiment: reverse spacing 

(see section IX.2.2) and secondary structures (secondary banding: the 

initial structure breaks up in a finer structure). Moreover Ostwald's 

theory requires an imposed concentration gradient. In their opinion 

supersaturation ls unnecessary for periodicity (see also Hazewinkel et 

al., 1986). 

Strongly related to secondary banding are experiments where an uniform 

sol of the precipitate is allowed to age. Spatially inhomogeneous 

structures arise but, ln contrast to the Liesegang experiment, this 

process is slow and it can take days for the larger particles to grow 

substantially at the cost of smaller ones. The model, called the 

competitive particle growth model (CPG model) following Ortoleva, has 

the formal structure of interaction between a diffusible substance and 

a non-diffusible variable representing the radius of large particles 

(Ortoleva, 1979,1984; Feeney et al., 1983). It is based on the 

principle discovered by Wi Ostwald (1925) and named for him: Ostwald's 

ripening (see IX.3.1). 

The Liesegang ring phenomenon is a typical example of molecular 

aggregation and decomposition with a mass flux from low concentration 

areas to high concentration areas. The anti-diffusion equation with its 

physical background as an evolution equation minimizing the 

Ginzburg-Landau free energy functional, seems an appropriate candidate 

to model such a phenomenon. See IX.3.2 .. 
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IX.3.1 The competitive particle growth model 

An extensive review of the competitive particle growth model can 

be found in Feeney et al. (1983). The model is based on interdependence 

of particle growth, diffusion and the precipitation particle depending 

on the equilibrium concentration. The basic assumptions are: 

1) a particle growth-dissolution process is restricted to 

p +P =::;P 
n 1 n+1 

where P, n = 1,2, .. is an aggregate of n monomers. 
n 

ii) at each point in space, the concentration c0 of the polymers 

P is and stays narrowly peaked about some n·(x,t). So, 
n 

assuming spherical particles, in any small spatial domain the 

(large) particles are represented by 

R(x,t). 

a particle with radius 

iii) surface free energy will cause any large particle to have an 

equilibrium monomer concentration Ceq. Assumed is that for 

large R, Ceq(R) is monotonically decreasing in R. Then, for 

large R, a local maximum in R will grow and cause dissolution 

in its surroundings. In turn minima will induce secondary 

maxima in R. 

The model ls described in terms of the local monomer concentration 

C(x,t) and the local average particle size R(x,t). Changes in particle 

size are given by: 

(IX. la) 

where p is molar density and K a reaction constant. Mass conservation 

leads to the following evolution equation for C: 

a C{x,t) = D~C - n~(~rrR3 ) + qW (IX.lb) a t at 3 c 

where n ls number density of precipitation particles, assumed to be 

time independent, D~C is diffusion according to Fick' s Law (D > 0, 

constant) and qW/c ls the source term of monomer production. 



164 CHAPTER IX 

The equilibrium concentration Ceq(R) is given by 

(IX. 2) 

c 

with Ceq(m) a scaling parameter, r a constant involving surface 

tension, crystal molar density, absolute temperature etc. and Re the 

critical radius. Dimensionless variables are defined as follows : 

c ceq(l + sl; R = Rt/1; x = [~; t = t<; n = nv and 

where - denotes characteristic (averages) values. This gives the 

following model: 

(IX.3a) 

1 a er 
!J.er - vl v !!__Y!_ qW 

"{3fi 
+ a < c 

(IX. 3b) 

where 

g(t/J, l/J ) 
21/12 

c 2t/J3 + 1/13 
c 

(IX. 3c) 

with no flux boundary conditions. 

c~ is a dimensionless combination of ceqCmJ, r, n and R or equivalently 

of D, [ and t; t/J = R /R). In the following the source term qW/c is 
c c 

neglected and v is set to 1. 

Any uniform distribution of t/J and er defined by t/J(~,.) 

with er = g(t/J ,t/J ) is a solution of (IX.3) 
0 0 c 

t/J ' er(i;,.) 
0 0 

Now consider the system on a closed interval I = { ~ E R I Os~sL} then 

a linear stability analysis shows that every uniform solution with 

~~ J t/J=t/J < 0 is unstable. The linear approximatlon of the right hand of 
0 

(IX. 3) defines a linear operator on the solution space L2 [0, L], see 

appendix E. Then, given no flux boundary conditions, eigenvectors are 
kni; 

proportional to cos(~L~) and the eigenvalues µ(k) must satisfy : 

µ2(k) + µ(k) [g1 2 2] 2 = 0 + ~p + ~t/J + ~g p 
k 0 1 k 

where dgl 2 k2n2 
(IX. 4) g = 

dl/J l/J=l/J Pk 1 2 
0 l 

If g1 < 0 all eigenvalues µ(k) are real and the largest eigenvalue is 

positive. Moreover, this largest eigenvalue is monotone increasing in 

k. Therefore, linear stability analysis predicts the growth of a 
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spatial structure if l/J > l/J but with an evolution according to the 
0 c 

smallest possible wave length in the case of an initial homogeneous 

structure randomly disturbed. 

IX.3.1.1 Numerical simulations 

The partial differential equations (IX.3) with the boundary 

conditions are approximated by finite difference schemes; with 96 

grid points, grid spacing h is L/95 with L = 10 or 20. The value of 

the parameter l/J is taken 0.25. The initial value l/J of l/J is 1.0. 
c 0 

In the first reported simulation, this initial value is randomly 

disturbed. 

u.s 

... 

Flqure IX.4 Competitive Particle Growth Hodel: 13 = 0.01, L 10 

Initial homoqene;fus state: randomly dlst~rbed. 

: time= 15h ; -- : time= 650h , h = 10. 0/95. 

Initially the evolution takes the form of a (degenerate) pattern of 

alternating maxima and minima as the linear analysis predicts. Further 

growth leads to competition between the growing centres and gives the 

pattern as depicted in figure IX.4. 
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... 

... 

.. 
!9 

~ ... 

.. 

-o.s ... ;<1;-,.,.--------'--------+.0.00.--------'-------;,7/o.oo 
DISTANCE 

Figure IX.5 Competitive Particle Growth llodel: 13 = 0.01, L = 10 

Initial homogeneous state onlt locally disturbed In the {our left 

grid points. --- : tlme=40h ; -- : tlme=225h . 

J"l.5 

11 • 

.. 
~ 
~ ... v: 

.. 

-o.s • o 1 ... 

Figure IX.6 Competitive Particle Growth llodel: 13 = 0.01, L = 20 

Initial homogeneous state onlt locally disturbed In the2 four left 

grid points. --- : tlme=40h ; -- : tlme=75h . 

... 
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All maxima in the ~-pattern go along with minima in the ~-pattern. It 

is to be noted that the peaks in figure IX.4 are at single grid points 

in the final stages of the evolution, so the final pattern has maximal 

frequency. This persists if finer spacings are taken. 

The same sort of evolution is observed in the following simulations. 

Parameters and initial values are the same as above but now only the 

values of the four extreme left grid points are disturbed with the same 

positive value. As the initial bump grows, a depletion zone is formed. 

In figure IX. 5 the dotted line gives the pattern at time 500h2 . The 

patterns show a characteristic distance i;- 1 between successive bumps, 

except for the first and second one. Since ~ is the diffusion 

coefficient of ~. the degree of smoothing will be depend on ~; this is 

indeed found in the simulations: for ~ = 0.01, t;" 1 ~ 2.3; ~ = 0. l, 

t;" 1 ~ 3.0, see figure IX.6 and IX.7). 

7.50 

s.s 

' 
l.50~ 

' ' ' 

-o. o.oo 

\ 
; 
I 

' \_;[ 
l I 
~ i 
: : 
i i 
l: 

~--~ jj_ 
s.oo 10.00 

DISTANCE 
:s.oo 

'··· .... : 

20.00 

Figure ll(.7 Competitive Particle Growth Model: ll = 0.1, L = 20 

Initial homogeneous state only locally disturbed in the four left 

2 2 
grid points. • . . : tlme=40h ;--- : tlme=75h ; 

2 
-- : tlme=225h . 
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Since R is taken to be larger then Re' the model describes the 

evolution after the particles have reached at least a considerable size 

Re. In making the assumption on the peaked particle-size distribution 

plausible, Feeney et al. use the ripening process and state that such a 

distribution will be valid in the post nucleation regime. Accordingly, 

we interpret the equations rather as modeling phenomena such as 

secondary banding than as modeling the initial transient behavior in a 

Liesegang experiment. This means that the simulations reported here and 

in Feeney, are in themselves simulations of the secondary banding 

process and do not reflect the final breakup in finer peaks as stated 

by Feeney et al. (1983). 

IX.3.2 An anti-diffusion model 

The experiments (section IX.2.1 and IX.2.2) have shown that 

ring formation depends above all on two environmental parameters: 

temperature and pH. Thermal fluctuations will cause deviations in the 

distributions of the components; at sufficiently high temperature such 

deviations are strong enough to form the germs of ring formation. At 

some particular pH level these germs are sustained and enhanced by a 

mass flow directed towards local maxima in the Co++ density. This 

depletion effect is conceived as a mass redistribution process by 

nearest neighbor interaction with the change rate depending only on the 

gradient of the weighted mass density. In this way described, the 

clustering process is similar to the reverse of a Fickian, standard 

mass diffusion process, that is an anti-diffusion process. We recall 

from chapter II that this name is used only as a formal description of 

the observed mass redistribution process. 

It is to be mentioned that such a diffusional clustering mechanism is 

also reported to be found in the so called spinodal alloys (e.g. Cahn, 

1966, 1968; Coutsias et al.. 1984). Phase separation by spinodal 

decomposition is characterized by the aspect that the whole solution 

appears to nucleate at once whereas phase separation by nucleation is a 

process in which sufficiently large nuclei appear randomly and grow. 
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The Landau theory of phase transitions provides a basis for a 

distinction between spinodal decomposi lion (second order phase 

transition) and nucleation (first order phase transi lion). In the case 

of spinodal decomposition the current state is not given by a minimum 

of the free energy functional; the state is unstable, every fluctuation 

will drive the system away from this state. At nucleation however the 

current state is linearly stable but there exists a state which has a 

lower free energy then the current one; the current state is called 

metastable: small fluctuations are damped out but as a consequence of 

large fluctuations, the onset of a new phase can occur. Restricting to 

one component u, given an initial density u, with increasing 

temperature the system will go from spinodal to nucleation and finally 

to a stable mixed regime. The spinodal decomposition phase comes before 

nucleation on the temperature scale. Gibbs called the spinodal the 

limit of metastability (Cahn, 1966). 

For a one dimensional, one component system described by the density 

function u(x, t), the anti-diffusion equation gives a time evolution 

characterized by minimization of the functional V: 

where 

V(u) 

f(u) = r<fl(s)ds 

0 

and ~ a positive constant. 

(IX. Sal 

(IX. Sb) 

As mentioned in chapter III, section 5, the Ginzburg-Landau theory of 

phase trans1tions gives the free energy of a system in the form of 

equation (IX.Sal. The gradient term accounts for non-homogeneities and 

is called the gradient-energy term (Widom, 1972). Since the properties 

of the system will depend on the temperature and, or the pH, a possible 

form of the function <fi is 

<fl(u} = r (µ}u + r u2 + r u3 r > 0 
0 1 2 • 2 

(IX. 6) 

where r (µ} is a function of the environmental parameter µ, expressing 
0 

temperature, and pH dependence. 

The state of the system, given by u = 0, is called spinodal if this 

state represents a maximum of V(u): every small fluctuation will be 

enhanced and the system will be driven to a state with lower free 
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energy (see also chapter III). The necessary condition is that r (µ) is 
0 

negative; if 0 is sufficiently small then the null state will be 

unstable. 

For r (µ) positive and r small, the system can still undergo phase 
0 

separation by nucleation if in the u-f plane, the point with u = 0 on 

the double tangent to the graph of f lies below (0,0) which means that 

this point represents a state with a lower free energy than the uniform 

state u = 0. In this case, the null solution is linearly stable but 

large fluctuations can drive the system to the lower free energy level. 

At sufficiently high temperature Liesegang Rings are only formed if the 

pH is approximately 8.5. In the following we neglect the dependence on 

temperature and assume the system can be brought into the spinodal 

regime at a specific pH level; the coefficient r in (IX. 6) depends 
0 

only on the pH, i.e. the OH- concentration. In terms of the free energy 

functional (IX. Sa): for pH "' 8. 5, the state u = 0, the mixed state, 

becomes a maximum of the functional which has in that case a minimum at 

u+ > 0 (and u- < 0) where u+ denotes the clustered phase. The state 

(u+, u-) is reached by mass flow from low density into high density 

areas. 

Note that here only the early stages of ring formation are considered: 

the Co[OH] 2 cluster size will be a monotonically increasing function of 

the cluster size. So in areas with a high background density, the 

clusters can grow whereas in the lower density areas the clusters 

dissolve. The equilibrium density defined by (IX.2) has the same 

property if R < R . But from the stability analysis applied to the 
c 

CPG-model it is clear that for such small radii, fluctuations in the 

radii will be damped out if the time evolution of the background 

density is restricted to standard Fickian diffusion. One needs an 

unstable diffusion mechanism such as the anti-diffusion form to induce 

instabilities to the system. 

The Liesegang process is formulated in terms of three variables. 

Assumptions : 

i) the formation of the Co[OH] 2 complex is approximated by the 

following scheme : 



PATTERN FORMATION IN PHYSICO-CHEMICAL SYSTEMS 171 

k 
-1 
~ A+ 28 ~ C (IX.7) 

1 
where A is positive ion (Co++), B a negative ion (OH-) and C 

is an aggregate of AB molecules ( Co[OH) 2 ); 

positive reaction constants. 
k ' -1 

k are 
1 

ii) For each cluster of Co[OH] 2 there exists an Co++ equilibrium 

concentration Coeq, but now small clusters are assumed such 

that Coeq is a monotone increasing function of the relevant 

cluster size. 

iii) A flux of Co towards a local maximum of the Co concentration, 

which goes along with a local maximum in the cluster size by 

assumption ii), is only possible beyond some level B of the 
c 

negative ion (OH-) concentration. 

are neglected. l 

(Temperature effects 

iv) Only standard, Fickian diffusion is assumed to be valid for 

the OH component since the experiments have not given any 

evidence that the OH-diffusion is affected by ring formation. 

Essentially only the whole mechanism of cluster growth by competition 
and depletion by a flow of Co++ towards germs is modeled by the 

anti-diffusion equation included in the A-component evolution equation. 

The the linear coefficient in ~ depends on that OH- component such that 
for low values of the OH- concentration, no clustering will occur. Only 

at high levels of [OH) the anti-diffusion term will induce instability 
in the system and becomes a real anti-diffusion. 

Hence the aggregating process in A is governed by an anti-diffusion 
term: 

(IX. 8) 

with r 0 = r 0 (B). r 2 > 0, r > 0 and b. is Laplace operator. 

The reaction (IX. 7) links the Co++ concentration with the growth of 
Co[OHI~ and simulates precipitation effects. 

A second stabilizing factor was the electrolyte NH4Cl. The electrolyte 
influences the steepness of the van der Waals interaction potential. 
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Depending on the NH4Cl concentration, the Co[OHJ 2 clusters become more 

or less contracted. The coefficient 0 of the gradient term in V 

(equation IX.6a), the wave length of the unstable modes (see chapter V 

and the numerical simulations, chapter VIII). So the role of NH4Cl is 

simulated by 0 as the bifurcation parameter. 

Then the following model is derived , with A 

C = [Co[OH] I: 
2 

8 A -k AB2 + k c + D ti [r/ICA, Bl - E M] Ft 1 -1 A A 

8 B 
-2k AB2 + 2k c + D .t.B Ft 1 -1 B 

a c 
-k c + k AB2 

Ft -1 1 

where DA, D8 are positive diffusion constants, 

[Co0
], B 

(IX. 9a) 

(IX. 9b) 

(IX. 9c l 

r/l(A,B) = (-B + B )A - r A2 + r A3 with r > 0 and B some positive 
c 1 2 2 c 

constant reflecting pH-dependence of aggregation stability or 

instability of the Co-component; finally EA is a positive constant 

corresponding to 0 in the standard anti-diffusion model. 

Let A = A (1 + «), B = B (1 + /3) and C = C (1 + rl such that 
0 0 0 

k C = k A B2 ; let t = t<: and x = u; 
-1 0 1 0 0 

- -2 
scaling factors such that D,.. t/L = 1 

reduced for an one dimensional spatial 

with t and [ time- and space 

then the equations OX. 9) are 

domain [ 0, L ] c R to: 

-k[(1 + a:)(l + /3l2 - (1 + rl] + 9_:_[<1>ca:,f3) - c a2a] 
8~2 8~2 

(IX. lOa) 

[ ] 8 2 13 
-2k (1 + a H 1 + 13 l 2 - o + al + D ii af (IX.10b) 

: ~ = -k [ (1 + al - ( 1 + a J (1 + f3 J 2] (IX. 10c) 

where, for simplicity, one takes A = B = C , k = k B2 and 
0 0 0 1 0 

</J(a:,/3) = (-13 + 13 )a: -r'a2 + r'a:3 with r' > 0 
c 1 2 2 

(IX. 10d) 

No-flux boundary conditions are assumed. 
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For the homogeneous solution (a,~,4) = (0,0,0) the evolution equations 
for the disturbances u of a = 0, v of ~ = 0 and w of 4 = 0 are given in 
linear approximation by : 

a a2u a ~ = -k(u+ 2v - w) + ~ - c 
• c at;2 

a v 
a:r -2k(u + 2v - w) + D 

/3 

~ = k(u + 2v - w) 8 T 

(IX. llal 

(IX. llb) 

(IX. llc) 

Given the no-flux boundary conditions the eigenvectors of this linear 
lnt; system are proportional to cos(L)' 1 == 0, 1,2, .. and the eigenvalues 

µ(l) must satisfy : 

+ ~ p2 + 6k}+ µ(l){co p6 + c I /3 l 

+ (Sek + D ~ )p4 + (2kD + Sk~ )p2} + k(cD P.6 + ~ D o4 ) /3 c I /3 c I /3 l c /3 1 

2 where p 1 

0 

(IX. 12) 

All eigenvalues are real because if we write (IX. lla-llc) in matrix 
form, e.g. :~ = Lz with z = (u,v,w)T then Lis symmetric. 
For ~ > 0 all eigenvalues are negative and the state (a:,~,4) c (0,0,0) 

is stable. 

For ~ < 0 the system can become unstable, see Table IX. 5 below where c 

for specific parameter values the unstable modes are given. 

A non-homogeneous solution of (IX.10) can be constructed by using the 
existence of a non-constant bounded stable solution of the one 
dimensional anti-diffusion equation . 

Let ~(t;) ~ , constant such that a = O is an unstable solution of: 0 

a a 
a:r a22[~ca.~ ) - c a2a ] 

at; o at;2 

with ~ as defined in (IX. 10d). 

ox. 13) 

Then there exists a non-constant stable bounded solution a(t;l of 
(IX. 13). Take 4(t;) such that: 

4(t;) = (1 + ~ ) 2(1 + a(t;)) - 1 , V t; e [0,L] (IX. 14) 
0 
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then (a(El,fl ,7(E)) is a stationary solution of (IX.10). 
0 

If the evolution of fl(El is neglected, that is flCEl = fl 
0 

all time t, the system is reduced to the equations 

for all E and 

(IX. 10a) and 

(IX.10c). Then a solution (a(E),7(Ell will be a stable solution of the 

reduced system. Since aCEl is a stable solution of (IX. 13) the equation 

obtained by linearizing (IX.13) in a(El will have a complete set of 

eigenvectors W CEl with all eigenvalues equal or less than zero. The 

" reaction terms in (IX. 10a) and (IX. 10c) are linear in a and 7, and 

stable, so the linear system obtained by linearizing (IX. lOa) and 

(IX. lOc) in (a(E),7(Ell is a stable system and all disturbances as 

expressed in terms of the eigenvectors W (El will be damped. 
" 

IX.3.2.1 Numerical simulations 

The numerical simulations can be divided in two sections. First: 

the initial homogeneous state (a,fl,7) = (0,0,0) is randomly disturbed. 

