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PREFACE 

An Advanced Course on the Foundations of Computer Science organized 

by the Mathematical Centre as part of an international effort under the 

auspices of the European Communities, was held at the University of 

Amsterdam, May 20-31, 1974. This Tract collects the lecture notes of five 

of the courses given. The sixth course, given by Dr. R. Kowalski on Predi

cate Logic as a Programming Language in Artificial Intelligence, is sched

uled to appear elsewhere. 

We are very grateful to the Netherlands Organization for the Advance

ment of Pure Research (Z.W.O.) for generously supplying the money to orga

nize the Course and to the lecturers for their excellent contributions. 

J.W. de Bakker 

Director of the Course 
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MATHEMATICAL CENTRE TRACTS 63, 1975, 3-53 

THE FIXED POINT APPROACH IN SEMANTICS: 
THEORY AND APPLICATIONS 

J.W. DE BAKKER 

Mathematical Centre, Amsterdam I Free University, Amsterdam, (NL) 

0. INTRODUCTION 

The present notes are devoted to an exposition of the "fixed point 

approach" in programming theory. In particular, we are concerned with those 

programming concepts which are related to the control structure of a pro

gram, viz. recursion and iteration. The methods to be developed will be 

applied to obtain proofs of program properties and, also, to analyze pro

gram proving methods stemming from a variety of sources. 

Let f: V + V be a function mapping some domain V to itself. An element 

x E V is called a fixed point of f iff f(x) = x holds. This definition in

cludes the case that V itself is a collection of functions, from E to F, 
say. Then, for F: V + V -such F which maps functions to functions we shall 

call a functional-, we have again that f E V is a fixed point of F iff 

F(f) f, i.e., iff for all x E E, F(f) (x) f(x). 

The first three sections of our paper contain the development of the 

main mathematical properties of recursion (including iteration as a special 

case). We show that recursive procedures are least fixed points -under a 

suitable ordering- of the functionals to be associated with the body of 

their declarations (section 1). Next, the important notion of the continuity 
of these functionals is introduced, and a powerful proof rule (Scott's in

duction rule) is based on it (section 2) . In section 3 we propose a method 

for associating binary relations with various programming constructs 

-composition, conditionals, while statements, parameterless recursive pro

cedures- and show how to apply the results of sections 1 and 2 to them. 

This section also brings the introduction of the so-called µ-notation, 

together with its justification. This requires, among others, an extension 

of the continuity result of section 2. 

The essential ideas of the first three sections were first presented 
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in [29], though the fixed point approach to recursion goes back to KLEENE 

(see e.g. [17], p.348). Independently of [29], PARK proposed his so-called 

"fixpoint induction" in [26], and BEKIC obtained a number of related re

sults in [5]. The le~st fixed point operator has also been studied exten

sively by the Polish school of programming theory, for which we refer to 

[6,7] and the references contained in these papers. 

Sections 4 and 5 bring a large number of applications of the results 

obtained in sections 1 to 3. We have drawn here mainly from the papers 

DE BAKKER [2], DE BAKKER and DE ROEVER [4], and DE BAKKER and MEERTENS 

[3], though a few remarks due to other authors are mentioned in section 

4.4 and the exercises in section 6. (The advanced parts of these papers 

are usually omitted, however.) 

There is, besides the results to be treated in these notes, a great 

variety of other applications to be found in the literature. A brief and 

incomplete survey follows: In a series of papers by MANNA and his colleagues 

[9,10,20,21,30], the problems dealing with recursive procedures with more 

than one parameter, and the various ways of "parameter passing" are inves

tigated, and an impressive number of examples of Scott's induction are 

provided. We also mention their discussion of other induction principles 

which have been proposed such as "truncation induction" (MORRIS [25]) and 

"structural induction" (BURSTALL [8]). Decidability problems about recur

sive program schemes are treated e.g. in ASHCROFT, MANNA and PNUELI [1] 

and COURCELLE, KAHN and VUILLEMIN [12]. In an intriguing paper [15], 

HITCHCOCK and PARK investigate the relationship between the µ-formalism 

and second order predicate logic, and, moreover, the use of wellfounded 

relations in proofs of program termination. Here the notion of greatest 

fixed point makes its first appearance, without being explicitly mentioned, 

however. The least fixed point operator has also found its place in SCOTT's 

models of the A-calculus, where furthermore the relationship with CURRY's 

"paradoxical combinator" Y is settled. (No published description of this 

seems to exist.) Finally, we mention the formal system embodying (a gener

alization of) the main ideas of section 1 to 3, viz. the LCF (Logic for 

Computable Functionals) system of MILNER, who has also implemented this 

yielding an interactive program proving facility [23,24]. 



We now give a summary of the applications we do treat in the present 

paper. Section 4 contains a number of examples concerning program equiv

alence. In section 4.1, a simple while statement example is dealt with, 
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the proof of which uses some results with independent interest. Section 4.2 

deals with a problem which initially had the appearance of an equivalence 

between two tree traversal algorithms, but which is then shown to be an 

instance of a much more general equivalence result, not depending on this 

specific area. In section 4.3 we study the well-known 91-function, and in 

section 4.4 we make a few remarks concerning a (still open) problem, viz. 

how to provide a convincing explanation of COOPER's extension of recursion 

induction as proposed in [11]. Section 5 deals at some length with the 

variety of attacks on proving (partial) program correctness, all going back 

to FLOYD's inductive assertion method [14]. After a brief review of this 

method in section 5.1, section 5.2 is devoted to a proof of its consistency 

and completeness. This may be seen as a generalization of MANNA's approach 

to partial correctnes [18]. In section 5.3 we discuss HOARE's axiomatic 

framework for proving program properties [16]. In particular, we justify 

his while statement axiom, and investigate in how far it fully character

izes such statements. In section 5.4, we try to find an interpretation for 

the ideas in a recent paper by DIJKSTRA [13]. We conclude that, if our in

terpretation is right, his main theorem is incorrect. A slight modification, 

however, is sufficient to yield a true proposition, which is proven by a 

two line application of Scott's induction. Finally, section 6 contains a 

small collection of not-too-simple exercises. 

The general aim of our paper is to stimulate the reader's interest in 

the many new insights which have resulted from the fixed point approach. 

No results which essentially extend the literature as listed above, are 

given, though a few small remarks and points of presentation may be new. 

As said already, considerations which were thought to be of a too advanced 

nature have been omitted. Moreover, no attention has been paid to the fixed 

point approach in formal language theory, where a few fruitful applications 

have also been found. 
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1. RECURSIVE PROCEDURES AS LEAST FIXED POINTS 

We shall present an analysis of the main mathematical properties of 

recursive procedures, leading to their characterization as least fixed 

points of certain transformations. 

Let us first consider three simple examples of recursive procedures, 

written in ALGOL 60: 

( 1.1) 

( 1. 2) 

( 1. 3) 

integer procedure f(x); 

f := if x = 0 then else x*f (x-1) 

integer procedure g(x); 

g :=if x > 100 then x - 10 else g(g(x+11)) 

integer procedure h(x); 

h := h(x) 

We see that (1.1) gives the well-known recursive definition of the 

factorial function, (1.2) is the remarkable 91-function, the name of which 

is derived from the fact that for g(x) we have, for all integer x, 

g(x) = if x > 100 then x - 10 else 91 (this is one of the results to be 

proven later (section 4.3)). As to the procedure declared by (1.3), this 

is immediately seen to lead to a non-terminating computation for each ar

gument x, whence we see that the corresponding function is nowhere defined. 

Thus, as soon as we introduce this type of recursive definitions, we are 

directly led to the consideration of partial functions, i.e., functions 

which may be undefined for some (possibly all) of their arguments. For such 

functions, the following definition of a partial ordering ".S." is rather 

natural. Also, we give a special name to the least function with respect 

to 11 ~": 
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DEFINITION 1.1. Let f,g be partial functions from V1 to V2 • 

a. f ~ g iff Vx E v1, y E V2[f(x) = y ~ g(x) = y] 

b. n denotes the nowhere defined function (from V1 to V2l. 

Remarks: 

1. One might emphasize in the notation that Q refers to the sets V1,V2• 

This will turn out to serve no purpose and is therefore omitted. 

2. Indication of the sets through which the variables, such as x,y above, 

range, will usually be omitted in the sequel. 

3. Observe that f ~ g iff for all x, whenever f is defined in x then g is 

defined in x and both functions yield the same value. Also, f = g iff 

f ~ g and g ~ f. Moreover, we clearly have for all f,g,h: n ~ f; f ~ f; 

if f ~ g and g ~ h then f ~ h. 

We now introduce a general format for the procedures as exemplified by 

(1.1) to (1.3). We shall use, instead of ALGOL 60, a shorter notation which 

for (1.1) reads: f(x) <>=if x = 0 then 1 else x*f(x-1), and similarly for 

(1.2) and (1.3). "<>="may be read as "is recursively defined by". In 

general we have declarations of the form 

(1.4) f (x) <>= T (f) (x), 

where T determines a functional, T(f) a function, and T(f) (x) yields an 

element of the domain V of values we are concerned with in the case at hand 

(e.g., in (1.1) Vis the set of natural numbers, in (1.2) the set of in

tegers, and in (1.3) any set). T(f) (x) is constructed*) by applying certain 

rules of construction, to be given presently, to an initial system con

sisting of 

A proper development of the theory would need the introduction of a 
formal language used for specifying the T(f), and a system of inter
pretation (including suitable rules of computation) to associate 
functions with these formal constructs. In order to adhere to this 
distinction, we would require a treatment in a style which we consid
er to be unsuitable for the present introductory exposition. Thus, 
the experienced reader will have to forgive a few inconsistencies in 
the treatment we give her. A more rigorous development is given in 
[31]. 
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A given collection of base functions of m ~ 0 variables, the elements 

of which are denoted by a,a1,b, ... They map Vm to V. (For m=O they 

denote an element of V (a constant).) 

A given collection of predicates, of one variable, the elements of 

which are p,q, ..• These map V to {0,1}. 

The function f. 

Before we can give these construction rules, we need to explain two nota

tiona;l conventions: 

1. In the sequel we shall make a -modest- employ of the A-notation. For 

any variable x, let $(x) be some formula which possibly contains oc

currences of x. Then AX 0 $(x) is the function which maps its argument, 

a say, to the result of substituting a for all occurrences of x in 

$(x). Example: Let $(x) be the formula x + 2*Y· Then 

(Ay- (h•x+2*y) (3)) (4) 

(Ax• ( AY' x+2*y) ( 3)) (4) 

(Ay' 3+2*y) (4) 

(Ax•x+2*3) (4) 

3 + 2*4 = 11, whereas 

10. 

2. We use the following notation for composition of functions: Let b be 

any function of m ~ 1 

one variable. Then we 

by (bo (a1, ... , am)) (x) 

write boa. 

variables, and let a 1 ,a2 , .•. ,am be functions of 

write b 0 (a1 , ... ,am) for the function defined 

= b(a 1 (x) , ... ,am(x)). For bo(a) we usually 

DEFINITION 1.2 (Syntax for T(f)). T(f) is either 

a. 

b. 

c. 

d. 

A one-place base function 

f 

Constructed from already given , 1 (f), T2 (f) by 

1. 

2. 

Composition: Tl (f) 0 T2 (f) 

Selection AX" if p(x) then Tl (f) (x) else T2 (f) (x) 

Constructed from already given T1 (f), ... ,Tm(f) (m~l) and given m-place 

base function b yielding b 0 (T 1 (f) , ... ,Tm(f)) 

Example 1. We show how to construct the right-hand side of (1.1) according 

to the rules of this definition. Choose for p, a 1,a2 ,a3 and b: 

AX'X = 0, AX·l, AX'X, AX·x-1 and AXAy. X*y, respectively. Then T(f) = AX" 

if p(x) then T 1 (f)(x) else T 2 (f)(x), with T1 (f) = a 1 , T2 (f) = bo(T 21 (f), 

T22(f)), T21 (f) = a2, T22(f) = T221 (f)oT222(f) I T221 (f) = f, T222(f) = a3. 



Example 2. Next consider (1.2). Let p: Ax•x > 100, a 1: \x•x-10, 

a 2: \x•x+11. Then T(g) = \x• if p(x) then T1 (g) (x) else T2 (g) (x), with 

Tl(g) =al, T2(g) = T21(g)oT22(g), T21(g) = g, T22(g) = T221(g)oT222(g), 

'221(g) = g, '222(g) = a2. 

9 

Definition 1.2 gave the syntax of our formulas; the next definition gives 

their semantics. We show how to evaluate an arbitrary formula T(f) in the 

presence of the declaration f(x) <= T0 (f) (x): 

DEFINITION 1.3 (Semantics of T(f)). Let f(x) <= T0 (f) (x) be the declaration 

of f. The value of any term T(f) is defined inductively by 

a. If T (f) - a then T (f) (x) = y if a(x) = y. 

b. if T(f) - f, then T (f) (x) y if 'o (f) (x) =y(i.e., in order to 

evaluate f (x), we replace f by the body of its declaration, viz. 

'o (fl l . 
c. If T(f) = T1 (f) 0 T2 (f), then T(f)(x) y if there exists z such that 

T2 (f) (x) = z and 'i (f) (z) = y. 

d. If T(f) = \x• if p(x) then 'l (f) (x) else T2 (f) (x), then T(f) (x) = y 

if either p(x) = 1 and T1 (f) (x) = y, or p(x) = 0 and T2 (f) (x) = y. 

e. If T (f) = b 0 (T 1 (f), ... , 'm (f)), then T (f) (x) = y if there exist 

x1 , ... ,xm such that Ti (f) (x) = xi, i=l, ... ,m and b(x1 , ... ,xm) = y. 

Example: We evaluate g(100) with respect to (1.2) (some shortcuts are 

used): g(100) (~)if 100 > 100 then 100 - 10 else g(g(100+11)) <glg(g(111)) 

(£lg(if 111 > 10-;;-then 111 -10 else g(g(100+11)) (g)g(101) (~)if 101 > 100 
- -- (d) -- -

then 101 - 10 else g(g(112) = 91. 

Our first result on the functionals T concerns their monotonicity: 

LEMMA 1.1. Let T(f) be as given in definition 1.2. Let T(f.), i=l,2, 
J. 

denote the result of substituting fi for all occurrences off in T(f). 

Then we have: If £ 1 ~ f 2 then T(f1J ~ T(f2l. 

PROOF. Induction on the complexity of T. 

a. 

b. 

If T(f) = a or T(f) = f, trivial. 

Let T(f) = 'i (f) 0 T2 (f). In order to prove T(f1) ~ T(f2), we must show 

(definition 1.1): For all x,y, if T(f1) (x) = y, then T(f2) (x) = y. 

Assume T(f1l (x) = y. By definition 1.3, there exists z such that 
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T2 Cf1) (x) = z and T1 (f1) (z) = y. By the induction hypothesis and the 

assumption we have that T2 Cf2J (x) = z and T1 Cf2l (z) = y. Hence, 

CT 1 Cf2) 0 T2 Cf2))(x) = y follows, i.e., T(f2)(x) = y holds. 

The remaining cases are also direct from the definitions. D 

We now come to an important property of recursive procedures. First 

we define, for any formula T(f), Ti(Q) for any integer i ~ O, as follows: 

DEFINITION L 4. 
0 

a. T (n) Q; 

b. Ti+l(Q) is the result of substituting Ti(Q) for all occurrences of 

fin T(f). 

Example: For T(f) as in (1.1), T2 (n) is AX' if x = 0 then 1 ~ 
x*(AX' if x=O then 1 else x*Q(x-1)) (x-1) which, using the notation AX'W 

for n, yields after simplification: 

AX" if x = 0 ~ 1 ~ x* (if x-1=0 then 1 else w) • 

We have the following lemma: 

LEMMA 1.2. Let T(f) be a formula, with f dealared by f(x) ~ T0 (f) (x). If 

T (f) (x) = y, then there e:x:ists an integer i (~0, and in general depending 
i on x), suah that T(T0 (n)) (x) y. 

PROOF. With each evaluation T(f) (x) = y we associate the pair (N,y), where 

N is the number of applications of step b of definition 1.3 in the evalua-

tion of T (f) (x) y, and y is the complexity of the formula T(f). We define 

CN1,y1l < (N2,y2J iff either N1 < N2 , or N1 = N2 and y 1 < y2 . (A formal 

definition of y is left to the reader.) We prove the lemma by induction on 

(N,y). Let T(f) (x) = y have as associated pair (N,y), and let the asser

tion of the lemma be proved for all evaluations with (N',y') < (N,y). We 

distinguish the following cases: 

a. T(f) - a. Then we may take i = 0. 

b. T(f) - f. Then, according to step b in the definition of the evalua

tion of f(x) = y, we have that T0 (f) (x) = y, with associated pair 



(N-1,y') •. Hence, by the 
io 

that TO (TO Cm) (X) = y, 

indu9tion hypothesis, there exists i 0 such 
1 0+1 

or TO (Q) (x) = y; thus, t~ing i = i 0 + 1 
1 0+1 

since, for T(f) ::; f, T(TO (m) (X) = yields the desired result, 
i +1 

TOO Cm (x) = Y• 

c. -r:(f) = -r: 1 (f)o-r: 2 (f). There exists z such that -r: 2 (f) (x) = z, with as

sociated pair CN1 ,y 1), -r: 1 (f) (z) = y, with associated pair CN2 ,y2), 

where N1,N2 s ~, y 1,y2 < y. Thus,iby induction, there exist i 1,i2 

such that -r: 2 c-r:02 cm> (x) = z'. -r: 1 (-r:0
1 cm> (z) =.y. Let i = max(i1,i2). 

The~, by monotonicity, -r: 2 (-r:~(n)) (x) z,-r: 1 (-r:~(.Q)) (z) = y, hence 
l. T(-r:0 (n)) (x) = y follows. 

d. The remaining two cases follow similarly by induction and monoto

nicity. D 

Lemma 1.2 may be reformulated using the following notation: Let 

c1.5) f 0 ~ f 1 ~ .•• ~ fi ~ ••• 
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be a ahain of functions such that fi ~ fi+l' i=0,1, •••• Each such chain 

has a least upper bound (l.u.b.) denoted by u:=O fi, and defined as follows 

DEFINITION 1.5~ Let fi,i=0,1, ... be as in (1.5). The function u:=O fi is 

defined by: (Ui=Ofi) (x) = y iff for some i ~ O, we have fi (x) = y. 

It is easily checked that u:=O fi is indeed a function which satisfies the 

l.u.b. requirements: 

1) fi ~ u:=o fi, for all i. 2) If fi ~ g for all i, 

then u:=O fi ~ g. 

Using this notation, from lemma 1.2 we obtain 

co i 
LEMMA 1.3. Let f be dealared by f(x) C= To(f) (x). Then f ~ ui=O To(m. 

~·By definition 1.5, U:=O T~(Q), which is the l:u.b. of the chain 
i 00 1 

n.~ TO(Q) ~ ... ~ -r: 0 (n) ~ ... , is defined as (Ui=OTO(Q)) (x) = y iff 
l. 

T0 (n) (x) = y for some i. Now apply lemma 1.2 with T(f) = f. D 

As next step we observe that from definition 1.3, part b, we immedi

ately obtain 
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LEMMA 1.4. Let f(x) ~ T(f) (x). Then f(x) 

f = T ( f) . 

Y iff T (f) (X) y, i.e., 

In other words, we have that f is a fixed point of the functional T of the 

body of its declaration. 

We need one more lemma for the proof of our first theorem: 

LEMMA 1.5. Let f(x) ~ T(f) (x), and let g be any function satisfying 
00 i 

T(g) ~g. Then ui=O T (Q) s g. 

PROOF. By the definition of u:=O Ti(Q), it is sufficient to show Ti(Q) s g, 

for all i. We use induction on i. 

a. i = 0. Clearly, Q ~ g. 

b. Assume the result for i: Ti(Q) s g. Then, by monotonicity and the 
'+1 i 

assumption on g, ,i (Q) S T(T (Q)) ~ T(g) ~g. 

THEOREM 1.1. Let f(x) 4= T(f) (x). 

a. f = U:=O Ti(Q) 

b. Let g be any function satisfying T(g) s g. 

Then f ~ g. 

c. f is the least fixed point of c. 

PROOF. 

a. Sis lemma 1.3. By lemma 1.4, f is a fixed point of T, thus, a 
fortiori, T(f) Sf. Now apply lemma 1.5. 

b. Direct from lemma 1.5 and part a. 

c. Direct from lemma 1.4 and part b. D 

With this important theorem we conclude our first section. 

2. CONTINUITY AND SCOTT's INDUCTION RULE 

According to theorem 1.1, for f declared by f(x) 4= T(f) (x), we have 

f = u:=O Ti(Q). This result (which may be viewed as a technique for 

"successively approximating" a recursive procedure) is applied in the justi-
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fication of a powerful rule for proving properties of programs with recur

sive procedures, viz. Scott's induction rule. Before presenting it, we 

need another important idea. We introduce the notion of continuity of our 

functionals, as defined in 

DEFINITION 2.1. T(f) is called continuous in f iff for each chain 

g0 S g 1 S •·• S gi S the following holds: 

THEOREM 2.1. Let T(f) be as in definition 1.2. Then T(f} is continuous in f. 

PROOF. Induction on the complexity of T. 

a. If T(f) =a or T(f) = f, the proof is trivial. 

b. Let T(f) = T1 (f)oT2 (f). We have to show that 

Tl (~gi)oT2(~gj) = ku (Tl (gk)OT2(gk)) 
]_ J 

This is established by: 

Tl (Ug.) 0 T2 (Ug,) = (ind. hypothesis) 
i ]_ j J 

U T1 (g,) 0 U T2 (g,) = U U(T 1(g.)oT2 (g,)) =(monotonicity) 
i ]_ j J i j ]_ J 

U U(Tl(g (' ·»oT2 (g (' '))) = U(T 1 (gk) 0 T2 (gk)) 
i j max i,J max i,J k 

c. Let T(f) = b 0 (T 1(f), ••• ,Tm(f)). Then 

d. 

T (Ug,) = bo(Tl(Ug,), ••• ,T (Ug,)) 
i i i i m i i 

bo(UT 1 (g,), ••• ,UT (g,)) = 
i i i m i 

bo(U ••• U (Tl(g. ), ••• ,T (g.))) 
· · i1 m l.m i1 im 

bo(~(Tl (gk), .•• ,Tm(gk))) 

~(bo(Tl(gk), ••• ,Tm(gk))) 

Similar to part b or c. 

= (ind.hyp.) 

The continuity of the T(f) plays an essential role in the justifica

tion of Scott's proof rule, as given in the next theorem: 

THEOREM 2.2. (Scott's induction rule, simple case). Let T1 (f), T2 (f), T(f) 

be as in definition 1.2, with f declared by f(x) <= T(f) (x). Assume that 

the following -two conditions are satisfied: 

a. T 1 W) S T 2 Wl. 



14 

b. For any function x, if T1(X) ~ T2 (X) then T1(T(X)) ~ T2 (T(X)). 

Then we may conclude that 

C. Tl (f} '.:_ T 2 (f}. 

i i 
PROOF. First we show that Tl (T (Q)} c T2 (T (Q)), for all i, by induction 

on i. 

1. i = 0. Follows from assumption a of the theorem. 
i i 

Assume Tl (T (Q)} =. T2(T (Q}). Apply 

x = Ti(Q). Then T(X) = Ti+l(Q), and 

2. assumption b of the theorem with 
i+1 i+l 

weobtainT 1 (T (Q)}'.:_T 2 (T (Q)}, 

as desired. 
i i 

From Tl (T. (Q)) c T2 (T (Q)) '.for all i, we infer that 

U:=Q Tl (T 1 (Q}) ~ U:=Q T2 (T 1 (Q)): By the continuity theorem, from this We 
00 1 00 1 

obtain T1 (Ui=O' (Q)) '.:_ T2 (Ui=O' (Q)}. An application of theorem 1.1 then 

yields T1 (f) '.:_ T2 (f), as was to be shown. 0 

COROLLARY 2.2. (Scott's induction rule, general case). 

Let T(f), Tli (f), T2i (f), i E I (I any index set) be as in definition 1.2, 

and let f(x) 4" T(f) (x) be the declaration of f. Let ~(f) be the family of 

inclusions {Tli(f) 

are satisfied: 

a. ~ Wl holds. 

c T2 .Cf)}. 1 . Assume that the following two conditions 
- 1 1E 

b. For any function x, if ~(X) holds, then ~(T(X}) holds. 

Then we may conclude that 

c. ~(f) holds. 

PROOF. A direct generalization of theorem 2.2. D 

Before exhibiting our first examples of applying the rule, we gener

alize our results for systems of n ~ 2 simultaneously declared recursive 

procedures. We consider the system of declarations 

(2. 1) 

or, in shorter notation, 

{f. (x) 4" T. (f1 , •.. ,f) (x)}._1 . 
i i n i- , ••• ,n 
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First we have to extend definition 1.2, where in clause b we now allow 

any of the functions fi, instead of the single f. The obvious extension 

of definition 1.3 is left to the reader. Next, we generalize theorem 1.1 
-"~f· h . . (i) as follows: For a:ny T = T(f1, ... ,fn)' we U"1' ~net e approx-imat~ons T , 

with respect to (2.1), as follows: 
1. T(O) 0, 

(i+l) (i) (i) 
2. T = T0 (Tl , •.• ,Tn ) 

It ca:n then be shown that 
00 (i) 

T = Ui=O T 1. 

2. For each system g1 , ..• ,gn such that {T. Cg1 , .•• ,g l c g.}. 1 1 n - 1 1= ,~~ .. ,n 
we have {f. ~ g.}._1 • 

J. J.. J.- I,.,.• 1Il 

3. The system {f1 , •.• ,fn} is the least (simultaneous) fixed point of the 

{T1, ... ,Tn}. 

Theorem 2.1 also has a straightforward generalization, statement of which 

is omitted here. Scott's rule (simple case) for systems becomes: Assume, 

for T' = T'(f1 , ... ,fn), T" = T"(f1 , ... ,fn), 

a. T'(n, ••• ,0,) ~ T"(n, ••. ,0,). 

b. For all functions x1, ... ,xn' if T'(x1, ... ,Xnl ~ 

T" (x1 , .•. ,Xn) then T' (T 1 cx1 , ... ,Xn), ... ,Tn (X 1, ... ,Xn)) ~ 

T" ( T 1 (x1 , ..• , Xn) , •.. , T n (X1, •.• , Xn)) . 

Then we ma,y conclude that 

c. T1 (f1 , ••. ,fn) ~ T"(f1 , ... ,fn). 

Example 1. As first example we consider the system 

(2.2) 

We show that a 2°£1 = f 2 , by applying Scott's induction rule twice, with 

T1 (£1 ,£2 l and T2 (f1,t2) as in (2.2), and T'(f1 ,f2)::: a 2ot1 , T"(f1,f2) = f 2 . 

1. T'(f1,f2J ~ T"(f1,f2). We have to verify 

a. a 2°n ~ n. This is clear. 

b. Assume a 2ox1 ~ x2 • We show that a 2°T 1 (x1 ,x2) ~ T2 Cx 1,x2): 

a2oT1 (X1,X2) = (df.Ti) 

a 2o(AX' if p(x) then x else (x1oa1) (x)) = 

AX' if p(x) then a 2 (x) else (a2ox1oa1) ~ (ind.) 
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AX" if p(x) then a 2 (x) else (x2°a1) (x) 

T2 (Xl ,X2). 

2. T" (f1 ,f2) S: T1 (f1 ,f2). 

a. Q S: a 2on is clear. 

b. Assume x2 s:; a 2°x1 . 

T2 (x1,x2) = (df.T 2) 

AX" if p(x) then a 2 (x) else (x2°a1) (x) s:; (ind.) 

AX" if p(x) then a 2 (x) else (a2ox1oa1) (x) = 

a 2 o (AX" if p (x) then x else (X1 oa1) (x) = (df. T 1) 

Example 2. Let f(x) <= T(f) (x), with T(f) = AX" if p(x) then x else 

f(f(a(x))). We show that f 0 f =f. In this case we do not need to prove two 

inclusions, but we apply a slightly modified version of Scott's rule (the 

formulation of which is left to the reader) to prove directly the following 

equivalence: Let g be any function satisfying g = AX' if p(x) then x else 

g(g(a(x))). Let Tl (f) - g 0 f, T2 (f) = f. We show that Tl (f) = T2 (f) by 

establishing 

a. T1 Wl = T2 W), i.e.,, g 0 Q = Q .. This is clear. 

b. Assume Tl (X) = T2 (X), i.e., g 0 X = X. We have Tl (T(X)) 

go(AX" if p(x) then x else X(X(a(x)))) = 

AX' if p(x) then g(x) else (g 0 X0 X0 a) (x) (ind.ass.) 

