


PJU.Yl-te.d a;t .the Ma.t.he.ma:U.c.al. Cen:tJz.e, 49, 2 e. Bovz.ha.ave.-0;t;wo.t, Am6tvz.dam. 

The. Ma:the.ma:U.c.al. Cen:tJz.e, fiounde.d the 11-th 06 Fe.bJtWVLy 1946, ,i.-0 a non­
pJto6U ,lno:U..tu..tlon cUming a;t .the pJtomotion 06 pwr..e ma:thema:U.C6 and U:6 
appuc.a:U.ono. I:t ,i.-0 6pono01te.d by the. NetheAf.a.11d6 Govvz.nme.nt .thJtough the. 
NetheAf.a.11d6 OJtgan,lzation fioJt the. Advanc.eme.Yl-t 06 Pwr..e RueaJtc.h (Z.W.O). 



MATHEMATICAL CENTRE TRACTS 114 

APPLICATION OF THE WIGNER 
DISTRIBUTION 
TO HARMONIC ANALYSIS OF 
GENERALIZED STOCHASTIC 
PROCESSES 

A.J.E.M. JANSSEN 

MATHEMATISCH CENTRUM AMSTERDAM 



AMS(MOS) subject classification scheme (1970): 42A76, 46F05, 46F10, 

60B05, 60G20, 60G35 

ISBN 90 6196 184 x 



CONTENTS v 

Contents 

Acknowledgements 

v 

V.l.l 

PREFACE 1 

NOTATION 6 

CHAPTER 1 • GENERALIZED STOCHASTIC PROCESSES 8 

10 1.1. Definition of generalized stochastic processes 

1.2. Strict sense stationarity and ergodicity; 

Gaussian processes 

1.3. Embedding of ordinary stochastic processes 

CHAPTER 2. EXPECTATION FUNCTION, AUTOCORRELATION FUNCTION AND 

21 

?.4 

WIGNER DISTRIBUTION OF GENERALIZED STOCHASTIC PROCESSES 31 

2.1. Definitions and main properties 32 

2.2. Second order stationarity 37 

CHAPTER 3. CONVOLUTION THEORY AND GENERALIZED STOCHASTIC PROCESSES; 

WIGNER DISTRIBUTION AND SECOND ORDER SIMULATION 4 7 

3.1. Preparation 49 

3.2. Convolution theory and time stationarity 51 

3.3. Shot noise processes 58 

3.4. Time-frequency convolutions and the Wigner 

distribution for generalized stochastic processes 64 

3.5. Second order simulation by means of noise 

showers 

CHAPTER 4. THE WIGNER DISTRIBUTION AND GENERALIZED HARMONIC 

ANALYSIS 

4.1. Some important notions in generalized harmonic 

analysis 

4.2. A Tauberian theorem 

4.3. Generalized Wiener classes 

4.4. Generalized harmonic analysis and the Wigner distri-

68 

83 

86 

88 

94 

bution; applications to generaiized stochastic processes 105 



V.l 

APPENDIX 1. THE SPACES S AND s* 113 

1. Introduction 113 

2. Convergence and topology in the spaces s and s* 123 

3. Continuous linear functionals of S and s* 127 

* 4. Continuous linear operators of S and S 131 

5. s* as a measure space 136 

APPENDIX 2. CONVOLUTION THEORY IN S AND s* 142 

APPENDIX 3. THE WIGNER DISTRIBUTION FOR SMOOTH AND GENERALIZED 

FUNCTIONS 145 

1. The Wigner distribution for smooth functions 145 

2. The Wigner distribution for generalized functions 148 

APPENDIX 4. TWO THEOREMS ON GENERALIZED FUNCTIONS OF SEVERAL 

VARIABLES 150 

1. Translation invariance of generalized functions 150 

2. Generalized functions of positive type 151 

REFERENCES 15 7 

INDEX OF SYMBOLS 161 

INDEX OF TERMS 16 5 



ACKNOWLEDGEMENTS 

The author thanks Prof.dr. N.G. de Bruijn and Prof.dr. C.L. Scheffer 

for their valuable suggestions and remarks. The author further thanks the 

Netherlands Organization for the Advancement of Pure Research (Z.W.O.) for 

their financial support, and Mrs. Maudy Kronenburg-Jackson for the excellent 

type-writing. 

He thanks the Mathematical Centre for the opportunity to publish this 

monograph in their series Mathematical Centre Tracts and all those at the 

Mathematical Centre who have contributed to its technical realization. 





PREFACE 

The present tract deals with applications of the Wigner distribution to 

harmonic analysis of (generalized) stochastic processes. 

The Wigner distribution was introduced in the thirties by E.P. Wigner in 

his paper [Wi]: On the quantum.cQJ!'.rection for thermodynamic equilibrium, 

Phys. Rev. 40 (1932), 749-759, as a new concept in quantum mechanics 

(we refer to [GSu] for an exposition of the role of the Wigner distribution 

in quantum mechanics; cf. also [B1], section 26 and 27.26. 2,3,4 and 5). 

In the past 30 years the Wigner distribution has received further attention 

as a useful tool in several branches of applied mathematics and engineering, 

such as radar analysis, Fourier optics and geometrical optics (cf. [Ba], 

[Br], [P], [PH], [Re], [St], [Su]). In some of these branches the Wigner 

distribution appears in a somewhat different form, and is called the ambi­

guity function. 

In 1948 J. Ville ((V]: Theorie et application de la notion de signal 

analytique, Cables et Transmission 3_ (1948), 61~74) proposed the Wigner 

distribution as a tool for harmonic analysis of signals. The theory of 

harmonic analysis (as created in the thirties by Wiener and others) is 

satisfactory for signals with certain stationarity properties. This excludes 

signals like those which are limited in time, such as pieces of music. 

Signals of the latter kind need something like a localspectrumwhich depends 

on observation time. 

Let us go into some more detail. Let f: lR +re be measurable, and assume 

that f belongs to the Wiener class (cf. section 4.1 of this thesis), i.e. 

T 

(1) lim JT J f(f,; + x) f(x)dx ==: cp(f,;) 
~ -T 

exists for ev~ry f,; E JR. The spectral density functions can be defined 

roughly as the Fourier transform of cp. It may be shown that 

(2) s(ft.) l . 1 
l.DI 2T 
~ 

T 2 I f(x) e-2niAx dxj 

-T 
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(the right hand side is to be interpreted as a limit in distributional 

sense). E.g., if f (x) = l~=l An exp(2rri1'nx) (x E lR) is a trigonometric poly­
nomial, then s turns ~o be the measure on lR concentrated in the points 

;>,. 1 , .• '.,AN with masses jA1 j 2 , ••. ,j~j 2 (we have assumed An c/. Am for n c/. m). 

The above analysis does not apply to functions f for which the limits 

in (1) do not exist. Even in case they do exist (e.g., if f is limited in 

time, whence~ is identically equal to zero) the formulas (1) and (2) may 

fail to give a useful description. A further objection concerns the fact 

that the spectral density function does not contain a time variable, and 

this certainly does not agree with the idea one has of the spectral density 

function when the signal f represents a piece of music. 

In 1970 W.D. Mark published a paper ([Ma]: Spectral analysis of the 

convolution and filtering of non-stationary processes, J. Sound Vib. 

(1970) .!:.!._ (1), 19-63) in which a modification of the theory of harmonic 

analysis was proposed so as to be able to handle more general signals as 

well. In this paper expressions like 

00 

(3) I w(n - I;) f(~) e-2rri~A d~j2 =: Sw(T],A) 

(with n E lR, A E lR) occur. Here f is the signal to be analyzed, and w is 

a weight function with J:00 jw(I;) j2 d~ = 1. The function Sw was called by 
Mark the physical spectrum of f. Note that this physical spectrum contains 

both a frequency variable A and a time variable n· 
It was pointed out by M.B. Priestley(cf. [Prl]: Some notes on the 

physical interpretation of spectra of non-stationary stochastic processes, 

J. Sound Vib. (1971) .!2. (1), 51-54) that the term "physical spectrum" for 

Sw is not quite correct, as Sw heavily depends on the choice of the weight 

function w. It is more proper to say that Sw is a "candidate" for the 

physical spectrum of f~ E.g., if f belongs to the Wiener class, it seems 

to be adequate to take a w that averages over a long range of the real line 
(cf. (2)). 

We sketch an alternative way leading to expressions like (3). Let g be 

a weight function of two variables, and put 



"' "' 
(4) 

J J 
-2'1Tiw£ 

g(x,w) e , f(x + n + ~) f(x + n - ~) dxdw := ~g(n,~). 

-oo -oo 

If f belongs to the Wiener class, and g is the characteristic function of 
-1 -1 

the set [-T,T] x [-T ,T ], then we get something like (1) if T tends 

to infinity. Hence (1) can be regarded as a limit case of (4). 

3 

There are two differences between (1) and (4). Firstly, (4) involves a 

time-frequency average, whereas in (1) only time averages occur. Secondly, 

the time variable n occurs explicitly in (4) • 

Performing Fourier transformation in (4) with respect to l; we obtain 

(by a formal appeal to Fubini' s theorem) 

(5) 
(JO 00 

J J g(x,w) J e - 21Tis (;\+w) f (x + n + !;) f (x + n - I;) di;} dxdw. 

The expression between { } is called (apart from a simple transformation 

of variables) the Wigner distribution off at the point (x + n, A + w) 

in time-frequency plane. Although the Wigner distribution of f may assume 

negative values, the function S' is non-negative for a fairly large class 
g 

of weight functions g. It is, however, in general not possible to concen-

trate g in arbitrarily small areas without destroying non-negativity of 

s•. We refer to [Bl], [B2] and [PH] where this fact is related to 
g 

Heisenberg's uncertainty principle. 

The S~ 's of (5) are closely related to the S~s of (3). If w is a weight 

function as in (3), then it may be shown that S s•, where g equals w g 
(apart from a .transformation of variables) the Wigner distribution of w 

(cf. 2.5 of appendix 2 of this tract and [Ma], (82)). In particular, s• is 
g 

non-negative. 

The above discussion about (local) spectra applies in a more general 

setting, viz. in the case of signals with a random character (noise process). 

This motivates us to study (generalized) stochastic processes with or 
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without stationarity properties (examples 

electrical engineering are the Barkhausen 

of non-stationary processes in 
1 

effect and f - noise) . Now we 

have to consider averaged Wigner distributions (averaged over the collection 

of random signals) , and this involves integrals like 

J -21fil; (Hw) 
(6) e R(x + n + !;, x + n - /;)di;. 

Here R is a positive definite function (autocorrelation function) of two 

variables (compare (6) and the expression in (5) between{}). The integral 

in (6) is the averaged Wigner distribution of the process at the point 

(x + n, A+ w) in time-frequency plane (also cf. [Ma], (82)). 

A further application of averaged Wigner distributions concerns (second 

order) simulation of noise processes. To explain this, let there be given 

some stochastic process with finite second order moments. The problem is 

to construct an "elementary" process that agrees as much as possible with 

the given process as far as second order moments are concerned (the first 

order moments are usually assumed to be zero). For the elementary processes 

we take shot noise processes, i.e. processes of the form ln pn g(an - x) , 

and "random Fourier series" processes, i.e. processes of the form 
-27f ib x 

\' P e n 
ln n g(x), or a generalized version of both types, viz. processes 

-27fib x 
of the form Ln pn e n g(an - x) which we call "noise shower" processes. 

Here pn' an and bn are random variables, and g is a fixed function 

(generalized or not) • The first two kinds of processes are suited for 

simulation of processes with a stationary character, but the third one 

allows to handle non-stationary processes as well. The Wigner distribution 

of the process to be simulated indicates how to distribute the parameters 

an and bn of the noise quanta over the time-frequency plane. 

By now it will be clear that Fourier theory is essential for our 

investigations. As we want to study not just stochastic processes, but 

generalized stochastic processes (like white noise and the processes 

mentioned in the previous paragraph) we have to start from a theory of 

generalized functions adapted to the needs of Fourier analysis. Such a 

theory can be built on the test function space S to which appendix is 

devoted; we note that the Fourier transform is a continuous linear bijection 

of S. Although there is a large amount of literature on generalized 



5 

stochastic processes (we ref er in particular to the recent book of Schwartz 

[S]), it seems that the test function space S with its facilities for 

hallllonic analysis has hardly been studied in this respect. It is to be noted 

that important theorems about cylindrical measures on the dual space S * 
(space of generalized functions), such as Minlos' theorem, Bochner's 

theorem and theorems on regularity, still hold (certain cylindrical measures 

* on S can be identified with our generalized stochastic processes). 

This is due to the fact that S can be endowed with a nuclear topology. 

The fact that our space of generalized functions is suited for Fourier 

analysis has a further consequence. It is possible to develop a satisfactory 

theory of convolution operators of Sands* (cf. [J2] and appendix 2). 

This convolution theory turns out to be convenient, particularly for 

stationary and ergodic processes. 

The space S is a good starting point for a theory of generalized stochas­

tic processes, but not in every respect. For our present aims it is cer­

tainly quite satisfactory, but difficulties arise with local behaviour of 

generalized functions and processes. This is connected with the fact that S 

does not contain functions of compact support. 

We shall now give a survey of this tract. In chapter 1 we give a number 

of (more or less) equivalent definitions of the notion of generalized 

stochastic process, and we prove a version of Minlos' theorem (on the 

a-additivity of cylindrical measures). Furthermore we consider strict sense 

stationary and ergodic generalized stochastic processes, and we also pay 

attention to Gaussian processes. Finally, chapter 1 contains a section 

about the embedding of "ordinary" processes defined on JR. 

Chapter 2 is devoted to the first and second order moments of generalized 

stochastic processes, and the notions of expectation function, auto­

correlation function and Wigner distribution of these processes are intro­

duced. We pay attention to (second order) time stationarity and frequency 

stationarity, and we indicate a relation between processes with independent 

values and frequency stationary processes. Moreover, we define spectral 

density function and measure of time stationary processes, and we consider 

random measures in their connection with time stationary processes. 

In chapter 3 convolution theory (cf.[J2]) is applied to both stationary 

and non-stationary processes. We prove a theorem on the representation of 

time stationary processes as filtered white noise processes, and we also 
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prove an ergodic theorem. We further consider shot noise processes, "random 

Fourier series" processes and "noise shower" processes. This gives rise to 

simulation theorems. 

In chapter 4 the Wiener theory of generalized harmonic analysis (spectral 

analysis) is generalized in two respects. Firstly generalized functions are 

admitted, and secondly a generalization is obtained by considering Wigner 

distributions of functions instead of their spectral density functions (the 

Wigner distribution of a function always makes sense, but the spectral densi­

ty function may not exist). Some applications to (generalized) stochastic 

processes are given. 

This thesis contains 4 appendices. The first one lists all we need con­

cerning the spaces Sands*. E.g., it contains a survey of the theory of 

generalized functions as presented in [Bl], information about the topological 

structure of Sands*, as well as theorems on continuous linear transforma­

tions in these spaces. Furthermore we provide s* with a a-algebra (the 

a-algebra generated by all open sets in s*> that has among its members 

(the embeddings) of the L (:IR) -spaces, (~e embeddings) of the classes of 
p 

embeddable continuous and measurable functions and the (generalized) 

Wiener class. 

The second appendix gives a survey of the main notions and theorems 

of [J2] on convolution theory in S and s*. 

The third appendix contains information about the Wigner distribution for 

smooth and generalized functions, and about time-frequency convolution opera­

tors. 

The fourth appendix contains a theorem on translation invariance of 

generalized functions and a theorem on generalized functions of positive 

type. 

Notation. We use Church's lambda calculus notation, but instead of his A 

we have y, as suggested by Freudenthal: if S is a set, then putting 

Y S in front of an expression (usually containing x) means to indicate the 
XE 

function with domain S and with the function values given by the expression. 

We write Y instead of Y S if it is clear from the context which set S is 
X XE 

meant. 

We further have the usual notations for the set theoretical operations 

(we have the symbol t for the symmetric difference, and, if f is a mapping 

from a set A into a set B, then f + (C) denotes the set {a E A I f (a) E C} 
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for any subset C of B). 

The sets of all real numbers and complex numbers are denoted by lR and 

~ respectively. The set of all integers, all positive integers, all non­

negative integers, all rationals are denoted by !ll', JN, m0 and ~ respectively. 

Let (0,A,P) be a a-finite measure space (0 is a non-empty set,A is a 

a-algebra of subsets of O, Pisa a-finite positive measure on A). We shall 

in general not assume A to be completed with respect to P. Let 1 s p s oo. 

We denote by L CO) the collection of all mappings f: 0 + a: such that f is 
p p 1/ 

measurable over 0 and cf o lfl dP) p < 00 (if p = 00 the left hand side of 

this inequality is interpreted as the essential supremum of jfj). The 

collection of all classes of equivalent functions in L Col is denoted by 
p 

L Col. The p-norm in L (O) or L (O) is denoted by II II • In cases where it p p p p 

is not necessary to discriminate between functions or classes of functions, 

we shall use the notation L (0) for both the set of functions and the set of 
p 

classes of functions. We shall use L (0) only in cases where we want to 
p 

emphasize that functions and not function classes are meant. 

If 1 s p s oo, f EL (0), g EL (0) (q denotes the conjugate exponent of 
p q 

p), then we write 

<f,g> J f•g dP. 

o 
If n E JN, n JRn , A the class of all Borel sets of m.n , P Lebesgue 

measure on JRn, then we write 

(f,g) J f(x) g(x) dx, II fll 

lRn 

n n for f E L2 ('JR ) , g E L2 C'IR ) • 

((f,f))I:! 

The classes of all .Borel sets in JRn and a:n (with n E JN) are denoted 

by B (JRn ) and B (!l:n) respectively. 

We give a further notational convention. Ordinary functions and stochas­

tic processes are denoted by lower case characters, whereas generalized 

functions and stochastic processes are denoted by capitals (an exception is 

made for the elements of C and M; cf. 3 and 7 of appendix 2). We also refer 

to the index of symbols on page 160. 



8 

CHAPTER 1 

GENERALIZED STOCHASTIC PROCESSES 

In section 1 of this chapter we give several definitions of the notion 

of generalized stochastic process; all these definitions are to some extent 

equivalent. Our definitions may seem to be rather complex and abstract, 

and in fact they have an indirect character in the sense that things are 

defined by the effect they have on other things. Therefore we shall try 

here to say in more common words what it is all about. We hav~ to be a bit 

vague at this stage, of course. 

We may think of a stochastic process as a complex-valued function of two 

variables t and w; t runs through the reals (t may represent the time), 

and w runs through some probability space n. If t is fixed we have a function 

defined on Q, i.e. a stochastic variable. If w is fixed we have a complex­

valued function of t. Hence choosing an w means choosing an element from a 

collection of complex-valued functions of t, according to some probability 

measure on the set of all those functions. 

Our generalization of this concept of stochastic process amounts to 

replacing, in some form or other, the functions of t by generalized func­

tions. This transition is modelled after the one leading from the set S of 

smooth functions to the sets* of generalized functions (cf. appendix 1, 

1.9 and theorem 3.3). The elements of s* are no longer proper functions. 

Two ways have been used for the introduction of s*. The first one depends 

on the smoothing operators Na (cf. appendix 1, 1.4). For each a > 0, Na 

maps S into S. Many "bad" functions (which are outside S but still functions) 

are mapped by the N~s into S too (cf. appendix 1, 1.5). A bad function f 

leaves a trace N f 
a 

(a > 0) in s. Noting the basic property of these traces, 

viz. N (Ni3f) = Na+i3f, definition of S * is, * we get a '• That elements of s a 
are described by means of their traces. The second way amounts to defining 

s* as a kind of dual of S, i.e. the elements of s* are defined as certain 

linear functionals on S. This s* contains an embedding of S, since Y (f,g) 
gES 

(where(f,g) is the ordinary inner product J:00 f(t) g(t)dt) is such a linear 

functional. It turns out that we get the same s* as by the previous gener­

alization (cf. theorem 3.3). 

We can now discuss the set s* of all generalized stochastic processes Q,p 
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of order p (with 1 ~ p ~ 00 ). We are inclined to conceive these processes as 

functions of t and w, but they are not. Nevertheless we can get to a set 

s* in which we have some operations that are extensions of known opera­rl ,p 
tions on functions. We mention five possibilities. 

* ' (i) If g is a smooth function of time, and if x E S we can form an n,p 
inner product (!,g) over JR; its value is a function of w only (in fact it 

Hes in L Wl) • '!'his idea gives rise to the first definition (cf. 1.1 .1.) • p 
(ii) If a is a positive number, the "generalized" dependance on t can 

* be smoothed: if X E S~ then N X is a function of t and w depending oo,p a.-
smoothly on t. That is, Na.! is a smooth process, and X can be described by 

its trace of smooth processes. 'rhis idea leads to the definition in LLS. 

(iii) If h E L (rl) then we can take the inner product over n with every 
q 

f E L (n). 
p Let us denote it by <f,h>. The same operation applied to x 

instead of f is expected to lead to a function <~,h> of t only, but it is 

still a generalized function. So X can be described as a mapping of L (Q) 
q 

into s~ This gives rise to the definition in 1.1.23. 

The transition from (i) to (iii) is easy to grasp in the following terms. 

In (i) a stochastic process is described by a mapping of S into L (Q) , and 
p 

such a thing gives rise to a mapping of the dual space 

dual space of S, that is of L (n) into s* (if p ~ oo). 
q 

of L (Q) into the 
p 

(iv) The idea of describing a stochastic process as a set of functions 

oft (for each w En we consider ~tElR _!(t,w)) with a probability measure 

on the set of these functions, can be generalized, simply by taking general-

ized functions of t instead of ordinary functions. This leads to the defini­

tion of L L 15. 

(v) In order to describe a function of two variables it is often 

convenient to represent it by separation of variables, i.e. by a sum 

lk ljik(t) qk(w). If the sum is "decently" convergent, this represents a func­

tion of t and w, but with a weaker notion of convergence we can get gener­

alized functions. In the theory of s* this is achieved by series l:=O ck ljik 

where the ljik's are the Hermite functions, and t.he ck's are complex. numbers 

with ck = O (eke:) (k E J.N0 ) for every e: > 0 (cL appendix 1, L 10). This 

idea can be used with stochastic processes too (cf. 1.1.17). 

Conceptually this method (v) seems to be the simplest of all and the 

least indirect one: it describes a generalized stochastic process by means 

of a sequence of elements of L (n). But (v) is not always the most convenient 
p 
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one. In particular, the behaviour of these expansions under time shifts 

t + t +a (with a E lR) is definitely unpleasant. 

We conclude the discussion on the notion of generalized stochastic process 

by the following remark. It depends on the kind of application which one of 

the above methods (i), ••• ,(v) is to be preferred. It certainly pays to show 

their equivalence, so that we are always able to apply the most convenient 

one. 

Section 2 of this chapter is devoted to the concepts of strict sense 

stationarity and ergodicity for generalized stochastic processes. These 

concepts can be formulated conveniently in terms of the probability measure 

ins* arising from a generalized stochastic process (cf. (iv) above). 

We speak of strict sense time stationarity, e.g., if this probability 

measure is invariant with respect to the time shifts T (a E JR). If there 
* a are no non-trivial sets in S which are invariant with respect to the time 

shift we speak of time ergodicity (the trivial sets are the sets with 

measure 0 or 1). We further pay attention to Gaussian generalized stochastic 

processes and Gaussian white noise. 

In section 3 we introduce a class of embeddable "ordinary" stochastic 

processes, and prove a theorem on the embedding of these processes in our 

system of generalized stochastic processes (this embedding theorem is 

conveniently formulated in terms of the first method of the above) • We 

further prove a theorem, stating that a large class of strict sense time 

stationary ordinary processes (in the classical sense) have strict sense 

time stationary embeddings. A theorem of the same kind is proved for 

ordinary processes that are strict sense time stationary and ergodic. 

1.1. DEFINITION OF GENERALIZED STOCHASTIC PROCESSES 

1.1.1. Let Q be a non-empty set, A a a-algebra of subsets of Q and Pa 

probability measure on A (whence (Q,A,P) is a probability space) . 

Let p be an element of the extended real number system with 1 s p s 

DEFINITION. A generalized stochastic process of order p is an anti­

linear mapping X = Y f 8 (X,f) of S into L (Q) such that II (X,f )II + 0 
- E- p S -np 

(n + oo) for every sequence (fn} nEJN in S with fn + O. (cf. appendix 1, 1, 12) 

The class of all generalized stochastic processes of order p is denoted by 

s;,p. If X E s;,p, and X = Y(f,w)ESxQR(f,w) is a mapping of s x Q into~, 



then we call Ra representative of x if Y X(f,w) is a representative of 
W€l1""" 

(~,f) for every f E s. 

11 

1.1.2. REMARKS. 1. Although it will not be used in this thesis, the following 

fact is of interest. Let!_= YfES (!_,f) be an anti-linear mapping of S 

* into L (Q). Since Sis a bornological space with the toplogy T, X E Sn 
p - • .,p 

if and only if~ is continuous (cf. the proof of appendix 1, theorem 

4.5 {iii), 2.6 and [FW], §11.32). Compare also [GW], Kap. III, §1.2. 

* If X E Sn , and S is endowed with the weak topology of appendix 1, 2.2, - .. ,p 
then X need not be continuous. 

-* 2. Sn is a linear space if addition and scalar multiplication are defined .. ,p 
in the obvious 

* 3. It is often not necessary to discriminate between elements of S 11,p 
and their representatives. 

* 1.1.3. We consider linear mappings of Sn • 
.. ,p 

THEOREM. Let T be a linear operator of S with an adjoint (cf. appendix 1, 

* 4.3), and let X E Sn • If Y is defined by 
.. ,p 

* (_!_,f) := (!_,T f) 

* then Y E Sn ·• .. ,p 

(f € S), 

* PROOF. It follows from appendix 1, theorem 4.7 (ii) that T is a continuous 

linear operator of s, hence! is continuous as a mapping of S into L (Q). 
p 

Anti-linearity of Y is obvious, so Y E s~ • 0 
- - .. ,p 

1.1.4. Theorem 1.1.3 motivates the following definition. 

DEFINITION. Let T be a linear operator of S with an adjoint, and let 

* X € Sn • Then TX is defined by .. ,p 

* (.?£_,T f) (f E S). 

Note that T is a linear mapping of s* into itself. 
Q,p 

1.1.5. In [J1], 1.3 generalized stochastic processes are introduced in a 

somewhat different way. First of all smooth stochastic processes of order 

P are defined as mappings x of ~ into L (Q) satisfying 
- p 
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( *) y t Ell: J ~ ( t) f dP E S 

n 
(f E L W)) 

q 

(cf. [Jl], 1.1.2; q denotes the conjugate exponent of p). The class of all 

smooth stochastic processes of order p is denoted by Sn (this is a linear 
"Ip 

space). Denote for f EL (rl) and x E Sn by <~1 f> the function given in(*). q ,.,p 

It has been proved (cf. [Jl], 1.2.5) that every continuous linear 

operator T of S (cf. appendix 1, 4.2) can be extended to a linear operator 

of Sn (again denoted by T) such that ",p 

<T_?!.tf> (x E Sn , f E L (n) l • 
"•P q 

The word "extended" is motivated as follows: we can regard S as a subspace 

of sn,p by identifying h Es and h:= Y(t,w)Erexn h(tJ E sn,p; 

now Th = Y (t,w) E<exn (Th) (t). 

Next generalized stochastic processes of order p are defined (cf. [Jl], 

1.3.1) as mappings _X = Y X of the set of positive real numbers into a>O -a 
Sn satisfying 
"' p 

~+S (a>0,(3>0); 

here the Na's are the smoothing operators of appendix 1,1.4 (Na !sis well­

defined for a > 0, S > 0 according to the foregoing: take T = Na, !!_ = ~). 
~* . Denote the class of all these ~by Sn 

~* . lJ ,p 
If f EL (rl), X E Sn , then 1 0 <X ,f> is a generalized function: q - ,.,p a> -a 

Na < !s,f> = <Na!s'f> = <~+S'f> according to the foregoing (cf. appendix 1, 

1.9 and [J1], 1.3.1). 
~* The following theorems on linear transformations of the space S have n,p 

been proved (cf. [Ji], 1.4.3 and 1.4.4). 

(i) If Lis a continuous linear functional of s* (cf. appendix 1, 3.2), 

then L can be extended to a linear mapping of s* into L (Q) such that n,p P 

I,(<~, f>) J LX.fdP 

!1 

~* 
(~ E Sn 1 f EL (!1)). 

"•P q 



(ii) If T is a linear operator of S with an adjoint, then T can be 
-* extended to a linear operator S~ (again denoted by T) such that 

.. ,p 

T ( <.?£.• f>) <T!_,f> ~* 
(!_ES,.., , f EL (0)). .. ,p q 

13 

1.1.6. The following result (stated as a theorem without proof) provides a 

link between the definitions given in 1.1.1 and [J1], 1.3. Let Lf denote 

for f ES the continuous linear functional~ * (F,f) of s*. 
FES 

* ~* THEOREM. (i) If X Es,.., (cf. 1.1.1), then there exists exactly one YES - .. ,p n,p 
(cf. 1.1.5) such that Lf !_ = (!_,f) for f E s. 

(ii) If Y E S~ 1 then there exists exactly one X E s* such that - .. ,p n,p 
(!_,f) = Lf !_for f E s. 

1.1.7. REMARK. Let T be a linear operator of S with an adjoint. If! ES~ 
~* ,p 

and YE s,.., are related to each other as in theorem 1.1.6, then the same 
- .. ,p 

holds for TX and TY (cf. 1.1.4 and 1.1.5). Hence L * Y = (!_,T*g) = (T!,g) 
T g-

= L TY for g E s. 
g -

1.1.8. We define a notion of convergence for sequences of generalized 

stochastic processes. 

* DEFINITION. Let X E s,.., (n E JN), and assume that II (X ,f)ll + 0 (n + 00 ) -n .. ,p -n p 

* for every f E s. We then say that X converges to zero in S,.., -sense, and -n .. ,p 

* * * write X + 0 (S,.., ). If X Es,.., , X Es,.., (n E JN) -n .. ,p - .. ,p -n .. ,p 

converges to X in S~ -sense and write X + X(S~ ) 
- .. ,p -n - .. ,p 

, we say that !n 
* if X - X + 0 (S,.., ). -n - .. ,p 

1.1.9. THEOREM. Let T be a linear operator of S with an adjoint, and let 
* * * (X ) JN be a sequence in s,.., with X + 0 (S,.., ) • Then TX + 0 (S,.., ) • -n nE .. ,p -n .. ,p -n .. ,p 

PROOF. Follows from definition 1.1.8 and 1.1.4. 0 

1.1.10. We can define convergence in the spaces s· and s* as well n,p n,p 
(cf. 1.1.5). If x ES,.., (n E JN), and if there is an A> 0, B > 0 such -n .. ,p 
that 

2 2 
llx (t)ll exp(nA(Re t) - 'IT B(Im t) } + 0 
-n p 

(n + oo) 
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uniformly in t E ~' then we say that x converges to zero in Sn -sense -n ,.,p 
~* and write x + 0 (Sn ). If X E Sn and (X) + 0 (Sn ) for every a> 0, -n "'p -n oo,p ~*-n a ,.,p ~* 

then we say that X converges to zero in Sn -sense and write X + 0 (Sn ) . -n oo,p -n ,.,p 
The following theorem holds (its proof is omitted). 

* ~* THEOREM. Let X E Sn , Y E Sn , and assume that X and Y are related 
-n "'P -n "1P -n -n 

to each other as X and Y in theorem 1.1.6 (n E JN). Then x + o (s* ) if 
-n Q,p 

* 1.1.11. We give a useful criterion for Sn -convergence. 
oo,p 

* THEOREM. Let X E Sn (n E JN) , and assume that ( (X , f)) JN -n oo 1 p -n nE 
converges 

in L (Q)-sense for every f E S. There is exactly one X E S~ 
p * .. ,p 

X + X (S ) • -n - Q,p 

such that 

PROOF. Define (!_,f):= lim (~,f) for f E S. We are going to show continuity 
n->oo 

of x. Let a > O. Then YfEL2 (IR) (~,N0f) is a continuous anti-linear mapping 

of L2 (JR) into L (Q} (n E JN), and we have II (X ,N f) - (X,N f)ll + 0 for p -nu -a p 
every f E L2 (JR). Hence (II (X ,N f)ll ) lN is bounded for every f E L 2 (IR). -n a p nE 
It follows easily from the Banach-Steinhaus theorem that there is an M > 0 

such that 

II (X ,N f) II $ Mll fll 
-n a P 

This implies that 

li(X,Nf)ll :SMllfll 
- a P 

(n E JN , f E L (IR)). 
2 

* * It follows easily from appendix 1, 1.12 that X E Sn • Also X + X (S ). oo,p -n Q,p 

* * It is easy to see that there is at most one X ES with X + X (Sn ). D Q,p -n ,.,p 

1.1.12. We shall meet in what follows (cf. chapter 3 and 4) conditional 

expectations of generalized stochastic processes. We give the following 

definition (compare also [Ur], II). 

DEFINITION. Let A0 be a er-algebra of scbsets of Q, and assume that A0 c A. 
Let X E s* . The conditional expectation of X with respect to A0 , denoted Q,p 
by E(!, I A0J, is defined by 



15 

where E( I A0J denotes ordinary conditional expectation with respect to A0 
in Li (Q,A,P) (cf. [Lo], Ch. VII, §24. 2). 

1.1.13. THEOREM. Let A0 and X be as in definition 1.1.12. 

Then E (!_ I A0l E s;,p 

PROOF. If f Es, then E,((!,fl I A0J E LPW,A,PJ, for E((!_,f) A0l is 

measurable with respect to A0 (whence with respect to Al , and 

< * l II E ( (!, fl S l[(X,f)ll 
- p 

(cf. [Lo], Ch. VIII, section 25.1,2). It follows from elementary properties 

of conditional expectations that E(X I A) is anti-linear as a mapping of S 
- 0 

into L (~,A,P), and also (from (*)) that E(X I A0 ) is continuous. Hence p -
E<! I A0J E s;,p. D 

1.1.14. We shall now indicate a relation (cf. theorem 1.1.15) between our 

* * generalized stochastic processes and probability measures on (S ,A). 
* * Here A is the a-algebra of S generated by all Borel cylinders in 

s* (= the a-algebra generated by all weakly open sets in s* = the a-algebra 

generated by all strongly open sets in s* the a-algebra generated by all 

sets of the form {F E s* I F (t) E o}, where a > 0, t E OC, o open in OC; a 
cf. appendix 1, 5.2 and 5.2, remark). 

* * * 1.1.15. Let P be a probability measure on (S ,A ) satisfying 

II Y * (F, f) II -+- 0 ( n-><o) for every sequence (f ) with f Ii 0 (the p-norm FES n p * n nE JN n 
is taken relative to P ). Define X(f):= Y *(F,f) for every f ES. Now X - FES _ -

* * * maps S into L (S ,A ,P ) in an anti-linear and continuous way. Hence X is 
p * a representative of an element of S 

* 
(cf.1.Ll). 

s ,p 
We shall show the following converse. 

THEOREM. If x E s;,p' then there exists exactly one probability measure p* on 

(s*,A*) such that the simultaneous distributions of ((!,f1) , ... , (!,fn)) 
with respect top and of Y * ((F,f1), ••• ,(F,f )) with respect top* are FES n 
the same for every n E JN, f 1 E S, ••• ,fn ES. 

A generalized stochastic pr9cess X gives rise to a cylindrical measure 
on the class of all Borel cylinders of s* (cf. appendix 1, 5.2 remark) in 

the following way. Associate with f 1 E S, ..• ,fn ES (where n E JN) the 

probability measure on ocn generated by the distribution function 
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of ((X,f ), ••• , (X,f )). We refer to the work of Schwartz ([S]) where general - 1 - n 
theorems on a-additivity of cylindrical measures on arbitrary topological 

spaces are proved. These theorems also apply to our case, and can be used 

to prove theorem 1.1.15. Our setting, however, allows a fairly simple proof 

(1.1.16-18) of theorem 1.1.15. This proof is based on the properties of the 

Hermite functions (compare also appendix 1, 5.6). 

* 1.1.16. Let X E sn,p· We need some lemmas for the proof of theorem 1.1.15. 

LEMMA. Let qk be a representative of (~,wkl for k E JN0 <wk is the kth 

Hermite function; cf. appendix 1, 1.7 (iv)). Then the set n0 Of all w E Q 
kE · with VE>O [qk(w) = O(e ) (k E JN0 )J is measurable and has probability one. 

PROOF. It is easily seen that n0 is a measurable subset of n. 

Now let E > o. Since NE/2 wk ~ 0 (cf. appendix 1, 1.7 (ii) and (iv)) I 

we have 

II qkll p e - (k+~) E/2 

hence 

It follows that 

This implies that 

I lqk(w) jP e-(k+~)Ep 
k=O 

and hence that qk(w} 
00 

n {w E n I qk(w) = 
n=l 

(k + co) I 

(k E lNO ) • 

< 00, 

E JN0 ) for almost every w .:: n. 

O(ek/n) (k E JN0)} is the countable 

intersection of sets in n whose complements are null sets. 

Hence P(n0J = 1. 0 



1.1.17. We define a mapping U of Q into s* by putting 

U (w) 

"' 
Ya>O l qk(w) Na $k 

k=O 

0 

Here qk and n0 are as in lemma 1.1.16. Now the following lemma holds. 