If fl is positive no pattern formation occurs (the null solution is 
c 

stable). 

c unstable modes fastest growing 

0.0042 1 ::5 1 ::5 11 l = 8 

0.0024 1 :5 l ::5 15 l = 11 

Table lX.5: unstable and fastest growing modes. 

For fl = -1, k = 
c 

(13 c = -1 , k = 1, D l3 5) 

and D = 5, table IX.5 gives the unstable modes for 
13 

the two different c values used in the numerical simulations. The 

fastest growing mode is the mode with the largest (positive) 

eigenvalue. 

The simulations are performed on a grid with 96 points. In all 

simulations the coefficient r; l.n (IX.lOd) is always equal to 1 with 

D = 5. 0 and k = 1. The initial evolution is again according to the 
13 

fastest growing mode. Final patterns however have a larger wavelength. 

See figure IX.8 with r~ = -1 and c = 0.0024; figure IX.9 with the same 

r~ value and c = 0.0042 and figure IX.10 with r~ = -3 and c = 0.0042. 
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F'lgure IX.10 Anti-diffusion model: c = 0.0024, r'1 
2 2 

time = 0.2h ; -- : time = lOh . 

-3, 13 -1 
c 

The evolution of the 0-component is similar to that of the a-component; 

the final ~-pattern is a homogeneous one such that ~ - ~ is 
c 

sufficiently negative to ensure that the null solution stays unstable. 

So the final pattern is indeed of the form as given in the paragraph 

(IX.3. 1) of the foregoing section with a= 0 and~= ~o for all~. 

In the second group of simulations the parameters are taken such that 

now the null solution (a,~, 0 ) = (0,0,0) is stable. Now a pattern 

generating evolution is initiated by a large bump of the ~-component on 

the left side of the grid. (This can be seen as an approximation of the 

experiments with homogeneous distributed Co++and an OH--injection in 

the centre of the system, see paragraph IX. 2. 2. For all reported 

simulations ~c = 0.01 with again D13 = 5.0 and k = 1. 

The pattern depicted in figure IX. 11 is generated for r' = -1 and 
1 

c = 0.0024 and that of figure IX.12 for 

both cases the final pattern of ~ is an 

r' = -3 and c = 0. 0024. In 
1 

homogeneous one with a value 

sufficiently high to make the null solution unstable. 
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For fixed (3 the instability properties of a homogeneous solution 
c 

depends on c as well as on the final (3-level reached after smoothing 

out of the initial f3 disturbance. With increasing c the final pattern 

becomes less profiled, e.g. if c = 0.008 with the same initial 

conditions as in figure IX. 11 and IX. 12 the final pattern is a monotone 

one; if the initial f3 disturbance is too low the final pattern shows no 

profile at all. 

The anti-diffusion model has one major feature aggregation 

instability depending on the {3-component (OH--concentration). 

Instabilities are enhanced by the Co++ flux as is observed in the 

experiments. Temperature dependence is not incorporated and the modeled 

phase separation is of the spinodal decomposition type (second order 

phase transition). 

In the literature predictions about the final state with respect to 

spacing of the rings are based on linear analysis. In this case, the 

expected spacing would be given by the fastest growing mode as 

calculated for the linearized system (Metiu et al., 1979; Keller et al., 

1970). However, the simulations with the anti-diffusi.on model show a 

tendency to solutions with a longer wave length than those given by the 

fastest growing mode. Moreover, all the calculations are based on an 

initial homogeneous state which is assumed to be unstable. This is not 

consistent with the reported experiments with an imposed OH- gradient. 

So the linear analysis can only provide marginal evidence about the 

outcome of the process. Simulations with localized perturbations give a 

different pattern evolution than those with random perturbations, see 

figure IX.4 and figures IX.5 and IX.6 and also the simulations with the 

anti-diffusion model. In particularly the CPG model simulations with a 

localized perturbation show a dynamic pattern selection resulting in a 

characteristic spacing of approximately i; = 3.0 which ls not predicted 

by linear theory. 
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MIGRATION SYSTEMS 

X.1 Introduction 

In the recent era, the migration process within human population 

is characterized by the formation of new metropolitan areas. In 1860 

the number of metropolises with more than one million inhabitants was 

only five, Berlin, London, Paris, Peking and Vienna; in 1960 the number 

was 109 and in 1975 191 (Papageorglou et al., 1983). The cause for this 

steep increase in the number of large population centres can not be 

contributed only to the net surplus of births and the general increase 

of the total world population. The sudden urban growth ls also due to 

the tendency of populations to agglomerate. 

The reasons for this agglomeration process have been investigated in 

great detail (Forrester, 1970; Papageorgiou, 1979). Common to all 

explanations is the observation that people like and need to interact 

in various aspects, such as in the production and exchange of goods, 

services, information and education. Moreover, in all these aspects, 
\ 

scale factors are important, not only with respect to profitability of 

existing activities but also with respect to initiating new (branches 

of) activities. The support of a large home market, in both supply of 

labour and money, and demand for good and services, has an 

self-enhancing effect on the growth of population centres. These 

aspects become even more important with limited mobility (Allen, 1982). 

The concept of attractiveness is fundamental in the explanation of the 

- 179 -
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population flows. All the characteristics that make an area attractive, 

e.g. employment rates, economic mobility, housing, low-cost-housing 

programs, public services, schools, welfare budgets, legal 

restrictions, prejudice, racial and ethnic grouping, combine to 

influence migration (Forrester, 1970, 1974). An attractive area draws 

people. The influx of people can enhance the carrying capacity of a 

region through the appearance of better local infrastructure, transport 

facilities, formation of a skilled labor force; this represents an 

autocatalytic aspect (Allen, 1982). The differential growth of regions 

is supposed to be due to this self-sustaining mechanism of growth which 

can operate on initially small regional differences. 

A second aspect is that, with limited carrying capacity, almost every 

component of attractiveness is driven down by overpopulation. If there 

is an excess of housing, the area is attractive but a rising population 

crowds housing. If there is an excess of jobs, the area is attractive, 

but the incoming flow of people fills those jobs. In other words, 

migration continues until the attractiveness of the area falls and 

becomes equal to that of all other places from which people might come. 

The condition of population equilibrium is defined as equal 

attractiveness of all areas for any given population class. If one 

component of attractiveness is increased in an area, other components 

must necessarily fall to establish a new equilibrium. If an area is 

more attractive, inward migration will occur until it ls overloaded. 

Unable to cope with the influx, the area falls to the lowest 

attractiveness level with which it communicates (Forrester, 1970}. 

Regarding the migratory process as embedded in a dynamical system, two 

kinds of migrating dynamics can be distinguished: 

a) The migration takes place under quasi-constant global social, 

economic and environmental (boundary) conditions, the control 

parameters of the system. If the migratory system starts from some 

unstable state, the system shall approach a stable state, if present, 

defined by the boundary conditions and will stay in that state. 

bl In the course of the evolution, the global boundary conditions 

may change and the corresponding control parameters can cross a certain 

critical value which means by definition that the global dynamic 
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structure of the system is changed. If the system crosses a bifurcation 

point, the dynamic structure will change qualitatively and 

quantitatively: stability characteristics will change, new stable 

states can arise. Accordingly, a new migratory dynamics will evolve. 

Such a global change of the system's structure is called a phase 

transition in analogy to similar phenomena in physics and chemistry. 

In Papageorgiou et al. (1983) the agglomeration process is regarded as 

the evolution of fluctuations from an unstable spatially uniform 

steady-state solution of the migration evolution equations. In this 

case, a structural change in the migration process, is given by a 

change in stability properties of the uniform solution of the system. 

In this chapter, essentially two types of modeling migratory systems 

will be described. Both are based on the concept of attractiveness and 

use a statistical mechanical approach. 

The first one stems from Haag and Weidlich (1983, 1984, 1986) and the 

second one is based on the migration form of the anti-diffusion 

equation as derived in chapter IV. Both models are 'phase transl.tion' 

models. The attractiveness, formulated as a function of the population 

density, takes over the role of the Ginzburg-Landau free energy 

functional in physico-chemical systems. However as we shall see, the 

formulation of the migration dynamics in the two models is conceptually 

different. 

In paragraph X.2 the model of Weidlich and Haag is introduced. In the 

following paragraph X. 3. 1, this model is compared with the general 

migration model derived in chapter IV.5. Using Dutch internal migration 

data, the parameters of the last model are estimated; the results are 

summarized in paragraph X. 3. 2. Surprisingly, indications of a 

structural change in the dynamic behavior are found. 

X.2 Phase transition migration model (I) 

The migration model as formulated by Haag and Weidlich (Weidllch 

and Haag, 1983; Haag and Weidlich, 1984, 1986) is based on two 

principles borrowed from statistical mechanics. The first one is the 
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description at the mezoscale level. The spatial domain is divided in 

subdomains (cells) where the specific individual behavior of the 

elements is assumed to be identical, see also chapter VI. Apart from 

the intrinsic stochastic behavior supposed to be present in the 

individual migration decision process, this coarsening introduces 

deviations from the observable migration process. Note that for 

instance the CPG model (chapter IX) is based on a similar assumption 

with respect to the particle size distribution in a cell. 

The second one is the separation of the migration dynamics from the 

migration motivation factors as mentioned in the introduction of this 

chapter. The migration dynamics is fully determined by the evolution 

equations of the (probability distribution function of the) area 

population numbers n1 . The characteristics of the dynamics will depend 

on a parameter set (a:1 , ... , a:A). The parameters o::1 are called trend 

parameters. The individual decision to migrate is motivated by certain 

factors (µ1, ... ,µM) describing the intensities of the different reasons 

1, .. ,M. Hence the dynamics will depend through functional relationship 

of (a1 , .. ,a ... ) on (µ1 , .. ,~) on these specific economic, sociological, 

psychological reasons. The factors (µ 1, .. ,µM) are comparable with 

physical quantities as temperature, pH etc.. The model is formulated 

purely in terms of the population numbers n 1 of an area and the trend 

parameters (o::1, .. ,aA). At a second level, the relation between specific 

motivation factors and the parameters (o::1, .. aA) is made explicit by 

linking e. g. economic factors with the migration dynamics. Thus the 

approach is fully compatible with that described in chapter IV. In the 

Liesegang model, one of the physical "motivation factors" (pH) is an 

integral part of the system equations. 

The migration model is derived in the following way. Let 

n = (n1 , .. ,nL) be the L-dimensional array of population numbers and let 

P(n1 , .. ,nl;t) = P(n;t) be the associated probability distribution 

function. The dynamics of the system is governed by the equation of 

motion of the probability distribution: the master equation. The 

process is assumed to be Markovian. In the approach of Haag and 

Weldllch the number of admissible transitions between states is reduced 

drastically. Let E±k be the translation operator defined by 
! 
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where k is a positive integer and f is any function of n 

This master equation is now defined as: 

where 

and 

L 

8P(n, t) = \ {w (nJI )P(nJI t) - W (n)P(n, t)} 
at L 1J • JI 

jl 
n 

I , J = 1 

(X. la) 

(X. lb) 

W (n) is the transition probability per unit time from n to nJ! JI 
by migration of any of the n1 individuals from area 1 into 

area j. 

\.I (n) = W(nJ 1 ; n) 
JI 

P(nJ 1 • t+dt In· t) lim ' ' 
H~O L).t (X.lc) 

where P(nJ 1;t+dt!n;t) is the probability that the system is in state 

n1' at time t + L).t if the system was in state n at time t. 

In equation (X.1a) the transitions are restricted to the ones between 

adjacent states which supposes that only one individual will migrate 

per unit time. This is based on the assumption that individual 

decisions to migrate are independent (and identical). We give here the 

argumentation as found in Kanaroglou et al. (1986a). 

Let p ( t, L).t) denote the probability of migrating to region j from JI 
region i during time interval [t,t+dt] for a particular individual in 

region i. Then the corresponding instantaneous propensity of migrating 

to j from i is given by 

q (t) : = 
jl 

p (t,dt) 
lim ~JI ___ _ 

.n~o dt 

For infinitesimal time intervals, equation (X.2a) implies that 

p (t,dt) = q (t)M 
j I JI 

(X.2a) 

(X.2b) 

Now using the assumption of independent individual decisions to 

migrate, the probability of h migrations from i to j during time dt, 

given the population vector n at time t, is: 

(X.2c) 

In consequence, as dt ~ 0, it is sufficient to concentrate on the 

probability of a single migration from i to j during time L).t. 
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Secondly, applying again the independence assumption, the probabi l.i ty 

of h migrations per individual during ll.t is of the order ll.th. Hence 

changes in the system are represented only by a sequence of adjacent 

states. 

For a single migration from i to j during ll.t, 

P(E+1E-1n t + ll.t!n,t) = q n .tlt[l - q ll.t]ni-1 . Use 
j i ' JI I JI 

w : 
JI 

W = n q (t) 
j I I j I 

the probability ls: 

(Xl.c) to find for 

(X.2d} 

Here the transition probability W is given by the transition rate q 
JI JI 

which describes mezo action. The macro dynamics are directly linked 

with mezoscopic behavior. 

Now to specify the rates q , it is assumed that the attractiveness of 
JI 

an area i for a member of the population is characterized by a utility 

function f 1 (n1 ). This utility function is assumed to be polynomial in 

n 1 with on area specific parameters. 

(X.3) 

The trend parameters <\, K 1 and µ 1 depend on all motivation factors. •\ 

comprises all factors which are independent of the population: climate, 

landscape; K 1 contains the cooperative factors: employment, occupation, 

schools, and related factors such as distance between work and home. 

parameter µ 1 contains all factors which have to do which saturation 

effects: rents, traffic congestion, housing (Haag and Weidlich, 1986). 

The attractiveness of an area influences the dynamics of the migration 

by the assumed effect on the individual migration decisions: the 

individuals are maximizing their utility. This assumption ls formalized 

by taking qJI as a function of the utility fJ(nJ + 1) of the 

destination area j and the utility f 1 (n1 ) leaving aside the utilities 

of all other areas 1 ~ i, j. As a specific functional form is chosen: 

q = v ·exp [ f ( n + 1 ) - f ( n ) ], v > 0 
j I J j I ! 

(X.4) 

with v a global mobility parameter determining the time scale of the 

migration process. A distance discounting factor is not included but 

can easily be incorporated. This formulation of qJ 1 ls based on the 
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assumption that on the individual level, migration is motivated by 

differences in the attractiveness between origin and destination only 

(Weidlich and Haag, 1983). The individual decision process is based on 

individual preferences. 

So the system description is given by the equations (X.la-c) completed 

with the equations (X.2d), (X.3) and (X.4). 

In Haag et al. (1986) the most probable stationary population numbers 
~ 

n1 , i = 1, .. L are calculated in the case that saturation parameter 

µ 1 = 0 for all i. The result is: 

n 
I 

where N 

N 

N·exp[2o + 21< cii + o.sJJ/N, i 
I I I 

1, ..• L. 

L l n1 , the total population number and 
I =1 

L l exp[2o1 + 2K 1 (n1 + 0.5)] 
1=1 

(X.Sa) 

(X.Sb) 

For o1 = O and 1e 1 = 0, i = 1, .. , L, the only solution of (X. Sal is the 

equidistribution of the population, n1 = NIL fQr all i. In this case 

the stationary distribution Pst will be unimodal. 

In general, at the crossing of some critical values of the parameters o 
and K, the set of L nonlinear transcendental equations (X.Sa) will have 

several different solutions which define multiple maxima of the 

stationary probability distribution Pst. This change from unimodality 

to multimodallty is denoted as a phase transition. 

The full solution of the master equation is unknown. Therefore it is 

reasonable to seek the evolution of some particular states which 

characterize the probability distribution P(n, t). In particular the 

mean-value state n(t) = (n (t), .. ,n (t)) is investigated. 
1 L 

The mean population size of j at time time t is defined by: 

nJ(t) = l nJP(n,t) 

where the summation is over all configuration (n1 , .. ,nL). 

Our main interest is to compare the migration kinetics of the 

]aag-Weidlich model with those of the anti-diffusion approach. So for 

the derivation of the mean value evolution equations we refer to Haag 

and Weidlich (1984) and also to Kanaroglou et al. (1986a-b). The final 
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form is 
L L l vn exp[f (n) - f (n )] - l vn exp[f (n) - fj(nj)] 

l=l I j J l I l=l J I I 

(X. 6) 

The upper bar denotes mean values. 

The equations are derived under the assumption that the probabi 11 ty 

distribution P(n, t) is unimodal and strongly peaked which allows for 

the approximation of W(n) by W (n) = n q (n), see also chapter VI. 
Ji JI I j I 

We shall denote the Haag and Weidlich model (X.6) by HW model. 

X.3 Phase transition migration model (II) 

In chapter IV, the following migration model was formulated: 

[ ~ { 1 ov 1 ov }] Tn 1 = -M· l w(l,j) /\"·~ - /\"·;;;- l = 1, .. ,L 
j=1 I pi j pj 

(X.7a) 

where M is a positive constant, p 1 the population density in domain 1, 

A1 the area of domain l, l = 1, .. ,L and w a non-negative symmetric LxL 

matrix of weighting coefficients. 

The dynamics is characterized by minimizing the functional V under the 

restriction of constant total 

functional V was defined by 

V(p) = f f(p) + ~r(Vp) 2 dx 

population N = fL n 
l!=1 I 

where the 

(X.7b) 

The gradient term (Vp) 2 takes in account the (possible) non-homogeneous 

environment of a point of the system (see chapter III). 

For a discrete space with L subdomains 1 of area A1 the contribution of 

f to V can be written as fL f(p )A . Denoting the boundary of domain 1 
l!=1 I I B 

by r and the exterior normal derivative to r by Bv' to find 

1 f 8 = </J(p l - r·-· -p dr 
1 A av 1 

I r 
(X.8) 

with f(p) = J.1Hcr)dcr and the integral term is obtained by applying 

Green's identity for a spatial domain (John, 1982). 

This integral term gives the amount of mass flowing per unit time 

through the boundary r of domain 1 caused by density differences 
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denoted as flux. The flow is opposed to the gradient of p (~~}; in the 

limit case of a small domain, the term just gives the standard Flckian 

diffusion term. 

Applying the separation between migration dynamics and motivation 

factors, as expressed above, the attractiveness F of domain 1 is given 

as a function of p only. In contrast to the formulation in paragraph 

X. 2, F is not taken domain-specific. The relation between migration 

dynamics and density are assumed to be identical for all domains. Hence 

in this case the attractiveness must taken as a function of the density 

and not of the population number. (The non-homogeneity assumption ls 

not excluded by the model formulation but will increase the number of 

parameters of the model significantly. ) 

The basic assumption is that the evolution of the system can be 

characterized by maximizing the total (global) attractiveness of the 

state given by minus V(p); each domain 1 has as an attribute an 

attractiveness essentially given by -f(p1 )A 1 adjusted with the 

divergence term which models cohesion between neighboring domains. In 

this way equations (X. 7a) with (X. 8) are assumed to be mode ling a 

migration process and denoted by AD model. 