AX' if p(x) then g(x) else (xoxoa) (x) = (ass. on g) 

AX' if p(x) then (if p(x) then x else g(g(a(x)))) 

else (Xoxoa) (;c.) = 

AX" if p(x) then x else (XoXoa) (x) 

T 2 (T(X)). 

From a and b, g 0 f = f follows. Since this has been proved for arbitrary 

g satisfying g = T(g), we have in particular that f 0 f =f. 

Remarks. 

1. In the sequel, when justification of the "Q-case" of Scott's rule is 

trivial -which it usually is- no explicit mention will be made of it. 

2. The introduction of g in example 2 was needed in order to avoid deal

ing with T2 (f) = f 0 f, which would lead to undesirable complications 

in proving that from X = X0 X, T (X) = T (X) 0 T (X) may be inferred. By simi

lar techniques it is always possible to avoid, if necessary, simultaneous 
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induction on all occurrences of f. Again, no explicit attention will 

be paid to this in the sequel. (It is even the case that with a 

slightly different formal presentation of Scott's rule, we would not 

have encountered this difficulty at this place at all). 

Before dealing with our third example, which is concerned with func

tions of t;wo variables, we have to make some comments on the extension of 

our theory to functions of more than one variable. The syntactic part of 

this, which amounts to another extension of definition 1.2, is not diffi

cult. However, some complications arise when we want to extend the evalua

tion rules. Consider e.g. the declaration f (x,y) ., if x = 0 then 0 else 

f(x-1,f(x,y)), and suppose we want to evaluate f(l,0). Since the first 

argument is# O, we replace f(1,0) by f(O,f(l,0)). We now have a choice 

between replacing the inner- or the outermost f. If a computation rule is 

chosen which prescribes that the innermost occurrence is always to be 

dealt with first, then the computation does not terminate, whereas (con

sistently) choosing the outermost f yields the value O. Thus we see that 

different computation rules may lead to different results. The problems 

connected with this phenomenon have been investigated extensively in papers 

by CADIOU, MANNA & VUILLEMIN [9,10,21,30]. They have reached the conclu

sion that the function determined by a recursive procedure of the form 

f(x,y)., T(f) (x,y), say, is not necessarily the least fixed point of the 

functional T. However, this seems to be explained by their failure to real

ize that different parameter mechanisms lead to, possibly, different func

tionals which may have different least fixed points. We feel that when such 

distinction between the functionals is made, then the least fixed point re

sult remains true. We do not have a complete proof of this,*) but our claim 

finds strong support in as yet unpublished work of NIVAT, who also finds no 

deviation from the least fixed point characterization. These matters will 

not be dealt with any further in our notes: From now on we assume that all 

functions defined by a recursive procedure declaration satisfy the least 

fixed point property. The sceptical reader may, if he so wishes, impose the 

restriction that a computation rule is chosen -such as the equivalent of 

call-by-name- which justifies this also in the eyes of MANNA c.s. 

*) (Added in proof) A complete proof is given in DE BAKKER [31]. 
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Example 3 (MORRIS [25]). Let 

f(x,y) <=if p(x) then y else h(f(k(x),y)) 

g(x,y) <=if p(x) then y else g(k(x),h(y)) 

We show that f = g, by applying Scott's induction (general case) to the 

two equalities: f = g, and :>..x:>..y•f(x,h(y)) = :>..x:>..y•h(f(x,y)). The "S1-case" 

is left to the reader. Next assume as induction hypothesis: x 1 = x2 , and 

:>..x:>..y·X1 Cx,h(y)) = :>..x:>..y•h(x1 (x,y)). We have 

Also 

:>..x:>..y•t 1 cx1,Xz(x,y) = (df.f) 

:>..x:>..y• if p(x) ~ y else h(X1 (k(x) ,y)) 

:>..x:>..y· if p(x) then y else xl (k(x) ,h(y)) 

:>..x:>..y• if p(x) then y else x2 (k(x),h(y)) 

:>..x:>..y•t 1 cx1 ,x2) (x,h(y)) = (df.f) 

(second ind.hyp.) 

(first ind.hyp.) 

(df.g) 

:>..x:>..y• if p(x) then h(y) else h(X1 (k(x),h(y))) (second ind.hyp.) 

:>..x:>..y• if p(x) then h(y) ~ h(h(X1 (k(x) ,y))) 

>.xA.y•h (if p(x) then y else h(X 1 (k(x),y))) = (df.f) 

>.x:>..y•h (t 1 cx1 ,x2) (x,y)) . 

Example 4. Recursion induction and fixed point induction. 

The first technique for proving equivalence of recursive procedures was 

the so-called method of recursion induction, due to McCARTHY [22]. This 

works as follows: In order to prove the equivalence f 1 = f 2 , one tries to 

find some total f, recursively defined by f(x) <=t(f) (x), such that t sat

isfies t(f1) = f 1 and t(f2) = f 2 • If such f is found, one may infer that 

f 1 = f 2 • The method is easily explained using theorem 1.1, part b: From 

this we obtain that, under the given assumptions, f = f 1 and f = f 2 • The 

requirement that f be total then immediately yields (f=)f1 = f 2 . A variant 

of recursion induction is PARK's fixed point induction: Let f be declared 

by f(x) <=t(f) (x), and assume we want to show f = g for some g. Then, again 

according to theorem 1.1, part b, it is sufficient to show t(g) = g, and 

this is the method called fixed point induction by PARK in [26]. It is an 

interesting, and as yet open, question to determine precisely which class 

of inclusions can be shown by fixed point induction, and which class needs 

the additional power of Scott's induction. Observe that fixed point induc

tion uses only the monotonicity of the t's, whereas Scott's induction in 



the form presented here uses in addition their continuity. To what extent 

this requirement may be weakened has been investigated in [15]. (cf. also 

exercise 6. 3.) 
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This concludes our first series of examples of applying Scott's rule. 

Many more will follow in sections 4 and 5. 

3. PROGRAMS AND RELATIONS 

We now introduce a way of looking at programs which will enable us to 

apply the techniques of the previous sections to obtain both proofs of a 

variety of program properties, as well as an insight in the methods pro

posed for deriving such proofs, such as FLOYD's inductive assertion method, 

and its reformulations and extensions as proposed by MANNA, HOARE and 

DIJKSTRA. 

The first idea is the conception of a program as a specification of 

a mapping between states. When a program P with initial state x prescribes 

a computation resulting in final state y, we say that y = P(x). It is con

venient to allow also non-deterministic programs. Therefore, we consider 

P as a binary relation, and now write xPy to indicate that initial state x 

is transformed by P to final state y. Note that xPy 1 and xPy2 , with y 1 F y 2 , 

are possible. 

Next, we indicate how certain important programming concepts are mod

elled in such a relational framework. We start with a class of elementary 

actions, A,A1 ,A2 , ••• , each of which determines in some way we do not care 

to analyze further a relation between states. (If the reader insists, he 

may take assignment statements as examples of such elementary actions. The 

description of their effect will then need the introduction qf the state 

components, corresponding to the variables manipulated by the program. 

An assignment changes one such component, and leaves the others invariant. 

However, this level of detail will not enter our considerations.) Starting 

with elementary actions, more complex programs are constructed by means of 

the go-on operator (" ; ") which prescribes sequential execution, the con

ditional-, and the while-statement. Before we deal with these, we intro

duce some further tools. Let V be the domain of states, and let 

R,R1 , ••• ,s, ... be binary relations over V, i.e., subsets of V x V. As oper

ations between relations we have: 
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a. 

b. 

c. 

d. 

Binary operations. Composition: R1 ;R2 = 

{(x,y) I 3z[xR1z and zR2yJ}. Union: R1uR2 

{(x,y) I xR1y v xR2y}. Intersection: R1nR2 = {(x,y) I xR1y A xR2y}. 

Unary operation. Conversion: R = {(x,y) I yRx}. 

Nullary operations. The empty relation {i.e. the empty subset of 

V x V) is again denoted by Q. The identity relation I is defined as 

I {(x,x) J x E V}. The u:niversai relation is defined as U = V x V. 
* 00 i 

The star operation: R I u Ru (R;R) U •.• = Ui=O R. 

We apply these operations in our modelling of programming concepts. Se

quencing is easy: If the program s 1;s2 maps initial x to final y, then 

there must be an intermediate state z with xs 1z and zs2y. Thus, sequential 

execution of programs corresponds directly to relational composition. For 

the treatment of conditionals, we need a new convention. Consider a state-

ment if p then s 1 else s 2 • Whereas s 1 and s 2 may be considered as binary 

relations, this is not the case with the predicate p l), since it maps 

states to {0,1}, say. Therefore, we use the following device: With the 

predicate p we associate two relations, p 2 ) and p both of which are sub

sets of the identity relation I, and defined by 

p 

p 

{ (x, x) 

{ (x,x) 

p (x) 

p(x) 

1} 

o}. 

Observe that these definitions imply that p n p = Q. we can now give the 

relation corresponding to the statement if p then 8 1 else 82 : 

( 3. 1) 

We shall adopt the convention that " ; "binds stronger than "u", and omit 

parentheses such as in (3.1) from now on. 

1) 

2) 

Not all terminologies agree on our use of the words relation and pred
icate. Therefore, we emphasize that in our paper a (binary) relation 
is a subset of V x V (elsewhere possibly identified with a two-place 
predicate), and a predicate is a mapping from V to {0,1} (elsewhere 
maybe called a one-place predicate). 

Using p to denote both a predicate and a relation is admittedly 
ambiguous, but the reader will soon get used to the transition between 
the two, and, hopefully, will eventually appreciate its advantages. 



As an example of applying the notation, we look at one of McCARTHY's 

axioms for conditionals [22] which states the equivalence of if p then 
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(if p then s 1 else s 2) ~ s 3 , and if p ~ s 1 else s 3 • As corresponding 

relations we have p;(p;s1 u p;S2) u p;s3, and p;s 1 u p;s3 , respectively. 

The first of these may be simplified by applying some obvious properties 

of the relational system such as 

distributivity of";" over "u", i.e., 

R1 ; (R2uR3) = R1;R2 U R1;R3 
for p,q s I we have p;q = p n q 

fl;R=R;fl fl 

n u s = s u n = s 

etc. (Simple properties such as these will be applied tacitly in the 

sequel.) We now obtain p; (p;S1up;s2J u p;S 3 = p;p;S1 u p;p;S2 u p;S3 

p;S1 u fl;S 2 u p;S3 p;S1 u fl u p;S3 = p;S1 u p;S3 , as was to be shown. 

The next programming construct we treat is simple itePation, in the 

form of the while statement while p do s, with the usual semantics: iterate 

S as long as p remains true (including the case "do nothing" (I) if p is 

false to begin with). As corresponding relation we have 

(3.2) * (p;S) p 

for which we shall also use the notation p*S. On the base of (3.2) we can 

prove simple properties such as 1. p*S = p;S;p*S u p. 2. p*(p*S) = p*S. 

3. Cp1vp2l*S = p 1*S;p2*(S;p1*S), etc. We give the proof of the first two, 

leaving the third to the reader (see section 4.1, however): 

1. p*S = (p;S) \p ( (p;S); (p;S) * u I) ;p= p;S; (p;S) * ;p U I;p 

= p;S;p*S U p. 

2 ( * - * * -• P* p*S) = (p; (p*S)) ;p = (p; (p;S) ;p) ;p 

( * - * - * - -I u p; (p;S) ;p u p; (p;S) ;p;p;(p;S) ;p u .•. ) ;p 

(I u p;(p;sJ*;p u n u ..• );p = 

pup; (p;sJ*;p;p = p u Cp;s)*;p = (p;s>*•P = p*S. 

Manipulations with relations as just exhibited are rather elementary, 

and one would hope for a more powerful method of dealing with such simple 

properties. This is achieved by the extension of our relational approach 

to recursive procedures, making available the tools of sections 1 and 2. 

Consider a procedure declaration of the form 
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(3. 3) procedure P;T(P) 

where T(P), the procedure body, is a statement of one of the forms discus

sed above, and made up by means of composition and selection from the ele

mentary actions, and, possibly, P itself. e.g., we might have as instances 

of (3. 3) 

procedure P 1 ; p;A;P 1 up 

(3.4) 

etc. (Note that a call of P 1 has the same effect as performing p*A). A 

point of possible confusion should be mentioned here. The procedures we 

just introduced are parameterless, whereas the recursive procedures of 

sections 1 and 2 were assumed to have n 2 1 arguments. This is explained 

by considering the procedures as in (3.3) or (3.4) as having the state as 

only, suppressed, parameter. In the notation of section 1, we would write 

for {3.4): 

f 1 (x) <=if p(x) then f 1 (a(x)) else x 

f 2 (x) <=if p (x) then a 2 ( f 2 Ca 1 (x))) else a 3 (x) • 

Thus, we see that there is a direct transliteration between the parameter

less recursive procedures of this section, and the one-parameter recursive 

procedures of sections 1 and 2. This is an important insight, since we can 

now immediately apply the fundamental results of these sections, which 

only need slight notational reformulation. We have: 

THEOREM 3.1. Let P <= T(P) be the declaration of a recursive procedure. 

a. (Monotonicity) If x1 ~ x2 then T(x 1J ~ TCX2). 

b. (Fixed point property) P = T(P). 
00 i 

c. P = Ui=O T (~). 

d. (Fixed point induction)If T(Q) 

e. (Least fixed point property) P 

f. (Continuity) Let x0 :::_ x1 ~ ... :::_ 

Then T(U:=OXi) = u:=O T(Xi). 

:::. 

X. 
:l 

Q 

n 
then p :::. Q. 

{X:X T(X)}. 

::,. & &c u:=o x .. 
:l 

g. (Scott's induction) From the two asswnptions 



1. T1 {Q) S T2 {Q) 

2. For GI'bitrary X, if T1{X) s T2(X) then T1{T{X)) s T2{T{X)), 

it mzy be aonal:uded that 

3. T1 {P) S T2 {P). 

h. (Saott's induation, general aase). Left to the reader. 

PROOF. Reformulation of theorems 1.1, 2.1 and 2.2. 0 
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~- It may be of interest to compare result e of theorem 3.1 with the 

KNASTER-TARSKI result [28] stating that each monotonic function mapping 

subsets of some set V to subsets of V (or, more generally each monotonic 

function on a complete lattice) has a least fixed point. This is shown as 

follows: Let D = O{X: T(X) S X}. Note that {X: T(X) S X} is non-empty, 

since V itself is a member of this collection. Let n1 = n{x: T(X) = x}. We 

show that D = n1• D.::_ n1 is clear. In order to show n 1 S D, it is suffi

cient to prove that T{D) = D. 

a. T{D) s D. Let X be such that T(X) s X. Then, by definition of D, D S X; 

hence, by monotonicity of T, T(D) s T(X) s X. We see that T(D) is in

cluded in each X such that T{X) s X, and, since D is the greatest 

element with this property, we have that T{D) s D. 

b. D s T{D). From part a we have that T(T(D)) s T(D). Hence D s T{D), by 

the definition of D. 

Thus, we see that the e:r:istenae of a least fixed point of T is already 

implied by its monotonicity. In order to obtain the characterization in 

terms of successive approximations, i.e., as U~=O Ti(Q), we need in add-

tion the continuity of T. In fact, T(U~_0Ti(Q)) (cont.) U~=O T(Ti(Q)) 
00 i+l 00 i 00 i-i . = Ui=O T (Q) = Ui=OT (Q). Thus, Ui=O T (Q) is a fixed point which is 

{lemma 1.5) included in each fixed point, whence it is the least fixed 

point. 

Another important result which was not yet mentioned in section 1 or 

2 is the following. Consider the system of declarations 

(3.5) 
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According to a direct generalization of theorem 3.1, part e, we have 

(3.6) 

which, e.g. according to the KNASTER-TARSKI result, may be replaced by 

In other words, {P1 ,P2) is obtained as the simultaneous least fixed point 

of the pair of transformations CT1,T2). However, it can also be approached 

as iterated least fixed points in the following sense: 

THEOREM 3.2. Let P1 ,P2 be as in (3.6), and let 

P' 
1 

n{x1 x1 Tl (Xl,n{x2:X2 T2(X1,X2)})} 

P' 2 n{x2 x2 T2 (Pi ,X2)}. 

Then P1 pt' p2 P2· 

~· By the definitions of Pi, P2 we have Pi 

= T2 (Pi,P2l· (This uses the fact that n{x2 : x2 

Tl (Pi ,P2l, P2 

T2 cx1,x2J} is monotonic 

in x1 , verification of which is left to the reader (who may either work 

this out for himself, or consult theorem 3.3)). Hence we infer that 

pl =- pi I p2 =- P2, by (3.6). Now let P2 ~f. n{x2: x2 T2 (Pl ,X2)}. Since 

T2 (P1 ,P2) = P2 , we have P2 =. P2; hence, T1 {P1,P2) =- T1 (P1 ,P2) = P1. Repla

cing P; by its definition we obtain T1 (P1 ,n{x2 : x2 = T2 CP 1,x2J}) .::_ P1 ; thus 

by the definition of Pi and fixed point induction, it follows that Pi=. P1 . 

From this we conclude that T2 (Pi,P2) =. T2 (P1 ,P2) = P2 , and P2 =. P2 follows 

by the definition of P2 and fixed point induction. 0 

Remark. The straightforward generalization of this theorem to a system with 

n > 2 declarations is left to the reader. 

Next, we introduce a new notation, which provides an alternative for 

denoting recursive procedures. Consider the declaration P e=T(P). Clearly, 

one would expect a procedure Q, declared by Q e= T (Q) , to have the same effect 

as P, assuming that T(Q) is obtained from T(P) by substituting Q for all 

occurrences of P in T, and, moreover, that T(P) did not contain any 
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occurrences of Q to begin with. Thus, we see that in procedure declarations 

one is confronted with another instance of the phenomenon of a variable
binding operator (such as V which binds x in Vx[x > y + x+1 > y], or A which 

binds x in Ax•x+2*y). This is made explicit in the following notation: For 

a procedure P declared by P ,.. T(P), we denote P by 

µX[T(X)]. 

E.g., for P1 declared by P1 ,..p;A;P1 up, we have P1 = µX[p;A;X up], and 

for P2 declared by P2 ,..p;A1;P2 ;A2 u p;A3 , we have P2 = µX[p;A 1 ;X;A2 u p;A3 J. 
The µ-operator has the usual consequences for the notions of free and 

bound occurrences of variables. In particular, all occurrences of X in 

µX[T(X)] are bound, and an occurrence of Yin some T1 is free iff it is 

not a bound occurrence. Moreover, if Y is any variable not occurring free 

in T, we have that µX[T(X)] = µY[T(Y)], where T(Y) is the result of sub

stituting Y for all free occurrences of X in T(X). (Without the proviso on 

Y, we would obtain e.g. the undesirable result that µX[p;Y;X u p] and 

µY[p;Y;Y u p] are equivalent. The reader should check that this would imply 

the absurd result that, for any Y, P*Y = p.) 
The µ-notation can also be applied directly to systems of procedures 

in a way which is justified by theorem 3.2. Let P1 ,..T1 (P1 ,P2l, 

P2 ,.. T2 (P1 ,P2) be such a system. Then, by theorem 3.2, P1 = 

= µX[T 1 (X,µY[T 2 (X,Y)])], P2 = µY[T2 (P 1 ,Y)]. In order to obtain the full 

profit of this notation, we are interested in the justification of an iter

ated version of Scott's induction (examples will follow in the next section). 

This requires the following extension of our (monotonicity and) continuity 

result from theorem 3.1: 

THEOREM 3.3. 

a. Let T(X,Y) be monotonic in x and Y. Then µX[T(X,Y)] is monotonic in Y. 

b. Let T(X,Y) be continuous in x and Y. Then µX[T(X,Y)] is continuous in 
Y. 

PROOF. 

a. (Monotonicity). Let Yl ~ Y2 , Pl = µX[T(X,Y 1)J, P2 = µX[T(X,Y 2)J. We 

show that P1 ~ P2 . By fixed point induction, it is sufficient to show 

T(P2 ,Y1) ~Pr By the fixed point property, P2 = T(P2 ,Y2). Now 
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T(P2 ,Y 1) ~ T(P2 ,Y2 l follows by the monotonicity of T(X,Y) in Y. 

b. (Continuity). Let YO~ Y1 ~···~ u:=O Yi. We show that 

µX[T(X,U.Y.)] = U. µX[T(X,Y.)]. By monotonicity, µX[T(X,Y.)] ~ 
i i i i i 

µX[T(X,l!.Y.)]; hence, U. µX[T(X,Y.)] c µX[T(X,U.Y.)] is established. 
i i i i - i i . 

To prove the reverse inclusion, we introduce the notation 'I'i (X, Y), 

defined by T0 (x,Y) = n, Ti+l(X,Y) = T(Ti(X,Y) ,Y). By the continuity 

of Tin X, µX[T(X,Y.)] = u. Tj(n,Y.), 
i J i 

and µX[T(X,U.Y.)] = 
i i . 

= U. Tj(n,U.Y.). Thus, we see that we 
J . i i . 

have to prove U. TJ(n,U.Y.) ~ 
J i i 

u. U. TJ(n,Y.) = U. U. TJ(n,Y.). 
j J i jJ i i 

Thus, it is sufficient to show 

T (Q,UiYi) ~ Ui T (Q,Yi). We use induction on j. 

1. j = 0. Clear. 

2. Assume the result for j. Then 

j+l 
T (Q,UiYl) = (df.) 

j 
T(T (Q,UiYi),UiYi) ~ (ind. hypothesis) 

T(UiTj(Q,Yi),UkYk) (cont. of T(X,Y) in X and Y) 

j 
Ui Uk T(T (Q,Yi),Yk) (mon. of T(X,Y) in X and Y) 

j 
Ui Uk T(T (0,,Y max(i,k)) ,Ymax(i,k)) = 

U T(Tj(Q,Y ) ,Y) 
n n n 

·+1 u TJ W,Y ) . 
n n 

With this theorem we have completed our presentation of the main math

ematical properties of programs with recursive procedures in a relational 

framework. We saw that the important notions developed in the first two 

sections can be carried over to this setting, and, moreover, that a new 

notation required some additional justifications. The next sections will 

bring a variety of applications of these ideas. 

4. APPLICATIONS TO PROGRAM EQUIVALENCE 

4.1.. A while statement example 

We derive a series of results, having some independent interest as 

well, leading up to the proof of (p1vp2)*S = p 1*S;p2*(S;p1*S). We shall 

use "f.p.p." (fixed point property), "f.p.i." (fixed point induction), and 



"1. f .p.p." (least fixed point property) to indicate an appeal to theorem 

3.1, parts b, d and e respectively. 

a. µX[T(X,X)] = µX[µY[T(X,Y)]]. 
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~: Call the left-hand side P1 and the right-hand side P2 . By f.p.p, 

P2 µY[T(P 2 ,YJ]; hence, by f.p.p. again, P2 = T(P2 ,P2). Hence, 

by l.f.p.p., P1 S P2 • 

2: By Scott's induction it is sufficient to show: if X S P1 then 

µY[T(X,Y)] s P1 . In order to establish this, we apply once more 

Scott's induction, and now we must show: if X S P1 , and Y S P1 , 

then T(X,Y) ~ P1. Since P1 T1 (P1 ,P1) by f.p.p., the result 

follows by monotonicity. 

(Observe that we have here a case of iterated Scott's induction, 

as justified by theorem 3.3.) 

b. µX[Tl (T2 (X))] = T1 (µX[T 2 (Tl (X)) ]) , or Pl = T1 (P2 ) for short. 

c: Assume X S Ti (P2). Then T1 (T2 (X)) S T1 (T2 (Tl (P2))) =Ti (P2l, 
by monotonicity and f.p.p. Hence, the result follows by Scott's 

induction. 

2: Assume T1 (X) S P1• Then T1 (T2 (T1 (X))) ~ Pl = T1 (T2 (Pl)) by monot

onicity, and the result follows again by Scott's induction. 
c. µX[A; T (X) ] = A; µ·X[T (A; X) ] 

Proof: special case of b. 

d. µX[p;A 1;x U p;A2 J = µX[p;A 1;X U p];A2 
Relational reformulation of example 1 of section 2. 

e. (p1vp2)*S = 

µX[(p 1up2);S;X u p 1 u p 2J = 

µX[pl;S;X u p2;S;X u P1'P2] 

µX[p 1;S;X u p1; (p2 ;S;X u p2JJ = (part a) 

µX[µY[p 1;S;Y u p1; (p2 ;S;X u p2JJ = (part d) 

µX[µY[p 1;S;Y u p 1J(p2 ;S;X u p 2)J = (def. *) 

µX[p 1*S; (p2;S;X u p 2)J = (part c) 

p 1*S;µX[p 2;S;p1*S;X u p2J = (def. *) 

p 1*S;p2*(S;p1*S). 

4.2. Tree traversal 

We present an example (taken from [4]) which originated from the de

sire to prove the equivalence of two ways of tree- (actually, forest-) 
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traversal. It soon appeared, however, that the desired equivalence is a 

special case of a more general result. First we state the original problem. 

We use the "family-oriented" terminology for trees: Let s and b be predi

cates which when applied to node x, are interpreted as 

s(x) is true iff x has a son 

b(x) is true iff x has a younger brother. 

Let S, B and F be elementary actions which, when applied in node x, have 

the following effect: 

S(x): visit the eldest son of x 

B(x): visit the next-younger brother of x 

F(x): visit the father of x. 

Let A be an arbitrary elementary action, to be performed in all nodes of 

the tree, without side effect on the traversal mechanism. Let 

Qt µX[A; (s;S;X;F u '§); (b;B;X u b)] 

Q2 µ"X[A; (s;S;X;b* (B;X) ;F u s)]. 

The following relationship was conjectured to hold between Q1 and Q2: 

However, a need was felt for a formal verification of this equivalence, 

and this was provided in the following way: First of all, some study of the 

form of the definitions of Qi and Q2 , and their alleged relationship, 

yielded that the result to be shown is in fact independent of the special 

domain of trees and is a special case of a rather general equivalence 

stated as: Let us define 

(4.1) 

(4. 2) pi (Y) µX[T 1 (TO(X,Y))] 

(4. 3) 
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Then 

(4.4) 

Assuming this to be established, we see that our tree-traversal result may 

be obtained by taking 

TO(X,Y) 

Tl (X) 

T 2 (X) 

Y;X 

b;B;X u b 
A; (s;S;X;F U s) 

In fact, with this choice for the T's, P0 = µX[T2 (X);T1 (X)] = 21 , 

P1 (Y) = µX[b;B;Y;X U b] = b*(B;Y), and P2 = µX[A;(s;S;X;b*(B;X);F Us)] 

= 22 , whence T0 CP 1 (P2),P2) = P2;P1 CP2) = P2;b*(B;P2) = 22;b*(B;Q2), as was 

to be shown. 

We now prove (4.4). 

£: we have, by (4.2) and (4.3), that P1 CP2 l = T1 (T0 CP 1 CP2 l ,P2l, and 

p2 = T2(To(P1 (P2),P2)). Hence, To(T1 (To(P1(P2),P2)), T2(To(P1 (P2) ,P2))) 

= T0 CP1 CP2J,P2J, and P0 s T0 CP 1 CP2),P2) follows by (4.1) and l.f.p.p. 

~= By (4.1), T1 CP0 ) = T1 (T0 CT1 CP0),T2 CP0))). Hence, by (4.2) and l.f.p.p. 

Using this, we show that T0 CP 1 CP2),P2) £PO by Scott's induction on P2 • 

Assume T0 CP1 (X),X) s P0 • We prove that then 

To(Pl (T2(To(P1 (X),X))), T2(To(P1(X),X))) s Po. Using the induction 

assumption, this simplifies to verification of T0 CP1 CT2 CP0 )) ,T2 CP0)l S 

P0 = T0 CT1 CP0J,T2 CP0)), which follows by (4.5), using the definition 

of P0 and monotonicity. D 

The result of this section has been further generalized by 

DE ROEVER in [27]. 