A* + PROOF. Let D be the set of all elements A of satisfying U (A) E 11. 
+ * 
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If 

f E s and if B is a Borel set in a: then U ({F E S I (F ,£) E B}) is an 

element Of D since it differs from {w E !"I I l==O qk (w) ($k If) E B} by an 

element of 11 of measure zero. It easily follows that D contains all Borel 

cylinders ins* (cf. appendix 1,5.2, remark). Also, Dis a a-algebra of 

subsets of s* contained in 11*. Hence, by appendix 1, 5.2, remark, D = 11*. 

Hence U + (A*> c A~ 0 

1.1.18. Define the set function P* by 

p*(A) = P(U + (A)) 

* * LEMMA. (i) P is a probability measure on A • 

(ii) If h: s*-+ a: is measurable over s*, then h c U is measurable over n, 
and 

in the sense that if either integral exists, then so does the other and the 

two are equal. 

PROOF. This follows from lemma 1.1.17 and [Ha], Ch. VIII, Section 39, 

theorem B and c. 

It is now easy to prove the theorem in 1.1.15. For if f E S, then 

k:= Y *(F,f) is measurable overs*. It follows easily from (ii) of the FES 
above lemma that the distributions of k o U (with respect to P) and k 

D 

(with respect to p*) are the same. Since k • U is a representative of 

(_X,f) we conclude that the distributions of (X,f) and Y s* (F,f) are the 
- FE 

same. With a similar proof the same thing can be shown for the simultaneous 
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* distributions occurring in the assertion of the theorem in 1.1.15. Hence P 

satisfies our requirements. It is not hard to show (from caratheodory's 

extension theorem) that there is at most one probability measure on A* 

with the assigned properties. 

1.1.19. * * . DEFINITION. Let X E Sn • Then we denote by P the unique probability H•P x 
of theorem 1.1.15. We call P; the probo.bilityrneasure associated measure 

with x. 
If we regards* as a measure space with P; as measure, then Y[f,F] (F,f) 

can be viewed as a representative of ~; we call this representative the 

canonical representative of !· 

1.1.20. Let T be a * linear operator of S with an adjoint, and let X E Sn • 
* * - "•P a relation between P and P (cf. definition 1.1.4), and 

lJ * + ~ T~ 
We want to derive 

* we claim that P 
TX IAEA* PX (T (A)) (in view of appendix J., 5.4 the right 

hand side Of this equality makes sense). Let therefore n E JN, 

f 1 E S, ..• ,f ES. The distribution of Y ((F,f1), ... ,(F,f )) with respect 
* n F * n * 

to PTX equals the one of ((T!,f1), ••• ,(T!,fn)) = ((!,T f 1), ... ,(!,T fn)) 

* * with respect to P. Also, the distribution of ( (!f_,T f 1l, ... , (!,T fn)) 
l,J * * with respect to P equals the one of 1F((F,T f 1) , .•• , (F,T fn)) 

= YF((TF,f1), ••• ,(TF,fn)) with respect to P;. We easily infer that 
* * + * * PTX(A) = PX(T (A)) for all Borel cylinders A in S • Since both PTX and 

l,J- * - * * -IAEA* PX(T +(A)) are probability measures on (S ,A), we conclude that 
P;X(A) ;;;-p;(T +(A)) for all A EA*. 

1.1.21. The following lemma will be convenient sometimes. 

* * . LEMMA. Let X E Sn , and let U and P be as in 1.1.17, 
* - "'P . *K + * Let A0 be a a-algebra contained in A • Then u (A 0 ) is 

in A, and if h: s* +~is integrable overs*, then E(h 

I U + * = E(h • u (A0)J. 

1.1.18 and 1.1.19. 

a a-algebra contained 

* A0J • u = 

+ * PROOF. It is easy to see that U (A 0) is a a-algebra contained in A. 
* * * Let h: S + ~ be integrable over S • For B E A0 we have 

L E(h I * f (XB • E (h I * AO) • u dP AO)) • u dP 

U (B) Q 

f XB • E(h I * * 
f E(h I * * AO) cl.PX AO)dPX 

* B s 



by lemma 1.1.18 (ii). Similarly, 

J E (h I /\. *o> * J * dPX= hdPX 

B B 

J h 0 u dP 
+ 

U (B) 

by the definition of conditional expectation. Hence E(h • U I U + (/\.;)) 

= E (h I /\.;) • u. 

1.1.22. We consider yet another way to introduce generalized stochastic 

processes, and therefore we give the following lemma. 

* LEMMA. Let X E Sn and - oo,p_ 
such that f n (!,g)•f dP 

let f EL (fl). There exists exactly one FE s* 
q 

= (F,g) for every g E S. 
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D 

PROOF. Note that Y J (X,g)•f dP is a continuous anti-linear functional gES Q -
of S. The lemma follows from appendix 1, theorem 3.3 (i). D 

* 1.1.23. DEFINITION. If X E Sn and f EL (Q), then we denote the F of ,.,p q 
lemma 1.1.22 by <_!,f>. 

* Note that the mapping f E L (fl) + <!,f> E s is continuous (and anti-
q 

linear) : if (fn) nEJN is a sequence in L (n) with II f II + 0 (n + co) I then 
q n q 

s* (<!,fn>,g) + 0 (n + oo) for every g E S, hence <X,f > + 0 by appendix 1, 1.15. 
- n 

Furthermore we have <_X,f> = 0 (f E L (n)) if and only if X = O. Hence, if 
q -

* X E Sn , there is 
.. ,p * 

exactly one continuous anti-linear mapping ! of 

L (Q) into S such that <!.,f> = .!_(f) (f EL (Q)). For p > 1 the converse 
q q 

may also be proved (compare the proof of theorem 1.3.3), i.e. for every 

continuous anti-linear mapping Y of L (fl) into s* there exists exactly 
* q one X E Sn such that <X,f> = !_(f) for every f EL (fl). We thus see that .,.,p - q 

(in case p > 1) we could have defined generalized stochastic processes of 

* order p as co~tinuous anti-linear mappings of L (rl.) into s • We mention 
q 

that things are more complicated if p = 1. 

REMARK. Let X Es* , f EL (fl), We have <T!.,f> 
n,p q 

T<2!_,f>. To see this note 

that for g E S 

J J * - * (T!.,g).fdP= (!.,T g).fdP= (<!,f>,T g) (T <!1 f>,g). 

n n 
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See also 1.1.5. 

1.1.24. We considered in this section four more or less equivalent definiti­

ons of the notion of generalized stochastic process (cf. 1.1.1, 1.1.5, 

1.1.15 and 1.1.23). We shall elaborate in this thesis mainly those given 

in 1.1.1 and 1.1.15.There are cases that definition 1.1.1 is easier to handle 

than definition 1.1.15 (e.g. when considering the shot noise processes of 

3.3),but often definition 1.1.15 is more convenient {e.g. when dealing with 

ergodic processes) . 

1.1.25. It should be noted that our generalized stochastic processes are 

* complex-valued, i.e. the random variables (~,f) with X E Sn and f E S - - .. ,p 
take complex values. It is of course also possible to consider real processes: 

* we may call an X E Sn real if (_X, f) is a real random variable for every - ,.,p 
f E S with f (x) E JR. (x E lR). The reason to consider complex-valued processes 

is the fact that important operators as the Fourier transform F and the. fre­

quency shifts map real-valued elements of S to not necessarily real-valued 

elements of S (cf. appendix 1, 1.8). In most parts of literature only real­

valued processes are considered (cf., however, [GW], Ch. III, §2.2 and [D], 

Ch. II, §3), but in our theory (where Fourier analysis plays a dominant 

role) we have to consider complex-valued processes as well. 

1.1.26. We shall sometimes consider generalized stochastic processes depending 

on several time variables (especially the case with two time variables) . A 

generalized stochastic process of order p depending on two variables is a 

continuous anti-linear mapping of s2 into L (Q). The class of all these 
2* p 

processes is denoted by SQ • 
* * ,p 

Let X E SQ , YE SQ (q is the conjugate exponent of p). An important 
,p ,q 2*. 

example of an element of sQ,l is the tensor product.!® Y of X and Y: 

(lJ!k (k E JN0 ) denotes as usual the k th Hermi te function; cf. appendix 1, 
2* 1.7 (iv)). It can be proved that X ®!is an element of sQ,l by noting that 

II (_!,lJ!k)• (~_,1J!9,)li 1 = O(e(kH)EJ (k E-JN0 , 9, E JN0) for every E > O. 

We sketch another way (which gives the same result as the one above) to 

define the tensor product of X and Y. Let B be a mapping of S x S into 

L (n) (where 1 ::;; r ::;; oo), and assume that B is continuous and anti-linear 
r 
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in each variable separately. It can be proved (cf. also appendix 1, 3.6) 
' 2* that there exists exactly one ~ E sn,r such that (~,f ® g) = ~(f ,g) for 

f ES, g ES. If we take B:= Y[f ] SS (X,f)o(Y,g), then it is easy to see - ,g E X - -

that ~ is continuous (r = 1 in this case) and anti-linear in each variable 
' 2* separately. Now we put_!®!:=~, where z is the unique element of sfl,l 

satisfying (-1!_,f ® g) = ~(f,g) for f E s, g E s. (We refer to [Jl], 1.3.S(ii) 

for a third way to introduce tensor products of generalized stochastic 

processes.) 

As to linear transformations in the spaces of generalized stochastic 

processes depending on several time variables, we remark that theorem 1.1.3 

still holds (with proper modifications) for the present case. We further 

* * mention the following theorem. Let X E Sn , Y E S~ , and let T1 and T2 - .. ,p .. ,q 
be two linear operators of S with an adjoint. Then we have 

(T1 ® T2l (_! ® !) = T1,! ® T2! (cf. appendix 1, 4.16 and theorem 1.1.3 of 

this chapter). This may be proved by noting that 

for f ES, g ES (cf. also [Jl], appendix 1, 3.12). 

1.2. STRICT SENSE STATIONARITY AND ERGODICITY ; GAUSSIAN PROCESSES 

1.2.1. We introduce in this section the notions of strict sense stationarity 

and ergodicity. We further consider briefly Gaussian processes and we give 

some references to literature on these processes. As usual (Q,A,P) is a 

fixed probability space, and p is an element of the extended real number 

system with 1 $ p $ oo. 

1.2.2. DEFINITION. Let. V be a group of linear operators of S with an adjoint, 

* and let_! E sn,p· If for every n E JN, f 1 E s, ••• ,fn E S the distribution 

of ((V!,f1J,.;.,(V!,fn)) is independent of VE V, then we say that! is 

striat sense V-stationary. In the special case that V = (T ) (cf. appen-
a adR 

dix 1, 1.8 (ii)) we speak of striat sense time stationarity, and in case 

that V = (R) we speak of strict sense frequency stationarity. b bElR 
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* 1.2.3. EXAMPLE. Let! E SQ,p We have FTa R_af by [Bl],(11.1) {cf,appendix 
1,1.8), He~ce, if n EN, fl E. S, ••• ,fn ES, then ((R_af:2..tf1}, ••• ,(R_.:/~,fn))= 
= ((Ta~-' F f 1) , .•. ,(Ta!• F fn)) for a E. JR. Since F* is a bijection of S 

we conclude that X is strict sense time stationary if and only if f?!_ is 
strict sense frequency stationary. The same holds with F*x instead of Fx. 
1.2.4. Stationarity properties of a generalized stochastic process has 
consequences for the associated probability measure on (s*,A*J (cf. 1.1.19). 

THEOREM. Let V be a group of linear operators of S with an adjoint, and 
* let X E. Sn . Then X is strict sense V-stationary if and only if every - "•P * * V E V induces a measure preserving transformation of (S ,A ) with respect 

* to PX. 

* 
* V-stationary. If A0 is the set of all 

= P:(A) for every v E V, then A; is a 

PROOF. Assume X is strict sense 

* elements A of A with PX (V(A)) 

a-algebra containing all Borel cylinders in 
theorem 1.1.15 and definition 1.1.19. Hence 

remark. 

* S . This is easily seen from 

* * A0 =A by appendix 1, 5.2, 

Conversely, assume that every V E V induces a measure preserving 
transformation in (s*,A*) with respect top*. If VE. V, n E JN, x 
f 1 E. s, •.• ,f E. S, the distributions of ((Vx,£1), ••• ,(VX,f )) and the one n - - n 
of YFES* ((VF,f1J, ..• ,(VF,fn)) are the same. The latter one is known to 
be independent of V E V. 0 

1.2.5. We next define ergodicity. For notational convenience we formulate 
the definition in terms of the associated measure ons* (cf. 1.1.19). 

DEFINITION. Let V be a group of linear operators of S with an adjoint, and 
* * let X E S • We say that X is ergodic if for every A E A (7 stands for Q,p 

symmetric difference) 

0 or 1. 

In the special case that V = (T J we speak of time ergodicity, and a ac::JR 
in the (rare) case that V = (I\i)bc::JR we speak of frequency ergodicity. 
If we say"! is ergodic" without any further specification, then we mean 
that X is time ergodic. 



1.2.6. It is sometimes necessary to have definitions of stationarity and 
ergodicity which are formulated exclusively in terms of the measure space 
(Q,A,P). We restrict ourselves to time stationarity and ergodicity. 

* Let X E S , and let X be a representative of!_ (cf. 1.1.1). 
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Q,p 
Let r 0 be the collection of all sets {w I (R(f1 1wl, .•. ,K(fn,wl) E B} where 

n <- JN , f 1 E s, •.• , f n E S, B E B («: n) , and let A0 be the a-algebra generated 

by r 0• Finally, let [A0J be the system of equivalence classes of sets in 
A0 (equivalence with respect to P). 

Let a E lR, and define the mapping Ta of r 0 into itself by 

for n E JN, f 1 E S, ••• ,fn E S, B E B(t!:n). If Ta is measure preserving on 
r0 , then Ta can be extended in exactly one way to a measure preserving 
mapping of [A0J into itself. It is easy to see that X is strict sense 
time stationary if and only if (T ) is a group of measure preserving a aElR 
transformations of [A0J. 

Assume that X is strict sense time stationary, and let I be the class 
of invariant elements of [A0 J (i.e. EE I$$ EE [A0J, Ta(E) = E(a E lR)). 
We are going to show that ! is time ergodic if and only if I is trivial 
(Le. I consists of the class containing ~ and the class containing l1). 

* * * Since ergodicity was defined in terms of the probability space (S ,A ,PX), 
we construct a mapping T of [A0 J into [A *J, the system of classes of equiv­
alent sets in A* (equivalence with respect to P;). 

Define 

for n E JN, f 1 E s, ••• ,fn Es, BE B(a:nJ. It is easy to see that T can be 
extended in exactly one way to a bijective, measure preserving mapping of 
[A0Jinto[A*J (cf. 1.1.15). 

It follows from stationarity of! (cf. 1.2.4) that the mapping 

Ta"' YAEA* 
mapping of 

TT TT, 
a a 

Ta(A) can be extended in exactly one way to a measure preserving 
[A*] into itself (a E m.) • It is easy to see that 

-l T-lT (a E lR) • 
a 
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Let I* be the class of invariant elements of [A*]. It is not hard to 

* * prove that I = T(I). Since T is bijective, this means that I is trivial 

* if and only if I is trivial. But I is trivial if and only if ! is ergodic. 

1.2.7 .. An important role in any theory of generalized stochastic processes 

is played by Gaussian processes. These are processes ! for which the dis­

tribution function of ((!,f1), ••. ,(!,fn)) is Gaussian for every n E JN, 

f 1 E S, ••• ,fn ES (note that the (!,fk) 's are complex-valued Gaussian 

random variables; cf. [GW], eh.III, §2.2 or [D], Ch. II, §3 for the defini­

tion of complex-valued Gaussian variables) . 

There is a large amount of literature on Gaussian processes. Especially 

the case where the setting is a triple (E,H,E') (with Ea nuclear space of 

test functions, H a Hilbert space (usually L2 (JR}) , E' the dual of E} has 

* received much attention. Note that (S,L2 {JR),S) is such a triple if Sis 

endowed with the inductive limit topology T of appendix 1, 2.6. 

An important example of a Gaussian process is Gaussian white noise, 

where f n(If_,f)dP = 0, f n<!,f) (!,g)dP = (f,g) for f E E, g E E. A detailed 

analysis of Gaussian white noise can be found in [Hi], Part III. In the 

reference just given the relation between Gaussian white noise on one hand 

and multiple Wiener integrals and Brownian motion on the other one is dis­

cussed. (In [Hi] the test function space E is assumed to contain non­

trivial elements of compact support; this assumption plays no significant 

role in the analysis given in [Hi], Part III of white noise, Brownian motion 

etc.) 

More general Gaussian processes are studied in [Um]. E.g., theorems 

about quasi-invariance of the measures arising from these processes are 

derived there. 

1.3. EMBEDDING OF ORDINARY STOCHASTIC PROCESSES 

1.3.1. We are going to embed a certain class of ordinary stochastic processes 

(with real time parameter} in our system of generalized stochastic processes. 

The class of embeddable processes can be compared to some extent with the 
+ spaces of appendix 1, 1.5. As usual, (n,A,P) is a probability space, 

and p is an element of the extended real number system with 1 ~ p ~ 00 



1.3.2. DEFINITION. The class S+ consists of all mappings~: lR x Q +Cl: 
11,p 

satisfying 

(1) x(t):= Y n x(t,w) EL (Q) for almost every t E IR, 
- WE" - p 

+ there is an h E S with llx(t)ll s h(t) for almost every 
- p 

( 2) 

t E JR, 

(3)<x,f>:• V <x(t) f> V f 
- 1tEJR - / := 1tEJR 

!!_(t)fdP E S+ for every 

f EL (Q). Q 
q 

25 

-+ Here q denotes the conjugate exponent of p. The class S 
+ Q,p 

consists of all 

equivalence classes of elements of sQ,p (two elements ~1 and ~2 of s+ are 
n,p 

considered equivalent if ~1 (t) = ~2 (t) (a. e.) for every t E ID.) • 

REMARKS. 1. Especially condition (3) looks a bit awkward, but we shall give 

in 1.3.5 a number of examples where conditions (1)-(3) are readily verified. 
+ 2. The definition of Sn deals with mappings X:JRXQ+(l: • 
.. ,p 

At first sight it looks more appropriate to consider the 

These can be identified with mappings x of lR into L (Q) 
- p 

-+ 
elements of S 

Q,p 
such that (2) and 

(3) hold. In view of 1.3.6-8, however, it is convenient to have mappings~ 

defined on the product space lR x Q and taking values in CC. 

1.3.3. In the proof of the embedding theorem below there is no harm in 

identifying functions and function classes; we thus write L (Q) and L (Q) 
p q 

instead of L (Q) and L (Q) . 
p q 

+ THEOREM. Let x E Sn • There exists exactly one X E 
",p 

<_!,f> = emb(<~,f>) for every f E L (Q) (cf. 1.1.23). 
q 

* s 
(l ,p such that 

* PROOF. The uniqueness of an ~ E Sn with the assigned properties is seen 
",p 

from 1.1.23, so we only have to show existence. 

Let g E s be fixed, and consider the linear functional 

We show that there is exactly one h E r. (Q) such that 
g p 

f f·hg dP 
Q 

(f E L (Q) ) • 
q 

We have by appendix 1, 1.11 (i) for f E L (Q) 
q 

(**) IL (f) I 
g If g(t) <~cti ,f>dtl s 11f!1q f lg(t) I h(t)at. 

-"' 
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Since J:00 jg(t) J h(t)dt < 00 , the Riesz representation theorem (cf. [Za], 

Ch. 12, §50, theorem 2) applies for the case 1 < p s; oo: there is exactly one 

h EL (n) satisfying(*)· For the case p = 1 we note that the set function g p 
YAEA ~g(XA) is completely additive, and we can complete the proof of the 

existence of an hg E L1 (n) satisfying (*) in the same way as the proof of 

[Jl], theorem 1.2.4. There is just one h satisfying(*). 
g 

We next show that the mapping g + h is linear and continuous. Linearity ·g 
is easily seen, so we only have to show continuity. Let (g ) be a 

S n IlEJN 
sequence in S, and assume that g + 0. By (*) and (**) we get 

n 

Jg <tl I h(t)dt 
n 

for every f E Lq(n). Since J:00 Jgn(t) I h(t)dt + 0, we easily conclude that 

llh II + 0. This establishes continuity. 
gn P 

f E 

Now we put X:= Y h . Then - gES g 
L Wl, for (cf. 1.1.23) 

q 

X E S * n,p 
Also, <_!, f> emb ( <~! f>) if 

(<2!_, f> I g) f (2!_,g)• f dP = J hg· f dP (emb (<~,f> ,g) 

n n 

for every g E S. Hence X satisfies the requirements. D 

REMARK. We note that we have a similar theorem if we take x E S+ instead n,p + of s,, . 
.. ,p 

+ -+ 1.3.4. DEFINITION. If x E Sn (or Sn ), we put emb(!!):= .!·where.! * ,p ,p 
is the unique element of s,. satisfying <~1 f> emb(<~1 f>) for every oo,p 
f E L WJ. 

q 

Note that the mapping emb is in general not injective as a mapping of 
+ -+ * S,. (or s,. ) into s,,. . 
oo,p "•P .. ,p 

1.3.5. In the 'examples below x: JR x Q satisfies (1) of 1.3.2. 

(i) If~ is continuous in pth order (i.e. ll~(t) - ~(t0 Jll P + 0 (t + t 0J 
for t 0 E JR) and if Y llx(t)ll E S+, then x E s+ • Now <x,f> is continuous t - p - n,p -
for every f E L (nl • 

q + 
(ii) If <_x,f> is measurable for every f E L (n) and if Y llx (t) II E S , q t - p 
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(iii) If p = 2, if Y, ) 
u + t,s 

2+ . 
<~(t), ~(s) > ES (cf. appendix 1, 1.17) and 

if It ll~(t)ll 2 E S , then~ E 
+ sn, 2 In view of (ii) the only thing we have 

to check is measurability of <~1 f> for f E L2 (n). To prove this, define u 

as the closure in L2 Cri> of the set {I~ 1 a. x(t.l J n E JN, a. Ea:, 
' i= l. - l. l. 

ti E lR (i 1, ••• ,n)}. Every f E L2 (n) can be written as f 1 + f 2 with 

f 1 E u, f 2 E u~. Now <~,f> = <~1 f 1> is measurable. 

(iv) Let ~be a real Brownian motion process: ~(0) = 0 and the distri­

bution of (x(t) - x(t ), ••• ,x(t) - x(t 1JJ is Gaussian with zero expec-
- 2 - 1 - n - n-

tation function and var-covar-matrix diag(t2 - t 1 , ••• ,tn - tn_1l for n E JN, 

t 1 < t 2 < .•• < tn. This~ is embeddable on account of (i).It can be shown 

. * that the derivative of emb(~ in sn, 2 is a real Gaussian white noise pro-

cess (cf. 1.1.25 and 1.2.6). 

+ 1.3.6. If x E Sn and x is measurable over the product space lR x n, em-
- "1P 

bedding of !. is performed by simply taking integrals over the real axis. 

+ 
THEOREM. Let x E Sn be measurable over lR x n, and let g E s. Then 
u + ,p 
It !_(t,w) E S for almost every w En, and 

(emb(~ ,g) = Y J ~(t,w) g(t) dt 
WEf."l -·-

almost everywhere in n. 

PROOF. Let€> 0. The function Y(t,w) :'.!_(t,w) exp(-Tret2) is measurable over 

lR x n, and we have by Fubini's theorem and Holder's inequality 

f <f ~(t,w) J exp (-Tret2J dt) dP (w) 

n 

00 

J cf I ~(t,w) ldP(w)) exp(-Tret2)dt s; I 
n 

2 
llx(t)ll exp(-Trct )dt < oo 

- p 

(cf. 1.3.2 (2) and appendix 1,1.5). Hence Yt x(t,w) exp(-Tr£t2) E L1 (IR) 
ElR -

for almost every w E n. we now have for almost every w E n 
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v -1 2 
since'v'nElN [1tx(t,w) exp(-11n t) E holds for almost every 

WE n (cf. appendix 1, 1.5). 

Now let A E A. We have by definition 1.3.4 

J (emb(:!_),g)dP 

A 

J ( J ~(t,w) dP (w)) g (t)dt. 

A 

Since Y (t,w) ~(t,w) g(t) is absolutely integrable over lR x n, we obtain 

from Fubini's theorem 

f (emb(~),g)dP 
A 

J <f ~(t,w) g(t) dt) dP(w). 

A 

Hence (since A E A is arbitrarily chosen) 

(emb(~ ,g) 

almost everywhere in Q. D 

1.3.7. We are going to show that certain elements of S+ that are strict n,p 
sense time stationary (and ergodic) in the sense of [DJ, Ch. XI, §1 have 

embeddings that are strict sense time stationary (and ergodic) in the sense 

of definition 1.2.2 (1.2.5). 

THEOREM. Let x E S+ , and assume that x is strict sense time stationary n,p 
(in the sense of [DJ, Ch. XI, §9) and measurable with respect to the product 

a-algebra B (JR) ® Ax on JR x rt. Here Ax denotes the completed a-algebra 

generated by all sets of the form {w j-(~(t 1 ,wJ , .•• ,~(tn 1 w)) E B} with 

n E JN, t 1 "'lR, ..• ,tn E IR, BE B(cr:n). Then emb(::_) is strict sense time 

stationary (in the sense of 1.2.2), and if~ is ergodic (in the sense of 

[DJ, Ch. XI, §1), then so is emb(:!_) (in LI•e sense of 1.2.5). 

PROOF. Let f E S. The set Ef of all w's for which J:00 ~(t.,w) f(t)dt makes 

sense is an element. of Ax and has measure one (cf. the proof of theorem 1.3.6). 

Now put for every f ' S 



Then X is a representative of X:= emb(:0 according to theorem 1.3.6 and 

definition 1.1.1. 
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If we adopt the notation of 1.2.6, then A0 c Ax' since Yw !_(f,w) is 

measurable with respect to Ax for every f E S. According to the definition 

of stationarity given in [DJ-;- eh. XI, §1, T is measure preserving on a 
[A] for a E JR. Hence X is strict sense time stationary by 1.2.6. 

0 -
If x is ergodic, then A has no trivial invariant elements according to 

- x 
the definition of ergodicity given in [D], eh. XI, §1. Hence [A0J has no 
trivial invariant elements. By 1.2.6 we conclude that 2[Ts ergodic. D 

+ REMARK. It may occur that an !. E Sn is measurable with respect to oo,p 
B (JR) ® A (A is the a-algebra we started with) but not measurable with re-

spect to B(JR) ® A (cf. [DJ, eh. II, p.p. 68 and 69 where things like this x 
are discussed in connection with processes of function space type). In that 

case the proof of the above theorem does not work. However, many interesting 

cases are covered by the above theorem and the following one. 

L3.8. THEOREM. Let x_be an ordinary process with zero expectation function, 

finite second order moments and stationary and independent increments 

(cf. [D], Ch. II, §9). Leth E t 2 (JR) (whence his a function and not a 

function class). Define the process 

J h(t-s) d x_(s,w) =: ?£.(t,w) (t E JR 1 W E n) 

+ as in [D], Ch. IX, §2. Then x E sn, 2 ,and emb(:0 is strict sense time sta-

tionary and ergodic. 

PROOF. The mapping ~' IR x n + a: is not known to be measurable with respect 

to B(JR) ®Ax (notation as in theorem 1.3.7); it may, however, be altered 

to become so:- To prove this we invoke [D], Ch. II, §2, theorem 6, and show 

thatllx(t,)-x(tlll +O 
- l - 2 

§ 2 for t 1 E JR , t E JR 

ll~(t1 l - x(tJll 2 
- 2 

(t1 + t) for every t E JR. We have by [DJ, Ch. IX, 

f If (h(\-sl -h(t-s)) dx_(sli 2 dP 

Q 

"' 
f I h(t1 - s) - h(t - s) 12 ds + O 
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if t 1 -+ t since h E L2 (lR) • 

By [DJ, Ch. II, §2, theorem 2.6 we can find a process ~l' measurable 

with respect to B(:IR.) ®Ax' such that ~l (t) = ~(t) (a.e.) for every t E JR. 
+ +-We have x ES 2, ~l ES~ by the above and 1.3.5 (i), and emb(~) emb(~1 J. fl, 00 1 2 

As in the proof of theorem 1.3.7 we can find a representative X of 

X:= emb(x ) such that Y X(f,w) is measurable with respect to A for every - ~ w- x 
f E S. 

It is known from [DJ, Ch. XI, §1, example 3 that ~is strict sense time 

stationary and ergodic. Proceeding as in the proof of theorem 1.3.7 we con-

elude that ! is strict sense time stationary and ergodic. 

1.3.9. We note that the definition of embeddable process of n variables 

(with n E JN) can be given, and that the embedding theorem 1.3. 3 can be 

given and proved for such a process. The classes of embeddable processes 

are denoted by Sn+ and Sn+ respectively (cf. definition 1.3.2). 
fl,p Q,p 

D 



CHAPTER 2 

EXPECTATION FUNCTION, AUTOCORRELATION FUNCTION AND WIGNER DISTRIBUTION 

OF GENERALIZED STOCHASTIC PROCESSES 
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This chapter is devoted to the functions constituting an important part 

of the statistics of generalized stochastic processes, viz. the expectation 

function and the autocorrelation function. Furthermore we shall introduce 

the Wigner distribution (or, actually, the expected Wigner distribution) 

of generalized stochastic processes. 

If x is an ordinary stochastic process (defined on some probability 

space n) with finite second order moments, then the expectation function 

of x is defined as Y fnx(t)dP, and the autocorrelation function of x is 
t .. - -

defined as Y (t,s) fn~(t)~(s)dP. If we are dealing with generalized stochas-

tic processes, expectation function, autocorrelation function and (expected) 

Wigner distribution are not just ordinary functions, but generalized func­

tions. The expectation function of a generalized stochastic process !_ 

(defined on some probability space n) is defined with the aid of the values 

of fn(!_,f)dP (f ES). The definition of the autocorrelation function of X 

involves the values of fn (!,fl (!,g)dP (f E S,g ES). Our definitions are 

such that if ! is the embedding of a reasonably well-behaved, ordinary 

process ~, then expectation function and autocorrelation function of X are 

obtained by taking the embeddings of Y f x(t)dP and Y(t l f x(t)x(s)dP 
t n - ,s n - -

respectively (cf. 2.1.9). 

The expected Wigner distribution of a generalized stochastic process 

is defined roughly as the image of the autocorrelation function under the 
. IJ J"' -2iriyt x+t x-t . . mapping f ->- I (x,y) -oo e f(F F)dt (this mapping can be extended 

to a linear mapping of s2* into s2*; cf. appendix 1, 4 .16) • The word "expected" 

may be motivated as follows. If we assume for a while that X is a sufficient­

ly well-behaved ordinary process,we can write down for each w E Q the func-
IJ Joo -211iyt x+t x-t . . tion I (x,y) _:00 e !(F ,w) !_(72 ,w)dt, i.e. the Wigner distribution 

of Y X(t,w). On integrating over wand inverting the order of integra-
t -. J"' -2iriyt x+t x-t tiOn We get y (x,y) -CO e ~(72"'" I rzldt, where 11t is the autocorrela-

tion function of x. 
In section 1 of this chapter definition and main properties of expecta­

tion function, autocorrelation function and Wigner distribution are given. 
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We show positive definiteness of the autocorrelation function, and prove a 

theorem on the existence of Gaussian processes with prescribed expectation 

function and autocorrelation function. 

In section 2 we pay attention to various kinds of second order stationari­

ty; we are particularly interested in the general form assumed by expectation 

function, autocorrelation function and Wigner distribution of stationary 

processes. We shall also relate Wigner distribution to spectral density 

function of second order time stationary processes. We further consider 

second order frequency stationary processes in their relation with processes 

with independent values at every moment, and we comment on the representation 

of second order time stationary processes as Fourier transforms of random 

measures. 

The Wigner distribution of a generalized stochastic process is easier 

than the autocorrelation function as far as physical interpretations are 

concerned. The Wigner distribution provides a picture of the energy distri­

bution of the process over time and frequency. This appears clearly from 

the general form of the Wigner distribution of a second order time stationa­

ry process (cf. 2.2.5): it is the tensor product of a constant function and 

the spectral density function. A similar thing holds for the Wigner distri­

bution of a second order frequency stationary process: it ls the tensor 

product of a generalized function of positive type and a constant function. 

In particular, the Wigner distribution of a second order white noise process 

(time and frequency stationary; cf. theorem 2.2.13) is constant in both 

time and frequency. If, however, non-stationary processes are considered, 

certain difficulties with physical interpretations arise: the Wigner dis­

tribution is not necessarily of positive type (whence it can no longer be 

interpreted as an energy distribution) . Then certain smoothing operations 

have to be performed; we shall go into more detail in chapter 3, section 4 

and 5. 

2.1. DEFINITIONS AND MAIN PROPERI'IES 

2.1.1. In this section (Q,A,P) is a fixed probability space. We consider 

generalized stochastic processes of order 1 and 2. 

* 2.1.2. DEFINITION. Let X E sQ,l. The expectation function Ex of x is 

defined as the generalized function F satisfying 

(F,f) = J (!1 f)dP 

Q 



33 

for f E S (by definition 1.1.1 and appendix 1, theorem 3.3 this definition 

makes sense). 

Of course we have a similar definition for processes depending on several 

variables. 

* 2.1.3. Now let X E SQ 12 • To introduce the autocorrelation function of X 

we consider the functional 

y[f,g]ESXS J (!_,f)-(!,g)dP. 

n 
This functional depends anti-linearly and continuously on each variable 

2* separately. According to appendix 1.3.6 there exists exactly one F E S 

such that 

(*) (F,f ® g) = f (!,f)•(!,g)dP 

n 

(f E S,g ES). 

DEFINITION. The a:utoaorreZation funation ~ (or, shortly, R if it is clear 

which process! is meant) is defined as th"e° unique F satisfying(*). 

We give an alternative way to introduce the autocorrelation function. 

If we define R := yfES (!,fl, then X E S~ 12 • Now the ~ of the above defi­

nition equals the expectation function of X ® X (cf. 1.l.26), for we have 

CE <! 119 RJ , f ® g l = f <! ® .!_, f ® g l dP = 

n 

= f C!,fH!_,g)dP = (~,f 119 g) 

n 

(f E S,g E S). 

We can also consider the a:utoaovarianae funation c (or, shortly, C) of x, x -
defined as the autocorrelation function of the centralized process ! - E!· 

It is easily checked that C! = ~ - E! ®E.[= ~ - E! ® E!· We shall often 

assume EX = O (so that R = c ) • - -x x 
We refer to [J1], definition 3.2 where a third way is given to define 

* the autocorrelation functions for elements of sn,2· 

* 2.1.4. Let!_ E s012 • We introduce the Wigner distribution of X. 

DEFINITION. The (e:r:peated) Wigner distribution VX (or, shortly,V) of x 

is defined by Vx:= F( 2)z0RX (cf. appendix 1, 4.16 and appendix 3, 1.4 and 2.1). 
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The word "expected" may be motivated as follows. We have 

E(F( 2)zu<! ® .R> = F{ 2)z0 (E(! ® ~}) = Vx (cf. 2.1.3 and 2.1.7), and 

F( 2)zu(! ® R> may be interpreted as the Wigner distribution of X (this is a 

generalized stochastic process depending on two variables). 

2.1.5. Let x E s~ 12 , f Es. we have (Rx, f ® f) 2 o. 

PROOF. We have by definition 2.1.3 

J I (!,f) 1
2 dP 2 o. 

rl 

D 

If F E s 2* satisfies (F,f ® f) 2 0 for every f E s, then we call F positive 
* definite.Hence, if X E sn, 2 , then 1\ is a positive definite function, and so 

is C = R - Ex ® Ex. The following theorem gives an interesting converse. x x - -

* 2* 2.1.6. THEOREM. Let FE S , RE S and assume that R - F ®Fis a positive 

definite function. There exists a Gaussian generalized stochastic process X 

such that Ex= F, R = R (cf. 1.2.7). - x 
PROOF. The proof uses [D], Ch. II, §3, theorem 3.1 with a suitable choice 

for the time space T, the function µ and the positive definite function r. 

We take T JN0 , and put 

(kET,iET). 

Since ~k is real on the reals (hence ~k 

satisfies 

~k) for k E JN0 , the function r 

n 
(R - F ® F, l 

i=l 

n 
2 a. ~k: ) 2 0 

j=l J j 

for every n E lN, a 1 E er:, ••• , an E er:, k 1 E T, .•. ,kn ET. Furthermore 

r(k,t) = r(i,k) (kET,iET). 

The conditions of the theorem mentioned above are satisfied. Hence we 

can find a Gaussian stochastic process Y (k,w)ETxn'qk(w) defined on some 
probability space (rl',A',P') such that 

J qkdP' = "k ' f q q- dP' .. k i r(k,i) + µ(k)µ(i) (k ET, i ET). 

' ' n n 



We define the generalized stochastic process !by putting 
OD 

(f € S). 

This.!, is well-defined: llqkll; = r(k,k) + lµ(k) 12 = O(eke;) (k € m0 l for 

every e; > 0 since FE s*, RE s 2* (cf. appendix 1, 1.10 and 1.17). If 
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f E S (n E JN) and f ~ O, then II (X,f )11 2 + 0 (n + oo) by appendix 1, 1.12 
n n - n 

* and 1.7 (i) and (iv). Since! is anti-linear we conclude~ E Sn, • 
,2 

The expectation function of! equals F, for (cf. appendix 1, 1.10) 

I (~, ijik) dP = µ (k) = (F, ijik) (k € JNO). 

n• 

The autocorrelation function of ! equals R, for 

(cf. appendix 1, 1.17). 