This model formulation differs essentially of that used by Haag and 

Weidllch, a fact which becomes clear by comparing the transition 

probabilities which form the kernel of both systems. 

The time scale is always such that typical individual behavior can be 

neglected: all individuals in a particular domain act according to a 

similar pattern. In the case of the HW model the migration process is 

seen as a sequence of single transitions per unit time. And the 

migration dynamics is based on an individual (mezoscopic) decision 

process which depends on local attractiveness differences only. On the 

time scale of the AD model however, a net migration flux o depends on 
kj 

the attractiveness f (p + o IA )A + f (p - o IA )A of the new 
k k kJ k k J J kj j j 

state, and that of the old state f (p )A + f (p )A (neglecting the 
I< k k j j j 

gradient term): temporary opportunities are averaged out. At each time 

step, the elements tends to reorder themselves in a configuration which 

coincides with a maximum of the total attractiveness -V(p). 

With respect to the HW model two questions arise: is it possible to 

allow for averaging out individual, with respect to the model random, 
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behavior and at the same time restricting to single transitions? 

Secondly, when applying the model to empirical data, can the time scale 

of the model in anyway be compatible with the time scale of data 

acquisition? Both questions can be answered by no. The averaging out 

process presumes not only a grain spatial structure but also a time 

scale on which individual behavior can be neglected which means at the 

least a time scale on which not only single transitions occur. The 

continuous time formulation is a shorthand for a discrete time notation 

(Haken, 1978). Moreover, the time scale of data measurement is in most 

cases rather long. Note that the single transition aspect of the H-W 

model has disappeared from the final equations: f /n1) instead of 

f (ii + 1). 
J J 

The most probable configurations of the AD system are given by the 

minima of the 'free energy' (=maxima of the total attractiveness). The 

concept of the AD model is, of course, strongly related to 

entropy-maximizing models. In that case the most probable spatial 

configuration possesses the greatest number of states associated with 

it; it ls the situation in which an element of the system can be 

everywhere with equal probability. The uncertainty with respect to the 

position is maximal (Wilson, 1970; Nijkamp and Paellnck, 1974). We 

recall that minimization of the free energy ls maximization of the 

entropy for isolated systems (chapter I) and also that in open systems, 

the minimum of the free energy is not necessarily given by the 

disordered state. 

Based on the assumption that the attractiveness of a domain ls a 

function of the population number or density only, the mezoscoplc 

migration dynamics are directly linked with the macroscopic pattern in 

both system descriptions. The essential difference ls given by the time 

scales used, on which the mezoscoplc modellng is based. As a 

consequence the relation between attractiveness and probability to 

migrate ls defined differently. We think that the AD approach ls 

consistent with the basic assumption of a mezoscopic description that 

all elements of a cell (domain) behave identically. 
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X.3.1 Model specification and parameter estimation 

The model formulation (X.7a) with equation (X.8) was based on the 

general form derived in chapter IV, section 5. In this case the 

specification of the transition okj allows for the identification of 

the terms in the summation of equation (X. 7a) with the net migration 

flows between the different domains; denoting the net mass flow between 

subdomain j and k in the direction of k by MkJ' one gets 

{ 1 ov 1 ov } M = -M·W(k j) ~·~ - ~·~ 
kJ • A op A op 

' k k J J . 

(X.9a) 

Define NB(k) as consisting of those indices j such that domain j has a 

common boundary with domain k; let D(j,k) be the distance between the 

centers of domain k and domain j and let furthermore the length of the 

common boundary between domain j, j e NB(k), and domain k be given as 

f(j,k}, then the flux term in equation (X.8) is approximated as 

follows: 

1 f ~vpkdr = / [ [ru. kl (p - pkl/D(J, kl] 
\, r k JENB(k) j 

(X.9b) 

The right hand side of (X.9b) shall be denoted as flux(k). 

No-flux boundary conditions are tacitly assumed since only fluxes 

between neighborlng domains contribute to the summation; the model 

describes only redistribution of the population. 

The weighting factor w is identified as a discount based on the 

distance D(j,k). The attractiveness differences motivating a migration 

are discounted for spatial distance modeling cost effects. In the so 

called Gravity Models, the migration flow between two locations j and k 

is proportional to the product of number of people at location j and 

the number of people at location k, and inversely proportional to the 

distance between these locations raised to the s-the power, see Zipf 

(1946). An exponential form is chosen as in the gravity migration 

models (see also entropy maximization models, for example, Nijkamp and 

Paelinck (1974)): 

w (j, k) = exp [ oD (j, k J ], j, k = 1, .. , L (X.9c) 

where o is parameter measuring the cost effect. The expected sign of o 
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will be negative. 

Finally the (homogeneous) attractiveness function -f (p) is specified as 

before in polynomial form: 

(X.9d) 

hence ~(p) in (X.8) is 

~(p) = /31p + /3 p2 + /3 PJ 
2 3 

(X.9e) 

Since all terms in (X.9a) are differences, any homogeneous distribution 

is a solution and the model can be written in the deviation u of the 

mean value of p, defined as: 

where 

u (t) 
I 

p( t) 

(pl(t) - p(t))/400 (X.10a) 

(X.10b) 

with summations over all l = 1, .. , L; p( t) is the mean value of all 

p 1 (t) (over the chosen period). (This mean value is approximately 400.) 

In that case, neglecting the cohesion term (X. 9b), the dynamics will 

give a clustering process if /31 is negative (see chapter II and III). 

The quadratic term stands for the cooperative factors: the possibility 

of encounters is proportional to p2 and the outcome will depend on 

economic factors as income, rent, skilled labor force, transport 

facilities, etc. The trend parameter /31 takes account of these factors. 

Assuming limited carrying capacity, the growth of a region is bounded; 

there are bounds on the growth if /3 3 is positive. Saturation effects 

will inhibit further growth, hence we expect that 133 will be positive 

if /31 is negative. 

The flux term (X. 9b) has a smoothing effect. The model assumes a 

constant population density in a specific domain and this term adjust 

the data at the boundary of a domain. Since the fourth order term sets 

the bounds on the carrying capacity of a domain and the gradient term 

will smooth the data, it is to be expected that these terms play 

complementary roles if the bounds are active (negative /31). 

Including the positive constants • and M in the linear parameters ~. 1 

the net migration flows are modeled as follows 
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M 
lj 

= -w(l,j)[~ (u - u) + ~ (u2 - u2 ) + ~ (u3 -
11 J 21 j 31 

-r(flux(l) - flux(j))J ~ l < j s L 

with flux(l) =Al [ [r(l,k)(uk - u 1 )/D(l,kl]. 
I kc:NB (I) 

(X. 11) 

and '¥ (j, l) = exp [ o D (j, 1)] and r (j, k) the length of common boundary 

between area j and k. NB(l) = {k e (1, .. ,L) I f(l,k) * 0 & 1 * k}. 

The basic model equations were obtained as the most probable path 

equations of a stochastic process (see chapter IV). The population 

change in an area l was based on the net migration flows between all 

other areas j, j * 1. In accordance with this specification, deviations 

from the deterministic path were considered by adding a stochastic term 

to each of the migration flows (see equation IV.30d in chapter IV. l 

Since M = -M 
I j JI' 

this stochastic term was given as S with S = -S 
IJ lj jl 

and S = R with 
lj n 

is a 0.5(L2 - L) 

n = j-1 + (1-ll·L for 1 s l < j, 1=1,2, .. ,L-1 and R 

dimensional vector of random variables with 

<R(t}> = 0 

<R ( t )R ( t 1 ) > 

(X. 12a) 

(X.12b) 
n m 

As in chapter IV, paragraph 8, Q is taken diagonal, especially 

Q = ~2 ·I. Furthermore it assumed that the stochastic process ls 

Gaussian. 

In the following estimation procedure, an error term is assumed of the 

form (X.12) with Q diagonal and the addition that~ is time dependent. 

In the formulation of equation (IV.30d), chapter IV, the deterministic 

part has constant, time independent coefficients. Here, the parameters 

~. r and o are assumed to be time dependent reflecting changes in the 

economical environment between the periods. 

Define for n = j - l + (l-l)·L, 1 s l < j s L, n = 1, .. ,N, 

M(n) = M 
I j 

and the explanatory variables 

w(n;oJ 
R(n,1) 

IJl(l, j) 

: net migration flow, 

distance discount factor, 

difference of deviations from 

density mean-value, 
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R(n,2) 2 2 
u - u 

I j 

R(n,3) 3 3 
u - uJ, 

I 

div(n) flux(l) - flux(j) 

D(n) D(l, j) 

f(n) ro, Jl 

and the error structure: 

E( ·) = N(O, o-2 I) 

and 
N O.SL{L-1) 

difference 

boundary, 

distance, 

of fluxes through 

length of common boundary between 

area l and j, 

Gaussian error term. 

Number of observations where L is 

given by the number of areas. 

With the above defined variables the model, for each n, is written as 

M(n) = -w(n;o)[ [ ~kR(n,kl - r div(n) + E(n)] 
k=l 

(X.13) 

The model parameters are ~ 1 • ~2 • ~3 • r. o and o-. 

The data are net (= inflow-outflow) internal migration flows between 

the eleven Dutch provinces. The recently formed province "Flevoland" is 

excluded. Hence for each year, there are SS independent net migration 

flows (N = SS). The measurement period is one year. The data were 

collected for the years 1970-198S (source C.B.S. ). The same source has 

supplied the population densities p 1 and the area A1 of the provinces. 

For the distance variable D(l, j) is taken the distance by railway 

between central places of the provinces. The variable f(l,j) which ls 

the length of the common boundary between two provinces j and 1 has to 

be constructed. Of course, r(J, 1) is zero if the provinces are not 

neighbors. In other cases f(j, l) is approximated by the sum over the 

distance between places lying on the vertices of the common boundary. 

The variables D(j,l) and f(j,ll are taken constant over time and scaled 

down to units of 100 km. 

Since the model is written in u, the deviation from the mean density p, 
-

parameter tl 1 determines whether the state with pi = p, 1 = 1, .. ,L, ls 

stable or not. Neglecting r, the uniform state u ~ 0 is stable if 131 is 
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positive, otherwise this state is unstable. The former case means that 

the migration flows are from high density areas to low density ones; 

the migration process tends to smooth out density differences. If ~1 is 

negative, the density differences are retained and may be enhanced. So 
a change in the sign of ~1 indicates a structural change in the 
migration process and will be viewed as a phase transition. 

In table X. 1 the total net migration is given for some years. The first 
column gives the provinces code names, the second one the mean 

population density over the estimation period. In the following columns 
a negative value means a decrease, a positive value an increase in 
population by migration. 

total net mlgra tion mean 
Area p 1974 1976 1978 1980 1982 1984 

DR 155.38 4376 1637 1012 849 -37 736 

FR 171. 38 2978 2399 2555 1367 46 -1730 

ZE 190.43 2022 1828 2712 1309 -6 -1039 

GR 234.96 400 1901 1559 232 284 -1271 

ov 263.80 861 498 538 1 -174 -1411 

GE 333.33 7229 3594 2273 1838 1027 2389 

NB 407.80 11942 8686 4141 2137 -1381 -321 

LI 489.05 -1171 -1152 131 -844 -915 -1617 

UT 667.75 1644 402 1301 3422 2708 2538 

NH 863.84 -10852 -5795 -6942 -4943 -707 2905 

ZH 1065.63 -19321 -13998 -9280 -5377 -923 -1179 

Table X.1: Total net migration. The second column p qlves population 
density of provinces (column Area}. 

1985 

770 

-2077 

-1037 

-2173 

-2337 

3682 

2 

-1330 

2765 

3769 

-2052 

The data in table X. 1 indicate a direction reversal of the migration 

flow in the period 1974-1985. Typical low density areas (except area 

DR) have a negative migration surplus in the second part of the period; 

the two highest density areas, taken together, have a positive surplus 
in the same period. This could give a sign reversal of the coefficient 

~1. 
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Given the Gaussian error structure of E, the values of the parameters 

C'i, (31 , i 1,2,3, 7 and cr can be estimated by means of maximum 

likelihood. 

Let e = (C'i,(31 ,(32 ,(33 ,7,cr) then the likelihood function L(e) of (X.13) 

ls given by 

L(e) = L(C'i,(3 ,(3 ,(3 ,7,cr) = (2n:)-N/2cr-11 • ~ i!l-1 Cn;C'i)·exp[-!a--2 ·URSs] 
1 2 3 n=l 2 

with 

URSS (X.14) 

and maximum likelihood (ML) estimates of e are those values which 

maximize L(e)J (see for example Maddala (1977)). The ML-estimates will 

be denoted by e, and the estimated migration flows calculated on the 

base of the estimators will be denoted by M. 

Instead of maximizing the likelihood function L(e) it is convenient to 

maximize the log of the likelihood function, log[L(e)], 

N 

Log[L(0)] = - ~log(2n) - ~log(cr2 ) - r log(q,(n;C'i)) - ~-2URSs 
n=l 

(X.15a) 
with URSS defined in (X.14). 

The estimators of e are denoted by 0; ~ can be solved directly from 
a (X.15) by the condition acrlog[L(e)J = O in the optimum, hence 

~2 = !tmss 
II 

(X.15b) 

which is called the maximum-likelihood estimate of cr2 if URSS is 

evaluated at e =e. Inserting (X.15b) in (X.15a), suppressing the 

constant, one has to maximize MLCelcrJ: 

II 

MLCa!cr = ~) = - ~log(URSS) - r log(q,(n;C'i)) (X.16) 
n=l 

Since the estimation procedure involves only one non-linear parameter 

(C'i), a golden section search method (GS) on the parameter C'i combined 

with ordinary least-squares estimates of ((31,(32 ,(33 ,7) given C'i, is 

applied. The stop criterion of this GS-method ls formulated in terms of 

the length of final search interval for parameter C'i. As a second method 

a Quasi-Newton (Variable Metric) procedure based on the algorithm of 

Davldon-Fletcher-Powell (DFP) was used. In this case the stop criterion 

was formulated in terms of the norm of the gradient of MLCaju) 
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(Luenberger, 1973; Minoux, 1986). Implementations of the methods can be 
found in Press et al. (1986). The GS-method is very practical in 

searching over large intervals and supplies reasonable starting values 
for the variable metric method. The results from both methods are 
checked with respect to each other. 

The information matrix 1(9) is defined by the expected value of minus 

the Hessian of log[L(e)J in e =e. The ML-estimators 9 are 
asymptotically normally distributed with variance [Ha ll-1 . 

Approximations of the bounds of confidence 

are obtained by approximating I(e) by 

1977). 

intervals of the 
a2 

--log[L(e)J I _A 
892 IJ-ll 

estimators 

(Maddala, 

Finally, to test whether a variable contributes significantly to the 
value of log [L(e) I or not, the generalized likelihood ratio test can 
applied: 

Let S be the parameter index set. To test a hypothesis 

1f0 : ek = o, e 1 ~ o for all k e sk and 1 e s 1 with sk e S1 S 

(X.17a) 
against the alternative hypothesis 

(X. 17b) 

define 
A A 

LCej1f )/Uel1f l 
0 1 

(X. 18) 

where L(ejJf0 ) is the value of L(e) in the optimum if Jf0 is true. 

Then -2log(i\) is (asymptotically) chi-square distributed with #(SI<) 

degrees of freedom (= number of restrictions) (Mood et al., 1974; 

Maddala, 1977}. Let A:: 2 (r) denote the (1 - a:}-th quantile of the 1-<X 
chi-square distribution with r degrees of freedom, then 

reject 1f0 if and only if -2log(i\) > A:::_"' (r). 

In the tables below, the column denoted by -2LR will give the value of 
-2log(i\) with respect to the tested Jf0 hypothesis. 

Any decision with respect to inclusion or exclusion of variables must 

be taken considering the theoretical background of the model. For 
instance, the variable R(·, 1) is not to be excluded since it determines 
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essentially the qualitative properties of the model; and if /3 1 is 

negative, boundedness of solution needs the inclusion of the third 

order term R(·,3) (with positive coefficient). 

With respect to the explanatory variables, table X.2 gives the 

correlation coefficients between the linear variables R(·,k), k = 1,2,3 

and the div( ·) variable as calculated for the year 1977. (Similar 

results for all other years.) A strong correlation will result in 

rather large changes in the estimated parameter values after exclusion, 

c.q. inclusion of one of those linear variables. 

variables R( ·, 1) R( ·, 2) R(-, 3) di v ( . ) 

R(-, 1 l 1. OOO 0.8190 0.8663 0.6792 

R( ·, 2) 1.0000 0.9703 0.8203 

R(-,3) 1.0000 0.8864 

Table X~ 2: correlation between linear explanatory variables. 

Table X.3 gives the results of the estimation procedure with no 

restriction on any of the parameters. 

The column -2LR in table X.3 gives the value of 

with e = (<'5,/31 ,/32 ,/33 ,r,<Tl; the null 

A A 

-2log[L(Bl1fo)/L(ejX1ll 

hypothesis }{ 
0 

ls 

/3 1 = /32 = /33 = r = 0, all other parameters free, the alternative 

hypothesis x1 is that all parameters are free. 

The 95-the quantile of the chi-square distribution with 4 degrees of 

freedom, x95 (4), is 9.48773 (Pearson et al., 1970). Hence, at a 

significance level of 0.05 in all years except 1982, the hypothesis X0 

is rejected; recall that this hypothesis says that the migration flow 

data are just realizations of a stochastic process with zero mean-value 

and covariance u2 ·w(nlw(m)·o(n-m), n,m = 1, .. ,N. Since x (4) = 13.2767 
99 

the null hypothesis is not rejected in 1981 and 1982. 

