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INTRODUCTION 

Let X and Y be complex Banach spaces. The complex Banach space of all 

bounded linear operators from X into Y will be denoted by L(X,Y). In this 

treatise we study locally holomorphic functions defined on an open subset 

of the complex plane~ with values in L(X,Y). In particular we are inter­

ested in poles of such functions. 

Let A be a locally holomorphic function defined on a (deleted) neigh­

bourhood of 0 with values in L(X,Y). Suppose that the values of A are eompact 

linear operators. Then it follows from Cauchy's integral formula that the 

coefficients of the Laurent expansion of A at O are compact too. In Chapter 

I we deal with the question whether this result remains true if compact is 

replaced by degenerate. A linear operator is said to be degenerate if its 

range is finite-dimensional. The answer to the above question turns out to 

be affirmative, provided that 0 is not an essential singularity of A; with­

out this extra condition it is negative. 

In Chapter II we consider a meromorphic function A. The values of this 

function are assumed to be semi-Fredholm operators from X into Y with com­

plemented null space and range. This implies that for each A in the domain 

of A there exists an element B(A) of L(Y,X) such that 

A(A) A(A)B(A)A(A), B(A) B(A)A(A)B(A). 

Our main result is that under certain conditions on the poles of A the 

operators B(A) can be chosen in such a way that the function 

At---» B(A) 

is meromorphic. 

Let T be a bounded linear operator on X and let m be a positive in­

teger. We say that the complex number AO is a pole of T of order m if A0 is 

a pole of order m of the locally holomorphic function 

-1 
Ai----+ (AI -T) • x 
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To characterize the poles of T, one can use the ascent a(T) and descent 

5(T) of T. In fact it is known that 0 is a pole of T of order m if and only 

if a(T) = o(T) = m. In Chapter III we generalize this result to a charac­

terization of the poles of the resolvent of an arbitrary locally holomorphic 

function A defined on an open neighbourhood of O with values in L(X,Y). By 

definition, the resolvent of A is the function 

This function is defined on the set of all \ in the domain of A such that 

A(\) is bijective. 

The system of internal references we use is explained by the following 

example. Theorem 3.4 in Chapter II is referred to as Theorem II.3.4 if the 

reference is made outside Chapter II, and as Theorem 3.4 otherwise. 



CHAPI'ER I 

DEGENERATE FUNCTIONS 

Let X and Y be complex Banach spaces, and let A be a locally holomor­

phic function defined on a (deleted) neighbourhood of 0 with values in 

L(X,Y). Suppose that the values of A are degenerate linear operators, i.e., 

the ranges of these operators are finite-dimensional. In Section 2 of this 

chapter we prove that the coefficients of the Laurent expansion of A at 0 

are degenerate, provided that 0 is not an essential singularity of A. In 

addition, we present an example to show that without this extra condition 

the theorem does not hold. 

Section 1 of this chapter is of preliminary character. In Section 3 

we prove a global representation theorem for a certain type of degenerate 

operator valued holomorphic function. 

1 • PRELIMINARIES 

In this section we collect together some definitions and notations 

concerning operators and operator valued functions, and we present a pre­

liminary lemma. 

Often we shall use the symbols +oo and - 00 • The phrase extended real 

nwnber refers to one of those symbols or a real number. Instead of +oo we 

sometimes write 00 • For the algebraic relations between the symbols +oo and 

the real numbers we refer to §0 in [17]. The expressions +oo + (-00 ) and 

3 

- 00 + oo have no meaning. The phrase extended integer refers to an integer or 

one of the symbols ±.""· 
Let E be a linear space. If E has finite dimension n, we shall write 

dim E = n, otherwise dim E = +oo. 

The null space a~d range of a linear operator T are denoted by N(T) 

and R(T) respectively, A linear operator is said to be degenerate if its 

range is finite-dimensional. 

Let X be a complex Banach space. The normed conjugate of X is denoted 
* . * . by X • It is well-known that X is a complex Banach space. We use the sym-

bol <f,x> to designate the value f(x) of a linear functional f on X at the 

point x. 

Let X and Y be complex Banach spaces. The complex Banach space of all 

bounded linear operators from X into Y is denoted by L(X,Y). Let T be an 
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element of L(X,Y). The conjugate operator of T is denoted by T*. Thus T'"is 

the bounded linear operator from y* into x* given by 

* <T g,x> <g,Tx>. 

It is not difficult to see that T is degenerate if and only if the same is 

* true for T • 

Degenerate operators are easy to construct. Take fin x* and u in Y. 

Let f 6 u denote the linear operator from X into Y defined by 

(f 6 u)(x) = <f,x> u. 

Then f 6 u is bounded and degenerate, and hence any finite sum of operators 

of this type is a degenerate element of L(X,Y). In fact each degenerate 

bounded linear operator can be written in such a form (see Section 27A in 

[8]). 

By a region we mean a non-void connected open subset of the complex 

plane ~. A subset r of a region G is called a discrete subset of G if r has 

no accumulation points in G. A discrete subset of a region G is at most 

countable and its complement in G is again a region. 

In this treatise we shall freely use the standard notions concerning 

Banach space valued locally holomorphic functions of one complex variable. 

For a fairly complete survey of these notions we refer to Section III.14 

of [10]. Our definition of meromorphy differs slightly from the usual con­

vention. 

1.1. DEFINITION. A complex Banach space valued function f is said to be 

me'l'Omorphic on a region G if there exists a discrete subset E of G such 

that 

(i) f·is holomorphic on G \E; 

(ii) each point of E is either a pole or a removable singularity of f. 

The points of the (unique) set E are then called the singula:I' points and 

those of G \ E the regular points of f in G. 

Let X and Y be complex Banach spaces, and let A be a function defined 

on a subset of the complex plane with values in L(X,Y). Then the conjugate 

A* of A will be the function with values in L(y*,x*) given by 
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where A is in the domain of A. Since the *-operation is an injective con­

tinuous linear map, the function A is meromorphic on a region G if and only 

if the same is true for A*. In that case the n-th coefficient of the 

Laurent expansion of A* at a point A0 of G is the conjugate of the n-th 

coefficient of the Laurent expansion of A at A0 • 

The operator valued function A is said to be degenerate if for each A 

in its domain the operator A(A) is degenerate. Clearly, A is degenerate if 

and only if A* is degenerate. 

In the remainder of this section G is a region and Y is a complex 

Banach space. The following lemma will be used in Sections 2 and 3. 

1.2. LEMMA. Let m be a positive integer, and let u 1 , ••• ,um be functions 

with values in Y and meromorphic on G. Further, let A0 be a regular point 

of u 1 , ••• ,um in G, and suppose that u 1(A 0 ), ••• ,um(A 0 ) are linearly indepen­

dent. Then there exi,st a discrete subset r of G and holomorphic functions 

h. 
:t 

G \ r ~ y* (i 1 , •• , ,m) 

such that 
( i) 

(ii) 

Ao E G \rand u 1, ... ,um are holomorphic on G \ r; 

for each A in G \ r, the vectors u (A), ... ,u (A) are linearly 
1 m 

independent; 

(iii) h1 , ••• ,hm are meromorphic on G; 

(iv) for each A in G \ r 

<h.(>.) ,u.(A)> = o .. 
:t J l.J 

where o .. denotes the l<Ponecker delta. 
:tJ 

( i ,j 1 , .•• ,m), 

PROOF. Since uJ(A0 ), ... ,um(A0 ) are linearly independent, there exist 

g1 , ••• ,gm in Y such that 

<g. ,u.(A0 )> = Ii .. 
:t J l.J 

( i ,j 1, ... ,m). 

For each regular point A of u1 , .•• ,um in G, let F(A) be the determinant of 

the matrix (<g.,u.(A)>), Clearly, the complex function Fis meromorphic on 
:t J 
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G. Let r be the set of singular points of F in G, and put 

r:;:{),eG\E O} u L 

Since F is non-zero and meromorphic on the region G, the set r is a dis­

crete subset of G. Further it is easily seen that (i) and (ii) hold. 

Next, for each A in G \ r we define h1(A), ..• ,hm(A) to be the solution 

in y* of the equations 

m 
I 

j=1 
<S· ,u.(A)> X. =g. 

]. J J ]. ( i 1 , ••• ,m) . 

Since F(A) ~ 0 for each A in G \ r, this solution is uniquely determined 

and we can apply Cramer's theorem to show that the functions h 1, ... ,hm are 

holomorphic on G \ r, meromorphic on G and that (iv) holds. This proves the 

lemma. 

Let u1 , ••• ,um be as in the preceding lemma, and let H be the set of 

·all regular points A of u1 , ••• ,um in G such that u1(A), •.• ,um(A) are line­

arly independent. It is clear that 

G \ r c H 

if r is a discrete subset of G with the properties described in Lemma 1.2. 

The question arises whether r can be chosen in such a way that G \ r = H. 

Using an unpublished result of K.-H.Forster and G. Garske about holomorphic 

one-sided inverses of Banach paraalgebra valued holomorphic functions 

(Theorem 12 in [12]), one can show that the answer to this question is 

affirmative, provided that H = G (see [5] for details). Without this extra 

condition the answer is unknown. 

2. DEGENERATE MEROMORPHIC FUNCTIONS 

In this section X and Y are complex Banach spaces. Further, A is a 

function with values in L(X,Y) and meromorphic on a region G. The set of 

singular points of A in G is denoted by r. 
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2.1. LEMMA. Let n be a non-negative integer, and let 

n {A€ G \ E : dim R(A(A)) ~ n}. 
n 

Then n = 0 or G \ n is a disarete subset of G. 
n n 

PROOF. Observe that G \ n0 = E. Since A is meromorphic on G, the set E is a 

discrete subset of G. Hence the lemma is true for n = O. 

Next let n be strictly positive. Suppose nn ~ 0 and take A0 in nn. 

Choose x 1 , ••• ,xn in X such that A(A 0 )x 1 , ••• ,A(A 0 )xn are linearly indepen­

dent, and define for i = 1, ... ,n the function ui by 

u.(A)=A(A)x. 
1 1 

(AEG\E). 

Then u 1, ••• ,un are holomorphic on G \ E and meromorphic on G. Since AO is a 

regular point of u 1 , ••• ,un in G, and since u 1(A 0 ), ••• ,un(A0 ) are linearly 

independent, we can apply Lemma 1.2 to show the existence of a discrete 

subset r of G such that E c rand u 1(A), ... ,un(A) are linearly independent 

for each A in G \ r. Obviously, this implies that G \ r is a subset of nn, 

and hence G \ n c r. This shows that G \ n is a discrete subset of G, and 
n n 

the proof is complete. 

The function A is said to be degenerate meromorphic on G if A(A) is 

degenerate for each A in G \ E. 

2.2. THEOREM. Suppose that A is degenerate meromorphic on G, Then the func­

tion 

A 1--» dim R(A(A)) (A € G \ E) ( 1 ) 

has a finite maximum, m say, and the set 

A= {A € G \ E : dim R(A(\)) < m} 

is a disarete subset of G, 

PROOF. Let for each non-negative integer n the set n be defined as in the 
n 

preceding lemma. The hypotheses concerning A imply that 
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G u 
n=O 

(G\11). 
n 

The set G is a region and thus uncountable. Hence there exists a non-nega­

tive integer k such that G \ 11k is uncountable. By Lemma 2.1, this implies 

that 11k =~.and so k is an upper bound for the function (1) on G \E. But 

then, since its values are integers, the function (1) has a finite maximum. 

It remains 

void, Lemma 2. 1 

a subset of G \ 

to prove that A is a discrete subset of G. Since nm is non­

shows that G \ 11 is a discrete subset of G. Clearly, A is 
m 

11 , and hence the proof is complete. 
m 

2.3. PROPOSITION. Suppose that A is degenerate meromoT'[Jhia on G and not 

identiaally zero on G \ E. Let 

m = max {dim R(A(A)) A E G \ E}. 

Take A0 in G \ E suah that dim R(A(A 0 )) = m. Then m is a positive integer 

and there exist a disarete suhset r of G and holomoT'[Jhia funations 

such that 

(i) 

(ii) 

(iii) 

(iv) 

( v) 

f. 
J. 

G \ r --4 x*, u. 
J. 

( i = 1 , ••• ,m) 

Ao € G \ r and E c r; 

the functions f 1 , ••• ,fm and u1 , ••• ,um are meromoT'[Jhia on G; 

for each A in G \ r, the veators u 1(A), .•• ,um(A) form a basis of 

R(A(A)); 

for eaah A in G \ 

sis of R(A*(A)); 

for eaah A in G \ r 

m 
A( A) I 

i=1 
f. (A) ® u. (A ) • 

J. J. 

PROOF. The preceding theorem shows that m exists and is finite. Since A is 

not identically zero on G \ E, we have m,;:, 1. Choose x1 , .•• ,xm in X such 

that the vectors A(A 0 )x1 , ..• ,A(A0 )xm form a basis of R(A(A 0 )), and define 

for i = 1, •.• ,m the function ui by 

u. (A) 
J. 

A(A)x. 
J. 

(AEG\E). 



Then u1, ••• ,um are holomorphic on G \ E and meromorphic on G. Thus AO and 

the functions u1, ••• ,um satisfy the conditions of Lemma 1.2. Chooser and 

h 1 , ••• ,h as in Lemma 1.2, and define for i = 1, ••• ,m the function f. by m 1 

(A€G\r). 

Then r is a discrete subset of G and (i) holds. Further, the functions 
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f 1, ••• ,fm are holomorphic on G \rand meromorphic on G. This proves (ii). 

Since for each A in G \ r the vectors u 1(A), ••• ,um(A) are linearly indepen­

dent, it follows that (iii) holds. 

Let A€ G \ r. To prove (iv) we observe that 

<f.(A),x.> = <A*(A)h.(A),x.> = <h.(A),A(A)x.> = 
1 J 1 J 1 J 

= <h.(A),u.(A)> = o .. 
1 J 1J 

(i,j = 1, •.. ,m). 

Hence f 1(A), ••• ,fm(A) are linearly independent. Since 

dim R(A*(A)) =dim R(A(A)) = m, 

we obtain that (iv) holds. 

The proof of (v) is now standard (cf, the proof of Proposition 27A in 

[8]). Take x in X. Because of (iii), there exist a 1, ••• ,am in~ such that 

m 
A(A )x = l 

j=1 
a.u. (A). 

J J 

Using the definition of the functions f 1, ••• ,fm and Lemma 1.2(iv), we de­

rive 

The ref ore 

m 
A(A )x = l 

j=1 

m 
l 

j=1 
a. <h. (A) , u. (A)> = a. 

J 1 J 1 
(i=1,..,.,m). 

m 
<f. (A ) ,x> u. (A ) = [ l f. (A ) 8 u. (A ) ] ( x) • 

J J j=1 J J 

This completes the proof, 
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Suppose that A is degenerate meromorphic on G and not identically zero 

on G \ L, Let A be as in Theorem 2.2 and r as in Proposition 2.3. It is 

clear that 

The question arises whether r can be chosen in such a way that Au L = r. 
A partial solution of this problem will be given in the next section. In 

fact we shall prove that the answer to the above question is affirmative if 

A and L are both void. 

* 2.4. LEMMA. Let u a:nd f be functions with vaZues in Y a:nd X , respectiveZy. 

Suppose that u and f are meromorphic on G. Define for each reguZar point 

A of u a:nd f in G 

T(A) f(A)@ u(;\). 

Then the function T is meromorphic on G and for each ;\ in G the coef fi­

cients of the Laurent e:x:pa:nsion of T at ;\ are degenerate. 

( 2) 

PROOF. Take ;\ in G, and let un and fn denote the n-th coefficient of the 

Laurent expansion of u and fat>-, respectively. Then, for z in some de­

leted neighbourbood of;\, we have 

T(z) 

Since u and f are both meromorphic on G, there exists an integer k such 

that 

f 
n 

This implies that 

T(z) 

o, u 
n 

+oo 

I 
i=2k 

0 (n < k). 

. i-k 
(z-;\)l.( Y 

n=k 
f @ u. ) 

n i-n 

for z in some deleted neighbourhood of;\, and the lemma is proved. 

We now come to the second main result of this section. 
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2.5. THEOREM. Suppose that A is degenerate meromorphic on G. Then for each 

A in G the coeffiaients of the Laurent expansion of A at A are degenerate. 

PROOF; We may assume that A is not identically zero on G \ L Then, by Pro­

position 2.3, there exists a discrete subset r of G such that on G \ r the 

function A can be written as a finite sum of functions of the form (2). The· 

preceding lemma shows that for such functions the theorem holds. Hence the 

desired result is true in general. 

The following example shows that the preceding theorem does not hold 

if the singularities of A are allowed to be essential. 

2.6. EXAMPLE. Let X = Y be the sequence space Z00 • For each positive integer 

n, let en denote the element in Z00 with all coordinates zero except the 

n-th, which is equal to one. Put 

u 
n 

1 -e 
n! n 

(n 1,2,. .. ). 

Further, define for n = 1,2, ••. the linear functional fn on Z00 by 

1 
f (x) = - x 

n n! n 

* It is clear that fn E Z00 • Consider the functions u and f defined on a:: \ {O} 

by 

and let A 

I -n 
l A un+1' 

n=O 

0:: \ {O} __,. L(X,Y) be given by 

Then A is a well-defined holomorphic function. Obviously, A is degenerate. 

In fact 

dim R(A(A)) (A :f 0). 

We shall prove that none of the coeffieients of the Laurent expansion of A 

at 0 is degenerate. 
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Let m be an arbitrary integer, and let A be the m-th coefficient of 
m 

the Laurent expansion of A at O. An easy computation shows that 

(?."#O;k 1,2,3, ••. ). 

This implies that for each positive integer k > m 

and hence 

e 
n 

1 
k! ~-m• 

n!u E R(A ) 
n m (n 

It' follows that R(A ) is infinite-dimensional. 
m 

Im I + 1 ' Im I +2 ' ... ) • 

Suppose that there exists a non-negative integer k such that the set 

{/. E G \ I: dim R(A(!.)) ~ k} ( 3) 

has an accumulation point in G. Then we can apply Lemma 2.1 to show that 

dim R (A (I. ) ) ~ k 

and hence it follows that under this condition A is degenerate meromorphic 

on G. It is interesting to observe that this result is not necessarily true 

if in the hypothesis the set (3) is replaced by 

{).. E G \ I: dim R(A(!.)) < +oo}, ( 4) 

For a counterexample we refer to Example 5.14 in [4] (a similar example has 

appeared in [18]). However, if the set (4) is uncountable, then it can be 

shown that A is degenerate meromorphic on G. In fact this is dope in the 

first part of the proof of Theorem 2.2. 

The results of this section are taken from the author's interim report 

[4]. For the case when X = Y, Theorem 2.2 has also been proved by J.S. 

Howland (see Theorem 1 in [18]). Further Howland has shown that the deri­

vative of a degenerate holomorphic function is again degenerate (see [18], 
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Theorem 3 and its proof). One can use this result to give a short proof of 

Theorem 2,5, On the other hand it is clear that Theorem 2,5 can be used to 

get Rowland's result about the derivative even for X ~ Y. The methods used 

in Rowland's paper [18] differ considerably from those used here. For in­

stance, the representation of a degenerate meromorphic function given in 

Proposition 2.3 does not appear in [18]. 

3, DEGENERATE ROLOMORPRIC FUNCTIONS 

Let X be a complex Banach space, and let E be a function defined on a 

region G with values in the set of all linear subspaces of X. We sa:y that 

E has a holomorrphia basis if either 

E(A.) = {O} (;>,. € G) 

or there exist a positive integer n and holomorphic functions 

u. 
]_ 

G-+X (i 1 , ••• ,n) 

such that for each A in G the vectors u1(:>..), ••• ,un(A) form a basis of the 

subspace E(A.), This concept has been introduced by P. Saphar in [38]. 

Saphar has shown that, in order to prove that E has a holomorphic basis, it 

suffices to show that E has this property locally (see Proposition 14 in 

[38J). We shall use this result to give a partial solution of the problem 

posed in the paragraph preceding Lemma 2.4. 

In the remainder of this section X and Y are complex Banach spaces and 

A is a holomorphic function defined on a region G with values in L(X,Y). 

3.1. LEMMA. Suppose that A is degenerate and that the funation 

A~ dim R(A(A.)) (:>.. € G) 

is aonstant. Then the subspaae valued funation 

;>...--- R(A(A.)) (;>,. € G) ( 1 ) 

has a ho Zomorrphia basis. 
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PROOF. We may assume that A is not identically zero on G. Then we can apply 

Proposition 2.3 to show that locally the function (1) has a holomorphic 

basis, and hence, by Saphar's result, this is true globally. 

3.2. THEOREM. Let m be a positive integer and suppose that 

dimR(A(A)) m (A E G). 

Then there erist hoZomorphic functions 

f. 
l. 

* G- X, 

suah that for eaah A in G 

m 

u. 
l 

G-Y 

A( A) = I f. (A) ® u. (A) • 
l l. i=1 

( i = 1 , ••• ,m) 

PROOF. From Lemma 3,1 we know that there exist holomorphic functions 

u. 
l. 

G-.;. y (i 1 , ••• ,m) 

( 2) 

such that for each A in G the vectors u 1(A), ..• ,um(A) form a basis of 

R(A( A)). Let the functions f 1 , •.• ,fm from G into the product space ICX be 

defined by the formula 

m 
A(A)x = I 

i=1 
f. (A)(x)u. (A), 

l. l. 
(3) 

Then f 1, •.• ,fm are well-defined. W= need to show that f 1, ••. ,fm are holo­

morphic functions with values in X • 

Take AO in G. One can apply Lemma 1.2 to show that there exist a dis­

crete subset r of G and holomorphic functions 

h. 
l. 

G \ r-..;. Y * 

such that AO E G \ r and for each A in G \ r 

<h • ( A ) , u . ( A ) > = o . . 
l. J l.J 

(i 1 , ••• ,m) 

(i,j = 1, ... ,m). 

A simple computation shows that for each A in G \ r and i 1 , ••• ,m 
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(x EX). 