I (X,ijik) (~,ijiR.)dP 
n• 

It remains to show that ! is a Gaussian process, i.e. that the distribu­

tion of ((X,f1), ••• ,(X,fn)) is Gaussian for every n E JN, f 1 E s, ••. ,fn Es. 

For the case n = 1 this follows from the fact that for f E S 

K 
(~, f) lim l qk ('ijik If) 

K+co k=O 

(the limit is inL2 W')-sense), so that (!,f) has a Gaussian distribution 

with mean (F,f) and variance (R - F ® F, f ®f).The cases with n > 1 are 

treated analogously. D 

We refer tq [GW], Ch. III, §2.3 where a theorem as the above one is prov­

ed for the case that the space K is point of departure of the theory. 
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2.1.7. The following theorem determines the effect on expectation function 

and autocorrelation function of linear transformations of the process. 

THEOREM. Let T be a linear operator of S with an adjoint. 

* If x E sn, 1' then ET!_= TE!_. 

* (ii) If X E s012 , then 1'rx = T Qll T ~ (cf. appendix 1, 4.6, 4.7 and 4.16). 

* PROOF. (i) Let x E s 011 • We have for every f Es 

(ET!_,f) 

Hence ETX = TEX. 

* (ii) Let ! E s01 2 

<1'rx'f e g) 

J (T!_,f)dP 

n 

We have 

J 
(T!_, f )-(T!_, q) dP 

n 

(~,T*f *-
® T g) = 

by appendix 1, 4.6 and 4.7. Hence RTX 

J 
* *-(!_,T f).(!,T g)dP 

n 

(T ® T ~,f ® g) 

D 

2.1.8. We have the following theorem about convergence of expectation func­

tions and autocorrelation functions. 

THEOREM. (;~Let X E s;,i' ~ E s;,l (n E JN), and let !fn + !_ (s;, 1). 

Then Ex + EX. 
-n 

* * * (ii) Let! E s0 2, ~ E s 0 , 2 (n E JN), and let~+ x cs012l. 
s2* , 

Then~ + ~· 
-n 

PROOF. (i) We have for f E S 

(EX ,f) 
n + Jc!,fldP 

n 

s* 
Hence by appendix 1, 1.15, Ex + Ex. 

-n 

(ii) We have for f E s, g E S 

(~ ,f Qll g) J (~,f).(~,q)dP + 
-n n 

(n + co). 

J (!,fJ.(!,q)dP 

n 

(n +co)• 



37 

Hence, by appendix 1, 3.7, 0 

* * REMARK. If x E sn,2' ~ E Sri 2 (n E JN), 

* , s2* 
~ + ~ (s1112). In general E~ + E!, RX 

0, then 

not imply 
-11. 

2.1.9. Let!_ E s~, 2 ~f. 1.3.2f, and assume that r:= Y(t,s)Jrl ~(t):!_(s)dP 
is measurable over JR • Now both rand f:= Yt f 11 ~(t)dP are embeddable 

functions (of two and one variable respectively). It is not hard to see that 

E (emb(~ l emb (f) • It is somewhat harder to show that R = emb(r); 
emb(~) 

we omit the proof. 

2.2. SECOND ORDER STATIONARITY 

2.2.1. Let (11,A,P) be a fixed probability space. We are going to define 

* second order stationarity for elements of s1112 

2.2.2. DEFINITION. Let V be a group of linear operators of S with an adjoint, 

and let! E s;, 2• If the numbers f 11CV!,f)dP, f 11CV!,fl (V!f_,g)dP are independent 

of V E V for every f E s, g E s, then we say that ! is second order V- sta-
tinna.I'y. In the special case that V 

time stationa.I'ity• and in case V = 

frequency stationa.I'ity. 

(T ) , we speak of second order 
a aElR 

<11» hEJR , we speak of second order 

In terms of expectation functions and autocorrelation functions V-sta-
* -tionarity of an x E s means that vEx = Ex,v ® V R = R (VE VJ. Cf.2.1.7. - 112 - - -x x 

Note that if Vis a' group of linear operators of S with an adjoint, and 
* . if X E s1112 is strict sense V-stationary, then X is second order V-stationary 

(cf. L2.2). 

* 2.2.3. EXAMPLE. We find as in 1.2.3 that X E s1112 is second order time sta-

tionary if and only if.F! is second order frequency stationary. Such a thing 

also holds with F*x instead of Fx. 

2.2.4. We want to characterize expectation function of a second order sta­

tionary process. The following theorem deals with the time stationary case. 

THEOREM. Let X E s;, 2• Then! is second order time stationary if and only 

if there exists c E ~ and K E s* with FK ~ O (cf. appendix 4, definition 2.1) 

such that E! = cH, RX z0 (H ® K). Here H denotes emb(Ytl). 
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PROOF. Assume that! is second order time stationary. we· have (by 2.2.2) 

Ta E! = E!Ca E JR.). Hence E!_ = cH for some c Ere by appendix 4, theorem 1.2 

(applied with n = 1, m = O). 

Secondly, if F = z0 Rx• then T~l) F = F (a E JR.). This is proved as 

follows. By the formula Ti1) z0 k z0 Ta//2 ® Ta/12 (a E JR.) we get 

T(l) F = T(1) Z R - Z T Ill! T R = Z R = F 
a a UX- U a a X UX 

72 72 -

for a E JR. (cf. 2.2.2; note that Ta/12 = Ta//2 for a E JR.). Application 

of appendix 4, theorem 1.2 shows that 1\ = z0 (H ® K) with some K E s*. 

We next show that FK ~ O. Let therefore-f Es, f(x) ~ 0 (x E IR). It is 

known from elementary complex function theory that we can write f as h.h 

with some analytic h. Since f E S we have h E s. If we put g = F*h, we get 

(2) - -(H e FK, F z0 (g e g)l = (R,g ® gl ~ o. 

The left hand side of this equality can be written (by [Bi], (21.4)) as 

"" 
CFK, YY J <F( 2}z0 (g ® g)) (x,y)dx}. 

_ .. 
Since for every y E re 

I (2) - I - I (F z0 (g ® g)) (x,y)dx == h(y/v2) h(y/v2), 

we find (FK, Y f(y//2)) ~ 0. It easily follows that (FK,k) ~ 0 for every 
y 

k ES with k(x) ~ 0 (x E JR.). Hence FK ~ 0. 

* Now assume that there is a c Ere, KE S with E! = cH, 1\ = z0 (H ® K). 

second order time stationary. D 

* * REMARK. If X E Sn 2, and if R ¥ 0 has the form z (G ® K) with some G E S , 
* , x u 

KE S , then it can be proved-that there is an a E re with jaj = 1 such that 

both a G and a FK are of positive type. 



2.2.5. DEFINITION. Let X be a second order time stationary process with 

autocorrelation function z0 (H @ K) • We call the generalized function L, 

given by (L, f) =( FK, Y f (y /hJJ for f E S (cf. appendix 1, theorem 3. 3) 
y 

the spectral density function of the process, and the measure associated 
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with L (cf. appendix 4, theorem 2.2) is called the spectral measure of the 

process. 

If X is a second order time stationary process with autocorrelation 

function RX= z0 (H@ K), then the Wigner distribution F( 2)z0RX of! equals 

the tensor-product of the functions H and FK. We thus see that-the Wigner 

distribution of a second order time stationary process is constant in the 

first (= time) variable. We also have a converse: if the Wigner distribution 

of a process (with constant expectation function) is constant in its first 

variable, then the process is second order time stationary. 

For later references we mention the following result: if X E s* is n, 2 
second order time stationary, and Ex = cH, RX 

* 
z0 (H ® Kl with some 

c E oc , K E s , then 

* To show this we first note that FH = o0 (for (FH,f) = (H,F f) 

= 1:00 cF*f) (x)dx = f(O) = (oo,fl if f ES), hence EF~ = FEx = c 60 by 

2.1.7 (i).We further have by 2.1.7 (ii) 

RF = F ® 'Fz (H © Kl x u F 0 F*z0 (H ® K) • 

* * It is not hard to show that F ® F z0 (F1 ® F2) = z0 (FF2 ® FF1l for F1 E S , 

* F2 Es. The~efore RFx = z0 (rK ® FH) = z0 (rK 0 o0J. * 
Let ! E Sn 2 be second order frequency stationary. Then ! = FF 2f_, and 

* ' F X is second order time stationary (cf. 2.2.3). We conclude from (*) that 

* Ex= c o0 , ~ = z0 (L ®·o 0) for some c E oc and L E s with L ~ O. We further 

see that 
F( 2)z R 

u x 

the Wigner distribution of X is constant in the second variable: 

F< 2'iz0 (z0 (L ® o0 JJ = L 0 Fo 0 = L ©H. 

2.2.6. In literature more general notions of time stationarity than that 

* of 2.2.2 are studied. E.g., if n E :JN0 , ! E sn, 2 , then X is said to have 

stationary increments of order n if the distribution of 
d n d n 

((Ta(dz) ~1 f 1 J, •.. ,(Ta(dz) !•fm)) is independent of a E lR for every 
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d n 
m E JN, f 1 E S, •.• ,fm E S ( (dz) denotes n-fold differentiation; cf. appen-

dix 1, 1.8 (ii)). In [GW], Ch. II,§ 5 the general form of expectation func­

tion and autocorrelation function of processes of this type was determined 

(the result proved there also holds under the weaker assumption that the 

first and second order moments of T (dd)nX are independent of a E JR). Al-
a z -

though in [GW] the test function space K was taken as point of departure, it 

is not hard (but pretty laborious) to reproduce the proof of [GW], Ch. II, 

§5, Satz 5. 

THEOREM. Let ~ be as above. Then E~ is the embedding of a polynomial of 

degree ~ n. For the autocorrelation function R the following holds: 

Let e0 ,e 1 , ••• ,8 1 be elements of s satisfying J"' xi 8. (x)dx = o .. n- -oo J iJ 
(i = 0,1, ••• ,n-1,j=0,1, ..• ,n-1). Denote for qi ES by t the function 

qi - I~-01 b,(qi)6,, where b,(qi):= r xj qi(x)dx for j E ~o· There exists a 
J= J J J -00 

measure v defined on 8(JR), satisfying J:00 exp(-nEx2)dv(x) < 00 for every 

E > 0, such that for every qi E S, ljJ E S 

(R,qi © I/!) 

+ v({O}) 

n-1 n-1 

(_L)n 
2TI J 

JR \{O} 

- -2n (F tqi) (x) (F tl/J) (x) x dv(x) + 

b (qi)b (I/!) n-1 n-1 
_n_(-2n-n).;...!-+ I b.(1/J)(F ,qi)+ I b,(qi)(F.,ljJ) + 

j=O J j j=O J J 

+ I I aij bi<qi> bJ.(ljJ). 
i=O j=O 

Here Fj is the element of s* determined by (Fj 1 f) = (R,f 0 ejJ (f E S), and 

a .. = (R,8. 0 e.) for i=0,1,..qn-1, j=0,1, ..• ,n-L The measure vis uniquely 
lJ i J 

determined by R. 

We note that for the Wigner distribution VX of a process with stationary 

increments of order n the following holds: 

H ® L 

* with some L E S of positive type. 
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2.2.7. We next consider second order frequency stationary processes in more 

detail. Let X be such a process. According to 2.2.5 the autocorrelation 

function of X has the form ZU(L ® c0) where L is a generalized function of 

positive type. This autocorrelation function resembles the autocorrelation 

functlon of a process with independent values at every moment. Our setting 

is not ideal for studying this kind of processes since the space S does not 

contain functions of compact support (except the zero function). 

If the space K (of real-valued functions defined on IR of compact support 

with derivatives up to any order) is point of departure, processes with 

independent values at every moment can be defined as linear mappings 4 of K 

into the set of all random variables such that w(~) and ~(~) are independent 

whenever~ E Kand~ E K have pairwise disjoint supports (cf. [GW], Ch. III, 

§4.1 and [Hi], Part II, §4.5). It is proved in [GW], Ch. III, §4. 7 that the 

autocorrelation function (when defined, of course) of such a process is 

"concentrated on the diagonal". This amounts to say (in our language) that 

the autocorrelation function assumes the form ZU(L ® o0) with some generalized 

function L. 

2.2.8. In spite of lack of elements of S of compact support, it is yet 

possible to study generalized stochastic processes with independent values 

at every moment. We restrict ourselves to generalized stochastic processes 

that are second order frequency stationary (this is not a very severe re­

striction in view of 2.2.7: only processes with order less than 2 cannot 

be handled). The following theorem is fundamental. 

* THEOREM. Let X E Sri 2 be second order frequency stationary, and let µ 
I * be the spectral measure of F X (cf. 2.2.3 and 2.2.5). Let (,)µ be the inner 

product on S given by 

(f,g)µ:= J f(x)g(x) dµ(x) (f E s, g E S) I 

and let S be the completion of S with respect to µ. Then ?f_ can be extended µ 
to a continuous, anti-linear, norm preserving mapping of Sµ into L2 (rl). 

PROOF. As we know from 2.2.5, RX has the form ZU(L ® c0) with L ~ 0. 

We have for f ES, g ES (by [Bl],(21.4)) 

f (~,fH~,g)dP 
rl 
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where L1 E s* is determined by (L 1,h) = (L,Yxh(x/12)) for h Es. We show 

* of F !· We have ~ = RFF*x = that L1 is the spectral density function 

= Zu(L ® 60). Hence, if RF*x ~ Zu(H ®Kl 
L = rK. It follows from definition 2.2.5 

(cf. 2.2.3), then-(by 2.2:-s(*)l 

. * 
that L1 is the spectral density 

function of F X. 

We thus have (cf. appendix 4, theorem 2.2) for f E S, g E S 

f (~, f)- (2f_, g) dP 

n 
f f(x) g(x) dµ(x). 

The remaining part of the proof can be given by using elementary Hilbert 

space techniques; it is omitted. D 

REMARK. The S of the above theorem equals the collection of all (equivalence 
\J 

classes of) functions that are integrable with respect to µ. To prove this 

it suffices to show that S contains all continuous functions of compact 
µ 

support. If f is such a function, then N f 7 f(a + O) uniformly in 1R and 
l,J a 2 

dominatedly by a function of the form JzM exp(-~Az ). Hence, by appendix 4, 

theorem 4, 2.2, f E S • 
\J 

* 2.2.9. DEFINITION. Let X E sn, 2 be second order frequency stationary, and 

letµ and S be as in theorem 2.2.8. Let C be a subset of S . We say that X µ µ 
has independent values with respect to the class C if (X,qi) and (!,1/Jl are 

independent whenever qi E C and 1jJ E C have pairwise disjoint supports. In 

case C = K (or, more precisely, C is the collection of all classes in S 
µ 

containing an element of K) , and 2f_ has independent values with respect to C, 

then we say that 2f_ has independent values at every moment. 

2.2.10. EXAMPLE. If X is a second order frequency stationary Gaussian process 

(defined on S) with zero expectation, then ! has independent values at 

every moment. This is seen as follows. It is not hard to show that the 

distribution of ((2f_,qi),(!,1/J)) is Gaussian if qi EK, 1jJ EK (L2 (n)-limits 

of Gaussian random variables are Gaussian random variables) . If now 

qi EK and 1jJ E-K have pairwise disjoint supports then it follows from 

J (2f_,qil-(!,1/J)dP 

n 

f 1jJ (x) qi (x) dµ (x) 

that (!,qi) and (2f_,ijJ) are independent random variables. 

0 
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2.2.11. REMARK. Let~ be a (real) generalized stochastic process (defined 

on Kl with independent values at every moment. We want to embed ~ in our 

* system Sn 2• We therefore assume that ~ is a continuous linear mapping of K , 
into L2 ( Q) (continuous with respect to the topology of K and the 1111 2-topol-

ogy of L2 Cn)). The autocorrelation function of~ exists in that case, and 

is concentrated on the diagonal x = y ([GW], Ch. III, §4.7): there exists 

an L € K' (dual of K) such that 

f ~(~)·~(lji)dP = (L,~.lji) 
n 

(~ € K, 1jJ E K) • 

2 This L is of positive type: it follows from (L,~ ) ~ 0 for ~ E K that L is 

of multiplicative positive type, and in the space K' the notions of mul­

tiplicative positivity and positivity are equivalent (cf. [GW], eh.II, §2.4). 

We conclude from [GW], Ch. II, §2.1, Satz 1 that there is a (unique) measure 

µ defined on the Borel sets of lR such that 

co 

(L,~) f ~(x)dµ(x) (~ E K). 

Proceeding as in 2.2.8 (with~ and K instead of X and S), we let K be 
µ 

the completion of K with respect to the inner product ( , ) and denote 
µ 

the unique extension of~ to a continuous linear mapping of Kµ into L2 (n) 

again by ~. 

Now assume thatµ satisfies J: .. exp(-~ex2)dµ(x) < 00 for every E > 0. 

Let f € S, and denote f 1 := Y Ref(x), f 2 := Y lR Imf(x). It is easy to 
XElR XE 

see that f 1 E Kµ' f 2 E Kµ, hence ~(f 1 ) and ~(f2 ) are well-defined. Let us 

put now 

It is not hard to show that ~ depends continuously and anti-linearly on 

f E S. Hence yfES ~(f) E s;, 2 

2.2.12. The proof of theorem 2.2.8 uses a (well-known) technique of extending 

the domain of certain mappings to a complete space. The same technique can 

be used to prove the following theorem (cf. [GW], Ch. III, §3.4 for more 

details). 
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THEOREM. If X is a second order time.stationary process, and ifµ is the 

spectral measure of X (cf. 2.2.5), then there exists a random measure z 
such that 

co 

(!,f) J (ff) p,) dZ (>,) (f E S). 

This Z further satisfies Jn Z (A1) Z (A 2) dP = µ CA 1 n A2 ) for every pair of 

Borel sets A1 and A2 in JR with µ(A 1) < 00 1 µ(A 2) < oo. 

PROOF. Exactly the same as the proof of [GW], Ch. III, §3.4, Satz 3. 0 

REMARK. We sketch an alternative way to obtain a representation as in the 

above theorem for a second order time stationary process. It is possible to 

show that the equation d~ ! = F! has a solution ! E S~ 12 (This is readily 

seen if one rewrites this equation as an infinite system of equations involv­

ing the Hermite coefficients (!_,~kl and (r !•~kl' and makes use of the 
. d l:i d . !.; l:i 

relations dz ~ 0 = - 1T ~ 1 , dZ ~k = - ( (k+1) ir) ~k+i + {kir) ~k-l for k E JN.) 

Since F! is a second order frequency stationary process (df. 2.2.3), we 

can extend it (as in 2.2.8) to an anti-linear, continuous mapping of s 
µ 

into L2 Cn). Hereµ is the spectral measure of x. We find 

J CF!, xA1>. <F! 
n 

for every pair of Borel sets A1 and A2 in JR with µ(A 1l < 00 , µ(A 2J < 00 

(if A is a Borel set in JR with µ(A) < 00 , then xA E Sµ). 

2.2.13. We are going to consider now what we call second order white noise. 

·* DEFINITION. A·generalized stochastic process W E sn, 2 is called a second 

order white noise process if Ew = o, Rw = c Zu(H ® o0J for some c ~ o. 

The following theorem lists some characterizations of second order white 

noise. 
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* THEOREM. Let X E sn, 2, and assume Ex = 0. The following statements are 

equivalent. 

(i) ! is a second order white noise process. 

(ii} There is ad<= 0 such that f n (!,fH!,g}dP d(g,f) for every 

f € s, g € s. 
(iii) X is a second order time and frequency stationary process. 

(iv) The Wigner distribution of X is the embedding of a constant function 

of 2 variables. 

(v) f E s, g E S, (f,g) = 0 • J (X,f)·(X,g)dP = o. n - -
PROOF. The equivalence of (i) and (iv} is obvious: F( 2)zu(ZU(H ® o0Jl = H®H. 

Assume that (i) is satisfied: ~ = cZU(H ® o0). We have for f E S,g ES 

f (!,fH!,g}dP 

n 

00 

= c J g(-72) f(72)dx = c-./2 (g,f}. 

-"" 

Hence (i) •(ii). If, on the other hand, there is ad<= 0 such that 

J C!,fH!,g)dP 

n 

d(g,f) (f E S, g E S), 

then (~1 f®g) = ~ (ZU(H ® o0) ,f ® g). Hence~=~ ZU(H ® o0). 

It follows that (ii)• (i). 

The equivalence of (iii} and (iv) follows from 2.2.5. 

It is obvious that (ii)• (v}. Assume that (v) is satisfied. To show that 

(ii) holds, we note that for f E s, g E S 

J (!, f)"(!,g) dP 
n 

where en= f n I (X,ijin) i2dP and ljin denotes (as usual) the nth Hermite function 

(n E JN0 l. We only have to show that en does not depend on n E JN0 • Let 

n E JN0 , m E JN0 • Since (ljin + ipm' ipn - ljim) 0 we have 

0 Jn (!,ipn + ipmH!•Wn - ljim)dP = en - cm' hence en c • 
m D 
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A consequence of the above theorem is: if T is a unitary linear operator 

of S, and if X is a second oraer white noise process, then so is TX. 
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CHAPTER 3 

CONVOLUTION THEORY AND GENERALIZED STOCHASTIC PROCESSES; 

WIGNER DISTRIBUTION AND SECOND ORDER SIMULATION 

In this chapter we give applications of convolution theory (as presented 

in [J2]; cf. also appendix 2) to the theory of generalized stochastic process­

es. We further describe second order simulation of generalized stochastic 

processes with the aid of "noise showers" and shot noise processes. 

Convolution theory is for several reasons useful for the study of general­

ized stochastic processes. In section 3.1 we define the convolution product 

T X with g E C (cf. appendix 2,3) and a generalized stochastic process X. g- -
If g E S, this convolution product can be identified with the ordinary process 

~ (T X,g l (more precisely, T X is the embedding of ~ (TtX,g ) ) • The set of 
t~- g- t--

processes T X, where g runs through S, gives in some sense a complete des­g-
cription of the process ~: It thus appears that questions about !£_ on statio-

narity (or ergodicity) can be reduced to the same questions about T X with 
g-

g E S (cf. 3. 2.6 and 3.2.9 (i)). 

In section 3,2 we deal with representation of second order time station­

ary processes as filtered white noise (cf. theorem 3.2.4). In [BT], page 6 

the theorem is attributed to S.O. Rice, but we were not able to locate its 

proof in literature. The theorem says roughly that every second order time 

stationary process can be regarded as the result of passing a second order 

white noise process through a linear filter. We further prove in section 3.2 

some ergodic theorems. 

In section 3.3 we consider shot noise processes and "random Fourier series" 

processes as typical examples of generalized stochastic processes. These 

processes can be used for describing simulation of time and/or frequency 

stationary processes. 

The above applications mainly deal with stationary processes. An important 

application (cf. section 3.4) of convolution theory for processes of general 

type is obtained by considering what we call time-frequency convolutions 

(instead of the ordinary (= time) convolutions) • We presently sketch what 

this is all about. 

Let g E S, and let ~be a sufficiently well-behaved stochastic process. 

The time-frequency convolution S X of g and X is defined as g-
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l,J° f"° -1Tiab-2iribt --
1 e X(t+a,w) g(t)dt. we can define S X as well if X (a,b;w) -co - g-
is a generalized stochastic process, simply by takings X = emb(S'X) 

v iriah g- g-
emb ( I (a,b) (e Tal\,!,g) Now Sg maps generalized processes depending on 

one (time) variable onto generalized processes depending on two (time and 

frequency) variables. If X is a generalized stochastic process, then the 

expected value of I (S'X) ~a,b) 12 equals the (2-dimensional) convolution of g-
V ( g, g) (Wigner distribution of g) and V (Wigner distribution of X) evaluated 

x -
at the point <72 , ~) : 

J I CS:J.l (a,b) 12 dP 

n 

(cf. 3.4.4 and 3.4.5; for convenience we have assumed g to be even). 

This implies in particular that T ( ) VX is a non-negative function of v g,g 
two variables, and thus allows an interpretation as an energy distribution 

in time and frequency. In this connection it seems to be adequate to take 

a g E S such that the operation TV( ) affects V as little as possible. 
g,g x 

According to this rule, a time stationary! (whose Wigner distribution is 

constant in the first variable) demands a g for which the operation TV(g,g) 

has the flavour of averaging over a long horizontal ellipse. We note that 

there is no g E S such that T ( ) is close to the identity operator of 
2 2* v g,g 

S (or S ). This fact is related to the non-existence of functions g whose 

Wigner distributions are concentrated in a very small area in the time­

frequency plane. 

we shall present details in section 3.4, where we also comment on related, 

fairly recent literature on physical spectra and evolutionary spectral 

density functions (cf. [Ma] and [Pr1], [Pr2]). 

Let !be a generalized stochastic process and let g Es. The function 

TV( ) V occurring in the previous paragraphs is of importance when g,g x 
describing second order simulation of ! with the aid of what we call noise 

showers. This is the subject of section 3.5. A noise shower is a generalized 

stochastic process; it can be thought of as the superposition of a countable 

number of mutually independent noise quanta (also to be called random notes) . 

The notes of the noise shower can be random in time, in frequency, and in 
. -'lfiab pureness. Such a note can be symbolized as e R_b T Z g (cf.appendix 1, 

-a y 
1.8 (ii)), where a stands for (random) time, b for (random) frequency, and 

where y controls the (random) bandwidth of the note (the product of 
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bandwidth and pureness is constant). If we assume VX to be of positive type, 

we can find a noise shower, with non-random y's, whose expected Wigner 
distribution equals T ( ) V 1 the function V indicates how to distribute v g,g x x 
the random notes over the time-frequency plane - ( cL 3. 5 . 14) • If, e.g., .!f. is 

a second order white noise process (whence v is a constant function), then x 
the notes have to be distributed uniformly over the time-frequency plane. 

The general case (with VX possibly not of positive type) can be handled too 

(cf. 3.5.16), but then a-smoothing operation on VX has to be performed so 

as to get a function of positive type. We can als"O describe simulation with 

showers of notes whose pureness is random as well. This does not give better 

results: it turns out that every note of the shower can be simulated by a 

shower of notes with non-random pureness (cf. 3.5.10-3.5.12). 

3.1. PREPARATION 

3.1.1. We give in this section some general applications of convolution 

theory to the theory of generalized stochastic processes. As usual. (Q,A,P) 

is a fixed probability space, and p is an element of the extended real number 

system with 1 s p s oo. 

3.1.2. Let g EC (cf. appendix 2,3). It follows from appendix 2, theorem 

* 5 (iii) and 1.1.3 that we can extend T to a linear operator of S~ such 
g * ao,p 

that (T X,f) = (X, T_f) for every X E S~ , f E s. 
g - * - g_ - ao,p 

If :!f. E SQ 12,then we have for the expectation function and the autocorre-

lation function of T X 

[(T X) 
g-

g-

(cf. 2.1.7 and appendix 2, theorem 5 (ii)). 

In a similar way we can handle with multiplication operators: if 
-1 * h E emb (Ml (cf. appendix 2,7), and if X E SQ , then h • X is well-defined. * ,p -

If_! E sQ, 2 then we have for the expectation function and the autocorrelation 

function of h.X 

A number of theorems of appendix 2 have a pendant for generalized sto­

chastic processes. We mention in particular the stochastic version of 
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* -1 appendix 2, theorem 8: if x Es,, , g EC, then f(T_X) = emb (fg). Fx. 
"1P g- -

If X is a second order time stationary process, then we have for g EC, 

a E JR 

T (E (T X)) 
a g-

E(T X) I T ® T 
g- a a 

(this follows from the above and the fact that the convolution operators 

commute with the time shifts; cf. also appendix 2, 4 (ii) and 5 (v)). We con­

clude from 2.2.2 that convolution operators preserve second order time 

stationarity. Similarly, multiplication operators preserve second order 

frequency stationarity. 

* 3.1.3. THEOREM. Let g ES, ~ES,. • 
u,p 

(cf. 1.3.2), and T X = emb(T'X). 
g- g-

PROOF. We combine the proof of the two assertions. It is obvious that 

('I' X,g_) E L (Q). Now let f E L (Q). We shall show that <T'X,f> 
x- -1 p q g-

= emb (<T X,f>). We have by 1.1.23, 1.3.2 and appendix 2,9 g-

<T 'X, f> 
g- Yx J (Tx!•g_)·fdP 

Q 

(X,T g )·fdP = y (<X,f>, T g ) - -x - x - -x -
Q 

emb-l (T (<X,f>)) = emb-l(<T X,f>). 
g - g-

By the uniqueness part of theorem 1.3.3 it suffices to show that condi­

tion (2) of 1. 3. 2 is satisfied. Let E > 0. We conclude from the above that 

Y J (T' X) (x) · f dP E emb-l (M) for every f E L Wl. Hence, for every 
x Q g- q 

f E L (Q) there exists an M > 0 such that 
q 

J (Tef9 (x);fdPJ 

Q 

2 
:<; M exp(rrE x ) (X E JR) • 

It follows from the Banach-Steinhaus theorem that II (T' X) (x) II 
2 g- p 

= O(exp(rrEX )) (x E JR). This holds for every E > 0. It easily follows 

that condition (2) of 1.3.2 is satisfied. 0 



3.1.4. We have the following result on convergence. 

* THEOREM. Let X E Sn , and assume that g E C, 
"' p 

(cf. appendix 2, 10). Then T X + T X(s* ). 
gn- g- Q,p 

PROOF: We have for f E S by appendix 2, 5 (iii) and 10 (note that 
- c -

(gn) - -+ g_) 

(T X,f) 
g-

n 
(~,T (-g ) , f) ->- (X,T_ f) 

n - - \!.. 

3.2. CONVOLUTION THEORY AND TIME STATIONARITY 

(T X,f) 
g-
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D 

3.2.1. We are going to apply convolution theory to time stationary and 

ergodic processes. We shall prove a version of a classical theorem of Rice 

(theorem 3.2.4) stating that a pretty large class of second order time 

stationary processes can be represented as the convolution product of a 

second order white noise process (cf. 2.2.13) and a function depending on 

the spectral measure of the process (cf. 2.2.5). We shall also prove 

some ergodic theorems for strict sense time stationary and ergodic processes. 

Once again (Q,A,P) is a probability space. 

3.2.2. Before giving the proof of theorem 3.2.4 we need some preparations. 

Let !!_be a second order white noise process. We shall define T W for a 
g-

considerably larger class of g's than the class C; our main tool for doing 

so is theorem 2.2.8. This larger class V consists 

tions g with the property that T f = Y (T f,g ) E 
g x x -

'I'he set V can be described in an alternative way: 

if fg is the embedding of an element of s+ whose 

* To show this we note that for f E S, g E S 

(1) Ff. Fg 

of all generalized func­

(lR) for every f E s. 
we have g E V if and only 

+ square also belongs to S • 

by appendix 2, theorem 9 and 8. Let g E v. Then also g E V (and g_ E V, 

g_ E V). We conclude that Ff.Fg E emb(L2 (lR)) for every f ES. It is net 

hard (but somewhat laborious) to show that Fg = emb(h) for some h E with 

h2 E s+. Conversely, if Fg = emb(h) for some h E S+ with h2 E s+, then the 

right hand side in (1) belongs to emb(L2 (JR)) for every f ES, and therefore 
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T_f E t2 (IR) (and also T f e:' .L2 CIR)) for every f E s. 
g . g . 

Now let g e:. v. Note that R = z (H i/Jl o0 J (cf. 2.2.13). It follows from 
·W U . 

theorem 2.2.8 that (!,fl can be defined for every f e: L2 (JR) (cf. also 2.2.8, 

remark) • We have for f E L2 (JR) 

f I <!· f> 12 dP 

n 

00 

f jf(x) 12 dx. 

3.2.3. DEFINITION. Let W be a second order white noise process, and let 

g e: v. We define T W by 
g-

(T W,f) 
g-

(!, T- f) 
g_ 

(f E S) • 

* It is not hard to see that T W e: S if 
g- n,2 

(as noted earlier g e: V-. g_ e: V}. And if g 

! and g are as in the definition 

e: C, then the T W of the above 
g-

definition equals the one of definition 3.1.3 (it is obvious that Cc V). 

REMARK. As to multiplication operators we have a similar situation: if Z 

is a second order white noise process, and if k e: S+ is such that k2 e: S+, 

then we can define the process k.~by putting 

(f E S). 

Note that the relation FCTrj!!J = k. Fw still holds if! and g are as in !11e 

above definition (Fw is a second order white noise process). Herek ES is 
- 2 + 

such that Fg == emb (k) (whence k e: S ) • To prove this let f e: S. We have 

(FT-W,f) = (W,T F*f). It follows from 3.2.2 (1) that emb(T F*f) 
g- - g_ g_ 

F* emb(k.f). Now let u e: L2 (JR), v e: L2 (JR) be such that emb(u) = 

* F (emb(v)). Then (!!_,u) = (F.!'.!_,v). For (!,u) = (FW,v) holds if u e: S, v e: S, 

and the general case easily follows from 2.2.8 (especially 2.2.8, remark) 

and the fact that the Fourier transform is a unitary linear operator of 

* 3.2.4. THEOREM. Let X E Sn 2 be a second order time stationary process with 

zero expectation function.'write R = z (H ® K), and assume that FK = emb(k1) 
+ ~ u 

with some k1 ES, k1 (x) > 0 (x e: IR). Then there is a g E Vanda second 

order white noise process w such that X = T W. 
g-
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., 
PROOF. Definer.== F~ (whence~= ZU(FK ® 60 ), cf. 2.2.5), and let k:= k1• 

We are going to define a second order white noise process ! whose inverse 

Fourier transform will turn out to be the second order white noise process 

with the desired properties. This ~ is defined formally as !fk. In order to 

give the division a meaning, we apply theorem 2.2.8. 

It is not hard to show that the completion of S with respect to the inner 

product norm II hll k given by 

llhllk <f jh(x)k(xJj 2dx)~ (h E S) 

equals the collection of (classes of) functions ~ defined on JR with 

~.k E L2 (JR) (cf. also 2.2.8, remark). Hence (!_,f/k) is well-defined for 

f E L2 (JR) according to 2.2.8, and we have 

J I <.~.' f/k) 12 dP 
Q 

II f/kll~ f If cxi 12 ax. 

Now put~:= YfE.L (JR) (r_,f/k). Then (the restriction to S of) ! is a 

second order white ~oise process (this follows easily from 2.2.13), and we 

have for f E. S 

(!,k· f) (!_, f) • 

* Finally define W:= F !• g:= F(emb(k)). Then!'!. is a second order white 

noise process for which T W makes sense (cf. definition 3.2.3), and Fg = emb(k). g-
We have for f E S 

(T W, f) 
g-

(F(TW),Ff) = (k.z,Ff) = 
g- -

(!,k. ff) (!, Ffl CF~, Ffl (~,f) 

by 3.2.3, remark and the fact that F is a unitary operator of S. 

Hence T W = x. 
g-

D 
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3.2.5. REMARKS. 1. The restriction 11 k 1 (x) > 0 {x E lR)" in theorem 3.2.4 

can be removed if we pass to product spaces. Let k and k 1 be as in the proof 

of theorem 3.2.4, but drop the assumption k 1 (x) > 0 (x E lR). Since FK is of 

positive type (cf. 2.2.4) we may assume k 1 (x) 2 0 (x E lR). Let 

A:= {x E JRj k 1 (x) > O}, A1 := JR\A. We can find (as in the proof of theorem 

3. 2. 4) a mapping ~ of L2 (lR) into L2 Wl such that for f E L2 (JR) , h E S 

(1) f I ,~,f) 12 dP 

n 
I I f ( x) J 2 d." , ( ~' k. h) 

A 

(This is done by putting (f/k) (x) 

f E L2 (lR) • ) 

(f(x)/k(x)) 

<F~, FhJ. 

XA (x) (x E 1R) for 

According to 2. 1. 6 we can find a probability space W l 'A1 , P l) and a 

~l Es; 2 such that E~1 = 0, R z (L ® o0), where L = emb(Y x (~)). 
1' ~1 U - - u Al 

Let 11 0:= Q x Q1 , and take product measure on n 0 . Let~' ~and ~1 be repre-

~entatives (cf. 1.1.=) of~· YfES (~1 f) and_~l respectively. Now Y (f,(w,wl)) 

~(f,w), Y (f,(w,wl)) ~(f,w) and I (f,(w,wl)) ~1 (f,w 1J are representatives 

* of elements~'~ and ~l of Sn0 , 2• Let ~2 := ~ + ~l· Since 

E~ = E~1 = O, fri, (~,fH~1 ,fJdP0 =0 (f ES), we have E~2 0 and 
0 

J I (~2,f) 12dPO I I (~,f) I 2dPO + J I '~1, f) 12 dP o 
no no no 

J jf(x) j2dx + I jf(x) J 2dx J 
J f <xl J 2dx 

A Al -"' 

for f E: S. By 2.2.13 we conclude that ~2 is a second order white noise 

process. We further note that ~- is second order frequency stationary, and 

that (~If) makes sense for every f E L2 (lR) (i = 0' 1, 2) . Now if f E s' then 

and (~ 1 k.f) = (F~,Ff) according to (1). Proceeding as in the proof of 

* theorem 3.2.4 we find~= Tg!:-0 with !:-0 = F ~2 , g = f(emb(k)). 
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2. The condition "FK E emb(S+)" is equivalent to the condition that the 

spectral measure of~ (cf. 2.2.S} is absolutely continuous with respect to 

Lebesgue measure. This follows easily from the uniqueness part of appendix 4, 

theorem 2. 2. 

