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Abstract 

. Positive linear systems are used in biomathematics, economics, and other research areas. For discrete-time positive 
!:near s~stems, part of the realization problem has been solved. In this paper the solution of the corresponding problem 
for contmuous-time positive linear systems will be presented, which can be deduced from that of the discrete-time case 
by a transformation. Sufficient and necessary conditions for the existence of a positive realization are presented. To solve 
the problem of minimality, the solution of the factorization of positive matrices is needed. © 1997 Elsevier Science B.V. 
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1. Introduction 

The purpose of this paper is to present results on the realization of continuous-time positive linear systems. 
Positive linear systems are used in biomathematics, economics, chemometrics, and other research areas. 

A .finite-dimensional positive linear system is a linear dynamic system in which the input, state, and output 
space are spaces over the positive real numbers. Systems in this class are useful models in biomathematics, 
where they are called linear compartmental systems, see [10]. The identification problem for this class of 
systems is unsolved. No conditions are known which are both necessary and sufficient for global structural 
identifiability of such systems [6]. These conditions may be based on realization theory for positive linear 
systems and they are investigated further in this paper. An early reference on structural identifiability is [l]. 

In this paper time-invariant finite-dimensional continuous-time positive linear systems will be treated. A pos
itive realization of a given positive impulse response function is a positive linear system, such that its impulse 
response function equals the given one. A positive realization of an impulse response function is said to 
be minimal if the state space as a vector space over the positive real numbers is of minimal dimension. 
The positive realization problem is to show existence of a positive realization of a positive impulse response 
function and to classify all minimal positive realizations. For the discrete-time case, necessary and sufficient 
conditions for the existence of a positive realization in terms of polyhedral cones were presented in [7], i.e., 
a positive realization exists if and only if there exists a backward-shift invariant polyhedral cone containing 
the cone spanned by the columns of the Hankel matrix. In the same paper a sufficient condition for minimal
ity was stated (if the positive rank of the Hankel matrix equals the dimension of the state space, then the 
system is minimal). This condition is more restricting than the reachability/observability condition, but still 
not necessary. Jn [8] a necessary and sufficient condition has been derived, using positive system rank. For 
the problem of minimality, techniques of the theory of positive linear algebra and polyhedral cones are used. 
Examples of references on positive linear systems are [2,4, 12-16]. We will see that the continuous-time case 
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can be deduced from the discrete-time case by transformation. Important is that for the result on minimality 
all transformations to discrete-time systems have to be considered. This makes the continuous-time case more 
difficult and worthwhile to study, as shown in Section 4. There an example is presented to show that it is not 
sufficient to consider only one transformation. 

The outline of this paper is as follows. The problem is formulated in Section 2. In Section 3 the existence 
of a positive realization is proven. In Section 4 results on the characterization of minimality are presented. 

2. Problem formulation 

In this section notation is introduced and the problem is posed. 
The set IR+ = [O, +oo) is called the set of the positive real numbers. Let Z+ = { l, 2,. .. } denote the set 

of positive integers, Zn = { 1, .. ., n}, N = { 0, 1, 2,. .. } . Denote by IR~ the set of n-tuples of the positive real 
numbers. The set IR~ xm will be called the set of positive matrices of size n x m. Note that !Ri is not a vector 
space over IR because it does not admit an inverse with respect to addition. A matrix A E !Rnxn is said to be 
a Metzler matrix if all its off-diagonal elements are in IR+> see [11]. Metzler matrices can be characterized as 
follows. 

Proposition 2.1. A matrix A E !Rnxn is a Metzler matrix if and only if there exists an IX E IR satisfying 
(A+ rx.J) E IR~xn. 

Definition 2.1. Consider a continuous-time linear dynamic system 

i(t) =Ax(t)+Bu(t), x(to)=xo, 

y(t) = Cx(t) + Du(t), 
(1) 

with xEIRn, uEIRm, yEIRk, tET=[t0 ,oo). Eq. (1) is said to describe a (continuous-time) positive linear 

system if for all xo E !Ri and for all u(t) E IR~, t ET, we have x(t) E !Ri and y(t) E !Ri for t ET. 

The following proposition presents a characterization of continuous-time positive linear systems. 