The column denoted by r 2 gives the square of the correlation 

coefficient between M(·) and M(·), the estimated value of M. Again, in 

1982 the estimated values are not correlated in any way with the 

observed data. 
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parameters 

(:j2 (:j3 
2 

-2LR 2 year 0 (:j 1 • (]' r 
/3=0,7=0 

1970 -0.28 1. 51 4.69 -2.95 1. 43 5.53 44.68 0.69 (0.03) (0.72) ( 1. 50) ( 1. 20) (0. 63) 

1971 -0.27 2.30 3.45 -2.04 1. 19 6.82 56.90 0.53 (0.03) (0.83) (1. 41) ( 1. 18) (0. 61) 

1972 -0.27 1. 24 2.42 0.03 0.47 
7.86 75.52 0.59 (O. 03) (0.74) ( 1. 33) ( 1. 17) (0. 56) 

1973 -0.23 1. 63 3.64 -0.52 -0. 10 
9.51 73.08 0.57 (0.02) (0.77) ( 1. 40) ( 1. 21) (0. 61) 

1974 -0. 17 1. 33 2.00 -0.58 0.22 4. 13 74.36 0.62 (0.02) (0. 46) (0. 81) (0. 69) (0. 35) 

1975 -0.25 1. 82 2. 11 -0.98 0.66 
4.96 84.72 0.63 (O. 03' (0.50) (O. 81) (0. 69) (0. 36) 

1976 -0. 18 0.77 0.59 0.11 0.00 
3.31 67.38 0.55 (0.03) (0. 31) (O. 53) (0. 50) (0. 24) 

1977 -0. 19 1. 07 0.69 0. 12 -0.00 
1. 85 97.82 0.68 (0.02) (0.28) (O. 47) (O. 42) (0. 21) 

1978 -0.23 1. 23 1. 08 -0. 17 -0.01 
1. 53 81. 84 0. 70 (0.02) (0.35) (O. 56) (O. 50) (0.26) 

1979 -0.20 0.67 0.68 -0.51 0.54 
0.87 49.90 0.63 (0.03) (0. 28) (0. 44) (0. 39) (0.23) 

1980 -0.23 0.54 0.26 0.03 0.27 
1. 59 35. 76 0.43 (0.03) (0. 35) (O. 62) (0. 55) (0. 29) 

1981 
-0.20 -0.06 -0.43 0.23 0.29 

0.88 10.35 0. 14 (O. 03) (0.26) (O. 49) (0. 40) (0. 23) 

1982 -0.17 -0. 17 -0.39 0.27 0. 13 
0.43 8.28 0.04 (O. 03) (0. 1 B) (O. 35) (0. 28) (0. 16) 

1983 -0. 18 -0.38 -0.42 0.28 0.28 
0.37 17.92 0.25 (0.03) (0. 17) (0. 31) (0.26) (O. 15) 

1984 -0.16 -0.68 -0.47 0.37 0.30 
0.45 26.26 0.33 (0. 03) (0.23) (O. 35) (0. 29) (0. 19) 

1985 -0. 16 -0.85 -0.23 0.21 0.46 
0.72 28.24 0.38 (O. 03) (0.28) (O. 40) (0. 34) (0. 22) 

Table X.3: estimated values 0£ parameters; standard errors between 

brackets; column -2LR qlves -2loq(X) (X.18) with 

respect to the hypothesis: fJ = O, I = 1,2,3 and 7 = O; 
2 I A 

r is square of correlation coefficient between M and H. 
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parameters 

(3 3 
2 -2LR 

2 
year 0 (31 (3 2 CJ' r 

r=O 

1970 -0.28 0.73 3.27 -1. 02 5.75 6.56 0.68 
(0. 03) (0. 64) (1. 30) (0.85) 

1971 -0.27 1. 68 2.38 -0.42 7.64 4.01 0.52 
(0.03) (0.75) ( 1. 35) (0.96) 

1972 
-0.28 1. 00 2.01 0.67 8. 17 0.66 0.59 
(0.03) (0. 68) ( 1. 25) (0.93) 

1973 
-0.23 1. 68 3.72 -0.66 9.52 0.02 0.57 
(0.02) (0.72) ( 1. 33) (0.89) 

1974 -0.18 1. 23 1. 82 -0.28 4.28 0.42 0.62 
(0.02) (0. 43) (0.77) (0.54) 

1975 
-0.25 1. 49 1. 55 -0.12 5.29 3.54 0.63 
(0.03) (0. 46) (0.77) (O. 55) 

1976 -0. 18 0.77 0.58 0. 12 3.31 0.00 0.55 
(0.03) (0.30) (0. 50) (0. 37) 

1977 -0.19 1. 07 0.69 0.12 
1. 85 0.00 0.68 

(0.02) (0. 27) (0. 44) (0.32) 

1978 
-0.23 1. 24 1. 09 -0.20 

1. 53 0.00 0.70 
(0.02) (0. 34) (0.54) (0.37) 

1979 
-0.19 0.39 0.26 0. 15 

0.91 6.98 0.62 
(0. 03) (0. 24) (0. 41) (0. 31) 

1980 
-0.24 0.42 0.06 0.36 

1. 64 0.86 0.43 
(0. 03) (0.33) (0.60) (0. 45) 

1981 
-0.20 -0. 19 -0.61 0.55 

0.88 1. 78 0. 11 
(0.03) (0. 24 l (0. 48) (O. 34) 

1982 
-0. 17 -0.22 -0.47 0.40 

0.43 0.66 0.04 
(0.03) ( 0. 17) (0. 33) (0. 24) 

1983 
-0.17 -0.47 -0.57 0.56 

0.36 3.60 0.17 
(0.03) (0. 1 B) (0. 31 J (0. 23) 

1984 
-0.15 -0.78 -0.65 0.69 0.46 3.35 0.26 
(0.03) (0. 25) (0.35) (0.27) 

1985 
-0. 16 -1.01 -0.53 
(0.03) (0.30) (0. 40) 

0.70 
(0. 29) 

0.76 5.42 0.27 

Table X. 4: estimated parameter values <r = 0). 

Standard errors between brackets. Column -2LR 

gives -2log().) with respect to the hypothesis: r = 0. 

2 A 
r ls square of correlation coefficient M and M. 
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The main question is the stability of the null solution u = 0. If r = 0 
then the stability depends only on the sign of ~1 . Estimating under the 

condition r = 0 will give evidence about the stability of the null 

solution. The column in table X.4 denoted by -2LR gives the values of 
A A 

-2log[L(elH )/L(BIH )] with :If: r = 0, all other parameters free and 0 1 0 
:H'1 : all parameters free. 

Since ;i:95 (1) is 3. 84146 (Pearson et al. , 1970), the hypothesis is 

rejected in four years (1970, 1971, 1979 and 1985); in these years r is 

"significant" , see also table X.3. 

The time path of the estimated parameter values of ~1 indicates a 
change in the migration process at the end of the period. Estimating 

subject the condition that ~1 = 0 implies that the hypothesis 
:H'0 : ~1 = 0 versus the alternative :H'1 : all parameters free, is rejected 
at a significance level of 0. 05 in all years except 1981. With a 

significance level of 0.01 the :H'0 hypothesis is rejected in all years 

but 1972, 1973, 1981 and 1982. Only in 1981 we have found a sign 

reversal of ~1 . 

The generalized likelihood ratio test can be applied to test 

homogeneity hypotheses on the parameters of the model. By pooling 

together data of two or more years t 1 , t 2 , .. , \ w.ith model parameters 

e 1 , e 2 , .. , BT where the super indices denote different years, the null 
hypothesis is formulated as: 

whereas the alternative hypothesis :If is that all parameters e.I are 
1 

free. (The variance parameters (<rJ )::; are unrestricted under the null 
A A 

hypothesis). -2log[LCBIH0 l/L(BIH1 ll is asymptotically chi-square 

distributed with 5(T -1) degrees of freedom. 

Comparing these values with ;i:2 (5(T - 1)), results in not rejecting the 
95 

null hypothesis for the combination 1979 and 1980. For the model with 

'¥ = 0 the homogeneity hypothesis is again not rejected for the years 
1979 and 1980. In table X.5 we give the results of parameter estimation 

for three group of years: 1985-1981, 1980-1979 and 1978-1975. 
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parameters I 2 2 
years ~ (31 (32 (3 3 '1 er -2LR r 

1975 -0.21 1. 11 0.91 -0.01 .. 
0 3.97 31.81 0.15 

1978 (0.01) (0. 17) (0. 28) (0.21) 

1979 -0.22 0.42 0.18 0.24 .. 0 1. 28 9.08 0.41 1980 (0.02) (O. 20) (0.36) (0.27) 

1981 -0.17 -0.51 -0.57 0.57 .. 
0 1. 08 44.37 0.10 1985 (0. 01) (0. 10) (0. 17) (0. 13) 

1975 -0.21 1. 15 1. 00 -0. 14 0.10 .. 
3.88 34.78 0. 16 1978 (0.01) (O. 18) (0. 30) (0.26) (0. 13 l 

1979 -0.22 0.64 0.54 -0.32 0.46 .. 
1. 17 10. 12 0.42 1980 (0.02) (0.22) (O. 38) (O. 33) (O. 18) 

1981 -0.17 -'0.41 -0.39 0.27 0.29 .. 
1. 07 47.50 o. 10 1985 (0.01) (0. 10) (0. 17) (0. 15) (0. 10) 

Table X.5: parameter estimation for (1975-1978), (1979-1980) and 

(1981-1985). Column -2LR gives -2log(;\.) (X.18) with 

respect to the hypothesis: equal parameters for the 

period In column one (years). ~95 (4)=9.49; ~95 (5)=11.07. 

Is it possible to conclude something from these estimations? We first 

note that if (31 is negative then (33 is positive. In this case, the 

upper- and lower bounds of stationary solutions can be calculated (see 

chapter III). For all years 1981-1985 the scaled population density 

values u, defined in (X. lOa, X.lOb) lie between these bounds except for 

one province, Zuid-Holland (ZH) which has the highest population 

density. This means that the density values u lie in the domain of 

bound~d solutions and the estimated parameter values seem to be 

feasible. In the case (31 is positive, the state u = 0 is a minimum of 

the functional V. In the years 1976, 1977, 1979 and 1980 this is also 

the only extremum. In all other years except 1972, f(p), as defined in 

(X.9d), has one minimum at u = 0 and two maxima. In this case all the 

u-values lie inside the u = 0 attraction basin. The estimated 

paramP.ters for 1972 give a maximum of f(p) at u = -0.63 (and a second 

minimum at u = -2.37); only one u-value is smaller than -0.63. 

So in the years 1976, 1977, 1979 and 1980 the state u = 0 is the only 
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stable state whereas from 1981 till 1985 this state is unstable and 

there exists a nonconstant bounded stable population distribution. 

The rejection of equal model parameters combined with the significant 

negativity of the parameter 131 in 1983 and the significant positivity 

of 131 in 1978, with 0 = O (table X. 4), this allows of expressing the 

conjecture that in that period, especially between 1978 and 1983, the 

migration process has undergone a phase transition in the way explained 

above. 

Moreover, the deterministic part of the model is insignificant in 1981 

and 1982: in the vicinity of a bifurcation point the fluctuations in 

the system are enhanced ("there exists no dominant time evolution 

direction") (Nicolls and Prigogine, 1977; Nicolls, 1981). Initially the 

model was applied only to the data of 1982 with very bad results. 

Finally it became clear that the almost total lack of sensitivity with 

respect to the parameters of the model should be seen as a 'positive' 

result in connection with a sign reversal of the 131 parameter, Le. the 

presence of a qualitative change in behavior (phase transition}. 

If this conjecture is true, then since 1980 the migration process tends 

to enhance, or at the least to sustain, the higher densl ty areas 

(provinces) whereas in foregoing years the tendency was to spread out. 

This observation is in accordance with the observation that Dutch 

governmental policies are not fervently supporting anymore the 

diffusion of governmental, or semi-governmental, organizations outside 

the Randstad which globally includes the provinces Zuid-Holland (ZH) 

and (part of) Noord-Holland (NH). Those two provinces have the highest 

population densities. As an example can be taken the very slow and now 

only partial transition of the Dutch Post, Telegraph and Telephone 

institute from The Hague (Zuid-Holland (ZH)) to Groningen (GR). 

Another example of not succeeding in transferring acti vl ties outside 

the Randstad, is the famous Eems-Dollard project at the boundary of the 

province Groningen (GR) and Germany. The failure of this project, with 

the pressure of under-employment, which ls one of the constituents of 

(negative) attractiveness of a region, will enhance the need for 

seeking opportunities elsewhere. And this need will be much stronger 

with low employment rates. In the Netherlands, the data show a slow 
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increase of unemployment since 1972; however since 1977 and especially 

since 1981, the unemployment rates are increasing fast and dramatically 

(source: CBS). 

The model formulation is rather crude: all motivation factors are 

represented by the polynomial form in the density p. However, the model 

allows for an exact definition of a structural change in the form of a 

sign change of parameter ~1 and even with the coarse spatial structure 

given by the provinces, the model seems to be capable to detect such a 

singularity in the migration process. 



Appendix A 

In the first paragraph we present the procedure to find 

approximations of stationary solutions bifurcating from the trivial 

null solution at a simple eigenvalue for a general one dimensional 

evolution system. In the same context, exchange of stability at the 

bifurcation point is treated in section two. 

In the last two sections, these notions are applied to the 

anti-diffusion and migration equation derived in chapter IV. 

A.1 Bifurcation equations by Poincare-Lindstedt series 

Let the system be given as: 

au 
at = G(u; crl (A.la) 

with appropriate boundary conditions; u EM, M is a Hilbert space and 

'cl' E I c IR and 

G(u;cr) = Bu - crAu + N(u; 0 ) (A.lb) 

where B, A are linear operators on M. N(O; cr) = 0 and d N(O; 0 ) 0 for 
u 

all 0 E I, (d is Frechet derivative in u (see appendix E.) then u = 0 
u 

will be a stationary solution of (A. 1) for all 0 . Suppose G l.s m-times 

Frechet differentiable in u and cr (m ~ 2), thus G E Cm(I x M,Z) with M 

and Z real Hilbert spaces. 

In this section the innerproduct in M will be denoted by<·,·>. 

The stability of u = 0 is given by the spectral problem: 

(A.2) 

with eigenvalues w(cr), eigenvectors v(a-) and d G(O;cr) ls the Frechet 
u 

derivative in u at (0, 0 ). 

Suppose for o = o an isolated, simple, real eigenvalue w Col crosses 
c c 

strictly the imaginary axis (see appendix El. The strict crossing or 

- 203 -
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transversallty condition reads: 
dw 
-d cc..- l .. 0 

., c 
(A.3) 

In the following the (Frechet) derivatives in (0,0"cl shall be denoted 

by G :=d G(O;O" }, G :=d G(O;O") and so on. 
u u c O' O' c 

Since u = 0 is a solution for all ..-. d N(O; O"l 
O' 

Using (A. lb) gives 

and 

(B - O' A) 
c 

-Au = G 
O' 

G 
u 

" 

O and d N(O; ..-l 
'¥7f 

0. 

(A.4a) 

(A.4b) 

The adjoint operator of G is denoted by G ; the eigenvector of G with 
u u ~ u 

eigenvalue we = 0 is uc; the adjoint eigenvector is given as uc, thus 

• • G u = O and G u 0 (A.4c) 
u c u c 

By theorem S. 1 of Chow e. a. (1982) there exists a bifurcating 

stationary solution branch (u, ;r) in a small neighborhood of 

given by: 

;r(c) 

u(c) 

'If + Oejcil 
c 

CU + 0(c2 } 
c 

(see also theorem A.1 formulated below). 

(O,;r ) 
c 

(A.Sa) 

(A.Sb) 

The equations (A. Sa-Sb) are given by the Poincare-Lindstedt series 

which are expansions of the solution (u,r) in powers of a small 

parameter c: 

u(c) 0 + CU 
2 

+ c u + 
1 2 

reel 
2 

'If + cr1 + c r 2 + c 

where u1 e Mand 01 e R, i = 1,2,3, ..... 

(A.6a) 

(A.6b) 

The stability of the bifurcating branch (u(c), ..-eel) is determined by 

the eigenvalue problem: 

w(c)v(c) 

where 

v(c) = v 
c 

w(c) = w 
c 

d G(u(c),;r(c))v(c) 
u 

+ cv + c 2v + 
1 2 2 

+ cw + cw + 
1 2 

(A.7) 

(A.6c) 

(A.6d) 
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The convergence of the series (A.6a) and (A.6b) is given by the 

following theorem found in Sattinger (1973): 

Theorem A. 1: 

Under the assumption of satisfying the transversali ty condition 
(A.3), the equation G(u; 0 ) = 0 with G defined in (A. lb) has a 
nontrivial solution (u, 0 ) which may be expressed parametrically in the 
form u = u(c), r = 0 (c), where u(O) = 0 and 0 (0) = r. The functions u 

c 
and 0 are power series in c (A.6a and A.6b), convergent for .. 
sufficiently small !cl with c = <u,u > and u e [u] where [u I is the 
nul 1 space of G . 

u 

Proof: see Sattinger (1973), page SS. 

c 1 c c 

The proof of the convergence of the series (A. 6c) and (A. 6d) can be 
found also in Sattinger (1973), page 99. 

Now we will describe the construction procedure for the bifurcating 

solution (Sattinger (1973); Iooss et al. (19SO)). In the course of the 
description, some additional assumptions will be made which are valid 

for the anti-diffusion system. 

Insert (ASa-Sb) in G(u;rl 

in c to find: 

0 and collect the terms with the same order 

to the zeroth order in c (0(1)): 

G(O;r) = 0 (A.Sa) c 

to the first order (O(c)): 

G ·u = 0 
u 1 (A.Sb) 

to the second order (0(c2 )): 

G ·u +'if G ·u + .!_ G ·u ·u 0 
u 2 1 ur 1 2 uu 

(A.Sc) 

to the third order (O(cJ)): 

G ·u + 'if G u + a G ·u + .!.0 2 G ·u + 
U 3 1 U'/{ 2 2 U'if 1 2 1 Uaa 1 

+G • u · u + .!_ G • u · u · u + .!_'if G • u · u 
uu12 6uuu 21uu'/{ 

0 (A.8d) 

etc. 
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Equation (A.Sa) is just the equation for the reference state u = O; 

From (A.Sb) it ls obvious that u1 must belong to the null space [uc] of 

G . Thus 
u 

u =Au. (A.9) 
1 1 c 

with the amplitude A1 e R. 

Next 71 , .. and u2 , .. are calculated. The condition under which 

equations as (A.Sc) and (A.8d) are solvable if Gu ls singular are given 

by the so-called Fredholm alternative: the equation (A - A)x = y has a 

solution if y is perpendicular to the null space of the adjoint .. 
operator (A - A) . In appendix E the conditions of the Fredholm 

alternative are given. In this section it is assumed that Gu satisfies 

these conditions. The Fredholm alternative gives the necessary and 

sufficient condition for the solvabillty of 

(A.10a) 

as .. 
<z, v > = O (A.10b) 

• • • • for all v such that G ·v = 0 where G is the adjolnt operator of G . 
• u u • u 

If <v,v > = 1 then the solution u can be taken orthogonal to v since 
.. k • 

w = u -<u , v >v ls also a solution and <w , v > = 0. We assume that 
k k k .. k 

the normalization <v,v > = 1 is possible. (In the case of the 

anti-diffusion model Gu is self-adjoint.) 

Using (A.9) and writing v11 = Guu.uc·uc to find: 

The Fredholm condition for a solution u of (A.11) ls 
2 

where 

-7 A P + A2p = 0 
1 1 1 1 2 

• <G ·u , u > 
u7 c c 
1 .. 

- 2<V11' U/ 

(A. 11) 

(A. 12a) 

(A.12b) 

(A.12c) 

.. . 
with [uc) is null space of Gu. (The case of a simple eigenvalue.) 

Using the general spectral formulation (A. 2) and some normalization .. 
<u ,u > 

c c 
1, to find that 

dw 
Pt = _c(7 ) "'o d1 c 

(A.12d) 
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where the inequality value follows from the transversali ty or strict 
crossing assumption. 

Assumption A.2: P2 = 0. 

(This assumption is satisfied by the systems considered below. l 
Then 

r = o 
1 

(A.12e) 

(A. 12f) 

-1 and the vector v11 belongs to the range of Gu. Let Gu be the inverse 
operator of Gu restricted to the range of Gu. Then u2 can be solved as 

1 2 -1 u=--AGv 
2 21u11 

and the procedure is continued with equation (A.8d). 

where 

G ·u 
u 3 

-r AG ·u - A3v 
2 1 U'( C 1 111 

v = -~G ·u · (G-1v ) +· ~ G ·u ·u ·u 
111 2 uu c u 11 6 uuu c c c 

The solvability condition becomes: 

- 02A1P1 + A:P3 = 0 
where 

Now the following assumption is made: 

Assumption A.J.: P3 ~ 0 

(A.12g) 

(A. 13a) 

(A. 13b) 

(A. 13c) 

(A. 13d) 

(A. 13e) 

In phase transition terminology, the assumptions A.2 and A.3 define a 
second order (continuous) transition, see equation (A. 13g) below. 
Subject to this assumption, r 2 is equal to 

r = A2 (P /P ) 
2 1 3 1 (A. 13f) 

Since 
r = r + c 2r + O(c3 ) 

c 2 (A. 13g) 

an approximate solution is 

(A. 14a) 

with 
~2 = P (r - a )IP 

1 c 3 (A.14bl 
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Given the sign of P1 the branching direction is given by the sign of P3 

and in this way subcritical- c.q. supercritical branching can be 

distinguished. 