4.3. The 91-function 

In (1.2) we defined the 91-function g(x) (which was first considered 

By McCARTHY) as 
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g(x) <=if x > 100 then x - 10 else g(g(x+11)) 

and promised to show that g(x) h(x), with h(x) defined as 

h(x) <= if x > 100 then x - 10 else 91 

a. g S h. 

By f.p.i. it is sufficient to show 

Ax· if x > 100 then x - 10 else h(h(x+11)) s Ax•h(x). 

We have 

Ax· if x > 100 then x - 10 else h(h(x+11)) = 
Ax• if x > 100 then x - 10 else h(if x+11 > 100 then x+ll-10 else 91) = 

Ax• if x > 100 then x - 10 else if x + 11 > 100 then h(x+l) else h(91) 

AX" if x > 100 then x - 10 else 91 = 
Ax•h(x) 

since, if x ~ 100 and x + 11 > 100, then either 89 < x < 100, 

whence h(x+l) = 91, or x = 100, whence h(x+1) = h(101) 91. 

b. h s g. 

Let k(xl <=if x > 100 then x - 10 else k(x+1). Then h = k. In fact, 

h ~ k follows as in part a; that k s h can be proved from basis prop

erties of the integers (see below), as exhibited in [2]. The proof of 

this is not repeated here. We now show k s g: It is sufficient to show 

Ax·g(x) s Ax·g(g(x+10)). This follows once more by Scott's induction. 

As hypotheses we take X s Ax•g(x) and X s Ax·g(g(x+10)). 

We verify that 

1. Ax• if x > 100 then x - 10 else X(X(x+11)) s Ax•g(x), 

which is clear, and 

2. Ax• if x > 100 then x - 10 else X(X(x+11)) s Ax·g(g(x+10)). 

The left-hand side of this inclusion is rewritten as 

Ax• if x + 10 > 100 then (if x > 100 then x-10 else X(X(x+ll))) 

else X(X(x+11)) 

and the right-hand side as 

Ax• if x + 10 > 100 then g(x) else g(g(g(x+10+11))). 

Now we see that the left-hand side is indeed included in the 

right-hand side since 

Ax· if x > 100 then x - 10 else X(X(x+11)) ~ Ax•g(x), 

by the definition of g and the first hypothesis, and 
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Ax•X(X(x+11)) ~ AX"g(g(g(x+10+11))), which follows from X ~ g and 

X ~ AX•g(g(x+10)). 

(The basic properties of the natural numbers referred to above are the fol

lowing: We use the relational version, with S the successor relation, 

S: predecessor, and p 0 (=test for zero) = S;S n I (- denoting complemen

tation with respect to the universal relation U.) Then we postulate: 
v v v* * S;S = I, S;S ~ I, and U ~ S ;p0;s From these assumptions one can show 

that 1) p0 is an "atom", Le., p 0 ;U n U;p0 ~ p 0 • 2) r ~ µX[p0 u S;X;S]. 

Property 2, together with a suitable inductive definition of the ">" rela

tion, is used in [2] to show that k c h.) 

4.4. Miscellaneous 

We present here two remarks which are a side-effect of our attempts 

at an understanding of the method described in COOPER [11]. We shall not 

try to summarize the method, since part of our problem is that we do not 

sufficiently grasp what is proposed in it. We conjecture, however, that 

remark 1 and I or remark 2 have some (possibly common) generalization ex

plaining COOPERS's ideas. 

REMARK 1. Let P1 , P2 , P3 and P4 be defined by 

µX[T1 (X)] 

µX[T 2 (X)] 

µX[Tl (T2 (X))] 

µX[T 2 (Tl (X))] 

Suppose we know that P1 , P2 , p3 and P4 are all total functions. Then 

pi= p2 iff p3 = P4. 

PROOF. 

a. 

b. 

Assume P3 = P4 • We have 

P3 = µX[T1 (T2 (x)J] = (cf. section 4.1, part b) 

T1 (µX[T 2 (T1 (X))]) = Tl (P4) = (assumption) Tl (P3). 

Hence, P1 ~ P3 , by £.p.i. Similarly, P2 ~ P4 . Since P 1 and P2 are 

total functions, P1 = (P3=P4=JP2 follows. 

Assume P1 = P2 . We have 

pl = Tl(P1) = T1 (P2) = T1(T2(P2)) = T1(T2(P1)). 

Hence, P3 ~ P1 , by f.p.i., and similarly P4 ~ P2 . That p 3 P4 now 
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follows as in part a. D 

REMARK 2. Let T1 , T2 be continuous, dnd such that 

a. T 1 WJ =T2 WJ. 

b. For some fixed i ~ 1, and all X, 
i 

T 1 (T2 (X)) 

Then µX[T l (X)] 

T 2 (T1 (X)). 

µX[T 2 (X)]. 

PROOF. We first show that, for each k=l,2, ... 

(4. 6) 
1 . .k-1 

T /i+ ... +i (ill) 

by induction on k. 

1. Basis step: T2 (Q) = T1 (Q) is direct from assumption a. 

2. Assume the result for k. From assumption b we obtain that for each 
l i*l integer l ~ 0: T2 (T1 (X)) T1 (T2 (X)). Thus, we derive 

T~+l(Q) = T2 (T~(Q)) 

1 . .k-1 
T (T +i+ •.. +i Wl) 

2 1 

. ( 1 . . k-1) 1 Tl.* +i+ ... +i + (Q) 
1 

(ind. hyp.) 

. ( 1 . . k-1) 
Ti* +i+ ... +i (T (Q)) 

1 2 

1 . .k 
T/i+ ••• +i (Q). 

This gives the proof of (4.6). Now u;=O Ti(Q) 

by monotonicity of T1 and T2 • D 

(ass. a) 

For some time it was thought that remark 2 could not be proved using 

only the pure µ-calculus (i.e., using only Scott's induction, and not the 

characterization of recursive procedures as infinite unions). Recently 

however, MILNER showed (private communication) how such a proof could be 

given: Assume a and b above (i=2,say), and let P1 = µX[T 1 (X)], 

P2 µX[T 2 (X)]. 

1. P2 ~ P 1 • This is easily shown by applying Scott's induction to obtain 

the proof of T2 (P 1 ) ~ P 1 • 

2. P 1 ~ P2 • We apply the general form of Scott's induction to ~(P 1 ), 

where ~(X) consists of the three inclusions 

(4. 7) 



(4.8) 

(4.9) 

~(Q) is immediate from the assumption that T1 (Q) 

~(X), and show ~(T 1 (X)), i.e., 

(4.10) 

(4.11) 

(4 .12) 

The proofs of these are obtained as follows: 

(4.10): immediate from (4.7) 

(4.7) (4 .8) 
(4.11): T1 (Ti(X)) ~ T1 (T 1 (T1 (X))) c 

T1 (T1 (T2 (X))) ~(ass. b) T2 (T 1 (X)) 

(4. 8) 
(4.12): T1 (X) ~ T2 (X) 

(4.9) 
~ T2(P2) = p2 

Thus, ~(P 1 ) holds by Scott's induction, implying P1 ~ P2 . D 
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It is of some interest to observe that remark 2 cannot be proved using only 

monotonicity of T1 and T2 . This was shown by VUILLEMIN, who provided a 

counter-example for i = 1, see exercise 6.3. 

5. APPLICATIONS TO PROGRAM CORRECTNESS 

5.1. The inductive assertion method 

A program P is called partially correct with respect to the (initial) 

and final) predicates p and q iff 

(5.1) Vx,y[p(x) A xPy + q(y)] 
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i.e., iff for all states x,y, if state x satisfies p, and P transforms x 

to y, then state y satisfies q. This is the formulation which leads to the 

inductive assertion method, as proposed by FLOYD [14] and further developed 

by HOARE [16] and MANNA (e.g. [18,19]). 

OUr aim here is to study the theoretical properties of the method, and 

in particular to prove its consistency and completeness in the framework 

of our relational theory (section 5.2). Furthermore, we shall deal in some 

detail with HOARE's formulation of the method when applied to while state

ments, and investigate the power of the axiom he has proposed (section 5.3). 

Finally, we spend some attention on ideas in a recent paper by DIJKSTRA 

[13], which we try to interpret in our framework, with as main result a 

very short proof of a (corrected) version of the main result of that paper 

(section 5. 4) • 

For the benefit of the reader who has not seen the inductive assertion 

method before, we first briefly explain it using a simple example from 

[14]. Consider the following flow diagram for calculating the sum of the 

<E----------p: n ? 0 

sum:= 0 

i:= 

A "'" - - - - - - - - - r: sum 

~----+--< i o> n 

sum:= sum+a. 
1 

i:= i+l 

<2- ___ q: sum 

! 

l 

i-1 
Ia.,io>n+l 

j=I J 

n 

I a. 
j= I J 

For this program we want to show that, if the initial condition p: n ? 0 

is satisfied, then the final condition q: sum= 1~ 1 a., holds. This is 
LJ= J 

done via the introduction of a suitable intermediate (so-called inductive) 

assertion r, which has to satisfy: 
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1. Basis step: When control arrives at point A in the diagram for the 

first time, the current values of the variables satisfy r. This follows 

since 0, i 1 imply Ii-1 (=0), and n <:: o, i 1 imply sum = = sum = a. = j=l J 
i 5 n + 1. 

2. Inductive step: Assume r holds at point A at any intermediate stage 

in the computation. Then we verify that r holds again when control 

arrives in A after once going through the loop. I.e., assume sum= 

,i-i · < 1 s· th ·t f th t t · tak k lj=l aj, i - n + . ince e + exi o e es is en, we now 

that i 5 n. Executing sum:= sum+ a. gives sum 1 ~ 1 a .. Next, 
i lJ= J I i-1 i:= i + 1 yields that sum= a and i 5 n + 1, together estab-j=l j' 

lishing r. 

From 1 and 2 we conclude that r holds at all stages of the computation. 

Thus, when eventually the - exit from the test is taken, it is easily 

checked that ...,(i5n) and r together imply q. 

It should be observed that the method does not deal with terrrrination. 

Separate means are needed in the example to prove that i 5 n will become 

false eventually. (This explains the qualification partial in our termi

nology. When termination is also shown, it is customary [18] to speak of 

total correctness.) 

Further details of the inductive assertion method, with many examples, 

can be found e.g. in [19]. 

5.2. Consistency and completeness of the method 

Relationally, we write for (5.1) 

(5.2) p;P S P;q. 

By way of introduction to the general problem, we shall first deal with the 

simple case that P is a while statement, say P r*S. The formulation of 

the inductive assertion method for this case can be read off from the 

following picture: 
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-E-------p 

-E------- s 

s + r 

~--G 

In order to prove p;r*S ~ r*S;q, we try to find intermediate s such that 

(5. 3) 

The consistency of the inductive assertion method is then expressed by the 

following formula (from second-order predicate logic): 

(5 .4) Vp,q [3s l s;r;; : ;;S;s l :> p;r*S ~ r*S;q l 
s;r ~ r;q j 

* -Verification of (5.4) is immediate, by using r*S (r;S) ;r. 

The completeness of the method is expressed by the converse of (5.4) : 

l p<r•S £ r>S,q * 3, [ p ~ ;,s,.] l (5.5) Vp,q s;r;S ~ 

s;r ~ r;q 

(This is actually a reformulation of ideas by MANNA, which needs to be 

refined, however, in order to deal with his treatment of total correctness, 

see [3].) 

Before proving (5.5), we first develop some further tools. Let us look 

once more at (5.1) 

Vx,y[p(x) A xPy + q(y)]. 



This may be rewritten in two other, equivalent, forms: 

Vy[3x[p(x) A xPy] + q(y)] 

Vx[p(x) + Vy[xPy + q(y)]] 

leading to the introduction of two new operators, denote by 11 0 11 (not to 
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be confused with the operator denoting composition of functions of section 

1) and "+", respectively. 

DEFINITION 5. 1. 

(poP) (x) ++ 3y[p(y) A yPx] 

(p+p) (x) ++ Vy[xPy + p(y)]. 

From the definition the following lennna is easily obtained: 

LEMMA 5.1. 

1. p;P S P; (pop) 

(p+q);P S P;q. 

2. For all p,q, if p;P S P;q, then p 0 P sq and p =. (p+q). 

3. pop n {q p;P S P;q} 

p+q U {p p;P S P;q}. 

Some further properties of "o" and "+" are collected in lemma 5.2. 

LEMMA 5.2. 

1. nop = pon = n, P + I = I, I + p = p. 

2. P;IoP = P, (p+n) ;P n. 

3. poq = p n q = p;q, I S (p1-+p2) iff Pl S P2 • 

4. po(P1;P2) (poP1 )oP2 , (P1;P2) + p = Pl + (P2+p). 

5. po(P1uP2) (poPl) u (poP2), (P 1uP2) + p = (Pl-+p) n (P2-+p}. 

6. If Pi S P2 , then poP1 S p 0 P2 , and P2 + p S P1 + p. 

7. If p S q, then p 0 P .'.:_ qo P, and P + p '.:_ P + q. 

8. (puq)op =(pop) u (qoP), p + (pnq) = (p+p) n (p+q). 

9. If Pisa function (i.e., P;P s I), then (pnq)op = (poP} n (qop). 

If Pisa function (i.e., ¥1P s I), then P + (puq) = (p+p) u {P+q). 
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PROOF. Clear from the definitions. D 

Let U, as before, denote the universal relation, and let 

denote complementation with respect to I. Then 

LEMMA 5.3. 

1. 

2. 

U;p;~ r. 
v paP. 

PROOF. Left to the reader. D 

this time 

The operators "o" and "+" provide us with the tools to prove (5.5) 

and its generalizations. For (5.5), we may take either s = p 0 (r;s)*, or 

s = (r;s)*;r + q. we verify only that the first choice of s satisfies the 

conditions. 

a. P = P n I = poI .:: * po (r;S) , 

using lemma 5.2, parts 3 and 6. 
* b. (po(r;S) ) ;r;S .:: * r;S; (po (r;S) ) iff (lemma 2 .1. 3) 
* (p 0 (r;S) )o(r;S) .:: p 0 (r;S) * iff (lemma 2. 2. 4) 
* * po((r;S) ;r;S) .:: po(r;S) if (lemma 2.2.6) 

* * (r; S) ;r;S ::_ (r;S) 
* and the last inclusion is clear from the definition of 

c. (po(r;s)*);r .:: r;q iff (lemma 2.1. 3) 

(po(r;s)*)or .:: q iff (lemma 2.2.4) 
* (p 0 ((r;S) ;r) l .:: q iff 

po (r*S) .:: q iff (lemma 2.1.3) 

p;r*S .:: r*S;q 

and the last inclusion holds by assumption. D 

The next step is to extend (5.4) and (5.5) to flowcharts which are 

not just simple while statements. Here we use the well-known idea of as

sociating a system of recursive procedures with a flowchart, such that 

execution of, say, the first procedure of the system is equivalent to 

executing the flowchart. We shall not describe this association in any 

formal detial, but illustrate it by an example. Consider the diagram: 
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-<----PI (QI) 
~--'--~ 

+ 

Two solutions are provided, which are dual to each other in a rather nat

ural sense: 

1. 

2. 

p1 <= A1;P2 

p2 <= p1;A2;P3 u P1;A3;P4 

P3 <= p2;P5 u P2iA3;P4 

p4 <= P3IP3 u P3iP5 

PS<= I. 

Q1 <= I 

Q2 <= Ql;A 

Q3 <= Q2;p1;A2 U Q4;P3 

Q4 <= Q2;p1;A3 u Q3;p2;A3 

Qs ""'Q3;p2 u Q4•P3· 

We expect the reader to have no difficulties in convincing himself that 

execution of the flowchart is equivalent to execution of either P1 or Q5 • 

Lacking a formal definition of the way a flowchart is executed, we cannot 

present a formal proof of this. What we do prove is (the generalization of) 

the equivalence between P1 and Q5 . 
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Let us consider the general form of a system of declarations of which 

that for P1 to P5 is a special case: 

(5 .6) 

which we compare with the "transposed" system 

Q . ""' Q1 ; Al . u .•• u Q ; A . u /J. . I 
J ,J n n,J J 

j=1, .•. ,n+l 

with /J.j defined as 

j=2, ... ,n+1. 

We shall prove by Scott's induction that 

(5. 7) j=l,2, ... ,n+l. 

Once this has been done, the result P1 = Qn+l is immediately obtained: 

Application of (5.7) with j = 1 yields that P1 = l1 1 ;P1 ;:: Q1:P 1 ;:: Qn+l' 

and with j = n + 1 we get Qn+l = Qn+l;I = Qn+l'Pn+l S P1 . 

1. 

2. 

Proof of Qj;Pj;:: P1 , j=l,2, .•. ,n+l. By Scott's induction it is suf

ficient to verify that from the assumption Xj;Pj;:: P1, j=1, .•. ,n+1. 

we may infer that {(U~=l Xk;l\ .) u /J.J.};PJ. S P 1 , j=l, ... ,n+l. 
. ,Jn 

We have, for J=l, ... ,n+l, that Uk=l ~;1\,j;Pj S 
n 

(df.Pk) Uk=l Xk;Pk 

;:: (ind. ass.) P1 . Also, /J.j;Pj;:: P1 , j=1, .•. ,n+1, is immediate from the 

definition of IJ.j. 

Proof of Q,;P. c Q 1 ,j=1, ... ,n+1. Assume 
J J - n+ 

We have, for j=1, ... ,n,Q.;{(U~=l A. k;~) 
n J J, 

c Uk_l(Q,;A. k;Xk U Q,;A. l);:: (df. Qk) 
- J J, J J,n+ 

Qj;Xj S Qn+l' j=1, ... ,n+1. 

U A. +l} J ,n 

n 
~ Uk=l (Qk;Xk) u Qn+l S (ind. ass.) Qn+l" For j=n+l, 

We now return to the main theme of this subsection: the consistency 

and completeness of the inductive assertion method. For the flowchart case, 



i.e., for systems such as (5.6), this is formulated as follows: 

Let {5.6) be given. We are interested in the partial correctness of P1 , 

say, with respect to given p,q. Now we assert that 
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p. ;A .. c Ai .;pj' J~ l. l.,J - ,] 

i=1, •.• ,n, j=1, ..• ,n+i 

PROOF. 

1. If Direct by Scott's induction. 

2. Only if: Assume p;P1 S P1;q. We have two possible solutions for the 

Pi : Pi= Pi+ q, and pi p 0 Qi. We verify the first solution. 

From p;P1 S P1;q we have p S (P1+q) = p 1 . Also, Pn+i = Pn+l + q 
= I + q q. In order to show that p. ;A .. s A .. ;p., we must check 

l. l.,J l.,J J 
whether (P.+q);A .. SA. ,;(P.->q), i.e., 

l. l.,J l.,J J 
Vx,y[Vz[xP.z + q(z)] A xA .. y + Vt[yP.t + q(t)]] 

l. l.,J J 
Assume Vz[xP.z + q(z)], xA .. y, and yP.t. Then xA .. ;P.t, hence xPit, l. i,J J l.,J J 
and q(t) follows. 0 

The result just proved can be extended to systems of recursive pro

cedures which are not restricted to the "regular" form of (5.6). (Note that 

there is a natural way of associating a grammar with the system (5.6) which, 

according to standard terminology, is regular. The systems to be dealt with 

presently have arbitrary context-free grammars associated with them.) We 

shall not present the full development of this, which is rather complicated 

and the main topic of our paper [3]. Rather than doing this, we shall give 

some hints on the direction this generalization takes. 

First we consider a declaration of the form 

(5.8) 

We are interested in the extension of the preceding results to such P. 

The solution needs an extension of the inductive assertion method in that 

now an infinity of intermediate assertions is used. In fact, we have that 
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p;P S P;q iff 

(5.9) Vp,q P S P0 -, 

3{p, ,q,} 
i. i. i=O, 1, .•. 

f=O, 1, ••. 

The proof of the if-part is again direct. For the only-if-part we define 

or 

i 
pi = poAl 

qi po(nQi 

i=O, 1, ... 

i=O, 1, ..• 

i=O, 1, ••• 

i=O, 1, ••• 

Verification that these two solutions for the pi,qi satisfy the conditions 

is left to the reader. The following example may help the intuition. Con

sider as special case of (5.8): 

P <= [n>O I n:=n-1];P;[n:=n+1] u [n=O] 

in a notation we hope is self-explanatory. we want to show that for each 

non-negative integer n, we have nPn. This is proved by taking, for some 

fixed n0 , pi (n) as: n = n0 - i, and qi (n) =pi (n). It is not difficult 

to see that the pi,qi satisfy the conditions of (5.9) for this particular 

choice of the A1 ,A2 and A3 • Hence, p0 ;P s P;q0 , or Vn,m[n=n0 A nPm ~ m=n0J, 

which is equivalent to Vn[nPn], is established. D 

The situation becomes more complex with our next example: 

The simple indexing of the assertions used above (pi,qi,i=0,1, ••• ) is now 

no longer sufficient. Instead of this, we use assertions indexed with fi

nite sequences of O's and l's: Let E be the empty such sequence, and cr an 



* arbitrary element of {0,1} • Then we have as analogue of (5.9): 

p;P £ P;q 

(5.10) Vp,q 

' 
such that I 

odo, 1}* 

43 

The proof of the if-part of (5.10) is again not difficult, but the only

if-part needs additional tools which will not be developed in these notes. 

(see [3] for the full story). What we do provide is an indication how to 

view (5.10) in such a way that application to practical proofs becomes 

feasible. Consider the example 

P • [n>O] I n:=n-1];P;[t:=t+1];P;[n:=n+1] u [n=O]. 

(The reader might recognize here part of the control structure of the re

cursive solution of the towers of Hanoi puzzle. The result proved presently 

yields the nUmber of necessary disc-movements.) We want to prove that 

(n,t)P(n,t+2n-1). A direct proof using (5.10) is possible but awkward. A 

more convenient method is based upon a stronger version of (5.10): 

Vp,q 

iff I p;P = P;q 

3V,f: V .... V,g: V-+ V,{p(o),q(o)} V o0 E V such that OE 1 

P.:: p(oo), q(f(o));A2 .:; A2;p(g(o)) 

q(ool .:: q q(g(o)) ;A3 £ A3;q(o) 

p(o);A4 £ A4 ;q(o) 
OEV 

l 
I 
I 

I 
J 
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* i.e., instead of assertions p,q indexed by oE{0,1} we use p,q with a, 

element of some suitable domain V, as parameter. Applying the idea to our 

example, which manipulates states x consisting of pairs of integers (n,t), 

we make the following choices for V, p,q, f and g. Let V also consist of 

pairs (v,T) of integers. We put 

p(a) (x) 

q(a) (x) 

f (cr) 

g(o) 

p(v,T) (n,t): {n=v, t=T} 

q(V,T) (n,t): {n=v, t=T+2v-1} 

f (V, T) 

g(V,T) 

(V-1,T) 
v-1 (v-1,T+2 ) . 

We easily see that these choices satisfy our requirements, i.e., that 

1. 

2. 

3. 

4, 

{n=v, t=T}[n>O I n:=n-1] :: [n>O I n:=n-l]{n=v-1, t=T} 
v-1 v-1 {n=v-1, t=T+2 -1}[t:=t+1] :: [t:=t+l]{n=v-1, t=T+2 } 
v-1 v-1 v {n=v-1, t=T+2 +2 -1}[n:=n+1] ~ [n:=n+l]{n=v, t=T+2 -1} 

{ n=\J, t=T} [n=O] :: [n=OHn=v, t=T+2 v -1}. 

From this we conclude that p(cr);P ~ P;q(cr), i.e., that 

{n=:v, t=T};P <::: P;{n=v, t=T+2v-1}, as was to be demonstrated. D 

5.3. Hoare's while statement axiom 

In [16], HOARE has proposed an axiomatic formulation of the FLOYD 

method. As basic formal construct he uses {p}P{q}, which is another way 

of writing p;P ~ P;q. Various axioms and proof rules are then given, de

pending upon the form of the P. E.g., for Pan assignment statement, 

x: = e, say, HOARE's axiom (H ) is: {p[x/e]} x: 
a 

e{p}, where p[x/e] de-

notes the result of substituting the expression e for all occurrences of 

x in p. (Complications arise in the definition of substitution when x is 

a subscripted variable. Treatment of this is omitted here (and in most 

other places the method is presented as well!)). As rule for composition 

(He) we have: if {p}P1{q} and {q}P2{r}, then {p}P1 ;P2{r}. We shall be con

cerned in particular with HOARE's while statement axiom (H ) which reads 
w 

as follows: If {pAu}S{u}, then {u}p*S{,pAu}. In words, if S leaves property 

u invariant (under the additional assumption that p holds), then p*S also 

leaves u invariant. Moreover, p is always false upon exit from the while 

statement. 



(For the uninitiated reader, application of the system to FLOYD's 

sU11DDation example may be helpful. We want to show that 

{n~O}s: 

step is the application of H as follows: 
i-1 w 

Choose for u: {s = '· 1 a., is n+1}. 
l]= J 

For p we have: i s n. 

,i-1 \i-1 
We verify whether {s = lj=l aj, i s n+1, i s n}S{s = l·-i aj, i S n+1} 

"---------...;;...-__ __,, '---v--' ...._,;]::;..-_ __;~------" 

u 

{ - \i . 1 < } { s - lj=l aj, i+ - n+l i:=i+l s 

p u 

l i-1 
1 aJ., is n+1} and j= 

{s+ai = l~=l aj, i+i s n+l}s:=s+ai{s = l~=i aj, i+1 s n+l}. 

The desired result then follows by He. Filling in the further details of 

the proof is omitted.) 

Relationally, Hw is written as 

{5.11) Vu[u;p;S S p;S;u,.. u;p*S S p*S;p;u] 
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The question now arises whether (5.11) is a complete characterization of 

the while statement, i.e., whether the following holds: Let X be any rela

tion satisfying 

(5.12) Vu[u;p;S S p;S;u • u;X S X;p;u] 

Is X = p*S? The answer is no, as can be seen by taking e.g. X 

we do have that X s p*S. This is proved as follows l) 

f!. However, 

1. First we show that the following holds: 

If Vu[u;X s X;u • u;Y s Y;u] then Y s x*. 

Proof: Take x0 fixed, and define u0 (x) ~ x0x*x. It is direct that 

* * u0;X S X;u0 ; hence, u0 ;Y S Y;u0 , i.e., Vx,y[x0X x A xYy + x0x y]. 

* * This implies that Vy[x0Yy + x0x y]. Since x0 was arbitrary, Y S X 

follows. 

2. Assume (5.12). Since X;p;u s X;u, application of part 1 yields that 
* x s (p;S) • Taking u - I in (5.12) yields that X S X;p. Hence, 

x s X;J;> S * -(p;S) ;p = p*S. D 

This result settles the question as to the precise status of HOARE's 

1) 
This proof is due to SCOTT. 



46 

axiom: In itself, it does not give the whole truth about the while state

ment. In particular, it is not a consequence of the axiom that 

p*S = p;S;p*S up. However, taken together with the f.p.p., it does char

acterize the while statement, i.e., for each X which satisfies 

a. X = p;S;X U p 
b. Vu[u;p;S S p;S;u => u;X S X;p;u] 

we have X = p*S. 

The next question which arises is whether (5.11) may be strengthened 

in such way that a complete characterization is obtained. This is easy 

to answer on the basis of the results of the preceding section. In fact, 

we have: Let X satisfy 

[ s;r;; : ;;S;s]j 
s;r S r;q 

Then X = r*S 

By (5.4) and (5.5) it is sufficient to show: Assume 

Vp,q[p;X S X;q <==>p;r*S S r*S;q] 

Then X = r*S. 

Now this result is nothing but a simple consequence from the fact that 

X SY..,,. Vp,q[p;Y s Y;q => p;X s X;q], the proof of which is immediate by 

taking, for fixed XO' p(x) ++ x = XO' and q(x) ++ xoYx. D 

5.4. A "theorem" due to Dijkstra 

In this section we try to provide an interpretation to the ideas 

developed in a recent paper by DIJKSTRA [13]. It will turn out that a 

corrected version of the main result of that paper is immediately obtained 

by an application of Scott's induction. 

DIJKSTRA also takes (HOARE's formulation of) partial correctness as a 

starting point. Consider once more (5.2): 

p;P S P;q 



47 

Now, quoting from [13]: "We consider the semantics of a program P fully 

determined when we can derive for any postcondition q to be satisfied by 

the final state, the weakest precondition that for this purpose should be 

satisfied by the initial state. We regard this weakest precondition as a 

function of the postcondition q and denote it by fp(q) ,". 