Proposition 2.2. A continuous-time linear dynamic system of the form ( 1) is a positive linear system if and 
only if 

BE IR~xm, C E IR~xn, DE IR~xm and A is a Metzler matrix. 

Proof. Suppose u(t) = 0 for all t ET. For i E l!.n, x1(t) ~O if and only if i; ?:0 whenever x; = 0 and Xj ~ 0 for 
all j =/=i. This is equivalent to a;j?: 0 for all j =Ji. Now the conditions for B, C, and D follow. D 

Consider the impulse response function W: [O, oo )----+ IR~xm of the system (1 ), given by 

W(O)=D; W(t)=CeA 1B, t>O. 

eAt?: 0 if and only if A is a Metzler matrix. Indeed, if A is a Metzler matrix, there exists an IX E IR satisfying 
A+ al E IR~xn. From this it follows that eCA+aI)t E IR~xn for all t ~ 0, and the relation 

eAt = e(A+al)te-at 

implies eA 1 E IR~xn for all t ~ 0. The other way round, if eA1 ;::,, 0, then eA1x 0 E !Ri whenever x 0 E IR~ for all 
t ~ t0 , so i =Ax implies x( t)?: 0 whenever xo?: 0. It follows that A is a Metzler matrix. So for continuous-time 
positive linear systems, besides B, C, and D, also eA1 is a positive matrix fort ~O, which implies W(t) E IR~xm 
for all t;::,, 0. On the other hand, the Markov parameters corresponding to W(t) are not necessarily positive. 
However, for a E IR satisfying A+ IX! E IR~xn, 

D, C(A + 1XI)j-IB, j= 1,2, ... 
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are elements of IR~xm. This follows from Proposition 2.1. It can be shown that these matrices are the Markov 
parameters corresponding to the impulse response function e"1W(t). This fact will be used in the sequel. 

Problem 2.1. The continuous-time positive realization problem for a positive impulse response function. 
a. Formulate necessary and sufficient conditions for the existence of a continuous-time positive linear system 

such that the impulse response function of this system equals the given impulse response function. If such 
a system exists, it is called a positive realization of the given impulse response function. 

b. Determine the minimal dimension of the state space of a positive realization. If the state space of a positive 
realization is minimal, this realization is called a minimal positive realization. 

c. Classify all minimal positive realizations of the given impulse response function. 
d. If two positive realizations of the same impulse response function are minimal, then indicate the relation 

between them. 

A positive linear system is called a minimal positive linear system if it is a minimal positive realization of 
its impulse response function. 

The solution of this problem does not follow from the realization theory of ordinary linear systems. As can 
be seen from the example given by ( 4 ), minimality of a positive linear system does not imply minimality of an 
ordinary linear system. An important concept for positive linear systems is the positive rank. For completeness 
its definition is given below, together with some more important notions. 

Definition 2.2. A positive matrix ME IR~xn is said to be a monomial matrix if every row and every column 
contains exactly one strictly positive element. 

Definition 2.3. Let k, rn E Z+, m <k. A positive matrix A E IR~xm is said to be part of a monomial in IR~xk 
if there exists a BE IR~x(k-m) such that 

(A B) 

is a monomial in IR~xk. A positive matrix C E IR~xk is also said to be part of a monomial if cT is part of a 
monomial as defined above. 

It follows that A is part of a monomial if and only if either A contains exactly one strictly positive element 
in every column and at most one strictly positive element in every row (case m < k ), or A contains at most 
one strictly positive element in every column and exactly one strictly positive element in every row (case 
m > k ). With slight abuse of terminology, a monomial is sometimes also called part of a monomial, just to 
make the nomenclature easier. 

A property of monomials is that they are the only positive matrices whose inverses are again positive 

matrices. 

Definition 2.4. Let A E !R~xm for k,m E Z+· If A= 0, the positive rank of A is defined to be 0. The positive 
rank of the matrix A -:f. O is defined as the least integer n E Z+ for which there exists a factorization 

A=BC, (2) 

with BE IR~xn and C E IR~xm. Let pos-rank(A) denote this integer. . .. 
A positive matrix factorization of A is any factorization of A of the form (2) for arbitrary n E Z+· A m~nzm~l 

positive matrix factorization of A is any positive matrix factorization of A in which n = pos~rank(A ). ~ is said 
to be strictly factorizable if there exists a positive matrix factorization of the form (2), with n ~ mm{k,m }, 
in which neither B nor C is part of a monomial. 