3.2.6. We next apply convolution theory to strict sense time stationary 

processes. 

* THEOREM. Let X E Sn • If X is strict sense time stationary, then T X is 
"'p - g-

strict sense time stationary for every g E C. If T X is strict sense time 
g-

stationary for every g E s, then ~is strict sense time stationary. 

PROOF. Assume that X is strict sense time stationary, and let g E C. If 

nEJN,f1 E S, ••. ,f ES, then the distribution of ((T X,T_ f 1J, •.• , n a- g 
(T X,T_ f )) is 

a- g n independent of a E JR. Since T and T_ are adjoint g g_ 
opera-

tars and T T T T (a E JR) we conclude that the distribution of a g g a 
((TT X,f 1) , •.• ,(TT X,f )) is independent of a E lR. Hence T X is strict ag- ag- n g-
sense time stationary. 

Now assume that T X is strict sense time stationary for every g E S. Let g-
n E JN , f 1 E S, ••.• , f n E S. W8 can find g E S 

T_ h.= f. (i = 1, .•• ,n). Now we see that the g_ l. l. 

and h. E S with 
J.. 

distribution of 

((TT X,h1J, ••• ,(T T X,h )) (and hence that of ((Ta!_,f 1J, ••• ,(Ta!'fn))) is ag- ag- n 
independent of a E JR • D 

3.2.7. We next prove an ergodic theorem for strict sense time stationary 

processes. 

THEOREM. Let X E s* with 1 ::: p < "', and assume that X is strict sense Q,p 
time stationary. •rhen we have Th,;;+ E(~ I A1) (s~,pl if T + 00 (cf. Ll.13 

and 1.1.8). Here h denotes emb(~2 x[ ]) E C (cf. appendix 2,11 (iii)), T T -T,T 
and A1 is a a-algebra of invariant sets (cf. 1.2.6). 

PROOF. We shall first consider the canonical representative of!. (cf. 1.1.19) 

instead of!. itself, and then use 1.2.6 and 1.1.21 to carry over the results. 

We start by showing that for all A E A* 

is measurable over the product space lR x s*. If f E S, then Y (t,F.') (TtF.',f) 
* '\°" is measurable over JR x S: (TtF,f) = lk=O (F,iJ;k) (iJ;k,T-tf) fort Em., 

f E S • Hence the function in (*) is measurable for all sets A of the form 
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{FI (F,f} E B} with f E S, B E 8(0:) • Since the collection of all elements A 

of A* for which the function in (*) is measurable forms a a-algebra, we 

easily conclude from appendix 1, 5.2, remark that this collection equals A~ 
We conclude from the above and 1.2.4 that (in the terminology of [D], 

Ch. XI , §1) (T } is a measurable translation group of measure preserv-
t tElR * * * 

ing 1 - 1 point transformations of the probability space (S ,A ,PX). Accord-

ing to [D], Ch. XI, 2 (in particular theorem 2.1) this implies that for 

* every integrable k: S + a: 

(1) 
' 

YF lim 2~ J k(TtF)dt 
'+co _, 

almost everywhere ins*, and that, if fs* Jklp dPX < 00 , 

' 
lim II YF 2

1, J k(TtF)dt - E (k I A~}ll P 
'+co 

( 2) 

_, 

* Here A1 is the a-algebra of invariant sets. 

* Now let f E S. If F E S , then 

(T F,f)dt 
t 

(Th F,f) 

' 

o. 

(this identity holds if FE emb(S); the general case can be handled by noting 

that (TtNaF,f) + (TtF,f) (a+ 0) locally uniformly in t E lR). Hence, if we 

take k:= YF (F,f) in (2),we get 

(3) lim II y F (Th F,f) - E cYF (F,f) I A~)ll p 
<+co T 

o. 

We now carry over the results proved. Define X by 

~(f,w) := 

~ 

I qk cw> <1Jik,fJ 
k=O 

0 

for f E s. Here qk (k E JNO) and ri0 are as in 1.1.16. Now X is a 
+ * tive of x. Further, let U be as in 1.1.17 and put A1 := u (Al) • 

from 1.2.6 that the elements of Al are invariant, and it follows 

representa-

It is clear 

from 1.1. 21 



that A1 is a a-algebra. Finally, by (3) and 1.1.21, 

lim II (Th ~-' fl - E { {~, f) 
,._ T 

for every f E S. Hence Th ~ + E (2f_ I A1l 
T 

* (Sn ) if T + 
'"p 
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COROLLARY. If X is strict sense time stationary and ergodic, then A1 consists 

of sets of probability zero or one. Now the conditional expectation occurring 

in the above theorem can be replaced by E2f_. We refer for related results to 

[Ur]. 

* 3.2.8. THEOREM. Let X E S Then X is ergodic if and only if T X is ergo-
Q,p g-

die for every g E C. 

PROOF. Assume that X is ergodic, and let g E C. Let A E A* be an invariant 

* * set with respect to PT x' i.e. PT X (TaA. A) = 0 (a E lR). We have by 

1.1.20 and TT 
a g 

T T 
g a 

g- g-

* + A) P (T ('r A • A)) 
2f. g q 

* P (T (T + (A) ) • 
~ a g 

+(A)) 

for every a E lR • Hence P *('I' +(A) ) x g 
is ergodic. 

0 

0 or 1. This means that T X 
g-

If T X is ergodic for every g E C, then X is ergodic, for 'l' X = X and 
g- 6~ 

80 E c. D 

3.2.9. Without proofs we mention some further results. 

(i) Let 2f_ be strict sense time stationary. If T X is ergodic for every 
g-

g E S, then ~is ergodic. This theorem is very useful as a tool in checking 

* ergodicity of a given generalized stochastic process. For, if X E Sn , 
- "'P 

g ES then T X = emb(Y (T X,g )) by 3.1.3. By 1.3.8, T X is ergodic if 
g- t t- - g-

1r (T X, g ) is ergodic in the sense of [DJ, Ch. XI , § 1 (we can take a 
t t- -

representative of Yt(T~1 g_) satisfying the measurability conditions of 

theorem 1.3.8; also cf. the proof of 1.3.9). 

* (ii) Let X E sQ, 2 be a strictsense time stationary process with 

independent values at every moment (cf. 2.2.9) and Ex = 0. Then X is ergodic. 

The proof of thi.s statement uses (i.). Compare [Ur] for related results. 
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(iii) Let .?!_be a time stationary Gaussian process with absolute continuous 

spectral measure (cf. 2.2.5). Then! is ergodic. The proof uses (i) and a 

·:j:hepr(;!Jll of Wiener and Akutowicz (cf. [WA], section 5, theorem 3). 

3.3. SHOT NOISE PROCESSES 

3.3.1. By shot noise processes we mean processes of the form l p o(a) 
n n n 

(or, more generally, of the form l p T g, where 
n n -an 

g Es* is fixed). Here 

pn is a complex-valued random variable {to be referred to as random phase 

factor), and a is a real-valued random variable (to be referred to as 
n 

random excitation time) for every n E JN. These shot noise processes are of 

great practical importance; they occur in all situations where charged 

particles have to overcome some barrier (cf. [zi], [BS]). As we shall see 

in this section shot noise processes play a vital role in the second order 

simulation of stationary processes. 

Very similar to shot noise processes are (what we call) "random Fourier 

series" processes. These processes have the form l p e(a )(with e(a ) 
-21Tia t n n n n 

emb(~t e n )), where p and a are as above for n E JN. 
n n 

We shall only be concerned with second order properties of the above 

processes. 

3.3.2. In the remainder of this section (n,A,P) is a fixed probability space. 

DEFINITION. If a is a real random variable defined on n, then o(a) is the 

generalized stochastic process of which a representative is given by 

~(f,w) f{a(w)), and e(a) is the generalized stochastic process of which a 

representative is given by ~(f,w) (Ff) (a(w)). 

It is not hard to see that o(a) and e(a) are indeed generalized stochastic 

processes, viz. of order p = 00 , if a is as in the definition. 

3.3.3. It is possible to define, more generally, processes T_ag where g E s* 
and a is a real random variable. Then certain assumptions about g and the 

distribution function of a must be made, and in general the order of the 

process is finite. As we are mainly interested in second order properties, 

we give the following definition. 

DEFINITION. Let g E s~ and let a be a real random variable with distribution 

function F. Assume that / 00 I (T f) (x) 12 dF(x) < 00 for every f E S(cf. appen-
-oo g 

dix 2,2). Then T_ag is the generalized stochastic process of which a 
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representative is given by Y(f,w) (T_a(w)g,f). 

* 3.3.4. THEOREM. Let a,g and F be as in definition 3.3.3. Then T g E Sn 2 . -a .IG 1 

PROOF. We first note that (T_ag,f) E L2 (r2), and that 

f J (T g,f) j 2 dF(x) 
-x 

for f E S. 

* Now let (for n E JN)~ be the element of sQ, 2 of which a representative 

is given by Y(f ) Sn (T ( )g,f) • XA (w), where A:= {w E r2 j ja(w) J s n}. ,w E x,. -a w n n 
It is ea~y to see that~ E s;, 2 indeed: if (fk)kEJN is a sequence in S 

with fk + 0, then (T_xg,fk) + 0 (k + oo) uniformly in [-n,n] (cf. [J2], 5.2), 

hence 

J I (T _xg,fk) J 2 dF(x) + 0 (k +co). 

[-n,n] 

we further have (X ,f) + (T g,f) (n + oo) in L2 (r2)-sense for every f ES. 
-n -a * * 

Hence, by 1.1.11, X + T g (Sn 2J, so T g E Sn, 2 0 
-n -a "' -a " 

EXAMPLE. Let g E V (cf. 3.2.2), and let a be a real random variable with 

distribution function F. Let f ES. Then T f is bounded over JR. To see 
g 

this we note that both T f and its derivative (T f)' 
g g 

L2 (JR) , hence 

T f' belong to 
g 

4 I xf (T f) (t) (T f') (t) dtj 2 s 
g g 

0 

I (T f'l (tl j 2dt < 00 

g 
(X E JR). 

This implies that J00
_ 00 I (T f) (x) 12 dF(x) < 00 for f ES. Hence T g makes 

g -a 
sense according to theorem 3.3.4. 
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3.3.5. We are going to prove a theorem on the convergence of the series 

l 00 l p o(a ). This theorem involves series l fnrn where fnrn E s 2* is Of n= n n n,m ,= ,= 
positive type (cf. appendix 4, 2.1) for n E JN, m E JN. If 

1 . IN IM f . . 2* l f . d' . 11 im 1 1 exists in S -sense, then is uncon itiona y 
N-"<"',M+co n= m= run n,m run 
convergent in s2*-sense, i.e. the order of summ.ation is i=aterial. The 

proof of this fact is not hard. 

THEOREM. Assume that the phase factors pn are uniformly bounded. Let F 
32 run 

be the joint distribution function of (a ,a ) , and let f := -;;----;;-- emb(F ) n m run axay nm 
for n E JN , m E: lN (cf. appendix 1, 4 .16) • Assume that l frun converges 

2* ~N * n,m 
in S -sense. Then lim l l p o(a) exists in Sn 12-sense. 

N-"<"' n= n n " 

PROOF. By the assumptions on the pn's there is a C > 0 such that for 

f E S, N E JN, M E JN, M ~ N 

J 
M 

cl(a),f)j 2 dP J 
M M 

I < I Pn l l pnpm f(a ) 'f'('a}dP s 
n n m 

D 
n=N 

D 
n=N m=N 

M M 

J 2 
s c l l jfcaJf(b> I dF (a,b). 

n=N m=N run 
JR 

Let y > 0, K > 0 be such that 

(a E JR 1 b E IR). 

Then 

J1JN 
(p o (a ) , f) 12 dP 

M M 

f 2 
$ c l l h (a,b) dF (a,b) n n nm 

n=N m=N 
Q JR 

M M 
C(h, l l f ) 

n=N m=N 
run 

2 . 2* by appendix 4,. 2.4. Since h E S we conclude from S -convergence of 

l f that the right n,m nm 
N + oo, M + oo. Hence lim 

N N-7"' 
we see that lim l 1 p 

N+oo n= n 

hand side of the above inequality tends to zero if 

(~N l p o(a ),f) exists in L2 (Q)-sense. By 1.1.11 ln= n n 
* o(a l exists ins 2-sense. D n Q, 
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3.3.6. DEFINITION. If pn and an are as in theorem 3.3.5, then we define the 

generalized stochastic process loo p o(a) as the limit lim lN l p o(a ). 
n=l n n N->oo n= n n 

The series I:=l pn o(anl is unconditionally convergent: if 11 is any 

permutation of JN ' then r0 1 p ( ) 0 (a ( ) is well-defined (in the sense of 
n= 11 n 11 n) 

the abbve definition) and equals \ 00 l p o(a ). We also write\ p o(a) 
ln= n n ln n n 

instead Of \oo l p O(a ). 
ln= n n 

We have a similar definition as above for the process l~=l 

condition for convergence of the series is again: l f is , n,m nm 
gent series. 

It is easy to see that f(l:=l pn o(an)) 100 p e (a ) • 
ln=l n n 

p e(a ); the 
n n 

an s2*-conver-

3.3.7. EXAMPLE. Let p = 1 (n E JN), and assume that the a 's aredistributed 
n n 

in accordance with a Poisson process at a rate 1 (cf. [D], Ch. VIII, §4). 

In this case\ emb(F ) = emb(~( ) (xy + min(x,y)). And if X:= 1 o(a ), 
ln,m nm x,y ln n 

then we have for f E S 

f I <~, f) 12 dP 

Q 

(Campbell's theorem). 

f If (x) 1
2 dx + I I f (x) dxj 2 

3.3.8. We consider a case in which we can settle convergence of the series 

\°" l p o(a) with the aid of the Riesz-Fischer theorem. 
ln= n n 

THEOREM. Assume that f n p ·p dP = c o for some c ~ 0, and that the 
" n m n nm n 

pairs (pn,pm) and (an,am) are mutually independent for every n E JN, m c: JN. 

Let F be the distribution function of a, and let f := .£..F (cf.appendix 1, 
n n n dx n 

1. 8 (ii)) for n E JN. Assume that l c f converges in s*-sense (the order of 
n n n N 

summation is immaterial; cf. the beginning of 3.3.5). Then lim l 1 p o(a) 
N-><>o n= n n 

* exists in ~Q, 2-sense. 

PROOF. Let f E S. The terms pn (a (an) ,f) (n E JN) are mutually orthogonaL 

Hence lim LN_1 p (o(an),f) exists in L2 (rl)-sense if 
"" N->oo n- n 2 

ln=l Iii IPn(o(an),f) I dP < 00 • we have for NE JN 

N 

I jp (o(a ),f) 1 2 dP 
N 

I If <xi 12 l l c dF (x) 

n=l n n n=l n n 
n 

N 

l c f ' f· f) 
n=1 n n 



62 

* by appendix 4, theorem 2.4. It easily follows from S -convergence of the 

series 2n en fn that 2:=l J Q !Pn (6 (an) ,f) 1
2 dP < 00 , hence ~~ 2~=l pn (o (an) ,f) 

exists in L2 (Q)-sense. By theorem 1.1.11 we conclude that lim IN P o(a ) 
N-+«> n= 1 n n 

exists in s~, 2-sense. D 

DEFINITION. If pn, an (n c JN) are as in the above theorem, then we define 

2:00 1 p o(a ):= lim IN 1P o(anl· n= n n N-+<n n= n 00 

We note that the series 2n=l pno(an) is unconditionally convergent: if n 

:s a permutation of :JN, then ~!::'. 2~=l pn (n) o (an(n)) exists and equals 

Ln=l pno(an). We shall also write ln pno(an) inst~ad of I:=l pno(an). 

We have a similar definition (and a similar condition of convergence) 

for the process l p e(a ) . 
n n n 

3.3.9. The processes of 3.3.8 have some interesting properties. 

THEOREM. Let p and a be as in 3.3.8, and assume that f ~ p dP = 0 (n E Jlll) n n " n 
(i) The process X:= l p o(a) is second order frequency stationary - n n n 

with zero expectation function and autocorrelation function ZU(f0 ® o0J. 
Here f 0 denotes z1112 (Ln cnfn) (cf. appendix 1, 1.8 (ii)). 

(ii) The process Y:= l p e(a ) is second order time stationary with - n n n 
zero expectation function and autocorrelation function ZU (H ® Ff 0) 

(f0 as in (i)). 

PROOF. (i) It is trivial that Ex= O. We have by definition 2.1.3 and 

3.3.8 

(RX, f ® g) J (~, £)·(~, g) dP 

Q 

f (a) g (a) dF (a) 
n 

N 

lim l 
N-><x> n=i 

c (f ,f·g)" n n 

It is not hard to check (with the aid of [Bl], (2L4)) that (f ,Lg) 
n 2* 

= (Zu(z 11; 2fn _® a0J, f ® g) for n c lN (notice that ztJ maps s2* into s 

* * whereas z11; 2 maps S into S; cf. appendix 1, 1.8 (ii), 4.9, 4.15 and 

4.16). Hence RX= ZU(f0 ® o0). We see from 2.2.5 that X is second order fre-

quency stationary. 

(ii) This follows from 2.2.5 (note that Y = F?5_). D 
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3.3.10. We conclude this section with some examples. 

EXAMPLE 1. If the function f 0 of the previous theorem equals emb(~ 1), then 

both ~m 1 p o(a} and~= 1 p e(a) are second order white noise ~recesses. ln= n n ln= n n 

* EXAMPI.E 2. Let!€ sn, 2 be a second order time stationary process with zero 

expectation function and autocorrelation function ~ = z0 (H ® K), and assume 

that the spectral measure of X is absolutely continuous with respect to 
- + l:i 

Lebesgue measure. Write FK = emb(g) with g € S , h:= g , k:= F(emb(h)) 

(cf. also the proof of theorem3.2.4 and the remark at the end of 3.2.5). 

We are going to define a shot noise process Y of the type defined in 3.3.3 

with E! = O, By = ~· 

Take random-varii"bles p , a as in theorem 3.3.9, and assume c = 1 
n n n 

(n € JN), f 0 = z1112 (Ln cnfn) = emb(~xl). (As to the existence of pn's and 

a 's with the assigned properties, we refer to the proof of theorem 3.5.14 
n 

where a similar problem is handled.) Now W:= ~ p o(a) is a second order - ln n n 
white noise process. Ask€ V (cf. 3.2.2) we conclude that Tk:!!_makes sense 

according to 3.2.3. We further have 

(note that T_a k (n E JN) makes sense by example 3.3.4; the existence in 
n 

s~, 2-sense of the right hand side limit may be proved in the same way as 

theorem 3.3.8). The autocorrelation function of Y = Tk:!!_ equals RX (compare 

the proof of theorem 3.2.4). 

EXAMPLE 3. Let X € * sn, 2 be a second order frequency stationary process with 

E! = 0 and with Rx z0 (L ® o0) (cf. 2.2.5). As we know from 2.2.5 this L 

is of positive type, and it can be shown with the aid of appendix 4, theorem 

2.2 that there are non-negative numbers c 
d n 

such that L = z11h (ln en dX (emb(Fn))). 
It is possible to construct a probability 

and distribution functions F 
n 

space rn ' , A ' Ip ' ) (a suitable 

countable product; compare the proof of theorem 3.5.14) and random variables 

of theorem 3.3.9) defined on it such and a (satisfying the conditions 
n 2 

f n• IPnl dP' = c and F is the distribution function of a for n € JN. 
n n n 

This means (cf. theorem 3.3.9) that we can simulate ! up to second order by 

means of a shot noise process. 

We have of course a corresponding result for second order time stationary 

processes (this involves the random Fourier series processes of theorem 
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3.3.9 (ii)). 

3.4. TIME-FREQUENCY CONVOLUTIONS AND THE WIGNER DISTRIBUTION FOR GENERALIZED 

STOCHASTIC PROCESSES. 

3.4.1. This section deals with applications of the time-frequency convolution 

theory of appendix 3. We comment (after introductory definitions and theorems) 

on uncertainty principles in the measurement of autocorrelation function and 

Wigner distribution of a non-stationary generalized stochastic process. Also 

some references to recent literature on the subject are given. 

As usual, W,A,P) is a fixed probability space, and p is an element of 

the extended real number system with 1 s p s oo. 

3.4.2. Let g E S. We know from a slight generalization of theorem 1.1.3 that 

* (cf. appendix 3, 1.5 and 

and (S X,h) = (x,s*h) 

the mapping s9 

that s x E s~* 
g- "1P 

(compare l..1.22, 

2.2) can be defined on s 11 such 
* 2 ,p 

g- - g 
(X E Sn , h E S ) • We further have 
- "•P * 1.1.23 and 1.1.27) <S X,f> S <!,f> for X E Sn , 
g- g '"p 

f E L Wl • 
q * On the other hand we can define S'X for X E S by g- Q,p 

S'X·= ~ niab 
g-· I (a,b) Ea:2 (e Tal\,!•g). 

(cf. appendix 3, 2.3). The following theorem relates S and S'. 
g g 

* ' -2+ 3.4.3. THEOREM. If X E Sn , g E S, then S'X E Sn (cf. 1.3.2 and 1.3.9), 
"•P g- "•P 

and S X = emb(S'X). 
g- g-

PROOF. The proof is almost the same as the one of theorem 3.1.3 (use appen-

dix 3, theorem 2.3); we therefore omit it. 0 

3.4.4. In fact we are not interested in S X (or S'X), but in 
2 g-* g-f 11 l (S~ (a,b) I dP (a E 1R, b E JR) if ?!. E sn,2· The following theorem is 

the stochastic version of appendix 3, theorem 2.4. 

THEOREM. Let g ES, X E s~, 2 , and define K:= F(Z)ZU(g ® g), L:= r(Z)ZU~ 
(K and L are, apart from a transformation of variables, the Wigner distribu­

tions of g and! respectively; cf. appendix 3, 1.4 and 2.1.4). We have 

J I (S~ (a,b) J
2 dP 

Q 

for a E JR , b E 1R • 

( T(l) T( 2 ) K) 
L, -ah -bh 



PROOF. Let a E lR, b E JR. We have by definition 2.1.3 and 3.4.2 

J I (S~ (a,b) 12 dP 

n 

'lfiab · -'ITiab (the factors e and e drop out since a and bare real). From the 

fact that F( 2)zu is a unitary linear operator of s 2 we infer 

J I (S~ (a,b) 12 dP = (L, F( 2)zu(R_bT-ag II!> R_bT-ag)), 

n 
and an easy calculation (compare appendix 3, 1.2 (ii)) gives the required 

result. 0 

3.4.5. According to the above theorem and the 2-dimensional version of 

appendix 2, theorem 9 we find (note that K K since K is real on lR2 ) 

(1) (2) Ej 12 
TK L = 2 emb(Z1;l2 zl/12 S'X ). g--
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Here Els~l 2 denotes Y (a,b)ElR2 f0 I (S~) (a,b) 12 dP. Note that TK_L is the 

embedding of a non-negative analytic function of two variables. Hence, 

certain averages of the expected Wigner distribution of ! are non-negative 

(cf. appendix 3, 2.4 and [B1], 27.12.1, 27.15 and [B2], theorem 4.2). 

We investigate the case g:= g = Y ~ (~)~ exp(-'1Ty-1z2) with y > 0 in 
y ZEu.. y 

some more detail. We then have K = K gy ® gy-l' hence 

(*) G • 
y 

If we take F( 2)* at both sides, and use appendix 2, theorem 8 then we get 

* (since F 

(**) 

* If R has the form z0 CH ® R0) with some R0 E s (second order time sta-

tionarity), then(**) becomes 
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J..i * 2~ that s 
if y -+ 00, Note (2y) gy.RO -+ RO and that G ~ 0 for every y > o. y 

This shows again that RO is the Fourier transform of a functi.on of posi.ti.ve 

type (cf. 2. 2. 4). 

A similar thing holds of course for the case that R has the form 

* Zu(L0 © o0) with some L0 Es (second order frequency stationarity). Then 

(*) takes the form 

(I)~ G 
y y 

2 la s: Now (Y) Tg L0 
2 \ Y s* 

emb ( (-) g _ 1) -+ 

2 la LO by appendix 2, 11 (iii), hence (-) Tg r.0 and 
y y 

y y 
emb(Ytl) if y + 0. This shows again that L0 is of positive 

type (cf. 2. 2. 5). 

In the general, non-stationary, case it will be of interest to choose 
(1) (2) an "optimal" value for y (optimal in the sense that 'Ilg M Z R is as 
y gy u 

close to ZUR as possible). The choice of y depends of course on R. In case 

that R is approximately of the form ZU(H ® R0) with some R0 c: , we can 

take y pretty large, but in case R looks like ZU(L0 ® a 0) with some L0 E 

we better take y near to zero. Note that there are no values y > 0 such that 
T(l) Mg(2) (or Tg(l) Tg(2) 1) is near to the identity operator. This means that gy y y y-. 
(if we measure the Wigner distribution of~ according to (*)) a precise 

measurement in the first (time) variable (y small) will cause an imprecise 

measurement in the second (frequency) variable, and vice versa (y large) . 

To get a nice picture of the state of affairs we have taken in (*) Gauss 

functions gy (y > 0) , but the above discussion also applies when more 

general functions g are taken: it is not possible to concentrate the Wigner 

distribution of a function in an area in phase plane of arbitrarily small 

measure. For inequalities expressing this impossibility we refer to [Bl], 

theorem 15.2 and [B2], theorem 4.4 and 4.5. 

3.4.6. The results of this section are closely related to work of Mark and 

Priestley (cf. [Ma], [Pr1], [Pr2]). Mark develops in his paper a theory of 

spectral analysis for non-stationary stochastic processes. His definition 

of "physical spectrum" of a stochastic process involves the expression 

EIS' X j 2 of the beginning of 3. 4. 5. (Mark does not use the word "Wigner g-
distribution": he did not seem to be aware of the existence of it at the 

t.ime he wrote his paper.) Mark also derives a version of theorem 3.4.4 

for his physical spectrum. Furthermore he studies convolutions of certain 
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mutually independent processes, and derives formulas for the resulting auto­

correlation functions and physical spectra. At this point some criticism 

seems to be justified. The formalism developed in [Ma], section 4.2 makes 

sense for certain well-behaved, mutually independent stochastic processes. 

But i{, e.g.,_!1 and ! 2 are mutually independent white noise processes (so 

both F( 2Jz R and f(2)z R equal the constant function of 2 variables), 
u !1 u ~ 

then [Ma], formula (24a), written in our notation as 

J 
(f( 2) z Rx l (u,1') 

u -1 
(F( 2)z R ) (t-u,/-)du, 

u !2 

is not valid, not even when interpreted in distributional sense. 

Priestley defines a notion of evolutionary spectral density function for 

what he calls oscillatory processes. These are processes X that admit a 

representation of the form 

!(t) f 
2irift 

e A(t,f) d~(f) (tEJR), 

where Z is a stochastic process with orthogonal increments and A is a mapping 
2 - IJ I/"' -211igs I of JR into a: such that for every f E JR the function 1 e A ( s, f) ds g -oo 

is maximal at g = 0. The evolutionary spectral density function h of ! with 

respect to A is then defined by 

(t E JR , f E JR}. 

Here h 0 is the density function (if it exists) associated with z (roughly: 

h0 (f)df = Eitl!<fl j 2J. 

It is noted in [Pr1] that the spectral density function thus obtained 

depends on the choice of A (in general, if! has a representation as in(*), 

then X has many such representations). Priestley further indicates a rela­

tion between his evolutionary spectral density function (for oscillatory 

processes) and the physical spectrum of Mark: if g is a weight function then 

the expression E j S 'X j 2 is a smoothed form of h (smoothed over frequency) • 
g-

The smoothing operation to be performed depends on A. 

It is pretty clear that Priestley's approach gives an evolutionary spec­

tral density function admitting nice physical interpretations. It covers 

the time stationary case (where we can than take a constant A in the repre-
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sentation of X in(*)), but it is not likely to cover all possible cases: 

it depends on the existence of a representation as in(*). Priestley's 

approach leads to a function h of two variables in which the time variable 
is treated as a parameter (Priestley himself writes ht(f) instead of h(t,f)). 
In the Wigner distribution time and frequency variable are treated comple­

tely symmetrically. It is only in special cases (such as stationarity) tha~ 

one of the variables has a preference over the other. This is seen e.g. in 

3.5.5 where y > 0 in the expression Eis• xl 2 is taken large or small g-
accordingly as~ is (approximately) timeyor frequency stationary. 

We further remark that Priestley's approach can be used to give a precise 

meaning to notions as local stationarity and degree o:E stationarity of a 
stochastic process (cf. [Pr2]). 

3.5. SECOND ORDER SIMULATION BY MEANS OF NOISE SHOWERS 

3.5.1. In this section we consider generalized stochastic processes of type 

Here pn is a complex random variable (random phase factor), and an and bn 
are real random variables (random time and random frequency variable respec­

* tive.ly) for n E JN , and g is a fixed element of S • We shall often take 

g E S: we shall have to deal with expressions .like TKV where K is the 
2* . 2 Wigner distribution of g and V E S (by appendix 3, 2. 4, remark, K E C ' 

if and only if g ES). 

We shall also consider processes of type 

(**) l pn G (a ,b ) • 
n=l yn n n 

Here pn' an and bn are as above, and yn is a positive random variable 
for every n E JN. If a E JR, b E JR, y > O, then G (a,b) is the Gabor func­y 
tion localized in the time-frequency plane at the point (a,b). The "shape" 

of this function is controlled by y: 

G (a,b) 
y 

Y (I)'< exp(-rry-1 (t-aJ 2 -t 2rribt - 11iab) 
t y 
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(cL [Bi], 27. 7). 

The process in (**) is a special case of the process 
-1Tia b 

'i'"" n n 
ln=l pne R_bn T_an ZYn~ g, where pn' an, bn and yn are as above 
and g E: s (cf. appendix 1, 1.8 (ii) for the definition of z for y > 0). 

y 
The function G (a,b) may be thought of as a note at time a. with frequency y 

b and with degree of "pureness" y: the larger y, the longer this note, 
( ) . v (2 ~ -1Tiab+21Tibt the more Gy a,~ looks like It :y> e • These notes all have the 

same energy: f _00 jGY(a,b) (t) j 2dt = 1 for all a,b and y. We may thus regard 

(**) as a shower of noise quanta in which each quantum is a note, random in 

time, frequency and pureness. 

The processes in (*) and (**) resemble those of section 3.3. We shall see 

that the latter processes can be obtained as limits of processes of type 

(**) (by making Y + 0 or y + 00 accordingly as we consider shot noise pro­

cesses or "random Fourier series" processes). 

We use the processes in (*) and (**) for second order simulation of 

generalized stochastic processes (with zero expectation function). We shall 

see that every generalized stochastic process can be simulated approximately 

by means of processes of type (*) and (**) with mutually independent random 

notes. Here (a smoothed form of) the expected Wigner distribution of the 

process to be simulated plays an important role: it says how to distribute 

the random variables an and bn over the time-frequency plane. We shall 

further see that each noise quantum of a process of type (**) can be simu­

lated exactly (as far as first and second order moments are concerned) by 
"' -1Tianbn 

means of a series 'i' p e R T g ln=1 n -bn -an n· 

3.5.2. In the remainder of this section (Q,A,P) is a probability space. 

DEFINITION. Let g E s, and let a and b be two real random variables defined 
-1Tiab on n. We denote bye R_b T_ag the generalized stochastic process of 

which a representative is given by 

v ( -1Tia(w)b(w) T f) 
1 (f,w) e R-b(w) -a(wl g, • 

-1Tiab It is easy to see that e 

the above definition. For if f E 

* R_b T_a g E sQ,oo if g, a and bare as in 

S, then Y ~W(~a(w),~b(w);f,g) is a re­
w 

(cf. appendix 3, 11). 
-niab 

presentative of (e .R-b T_a g,f) 
-1riab We shall use for e R_b T_ag the shorter notation Vag, where 
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a= (a,b). We also use this notation in case a and bare non-stochastic. 

3.5.3. THEOREM. Assume that the phase factors pn are uniformly bounded. 

Let F be the joint distribution function of the pair (an,am) for n E JN, 
nm \ a4emb (F ) 

m E JN, and assume that l run B converges in s4*-sense. Then 
N n,m aa1ah1da?d 2 

lim L _1 p Va g exists in s~ 2-sense. 
N'l-00 n- n "' 

PROOF. The proof can be given along the same lines as that of theorem 

3.3.5; we therefore omit it. 

REMARK. We have a similar theorem for the series L00 

1 p Gy (a ,b ) or, 

D 

oo -rria b n= n n n n 
more generally, for the series L 1 p e n n R_b T_a zy ~ g if we add 

n= n n nn 
the requirement that the yn's are stochastic variables with m $ yn(w) $ M 

(w E n, n E JN l for some m > 0, M > O. The proof uses the following fact. 

For every K > 0, A> 0, B > 0 there are numbers K' > 0, A' > O, B' > 0 

such that 

I I 2 2 2 2 W(a,b;f,g) $ K' exp(-rrA'((Real + (Reb)) +rrB'((Ima) + (Imb) )) 

for a Ea:, b Ea: whenever f ES, g ES satisfy 

max(jf(a) j, Jg(a) I>$ K exp(-rrA(ReaJ 2 + rrB(Ima) 2) 

for a E a:. 

3.5.4. DEFINITION. Let g, p and a (n E JN) be as in 3.5.3. We define 
oo N n n 

\ p Va g:= lim \ 1 p Va g. If furthermore they 's are as in 3.5.3, ln=l n n u_c_ ln- n n n •.-rw - 00 -rrianbn 
remark, then we.define l _1 p e R_b T-a Zy~ g:= 

N -rria b n- n n n n 
1 . \ n n 

im l 1 p e R_b T-a Zy~ g. 
N+"" n= n n n n 

We note that the convergence of \°" p V g ln=1 n an \ "' -rrianbn 
(and l 1 p e R_b T-a Zy~ g) is unconditional in the sense that n= n n n n 
the order of the terms is immaterial. We shall also write l p Va g 

\ -rrianbn n n n 
(and Ln pn e R_bn T_an Zy~g). 

3.5.5. We next show that the shot noise processes of section 3.3 appear 

as s~, 2-limits of processes of the form l 00 

1 p Gy (a ,b ) (Y independent 
" n= n n n 

of n E JN and non-stochastic). Let pn and an be as in 3.3.5. Now pn 

and an:= (an 1 0) satisfy the conditions of theorem 3.5.3. Hence both 



\ p o(a) and\ p Va g = \ p G (a ,0) are well 
ln n n ln n ·~ \ y ln ~ Y 2 n 
(gy denotes as usual Yt(y) exp(- iry 1 t )). Since V<ingY 

n E JN , we have by theorem 1 • 1 • 9 . 

defined for y > 0 

o (a l for 
n 

And since (...!_) 14 g £ 
2y y o0 if y + 0 (cf. appendix 2, ll(iii)), we have by 

theorem 3.1.4 

* in the sense of sn, 2 if y + O. 

We have of course a similar theorem for the "random Fourier series" 

processes of section 3.3: if p and a are as in 3.3.5 (cf. also 3.3.6), 
y \ \ n \ n * . 

then we have <2> ln pn Van gy + ln pn e(an) in the sense of sr,, 2 if 

y + 00 • Here we have taken a := (0, - a ) (n E JN). 
n n 

3.5.6. We consider a case in which we can settle the convergence of the 

series ln pn Vang with the aid of the Riesz-Fischer theorem (compare the 

corresponding case for shot noise processes in 3.3.8). Assume that 

f n pn·pm dP =en orun for some en~ 0, and that the pairs (pn,pm) and 

(an,am) are mutually independent for every n E JN, m E JN. We find as in 

3.3.8 that lim IN 1 Pn Va g exists ins* 2-sense if I c f is s 2* -con-
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N-><" n= .. 2 n n, n n n 
vergent. Here f = ~ emb(F ), where F denotes the distribution function 

n oxoy 00 n n N 
of a (n E JN). We define l 1 p Va g:= lim 2 1 p Va g. Again the order 

n n= n n N+oo n= n n 
of the terms in the series \oo 1 p Va g is immaterial; we shall also write LN= n n 

3.5.7. The following theorem gives a nice picture of the energy distribution 

of the proces ln pn Vang over the time-frequency plane. 

THEOREM. Let pn, an and F be as in 3.5.6, and let f 0 := l c f . Let R be 
n n n n 

the autocorrelation function of X:= 1:00 

1 p Va g, and let L:= f (2) z R 
- n= n n u 

(whence L is the expected Wigner distribution of 3i.) . Then we have 

(cf. appendix 1, 1.8 (ii)) 

Z (1) (1) 
L = I:; Tk 1 z 2 fO, 

72 72 
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where K denotes F( 2)zu(g ® g) (Wigner distribution of g). 

PEOOF. Let h1 E s, h 2 E S. We have by the assumptions on pn' an and fn 

(n E JN ) . 