This suggests to us that what is meant here is that 

fp(q) = P + q = U{p I p;P s P;q}. The use of the function fp(called a 

"predicate transformer" by DIJKSTRA) in the paper furthermore seems to im

ply that satisfaction off (q) guarantees termination, i.e., that f (q) 
p v p 

should be taken as fp(q) (IoP) n (F+q) 

(or, f (q) (x) ++ 3y[xPy] A Vz[xPz + q(z)]), or, equivalently, that 
p v 

fp(q) = (qop) n (F+q). The addition of the requirement of termination is 

in particular motivated by DIJKSTRA's "law of excluded miracle", which is 

his way of referring to the fact that fp(Q) = n. Observe that, for P a not

everywhere defined program, (P+n) F n, and we see that the interpretation 

fp(q) = P + q fails. DIJKSTRA also imposes the restriction that P be a .., 
function, in which case fp(q) reduces to qoP, as can easily be checked by 

the reader. With this interpretation, the axioms in [13] become provable. 

E.g., the first four of them are the first halves of lemma 5.2, parts 1, 4, 

7, 8, 9. 

Next, we look at the main result from [13], which DIJKSTRA has bap

tized as "Fundamental Invariance Theorem for Recursive Procedures". We 

again quote from [13]: Consider a text, called H", of the form 

H" : • • • H' . • • H' . • . H' ••. 

to which corresponds a predicate transformer fH" such that for a specific 

pair of predicates q and r, the assumption q S fH' (r) is a sufficient as

sumption about fH' for proving q S fH 11 (r). In that case the recursive pro

cedure H given by 

proc H; •.• H •.• H ..• H .•• 

enjoys the property that 
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First we observe that, as stated, this theorem is incorrect. Choose 

q =I, r = Q. Then the hypothesis reduces to: I::. fH 1 (Q) is a sufficient 

assumption to prove I ::. fH" Wl, or, by the "law of excluded miracle", 

I ::. Q is a sufficient assumption to prove I ::. Q. This is clearly satisfied, 

and we infer that In fH(I) ::. fH(Q), i.e., fH(I) = Q. This is nothing but 

the assertion that Vx~3y[xHy], i.e., His nowhere defined. Since H was an 

arbitrary procedure, we have derived a contradiction. 

It is not difficult, however, to remedy the situation. The corrected 

version is: Assume 

a. If q n fH' (I) ::. fH' (r) then q n fH" (I) s;: fH" (r) . 

Then we may conclude that 

b. q n fH(I) s fH(r). 

This may be seen as follows: Let us rewrite q n fH(I) S fH(r): 

Vx[q(x) A fH(I) (x) -+ fH(r) (x) J , or 

v v 
Vx[q(x) A 3y[yHx] + 3t[r (t) A tHx]J , or 

Vx,y[q(x) A xHy -+ 3t[xHt A r(t)J , or 

Vx,y[q(x) A xHy + r(y)], 

where the last step follows since H is a function. Thus, we see that 

q n fH(I) S fH(r) is nothing but a complicated way of writing q;H S H;r 

Thus, the theorem obtains the form: Assume 

a. If q;H' ::_ H' 'r then q;H" ::_ H";r. 

Then we may conclude that 

b. q;H f. H;r. 

Since H" text (H') = T(H'), say, and for H we have the declaration 

proc H;T(H), we finally see that the theorem is a direct consequence of 

Scott's induction. D 

6 • EXERCISES 

6.1. (The 0 -operator with while statements [2,4]) 

a. Show that po (q*A) = q n µX[p u (qnX) oA] . 

b. Assume p u p = I, po A, 
l 

s pi, i=l,2. Is it true that 

q*(p;Al u p;A2) p;q*A1 u p;q*A2? 
v 

c. Let pop := poP. 



Assume p Up= I, Aop E p. Show that (q*A)op E ((pAq)*A)op, 

(q*A)op E ((pAq)*A)op. 

6.2 (Extinction of relations [3]) 

Let, for any R, Rt be defined by 
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i.e., Rt denotes the result of iterating Ras long as it is defined. 
t E.g., when R is the relation of "direct descendant" in a tree, R 

connects the root of the tree with all its leaves. 
t tt ttt a. Show by an example that R,R ,R and R may all be different. 

tttt tt b. Show that, for all R, R = R . 

6.3 (Continuity vs. monotonicity, cf. 4.4 (VUILLEMIN)) 

Let T1 ,T2 satisfy the properties as suggested by the following picture: 

'•' 

00 i 
i~Tl([l) 
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Derive from this picture that for T1 ,T2 satisfying 

1. T1 cn> = T2 cn>, 
2. Tl(T2(X}} = T2(T1(X}), for all x, 
3. T1,T2 monotonic, 

it is not necessarily the case that µX[T 1 (X}] 

6.4 (Greatest fixed points} 

a. (PARK}. Let T be monotonic. Let 

respect to U. Prove 

denote complementation with 

µX[T(X}] vX[T(X)] 

where vX[T(X)] is the greatest fixed point of T, i.e., 

vX[T(X}] = U{X:X = T(X)}. 

b. ([15] and MAZURKIEWICZ). Let R be any relation, and let p be de

fined as 

p U{q I q qoR}. 

Show that p(x) holds iff there exists an infinite sequence 

x=x0 ,x1 ,x2 , •.• , such that x0 Rx1 Rx2 •••• 

c. Interpret µX[R+X] for any R. 

6.5 (Axiomatization of the natural numbers) 

Let S (successor) be a relation satisfying 

1. s;s =I. 2. s;s =I. 3. u = 5t,s* 
Put p0 = S;S n I (t and - as in 6.2 and 6.4). Prove 

a. 

b. 

Po•u n U;po 
I = µX[pO U 

= Po· 
S;X;S]. 

c. Let F be any function satisfying p0 ;F 
v 

F = µX[p0 ;Al U S;X;A2J. 

6.6 (Applications in formal language theory) 

Let E be any alfabet, E* and £ as usual, 

Let, for A,B = E*, AB = {wx I w € A, x € 

for T any monotonic function from 2E* to 

subset of E* satisfying X = T(X). 

a,b,a1, ... ,an, b 1 , ... ,bm €E. 

B}, let aB = {a}B, etc. Let, 
E* 

2 , µX[T(X)] be the least 



a. 

b. 
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Let, in standard notation, G 
L(G) µX[aXb u t]. 

({S},E,{S+asb,S+e},S). Show that 

Let a* = µX[aX u E]. Prove that {a,b}* a*(ba*i*. (cf. 4.1). 

c. Let 

d. 

. {S+b1, ••• ,S+bm } 
({S} ,E, 

s+sa1, ••. ,s+san 

S+b1, ••. ,S+bm 

·({S T} "' S+b1T, ••• ,S+bmT 
I I'-' I 

T+al, ••• ,T+an 

T+a1T, ••• ,T+anT 

,S) 

,S) 

Show that LCGl) = LCG2J using fixed point techniques (cf. 5.2; 

this result is used e.g. in the usual proof of the Greibach Normal 

Form theorem) • 
* + Let a be as in part b, and a a*a. Prove, using the notation 

of 6.4 referring to a universe consisting of all finite and in

finite sequences over E = {a,b}: 
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Algorithmic logic, like so many mathematical concepts, is perhaps best 

defined by a closure operation. Let me indicate the first few steps in the 

iteration: 

Methods of formal logic applied to study basic concepts and problems about 

algorithms, (meaning, correctness of programs, proofs of existence of 

functions viz. construction of algorithms, etc.). 

Algorithmic study of methods in logic, (decision procedures and their com

plexity, simplification of Boolean expressions, etc.). 

Algorithmic study of methods of logic to study algorithms, (automatic 

proofs of correctness of programs, automatic program generation, etc.). 

etc. 

The overriding aspect of algorithmic logic, thus conceived, is the 

stress put on the formal manipulative component: the concept of an algorithm 

as a formula, linked with other means of formal expression in a formal 

logical system. Such a formal system should ideally be powerful enough for 

the three main modes of employ for a formal system: 

unambiguous expression of the relevant notions (for example: properties 

of programs such as termination, equivalence, partial correctness), 

availability of a formal proof system 

treatment of metatheoretic questions about the formal system (e.g. limits 

of realizability of proof procedures on a computer, relations to other 

systems of logic). 

It is clear, that as goals become more definite, choices of the formal 

systems become more important and more varied. For the present exposition 

we select only a small sampling of algorithmic problems, chosen in order to 

make the presentation of the formal system particularly simple, but still 

representative enough to show the spirit of algorithmic logic. 
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1 . FORMULAS AND THEIR MEANING 

We are all familiar with the fact that, as mathematical scientists, 

we can at once recognize the meaning of a given formula. For example: 

Formula 

(x2-z sin y)/(y-x) 
3 2 

(x>O) + (3x-x y>x -2xy) 

var x,y: integer; 

begin y := O; 

while sqr(y) # x do y := y+l 

end. 

Meaning 

partial fur..ction JR x JR + IR 

Boolean function IR x JR + ]3 

partial function JN x JN + JN xJN • 

These examples are taken from formal languages, and our ability to 

determine their meanings depends on the fact that formulas can be uniquely 

decomposed in components whose meaning in turn determines uniquely the 

meaning of the composite formula. 

Let us consider a simple example, namely the language first-order 

predicate logic for the natural numbers 

N <N,+, • ,=,0, 1>, 

to be denoted by 

L(+, • ,=,0, 1). 

The set of formulas is determined by a contextfree grammar on the terminal 

alphabet 

( ,) ,A,V ,•,3,V,O, 1,+, • ,=,x,o, 1, ... ,9. 

This grammar is best presented by its syntax diagram 

variable: 
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term: 

variable 

formula: 

,__ __ .....,term term 

1---~---l>lformula formula 

variable formula 

To each diagram corresponds a set of expressions, called a syntactical 

category (va.riahles, teY'ms, formulas). We may consider each line of a dia

gram involving boxes as defining an operation on the syntactical categories. 

E.g. the line 

----8-EJ-8-B-8-
associates to any pair T 1,T2 of elements of teY'mS another element of teY'mS 

where the right-hand side is the string of symbols obtained by concatenating 

the symbols"(", ")", "+",and the strings T 1 and T2 in the order indicated. 

Not all expressions in L(+,•,=,0,1) are composite by means of one of 

the eight operations associated to the grammar. Such expressions are called 

atoms; in the present case the terms 0 and 1 and all variables are atoms. 
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We are now ready to state the two basic properties of the language which 

will allow us to define semantics: 

(i) (Induction axiom). 

L(+,•,=,0,1) is the closure of the set of atoms under the syntactical 

operations o1, .•• ,o8 • 

(ii) (Unique readability axiom). 

Each composite expression determines uniquely an operation Oi and 

component expressions out of which it is composed. 

{Abstractly: if a= Oi (a1, ••• ,anil' b = Oj(b1, ••• ,bnjl are composite 

elements and a= b then i = j and a 1 = b 1, a2 = b2 , ••• ,ani= bni.} 

These two axioms make L(+,•,=,0,1) a uniquely readable (or "structured") 

language; in the terminology of contextfree grammars one would say that the 

grammar given by the diagrams is unambiguous. Their importance lies in the 

fact that they allow us, quite generally, to define mappings 

S: L(+,•,=,0,1) + M 

into any non-empty set M by recursion. To determine S it is sufficient to 

prescribe its effect on the atoms and its behaviour with respect to compo

sitions 01, ••• ,08 : Let M #~and let p 1, •.• ,p8 be operations on M of the 

same arity as the operations o1, •.. ,o8 • 

THEOREM. For any funation s0 : atoms + M there exists a unique extension 

S: L(+,•,=,0,1) + M suah that S(O. Ca1, ••• ,an.ll = p,(S(a 1), ••• ,S(an.ll for 
i i i i 

The proof of this theorem generalizes the well-known proof of the 

existence of recursively defined number-theoretic functions; we leave it 

to the reader. Instead, we illustrate the use of this theorem for the intro

duction of semantics for L(+,•,=,0,1). {For notational convenience we 

restrict the language to finitely many variables, say x1 , ••• ,xn. Also, we 

write, as customary in mathematics x1,x2 , ••• instead of x1,x2, ••. ,xs2, ••• 

as prescribed by the grammar.} Since terms n fol'l11UZas =~.we may treat the 

definition of S on these two syntactical categories disjointly, and propose 

+ (set of functions Nn + N), 

SF: formulas+ (set of functions Nn + {true,false}). 



The details of the definitions of ST and SF are obvious from the intended 

meaning: 

S (x.Ha1 , ••• ,a] =a.; T i n i 

ST(O)[a1, ••• ,an] O; 

ST( 1)[a1 , ••. ,an] 1; 

ST((T1+'2}l[al, ... ,an] = ST(Tl)[al, •.. ,an] + ST(T2)[al, ... ,an] 

where + on the right-hand side designates addition in N; 

ST((Tl,T2))[a1, ..• ,an] = ST(Tl)[al, ••• ,an] • ST(T)[al, ••. ,an]. 

true if ST(T 1)Ca 1, ••• ,an] = ST(T 2)Ca1, •.• ,an]' 

S ( (T =T ) ) = { 
F 1 2 false otherwise; 

S ((,PAtjJ))[a1,. .• ,a] = S (,P)[a1 , .•• ,a] AS (tjJ)[a1 , .•• ,a ], F n F n F n 
where A on the right-hand side designates the Boolean "and"; 

SF((,PVtjJ))[a1, ... ,an] = SF(,P)[a1 , ... ,an] v SF(tjJ)[a1 , ... ,an]; 

SF((1,P))[a1, .•. ,an] = 1SF(,P)[a1, ... ,an]; 

S (3x.</J)[a1 , ... ,a] 
F i n 

{
true if S (</J)[a1, ..• ,a. 1,m,a.+ 1, .•• ,a] 
-- F J..- J.. n 

= true for some m E N, 

false otherwise; 

s (Vx.</J)[a1 , ..• ,a] = { 
F J.. n 

true if SF(</J)[a1 , ••• ,ai-l'm'ai+l'"""'an] 

= true for all m E N, 

false otherwise. 

{The semantic function SF allows us to define the concept of "a formula <P 

without free variables holds in N" by 

We shall use this abbreviation in sections below.} 
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As a second example of a structured language we introduce a rudimentary 

programming language PASIC. 

o1------. 
identifier: 
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assignment: 

identifier identifier 

identifier 

identifier 

~----------1 0 >-------

statement: 

>-----------1assignment 

identifier statement statement 

identifier statement 

sequence of statements 

_sequence of statements: 

-----~""I statement ~sequence of statements 

I J 
program: 

----~~~!sequence of statements 

The reader observes that this language is a small fragment of PASCAL. 

For the immediate expository purposes at hand it is however expressive 

enough. In particular, it can easily be shown that PASIC programs suffice 

to compute all partial recursive functions. 

Indeed, "the function computed by the program rr" is the first type of 

meaning, semantics, that we associate to PASIC programs. Thus, let rr be a 

PASIC program in which all identifiers that occur are among x 1 , •.. ,xn. 

S: PASIC + (set of partial functions Nn + Nn) 

is defined recursively as follows according to the three syntactical 



categories assignments, statements, sequence of statements. 

SA(xi := x.)[a1 , •• .,a J = [a1, ... ,a. 1,a.,a. 1, •.. ,a ]; 
J n i- J i+ n 

SA(xi := Sx. )[ a 1 , .•• , a J [a1 , •.. ,a. 1,a.+1,a. 1 , •.• ,a ]; 
J n i- J i+ n 

SA(xi := Px . ) [a 1 , ••• , a J [a1, ... ,a. 1,a.-1,a. 1, ..• ,a J; 
J n i- J i+ n 

SA(xi : == O)[a1 , ... ,an J = [al, ... ,ai-l'O,ai+l'"""'an J. 

sst' )[al, ... ,an] = [al, ... ,an]; 

Sst(a)[a1 , ••• ,an] = SA(a)[a1 , ••• ,an]' where a is any assignment; 

sst (if xi = 0 then 11, else 112J[a1, ... ,an] 

Jl sst<111)[al'"""'an] if ai = 0, 
sr~<112)[a1, ..• ,a J otherwise; 

01..- n 

0 do 11) [a1,. . .,an] 

{ 
(Sst(11)0Sst(while xi 

[a1 , ••• ,an] otherwise; 

{ 
(SSt(rr)oSSt(~ xi 

[a1 , ••• ,an] otherwise; 

SSt(begin E end)[a1 , ••• ,an] = SSS(E)[a1 , .•• ,an]. 
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o, 

{In the four recursive definitions above we have used the symbol o for corn-

position of functions; 11, 111 , 112 are statements, E is a sequence of state

ments.} 

Finally, we define S on PASIC programs by 

'!I. 2. EXPRESSING PROPERTIES OF PROGRAMS IN INFINITARY LANGUAGES 

As we will show in section 3, the first-order language L(+,•,=,0,1) is 

quite sufficient to express all that may be desirable to say about PASIC 

programs run on the natural numbers. Since first-order logic is a good 

enough tool to work with, all is well. However, the need to extend the 
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logical frame of first-order arises as soon as PASIC is generalized to 

formulate programs that operate on other types of data. Indeed, we shall 

even prove that some extension is necessary. 

To appreciate the more general setting for PASIC, assume that we have 

an arbitrary relational structure 

where A '/' ~' 
m. 

A : f. :A J -+ 
J 

n. 
R. are relations on A: RSA i, i=1, ... ,n, f. 

1. J 
A, j=l, •.• ,m. Assume furthermore that we are 

are operations on 

in possession of 

some devices, oracles as it where, which allow us to effect the decisions 

corresponding to the relations Ri and the operations corresponding to the 

operation fj, just as for the natural numbers 

N = <N,=0,S,P,O> 

we assumed the executability of the basic tests 

and basic assignments 

x. 
1. 

:= o. 

In other words, we make the obvious replacements in the syntax diagram of 

PASIC with 

i=1, ..• ,n, 

respectively 

:= f.(XK , ••• ,xK ), 
J 1 n. 

j=1, .•. ,m. 

1. 

Let us first specify what kinds of properties of programs we envision for 

our - still to be determined formalism - to express. 
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Termination 

Let TI be a PASIC program for~ with identifiers x1 , ..• ,xn. 

TermTI(x1, •.. ,xn) is the formula, which should express that TI terminates on 

input x 1, •.• ,xn. Thus 

is true if in!! the program TI terminates for all inputs. {We shall from now 
+ 

on use the abbreviation x for x 1 ••. xn.} 

Transduction 

Let TransTI(x1, ... ,xn; y 1, ... ,yn) express that TI, if it terminates on input 

x1, •.• ,xn at all, will terminate with values y 1, ..• ,yn assigned to the 

identifiers. 

Strong equivalence 

Using the transduction formula, we may express that TI 1 and TI 2 are equi

valent by 

Partial correctness 

Given that the values assigned to the identifiers x1, .•. ,xn at input time 

satisfy the formula ~(x 1 , •.• ,xn) and assuming that TI terminates on this in

put, do the values assigned to these identifiers at output time satisfy the 

predicate ljJ ? This question is formulated by 

-+-+ -+ -+ 
!! F VxVy(~(x) A TransTI(x,y) ~ ljJ(y)). 

Thus, in addition to the power of expression for TermTI and TransTI, our 

proposed language should be able to formulate the relevant pre- and post

conditions for program correctness investigations. 

Algorithmic solvability 

The language should also be strong enough for the formulation of problem 

predicates that might interest us. By this we mean a formula 

P(x1, .•. ,xn,y1, ... ,yn) which poses an algorithmic problem in the following 

sense: does there exist a program TI(x1, ..• ,xn) whose output, if it exists, 

is always a solution of p? 
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Formally 

+-+ -++ -+-+ 
~ F VxVy(TransTI(x,y) ~ p(x,y)). 

This list could be prolonged; but what we learned from it is the fact, that 

many important algorithmic problems are of the form 

-+ -+ 
~ F Vz<j> (z), 

-+ 
where <j>(z) is a finite Boolean combination of termination and transduction 

predicates. Thus, the immediate goal is to find a language which expresses 

these predicates. 

The following definition associates a regular language, lang(TI), the 

language of the program TI to each PASIC program TI. Words in this language 

are formed from symbols 

+ 
.R. . , 
J 1 1 ... im. 

J 

associated to the tests Rj(xi 1, .•• ,ximj), and 

il •.. in. 
/k J 

associated to the assignments x. := fk(xi 1, ••• ,xi ). The basic idea is that 
J nk 

a word in the language of TI describes a possible path through the program TI, 
+ 

successive symbols .fk showing which assignments were made, .Rl.~ 1. which J J ••• n. 
decision branch was taken. The definition of lang(TI) is obvious 1 J 

from this idea and the fact that such definitions may be given by recursion. 

{We again make the distinction between assignments, statements, statement 

sequences and programs in a step-by-step definition of lang(TI).} 

S~(xi := 

s~t< 

s~t(a) 

f. (Xk 1 ••• 1 X]r ) ) 
J 1 '"ni 

Ss't(if R. (xk , .•• ,xk ) 
- l. 1 mi 

ss't(while R. (xk· I ••• ,xk ) --- l. l. mi 

ii ••. in 
/k k 
A, (the empty word); 

S~(a) if a is an assignment; 

lang (TI 1) v . R 
l. kl •.. kmi 



S~t(begin I: end) 

s~5 (rr) = s~t(rr); 

s~t (rr) ·S~5 (I:); 

s •(begin I: end) = s~5 (I: l. 

{Here rr, rr 1, rr2 denote statements, I: a statement sequence.} 

67 

Next, we associate to any w E lang(rr) a quantifier-free first-order 

formula ~w(x 1 , ... ,xn) which expresses that rr, upon input x1, ..• ,xn' takes 

path w through rr. The definition of ~w is by induction on the length of w. 

Now, we simply define 

W E 

V ~ (x1, ••• , x ) • 
lang(rr) w n 

There should be no need for a formal proof of the fact that 

Termrr(a1, ••• ,an) holds in~ for elements a 1 , .•• ,an of A iff rr terminates on 

input a 1, .•. ,an; we have constructed it that way. But in the course of this 

construction we were forced to admit infinite disjunctions (of a very con

structive kind) and so extend first-order logic. The best-known logical 

framework already in existence to treat this extension is Lw 1w (see 

books by C. KARP and by KEISLER). {Since the present author was an early 

contributor to the field it was natural for him to think in those terms.} 

A construction very similar to the one used above gives us a (possibly 

infinite) formula Transrr(x1, ... ,xn' y 1, ... ,yn) expressing the transduction 

predicate. We define 
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as a first-order quantifier-free formula, expressing that TI, on input 
x1, ••. ,xn takes path w through TI and obtains final values y 1 , •.• ,yn. The 

only difference to the definition of $w is for A = w in which case we set 

Altogether: 

Actually, TransTI can be expressed as TermTI, for some appropriate TI'. From 

the fact alone that TermTI can be expressed as an infinite disjunction of 

quantifier-free first-order formulas we can draw some pretty conclusions. 

DEFINITION. ~has the unwind property iff for any program TI which terminates 

for all inputs there exists a strongly equivalent program TI' which has no 

loops and for which lang(TI') s lang(TI). 

It has been noted (e.g. by PATERSON, private communication), that some 

structures such as the reals do have the unwind property. We give a criterion 

by which this will follow. 

Let algT(~) = {V;$(x) : $ is a finite Boolean combination of formules Term TI 
and~ F V~$(~)}. We shall show in section 4 that algT for the reals has the 

property that it can be axiomatized by a set of universal first-order form-
+ + + v + ules, say r. Now, if A F Vx Term (x) then r f- Vx w l () $w(x). - TI € ang TI 

By the compactness theorem of first-order logic it follows that there exists 

a finite subset w s lang(TI) such that r f- V~ w"!w $w(;). Let TI' be a 

(loop-free!) program such that lang(TI') = w. We have TI' strongly equivalent 

to TI as easily seen. More generally: 

THEOREM. A has the unwind property iff there exists a set r of universal 
first-order formules such that all ternrination sentences of algT(A) follow 
from r. 

PROOF. One direction has been shown above as a consequence of compactness. 

In the other direction, let r be the set of all universal first-order sen

tences which follow from AlgT(!i) and assume that ~has the unwind property. 
-+ -+ Let TI be such that~ F Vx Term (x) and let TI' be as a loop-free program TI 



strongly equivalent to TI and with lang(TI') S lang(TI) as per assumption. 
+ + 

Then Vx TermTI 1 (x), which is a universal first-order sentence, holds in! 
,.,. + + v + and hence Vx Term ,(x) Er. Thus I'~ Vx l ( ') ~w(x) and a fortiori 

+ v TI + WE ang 1T 
r ~ Vx 1 ( l ~w(x), since lang(TI') S lang(TI). 0 

WE ang TI 
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COROLLARY. If TI halts for all inputs in all models of a first-order theory r 
then TI aan be unwound. 0 

3. FORMALIZATION OF THE NOTION OF COMPUTATION IN FIRST-ORDER LOGIC 

In special cases, in particular if number theory can be interpreted 

into the theory of a structure, it is possible to stay within the framework 

of first-order logic in order to express the basic algorithmic notions. In 

the present section we take advantage of this fact and use it to give an 

exposition of the very beautiful result of RABIN & FISCHER on the complexity 

of decision procedures for additive number theory. 

Let us consider the natural number system 

JN = <N 1 + / • r: / Q 1 1 > 

and its corresponding first-order language 

L(+, • ,=,0, 1). 

As mentioned before, all computations (i.e. partial recursive functions) can 

be performed by PASIC programs on the capabilities P (predecessor), 

S (successor), 0 (zero function) and =O (test for zero) alone. {Remark: the 

language L(P,S,=0,0) is, however, not sufficient to express termination. 

This follows from the fact that it is decidable, while the halting problem 

for PASIC is undecidable.} 

Our first goal is to associate to each program TI the set of "computation 

sequences" associated to it and to define that concept in an appropriate 

formal fashion. 

Let us explain the notion by a simple example. 
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The program 

begin 

end 

while x2 'F 0 do 

begin 

end 

x2 := px2; 

xl := sxl; 

has two variables and seven lines, which we number as indicated (these 

numbers are not labels). A aorrrputation sequence according to this program 

is a finite sequence of natural numbers 

The parts (yil yi2 ) indicate the values of x1 and x2 at the successive stages 

of the computation; the numbers pi indicate the line numbers arrived at. 

This sequence is a computation sequence according to u iff 

pi ql A Vi(l ::> i ::> m-1 .... 

{[pi ql A y12 F 0 A pi+l q3 A Yi+l,1 = Yi,1 A Yi+l,2 = Y1,2] 

v [pi q1 A yi2 = O A Pi+l = q7 A Yi+l,1 = Yi,1 A Yi+l,2 y 1,2] 

v [pi q3 A Pi+1 = qs A Yi+1,1 Yi,1 A Yi+l,2 = Yi,2 - 1] 

v [pi qs A Pi+l = q1 Ayi+1,1 Yi,1 + l A Yi+l,2 = Yi,2]}) 

We express, for purposes that will become apparent later, the same 

fact by using a particular encoding of computation sequences by means of 

the GOdel B-function defined as follows: 

f(b,c,h) b mod ( 1 + ( h+ 1 ) • c) • 

Using the Chinese remainder theorem, it can be shown: 

for any sequence k0, ••• ,k1 there exist b,c such that 

kh = f(b,c,h), 0 s h s 1. 

Thus, we propose to choose b,c such that 



f(b,c, (i-1) (n+1) + j)} 
1 :;:; i :;:; m, 

f(b,c,i(n+l)) 
1 :;:; j :;:; n (=2). 

The formula defining computation sequences of length m can now 

obviously be rewritten as a formula 
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with the aid of the function symbol f. To write Bn(b,c,m) as a formula of 

L(+,•,=,0,1) we need to express the predicate:;:; in that language, which is 

easy, and define the relation f (b,c,h) = r, which is accomplished by 

3y(b=(1+(h+1) •cl •y+r A 3x(r+x = 1+(h+1) •c)). 

The formula Bn(b,c,m) which is obtained by the rewritings indicated 

above is the main tool for expressing algorithmic notions in L(+,•,=,0,1). 