It follows that a matrix A E IR~xm is not strictly factorizable if and only if any factorization of the form (2), 
with n ~ min { k, m}, is such that either B or C is part of a monomial. 
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3. Existence of a positive realization 

In this section necessary and sufficient conditions for the existence of a positive realization of a continuous
time positive impulse response function will be presented. The discrete-time case has been treated in [7, 9]. 
In those papers the convex cone analysis is used. The reader is referred to those papers for explanation of 
the terminology. 

Definition 3.1. A continuous-time impulse response function W: IR+--+ iRtxm is said to be a Metzler impulse 
response function if there exists an a E IR such that the Markov parameters corresponding to eix1 W (t ), 

Mix(O) = W(O); 
d)-I 

Mix(})= dtj-I ea1W(t)l1=0, j= 1,2, ... 

are positive matrices. 

For the existence of a positive realization, the following result can be stated. Let T = N, Y = iRt. Let a 
denote the backward shift operator 

(ay)(t) = y(t + 1), for y: T--+ Y. 

A cone C1 ~ IR~ is said to be backward shift invariant if y 1 E C1 implies ay1 E C1. 

Theorem 3.1. Let T = IR!+, Y = iRt, U = IR~. Consider a continuous-time positive impulse response function 
W: T--+ iRtxm. There exists a positive linear system 

x(t)=Ax(t)+Bu(t), x(to)=xo, 

y(t) = Cx(t) + Du(t), 

such that the impulse response junction of this system equals W if and only if W is a Metzler impulse 
response function and there exists a set C1 ~ IR~ satisfying 

1. C1 is a polyhedral cone; 
2. cone(Ha) ~ C1; 
3. C1 is backward shift invariant, 

with Ha= ( Mr:1.( 1 )T Ma(2l Ma(3 l · · · )T for a E IR satisfying Ma(j) E IR~xm for all j E Z+· 

Compared to the discrete-time case, the condition of W being a Metzler impulse response function has to 
be added. 

Proof of Theorem 3.1. ( ::::?- ) Assume W is the impulse response function of the positive linear system 

x(t)=Ax(t)+Bu(t), x(to)=xo, 

y(t) = Cx(t) + Du(t), 

with X = IR~, BE IR~xm, C E iRtxn, DE !Rrm, and A E !Rlnxn a Metzler matrix, for n E Z+. It follows that 
there exists an a E IR satisfying A+ r:t.! E IR~xn. Then 

M,.(O) = W(O) =D, 

d)-I di-I di-I 
M ( .) - rxtw( )I - ate AtBI - c (A+al)tBI " J - dtJ-1 e t t=O- dti-1 e e t=O - dti-1 e t=O 

=C(A+aJ)i-1B, j=I,2, ... 
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with Mry_(}) E IR~xm, since A+ rxl E fR~xn. So W is a Metzler impulse response function. This provides an 
A"' (=A+ al), B, C, and D satisfying 

Mry_(O) =D, 

M"(J)=CAi- 1B, j=l,2,. . ., 

and with Theorem 4.4 in [7], 1-3 follow. 

( ~) Because W is a Metzler impulse response function there exists an ex E fR such that for all j E 2+, 
M"'(j) E IR~xm. Step (a)-(f) in the proofs of Theorems 4.1 and 4.4 in [7] provide A E IR~xn, BE IR~xm, 
C E fR~ x n, and D E IR~ x m satisfying 

M,,(O) =D, 

Mrx(J)=CA1- 1B, j=I,2,. ... 