= J (~1 h1 ) 0 (~1 h2 J dP 

Q 

2* 2 By appendix 4, lemma 2.4 and S -convergence of the series c f , the 
n n n 

right hand side can be written as 

(l c f 
n n 

n 

If a (a,b) E lR2 , then 

and we also have (cf. appendix 3, 1.2 (ii)) 

Hence (cf. also 3.4.4) 

for a 2 (a,b) E lR • We thus find 
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Here we used the fact 

and the 2-dimensional 

that z;2 and z11; 2 are adjoint linear operators of S, 

version of appendix 2, theorem 5 (iii) (cf. also [J2], 

5.11). By noting that 

follows. 

- 2 K = K (as K is real-valued on JR ), the theorem easily 

D 

3.5.8. We next study processes of type p Vag with g E L2 (JR}. (The condition 

"g ES" in 3.5.6 and 3.5.7 was made to ensure convergence of the series 

In pn Vang; such a condition is superfluous now.) 

Let g E L2 (JR) • Let p be a complex random variable with Jn p dP = 0, 

Jn jpJ 2 dP =: c < 00 , and let a = (a,b) be an JR2 -valued random vector with 

distribution function F. Assume that p and a are independent. We denote by 

~ = p Vag the generalized stochastic process of which a representative is 
. b l,J ( ( ) -11ia(w)b(w) f) emb( ) given y 1 (f,w) p w e R-b(w) T-a(w) g0 , • Here g0 := g . 

'rhen X E s01 2 , for we have for f E s 

and 

Let 

J I (X,f) 12 dP 

Q 

(a E lR 1 b E JR) • 

y (x,y) EJR2 J -211iyt (x+t) x-t e g F gc72i dt. 

2 2 Then K is continuous and bounded over lR , and K E L2 (JR ) • The expected 

Wigner distribution L of X is given by 

L emb(~( ) J c K (u - al2, v - bh)dF(a)). 
u,v 2 

lR 

This can be proved by using the result of theorem 3.5.7 for Nag (instead 

of g) with a> 0 and c 1 = c, en= 0 (n ~ 2), and then taking a+ 0 (we have, 
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by boundedness and continuity of K, F( 2) z (Ng® Ng) = 
U a a 

= N~l) N~2 ) F( 2) z0 (g ® g) + K(a + 0) uniformly and boundedly in JR2 J. 

-1Tiab 3.5.9. We now consider processes _!S of the form pe Rb T Z g. Here p 
- -a y 

and a= (a,b) are as in 3.5.8, and y is a positive random variable (for 

notational convenience, we take y rather that y~; cf. 3.5.1). We assume 

that g E L2 (JR), and that the joint distribution function of (p,a,y) has 
I,) (1) (2) (3) (1) 

the form 1( ( ) ) JR2 (O ) F (u) F (v,w) F (x), where F ( 2) U, V,W 1 X E(J:X X ,co 
F and p(3) are the distribution functions of p, a and y respectively 

(whence p, a and y are mutually independent) • 

Under these conditions the process X (of which a representative is 
i.i -nia(w)b(w) -

given by I (f,w) (p!w)e R-b(w) T-a(w) zy(w)g0 ,f) with g0 := emb(g)) 
is an element of sQ, 2 For, if f E s, then we find 

and (II II denotes ordinary L2 (JR) -norm) 

I ( -n iab T z go' f) 12 $; II z gll 2 II fll 2 e R_b -a y y II gll 2 II fll 2 

for a E lR, b E lR, y > 0. 

3.5.10. Let X be as in 3.5.9. We shall show that there is a sequence 

(~)nEJN of processes (defined on some probability space (Q',A',P')) of 

the type studied in 3.5.8 such that!:= l:=l ~ converges in s~, 2-sense 
and EY = Ex = 0, RY RX. Moreover, the ~·s satisfy 

J (X ,f)• (X ,h) dP 
-n -m 

0 (f E S, h E S) 

if n E lN, m E JN, n 'f m. Hence, for proving simulation theorems, we can 

restrict ourselves to series of processes of the type occurring in 3.5.8. 

We shall give a proof of the above statement in the following few 

sections. We first observe that RX is completely determined by the values 



of fn l<~,f) 12 dP for f ES. This involves according to 3.5.9 (*) the 

expression 

We can write this expression as 

~ J <f f e~ib(t-s) f(~(a + t))f(~(a + s)) x 

0 -"' -co 

x y g(r.(-a + t)) g(I.(-a + s)) d t ds)dF( 3 ) (y). 
2 2 

By interchanging the order of integration this becomes 

~ J J enib (t-s) f (~ + .!:.i f (~ + ~) x 
2 2 2 2 

x { J Y g(f(- a+ t)) g(f(-a + s)) dFC 3l (y)} dtds. 

0 
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We are going to study the expression between { } in more detail. In view 

of the proof of the following theorem it is convenient to assume that g is 

Borel measurable (if g is not Borel measurable, then we can take a Borel 

measurable g 1 (with g = g 1 almost everwhere) that gives rise to the same 

process !l· 

3.5.11. THEOREM. For almost every (u,v) E m.2 

P(u,v) := J y ·g(yu) g(yv) dF( 3 l (y) 

0 

is defined, and P E L2 (m.2) • Furthermore, P is positive definite , and there 

exists a sequence (cn)nElN of non-negative real numbers and a complete 

orthonormal sequence (gn) nE:lN in L2 (JR.) such that l~=l en < 00 and 
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2 with convergence in L2 (lR ) -sense. 

PROOF. It is easy to see that ~( ) y g(yu)g(yv) is Borel measurable over u,v,y 
lR x lR x (0,co) • We have by the Cauchy-Schwarz inequality 

co co 

J J <f I yg(yu)g(yv) I dFC 3l (yJ) 2 dudv s 

0 

0 0 

Hence, by Fubini's theorem, 

J J <f IY g(yu)g(yv) I dF( 3 l (y)J 2dudv s 

0 

$ cf cf ylg(yuJl 2 du) dF( 3)(y)) 2 

0 

This implies that/~ IY g(yu)g(yv) I dFC 3l (y) < 00 for almost every 
( ) 2 f . f h . 2 h 't u,v E lR • There ore P is de ined almost everyw ere in lR . Furt ermore, J. 

2 follows from the above that P E L2 (lR ) • 

In order to show that P is positive definite, we take an f E L2 (lR) . We 
have by Fubini's theorem 

J J P(u,v) f(u)f(v) dudv = J I f y~ g(yu) f(u)dul 2 dFC 3l (y) 2 0. 

0 

It follows ·from well-known Hilbert space theory that there exists a 
sequence (c ) JN of non-negative numbers and a complete orthonormal n nE 2 
sequence (gn)n EJN in L2 (lR) such that 2:=l en < 00 and 



with convergence in L 2 (lR2) -sense. 

We shall show that ~ 00 c < oo. We have for n E JN ln=l n 

P(u,v) ~ g (v) dudv = n n 
-oo -oo 

00 00 

1:1 -- 12 (3) y g(yu) g (u) du dF (y). 
n 

Hence, by monotone convergence and Parseval's identity, 

00 00 

jl en= l nL I L yl:i g(yu) gn(u) dul2 dF(3)(y) 

00 CX> 

J <f I Yl:i g(yu) 1 2 du)dFC 3l (y) J JgCull 2 du. 

0 -oo 

3.5.12. We conclude from the above theorem and 3.5.10 that for f E S 

0 

00 "" 

~ J J e'lrib(t-s) f(!:. + !) f(!:. + ~) P(- ~ + !, - ~ + ~)dtds 
2 2 2 2 2 2 2 2 

Note that the right hand side series converges uniformly and boundedly: 

l 
n=1 

c < 00 , 

n 
II fll 2 II fll 2 
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({a,b) 2 
E JR I n E JN) • Hence we have (cf. 3. 5. 9) 

J I <~ ... f) 12 dP = l..i c l en f 2 
Ice -7fiab R_b T g ,fJ 12 dF( 2J Cal. 

n=l -a n 
Q lR 

There exists a probability space (Q',A',P'l with random variables 

p, a = (a ,b) (n E JN) as in 3.5.6 defined on it such that f,.,• pndP' O, n n 2 n n (2) " J Q' jpn I dP = ccn' F n = F for n E JN (cf. also the proof of theorem 
-'ITianbn 3.5.14). If we define~:= pn e R_bn T-an gn (cf. 3.5.8), then we 

have for f E S, n E JN , m E JN 

J (X ,f)·(X ,f)dP' -n -m 
Q' 

0 (n ¥- m) 

(n = m). 

too * The series ln=l ~ is convergent in SQ 12-sense, and the autocorrelation 
function of the sum equals the one of x. For the Wigner distribution of 
X we have 
-r>. 

where Kn is 

that i=< 2>z 
u 

emb(Y( ) cc I K (u - ah, v - biz) dF( 2l(a)), u,v n 2 n 
lR 

the Wigner distribution of gn for n E JN (cf. 3.5.8). Note 
R == t"" r( 2)z R . 

X ln==1 U X - -n 
V Joo e-2'ITiyt ~+t x-t It can be shown that the function K:= I (x,y) _00 P (F, F) dt 

is defined everywhere in JR2 and continuous and bounded, and that 

K(u - ah, v - bl2)dF( 2) (a)). 

It can be shown furthermore that the series J::==i cnKn converges boundedly 
and uniformly to K, and that 
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K (u - al2, v - bl2)dF( 2) (a.) .. J K(u-ah, v - bhJdF< 2> (al 
n 2 

lR 

2 for every (u, v) E lR. (uniform convergence) • 

3.5.13. We use this opportunity to state some further results about P and 

about smooth ~ltive definite functions in general. 

{i) If the(~ qf 3.5.9 is continuous and bounded, and if J~ ydF<3 l (y) < 00 , 

then P is con~imtous and bounded, and the series L00 

1 c g ® g converges 
w= nn n 

locally unifo*1!1t to P (cf. theorem 3.5.11). Moreover, gn is continuous 

whenever n E ~ en .f. 0. 

(ii) If g € lji! and F is cons~t outside an interval of the form [a,b] 

with O < as b < ®1 then P E s2• 

(iii) If Q E s2 is positive C!ffinjte, then there exists a sequence 

{c ) 
n nElN 

(g ) 
n nElN 

Q = l:=l 

of non-pegative numbers fan~ a complete <J:tthonormal sequence 

in L2 {JR) such that gn E @'for n E JN, cn .f. 0, and 

h th . in s2-sense. en gn ® gn w ere e convergence is 

3.5.14. We now come to theorems about second order simulation of generalized 

stochastic processes with zero expectation function by means of noise showers. 

Theorems of this kind were also proved in section 3.3, but there we used 

shot noise processes l p o (a ) ·and random Fourier series processes 
n n n 

l p e(a ), and the processes to be simulated were stationary. 
n n n 

THEOREM. Let f E s2* be of positive type (cf. appendix 3, 2.1), let g ES, 

and l:t K:~ F( 2)z0 (g ® g). There is a generalized stochastic process 

x =I;' 1 p Va g of the type discussed in 3.5.6 and 3.5.7 such that Ex O 
ln= n n 

and 

PROOF. It is not hard to prove from appendix 4, theorem 2.2 that there are 

non-negative numbers en and 2-dimensional distribution functions Fn(n E lN) 

such that 

f 
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For each n E JN we can find a probability space (rt ,A 1 ,P 1J and a random 
nl n n 

variable p':= rt +~such that fn p' dP = 0, f IP' j 2 dP = c • Also, 
n nl ''nl n nl rtnl n nl n 

for each n E JN we can find a probability space (rtn2 ' An2 ' Pn2) and a random 

vector a' = (a' ,b'): rt 2 + m.2 such that F is the distribution function of 
n n n n n 

a•. Now let rt':= n00 l rt l x rt 2, and take product measure P' on rt'. Put 
n n= n n 

furthermore for n E JN 

a : = y ( ( l ) n J a I (W ) • 
n = . wml ,wm2 mEJN E" n n2 

Then f n I pn dP = 0, Jn I p • p dP = c cS , F is the distribution function 
" " n m n nm n 

of a , and the pairs (p ,p ) and (a ,a ) are mutually independent for n E lN, 
n 2* n m n m 

m E lN. Hence, by S -convergence of the series i::n en emb(Fn), ?!_:= i::n Pn Vang 

is a process of the type discussed in 3.5.6 and 3.5.7 with Ex= 0, and we 

have for the Wigner distribution 

by theorem 3.5.7. 0 

REMARK. We have a similar theorem as the one above if we take F( 2)z0P 

instead of K, where P = Y ( ) rO (Z g) (u) (Z g) (v) dF (y) • Here F is a distri-
u,v y y 

bution function defined on (0, 00 ) and constant outside an interval [a,b] 

with 0 <a$ b < 00 (cf. 3.5.13, remark (ii)). We can take a process 
-'Tfianbn 

i::n Pn e R_bn T_an ZYng' where the distribution function of each Yn 

equals F (n E JN). We note that not every positive definite element of s2 

can be represented as Y(u,v) J~ (Zyg) (u) (Zyg) (v) dF(y) with F and gas 

above. 

3.5.15. Theorem 3.5.14·is in particular useful for describing second order 

simulation of 9eneralized stochastic processes with a zero expectation 

function and an expected Wigner distribution of positive type. Second order 

white noise processes, e.g., have a zero expectation function and a constant, 

non-negative Wigner distribution (cf. 2.2.13). For such processes we can 

take in theorem 3.5.14 any g E S to obtain exact second order simulation 

(i.e. the autocorrelation function of the noise shower equals the one of 
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the process to be simulated); the noise quanta are to be distributed uni­

formly over the time-frequency plane, i.e. the function 
(ll c2i a2 u 

~(Zl/12 Zl/12 (En en oxoy emb(Fn)) has to equal emb(i (x,y)1). 

We may not expect to obtain higher order simulation than second order 

simulation, unless further assumptions are made on the distribution functions 

of the pn's and an's. This is due to the fact that the Wigner distribution 

only involves second order moments of the process to be simulated. 

The restriction "zero expectation function" in theorem 3.5.14 is a natural 

one in case noise processes are to be simulated (these processes have in 

general zero expectation function). It is not very likely that the processes 

En pn Vang of 3.5.6 can be used for a simple description of the simulation 

(first and second order) of processes with non-zero expectation function. 

We noted above that for white noise processes we can take any g E S we 

wish. In general we shall have to adapt our g to the process to be simulated. 

If theprocess is close to being second order time stationary (so that its 

Wigner distribution is almost constant in the first variable), it seems to 

be adequate to take a g E S for which the operator TK has the flavour of 

averaging over an ellipse with a long horizontal axis and a small vertical 

one (cf. 3.4.5). Similar things hold for processes which are close to being 

second order frequency stationary. 

It is, of course, also possible to describe second order simulation with 
-irianbn 

the aid of processes of type En pn e lLbn T-an Zyng, where the tuples 

(pn,(an,bn)'yn) are as in 3.5.14, remark. Processes of this kind are of 

interest for simulation of processes that look second order time stationary 

in some areas of the time-frequency plane, and second order frequency sta­

tionary in other areas. In areas where the process to be simulated is more 

or less time stationary, we have to distribute quanta having a small value 

of y, and in areas where the process is more or less frequency stationary, 

we have to take quanta having a large value of y. 

3.5.16. As said in the.beginning of 3.5.15, theorem 3.5.14 is useful for 

the case we want to simulate a process with a Wigner distribution of posi­

tive type. In order to handle the generalcasewe give the following theorem. 

THEOREM. Let V be the Wigner distribution of a generalized stochastic 

process, and let g 1 E s, g2 Es. Let K1 := F( 2)z0 (g1 ® g1J, K2:= F( 2)z0 Cg 2 ® g2l. 

There exists a generalized stochastic process X = E~=l pn Van g 1 of the 

type discussed in 3.5.6 and 3.5.7 such that 
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PROOF. This follows from theorem 3.5.13 by noting that TK2 V is of positive 

type (cf. 3.4.4). D 

Note that the sole purpose of the operation TK2 is to obtain a function 

of positive type. The above theorem can be generalized somewhat by taking 
a K2 of the form F( 2) z0P where P E s2 is positive definite (cf. theorem 

3.5.13, remark (iii)). 
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CHAPTER 4 

THE WIGNER DISTRIBUTION AND GENERALIZED HARMONIC ANALYSIS 

This chapter establishes the relation between the Wigner distribution and 

the Wiener theory of generalized harmonic analysis (cf. [Wl] for a treatment 

of generalized harmonic analysis). We sketch below what we are aiming at. 

Let x be an ordinary, strict sense time stationary and ergodic process 

(defined on some probability space Q) with finite second order moments 

(whence the autocorrelation function of !!.. exists) • It is common practice in 

engineering to estimate the value at A of the spectral density function of 

~ by the number 

(1) 1 
2i: _, 

with some large positive value of i:. Here f is a realization of the process, 

i.e. a function ~t :!_(t,w) with w E Q (!!_must satisfy certain integrability 

conditions, of course). This can be motivated by applying ergodic theorems 

and some results of the theory of generalized harmonic analysis. 

In order to go into some more detail, we define the Wiener class W as the 

set of all measurable functions f: JR. +a: such that 

' 
(2) lim 21. J f(x + sl f(s)ds ,._ _, 

exists for every x E JR. • Denote the limit in ( 2) by qi f (x) for x E lR • The 

spectral density function of f E W is defined roughly as the Fourier trans­

form of <pf; we shall denote it here by sf. It is a well-known result in 

engineering that the function whose values are given by the expression in 

(1) tends in some sense to sf if i: + oo (cf. [BT], Part II, (B-2.9)). Now, 

if~ is as above, almost every realization belongs to W. If, in addition, 

.'.!.is ergodic, the spectral density functions of almost all realizations 

equal the spectral density function of x. 

As we want to study spectral density functions of generalized stochastic 
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processes (and not just of ordinary processes), we have to consider limits 

like 

or, as will appear more proper for our aims, 

* for F E S (cf. 3 and 6 of appendix 2, and 1.17 of appendix 1). Here 
1 

h := -2 X[ J (T T T -T,T 
> 0) and k := Y £~ exp(-n£x2). We have for a reasonably 

£ x 
behaved, ordinary function F 

Th *o z CF Qll FJ 
T 0 U 

for T > O, and 

-~ T(l) M.( 2) Z (F F-) 
£ k -le u ® 

£ £ 

T 

y 
(x,y) 2\ J F Cxj~+y) F Cxj~-y) dt 

-T 

y £~ J (x,y) 
2 2 x?+y x?-y exp(-n£t -n£y )F( 2 )F( 2 )dt 

-oo 

for£> 0 (compare 2). The reason for considering (3) (or (4)) is the fact 

that the ordinary product of two generalized functions may be undefined, 

whereas the tensor product always makes sense. 

The class of all FE s* for which the limit in (3) exists in s 2*-sense 

is called the generalized Wiener class and denoted by w* • It is possible 

to present a direct link between the classes Wand w*: we have F E w* if 

and only i·f TFf = YtCTtf,F_) € W for every f ES (cf. 4.3.4) ~The limit in 

(3) is a generalized function (of 2 variables) of the form H ® •F· Here H 

is the constant function, and •F is a generalized function whose Fourier 

transform F+F, called the spectral density function of F, is of positive 

type (cf. 4.3.5 and 4.3.7). 

It can be proved (cf. 4.3.4, remark and 4.4.3) that F E w* if and only 
2* * if the limit in (4) exists in S • Also, if F E W , the limit in (4) equals 

H ® •F where •F is as in the previous paragraph. 
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Using the limit in (4) is to be preferred to using the one in (3): 

we can use (4) to present a link between the spectral density function of F 

and the 

tion of 

* Wigner distribution of F. If e; > 0, F ~ S , then Fourier transforma-

£-~ T~l) M~2)zu(F ® F) with respect to the second variable gives 
£ £ 

V(F,F). Here V(F,F) is the Wigner distribution of F. Thus we see 

* exists. Also, if F E W , if and only if lim Tk ®k _1 V(F,F) 
e:fO £ £ 

lim Tk @k -l V(F,F) = H ® F~ (cf. 4.4.4). 
e:+O e: e: F * 

If F E s* does not belong to W , then F~F is no~ defined. But Tk ®k -1V(F,F) 
£ £ 

still makes sense, and is of positive type fore;> 0 (cf. 4.4.4). For 
such an F, Tk @k -1 V(F,FJ is not constant in the first {= time) variable. 

£ £ 

We may therefore regard Tk ®k _1 V(F,F) as a time dependent spectral density 
£ £ 

function {it depends, of course, on e; as well) • This fact can be illustrated 

further if we take a reasonably behaved, ordinary function f: JR + ~ in the 

role of F. We have (cf. 4.4.5) 

(5) Tk ®k -l V(f,f) 
£ £ 

This resembles the expression in (1), but we note that in (5) the time 

variable t occurs explicitly. 

The sketch given in the above paragraphs is detailed and elaborated in 

the four sections of this chapter. Section 4.1 is intended to make the 

reader familiar with the main notions in generalized harmonic analysis. 

Section 4.2 gives a Tauberian theorem (cf. 4.2.2) of the type occurring in 

[W1] , Ch. II, §10 and Ch. III, §20. This theorem is needed in the proof 

of the statement that if one of the limits in (3) and (4) exists in s 2*­
sense, then the other one exists too, with the same value. Section 4.3 is 

devoted to the generalized Wiener class w*; it is proved there (among 

other things) that w* is a measurable subset of s*. Section 4.4 points out 

the relation between the Wigner distribution and generalized harmonic 

analysis. Furthermore, it gives some applications of ergodic theorems to 

strict sense stationary and ergodic generalized stochastic processes and 

their spectral density functions. It is finally indicated how to handle 

certain non-stationary processes occurring in practice (e.g. f -noise and 

the Barkhausen effect). 
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4.1. SOME IMPORTANT NOTIONS IN GENERALIZED HARMONIC ANALYsn; 

4.1.1. We give here some main notions in the Wiener theory of generalized 

harmonic analysis. For the proofs of the theorems mentioned and further 

details we refer to [Wl], Ch. IV , §21 and §22. 

4.1.2. DEFINITION. Let f be a complex-valued measurable function defined on 

JR. Then f is said to belong to the Wiener class W if 

A 

lim -2
1 J f(x + O f(t;)dl; 

A-+oo A 
-A 

exists for every x E JR • (Wiener uses the letter S instead of W, but we 

have reserved S for the space of smooth functions.) If f c W, then we define 

~f (or, shortly ~) as the function given by 

A 

;A J f(x + t;) f(l;)dl; 

-A 

4.1.3. Let f E W. The following properties hold 

(i) If a E JR, then Taf E W, and ~T f = ~f· 
a 

(ii) I~ (x) I ~ ~ (0) for x E JR • 

(X E JR) • 

(iii) If ~ is continuous at x = 0, then ~ is continuous everywhere. 

(iv) ~(x) = ~{-x) for x E JR. 

\'TI \'n -(v) ~ is positive definite, i.e. li=llj=laiaj ~(xi - xj) 2 0 for 
every n E JN, a 1 E a:., ••• ,an Ea:, x1 E JR, ••• ,xn E JR. 

(vi) (Bochner). If~ is continuous, there is a non-decreasing bounded 

function F, continuous from the right, such that 

~(x) J 
iAx 

e dF (;\) (X E JR) • 

It should be noted that W is not a linear space: it is not closed under 

addition. We can give an example of a real-valued f c W such that 



1 JA ~ 2A -A f(~)d~ does not exist, hence Y (f(x) + 1) i W (note that 
x 

Y 1 E W). 
x 

4.1.4. Let f E w. Wiener defines the apeatrwn of (or, shortly, o) off by 

puttin'g 

o := lim ..!.. Y 
f A-+<x>21T u 

-iux 1 
q>(X)e dx + J 

-ix 
-1 

-iux 
( ) e -1 ..,__} 

q> x -ix ...... 

(cf. [W1], Ch. IV (21.21)). The limit is in L2 (JR)-sense. It is shown in 

[Wl], Ch. IV, §22, lemma 30 that o may be assumed to be bounded, real-
a f 

valued, non-decreasing and continuous from the right, and that 

q> (x) 
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for almost every x E JR (cf. also [Wl], Ch. IV, §23, theorem 34). This 

generalizes 4.1.3 (vi) where q> was assumed to be continuous. If of is abso­

lutely continuous with respect to Lebesgue measure, then of' is called 

the speatral density funation of f. 

4.1.S. A further result of Wiener's theory deals with the spectrum of 

certain linear transforms (convolutions) of elements of w. Let f E W, and 

let K be a complex-valued function defined on JR satisfying some inte­

grability and boundedness conditions. Define the function g by 

g(x):= J K(x - ~) f(~)d~ (X E JR) • 

It is shown in [W1], Ch. IV, §22, theorem 30 that g E W, and that 

o (u) 
g 

c + 

for some constant c. 

(u E JR) 
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4.1.6. Hopf (cf. [Ho], Kap. II, §5, Def. 1) uses a slightly different 

definition of the class W. A measurable complex-valued function f is said 

to have a spectrum if 

lim 

B 

B-
1 

A J 
A 

f(x + I;) f(I;) di; =: <p (x) 

exists for almost every x E lR including x 

(**) 

£ 

limsup _!__ J <p (x) dx 
dO 2£ 

-£ 

(j) ( 0) • 

O, and if 

The spectrum of such an f is defined as in 4.1.4. 

This definition gives a Wiener class w1 that neither contains nor is 

contained in the class W. 

* In section 4.3 we give the S -generalizations of both Wand w1 , and it 

will appear that the generalized w1 is a proper subset of the generalized W. 

Generalized harmonic analysis in the class w1 runs somewhat smoother than 

in the class W, but this advantage disappears almost entirely when we pass 

to the s*-generalizations of Wand w1 . 

4. 2. A TAUBERIAN THEOREM 

4. 2.1. In this section we deal with the following question. What conditions 

imposed on a measurable function h (defined on [O,oo)} ensure validity of the 

assertion "if one of the limits 

and 

A 

lim l J h(i;)di; 
A->= A 

0 

lim 2£ ~ J 
dO 

0 

2 
exp(-rr£1; ) h(i;)di; 
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exists, then the other one exists and assumes the same value"? 

It can be proved with the aid of the well-known Wienerian Tauberian 

theorem (cf. [La], theorem 8.2.1) that the above assertion is true if his 

essentially bounded. Unfortunately, we shall have to consider cases with 

unbounded h's as well. There seems to be no recent literature in which 

problems like this are attacked. In [W1], Ch. III, §20, however, a special 

Tauberian theo~em on a similar problem is proved; our next theorem uses 

several arguments of the proof of [W1], Ch. III, §20 , theorem 21. 

4.2.2. Denote by D the collection of all measurable functions h for which the 

assertion of the first paragraph of 4.2.1 holds. 

THEOREM. Leth be measurable over [O,oo), and assume that h(x) ~ 0 (x E: JR) 

or that Y T)E:lR /~ jh(ey) jdy is uniformly continuous over JR. Then h E: D. 

PROOF. We proceed as in the proof of [Wl], Ch. III, §20, theorem 21, and 
x -1 -2x y put A= e, £ = w e • On substituting~= e (y E: JR), we get for the 

limits to be compared 

and 

A 

lim !. f h(~)d~ 
A-+<x> A 

0 

lim 2£ i, 
£+0 

lim 1 ey-x R.(y)dy 
x-+«> 

-"" 

y-x 2(y-x) e exp{-e ) R. (y)dy 

respectively. Here R. denotes Y JR h(eY). 
YE 

v -x v -i, -x -2x 
We further put K1 := IXE:lR e X[O,oo) (x) and K2:= IXE:lR 2w e exp(-e ) • 

With this notation the assertion to be proved takes the following form 

"for C € a: the propositions 

(1) lim j"° · K (x - y) R.(y)dy 
x-+oo 

_.,. 1 exists and equals C 

and 

(2) lim ( 00 K2 (x - y) R.(y)dy 
x-+«> 

exists and equals C 

are equivalent". 
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Let C E ~. In the remainder of the proof we assume that (1) or (2) holds, 

·and that .l'.(y) = 0 if y s 0 (i.e. h = 0 in [0,1]; this is clearly no restric­

tion). We are going to apply some theorems of [Wl], Ch. II, §10, and there­

fore we first show that J~+l I .I'. (y) I dy is bounded in n E JN • If Y nElR J~ I.\'. (y) J dy 

is unirormly continuous over JR, there is nothing to prove. If .l'.(y) ? O 

(y E lR) , then we have for i = 1 , 2 

lim sup 1 Ki (x-y) .l'.(y)dy ? 

x-1 

min 
Osusl 

K. (u) lim sup 
]. 

x 

f 
x-1 

.l'.(y)dy. 

Since Ki (x) ? 0 (x E JR), 0~~~1 Ki (u) > 0 (i=l,2), we have by our assump­

tions 

lim sup xJ 
x--

x-1 

.l'.(y)dy < "' 

We next note that K2 E M1 (cf. [W1], Ch. II, (10.01)), and that the 

Fourier transform of K2 has no real zeros. For, if ;\ E JR , then 

J 
-211iAx 

e K2 (x) dx 

11-~ f t-~(1-211i:\)e-t dt 

0 

Also, J:00 K2 (x)dx = 1. 

(1-211iA)x ( -2x) -2xd e exp -e e x 

-~ 
1T f(~ + 11i;\) ¥ 0. 

As to K1 we note that K1 i M1 by discontinuity. As in the proof of [Wl], 

Ch. III, § 20, theorem 21 we define for £ > 0 

x+E: 

K (x) := .!_ f 1,£ £ Kl (y)dy (x ,: JR). 

x 



I -27TiAX 
e K1 (x)dx 

,£ 

(;\ 0) 

for every E > O. Hence, there is no real value ;\ such that the Fourier 

transform of Kl,£ vanishes at;\ for all E > O. 

It is not hard to see from Fubini's theorem and Lebesgue's theorem on 

dominated convergence that (1) implies 

for 

l = 

Ch. 

(3) 

every 

lim I K11 £ (x - y) t(y)dy 
x-+<x> 

E > o. Hence, by [W1], Ch. 

c 

II, §10, theorem 7 applied with 

{Kl 
' e: 

1£ > O} and g:= Yy J~ t(z)dz, (1) implies ( 2) • Also, by [Wl], 

II, §10, theorem 5, ( 2) implies (3) for every E > 0. 

We complete the proof by showing that the validity of (3) for every 
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E > 0 implies that of (1). For the case that t (z) ~ 0 (z E JR) we refer to 

the end of the proof of [W1], Ch. III, §20, theorem 21. For the case that 

vn f~ lt(y) jdy is uniformly continuous, we note that for £ > 0 

where p is defined by 

P (x) := 
£ 

Now it easily follows that 

lim 
e:+O 1 

£ -e: I 
- e 

(X E JR) 1 

(-e: ,,:; x ,,:; 0) 

0 (x > 0 or x < -e:) • 

0 
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uniformly in x E lR. From this it is not hard to see that validity of (3) 
for every € > 0 implies that of (1). D 

4.2.3. THEOREM. Leth be measurable over [0, 00), and let p, 1 < p < 00 

be such -that at least one of the numbers lim sup 2.. JA0 jh(sl"!Pds and 
~ oo 2 A~ A 

lim sup 2c / 0 exp(-ncs ) j h(s) jPds is finite. Then h E D. €'1·0 

PROOF. By theorem 4.2.2 it suffices to show that YnEffi. f~ jh(ey) ldy is 
uniformly continuous over JR. It is clearly no restriction to assume 
h(x) = 0 (0 s x s 1). 

Assume that lim sup.!:.. JA0 jh(s) jPds is finite. Then (cf. the proof of 
A-+-<» A 

theorem 4. 2. 2) 

is finite. Hence 

J ey-n lh(ey) IPay 

n-1 

is bounded in n E lR. It follows that J~-l jh(ey) jPdy is bounded in n E lR. 
If now n2 > n1, then we conclude from 

(where q is the conjugate exponent of p) that ~'n. J~ [ h(ey) jay is uniformly 
continuous. 

If lim sup 2E~ J~ exp(-ncs 2l jh(sl lpds is assumed to be finite, then 
V T] E+O · . 
In f 0jh(eY) jay is uniformly continuous. The proof is similar to the one 
above. 

REMARK. The above theorem covers the case that h is measurable and 

essentially bounded over [0, 00): we can take then any p > 1. 

D 
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4.2.4. It is easy to see that the previous theorem can be stated and proved 

with JR instead of [0,oo) as integration interval. 

The following theorem is an important application of theorem 4.2.2. 

THEORI:;M. Let f be measurable over JR. If one of the limits 

A 

and 

lim 2~ f f(x + I;) f(l;)dl; 
A.._ 

-A 

lim E~ f exp(-~E1; 2 J f(x +I;) f(l;)dl; 
E+O 

exists for every x E JR, then the other one exists and assumes the same 

value for every x E JR • 

PROOF. Write for x E lR, I; E JR 

f(x + I;) f(I;) 

?..i{jf(x +I;)+ f(I;) 12 - jf(x +I;) - f(I;) J 2 + 

+ i jf(x +I;) +if(!;) J 2 - ijf(x +I;) - if(!;) j 2}, 

and apply theorem 4.2.2 to each of the four terms occurring between the curly 
brackets. D 

4.2.5. An inunediate consequence of theorem 4.2.4 is the following theorem. 

THEOREM. Let f be measurable over JR. Then f E W if and only if 

lim E ~ f 
E+O· 

2 --
exp(-~EI; ) f(x +I;) f(l;)dl; =: lji(x) 

exists for every x E JR • If f E W, then cp f (x) (cf. 4 .1. 2) equals 1jJ (x) for 

every x E lR. 

PROOF. Obvious. D 
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4.3. GENERALIZED WIENER CLASSES 

4.3.1. In this section we introduce the s*-generalizations of the Wiener 
classes of section 4.1. We generalize the theorems of section 4.1 corres­
pondingly, and give some examples. We further show measurability (as subsets 
of s*) of the generalized Wiener classes. 

4.3.2. DEFINITION. Let FE s*. Then Fis said to belong to the generalized 
* 2* Wiener class W it there is a G E S such that 

(E -!- 0). 

Herek denotes Y £~ exp(-n£z 2) for every E > 0. 
E Z 

4.3.3. It is not yet obvious that this class w* is an s*-version of the 
Wiener class W, but this will be clear after the theorems 4.3.4, 4.3.5 and 
4.3.8. The following lemma will be useful in the proofs of the theorems 
4.3.4 and 4.3.5. 

LEMMA. If h E s, f E s, g E s, F E s*, G E s*, then 

J 

(cf. appendix 1, 4.6 and appendix 2,2). 

PROOF. First assume that F E emb(S), G E emb(S). The above formula then 
follows from a simple calculation. The general case in handled as follows. 

s* s* Take sequences (F n) nEJN and (Gn) nEJN in emb (S) with F n -+ F, Gn -+ G, and 
apply [J2], lemma 5.2. 0 

* 4.3.4. The following theorem characterizes the class W in terms of the 
class W of 4.1.2. 

* * THEOREM. Let F. E s Then F E w if and only if TFf E w for every f E s. 

* PROOF. Assume that FEW, and let f Es. If a E JR, then it follows from 
lemma 4.3.3. (with k 

lim J 
dO 

kE (t: > 0), g T f, G = F) tbat 
a 



lim (Tk ®oz (F ® F), z (f 0 ~)). 
e:+o e: 0 u u - a -

This means by 4.2.5 that TFf E w. 

Now assume that T f E W for every f E S. It follows from lemma 4.3.3 
F 

(cf. also 4.2.5) that lim (Tk ®oo z (F ® F), ZU(f ® f)) exists for every e:+o e: u 
f E S. It is further seen from the formula 

that l.im (Tk 000 e:+o e: 
Zu(F ® F), ZU(f®g)) exists for every f Es, g Es. 

It is not hard to prove (by using a continuous version of appendix 1, 
2* theorem 3.7) that lim Tk 000 z (F ® F) exists ins -sense. e:+o e: u 

REMARK. We also could have introduced the class w* with the aid of the 

D 
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1 
functions hA:= emb(2AX~A,A]) (A> 0) instead of ke: (e: > 0). The resulting 

generalized Wiener class coincides with the one of 4.3.2. To see this, we 

note that lemma 4.3.3 can also be proved with h = hA (A> 0). Now the above 

theorem, with hA (A > 0) instead of ke: (e: > 0) , can be proved, and then 

4.2.5 shows that we obtain the same generalized Wiener class. We also have 

* for F E W 

lim Th 00 z (F ® F). 
A-+oo A 0 U 

4.3.5. The following theorem shows that the G of definition 4.3.2 is a func-

tion of the second variable only. 

* * THEOREM. If F E W , then there is exactly one <I> E S such that 

H ® <I>. 

Here H denotes as usual emb(Yt 1). 
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PROOF. Denote G:= lim Tk ~60 ZU(F ® F). Using the relation TaZU 
(1) (2) e:+O e: 

= ZU Ta/12 Ta/12 (a E lR), we conclude by lemma 4.3.3, theorem 4.3.4, theo-
rem 4.2.5 and 4.1.3(i) that 

(T(l) G, ZU(f ® f)) lim J 
/ (T f ) (x+a) 12 \:(x)dx -a F - F 

'( e:+o 
-"" 

00 

lim f I (TFf _) cfii / 2 k (x)dx (G,ZU (f ® f)) 
E+O E 

for every a E lR , f E S. It 

(T(l)G, 
-a 

follows (cf. the second part of the proof of 
theorem 4.3.4) that 

f E S, g E S. It is easy to 

ZU(f © g)) = 
see now that 

appendix 4, theorem 1.2 we conclude that 

* cjJ E S 

(G,ZU(f ® g)) for every a E JR, 

T ( 1 l G = G for every a E JR • By ·-a 
G has the form H ® <i> with some 

It is almost trivial that <!> is uniquely determined by F. 