For example, it can be used to show the result (of CHURCH), that 

there is no decision program for L(+, • ,=,O, 1). We use below a variant of 

that proof to show that there is no practical decision program for the 

language L(+,=,0,1). {PRESBURGER has shown in 1929 that a decision procedure 

exists; the best known procedure take something of the order 222n steps on 

formulas of the length n. The result below shows that there is no hope 

of drastically improving this.} 

Let a GOdel-numbering of formulas~ E L{+,=,0,1) be given; assume that it 

can be easily computed (see below) and that the length l~I of the GOdel 

number of ~, written to base 2 does grow linearly in the length of the 

formula ~. 

Let, for any PASIC program n(xl, .•• ,xn), the partial function 

be the function computed by n. {See earlier sections for the method to 

define S(n)}. By S(n)[a1 , ... ,an] we denote the value of S(n) at the argument 

(a1, ... ,an). 
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THEOREM (RABIN & FISCHER 1973). Asswne that~ is a decision program of 

L(+,=,0,1), i.e. assume that for all closed forrrrulas $ E L(+,=,0,1) we have 

if $ holds in JN, 

S(~)[~,0, ... ,0] 
otherwise. 

Then there exists c such that for infinitely many forrrrulas $ the program ~ 

takes more than 22cl~I steps. 

PROOF. 

1. To each rr E PASIC and each k E N we propose to construct a formula 

$ k E L(+,=,0,1) which holds exactly if 
1T' 

{ s(rr)[n,k,o, .•. ,oJ o 
2

k 

and 1T stops on this input in at most 2 steps. 

We shall take care that I~ kl 
1T, 

O(k) and observe that $rr,k can be "easily 

computed". 

2k 
Observe: on input [s,0, ..• ,0] a computation of length m $ 2 can find 

values of the variables at most of size 22k+ s (the biggest increase of a 

variable in one step is by 1). Thus, let us concentrate ons$ k and observe 

the bound of 22k+l. 

Next, one shows that if m,s are within these bounds that the encoding 

222k+4 
of computation sequences by means of f can be accomplished by b,c $ 

These observations can be put to immediate use as follows. The following 

formula expresses (in a somewhat extended language) the property $ k' 
1T I 

2k -13b3c3m(m $ 2 A Brr(b,c,m) A f(b,c,(m-1)(n+1) + 1) 0). 

However, multiplication is used in these formulas in various places (even 

after the symbol f is eliminated as above). The basic observation now is 

the following 

(a) there exists a formula M~(x,y,z) E L(+,=,0,1) and numbers r, ~ 222i such 
* * i ~ 

that IM. I = O(i) and M. (x,y,z) ~~ x=y,z A x,y,z $ rn. 
1 1 

(b) there exists a formula Lk(m) E L(+,=,0,1) such that ILk(m) I = O(k) and 

~(m) ~ m $ 22k 
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Thus, the above proposal for a formula for ~ k can be realized, using the 
1f, k 

known bounds on b,c, by 13b3c3m(b,c s rk+4 Am s 22 A Bir(b,c,m) A ..• ) 

translated by making the appropriate substitutions: Replacing multiplication 
- * -k+4 * * in Bir by ~+4 we obtain Bir (b,c,m), etc.: 13b3c3m(~+4 (0,0,b) A ~+4 (0,0,c) A 

~ * Lk(m) A ~+4(b,c,m) A ... ). Provided that we have indeed these Lk and~' 

the formula ~ k is thus obtained, and grows - clearly - linearly in k in 
1f' 

the sense of O(k). 

2. Supposing, then, that we have~ k E L(+,=,0,1), let us finish the proof 
1f I 

of the theorem. Let L be the program as per assumption. Consider the follow-

ing program p : 

p: 

be CJ in 

end 

if "xl =Godel number of a program ir" then "x1 := ~ir x2"; , 
x2 := O; 

{The routines in quotation marks would still have to be written, our 

* assumptions on Godel-numberings and ease of computation of Mk, ~ are to be 

used to observe that these routines do not take more than polynomial time.} 

Now 

S(p)[rr,k,0, ... ,0] S(L)[~ k,O, ••• ,OJ 
1f, 

if ~ k' 1f , 

else 

if S(ir)[rr,k,O, •.. ,OJ ins 22k steps, 

otherwise. 

A program P with the above property, has the property - as is immediately 

seen - that P terminates on [P,k,O, ..• ,] at best in> 22k steps. Hence E 

terminates on[~ k,0, ... ,0] in 0(22k) steps, while I~ kl = O(k). p, p, 

* 3. We need to find Mk, Lk. 

Let us start with a predicate Mk(x,y,z) which accomplishes somewhat less 

* than Mk. 

M~(x,y,z) ** x=y,z A 0 s z s 22n- 1. 

{This would already give us Lk(m), by the observation that ms 22k is 

expressed by Mk(O,O,m).} 
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Clearly 

M0{x,y,z) d~f {z=O A x=O) V {z=l A x=y) 

will do. The step from n to n+1 relies on the remark that for a ~ 2 we have 

which is immediate from a 2-1 (a+l){a-1). Namely, we set 

A M~{X41Y1Z4) A x=x2+x3+x4>• 

Note that 0 s z s 22n- 1 by assumption, since they occur in the context 
i 

M~(.,.,zi). It follows, because 

2n 2 2n+1 
that 0 s z s (2 ) - 1 by the above remark, hence 0 s z s 2 - 1. Moreover, 

we observe 

Unfortunately JM' 1 J ~ 5 • IM'J, which won't do. But observe the form of M' : n+ n n+l 

+ + 
where wi are subsequences of the sequence w of variables. By predicate logic, 

the above formula is equivalent to 

+ + vs+ + + + 
3wVv{{i=l v=wi ~ M~(v)) A C(w)), 

whose length is now additive in the length of M' : JM' 11 n n+ 
IM'I = O{n). The thus changed Mn' will be denoted by M. 

n * n 
In order to obtain M let us first define: 

n 

c+JM' J, hence 
n 



x=r' 
n 

"x smallest w with Vz3y(Mn(O,O,z)-> Mn(w,y,z))". 

In essence, r~ is the least common multiple of numbers s 22n- 1. It can be 

shown, using Hadamard's theorem on the distribution of primes, that there 

exists c 1,c2 such that 

s r' s 
n 

Let a be such that a•c 1 s 1 and define 

r r' n a•n 

22n 
which ensures rn ~ 2 , as desired. Furthermore, let i3 be such that 

2 
rn s ri3·n· 

* Now, Mn(x,y,z) is defined by 

"x,y,z $ rn A x mod q _ y mod q • z mod q 

2a•i3•n 
for all q $ 2 - 1" 

This definition will work in L(+,=,0,1) since r~, hence rn is defined in 

that framework and multiplication now takes place in a range for which 

formulas M can be used. The correctness of the formula follows from the 
n 

following two remarks. 

If x,y•z $ least common multiple of {q: qss} then x = y•z iff x mod q -

y mod q • z mod q (mod q) for all q 

arithmetic.} Now, if x,y,z $ r then 
n 

l.c.m{q: qs22a.i3.n_1}.Thus, takings 

s s. {Which 
2 

x,y•z s rn 
2a•i3•n 

2 , 

is easy from modular 

< r = r' = - S·n a•i3•n 
we obtain the definition 
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for M*. Again, we see IM*I = O(n), and that it is "easy to compute" in the n n 
sense used above. D 

4. THE AXIOMATIZATION OF ALGORITHMIC THEORIES 

Let~= <A,R1, •.• ,Rn,f1 , .•. ,fn> be a data structure, and let algL be 

the corresponding algorithmic language. For the present purposes (i.e. for 

expressing the kind of algorithmic facts that are of interest to us for now) 
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we let algL consist of all finite Boolean combinations of formulas Termn, 

where n ranges over all PASIC programs associated to the structure fl• (see 

section 2). 

algL is clearly a constructive sublanguage of Lw , consisting moreover only 
1W 

of universal formulas, i.e. of formulas whose only quantifiers are prefixed 

to the formula and are universal quantifiers. Clearly, we can expect some 

rather special properties of such languages, some of which will be made use 

of in the sequel. 

The first task is to devise an appropriate formal deductive system for 

algL. For this purpose any proof system for Lw w will do - as long as it 
1 

has the subformula property. This means that the proofs must always be ob-

tainable through rules whose antecedents consist only of subformulas of the 

conclusions. Instead of writing down such a system if full detail (which 

the reader may do if he likes by consulting LOPEZ-ESCOBAR, Fund. Math. 1965, 

p. 253 ff). we discuss briefly a system which works directly with the 

programs. 

Let n(x1 , .•• ,xn) be a PASIC program, and let A be a data-structure in 

which n is defined. We write A I= n[a1, ••• ,a] if n terminates in A on input 
- n 

<a 1, ••• ,an>. In analogy to predicate logic we introduce meanings for 

fl I= n 1vn2 , flF •n, etc •• In addition, we allow prefixed universal quantifiers, 

being true, as an example, if n terminates in ~ on all possible inputs. Let 

us call AlgL the set of all such expressions. Let M,N be sets of formulas 

of AlgL; we write 

M I= N 

if f for each A in which all expressions $ hold true at least one expression 

in N holds true (free variables both in M,N are assigned the same element 

of fl). 

Clearly, if M' and N' are sets of straight-line programs and M' I= N' 

then M I= N for any sets M and N with M' s M, N' s N. We shall take such 

pairs M,N as a.xioms of our formal system. Indeed, our formal system is 

devised only to derive pairs of sets of formulas (P,Q) such that P I= Q. 
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Thus it starts by the axioms introduced just now, which we write 

M I- N (called a sequent) 

and proceeds from these by rules of proof as enumerated below. These rules 

are understood as: the sequent below the bar follow from the sequent or 

sequents above the bar. 

Conventions 

(a) a denotes a straight-line program; 

(b) TI denotes a statement; 

(c) E denotes a sequence of statements. 

(d) Furthermore, we introduce an additional line in the syntax diagram 

for PASIC: 

undefined 

is a statement with no variables; the intended meaning is a program 

which never terminates on any input. 

(e) The expression whilek b ~ TI is an abbreviation for the statement 

g_ -.b ~undefined~ TI; 

if -ib then undefined else TI; 

if -,b then undefined ~ TI; 

if b ~ undefined 

k lines 

(f) If TI(x1, ••• ,xn) denotes a program with variables x1, ••• ,xn and if 

t 1, ••• ,tn are terms, then TI(t1, ••• ,tn) denotes the program which starts 

by (simultaneously) assigning to x 1, ••• ,xn the values t 1, ••• ,tn respect

ively and then proceeds to do TI; analoguously for ~Ct 1 , ••• ,tn). 

Rules of proof 

(0) M u {~} I- N, M u{ljl}f-N 
M U {~vljl} F N 

(1) M I- N U {~,~} 
M I- N U {~vljl} 

(2) M U {~} I- N 
M F N u h~} 
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(3) 

(4) 

Mi-Nu{<j>} 
MU{-,<)>} I- N 

M u {begin cr; if b then undefined else 11 2 ; i:: end} I- N, 
M u {~a; if b ~ 11 1 else undefined; i:: end} I- N 

M u {begin cr; if b then 11 1 else 112 ; i:: end} 1- N 

(5) M I- N u {begin cr; if b then undefined else 112; i:: end, 
begin cr; if b then 11 1 else undefined; l: end} 

M I- N u {begin a; if b then 11 1 else 112 ; i: end} 

(6) Mu {begin cr; whilek b do 11; i: end} I- N, k=l,2, •.. 

M u {begin a; while b do 11; i: end 

M I- N u {begin a; whilek b do 11; i: end ( 7) k= 1 ' 2 , ••• } 

M I- N U {begin a; while b do 11; i: end} 

(8) M u {begin cr; i: 1; i:2 end} I- N 

M U {begin a; begin i: 1 end; 1:2 end} I- N 

(9) M I- N u {begin a; 

M I- N u {begin a; 

(10) MU {~(t)} I- N 
MU {Vx<j>(x)} I- N 

(11) MI-Nu {<j>(y)} 
MI-Nu {Vx<j>(x)} 

i: 1; i:2 end} 

begin z: 1 end; i:2 end} 

if t is any term 

if y is a variable not occurring 
in the conclusion. 

Observe that the above axiom system for I- lacks effectiveness on 

several counts, which preclude the possibility of using the rules of proof 

"backwards" in order to decide a given sequent. First, the axioms are not 

given in an effective way, second, there is a rule, rule (7) which is in

finitary, i.e. the conclusion requires infinitely many premisses. This 

cannot be circumvented by any adequate proof system for algorithmic logic: 

Either one has an infinitary rule or one has an incomplete proof system. The 

infinitary rule of our system of algorithmic logic is closely related to 

Carnap's rule of arithmetic (which makes it complete) and serves as an 

induction principle. There are parallels, and distinctions, to be made 

with recursion induction (MCCARTHY), truncation induction (MORRIS), 

fixedpoint induction (PARK), computational induction (SCOTT), structural 

induction (BURSTELL). But we cannot here embark on these. Neither shall we 

prove the ComEleteness theorem M ~ N iff M I- N is provable, which follows 
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however, have occasion to use this result. 
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Let us now return to algL. For a particular structure A we are interest

ed in those closed formulas Vx1 ••• xn ~(x1 , ••• ,xn)' with~ E algL, which are 

true in !_. As we have seen, such formulas allow us to express important 

enough algorithmic properties of !_to warrant special attention. Let 

algT(!_) denote this set, we call it the algorithmic theory of !.· In the 

presence of a complete proof system for algL, we may reasonably ask for an 

axiomatization of various algorithmic theories: Conceivably, an axiom 

system for algT(!_) may have more than just!_ as a model, which would provide 

us with additional insight into the power of computation (computations 

failing to distinguish between the various models). 

Let, for any r the deductive closure r~ be defined as 

~ + + I + + r {Vx~(x) ~ E algL, r ~ Vx~(x) provable}. 

We seek, for given !_, a set r such that 

algT(~). 

(i) Let!= <N,S,O,=O>. be the natural number system. Then algT(!) is 

axiomatized by finitely many axioms, namely the Peano axioms 

Vx(S(x) F 0) 

VxVy(S(x)=S(y) ~ x=y) 

Vxc';:lo00 s(i) (0) =x) 

which are clearly universal quantifications of formulas of algL(!} 

expressing termination of appropriate programs. Namely: if JN'= 

<N',S',0',=0'> satisfies the Peano axioms then N' - !•hence, 

{Peano axioms} ~ ~ iff ! F $. 

(ii) The ordered field of reals 

-1 
<R,$,+,•,-, ,O,l> 
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may be axiomatized by the axioms of an archimedian ordered field: 

ordered field axioms (universally quantified first-order formulas 
-1 

of L(~,+,·,-, ,0,1)) 1 Voo 

archimedian axiom a>O A b>O -> n=i a+a+ .•. +a ~b. 
~ 

n 

These axioms can clearly be expressed by equivalent formulas of algL. 

They may serve as axiomatization. Clearly, if {arch.O.f.} ~ ~then 

~~ F ~ since ~~ is such a field. Conversely, if ~< F ~ and !'._ is 

arch.o.f. then, by algebra, F s R. Since universal formulas are 

inherited by substructures, !'._ F ~; hence {arch.o.f} ~~by the com

pleteness theorem. 

Thus, from a computational point of view, all arch.ordered fields are the 

same (as regards that algorithmic properties). The field of reals of course 

is not computable in the technical sense; this would ask for an inter

pretation of~~ into!:!_ by which all tests~ and operations ·,+, ... become 

computable number theoretic functions. However, the axioms have some 

computable models, e.g. the rationals and the algebraic numbers. 

{We could have asked something more of the axioms, namely to characterize 

those structures F for which the following statement holds: 

for all ~ E algL. Then the axioms for archimedian order would not suffice; 

e.g. it is simple to devise a program which holds for all inputs on the 

rationals, but does not so on the reals. The class of structures which 

have this stronger property could be called the computationally closed fields. 

Using Tarski's decision procedure for the reals it can be shown (ENGELER 

1968), that such fields are obtained from the rationals by admitting all 

reals which are the limits of nested intervals (a ,b ) E Q2 computable by 
n n 

a program in successive loops.} 

(iii) Slightly harder is the task of axiomatizing the algorithmic 

theory of the reals without the ordering relation. It can be shown to 

lead to the axioms for formally real fields, (see ENGELER 1973). An 

important fact of this axiomatization is that it leads to (universal) 

first-order formulas; this will be used in section 5. The reader 

may puzzle a moment about this difference between ordered and non

ordered reals, because, clearly, ordering can be defined algebraically 
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in formally real fields (use notion of positiveness). But this defini

tion is, as the axiomatization theorem proves, not expressible in 

algL. 

Even if, for a given structure ~· there is no axiomatization inunediately 

available, we may ask for those structures ~which are algoPithmieaZZy 

equivalent to A. One sufficient criterion (LOPEZ-ESCOBAR 1966) can be 

borrowed from L : Let IsoSub(A) be the class of isomorphic copies of sub-
w1w -

structures of £:_: Then £:_ is algorithmically equivalent to B iff IsoSub(~) 

IsoSub(~). This criterion can be considerably improved. 

5. THE GROUP OF A PROBLEM 

In this last lecture, the author may be allowed to ride a personal 

hobby, namely the structural relations between programs and problems. We 

have some promising results, but most of what we'll show now is of a 

programmatic nature. 

Let r be an algorithmic theory, and let p E algL be an algorithmic problem, 

say 

where for given x1 , •.• ,xn we seek solutions yi making p hold. Let Y be the 

set of solutions (for given x1, ..• ,xn), and assume that we have programs 

1Ti(x1 ,. .. ,xn) computing the y1 (using some additional capabilities perhaps). 

Often, the nature of the problem p imposes on Y an mathematical structure, 

e.g. symmetries may put a group structure on Y. 

Let us take the paradigm of classical Galois theory. There p(x0 , •.. ,xn,y) 

is a polynomial over a field F, a0 , .•• ,an E F and say, y 1 , ..• ,yn EE, the 

splitting field of p over F. If p is separable then the Galois group of p 

is G(E/F), the set of automorphisms of E leaving F pointwise fixed. This 

group can be determined by algebraic manipulations with P (determined in 

principle, the complexity of the algorithm is large polynomial). An in

vestigation of the structure of the group (e.g. for its solvability) leads 

at once to solution programs Tii. Indeed, as can be observed, the group 

G(E/F) is also present as a group of substitutions on the Tii. 
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Without going into the details of this connection in this particular case, 

let us rather ask for conditions which allow us to develop a Galois theory 

with respect to arbitrary rand p. As it turns out, this can be done for 

an interesting array of theories. 

Let r be a set of (universally closed) algorithmic formulas and let P (x,y) 

be an algorithmic problem. (Observe that we have, for notational convenience, 

chosen n = 1). 

We first formulate an analogue to the notion of "separable polynomial": 

DEFINITION. p is well-posed in r if there exists a set Y of new variables, 

and a diagram 6(x,Y) with the following properties: 

(a) r u 6(x,Y) is consistent, 

f U 6(x,Y) ~ P(x,yi) for all yi E Y; 

(b) y.fy. E 6(x,Y) for all if j; 
]_ J 

(c) f U 6(x,Y) U p(x,y) ~ {y=y, : y. E y}. 
]_ ]_ 

{By a diagram 6(x,Y) we mean a set of basic, i.e. negated and unnegated 

atomic, formulas of the laguage of r augmented by Y, such that for any such 

formula a either a E 6(x,Y) or •a E 6(x,Y)}. Let L0 (x) denote the set of 

basic formulas in x. Next, we need a rather strange-looking property of r, 

which will, however, be seen to follow from a far more familiar concept. 

DEFINITION. r has the pernrutation property with respect to p if, whenever 

6(x,Y) and 6'(x,Y) satisfy (a), (b), (c) above and if 6(x,Y) n L0 (x) = 

6'(x,Y) n L0 (x) = 6 (x) then there exists a permutations E S(Y), the set 

of all permutations of Y with 

6' (x, Y) 

{~s(yi , •.• ,yi) is defined as ~(s(yi ), ... ,s(yi )), and 6s(x,Y) 
s 1 k 1 k 

{a : a€ 6(x,Y)}}. 

The more familiar property mentioned above is the amalgamation property. 

DEFINITION. r has the amalgamation property, if for any models ~· ~l' ~2 of 

r and injections f 1 and f 2 , there exists a model c of r and injections g1 

and g2 such that the following diagram commutes: 



f1 

,:-------1'-j:, 
~2~~~~~~~~~~--c 

g2 

The following is a list of theories, expressable in algL, which have the 

amalgamation property: 

groups, lattices, 

various fields (e.g. arch.o.fields, formally real fields), 

various geometries, 

Boolean and cylindrical algebras, 

differential fields. 

By the results below, Galois theory becomes available for these theories 

in a uniform manner. {Generalizations of G-th have been known in some of 

the cases, these turn out to be special cases of our approach.} 

THEOREM. If r is a set of universaUy quantified a"lgorith:mie formulas and 
if r has the amalgamation property, then r has the permutation property 
with respect to a"l"l p. 

The proof is obtained by building Herbrand-models of r U 6(x,Y) and 
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r u 6'(x,Y) and using universality of r. The details need not interest us 

here, (see ENGELER 1974). But now, in presence of the permutation property, 

we may at once define the group of a well-posed problem. 

DEFINITION. Let p(x,y) be well-posed in r, let 6(x,Y) have properties (a}, 

(b), (c} and let 6 (x) = 6 (x, Y) n LO (x). We set 

L' 
G6(x) { t E S (Y) f U 6(x,Y) ~ o/ - o/t, all o/ E L'(x,Y)}, 

where L' is a sublanguage of algL, L0 ~ L'. 

THEOREM. If r has the permutation property with respect to p(x,y), then 
(i) G~;x) is a group (under composition of permutations) and depends 

on"ly on 6(x); 
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(ii) if L' is contained in the cZosu:t'e of L0 under infinite disjunctions 

or if r u 6(x,Y) is L'-compZete (i.e. if r is L'-modeZ-compZete), then 
L' LO 

G6(x) G6(x); 

(iii) G~?x) {s € S(Y) 6(x,Y) = 6s(x,Y)}. 

~· We prove only some of the statements above; a full account is in 

ENGELER 1974. 
L' The fact that G6 (x) is a group is shown by observing closure under composi-

- ti - t2 tion as follows: Assume that r U 6(x,Y) r $1 = $1 r U 6(x,Y) r $2 = $2 
ti t1 tit2 

all $1 , $2 • Take <fl2 = <fl1 andnoticethatru6(x,y)l-<P 1 ::$1 ,by logic then 
- tit2 r U 6(x,Y) r <fli = <fll If r U 6(x,Y) is L'-complete, i.e. if for all 

L' 
<fl € L' either r U 6(x,Y) r <fl or r U 6(x,Y) r 1$, then G6 (x) = {s € S(Y) 

6(x,Y) = 6s(x,Y)}. Namely: Suppose that s € S(Y) transforms 6(x,Y) into it

self, but that for some <fl € L' we have r u 6(x,Y)~ <fl = <jls. Then by com

pleteness, either <fl and l<jlsare provable from r u 6(x,Y), or symmetrically. 

In the first case we would have r u 6s(x,Y) I- <fls and hence r u 6(x,Y) I- <Psi a 
L' s 

qo~tradict!on. Conversely, if s € G6 (x) then r u 6(x,Y) r <fl + <fl for all 

<fl € 6(x,Y). But r U 6(x,Y) r <fl for all <fl € 6(x,Y), hence r u 6(x,Y) r <fls, 

all <fl € 6{x,Y). By completeness of 6(x,Y) we have therefore, 6(x,Y) = 
s 

6 (~.YI. 0 

For now we have done no more than define a group of permutations. What 

does it have in common with the group of automorphisms in the classical case? 

Our result above allows to make the connection: Let ~(x), ~(x,Y) be the 

minimal models of r u 6(x), r u 6(x,Y) respectively. {For such universal 

theories, these are simply the models on the Her brand uni verse of x, Y u {x}.) 

Let G(~(x,Y)/~(x)) be the group of all automorphisms of ~(x,Y) which leave 
Lo 

~(x) pointwise fixed. Then G6 {x) ~ G(~(x,Y)/~(x)), as we will presently show. 

Thus, we have recouped the old type of definition; ~(x,Y) "splits p over 

~(x) ". 

Clearly, any automorphisms€ G(A(x,Y)/A(x)) induces a permutations' € S(Y) 

such that 6(x,Y) = 6s' (x,Y); thi: is ju:t the meaning of automorphism. 
s• 

Conversely, ifs' € S(Y) guarantees 6(x,Y) = 6 (x,Y) then the map of the 

Herbrand terms in {x} u Y can be obtained from s' and is an automorphism. 0 

Of course, we have not said anything yet about how to get the group 

from a problem ptatement. We expect this to be a major problem for any non

trivial r. Even the case of free monoids is completely open: what is the 
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if w1,w2 are words in the generators of the free monoid and some unknowns 

Y1•···•Yn? 

85 

The case of classical Galois theory suggests that we seek a resolvent, 
i.e. a formula (polynomial) in the (unknown) solutions such that the group 

of p is just the group of permutations in the resolvent, which leave it 

fixed. 

In the general case we know (non-constructively) at least that such a 

resolvent exists if the theory and the problem satisfy some additional 

requirements. 

THEOREM. If r has the perrrrutation property with respect to p, and if P is 
of degree n then there exists a finite conjunction of basic formulas 

LO 8 (x,y1 , .•• ,yn) such that G~(x) {s E S(y1, •.. ,yn) : I' U ~(x,y 1 , ••• ,yn) 

I- e :: es} . If , moreover, r is first-order, then there even exists a 
finite conjunction P0 of basic forrrrulas such that r u ~(x) I- p(x,y) = 
Po(x,yl. 

The proof of the first part is quite easy, all we need is to observe how to 

eliminate finitely many permutations from S(y 1, ••• ,yn) which fail, by not 

transforming some basic formula into an equivalent one, to belong to the 

group. The second part involves a use of the compactness theorem of first

order logic (hence the additional condition on f). D 

What we learn from this theorem is that for ~=' classical Galois theory can 

deal with all algorithmic problems of finite degree. This is open for ~~· 

whose algorithmic theory is not first-order. 
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1. INTRODUCTION 

1.1. One may wonder why Operating Systems is considered a valid topic in its 

own right. In the past the primary reason has been that it was difficult to 

construct a system which operated reliably enough to satisfy its users. 

At present the subject is of interest to computer scientists because of the 

special nature of the problems it has spawn. There is in the first place 

the aspect of concurrency: a variable set of almost independent computations 

share the facilities and resources of a machine. The term concurrency has 

a connotation slightly different from parallel computation. The latter is 

used when a given computation is organized such that some parts are executed 

in overlapping time intervals. The former brings into the picture the ques

tion of how to design and maintain the proper environment in which a vari

able set of computations can be executed simultaneously. 

Another reason why Operating Systems is (still) considered a valid 

topic .is because of the size and variety of the programs involved. These 

aspects confronted us with the necessity of organizing the design of pro

grams and developing a methodology for documentation, maintenance, modifi

cation and error detection,. correction and recovery. 

Finally, the design of operating systems generated a variety of inter

esting problems. To name a few, processor allocation stimulated queuing 

theory; storage management pushed the design of data structures and a whole 

spectrum of placement and replacement algorithms; the general problem of 

sharing devices led into the study of scheduling, system deadlocks and pro

tection against unauthorized access. 

It may be that Operating Systems will not anymore be seen as a coherent topic 

in the near future. On the one hand the drastic changes in machine architec

ture and the need for highly specialized systems make it difficult to see 
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what future operating systems will have in common that is not present in 

other large programs. On the other hand, the categories above, which are 

presently considered part of Operating Systems will be integrated into the 

general field of program construction. So, the title of the topic may loose 

its significance, the objects of research will rem~in, be it as part of an

other classification. 

1.2. The function of an operating system essentially is to transform a 

given machine into a preprogrammed machine which is (meant to be) more con

venient to its user community. An operating system is a set of programs 

which together realize such a transformation. One gets some feeling for the 

nature of such programs considering an oversimplified machine model consis

ting of a central processor (CP), a mainstore (MS), a card reader (CR) and 

a line printer (LP). Among the instructions which CP can execute are an in

put command and an output command. When CP executes an input command, CR 

places the information found on a card in a designated area of MS. Similarly, 

when CP executes an output command, a line image is taken from a designated 

area in MS and is printed on the line printer paper. The actual reading of a 

card (or printing of a line) is performed character by character, entirely 

controlled by a control unit which is part of the input or output device. 