M"(j) are the Markov paramete1!_ corresponding to W(t) = C~At B, and because W is a Metzler impulse 
response function, rx E IR satisfies W(t) = e" 1 W (t). So with A= A - rxl, there exists a positive linear system 

x(t)=Ax(t)+Bu(t), x(to)=xo, 

y(t) = Cx(t) + Du(t), 

with W(t) = CeA1B for t>O, and W(O) =D. D 

4. Characterization of minimality 

In this section results on the characterization of minimality for the continuous-time case are presented and 
turn out to be related to the results for the discrete-time case, see [7]. The problem is to derive sufficient and 
necessary conditions for a continuous-time positive linear system to be a minimal positive realization of the 
impulse response function. As in [7], attention is restricted to the positive rank and extremal cones. About 
the positive rank in relation to a continuous-time positive linear system the following can be said. 

Consider a positive linear system (A,B, C) with BE fR~xm, C E fR~xn, and (A+ rxl) E fR~xn for some rx ER 
Let A, =A+ rxl. For p,qE'l'..+, define Hrx(p,q) to be the Hankel matrix 

CB CA"B CA~- 1 B 

H"(p,q)= 
CAC/.B cA;8 

(3) 

CAP- 18 
a 

CAp+q-28 
1 

Proposition 4.1. Consider a positive linear system (A,B, C) with BE IR~xm, C E IR~xn, and A E !Rnxn a 
Metzler matrix. For all rx E fR satisfying A+ rxl E fR~xn and for every p, q E 2+. pos-rank(H"(p,q)) ~n. 

Proof. Analogous to discrete-time case, Proposition 5.9 in [7]. D 

Below the relation between minimal discrete-time positive linear systems and continuous-time positive linear 

systems is presented. 

Theorem 4.2. Let the continuous-time positive linear system (A,B, C) be given as above. (A,B, C) is a 
minimal continuous-time positive linear system if and only if (A + [31, B, C) is a minimal discrete-time 

positive linear system for all f3 E fR satisfying A + /31 E lR~xn_ 
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Proof. (:::::;.) Assume (A,B, C) is a minimal continuous-time positive linear system. Suppose there exists a 
fJ E IR such that (A +/JI, B, C) is a discrete-time positive linear system that is not minimal. Then there exists 
a discrete-time positive linear system (i,B, C), with A E IR~ xni, BE IR~ xm, C E IR~xni, for n1 <n, with the 

same impulse response function as (A+ /31,B, C). But then (A - /31,B, C) is a continuous-time positive linear 
system with state-space dimension n1 and the same impulse response function as (A,B,C), so (A,B,C) is not 
minimal. This is a contradiction. So (A+ [31,B, C) is a minimal discrete-time positive linear system for all 
/3 E IR satisfying A + /31 E IR~ x n. 

(-<==) Assume (A+ /31,B, C) is a minimal discrete-time positive linear system for all f3 E IR satisfying A+ 
/31 E IR~xn. Suppose (A,B,C) is not a minimal continuous-time positive linear system. Then there exists a 
continuous-time positive linear system (i,ii, C), with A E 1Rn1 xni a Metzler matrix, ii E IR~1 xm, C E IR~xni, for 

n 1 < n, with the same impulse response function as (A, B, C). Since A is, like A, a Metzler matrix, there exists 
an °' E IR, satisfying both A+ ru E IR~1 Xni and A+ ctl E IR~ Xn. So (A+ ru, ii, C) is a discrete-time positive linear 
system with the same impulse response function as (A+ ctl,B, C), but with a smaller state space dimension, 
hence (A + ctl,B, C) is not minimal. Contradiction. It follows that (A,B, C) is a minimal continuous-time 
positive linear system. D 

If (A+ /31, B, C) is a minimal discrete-time positive linear system for only one f3 E IR satisfying A+ /31 E IR~ xn, 
this is not sufficient for (A,B, C) to be minimal as continuous-time positive linear system, as the following 
example shows. 

Example 4.1. Consider the continuous-time positive linear system of the form ( 1) with 

(

-0.8 0.25 0 0 ) 
1 -0.8 0 0 

A= 0 0.39 -0.8 0.8 ' 

0 0 0.8 -0.8 

C=(l 1.1 0 2). 

For °' = 0.8, A+ ru =Aa E IR!x 4 . The discrete-time positive linear system (Aa,B, C) is minimal. To see this, 
consider the transfer function 

_ 1 A.3 + 1.U2 - 0.64.li. - 0.8 A.2 + l.6A. + 0.16 
C(A.1-Aa) B= (Ji.2-0.25)(Ji.2-0.64) =(A.+0.5)(A.2 -0.64). 