* 

D 

DEFINITION. If F E 

* 
W , then <PF (or, shortly, <1>) denotes the unique element 

~ of S with H © ~ =lira Tk ®oo z CF® i?i. e:+o c u 

* 4.3.6. We next show that the convolution operators of appendix 2,3 map W 
* into W • 

* * THEOREM. Let F E w , g E c. Then T F E w I and <PT F 
g g 

h = 1/12 z12 Tg_g (cf. appendix 1, 1.8 (ii)). 

PROOF. We have for e: > 0 

Z (T F © T F) u g g 
© T (F ® F). g 

Using the relation Z T Iii! •r_ = T ( _) Z and the 2-dimensional version U g g Zu g©g U 
of appendix 2, 5 (iv) (cf. also [J2], 5.11) we obtain 

* It easily follows that T F E W and that 
g 

lim ·r, ®o z (T F ® T F) 
Ef0 ~E 0 U g g 



We complete the proof by showing that 

* * for ~ E S • Let ~ E S , and first assume that g E S. Then (according to 

the 2-dimensional version of appendix 2, 9) 

We have for b E JR by an application of [Bl], (21.4) 

It is easy to verify that 

"' 
YY J g_<;?> ii_<i?)dx = -}r z12 Tgg_. 

Hence the formula holds for smooth functions g, since 

for f E s. 

The general case (with g E C) can be handled as follows. Denote 
(a) 1 

h := 72 Zh T(ga)- ga for a > O (g =Nag). Then 

(a > O). 

c 
0), h(a) ~ h (a+ OJ as is easily seen from appendix 2, 

s2* 
Also, ga + g (a + 
11(iii) and [J2], 5.9. 

s2* 
Hence H ® \ (a) 1jJ + H ® \ ~ (a + 0) • Moreover, 

'l' ( - ) (H ® ~) + zu ga® 9a 
TZ ( 181_) (H ® ~) (a + 0) • Consequently, u g g 

T ( -) (H ® ~) = H ® T ~. zu g®g h 
D 
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REMARK. The following fact is an easy consequence of the above theorem. 

If F E w*, a E lR, then TaF E w* and <!?TaF = <!?F. 

* 4. 3. 7. THEOREM. If F E W , then F<!? F is of positive type (cf. appendix 4, 2.1) . 

PROOF. We have for every f E S (cf. the proof of theorem 4.3.6) 

by lemma 4.3.3. Hence (<l>F, Th_hl 2 0 for every h c: s. 
If g E S and g(x) 2 0 (x E lR), then we can write g 91 ·91 with some 

F* <9 1 ·g1) * 
91 E s. Noting that = T k (with k = F gll, we obtain k-

Hence F<!? is of positive type. D F 

* DEFINITION. If F E W , then we call F<!?F the spectral de~1sity function of F. 

4.3.8. It is natural to ask whether the class W of 4.1.2 can be regarded as 
* a subset of W . An affirmative answer will be given by means of the following 

lemma. 

LEMMA. Let f E w. There exists a C > 0 such that 

I E: 'i exp(-1H;t2J I f(t+a) 1 2 dt :<> 
-1 -~ 2 c(l-K ) exp(·rr(K-l)io:a ) 

for every K > 1, a E 1R and every E: with 0 < E: :<> 1. 

PROOF. Define 1)!:= Y jf(x) 1 2, and let K > 1, a E lR, 0 < L < l.. We find 
XEJR 2 2 -1 2 (by using the inequality (u-a) 2 u (1-K ) + a (1-K) where u ·-- ID., a E m) 
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J e: ~ exp(-Tie:t 2J if{t+all 2dt = J e:~ exp(-Tie:(u-a) 2 )~(u)du s 

-00 

-1 -~ 2 ~ f 2 s (1-K ) exp(TI (K-l)e:a ) sup (a exp(-Tiou ) 1jJ (u)du). 
O<oSl 

This proves the inequality with c sup (o~ J':, exp(-Tiou2 ) ~(u)du). D 
O<oSl 

4.3.9. THEOREM. Let f E w. Then f E 
-~ + 2 z12 emb(q>f),crfES (cf.4.1.4), 

s+, emb(f) E w*, rpf Es+ (cf. 

and Fil? emb (f) = 

4.1.2), 

d <ax< emb (a f) ) • 

+ PROOF. It is easily seen from lemma 4.3.8 and appendix 1, 1.5 that f E S • 

Put F:= emb(f). We want to show that 

(*) Tk ®o Z (F ® F) 
e: 0 u 

co 

emb(l,J f k~ (t) f(t;x2+y) f(t;x2-y)dt) 
I (x,y) ~ 

2* for every e: > 0 (note that, by lemma 4.3.8, the right hand side is in S · 

indeed). Therefore let£ E s 2+, f ES, g ES, e: > 0. We have (with L:= emb(£)) 

by appendix 1, 4.11 and 4.16 and 1.11(i) 

(Tk ®o L,f ® g) 
e: 0 

00 "" 

J I £(t,y) <f 
-co -oo 

Hence, by Fubini's theorem, 

(Tk ®o L,f ® g) 
e: 0 

(L, (Tk f) ® g) 
e: 

ke: (x - t) f (x) dx) g(y) dtdy. 

00 

J J ,J ke:(x - t)£(t,y)dt) f(x) g(y)dxdy 



100 

(emb(Y(x,y)J k£(t - x)t(t,y)dt), f ® g), 

V Joo 2+ ask is even (note that [(x ) k (t - x)t(t,y)dt E S ) . If we take 
£ ry ry ,y -oo £ 

2:= Y(x,y) f( 2 )f( 2 ) in the above, the required result easily follows. 
Now denote W = Y .,,., ~f(a/2). It is easily seen from lemma 4.3.8 that 

aE~' + 
~f' and hence~. is an element of S . It further follows from lemma 4.3.8, 
4.2.5 and (*) that 

* Hence F E W , and <l>F = emb(~) -l:i 
2 z;2 emb(~f) by the uniqueness part of 

theorem 4.3.5. 

+ We easily infer from 4.1.4 that crf E S . It follows from the above, 
4.1.4, appendix 4, lemma 2.4 and some calculations that F<!>emb(f) = 

-~ d 
2 zrr12 dx(emb(crf)). D 

* 4.3.10. EXAMPLE. Let FE S , and assume that F is periodic with period 1 
(i.e. T1F = F). According to [Bl], 27.6.3 we 

Fourier series: F = r' d i;; , where z;;ll := 
2 n=-00 n n 

and d 
n 

O (eEn ) (n E !i) for every £ > 0. 

can develop F in a generalized 
V -2rriAx emb ( 1 e ) for ll E m. , x 

If we calculate Tk ®o z0 (F ® F), then we find 
£ 0 

n,m=-00 

and it is not hard to show that this tends to 

\' Id 12 2-l:i H ® l n 2 12 i;;n 
n=-oo 

2* * in s -sense if £ + O. This shows that F E W and that 
\'"' la 12 2-~ z i;; . We find for the spectral density function ln=-oo n 12 n 

of F 



F~ 
F 

This is indeed a generalized function of positive type. 
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* * 4.3.11. We next introduce the class w1 (S -generalization of the class w1 
of 4.1.6). 

* * DEFINITION. Let F E S . Then F is said to belong to the class w1 if there 
2* is a G E S such that 

2* 
Th ®o Zu(F ® F) 5+ G 

A,B 0 

Here hA,B:= emb(B:A X[A,B]) for A < 0, B > 0. 

(A+ -oo, B + oo). 

It is less convenient here to work with limits that involve the functions 

kE (£ > 0) as was done in 4.3.2. 

It is obvious from theorem 4.3.5 that the G of the above theorem has the 
form H ®@with~ E s*. 

* * * 4.3.12. We are going to show that w1 c W and that FE w1 if and only if 

TF f E w1 for every f E S. We first prove a lemma. 

LEMMA. Let h: m. + ~ be measurable, and assume that 

lim 
A+-oo,B+oo 

B 

B:A J 
A 

h(s+x)h(x)dx =: 

exists for almost every s E m. including s 

B 

O. Let f E S. Then 

B:A J (f * h) <s + x) (f * h) (x)dx +I J ~(t - s)f(t - slf(s}dtds 
A -oo -oo 

(A + -oo, B + oo) locally uniformly in s E m. (here * denotes ordinary 

convolution: f * h = Y J"" f(t - x)h(t)dt) x -oo • 

PROOF. Let A < 0, B > 0, s E m.. We have 
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B 

- 1- J (f * h) (s + xl (f * h) (xJdx B-A 
A 

B oo 

= B:A f J f(t - (s + x))h(t)dt f f(s - x)h(s)dsdx 

A -"" 

B 

f I (B:A I h(x + t)h(x + s)dx) f(t - s}f(s)dtds. 

A 

Here application of Fubini's theorem can be justified by noting that 

(1) 

and 

(2) 

·1 BJ 
B-A 

A 

B 

B:A J 
A 

B 

jh(x+t)h(x+s) jdx $ (B:A f jh(x+t) 1 2dx)~ 
A 

B 

(B:A f jh (x+s) j 2dx} ~ 
-A 

B+jtj 

jh(x+t} j2dx $ (i+;l~I) B-A!2 jtJJ jh(x) j2dx $ 

A-ltj 

$ (1 + ~)M 
B-A 

for some M > 0 independent oft E JR, A< 0, B > 0. 

It is easy to prove that 

lim B:A j h(x+t)-h-{x_+_s_)dx 
A+-ro,B-+oo A 

qi (t-s) 

for all t E JR, s E lR ·for which qi(t-s) is defined. Note therefore that 

B 

- 1-J h(x+t)h(x+s)dx B-A 
A 

B+s 

- 1- J h(x+t-s)h(x}dx + qi(t-s) B-A 
A+s 

if qi(t-s) is defined and A+ - 00 , B + 00 • We infer from the estimations in 
(1) and (2) and Lebesgue's theorem on dominated convergence that 
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B oo 

B:A J (f * h) Cs + x) (f * h) (x) dx + J J q> (t - s) f (t - Of (s) dtds 

A 

(A+ -oo, B + oo) locally uniformly ins E JR. 0 

COROLLARY. In a similar way we can prove that for h E W, f E S 

T 

2~ J (f * h) (s + x) (f * h) (x)dx + ljlf*h(sl 

-T 

(T + oo) locally uniformly ins E JR. 

* * 4.3.13. THEOREM. Let FE s . If FE w1, then TFf E w n wl for f E s. If 

* TFf E w1 for every f Es, then FE w1• 

* PROOF. Let FE w1 , f E s. As in the proof of theorem 4.3.4 we see that 

B 

lim 1 I B=A A+-oo, B+oo A 

exists for every a E JR. Hence TFf E W. We show that the above limit depends 

continuously on a E JR. Therefore write f = £ 1 * f 2 with some f 1 ES, 

f 2 E s. '!'hen TFf = f 2 * TFfl (this is easy to prove if F E emb(S); the 
general case can be handled by using [J2], lemma 5.2). Now apply lemma 4.3.12 

with TFfl in the role of h and f 2 in the role of f. It follows from defini­

tion 4.1.6 that TFf E w1 • 

Next assume that TFf E w1 for every f E s. If f 1 E s·, f 2 E s, then 

B 

lim 
B:A J 

A 

exists locally uniformly in s E lR according to lemma 4.3.12. Hence, if 

f E S, 

lim 
A+-oo,B+oo 

B 

B:A J 
A 
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exists for every t; E JR (cf. the first part of the proof). We can prove 

now (compare the second part of the proof of theorem 4.3.4) that 

lim Tri B®oo z (F ® F) exists in s2*-sense. D 
A+-oo' B+"' A I U 

* * REMARK. We conclude from the above theorem that w1 c W * wl is a proper 

* subset of W since * emb(X[O,ro)) E W 
* h E s+ and emb(h) c w1 if h E w1 • 

* \ w1 . Furthermore we note that 

* * 4.3.14. We next show that the class W is a measurable subset of S (cf. 

appendix 1, 5.1). We need the following lemma. 

LEMMA. If h E W, f E S, then the set of functions 

(*) 

T 
1 f 

2T J 
-T 

(f * h) (s + x) (f * h) (x) dx 

with T ? 1 is equicontinuous in every interval [a,b] with - 00 < a < b < 00 • 

PROOF. Denote for T ? 1 the function in (*) by gT, and let - 00 < a < b < 00 • 

We know from 4.3.12, corollary that g(i;) := lim g (s) exists uniformly in 
T+oo T 

t; E [a,b]. Also g is a continuous function. Let £ > 0, and let o1 > 0 

be such that jg(!;) - g(n) I <~if t; E [a,b], n c [a,b], Is - nl < o1 . Also, 

let T0 ? 1 be such that JgT(sl - g(i;) I < c/3 if T > T0 , t; E [a,b]. It is 

not hard to see that the set of functions gT with 1 s T s T0 i.s equi.conti-

nuous in [a,b]. We can therefore find a o2 > 0 such that 

lgT(S) - gT(TJ) I < £ i.f 1 s T s TO, s E. [a,b], Tj E [a,b], Is - nl < 02. 

we put o: = mi.n ( o 1 , o 2) , then we have lgT(S) - gT(nl I < £ if 

T ? 1, s E. [a,b], n E [a,b], Is - nl < o. 
* * 4.3.15. THEOREM. w is a measurable subset of s 

PROOF. We have F E w* if and only if TFgn E w for every n E JN • Here 

Y n 
~ 2 

(n JN). if f E can write f = gn * f1 g := exp (-11nx ) E For, s, we n x 
with some f 1 E S, n E JN, and TFf = f 1 * TFgn E W according to 4. 3 .12, 

corollary (cf. also the proof of theorem 4.3.13). 

It is easily seen from lemma 4.3.14 (as TFgn = TF(g2n * g2nl 

* g2n * TFg2nl that for F E W the following conditions are satisfied: 

(1) the set of functions 

If 

D 



T 

2~ J 
-T 

with T ~ 1, T E m is locally equicontinuous for every n E JN I 

(2) the limit 

lim 
T--, TE'.m 

T 

2~ J 
-T 

exists for every I; E m and every n E JN • 
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On the other hand, if the conditions (1) and (2) are satisfied, then 

lim 2
1T JTT (TFg ) (I; + x) (T g ) (x)dx exists for every I; E lR, n E JN, i.e. 

T-l-00 - n F n 
TFg E W for every n E JN • As in the examples of appendix 1, 5. 5, we can 

n * 
obtain the class of all F E S satisfying the conditions (1) and (2) as 

a finite chain of unions and intersections involving a countable number 

* * of measurable sets. Hence W is a measurable subset of S • D 

REMARK. In a similar way as in the proof of the above theorem we can show 

* * that w1 (cf. 4.3.11) is a measurable subset of s . 

4.4. GENERALIZED HARMONIC ANALYSIS AND THE WIGNER DISTRIBUTION; APPLICATIONS 

TO GENERALIZED STOCHASTIC PROCESSES 

4.4.1. This section relates the Wigner distribution to generalized harmonic 

analysis. We shall see that the spectral density functions of the elements 

of the Wiener class can be obtained as limits of certainaverages of their 

Wigner distributions. We further elaborate the relation between averaged 

Wigner distributions and the spectra occurring in engineering. Finally, the 

theorems of the previous sections are applied to strict sense time statio­

nary and ergqdic processes. 

* 4.4.2. Let F E S. In section 4.3 we considered the expressions 

TkE®oozu (F ® F) with £ > O, and F was said to belong to the class w"' 
- 2* whenever lim Tk ®oo z (F ® F) exists in s -sense. We modify this limit 

£+0 £ u 
procedure slightly so as to involve non-negative averages of the Wigner 

distribution of F. The following lemma deals with this modification. 
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LEMMA. Let F E s* Then lim o-~ T(l} M( 2)z (F ® F) exists in s 2*-sense 
* c+O,o+O k£ ko u 

if and only 

YGEs* ko.G; 
lim o-~ 

c+o, o+o 

if F E W (Mk0 stands for the multiplication operator 

* cf. appendix 2, 6). If FEW, then 

T~!J M~~) zu(F ® F) = H ® wF (cf. 4.3.5). 

PROOF. Assume that FE W~ and let f E s 2• We have for£ > 0, o > 0 

2* 
since Tk£@00zu(F ® F) 5+ H ® wF (£ + 0), c-~ M( 2)f i; f (o + 0), we 

kc 
conclude from a 2-dimensional, continuous version of appendix 1, 1.16 that 

-~ (1) ( 2) - 2* Hence lim c Tk Mk~ Z (F ® F) exists in S -sense, and equals 
£+0 o+O 2 £ u u 

H ® wF since f E s is arbitrarily chosen. 
l' -~ (1) (2) - 2* Now as~ume that £+O~~+O o Tk£ Mko ZU(F ® F) exists ins -sense, and 

let f E S • It is easy to see that for small values of c > 0 there is 
2 -~ (2) s2 exactly one f 0 E s such that f = o Mkc fc; we have fc _, f if o + O. 

Now 

and lim (c-~T(l)M( 2)z (F ® F) ,f~) exists (again by a 2-dimensional, £+0,o+o k£ kc u u 

continuous version of appendix 1, 1.16). Hence lim Tk ®coz (F ® F) 
2* 2 £+0 £ u 

exists in S -sense since f E S is arbitrarily chosen. D 
2* REMARK. Let F E S • It is easily seen from the proof of the above lemma 

* that F E W if and only if the following condition is satisfied. There 

exists a function p: (0, 00 ) + (0, 00 ) with p(£) + 0 (£ + 0) such that 

lim (p(£))-~ T~l)~2 ) ZU(F ® F) exists in s 2*-sense. 
£+0 £ p(£) 

,, 
4.4.3. In the remainder of this section V(F) denotes for F E S the Wigner 

distribution of F. 

* THEOREM. Let F E S • The following conditions are equivalent 



{i) * F E W , 

2* (ii) lim Tkceks-l V(F) exists in S -sense, 
e:+O,o+O ~ u 

(l.'i'i) lim emb(IJ ( b) I -J..i ' ) a b) 12> 2* I e: (Sk F C-r.::-2 , -r.::-2 exists in S -sense. e:+O a, £ YL YL 

* 
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Furthermore, if F E W , the limits in (ii) and (iii) equal H ® L, where L 

is the spectral density function of F (cf. 4.3.7). 

PROOF. Note that Tkc®ks-l V(F) = o-!.:i F( 2) T~l)M~2)z (F ® F) for e: > O, 
~ U _L ( 2) £ Q U 

o > O. We further have k ® k 1 = e: • F Z (k ® k ) , therefore it 
£ e:- u £ £ 

follows from appendix 3, 2.4 that Tk ~k _1 V(F) = 
1,1 1 a b 2 E£ • = emb ( I (a, b) I (Sk/l <72 , 72l I ) . The theorem easily follows from 4. 4. 2 and 

4.4.2, remark. 0 

* 4.4.4. The reason for studying lim 0 Tk ®ks-lV(F) for F E W (rather than e:+O,o+ e: u 
~~ Tke:®oo V(F)) is the fact that Tke:®~ 6 _1V(F) is of positive type if 
e: ~a (cf. also [B2], theorem 4.2). 

THEOREM. Let F E s*, and let£ > 0, 0 > o. If E ~ o, then Tke:®k5-1V(F) is 
the embedding of an analytic function g with g(x,y) ~ 0 (x E lR,y E IR). 

PROOF. It follows from the 2-dimensional version of appendix 2, theorem 9 

that 

and the embedded function at the right hand side is analytic (cf. [J2], 

3.3 and 5.11). 

For e: = o, positivity is easily seen from the proof of theorem 4.4.3. 

The general case is handled as follows. We have k0 = ky * ke:-1 with 
1 

y = o-e: • Now 

Since k is positive everywhere on IR, the theorem follows. y 0 

4.4.5. In order to indicate relations between weighted Wigner distributions 

and power spectra (as occurring in applied signal analysis), let F = emb(f) 

with f E W (cf. 4.3.9). We have fore:> 0, o > 0 
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emb(G ,J I 
E,u 

where 

"' 
G := Y £1:! J exp(-rroy2 - rr£(x-t) 2) fC;,+2Y)f(T2Yldx E, 0 (t,y) 

(cf. also the proof of 4.3.9). 

If o > 0 is fixed, then we have fort E IR, y E lR 

(1) 2 lim G 0 (t,y) = exp(-rroy) ~f(y/2) 
E+O £, 

(cf. 4.1.2 and 4.2.5, and also 4.3.9). Fourier transformation with respect 

to y in (1) gives (lemma 4.3.8 legitimates interchanging of lim and the 

Fourier integral) E+O 

(2) 
J 

2 
exp(-rroy -21TiAy} ~f(yl2)dy. 

By theorem 4.4.3 and analyticity of f( 2)G we have 
£ 1 0 

(3) 

if £ 5 o. We can regard the right hand side of (2) as an estimation of the 

spectral density function of f at the point A: we have 

* 
exp(-rrol - 2rrHy} qif(yh)dy) ~ fwemb(f) 

ifo + c (cf. 4.3.7). 

For E = a we have in (3) 

(4) 

= I £ exp(-1T£(u - t/v2) ) e f(u) du J ~ 1 2 -21TiUA//2 12 
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if >. E JR, t E JR (cf. the proof of theorem 4.4.3 and appendix 3, 2.3). 

Compare (4) with the formula (54) for s (f,t;w) in [Ma] (cf. also 3.4.6). x 
In engineering literature (cf. [BS], [BT], [RD], [Zi]) the expression 

(5) 

T 

1 I I e-2ni>.u f(u)dul2 
2T 

-T 

is quite often used for estimating, what is usually called, the power 

spectrum of f at >.. (In fact the word "spectrum" is not correct: if (5) 

estimates something, then it estimates the spectral density function of f 

at>.; cf. 4.1.4 and 4.3.7.) The expressions in (4) and (5) show great 

resemblance, but there is a difference. The first expression contains the 

time variable t, whereas the latter one does not. This makes (4) more 

appropriate in case we drop the restriction f E W (so that signals f 

representing e.g. a piece of music can be treated as well). 

4.4.6. We now apply the results of the previous sections to generalized 

stochastic processes. Let (n,A,P) be a probability space. 

* * THEOREM. Let.! E Sn 2 be strict sense time stationary, and let PX be the 
I * * probability measure on (S ,A) associated with_! {cf. 1.1.19). TFien 

* * PX(W1l = 1 (cf. 4.3.11). If, in addition, X is ergodic,then we have for 

a'iinost every F E s* 

T 

2\ J (TF,f)(t) (TFg)(t)dt+ (RX,f-®g_) 

-T 

(T + oo) 

* * * for every f ES, g ES. The above limit is assumed in L1 (S ,A ,PX)-sense 

for every f E S, g E S. 

~ROOF. It follows from 4.3.15, remark * * . that wl E A. According to 4.3.13 

* almost every F E s. 

The function YFEs* (gn,F) is 

we have to show that TFg E w1 (g E S) for 
' ~ 2 

Let n E JN , and let grr= 1 x exp (-nnx ) • 

measurable arid square integrable overs*. Since (T ) is a measure 
-t tEJR 

* * * preserving group of transformations of (S ,A ) with respect to PX, we 

conclude by [Ho], eh. IV, §14, Satz 14.2 that the function Yt(gn~T-tF) 
TF gn E w1 for almost every F E s~ 
Since F E W~ if and only if TFgn E w1 for every n E JN (cf. the first 

part of the proof of theorem 4.3.15 and 4.3.15, remark) we easily conclude 
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Now assume, in addition, that _! is ergodic. We conclude from the above 
* that for almost every F E S 

T 

(1) lim 211" f j (TFf) (t) i 2 dt 
T-+<» 

-T 

exists for every f E s. If f E s, then we get, by applying [DJ, eh. XI, 
section 2, theorem 2.1 to YF (F,f_),for almost every FE s* 

(2) lim 
-r-+<» 

T 

}, f 
-T 

I (T F,f ) 12 dt 
t -

By combining (1) and (2) we get for almost every F E s* (note that 
(TFf) {t) = (TtF,f_) for f E S,t E. JR) 

T 

lim }, f I (TFf) (t) j 2 dt 
i:-+<» 

-i: 

for every f ES. For fixed f E S this limit is achieved in Ll (S*,A*,p;)­
sense (cf. the remark at the end of the proof of [DJ, Ch. XI, section 2, 
theorem 2.1). It is not hard to complete the proof (cf. 4.2.5 and 4.3.4). 0 

REMARK 1. Since w7 cw* (cf. 4.3.13, remark), we have P;cw*) = 1 if 

* .lf. E sn, 2 is strict sense time stationary. 

* REMARK 2. Let_! E sn, 2 be strict sense time stationary and ergodic. Then 
it can be proved that for almost every F E s* 

(e: + 0) 

-"' 

* * * for every f E S, g E S, and the above limit is achieved in L1 (S ,A ,PX) 
sense for every f E S, g E S. 

* 4.4.7. THEOREM. Assume that X E Sn, 2 
ergodic. Then Th 0 ~ 0 z (X ® X) + z R 

Tu U- - UX 

is strict sense time stationary and 

(s 2* ) if T + ""• n,1 



PROOF. It follows from an application of appendix 1, 3.5, remark (with 
R = Ll (nJ) that it suffices to show that for f ES, g ES 

in L1 Wl -sense. 
2 tN tN -Leth E s . If N E JN, then lk=Olt=O (! ® ~· lj!k ® lj!t) (l/Jk ® l/Jt,h) and 

YF l~=O l~=O (F ® F, l/Jk ® l/Jt) (lj!k ® lj!t,h) have the same distribution by 
1.1.15 {with respect to P and P~ respectively). It easily follows that 

- . tN tN -(3f_ ® 3f_,h) == ~ lk=O lt=O (_! ® _!, lj!k ® lj!t) (lj!k ® lj!t,h) and 
YF(F ® F,h) = ~~ YF l~=O l~=O (F ® F, l/Jk ® l/Jt) (lj!k ® lj!t,h) have the same 
distribution. 

Now let f E s, g E S. It follows from the above that 
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(Th,®oo z0 C,! ® R>,z0 (f ® g)) and YF (Thr®oo z0 (F ® F), z0 (f ® g)) have the 
same distribution for every t > O. Hence, it suffices to show that 
YF(Thr@oo Zu(F ® F), Zu(f ® g)) + (~, f ® g) (t + oo) in Ll cs*,A*,p~)-sense. 

* We have for t > 0, F E S 

T 

= 21t I (Tt/12F,f) (Tt/12F,g)dt 
-T 

(cf. also lemma 4.3.3 and 4.3.4, remark). Since (Tt/l2F,h) = (TF h_) (t/V2) 
* for every FE s , h ES, t E JR, we easily conclude from theorem 4.4.6 

that 

* * * in L1 cs ,A ,Px)-sense. D 

REMARK. Let X as in the above theorem. It can be shown that Tk£®ooZu(! ® R> + 
2* -+ ZuRx<sn 1J if £ > o. Also (cf. 4.4.3 and 3.4.2), Tk£ek£_1 f(2) z0 C,! ® !) + 

- ' 2* 2 + f(2)zuR~ = H ® L (sn,ll and emb(~ (a,b) J (Sk:£!l (a/12,b/hl I ) + 
+ H ® L(S~: 1 i. Here Lis the spectral density function of! (cf. 2.2.5). 
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4.4.8.The theorems 4.4.6 and 4.4.7 deal with strict sense time stationary and 

ergodic processes. For general processes it is often hard to estimate spec-

tral density functions (or, more properly spoken, weighted Wigner distri-

butions) from the observation of a single realization of the process. There 

exist, however, certain non-stationary processes for which 
functions have been calculated. We mention in this respect 
Barkhausen effect ([BS], 3.2.3 and 3.6). The first process 

spectral density 

.!_ - noise and the 
f 
has the property 

that its statistics vary only very slowly with time ("locally stationary 
process"). For such a process the spectral density function is estimated by 
employing one realization of the process (cf. 4.4.5 (4) and (5); in (4) a 
small value of £ can be taken) . We further note that the Barkhausen effect 
is a "periodic" noise process, so that each period of a realization can be 
used. Now one considers averages of the expressions in 4.4.5 (4) and 
4.4.5 (5) (averaged over the various periods; this is, in fact, an ensemble 
average, i.e. an average over a collection~ of signals). 
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This appendix is devoted to the spaces S and s* it contains all available 
information about these spaces as far as relevant for the main text. 

Section 1 is introductory. It gives a survey (with some supplements) of 
De Bruijn's theory of generalized functions. 

* Section 2 is devoted to convergence and topology in the spaces S and S 
Various topologies, compatible with the respective notions of sequential 

* convergence in S and S , are introduced there. Furthermore it is shown that 
* both S and S can be regarded as nuclear spaces (when provided with the 

proper topology). 

Section 3 studies continuous linear functionals of Sands*. It is shown 
that the set of continuous linear functionals of s cs*i can be identified 
with s* (S), no matter which one of the topologies of section 2 is taken 
for defining continuity. Continuous bi-linear functionals of S x S are 
studied, and a kernel theorem as well as a theorem about convergence in s 2* 
is proved. 

Section 4 presents the main results of [Jl], appendix 1, section 2 and 3 
about continuous linear operators of Sands*. It is shown that all 
topologies of section 2 for s (s*J determine the same class of continuous 
linear operators of s cs*). 

* In section 5 the space S is regarded as a measure space. It is shown 
that the various topologies of section 2 all generate the same a-algebra on 
* * S , and that S is a Radon space with respect to each one of these topologies. 

A number of examples of measurable subsets of s* are given. 

1. INTRODUCTION 

1.1. We give a survey of the fundamental notions and theorems of De Bruijn's 
theory of generalized functions as far as they are relevant for this tract. 
A detailed treatment of this theory can be found in [B1]. Also, some supple­
ments are given. 

1.2. If A and B are positive numbers, we denote by sA,B the class of analytic 
functions f of a single complex variable ,for which there is a positive 

number M such that 
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jf(t) / :'> M exp(-11A(Ret)'2 + 11B(Imt) 2) (t E: a:) • 

The set s of smooth functions of a single complex variable is defined 

as A~O B~O sA,B (cf. [Bl ], 2 .1). 

1. 3. In S we take the usual inner product and norm: 

(f,g) := J f(t) g(t)dt (f E S,g E: S), 

-oo 

llf/I := ((f,f))l:; (f E S). 

1.4. We consider a semigroup (N ) 0 of linear operators of S (the smoothing a a> 
operators). The Na's satisfy Na.Na= Na+S (a> O, S >OJ, where the product is 
the usual composition of mappings. These Na's are integral operators: 

N f:= Y ,,, J K (z,t) f(t)dt a zE... a (fE:S,a>O), 

where the kernel Ka (a > 0) is given by 

y . -~ - 1T 2 2 Ka:= (z,t)E0:2(sinha) exp(sinha. ((z + t) cosha - 2zt)) 

(cf. [B1], section 3,4,5 and 6). 

+ 1.5. In fact the smoothing operators can be defined on the space S , 
consisting of all complex-valued measurable functions defined on the reals 
with the property that for every E > 0 

x 

J 
2 I f ( t) / d t = 0 (exp (EX ) ) (x 2: 0) 

-x 

(cf. [B1], section 20). For f E S+, a > 0 



N f 
a K (z,t) f(t)dt a 

is well-defined, and it is a smooth function of one variable. Na thus 
+ maps S into S for a > 0. 
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Let f be measurable over JR. It is to be noted that f ES+ if and only if 

f exp(-'11£t2) I f(t) ldt < "' 

for every £ > 0. Note that L (lR) c S+ for every p with 1 s p s 00 
p 

1.6. The following theorem is useful. 

s p < oo, and let f E L (JR). Then II N f - fll + 0 (a + 0). p a P 
THEOREM. Let 

PROOF. Let £ > O, and let b a function of the form l:=l an X(an,bnJwhere 
N E JN, a E a:, a E JR, b E lR, a < b (n = 1, ••• ,N) , such that n n n n n 
II f - bll < £/3. We then have p 

II N f - fll s II N ( f - b) II + II f - bll + II N b - bll s a p a p p a p 

llN (f - b)ll +!IN b - bll a p a p 
£ +-
3 

Let h E L (lR) • We are going to show that II N hll s II hJI for a > O. P a P P We have for z E lR, p > (the case p = 1 is almost trivial) 

I (N h) (z) I a 

-"" 

K (z,t) h(t)dtl s a 

1 

s (J Ka (z,t) lh(t) lpdt)p <f 

where q is the conjugate exponent of p. Since 

K (z,t)dt) l/q , 
a 
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J 
K (z,t)dt 

a 
-~ 2 (cos a} exp(-7TZ tanh a) ( Z E a:) / 

we infer that 

J 

00 

I (Nahl (z) jPdz :s; I I 
-00 -oo 

K (z,t) j (h(t) jP dtdz, a 

and an application of Fubini's theorem shows that llN ~Ip$ l/~IP. 
Cl p 

This implies that 

II No.f - fll P $ 2
3e: + II Nab - bll P. 

Now I (N b) (z) I $ M exp(-7TAz 2J (z E lR) for all a, 0 < a < 1 with some M > O, Cl 

A ? 0, and (Nab) (z) -+ b(z) (a + 0) except in the discontinuity points of b 
(this follows by writing K (z,t) as (sinha)-~ exp(-7T(Z - t/cosho.) 2 coso.) x 

2 a 
exp(-7Tt tanha). Hence, by Lebesgue's theorem on dominated convergence, 
II N b - bll -+ 0 (a + 0) • If a > 0 is sufficiently small, then a p e: 
II N b - bll < -3 , whence II N f - fl/ < e:. o. p a p 

oo (take f:= Y 1). 
z 

D 

REMARKS 1. The theorem does not hold if p 

2. If f E S+ is continuous, then (Naf) (t) -+ f(t) (a + 0) locally uniformly. 

1.7. We summarize a number of properties of the operators Na (a> 0). 
(i) (No.f,g) = (£,Nag) for a> o, f Es, g Es (cf. [Bl], 6.5). 

(ii) For every a > 0 and every p with 1 $ p $ 00 there are positive 
numbers C , A and B such that for every f E L (lR) ap P 

I (N f) (t) I $ C 11£11 exp(-7TA(Ret) 2 + 7TB(Imt) 2 ) a ap p (t E a:) • 

This is a slight generalization of [Bi], 6.3. 

(iii) If f E S and a > 0, then there is at most one g E S satisfying 

f = Nag. Also; if f E S, then there exists an a > 0 and a g E S with 
f = Nag. Moreover, if f E S, and the positive numbers M, A and B are such 

that 
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I 2 2 
f(t) I ::; M exp(-TTA(Ret) + TTB(Imt) ) (t E CC), 

then we can find an a > O, C > O, A' > 0, B' > 0, only depending on A and B, 

such that 

lg(t) I ::; MC exp(-TTA' (Ret) 2 + TTB' (Imt) 2) (t € a:) 

holds for the unique g with f =Nag (cf. [B1] 10.1). 

(iv) As a linear operator of L2 (JR), Na(a > 0) is a Hilbert-Schmidt 

operator. The eigenfunctions of Na are the Hermite functions ljlk (k E JN0J 

(cf. [Bl], 27.6.3 for the normalization chosen), and the corresponding 

eigenvalues are e- (k+~) a (k E JN0) • The set {ljlk k E JN0 } forms a complete 

orthonormal set in L2 (lR) , and ljlk E S for every k E JN0 • We list some 

further properties of ljlk (k E JN0l • 

a) If a > O, then 

00 

Ka(z,t) = I 
k=O 

e-(k+~)a 1jl (z)ljl (t) 
k k 

b) If f E S, then there exists an £ > 0 such that 

Ck E JNO) • 

(z E (C 1 t € (C) • 

On the other hand, if (ck) kElNO is a sequence in a: with ck = 0 (e -k£) (k E JN0) 

for some £ > O, then f := I~=O ck ljlk E S and (f,ljlk) = ck (k E JN0l · 

1.8. We give some other important linear operators of S. 

(i) The Fourier transform F and its inverse F*: 

co 

Ff:= YzECC J. e-2TTizt f(t)dt (f E S), 

-CO 

F*f:= Y J e 2TTizt f(t)dt 
ZECC 

(f E S). 
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Cf. [Bl], section 8 and 9. 

(ii) The shift operators Ta and~ (a Ea:, b E 0:): 

T f:= Y f (z + a) a ZEO: 

The operator ZA (A> 0): 

Z,f:= Y A~ f(AZ) 
I\ ZEO: 

The operators P and Q: 

Pf:= 
1,1 f' (z) 
I ZEO: 27Ti 

Qf:= Y z f(z) 
ZE0: 

(f E S), 

(f E S). 

(f E S). 

(f E S}, 

(f E S). 

Cf. [B1], section 11 for relations involving these operators. We write d~ 
for the operator 27TiP (ordinary differentiation) . 

(iii) The operators T with g E C (cf. appendix 2,3), and the operators g 
~with h EM (cf. appendix 2, 7). 

1.9. A generalized function is a mapping F = Y 0 F of (0, 00 } into S such a> a 
that NaFB = Fa+B (a> O, B > 0). It is sometimes convenient to write F(o.} 
or NaF instead of Fa(a > 0). The set of all generalized functions is denoted 

* * I * by S • If a > 0, then N (S ) denotes the set {F(o.) F E S }. a 

* 1.10. If F E S , g E S, then we define the inner product (F,g) as follows. 
Write g = N h with some a > 0, h E S (cf. 1. 7 

0. 