* Hence f 1(A),.,.,fm(A) are in X for each A in G \rand the functions 

f 1, .•• ,fm are holomorphic. From formula (3) we may conclude that (2) holds. 

This completes the proof. 

let 

Suppose that A satisfies the conditions of the preceding theorem, and 

f. 
J. 

* G---4 X, u. 
J. 

G--l>Y (i 1 , ••• ,m) 

be holomorphic functions such that for each A in G formula (2) holds. Then 

it is not difficult to prove that for each A in G the vectors 

u 1(A), ••• ,um(A) form a basis of R(A(A)) and f 1(A), ••• ,fm(A) form a basis 

of R(A*(A)) (cf. Proposition 2.3(iii) and (iv)). 
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CHAPTER II 

RIESZ-MEROMORPHIC FUNCTIONS 

The first three sections of this chapter are of introductory character. 

In Sections 1 and 2 we collect together a number of results concerning 

Fredholm, semi-Fredholm, projective semi-Fredholm and compact operators. In 

Section 3 we introduce the notion of a Riesz-meromorphic function, we de­

fine the index of such a function, and we use a result of M. Ribaric and 

I. Vidav [37] to show that the resolvent of a Riesz-meromorphic function, 

if it exists, is Riesz-meromorphic. The last result is one pf our main tools 

in Sections 4 and 5. 
The definition of a Riesz-meromorphic function implies that the values 

of such a function are operators with a relative inverse. An operator T is 

said to have a relative inverse if there exists an operator S such that 

T = TST and S = STS. In Sections 4 and 5 we show that a Riesz-meromorphic 

function has a global Riesz-meromorphic relative inverse. 

1. PRELIMINARIES 

In this section we collect together a number of results concerning 

Fredholm, semi-Fredholm and compact operators, and we introduce the relevant 

terminology. Further we define the notion of a projective operator. 

Let M be a linear subspace of a linear s~ace E. The quotient space ofE 

modulo M will be denoted by E/M. The elements of E/M are called the aosets 

of M (in E). The dimension of the quotient space E/M is called the codi­

mension of M (in E). To designate this extended integer, we use the symbol 

codim M. 

Let T be a linear operator from a linear space X into a linear space 

Y. The dimension of the null space N(T) of T is called the nullity of T; it 

will be denoted by n(T). The codimension of the range R(T) of T is called 

the defeat of T; it will be denoted by d(T). 

Suppose that X and Y are complex Banach spaces. Recall that L(X,Y) de­

notes the complex Banach space of all bounded linear operators from X into 

Y. An element T of L(X,Y) is called a semi-Fred')p,olm operator if R(T) is 

closed and at least one of the extended integers n(T) and d(T) is finite. 

The set of all such operators is designated by SF(X,Y). If TE SF(X,Y),then 

the extended integer ind(T) given by 



ind(T} n(T) - d(T) 

is well-defined; it is called the index of T. A Fredholm operator is a sem:i:­

Fredholm operator with a finite index. One can show that an element T of 

L(X,Y) is Fredholm if and only if n(T) and d(T) are both finite (see Ch.VII 

in [34]), The set of all Fredholm operators from X into Y is denoted by 

F(X,Y). 

When X = Y, we shall write L(X) for L(X,Y), SF(X) for SF(X,Y), and F(X) 

for F(X,Y). 

An element T of L(X,Y) is said to be compact if the closure of the set 

{Tx x E X, JI x 11 ~ 1} 

is a compact subset of Y. The set of all such operators will be denoted by 

K(X,Y). We shall write K(X) for K(X,X). The set K(X,Y) is a closed linear 

subspace of L(X,Y), and it is not difficult to prove that each degenerate 

bounded linear operator from X into Y belongs to K(X,Y). 

Let TE L(X,Y) and SE L(Y,Z), where Z is a complex Banach space. It is 

well-known that the product ST is compact if at least one of the operators T 

and S is compact. It follows that K(X) is a closed two-sided ideal in the 

complex Banach algebra L(X). 

Let T E L(X,Y). An operator S in L(Y,X) is called a 

(i) left a-inverse of T if IX - ST E K(X); 

(ii} right a-inverse of T if IY - TS E K(Y}; 

(iii) a-inverse of T if IX - ST E K(X) and IY - TS E K(Y). 

Here IX and Iy denote the identity operators on X and Y respectively. The 

operator T is called left a-invertible if T has a left c-inverse. Similarly, 

T is said to be right a-invertible (a-invertible) if T has a right c-inverse 

( c-inverse), 

Throughout this chapter we shall ~reely use the following basic results 

concerning semi-Fredholm and compact operators (see, e.g.,[13], [15], [23] 

and Ch. VII in [34] for details}. 

(a) For each extended integer k, the set 

{T € Sf(X,Y) ind(T) = k} 

is open in L(X,Y), and hence SF(X,Y) and f(X,Y) are open subsets of L(X,Y). 
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(b) Let T € SF(X,Y) and S € SF(Y,Z), where Z is a complex Banach space. 

Then ST € SF(X,Z) and 

ind(ST) ind(S) + ind(T), 

provided that the right hand side of this equation makes sense. 

(c) If T € SF(X,Y) and S € K(X,Y), then T + S € SF(X,Y) and 

ind{T + S) = ind(T). 

(d) An element T of L(X,Y) is a Fredholm operator with index 0 if and only 

if there exists a degenerate bounded linear operator S from X into Y such 

that T + S is bijective. 

(e) The following statements are equivalent: 

{j) T € F(X,Y); 
{jj) T is c-invertible; 

(jjj} T is both left and right c-invertible. 

In the next section we shall show that the result (e) can be extended 

in a certain sense to a subclass of SF(X,Y) which in general is strictly 

larger than F(X,Y). In order to do this, we need the notion of a projective 

operator. 

Let M be a linear subspace of a linear space E. A linear subspace N of 

E is called an algebPaic complement of M (in E) if E is the direct sum of 

Mand N, i.e. 

E = M tD N. 

If N is an algebraic complement of M, then dim N = codim M. 

Let X be a complex Banach space. By a topological complement of a li­

near subspace M of X we mean an algebraic complement N of M such that N is 

closed. A subspace M of X is said to be pPojective (or complemented) if Mis 

closed and has a topological complement. Observe that each finite-dimen­

sional subspace of X is projective. The same holds for closed subspaces 

of finite codimension. 

Let M be a projective subspace of X with a topological complement, N 

say. Define the linear operator P on X by 

Px • {: 

if x € N, 

if x € M. 
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Then P is a well-defined bounded linear operator on X, 

N(P) N, R(P) = M, 

and P2 = P. We call P the projection of X onto M along N. 
Conversely, let P be a linear operator on X such that P2 P. Then 

X = N(P) 6l R(P). 

It is well-known that P is bounded if and only if N(P) and R(P) are closed, 
and, in that case, P is the projection of X onto R(P) along N(P). 

The foregoing implies that a projection P of X is a bounded linear 
2 operator on X such that P = P. Hence, if P is a projection of X, then the 

same is true for IX - P. Observe that 

N(IX - P) = R(P), R(IX - P) N(P). 

Degenerate projections of X are easy to construct. Let m be a positive 
. * integer. Take x 1 , ••• ,xm in X and f 1 , ••• ,fm in X such that 

<f. ,x.> 
1 J 

and define P by 

m 
p l 

i=1 

c .. 
1J 

f. 0 x .• 
1 1 

(i ,j 1, •.. ,m), 

Then Pisa projection of X onto the linear hull of the set {x1, ... ,xm} 
along the subspace 

m 
n {x € X 

i=1 
<fi,x> = O}. 

From (1) it follows that x1 , ••. ,xm are linearly independent. Hence the 
range of P is m-dimensional. Conversely, if P is a projection such that 

( 1) 

(2) 

dim R(P) m, then there exist x1, .•• ,xm in R(P) and f 1, ••. ,fm in x* satis­
fying (1) and such that (2) holds. 

Let T be a bounded linear operator from the complex Banach space X in­
to the complex Banach space Y. We say that T is projective if N(T) and R(T) 
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are both projective. Clearly, any Fredholm operator from X into Y is pro­

jective, Further, it is easily seen that a degenerate element of L(X,Y) is 

projective. 

One can characterize the projective elements of L(X,Y) in terms of re­

lative inverses. An element S of L(Y,X) is called a relative inverse of T 

if 

T TST, s STS 

(cf. [3] and [38]). The next two lemmas are given without proof. They are 

due to P. Saphar (see Propositions 10 and 12 in [38]). Combining these two 

lemmas one sees that an element T of L(X,Y) is projective if and only if T 

has a relative inverse. 

1.1. LEMMA. Let T € L(X,Y), and suppose that Sis a relative inverse of T, 
Then ST is the projeation of X onto R(S) along N(T) and TS is the projeation 
of Y onto R(T) along N(S). 

1.2. LEMMA. Let T be a projeative bounded linear operator from X into Y, 
and let N and R be topologiaal aomplements of N(T) and R(T) respeatively. 
Then there exists a u;nique relative inverse S of T suah that N(S) = R and 
R(S) = N. 

2. PROJECTIVE SEMI-FREDHOLM OPERATORS 

Let X and Y be complex Banach spaces. The set of all projective semi­

Fredholm operators from X into Y will be denoted by PSF(X,Y). Instead of 

PSF(X,X), we shall write PSF(X). Observe that F(X,Y) is a subset of 

PSF(X,Y). Further we note that a projective operator T is semi-Fredholm if 

and only if at least one of the extended integers n(T) and d(T) is finite. 

In this section we shall show that certain results concerning the 

c-invertibility of Fredholm operators extend to the class PSF(X,Y). Further 

we shall prove that the results (a), (b) and (c) mentioned in Section 1 re­

main true if SF is replaced by PSF. For the case when X = Y (and X an ar­
bitrary locally convex vector space), this has been done by A. Pietsch in 

[36]. See also [3] and [44]. Our methods are similar to those used by 

Pietsch. 



2.1. LEMMA. Let TE L(X,Y). Then 

(i) TE PSF(X,Y) and ind(T) < +oo if and only if there exists Sin 

L(Y,X) suah that IX - ST is degenerate; 
(ii) T E PSF(X,Y) and ind(T) > -oo if and only if there exists Sin 

L(Y,X) suah that IY - TS is degenerate. 
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PROOF. (i) Suppose that T E PSF(X,Y) and that ind(T) < +oo, Since T is pro-

jective, T has a relative inverse, S say. By Lemma 1 • 1 • the operator ST is 

a projection of X along N(T). Thus the range of Ix - ST is N(T). Since 

ind(T) < +oo' the dimension of N(T) is finite. This implies that Ix - ST is 

degenerate. Hence S has the desired property. 

Conversely, let S be an element of L(Y,X) such that IX - ST is degene­

rate. Then TST - T is degenerate too, and hence TST - T is projective. Let 

V be a relative inverse of TST - T. Put 

Then U E L(Y,X) and TUT = T. From the last equation it easily follows that 

UTU is a relative inverse of T. So T is projective. Since N(T) is a subset 

of R(IX - ST), and since IX - ST is degenerate, the nullity of T is finite. 

Thus TE PSF(X,Y) and ind(T) < +oo. This proves (i). 

(ii) The proof of (ii) is similar. 

2.2. THEOREM. Let TE L(X,Y). Then 

(i) T E PSF(X,Y) and ind(T) < +oo if and only if T is left a-invert­

ible; 

(ii) T E PSF(X,Y) and ind(T) > - 00 if and only if T is right a-invert­

ible. 

PROOF. (i) The "only if part" is contained in Lemma 2.1(i). Toprovethe "if 

part", let U be a left c-inverse of T. Then UT - IX is a compact operator. 

Since IX is Fredholm, it follows that 

is a Fredholm operator too. But then we can apply Lemma 2. 1 ( i) to show that 

there exists V in L(X) such that IX - V(UT) is degenerate. Observe that 

VUE L(Y,X) and that IX - (VU)T is degenerate. Hence, using Lemma 2.1 
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again, T € PSF(X,Y) and ind(T) < +00 • This proves (i). 
(ii) The proof of (ii) is similar. 

For the case when X = Y, we obtain the following corollary (cf. [36], 
Theorems 3.3 and 3,3N,B). 

2.3. COROLLARY. Let T € L(X) and let K denote the canonical mapping of 
L(X) onto the quotient algebra L(X)/K(X). Then 

(i) T € F(x) if and only if K(T) is invertible in L(X)/K(X); 
(ii) T € PSF(X) and ind(T) = -""if and only if K(T) is left invert­

ible, but not invertible, in L(X)/K(X); 
(iii) T € PSF(X) and ind(T) = +00 if and only if K(T) is right invert­

ible, but not invertible, in L(X)/K(X). 

Theorem 2.2 shows that the set PSF(X,Y) is invariant under compact 
perturbations. By combining this with the result (c) mentioned in Section 
1, we obtain the following theorem. 

2.4. THEOREM. Let T € PSF(X,Y) and S € K(X,Y). Then T + S E PSF(X,Y} and 
ind(T + S) = ind(T). 

Next we show that the results (a) and (b) mentioned in Section 1 re-
main true if SF is replaced by PSF. 

2.5. THEOREM. Let T € PSF(X,Y) and S € PSF(Y,Z), where Z is a complex 
Banach space. Then ST € PSF(X,Z) and 

ind(ST) = ind(S) + ind(T), ( 1 ) 

provided that the right hand side of this equation makes sense. 

PROOF. Suppose that the right hand side of (1) is well-defined. This means 
that either 

ind(T) < +oo, ind(S) < +oo (2) 

or 

ind(T) > -oo, ind(S) > -"'· (3) 
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Assume that (2) holds. Then, by Theorem 2.2(i), the operators T and Sare 

both left c-invertible. If U and V are left c-inverses of T and S respec­

tively, then UV is a left c-inverse of ST. According to Theorem 2.2(i), 

this implies that ST€ PSF(X,Z). By using Theorem 2.2(ii), formula (3) 

yields the same result. Thus ST€ PSF(X,Z). The fact that (1) holds has al-

ready been mentioned in Section (result (b)). This proves the theorem. 

2.6. THEOREM. For each extended integer k, the set 

{T € PSF(X,Y) ind(T) k} 

is open in L(X,Y). 

PROOF. It suffices to show that PSF(X,Y) is open in L(X,Y). Take Tin 

PSF(X,Y), and suppose that ind(T) < +00 • (The case when ind(T) > - 00 can be 

treated similarly). By Theorem 2.2(i), there exists U in L(Y,X) such that 

IX - UT is compact. Choose Sin L(X,Y) such that I Is! I .I lul I < 1. Then 

IX+ US is invertible in L(X). Hence 

U(T + S) = (Ix + US) - (Ix - UT) 

is c-invertible. Therefore T + S is left c-invertible, and thus, by Theorem 

2.2(i), we have T + S € PSF(X,Y). This shows that PSF(X,Y) is an open sub­

set of L(X,Y). 

It can be shown that the conjugate of a projective semi-Fredholm ope­

rator is again a projective semi-Fredholm operator. The converse of this 

statement does not hold. Counterexamples have been constructed by 

A. Pietsch ([36], pp. 366,367). These examples also show that in general 

PSF(X,Y) is a proper subset of SF(X,Y). 

3. RIESZ-MEROMORPHIC FUNCTIONS 

In this section X and Y are complex Banach spaces. Let A be a function 

defined on a subset D of C with values in L(X,Y). The set of all A in D 

such that A(A) is bijective is called the resolvent set of A; it will be 

denoted by Res[A]. The function A-1 defined on Res[A] by 
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is called the resotvent of A. It is a function with values in L(Y,X). 
From operator theory we know that the set GL(X,Y) of all bijective 

bounded linear operators from X into Y is open in L(X,Y), and that the 
function 

is a continuous map of GL(X,Y) into L(Y,X). Hence, if A is continuous on D, 
then Res[A] is open in the relative topology of D and A- 1 is continuous. In 
particular, if D is open and if A is locally holomorphic on D, then Res [A] 

-1 is an open subset of ~. Further, in that case, A is locally holomorphic 
on Res[A]. 

The main goal of this section is to present a sufficient condition in 
order that a meromorphic Fredholm operator valued function A has a mero-

. -1 morphic resolvent A , For that purpose we introduce the concept of a 
Riesz-point and that of a Riesz-meromorphic function. 

Let AO be a complex number such that A is holomorphic on some deleted 
neighbourhood of A0 . Let Tn denote the n-th coefficient of the Laurent ex­
pansion of A at A0 • We say that Ao is a Riesz-point of A if the following 
conditions are satisfied: 

Let 

the 

(i) AO is not an essential singularity of A, i.e., there exists an 

integer m such that 

T 
-n 0 (n m+ 1 , m+2, ••• ) ; 

(ii) T is degenerate for each positive integer n; -n 
(iii) T0 is a projective semi-Fredholm operator. 

AO be a Riesz-point of A. Then the extended integer 

index of Ao (as a Riesz-point of A). 

ind(T0 ) is called 

3.1. LEMMA. Let Ao be a Riesz-point of A with index k. Then there exists a 
neighbou:r>hood U of Ao suah that eaah A in u is a Riesz-point of A with in­
dex k. 

PROOF. Let for O < IA - A0 1 < r 

A(A) = l ( 1 ) 
n=O 



be the Laurent expansion of A at A0 • Then T_ 1, ••• ,T_m are degenerate and 

T0 is a projective semi-Fredholm operator with index k. Let 

Vk = {T € PSF(X,Y) : ind(T) = k}. 

We know that Vk is an open subset of L(X,Y) (Theorem 2.6). Hence, since 

T0 € Vk, there exists 0 < e < r such that 
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Further, we know that Vk is invariant under compact perturbations (Theorem 

2.4). Our hypotheses imply that the operator 

is bounded and degenerate. In particular, it is compact. But then, using 

formula (1), it follows that 

(2) 

Take U = {A : IA - A01 < d. Since A is holomorphic on U' \ {A0}, formula 

(2) implies that each point A in U is a Riesz-point of A with index k. 

In the remainder of this section G will be a region. The function A is 

said to be Riesa-me'l'OTTIOrphia on G if each point of G is a Riesz-point of A. 

Suppose that A is Riesz-meromorphic on G. Since G is a region, the prece­

ding lemma implies the existence of a unique extended integer k such that 

each point of G is a Riesz-point of A with index k. We call k the inde:x: of 

A (on G). The term Riesz-meromorphic function has not appeared in litera­

ture before, but several authors have studied these functions (see [7], 

[14], [37] and [40]). 

To illustrate our terminology we consider a special case. Let T be a 

bounded linear operator on the complex Banach space X. The spectrum and the 

resolvent of Twill be denoted by a(T) and R(.;T) respectively. A point AO 

of a(T) is called a pole of T of o~a.e~ n if AO is a pole of order n of the 

locally holomorphic function 
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z t-----7 R(z;T) (z E IC\ cr(T)). (3) 

A pole AO of T is said to be of finite rank if the spectral projection as­

sociated with T and AO is degenerate. 

Let AO be a pole of T of finite rank and of order m. Let P be the 

spectral projection associated with T and A0 . Consider the Laurent expan­

sion: 

R(z;T) l 
n=O 

From spectral theory (see Section 5,8 in [42]) we know that 

(n 1 , ••• ,m) 

and 

Since P is degenerate, it follows that the operators s_ 1, ... ,S_m are dege­

nerate and that s0 is a Fredholm operator with index O. Hence AO is a 

Riesz-point with index O of the function (3). 

Clearly, each point in IC \ cr(T) is also a Riesz-point with index 0 of 

the function (3), It is easy to see that the function (3) has no other 

Riesz-points. More precisely the set of Riesz-points of the function (3) is 

the union of IC \ cr(T) and the set of all poles of T of finite rank. 

In literature the term Riesz operator is used to denote a bounded li­

near operator T on X which has the property that each point of cr(T) \ {O} 

is a pole of T of finite rank. In other words, T is a Riesz operator if and 

only if the function (3) is Riesz-meromorphic on IC \ {O}. Riesz operators 

can be characterized in terms of Fredholm operators (see [26]), In fact, T 

is a Riesz operator if and only if AIX - T is Fredholm for each A ~ O, and 

this in turn is equivalent to the statement that the function 

( 4) 

is Riesz-meromorphic on IC \ {O}. 

Let G be IC \ {O}, and let A be the function (4). Clearly, G is a 



region. 

Further, Res[A] = ~ \ cr(T) and A- 1 = R(.;T). The results of the preceding 

paragraphs show that the following statements are equivalent: 

(i) T is a Riesz operator; 

(ii) A is Riesz-meromorphic on G; 

(iii) A- 1 is Riesz-meromorphic on G. 

This justifies our terminology. 
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In this section we shall show that the equivalence of (ii) and .(iii) 

mentioned above holds in general, provided that A(z) is bijective for some 

regular point z of A in G. This result will be proved by using Theorem I in 

[37]. In the paper [37] M. Ribaric and I. Vidav introduced the concept of 

an essentially meromorphic function. We proceed with the definition of this 

notion. 

In the remainder of this section A will be a meromorphic function on 

the region G with values in L(X,Y), and L will be the set of singular 

points of A in G. The function A is said to be essentially meromorphic on 

G if for each A in G the coefficients of the principal part of the Laurent 

expansion of A at A are degenerate and if A(µ) is compact for each µ in 

G \ L. Observe that Theorem I.2.5 shows that a degenerate meromorphic func­

tion is essentially meromorphic. In other words, if A(A) is degenerate for 

each A in G \ L, then A is essentially meromorphic on G. 

Essentially meromorphic functions may be used to construct Riesz-mero­

morphic functions. Suppose X = Y and let A be essentially meromorphic on G. 
Then the function 

Al--l>I -A(A) x (AEG\L) 

is Riesz-meromorphic on G with index O. This result is a special case of 

the following theorem. 

3.2. THEOREM. Let A and B be meromorphic functions on the region G with 
values in L(X,Y), Suppose that A is Riesz-meromorphic on G with index k and 
that B is essentially meromorphic on G. Define for each regular point A of 
A and B in G 

T(A) = A(A) + B(A). ( 5) 
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Then the function T is Riesz-meromorphic on G with index k. 