Suppose there exists a positive realization of order 3. Then there should exist a matrix A E 1R!x 3 with eigen

values 0.8, -0.8, and -0.5. Because A E 1R!x 3 , trace(A) ~O. But trace(A) equals the sum of the eigenvalues 

of i, which is 0.8 + (-0.8) + (-0.5) = - 0.5. This is a contradiction. So (Aa,B, C) is a minimal discrete-time 
positive linear system. Now consider the Hankel matrix 

1.1 0.25 

0.25 0.899 

0.899 0.0625 

0.0625 0.62411 

The claim is that Ha(4,4) has positive rank 4. This will be proven in the appendix. 
But, also for f3 = 1.6, A+ /31 =Ap E lll!x 4 . Now (Ap,B, C) is a discrete-time positive linear system, which 

is not minimal. Indeed, the discrete-time positive linear system (A,ii, C), with 

A= (1~6 
0.3 

0 

1.6 

0 

0 ) 0 ' 
0.3 

c = (1 1 1 ), 



J.M. van den Hof/Systems & Control Letters 31 (1997) 243-253 249 

is a discrete-time positive linear system with the same impulse response function as (Ap,B, C). It is minimal, 
since it is minimal as linear system, i.e., cl.ii) is reachable and cl. C) is observable. So (A - /JI, B, C), with 

(
-1.6 0 

l - 131 = 1.6 o 
0.3 0 

~ ) , B= (~) , 
-1.3 0 

c = (1 1 1), 

is a minimal continuous-time positive linear system for (A,B, C). 
So, while (A ix, B, C) is a minimal discrete-time positive linear system, and pos-rank(Hix( 4, 4)) = 4, for ix = 0.8, 

(A,B, C) is not a minimal continuous-time positive linear system. 
Note that with Proposition 4.1, pos-rank(Hp(p,q)):s:;;3 for all p,qEl..+, so 

pos-rank(Hp( 4, 4)):;:;; 3 < 4 = pos-rankCHix( 4, 4) ). 

To show that there exists a continuous-time positive linear system that is not minimal as an ordinary linear 
system, but is minimal as a positive linear system, consider the example in [15]. Let 

(-2 0 0 1) (I) 1 -2 0 0 0 
A= 0 1 -2 0 ' B= 0 ' 

0 0 1 -2 I 

C=(l 1 0 1) (4) 

be a continuous-time positive linear system. Note that this system is not minimal as an ordinary linear system. 
In [15] it has been shown that the system is minimal as a continuous-time positive linear system. Another 
way of showing this is using the theory of this section as follows. With Theorem 4.2 and Example 4.1 it is 
not sufficient to check whether (A+ 21, B, C) is minimal as a discrete-time positive linear system. For (A, B, C) 
to be a minimal continuous-time positive linear system, it has to be shown that (A+ /31, B, C) is minimal as a 
discrete-time positive linear system for all f3 E IR satisfying A + {3! E iR!x 4 . Consider for C 4) the discrete-time 
positive linear systems (A +/JI, B, C) for arbitrary f3 ';;::; 2. The poles of the transfer function C(ll - A )- 1 B are 
{/3 - 1,/3 - 2 + i,{3- 2 - i}. If {/3- 1, {3- 2 + i,/3- 2 - i} were the eigenvalues of a positive matrix A E 1R!x3, 

then Eq. ( 4.2.1) in [3] must hold. For k = 1 and m = 2 this equation reads 

(5) 

in which ..1. i. ..1.2, ..1.3 are the eigenvalues. Substituting 

..1.1 = {3- 1, 

it can be seen that C5) does not hold for any f3 E IR. So there does not exist a positive matrix A E 1R!x 3 with 
eigenvalues {/3- I, /3- 2 + i, /3- 2 - i} for any f3 E IR. It follows that (A+ /31,B, C) is a minimal discrete-time 
positive linear system for all f3 ';;::; 2, so with Theorem 4.2 (A, B, C) is a minimal continuous-time positive linear 
system. 