A.2 Exchange of stability at a simple eigenvalue 

By using the expansion equation for the eigenvector v(c) of the 

spectral problem (A. 7), the stability qualities of the branching 

solution can be established (Iooss et al., 1980). 

Inserting of (A.6c-6d) in (A. 7), using the same notations as 

above, yields to the zeroth order in c: 

G ·v = w v (A. 15) 
u c c c 

which is nothing else than the spectral problem for the reference state 

u = O; 

to the first order in c: 

G ·v + G ·u ·v + r G ·v = w v 
u1 uulc lure le 

(A. 16) 

We are looking at the critical eigenvalue w(c) with w(O) = w where 
c 

we = w(rc) is the eigenvalue which causes the loss of stability, hence 

w 0 and by equation (A.15), v = au . 
c c 1 c 

Given the assumptions (A.l) and (A.2), we have found that 01 =O and 

u1 = A1u0 (see (A. 9) and (A. 12f). Then again by assumption (A. 2)the 

Fredholm alternative for (A. 16a) gives: 

and 

w = 0 
1 

G v = -a A G · u · u 
ul 11uucc 

(Compare (A.16) with (A.11)). 

"' <v1 ,uc>=O. 

"' 

(A.17a) 

(A.17b) 

Note that we can find v such that 
1 

Let duG(u(c),7(c)) be the adjoint operator of d G(u(c), 0 (c)); denote 
"' u 

by v (c), the adjoint eigenvalue the eigenvector of d"G(u(c), 0 (c)) 
u 

problem of (A.7) is 

w(c)v"(c) = ct"G(u(c),r(c))·v"(c) (A. 18) 
u 
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Since w (7) is a simple eigenvalue, the eigenvalue w(c) in (A.Sd) must 
c c 

be real for small c otherwise there would exist a pair of complex 

conjugate eigenvalues becoming zero at 1 = 1 . So w(c) = w(c} for small 
c 

c. 

The equation for the non trivial solution u(c) (A. Sa) can be written 

as: 
u(c) = cA u + c2w 

1 c u 

.. 
with <W , u > = 0 

u c 

and similar the equation of the eigenvector v(c) (A.Sc): 

v(c) = a u + c2w 
1 c v 

• 

• with <W , u > = 0 
v c 

Similar v (c) can be decomposed: 

v•(c) = a·u• + c2w9 with <W0 ,u > = O 
1 c v v c 

(A.19) 

(A.20) 

(A. 21) 

Since (u(c),7(c)) satisfies G(u;7} = 0, the derivative in c of 

G(u(c);7(c)) equals to 

Then 

d G(u(c);7(c))·u + 1 .d G(u(c);7(c)) = 0 
u c c 1 

<d G(u(c};7(c))u ,v0 (c)> 
u c 

.. 
-1 <d G(u(c);7(c)),v (c)> 

c 1 

where the subindex c denotes derivatives in c. 

For small c, with real w(c), equation (A.23) becomes: 
.. .. 

w(c)<u ,v (c)> = -1 <d G(u(c);7(c)),v (c)> 
c c 1 

Note that 

.. 
u A u + cW with <W, u > 

c 1 c c 
0 

and 

(A.22) 

(A.23) 

(A.24) 

(A.2Sa) 

(A.2Sb) 

with 1 2 = 

condition 

Inserting 

A2 (P /P ) 
1 3 1 

(see (A. 13f)) and P1 is given by transversallty 

(A. 3). 

(A. 21) and (A.2Sa) in (A.24) and expanding d G around 
1 

(u,7} = (0,7) we find: 
c 

w(c)<A u + cW,a0 u0 + c2w0 >= -1 <F(u;7),a0 u0 + c2w0 > 
le le v C le v 

where 

(A.26) 
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where the notations are as defined before: all the derivatives in 

(A.26} are evaluated at (u,rl = (0,'lf }. 
c 

Now using orthogonality and normalization one obtains to the smallest 

order in c: 
,. 

w(c)A a 
1 1 

" * -r cA a <G • u , u > 
C 1 1 u'lf c c 

* 
dw 

Noting that <G ·u , u > 
2 u'lf c c 

_c('lf ) = p 
dr c 1 

'/le = 2cr2 + O(c ), equation can be written 

(A.27a} 

((A.3), (A. 12d)) and 

as: 

(A.27b) 

which ties the sign of the eigenvalue w(c) to that of r 2 , given the 

sign of P1 . 

So, if P1 < 0 and r 2 < 0 the bifurcating branch is stable if the 

reference state was stable for 'If > 'If since (for small c) all 
c 

eigenvalues will have a negative real part (supercritical bifurcation). 

In general this type of bifurcation means that the bifurcating branch 

has one "unstable" eigenvector (eigenmode) less than the number of 

unstable eigenvectors of the reference state. For P1 < 0 and r 2 > 0 the 

bifurcating branch is unstable (subcritical branching). 

A.3 Bifurcation of the one-dimensional anti-diffusion system 

The one-dimensional anti-diffusion system defined on x E Q, 

Q [O, L] c IR is 

au 
G(u;rl at 

with 
2 a 4u 

G(u; o-l ~(u) - 'If -- . "' ax2 ax 4 

and no-flux boundary conditions: 

au 
ax 

a3 u = 0 at x = 0 and x 
ax3 

where 

> 0 

L 

2 3 
~(u) = -u + r 1u + r 2u , r 2 > 0 

The initial condition is given by some u0 with Ju0 (x)dx 

(A.28a) 

(A.28b) 

(A.28c} 

(A.28d) 

0. 
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So we can write (A.28b) as 

G(u;al = Bu - aAu + N(u) 

with N (u) a2 2 8 2 3 r -u + r -u and 
tax2 2ax2 

Bu Au (A.28e) 

As noted in chapter III, stationary solutions of (A.28) must satisfy 

a2u 
<f>(u) -• - - (3 = 0 

ax2 
(A.29a) 

with 
(3 = ~J<f>(u)dx and Ju(x)dx = 0 (A.29b) 

Now u = 0 is a solution of (A. 28) with (3 = 0. Let v(x) be a small 

disturbance of u = 0 then the first order approximation is: 

Let 

then 

av 
at 

82 a4 v 
--v - a - = (B - aA)u 
ax2 ax4 

d G(O; al ·v = L[-1 - a L]v 
u ax2 ax2 

<duG(0; 0)·v,w>0 is well defined for all v,w e H! with 

H! = { u E H2 1 <u, 1>2 = o} 

(A.30) 

(A.31) 

(A.32) 

where the symbol 1 denotes a constant function equal to 1 for all x. 

(See for the definition of the function space H2 appendix E. ) So as 
2 

solution space is chosen H •. The operator duG(O;acl is symmetric. 
a2 

The eigenvectors of - are orthogonal and form a complete set in 
ax2 

L2 (Q); the eigenvalues are real and simple (Coddington e.a., 1955). 

Given the boundary conditions these eigenvectors are 

uk(x) = cos(krrx/L) . k = 0,1,2,. ... (A.33) 

which are also the eigenvectors of d G(O;ul as defined in (A.31) except 
u 

that k * 0 since the solution space is restricted by the condition 

Ju(x)dx = 0. The corresponding eigenvalues are: 

(A.34) 
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An eigenvalue wk becomes zero if '¥ = 1/p: and such a value '¥ is a 

simple eigenvalue of the pair (B, Al defined in (A. 28e) since we can 

write (B - -rAl = -r(-A + (1/-r)B) = --rB(B - (ll<rll) for 0 * 0 and Clio) 

is a simple eigenvalue of (B, l)(see appendix El. 

The stability of the null solution follows from the spectral 

form (A.2) in the weak sense: 

<w( 0 )v( 0 J, w> 
0 

<d G(0; 0 )v(<r),w> 
u 0 

2 
all w e H,. (A.35) 

In the following 0 is taken such. that one of the eigenvalues wk is 

zero; to get in line with the notations used in section A. 1 and A. 2, 

this eigenvalue and 

respectively. Hence: 

the eigenvector will be denoted by w and u 
c c 

•c 1/p: 

u = cos(krrx/L) 
c 

G 

G 
uu 

G Uo 

d G(O;<r ) 
u c 

d G ( O; <Y ) 
uu c 

d G(O;Q' ) 
UQ' C 

.. $ 

The eigenvector u of the adjoint operator G of G is given by 
c u u 

.. 
u 

c 
cos(krrx/L)/N 

k 

.. 
with Nk a normalization factor such that <uc,u/ 2 

N = .!.L( 1 + p 2 + p 4 ). ( G" = G . ) 
k 2 k k u u 

Let c be a small parameter; the expansions of u and 0 are 

u(c) 

Q'(c) 

0 + CU 
1 

2 
+ c u + 

2 

where u 1 e H~ and ., 1 e ~. i = 1,2,3, ..... 

It is clear that the transversality condition holds since 

dw 
_c(Q' ) 
d<Y c 

(k>O) 

1, 

(A.36a) 

(A.36b) 

(A.36c) 

(A.36d) 

(A.36e) 

(A. 36f) 

(A.37) 

hence 

(A.38a) 

(A.38b) 

(A.39) 



APPENDIX A 213 

To apply the above exposed construction procedure one needs a similar 

solvabillty condition as in (A.lOb) with respect to (A.lOa). Since G 
u 

is unbounded G satisfies not the condition of the Fredholm alternative 
u 

since this is only valid for compact operators (see appendix El. But at 

the same place is shown that the solvability condition is similar to 

the Fredholm alternative (see appendix E: self-adjoint operators with 

compact resolvent). 

The main object is to find the values of the constants P1 , P2 and P3 as 

defined in (A. 12b), (A. 12c) and (A. 13d). 

P1 is given by equation (A12b); using (A.36f) with (A.37) one finds: 

which is equal to the transversality condition (A. 39). 

Then (A.9) with the definition of u gives: 
c 

u1 = A1 cos(knx/L) 

Write again v11 G • u · u then one finds that 
uu c c 

v 
11 

8 2 2 2r -(cos(knx/L) l 
1ax2 

and thus 

Hence the first conclusion is 

'¥ = 0. 
1 

-4r p2cos(2knx/L) 
1 k 

(A.40) 

(A. 41) 

(A.42a) 

(A.42b) 

(A.43) 

Using the completeness of the set of ej_genvectors (A.33) (see appendix 

E, theorem E.12) to set 

"' 
u2 = l Amcos(mnx/L) (A.44) 

m=1 
m°'k 

where the term belonging to the null space of G is omitted. The 
u 

equation (A.11) with 7 1 = 0 can be solved 

G·u -!.A2v (A.45a) 
u2 2111 

using the orthogonality of the eigenvectors (A.33): 

0 for all j "' 2k (A.45b) 



214 APPENDIX A 

and 

In the following A2k ls denoted by A2 . 

Using (A.36a) one gets: 

and 
u 

2 
(-r A2/6)cos(2knx/L) (modulo [u )) 

1 1 c 

The solvabillty condition (A.13c) gives 

-r2A1P1 + A:P3 = 0 

where 
.. 

-<v111'uc>2 

Use u2 as given by (A.46b) to find that 

(A.45c) 

(A.46a) 

(A.46b) 

(A.47a) 

(A.47b) 

(A.47c) 

(A.48a) 

(A.48b) 

Since P1 < 0 the bifurcation direction depends only on the sign of 

2 9 
r 1 - 2r2 (assuming this term is not zero). So if 

2 9 
r 1 - 2r2 < 0 then the bifurcation is supercritical 

and if 

r 2 - ~r > 0 then the bifurcation ls subcritlcal 
1 2 2 

Setting~ as in (A.14b) 

~2 = P Cr - r J/P 
1 c 3 

to find an approximate solution 

r 

u(x) = ±~cos(knx/L) - ~2cos(2knx/L) + 0(~3 ) 
6 

(A.49a) 

(A.49b) 

(A.SOa) 

(A.SOb) 

Suppose the reference state u = O is stable for r > r and loses its 

stability at r = r. 
c 

then 

bifurcating solution will be 

c 

according to (A.27b) the 
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2 9 stable if r 1 - 2r 2 < O (A.51a) 

and 

unstable if r 2 - !r > 0. (A. 51b) 
1 2 2 

For r 2 < 0 the bifurcation ls always subcrltlcal and the bifurcating 

branch ls unstable. 

The case that r 2 - !r = O ls not followed further since the principal 
1 2 2 

construction procedure is not changed, except when all higher order 

terms are zero. 

A.4 Stability of the null solution of the general migration system 

The system equation can be written as (see chapter IV, section 7) 

where K(x,y) = o(x,y) - IJl(x,y), with o the Dirac delta function; the 

operator t defined by (tu)(x) = ~IJl(x,y)u(y)dy is symmetric with 
0 

eigenvalues less or equal to 1. The boundary conditions are of no-flux 

type. (M and T are positive constants.) 

With tfJ as in (A.28d), u=O ls a solution of (A.52). Let v(x) be a 

disturbance satisfying (A.52) then the first order approximation is: 

av J ( a2 v) Tat= -M K(x,y) -v - 7 ~ dy 
8y 

(A.53) 

Using again completeness and orthogonality of the eigenvectors of the 

Laplace operator by writing 

v(x,t) 

to find 

... 
l ak(t)cos(knx/L) 

k=l 
(A.54a) 

Ta1 (t) = M[~ kt
1
wkak(tl{JJcos(lnx/L)K(x,ylcos(kny/L)dydx}] (A.54b) 

where 
1,2, ... (A.54c) 
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Substituting <'>(x,y) - llt(x,y) for K(x,y) in (A.54b), to find that the 

right hand side of (A.54b) is equal to 

Mw1a 1 (t) - M[~ k~twkak(t){ JJcos(lnx/L)llt(x,y)cos(krry/L)dydx}] 

(A.54d) 

If llt(x,y) = 1/L then (A.54d) becomes equal to Mw1a 1 (t), hence the 

stability properties are the same as for the anti-diffusion system. 

However, in this case, the fastest growing mode (= mode corresponding 

with the largest eigenvalue) is given always for k = 1, the monotone 

mode. This is not necessarily true for the anti-diffusion system where 

the eigenvalues are given by (A.34): w = p2 (1 - 7p2 ). For 7 small the 
k k k 

fastest growing mode is not the monotone mode. The initial evolution of 

a small perturbation will be different in the migration system and the 

anti-diffusion system if the null solution is unstable in more than one 

mode. 



Appendix B 

In this appendix some properties of the two wave amplitude system 

given in chapter VI, will be deduced. The system is given by the 

following equations: 

a 
1 {a1 

{a2 

- 'iJ' a -
0 1 

- 4r a -
0 2 

a a r 
1 2 1 

1 2 -a r 
2 1 1 

+ ~r [a4 + a4 + 4a2a2] 
16 2 1 2 1 2 

[3 3 3 2]} 2 -r -a +-aa p 
241 212 k 

-r -a a + -a 4p [3 2 3 3]} 2 
2212 42 k 

The system equations can be written as: 

k = 1,2 

where Vk denotes the partial derivative with respect to ak. 

Stationary solutions for r 2 * O are given by the following sets: 

Sl 

S2 

S3 

{ (a,a)l(a,a) 
1 2 1 2 

{ (a ,a )I (a ,a2 ) 
1 2 1 2 

(0.~(1-4tr ))} 
3r o 

2 

{ (a ,a >ja2 = !__(1 - 'iJ' -
1 2 1 3r o 

2 

a r -
2 1 

+ (-4 9r a 3 + 12r a 2 
2 2 1 2 

Br
2

) 
- So + - 1 

o 3r 
2 

Br 
_1(1 - 0 ) 
3r o 

2 
o} 

(B.la) 

(B.lb) 

(B.2) 

(B. 3) 

(B. 4a) 

(B.4b) 

(B.4cl 

In the first paragraph the first terms of the Polncare-Lindstedt 

expansions are calculated and used to determine the type of branching 

at a-0 = 1. The result is an exact replica of the statements with 

respect to branching from the null solution for the complete 

- 217 -
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(anti-diffusion) system. 

Paragraph two is restricted to the case r 2 < 0, especially r 2 = -1. It 

is shown that all non-trivial solutions (a1 ,a2 ) ~ (0,0) are unstable. 

In the last paragraph, the case of positive r 2 with subcritical 

branching is examined. It will be shown that the subcritical branch has 

a turning point at which stability is changed. 

B.1 Poincare-Lindstedt approximations 

The solution (a1, a 2 ) = (0, 0) loses its stability at '¥0
c = 1. The 

expansions of (a ,a ,r ) at (O,O,r ) in a small parameter c are: 
1 2 0 oc 

a 
1 

a 
2 

er 
0 

ea + 
2 e a 

11 12 
2 

ea + ea 
21 22 

er + eer + 
oc ol 

+ 
3 

e a + (B.Sa) 
13 

+ 
3 e a + (B. Sb) 

23 2 3 (B. Sc l £ '¥ + e er + ...... 
o2 o3 

Inserting (B.5) in (B. 1) and collecting the terms with the same corder 

yields: 

to O(c): 

a 
11 

a 21 

a 12 

a 22 

to 0(e3): 

p2(1 - '¥ )a 
k oc 11 

4p2k(1 - 4er Ja 
oc 21 

p2{c 1 - er Ja - er a -
k oc 12 ol 11 

4pk2{(1 - 4cr )a - er a 
oc 22 ol 21 

r a a } 1 11 21 

1 } - -r a 
2 1 11 

a p2{(1 - cr Ja - cr a - r [a a + a a ] + 
13 k oc 13 o2 11 1 11 22 12 21 

(B. 6a) 

(B. 6b) 

(B.6c) 

(B. 6d) 

-~r [a3 + 2a a2 ]} (B. 6e) 
4 2 11 11 21 

a23 = 4P:{ (l - 4"oc)a23 - "02a21 - ~r1a11a22 -~r2[a~1 + Za~1a21]} 
(B. 6f) 

For stationary solutions the left hand side of the equations must be 
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zero. Equations (B.6a) and (B.6b) defines nothing else than the 

eigenvector corresponding with the zero eigenvalue at r 0 c 1 of the 

linearized system: a11 = 1 and a21 0. 

Equation (B.6c) gives now : r 01 = 0 and subsequently equation (B.6d) 

gives: a22 = -r1/6. 

Equation (B.6e) is now reduced to: 

o = -r a a - ~r a3 = (r2 - ~r )/6 o2 1 11 22 4 2 11 1 2 2 (B.7) 

Inserting (B.7) in CB.Sc) gives: 

+ s::2Cr2 - ~r )/6 + O(c3 ) ..... . 
1 2 2 

• = • 
0 oc (B.8) 

And thus analogously to the original complete system, the following 

theorem can be formulated: 

Theorem B.1 

For the system (B. 1) 

c.o.a1,a2) = (1,0,0) exist for 

the branching solutions 

o > o if r 2 > ~r (subcritical (unstable) branching) and for 
0 oc 1 2 2 

0 < 0 if r 2 < ~r (supercritical (stable) branching). 
0 oc 1 2 2 

at 

Note that the conclusions for the bifurcations are only valid for 

00 = 1. The same conclusions were obtained for all branching solutions 

from the null solution for the complete anti-diffusion system (of 

course apart from the stability aspects) (see the conclusions in 

Appendix A: (A. 49a-b)). For this two wave system the branching at 

o0 4 is rather straightforward and depends only on the sign of r 2. 