PROOF. Clearly, T is meromorphic on G. Take AO in G. Since the sum of two 

degenerate operators is degenerate, the coefficients of the principal part 

of the Laurent expansion of T at AO are degenerate operators. Let A0 and B0 
denote the "constant terms" in the Laurent expansions of A and B at A0 , 

respectively.It remains to show that A0 + B0 is a projective semi-Fredholm 

operator with index k. 

There exists a deleted neighbourhood U of AO such that each A in U is 

a regular point of B. Thus 

B(A) E K(X,Y) (;\ EU). 

Since K(X,Y) is a closed linear subspace of L(X,Y), we can use the Cauchy 

integral formula to show that the coefficients of the Laurent expansion of 

Bat :\ 0 belong to K(X,Y). In particular, B0 is compact. Our hypotheses im­

ply that A0 E PSF(X,Y) and ind(A0 ) = k. Thus we can apply Theorem 2.4 to 

get the desired result. 

The class of degenerate meromorphic functions is a subclass of the 

class of essentially meromorphic functions. So we have the following 

corollary. 

3,3. COROLLARY. Let A and B be meromorphic functions on the region G with 

values in L(X,Y). Suppose that A is Riesz-meromorphic on G with index k 

and that B is degenerate meromorphic on G. Then the function T defined by 

formula (5) is Riesz-meromorphic on G with index k. 

We now come to the theorem announced above. The proof of this theorem 

turns out to be an immediate application of a result of M. Ribaric and 

I. Vidav [37]. For the special case when X = Y is a Hilbert space, the 

theorem was proved "by P.M. Bleher [7]. The methods used by Bleher are si­

milar to those employed by M. Ribaric and I. Vidav (cf. also [40]) .. 

3.4. THEOREM. Let A be Riesz-meromorphic on the region G, and suppose that 

A(z) is bijective for some regular point z of A in G. Then A- 1 is Riesz­

meromorphic on G with index o. 

. . . -1 PROOF. Let H be the set of all ;\ in G such that ;\ is a Riesz-point of A 
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with index O. We need to show that H = G. Since G is a region, it is suf­

ficient to prove that H is a non-void open and closed (with respect to the 

relative topology) subset of G. Clearly z E H, and hence H ~ 0. Further, 

Lemma 3,1 implies that His open. Hence it remains to show that His closed 

in the relative topology of G. 

Take AO in the closure of H with respect to the relative topology on 

G. We want to show that AO E H. We begin with two observations. First of 

all, since A(z) is bijective, we may assume that X = Y. Secondly, for the 

same reason, the index of Ao as a Riesz-point of A is zero. 

Let for 0 < IA - A I 0 
< r 

00 m 
A( A) = l (A - Ao)nTn + l (A - A )-nT 

n=O n=1 0 -n 

be the Laurent expansion of A at A0 . Then T0 is a Fredholm operator with 

index zero and T_1 , .•• ,T_m are bounded and degenerate. The first fact im­

plies the existence of a degenerate bounded linear operator F on X such 

that T0 + F is bijective. Define the holomorphic functions A1 and A2 by 

m 

-F + l. (A - Ao)-nT n 
n=1 -

and 

(o < IA - A I < r) 
0 

(0 < IA - A I < r). 
0 

Since the operators T_1 , ..• ,T_m and Fare degenerate, there exists a 

finite-dimensional subspace W of X such that 

(0 < IA - A I <"r). 
0 

Now we can apply Theorem I in [37] to show that there exists E > 0 such 

that A- 1 is defined on the set O < JA - A I < E and on this set A-1 has the 
0 

same properties as A. More precisely. 
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( 6) 

where B1 is a degenerate meromorphic function on the region IA - A0 1 < E, 

the function B2 is holomorphic on IA - A0 1 < E, and B2 (A 0 ) is bijective. 
Observe that AO is a Riesz-point with index 0 of B2 . Hence, by Lemma 3.1, 
there exists 0 < o < E such that B2 is Riesz-meromorphic with index 0 on 
the region IA - A0 1 < o. But then, using formula (6), Corollary 3,3 implies 
that on IA - A0 1 < o the function A- 1 is Riesz-meromorphic with index O. In 
particular, AO is a Riesz-point with index O of A-1• Thus AO E H. This com­
pletes the proof. 

We conclude this section with the following proposition, which will be 
used in the next two sections. 

3,5. PROPOSITION. Let p and q be extended integers such that p + q is de­
fined. Let A be Riesz-meromorphic on G with index p, and let B be a Riesz­
meromorphic function on G with index q and values in L(Y,Z), where Z is a 
complex Banach space. Define for each regular point A of A and B in G 

Then the function T is Riesz-meromorphic on G with index p + q. 

PROOF. Clearly, T is meromorphic on G. Take AO in G, By multiplying the 
Laurent expansions of A and B at A0 , we obtain the Laurent expansion of T 
at A0 . From this it is easy to see that the coefficients of the principal 
part of the Laurent expansion of T at AO are degenerate. Let T0 , A0 and B0 
denote the "constant terms" in the Laurent expansions of T, A and B at J. 0 , 
respectively. From our hypotheses we know that A0 and B0 are projective 
semi-Fredholm operators with indices p and q respectively. Hence we can use 
Theorem 2.5 to show that B0A0 is a projective semi-Fredholm operator with 
index p + q, Now T0 - B0A0 is a finite sum of degenerate elements of 
L(X,Z). So Theorem 2.4 implies that T0 E PSF(X,Z) and ind(T0 ) = p + q. This 
completes the proof. 

4. RIESZ-MEROMORPHIC FUNCTIONS WITH FINITE INDEX 

The main problem treated in this section concerns the existence of a 
(global) meromorphic relative inverse of a Riesz-meromorphic function with 
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finite index. 

Throughout this section X and Y are complex Banach spaces. Further, A 

is a function with values in L(X,Y) and meromorphic on a region G. The set 

of singular points of A in G will be denoted by E. 

Let the extended integers mn[A;G] and md[A;G] be given by 

m [A;G] min {n(A(;\)) ;\€G\E} 
n 

and 

miA;G] min {d(A(;i.)) ;\€G\E}. 

Further, let 

H[A;G] = {;\ € G \ E : n(A(;\)) = m [A;G], d(A(;\)) 
n md[A;G]}, 

O~en we shall omit [A;G] in the symbols defined above. 

In general it is not clear whether or not H will be non-void. However, 

if A is Riesz-meromorphic on G, then it is not difficult to show that 

H # ~. Indeed, suppose that A is Riesz-meromorphic on G. If A has finite 

index k, then 

and hence 

n(A(;i.)) - d(A(;i.)) = ind(A(;\)) = k 

H = {;\ € G \ E n(A(;\)) m } 
n 

If A has index - 00 , then d(A(;i.)) = +oo for all;\ in G \ E, and so 

H={A€G\E n(A( ;\)) = m } • 
n 

Finally, if A has index +oo, then n(A(;i.)) = +oo for all;\ in G \ E, and 

therefore 

H={A€G\E 
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From these expressions for H, it easily follows that H is non-void whenever 

A is Riesz-meromorphic on G. 

4.1. THEOREM. Suppose that A is Riesz-meromorphia on G with finite index k. 

Let A0 € H[A;GJ, and let N and R be topologiaal complements of N(A(A0 )) and 

R(A(A 0 )) respeatively. Then the set r, given by 

r = G \ {A € G \ L : X = N(A(A))@ N, Y R(A(A))@ R}, 

is a disarete subset of G and there exists a holomorphia funation B defined 
on G \ r with values in L(Y,X) suah that 

( i) B is Riesz-meromorphic on G with index -k; 

(ii) for each A in G \ r, we have N(B(A)) =Rand R(B(A)) = N; 

(iii) for each A in G \ r, the operator B(A) is a relative inverse 
of A(A). 

PROOF. The proof consists of three parts. The first two parts deal with the 

case when k = O, the third with the general case. Observe that k = 0 is 

equivalent to the statement that mn = rod. 

(I) Suppose mn =rod= O. Then N = X and R = {O}, and hence 

A0 € Res[A]. Further, it follows that 

r = L u (G \ Res[A]). 

According to Theorem 3.4 the resolvent A- 1 of A is Riesz-meromorphic on G 

with index O. This implies that r is a discrete subset of G. If we define 

B to be the restriction of A-1 to G \ r, then Bis a holomorphic function 

with values in L(Y,X) which meets the requirements. 

(II) Suppose mn =rod= m ~ 1. Let x1, ... ,xm be a basis of N(A(A 0 )), 

and choose f 1, •.. ,fm in x:* such that 

and 

<f. ,x. > 
l J 

0 

o .. 
lJ 

( i ,j = 1 , •• .,m) 

(x E N; i 1 , • , • ,m) • 

The dimension· of R is equal to the codimension of R(A(A0)), and hence R 
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m 
C = l f. 8 Yi. 

i=1 l. 

Then N(c) = N and R(C) = R. Define T on G \ E by 

T(A) = A(A) +C. 
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The function T is holomorphic on G \ E and Riesz-meromorphic on G with 

index 0 (cf. Corollary 3,3). In particular, it follows that for each A in 

G \ E the operator T(A) is a Fredholm operator with index o. We shall show 

that 

Res[T] = G \ r. ( 1 ) 

Take A in Res[T]. Then A € G \ E and 

N(T(A)) = {O}, R(T(A)) = Y. 

From the definition of T(A) it is clear that 

N(A(A)) n N c N(T(A)), R(A(A)) + R ~ R(T(A)). 

Hence 

N(A(A)) n N = {O}, R(A(A)) + R = Y. 

Further, 

n(A(A)) ~m = codim N, d(A(A)) ~m =dim R. 

This implies that 

X = N(A(A)) i N, Y = R(A(A)) ID R, 

and so A € G \ r. Thus Res[T] is a subset of G \ r. Conversely, take A in 

G \ r. Then A certainly belongs to G \ E. Let x be in the null space of 
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T(A). Then A(A)x =-ex= C(-x). But 

R(A(A)) n R(C) R(A(A)) n R {O}, 

for A E G \ r. Thus A(A)x = Cx = O, and hence x E N(A(A)) n N(C). Since 

N(C) = N and N(A(A)) n N= {O}, this implies that x = O. Thus T(A) is in­

jective. From this and the fact that T(A) is a Fredholm operator with index 

O, it follows that T(A) is also surjective. Hence A E Res[T], and so G \ r 
is a subset of Res[T]. This proves (1). 

Let S denote the resolvent of T, i.e., S(A) = T(A)- 1 for each A in 

Res[T]. Since AO E G \ r, formula (1) shows that Res[T] ~ 0, and hence we 

can apply Theorem 3.4 to prove that S is Riesz-meromorphic on G with index 

o. Observe that r is the set of singular points of S in G. Thus r is a dis­

crete subset of G. 

Next we shall prove that for each A in G \ r 

<f. ,S(A)y.> = cS •• 
l. J l.J 

( i ,j = 1 ,. • .,m). (2) 

Take A in G \ r. From the definition of T(A) it is clear that 

From (1) we see that T(A) is bijective, and hence 

dim T(A)N(A(A)) =dim N(A(A)) ~m =dim R. 

This shows that 

R. ( 3) 

Since y1, ... ,ym form a basis of R, formula (3) implies that 

S(A)y1 , •.• ,S(A)ym form a basis of N(A(A)). Further, for j = 1, .. .,m·, 

m 
y. = T(A)S(A)y. = CS(A)y. = 

J J J l 
i=1 

<f. ,S(A)y.> y .. 
l. J l. 

Since y 1, ..• ,ym are linearly independent, the last formula yields (2). 

Consider for A in G \ r the operator 
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m 
Q(A) = l 

i=1 
f. 8 S(A)y .• 

l l 

The results of the preceding paragraph show that Q(A) is the projection of X 

onto N(A(A)) along N. Define on G \ r the function P by 

Since S is meromorphic on G, the same is true for the function Q! In 

addition, Q is degenerate. So it follows from Corollary 3.3 that P is 

Riesz-meromorphic on G with index O. From the properties of Q it follows 

that for each A in G \ r the operator P(A) is the projection of X onto N 

along N(A(A)). 

Define the function B on G \ r bY 

We shall prove that B has the required properties. Since S is holomorphic 

on G \ r, the same holds for the functions Q and P, and hence it is also 

true for B. Further we know that P and S ere Riesz-meromorphic on G with 

index O. So we can apply Proposition 3,5 to show that the same is true for 

the function B. 

For each A in G \ r, we have 

(see.formula (3)) and 

It remains to show that B(A) is a relative inverse of A(A) for each A in 

G \ r. 
Let A e G \ r. Since the range of P(A) is N, we have CP(A) = o. 

Further. A(A)Q(A) = 0 because Q(A) maps X onto N(A(A)). From these obser­

vations it follows that 
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and 

A(A)P(A) = A(A)(IX - Q(A)) = A(A). 

Combining these two equations, we obtain 

But then 

Similarly, using the fact that P(A)2 = P(A), we derive 

= P(A)S(A) = B(A). 

Thus B(A) is a relative inverse of A(A). This completes part (II) of the 

proof. 

(III) Next. we suppose that the index k is strictly positive. Let Y1 be 

the complex Banach space given by 

and ~et A1 be the function with values in L(X,Y1) defined on G \Eby 

(x € X). 

Then A1 is holomorphic on G \ E and Riesz-meromorphic on G with index O. 

Further, AO€ H[A1;G] and r is the complement in G of the set 

The results obtained in parts (I) and (II) of the present proof show that r 
is a discrete subset of G and that there exists a holomorphic function B1 
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defined on G \ r with values in L(Y1 ,x) such that 

(j) B1 is Riesz-meromorphic on G with index O; 

(jj) for each A in G \ r, we have N(B1(A)) =Rx~ and R(B1(A)) = N; 

(jjj) for each A in G \ r, the operator B1 (A) is a relative inverse 

of A1(A). 

Let cr be the canonical imbedding of Yin Y1. Thus cr(y) 

each yin Y. Define the function Bon G \ r by 

(y,O) for 

Then B is holomorphic on G \ r and B is Riesz-meromorphic on G with index 

-k (cf. Proposition 3,5), Thus B satisfies condition (i) of the theorem. A 

straightforward verification shows that B meets the other requirements too. 

The case k < 0 can be treated similarly, the difference being that A1 

is defined to be a function with values in L(X1,Y), where x1 is the complex 

Banach space given by 

x1 = X x IC-k. 

This completes the proof of Theorem 4.1. 

From Lemma 1.2 it follows that the function B appearing in Theorem 4.1 

is unique. Further, Lemma 1.1 shows that for each A in G \ r the operator 

B( A )A( A) is the projection of X onto N along N (A( A) ) , and that the operator 

A(A)B(A) is the projection of Y onto R(A(A)) along R. 

A first step in the direction of Theorem 4.1 may be found in 

F.V. Atkinson's paper [3] (see also §4 in [15]). The special case when 

X = Y and 

A( A) (A e: IC) ( 4) 

for some T in L(X) has been studied by P. Saphar (see Lemma 3 and Theorem 1 

in Chapter I of [39]). 

Under the conditions of Theorem 4.1, the function A is holomorphic and 

Fredholm operator valued on G \ L, It has been proved by several authors 

that this implies that the set l[A;G], defined by 
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Li[A;G] (G \ E) \ H[A;G], 

is a discrete subset of G \ E (see (2], [3], [11], [15], [30] and [41]; cf. 

also Tp.eorem III.3.8). A slightly stronger result may be obtained from 

Theorem 4. 1 • 

4.2. THEOREM. Suppose that A is Riesz-mePomorphia on G with finite index. 
Then li[A;G J is a disapete subset of G. 

PROOF. Let r be as in the preceding theorem, Then 

G \ r c H[A;G] c G \ li[A;G], ( 5) 

Hence Li[A;G] is contained in the discrete subset r of G. This implies the 

desired result. 

Next we present an example showing that the first inclusion in (5) may 

be strict. 

4,3, EXAMPLE. Let X = Y be the two-dimensional space a:2 , let G =II!, and let 

(a,8,A E ii!), 

Then A is holomorphic on ~ and the values of A are Fredholm operators with 

index O. Thus A is Riesz-meromorphic on ii! with index O. It is easily veri­

fied that 

and hence H[A;ll!] ~. Let N and r be as in Theorem 4. 1. Then N :f: {O} and 

N(A(A)) nN 

This implies that 

{O} (AE!V\f), 

2 
AEll!\r}:f:ll!, 

Since for all complex numbers a and 8 the quadratic equation 
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az2 + BZ + a = 0 (6) 

has a solution in c. we have 

u {N(A( ;q) A E C} = cr,2 , 

Hence er, \ r ; er, = H[A;C]. 

We conclude this section with a few remarks. Suppose that A is holo­

morphic and Fredholm operator valued on G. Further, suppose that the func­

tions 

;>. ~ n(A(;>.)) (;>. E G) 

and 

;>.~ d(A(;>.)) (;>. E G) 

are constant on G. In other words, suppose that H =G. In view of Theorem 

4.1 the question arises whether there exists a holomorphic function T de­

fined on G with values in L(Y,X) such that for each A in G the operator 

T(;>.) is a relative inverse of A(A), Using the result of K.-H. Forster and 

G. Garske mentioned at the end of Section I.1 (i.e., Theorem 12 in [12]), 

one can:·show that the answer is affirmative (see [5] for details), 

A second question is whether for each compact subset K of G there 

exists a (closed) subspace N of X such that 

X=N(A(;>.))iN (;>.EK), (7) 

P. Saphar has proved that.the answer is positive if A is as in formula (4) 

(see Proposition 2 in Chapter I of [39]). In general, however, the answer 

is negative. To see this, let A be as in Example 4.3, and let K be the 

closed unit disc in er,, Since for all complex numbers a and B the quadratic 

equation (6) has at least one solution in K, we have 

u {N(A(;>.)) : ;>.EK}= cr,2 , 

This implies that, if N is a subspace of X = c2 such that (7) is satisfied, 
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then N = {Q}, But this contradicts the fact that n(A(A)) 

the complex plane. 

1 for each A in 

Finally, one may ask whether for each compact subset K of G, there 

exists a (closed) subspace R of Y such that 

Y R(A(A)) e R (A EK). 

Again the answer is positive if A is of the form (4) (see Proposition 1 in 

Chapter I of [39]), and negative in the general case. It is not difficult 

to construct a counterexample. 

5, RIESZ-MEROMORPHIC FUNCTIONS WITH INFINITE INDEX 

The aim of this section is to prove an analogue of Theorem 4.1 for 

Riesz-meromorphic functions with infinite index. Here we restrict ourselves 

to the special case when X = Y. However, our results also hold for X ~ Y 

(see the remark at the end of this section). 

Throughout this section X will be a complex Banach space and G will be 

a region. The identity operator on X is denoted by I. Further, A will be a 

function with values in L(X), and we shall suppose that A is meromorphic 

on G. The set of singular points of A in G will be denoted by E. 

To get the desired analogue of Theorem 4.1, we need an extension of 

Theorem 3.4 to left [right] invertible operators. Such an extension may be 

obtained from the work of B. Gramsch (see Theorems 1, 11 and 12 in [14]). 

It is given in the next proposition. 

5.1. PROPOSITION, Suppose that A is Riesz-meromorphic on G with index 

- 00[+00 ]. Let A0 be a regular point of A in G, and suppose that A(A 0 ) is in­

jective [surjeotive]. Then there exists a discrete subset r of G and a ho­

lomorphic function S defined on G \ r with values in L(X) such that 

(i) 
(ii) 

(iii) 

E c r and Ao E G \ r; 
S is Riesz-meromorphio on G with index +00[-00 ]; 

for each A in G \ r, we have S(A)A(A) =I [A(A)S(A) =I]. 

PROOF. We consider only the case when A has index - 00 ; the other case can be 

treated similarly. 

Let K denote the canonical mapping from L(X) onto L(X)/K(X), and de­

fine the function a on G \ E by 
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a(A) K(A(A)), 

Then a is holomorphic on G \ L and meromorphic on G. The function A is 

Riesz-meromorphic on G, and hence for each A in L the coefficients of the 

principal part of the Laurent expansion of A at A are degenerate, This im­

plies that the points of L are removable singularities of the function a. 

Let a denote the holomorphic extension of a to the whole of G. Then the 

values of a are left invertible, but not invertible, in L(X)/K(X). This 

follows from Corollary 2.3 and the fact that A is Riesz-meromorphic on G 

with index - 00 • 

According to a result of G.R, Allan (Corollary of Theorem 1 in [1]), 

there exists a holomorphic function T defined on G with values in L(X)/K(X) 

such that for each A in G 

K(I). 

In [14] B. Gramsch has shown that such a function T may be lifted to a 

holomorphic function with values in L(X). More precisely, there exists a 

holomorphic function T : G ---'!> L(X) such that 

(A E G). 

Further, since A(A0 ) is injective, the function T can be chosen in such a 

way that T(A0 )A(A0 ) is bijective (see in [14] the proof of Theorem 1 and 

Remark 3). With this function T we shall construct the function S. 

Firstly, consider the function C defined on G \ L by 

Since T is holomorphic and A is meromorphic on G, the function C is mero­

morphic on G. For each A in L the coefficients of the principal part of the 

Laurent expansion of C at A are degenerate, because A has this property. 

Further, for each A in G \ L, we have 

K(T(A)A(A) - I) 
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This implies that C(A) is a compact operator for each A in G \ E. By 

combining these results, we obtain that C is essentially meromorphic on G. 

Secondly, we consider the function B defined on G \ E by 

C(A) + I. 

From Theorem 3.2 it follows that B is Riesz-meromorphic on G with index O. 

In addition, T is chosen in such a way that B(A0 ) is bijective. So we can 

apply Theorem 3.4 to show that the resolvent B-1 of B is a Riesz-meromor­

phic function on G with index O. In particular, it follows that G \ Res[B] 

is a discrete subset of G. Put 

r G \ Res[B]. 

Observe that E c rand AO E G \ r. 