This section will be closed with an analogue for Proposition 5.10 in [7]. 

Proposition 4.3. Let (A,B, C) E CIRnxn x IR~xm x IR~xn) be a continuous-time positive linear system. If there 
exist p,q El..+ such that for all ix E IR satisfying A+ ix1 E IR~xn, pos-rank(Hix(p,q)) = n, then (A,B, C) is a 
minimal positive linear system. 

Proof. This follows from Theorem 4.2 above and Proposition 5.10 in [7]. D 

Note that the positive rank of HixCp,q) has to be determined for all ix E IR satisfying A+ ix1 E IR~xn, which 
makes the problem even more difficult than the problem for the discrete-time case. 
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5. Conclusions 

As in the discrete-time case, the condition of reachability and observability is only sufficient for a continuous
time positive linear system to be minimal, but not necessary, as has been shown by the example described 
by (4). 

Proposition 4.3 only presents a sufficient condition for minimality, but in [8] a necessary and sufficient 
condition has been derived. For continuous-time positive linear systems it comes down to the following: 
a continuous-time positive linear system (A, B, C) is a minimal positive linear system if and only if the 
positive system rank of H"(p, q) equals n for all ix E IR satisfying A+ oJ E IR~xn. For the definition of positive 
system rank and further details, the reader is referred to the above-mentioned paper. 

Appendix. Proof of pos-rank(H"( 4, 4)) = 4 in Example 4.1 

For the proof a result from [8] is needed. For completeness this result will be stated below, in Theorem A. I 

Definition A.1. A finite set of vectors in iRt, say { v1, ... , vm} C !Rt, is said to be positively dependent if there 
exists an i E Zm such that v; can be written as a nonnegative linear combination of { Vj, j E Zm, j =f i}, or 

m 

V; = L AjVj, in which Aj E IR+ for j E Zm, j =f i. 
j=IJ'/i 

It is said to be positively independent otherwise. 

Definition A.2. A finite set of vectors (nonempty, not all zero) {Vi, ... , vm} C 1Rt, is said to be a frame of 
the polyhedral cone C ~ !Rt if the conditions 

1. the set { v1, ••. , Vm} is positively independent; 
2. the set {v 1,. • .,vm} spans the cone C; 

both hold. The integer m is said to be the size of the frame. Let k, m E Z+, m < k. Denote the set of polyhedral 
cones with a frame of size m as 

Ck,m = { C ~ iRt I C is polyhedral cone, with a frame of m vectors}. 

The following definition and propositions come from [5]. They are needed for Definition A.4. 

Definition A.3. Let C be a polyhedral cone in IRi of dimension m. Then C has one m-facet, itself, and no 
r-facets for r>m. If r<m, then Fis an r-facet of C if 

1. F is a subcone of an (r + 1 )-facet G; 
2. F~8G; 
3. no subcone of G contained in 8G properly contains F; 
4. F =f 0. 

Denote by ff,.( C) the set of r-facets of C. 

Define on Ck,m an order relation by inclusion of cones. The notion of extremal cone is defined below. 

Definition A.4. Let k, m E Z+, m < k. A cone in Ck,m is said to be an extremal cone if it is a maximal element 
in ck,m \9'm(1Rt) with respect to the order relation; denote 
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Note that IR~ is the only maximal element in Cu, and 3'i ( IR~) = { IR~}. 

Theorem A.L Consider A E IR~xm. If pos-rank(A) = n, then there exist a BE IR~xn and a C E IR~xm such that 
A= BC and cone(B) E CE u ca;-(rnik) k,n J"n ll'l+ · 

As in Section 3.4 of [3], the following notation will be used. For A E IRk xm let a denote the 1'th column 
t-A * d { + ' 1 

o . a1 enotes the 0, 1} vector defined by aij = l if % > O and aij = O if au = 0. 

Theorem A.2. Let A E IR~ xm, with k ~ m. Let 1 < i, j < m. If a; ~ aj, then A is strictly factorizable. 

Proof. The proof is analogous to the proof of Theorem 3.4.19 in [3]. D 

Corollary A.3. If A E CEk,m U .JWm( IR~ ), with k ~rn. i. e., if A is not strictly factorizable, then A contains a 
zero and a strictly positive element in every column, and a strictly positive element in every row. It also 
contains a zero in at least m rows. 