B.2 Instability of the non-trivial solutions for r 2 < 0 

In this paragraph it will be shown that all non-trivial solutions 

of the system (B.1) with r 2 <Oare unstable. 

The stability of a solution (a1 ,a2) is given by the eigenvalues of 

the Jacobian matrix J. Using (B.3) one finds that J ls given by 
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J 

where V 
IJ 

[
-v -v l 11 12 

-4V -4V 
21 22 

(8.9) 

Just as for a pure gradient system where J is the Hessian of the 

function V in (a1 ,a2 ), the eigenvalues of J are real. 

In the following r 2 will be negative and without reducing the 

generality, is taken to be -1. Then 

-v 1 
9 2 3 2 (B. 10a) - 71 - r a + -a + -a 

11 0 1 2 4 1 2 2 

-v -v = -r a + 3a a (B. 10b) 
12 21 1 1 1 2 

-v 1 - 4;r 9 2 3 2 (B. 10c) + -a + -a 
22 0 4 2 2 1 

Now it is clear that all solutions belonging to solution set S2 (B.4b) 

are unstable, since V12 = 0 and -V = -2 ( 1 - 46 ) > 0 for ;r > _: 
22 0 0 4 

Solutions belonging to the third solution set 53 (B. 4c) must satisfy 

the following equations: 

1 - 6 = r a - -a + -a {3 2 3 2} 
0 12 41 22 

(B. lla) 

1 2 {3 2 (1 - 4;r ) a = -r a - a -a 
o2 211 221 

3 2} + -a 
4 2 

(B. Ubl 

If a = 0 then the non-trivial solution exists only for 7f > 1 with 
2 0 

a2 = -~(1 6 ). Inserting this solution 
1 3 0 

in the matrix J (8.9) gives: 

v = 2(1 - 7f ) • v = 1 + 271 and v2 = -~(1 - 6 )r2 so the 
11 0 22 0 12 3 0 1 

determinant of the matrix J becomes equal to: 

det(J) = 8(1 - 71 )(1 + 20 l + ~(1 - 71 )r2 
0 0 3 0 1 

and det(J) < 0 if 6 0 > 1. Hence the product of the eigenvalues is 

negative. So J must have at least one positive eigenvalue, and the 

solutions are unstable. 

If a2 ~ 0 then (1 - 460 ) can be solved from equation (B.11b). Inserting 

(8.11a) in V11 and (8. 11b), after dividing by a 2 , in V22 yields: 



-v 
11 

-v 
22 

3 2 
-a 
2 1 

" 
2 

1 1 3 2 -r a - + -a 
2122 22 

" 2 
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If r 1a 2 <:: 0 then the trace of J is positive; hence the sum of the 

eigenvalues is positive and J must have at least one positive 

eigenvalue. The solution is unstable. 

If r 1a2 < 0 then the determinant of J is equal to: 

2 2 

2 1 1 { 
a 

6a -r a -
1 2 1 2 2 

a 
2 

+ ~a2} - 4a2{r - 3a }2 

2 2 1 1 2 r 1 a2{~ + 24a~} - 4a~r~ - 27a:a: 

2 

which is clearly negative for r 1a 2 < O; so J must have at least one 

positive eigenvalue, hence the solution is unstable. 

The only remaining solutions are the trivial ones; so each non-trivial 

solution is unstable if r < 0. 
2 

B.3 The subcritical solutions for r 
2 

> 0 with r 2 <:: 
1 

9 -r 
2 2 

For r > 0 and r 2 2:: ~r the bifurcating branch at r = 1, 
2 1 2 2 0 

(a1 ,a2 ) = (0,0) is subcritical. The following theorem will be proved: 

Theorem B.2: 

For r > 0 and r 2 2:: ~ the subcritical solution branch bifurcating 
2 1 2 

at {r0 ,a1 ,a2 ) = (l,0,0) has a turning point. 

Proof: 

Let r 
2 

1. Define f (a ) as follows: 
2 

2 

f(a ) = a + -r a + a --- + -
3 4 2 { 4-sr o Br 1} 

2 2 3 1 2 2 9 27 

Br c1-r > 
1 0 

27 

Then the solutions 53 (B.4c) are equivalent with 

Assume r > 0. 
1 

~a2 + r a - (1 - r ) ~ 0 
2 2 1 2 0 

(B.12) 

(B. 13) 
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-r - j r2 + 6(1-<r ) 
Define aL( 0o) 

1 1 0 (B. 14a) 
3 

-r + j r2 + 6(1-<r ) 
and aR(<ro) 

1 1 0 (B. 14b) = 
3 

then the inequality constraint in (B.13) is equivalent with: 

(B. 15) 

Each non-zero a2 -solution generates a pair (±a1 ,a2 ) -solutions of 

(B. 1). To proof that each of these solutions is connected with 

solutions branching at 0 = 1, or that the solutions (B.13) have a 
0 

turning point, means to proof that for some 00 > 1, there exists an a2 

which satisfies the condition (8.13) with f' (a2 l = 0. The last 

conditions are equivalent with demanding that f(a2 ) = 0 has two 

coinciding roots which satisfy (B. 15). The proof is based on the 

following observations: 

Sr Br o 
i} f(O) = _ ___: + ~ 

27 27 

f(-~r ) = ~r3 - ~r + ~r a 
3 1 81 1 27 1 27 1 0 

So at both ends of the interval [aL(1),aR(1)] the function values are 

linear monotone increasing in 0 . 
0 

ii) The zero's depend continuously on a 
0 

and for 

sufficiently high -a- , there exist only one real zero. See e. g. the 
0 

explicit formulas for the solutions of the roots of a polynomial 

equation of degree 3 (v/d Waerden, page 193 (1964)). 

iii l If o = 1, then (B. 13) has exactly two solutions if r 2 > !. 
0 1 - 2' 

one solution is a2 = 0 representing the branch bifurcating from the 

null solution at a = 1; for r with r 2 "= ! the derivative of f in 
0 1 1 2' 

a 2 = 0 is always positive. (Note that r 2 "= ! is just the condition for 
1 2 

subcritical branching in the complete system, see Appendix A: 

(A.49a-b)). So for -a-0 = 1 the function f(a2 ) has two zeros lying in the 

interval l-~r1 ,0J = [aL(l),aR(l)]. 

By ii) there exists a ( r > 1) such that f (a ) has exactly two roots 
0 0 2 
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and by observation iii) the double root must lie in the interval 
2 

[-3r 1 ,0J = [aL(l),aR(1)]. 

Suppose this double root does not satisfy the constraint (B. 15). But 

then, there must exist '¥ > 1 such that a root of f(a ) 
0 2 

0 satisfies 

exactly the constraint (B. 13): 

-~a2 = ~a2 + r a - (1 - '¥ ) 0 
21 22 12 0 

hence a 1 = 0 and a 2 "' O because '¥0 "' 1. It follows from (B. lb) that a 

stationary solution of (B. la-b) with a 1 = 0 and a2 "' 0, must satisfy 

~a2 = 1 - 4'¥ which is impossible for '¥ > 1. 
4 2 0 0 

Hence the double root will satisfy the constraint (B. 15) which 

completes the proof of the existence of a turning point on the 

subcritical branch. 

The stability exchange is checked by calculating that the non-zero 

solution branch at '¥ = 1 is stable. Since the branch bifurcating from 
0 

the null solution at '¥ = 1 is unstable, we must have an exchange of 
0 

stability at the turning point. 

The proof for r 1 ~ 0 is similar. 





Appendix C 

C.1 Most probable path equations 

The method of finding the most probable path equation from the 

master equation 

ap \ \ 'at= - L W{p ~ p + o}P(p,t) + l W{p - 0 ~ p}P(p - o,t) (C.1) 

0 0 

can be found in Metiu et al. (1979); in this appendix the same 

procedure i.s applied apart from the handling of the constrained case. 
N 

Let o=(o1 , ... ,<\le1R be the array of changes; let 

p = (p1 , ... ,p~) e IRN be the density array. 

The followings notations are introduced: 0: = (o:1, ... ,o:N) 

multi-index if all o: are nonnegative integers. 
n 

N 

Denote 

o:! =IT o:n!. The differential operator Dais defined as 
n=1 

0: 0: ()C 0: 

D"' - (a 1/ap 1 ) ... (8 N/ap N) 
1 N 

and in consequence we use the notation 

N 

I o: I = [ 
n=1 

is a 

0: and 
N 

(C.2a) 

(C.2b) 

With respect to W{p ~ p + o} and P(p,t) the assumptions are made that 

both are infinitely differentiable functions satisfying the condition 

sup!P'3rf'f(p) I < oo with the supremum being over all p e iR' and all 

possible multi-indices a and /3 to secure that all manipulations on 

Fourier transforms are correct (Kawata, 1972). 

The master equation (C.1) can be written as 

ap 
•at= H(D,p)P(p,t) (C.3a) 

with 

- 225 -
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H(D,p)P(p,t) = L L 
o a 

loci 
C-1l, o"'D°' W{p ~ p + o}P(p, t l 

IX. 
(C.3b) 

where D acts on the product WP. The summing is over all possible o and 

all possible ix. A path integral formula is derived by taking a short 

time (~t) solution of (C.3): 

P(p,t0 + ~t) = P(p,t0 ) + ~ H(D,p)P(p,t0 l 
t: 

(C.4) 

The Fourier transform ~(P)(k,t0 + ~t) is defined by 

P(p,t0 + M) = (2rr)-N/2J exp(-i<k,p>)~(P)(k,t 0 + M)dk (C.5) 

with dk = dk ... dk and <k, p> = \N k p , the innerproduct in IR N which 
1 N ln= 1 n n 

notations shall be used throughout this appendix. Using (C.4) one gets: 

~(P)(k,t0 + ~t) = 

= (2rrl-N/2J [exp(i<k,p0 >J {i + A:H(D,p0 J}P(p0 ,t0 J]dp0 (C.6) 

0 0 0 . 0 
where p = (p1 , ... ,pN) is p at time t . 

Applying Fourier transform properties for derivatives (Kawata, 1972) 

and using (C.6), one finds: 

~(Pl (k, t 0 + ~tl 

r I"' I = ~(P)(k, to) + lit L L i (-1) 
" a o l ix! 

(C.7) 

where WP = W{p ~ p + o}P(p,t). Use (C.5) to see that (C.7) can be 

written as 

~(P)(k,t0 + ~t) = 

= (2n)-N/2J [exp(i<k,p0 >J {i + ~tH(-ik,p0 J}P(p0 ,t0 )]dp0 (C. 8} 

where H(-ik,p0 J is obtained from (C.3b). 

For small llt the term between curly brackets in (C.8) may be 

approximated by an exponential; introducing (C.8) in (C.5) to find 

P(p, t 0 + M) = 

(2rr)-N/2J J exp[-~<ik,•(p ~tpo) > - H(-ik,p0 )}]Ptp0 ,t0 )dkdp0 

p k 

Define the conditional probability G(p,tjp0 ,t0 ) by 
(C.9) 
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P(p,t) = G(p,t p ,t )P(p ,t )dp J l oo o o o (C.10) 

then by successive use of (C.9) for small time stapes dt the 

conditional probability G can be written as a path integral: 

G(p, tlpo, to) = 

= J Jexp[-({<ik(t' l•rp(t' )> - H(-ik(t' ),p(t' ))}]V(k)V(p) (C. lla) 

p k t 

where the notation of (C.lla) means the limit of the multiple 

integrals: 

J • • J J •. J (2n)-NL/2 X 

p p k k 

[ L-1{ 1+1 
x exp -dt l <ik1, T (p dt -

l=O 

I 
p » - H(-ik1,p1 )}]dk0 •• dkL-1dp0 •• dpL-t 

t - t 0 
where L = ---xr-- 7 m if dt 7 0. 

(C. llb) 

The most probable path is the path for which G(p,tip0 ,t0 ) is maximal. 

Compute H(-ik,p) from (C.3b) for general o to get 

HC-lk,pl = iJ<k,o>W{p 7 p + o}do -~J<k,o>2w{p 7 p + o}do + 

(C. 12) 

where the first term is obtained for l«I = 1 and the second term for 

l«I = 2. The first term gives the 'expectation' E(<k,o>) of <k,o> which 

is equal to <k,E(o)>. Denoting the 'covariance matrix' of o by Q6 then 

gives the second term <k,Q6 k>. The matrix °is is symmetric and strictly 

positive. So we will H(-ik,p) approximate by: 

H(-lk,p) = i<k,E(o)> - ~<k,Q k> 
2 a 

(C. 13) 

Ins&rtlng (C.13) in (C.llb) integration over k can be performed: since 

Q6 is symmetric and strictly positive, the positive square root A of °is 
exists. A new variable~ of integration (in the notation of (C.lla) is 

given by 

k = iQ-1 (Tp(t')-E(o)) + A-1~ (C.14) 
a 

-1 -1 where Q8 denotes the inverse of °is and A the inverse of A. Using 

Jexp(-<~.~>d~ = (J:mexp(-s2)ds)" = n-N/2 
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one finds (in the notation of (C.lla)): 

G(p,t!p0 ,t0 > = Jexp[-~J:{<Tp(t') - E(aJ,Q~ 1 (Tp(t') 
p t 

with 7)'(p) is 7)(p) scaled by some constants. 

- ECaJ l> }]v' Cpl 

(c. 15) 

The path integral is now over p only and the most probable path from p0 

to p is defined by the minimum of the integrand over t'. As Qa is 

strictly positive, this minimum is obtained if 

Tp = E(a) , 
n n 

n = 1, ... ,N (C.16) 

In chapter IV (equation IV.2) the transition probability W is given as: 

W{p 7 p + c} =a exp(-<c~c>)·exp[ -~V(p + c) - V(p)}1 (C.17) 

where c e RN (c is unrestricted) and a, ~. ll are positive constants. 

For ll is small only small c values contribute significantly. Therefore 

it is reasonable to expand V in a power series of c and retain only the 

first order approximation: 

V(p + cl - V(p) = <av c> 
ap' 

where ~~ is the gradient of V and W{p 7 p + c} is approximated by 

(C. 18) 

(C. 19) 

For c unrestricted, the 'expected' value E(c) = Jcw{p 7 p + ddc is 

given by 

ECcl = -Mav 
ap 

1 N/2 where M = ~(2nll) ll. 

(C.20) 

For restricted a defined as a= Kc the 'expected' value E(a) = K·E(c). 

Hence the most probable path is given as: 

· ( av) Tpn = -M Kap , 
n 

n = 1, .. N (C.21) 

with K is a symmetric positive matrix and T and M are positive 

constants. Note that p must be conceived as a short notation of 

(pl+l ll~ P1
) where the s~per index 1 denotes successive time steps llt. 

n 

The continuous time notation ls an 'approximation' of the discrete time 

notation; the same holds for the spatial coordinates. 



Appendix D 

This appendix deals with the discrete version of the , one 

dimensional anti-diffusion system and migration system as used in 

chapter VII I. 

D.1 Bifurcation in the discrete anti-diffusion system 

The discrete anti-diffusion system is 

uJ+l= uJ + r i/[i,6(uJ) - (<r/llx2 )o2uJ] 
n n :x n xn 

where r = llt/llx2 , and n = 1, .. ,N (spatial indices), j 

(D. 1) 

1, ... (time 

indices) with no-flux boundary conditions. We recall from chapter VIII 

that 

o2u = U - 2u + U 
x n n+1 n n-1 

(D.2a) 

and that the no-flux boundary conditions are approximated by 

introducing artificial grid points u , u , u and u with for all 
o -1 N+1 N+2 

time steps j 

UJ = Uj UJ = UJ UJ uJ and uJ uJ 
0 t' -1 2' N+1 N N+2 N-1 

(D. 2b) 

The function 4> is 

i,6(u) = 2 3 -u + r u + r u 
1 2 

(D. 3} 

Let G(u; er) , n = 1, .. , N be defined by 
n 

G(u;crl o2 [i,6(u J 2 2 ] - (cr/llx lo u 
n " n " n 

(D.4) 

then stationary solutions of (D.1) must satisfy G(u;<rl = O all n. By 
n 

the no-flux boundary conditions (D. 2b), such a stationary solution 

satisfies 

{3 for n 1, .. , N (D. Sa) 

with 

- 229 -
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(D.Sb) 

The eigenvectors of the operator ;:,2, subject to the no-flux boundary 
" conditions, are 

u (n) = akcos(kn(n - ~)IN) k 
k 2 ' 

0, .. N-1 (D. 6) 

Using 

o2cos(kn(n - ~)IN) = -4sin2 (knl2N)·cos(kn(n - ~)IN) 
x 2 2 

(D. 7) 

we find that the eigenvalues w of -o2 - ( 018x2 )o4 are 
k x " 

.21 ( 2 21) w = 4s1n (-p ) 1 - (018x )4sin (-p ) 
k 2 k 2 k 

(D. 8) 

with k = 1, .. ,N-1 and pk = knlN (k = 0 

mass-conservation property of (D. 1)). 

is excluded by the 

The eigenvalues of the right hand side of (D.1) linearized at the null 

solution are 1 + rwk. In chapter VIII an upperbound rb of r is found 

such that for bounded stationary solutions of (D.1), the eigenvalues of 

the system linearized at such a solution are always greater than -1 if 

r < r b (see section VII I. 1. 1). Hence for O < r < r b' the stabil lty 

properties of bounded solutions depend only on the sign of the 

eigenvalues (D.8). In the following we assume that 0 < r < rb holds. 

Let r = r be such that for some k, an eigenvalue (D.8) becomes zero; 
c 

this eigenvalue is simple hence r = r is a bifurcation point. Thus 
c 

1 -(r 18x2 )4sin2 (~p) = 0 for some k, k = 1, .. N-1 
c 2 k 

(D.9) 

Now we apply the same procedures as in appendix A to find the 

Poincare-Lindstedt series of the bifurcation parameter r and the 

bifurcating branches. Let the expansions of the bifurcating stationary 

solution be written as 

= 
2 + O(c3 ) (D. 10a) u CU + c u 

n ln 2n 

and 
2 

+ O(c3 ) (D. 10b) r = il' + c;r1 + c il'2 
c 
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Define G(u;1) as 
n 

G(u; 1) 0 [-o: - Cr/flx2 )o:]un - ( (1 - rc)/flx2 )o:un + 

+ r o2u2 + r o2u3 (D. 11) 
lxn 2xn 

then by identifying the terms with the same order in c one obtains 

to the first order (O(c)): 

(D. 12a) 

to the second ordel- ( 0 ( i:?) ) : 

[
2 24]• 24 22 -o - ( 0 I fix ) o u - ( 1 I fix ) o u + r o u 
x c x 2n 1 x ln 1 x ln 

0 (D. 12b) 

to the third order (0(c3 )): 

[-e,2 - (1 /flx2 lo4]u - (1 /llx2 Jo4u - Ca /flx2 )o4u + 
x c x 3n 1 x 2n 2 x ln 

+ Zr o2 u u + r o2u3 = O (D. 12c) 
1 x 1n 2n 2 x ln 

From (D. 12a) it follows that 

(D. 13a) 

and the Fredholm alternative for the existence of a solution 

(D. 12b) (see appendix El gives that 

u 
2n 

of 

N 

\ [<1 /llx2 lo4u - r o2u2 Ju l 1 x ln 1 x ln ln 
0 

n=l 

Using (D.7) one finds that 

1 = 0 
1 

By writing u 2n as series in the eigenvectors (D.6) 

and inserting (D. 14a) in (D.12b) one finds that 

~ = 0 all m ~ Zk and ~ 
m 2k 

-A2 r /(2 + 4cos(pk)) 
1 1 

(D. 13b) 

(D. 13c) 

(D. 14a) 

(D. 14b) 
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Applying again the Fredholm alternative for the existence of a solution 

u30 of (D.12c), one gets: 

3 
- -r 

4 2 (2-2cos(pk)) 
(D. 15) 

Since the bifurcation direction depends on the sign of 'a'2 , the 

bifurcation is 
2 

r 

supercritical for 1 3 < O; (D, 16a) - -r 
(1+2cos(pk)) 2 2 

2 
r 

subcri tical for 
1 3 > 0. (D. 16b) - -r 

(1+2cos(pk)) 2 2 

In the first case, the bifurcating branch is stable if the reference 

branch (the null solution) was stable for a > 0 (see appendix A, 
c 

section 2)). 