Next we define S on G \ r by 

Then S is holomorphic on G \ r, and for each A in G \ r we have 

It remains to show that S satisfies condition (ii). In order to prove (ii), 

it suffices to show that the values of T are projective semi-Fredholm 

operators with index +oo. Because then we know that T is a Riesz-meromor­

phic function on G with index +00 , and we can use Proposition 3,5 and the 

fact that B- 1 is Riesz-meromorphic on G with index 0 to get (ii). 

Take A in G. Observe that K(T(A)) = T(A) is a le~ inverse of a(A) in 

L(X)/K(X). Since a(A) is not invertible in this algebra, it follows that 

K(T(A)) cannot have a le~ inverse in L(X)/K(X). So K(T(A)} has a right 

inverse, namely a(A), but is not left invertible. But then it follows from 

Corollary 2.3(iii) that T(A) is a projective semi-Fredholm operator with 

index +oo. This completes the proof. 

5.2. THEOREM. Suppose tha.t A is Riesz-1'1!eromoT'phic on G with index ..oo. Let 

AO E H[A;GJ, and let N be a topological complement of N(A(A0)). Then the 

set rn, given by 



f G \ {A€ G \ E X N(A(A)) ~ N}, 
r+ 

is a discPete subset of G. MoPeOVeP, thePe exist a discpete subset r of G 

a:nd a hoZomo't'phic function B defined on G \ r with vaZues in L(X) such 

that 

AO € G \ f and E c fn c f; 

+oo· , 
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( i) 

(ii) 

(iii) 

B is Riesz-mePomo't'phic on G with index 

fop each A in G \ f, the opePatoP B(A) 

A(A) and R(B(A)) = N. 

is a PeZative invePse of 

PROOF. The arguments are similar to those used in parts (I) and (II) of 

the proof of Theorem 4.1. Therefore we omit most of the details. 

From the definition off it is clear that E c f . Let m = m 
n n n 

If m = 0, then A(A 0 ) is injective, and one can apply the preceding pro-

position to show that in this case the theorem holds. Therefore we may as­

sume that m is strictly positive. 

Let x 1, ... ,xm and f 1, ... ,fm be defined as in part (II) of the proof 

of Theorem 4.1. Since d(A(A0 )) = +oo, there exist y 1 , .•. ,ym in X being lin­

early independent modulo R(A(A 0)). Define the function Ton G \Eby 

m 
T(A) A(A) + l fi G Yi· 

i=1 

Then T is holomorphic on G \ E and Riesz-meromorphic on G with index -""· 

Since T(A0 ) is injective, Proposition 5.1 shows the existence of a dis~ 

crete subset f of G and a holomorphic function S defined on G \ f with 

values in L(X) such that 

(j) E c f and AO € G \ r; 
(jj) S is Riesz-meromorphic on G with index +oo; 

(jjj) for each A in G \ f, we have S(A)T(A) I. 

The next step is to show that for each A in G \ r 

<f. ,S(A)y.> = o .. 
J. J l.J 

( i ,j 1 , ••• ,m) . 

The proof of this is similar to that of the corresponding formula in part 

(II) of the proof of Theorem 4.1. 

Define the function P on G \ f by 
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m 
I - L 

i=1 
f.@ S(A)y., 

i i 

Then for each A in G \ r the operator P(A) is the projection of X onto N 

along N(A(A)), and hence 

X = N(A(A)) ~ N. 

This implies that rn c r. Thus rn is a discrete subset of G. 

Finally, let B be defined on G \ r by 

B(A) P(A)S(A). 

Repeating the arguments used in part (II) of the proof of Theorem 4.1, one 

can show that B meets the requirements of the theorem. This completes the 

proof. 

Let r and B be as in the preceding theorem. Then for each A in G \ r 

the operator B{A)A{A) is the projection of X onto N along N{A(A)), and 

A(A)B(A) is a projection of X onto R(A(A)). This follows from Lemma 1.1. 

5.3, THEOREM. Suppose that A is Riesz-meromoY'phic on G with index +oo, Let 

A0 E H[A;GJ, and Zet R be an aZgebraic compZement of R(A(A 0)). Then the 

set rd, given by 

rd = G \ {A E G \ E X = R(A(A))@ R}, 

is a discrete subset of G. Moreover, there exist a discrete subset r of G 

and a hoZomoY'phic function B defined on G \ r with vaZues in L(X) such 

that 

(i} AO E G \ r and E c rd c r; 

(ii) Bis Riesz-meromoY'phia on G with index - 00 ; 

(iii) for each A in G \ r, the operator B(A} is a relative inverse of 

A(A) and N(B(A)) = R. 

PROOF. From the definition of rd it is clear that E c rd. Let m = md. 

If m = O, then A(A0 ) is surjective, and one can apply Proposition 5.1 to 

show that in this case the theorem holds. Therefore we may assume that m 

is strictly positive. 



Let y1, ... ,ym form a basis of R, and let x1, ... ,xm in N(A(A 0)) be 

linearly independent. Here we use that n(A(A0 )) =+co and that d(A(A0 )) = m. 

Choose r1, ••• ,fm in x* such that 

<f. ,x.> 
J. J 

o .. 
J.J 

and define the function T on G \ E by 

m 
T(A) = A(A) + l fi ®Yi· 

i=1 

( i ,j 1, ... ,m), 

Then T is holomorphic on G \ E and Riesz-meromorphic on G with index +co, 

It is not difficult to prove that T(A0) is surjective. Hence, by Proposi­

tion 5.1, there exist a discrete subset r of G and a holomorphic function 

S defined on G \ f with values in L(X) such that 

( j) E c r and AO E G \ r; 

(jj) S is Riesz-meromorphic on G with index -co; 

(jjj) for each A in G \ r, we have T(A)S(A) =I. 

Take A in G \f. It is clear from (jjj) that T(A) is surjective. 

Hence we have 

X = R(A(A)) + R. 

In addition, d(A(A)) ~ m dim R. Both facts together imply that 

X R(A(A)) $ R. 

This shows that A E G \ rd. Thus fd c r, and it follows that fd is a dis­

crete subset of G. 

Next we shall show that for each A in G \ f 

<f. ,S(A)y.> = o .. 
J. J J.J 

( i ,j 1,. .. ,m). (1) 

Take A in G \ r. For j = 1 , ... ,m, we have 

m 
A(A)S(A)y. = T(A)S(A)y. - l <f. ,S(A)y.> y. 

J J i=1 J. J J. 

m 
= Y· - l <f. ,S(A)y.> y .. 

J i=1 J. J J. 
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This shows that for j = 1, •.. ,m 

m 
Y· - l <f.,S(A)y.> y. E R(A(A)) n R. 

J i=1 1 J 1 

But R(A(A)) n R = {O}, and hence 

m 
y. = l <f. ,S(A)y.> y. 

J i=1 1 J 1 
( j = 1 , ••• ,m). 

Since y1 , ••• ,ym are linearly independent, the last formula imlies (1). 

Observe that (1) may be written as 

<S*(A)f. ,y .> = o .. 
1 J 1J 

(i,j = 1, ... ,m). 

Consider the function Q defined on G \ r by 

m 
Q(A) = l s*(A)f. 8 y .• 

i=1 1 1 

The result of the preceding paragraph shows that Q(A) is a projection of X 

onto R. We shall prove that the null space of Q(A) is R(A(A)). 

hence 

Take A in G \ r. If Q(A)y = O, then 

<S*(A)f.,y> = <f.,S(A)y> = 0 
1 1 

m 
A(A)S(A)y = T(A)S(A)y - l 

i=1 

(i = 1,. . .,m), 

<f.,S(A)y> y. = y, 
1 1 

and thus y E R(A(A)). Conversely, let y E R(A(A)). Since Q(A) is a projec­

tion, we have y = z + w with z in R(Q(A)) =Rand win N(Q(A)). But we 

have just proved that N(Q(A)) c R(A(A)). Therefore z = y - we R(A(A)) n R. 

This implies that z = O, and it follows that y = w E N(Q(A)). So we have 

proved that N(Q(A)) = R(A(A)). 

Define the function B on G \ r by setting 

B(A) = S(A)(I - Q(A)). 



Then Bis holomorphic on G \ r, and Bis Riesz-meromorphic on G with 

index 0 (use Corollary 3.3 and Proposition 3.5, respectively). It remains 

to show that statement (iii) of the theorem holds. 

Take A in G \ r. Since S(A) is injective, we have 

N(B(A)) = N(I - Q(A)). 

But Q(A) is a projection. Therefore N(I - Q(A)) =-R(Q(A)) = R. This shows 

that N(B(A)) = R. Observe that for each yin X 

m 
A(A)S(A)y = T(A)S(A)y - l <f.,S(A)y> y. = 

i=1 l l 

m 
= y - l <S*(A)f.,y> y. = 

i=1 l l 

= (I - Q(A) )y. 

Hence A(A)S(A) =I - Q(A). Furthermore 

because R(A(A)) = N(Q(A)). Finally, since Q(A) is a projection, we have 

From these equalities, it follows that 

and 

A(A)B(A)A(A) = A(A)S(A)(I - Q(A))A(A) = 

= (I - Q(A))A(A) = A(A) 

B(A)A(A)B(A) = B(A)A(A)S(A)(I - Q(A)) = 

= B(A)(I - Q(A)) 2 = B(A). 

Thus B(A) is a relative inverse of A(A), and the proof is complete. 

Let rand B be as in the preceding theorem. One can use Lemma 1.1 to 

show that for each A in G \ r the operator B(A)A(A) is a projection of X 
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along N(A(A)), and that A(A)B(A) is the projection of X onto R(A(A)) 

along R. 

We can use the preceding results to prove an analogue of Theorem 4.2 
for Riesz-meromorphic functions with arbitrary index (cf. [3], [11] and 

[30]). 

5.4. THEOREM. Suppose that A is Riesz-meromorphio on G. Then ~[A;GJ is a 

disorete subset of G. 

PROOF. In view of Theorem 4.2 we may assume that the index of A is infi­

nite. We consider only the case when A has index +oo; the other case can be 

treated similarly. 

Suppose that A has index +oo, and let rd be as in the preceding the­

orem. Then 

G \ fd c H[A;G] c G \ ~[A;G]. 

Hence ~[A;G] is contained in the discrete subset rd of G. This implies the 

desired result. 

In order to extend the preceding results to the case when X # Y, we 

only have to prove that Proposition 5.1 holds for Riesz-meromorphic func­

tions with values in L(X,Y), where Y is a complex Banach space possibly 

different from X. The proof of this is based on the extension of Allan's 

theorem due to Forster and Garske (see Theorem 12 in [12]) and on the fact 

that the lifting result of Gramsch [14] is valid for holomorphic functions 

with values in any quotient space of a complex Banach space modulo a 

closed subspace. 



CHAPTER III 

POLES OF THE RESOLVENT 

Let T be a bounded linear operator on a complex Banach space X. The 

complex number AO is said to be a pole of T of order m if AO is a pole of 

order m of the locally holomorphic function 

Here the symbol IX denotes the identity operator on X. It is well-known 

that the poles of T can be characterized in terms of the ascent a(T) and 

descent o(T) of T. In fact the following theorem holds: 0 is a pole of T 

of order m if and only if a(T) = o(T) = m. One can view this result as a 

characterization of the poles of the resolvent of a particular kind of 

locally holomorphic function, namely the function 

A(A) (A € ~). 

Then the question arises whether a similar result holds for an arbitrary 

locally holomorphic operator valued function A defined on an open neigh­

bourhood of O. In this chapter we show that this indeed is the case. 
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In order to get such a characterization for an arbitrary function A, 

we have to define a generalized ascent and descent. This is done in the 

first section of this chapter. The proof of the theorem for operators cited 

above is based on a certain decomposition of the underlying space. In 

Section 2 we prove that similar decompositions exist if A is of the form 

A(t..) = T +AS, ( 1) 

whereas in general this is not true. In Section 4 we prove that for our 

purposes it suffices to consider the case when A is of the form (1). More­

over we show that without loss of generality we may suppose that the ope­

rator Sin (1) is injective and maps closed sets onto closed sets. This 

enables us to prove the desired characterization theorem (Theorem 5.2). 

In Section 3 we introduce a stability number. This number plays an 

important role in the perturbation theory of Fredholm operator valued ho-
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lomorphic fl.lllctions. In Section 5 we employ this number to give some in­

formation about Fred.helm operator valued holomdrphic fl.lllctions with infi­

nite ascent or descent at O. 

In Section 6 we prove that in the commutative case there exist inte­

resting relationships between the ascent and descent of a holomorphic fl.lllc­

tion A at 0 and the ascent and descent of the zero coefficient A0 of the 

Taylor expansion of A at O. In Section 7 we use the results of Section 6 

to obtain some more information about the relationships between the spec­

tral properties of the operator A0 and those of the function A. 

1. GENERALIZED ASCENT AND DESCENT 

Let Ube a linear operator on a (complex) linear space E. Recall (see 

Section 5.41 in [42]) that the asaent of U is the extended integer a(U) 

given by 

a(U) = min {m N(~) N(~+1)}. 

Similarly, the d.esaent of U is the extended integer o(U) defined by 

o(U) min {m R(~) 

Here, as in the sequel, min ~ 

follows that 

+00 • From Lemmas 3.1 and 3.2 in [21] it 

a(U) = min {m N(U) n R(~) {O}} 

and 

o(U) min {m R(U) + N(~) E}. 

( 1 ) 

( 2) 

The notions of ascent and descent play a role in spectral theory. In 

particular they can be used to characterize poles of bol.lllded (and 1.lllbol.lllded 

closed) linear operators (cf. [26]; see also Theorem 5,1 in Section 5 for 

more details). One of the main purposes of this section is to generalize 

these notions in such a way that they become applicable to locally holo­

morphic operator valued fl.lllctions. 
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In the following E and Fare (complex) linear spaces, and T,T 1,T2 , .... 

are linear operators from E into F. The sequence {T }00 

1 will be denoted 
n n= 

by T, and we shall write T0 instead of T whenever this is convenient. For 

m = 0,1,2, ... , let Hm[T;TJ be the set of all x in E with the property that 

there exist x0 , ... ,xm in E such that x0 = x and 

n 

l 
i=O 

T.x . 
i n-i 

0 (n 0, ..• ,m). 

Further, let H'[T;TJ be the set of ally in F with the property that there 
m 

are x0 , ... ,xm in E such that 

(n 0, ... ,m). 

Recall that onm denotes the Kronecker delta. It is easily verified that 

{Hm[T;TJ}:=o is a decreasing sequence of subspaces of E and that 

{H~[T;TJ}:=o is an increasing sequence of subspaces of F. Moreover, 

Hb[T;TJ = R(T). 

The extended integer a[T;TJ, defined by 

a[T;TJ min {m : H [T;TJ = {O}}, 
m 

will be called the czsaent of T relative to the sequenae T; the extended 

integer o[T;TJ, given by 

O[T;TJ min {m : H' [T;TJ = F}, 
m 

will be called the desaent of T relative to the sequence T. 

By way of illustration, we consider the particular case when E F and 

T = 0 
n 

(n 2,3, ... ), 

where IE denotes the identity operator on E. Then we have for m 

H [T;TJ 
m 

H' [T·TJ 
m ' 

R(T) + N(~), 

0,1,2, •.. 
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and hence, using formulas (1) and (2), it follows that 

a[T ;TJ = a(T) • cS[T;TJ = cS(T). 

This justifies our terminology. 

Whenever this is convenient, we shall omit [T;TJ in the symbols de­

fined above. The following lemma will prove to be very useful. It may be 

viewed as an analogue of Lemma 3.5 in [21] and formula (2) in [33], 

1.1. LEMMA. Let m and k be non-negative integers. Then 

PROOF. The statement is trivially true for k = O. Therefore we assume that 

k is strictly positive. Observe that 

and 

dim H' /H' = m+k m 

k-1 
l dim H~+i+ 1 /H~+i 

i=O 

Thus it suffices to show that 

We shall prove that the quotient spaces appearing in this formula are li­

nearly isomorphic. 

For each x in Hm' let [x] denote the element of Hm/Hm+ 1 containing x. 

Take yin H~+l' Then there exist x0 , ••• ,xm+ 1 in E satisfying the equations 

n 

l 
i=O 

T.X . = 
i n-i 

(n O, .•. ,m+1 ). (3) 

Observe that this implies that x0 € Hm. If x0 , ••. ,xm+l in E form another 

solution of ( 3), then x - x € H , and so [x J = [x J Hence the func-
0 0 m+1 O O · 

tion ~from H' 1 into the quotient space H /H 1 , given by m+ m m+ 



is well-defined. A straightforward argument shows that ~ is linear. We 

shall prove that ~ is surjective and that the null space of ~ is equal to 

H'. This will imply that H' 1/H' and H /H 1 are linearly isomorphic. m m+ m m m+ 
Take [x] in H /H 1 , Since x E H , there exist x0 , •• , ,x in E such m m+ m m 

that x0 = x and 

n 

l 
i=O 

T.x . = O 
l. n-1 

Put xm+l O and define 

y 

(n 0, ... ,m). 

( 4) 

Then x0 , .•• ,xm+l form a solution of the equations (3) with y as in (4), 

Hence y E H~+l and ~(y) = [x0 J = [x]. Thus ~maps H~+l onto the whole of 

Hm/Hm+l' 
Next we prove that the null space of ~ is equal to H~. Take y in H~. 

Then there are u0 , ••• ,um in E such that 

n 

l 
i=O 

T.u . 
J. n-1 (n 0, ••• ,m). 

Put 

o, ~ = 1\:-1 (k 1 , ••• ,m+ 1 ) • 
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Then x0 , ... ,xm+l satisfy the equations (3), and hence ~(y) = [x0J =[OJ. 

Thus H' is a subset of the null space of ~. Conversely, take y in the null m 
space of~. Since y EH' 1 , there exist x0 , ••• ,x 1 in E satisfying (3), m+ m+ 
We know that [x0 J ~(y) =[OJ. Hence x0 E Hm+l' Choose v0 , ••• ,vm+l in E 

such that v 0 

n 
l T.v 

n-i 0 
i=O l. 

(n o, ... ,m+1). 

Then it is clear that 

n 
l T. (x . - v . ) 0 n,m+1Y 

i=O J. n-1 n-1 
( n = 0 , ••• ,m+ 1 ) . 



Since Vo = xo• it follows that 

n-1 
I 

i=O 
T. (x . 

l. n-1 
v .)=o y n-1 n,m+1 (n = 1 , • , • ,m+1). 

But this implies that y € H~. Thus the null space of ~ is a subset of H~, 

and the proof is complete. 

Let U be a linear operator on E. Under certain conditions on U the 

numbers a(U) and o(U) are equal. For instance this is the case if a(U) and 

o(U) are both finite (see Theorem 3.6 in [43] and Theorem 5.41-E in [42]). 

Another condition is that nullity n(U) and defect d(U) of U are both finite 

and equal (cf. statements (c) and (d) of Theorem 4.5 in [43]). The next two 

theorems extend these results. 

1.2. THEOREM. Suppose that a[T;TJ and o[T;TJ Cll'e both finite. Then 

a[T;TJ = O[T;TJ. 

PROOF. Put k = a[T;TJ and m = o[T;TJ. Then 

H_ = H_ = {O} --k -lt+m • H~ = H~+k = F. 

Applying the preceding lemma, we obtain 

and so Hm = Hm+k = {O}. Hence k ~m. The reverse inequality can be estab­

lished in the same WS¥. This proves the theorem. 

1.3. THEOREM. Let n(T) = d(T) <+=.Then a[T;TJ = o[T;TJ. 

PROOF. Firstly, we show that a[T;TJ ~ o[T;TJ. Without loss of generality we 

ma¥ suppose that o[T;TJ is finite. Put m = o[T;TJ. Then 

dim H'/H' =dim F/R(T) = d(T) = n(T) < +m, m O 

Applying Lemma 1.1, we get 

dim N(T)/H =dim Ho/H =dim H'/Ho' = n(T) < +m, m m m 



This implies that H = {O}, and hence it follows that a[T;Tl~ m m 
The reverse inequality can be proved similarly. 
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o[T;TJ. 

Using the same technique as in the proof of the preceding result, one 

can show that the following two statements are true: 

( i) If n(T) > d(T), then a[T;TJ +oo. 

(ii) If n(T) < d( T) , then o[T;TJ = +oo. 

This also extends a well-known result about the ascent and descent of a 

single linear operator. 

2. DECOMPOSITIONS 

Let Ube a linear operator on a (complex) linear space E, let m be a 

non-negative integer, and suppose that a(U) = o(U) = m. Then, as is well­

known (cf,, e.g., Section 5.41 in [42]), we have 

E N(~) $ R(~), 

the restriction of U to N(~) is a nilpotent linear operator on N(~) of 

index of nilpotency m, and the restriction of U to R(Um) is a bijective 

linear operator on R(~). The main goal of this section is to prove an ana­

loguous result for the generalized ascent and descent. In order to get such 

a result, we need a number of sequences of subspaces similar to those de­

fined in the preceding section. 

Let T = T0 and T = {T }00 

1 be as in Section 1. Form= 1,2, ... , we 
n n= 

define N [T;TJ to be the set of all x in E with the property that there m 
exist x0 , ••• ,xm_1 in E such that xm-l = x and 

n 

l 
i=O 

T.x . 
i n-i 

Further we put N0 [T;TJ 

of subspaces of E. 

0 ( n = O , ••• ,m-1 ) . 

{O}. Then {Nm[T;TJ}:=o is an increasing sequence 

Form= 1,2, ... , let Rm[T;TJ be the set of all x in E with the proper-

ty that there exist x0 , ••• ,xm in E such that x0 = x and 

n 

l 
i=O 

T.x . 
i n-i 

0 (n 1 , ••• ,m) . 
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Further we define R0[T;TJ = E. Then {Rm[T;TJ}:=o is a decreasing sequence 

of subspaces of E. Observe that 

H [T;TJ = N(T) n R [T;TJ m m 

for each non-negative integer m. 

Form= 0,1,2, ... , let N'[T;TJ be the set of ally in F with the 
m 

property that there exist x0 , ... ,xm in E such that xm O and 

n 

i~O Tixn-i = onmy (n O, .•• ,m). 