Such a control unit must be activated by a command transmitted to the device 

controller by the central processor. Let us assume that the store is large 

enough to hold a user program, its data and the necessary control programs. 

A straight forward strategy for running user programs on this machine is 

given by this sequence of steps: 

repeat read card deck 

compile user program 

load user program + support programs 

execute loaded program 

print out results 

until machine halt 

However, there is no built-in hardware which executes these steps, nor 

is there a mechanism which activates these steps in the desired order. 

There must apparently be a program already stored in MS which controls the 

sequence of steps. This program is the frame work of an operating system 

for the given machine and mode of running user programs. Traditionally, the 

compile, load and execute phase are not considered as part of an operating 
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system. But the programming of the transition from one phae to the next and 

also the input and output phases are part of the design task of an operating 

system. 

1.3. Two very common types of operating system are a "batch system" and a 

"timesharing" system. The basic idea of a batch system is to assemble a 

series of user programs called a "batch", run those programs successively 

while in the meantime printing the output of a preceding batch and assem

bling a new batch. It is desirable to continue reading as fast as possible 

because an input device is very slow compared to a central processor. 

On the other hand, the size of an MS does not allow us to read arbitrarily 

far ahead. Also, output is at times generated much faster than it can be 

printed. This conflict was solved by adding a relatively slow, but very 

large, back-up store (BS) to the machine. When a new batch is assembled, 

the jobs are stored on this secondary storage device. The jobs are succes

sively transferred to MS at the time that their compilation starts. Gener

ated output is also stored on BS from where it is retrieved when the time 

has come to print it out. 

A timesharing system gives its user direct access to programs and data 

stored in the machine via a teletype or scope terminal. Every user has his 

private working space and a set of data objects called "files". Files can 

be shared by several users. The system controls the terminal input and out 

put, it provides a set of basic operations on files and it protects a user's 

files against misuse by others. 

Below follows a schematic description of a batch-system known as 

"Spooling System", because the first systems of this type used magnetic 

tapes as back-up storage. 

Input path: CR + inbuf (in MS) + input batch (on BS) + READ buf (in MS) 

Output path: WRITE buf (in MS) + output batch (on BS) + outbuf (in MS) + LP 

Controlprograms: CRcontrol, LPcontrol, BScontrol, READ,WRITE 

CRcontrol: 

repeat wait until CR is done with copying a card image into MS 

increment card count 

if current inbuf full then 

wait until other inbuf empty 

send request for dumping current inbuf to BScontrol 
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fi 

switch current to other inbuf 

clear card count 

prepare next card command 

send command to CR device 

until CR control halt 

function READ= 

BScontrol: 

designate an MS area as next READ buf 

send load request to BScontrol 

wait until BScontrol signal, completion 

repeat wait until some transfer request 

until 

i + select one of the pending requests 

prepare transfer command on behalf of requesti 

send command to BS device 

wait until BS device is done 

signal completion of transfer to requestori 

BScontrol halt 

It would lead us too far into questions of programming and design if 

we described a timesharing system model in a similar way. The description 

above supplies enough of a frame work to discuss matters of coordination, 

cooperation and communication among almost independent action sequences. 

1.4. The term rrrultiprogra:mming is used to describe a situation in which 

several partially executed computations are partly leaded in MS. Multypro

gramming is possible independent of the number of central processors (we 

need at least one). A central processor can switch from one process to an

other through a hardware interrupt. 

The term process has been very useful for the design and description 

of operating systems. It denotes the activity which is invoked when input 

is submitted to an abstract machine in its initial state. An abstract ma

chine defines a mapping of a set of input data onto a set of output data. 

It consists of a pair {P,s} where P is a processor which is controlled by 

a given program, and S is a set of three states: the initial state, the 

busy state, and the final state. A process is the activity of an abstract 

machine which transforms a given input data set into a resulting output 

data set. The process terminates if the abstract machine reaches its final 

state. 



93 

The term process is often used to denote both process as described 

above and abstract machine. An abstract machine or process is called paral

lel if it can execute several instructions of its control program simulta

neously; otherwise it is called sequential. 

A process is called I/O deterministic in the case nf a functional relation

ship between input and output. That is to say, the term applies to a pro

cess (or abstract machine) for which the output is uniquely determined by 

given input. 

Examples of abstract machines are: a card reader, a central processor, 

the device controllers for card reader, line printer, back-up storage as 

described previously. 

2. COORDINATION OF CONCURRENT PROCESSES. 

2.1. Concurrency may cause race conditions if several processes operate on 

shared data in overlapping time intervals. For example, let processes 

P1, P2 , ..• ,Pn (n>l) operate on a common stack which is implemented as an 

array STACK [l:M] and a variable top. Initially all elements of the stack 

array have a meaningful value and top = M. The processes either take an 

element from the stack or return one. The number of returns by one process 

never exceeds the number of times it takes one. (The stack elements could 

for instance represent free storage frames.) 

The operations on the stack are 

take element (x) = T1 : x + STACK[top]; T2 : top+ top-1 

return element (x) = R1 : top+ top+l; R2 : STACK[top] +- x 

The storage hardware protects against access conflicts. If two process

es attempt to access a storage cell at the same time, the storage device 

accepts only one and allows the other to proceed after the first is done. 

So, operations on the stack elements in the programs above can not get con

fused. But the sequence of the operations still may cause trouble. The 

timing could for instance be 

when one process calls take element (a) and another return element (b) . The 

result is that the returned element gets lost while the element taken from 

the stack has not been properly removed. Other timings would also be disas-
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trous; e.g. R1 ; T1; T2 ; R2 or T1; T1 ; T2 ; T2 • Coherent pieces of program 

which must not be executed in overlapping time intervals are called crit

ical sections. The set of all critical sections in a system can be parti

tioned in a set of classes of mutually critical sections. we mark the crit

ical sections of one class by a unique bracket pair for that class. If we 

choose [ ] for the stack operation, we get: 

take element (x) [T1 : x + STACK[top]; T2 : top+ top-1] 

return element [R1 : top+ top+ 1; R2 : STACK[top] + x] 

2.2. The rule that a process does not return more elements than it takes 

prevents overflow of the stack. However, a process should not try to take 

an element while the stack is empty (i.e. we require top ?0). The operation 

take-element (x) is therefore replaced by the function 

remove-element(x) = wait until stack not empty; take-element(x) 

this arrangement makes that the processes cooperate in maintaining a 

correct state of the stack. 

Question: why can "wait until staak not empty" not be programmed as part 

of take-element(x)? 

Implementation of "wait until stack not empty" is not trivial. 

Wrong is 

while top 0 do < nothing > od 

because, when an element is returned, two processes may find the condition 

in the while clause false and proceed. 

Two solutions: 

a) embed remove-element in another critical section 

remove-element(x) ={while top=O do< nothing> od; take-element(x)} 

so that only one element can be removed at a time. 

b) use Dijkstra's P,V operations and apply to a semaphore "free" initialized 

at M. 

remove-element(x) 

return-element(x) 

P(free); take-element(x) 

] ; V(free) 



Definition of P and V operation: 

P(sem=semaphore) = 
if (sem+-sem-1) < 0 then 

stop calling process; put it on waitinglist(sem) 

j + select process from readylist; start pro~ess j 

fi 

V(sem=semaphore) 

if (sem+-sem+l) ~ 0 then 

j + select process from waitinglist(sem) 

transfer process j from waitinglist (sem) to readylist 

fi 

P,V on semaphore sem are themselves critical sections 

Embed in bracket pair implemented by LOCK and UNLOCK: 

~ lockbit = 

constant locked = 0, unlocked = 1 

operation LOCK(ref lb=lockbit) = 
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begin local x = locked; while x = locked do exchange (x,lb) od end 

operation UNLOCK(ref lb=lockbit) = lb + unlocked 

end 

A semaphore is a triple: (semcount,semwaitinglist,semlockbit). 

Critical sections can be programmed with LOCK and UNLOCK or with P,V oper 
ations, except for P,V themselves. The advantage of P,V operations is that 
waiting processes are not busy, whereas LOCKed processes are. 

2.3. P,V operations as used in the preceding programs do not take care of 

deadlock situations nor of scheduling rules. These can be taken care of if 

a P operation is replaced by a critical section + a P operation on a so

called private semaphore. A V operation must then be replaced by a corre 
spending critical section. A private semaphore is a semaphore whose owner 

performs a P operation on it, but no other process does. 

Let RV be a request vector and E an array of private semaphores. A version 

of remove-element(x) and return-element(x) in which deadlocks and scheduling 
can be taken care of is 

remove-element(x) [RV.+l;considerallocationto(i)]; P(E.) 
l l 
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returnelement(x) [top+-top+l; STACK(top)+x; free+free+1 

if RV -I Q_ then 

j + select from RV; considerallocationto j) fi] 

where considerallocationto(i) = 

if free > 0 and deadlockfree(i) then 

free+ free -1; xi + STACK[ top]; top+ top - 1 

RVi + 0; V(Ei) 

fi 

An alternative solution to deadlock and scheduling problems is a system in 

which a "supervisor"or "monitor" owns the critical data structure. In such 

a system all requests for modifications are addressed to the supervisor. 

Let RM be a vector indicating remove requests and RT a vector indicating 

return requests. 

remove-element(x) 

return-element(x} 

RMi + 1; V(monitorsem); P(Ei) 

RTi + 1; V(monitorsem); P(Ei) 

Monitor: 

P(monitorsem) 

if RT -I .£ then j + select from RT 

top + top +1; STACK[ top] + xj; 

RT. + O; V(Ej) 
J 

else j + select from RM; RM. + 
J 

"spotted" fi 

while free > 0 and 3k ~ = "spotted" do 

free + free +1 

if allocationto(k} is deadlockfree then 

free+ free - 1; ~ + STACK[ top]; top+ top -1 

~ + O; V(Ek) 

od 

2.4. On the other hand, cooperation implies in many case some form of sched

uling and it can be used on purpose to implement desirable scheduling rules. 

However, if one writes the programs with P,V operations, it is often very 

difficult to verify that the desired scheduling is present and remains un

disturbed. 

There are three ways of approaching the problem of program correctness. 

The first approach tries to give an answer to the question: "Given a pro

gram, prove that it is correct". This approach was first attempted by 
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R. FLOYD with his method of inductive assertions and later refined by 

C.A.R. HOARE with his axiom system representing language semantics. An 

other approach is the one which attempts to answer the question. "Of which 

classes of progrC1J11 can I prove the correctness". This is the approach by 

SCOTT/DE BAKKER et al with their fixed point computations and also of 

PATERSON with the program schemata. A third approach tries to answer the 

question: "How can I construct a correct program", This line of thought is 

followed by DIJKSTRA in his structured programming and also by DENNIS/HOLT 

et al. by means of PETRI nets. 

We follow the third approach if we specify in a set of strict rules 

how program may be constructed for the problem we want to solve. We will 

establish such a set of rules for synchronizing concurrent processes. 

The synchronization of a process will be represented as a string of brackets 

of various types. The state of the system is given by an unordered set of 

open and close brackets. An initial state will be given. Execution of a pro

cess means that it attempts to place brackets into the state in succession 

according to its program. A process is allowed to move whenever it can, but 

these three rules restrict the possibilities: 

Rl: the state can always be modified by adding an open bracket 

R2: a close bracket can be added if and only if there is a matching open 

bracket in the state(if it cannot move, it must wait) 

R3: a matching bracket pair in the state cancels out 

this rule allows us to forget part of the history) 

Example 1: P ] f 
initial state: [ 

Q g 

Q cannot move in the initial state, but P can. When P is done, Q can 

move, but P cannot. The model represents the interaction between device and 

control process. Note that there may be many Ps and Qs. 

Example 2: P } f { [ 

initial state [{ 
G g 

Q has priority over P, because if a Q is waiting while a P is executing 

f, this P enables a Q to proceed before it enables another P. 
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Example 3: (Cigarette Smokers Problem) 

Sources: S1 = ] ( ( 
r w 

S2 = ] ( ( 
r b 

S3 = J ( ( 
w b 

Agency: R selector+4{ w = ) selector+2{ B )selector+1{ 
r set w set b set 

selector: 

Sinks: RW == } selector + 0 [ initial state: [ 
set=6 

RB= } selector + 0 [ provable is: the regular expr 
set=S 

WB = } selector + 0 [ 

. * (Sxy;Ax•":J;Sinksel) 

set=3 represents the system's behavior. 

3. COMMUNICATION AND SYSTEM DEADLOCKS 

3.1. A communication path between two processes can either be fixed for all 

times, or it can be established for the exchange of one piece of information, 

or it can be created for a sequence of information exchanges. The communica

tion of a device control process and its peripheral device is an example of 

a fixed communication path. The second mode of communication is known as 

message switching or a mailingsystem. A sender process places a message in a 

queue. Receiver processes remove messages from the queues. An extended, mul

tiprogramming, version of the batch system discussed earlier could be de

signed with a mailing system for transfers between the two storage levels. 

The sender processes would be the processes which request the transfers, the 

receiver would be the BScontrol process. The third class of communications 

could be named the class of dialogues. Here a sender process monopolizes a 

receiver process for an indefinite length of time. Processes communicate with 

peripheral devices such as magnetic tape units in this manner. 

In a mailing system senders and receivers operate on the Communication 

buffer by means of the operation deposit and receive. The buffer provides 

space for several messages so that the senders may get somewhat ahead of the 

receivers. If the buffer is implemented as an array B[1:Nl where N is the 

upperlimit of the number of messages which are permitted to be in the buffer 

we may use two pointers front and rear, both initialized at zero, pointing 

respectively to the frame from which the last message was taken and the frame 

in which the latest message was placed. 



Let @ denote addition modulo N; this operation is used for advancing the 

pointers front and rear. 

d3: 

~~g~~(m=message) 

P(numframe) 

{rear + rear Ell 

B[rear] + m } 

V(nummes) 

~~£~~~~(m=message) 

P (nummes) 

lfront + front Ell 1 

r3: m + B[front] 

V(numframe) 

Semaphore numframe is initialized at N and semaphore nummes at zero. 
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Deposit may proceed only if there is room in the buffer for another message. 

Receive may commence only if there are messages in the buffer. 

If there are many senders, it is necessary to cast operation deposit in a 

critical section because of the use of the rear pointer likewise for using 

the frontpointer if there are many receivers. 

It is not necessary to put the operations on the buffer in deposit and 

receive in critical sections using the same semaphore. This means that si

multaneous operations by senders and receivers can be allowed. One can prove 

that the pointers rear and frame never point to the same frame when the 

statements d3 and r3 are executed simultaneously. This can easily de derived 

from the bracket representation: 
N 

,---A--, 
s = J } d3: •.• {( initial state:[[ •.• [ 

K ) .'5; r3: •• ·le o: 

SKETCH OF A PROOF. 

Let rear have the valuer and front the value f; let"# ... " mean the . 
number of ..• added to the state. 

Let r 1 and f 1 be the number of times that rear and front were incremented. 

The equality r = f is equivalent to r 1 = f 1 mod(N). 

At the time that a sender executes statement d3 and a receiver state-

ment r3 we have 

# ] 2 r 1 = 1 + #( and #) 2 f 1 = 1 + #[, 

because all but the last sender added an open parenthesis to the state and 

all but the last receiver added an open square bracket. The bracket rules 

enforce #(2#) and #[2#] - N, so 

1 
r + #(2 1+#) 2 1 + f 1 and 

fl + #[2 1+#] -N 2 1 - N + r 1 + r 1 S fl + N-1 
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Thus, 1 + f 1 $ r 1 $ f 1 + N - 1, so 1 
r f 1 mod(N) is not true. 

3.2. In a dialogue communication system deadlocks may occur. 

Let a machine have six magnetic tape units MT1 , ••. ,MT6 and assume there 

are users of three different types: 

a type P user takes one MT at a time; 

a type Q use~ starts using one MT, asks later for another one and releases 

the units in either order; 

a type R user needs at some time three MTs simultaneously. A deadlock occurs 

if users R1, R2 and R3 are holding two MTs each. In that case everyone of 

them is going to ask for another MT and no one is willing to give up an 

MT yet. 

The problem can be solved if we program the classes P, Q and Ras 

follows: 

p ) MT ( 

Q 

R 

with initial state: 

initial state: ( ( 

[ [ [ [ [ 

{ { { { 

( [ ( [ { 

Three users of type R each holding two MTs would not be possible, be

cause they would have placed six close square brackets in the state whereas 

there are only five open square brackets. 

The problem presented is one in the category of one-type of resource 

deadlock. A general statement of the problem is: a set if n (n>l) competing 

processes c1, ••. ,Cn use resources R1, •.. ,Rt (t>l). Given for all 

i E {1, .•• ,n} that Ci ultimately needs claimi resources and is using at the 

moment alloci resources, test whether the given allocation state may degen

erate into a deadlock state. 

$ claimi $ t for all i E {1, •.• ,n}. A state for 

is called realizable. Define ranki = claimi -

alloci. A process Ci is entirely satisfied if ranki = 0. We assume that it 

will release the resources allocated to it at some time after that. 

we assume that 0 $ alloc. 
l. 

which this relation holds 

The value of ranki is also in the range [O, ... ,t]. 
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Let xk be the number of processes for which rank < k s claim. We call this 

number the number of promotions in rank= k. Vector x = (x1 ,x2 , ..• xt) de

scribes the promotions in all ranks. 

Define 

Define 

t 
l x. and vector E.= (p1 ,p2 , •.• ,pt). 

j=k J 

t = (t,t-1,t-2, ..• ,1); vector t is constant 

THEOREM. the relation 12. s ! is a necessary and sufficient condition for a 
safe state. (safe in the sense that the state cannot degenerate into a dead

lock state). 

SKETCH OF A PROOF. 

Promotions counted in pk for given k E {1, ... ~t} helped competitors with a 

claim~ k to reach at most rank= k - 1. Processes which reached rank= 

k - 1 are able to get all the resources needed if and only if at least k -

resources are available. Every promotion counts for one allocation, so the 

number remaining after the promotions counted in pk equals t - pk. So, the 

processes at rank = k - 1 are able to finish if and only if 

t - pk ~ k - 1, or pk s t + 1 - k, or pk s tk 

Thus, all processes are able to finish if and only if 12. s ! 

Let yk represent the number of competitors starting with claim k. 

Define 

t 

l yk and n = (n1 ,n2 , ••• nt) 
j=k 

Of course, E.. s 12.· Thus, E. s ! is a necessary condition for safe states. 

The interesting point is that E. does not depend on the allocation, but sole

ly on the set of competitors. Vector E. changes only if another process is 

admitted to this set or if one departs. The test !!_ s !._could nicely be ap

plied as an admission test. we may expect to make higher scores of success 

in the safety test E s .!:. if the admission test rules out sets of competitors 

which generate only unsafe states. 

It turns out that the total number of possible values for E. is T (2t), 
t 
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whereas the number of acceptable values is only A= (2~) - (~!2) for (t~2) 
The usefulness of applying an admission test is shown by the fact that 

~ = c({:). This says that the acceptable states constitute a decreasing 

Iraction of the total number of possible states when·t increases. 

One can show that not all states are reachable if the admission test 

is applied. The number of reachable states is R = ( 2~) - (~!3 ). It n~ver
theless seems useful to apply and admission test, because t = t + c(t:) 
3. 3. Define 

t 

l nj and N = (N1 ,N2 , ••• ,Nt) 
j=k 

one can easily show that £ s _!!, so N s t is a sufficient condition 

for safe states. 

Unfortunately, N1 

t 
l n. 
1 J 

So N1 S t 1 implies that total claim s t. 

t 

l j * yj 
j=l 

total claim 

This says that requiring !! s t is equivalent to requiring that the 

processes together claim not more than the available number of resources. 

However, if the processes do not use their claim number of resources all 

the time, such a requirement would be very restrictive and leave a certain 

number of resources idle. Moreover, the processes would be restricted with 

respect to concurrency and this causes degeneration in throughput. 

A weaker condition is more helpful. 

THEOREM, if there is a k E {1, ... ,t} for which Nk s tk then N1 s t 1 for all 
1 E {k, ... ,t} 

SKETCH OF A PROOF (by induction) 

t + 1 - k + Nk+l S t + 1 - k - nk 

0 then Nk 0 and Nk+l O, so Nk+l s 1 - k is true 

if nk > 0 then~ ~ 1, so Nk+l s t + 1 - k - 1 s t - k. 

In applying the admission test and safety test it is advantageous to remem

ber the smallest index k for which Nk s tk. The test E'.. S ! or l2. S t can be 

broken off after index k - 1, because n1 s N1 s t 1 and p 1 s N1 s t 1 for 

lE{k, ... ,t}. 



Define the booking factor> 

k-1 

I 
b = total claim = Nl = i=l ni + Nk 

t t t 

where k is the smallest index for which Nk s tk. 

The upperbound bmax for b depends on the index k: 

l [k~l ] b $ t l n1. + Nk 
i=l 

$ l [kfl (t+1-k) + (t+l-k)] ~ 
t i=1 

k 
l (t+l-i) 

t i=l 

$ ~ [ (t+l) * k - ~ k * (k-1)] $ k (1- k;!) 

i 

0 t 

k + 

b (k) max 

2t 
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If the smallest index for which Nk S tk equals one, bmax = 1. This says 

that if the total claim is not permitted to be larger than the total avail

able number of resources, then the booking factor should not be permitted 

to be larger than one. This confirms what we expect. The value bmax can be 

used to force a reasonable cut off point in the tests, because i 1·. can be 

used to set a value for the index k. 

4. STORF,GE l\'l.ANAGEMENT 

4.1. Basic to all automatic storage management systems is the notion of 

vir>tuaZ addr>eBs. A virtual address is the position of a program instruction 

or data item relative to a chosen base address. Code generated by a compiler 

or writte!l in an assembly.language by a programmer is entirely expressed in 

terms of virtual addresses. The purpose of using virtual addresses is to 
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make the program and its data completely independent of the specific loca

tions where it resides when being executed. This gives the operating system 

the flexibility of moving a program and its data from one area to another 

without affecting the logic of the program. The value of a base address is 

not specified by a compiler or assembly language programmer, it is entirely 

under control of the operating system. 

The virtual addresses used in a program are interpreted at execution time 

and are mapped into physical locations. How the mapping is performed depends 

on the chosen address translation mechanism of the computer in use. Address 

mapping is in most machines partly done in hardware, so that the "normal 
case" is handled efficiently. The most common storage management strategies 

are: swapping, segmentation and paging. 

swapping: a virtual address is a positive integer va; the address map is 

defined by/ loc +Base+ va,/where Base is set by the operating system be-

fore execution commences. In addition to the Base an upper limit is set for 

a program and its data and the address map checks for va overflow. 

Segmentation: a virtual address is a pair (s,w), where sis an index point

ing into a "segment table", ST, and wan offset within a segment. The seg

ment table maps the segment indices onto physical base locations. 

The address map is 

/ loc + ST[s] + w/ 

The mapping hardware tests for segment table overflow (by s) and segment 

overflow (by w). 

Paging: a virtual address is also a pair (p,w) , where p is an index pointing 

into a "page tab~e", PT, and wan offset within a page. The page table maps 

the page indices onto a fixed set of physical base locations which are a 

multiple of the chosen "page size". 

The address map is 

/ 1oc + PT[p] + w / 

Overflow tests can entirely be avoided if the lay-out of a virtual address 

is fixed and page tables have a fixed length. This makes the mapping much 

faster than in case of segmentation. 

4.2. The address translation of a swapping system is much faster than that 

of a segmentation system. However, a segmentation system has the advantage 

that 



a) not all segments of a program and its data have to be loaded in MS. 

This saves transfer time in both directions 

b) segments not written into don't have to be copied on BS 

c) it is easier to fit smaller pieces together in MS than large ones. 

Swapping and segmentation have in common the 9henomenon of "external 

fragmentation". 

MS: 

When segments of various sizes have been loaded and removed, there 
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are some unused pieces of storage space scattered through store. One gets 

some feeling for the amount of space wasted through external fragmentation 

using Runth 's 50% rule. This rule says that the number of holes (=unused 

pieces of storage) is on the average half the number of blocks in use. 

If the average hole size equals k * average used block size, then an esti

mate of the fraction wasted is 

For k 

~ * N * k * a + N * a m 
k 

~ we find that as much as 20% of the store may be wasted! 

4.3. When a segment is to be loaded in MS, a hole must be found which is 

large enough to accomodate the segment. Two most obvious algorithms for 

doing this are the first fit algorithm and the best fit algorithm. The for

mer starts at some hole and steps through the set of holes until it finds 

one large enough. The latter inspects all the holes and selects the smallest 

one which is large enough for the given segment. The first fit algorithm 

performs especially in a satisfactory manner if it remembers where it left 

off the last time and starts searching from there the next time. If it would 

start always at the beginning, the small pieces tend to accumulate at the 

front end of the list. 

Experimental data has shown that a well-organized first fit algorithm 

outperforms a best fit algorithm. 

When a block of used space is released, it must be added to the list 

of holes. If the list is not ordered, the hole can be appended at the end 

of the list. aowever, this has the disadvantage that it is very hard to 

merge the new hole with a neighboring hole (if any). If the list is ordered 

by ascending store address, such neighboring holes can be detected and 
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merging can take place right away. In that case the release function has 

this structure: 

release(address,size) 

go down the list of holes until address < ADDRESS (next hole) 

or nexthole = NIL 

insert given new hole in the list 

if adjacent to left neighbor hole, merge with leftneighbor 

if adjacent to right neighbor hole, merge with rightneighbor. 

One could adopt yet another strategy and not bother about merging in 

function release so as to speed up the execution of this function. By the 

time that the placement algorithm cannot find a hole large enough, this 

algorithm goes through the list and merges adjacent holes as far as neces

sary. 
0 

Yet another approach is never to merge holes, but instead compact when 

need be. If the placement algorithm cannot find a hole large enough, it 

moves all the blocks in use to one end of MS (assuming the code is reloca

table!). This procedure automatically leaves one maximal hole at the other 

end of MS. Experience with this strategy is generally not encouraging. 

4.4. All management systems have in common the fact that space must be 

created in MS if not enough is available when a segment or page must be 

placed into MS. In case of paging, the size is fixed, so it is always suffi

cient to throw one page out for every page that must be loaded into MS. 

Algorithms that select a page or segment to be thrown out of MS are known 

as replacement algorithms. 

The best algorithm one can imagine is BELADY's algorithm. It selects 

the page with the largest future reference interval; that is to say, it 

picks out the page which will be referenced later than any other page pres

ently in MS. Unfortunately, this algorithm cannot be realized in practice, 

because the future reference string is (probably) unknown. 

Other algorithms which have been investigated are 

a) random; this algorithm is based on the belief that the future reference 

string is unpredictable. This, however, turns out not to be true. 

b) Round Robbin (RR); this algorithm is based on the idea that page frames 

are used for almost equal length in time. The algorithm employs a pointer 

which cycles through the page frames and it is believed that by the time 



the pointer returns to a frame, the page in that frame is likely to be 

of little interest. 
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c) First In First Out (FIFO); this algorithm selects the page which has 

been in MS longer than any other page. It allows for pages to be dis

carded and frames to be released (which RR does not do), but it assumes 

that the interest in a page is a uniform and descending function of its 

lifetime. 

d) Least frequently used (LFU); here the idea is that a page which has not 

frequently been referenced in the past will also not be referenced fre

quently in the future. Therefore, the page which will probably be re

ferenced later than any other page is in all likelihood the least fre

quently referenced page. 

e) Least recently used (LRU); this algorithm is based on the assumption 

that the least recently referenced page is probably the least frequently 

used page or a page which is of no interest anymore. It assumes that the 

probability of referencing a given page in MS is proportional to the 

length of time this page has not been referenced till the present time. 

Many experiments have been carried out to measure the performance of 

these algorithms. The objective is to minimize the number of page turns. 

The results of these experiments are unanimous in the sense that LFU and 

LRU show a significantly better performance than RR or FIFO. The graphs 

one usually sees are like the one plotted below. 

percentage of 

pagefaults 

' ' ' ' ' ' ' '--random 
' ' 

' RR 

~FIFO 

Ms size + 

LRU 
LFU 

However, there is a question of how hard it is to implement the algo

rithms. The implementation of FIFO or RR is clearly trivial. The implemen

tation of LFU is rather inefficient. Every time a page is referenced, 

a count must be incremented and when the replacement algorithm is activated 
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all pages must be scanned after computing their frequency of use. This over

head has shown to be too elaborate and the algorithm is therefore not ap

plied anymore in present day systems. 