For (1 + 2cos(pk)) is positive, the conclusions (D. 16a-b) are similar 

to those obtained for the continuous model (see appendix A). If 

(1 + 2cos(pk)) is negative, supercritical branching is possible even if 

r 2 < 0 which has no equivalent in the continuous case. But for some k 0 

with (1 + 2cos(pk )) negative and supercritical branching, the 
0 

branching solution is unstable since all modes with k < k are also 
0 

unstable including modes with subcri tical branching. This means this 

type of supercritical branching for r 2 < 0 will never be observed in 

numerical simulations. 

Note that for N ~ oo, 4sin2 (~p )/Ax2 ~ (krr/L} 2 with L = (N-l)Ax and also 
2 k 

pk ~ 0. Hence the conditions (D. 16a-b) for super- or subcritical 

branching become equal to those for the continuous model, see appendix 

A, conditions (A.49a-b}. The same holds for the parameter values r 1 and 

-a-2 (compare (D.15) with (A.48a-b)). 

The eigenvalues wk, k = 1, .. N-1, change sign at 'If= 'lfk with 

'If = Ax2/(4sin2 (~p )), p = kn/N, see (D.8). The null solution becomes 
k 2 k k 

unstable at o = 7f1. At points 'If with r < 02 at least two modes are 

unstable. In such case the evolution of a perturbation of the null 

solution will be initially dominated by the fastest growing mode(s), 

i.e. mode(s) k with eigenvalue wk maximal. And the fastest growing mode 
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is (approximately) given fork with 

1 - 2(a/6x2 )4sin2 (~p ) = O 
2 k 

(D. 17) 

Hence for small 0 , the fastest growing mode is not identical with the 

mode k = 1, the monotone one. 

D.2 The discrete migration system 

The system equations are: 

(D. 18) 

Using (D. 6) the above results apply also for the discrete migration 

model (D. 11). Define G(u; 0 ) as 
n 

G(u;rl (D. 19) 
n 

Assume that r satisfies the upperbound rb defined in chapter VIII, 

section VIII.3, equation (VIII.44c) then there is no difference 

between system (D. 1) and (D. 18) with respect neither to stability 

properties of a stationary solution (see also chapter V) nor to the 

Poincare-Lindstedt series since the constant {3 involved in (D. Sa) is 

just ~ \N r/>Cu). However the eigenvalues w of G(u; 0 ) (D.19) 
N Ln=l n k n 

linearized in the null solution are not given by (D.8) but by 

As a consequence, in contrast to the anti-diffusion system (see (D. 17)) 

the fastest growing mode is always the mode with the longest wavelength 

(k = 1). This result is identical with that of the continuous case (see 

Appendix A, section A.4). 





Appendix E 

Definitions and Theorems 

This appendix contains some definitions and basic theorems from the 

functional analysis. The object is to give conditions under which 

properties of the finite dimensional case are transferable to the 

infinite dimensional one. The information is not ordered alphabetically 

but packed in coherent groups. The first part deals with vector spaces 

and gives the justification for writing a disturbance v(x) as a series 

in the eigenvectors of the Laplace operator (see appendix A); here one 

also finds that the solvability condition for the equation 

A(I - aAlx = y with A the Laplace operator, is given by the Fredholm 

alternative: y must be perpendicular to the null space of (A(I - 0A))T· 

The second part gives the definition of convergence, continuity and 

derivatives of operators. 

The main references for the first part are Kato (1966), Gohberg and 

Goldberg (1981), Taylor and Lay (1980) and Zaanen (1964). Most of the 

second part can be found in Kato (1966), Coolen (1978), Groesen (1978) 

and Lang ( 1969) . 

E.1 Operators on Linear vector spaces 

Normed vector space 

The vector space X is called a normed space if there exists a 

non-negative function llxll on X such that for x and y e X hold: 

l) Ila.xii= lal·llxll, areal (complex). 

ii) llx + yll :s llxll + llyll. 

iii) llxll > 0 for x *- 0. 

From il and iii) follows llxll 0 - x 0. 

- 235 -
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Completeness, Complete vector space, Completion 

Suppose X is normed vector space. The vector space X is called 

complete if for any sequence {x } c x satisfying the condition 
n 

lim llx - x II = 0 as m,n _, co, there exists an element X E X such that 
m n 

lim fix - x II = O as n _, oo. The sequence {x } with lim llx - x II 0 as 
n n m n 

m,n _, co, is called a Cauchy sequence. 

Completeness is comparable with extension from rational numbers to real 

numbers. Its means that every Cauchy sequence is convergent in X. 

Every finite-dimensional normed linear space is complete. 

An incomplete normed linear space X may be enlarged to form a complete 

space X in which X is dense. This completion is essentially unique. 

Banach space 

A Banach space is a complete normed vector space, i. e. every 

Cauchy sequence has a 1 imi t. 

If the scalar field is IR then X is called a real Banach space. 

Banach space examples 

1) IRN is real Banach space if supplied with the norm 

llxll = ( nt lxnl2r/2 

2) Let [0,1] c IR and let C0 ([0,1]) be the class of continuous 

functions on [O,ll with values in IR. C0 ([0,1J) is a vector space over 

IR. Define as norm on B: llfll = sup lfCxll, for all f E C0 ([0,1]), 
x c [0, 11 

then C0 ([0,1]) is complete, i.e., C0 ([0,1]) is a real Banach space. 

3) Let cP ( [O, 1]) be the class of functions having p continuous 

derivatives. Define the norm on cP as lfl =sup JDkfJ, then CP([0,1]) 
p I k I :sp 

is complete. 

4) Let C00 (Q) be the class of functions with compact support in 
II o 

Q c IR which are infinitely times differentiable. 

Define as norm for f e C00 (Q) 
0 

llfll 0 = { J0f 2 (x)dxf
12

, 

where elements are identified which differ only on a set of measure 

zero. C00 Ul) is not complete under this norm (see Sobolev spaces, 
0 
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discussed below}. 

Define as norm, with the same identification procedure, 

llfllp = { kt/Dkfll2r/2' 

where Dkf is k-the derivative of f, then C00 is not complete. 
0 

Hilbert space 

Suppose X is vector space over the real (complex) numbers. Suppose 

that with every pair x , y e X corresponds a real (complex) number 

(x,y), called the inner product of x and y, with the properties 

i) <ax,y> = a<x,y>, a real (complex). 

ii) <x + y,z> = <x,z> + <y,z>. 

iiil <x, y> <y,x>, where <y,x> is the complex conjugate of <x,y>. 

iv) <x,x> > 0 for x ~ 0. 

The non-negative number <x,x>1/ 2 is called the norm of x. If with this 

norm X is complete then X is called a Hilbert space. 

If the scalar field is ~ then X is called a real Hilbert space. 

Hilbert space examples 

1) The n-dimensional real vector space ~N supplied with the 

Euclidean inner product. 

2) Let [0, 1] c R Consider the class of square integrable real 

valued functions on the interval [O, 1], L2 ([0,1]). Functions only 

differing in value on a set of measure zero are identified. Define the 

inner product <f,g>0 as 
1 

<f,g>0 = J f(x)g(x)dx 
0 

with the corresponding norm 

11f11 0 = { ( 1rcxi 12ctxf/2 
then L2 ([0,1]) is a Hilbert space. 

Linear mapping (linear operator, linear functional) 

Suppose X and Y are vector spaces over the same scalar field ~. A 

mapping T: X ~ Y ls called linear if 

T(ax + (3y) =off(x) + (3T(y). 

Often Tx is written in stead of T(x). 
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If T: X ~ ~ and T is linear then T is called a linear functional. 

The set of all linear functionals on X will be denoted as Xr. 

Continuous mapping 

Suppose X and Y are normed vector spaces. An operator F: X ~ Y is 

called continuous at a point x e X if for any sequence {x } in X 
n 

converging to x the sequence {F(x )} converges to F(x). 
n 

F is called continuous on a open set Ac X, if it is continuous at each 

point of A. 

Bounded 

Suppose X and Y are normed vector spaces. An operator F: X ~ Y is 

called bounded if it maps bounded sets in X into bounded sets of Y. 

The set of bounded linear operators which map X into Y is denoted by 

L(X,Y). If X = Y, we write L(X) instead of L(X,X). 

Bounded linear functional 

Dual (adjoint) space 

The normed vector space L(X,IR) or L(X,C) of all bounded linear 

functionals on the normed vector space X is called the dual (adjoint) 
.. . .. 

space of X and denoted as X . Elements of X will be written as x ; the 

" " " value of x at x e X, x (x), is written as (x,x ), the symmetric 

notation. 

In the finite dimensional case Xr, the space of all linear functionals, 

" is equal to X, the space of all bounded linear functionals. 

Bounded linear operator 

(Theorem) A linear operator T of a normed vector space X into a 

normed vector space Y is continuous if and only if it is bounded. 

Riesz representation 'theorem: 

" Let x be a bounded linear functional on a Hilbert space H. Then 

there exists a unique y e H, such that .. 
x (x) = <x,y> .. 

for all x e H. Moreover, llx II 

called the duality map. 

" llyll. The mapping defined by x ~ y ls 
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(Finite dimensional: Consider a n-dimensional linear space ~N. let 

(e1 , ••• , e11 ) form a basis for nl, then x = \l'I x e for ln=1 n n 
Let f be a linear functional on R11 then 

Conversely, an expression of the form 

II 

f(x) l 
n=l 

xf, 
n n 

is a linear functional on R11 • (f e R). 
n 

II 

'i' x f . l n n 
n=l 

some 

Now, consider RN as the Hilbert space with the Euclidean inner product, 

then a linear functional f can be represented by <x,f>, where f e RN is 

uniquely determined by f (e ) f . ) 
n n 

Compact operator 

Suppose X and Y are normed linear spaces. Let T be a linear 

operator with domain D(T) is X and range in Y. The operator T is called 

compact if for each bounded sequence {xn} in X, the sequence {Tx } 
n 

contains a subsequence converging to some limit in Y. 
The set of all compact linear operators will be denoted as C(X,Y}. 
The set C(X,Y) ls a subspace of L(X,Yl, the set of all bounded linear 

operators. 

Let X, Y, Z be normed linear spaces and suppose T e L ( X, Y), 

S e L(Y,Z) then ST is compact whenever S or T is compact. 

If T is a compact operator whose domain X is infinite dimensional 

then T cannot have a bounded (continuous) inverse. (The identity 

operator I is not compact if X is infinite dimensional.) 

Closed operator 

Let T be an operator from X to Y. T is said to be closed if for 

any sequence {x } E D(T) such that x -7 x and Tx -7 y, x belongs to n n n 
D(T) and Tx = y. 

Adjoint operator 

Suppose X is a Hilbert space. If T is bounded linear mapping on X 
* into X there exists a unique bounded linear mapping T such that 
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,. • <Tx,y> <x,T y> for all X, y E X. Furthermore, T satisfies 
• • III II = llTll. The mapping T is called the adjoint mapping of T. 

Symmetric operator 

A linear operator T with domain D(T) and range R(T) in the 

inner product space X is said to be symmetric if the closure of D(T) is 
• • X and T ~ T. Thus T x = Tx for all x e D(T) 

Selfadjoint operator 

" A symmetric operator is selfadjoint if T = T. 

A linear bounded operator T on X into X with X is a Hilbert space 

with <Tx,y> = <x,Ty> is selfadjoint. 

Clearly a selfadjoint operator is symmetric, but the reverse need not 

be true. for finite dimensional spaces symmetric and self adjoint are 

always identical. 

Annihilator .. 
Let S be a subset of a linear space X. The annihilator of S in X , 

is the set Si of all x'" ex" such that (x,x"J = O if x e S. 

It is possible to define the annihilator for Xr in stead of x'" on the 

same way. This set will be denoted as Si. For finite dimensional spaces 
f 

the two definitions are identical. 

Transposed operator 

Let X and Y linear spaces and let A be a linear operator on X into 

Y. For each yr e Yr corresponds an element xr e Xr, defined by 

(x,xr) = (Ax,yr); denote the function so defined by AT; thus: 

ATyf = xr. The operator AT is called the transpose of A. 

Solvability of Ax= y (finite dimensional). 

(Theorem (Taylor and Lay, 1980)): Let A a linear operator on X 

into Y, where X and Y are linear spaces with the same scalar field. 

Then the range R(A} is characterized as follows: 

i) {R(A}}i = N(AT) 
f 

ii) R(A) {N(AT) }i 
f 

iii) R(A) Y if and only if (AT)-1 exists. 
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Solvability of Ax = y for finite dimensional spaces is now given by ii) 

since Xr = x* and SL = SL. The space Xf is again finite dimensional and 
f 

Ar is represented by the transposed matrix. 

For infinite spaces the conditions above are not very useful: the space 

of all linear functionals is not an amenable space to study. 

Furthermore the representation is only for bounded functionals. 

Spectrum, Resolvent 

Let T be an operator from X into X. The identity operator is 

denoted by I. For each scalar A the operator Al - T shall be denoted as 

TA. 

The resolvent set of T is the set p(T) of all A such that the 

range of Al - T is dense in X and AI - T has a continuous (bounded} 

inverse. For A E p(T), the operator (Al - T)-1 is called the resolvent 

operator and is denoted as RA. 

The spectrum of T is the set CT(T) of all scalar values not in 

p(T). 

The spectrum is divided into three mutually exclusive parts: 

C<r(T) 

Ro-(T) 

Po-(T) 

the continuous spectrum 

the residual spectrum 

the point spectrum = eigenvalues. 

If X is finite dimensional and domain D(T) of T is X, then the spectrum 

of T is all A which are roots of the equation del(AI - T) = 0. Each 

A e CT(T) is an eigenvalue of T. Thus CT(T) = PCT(T) (CCT(T) = RCT(T) = 0). 

Codimension 

Let M be a subspace of X which is complemented by a finite 

dimensional subspace N. The dimension of N is called the codimension of 

M and is written codim M. 

Eigenvalues 

Let A be an operator from X into Y and B be an operator from Y 

into X, and let D and K be invertible operators acting on the spaces X 

and Y, respectively. Then 
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-li-1 -BK 
K-1 

(E. 1) 

Theorem E.2: The eigenvalues of AB and BA are the same except 

eventually zero eigenvalues; if A and B are acting on the same finite 

dimensional spaces then all eigenvalues of AB and BA are the 

same. (E.2) 

Theorem (E.2) can be proved by using the following theorem: 

Theorem (theorem 1. 1 in Bart et al. (1984): Assume T is an operator 

from X1 into 21 and S is an operator from 22 into X2 such that 

Then 

where E and F are invertible 2 x 2 operator matrices 

E = [-;12 
x 

2 

with inverses 

E = 21 -1 [-B 
I z 1 

Proof of (E. 2): 

TB ] Bll ' 
21 

SA ] F-1 
A22 , 

12 

Let D = Ix' K = i\I 
y 

s = -1 
(E. 1) K - AD B then use 

[B~2 :11]. 
21 

with i\ ... O; 

to see that T 

of the above theorem. Since i\ * 0 we find: 

1 [i\I - BA - x 
.. 0 

let 
-1 

T=D-BKA and 

and S satisfy the condition 

The operators E and F are invertible. Hence, if i\ * O is an eigenvalue 

of BA then i\ is an eigenvalue of BA, and vice versa which proves the 

first part of (E.2). 
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Suppose A and B are acting on finite dimensional spaces ~N and we now 

only have to prove that AB has a zero eigenvalue if and only if BA has 

a zero eigenvalue. If the eigenvalues of AB are not zero then A and B 

have right inverses which on finite dimensional spaces are equal to the 

left inverses; hence BA is invertible and BA does not have a zero 

eigenvalue. 

Suppose AB has a zero eigenvalue with eigenvector w e ~N then at least 

either A or B must have a zero eigenvalue. If both A and B have a zero 

eigenvalue then also has BA. If A has a zero eigenvalue then also has 

BA. If A does not have a zero eigenvalue then A is invertible and 

Bw = 0. Hence there exists v e ~N such that Av w and BAv = Bw = 0. 

Eigenvalues of (B,A) 

Suppose B,A: X 7 Z are bounded linear operators. 

The resolvent set p(B, Al of the pair (B, A) is the set of A e IC such 

that B - AA has a bounded inverse (Chow and Hale, 1982). 

The spectrum cr(B, Al of the pair (B, A) is the set of all 

scalar values not in p(B,A). 

A point A e cr(B,A) is an eigenvalue of (B,A) if zero is an eigenvalue 

of B - AA. 

If A I then A is a I-simple eigenvalue of (B,I) if and only if zero 

is a simple eigenvalue of B - ii.I; that is 

dim N(B - AI) = 1 = codim R(B - AI) 

[IN(B - AI)]eR(B - AI) = Z. 

The point A is called an A-simple eigenvalue of (B,A) if 

dim N(B - AA) = 1 = codim R(B - AA) 

[AN(B - AA)]eR(B - AA) = Z. 
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Solvability of (!I.I - T)x y. 

Separation of the spectrum 

Isolated eigenvalues 

The next theorem (theorem 6.17 in Kato) gives a decomposition of 

the spectrum which generalizes the decomposition of the spectrum for 

finite dimensional spaces. 

Let T be a closed operator. Suppose the spectrum u(T) contains a 

bounded part u1 (T) separated from the rest u2 (T) in such a way that a 

rectifiable, simple closed curve r can be drawn as to enclose an open 

set containing u1 (T) in its interior and u2 (T) in its exterior. Now the 

decomposition theorem is formulated: 

Theorem E.3: Let u(T) be separated into u1 (T) and u2 (T) as 

described above. Then there exists a decomposition of T given by a 

decomposition X = M1 e M2 of the space in such a way that the spectra 

of the parts T111, T112 coincide with u 1 (T), a-2 (T) respectively and 
1 T111 e L{M ). (T11: the restriction of T to M, T1? = Tx for all x e M.) 

(E. 3) 

Suppose !\. is an isolated point in the spectrum a-(T). Then 

according to the theorem (E. 3) there exists a decomposition and an 

operator T111 whose spectrum consists of the single point !\.. Suppose now 

that M1 is finite dimensional then !\. is an eigenvalue of T 1 and thus 
I! 

of T. In this case dim(M1 ) is called the algebraic multiplicity of the 

eigenvalue !\.. 