Then {N'[T·T]} 00 is an increasing sequence of subspaces of F. Observe that m ' m=O 
N0[T;TJ = {O} and that 

H'[T;TJ = R(T) + N'[T;TJ 
m m 

for each non-negative integer m. 

Finally, we define the sequence {R'[T·TJ} 00 Form= 1 ,2, ••• , let 
m ' m=O 

R'[T;TJ be the set of ally in F with the property that there exist m 
x0 , ... ,xro_ 1 in E such that 

n 

I 
i=O 

T.x . i n-i 

Further we put R0[T;TJ 

subspaces of F. 

(n O, ••• ,ro-1 ) • 

F. Then {R'[T·T]} 00 is a decreasing sequence of 
m ' m=O 

Often we shall omit [T;TJ in the symbols introduced above. 

Consider the particular case when E F and 

Then we have for m 

N 
m 

N' 
m 

T 
n 

0 

o, 1,2, ... 

N(~), R 
ro 

R' =R(~). 
m 

In Section 1 we observed that in the present case 

a[T;TJ a( T), o[T;TJ o( T) . 

(n 2,3,4, .... ). 



Hence, if a[T;TJ = o[T;TJ = m < -i-oo, then a(T) c (T) m < -i-oo, and thus 

E = N(or111) $ R(or111). 

In other words, if a[T;TJ c[T;TJ m < +oo, then in this particular case 

E F=N' $R'. 
m m 
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In the next example we shall show that these decompositions do not hold in 

general. 

2.1. EXAMPLE. Let E 

fined by 

F be ~ 3 , and let the operators T, T1 and T2 be de-

We shall prove that in this case a[T;TJ 

that 

o[T;TJ 2. Further we shall show 

and hence it will follow that in this case we do not have the desired de­

compositions. 

Take x in R2 • Then there exist u and v in ~ 3 such that 

o, o. 

This means that 

o. ( 1 ) 

In particular, x3 = 0. Conversely, let x E ~ 3 and suppose that x3 = o. Put 

u = v = O. Then (1) is satisfied, and hence x E R2 . This proves that 

( 2) 
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In the same way one can show that R1 = ~3 • From the definition of T, it is 

clear that 

( ) { 3 . } N T x E ~ • x1 = x2 = O . 

Thus H2 = N(T) n R2 = {o} and H1 = N(T) n R1 ~ {O}. We conclude that 

a[T;TJ = 2. 
• I T . . 3 Take yin N2 . hen there exist x and u in~ such that 

Tx o. 

In other words 

(3) 

This implies that y2 O. Conversely, let y E ~ 3 and suppose that y2 O. · 

Put x = (O,O,y1) and u = (O,-y1 ,y3). Then (3) is satisfied, and soy E N2· 

Hence 

In the same way one can show that 

From the definition of T it is clear that 

R(T) = {y E ~ 3 : y 1 O}. 

Thus H2 = R(T) + N2 = ~3 and H1 = R(T) + N1 ~ ~ 3 . We conclude that 

o[T;TJ = 2. 

Take x in N2 . Then there exists u in ~ 3 such that 

Tu= O, 

This means that 

o, 

( 4) 

( 5) 
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In particular, x, = O. Conversely, let x E re 3 and suppose that x, = o. Put 

u = (O,O,-x2). Then ( 5) is satisfied, and so x E N2 • Hence 

N2 {x € 11:3 : x, "' o}. 

Combining this with (2), we see that N2 n R2 # {O}. 

Take y in R2· Then there exist x and u in IC 3 such that 

Tx y, o. 

In other words 

o. (6) 

This implies that y 1 = O. Conversely, let y E IC 3 and suppose that y1 = 0. 

Put x = (y2 ,y3 ,o) and u = O. Then (6) is satisfied, and so y E R2· Thus 

R' 
2 

{y € IC3 oL 

Combining this with (4), we see that N2 n R2 ~ {O}. 

In the particular case when 

T = 0 n 
( n = 2 ,3, ... ) , (7) 

we can prove that direct sum decompositions exist. For a detailed investi­

gation of this case we refer to the author's interim report [6]. Here we 
present only the main results of [6], which lead us directly to a decompo­

sition theorem similar to the result mentioned at the beginning of this 

section. In Section 4 we shall show that for many purposes it suffices to 

consider the special case when (7) is satisfied. For an alternative defini­

tion of the sequences of subspaces {N }, {R }, {N'} and {R'} which can be m m m m 
used in this context, we refer to the remark at the end of this section. 

In the remainder of this section it is assumed that (7) holds. The 

operator T1 will be denoted by s. 
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2.2. PROPOSITION. Let m be a non-negative integer. Then 

( i) TNm+1 c N' · m' 
(ii) TN c N~; m 
(iii) TR = R~+1; m 
(iv) TR c R~; m 
( v) SN = N'. 

m m' 
(vi) SR c R' · m m' 
(vii) R = s-1R 1 • 

m m 

PROOF. Observe that N1 = N(T) and R1 = R(T). Using this one easily verifies 

that the proposition is true form= 0. In the following m is assumed to be 

strictly positive. 

(i) Take x in Nm+l' Then there exist x0 , ••• ,xm in E such that 

0 (i 1 , ••• ,m) • 

It is clear that 

(i 1 , ••• ,m-1 ) , 

Thus -Tx € N~. Hence Tx € N~, and the proof of (i) is complete. 

(ii) Follows immediately from (i) and the fact that N is a subset of 
m 

Nm+1' 
(iii) Take x in R and put y 

m 
Tx. Since x €Rm' there exist x0 , ••• ,xm 

in E such that 

( i = 1 , .. .,m). ( 8) 

So we have 

(i=1, .. .,m), (9) 

and hence y € R~+ 1 • We conclude that TRm is a subset of R~+l' 

To prove the reverse inclusion, take yin R~+l' Then there exist 

x0 , ••• ,xm in E such that (9) is satisfied. In particular, the second part 

of formula ( 8) holds, and so x0 € Rm. Hence y = Tx0 € TRm. This proves (iii). 

(iv) Follows immediately from (iii) and the fact that R' 1 is a sub­m+ 



set of R'. m 
(v) Take x in Nm and put y 

x0 , ... ,xm_ 1 in E such that xm-l 

Tx0 = o, Tx. + Sxi-1 1 

It 1S clear that 

Tx0 O, Tx. + Sxi-1 1 

Thus y € N'. We conclude that SN m m 

Sx. Since x E N , there exist 
m 

x and 

0 (i 1 , ••• ,m-1 ) . 

= 0 (i 1 , ... ,m-1 ) , Sxm-1 

is a subset of N'. m 

61 

( 10) 

y. ( 11 ) 

Conversely, take yin N~. Then there exist x0 , ••• ,xm-l in E such that 

(11) is satisfied. In particular, formula (10) holds, and so xm_1 E Nm. 

Hence y = Sx E SN , and the proof of (v) is complete. 
m-1 m 

(vi) Take x in Rm. Then there exist x0 , ••• ,xm in E such that (8) is 

satisfied. So we have 

-Sx, (i 1 , ••• ,m-1 ) . ( 12) 

It follows that -Sx € R'. Hence Sx € R', and the proof of (vi) is complete. 
m m 

(vii) As an immediate consequence of (vi), we have R c s-1R'. To 
m m 

prove the reverse inclusion, take x in s-1R1 • Then -Sx € R', and hence 
m m 

there exist x1 , .•• ,xm in E such that (12) is satisfied. Put x0 = x. Then 

formula (8) holds, and so x € R. This proves (vii). 
m 

2.3. LEMMA. Let k and m be non-negative integers. Suppose that 

Nk n Rm= {O}. Then Nk n R~ = {O}. 

PROOF. Take y in Nk n R~. Since y € 

that y = Sx for some x in Nk. Using 

x E S-lR'. By Proposition 2.2(vii), 

Nk, it follows from Proposition 2.2(v) 

the fact that y € R', we see that 
-1 m 

m 
we have S R~ = Rm' and so x € 

x E Nk n Rm' But Nk n Rm= {O} by hypothesis. We conclude that x 

y Sx O, and the proof is complete. 

2.4. PROPOSITION. Suppose that a[T;TJ m < +00 • Then 

{O} 

R • Thus 
m 

0. Hence 
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fork= 0,1,2, .... In partiauiar, N n R = {o} and N' n R' = {o}. 
m m m m 

PROOF. In view of the preceding lemma, it suffices to show that 

( 13) 

for k = 0,1,2, ... . We prove this by induction. 

It is clear that formula (13) holds for k 0. Let k be a non-negative 

integer such that (13) is true. We shall prove that Nk+1 n R = {o}. 
m 

Take x in Nk+l n R Since x € Nk+1 ' there exist u0 , ... ·~ in E such 
m 

that 

~ = x, Tua o, Tu. + Sui-1 = 0 (i = 1 ' ... ,k) . ( 14) 
l 

Since x € R m' there exist vo,. .. ,vm in E such that 

VO x, Tv. + Svi-1 = 0 (i = 1 , ••• ,m) . ( 15) 
l 

Combining (14) and (15), we see that u0 E Hk+m' By assumption a[T;TJ = m, 

and so Hk+m = {O}. Hence u0 = O. This, together with (14), implies that 

x E Nk. Since x E Rm too, we have x E Nk n Rm. Using the induction hypoth­

esis, we get x = O. This proves the proposition. 

2.5. LEMMA. Let k and m be non-negative integers. Suppose that N~ + Rk F. 

Then Nm+ Rk = E. 

PROOF. Take x in E. By hypothesis F = N~ + Rk, and hence we can write 

Sx = y + z with y in N~ and z in Rk. Proposition 2.2(v) shows that y Su 

for some.u in Nm. It is clear that S(x - u) = z E Rk, and so x - u E s-1Rk. 

But S-lRk =~by Proposition 2.2(vii). Thus x - u E ~· Since 

x = u + (x - u), it follows that x €Nm+~· This proves the lemma. 

2.6. PROPOSITION. Suppose that o[T;TJ = m < +00 , Then 

E, F 

fork= 0,1,2, .•.. In partiauiar, Nm+ Rm= E and N~ + R~ =F. 

PROOF. In view of the preceding lemma, it suffices to show that 
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N' + R' = F (16) m k 

fork= 0,1,2, •••• We prove this by induction. 

It is clear that formula (16) holds fork O. Let k be a non-negative 

integer such that (16) is true. We shall prove that N~ + Rk+l =F. 

Take y in F. By assumption ~[T;TJ = m, and so R(T) + N' = H' = F. m m 
Hence we can write y = Tx + z, with x E E and z E N~. Using the induction 

hypothesis, we see that there exist v in Rk and win N~ such that 

Sx = v + w. From Proposition 2.2(v) we know that w = ·su for some u in N • 
-1 -1 m 

It is clear that S(x - u) = v E Rk, and so x - u E S Rk. But S Rk = ~ 

by Proposition 2.2(vii). Hence x - u E Rk. Using Proposition 2.2(iii), we 

get Tx - Tu E TRk = Rk+1• Since Tx = y - z, it follows that 

y - (z +Tu) E Rk+1• It remains to prove that z +Tu EN~. 

Recall that z E N' and u E N • Hence z + Tu belongs to the set m m 
N' + TN • But TN is a subset of N' by Proposition 2.2(ii). Since N' is a m m m m m 
linear subspace of F, it follows that N' + TN = N'. This completes the m m m 
proof. 

In the remainder of this section we shall suppose that 

a[T;TJ = ~[T;TJ = m < +co. 

Then, by Propositions 2.4 and 2.6, we have 

F=N'iR'. m m 

We proceed by studying the restrictions of the operators T and S to the 

subspaces Nm and Rm. 

According to Proposition 2.2(ii), the operator T maps N into N'. m m 
Hence we may consider the restriction of T to N as a linear operator from 

m 
Nm into N~. This operator will be denoted by TN. The operators TR : Rm~ R~ 

and SN : N ~ N' are defined similarly (cf. statements (iv) and (v) of m m 
Proposition 2.2). Observe that SN is surjective. This is immediate from 

Proposition 2.2(v). 

2.7. PROPOSITION. The operator SN is bijective. 

PROOF. The null space of SN is Nm n N(S). From Proposition 2.2(vii) it is 
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clear that N(S) c R • Thus the null space of SN is a subset of N n R • m m m 
But Nm n Rm = {O} by Proposition 2.4. Hence SN is injective. The surjectiv-

ity of SN has already been established above. 

2.8. PROPOSITION. The ope:r>ator TR is bijective. 

PROOF. The null space of TR is N(T) n R • We know that N(T} n R = H • By m m m 
assumption a[T;TJ = m, and so Hm = {O}. This proves that TR is injective. 

The range of TR is TRm. Proposition 2.2(iii) shows that TRm = R~+l' It 

remains to prove that 

R' = R'. m+l m ( 17) 

R(T) 

First of all, we consider the case when m = O. Then 6[T;TJ = o, and so 

= H' =F. Hence R' = R(T) = F = R01 • This proves that (17) holds if 
0 1 

m= o. 
Next we consider the case when m is strictly positive. Since 

R~+l c R~, it suffices to show that R~ is a subset of R~+l' Take yin R~. 

Then there exist u0 , ••• ,um-l in E such that 

Tu0 = y, Tui + Sui-l = o (i = 1, ••• ,m-1). 

By assumption 6 [T;TJ = m, .and so H~ =F. In particular, -Sum-l E H~. Hence 

there exist v0 , ••• ,vm in E such that 

Tv0 = o, Tvi + Svi-l = o (i = 1,. •• ,m-1), Tvm + Svm-l = -Sum-1' 

It is clear that 

T(u. + v.) + S(u. 1 + v. 1) = O 
1 1 1- 1-

for i = 1, ••• ,m-1, and 

Tv + S(v 1 + u 1) = O. m m- m-

Thus y E R~+l' and the proof is complete. 



Let Mand N be (complex) linear spaces, and let U and V be linear 

operators from Minto N. Suppose that V is bijective. We say that U is 

nilpotent of index m relative to V if v- 1u is a nilpotent linear operator 

on M of index of nilpotency m. 

2.9. PROPOSITION. The operator TN is nilpotent of index m relative to SN. 

PROOF. By Proposition 2.7, the operator SN is bijective. Let W denote the 

product of TN and (SN)- 1 • Thus W is the linear operator on Nm defined by 

We have to prove that W is nilpotent of index of nilpotency m. 

First of all, we consider the case when m = O. Then N = {O}, and so 
m 

= 0 for each non-negative integer k. This implies that W is nilpotent 

of index of nilpotency 0. 

Next we consider the case when m is strictly positive. Using induc­

tion, we shall prove that 

( 18) 

for k = O, ••• ,m. 

It is clear that (18) holds fork= O. Further, the null space of W 

is equal to that of TN. Hence N(W) = N(T) n Nm. Since N(T) = N1 c Nm' we 

have N(W) = N1 • Thus formula (18) also holds fork= 1. Let k be a positive 

integer less than m such that (18) is true. We shall prove that 

N( if+1) = Nk+1' 
Take x in Nk+l' Then there exist x0 , ... ,~ in E such that~ x and 

(i 1, ... ,k). 

Observe that ~ E Nk+l c Nm and ~-l E Nk c Nm. Further, 

and so 

w~ + ~-1 o. ( 19) 
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From the induction hypothesis we see that ~- 1 E N(vf). Thus vf~_ 1 = O. 

Applying vf to both sides of the equation (19), we get vf-+ 1~ = O. Hence 

x = ~ e N(vf+1 ). This shows that Nk+ 1 is a subset of N(vf+ 1). 
. . . ( _ _k+1) 

To prove the reverse inclusion, take x in N w-- • Then 

-Wx E N(vf) = Nk, and hence there exist x0 , ••• ,~_ 1 in E such that 

~- 1 = -Wx and 

( i = 1 ' ••• ,k-1 ) . (20) 

Since ~- 1 = -Wx, we have Tx + S~-l 

that x E Nk+l" Thus (18) holds fork 

From formula (18) we see that 

O. Combining this with (20), we see 

0, ••. ,m. 

N(~-1) = N 1' 
m-

N(~) = N • 
m 

The second part of (21) shows that~= O. It remains to prove that 

~- 1 # 0. In view of the first part of (21), it suffices to show that 

Nm-1 # Nm. 

( 21 ) 

Suppose that N 1 = N • We shall prove that this assumption leads to 
m- m 

a contradiction. 

First of all, we consider the case when m = 1. Then we have 

N(T) = N1 = N0 = {O}. This implies that H0 = {O}, which contradicts the 

hypothesis concerning a[T;TJ. 

Next we consider the case when m ~ 2. Take x in Hm-l' Then there exist 

u0 , ••• ,um-l in E such that 

O, 0 (i 1 , ••• ,m-1 ) • 

It is clear that um-l E Nm. By assumption Nm Nm-l' and so um-l E Nm-l. 

Hence there exist v0 , ••• ,vm_2 in E such that 

vm-2 = um-1' Tv0 o, Tv. + Svi-1 0 (i 1, •.• ,m-2). 
i 

Define xO, .•. ,xm in E by 

L~ - for i O, 

x. vi-1 for i 1 , ••. ,m-1 , 
i 

for i m. 



0 (i 1 , ••• ,m) . 

This implies that x £ Hm. Thus Hm_ 1 is a subset of Hm. By hypothesis 

a[T;TJ = m, and so H = {O}. We conclude that H 1 = {O} too. Hence m m-
m= a[T;TJ ~ m-1, and we have a contradiction. This proves the proposition. 

Summarizing, we have the following generalization of the decomposition 

result mentioned at the beginning of this section. 

2.10. THEOREM. Let m be a non-negative integer, and suppose that 

a[T;TJ = o[T;TJ = m, where T is the sequence {S,O,O, •... }. Then 
( i) 

(ii) 

(iii) 

(iv) 

( v) 

E = N [T·TJ ~ R [T·TJ and F = N'[T·TJ ~ R'[T·TJ· m' m' m' m'' 
S maps R [T;TJ into R'[T;TJ; 

m m 
S maps N [T; TJ into N' [T; TJ and the restriction of S to N [T; TJ , 

m m m 
considered as a linear operator from N [T;TJ into N'[T;TJ, is 

m m 
bijective; 

T maps R [T;TJ into R'[T;TJ and the restriction of T to R [T;TJ, m m m 
considered as a linear operator from R [T;TJ into R'[T;TJ, is m m 
bijective; 

T maps N [T;TJ into N'[T;TJ and the restriction of T to N [T;TJ, m m m 
considered as a linear operator from N [T;TJ into N'[T;TJ, is m m 
nilpotent of index m relative to the restriction of S to 

N [T;TJ, considered as a linear operator from N [T;TJ into m m 
N' [T;TJ. 

m 

In the particular case considered here, namely when T is the sequence 

{s,o,o, ... }, we have 

N0 = {O}, (m = 0,1,2, ... ). (22) 

The second part of this formula will be used in the proof of Lemma 4.7. 
Here follows the proof of (22). 

First of all, we note that N0 = {O} and N1 = N(T), and hence 
-1 N1 = T SN0 • Next, let m be a positive integer, and take x in Nm+ 1• Then 

there exist x0 , •.. ,xm in E such that 

0 (i 1 , ••• ,m) • 
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It is clear that x 1 E N • Since Tx = Tx = _1m- m m -Sx 1 , it follows that 
m- -1 

Tx E SNm. Hence x E T SNm. We conclude that Nm+ 1 
To prove the reverse inclusion, take x in T-1SN . 

m 

is a subset of T SN . 
m 

Then Tx = Su for some u 

in Nm. Choose x0 , ... ,xm_ 1 in E such that 

xm-1 = u, (i = 1 , ..• ,m-1). 

If we put xm = -x, then we have Txm + Sxm_ 1 = O. This implies that 

-x E Nm+ 1 • Hence x E Nm+ 1 ' and the proof of (22) is complete. 

In the same way one can prove that 

RO = E, Rm+1 s-1TR (m = 0,1,2, ... ), 
m 

N' {O}, N~+1 = ST- 1N• (m = 0' 1 ,2 •.•• ) ' 0 m 
R' = F, R~+1 TS- 1R I (m = 0,1,2,. .. ). 

0 m 

(23) 

(24) 

(25) 

In the author's interim report [6], the formulas (22) up to and including 

(25) are employed as definitions. Some of the sequences of subspaces defined 

in this way have been used earlier by T. Kato ([24], page 288), M.A. Kaas­

hoek ([20], page 453), R.K. Oliver ([33], pp. 364, 366) and S. Goldberg 

( [ 13]' pp. 114' 115). 

3. THE STABILITY NUMBER 

Let T = T0 and T = {T }00 

1 be as in Section 1. The set of all x in E 
n n= 

with the property that there exists a sequence {x.}~ 0 in E such that 
1 1= 

x0 = x and 

n 

l 
i=O 

T.x . = 0 
1 n-1 

( n = O, 1 ,2, ••. ) 

will be denoted by H00[T;TJ. Observe that H00[T;TJ is a subspace of N(T). In 

fact 

H [T;TJ c H [T;TJ 
"' m 

(m = 0,1,2,. .. ). ( 1 ) 

The extended integer k[T;TJ, defined by 

k[T;TJ dim N(T)/H00[T;TJ, 



is called the stabiZit;y number of T reZative to the sequenae T. This nsme 

will be explained at the end of this section, 

Let 

H[T;TJ 
00 

= n Hm[T;TJ, 
m=O 

00 

H'[T;TJ = u 
m=O 

H' [T;TJ. m 

Observe that H[T;TJ is a subspace of E contained in N(T), and that H'[T;TJ 

is a subspace of F containing R(T). For brevity we shall often use the fol­

lowing notations 

H = H[T;TJ, H' = H'[T;TJ. 

The aim of this section is to show that 

k[T;TJ =dim N(T)/H =dim H'/R(T). (2) 

We begin by proving the second part of (2). 

3.1. PROPOSITION. dim N(T)/H =dim H'/R(T). 

PROOF. Without loss of generality we may assume that at least one of the 

extended integers appearing in the statement is finite. Suppose that 

dim H'/R(T) is finite. Then, as is easily verified, there exists a non-ne­

gative integer p such that 

H' = H' m P 
(m = p,p+1, ••• ) • 

Applying Lemma 1.1, we see that this implies that 

H = H m p 
(m = p,p+1, ... ). 