A straight forward implementation of LRU is not much better. Every 

time a page is referenced, it must get a time stamp and when the replace

ment algorithm is invoked, it must find the oldest page. Contemporary ma

chine architecture, however, enables an acceptable approximation of LRU 

which can be implemented quite efficiently. The address mapping is consider

ably improved if the machine uses a small associative memory AM. The AM 

contains a few copies of page table entries. We call a page which has a 

descriptor in AM "active" and the others "passive". An entry in AM consists 

of a key and a value. AM responds to the question: give me the value of the 

entry whose key is x. Address translation takes place as follows (for given 

virtual address(p,w)) 

if (Temp + AM [p]) ~ 0 then lac + Temp + w 

else addressexception fi 

so that the most likely case does take a minimal amount of time. Address

exception occurs if the page descriptor is not in AM. At that time the page 

descriptor must be copied in AM at the expense of removing one which is 

presently in AM. 

The LRU can be approximated if we consider the moment that a page is 

removed from AM as its last reference. Since we are interested in the rel

ative age of a page, the page which is removed from AM is appended to a 

list of "used pages". The pages longest in the list is selected in the re

placement algorithm. If a page in the "used page" list is referenced again, 

it is removed from the list and its descriptor is copied into AM. The list 

operations can be designed very efficiently if page indices are used. 

5. SCHEDULING POLICIES 

5.1. A scheduling policy is applied if several processes wish to use a set 

of resources while not all resource requests can be satisfied simultaneously. 

Scheduling algorithms can be classified in two major groups: one consisting 

of algorithms which take into account the history of a process with respect 

to using the resource set and an other one in which such history is forgot

ten. The latter group consists primarily of two very simple disciplines, 

RR and FIFO. The FIFO algorithm is particularly suitable in those cases in 



which no other scheduling criterion is relevant. It can fairly be stated 

that FIFO is considered as the default scheduling rule. 

Scheduling is particularly relevant in case of preemptive resouraes. 
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These are resources such as a central processor or main storage of which 

the system can decide to take them away from the user without disturbing 

the logic of the user's computation. Whether FIFO or RR is the suitable 

discipline for scheduling a preemptive resource type depends on the service 

times needed by the users (this term is here used in the sense of proaess). 

The total time which elapses between a resource request and re.lease of that 

resource is known as the response time. This time depends on the service 

time the user needs and on the time a user has to wait until the resource 

becomes available. 

One can easily show that, if a FIFO rule is applied, the response time 

depends on the number of waiting users and the average service time. Such 

a discipline works very much against the small users which need only a short 

service time. The RR discipline does not have this disadvantage, it guaran

tees a user a response time proportional to the service time needed. On the 

other hand, the overhead caused by applying an RR discipline is much higher 

than for a FIFO discipline, because the resource is preempted more frequent

ly and it takes time to deallocate and reallocate a resource. So, if users 

vary widely in needed service time, an RR discipline is to be preferred, 

but, if not, FIFO performs more satisfactorily. 

5.2. We discuss some history-minding scheduling disciplines for using a 

central processor. First we discuss a linear priority scheme, then a weight

ed CP utilization discipline and finally deadline scheduling. 

A linear priority scheduling discipline attaches to every user a pri

ority which is a linear function of time. While the user runs on a CP, its 

priority changes by 

6p = a ~t 

and while the user is waiting, its priority changes by 

6p b 6t, where b ~ 0. 

Let Ci (ti be the characteristic function of useri describing whether useri 

is running or not. If useri enters the system at t = t 0 with an initial pri

ority = 0, the priority at t > t 0 is 
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or 

t t 

p(t) =a I Ci(u) du+ b J [1-C. (u) J du 
J_ 

p(t) 

t 

b(t-t0 ) + (a-b) J 
to 

C. (u) du 
J_ 

This priority function would not be acceptable for an implementation 

because of the fact that it has to be updated for all users every time that 

the function is used, no matter whether the user is running or waiting. 

We require that an implementation satisfies the rule that the priority must 

be~dated only for a running user by the time it stops running, but not 

for a waiting user. 

A function which satisfies the implementation rule is the virtual 
axorivaZ time. This is the moment in time that a user would have started so 

as to reach its current priority if it had been waiting all the time. 

In the picture below the virtual arrival time is found as the parallel pro

jection of the current priority on the t-axis. 
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The virtual arrival time satisfies the implementation rule, because 

~v (i-£) ~t for a running process and 

~v = (i-£) * o for a waiting process. 

The scheduling algorithm selects the process with the left most virtual 

arrival time on the t-axis. Which one this is depends on the value of the 

constant (i-£). The ratio E determines the speed at which the virtual ar

rival time moves along the t-axis. 

Let O < a < b. In this case 0 < £ < 1, so 0 < (i-£) < 1. Consider a period 

of time in which no new processes arrive while several processes are either 

waiting or running. The virtual arrival time of waiting processes does not 

change, but that Of a running process moves to the right (and must have 

been to the left of the others when it started running). After a while the 

virtual arrival time of a running process will overtake the virtual arrival 

time of a waiting process. At that moment time has come to stop the running 

process and allocate a resource to the waiting process. The speed of over

taking is determined by the ratio E· It is low if a is close to b and high 

if b is much greater than a. The scheduler behaves as an RR discipline. 

However, if a new process arrives, it is placed on the t-axis to the right 

of all others. So it starts waiting and it may take a while before the cur

rent group of users overtakes the newly arrived process. This is why 

KLEINROCK called this scheduling strategy the "selfish RR" discipline; it 

is asif the current users try to keep the resource for themselves and admit 

a newcomer reluctantly. 

Let 0 < b s a. In this case (1-£) s O. The virtual arrival time of a running 

process travels this time to the left. Since the virtual arrival time of a 

waiting process does not change, the running process remains the one with 

the left most virtual arrival time. So, in this case the policy is a pure 

FIFO discipline. 

Other policies emerge if the domain of a and b is chosen differently. 

An additional convenience of applying one of the possible linear scheduling 
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disciplines is the fact that the ratio ~ can be used as a tuning pa:r>ameter 

of the system. The value can be varied until the desired optimal perfor

mance in a given system is achieved. 

5.3. The weighted CP utilization discipline takes into account how long 

ago a process was using the resource. Let the resource be a single central 

processor and let Ci(t) be the characteristic function describing whether 
1n or not processi is running. In a single processor system, L C. (t) = 1. 

i=1 J. 

Define 

t 

fi (t) = a J Ci (u) ea(u-t) du as the weighted CP 

utilization measure for processi. The value of fi (t) is the sum of the 

colored areas in n 
the picture. L 

i=1 
f. 

J. 
c. t 

J. 

_} _____ ~--~ 

t 
Unfortunately, fi (t) does not satisfy the implementation rule, because 

for a waiting process: 

Define 
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satisfies the implementation rule, because 
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The change of Fi(t) for a running process is given by 

t+llt 

LIFi = a f eau du LIS 

t 

au 
e du ,, 0 

0 for a waiting 

Thus, when a process stops running, we compute LIS and add this value to 

S(t) and to Fi (t), where Pi is the stopped process. 
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The rate at which waiting process "ages" (i.e. the rate at which its 

CP utilization measure decreases in time) is determined by 

F. (t+l'it) 
:l 

F. (t) 
:l 

s. (t) 
:l 

s. (t+l'it) 
:l 

at 
e 

1 * a{t+l'it) 
e 

= e 
-al'it 

Rl (1-at'lt) 

The parameter a can be used to tune the behavior of the scheduler. In one 

time unit fi is reduced to (1-a) times the original value. 

5.4. The objective of a deadline scheduler is to guarantee every process a 

negotiated fraction of CP time. E.g. it may be decided that the system con

sists of a batch process which receives 20% of the CP time and a time

sharing subsystem which receives 80% of the CP time. However, it is not 

sufficient to specify just these fractions, we must also specify within 

which time limit such a fraction must be allocated. Without this specifica

tion we could allocate 80% of every hour to the time-sharing system and 20% 

of every hour to the batch process. This would have the awkward effect that 

the time-sharing users might wait for a full 12 minutes if the batch process 

uses its fraction in one contiguous time interval! 

Define for every user Ui a "cycle time" Ci within which the promised frac

tion of CP time must be allocated. The value of Ci may be in the order of 

one hour for the batch process and in the order of one second for the time

sharing system. 

A user appears to the deadline scheduler as a triple (di,ci,fi) where 

di is the next deadline for user Ui. The quantity di is an absolute moment 

in time (a future moment) at the end of the first interval of length ci for 

which the fraction fi has not yet been entirely allocated. 

The scheduler follows this policy: the resource is allocated to the 

user whose deadline is the closest. This user receives an amount of 

fi * ci of CP time so that this user is satisfied until his next deadline. 

When the amount has been used, the deadline of this user is incremented by 

c. and the CP is allocated to the next user whose deadline is the closest. l. 

If there is a tie, the order of allocation is immaterial. 
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Example: u1 

Moves: 

next deadline: 4 6 6 9 

t+ 

u 
2 

8 12 10 12 12 

must of course be true, otherwise CP time would be over committed. 

6. SYSTEM DESIGN ISSUES. 

6.1. Every process must be protected against errors which may occur in an 

other process. That is to say, an error occurring in one process should not 

destroy valid information in another process. This means in the first place 

that one process should not have arbitrary access rights to information 

which is part of another process (a process should, for instance, not write 

outside its allocated storage area). It means furthermore that the integrity 

of data shared by concurrent processes must be preserved. Shared data must 

either not be accessible at a given moment, because it is being modified, 

or it must be in a well-defined state, recognizable by any process which 

has a right to access it. In this last lecture we focus on the latter point 

of preserving the integrity of shared data structures. 

The integrity can be preserved if processes can not perform arbitrary 

operations on a shared data structure. Instead, the set of possible opera

tions must be precisely specified and the processes must be forced to u~e 

these operations and no others. Programming languages provide since long a 

very powerful tool for specifying such operations, viz. procedure declara

tions. Such a declaration allows the designer to separate the specification 

and the implementation. At the call site the implementation is irrelevant, 

all that matters is the specified effect of the procedure call. At the place 

of the definition, the implementation may be modified provided that the 

specifications do not change. This arrangement greatly enhances debugging, 

code improvement and other modifications. 
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We need a tool for specifying datastructures analogous to the procedure 

declaration used for specifying operations. Such a tool is a type definition 

(or a class definition in SIMULA 67). A type definition describes the struc

ture of a class of objects and it defines the operations which can be per

formed on objects of such type. The structure of the typed objects is inter

nal to the type definition, i.e. outside the type definition one has no 

access to the internal structure of a typed object. (this kind of protection 

is unfortunately missing in the class concept of SIMULA 67, but this is the 

only thing missing. The SIMULA classes are entirely adequate in all other 

respects.) 

A typed object behaves outside the type definition as "atomic". 

Only the names of the operations are exported outside the type definition. 

The type definition protects a datastructure against errors or malicious 

use and it allows us to implement a characteristic behavior of a data struc

ture as part of its definition instead of as part of the calling sequences. 

For example, a process in a concurrent system can be on the waiting

list of a semaphore, or it can be in the readylist or it may be running. 

We wish to implement the rule that a process may be on one list at a time 

only. In a conventional approach to this problem one would reserve a link 

field in every process control block and use this linkfield to link process

es together in various lists. One would have to check the programs to make 

sure that it can never happen that two different linkfields point to the 

same process. 

Instead we define 

end 

~ process 

local prior integer (0); ref succ =self 

operation exchlink (ref p,q = process) = 
begin~ x = p.succ 

p.succ + q.succ; q.succ + x 

end 

The only way to modify a successor field outside the type definition 

is through a call of procedure exchlink. One can easily see that the type 

definition preserves the property that suec defines a permutation of the 
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processes, so the rule is satisfied. 

Another example: the receiver queue. Senders transmit messages to receivers. 

The senders are allowed to get arbitrarily far ahead of the receivers (the 

message queue has no upperbound). The receivers must wait as long as the 

message queue is empty. 

~ mlist = 

local head nullmessage, length= integer (0), 

listempty = lockbit (locked), listlock = lockbit (unlocked) 

comment a definition of lockbit was given on page 10 

proc append (ref m message, ref ml = mlist) = 

begin 

end 

LOCK (ml. listlock) 

<<put message (m) at the end of list (ml)» 

if (ml.length+ ml.length + 1) = 1 then UNLOCK (ml.listempty) fi 

UNLOCK (ml.listlock) 

proc remove (!.:!. ml 

be51in 

mlist) ref message 

local cond = Boolean (false) 

repeat LOCK (ml.listlock) 

if (cond +ml.length > 0) then 

ml. length + ml. length - 1; « remove + first of list (ml) » 

fi 

UNLOCK (ml.listlock) 

until cond do 

od 

end remove 

end type mlist 

LOCK (ml.listempty) 

The desired properties are introduced as part of the type definition and 

are preserved independent of where such a message list is used. 

6.2. In addition to specifying exactly the set of operations, it may also 

be necessary to apply such operations in some order. For example. one cannot 

start reading a file unless an open file command has first been given. 
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A tool for specifying the order of executing operations on a shared 

datasructure is a so-called path expression. In its most simple form, the 

syntax of a path expression is a list of steps separated by semicolons and 

surrounded by the keywords path and end. A step is a list of operation names 

separated by commas. More elaborate constructs are still under investigation. 

Example: ringbuffer 

We define first a type oneslot buffer 

and then the type ring buffer 

~ oneslot buffer = 

local slot = message; path write; read end 

Operation write (- -) 

Operation read (- - ) 

end 

The given path enforces alternating executions of write and read. 

~ ringbuffer (N=integer) = 

~ ring [N] oneslot buffer 

local front, rear = integer (0) 

path advancefr; copyfr end; path advancerr; copyrr end 

operation deposit (m = message, ref rb = ringbuffer) = 

begin advancerr (rb); write (m,rb.ring[copyrr(rb)]) end 

operation receive (- - ) 

end type ringbuf fer 

The paths assure that the front pointer cannot be advanced twice in a row, 

nor can it be copied twice in a row. So, senders calling deposit will access 

successive ringbuffer slots. It may happen that more than N senders call 

deposit, so two senders may point to the same slot after all. But the write, 

read path in the type definition of one slot buffer assures that only one 

of these senders writes into that slot before it is read out. 

6.3. If we add the possibility of concurrent execution to the path expres

sions, simple path expressions are already a powerful design tool. 
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Concurrent execution is indicated by a curly bracket pair { }. 

Example: path {read}, write end 

This path expression allows many concurrent reads or one write. 

This path slightly favors reading, because another process can start 

reading as long as others are reading whereas writing cannot commence until 

all reading has stopped. Reading and writing can be given an equal chance 

by the combination of these two paths: 

path readreq, WRITE end; path {read}, write end 

where READ = !2_ readreq; read~ and WRITE = write. 

Before actual reading can start, permission must be obtained by passing 

readreq. (One can program the Readers/Writers problems and variations with 

a combination of three paths). 

6.3. Finally some remarks about implementation. 

The path expressions in their simple form can easily be translated 

into bracket representations. The translation rules are 

.!_path - end 

2 f;g 

3 f,g 

4 {f} 

f 

+ invent a new bracket pair d b 

+ replace semicolon by a close and open bracket of a new 

chosen bracket type 

+ distribute the bracket pair surrounding f,g over f and g 

separately 

+ dot the brackets around f indicating that only the first 

and the last execution must use the brackets. 

(f,g); {h,(j;k)} end 

F ) f[ 

G ) g[ 

H ]h( 
) ' 

J ]j{ 

) f[ K }k ( 

j k 

The path assures that the number of executions of K is 

less than or equal to the number of executions of ]. 
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FORMAL PROPERTIES OF DATA BASES 

E.J. NEUHOLD 

University of Stuttgart, Stuttgart, (D) 

1. INTRODUCTION 

When investigating the formal properties of data bases one soon real

izes that the formal theories in this area are not yet very advanced. No 

conclusive theory exists and as a consequence many different techniques 

have been developed. They are basically very similar, but it is still hard 

to relate them to each other and to compare their descriptive power. 

Instead of investigating all formal work on data bases we shall con

centrate on a few essential activities. Especially, we shall disregard the 

most theoretical approaches, as they are still only applicable to very 

simple date base models (e.g. C. PAIR [13]). The implementation and hard

ware oriented investigations (e.g. R. BAYER [14], R.W. TAYLOR [15]) also 

leave the frame of our discussions. They are usually of high complexity and 

contain many machine dependent parameters and considerations. 

The work underlying these lecture notes is mainly derived from the 

papers by E.F. CODD [1-6], J.R. ABRIAL [7], B. SUNDGREN [8-9] and E.J. 

NEUHOLD [10-12]. The general aim of the paper is to stimulate readers in

terest in the application of precise formal notions to the data base area, 

where a large range of usually only vaguely defined terms and concepts 

contributes to the confusion and misunderstandings among the representatives 

of the field. No results which essentially extend the range of the refer

enced literature are given though a number of remarks and positions taken 

may be new. 

2. THE INFOLOGICAL APPROACH TO DATA BASES 

2.1. The Infological Model of the Human Mind 

The organization of a data base and of the information system where 

the data base is just one part depends very heavily on the characteristics 
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of the ultimate users of the system, usually human beings. 

To develop a proper framework for the design of information systems 

we first have to study the working of the human mind as the medium where 

the data extracted from a data base will be processed to contribute to the 

problem solution attempted by the person. Figure 1 contains an infological 
model of the human mind (see also [ 8]) where the following important as

pects may be observed: 

- The existence of an outside reality is assumed. In this reality it is al

ways possible, at least in principle, to determine whether a specific 

statement about the reality is true or false. This assumption is necessary 

as soon as we want to conjure that statements, which users cannot agree 

upon, have no place in data bases. Such an agreement is necessary for 

the exchange of information between users, one of the essential proper

ties of the information systems we want to investigate. 

- To gain any knowledge at all about the reality, concepts must be formed 

(or given to the human being). This formation process is achieved by the 

repeated perception of pieces of the reality and it continually goes on 

during a persons life. New concepts are formed, obsolete concepts are de

leted and old concepts may be forgotten. 

- The concepts together with perception of the reality allow the formula

tion of specific knowledge. 

- Concepts and definitions together with specific knowledge allow the in

duction of new concepts and definitions and of empirical laws. 
- The specific knowledge, the empirical laws and the apriori given laws 

of logic allow the deduction of other specific knowledge and of new em

pirical laws. 

- Inductions and deductions take place with respect to the frame of refer
ence. The frame of reference Fp(t) of a person P at time t encompasses 

all the concepts, definitions, specific knowledge and general knowledge 

perceived, deduced or deducible, a person has at time t. 

- A person may be more or less conscious of different parts of his frame 

of reference. For such a part k of his frame of reference a consciousness 
function c(k,P,t) can be given for the person P at time t which may take 

on values between zero and one. The value of c(k,P,t) is zero if and only 

if k ~ Rp(t). The value is one if the person P is immediately aware of k 

at time t. 

Changes in the consciousness value may arise through the ongoing percep

tion or through the usage of k in induction or deduction processes. 
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- Knowledge may be explicit or implicit. Explicit knowledge exists already 

as specific knowledge, laws, concepts or definitions whereas implicit 

knowledge is deducible knowledge which has not yet been deduced or per

ceived. 

2.2. The Data Concept 

The addition of new knowledge may increase and decrease the conscious

ness of already existing knowledge in RP(t) or it may even distort the 

frame of reference and produce inconsistent knowledge, such endangering 

the inductive and deductive processes of the mind. For these reasons a:r•ti

ficial extensions of the human mind have been used for a very long time. 

The artificial extensions allow to store knowledge and to corrrmunicate know

ledge to other persons through the use of data. 

DEFINITION. If a person arranges intentionally one piece of reality to 

represent another, then the former arrangement is called data. The ar

ranged piece of reality is the mediufn used for storing data. 

Examples of such arrangements are: digital and analog representations, 

spoken and written languages etc. Observe that the intention of making such 

an arrangement is important. Coincidents where one piece of reality by ac

cident represents some other piece do not count as stored data. However it 

is allowed, that a person only makes the arrangement for storing data, where

as the actual storing is done automatically, for example with the help of 

automatic sensors. 

2.3. The Information Concept 

Information is defined as synonymous with new knowledge. With this 

definition a large number of observations can be made using the already 

investigated properties of knowledge. 

Information is knowledge and can only exist in the mind of a human being 

where it is part of his frame of reference, or more precisely I ~ R (t 
+ p 

I E Rp(t) and I E Rp(t ). 

- Information therefore is always related to a reference person. If infor

mation is to be stored a reference person (at least some "average" user) 

is always assumed for whom the data are intended. However it is usually 

the case that no such "average" user exists and a lot of complicated data 

base problems result through erroneous extraction of information from the 

stored data. 
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- Information is always related to a set of old knowledge, the reference 

knowledge, i.e. RP(t-). For example when a message is sent to some per

son a typical frame of reference is assumed for the receiver of the mes-

sage. 

- For every information an external source must exist. Otherwise it would 

not be new knowledge but would already exist in some explicit or impli

cit form in the reference knowledge. 

Sources of Information 

Only two sources of information are possible: 

a) perception of a piece of reality 

b) perception of data representing a piece of reality. Such data are called 

a d.a.ta message or a d.a.ta record. 

The Forming of Information 

The creation of new knowledge from a piece of reality or a data mes

sage is illustrated in Figure 2. To allow the interpretation of a data mes

sage a corrrpatible frame of reference RP(t) must exist. Otherwise the prop

er concepts, definitions and interpretation rules would not be available 

and the message would remain meaningless or would be interpreted the wrong 

way. The conceptual message contains the semantic contents of the inter

preted message. Using this meaning of the message together with the old 

knowledge (reference knowledge) the updated knowledge can be derived. No

tice however that a message may be meaningful but will still not convey 

any information if the meaning it represents is already part of the expli

cit or implicit knowledge of the person. 

Even if a message does not carry any information, the action of send

ing the message may convey information. For example A knows but is also 

told by B that "the flight from New York to Amsterdam leaves at 9 p.m.". 

A receives among others the informations: 

- B knows that "the flight from New York to Amsterdam leaves at 9 p.m.". 

- B does not know that A knows "the flight from New York to Amsterdam 

leaves at 9 p.m.". 

The processes for forming of information do not ensure that the receiver P 

of a message interprets it as it was intended by the sender. Even if the 

frames of reference for two persons are compatible it is not sure that they 

will get the same information. If their knowledge differs at all then one 

of them may already know part of the meaning contained in the message. 

Among further properties of information are: 
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A person may be more or less conscious of information as it need not be 

placed with a high consciousness value into his frame of reference. 

- Information may be explicit or implicit. If not all possible deductions 

are performed at the derivation time implicit information results which 

at a later point in time may become explicit knowledge through the de

duction processes. 

- A data message may also have value as a reminder, even if no information 

is conveyed. It may, for example, increase the level of consciousness of 

some knowledge or it may make implicit knowledge explicit. 

2.4. The Information System 

Using the infological theory as presented so far we can now relate 

the developed concepts to the information systems and their data bases. A 

number of valuable properties of these systems can be derived immediately: 

- A data base represents the medium for storing data and since all data 

are representations of pieces of reality it provides a model of the re

ality. Human beings have used models for a long time. Usually manipula

tions on the model are much easier and faster than on the reality itself. 

Different operations and their effects can be composed before they are 

actually carried out. The model also provides for an extension of the 

human abilities, where access to data and information is much faster than 

through observation of the reality. 

- The data base provides a source of information for the user and therefore 

leaves the range of being a simple extension of his mind. Other users 

may leave messages in the data base which eventually will convey new 

knowledge to the user of the data base. 

- The information system as an extension of the human mind can help as a 

reminder of knowledge with a low level of consciousness. But where does 

it become important? For example when calculating 

5 + 12 I definitely will not use the information system. 

18.562 + 4.2436 I may use the information system if it is easy to use, 

next to my desk and ready. 

sin(4.253) I will use the information system. 
We can deduce that it is important for an information system and its data 

base to be readily available and in its external representation of mes

sages close to a form which can easily be interpreted by the user. 

- The user support system should help the user in his different actions 
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when solving some problem. According to Figure 1 this involves percep

tion, conceptualizations, inductions and deductions. Perception is sup

ported via automatic data gathering equipment. Deduction support ranges 

from automatic theorem proving to simple arithmetic calculations. For 

conceptualization and induction processes current and probably planned 

systems provide very little direct help. 

- Data base builders and users must have compatible frames of references 

to allow for the proper interpretation of messages. For example, in the 

statement 

salary + 15000, 

it is necessary to know whether "salary" is specified by day, month or 

year, whether the currency is Dollars, Gulden or Lira and also whether 

the number representation is decimal octal etc. 

However it is not necessary that all interpretation rules are a 

priori knowledge of the users. They can be provided as messages to such 

users as long as some basic compatible frame of reference exists, to in

terpret the messages carrying new, additional interpretation rules. 

Comp0nents of the Information System 

To construct information systems which have the properties listed pre

viously a few major components can be identified: 

- The data base must provide for the storing of the allowed basia data 

values. These values include numbers, names, descriptions, e.g. 15000, 

J. SMITH, "Sala;py is in $ and per year", "Employe!' may be pe!'son or 

aO!"pO!'ation". The italic names provide the identification of the differ

ent data aatego!'ies existing in the infological base. As a general guide

line, data are usually grouped into a category, if their interpretation 

by a human being leads to a highly overlapped semantic content in this 

resulting conceptual message. 

- Relations and dependenaies between the data in the data base must be ex

pressed by organizational concepts (e.g. data hierarchies), algorithms, 

laws, and interpretation rules. 
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Examples: a) 

!\ 
first-name last-name 

b) sin (x) Df program 
c)ry true = .false 

;-~-~~-~ 
spouse children address 

I \ \ 
first-name f.n. f.n. f.n. 

d) yearly-salary = 13 * monthly-salary 

e) salary: fixed, decimal, 5 digits. 

- To allow for the adjustment of the time dependent properties of data 

bases it is necessary to provide manipulation functions, as, for example 

for the reorganization of data dependencies or for the deletion/addition 

of data relations, algorithms, data classes etc. 

- Many different users with a wide variety of knowledge will use an infor

mation system. To provide each one with a support facility closely re

lated to his frame of reference and subject area it becomes necessary to 

organize the data base system in such a way, that the data representations, 

dependencies and relations can easily be adjusted. This leads to a facil

ity for defining subject oriented data base submodels. 

- To communicate with the information system a user must be able to access, 

update, insert data, to use algorithms and to receive support for his 

deduction problems. Here again facilities closely related to the frame 

of reference of the information system user are required. 

Organization of an Information System 

Based on the infological approach to data base systems we can now dis

cuss the design and the operation of such a system. Figure 3a describes the 

various steps involved in the design of the data base system. Figure 3b il

lustrates the transfoi'lllations which occur when a user action is to be per-

formed. 

Starting with the piece of reality which is relevant for a user or 

class of users a subject matter model of the reality is constructed, which 

closely corresponds to their frame of reference and allows simple inter

pretations and deduction processes. With the help of the infological theory 

the different subject matter models are combined into a common infological 
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model. The datalogical model is derived from the infological model through 

the application of data base design theory and the specific design goals. 

The final mapping of the datalogical model to the physical devices provides 

us with the physical data base which will contain all the information stored 

in the system. 

If a user of the information system requests some action to be per

formed, he will state this request in a form closely related to his frame 

of reference, and therefore to the piece of reality which he has knowledge 

about. In the context of the information system this means that the actions 

will be specified with respect to his subject matter model. To perform the 

actions on the stored data a translation process of the user request must 

take place. With the help of the infological model, the datalogical and 

the physical data base description the user actions are transformed into 

operations on the physical data base. Selected or produced results then 

are transferred back to a form which the user can interpret. 

The approach to information systems described in Figure 3 is still 

very far from the current abilities of data base systems. In practically 

all systems the subject matter models, the infological model and the data

logical model are combined into a single model. As a consequence the de

signers and users have to be aware of all the infological, datalogical 

and physical aspects of their information system at the same time. 

The designer must know about the subject matter models of all users. 