An isolated eigenvalue !\. of T with finite multiplicity m has 

properties quite similar to an eigenvalue of a finite dimensional 

" operator. Thus e. g. !\. is an eigenvalue of T with algebraic 

multiplicity m. Moreover, 
" - " (T - !l.I)x = y is solvable if and only if y L N(T - !I.I ) 

and .. - .. 
(T - !I.I lg = f is solvable if and only if f i N(T - !I.I). 

The similarity follows from the fact that the problem is reduced to the 

" finite-dimensional problem for the parts T111 and T,i1"· (see Kato page 

184. ). 
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Spectrum of a bounded operator 

The spectrum o-(T) of a bounded linear operator is closed and 
bounded and hence compact. 

Spectrum of a compact operator 

The null spaces N(T~), n = 1,2, .. with T~ =(ii.I - T)n, are finite 
dimensional. (Theorem 7.6, page 299, in Taylor and Lay ) (E.4a) 

The spectrum of a compact operator in L(X) contains at most a 
countable set of points and these have no accumulation point except 
possible the ii. = 0. Each nonzero point of the spectrum o-(T) is an 
eigenvalue. (Theorem 6.26 in Kato ) (E.4b} 

Hence the point ii. = 0 can belong to Po-(T), Co-(T) or Ro-(T) but not 
to p(T), the resolvent set of T, if X is infinite dimensional. 

If ii. and µ are distinct eigenvalues of the compact linear operator 

T, then the corresponding eigenvectors are linearly independent. 

Solvability condition of (ii.I - T)x = y if T is compact 

The solvability condition is given by the following 

characterization of the range of Ti\ (see also the decomposition at 
isolated eigenvalues (E.3)): 

R(Ii\) = N(T~)'1 (E.5) 

Fredholm alternative for compact operators 

Let X be a normed linear space, let T be a compact linear operator 

on X into X, and consider the equations 

(ii.I - T)x y ( 1) 

in x and .. ,; .. * (;U - T )x y (2) .. 
in x 
Then one of the following two statements is true. 

i) There exists a uniquely determined solution of (1) for each ye X .. .. 
and of (2) for each y e X . 

ii) The homogeneous equations 

(;U - T)x = 0 (3) 

and .. .. .. 
(ii.I - T )x 0 (4) 
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have a finite and equal number, say m, of linearly independent 

solutions. In this case equation ( 1) has a solution (not uniquely 

determined) if and only if y e N(i\I* - T*) 1 , and (2) has a solution if 

and only if y* e N(i\I - T) 1 . 

Orthogonal, orthonormal 

A set of vectors in a inner product space is called an orthogonal 

set if <x,y> = 0 for every x, ye S, x * y. If, in addition, ttxtt = 1 

for every x e S, the set is called an orthonormal set. 

Complete set 

An orthonormal set S in the i.nner product space X is said to be 

complete if there exists no orthonormal set of which S is a proper 

subset; thus S is complete if it is maximal. 

E.2 Spectral properties 

Spectral properties of a symmetric operator 

Let A be a linear operator with domain and range in the 

inner product space X. Let A be symmetric and define 

m(A) inf <Ax, x)> M(A) sup <Ax, x>, 
UxH=1 llxH=l 

with the possibility that m(A) = -oo, M(A) +oo. 

The next theorems can be found in Taylor and Lay pages 345-346. 

(Theorem E.6) If A is symmetric and i\ is an eigenvalue of A then i\ 

is real and m(A) :s ;\ :s M(A). Eigenvectors corresponding to distinct 

eigenvalues are orthogonal. (E.6) 

(Theorem E.7) Suppose that A is symmetric and D(A) is dense in X. 

Suppose y e D(A), llyll = 1 and <Ay, y> = i\ where i\ is either m(A) or 

M(A). Then Ay = i\y so that i\ is an eigenvalue of A. (E.7) 

(Theorem E.8) If A is symmetric with D(A) = X then A ls continuous 

if and only if m(A) and M(A) are both finite and ln that case 

llAll sup l<Ax,x>I =max{jmCAll.IMCAllL CE.8) 
llxll=1 
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Spectral properties of symmetric compact operators 

From (E.4) and (E.5) ·it is seen that compact operators have 

properties which are comparable with properties of linear operators in 

finite dimensional spaces. This statement was formulated as the 

Fredholm alternative. 

The combination of symmetric and compact gives the following 

important theorems. The structure of t/1e operator can be completely 

analyzed in terms of the eigenspaces corresponding to the eigenvalues. 

The result (see (E.10)) is a generalization of the finite dimensional 

case where if A is symmetric, a basis consisting of eigenvectors can be 

chosen in such a way that the matrix representing A ls a diagonal 

matrix with each diagonal element an eigenvalue. 

Next theorems can be found in Taylor and Lay, pages 354-357. 

The space X is an inner product space not necessarily complete. 

(Theorem E. 9) Suppose A is compact, symmetric and A * 0. Then 

either llAll or -llAll is an eigenvalue of A, and there is a corresponding 

eigenvector x such that llxll = 1 and I <Ax, x> J = llAll. (E.9) 

(Theorem E. 10) Suppose A is compact, symmetric and A * 0. There 

exists a possible terminating sequence of nonzero eigenvalues i\1 ,i\2 , .. 

and a corresponding orthonormal set of eigenvectors x1 , x2 , • . . If the 

sequence do not terminate then Ii\ J ~ 0. 
n 

The expansion 

Ax = \ <Ax, x >x \ i\ <x, x >x L k k L k k k 
is valid for each x e X, the summation being extended over the entire 

sequence whether finite or infinite. Each nonzero eigenvalue of A 

occurs in the sequence {i\ } . The eigenmanifold corresponding to a 
n 

particular \ ls finite dimensional and its dimension is exactly the 

number of times this particular eigenvalue is repeated in the sequence 

{i\ }. (E.10) 
n 

(Theorem E.11) (a) Let A, {i\ } and {x } be as in theorem (E.10), 
n n 

and let M be the closed linear manifold generated by the eigenvectors 

x1, x2, Then ML = N(A). Hence the orthonormal set {xn} is complete 

if and only if 0 is not an eigenvalue of A. 
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(b) When X is complete then X = M © N(A). Also the 

range of A is composed of those elements y in M which are such that the 
<y,x > 
\~k series l. " xk is convergent. (E. 1 ll 

k 

(Theorem E.12) (Gohberg and Goldberg, 1981) Suppose {xk} ls an 

orthonormal system in X and {;>..k} is a sequence of real numbers which is 

either a finite sequence or converges to zero . The linear operator A 

defined on X by Ax= [ ;>..k<x,xk>xk is compact and self-adjoint. (E. 12) 
k 

So if the Laplace operator were a compact, symmetric operator, the 

decomposition of a disturbance v in the eigenvectors of the Laplace 

operator would be allowed. Furthermore the solvabllity condition would 

be given by the Fredholm alternative. The Laplace operator is certainly 

symmetric with the no-flux boundary conditions (see Kato page 274) 

however it 

d2 
-cos(krcx/L) 
dx2 

ls not compact, 

-(k~) 2cos(knx/L). 
not even bounded, since 

Fortunately the Laplace operator belongs to the class of (unbounded) 

symmetric operators with compact resolvent, a notion discussed below. 

Spectral properties of symmetric operators with compact resolvent 

Theorem 6.29 in Kato gives the spectral properties: 

(Theorem E. 13) Let T be a closed operator in X such that the 

resolvent RA exists and is compact for some A. Then the spectrum of T 

consists entirely of isolated eigenvalues with finite multiplicities 

and RA is compact for every ;\ e p(T), the resolvent set. (E. 13) 

Such an operator is called an operator with compact resolvent. 

The solvability condition of (T - ;>..I)x = y follows directly from 

the remarks after (E.3) on isolated eigenvalues. 

If an operator in X with compact resolvent is bounded, X must be 

finite dimensional. 
d2 

The Laplace operator is an operator with compact resolvent, 
dx2 

see example 6. 31 in Kato. The argument is that this operator has a 

inverse (resolvent) which is an integral operator with continuous 



kernel. See also Coolen (1978). 

The kernel is G(x,y), determined by 
d2 

G(x,y) 
dx2 

problem 

d
2 

[ -1 
dx2 

d
2

] - ;r- u(x) 
dx2 

v(x) 

can be written as 

[1 - •::2Ju(x) = -JG(x,y)v(y)dy. 

Set A = ll;r (;y * 0). Suppose A is eigenvalue 

cos(knx/L), (with no-flux boundary conditions). 

d2 
of-, 

dx2 

Since 

Jcos(knx/L)G(x,y)dx = (k;)
2
cos(kny/L) 
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O(x - y). So the 

(E.14) 

with eigenvector 

problem (E. 14) has still as solvability condition that v must be 

[ .,,_d2
]. perpendicular to the null space of 1 - • 

dx2 

The next theorem (Taylor and Lay, page 361) gives the spectral 

representation: 

Let X be an inner product space, not necessarily complete. 

(Theorem E.15) Suppose that Tisa symmetric linear operator with 

domain and range in X and suppose that T-l exists, belongs to L(X) and 

is compact. Let {A }, {x } be the sequence of eigenvalues and 
n n 

eigenvectors associated with A = T-1 as explained in connection with 

theorem (E. 8) and let µ = 1/A . The sequence {µ } is infinite, and 
n n n 

00 

Jµ I ~ oo. The orthonormal set {x } is complete, and x 
n n 

\' <x,x >x for L k k 
k=l 

each x e D(T). 

A point µ is in u(T) if and only if it is one of the µ 's. Thus 
<y,xk> 

k 

"' Tx = µ x. If µ is not in u(T), (µ - T)-1y = [ x for each 
n n n µ - µk I< k=1 

y EX. The inverse operator is compact. (E. 15) 
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E.3 Generalized derivative, Sobolev-spaces 

Let Q c !RN be open, let f be a square integrable function on Q, 

f E L2(Q); the function f is said to have a generalized 

(distributional) first order partial derivative with respect to x 1 , if 

there exists a function f(ll e L2 (Q) such that 

f(x)- dx = - f (x)tfJ(x)dx, I a.p I (I) 

ax for every tfJ e C00 (Q). 
n 1 n 

Then f(I) is denoted as af ax 
I 

Sobolev spaces 

Let Q c IR11 be open; 

0 

for 1 :s p < oo, be the space of 

functions f in the open domain , all of whose generalized derivatives 

up to order m are functions in LP(Q). Under the norm 

rip 
llfll = { ~ I I Dkf (x) I Pdx (E. 16 J 

m,p I k ~m n 

lf'•P is a Banach space. If'• 2(Q) is a Hilbert space with the inner 

product denoted as ( ... ) . If p = oo, If'• 00 (Q) is the space of 
m 

continuously differentiable functions f up to the order m, such that 

the following norm is finite: 

llfll 
m,oo 

sup IDkf(xJj. 
xcn 

(E. 17) 

I k I :s:m 

lf'•P is called a Sobolev space. For p =co we write lf'' 00 (Q) = Cm(Q), and 

it can be defined if Q is not open too. If p = 2 one often writes Hm(Q) 

with norm II· II , and so shall we do. 
m 

Theorem E. 18 (Wloka, 1969): is dense in 

(E.18) 

Corollary E. 19 (Wloka, 1969): is dense in 

lf''P(Q)' 1 :S p ::.; oo, (E.19) 
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Theorem (E. 18) means that the set of functions which satisfy the 

definition conditions of H""P(Q) with standard continuous derivatives, 

are dense in 1.f'" P (Q). 

Theorem E.19 (Wloka, 1969): Let Q c IRN be convex (or bounded with a 

C~-boundary. Then the following identity mappings are continuous: 

I: H°'' 1 (Q) -) Cr(Q), for m ~ r + N, 

I: H°''P(Q) -) Cr+cx (Q) for 1 < p < oo, m - r -Nip ~ o: > 0 and o: < 1. 

The function space Cr+a (Ii) is the space of all continuous 

differentiable functions f in Q up to order r such that the derivatives 

of order r are Holder continuous in Q with exponent o: and such that the 

following norm is finite: 

k 
sup jD f(x) I + 
xdl x, ycO 

I k jsr jkj=r 

The continuity means that there are constants C depending on N, m, r, p 

and Q such that for f e H°''P(Q): jfj s Cllfll . 
r m,p 

E.4 Convergence, continuity, differentiability 

Let X, Y be Banach spaces. Let T, T e L(X,YJ, n 1, 2, ... 
n 

Uniform convergence, Convergence in norm 

The convergence of {T } to T in the sense of III - Ill -) 0 is 
n n 

called uniform convergence or convergence in norm. 

Strong convergence 

{Tn} is said to converge strongly to T if Tnu 0 Tu for each u e X. 
{T } converges in norm if an only if {Tu } converges uniformly for 

n n 

llull s 1. 

Weak convergence 

{T } is said to converge weakly if {T u} converges weakly for each 
n n 

u e X, that is, if (T u,g) converges for each u e X and g e Y@. 
n 



252 APPENDIX E 

{In} converges in norm if and only if (Tnu,g) converges uniformly for 

!lull :s 1 and llgll :s 1. 

Continuity: 

Let T(t) be an operator valued function t ~ T(t) e L(X,Y). 

Continuity in norm 

T(t) is continuous in norm if llT(t + h) - T(t)ll ~ 0 for h ~ 0. 

Strong continuity 

T(t) is strongly continuous if T(t)u is strongly continuous for 

each u e X. 

Weak continuity 

T(t) is weakly continuous if T(t)u is weakly continuous for each 

u e X, that is if (T(t)u,g) is continuous for each u e X and g e y*. 

Gateaux differentiable 

Suppose X and Y are real Banach spaces. An operator F: A c X ~ Y 

is called (linearly) Gateaux differentiable at a point a e A if there 

exists a linear bounded operator T(a): X ~ Y such that 

lim F(a+th) - F(a) = T(a)h 
t 

t~O 

for every h E X, where the limit is taken for real t and convergence in 

the norm is meant. 

The operator T(a) is called the Gateaux derivative of F at the point 

a E A and will be denoted as DF(a). 

The image of he X under DF(a), DF(a)h e Y, is called the Gateaux 

differential of F at the point a in the direction of h. F ls Gateaux 

differentiable on a subset A c X if F is Gateaux differentiable at each 

point of A. In this case, the mapping a t-t DF(a) is called the Gateaux 

derivative of F on A and is denoted as DF. In some literature the 

Gateaux derivative in a is denoted as ~~(a). 
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Frechet differentiable (1) 

Suppose X and Y are real Banach spaces. An operator F: A c X 7 Y 
is called Frechet differentiable at a point a e A if there exists a 

linear bounded operator T(a): X 7 Y such that 

F(a + h) - F(a) = T(a)h + w(a;h) 

for every he X where the remainder w(a; ·): X 7 Y satisfies 

lim 
llhll 70 x 

llw(a; h) llv 

llhll x 
0 

The operator T(a) is called the Frechet derivative of F at the point 

a e A and will be denoted by dF(a). F is Frechet differentiable on a 

subset A c X if F is Frechet differentiable at each point of A. In this 
case, the mapping a 1-7 dF(a) is called the Frechet derivative of F on A 

and is denoted as dF. 

In some literature the Frechet derivative in a is denoted as 
oF 
ox(a). See variational derivative. 

Frechet differentiable (2) 

If F is Frechet differentiable at a e A, then F is continuous at 

a EA. 

If F is Frechet differentiable at a e A, then F is Gateaux 

differentiable at a e A, and DF(a) = dF(a). 

If the Gateaux derivative DF exists in some neighborhood U(a) of 

a e A, and is continuous at a, then t:1e Frechet derivative dF(a) exists 

and dF(a) = DF(a). Thus: A continuorn> Gateaux derivative is a Frechet 

derivative. 

Gradient 

Suppose X is real Banach space and f: X 7 R is functional on X. If 

f is Frechet (Gateaux) differentiable on A c X then the derivative of f 

at a point a e A, df(a) (Df(a)), is bounded and linear functional and 
• hence a element of the dual space X . The derivative of f on A is thus .. .. 

a mapping from A into X : df (Df): A 7 X . 

Now using the symmetric notation (see dual space), the effect of H 
under df (Df), df(a)h (Df(a)h), can be written as 
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df(a)h 

Df(a)h 

respectively. 

(h,grad f(a)) 

(h,Grad f(a)) 

Grad f(a) is called the gradient of f at the point a. 

Note that the representation of df (Df) by the gradient depends on the 

inner product defined on X. 

If f is Gateaux differentiable at x e X, then x is called a 
0 0 

stationary point , or critical point of f if Grad f(x ) 
0 

We will apply these notions to the following problem: 

functional V: H1 (0,L) ~ ~ is given by 

t 1 2 
V(u) = f(u) + -a(u l dx, a > O 

2 x 
0 

d Ju where ux = d~ and f(u) = </J(s)ds with 

Then 

</J(u) 
2 

-u + r u 
1 

0 

lim V(u + th) - V(u ) 

t~O t 

0. 

suppose the 

(E.20) 

!!: t-1{((t</J(u)h + ~t2<P' (u) + t 0uxhx + ~t20 (hx) 2 + ... )dx} 

= ((</J(u)h + oUxhx)dx (E.21) 

Using Holders's inequality, one finds: 

Ju h dx :s llu II llh II :s llull llhll 
xX xO xO 1 1 

and 

J</J(u)hdx :s C L2 11hll :s C L2 11hll 
0 0 0 1 

with C =sup l<P(u(xlll. Hence (E.21) is bounded. Thus the Gateaux 
0 

O~x:SL 

derivative DV(u) of V at a point u is given by 

DV(u)h = ((</J(u)h + auxhx)dx and critical points of V must satisfy 
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A classical calculus of variations problem may be written as: 

min V = ~ I(u(x),ux(x),x)dx 
{u(x)) O 

(E.22) 

subject u(O) = u , u(L) = u 
0 1 

(u (x) = du(x)/dx). 
l( 

For example, the Brachistochrone problem is to find a curve such that a 
particle sliding frictionless along the curve under influence of 
gravity moves from a given upper point to a given lower point in 
minimum time. A necessary condition for an extremum of V at u is that 

the Gateaux derivative, in this case also called the first variation, 

vanishes at u: DV(u)h = 0 for all h with h(O) = h(L) = 0. 

DV(u)h 

lim t- 1{~(1(u(x)+th(x),ux(x)+thx(x),x)-I(u(x),ux(x),x))dx 
t~O 0 

By partial integration one gets: 

( ( ~~ ( u ( x) , u x ( x) • x) ) h ( x) - ~x[~~ ~ u ( x) • u x ( x) , x ll] h ( x)) dx + 

+ 15!.!_ (u(x),ux(x),x))h(x)IL = 0 
~ 0 

(E.23) 

" 
Using the boundary conditions h(O) h(L) 0, the last term is zero. 

And the integral (E.23) is zero if 

8
8

1Cu(x),u (x),x)) - dd [81 (u(x),u (x).x))] 
u " x au x 

0 (E.24) 

" 
The equation (E.24) is called the Euler equation; the left hand side is 

also called the variational derivative and denoted by ~~· 
Comparing (E. 23) with (E. 21) one sees that both forms are identical 
(given the same boundary conditions) by setting 
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I(u,u ,x) = f(u) + ~0 (u )2 
x 2 x 

or 
Then by (E.24) the variational derivative ou becomes equal to 

lf>(u) - au 
'"' 

with u 
d 2 u 
~-. Note that no-flux boundary conditions u (0} 
~2 x "" 

u (L) 
" 

0 

yields the same result. 
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