Hence H = H and H' = H', and thus, again by Lemma 1.1, p p 

dim N(T)/H =dim H0/Hp =dim H~/H0 =dim H'/R(T). 

A similar proof can be ~iven when dim N(T)/H is finite. 

Next we investigate the relationship between the sets H00 and H. From 
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formula (1) it is clear that 

H c H. 
00 

This inclusion may be strict. 

3.2. EXAMPLE. We shall construct an operator Ton the sequence space i 1 

such that 

{O} # n R(T'11) c N(T). 
m=1 

( 3) 

( 4) 

This provides an example showing that the inclusion in (3) may be strict. 

Indeed, suppose that E = F, let T0 = T be an operator on E satisfying (4), 

let T1 be the identity operator on E, and let 

T 
n 

0 (n 2 ,3 •... ) . 

Then, as was established in Section 1, 

H 
m 

N(T) n R(T'11) 

Hence, by formula (4), 

H = n R(T'11) # {O}. 
m=1 

(m 0,1,2 •.•• ). 

Take x in H . Then there exists a sequence {x }00 
0 in E such that x0 = x 

oo n n= 
and 

Tx + x = 0 
n n-1 

Clearly, this implies that 

x 1 E n R(Tm) c N(T). 
m=1 

(n 1,2, ••• ). 

Hence x = x0 = -Tx1 = 0. This shows that H00 = {O}, and thus H00 #H. 

The definition of the operator T is as follows. Let {im}:=1 be the 

sequence of positive integers defined by 



Define T on Z1 by setting 

= i + m m (m = 1 ,2, •.• ). 

l xi -1 
m=2 m 

for n = 1, 

(Tx) = 0 
n 

for n = i 1 ,i2 ,i3 , ••••• , 

otherwise. 
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Then T is a well-defined linear operator on z1 • We shall show that T has the 

required properties. 

For each positive integer n, let en be the element in Z1 with all co­

ordinates zero except the n-th, which is equal t.o one. From the definition 

of T it is clear that 

Te1 = O. 

Let V be the set {i m = 1,2, ••• }. A straightforward argument shows that m 
for n = 2,3, ... 

if n+1 e: V, 

if n+1 t V. 

From this it follows that 

(m = 1,2,. •• ). 

00 

Hence e 1 e: n R(or1'1). This proves the first part of (4). 
m=1 

Next we prove the second half of (4). From the definition of Tit fol-

lows that for each x in z1 

(n = 2,3, ... ). 

Hence, if y i:: 

shows that 

00 

n R(or1'1) • then yn = O 
m=1 

00 

n R(or1'1) c N(T), 
m=1 

(n = 2,3, .•. ), and thus Ty= O. This 
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and the proof is complete. 

We proceed by showing that H00 H whenever there exists a non-negative 

integer p such that 

H H 
m P 

(m = p,p+1, ... ). ( 5) 

In order to do this we need the following notations. For k,m = 0,1,2, ... , 

let H~k) be the set of all (u0 , ••• ,~) in the product space ~+ 1 with the 

property that there exist x0 , ... ,~+m in E such that (x0 , ... ,~) 

(u0 , .. .,~) and 

n 

l 
f=O 

Further, let 

T.x . = 0 
l n-1 

n 
m=O 

(n = k,. .. ,k+m). 

Identifying E1 and E, we obtain 

H(O) = H 
m m 

( m = O, 1 ,2, •.• ) , 

3.3. LEMMA. Suppose that (5) is satisfied for some non-negative integer p, 

Let k be a non-negative integer, and let (u0 , ... ,~) E H(k). Then there 

' ' h h ( ) H(k+1) ewiata x ~n E Bua tat u0 , ••• ,~,x E • 

PROOF. Define form= 0,1,2, ..... the subset Vm of Eby 

V = {x E E 
m 

We need to prove that 

n 
m=O 

v # ~. 
m 

0,1,2, .•• the set V 

(6) 

is non-void. This First of all, we note that for m = 

can be seen as follows. Since H(k) 
(k) 

(uo•····~) E Hm+1' 

(k)m 
is a subset of Hm+ 1 , we have 

Choose x0 , ..• ,~+m+l in E such that 

= (u0 , ... ,~) and 



n 
I 

i=O 
T.x . = 0 1 n-1 

(n = k, ••• ,k+m+1). 

(k+1) 
Then (u0 , ••• ,'1t,~+ 1 ) E Hm , and hence ~+ 1 E Vm. 

From the definitions it is clear that 

H(k+1) c H(k+1) 
m+1 m 

(m=0,1,2, ... ), 

and so we have 

( m = O, 1 ,2, ••• ) • 

Next we shall prove that for any x in Vm 

V = x + H 
m m 

(m=o,1,2, ... ). 

(7) 

(8) 

Take x in Vm. Then (u0 , ..• ,'1t,x) E H~k+l), and hence there exists a 

solution x0 , ••• ,~+m+ 1 in E of the equations 

n 
I 

i=O 
T.X . = 0 1 n-1 

(n = k+1, .•. ,k+m+1) (9) 

such that (x0 , ••• ,~,~+1 ) = (u0 , ••• ,'1t,x). Let y be another element of 

Vm' and let y0 , ••• ,yk+m+1 in E form a solution of (9) with 

(y0 , .•. ,yk,yk+1) = (u0 , ... ,'1t,y). It is clear that 

n 
I T.(y . - x .) = 0 

i=O 1 n-1 n-1 
(n = k+1, •.• ,k+m+1). 

Using the fact that x. = y. for i 
1 1 

o, .•• ,k, we obtain 

n-k-1 
I 

i=O 
T. (y . 

1 n-1 x . ) = 0 n-1 (n = k+1 .... ,k+m+1). 

This implies that Yk+l 

y - x E Hm. This p~oves 

Conversely, take z 

- xk+1 E Hm' But ~+ 1 = x and yk+l = y, and so 
that V is a subset of x + H • m m 
in x + Hm. Then z - x € Hm' and hence there exist 

v0 , ••• ,vm in E such that v0 = z - x and 

n 

I 
i=O 

T.v . = 0 1 n-1 
(n .. O, ••• ,m). 

73 
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Define z0 , ••. ,zk+m+l in Eby 

{x 
for i = 0 •••• ,k' 

z. 

x: + v. k 1 
i 

for i k+1, .•• ,k+m+1. 
i i- -

A straightforward computation shows that z0 , ••• ,zk+m+1 form a solution of 

th . ( ) . . . ( ) ( k+ 1 ) 
e equations 9 • This implies that z0 , ••• ,zk,zk+1 E Hm Observe 

that (z0 , ••• ,zk,zk+ 1) = (u0 , ••• ,~,z). Hence z E Vm. This shows that x + Hm 

is a subset of V , and the proof of (8) is complete. 
m 

Now we shall use the hypothesis that (5) is satisfied for some non-

negative integer p. Let m be an integer with m ~ p and take x in V Then 

x is also in VP, for v is a subset of V 
m 

But, since m ~ p, we have H = H Hence m p 
together with ( 7), implies that 

n 
m=O 

v 
m 

v . 
p 

m 
Thus V x + H and V =x+H 

p m m p p 
v v for m p,p+1, ... This, 

m p 

Since V is non-void, it follows that formula (6) holds, and the proof is 
p 

complete. 

3.4. PROPOSITION. Suppose that 

H H 
m p 

(m = p ,p+1 , ••• ) 

for some non-negative integer p. Then H00 =H. 

PROOF. Since H00 is a subset of H, it suffices to show that H c H00 • Take x 

in H and put x0 = x. Then 

x E H(O) 
0 ' 

and hence, by the preceding lemma, there exists x1 in E such that 

But then, using the same argument, there exists x2 in E such that 



Proceeding in this wa;y, we obtain a sequence {~}==O in E such that for 

k = 0,1,2, ••• 

In particular , 

( ) H(k) 
xo•· · · ·~ <E o (k = 0,1,2, •.• ). 

But this implies that 

k 
l T.~ . = 0 

i=O 1 -i. 
( k = 0. 1 ,2 •••• ) • 

and hence x = x0 oE Hm. This completes the proof. 

The preceding proposition says that Hm = H, provided that (5) is 

satisfied for some non-negative integer p. Observe that (5) is equivalent 

to 

H' = H' m p 
(m = p,p+1, ••• ). 

75 

This is immediate from Lemma 1.1. It is easily verified that (5) holds for 

some non-negative integer p if dim N(T)/H (or, equivalently, dim H'/R(T)) 

is finite. This implies that the following corollary to Proposition 2.4 is 

true·. 

3,5, COROLLARY. If dim N(T)/H < +m, then H00 =H. 

We now come to the proof of the first equality in (2). 

3.6. PROPOSITION. k[T;TJ =dim N(T)/H. 

PROOF. Since H00 is contained in H, we have 

k[T;TJ = dim N(T)/H00 .::,, dim N(T)/H. 

By Corollary 3.5, this inequality cannot be strict. Hence the result 
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follows. 

Summarizing, we have the following theorem. 

3,7. THEOREM. k[T;TJ =dim N(T)/H[T;TJ =dim H'[T;TJ/R(T). 

In the remainder of this section we shall explain the term "stability 

number". Further we shall introduce some notations concerning locally holo­

morphic operator valued functions. 

Let X and Y be complex Banach spaces, and let A be a locally holo­

morphic function defined on an open neighbourhood of O with values in 

L(X,Y). Denote by A the n-th coefficient of the Taylor expansion of A at 
n 

O. Recall that 

( n = 0, 1 ,2, ••• ) , 

where A(n) denotes the n-th derivative of the function A. In particular, 

A0 = A(O). The stability number Of A0 relative to the sequence {An}:=1 
will be denoted by k[A]. It is called the stabiZity nwriber of A (at 0). The 

importance of this number appears from the following stability theorem. 

3.8. THEOREM. Suppose t'hat A0 has aZosed range and that k[A] is finite. 

Then there e:J:ists o > 0 suah that 

(i) R(A(A)) is aZosed for IA! < o; 

(ii) n(A(A)) = n(A0) - k[AJ for> o < IAI < o; 

(iii) d(A(A)) = d(A0 ) - k[AJ for o < IAI < o. 

This.theorem is a special case of a more general result due to 

K.-H. Forster (cf. Theorems 1 and 2 in [11]; for related results see [20], 

[24] and [30]). It will be used in Section 5, 

We have already introduced the symbol k[A]. In the same way we define 

the symbols Hm[A], H~[A], Nm[A], N~[A], Rm[A], R~[A], H,.,[A], H[A], a[A] 

and o[AJ. Thus if' A denotes the sequence {A }00 

1, then 
n n= 

H [A] = H [A0 ;AJ m m (m = 0,1,2, ••• ), 

H.'[A] = H'[A ·A] m m O' (m = 0. 1 ,2 •••• ) • 

N [A] = N [A0 ;AJ m m (m = 0. 1 ,2 •••• ) • 

N' [A] = N'[A ·AJ m m O' (m = 0 '1 ,2 •••• ) • 

R [A] = R [A0 ;AJ m m (m = 0. 1 ,2 .... ) • 



R '[A] = R I [A ·AJ (m = 0. 1 ,2 •••• ) • m m O' 
H [A] = H [A ·A] 

co co 0. ' 
H[A] = H[A0 ;AJ, 
a[A] a[A0 ;AJ , 
O[A] oCA0 ;AJ, 
k[A] k[A0 ;AJ. 

These notations will be used in Sections 4, 5 and 7, We call a[A] the as­

cent and o[A] the descent of A (at 0). 

4. LINEARIZATION 
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In this section X and Y are complex Banach spaces. Further, A is a 

locally holomorphic function defined on an open neighbourhood D of 0 with 

values in L(X,Y). Our aim is to show that for many purposes it suffices to 

consider the case when A depends linearly on the complex variable ;\, 

We start with the construction of two auxiliary complex Banach spaces 

E and F. The linear space E is the subspace of the product space 

II = ~ = x (k 0,1,2, ... ) ( 1 ) 

consisting of all sequences s = {sk}~=O E II such that 

k 0 > 1 ,2', , , } < +oo, 

On E a norm is given by the formula 

11s11 = sup { 11sk11 : k = o, 1 ,2, ••• L 

With this norm E is a complex Banach space. The complex Banach space F is 

defined in the same way as the space E, the difference being that in (1) 

we take x0 Y instead of x0 X. 

Next we define a "linearization" of the function A. Let r be a posi­

tive real number such that the closure of the open disc A with center 0 
r 

and radius r is a subset of D. Thus 

f, = {;\ E IC 
r 
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Further, let An denote the n-th coefficient of the Taylor expansion of A 

at O. Then 

A(A.) l 
n=O 

(A. € t::. ) 
r 

and 

00 

l 
n=O 

rn 11 A 11 < +oo. 
n 

(2) 

Define the functions T and S from E into F by 

and 

00 

\ n-1 -1 -1 ) 
St;; "' l r Anf,;n-1' -r f,;O' -r r.;, , •• •. • • 

n=1 

Then T and S are well-defined bounded linear operators from E into F. In 

the remainder of this section the holomorphic function 

will be denoted by L. We shall prove that there are several useful rela­

tions between the properties of the function A and those of the "linear" 

function L. 

Take A. in t::. r' f,; in E and n in F. Suppose that 

n ::: (T + A.S)f,;. ( 3) 

Then we have 

no ::: Aor,;o + A. l rn-1A r,; 

n=1 n n-1 
(4) 

and 

A. (k 1,2,. .. ). 
nk = r,;k - C;;lt;;k-1 = 



From the last formula it is easy to deduce that 

( k = 1 ,2' ••• ) . 

Fork= 1,2, ••• , let $k be the function from fir into L(F,X) defined by 

Then (5) shows that 

(k = 1,2, ..• ). 

Using this in (4), we derive 

Define the function~ from fi into L(F,Y) by setting 
r 

00 

~(A)n = n0 - L Ark~+ 1 $k(A)n. 
k=1 

Observe that the function $k is holomorphic on fir and that 

11$k(A)11 ,:;. r r I I - A 
(A E fi ; k = 1 ,2' ... ) . r 

This together with (2) implies that the series 

( 5) 

(6) 

(7) 

(8) 

converges uniformly on each compact subset of fir. Hence the function $ 
given by (8) is well-defined and holomorphic on fi • From (7) it follows r 
that 

(9) 

Conversely, it is not difficult to prove that (6) and (9) together imply 
that (3) holds. We summarize these results in the following lemma. 
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4.1. LEMMA. Let A E Ar•~ EE and n E F, Then 

if and on'ly if 
(i) A(A)~o = $(A)n, 

(ii) ~k = (~)k~o + $k(A)n (k = 1,2, ... ). 

Let K denote the bounded linear operator from Y into F given by 

KY= (y,o,o ••.. ). 

It is easily verified that 

4.2. PROPOSITION. Let A E Ar. Then 

(i) R(L(A)) = $(A)-1[R(A(A))J; 

(ii) R(A(A)) = K- 1[R(L(A))J. 

PROOF. It is immediate from Lemma 4.1 that 

Now suppose that n E F and $(A)n E R(A(A)). Take ~O in X such that 

A(A)~0 = $(A)n, and put 

(k = 1,2,. .. ). 

Then 

( k = 0. 1 ,2 .... ). 

(10) 

and hence s = {~k}~=O EE. Lemma 4.1 shows that n = L(A)s E R(L(A)). This 

proves ( i). 

To prove (ii), we observe that, by (i), 
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But ~(A) o K = Iy. Hence (ii) holds, and the proof is complete. 

For each A in fir' let the function w(A) from X into Ebe given by 

-1 2 -2 ) w(A)x (x, Ar x, Ar x, ...... 

Then W(A) is a well-defined injective (bounded) linear operator from X in­
to Y and 

(A E fi ). 
r 

4.3. PROPOSITION. Let A E fi. Then N(L(A)) = w(A)[N(A(A))]. r 

PROOF. The inclusion w(A)[N(A(A))] c N(L(A)) is immediately clear from 
formula (11). To prove the reverse inclusion, lets be an element of 
N(L(A)). Then Lemma 4.1 shows that 

( i) 

(ii) 

A(A)s0 = o, 

A k sk = (;l so ( k = 1 ,2 ' ••• ) • 

From (i) we see that s0 E N(A(A)), and according to (ii) we have 
w(A)s0 = s. Thus N(L(A)) c w(A)[N(A(A))J, and the proof is complete. 

We now come to the main results of this section. 

4.4. THEOREM. Let A E fi • Then r 

( 11 ) 

(i) A(A) has alosed range if and only if L(A) has alosed range; 
(ii) n(A(A)) n(L(A)); 

(iii) d(A(A)) = d(L(A)). 

PROOF. Statement (i) follows from Proposition 4.2 and the continuity of the 
operators ~(A) and K. Statement (ii) is an immediate consequence of Pro­
position 4.3 and the injectivity of the operator w(A). The first part of 
Proposition 4.2 implies that d(L(A)) ~ d(A(A)). The reverse inequality fol­
lows from the second part of the same lemma. This proves (iii). 

4.5. THEOREM. Let n be a positive integer. Then O is a pole of A- 1 of order 
n if and only if O is a pole of L-1 of order n. 

PROOF. Form= 0,1,2, ... , let nm denote the bounded linear operator from E 
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into X given by 

Observe that a linear operator U from F into E is equal to the null opera­

tor if (and only if) 

TT o U = 0 
m 

(m = 0,1,2, ... ). 

From Theorem 4.4 it follows that for A in ~ the operator L(A) is bi-
r 

jective if and only if the same is true for A(A), Hence, in order to prove 

the theorem, we may suppose that there exists 0 < E < r such that L(A) and 

A(A) are both bijective for 0 < IAJ <E. But then we can apply Lemma 4.1 to 

show that for these values of A 

(i) TIO 0 L-1(A) = A- 1(A) o ~(A), 
(ii) Trk o L-l(A) = (;.)k A- 1(A) 0 ~(A)+ ~k(A) (k = 1,2, ••• ). 

From (i) together with ~(A) ° K = Iy (see formula (10)), we obtain 

( """) -1( ) -1( ) iii A A = TIO o L A o K 

for 0 < IA! <E. The statements (i), (ii) and (iii) imply certain relations 
. . . -1 

between the coefficients of the Laurent expansion of A at 0 and those of 

the Laurent expansion of L- 1 at O. These relations, together with the ob­

serv~tion made in the first paragraph of the present proof, imply the de­

sired result. 

The next theorem concerns the numbers a[A], o[A] and k[A]. These num­

bers were introduced at the end of the preceding section. 

4.6. THEOREM. (i) a[A] 

(ii) o[A] 

(iii) k[A] 

= a[L]; 

o[L]; 

k[L]. 

PROOF. Recall that A denotes the n-th coefficient of the Taylor expansion 
n 

of A at 0. 

(i) Let o be the linear operator from X into E defined by 

ox= (x,o,o, ..... ). 

It is clear that o is injective. Hence, to prove (i), it suffices to show 



that 

H [L] = crH [A] 
m m 

form= 0,1,2, ... 

Observe that a= w(O). Using Proposition 4.3, it follows that 

But N(T) = H0[L] and N(A0 ) = H0[A]. Thus (12) holds form= o. 

Let m be a positive integer. Take x in H [A]. Then there exist 
m 

n 
l 

i=O 
A.x . = 0 i n-i 

0 m Defines , ... ,s in Eby 

~k = 
n 

( n = 0, .•• ,m). 

for n = 0, ••• ,k, 

(k 0, ... ,m) • 

for n = k+1,k+2, .... 
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( 12) 

( 13) 

(14) 

It is clear that s 0 = crx0 
formula (13), shows that 

crx. Further, a simple computation, based on 

0 
Ts = O, 0 ( i 1 , ••• ,m) • ( 15) 

This implies that ox EH [L]. Thus crH [A] is a subset of H [L]. m -~ m 
Conversely, takes in H [L]. Then there exist s 0 , ... ,sm in E such that 

0 m 
(15) is satisfied and s = s. Define x0 , ..• ,xm in X by 

( k O, ... ,m). ( 16) 

Since Tso O, we have 

( 17) 

~o c . . . 1 o and so ~ = ~ = ox0 . ombining the equation Ts + S~ O and formula (17), 

we obtain 
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i;; 1 = -1 ex,, r xo• o. o, ..... ). 

Proceeding in this way, one proves that the elements ~0 , ... ,E;111 are given 

by formula (14). But then, by computing the zero coordinates in formula 

(15), it follows that x0 , ... ,xm satisfy (13). Hence x0 E Hm[A], and so 

~ = crx0 E crH [A]. Thus H [L] is a subset of crH [A], and the proof of (i) is 
m m m 

complete. 

(ii) Let TI be the linear operator from F into Y defined by 

It is clear that TI is surjective. Hence, to prove (ii), it suffices to 

show that 

H 1 [L] 
m 

form= 0,1,2, ... 

Observe that TI= ~(O). Using Proposition 4.2(i), it follows that 

-1 ) R(T) = TI R(A0 . 

( 18) 

But R(T) = H0[LJ and R(A0) = H0[AJ. Thus (18) holds form= o. 
Let m be a positive integer. Taken in TI-lH~[A]. Then n0 = nn E H~[A], 

and hence there exist x0 , ... ,xm in X such that 

Define 

n 
l A.x . = o n0 i=O i n-i nm 

0 ,.m-1 
~ , ... ,~ in Eby 

{ 
-n 

~k = r xk-n 
n 0 

for n 

for n 

(n = O,. .. ,m). 

o, ... ,k, 

= k+ 1 'k+2 ' ... " 

Further, let ~m e E be given by 

{

xm for n = 0, 

~m = r-nx + nn for n = 1, ••• ,m, 
n m-n 

nn for n = m+1,m+2, ... 