Consider the matrix 

( I 

1.1 0.25 0.899 

1.1 0.25 0.899 00625 ) H,(4, 4) = 
0.899 0.62411 . 0.25 0.0625 

0.899 0.0625 0.62411 0.015625 

Suppose pos-rank(H,(4,4))=3. Then with Theorem Al there exist a BEIR!x 3 and a CEIR!x4 such that 

H,( 4, 4) =BC and cone(B) E CE4,3 U~(IR! ). If cone(B) E CE4,3 U~(IR! ), then from Corollary A.3 it follows 
that B contains at least one zero and one nonzero element in every column, and in at least 3 rows a zero. 

Note that, with r 1,r2,r3, and r4 denoting the four rows of H~(4,4), that 

X 16 I 
25r1 + 25r2 = 2r3 + r4. 

So this relation should also hold for the rows of B. With a post-multiplication by a monomial ME 1R!x 3, 

B can contain a one in every column. So B has, without loss of generality, one of the following forms: 

(~a:~ 
~b+~ ( ~":~ 1 

' ) 8 16 

0 c b 

.!QC~ ;)l ' 81= 32 16 B _ 32 16 

0 ) 
2-

0 a 1 a 25 25 

I b 16 8 1 16 b 8 0 25c + 25 25 + 25 

( 
o ¥b + n ) ( ¥a+ n 1 c ) 

'12a + ~~ O :· 0 b l 
B - 32 16 84 = 

"1 - 16 }? ' 1 Q .!QC.+ ;)l , 
a 1 25 c + 25 25 25 

16b 8 0 b 0 a 25 +15 

with a> O, b ~ O, c > O. Since H~( 4, 4) =BC, C can be calculated by C = B* H,( 4, 4 ), with B* a left inverse of 
B. Consider c1 =BIH,,(4,4). All elements of C1 must be positive. Consider the third and the fourth element 

of the third row of C1. 

C1(3,3J = 

C1(3,4J = 

l.95034375a + 0.3046875 + 3.4006875ab - 0.390625b 

a + 2 + 4acb + 2ac 

0.048828125a - 0.15234375 - l.70034375ab - 3.9006875b 

a + 2 + 4acb + 2ac 
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Now 

C1(3,3l ~ 0 "f d l .f b l.95034375a + 0.3046875 i an on y i & =· x 
""' 0.390625 - 3.4006875a · ' 

fi "I- 0.390625 
or a 3.4006875' 

C ...__ 0 "f d 1 "f b 0.048828125a - 0.15234375 
1(3 4 ) ""' i an on y i & -· y 

' ~ ""' l.70034375a + 3.9006875 -. · 

So b ~ min {x, y}. But 0 ~a~ 1 implies y < 0, and a~ 1 implies x < 0, thus for all a~ 0 there holds b < 0. 
This contradicts that Ho:(4,4) can be written as B1C1 with B1 and C1 positive matrices and B1 given above. 

Now consider the second and fourth element of the first row of C2 =B2Hoi(4,4). 

Now 

C _ 0.39cb + 0.32c - 2.816b - 1.158 
2<1•2> - 2acb + ac + 2c + 4 ' 

C _ 0.0975cb + 0.08c - 2.30144b - 1.08822 
2<1•4> - 2acb + ac + 2c + 4 

C 0 . d . 0.32c - 1.158 
2(1,2) ~ 1f an only If b~ 2_816 _ 039c =:x, 

2.816 
for c "I- 0.39 , 

C 0 ·r . 0.08c - 1.08822 
2o, 4 i ~ i and only If b ~ 230144 _ 0_0975c =: y, 

2.30144 
for c "I- 0.0975 · 

Sob~ min{x,y}. But O~c~ 10 implies y<O, and c~ 10 implies x<O, thus for all c~O there holds b<O. 
Now consider the third and fourth element of the third row of C3 =Bj'Ho:(4,4). 