(F,g) := (F o.'h). This number depends only on F 

Similarly, we define (g,F). We have (NaF,g) 

0. > o. 
* If F E S , then we have for every £ > 0 

and 

(iii} ) and put 

and g (cf. [B1], section 18). 

* (F,Nag) for F E S, g E s, 



F 
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On thA other hand, i'f kc "' (ck) k is a sequence in a: with ck = 0 (e ) (k E lN0) 
EJNO \'"' * 

for every£ > 0, then F:= ~a>O lk=O ckNa~k E S , and (F,~k) =ck (k E JN0) . 

It follows that F = 0 if N F 0 for some a > 0. 

* 
a 

If F E s , g E S, then 

(F ,g) 

Cf. [Bl], 27.6.3. 

1.11. We give some examples of generalized functions. 
+ (i) Let f E S. The embedding off (emb(f)) is defined as 

emb(f):= Y 0 N f. Cf. [Bl], section 20. Note that if f ES+, g ES 
a> a 

(emb (f) , g) J f(t)g(t)dt. 

If f E L1 (JR) , emb (f) = 0 then f = 0 (a. e.). This f':lllcv;s from theorem 1. 6 

by noting that N (emb(f)) = 0 (a> 0). With this result we can prove that 
a + v 2 

f = 0 (a.e.) if f ES, emb(f) = O. For let g:= lz exp(-nz ). Now g.f E L1 (JR) 

by 1.5, and emb(g,f) = g.emb(f) = 0 (cf. appendix 2,6), whence g.f = 0 (a.e.), 

so f = 0 (a.e.). 

(ii) For b E a:, the "delta function at b" is defined as 

6b:= Ya>O YtE«: Ka(t,b). We have (g,ob) = g(b) for g Es. 

(iii) For a E a:, the generalized function e is defined as 
V -2niat * a _ 

ea:= emb( ltEJR e ) • We have (g,ea) = CF g) (a) for g E S. 
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1.12. We next define convergence in the space S (S-convergence). If 
(f ) is a sequence in S, then we write f ~ 0 if there are positive n nEJN n 
numbers A and B such that 

2 2 fn(t) exp(TIA(Ret) - TIB(Imt) ) + 0 

uniformly in t E a:. If f E S and (f ) is a sequence in S, then we write s s n nEJN 
fn + f if fn - f + O. In a similar way we define S-convergence of series. 

In [Bl], 23.1 the following theorem is proved. If (f ) Th' is a sequence in S S n~-
then fn + 0 if and only if there exist: an a> O.and a sequence (gn)nEJN 
in S such that fn Nagn (n E JN) , gn + O. 

1.13. The following criteria for S-convergence are sometimes useful. 

THEOREM. Let (fn)nEJN be a sequence in S, and assume that there is an M > 0 
A > 0, B > 0 such that 

jf (t) J ~ M exp(-TIA(Ret) 2 + TIB(Imt) 2) n (n E JN 1 t E (!:) • 

Then the three following statements are equivalent. 

(i) f E?. o. 
n 

(ii) fn ~ 0 (i.e. (fn 1 g) + 0 (n + 00 ) for every g E L2 (JR)). 

(iii) fn (t) + 0 (n + 00 ) for every t E JR. 

PROOF. It follows from 1.7 (iii) that there is an£> 0 and an M > 0 such 
that for every n E JN there is an h 
I I -k£ n 

(fn,ipk) $ M e (k E JNO, n E JN). 

E S With f 
n 

N h , llh II 
£ n n 

~ M. Hence 

Obviously (i) ""'(iii). Also, by Lebesgue's theorem on dominated conver-
gence, (iii) ""' (ii). We show that (ii) ""' (i). Assume that fn _._ 0. Write 
£ = a + tl with a > 0, tl > 0, and let g := N0 h (n E JN) • Then 
I I -ktl . n µ n (k+l:!) a (gn,ljik) ~ M_ e (k E JN0 ,n E JN) , and (gn,ljik) = e (fn,ijJk) + 0 if 

n + 00 (k E E 0) • It easily follows that II gJI 2 = l:=O J (gn,ljik) J 2 + O if 

n + 00 • Hence f = N g ~ 0 by 1.7 (ii). D n a n 

f f \'n ) §_ EXAMPLE. I E s, then lk=O (f,ljik ljik ~f. 
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1.14. The space Smay be identified with the space S~ studied in [GSII], 

IV, §2.3. This space consists of all complex-valued functions cp defined on 

the reals that have derivatives of any order, and that satisfy inequalities 

of the type 

where C > O, A> O, B > 0 depend on cp. It is proved in [GSII], IV, §2.3 

that such a cp is the restriction to lR of an element of S. Conversely, if 

cp E S, then the restriction of cp to lR satisfies inequalities of the type 

(*), and belongs to S~ ([GS2], IV, §7.5). 

Convergence in S~ is defined as 

convergence to zero if cp(q) (x) + 0 
n 

follows. A sequence (cp ) JN is said to 
n nE 

locally uniformly in x E lR for every 

q E JN0 , and if there are numbers c > 0, A > 0, B > 0 such that the in-

equalities in (*) hold for all cp = cpn (n E JN0l • 

It can be proved (by a careful inspection of the proofs in [GSII], IV, 

§ 2.3 and[GSII], IV, §7.5) that a sequence (cpl ..,., converges to zero in 
~ n nE~• 

S~ if and only if the sequence of analytic continuations converges to zero 

in s. 
It is proved in [Wi], VIII, §29,3 that S~ can be regarded as a nuclear 

space (cf. also [Mi]); we shall give an alternative proof of this fact in 

section 2 of this appendix. 

* * 1.15. Now we define convergence in the space S (S -convergence). If (Fn)nElN 

is a sequence ins*, then we write F s,.: O if N F ~ 0 for every a> 0. 
* n * a n S* 

If F E S and (F ) JN is a sequence in S , then we write F + F if 
S* n nE * n 

F n F + 0. In a similar way we define S -convergence of series. 

In [B1], 24.4 the following theorem is proved. If (F ) JN is a sequence 
* * S* n nE 

in S , then there is an F E S with F n + F if and only if the sequence 

((Fn,g))nElN is convergent for every g E s. 

EXAMPLE. If F E s*, then emb(l~=l (F,wklwkl s..: F. 

1.16. The following theorem expresses continuity of ( , ) as a mapping of 

* s x s in a:. 

THEOREM. Let F E S *, and let (F nl nE JN be a sequence in S * with F n s,.: F. Let 

f E s, and let (fn) nEJN be a sequence in S with fn ~ f. Then we have 

(F ,f ) + (F,f) (n + oo). 
n n 
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PROOF~ Let a > 0, g E S, g E S be such that f 
S n 

gn + g (cf. 1.12). Now we have for n E JN 

I (F , f ) - (F, f) I ~ I (F , f - f) I + I (F - F, f) I ; n n n n n 

the first term is at most JIN F 1111 g - gll, and the second one is at most a n n 
!IN F - N Fllllfll. We easily infer from the definitions 1.12 and 1.15 that a n a 
(F , f ) - (F , f) + 0 ( n + "') • D n n 

1.17. We devote some attention to smooth functions and generalized functions 

of n complex variables (n E JN). The previous definitions and theorems can 

be formulated and proved (with proper modifications) for the n-dimensional 

case. The class Sn, e.g., is defined as the set of all complex-valued func­

tions f, analytic in its n variables, for which there exist positive numbers 
M,A and B such that 

M exp(-TIA 
n 2 n 2 l (Re~) + 'ITB l (Im~) ) 

k=l k=l 

As an example of a smooth function of n variables we have 

fl ® ••• ® f := Y(t t) ,,,n fl(tll- ••• ·f (t ), n 1, ••. , n E~ n n 

where f 1 E s, ... ,fn Es. 

On Sn we take the ordinary inner product of L2 (:lRn), and denote it by 

, ) n (or ( , if confusion is excluded) • 

The classes Sn+ and sn* (of embeddable and generalized functions respec-

tively) are introduced in a similar way (the smoothing operator N (a > 0) a,n 
is an integral operator with kernel 

K a,n 

If f E Sn+, we write emb(f) for the generalized function Y 0 N f. 
a> a,n 



As an example of a generalized function of n variables we have 

* * where F1 Es , ... , Fn ES . 

Then-dimensional version of 1.7 (iv) b) reads as follows. If f E Sn, 

then there exists an E > 0 such that (f,lji ) = O(e-E(k1+ ..• +knl) 
n k,n 

(k = (kl I ••• ,kn) E JNO). Here wk,n denotes 1jik1 ® •• ·® Wkn for 

k = (k1 , ••• ,k) E JN~. Also, if (ck)kElNn is a multi-sequence in a: with 

= 0( -E(k1~ ••• +knJ) (k = (k k) O n) f 0 th th ck e 1 , •.• , n E JN0 or some E: > , en e 
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function f:= IkEJNn ck ljik,n is an element of Sn, and (f,ljik,n) = ck (k E JN~). 
We have a similar'i:esult for generalized functions of n variables (cf. 1.10). 

2. CONVERGENCE AND TOPOLOGY IN THE SPACES S AND s* 

* 2.1. We introduce a number of topologies on S and S These topologies turn 

* out to be compatible with the notions of sequential convergence in S and S 

(cf. L 12 and L 15). 

2.2. DEFINITION. The weak topology ons is the linear topology generated 

by all sets of the form {f E S I (f,F) E o}, where F E s* and o is an open 

* subset of a:. The weak topology on s is the linear topology generated by all 

sets of the form {F E s* I (F,f) E o} where f E S and O is an open subset 

of a:. 

* It is easy to see that both S and S are locally convex topological 

Hausdorff spaces with the respective weak topologies. 
* s* 

If (F n) nEJN is a sequence in S , then F n + 0 if and only if F n + 0 in 

weak sense (cf. 1.15). The corresponding statement holds for the space S; 

the proof of it is postponed until 2.5. 

* 2.3. We introduce on S a stronger topology. This topology is associated 

* with a countable number of inner product norms on S • 

DEFINITION. For n E JN we define ( , ) (n): s* x s* + a: by 

(F,G) (n) := (F(.!_), G(.!_)) 
n n 

* * (F E s I G E s ) ' 

where ( , ) denotes the ordinary inner product in L2 (JR) (recall that 
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F(a) =Fa= NaF for FE s*, a> O). The corresponding norm is denoted by 
II II (n) .'!'he strong topology on s* is the linear topology generated by all sets 
of the form {F E s* I llF ll(n) < e:} where n E JN, E > O. 

It is not hard to prove that s* is a Frechet space with the strong topo­
logy: if we put 

~ II F - G II (n) 2-n 
d(F,G) := l 

n=l 1 + llF-Gll(n) 
(F E s*, G E s*J , 

then cs*,d) is a complete metric space, and the metric topology coincides 

with the strong topology. 

We further note that the strong topology has a countable base, viz. 
* (n) {{FE s j llF - F0 11 < r 0} In E JN, r 0 E Ill• F0 E 'I'} with 'I' the set of 

all embeddings of finite linear combinations of Hennite functions with 

rational coefficients. 

It is easy to see that the strong topology on s* is really stronger than 
the weak topology. 

It follows from 1.14 that weak and strong sequential convergence in 
s* are equivalent. Hence, strong sequential convergence is equivalent to 
s*-convergence. 

2.4. Other properties of s* with the strong topology are perfectness 
(cf. [GSII], Ch. I,§ 6.1), and nuclearity (cf. [GW], Ch.I,§ 3.2). 'I'he latter 
property is of interest for us, and we shall therefore say what nuclearity 

* means for our case and present a detailed proof of nuclearity of S • 
- . * . (n) Denote by S the completion of S with respect to the norm II II 

- n * 
(n E ID) • 

'!'hen Sn is a Hilbert space in which the canonical embedding of S is dense 
(with respect to II II (n)) • Since II II (m) s II II (n) we can regard S as a sub­

n 
set of S 

m 
(m E JN , n E JN , m $ n) • If we denote the canonical mapping of 

s* into Sn by 'I' and the canonical mapping of S into s by Tn, then both n n m m 
'I' and 'I'n are continuous, and 'I' 'I'n 'I' (n E JN, m E JN, m s n). n m m m n 

In order to prove nuclearity of s* with the strong topology, it suffices 
to show that for every m E JN the mapping T:+l is nuclear. We shall there­

fore prove that there ~xist orthonormal sequences (fk) k E JNo and 

(gk)kEJNQ in Sm+l and Sm respectively (of course with respect to the 
corresponding inner products), and a sequence (Ak)kEIDo with A.k > 0, 

l~=O A.k < oo such that 



\' /..k (F f ) (m+l) 
l I k gk 

k=O 

Let m E JN , and define 

fk:= e(k+~)/(m+l} 

(k+~) /m 
gk:== e 

Tm+1 ijlk 

T 
m 

(F E S l) • 
m+ 

(k E JNO ) I 
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It is not hard to prove that (fk)k and (gk)k are orthonormal sequen-
- _ EJNQ EJNQ * 

ces in Sm+l and Sm respectively, and we have for every F E S 

T F 
m 

\' (m+l) -1 
l (Tm+lF,fk) exp( (k + ':!J ( (m + 1) 

k=O 

* Since Tm+l (S ) is dense in Sm+l' the above formula extends to the entire 
\'oo -1 -1 

space sm+l. Now convergence of lk=O exp( (k + ':!l ( (m + 1) - m l shows 

* nuclearity of S • 

2.5. We are now able to prove the following result on S-convergence. 

THEOREM. Let (f ) JN be a sequence in S. Then f ~ 0 if and only if f + 0 
m mE m m 

weakly. 

PROOF. It is seen at once from 1.10 and 1.13 that f ~ 0 implies (F,f l + 0 
m m 

(m + 00 ) for every F E s* Hence f ~ 0 implies f + 0 weakly. 
m m 

Now assume that f + 0 weakly. Then ((F,fm))mEJN is a bounded sequence 
* m. * oo 

for every F E S • Hence s = uK=l VK, where 

I (F, f ) I s; K 
m 

(m E JN) } (K E JN). 

* As S , with the strong topology, is a space of second category (this 

follows from 2.3), we can find a strongly open set U and a K0 E JN such 

that V i.s dense in u. This U contains a set {F E s* I II F - F II (n) < o } 
K0 0 0 
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* * with some a0 > 0, F 0 E S , n E JN. It is not hard to see that every F E S 

with II F - F 011 (n) :5. ~ satis=7es J (F, fm) J :5. K0 for every m E JN • Hence we can 

find a constant c, viz. 20 0 (!~~ I (F0 ,fm) I + K0), such that 

I (F, f ) I :5. C II Fil (n) 
m 

(m E JN 1 F E S *) • 

Now take F = o (t) (with t E Cl:) in (*) • We then get (cf. 1.11 (ii)) 

If (t) 12 $ c2 IJN 
-1 o <tl II 2 c2 (N 

-1 
o(tJl (tJ $ m 

n 2n 

$ MC 2 exp (-11A (Ret) 
2 2 + 11B (Imt) ) 

for some M > 0, A > 0, B > 0 independent of t E a::, m E JN. We have by weak 

convergence f ( t) 
S m 

1.13, f + o. 
(f ,o(t)) + 0 (m + oo) for every t Ea:. Hence, by theorem m 

D m 

2.6. We shall introduce a topology on S by considering S as the union of the 

* * subspaces Sn:= Nn-1 (S ) (n E JN) • For n E JN we introduce the inner products 

* ( , ) nR- (R, E JN) on Sn by 

.!. + li 1 1 * s*J (F,G} nR- := (F (- G(--+-)} (F E s I G E n R, , n t n n 

1 1 * s* It is obvious how to define F(- - + -) for F E s ' 
{', E JN. Now 

n t n n 
nuclear space. 

Let n :5. m. It is obvious that s* c s*, and that the topology on 
* n m * finer than the topology on S induced by the topology on Sm. Since 

"" * n 

is a 

s* is 
n 

S = un=l Sn, it makes sense to endow S with the inductive limit topology, 

i. e, the finest locally convex topology T on S such that for every n E JN 

* * the topology on Sn is finer than the topology on Sn induced by T (cf. [FW], 

§ 23,2). 

It is not hard to see that T is finer than the weak topology on s. Hence, if 

f E S (m E lN ) and f + 0 in the sense of T , then f + 0 weakly. On the 
m m m S 

other hand, if fm E S (m E JN) and fm-+ 0 weakly, then (by 2.5) fm + O. 

Hence f + 0 in the sense of the topology of one of the spaces s* (cf.1.1.12). 
m * . n 

Since the latter topology is finer than the one on Sn induced by T, we 

conclude that'f + 0 in the sense of T. 
m 
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We finally remark that S (with the topology •) is a nuclear space accor­

ding to the definition used in [FW], §27,1 (this follows from 2.4 and [FW], 

27, Satz 2.8). 

3. CONTINUOUS LINEAR FUNCTIONALS OF S AND S * 

* 3.1. In this section we study continuous linear functionals of Sand S • It 

will turn out to be of no concern which one of the topologies of section 2 

on S (or s*> is taken to define continuity. We also consider bi-linear func­

tionals defined on the product space S x S that are continuous in both vari­

ables separately, and we shall prove the kernel theorem and a theorem on 

convergence in s 2* 

3.2. DEFINITION. A linear functional L of S is called aontinuous if Lf + 0 
n 

(n 7 00 ) for every sequence (fn) ne:lN in S with fn !i. O. A linear functional L 

of s* is called aontinuous if LFn + 0 (n + 00 ) for every sequence (Fn)ne:lN 

in s* with F s,.: o. 
n 

3.3. THEOREM. Let L be a linear functional of s. Then continuity of L (in 

the sense of definition 3.2) is equivalent to each of the three following 

statements. 

(i} There is an FE s* such that Lf = (f,F) (f E S). 

(ii) L is continuous with respect to the weak topology. 

(iii) Lis continuous with respect to the topology• (cf. 2.6). 

PROOF. (i) Assume that L is continuous in the sense of definition 3.2. It 

is easy to see that ~fe:L2 (JR) LNaf is a continuous linear functional of 

L2 (JR) for every a > 0. Hence,for every a > 0, there is a Ca > 0 such that 

ILN fj $ C llf II (f e: L2 (JR)). According to [Bi], theorem 22.2 (note that L 
a a 

is quasi-bounded; cf. [Bl], section 22) there is an FE s* such that 

Lf = (f,F) for every f E s. 
It is seen at once from 1.16 that Lis continuous in the sense of defini­

tion 3.2 if there is an F E s* such that Lf = (f,F) for every f e: S. 

(ii) It follows from (i) and 2.5 that L is continuous in the sense of 

definition 3.2 if and only if L is weakly continuous. 

(iii) Let L be continuous in the sense of definition 3.2. It follows 

from (ii) that L is weakly continuous, and hence continuous with respect 

to, (since, is finer than the weak topology). 

On the other hand, if Lis continuous with respect to<, then Lfn + 0 
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(n + oo) for every sequence (f ) JN in S with f ~ 0 (since S-convergence n nE n 
of a sequence is equivalent to convergence in the sense of T) • Hence, L is 
continuous in the sense of definition 3.2. D 

COROLLARY. If (Ln)nEJN is a sequence of continuous linear functionals of S 
such that (Lnf)nElN converges for every f E S, then Y lim L f is a con-f ES n-+<x> n 
tinuous linear functional of s. To show this, let n E JN and take F E s* 

n 
such that L f = (f,F ) (f E S). The sequence (F ) JN converges in S*-sense n n n nE 
to an FE s* (cf. 1.15). Hence lim L f = (f,F) for f ES. 

n-+oo n 

3.4. THEOREM. Let L be a linear functional of s*. Continuity of L (in the 
sense of definition 3.2) is equivalent to each of the three following state-

ments. 

(i) There is an f E s such that LF = (F,f) (F E s*>. 

(ii) L is continuous with respect to the weak topology. 

(iii) L is continuous with respect to the strong topology. 

PROOF. (i) If L is continuous in the sense of 3.2, then, by [J1], 

theorem 3.7, there exists an f E S with LF = (F,f) (F E s*J. 

If f E s, then YFES* (F,f) is continuous in the sense of 3.2 by 

appendix 

1.16. 

(ii) It follows from (i) and equivalence of sequential weak convergence 
* 

1, 

and S -convergence that L is continuous in the sense of 3.2 if and only if L 
is continuous with respect to the weak topology. 

* (iii) Since s is a Frechet space with the strong topology, L is strongly 

continuous if and only if LFn + 0 (n + oo) for every sequence (Fn)nEJN with 
F + 0 strongly. By 2.3 we conclude that L is strongly continuous if and 

n S* 
only if LF n + 0 (n + oo) for every sequence (F n) nElN with F n + O. D 

* COROLLARY. If (Ln)nElN is a sequence of continuous linear functionals of S 

such that (LnF)nEJN converges for every FE s*, then YF ~ LnF is a con­
tinuous linear functional of s*. This follows from a slight generalization 
of theorem 2.5 (cf. the proof of 3.3, corollary). 

3.5. We next consider bi-linear functionals defined on S x S. A mapping B 
of S x S into·~ is called bi-linear if it is linear in each variable sepa­

rately. The following lemma will be needed in the proofs of theorem 3.6 
and 3.7. 

LEMMA. Let B be a bi-linear functional defined on S x S, and assume that n 
B11 is continuous in each variable separately (n E JN). Assume that 

(Bn(f,g))nEJN converges for every f E S, g ES. Then there exists exactly 



2* one F E S such that (f ® g,F) = lim B (f,g). 
n-+oo n 

PROOF. Let a> 0, and consider for every g E L2 (JR) the collection 

{YfEL2 (JR) Bn(Naf'Nag) I n E JN} of bounded linear functionals of L2 (JR). 
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For every f E L2 (JR) there is an M > 0 such that IB (N f,N g) I s: M (n E JN l. 
n a a 

By the Banach-Steinhaus theorem there is an M > 0 such that 
g 

IB (N f,N g) I $ M II f II 
n a a g 

Next consider the collection { Y ( ) B (N f ,N g) J f E L2 (JR) , II fll = 1, gEL2 lR n a a 
n E JN} of bounded linear functionals of L2 (JR} • According to what was prov-

ed above these functionals are pointwise bounded. Hence, again by the Banach­

Steinhaus theorem, there is an M > 0 such that 

I B (N f ,N g) I $ M II g II 
n a a 

(n E JN , f E L2 (JR) , II f II 

We now proved that to every Cl > 0 there exists an M > 0 such that 

IB (N f,N g) I $ M 
n a a 

for every n E JN, f E L 2 (lR)) , g E L 2 (JR) with H fll =II gl/ 

we get 

1. In particular 

(*) v 3 v [jB (•" ,,, l J s: Me(k+.t)e: (k E l:'l"0 , R- E JN0JJ • e:>O M>O nEJN n 'l'k''l'.R, 

Next define ck.R,:= ~ Bn (ijlk,ijl.R,) (k E l:'l"0 , £ E JN0 ) • Then ck£ 

0 (e (k+£) £) (k E JN0 , £ E JN0 ) for every E: > O. Hence 

"' 
F:= Ya>O 2 I ck£ Naijlk ® Naijl£ 

k=O £=0 

2* is an element of S (cf. 1.17). 

Let f ES, _g ES. We shall show that (f ® g,F) = lim B (f,g). For n E JN 
n-+oo n 

we have (by continuity of Bn with respect to the first variable) 

Bn (f,g) 

Also (by continuity of Bn with respect to the second variable) 
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Rewriting the repeated series as a double one (cf.(*)l and using 

Bn(f,g) 

If we take n + 00 , then we find by (*) 

(f ® g,F) 

(also cf. 1.10). 
2* It is obvious that there is at most one F E S with (f ® g,F) 

~ Bn(f,g) for every f E s, g Es. D 

REMARK. In a similar way as the above lemma the following fact can be proved. 

Let R be a Banach space, and let Bn: S x S + R be a bi-linear mapping, con­

tinuous in each variable separately (n E JN). Assume that (Bn(f,g))nElN 

converges for every f E S, g E S. Then there is a continuous linear mapping 
2 

B: s + R such that B(f,g) lim B (f,g) for every f E S, g E S. 
n+oo n 

3.6. The kernel theorem is an immediate consequence. 

THEOREM. Let B a bi-linear functional defined on S x S, and assume that B is 

continuous in each variable separately. Then there exists exactly one 
2* F E S such that (f ® g,F) = B(f,g) for every f E S, g E s. 

PROOF. Take B B for n E lN in theorem 3. 5. 0 n 

REMARK. Let FE s2*. Then the bi-linear functional Y[f,g]ESxS (f ® g,F) is 

continuous in each variable separately. 

3.7. Another consequence of lemma 3.5 is the following theorem. 

2* 2* THEOREM. Let (F n) nElN be a sequence in S . Then (F n) nEN is S -convergent 

if and only if lim (f ® g,Fn) exists for every f E S, g E S. 
n+oo 

PROOF. Assume that lim (f ® g,F ) exists for every f E S, g E S. By lemma 
n+oo n 2* 

3.5 and 3.6, remark we can find an F E S such that (f ® g,F) = 



lim (f ® g,Fn) for f E s, g E s. We have as in the proof of lemma 3.5 
n-+<x> 

From this it is not hard to prove that (h,F - F) + 0 (n + ~> for every 

131 

h ~ s 2• The theorem n s 2* ~ easily follows from the fact that Fn + F if and only 

if Fn + F weakly. 

* 4. CONTINUOUS LINEAR OPERATORS OF S AND S 

D 

4.1. We quote the main results of [J1], appendix 1, section 2 and 3 about 

linear operators of Sands*. Again, it will turn out to be of no concern 

which one of the topologies of section 2 on S (or s*) is taken to define 

* continuity. In the theory of continuous linear operators of S an impor-

tant role is played by linear mappings of S into S with an adjoint that also 

maps S into s. 

4.2. DEFINITION. A linear operator T of S is called aontinuous if Tf ~ 0 

for every sequence (f) lN in S with f ~ O. A linear operator T ofns* 
n nE s* n * 

is called aontinuous if TF + O for every sequence (F } .... in S with 
s* n n nE&• 

F + 0. 
n 

4.3. DEFINITION. A linear operator T of sis said to have an adjoint if for 

every g E S there is a g* E S such that (Tf,g) = (f ,g*) for f E s. 

If T has an adjoint, then the g* of the above definition is uniquely 

* lJ * determined by T and depends linearly on g E S. Hence T := lgES g is a 

linear operator of S, called the ad.joint of T. 

4.4. The main results of [Ji], appendix 1, section 2 are listed in the 

following theorem. 

THEOREM. Let T be a linear operator of S. The following statements are 

equivalent. 

(i) T is continuous. 

(ii) YfES (Tf) (t) is a continuous linear functional of S for every t E ~. 
(iii) YfES (Tf,g) is a continuous linear functional of S for every g E S. 

(iv) Tfn is pointwise bounded for every sequence (fn)nElN in S with 

f ~ o. 
n 
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(v) TNa is a bounded linear operator of L2 (lR) for every a > 0. 

(vi) For every a > 0 there exists a S > 0 and a bounded linear operator 

T1 of L2 (:JR). such that TNa = N8T1 • 

(vii) TNa has an adjoint for every a > O. 

For the proof of this theorem we refer to [Jl], appendix 1, 2.2 through 

2.9. 

4.5. We give some further results on continuous linear operators of s. 

THEOREM. Let T be a linear operator of S. Then continuity of T (in the sense 

of definition 4.2) is equivalent to each of the three following statements. 

(i) YfES (Tf,F) is a continuous linear functional of S for every 

* F E S . 

(ii) T is continuous with respect to the weak topology • 

.(iii) T is continuous with respect to the topology i: of 2.6. 

PROOF. (i) If T is continuous in the sense of definition 4.2, then 

(Tfn,F) + 0 (n + 00.) for every sequence (fn) nEJN in S with fn ~ 0 (F E s*). 
Hence YfES (Tf,F) is a continuous linear functional of S (FE s*). 

On the other hand if Y fES (Tf ,F) is a continuous linear functional for 

every FE s*, and if (fn)nEJN is a sequence in S with f ~ O, then 
S n 

(Tf IF) 
n 

+ 0 for every FE s*, whence Tfn +Oby theorem 2.5. 

(ii) It is trivial that T is 

logy if and only if Y fES (Tf,F) 

* every F E S • 

continuous.with respect to the weak topo­

is a continuous linear functional of S for 

(iii) (S,i:) is the inductive limit of the Frechet subspaces s* (n E JN) • 
n 

Since every Frechet·space is a bornological space (cf. [FW], §11,4.2), Sis 

also a bornological space (cf. [FW], §23, 2.9). Hence T is continous with 

respect to i: if and only if Tf + 0 in the sense of i: for every sequence 
n 

(f) in S with f + 0 in the sense i: (cf. [FW], §11, 3.2). Now sequen-n nElN n 
tial convergence in the sense of T is the same as S-convergence (cf. 2.6). 

Hence T i's continuous with respect to T if and only if T is continuous in 

the sense of definition 4.2. D 

4.6. DEFINITION. Let T be a linear operator of S. Then the operators T and 

T are defined respectively by 

Tf:= Tf T f (Tf ) (f E S) , 



where for g E S 

g:= YzEa: g(z) g_:= y ZEa: g(-z). 

(Note that g E S, g_ E S for g E S.) 

4.7. THEOREM. (i) If Tisa continuous linear operator of s, then so are 

T and T • 
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(ii) If T is a linear operator of S with an adjoint, then.T is continuous, 
* - -* -- * and so is T. Furthermore T and T have adjoints, and (T) = (T*), (T_) 

* = (T )_. 

PROOF. The first statement of (ii) follows from 4.4 (vii); the others are 

trivial. D 

4.8. All linear operators of S occurring in practice (e.g. those of 1.7) are 

continuous. If one accepts the axiom of choice, one can give an example of 

a linear operator of S that is not continuous (cf. also [Bi], 27.22). 

The following theorem gives some closedness properties of the class of 

continuous linear operators of s. 

THEOREM. Let (Tn)nEJN be a sequence of continuous linear operators of s. 
(i) If N E JN , and P is a polynomial in N variables, then P (T 1 , ••. ,TN) is 

a continuous linear operator of s. 
(ii) Assume that for every f E S there is a Tf E S such that Tnf + Tf 

pointwise. Then T is a continuous linear operator of S. 

(iii) 

emb(T f) 
n 

of S. 

Assume that for every f E S there is a Tf E S such that 
s* 
+ emb(Tf) (cf. 1.11 (i)). Then Tisa continuous linear operator 

PROOF. By [Jl], appendix 1, 2.11 and 2.12 we only have to prove (iii). Let 

g E S. Now (Tf,g) = ~ (Tnf,g) for every f E S, whence YfES(Tf,g) is a 

continuous linear functional of S (cf. 3.3, corollary). It follows from 

theorem 4.4 (iii) that T is continuous. D 

REMARK. It can be proved that the inverse of a continuous linear bijection 

of S is continuous. 

4.9. As to continuous linear operators of Sn (n E JN) the following remarks 

are in order. The previous definitions and theorems hold (with the proper 

modifications) also for the case of linear operators of Sn. Let us restrict 
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ourselves for notational convenience to the case n = 2. 

An important example of a continuous linear operator of s 2 is the opera-
tor T(l) 

1 
(where T1 is a continuous linear operator of S),defined by 

Similarly, the operator T~2 ) (where T2 is a continuous linear operator of S), 
defined by 

2 
(f E S ) / 

2 is a continuous linear operator of S • It follows from a 2-dimensional ver-
sion of 4.8 (i) that T{ 1 )T~ 2 ) (often denoted by T1 ® T2 and called the tensor 
product· of T1 and T2J is a continuous linear operator of s 2 • We also have 
Ti 1 )T~ 2 ) = T~2)Ti1) • For proofs we refer to [J1], appendix 1, 2.13. 

The operator Z defined by ZUf = y ( ) f (Xt~ , xl~) for f E S is also an 
U x,y 2 (2) 

example of a continuous linear operator of S , and so is F ZU (this exam-
ple is closely related to the Wigner distribution). 

* 4.10. We next consider continuous linear operators of S • The proof of the 
following theorem is almost the same as the one of theorem 4.5; we omit it. 

* THEOREM. Let T be a linear operator of S • Then continuity of T (in the 
sense of definition 4.2) is equivalent to each of the three following state­
ments. 

(i) YFES* (TF,f) is a continuous linear functional of s* for every 

f E S. 

(ii) T is continuous with respect to the weak topology. 

(iii) T is continuous with respect to the strong topology. 

* COROLLARY. If T is a continuous linear operator of S , then there is a con-
tinuous linear operator T of S such that (TF,g) = (F,Tg) for FE s*, g ES. 
To show this, -let g E S. By (i) of the above theorem and 3 .4 (i) there is 
exactly one f 

g 
ES with (TF,g) = (F,f) for FE s*. It is easy to show that g 

f depends linearly 
g 

requirements. 

and continuously on g. Hence, T:= Y S f satisfies the gE g 
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4.11. Theorem 3.2 of [Ji], appendix 1, section 3, reads as follows. 

* THEOREM. If T is a 

ble to extend T to 

linear operator of S with an adjoint T , then it is possi-

a continuous linear operator T1 of s* such that 

T1 {emb(f)) = emb(Tf) 

* {T1F,g) = (F,T g) 

Furthermore, such an extension is unique. 

We shall denote the extended operator by T again. 

(f E S) I 

(F E s*, g E S) • 

There is a certainconverse of this theorem(cf. [Jl], appendix 1, 3.8): if 

T is a linear operator of S that is extended to a continuous linear operator 

T1 of s* such that T1 (emb(f)) = emb(Tf) (f ES), then T has an adjoint. 

* -4.12. DEFINITION. Let T be a linear operator of S • Then the operators T 

and T are defined respectively by 

-= 
TF:= TF T F (TF _) _ (F E s*), 

where for G E s* (cf. 4.6) 

, G : = Y >O (G ) • - a a -

(Note that GE s* G Es*, and that (G,g) = (G,g), (G_,g) 

* G E S , g E S.) 

(G,g_) for 

* 4.13. THEOREM. (i) If T is a continuous linear operator of S , then so are 

T and T . 

(ii) If T is the extension of a linear operator T1 of S with an adjoint, 

then T and T are the extensions of T1 and (T1J_ respectively (cf. 4.7 (ii)). 

PROOF. Al.most trivial.. D 

4.14. The proof of the following theorem is al.most the same as the one of 

(i) and (iii) of theorem 4.8; we omit it. 

* THEOREM. Let (Tn)ntJN be a sequence of continuous linear operators of S • 

(i) If NE JN, and Pisa polynomial in N variables, then P(T1, .•• ,TN) 

is a continuous linear operator of s*. 
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* * (ii) Assume that for every F E S there is a TF E S such that 

T F ~ TF. Then Tisa continuous linear operator of s*. 
n 

REMARK. If can be proved that the inverse of a continuous linear bijection 
*' of S is continuous. 

4.15. EXAMPLE. The operators Na' F, Ta(a E ~), 1\i(b E ~), ZA(A > 0), P, Q 

* have adjoints, so they can be extended to continuous linear operators of S • 

The same holds for the convolution and multiplication operators of appendix 2. 

We note that relations between linear operators of S with an adjoint 

remain valid after extension to s*. E.g., we have QFF FPF for every 

* F E S 

4.16. We make the following remarks about linear operators of sn* (n E JN) • 

The definitions and theorems of 4.10 through 4.15 can be given (with proper 

modifications) for the case of linear operators of sn*. For notational con­

venience we shall restrict ourselves to the case n = 2. 
2 

An important example of a linear operator of S with an adjoint is the 

operator T{ll (cf. 4.9), where T1 is a linear operator of S with an adjoint. 
( 1) * * ( 1) . . ( 2) Then (T 1 ) = (T 1) , and a similar thing holds for T2 , where T2 is a 

linear operator of S with an adjoint. We note that T{ 1)T;2) T;2)Til) 

holds for the extended operators; we write T1 ® T2 instead of T(l)T(2) or 
T (2)T(1) 2* 

2 1 . As an example we mention that every F E S is differentiable in 

both variables, and that the order of differentiation is immaterial: 
a2F a2F 
axay = ayax • For the proofs we refer to [Jl], appendix 1, 3.12. 

2 As examples of extendable linear operators of S we further mention 
( 2) z0 and F z0 (cf. the end of 4.9}. 

5. s* AS A MEASURE SPACE 

5.1. DEFINITION. A* is· the a-algebra ons* generated by the weak topology. 

5.2. It is useful to have alternative descriptions of the a-algebra A*. Let 
* * * '\ be the a-algebra on S generated by the strong topology, and let A2 be 

the a-algebra ons* generated by all sets of the form {F I F (t) E O}, where 
a 

a > 0, t E ~, 0 an open set in ~. 
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* PROOF. (i) Let A be a strongly open set in S of the form 

{FE s* I llNa(F - F0)11 < d, where a> O, £ > 0, F0 E s*. This A consists 
* \'"° I 12 - c 2k+ 1 > a 2 . . of all F E S with lk=O (F - Fo,~k) e < £ • Since the mapping 

v \'"' I 12 - c 2k+i > a * IFES* lk=O (F - F0 ,~k) e is A -measurable, we conclude that 

A E A". 
Now let B be any strongly open set in s*. Since the strong topology of 

s* has a countable base of sets of the form {F J II N (F - F 0 Jll < d with 
* a * a> 0, E > 0, F0 ES (cf. 2.3), we easily infer that BE A. Hence 

A* c A*. 
1 

* On the other hand, the strong topology of S is finer than the weak 

topology, whence A* c A~. Therefore A~= A*. 