( 19) 

( k = 0, .•• ,m-1 ) . (20) 

(21) 
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A straightforward computation, based on formula (19), shows that 

(i = 1, ••. ,m-1), TE!11 + S~m-l = n. (22) 

This implies that n E H'[L]. Thus n- 1H'[A] is a subset of H'[L]. m m m 
To prove the reverse inclusion, taken in H~[L]. Then there exist 

~ 0 , ... ,~m in E such that (22) is satisfied. Define x0 , ..• ,xm in X by for­

mula (16). Using the same arguments as in the last paragraph of the proof 

of (i), one can show that the elements ~ 0 , ... ,E!11- 1 are given by formula 

(20). Combining this with the equation TE!11 + sE!11- 1 = n, one sees that the 

element ~m is given by formula (21). But then, again using (22), it follows 

that Xo····•xm and no satisfy (19). Hence nn =no EH [A], and so 
~1 n E n-1H [A]. We conclude that H [L] is a subset of TI Hm[A], and the proof m m 

of (ii) is complete. 

(iii) Using the same arguments as in the proof of (i), one can show 

that 

(23) 

Recall that 

k[A] 

and 

The desired result is now immediate from (12), (23) and the injectivity of 

the operator cr. 

Define the function V on F by 

Then V is a bounded linear operator from F onto E. From the definition of V 

and S it is clear that VS = IE. This implies that S is injective and that 

the inverse of S, being the restriction of V to R(S), is continuous. 

Let M be a closed subset of E, and take n in the closure of SM. Then 
. {~n} oo • there exists a sequence s n= 1 in M such that 
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Observe that 

lim s~n = n. 
n-+co 

Vn = lim V(S~n) = lim ~n. 
n-+co n-+co 

Since Mis closed, it follows that Vn E M. Further, 

S(Vn) lim s~n = n. 
n-+co 

and hence n E SM. We conclude that SM is a closed subset of F. This proves 

that S maps closed subsets of E onto closed subsets of F. 

For later use we present two more lemmas. The first one deals with the 

subspaces N [L] and N'[L], the second with R'[L]. These subspaces were m m m 
introduced at the end of the preceding section. 

4.7. LEMMA. Let m be a non-negative integer. Then N [LJ is a atosed sub­m 
spaae of E and N~[L] is a atosed subspaae of F. 

PROOF. From Proposition 2.2(v) we know that N'[L] =SN [L]. Since S maps m m 
closed sets onto closed sets, it suffices to show that N [L] is closed. m 
We prove this by induction. 

By definition N0[L] = {O}, and so N0[L] is closed. Let k be a non­

negative integer such that Nk[L] is closed. Then, on account of the proper­

ty of S just mentioned, SNk[L] is closed too. Using the continuity of T, 

it follows that T- 1SNk[L] is closed. But T- 1SNk[L] = Nk+l[L] (cf. the re­

mark at the end of Section 2). Hence Nk+ 1[L] is closed, and the proof is 

complete. 

4.8. LEMMA. Let m be a non-negative integer. Then there exist a aorrrptex 

Banaah spaae Z and a bounded linear operator U from Z into F suah that the 

range of U is R'[LJ. 
m 

PROOF. Since R0[L] = F, we may assume that m is strictly positive. Let the 

sequence {~}k:O of subspaces of E be inductively defined by 

_, 
~·= T S~-l (k 1 • 2' ••••• ) • 
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Then Mk is closed for each non-negative integer k. This follows by means 

of induction from the continuity of T and the fact that S maps closed sets 

onto closed sets. 

Let W be the backwards shift on E multiplied by the scalar r. Thus W 

is the bounded linear operator on E given by 

From the definition of T and S, one can easily deduce that, if t; and 1; are 

elements of E such that 

Tt; + SI; = O, 

then 1; = Wt;. 

Define the bounded linear operator T from E into F by 
m 

T = T\111-1. 
m 

We shall prove that 

T M 1 = R' [L]. mm- m 

0 m-1 Taken in R~[L]. Then there exist t; , ... ,t; in E such that 

0 (i 

Observe that t;m-l E Mm-l' Further, 

(i 1 , ••• ,m-1 ) , 

0 and hence t; .Jn-1,..m-1 w t; • Thus 

wn-1 m-1 ,..m-1 
T t; = Trot; • 

1 , ••. ,rn-1 ) • 

( 24) 

S · i:-m- l M it 1 [ ] • ince ~ E m-l' follows that n E TmMm_ 1. We conclude that Rm L is 

a subset of TmMm_ 1. 

To prove the reverse inclusion, take t; in Mm_ 1 Then there exist 
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0 m-1 
s ' ... 's in E such that 

so = s' Sl;,i + Tsi-1 0 ( i 1 , ••• ,m-1 ) . 

Observe that Tsm-1 E R'[L]. m Further, 

m-1 and hence s . .m-1 0 w s . 

(i 

Thus 

1 , ••• ,m-1 ) , 

m-1 
Ts . 

It follows that T s E R'[L]. This proves (24). m m 
Recall that E is a complex Banach space and that Mm-l is a closed 

subspace of E. Hence Mm-l is a complex Banach space too. The restriction 

of Tm to Mm_ 1 is a bounded linear operator from Mm-l into F. From (24) we 

know that the range of this operator is R~[L]. Thus, if we define Z to be 

Mm_ 1 and U to be the restriction of Tm to Mm-l' then Zand U have the 
desired properties. This proves the lemma. 

Several authors have studied operator polynomials by using a linear­

i zation method due to H. Wielandt (cf. [16], [25], [27], L29], [32] and 

[35]). K.-H. Forster [11] has extended Wielandt's method in such a way 

that it becomes applicable to operator power series. Independently, a sim­

ilar extension has been carried out by G. Maibaum [28]. The method used 

here is a modification of those employed by Forster and Maibaum; 

Proposition 11.3, Theorem 4.4(ii) and Theorem 4.6(iii) are modifications of 

results appearing in [11]. The other results of this section seem to be 

new. 

We conclude with a remark concerning Theorem 4.5. M.V. Pattabhiraman 

and P. Lancaster [35] and G. Maibaum [27] have linearized operator polyno­

mials with bijective leading coefficient. They obtained results on poles 

similar to Theorem 4.5. For details, see Section 2 in [35] and Section 2.1 

in [ 27]. 
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5 CHARACTERIZATION OF POLES 

Let T be a bounded linear operator on a complex Banach space z. 
Recall that O is said to be a pole of T of order m if 0 is a pole of order 

m of the function 

(/, E (C \ cr(T)). 

The following theorem is known from spectral theory (cf. Section 2 in [26]; 

for earlier versions, see Section 5.8 in [42], Section 9 in [43] and 

Theorem I.25 in [9]). 

5.1. THEOREM. Let m be a positive integer. Then 0 is a pole of T of order 

m if and only if a(T) = o(T) = m. 

Let A be the function defined by 

(>1E(C). 

Then Theorem 5.1 says that 0 is a pole of order m of the resolvent A- 1 of 

A if and only if a[A] = o[A] m. The main purpose of this section is to 

prove that this result is true for an arbitrary locally holomorphic opera­

tor valued function A defined on an open neighbourhood of O. 

In the following X and Y are complex Banach spaces. Further, A is a 

locally holomorphic function defined on an open neighbourhood D of O with 

values in L(X,Y). 

-1 5.2. THEOREM. Let m be a positive integer. Then O is a pole of A of order 

m if and only if a[AJ = o[AJ = m. 

PROOF. The proof consists of two parts. The first part deals with the 

"only if part", the second with the "if part" of the theorem. 
-1 (I) Suppose that 0 is a pole of A of order m. Let ~ denote the 

k-th coefficient of the Taylor expansion of A at O, and let B denote the 
-1 n 

n-th coefficient of the Laurent expansion of A at O. Since 0 is a pole 

of A- 1 of order m, we have 

+oo 

l 
n=-m 
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for A in some deleted neighbourhood U of O. Observe that 

(A EU). 

This implies that 

n 
l A.B . = onmIY 

i=O J. n-m-i 
(n = O, ... ,m) ( 1 ) 

and 

n 
I.' B .A. o IX 

.l n-m-i J. nm i=O 
(n = O, ••• ,m). (2) 

From (1) it is immediately clear that for each yin Y 

n 
l A.B .y = o y 

i=O J. n-m-i nm 
(n = o, ... ,m). 

Hence y E H'[A] for each yin Y. Thus H'[A] = Y, and so 6[A] __ < m. m m 
Further, it follows from (1) that for each yin Y 

n 
l A.B .y = 0 . J. n-m-J. i=O 

(n = O, ••• ,m-1). 

-1 This shows that B_mY E Hm_ 1[A] for each y in Y. Since O is a pole of A 

of order m, the operator B_m is non-zero. Thus Hm_1[A] ~ {O}, and so 

a[A] ~ m. 

Take x in Hm[A]. Then there are x0 , ••• ,xm in X such that x0 = x and 

k 
l A.xk . = 0 

i=O J. -i 

Using (2), we infer 

(k = O, ••• ,m). 

m m 
x = XO = l 

n=O 
o x = l o I . ..x = 

nm m-n n=O nm x m-n 

m n 
= l 

n=O 
( l B .A.x ) = 
i=O n-m-i i m-n 
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Hence H [A]= {O}, and so a[A] < m. m = 

Combining the preceding results, we obtain o[A] ~m = a[A]. 

In particular, a[A] and o[A] are both finite. By Theorem 1.2, this implies 

that a[A] and o[A] are equal. We conclude that a[A] = o[AJ = m. This 

completes part (I) of the proof. 

(II) Suppose that a[A] = o[A] = m. Let the complex Banach spaces E 

and F, the operators T and S, and the function L be as in the preceding 

section. Recall that T and S are bounded linear operators from E into F 

and that 

. L(A) T + AS 

In view of Theorem 4.5, it suffices to show that 0 is a pole of order m of 

the resolvent L- 1 of L. 

From statements (i) and (ii) of Theorem 4.6 we know that a[L] = a[A] 

and o[L] = o[A]. Thus a[L] = o[L] = m. By Theorem 2.10(i), this implies 

that 

E = N [L] ~ R [L], 
m m F N'[L] ~ R'[L]. 

m m 
(3) 

We shall prove that these decompositions are topological, i.e., we shall 

show that the subspaces Nm[L], Rm[L], N~[L] and R~[L] are closed. 

From Lemma 4.7 we know that N [L] and N'[L] are both closed. Further, m m 
we know from Lemma 4.8 that there exist a complex Banach space Z and a 

bounded linear operator U from Z into F such that R(U) = R'[L]. Hence, m 
using the second part of (3) and the fact that N~[L] is closed, the range 

of U has a closed algebraic complement. This implies that R(U) is closed 

(see Theorem IV.1.12 in [13]; cf. also [22], page 276). Thus R'[L] is 
m 

closed. Using the continuity of S, it follows that s- 1R'[L] is closed too. m 
But S- 1R1 [L] = R [L] by Proposition 2.2(vii), and so R [L] is closed. m m m 
This proves that the decompositions in (3) are topological. 

From statements (ii) and (iv) of Theorem 2.10 we know that both T and 

S map Rm[L] into R~[L]. Let TR and SR denote the restrictions of T and S 

to Rm[L]. We consider TR and SR as linear operators from the complex Banach 

space Rm[L] into the complex Banach space R~[L]. Observe that TR and SR 

are bounded. From Theorem 2.10(iv) we know that TR is bijective. Hence 

there exists £ > O such that TR + ASR is bijective for !Al < £. 
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From statements (iii) and (v) of Theorem 2.10 we know that both T and 

S map Nm[L] into N~[L]. Let TN and SN denote the restrictions of T and S 

to Nm[L]. We consider TN and SN as linear operators from the complex Banach 

space Nm[L] into the complex Banach space N~[L]. Observe that TN and SN 

are bounded. From statements (iii) and (v) of Theorem 2.10 we know that SN 

is bijective and that TN is nilpotent of index m relative to SN. That is 

( 4) 

For A # O, let RN(A) be the bounded linear operator from N~[L] into 

Nm[L] given by 

ID 

l 
n=1 

A straightforward computation, based on the second part of (4), shows that 

Hence TN + ASN is bijective and 

(A # o). 

IN' [L] 
m 

(A.# 0). 

Let P be the projection of F onto R'[L] along N'[L]. Since the decom-
m m 

position of F given in (3) is topological, this projection is continuous. 

Combining the preceding results, we see that L(A) is bijective for 

0 < JAJ < s and that for these values of A 

Here JN and JR are the canonical embeddings of Nm[L] and Rm[L] into E. 

The (-m)-th coefficient of the Laurent expansion of L-1 at 0 is 

Hence, using the first part of (4), this coefficient is non-zero. It fol­
-1 

lows that 0 is a pole of L of order m, and part (II) of the proof is 

complete. 



It is interesting to observe that in the definition of the subspaces 

H [A] and H'[A] only the first m+1 coefficients of the Taylor expansion m m 

93 

of A at 0 appear. In the following we shall draw some conclusions from this 

observation. 

Let B be a locally holomorphic function defined on an open neighbour­

hood of 0 with values in L(X,Y), and let m be a positive integer. We say 

that B is an m-th order approximation of A (at O) if 

A = B n n (n = O, .. .,m). 

Here An and Bn denote the n-th coefficient of the Taylor expansion of A 

and B at O, respectively. It is clear that, if B is an m-th order approxi­

mation of A, then, in turn, A is an m-th order approximation of B. 

Suppose that B is an m-th order approximation of A. Then it is imme­

diate from the observation made above that 

(k 0, ... ,m). 

Hence a[A] = m if and only if a[B] = m, and o[A] = m if and only if 

o[B] = m. Combining this with Theorem 5.2, we obtain the following result. 

5.3. COROLLARY. Let m be a positive integer, and let B be an m-th order 
approximation of A. Then O is a pole of A-1 of order m if and only if O is 

-1 a pole of B of order m. 

Next we present two results concerning the case when A0 is a Fredholm 

operator. Here A0 = A(O). 

5.4. PROPOSITION. Suppose that A0 is a Fredholm operator and that 

ind(A0 ) = o. Further, suppose that o < a[AJ < +co. Then 
(i) O is a pole of A- 1 of order a[AJ = o[AJ; 

(ii) 0 is a Riesz-point of A- 1. 

PROOF. It is clear that 0 is a Riesz-point of A. Hence, by Lemma II.3.1, 

there exists a neighbourhood U of O such that each A in U is a Riesz-point 

of A. We may assume that U is a region. Then A is Riesz-meromorphic on U. 

Thus, by Theorem II.3.4, it suffices to show that (i) is true. 

The hypotheses concerning A0 imply that a[A] = o[A]. This appears from 

Theorem 1.3. So we have 
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0 < a[A] O[A] < +co. 

Hence, by Theorem 5.2, statement (i) is correct, and the proof is complete. 

The preceding proposition remains true if a.LA] is replaced by o[A]. 

This is immediate from the fact that a[A] = o[A], provided that A0 is a 

Fredholm operator with index 0 (cf. Theorem 1.3). 

The set Sp[A] of all A in D such that A(A) is not bijective is called 

the speat:r'Wn of A. Observe that Sp[A] is the complement in D of the 

resolvent set of A. Thus 

Sp[A] D \ Res[A]. 

It is clear that Sp[A] is closed in the relative topology of D. 

5.5. PROPOSITION. Suppose t'ha.t A0 is a Fredholm operator. Further, suppose 

t'ha.t at least one of the extended integers a[A] and o[AJ is infinite. Then 

O is an interior point of Sp[A]. 

PROOF. We consider only the case when a[A] 

treated similarly. 

+oo; the other case can be 

Since N(A0 ) is finite-dimensional, there exists a non-negative 

integer p such that 

H [A] 
m 

H [A] 
p 

and hence it follows that 

00 

H[A] = n 
m=O 

H [A] 
m 

(m = p,p+1, ... ), 

H [A]. 
p 

Since a[A] we have H [A] f {O}, and so H[A] f {o}. Thus 
p 

By Theorem 3,7, we have 

k[AJ dim N(Ao)/H[A]. 
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Hence k[A] < n(A0). Now one can apply Forster's perturbation theorem 

(Theorem 3.8) to show that n(A(A)) > 0 for A in some deleted neighbourhood 

V of O. This shows that A £ Sp[A] for A in V. Our hypotheses imply that 

0 £ Sp[A]. Hence the proof is complete. 

We conclude this section with two remarks. The first one concerns 

Proposition 5.5. Without the condition that A0 is a Fredholm operator, this 

proposition does not hold. To see this, consider the case when X = Y and 

o. £ 0:), 

where T is a quasi-nilpotent bounded linear operator on X with 

a(T) = o(T) = +a>, Then 

a[A] = a(T), o[A] = o(T), Sp[A] = cr(T). 

Hence a[A] = o[A] = +a> and 0 is an isolated point of Sp[A]. It is not 

difficult to construct an operator T with the desired properties. Take for 

instance X = Z00 and 

x 
('I'x) = k+1 

k k ( x £ z co; k = 1 '2 ; ••• ) . 

The second remark concerns Corollary 5.3. A first step in the direc­

tion of this result appears in [19]. In this paper J.S. Howland studied the 

case when X = Y and A is of the form 

A(A) =IX+ K(A), 

where the values of the function K are compact linear operators on X. Among 

other things he proved that in this case 0 is a simple pole (i.e., a pole 
-1 

of order one) of A if and only if 0 is a simple pole of the resolvent of 

the function 

(A £ a:) 

(see Corollary 3.3 in [19]). Here the operators A0 and A1 are the first 

two coefficients of the Taylor expansion of A at o. 
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6 ASCENT AND DESCENT IN THE COMMUTATIVE CASE 

Throughout this section T,T 1 ,T2 , ..• are linear operators on a 

(complex) linear space E. The sequence {Tn}n:1 will be denoted by T, and 

we shall write T0 instead of T whenever this is convenient. We say that T 

commutes with the sequence T if 

TT 
n 

TT 
n 

(n = 1,2,3, ••• ). 

The aim of this section is to show that in the commutative case there are 

interesting relations between a[T;TJ and a(T), and also between o[T;TJ and 

o(T). 

In the following we shall use the fact that, if T commutes with the 

sequence T, then there exist linear operators S~m} on E (m = 0,1,2, .•. ; 

k = o, ... ,m) such that 

(m 0,1,2, •.• ) ( 1 ) 

and 

n 

l (n 1 , ••• ,m; m 1,2, ... ). ( 2) 
i=O 

The definition of these operators is somewhat complicated. 

Observe that s;m) , •.. ,S~m) have to satisfy the following system of 

equations: 

n 

l 
i=l 

T .X. 
n-i i 

-T ~ 
n 

(n 1 , ••• ,m) . ( 3) 

Viewing (3) as a system of linear equations in complex numbers, one can 

write down the solution by using Cramer's rule. A careful examination of 

this solution leads to the following definition: 

S(o) 
0 = IE' 

TS(m-1) 
k 

m 

l 
i=l 

( k = o, ... ,m-1 ; m = 1 , 2, ••• ) , 

(m 1,2, ..• ). 



It is clear that the operators S~m) defined in this manner satisfy (1). 

Further, a simple computation shows that (2) holds too, provided that T 

commutes with the sequence T. 

First we investigate the relationships between a[T;TJ and a(T). 

6.1. LEMMA. Let m be a non-negative integer. Suppose that T commutes with 

the sequence T. Then N(T) n R(~) c H • 
m 
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PROOF. The statement is trivially true for m = o. Therefore we assume that 

m is strictly positive. 

Take x in N(T) n R(Tm). Choose u in E such that x = ~u and define 

xo····•Xm in Eby 

x "' k 

Then x0 = s(m) 
0 u 

n 
l 

i=O 

S (m) 
k u 

~u = x 

T.x i n-i 

Moreover, since x E N(T), 

(k = 0, ..• ,m). 

and 

n 
T.S(m~u = 0 l 

i=O l. n-i 

Hence x E Hm' and the proof is complete. 

( n = 1 , ••• ,m). 

6.2. PROPOSITION. Suppose that T commutes with the sequence T. Then 

a(T) ~ a[T;TJ. 

PROOF. By definition, 

a[T;TJ min {m H = {O}}. 
m 

If m is a non-negative integer such that H = {O}, then, according to the 
m 

preceding lemma, N(T) n R(~) = {O} too. Now the desired result is immedi-

ate from formula (1) in Section 1. 

The inequality in the preceding proposition may be strict. An example 

showing this will be given at the end of this section (Example 6.11). 
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Next we shall give a sufficient condition in order that a[T;TJ and a(T) 

coincide. We start with two lemmas. 

6.3. LEMMA. Let m be a non-negative integer, and let x0 , ... ,xm be elements 

of E such that 

n 

l 
i=O 

T.x . = 0 
l. n-i 

(n = 0, ... ,m). 

Suppose that T commutes with the sequence T. Then 

0 (k 0, .•. ,m; n = k+ 1 ,k+2, ... ) . 

PROOF. Evidently, it suffices to show that 

fork= O, ... ,m. We prove this by induction. 

From (4) it is clear that Tx0 = O, and hence (5) holds fork O. 

Let p be a non-negative integer less than m such that 

(k=O, ... ,p). 

From (4) we see that 

o. 

Applying Tp+ 1 to both sides of this equality and using the hypothesis 

that T commutes with the sequence T, we obtain 

(4) 

( 5) 

(6) 

By formula (6), the left hand side of this equation is equal to Tp+2xp+ 1 • 

Thus Tp+2x O. This completes the proof. 
p+1 

6.4. LEMMA. Suppose that T commutes with the sequence T and that 

a(T) = m < +oo. Then Hm c N(~). 

PROOF. Take x in Hm. Then there exist x0 , ... ,xm in E such that x0 x and 



n 

l 
i=O 

T.x . 
l. n-i = 0 (n O, ••• ,m). 