C _ -l.70034375ab + 0.1953125b - 0.15234375 - 0.975171875 
3<3•3> - acb+2cb+4b+2 ' 

C _ 0.850171875ab + l.95034375b + 0.076171875 - 0.0244140625a 
3<3•4> - acb + 2cb + 4b + 2 

Now 

. . 0.1953125b - 0.15234375 
C3c3,3> ~ O if and only if a~ 0.975171875 + l.70034375b =:x, 

. . l.95034375b + 0.076171875 
C3c3•4 > ~ O if and only if a~ 0.0244140625 - 0.850171875b =: y, 

fi b "I- 0.0244140625 . 
or 0.850171875 

So a~ min{x,y}. But O~b~0.1 implies x<O, and b~0.1 implies y<O, thus for all b~O there holds a<O. 
For the last possibility, consider the first and third element of the first row of C4 =B4Hoi(4,4). 

Now 

0.39cb - 0.704c + l.28b - 1.158 
c4(l,l) = 2b + 1+2acb + 4ab , 

0.0975cb - 0.57536c + 0.32b - 1.08822 
c4(1,J) = 2b + 1+2acb + 4ab 

. . l.28b - 1.158 c4{l,l) ~ O if and only if c~ 0.704 _ 0_39b =:x, 
0.704 

for b "I- 039 , 

0.32b - 1.08822 0.57536 
C4(1,3) ~ 0 if and only if c ~ 0.57536 - 0.0975b =: y, for b "I- 0.0975 . 

So c~ min{x,y}. But O~b~3 implies y<O, and b~3 implies x<O, thus for all b~O there holds c<O. 
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Conclusion: Ha( 4,4) cannot be written as BC with BE rR!x 3, C E rR!x 4, so pos-rank(H"(4, 4 )) = 4. D 

References 

[I) R. Bellman, K.J. Astriim, On structural identifiability, Math. Biosci. 7 (1970) 329-339. 

[2] A. Berman, M. Neumann, R.J. Stem, Nonnegative Matrices in Dynamic Systems, Pure and Appl. Math., Wiley, New York, 1989. 

[3) A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Computer Science and Applied Mathematics, 
Academic Press, New York, 1979. 

[4) L. Farina, L. Benvenuti, Positive realizations of linear systems, Systems Control Lett. 26 (1995) 1-9. 

[5) M. Gerstenhaber, Theory of convex polyhedral cones, in: T.C. Koopmans (Ed.), Activity Analysis of Production and Allocation, 

Wiley, New York, 1951, pp. 298-316. 
[6) J.M. van den Hof, Structural identifiability from input-output observations of linear compartmental systems, Report BS-R9514, CWI, 

Amsterdam, 1995, to appear in IEEE Trans. Automat. Control. 
[7] J.M. van den Hof, Realizations of positive linear systems, Linear Algebra Appl. 256 (1997) 287-308. 

[8] J.M. van den Hof, Minimality of positive linear systems, preprint, submitted to a journal. 
[9] J.M. van den Hof, J.H. van Schuppen, Realization of positive linear systems using polyhedtal cones, Proc. 33rd Conference on 

Decision and Control, 1994, pp. 3889-3893; IEEE. 
[10) J.A. Jacquez, Compartmental Analysis in Biology and Medicine, The University of Michigan Press, Ann Arbor, 1985. 

[I I] J.A. Jacquez, C.P. Simon, Qualitative theory of compartmental systems, SIAM Rev. 35 (1993) 43-79. 

[ 12] H. Maeda, S. Kodama, Positive realization of difference equations, IEEE Trans. Circuits and Systems 28 (1981) 39-4 7. 

[13) H. Maeda, S. Kodama, F. Kajiya, Compartmental system analysis: realization of a class of linear systems with physical constraints, 

IEEE Trans. Circuits and Systems 24 (1977) 8-14. 
[14) J.W. Nieuwenhuis, About nonnegative realizations, Systems Control Lett. l (1982) 283-287. 

[15) Y. Ohta, H. Maeda, S. Kodama, Reachability, observability and realizability of continuous positive systems, SIAM J. Control Optim. 

22 (1984) 171-180. 
[16] Ch. Wende, L. Darning, Nonnegative realizations of systems over nonnegative quasi-fields, Acta Math. Appl. Sinica 5 (1989) 

252-261. 