(ii) Let a> O, t E ~' and let o be an open set in~. Since Fa(t) 

(F,(o(t)}a) (FE s*) and (o(t}} Es, we infer that YFES* Fa(t) is A*-
a * * measurable, whence {F I Fa(t) E O} EA. Therefore A2 c A*. 

Now let a> O, £ > O, F0 E s*. The set A:= {F J llNa(F - F0 Jll < d 

consists of all F E s* with 

I (N (F - F ) ) (~) J 2 < 
a 0 N 

2 
£ • 

* is A2-measurable. It follows as in (i) that A; c A;, whence 

* = A2. 

REMARK. If n E lN, f 1 E S, ••• _,fn E S, BE BC~n), then 

0 

{F J ((F,f1J, ••• ,(F,f )) E B} is called a Borel cylind.Er. It follows easily 
n * from the above theorem that A equals the a-algebra generated by all Borel 

cylinders. 

5.3. We note that s* is a Polish space with the strong topology (i.e. s* 

is a separable space for which there exists a metric such that the metric 

topology is the strong topology, and such that the space is complete; cf.2.3). 

* Hence S is a Lusin space with both the weak topology and the topology T1 
generated by all sets of the form {F I F (t) E O} with a > 0, t € ~. 0 an 

0: 
open set in~ (cf. [S], Ch. II, section 1, definition 2). This implies, by 

[s], Ch. II, section 3, theorem 9, that s* is a Radon space with respect to 

the strong topology, the weak topology and the topology Tl (i.e. every fini­

te measure defined on (s*,A*) is inner regular with respect to each of the 

three topologies). 
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* 5.4. THEOREM. Let T be a continuous linear operator of S . Then 

T + (A*l c 11*. 

PROOF. The class C of all elements A of 11* with T + (A) E 11* is a a-algebra. 

If A i:s a set of the form {F [ ( (F,f1), ••• , (F,fn)) E B} with n E JN, 

f 1 E s, ••• ,fn Es, BE B(cn), then 

+ 
(A) 

~ ~ 

{F [ ((F,Tf1J, .•. ,(F,Tfn)) E B}, T 

where T is as in 4.10, corollary. Hence T + (A) E A*. Since A* is generated 

by the collection of all sets A of the above type, we obtain C =A*. D 

* 5.5. We give some examples of measurable subsets of S • 

(i) The set emb (L (JR) ) 
p 

with 1 :;; p < 00 • We first show that F E emb(L (JR)) 
p 

if and only if lim llN _1 F - N -1 Fil 
n-+<x>,m-><>o n m p 

= 0 (ii II denotes ordinary p-norm) • 
p 

If F = emb (f) with f E L (JR) , then we infer from theorem 1.6 that 
p 

n..J~Jll-+<><> II N n-1 F - N -1Fll = lim llN -if - N -1£11 = 0. m p n-+<x>,fir"l"<'O n m p 
Conversely, let F E s*, and assume that lim II N 1F n-+<>o , m+<x> n -

There is an f E L (JR) such that lim II N -1F - £11 = 0. We p n-+<><> n p 

(F ,g) J f(t)g(t)dt, 

whence F = emb(f). 

We thus have FE emb(L (lR)) if and only if 
p 

v 3 v cJ kElN NElN nEJN,m ElN, 

n>N ,m >JN 

-N 1Fll = 0. m- p 
obtain for g E S 

The proof of measurability of emb (L (JR)) will be completed if we can show 

that {F I r I (N -1Fl (t) - (N -1Fl (~) jPdt < k-1} is a measurable set for 
-

00 n m * 
every n E JN , m E JN , k E JN. We note that for n E JN , m E JN , F E S 

2 
1 L 

lim L" l 
L->oo £=-L2 
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and the sums on the right hand side are measurable as functions of F E s* 

(ii) The set emb(S+). It is not hard (but somewhat laborious) to show 
+ that F E emb (S ) if and only if gk • F E emb (L1 (lR)) for every k E JN • 

v -1 2 Here gk denotes Jz exp(-Trk z) fork E JN (cf. appendix 2,6 for the defini-

tion of gk·F).Now emb(S+) = n~=l Tk + (emb(L1 (lR)) where Tk, defined as 

* (F E S ) 1 

is a continuous linear operator of s* for k E JN. Measurability of emb(S+) 

follows from theorem 5.4 and (i). 

(iii) The set emb (L00 (JR)). It can be proved that F E emb (L00 (JR)) if and 
+ only if F E emb(S ) , and (Nn_ 1FJ (t) is bounded in n E JN, t E JR. The latter 

condition can also be formulated as 

From this measurability of emb(L00 (lR)) easily follows. 

(iv) The set emb(C+), where c+ denotes the set of all continuous elements 

of s+. It is not hard (but somewhat laborious) to prove that F E emb(C+) 

J..'f + and only if F E emb(S ) and k~ (Nk_1F) (t) exists locallyuniformly in 

t E JR. The latter condition can also be formulated as: for every A E JN, 

n E JN there is a K E JN such that 

V V l I [ l (Nk_1FJ (q) - (N0 _ 1FJ (q) I < n -l]. kEJN / R.EJN, qEIQ 1 q ~A ,, 
k>K, .Q,>K 

From this measurability of emb(C+) easily follows. 

(v) The set emb(C+), where n E JN and c+ is the set of all elements of 
+ th n n + 

S whose n derivative exists everywhere on JR and belongs to C • It can 

be proved that FE emb(C+) if and only if P~ E emb(C+). Since Pn maps s* 
* n + continuously into S we infer from theorem 5.4 that emb(Cn) is measurable. 

Similarly, the set emb(C+) (of all elements of S+ whose derivatives exist 
- "' 

up to any order and belong to S+) is a measurable set ins*. 

(vi) The set emb(A+), where A+ denotes the set of all elements of S+ 

which have an analyticcontinuation to the entire complex plane. It can be 

proved that F E emb(A+) if and only if F E emb(S+) and lim(N -1Fl (t} exists 
+ n-+<» n 

locally uniformly in~. Measurability of emb(A) is proved as in (iv). 
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(vii) The set emb (S) • We have F E emb (S) if and only if there is an n E JN, 

M E JN with I (F,ljik) I s M exp(-n-1k) (k E JN0) Measurability of emb(S) is 

easily proved. 
I 

5.6. ~he Space S endowed with the inductive limit topology T of 2.6, is a 

* nuclear space, and S can be regarded as its dual (cf. theorem 3.3). There 

is a large amount of literature on cylindrical measures defined on the Borel 

cylinders of the dual of a nuclear space. Classical results are Minlos' 

theorem about a-additivity of cylindrical measures, and the theorem of 

Sazonov-Badrikian about the relation between Radon measures and positive 

definite functions (cf. [S], Ch. III, §3, theorem 2 and Ch. III, §4, theorem 

3; cf. also [Sche], section 3). 

We observe that the methods of the proof of theorem 1.1.15 can be used to 

derive a version of Minlos' theorem for s*. To go into some more detail let 

P = {P(f1 , ••• , fn) I n E JN, f 1 E s, ••• , f E S} be a cylindrical measure 
* n on the Borel cylinders of S • So P(f1 , ••• , f ) is a probability measure on 

n 
a:n for every n E JN, f 1 E s, ••• ,fn Es, and if m E :N, g 1 E S, ••• ,gm ES, 

A E Bca:n), BE Bca:m), then 

whenever {FI ((F,f1), ••• ,(F,fn)) EA}= {FI ((F,g1J, ••• ,(F,gm)) E B}. Now 

Minlos' theorem states that, under certain continuity conditions, there 

exists a probability measure p* on cs*,A*l such that 

p*({F I ((F,f1), ••• ,(F,fn)) EA})= (P(f1 , ••• ,fn))(A) for every n E JN, 
n f 1 E S, ••• ,fn E s, A E BCa: ) • We sketch the proof of this fact. Apply the 

Daniell-Kolmogorov theorem ([T], 2.3, theorem 2) to the consistent set 

p'¥:= {P(ljikt··.,ljik.l I j E JN, k1 E JN0 , ••• ,k. E JN0 } of probability measures 
J th ] 

(ljik denotes as usual the k Hermite function for k E lN0) to obtain a pro-

bability measure P on the space a:lNo (with ordinary product a-algebra) 

such that (P(ljik , ••• ,ljik·)) (A) = P({w = (W) EE a:lNo I (wk , ••• ,wk.l EA}) for 
1 J . k k JN0 1 J 

j E JN, k1 E JN0 , ••• ,k. E JN0 , A E BCa:J). It can be shown (cf. the proof 
. J 

of 1.1.16) that, under fairly weak continuity conditions, 

lNO ke: 
P({w = (wk)kEJiJ E !!! I Ve:>O [wk = 0 (e ) (k E JN0)J}) = 1, 

0 

and that for every n E lN, f 1 E S, ••• , f n E S the probability measure on a:n 

generated by the distribution function of 



equals P(f1, ••• ,fn). The proof of Minlos'theorem can be completed now in 

the same way as the proof of theorem 1.1.15. 
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APPENDIX 2 

* CONVOLUTION THEORY IN S AND S 

1. This appendix gives the relevant notions and theorems on convolution 

theory ins and s*. Further information about this theory can be found in 

[J2]. 

2. DEFINITION. If FE s*, then we define TF by putting 

T f:= Y (T f,F ) 
F tE<I: t -

for f E S (cf. appendix 1, 4.12; Tt denotes fort Ea: the ordinary shift 

operator of appendix 1, 1.8(ii)). If F = emb(f) with f ES, then we write 

Tf instead of Temb(f)" 

To avoid confusion with the shift operators, we shall always denote con-

volution operators by Tf, Tg' Th, ••• , TF, TG, TH, •.. with 

f ES, g E S, h E S,, •• , FE s*, GE s*, HE s*, ••• , Whereas shift operators 

are denoted by T, Tb, T , ••• ,T, T , ••• , T, T , ••• , T, T, T , •.. with a c p q t s x y z 
a E <J:, b E <J:, C E <J:, ••• , p E <J:, q E <J:, ••• , t E <l:r SE <J:, •• ., X E <J:1 y E <J:, 

ZE<J:, ••• 

3. DEFINTIION. The class C is defined as the set of all F E s* such that 

TF maps S into s. 

4. EXAMPLES. (i) emb(S) c c c s* 
(ii) If a E a:, F = o , then T = T _,whence o E C. a F -a a 
(iii) If f is an integrable function defined on JR with a compact support, 

then emb (f) E C. 

5. THEOREM. Let F E C, G E C, H E C. Then 

(i) F E C, F E C,. F E c (cf. appendix 1, 4 .12) • 

(ii) TF is a continuous linear operator of S, and TF TF, 
(T ) = 

F - TF ' ~=T-F - F 
(cf. appendix 1' 4 .12) • 

(iii) - adjoint (cf. 1, 4 • 3) I viz. TF has an appendix TF 

Extend TF, TG, TH to continuous linear operators of s* according to appendix 

1 , 4. 11. Then 

(iv) TFG = TG F E C. 
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(v) 

PROOF. Cf. [J2], section 3. 0 

6. DEFINITION. Let h: ~ + ~ satisfy v 0 [v h(z) exp(-UEZ2) E S]. We define E> Z 

the multiplication operator ~ by putting 

b\if = Vz h(z)f(z) 

for f E S. 

If h is as in the above definition, then~ can be extended in the familiar 

way (cf. appendix 1, 4.11) to a continuous linear operator of s* {again de­

noted by b\i>· We shall often write h.F instead of ~F if FE s*. 

7. DEFINITION. Let M be the class of all generalized functions F for which 

there exists an has in definition 6 such that F = emb(h). On M we define 

the mapping emb-l by putting emb-l(F) = h if FEM, F = emb(h) and if his 

as in definition 6. 

* * 8. THEOREM. Let FE S • Then FE C if and only if FF EM. If F E C, G E S , 
-1 

then F(TFG} = emb (FFJ.FG. 

PROOF. This is [J2], 4.5 and 4.6. 

9. THEOREM. If g ES, GE s*, then g. GE c. If f E s, FE s*, then 

PROOF. This is [J2], 5.3, 5.4 and 5.5. 

10. DEFINITION. Let (f ) lN be a 
S n nE 

if Tfng + 0 for every g E S; we 

sequence in C, f E C. We write f £ 0 n 
write f £ f if f - f £ O. 

n n 

11. EXAMPLES. (i) If (f ) lN is an S-convergent sequence in S, then 
. n nE 

0 

0 

{emb(f ) ) lN is a C-convergent sequence in C. If (g ) .,,., is a C-convergent n nE n nE ..... 
sequence in C; then (g ) lN is an s*-convergent sequence ins*. 

n nE c 
(ii) If f E C, then emb(N f) + f if a ~ 0 (we have of course a similar 

a 
definition of C-convergence for this case as in 10). Cf. [J2], lemma 3.6 

for a proof. 

(iii) Leth EC, (emb-1 (Fh)) (0) = 1. For A> 0 define VAh as the general­

ized function satisfying (VAh,f) = (h,yx f(x/A)) for f ES (cf. appendix 1, 



144 

c 
theorem 3.3). Thee VAh + 

(£ + oo), emb(h) + o0 {T 
1 T 

h:=-2 X( l {t>O). T t -T,T 

o0 (A+oo). As special cases we have 

-!- 0). Here k := Y £ 1l exp(-1n:z2) (£ 
£ z 

Cf. [J2], 5.10, example (iv). 

emb (k ) 
£ 

> 0) ' 

c 
+ 00 
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APPENDIX 3 

THE WIGNER DISTRIBUTION FOR SMOOTH AND GENERALIZED FUNCTIONS 

* In.this appendix the Wigner distribution for elements of Sand S is 

studied. In section 1 we give definitions and formulas about the Wigner 

distribution for smooth functions. Almost all formulas given there can be 

found in [Bl], section 12 and 14. In section 2 we study Wigner distributions 

of generalized functions and time-frequency convolution operators. 

1. THE WIGNER DISTRIBUTION FOR SMOOTH FUNCTIONS 

1.1. DEFINITION. Let fl ES, f2 Es. The Wigner distribution W(f1,f2) 

= Y(q,p)E~2 W(q,p;f1 ,f2) of f 1 and f 2 is defined by putting 

for q E ~. p E ~. If fl 

of f:-

f 2 f then we call W(f ,f) the Wigner distribution 

It can be proved that W(f1,f2) E s 2 if f 1 E S, f 2 ES (cf. [Bl], section 

13). 

We shall often consider the Wigner distribution for real values of its 

arguments q and p. Then the variables q and p are referred to as time and 

frequency variable respectively, and in this connection lR2 is called the 

time-frequency plane or pluise plane. 

1.2. We list some useful formulas involving Wigner distributions. Let 

fl E S, f 2 E S, a E JR 1 b E JR. 

(i) W(a,b;f1 ,f2) W(a,b;f2 ,f1). 

(ii) W(q,p; Ta1bf1 ,Ta1bf2) = W(q,p; 1bTaf1 ,1bTaf2J 

(iii) 

(iv) 

(v) 

(vi) 

= W(q +a, p + b; f 1 ,f2J for q E lR, p E JR. 

W(a,b; '.f1 , Ff 2) = W(-b,a; f 1,f2J. 
Joo 211J.pii 

_ 00 e W(a,p; f 1,f2Jdp = f 1 (a+ ~b) f 2 (a - ~b). 

F(l) *F( 2) * W(f f ) = y J"' e 2rriqa f (a + ~b) -f2_(,_a--_,.lj).,-,-)d·a. 
(1) 1' 2 (q,b) -00 ~,___1 __ .,__ 

F W(f 1 ,£2 ) = y (a,b) (Ff1 l (b + ~a) (Ff2) (b - ':la). 
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(vii) 1:001:00 W(q,p;f1,f2Jdqdp = (f1 ,f2). 

(viii) 1:001:00 W(q,p;f1 ,f2) W(q,p;f3 ,f4 )dqdp 

f 4 E S. 

The proofs of these formulas (except those of (v) and (vi)) can be found 

in [B1],section 12 and 14, where also a number of formulas about the first 

and second order moments of Wigner distributions are given. Formula (v) is 

proved by taking inverse Fourier transform in (iv) with respect to the 

variable a, and formula (vi) follows from (iv) applied to Ff1 and Ff2 and 

(iii). 

The right hand side in (v) is often called the (cross} ambiguity function 

of f 1 and f 2, and it plays an important role in branches of engineering like 

geometrical optics, Fourier optics and radar analysis. We refer to [P], 

[PH], [Re] and [St] for applications and further properties of ambiguity 

functions. 

1.3. Let f 1 E S, f 2 E S. The number W(q,p;f1 ,£2) (with fixed values of 

q E JR, p E JR) depends on f 1 and f 2 like an inner product (this is not ne-

cessarily positive definite). However, if f E S, then certain averages over 

the phase plane of w (f' f) are non-negative. We mention 

b 

(ix) I W(q,p;f,f)dqdp J jf(t) j 2dt, 

Ra,b a 

b 

(x) J W(q,p;f,f)dqdp 
J 

I cFf> tti J 2dt. 

T a,b a 

Here Ra,b = { (q,p) I a '.": q o<: b, p E lR}, T = { (q,p) I q E JR, a :> p :> b} 
a,b 

for a E lR, b E lR, a < b. Also, 

(xi) J f W(q,p;f,f) W(q-a,p-b;g,g)dqdp 
2 

jl..l W(l..la,l..lb;f,g_) J 

for g E s, a E lR, b E IR (cf. 4.6 for the definition of g_). 

Formula (ix) is proved in [Bl], 27.14 and (x) is an immediate consequence 

of (ix) and 1.2 (iii); formula (xi) follows from 1.2 (ii) and 1.2 (viii). 



147 

As a consequence of (xi) we have for y > 0 

(xii) f f exp(- 2;cq - a) 2 - 2Tiy( p - b) 2) W(q,p;f,f)dqdp ~ O. 

This follows from (xi) by taking g = Y (3_)~ exp(-Tiy-1x 2) for y > O. See [B1], x y 
27.12.2.1 and [B2] for further inequalities involving Wigner distributions. 

1.4. It has advantages to rewrite the Wigner distribution in such a way that 

time and frequency occur symmetrically. If f 1 E S, f 2 E S, then we define 

the function V(f1,f2l = Y (x,y)E~2 V(x,y;f1,f2) by 

for x E ~ I y E ~ • 

Note that V(f1,f2) F( 2)zu(f1 ~ i 2) (cf. appendix 1, 4.9), and that 

for x E ~' y E ~. 

We have by [Bl], theorem 16.1 for every a > 0 

V(N f N f ) N~l)N~ 2 ) V(f1 ,f2). 
a 1' a 2 = ~ ~ 

1.5. The Wigner distribution of two functions can be interpreted as a time­

frequency convolution. We give the following definition (cf. appendix 2,2). 

DEFINITION. If g E s*, then the mappings is defined by 
g 

Y . Tiiab 
s f 2 ( e Ta R f, g) 

g (a,b) E~ b 

for f Es. In case g Es, we write sg instead of Semb(g)" 

We have for f E S, g E S 

(S f) (a,b) = l:iW(l:ia,1lb;f ,g_) 
g 
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if a E ~, b E ~. We can now write 1.3 (xi) as 

T W(f,f) 
W(g_,g_} 

sf. Sf 
g g 

for f E S (cf. appendix 2, 2 and [J2], 5.11; the dot denotes pointwise mul­

tiplication) . 

1.6. We give some further results about time-frequency convolution operators 

(we omit the proofs) • 

a) If g E 

The proof of 

theorem 5.5. 

s*, f ES, then Sf E emb-l (M2J (cf. [J2], 5.11). 
g 

this fact uses the same kind of arguments as the proof of [J2], 

b) If g Es*, then s maps s into s 2 if and only if g E emb(S). 
g 

2. THE WIGNER DISTRIBUTION FOR GENERALIZED FUNCTIONS 

* * 2.1. DEFINITION. If F1 E S , F2 E S , then we define the generalized function 

V(F 1 ,F2) by 

2* (It follows from 1.4 and appendix 1, 1.17 that V(F1 ,F2l ES .) The Wigner 

distribution W(F 1,F2) is defined by 

(cf. appendix 1, 1.8 (ii), 1.17, 4.15 and 4.16). 

( 2l - * * F (2) We note that V(F 1 ,F2) = F Zu(F1 © F) for F1 E s , F2 E s • Here zu 

is the extension to s2* according to the 2-dimensional version of appendix 1, 

theorem 4 .11. This can be proved by showing that (V (F 1 ,F 2) ,No., 2g) 

= (V(NNF 1,NNF2-i ,g) equals (F( 2)z (F © F2), N g) = (F(2)z (N F ® N~F2 l ,g) 
~ ~ u 1 0.12 u 0. 1 u 

for every a > 0, g E s 2 

2.2. We next extend the time-frequency convolution operators Sg (with g E S) 

to continuous linear mappings of s* into s2* (this can be done as well if 

g Es*, but we only meet cases with g ES in this thesis). 

It is easy to show that S (as a mapping of S into s 2) has an adjoint, 
g 



i.e. there is a linear mapping s* of s 2 into s such that 
g 

* (S f,h) 2 = (f,S h) 
g g 

2 
(f € S,h E S ) • 
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Now S can be extended to a continuous linear mapping (again denoted by Sg) 
*g 2* -

of S into S with the aid of a version of appendix 1, theorem 4.11. 

2.3. We describe a direct way to extend the operator 

S' by 

S Define the mapping 
g 

g 

I _ IJ ( 7fiab 
sg F - 'ca,b) e Ta~F,g) 

for F E s*. Then we have S F = emb(S 'F) for F E s* (it is readily seen 
g_1 2 g 

from 1. 6 a) that S 'F E emb CM )). We sketch the proof of this fact. The 
g 

equality SF= emb(S 'F) holds if FE emb(S). To handle the general case, 
~ g s* s2* 

take F E S and note that F + F (ex + 0) , whence S F + S F (ex + 0) • It 
ex s2* g ex g 

suffices to show that emb(S 'Fa) + emb(S 'F) (ex+ 0). This may be done by 

proving inequalities for I (~~iab T RF ,g)j (where a E ~' b E ~.ex> 0) of a·b ex 
the type occurring in [J2], lemma 5.2 (cf. also the proof of [J2], theorem 

5.5). 

2.4 The following theorem generalizes 1.3 (xi). 

THEOREM. If F E s*, g E S, then 

T W(F,F) 
W(g_,g_) emb(S 'F.'S"Ff. 

g g 

PROOF. The above equality holds if FE emb(S). The general case is handled 

as in 2.3. 0 

REMARK. The above theorem may be used to show that F E emb(S) in case 

FE s*, W(F,F) E C2• For assume F E s*, W(F,F) E C2• Then TW(g,g) W(F,F) E s 2 
2 for every g E S and hence S 'F E S for every g E S. This implies by 1. 6 b) 

g 
that F E emb (S). 
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APPENDIX 4 

TWO THEOREMS ON GENERALIZED FUNcrIONS OF SEVERAL VARIABLES 

In this appenaix we prove two theorems on generalized functions of several 

variables. The first one deals with generalized functions that are invariant 

under translations in one or more variables. The second theorem is concerned 

with generalized functions of positive type. 

1. TRANSI..ATION INVARIANCE OF GENERALIZED FUNCTIONS 

1.1. DEFINITION. For n E JN 

If n = 1 we usually write H 

V n+ 
Note that I ( t ) n 1 E S for n E JN • 

t 1 ' • • • , n ElR 

1. 2. THEOREM. Let n E !'l, m E JN0 , and let F E S (n+m) *. Assume that 

.,,,(1) ••• Ta(n) ~ _ F F for every a 1 E lR, ••• ,an E lR. If m > 0, there exists 
al n 

exactly one G E sm* with F = H ® G (= tensor product of H and G, compare 
n n 

appendix 1, 1. .1 7) • If m = 0 there exists exactly one c E 0:: with F = c Hn. 

n+m 
PROOF. Assume m > 0. If f E S then T;t' has the form Hn ® Gf where 

G"" E Af (cf. appendix 2, 9 and [J2], 5.11). Let (fk)kEJN be a sequence in 
fi+m cn+m n+m s(n+m)* 

S with emb(fi} -+ ®i=l o0 (cf. appendix 2, 10 and 11). Now T:fkF -+ F, 

and the sequence (Gfkl kE JN is sm* -convergent. To see this, take an h E Sn 

with J lRn h (x) dx = 1 , and note that for every g E Sm 

(H ® Gf ,h ® g) 
n k 

(Tf F,h ® g) ->- (F, h ® g) 
k 

if k->- 00 • Hence (cf. appendix 1, L15 and 1.17) the sequence (Gfk)kEJN is 

sm*-convergent. If we denote the sm*-limit by G, then 

F lim H ® Gf 
k-+«> n k 

H ® G 
n 

(the limit is in S(n+m)*-sense). Hence F has the required form. It is tri­

vial that there is at most one G E sm* with F = H ® G. Hence the theorem 
n 

is proved for m > 0. 



The case m = 0 can be handled similarly. D 

2. GENERALIZED FUNcrIONS OF POSITIVE TYPE 

2.1. L--et n € JN. 

DEFINITION. An F € sn* is said to be of positive type (notation F ~ 0) if 

(F,f) ~ 0 for every f € Sn with f(x) ~ 0 (x € lRn). 

2.2. We shall prove the following theorem on functions of positive type. 

THEOREM. If F € sn* and F ~ 0, then there exists exactly one measure P on 

the Borel sets of lRn such that 

(F, f) 

This P satisfies 

l f dP 
n lR 

J exp(-~elxl 2> dP(x) < oo 

lR.n 

for every E > 0 <lxl 2 = x~ + + x 2 for x 
n 

REMARK. If P is a measure on the Borel sets of lRn such that 

J exp(-~elxl 2> dP(x) < oo 

lRn 

for every E > O, then the generalized function F, determined by 

(F,f) = I f dP 
lR.n 

is of positive type. 
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2.3. Before giving the proof of the above theorem we need 

We denote for y € lR. by G the function ~ 

some preparations. 

Y x=Cx1, ••• ,xn)€ren 
~n 2 

exp(-~y li=l xi). 

LEMMA. Let y > 0 and let P. be a measure on the Borel set of lRn with 
J J n G dP. < 00 for every E > 0 (j = 1, 2) • If for every 

JR y+E J 
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f E V:= {G . h j h E Sn} we have 
y 

then P1 = P2• 

f fdP2 
J n 
lR 

PROOF. Let E > 0, and define µ . by 
J 

µ.(A):= JG dP. (A E B(lR11)) J y+e: J 
A 

J exp(i(t,x))dµ 1 (x) = J 
lRn JRn 

exp(i(t,x))G (x) dP 1 (x) 
y+E 

I exp(i(t,x))G (xJdP 2 (x) 
y+E 

lRn 
J exp(i(t,x))dµ 2 (x) 
lRn 

for every t E 1R11 • We easily conclude from [T], 2.5, theorem 1 that µ1 = µ2 • 

It is not hard to show now that P1 P2. 0 

2.4. The proof of theorem 2.2 uses a second lemma. 

LEMMA. Let RE Sn+ (cf. appendix 1, 1.17), and assume that R is real-valued, 

non-decreasing and continuous from the right in JR11 • Let P denote the 

Lebesgue-Stieltjes measure on the Borel sets of lRn generated by R. If 
1Jn 

D denotes then we have n ax1 ..• axn' 

(f,D (emb(R))) 
n 

Here D11 has been extended according to the n-dimensional version of appen-



dix 1, theorem 4.11. 

PROOF. Let f E Sn. We have by definition and the fact that n* = {-1)n D 
n n 

(f,D (emb(R))) 
n 

(-l)n (D f,emb(R)) 
n 

If A > 0, then 

J {Dnf) (x) R(x) dx = f (x) R{x) I 
CA 

x = (A, ••• , A) 

x =(-A, ••• ,-A) 

(D f)(x)R(x)dx. 
n 
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where CA denotes then-cube {x E lR.n I -A< xi s A}. It follows from mono­

tonicity of R and from the fact that R E Sn+ that 

If we let A+ 00 in(*), we obtain 

f (Dnf) (x) R(x)dx 
lR.n 

(-1) n f n fdP, 

lR. 

whence {f,D (emb{R) l) = J n fdP. n lR. D 

2.5. We now give the proof of theorem 2.2. Let y > 0 be fixed, and define 

for E > 0 the function 

n s 2* (cf. appendix 2, 7 and [J2], 5.11). Now F Es, emb{F l + G .F if 
E,y E,y Y 

E + 00 (cf. appendix 2, ll(iii)) and F (x) ~ O if x E lR.n. We further define 
E,y 

for E > 0 

x 

JnF (t, ••• ,t)dt1 ••• dt. 
E,y 1 n n 
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This H is real-valued, non-decreasing and continuous in JRn , and we infer E1Y 
from 

0 :S H (x) :S (G , En/2 TG F) + (G ,F) (e: + 00 ) E,y y e: y 

for x E JRn that H (x) is bounded in E ~ 1 and x E JRn. £,y 

We appeal to the Helly compactness theorem ([T], 4.1, theorem 2) to con-

elude that there exists a sequence (<.k) kEJN with £k + 00 such that 

(H )k ~' is a weakly convergent sequence. This means that there exists EktY E.._, 
a function H : JRn + JR , non-decreasing and continuous from the right, such y 
that H (x) + H (x) (k + 00 ) at every continuity point x of H . Ek1Y y Y 

Denote by P and P the Lebesgue-Stieltjes measures generated by H Y Ek 1 Y 
E JN) respectively. Let f E S. We show that 

y 
lim flRn fdP y 
k+oo Ek' 
> 0. We have for 

k E JN, T > 0 

(x) :S 

(cf. (*)).It follows that the left hand side tends to zero if T + oo uniform­

ly in k E JN. We conclude from [T], 4.1, theorem 4 that 

lim J n fdP = J fdP • k-+= JR Ek, y JRil y 

Applying lemma 2.4 we obtain 

(G .F,f) lim (emb(F ),f) lim (D ( emb (H ) ) , f) y k-+= Ek,y k-+= n Ek,y 

l.im L fdP Jn fdP 
k-+= £k,y y 

JR JR 

for f E Sn. 

Let y 1 > 0, y2 > 0. We shall show that the measures P1 and P2, defined 

by P1 (A) : = J G dP and P2 (A) : = JA G dP respectively for A E B (JRn) , A -yl Yt -y2 Y2 
are equal. If y:= max(y 1 ,y2J, then we have (with the notation of lemma 2.3) 

for every f E V 
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(FI f) (G .F,G .f) 
yj -yj J G ·f dP 

-yj yj f 

for j_ = 1,2. Hence JJRn f dP 1 = JJRn f dP 2 (f E V), so P1 = P2 by lemma 2.3. 

If we put now P(A) := J G dP for every Borel set A in m.n with some 
A -y y 

y > 0, then it is easily seen from the foregoing that 

(F,f) = I f dP 
JRn 

This shows the existence of a P with the required properties (it is tri"lial 

that J lRn exp (-11e Ix j 2J dP (x) < 00 for every E: > 0) • 

Uniqueness of a Pas in theorem 2.2 follows from lemma 2.3 (applied with 

y = 0). 
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In this index f is a smooth function, F is a generalized function, T is a 

continuous linear operator of s or s*, and! is a generalized stochastic 

proce~s. The numbers between parentheses refer to the page on which the 

symbols are introduced. 

s, Sn (n e: JN) 

s+, sn+ (n e: JN) 

* n* s , s (n e: JN) 

C, en (n e: JN) 

M, Mn (n e: JN) 

v 
w, w1 

* * w , w1 

s,., , Sn (1spsoo, ne:JN) .. ,p n,p 

* n* -* 5n* Sn , Sn , Sn , ,p ,p ,p n,p 

+ Sn+ -+ 5n+ Sn , Sn , ,p n,p' ,p n,p 

N , N (a > O,n e: JN) a a,n 
emb, emb-i 
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F* 
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a 
{a e: a:) 

!\, (b € a:) 

Va ea e: :ll'l.2) 

( 1 sps;co, ne: JN) 

( 1 Spsco, ne: JN) 

spaces of smooth functions (114,122) 

spaces of embeddable functions (114, 

122) 

spaces of generalized functions (118, 

122) 

spaces of elements of convolution 

class (142) 

spaces of elements of multiplication 

class (143) 

(51) 

Wiener classes (86,88) 

generalized Wiener classes (94,101) 

spaces of smooth stochastic processes 
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spaces of generalized stochastic 

processes (10,12) 

spaces of embeddable stochastic pro­

cesses (25,30) 

inductive limit topology of S (126) 
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time shift (118) 
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convergence 

th in p order, 26 
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*' 13 in sfl , 
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13 in Sfl I ,p 
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unconditional - , 61 
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operator, 142 

product, 101 

time-frequency - , 147, 148, 149 
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cylindrical measure, 140 
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density, see spectral density function 

differentiation operator, 118 

dilatation operator, 118 

E: 
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function, 114,119 

stochastic process, 25 

embedding operator, 119, 26 

ergodicity, 22 

frequency - , 22 

time - , 22 

evolutionary spectral density function,67 

expectation 

conditional 14 

function, 32 

expected Wigner distribution, 33 
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Fouri~r transform, 117 

Frechet space, 124 

frequency 
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random - , 68 

shift, 118 

stationary, 21,37 

variable, 145 

functional 

bi-linear - , 128 

continuous linear ' 127 

G: 
Gabor function, 68 

Gaussian 
distribution, 24 

random variable, 24 

stochastic process, 24 

white noise, 24 

generalized 

H: 

function, 118 

harmonic analysis, 86 

stochastic process, 10, 

11, 19 

Wiener class, 94,101 

harmonic analysis 

generalized - , 86 

Hermite function, 117 

I: 

increment 

independent 29 

stationary - , 29,39 

independent 

increments, 29 

values, 41, 42 

inductive limit topology, 126 

inner product, 7, 114 

inner regular, 137 

invariance, translation ' 150 

invariant sets, a-algebra of - , 23 

J: 

K: 

kernel theorem, 130 

L: 

limit 

inductive - topology, 126 

linear 

functional, 127 

operator, 131 

local spectrum, 66,108 

M: 

measurable, sets a-algebra of 

measure 

associated 18 

cylindrical - , 140 

' 136 

preserving transformation, 22 

Radon - , 137 
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Minlos' theorem, 140 

multiplication operator, 143 
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N: 

noise 

1 
f 

112 

quantum, 48, 69 

shot - , 58 

shower, 48, 69 

white - , 24,44 

note 

random 

nuclear 

0: 

order 

48, 69 

operator, 124 

space, 124, 127 

th continuity in p - , 26 

of a process, 10 

second - moment, 31 

second - simulation, 63,68 

second 

second 

stationarity, 37 

white noise, 44 
th stationary increments of n 

oscillatory process, 67 

I 39 

P: 

perfectness, 124 

phase 

plane, 145 

random - factor, 58, 68 

physical spectrum, 66 

plane 

phase , 145 

time-frequency , 145 

Polish space, 137 

positive 

definite, 34, 75, 86 

type, 151 

multiplicative I 43 

power spectrum, 109 

principle 

uncertainty 3 

probability measure 

associated - , 18 

product 

convolution t 142 

inner - , 7, 114 

pointwise - , 143 

tensor - , 20, 122, 123, 134, 136 

pureness 

random - , 48, 69 

quasi-invariance, 24 

quantum, noise ' 48, 69 

167 



168 

R: 

Radon measure, 137 

random 

Fourier series process, 58 

frequency, 68 

measure, 44 

note, 48, 69 

phase, 58, 68 

pureness, 48, 69 

realization, 83 

S: 

second order 

spectral measure, 39 

absolutely continuous 

spectrum 

local - , 66, 108 

physical - , 66 

power - , 109 

stationary 

frequency 21, 37 

55 

increments 29, 39 

second order 37 

strict sense , 21 

time - , 21 , 3 7 

stochastic process 

37 embeddable - , 24 frequency stationary, 

shift 

simulation, 63, 68 

time stationary, 37 

white noise, 44 

frequency ' 118 

time - , 118 

time-frequency--, 69 

shot noise process, 58 

shower 

noise ~ , 48, 69 

simulation 

second order ' 63, 68 

smoothing operator, 114 

smooth 

function, 114 

stochastic process, 11 

spectral density function, 39,87,98 

evolutionary - , 67 

local - , 66, 108 

Gaussian - , 24 

generalized - , 10, 11, 19 

ordinary - , 24 

oscillatory- , 67 

real - , 20 

realization of a ' 83 
smooth - , 11 

strict sense stationarity, 21 

strong 

T: 

convergence, 124 

topology, 123 

Tauberian theorem, 89 

tensor product, 20,122,123,134,136 

time 

ergodicity, 22 

random - , 58 , 68 

shift, 118 

stationary, 21,37 
variable, 145 
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convolution, 147,148, 

149 
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shift, 69 

topology 
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strong - , 123 

weak - , 123 

I 126 

transformation of variables operator 

134, 136 

translation invariance, 150 

trivial set, 23 

U: 

uncertainty principle, 3 

unconditional convergence, 61 

V: 

W: 

weak 

convergence, 124, 125 

topology, 123 

white noise process 

Gaussian , 124 

filtered , 51, 52 

second order , 44 

Wiener class 

generalized - , 94, 101 

Wigner distribution 

expected - , 33 
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