By induction we shall prove that for k O, ••• ,m 

According to the preceding lemma, we have 

(k o,. . .,m; n k+1,k+2, ... ). 
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(7) 

(8) 

(9) 

~1 m From T x = 0 and m = a(T), it follows that T x = o. Thus (8) holds for m m 
k = O. Let p be a non-negative integer less than m such that 

( 1 o) 

From (7) we see that 

Tx + T x + ..... + T x0 = O. m-p 1 m-p-1 m-p 

Applying ~-p- 1 T~ to both sides of this equality and using the hypothesis 
that T commutes with the sequence T, we obtain 

_m-p p m-p-1 p+1 p _m-p-1 _ ~ T1x + T T1 x 1 + ..... + T1T ~ x0 - O. m-p m-p- m-p 

But (9) and (10) together imply that the le~ hand 
· _m-p-1 p+1 m-p-1_p+1 equal to~ T1 x 1. Thus T ·r.1 x 1 = m-p- m-p-

k = O, ... ,m. In particular, we have shown that 

o. 

Hence x0 E N(T~), and the proof is complete. 

side of this equation is 

O. This proves (8) for 

6.5. THEOREM. Suppose that T commutes with the sequence T and that T1 is 
injective. Then a[T;TJ = a(T). 

PROOF. According to Proposition 6.2, we have a(T) ::;. a[T;TJ. Assume that 
this inequality is strict. Then it follows that a(T) is finite. 
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Let m = a(T). Then the preceding lemma shows that Hm is a subset of N(T~). 
Since T1 is injective, this implies that Hm = {O}. Hence a[T;TJ ~ m = a(T), 

which contradicts the assumption. This proves the theorem. 

We proceed by studying the relationships between o[T;TJ and o(T). 

6.6. LEMMA. Let m be a non-negative integer. Suppose that T commutes with 

the sequence T. Then H' c R(T) + N(Tm). 
m 

PROOF. The statement is trivially true for m = O. Therefore we assume that 

m is strictly positive. 

and 

Take yin H~. Then there exist x0 , ... ,xm in E such that 

n 

I 
i=O 

T.x . 
1 n-1 

0 (n o,. .. ,m-1) 

It follows from Lemma 6.3 that 

0 ( k 0, .. , ,m-1 ; n k+ 1 ,k+2 ... ) . 

But then, using the hypothesis that T commutes with the sequence T, 

_m+1 
'l' x . 

m 

Hence ~(y - Tx ) = O, and soy E R(T) + N(~). This proves the lemma. 
m 

6.7. PROPOSITION. Suppose that T commutes with the sequence T. Then 

o(T) ~ O[T;TJ. 

PROOF. By definition, 

o[T;TJ = min {m H' = E}. 
m 

If m is a non-negative integer such that H~ = E, then, according to the 

preceding lemma, R(T) + N(~) = E too. Now the desired result is immediate 

from formula (2) in Section 1. 
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The inequality in the preceding proposition may be strict (see 

Example 6.11 at the end of this section). The next theorem gives a suffi­

cient condition in order that o[T;TJ and o(T) coincide. It is an easy con­

sequence of Proposition 6.7 and the following leDD!la. In the proof of this 

lemma we use the existence of a certain sequence v0,v1,v2 , ••• of linear 

operators on E. The elements of this sequence are inductively defined by 

the following formulas: 

(n = 2,3, ... ). 

Here S~m) (m = 0,1,2, ••• ; k = O, ..• ,m) are the operators defined in the 

third paragraph of this section. Recall that 

( k = 0, .•. ,m-1 ; m = 1 , 2 , ..• ) 

and 

m 
= - l (m=1,2, ••. ). ( 11 ) 

i=1 

Suppose that T coDD!lutes with the sequence T. Then, using the above formu­

las, it is not difficUJ.t to prove that 

Thus 

and hence 

TV - s(n) 
n n 

= s(n) + T s(n-1) 
n 1 n-1 (n=2,3, ... ). 

= -T {TV - s(n-1)} 
1 n-1 n-1 (n = 2,3, ... ), 

(n=1,2, ..• ). 

Since V1 = 0 and S~l) = -T1, this implies that for n = 1,2, ..• 

From the definitions it is clear that this equality also holds for n = o. 
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It follows that 

(n=0,1,2, ... ), 

provided that T commutes with the sequence T. 

6.8. LEMMA. Suppose that T commutes with the sequence T and that 

o(T) = m < +co, Then R(~) c H~. 

PROOF. We may assume that m is strictly positive. 

( 12) 

Take yin R(T~) and choose x in E such that y = T~x. Since m = o(T), 

we have E = R(T) + N(~), and hence there exist u and v in E such that 

x = Tu + v, ~v = O. 

for i = o, ... ,m-1, 

for i = m. 

Then, by formula (1), 

T = TS(m- 1)v = Tmv = XO 0 0, 

and, by formula ( 2) , 

Thus 

n 
l T.x . = 

i=O 1 n-i 

n 
l T.x . = 0 

i=o 1 n-i 

Next we observe that 

m 
l 

i=O 
T.x . 

i m-i 
Tx + m 

m 

l 
i=1 

T,x . = 
i m-i 

( n = 1 , ••• ,m-1 ) . 

( n = O , ••• ,m-1 ) . 

m 
l 

i=1 



According to formula (11), the last term is equal to -S(m)v. Thus 
m 

But then, using formula (12) and the fact that T commutes with T1, 

m 
l T.x · = (-1)m+ 1~v + (-1)m+ 1TTmu = 

i=O 1 m-1 1 1 

m+1...m = (-1) '.L' 1(v +Tu)= 

m+1 Thus (-1) y € H'. Hence y € H', and the proof is complete. 
m m 

6.9. THEOREM. Suppose that T aorrmutes with the sequence T and that T1 is 

surjeative. Then 6[T;TJ = 6(T). 

PROOF. According to Proposition 6.7, we have 6(T) ~ 6[T;Tl. Assume that 

this inequality is strict. Then it follows that 6(T) is finite. Put 
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m = 6 (T). The preceding lemma shows that R(T~) is a subset of H~. Since T 1 

is surjective, this implies that H' =E. Hence 6[T;TJ < m = 6(T), which m == 
contradicts the assumption. This proves the theorem. 

We conclude this section with two examples. 

6.10~ EXAMPLE. Let Ebe ~5 • and let 

T = 0 
n 

(n = 2,3, ... ). 

Further, let T and T1 on ~5 be given by 

and 
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It is easily verified that a(T) = o(T) = 3 and a[T;TJ = o[T;TJ = 2. Observe 

that T1 is bijective and that T and T1 do not commute. This example shows 

that the hypothesis in Propositions 6.2 and 6.7, and Theorems 6.5 and 6.9, 

that T commutes with the sequence T cannot be omitted. 

6.11. EXAMPLE. Let Ebe non-trivial, let each of the operators T,T 1,T3 , ... 

be equal to the null operator on E, and let T2 be the identity operator on 

E. Then a(T) = o(T) = 1 and a[T;TJ = o[T;TJ = 2. Observe that T commutes 

with the sequence T. This example shows that the inequalities in Proposi­

tions 6.2 and 6.7 may be strict. 

7, ISOLATED POINTS OF THE SPECTRUM IN THE COMMUTATIVE CASE 

Throughout this section X is a complex Banach space. Further, A is a 

locally holomorphic function defined on an open neighbourhood D of O with 

values in L(X). The n-th coefficient of the Taylor expansion of A at 0 will 

be denoted by An. In particular, A0 = A(O) and A1 = A'(O), where A' denotes 

the derivative of the function A. We say that A is commutative at 0 if 

(:>,ED). ( 1 ) 

It is not difficult to see that ( 1) implies that 

(n 1 ,2 •••• ) . ( 2) 

If Dis connected, then (1) and (2) are equivalent. Observe that (2) means 

that A0 commutes with the sequence {A }00 

1• 
n n= 

In this section we study the case when A is commutative at O. Our aim 

is to get information about the relationships between the spectral proper­

ties of the operator A0 and those of the function A. 

7.1. THEOREM. Suppose that A is commutative at O and that O is a pole of 

A- 1 of order m. Then a(A0 ) = c(A0 ) ~m. 

PROOF. Since A is commutative at O, one can apply Propositions 6.2 and 6.7 

to show that 



According to Theorem 5.2, we have a[A] = o[A] m, and so 

In particular, a(A0 ) and o(A0 ) are both finite. Hence a(A0 ) 

the proof is complete. 

The next result is a straightforward application of Theorem 5.1 and 

the preceding theorem. 
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7.2. COROLLARY. Suppose that A is commutative at O and that O is a poZe of 
A- 1 of order m. Then O is a poZe of the operator A0 of order not exceeding m. 

The inequality in Theorem 7.1 may be strict. Further, Theorem 7.1 and 
Corollary 7.2 do not hold without the condition that A is commutative at O. 
Examples showing this will be given at the end of this section. 

Next we investigate the case when A is commutative at 0 and A1 = A'(O) 
is bijective. Our first result is a generalization of Theorem 5.1. 

7,3. THEOREM. Suppose that A is commutative at O and that A1 is bijective. 
Let m be a positive integer. Then O is a poZe of A- 1 of order m if and onZy 
if a(A0 ) = o(A0 ) = m. 

-1 PROOF. From Theorem 5.2 we know that 0 is a pole of A of order m if and 

only if 

a[A] = O[A] = m. ( 3) 

Since A is commutative at 0 9 formula (2) holds. Thus A0 commutes with the 

sequence {An}:=l' Further, by hypothesis, A1 is both injective and sur­
jective. Now one can apply Theorems 6,5 and 6.9 to show that a[AJ = a(A0 ) 

and o[A] o(A0 ). Hence (3) is equivalent to 

This proves the theorem. 
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7,4. COROLLARY. Suppose that A is aorrmutative at o and that A1 is bijeative. 

Let m be a positive integer. Then 0 is a pole of A-1 of order m if and only 

if 0 is a pole of the operator A0 of order m. 

We proceed with a definition. The function A is said to be aommutative 
(on D) if 

A(A)A(µ) = A(µ)A(A) 

It is clear that, if A is commutative, then A is commutative at O too. 

The case when A is commutative has been studied by L. Mittenthal [31]. 

Among other things, he proved that the conclusion of Theorem 7,3 holds, 

provided that A is commutative and A1 is bijective (cf. Theorems 7 and 13 

in [31]). The methods used in Mittenthal's paper [31] differ considerably 

from those used here. In particular, we have not used the generalized spec­

tral theory developed in [31]. 

Next we present some results concerning isolated points of Sp[A]. We 

begin with the following lemma. 

7,5,LEMMA. Suppose that A is aommutative at O and that A1 is bijeative. 

FUZ'ther, suppose that o(A0 ) = {O}. Then O is an isolated point of Sp[AJ. 

PROOF. Recall that A denotes the n-th coefficient of the Taylor expansion 
n 

of A at O. Define the function B by 

(A € D). 

Then there exists o > 0 such that 

Since A1 is bijective, this implies that O is an isolated point of Sp[B]. 

Take A in Res[B]. Then A(A) is the sum of the bijective operator B(A) 

and the quasi-nilpotent operator A0 . Moreover, the operators B(A) and A0 
commute. It follows that A(A) is bijective. Hence Res[B] is a subset of 

Res[A]. 

Our hypotheses imply that A0 is not bijective. Thus O € Sp[A]. Com­

bining this with the preceding results, we see that 0 is an isolated point 
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of Sp[A]. This proves the lemma. 

Let T be a linear operator on X, and let M be a subspace of X invari­
ant under T. In the following we shall use the symbol TJM to denote the 
restriction of T to M considered as a linear operator on M. 

7.6. THEOREM. Suppose that A is aommutative at o and that A1 is bijective. 
FUl'theP, suppose that O is an isolated point of cr(A0 ). Then o is an iso­
lated point of Sp[A]. 

PROOF. Let P be the spectral projection associated with A0 and O. Put 
M = R(P) and N = N(P). Then Mand N are closed subspaces of X and 
X = M ~ N. Further we know that Mand N are both invariant under A0 , that 
A0 1N is bijective and that 

(4) 

Since A is co!!Ullutative at O, we have 

(A E D). 

and hence 

A(A.)M c M, A( A. )N c N (A. E D). ( 5) 

Define the functions ~ and ~ on D by 

Then ~ and ~ a.re locally holomorphic functions with values in L(M) and 
L(N), respectively. From operator theory we know that A(A.) is bijective if 

and only if ~(A.) and ~(A.) are both bijective. Thus 

Res[A] = Res[~] n Res[~]. 

Since ~(O) = A0 1N is bijective, we have O E Res[~]. Hence, to complete 
the proof, it suffices to show that O is an isolated point of Sp[AM]. 

Observe that ~ is commutative at 0. Let B0 be the first coefficient 
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of the Taylor expansion of~ at O, and let B1 be the second. Then 

B0 = A0 IM and hence, by formula (4), 

From (5) we see that Mand N are both invariant under A1• By hypothesis 

A1 is bijective, and so A11M is bijective too. Since B1 = A1 IM, it follows 

that B1 is bijective. Now Lemma 7.5 shows that 0 is an isolated point of 

Sp[~J, and the proof is complete. 

We do not know whether the converse of the preceding theorem is true. 

However, using a method of L. Mittenthal (see the proof of Theorem 13 in 

[31]), we can prove the following partial converse. 

7.7. THEOREM. Suppose that A is commutative and that A1 is bijective. 

Fur>ther, suppose that O is an isolated point of Sp[A]. Then O is an iso­

lated point of a(A0 ). 

PROOF. Define the bounded linear operator Pon X by 

p = _1_ 
21Ti J 

l>-l=r 

A I (A ) A - 1 (A ) dA. 

where r is a positive real number such that 

0 < l>-1 < 2r} c Res[A]. 

( 6) 

Since A is commutative and A1 = A'(O) is bijective, the operator Pisa 

projection of X. This was proved by L. Mittenthal (cf. [31], pp. 122,123). 

Put M = R(P) and N = N(P). Then Mand N are closed subspaces of X and 

X = M@ N. Using (6) and the commutativity of A, we see that A0 and P com­

mute. Hence M and N are both invariant under A0 • To prove the theorem, it 

suffices to show that A0 1N is bijective and that A0 jM is quasi-nilpotent. 

Define the function L on Res[A] by 

It is clear that Lis a locally holomorphic function with values in L(X). 
Let L denote the n-th coefficient of the Laurent expansion of L at O. Then 

n . 



+co 

n=-oo 

It is easily verified that 

O. E Res [A]). 

This implies that 

L P = PL 
n n 

( n = 0 9.±_ 1 ,.±_2 , •• , ) • 

Hence 

(>, E Res[A]) 

and 

L N c N 
n 

( n = 0 ,.±_ 1 ,.±_2, ••• ) • 

Define the functions LM and LN on Res[A] by 

Then 1'M and LN are locally holomorphic functions with values in L(M) and 
L(N),respectively. The Laurent expansions of 1'M and LN at 0 are given by 

They certainly hold for 0 < JAI < 2r. 

From Cauchy's integral formula, we know that 

( n = O ,.±_ 1 ,:!:_2 , ••• ) • 

IAJ=r 
It is clear that p L _1 • Put T = L_2 . Thus 

T 1 
J AA 1 (A )A- 1 (A )dA. = 2ri 

IAl=r 

Using Mittenthal's generalized operational calculus (see [31]), we infer 

109 



110 

(n = 1,2 .... ). 

This implies that 

L IM= (TiMln-i, L IN= O 
-n -n 

(n = 1,2, ... ). 

Hence 

l (7) 
n=1 

and 

co 

11 (\) = l \n(LnjN) 
n=O 

From (7) we see that the series 

~ A-n(TiM)n-1 
n=1 

is convergent for each A ~ O. Thus TIM is quasi-nilpotent and 

R(\;TiM) = l \-n(TiM)n-l 
n=1 

Combining this with (7), we obtain 

co 

1M(\) = R(\;TiM) + l \n(LniM) 
n=O 

Define the functions ~ and 1\J on D by 

It is easily verified that ~ and 1\J are well-defined locally holomorphic 

functions with values in L(M) and L(N), respectively. From operator theory 

we know that A(\) is bijective if and only if~(\) and 1\J(\) are both bi­

jective, and in that case 
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Define the functions AM_ and AN on D by 

Then AM_ and AN are well-defined locally holomorphic functions with values 
in L(M) and L(N), respectively. It is clear that 

(A E Res[A]). 

Thus 

00 

AM_{A)~ 1 (A) = R(A;TIM) + l An(L JM) (o < IAJ < 2r) (8) 
n=O n 

and 

(9) 

Next we prove that A0 !N is bijective. From (9) we see that 

In addition, 

Combining these results, we get 

By hypothesis A1 is bijective, and so A1 JN is bijective too. Since L0 and 

A0 commute, it follows that A0 JN is bijective. 

It remains to prove that A0 JM is quasi-nilpotent. From (8) we deduce 

that for 0 < !Al < 2r 

00 

{IM + (AIM - TIM) l An(LnJM)}~(A), 
n=O 
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Taking limits, we obtain 

Recall that TIM is quasi-nilpotent. Since L0 and T commute, it follows that 

(TjM)(L0 iM) is quasi-nilpotent too. Hence (TiM)(L0 jM) - ~ is bijective, 

and so 

( 10} 

Since the operators appearing in the right hand side of (10) commute with 

each other, it follows that A0 jM is quasi-nilpotent. This proves the 

theorem. 

We conclude this section with some examples. First of all, we deal 

with the condition that A1 is bijective. 

7.8. EXAMPLE. Let X be a non-trivial complex Banach space, and let 

( 11 ) 

where T is some bounded linear operator on X. Clearly, A is commutative. 

Further, 

Sp[A] cr(T) u {O} 

and 

p, € Res[AJ). 

Observe that A0 = O. Hence a(A0 ) = o(A0 ) = 1. 

Take in (11) the operator T to be the zero operator. Then Sp[A] = {O} 

and 

In particular it follows that O is a pole of A- 1 of order 2. Since 

a(A0 ) = o(A0 ) = 1, this choice of T shows that the inequality in Theorem 
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7.1 may be strict. It also shows that Theorem 7,3 does not remain true if 

the condition that A1 is bijective is omitted. 

Next we take T to be a non-nilpotent, quasi-nilpotent bounded linear 

operator on X. Then again Sp[A] = {O}, but now 

00 

A-1(A) = l A-(n+2)Tn (A ':/: 0). 
n=O 

Since T is non-nilpotent, it follows that O is an essential singularity of 
-1 A • Thus, in this way, we obtain another example showing that in Theorem 

7,3 the condition that A1 is bijective cannot be omitted. 

Finally, we take X to be the sequence space i 1 and T will be the back­

wards shi~ on z1 , i.e., 

(n = 1,2, ... ). 

Then Sp[A] ={A E IC : IAI ~ 1}, and thus in this case O is not an isolated 

point of Sp[A]. Observe that 0 is an isolated point of a(A0 ). Hence this 

choice,of X and T shows that in Theorem 7.6 the condition that A1 is bi­

jective is not superfluous. 

The following examples deal with the condition that A is commutative 

at o. 

7,9, EXAMPLE. Let X be the sequence space Z00 , and let 

(A E IC)• 

where A0 and A1 are the bounded linear operators on Z00 defined by 

and 

These operators do not commute, and hence A is not commutative at O. 

Clearly, O E Sp[A]. We shall prove that Sp[A] = {O} and that O is a simple 
-1 pole of A • 
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Define the bounded linear operators s0 and s1 on l 00 by 

and 

s1(x1 ,x2 , ••••• ) = (o,x1 ,o,o, .•••. ). 

A straightforward computation shows that 

(1 1 0), 

and therefore 

Sp[A] = {O}, (1 1 0). 

Since s1 is non-zero, the last formula shows that 0 is a simple pole of 

A-1 

It is easily verified that a(A0 ) = o(A0 ) = +00 • Hence it follows that 

the assumption in Theorem 7.1 and Corollary 7.2 that A is commutative at 0 

cannot be omitted. Observe that the spectrum of the operator A0 equals the 

closed unit disc in ~. Thus in this case 0 is not even an isolated point 

of o(A0 ). 

7.10. EXAMPLE. Let X be ~ 5 , and let 

(1 E ~), 

where A0 and A1 are the bounded linear operators on ~ 5 defined by 

and 

Thus A0 = T and A1 = T1, where T and T1 are the operators defined in 

Example 6.10. Clearly, A0 is nilpotent with index of nilpotence 3. This 
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implies that a(A0 ) = 6(A0 ) = 3, Further, A1 is bijective. The operators A0 
and A1 do not commute, and hence the function A is not commutative at o. 
We shall prove that Sp[A] = {O} and that O is a pole of A-1 of order 2. 

Clearly, 0 € Sp[A], Observe that 

Using these formulas one easily verifies that for each A ~ O the operator 

A(A) is bijective and that 

(A ~ 0). 

This implies tnat Sp[AJ = {O}, and, since A1A0A1 ~ O, it follows that 0 is 
. -1 

a pole of A of order 2. 

This example shows that in Theorem 7,3. (and also in Theorem 7.1) the 

condition that A is commutative at 0 cannot be omitted. 

7.11. EXAMPLE. Let X be the complex Banach space Z00(1.) of all bounded 

functions f: L~ ~endowed with the supremum norm. Here 1. denotes the 

set of all.integers. Further, let 

(A€~), 

where A0 and A1 are the bounded linear operators on l 00(E) defined by 

and 

= {f

0

(n) for n = 0,1,2, ... , 
(A0f)(n) 

for n = -1,-2, ... , 

f(n+1) (n € E). 

Then a(A0 ) = 6(A0 ) = 1, and thus O is a simple pole of the operator A0 . In 

particular, 0 is an isolated point of a(A0 ). The operator A1 is bijective. 

Since A0 and A1 do not commute, the function A is not commutative at O. We 

shall prove that 0 is not an isolated point of Sp[A]. This will imply that 
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in Theorem 7.6 the condition that A is commutative at O is not superfluous. 

Observe that 

-1 ) This implies that Sp[A] = cr(-A1 A0 • An easy computation shows that 

for n = 1,2, •.. , 

for n 0,-1,-2, •... 

Let g be the element in ! 00(£) defined by 

g(O) = 1, g(n) 0 

Then it is not difficult to prove that 

Thus the open unit disc in re is a subset of cr(-A~ 1 A0 ) = Sp[A]. This proves 

that 0 is not an isolated point of Sp[A]. Observe that this is another 

example showing that the hypothesis in Theorem 7.3 that A is commutative at 

0 cannot be omitted. 
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