He has to specify the representation of data, their grouping and their 

dependencies. He must know about design decisions to be made to realize 

space and/or time efficiency. The user, on the other side, has to perform 

in his mind the necessary translation processes, to transform the required 

action from the form suggested by his frame of reference to the physical 

operations of the data base. 

In the past the data base systems have all been very simple in the 

infological sense. In their design it was assumed, at least implicitely, 

that 

- only a very small slice of the reality had to be covered, 

- a large (nearly total) overlap of the frames of references for all users 

did exist, 

- a relatively small volume of data had to be stored or only simple opera

tions (like "read-next record") were allowed, thus reducing the problems 

in achieving efficiency. 

For large shared data base systems this simplistic approach will not 
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be sufficient. It will be necessary to separate the infological and data

logical aspects of the system. Arising problems can then be dealt with 

separately, and no person has to have knowledge about all the different re

quirements resulting from the infological and datalogical properties of in

formation systems. 

The next chapters will discuss data organizations and data manipulation 

facilities which can be viewed as being oriented to the infological model 

of the data base. In the last part of the paper we will introduce a repre

sentation and description technique for which it is hoped that it will al

low the uniform description of all the different levels of an information 

system. 

3. THE RELATIONAL VIEW OF DATA 

3.1. General Definitions 

In the previous chapter a number of levels for different data models 

have been introduced. We shall now concentrate our investigations toward 

the infological data base model as an intermediory between the individual 

subject matter models and the already computersystem and device dependent 

datalogical model. 

The principal components of the infological model which are to be 

investigated in this chapter are the different basic data categories and 

the principles involved in describing the dependencies and relations be

tween the data values. From the many different approaches which exist for 

the description of data base models only few are sufficiently machine and 

device independent to be adoptable as infological data models. The rela

tional view of data bases as introduced by E.F. CODD [1-6] has all the re

quired characteristics and in addition has been and still is extensively 

investigated by many people doing data base research and development. Un

fortunately the investigations have been carried out without much explicit 

considerations for the infological aspects of the model. Of course, many 

infological concepts have been used implicitely, but I believe a consider

able amount of misunderstanding between the people involved in data base 

research could have been avoided if infological influences would have been 

presented and illustrated explicitely. 

In this chapter we shall use the term relation in its accepted mathe-
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matical sense, whereas the term relationship will be used inl§ormally to ex

press any kind of interrelations between data. In addition we shall consi

der the term data base to be synonymous with infological model of a data 

base. 

Given sets o1 ,o2 , ••• ,on {not necessarily distinct), Risa relation 

on these n sets, if it is a set of elements of the form Cd1 ,d2 , ••• ,dn)' 

where dj € oj for 1 s j s n. In other words R is a subset of the cartesian 

product o 1xo2x ••• xon. The relation R is said to be of degree n. oj is the 

j-th doma.in of R. The elements of a relation of degree n are called n-tuples. 

A data base B is a finite collection of time varying relations defined 

on a finite col"lection of domains o 1 ,o2 , ••• ,op. As time progresses each re

lation may be subject to insertion of new elements, deletion of existing 

ones and alteration of components of existing elements each time resulting 

in a new instance (i.e. set of n-tuples) of the relation. 

Example: The data base B is a collection of two relations, describing em

ployees and children, 

employee {man#, name, birth year, children) 

children {childname, birth year) 

defined on the five domains man~. name, birth year, children, childname. 

For each quadruple contained in the employee relation there exists an in

stance of the children relation describing the c.hildren of the employee. n 

From the above definitions a number of observations can be made and 

additional concepts on properties of the relational model can be developed: 

- The domains o 1 ,o2 , ••• ,op may be simple or nonsirnple. A simple domain is 

defined as a set of basic data values, a nonsimple domain has instances 

of relations as its elements. In the above example all domains except 

"children" are simple. The nonsimple domain "children" has instances of 

the relation children, i.e. sets. as elements. 

- A domain O. contained in a relation R describes the range of values the 
J 

j-th component of the n~tuples in the relation may have. 

- A compound domain is the cartesian product of k (k>l) simple domains. 

- The simple domains of the relational view of data bases closely corres-

pond to the categories of basic data values found in the infological 

model. 

- The only infological relationships and dependencies between data which 

can be expressed using the relational view of the data base must be ex

pressible within the framework of relations with simple and nonsimple 

domains. 
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The set of-ples representing a relation R at time t is called an in

stance of R. 

- Not all the domains of the n-ary relation R need be distinct. If the same 

domain appears more than once in a relation R, the different occurrences 

could be identified through ordering of the domaLns. Instead of retaining 

such an ordering we shall introduce distinct names, called attribute 

names, which will uniquely identify the different occurences of domains 

in the relation R. The domain occurrences in a domain are now order in-

dependent and will be called attributes of the relation R. 

Example: For the description of parts and their contained subparts a "com

ponent" relation will be defined on two occurrences of the domain "part". 

With the help of attribute names we specify the relation as follows: com

ponent (sub-part, super-part, quantity) where both attributes "sub-part" and 

"super-part" correspond to the domain part existing in the relational mod-

el. D 

- The two values v 1 and v 2 , contained in the attributes A1 and A2 or R 

respectively, are associated with each other if in the current instance 

of R there exists at least one n-tuple which contains v 1 and v2 as the 

respective values for the attributes A1 and A2 • 

A relation R is called normalized or in first normal form if it has the 

property that none if its attributes are nonsimple. An unnormalized re

lation is one which is not in first normal form. 

To restrict a data base to normalized relations has a large number of 

advantages. The most important probably is, that the infological complexity 

of unnormalized relations is very high. Data interpretation in the rela

tionally expressed hierarchies is complicated and many problems of implicit 

data dependencies arise. As we shall see later in this paper even the first 

normal form of relations is of high infological complexity and additional 

restrictions have been developed to reach simple but still sufficient data 

base models. 

Normalized relations can be stored as two dimensional matrices with 

homogeneous values in the columns. This representation does not require 

pointers or hash addressing schemes and seems to be the form best fitted 

for bulk data transfer between systems of different structure. 

Most data base models containing unnormalized relations may be normal

ized automatically. Before we can discuss the normalization procedure a few 
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additional concepts have to be introduced. It should be noted however, that 

because of the very high infological complexity of unnormalized relations, 

the automatic normalization process has to make strict assumptions about 

the reference knowledge to be used for the interpretation of the restruc

tured relations. 

- We introduce the notation R.A to denote the attribute A of R, and r.A 

to select the value of the attribute A in the tuple r (rER). This nota

tion can be expanded to a list of attributes A= (A 1 ,A2 , ••• ,Aj) of R. 

The expression R.A then denotes a collection of attributes in R. The no

tation r.A is expanded to 

with the additional definition 

r.A = r 

in case the list A is empty. We shall use the notation A to identify the 
- -attributes of R which are not contained in A. Similarily R.A and r.A are 

defined. 

Example: The current instance of the relation 

employee (man #, name, birth year, children) 

may contain the quadrupel 

r = (1345, J. SMITH, 1936, {(JILL, 1964) }) 

Given the list A (name, birth year), 

r.A (J. SMITH, 1936) 

r.A (1345,{ (JILL, 1964) }J 0 

- For the manipulation of relations we introduce a concatenation of two 

tuples 
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Its result is defined by the (n+m)-tuple 

- Two simple domains are union-corrrpatibZe if the infological interpretation 

of their data values allows us to combine the values into a single data 

category. Observe, that the property of union-compatibility is heavily 

dependent on the interpretation of the respective data values and there

fore on the reference knowldege of the data base user. 

Two compound domains D and E are union-compatbile if they are of the 

same degree (say n) and for every j (1$j$n) the j-th simple domain in D 

is union-compatible with the j-th simple domain in E. Two relations R,S 

are union-compatible if the compound domains of which R and S are sub

sets are union-compatible. 

3.2. Functional Dependence 

When setting up a relational data base the designer must decide on 

the degree and the properties of the relations to be incorporated in the 

model. The relational data base is the datalogical model in the general in

formation system and must combine the different aspects of the subject mat

ter models which, as abstractions of the reality, closely correspond to 

the reference knowledge of the various users. 

One such important aspect is the functional dependence between attri

butes in a relation R. It arises whenever in the n-tuples found in R some 

compound values are not independent from each other. 

We define more formally: 

The attribute A2 of relation R is functionaZZy dependent on attribute A1 
of R if, at every instant of t-irne, each value of A1 has no more tfian one 

value in A2 associated with it under R. 

The infological aspects of this definition can be seen immediately in 

the request that the condition must hold "at every instant of time". This 

property cannot be checked without knowledge of the modelled reality and 
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the abstraction and specification processes involved. We write R.A1 + R.A2 
if A2 is functionally dependent on A1 in R and R.A1 f R.A2 if A2 is not 

functionally dependent on A1 in R. If both R.A1 + R.A2 and R.A2 + R.A1 hold, 

we write R.A1 ++ R.A2 and R.A1 and R.A2 are at all times in a one-to-one 

correspondence. The functional dependency satisfies the transitivity con

dition; if R.A1 + R.A2 and R.A2 + R.A3 then R1A1 + R.A3. 

The definition of functional dependence can be extended to collection 

of attributes. If D and E are distinct collections of attributes of R, then 

E is functionally dependent on D if, at every instance of time, each D value 

has no more than one E value associated. In case the attribute collection E 

is a subset of D we speak of trivial funational dependenae since the re

quirements for functional dependence are trivially satisfied. 

Example: To illustrate functional dependence we use a relation 

S(Empl #, Dept #, Div #) 

where either the reference knowledge or the abstraction from reality deter

mines that 

Empl # is the employee serial number 

Dept # is the number of the department to which the employee belongs 

Div # is the serial number of the division to which the employee belongs. 

In addition the infological framework may supply the time independent prop

erties 

- an employee never belongs to more than one department 

- a department never belongs to more than one division 

- an employee belongs to the division to which his department belongs. 

Actually these properties are important during the whole lifetime of the 

data base. Consequently they should themselves be kept in the database 

system. We shall discuss in the next chapters how this can be achieved at 

least for a simple subconcept of our relational model. 

Using the infological properties and relationships we immediately de

rive, e.g. 

R. Empl # + R. Dept # 

R. Dept # + R. Div # 

R(Empl #, Dept #) + R. Div # 
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If we know in addition that 

- many employees work in one department 

- many departments are associated with a given Division 

then we can define 

R. Dept # f R. Empl # 

R. Div # f R. Dept # 

An example of a trivial dependence is given through 

R(Empl #, Dept #) + R. Empl # D 

3.3. Candidate Keys and Primary Keys 

We define a aa:ndidate key Kofa relation R(A1 ,A2 , ••• ,An) as a col

lection of attributes (possibly one) with the following properties: 

Pi : Unique identifiaation 

In each tuple r of the relation R the value of the attributes contained 

in K uniquely identifies the tuple, i.e. 

P2: Non-redundanay 

No attribute in K can be deleted without destroying the property Pl. 

With the definitions given earlier we are able to deduce two additional 

properties of candidate keys 

P3: Each attribute of R is functionally dependent on each cnadidate key of 

R. (An immediate consequence of trivial dependency, transitivity of 

functional dependence, and property Pl.) 

P4: The collection of attributes of R found in a candidate key K is a 

ma:x:imaZ funationaUy independent set. That is, 

a) every proper subset s1 of K is functionally independent of every 

other proper subset s2 of K when 

and 
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b) no attributes of R can be added to K without destroying the function-

al independence of K. 

(Part a) is a consequence of the transitivity of functional dependence, 

of trivial dependence and of property P2. Part b) is an immediate con

sequence of property P3.) 

One of the candidate keys is selected as the primary key of the rela

tion R. Its selection usually depends on infological reasons, e.g. ease 

of its interpretation with the help of the reference knowledge of the human 

users. The primary key serves for the unique identification of the indivi

dual tuples contained in the relation. It may appear for this identifica

tion purpose as a foreign key in some other relation where an infological 

dependency to R exists. In order to be always able to use the primary key 

for tuple-identification purposes it is not possible that undefined values 

for any of its component attributes are allowed. In all other respects the 

primary key can be handled like-any other candidate key. 

Exam2le: In the two relations 

warehouse (ident #, pa:r>t #,quantity-on-hand) 

part (pa:r>t #, name, price) 

the primary keys have been written in italics. If it is known that the part 

names will be unique at all times, the attribute "name" represents a candi

date key of the relation "part". In the "warehouse" relation the attribute 

part # is a foreign key and in this example also part of the primary key. D 

3.4. The First Normal Form of Relations 

We have observed that the unnormalized relations add considerably to 

the task of message interpretation and require in addition complex mechan

isms for their realization in the physical data base. 

Using the definitions of functional dependence and primary keys a nor

malization process for unnormalized relations can be given: 

Step 1: Starting with a relation R which does not appear in any nonsimple 

attributes (a top relation) 

the collection of attributes representing its primary key is selected. 

- the immediately subordinate relations are expanded with this attribute 

collection, 
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- a new primary key in the expanded subordinate relation is formed, which 

consists of the old primary key and the inserted collection of attributes, 

- all value adjustment in the subordinate tuples are made by copying the 

primary key value from the containing tuple of R, 

- all nonsimple attributes are deleted from the top relation. 

Step 2: Repeat the process for all nonsimple, expanded attributes. 

Example 1: The already discussed data base B with the relations 

employee (man #, name, birth year, children) 

children (ehildncone, birth year) 

and the primary keys identified by italic letters will be transformed during 

the normalization process to the normalized relations 

employee (man#, name, birth year) 

children (ehildncone, man #, birth year) D 

The normalization process can only be applied to relational data base 

models which satisfy the following two conditions: 

1. The graph of interrelationships of nonsimple attributes is a collection 

of trees. 

2. No primary key has a ?omponent attribute which is nonsimple. 

In the remainder of our discussions on the relational view of data 

bases the term relation will always mean relations in first normal form 

except when explicitely noted differently. 

3.5. Operations on Relations 

In order to work with a relational model of a data base operations 

have to be defined which allow the manipulation of operations, especially 

the restructuring of relations and the formation of new relations out of 

existing ones. Further operations on relational data bases will be dis

cussed in chapter 4. 

The operations to be discussed in this section belong to two princi

pal classes; a) traditional set operations and b) operations meaningful 

because of the infological interpretation given to the relational data 

base model. 
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Traditional Set 0perations 

The set operations union (u), interseation (n) and differenae (-)can 

be used with their accepted mathematical meaning with the only restriction 

that they can only be applied to union-compatible relations. 

The aartesian produat R x S can be applied to any (even unnormalized) 

relations. The result of the operation is a relation of degree two with the 

nonsimple attributes R and S. As a consequence, the result of the cartesian 

product is always an unnormalized relation even if the relations R and S 

are normalized. It has the additional property that each instance of the 

relations R and S appearing in the tuples of R x S contains only one ele

ment. 

Relational Cartesian Product 

Much more important than the normal set theoretic cartesian product is 

the relational cartesian product. Given two relations R,S of degree n,m res

pectively we define the relational aartesian produat by 

R 0 S {(rs): r ER As Es} 

with the resulting degree n + m. 

Projection 

To allow access to parts of relations the projection operation is de

fined. Given the relation R and r one of its tuples we define the projec

tion of R on a list of attributes A in R as follows: 

R[A] {r.A r E R}. 

The resulting relation has the degree card (A). 

Examples of projections: 

Given the relation R containing three tuples 

R(Al A2 A3) 

a 3 g 

b g 

c 2 f 

we apply different projection operations and get as results 
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a 

b 

c 

b g 

c f 0 

Join 

To combine two relations without using the full expansion capabilities 
of the relational cartesian product the join operation has been introduced. 
We assume two relations R and S and two comparable lists of attributes A 
and B of the relations R and S respectively. The comparability of two attri
bute lists with respect to a comparison operator p is defined such that 

- the length of both lists is equal, say k, 

each pair of attributes Ai E A and Bi E B, 1 s i s k, is comparable with 
respect to the operator p (one of the operators=,~. <, s, ~.>),that 
is for every element of R.A and every element of S.B the operation yields 

either true or false but not undefined. 

The comparison r.Aps.B is true iff for all 

Aj E A, Bj E B the comparison r.Ajpd.Bj yields true, i.e. 

k 
VA Vj (r.A.ps.B.) 

j=l J J 

The p-join of R and S on the attribute lists A and B is now defined by 

R(ApB)S {(rs): r ER 11 s Es I\ (r.Aps.B)}. 

Examples of joins: 

Given the relations 

R(A, B, C) 

a 

a 2 

b 2 

c 2 5 

join operations yield 

R(B=D)S(A,B,C,D,E) 

a 2 2 u 

c 2 5 2 u 

S(D,E) 

2 u 

3 v 

R(C>D)S(A,B,C,D,E) 

c 2 5 2 u 

c 2 5 3 v 
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Natural Join 

When joining two relations with respect to the equality operation the 

resulting tuples always contain equal values in the respective attribute 

positions of the lists A and B. This redundancy can be eliminated (if de

sirable from an infological point of view) with the help of the natural

join operation. 

Given two relations R and S and two lists A and B of attributes in R 

and S respectively, where A and B are comparable for equality, we define 

the natural join of R and s with respect to lists A and B by 

R(A*B)S {(rs.B: r ER As ES A (r.A s.B)}. 

It is easy to see that the natural join can also be defined in terms of 

projections and an equality-join 

R(A*B)S (R(A=B)'S) [B] 

Example for natural join: 

Using the relations given in the examples for the join operation we 
get 

R(B*D)S(A,B,C,E) 

a 2 u 

c 2 5 u 0 

To increase the convenience in expressing relational operations two 

additional operations can be introduced which can both be defined in terms 

of already known operations. 

Division 

Given two relations R and S and two attribute lists A and B in R and 

S respectively, where the compound domain defined by A and by B are union
compatible, the division operation is defined by 

R[A+B]S R[A] - ( (R[i-\] 0 S[B])-R) [A] 

Restriction 

Given a single relation R and two lists of attributes A and B in R 
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such that they are comparable with respect to the operator p a restriction 

can be expressed by 

R[Ap B] {r: r E R A (r.A pr.Bl}. 

The restriction operation, as shown by E.F. CODD in [3] may also be defined 

in terms of joins and projections. 

The operations introduced in this secticn can be considered to form a 

reZationaZ aZgebra for the formulation of manipulation requests on the re

lations of a relational data base. Humans using an information system will 

express data manipulation requests in terms of their specific subject matter 

models. These requests, as discussed earlier, will have to be translated in

to data manipulation requests for the infological model and consequently 

could be expressed in the relational algebra. 

Example of a user request formulated in relational algebra: 

Using the normalized relations "employee" and "children" of example 1 

we represent the request 

"Find the names of employees, eaah of whom has ahiZdren with 

the birth year 1965. " 

in relational algebra by 

(employee (man # = man #) 

(children(birth year= birth year){(1965)}[(man #)]))[(name)] 

where it is assumed that the single attribute of the relation 

{(1965)} has the name "birth year". D 

When using the relational algebra for the formulation of data manipu

lation requests a number of disadvantages are apparent: 

- Every operation has to be formulated in the framework of relations. That 

is, instead of using basic data values directly, e.g. 1965, they have to 

be expressed in relational form. 

To include additional functions e.g. MAX, SQRT, etc., in the relational 

algebra requires, that they are expressed as mappings on relations, a 

property which so far has not been developed for these commonly used 

functions. 
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- Bearing in mind, that a user wants to formulate his data manipulation re

quests in ways closely corresponding to his subject matter model, the re

lational algebra seems to force unnecessary problems into the required 

translation processes (see also the next section) . 

3.6. The Relational Calculus 

We have seen in the preceeding section that with the relational algebra 

a communication between user and information system (at least the infologi

cal model) can be established. However the majority of the users will be 

oriented to their own subject matter models and to languages strongly influ

enced by these models and by natural languages. 

In such an environment, like in everday life, it will be much more like

ly that the manipulation requests are expressed in terms of properties of 

objects, e.g. the birth year 1965 of children, and of combinations of such 

properties. Consequently it seems, that we are able to elminate the disad

vantages mentioned in the preceeding section for the relational algebra, by 

developing a calculus oriented language for the formulation of data manipu

lation requests on the infological model (see E.F. CODD [3]). Such a langu

age will have the special advantage of being closely related to the subject 

matter model oriented methods used by the humans in formulating data manipu

lation requests. 

For formulating expression in the relational calculus the following 

notions will be used: 

basic data values a1,a2, ... 

tuple variables r1,r2•··· 
attribute names d1,d2•··· 
predicates Pl,P2 
comparison symbols =, >, <, ~. ~. F 
logical symbols 3, v, v, A, I 

delimiters [I JI ( ' ) 

In addition we assume a one-to-one correspondence between predicates 

P1 ,P2 , •.• ,PN and the relations R1 ,R2 , .•. ,~ of the relational model, such 

that P. indicates membership of tuples in R .. 
J J 

Using these basic notions the construction rules for terms can be 

formulated: 
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1. A range term has the form P.r where P. is a predicate and r a tuple vari-
J J 

able. It establishes that the range of r is the relation R .• 
J 

2. We first define a tuple component r.d for a tuple variable r and an at-

tribute name d to identify the d component of the tuple. 

Assuming tuple components e and f, a comparison symbol panda basic da

ta value a then 

epf epa 

are join terms. 

3. A term is either a range term or a join term. 

Well-formed Formulae 

The well-formed foY'nTU.lae (WFF) of the relational calculus are defined 

as follows: 

1) Any term is a WFF; 

2) If e is a WFF, so is7e; 

3) If e,f are WFF, then (eVf) and (eAf) are WFFs; 

4) If e is a WFF in which r occurs as a free variable then 3r(e) and Vr(e) 

are WFFs; 

5) No other formulae are WFFs. 

Range Separability 

The use of tuple variables in an infological framework for the selec

tion of data and for the testing of data properties requires that the range 

of such variables is clearly defined. Otherwise infological confusion and 

wrongly interpreted data messages would be the inevitable result. We there

fore have to restrict the general WFFs to enforce range definitions for all 

occurring tuple variables. 

The following definitions are made for the purpose of such restrictions: 

- A range WFF is a quantifier free WFF all of whose terms are range terms. 

A range WFF over r is a range WFF whose only free variable is r. 

- A proper range WFF over r must in addition satisfy 

a) "?does not occur at all or it immediately follows A. This restriction 

excludes range WFFs of the form~Pr specifying as range of r every

thing (!) except the relation R associated with P. A situation where 

most likely no infological interpretation for the range of r could be 

given. 

b) whenever r occurs in two or more range terms, the relations associated 



with the predicates in those terms must be union-compatible. Again 

this restriction is made to avoid range definitions which cannot be 

interpreted in the infological frame. 
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- If a well-formed formula contains quantifiers, the tuple variables bound 

by these quantifiers must also have clearly defi~ed ranges. Assume that 

e is a WFF with r as a free variable but without a range term in r. Let 

f be a proper range WFF over r. When r becomes bound, either by 3r(e) or 

Vr(e) we introduce a range specification into the construct by replacing 

3r or Vr by the range coupled quantifiers 3f and Vf respectively. The re

resulting WFFs are defined by the equations 

3fr(e) 

Vfr(e) 

3r(fAe) 

Vr( fVe) 

Notice however, that for an infological interpretation the two constructs 

3fr(e) and Vr(7fVe) are not at all equivalent. For the infological inter

pretation of e in the first construct the values of r are restricted to 

the range f. In the second construct the values of r ranges over the whole 

universe of discourse (i.e. all possible tuples) and it does not seem 

likely that a meaningful infological interpretation for e can be found 

for every one of these values. 

- Finally, a WFF is range-separable if it has the form 

where 

a) n ~ 

b) w1 ,w2 , ... ,wn are proper range WFFs over n distinct tuple variables 

c) V is either nonexistent or it is a WFF in which every quantifier is 

range coupled, every free variable belongs to the set whose ranges 

are specified by w1,w2 , •.. ,Wn and V does not contain any range terms. 

Examples of range-separable WFFs 

P8r 3 A (r3 .d2 = a 1J 

P7r 2 A 3P2r 1 (r1.d3 = r 2 .a1) 

ExamEles of WFFs not range-separable 

P7r 2 A 3r1 ((r1 .a2 = r 2 .a5J v P8r 1J 

~P2 r 1 A (r1 .a4 = r 2 .d1J 
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Alpha expressions 

Range-separable WFFs allow the specification of logical conditions on 

the data values to be selected from a data base. Using only conventional 

set definition capabilities we would only be able to construct a (mostly in

coherent) set of tuples. Accordingly we introduce ~ capability to select 

from the identified tuples components for constructing the desired target 

relation. A simple alpha expression has the form 

{(t1 ,t2 , ••• ,~): w} 

where w is a range-separable WFF and t 1 ,t2 , ... ,~ are either tuple vari

ables or tuple components where the set of tuple variables appearing in 

t 1 ,t2 , ••. ,tk is precisely the set of free variables in w. The list Ct 1,t2 , .•• 

... ,~) is called the target list and w the qualification expression. The 

definition of simple alpha expressions allows the multiple use of a tuple 

variable in the target list, providing for situations where a selection of 

components of one tuple are required in the target relation. 

The result of evaluating a simple alpha expression is a relation which 

is a projection, determined by the target list, of that subset of R1@R2® ••• 

... @Rn which satisfies the qualification expression, and where R1 ,R2 , ... ,'\i 
are the ranges of the free tuple variables of w. 

Using simple alpha expression we can now define general alpha expres
sions by 

1) Every simple alpha expression is an alpha expression 

2) If {t:w1} and {t:w2} are alpha expressions, so are 

{t: (w1vw2J} 

{t: {Wi''\-iw2)} 

{t: {w1Aw2 )} 

3) No other expressions are alpha expressions. 

Example of a user request formulated in relational calculus: 

Using the normalized relations "employee" and "children" of example 1 

and the request 

"Find the names of employees, each of whom has children with 
birth year 1965. 11 

we find the corresponding alpha expression 
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{(r1 .name): is-employee r 1 A 

3children r 2 (r2 .birth year 

where "is-employee" represents the predicate defining membership in the re

lation "employee". 

Comparing this solution with the same example when expressed in rela

tional algebra (see section 3.5) we immediately see that the relational cal

culus expression much closer reflects the original formulation of the user 

request. D 

3.7. Relational Completeness 

The qualification expressions in the relational calculus closely re

flect the constructs allowed in first order predicate calculus. The restric

tions placed on the qualification expressions are due to infological consi

derations but do not restrict the expressive power of the relational calcu

lus. The alpha expressions introduced in section 2.6 can therefore be con

sidered a measure for the expressive power of other relational algebras 

and calculi. 

E.F. CODD [3] defines a relational algebra or a relational calculus to 

be relationally corrrplete if, given a finite collection of relations R1 ,R2 , ..• 

•.. ,R in first normal form, the expressions of the algebra or calculus p 
permit the definition of any relations definable from R1 ,R2 , .•. ,Rp by using 

alpha expressions. 

E.F. CODD [3] has proven formally that the algebra defined by the op
erations of section 3.5 is relationally corrrplete. The proof is given in a 

constructive manner and exceeds the scope of our current discussions. 

But despite the relational completeness of the relational algebra specified 

in section 3.5, our observations still remain valid that it is preferable 

to use a relational calculus when expressing data manipulation request in 

the infological model of an information system. 

4. BINARY RELATIONS 

4.1. Some Deficiencies of n-ary Relations 

In the preceding chapter the infological model of the data base was 

defined by a finite collection of relations with assorted degree. Investi-
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gation pointed out however, that the full generality of the relations was 

not needed and a first normal form was introduced. The infological inter

pretation of the relations become much simpler, but as will be illustrated 

in the following example, a number of unpleasant characteristics still re

main. 

Example: A relation "supply" in first normal form is defined by 

supply (s#, p#, SC) 

Its infological interpretation states that the attribute s# identifies sup

pliers which supply the pa:t>ts defined by p#. The attribute SC specifies the 

city where the supplier is located. In addition, a given part may be sup

plied by many suppliers and a supplier may supply many parts. 

Using the definitions of functional dependence given in section 3.2 

we get the following principal properties: 

supply.s# f supply.P# 

supply.P# f supply.s# 

supply.s# + supply.SC 

In Figure 4 an instance of the "supply" relation is illustrated. We may 

use this relation instance to derive some of the still undesirable proper

ties of relations in first normal form. 

supply (s#, p#, SC) 

a NYC 

a 2 NYC 

a 3 NYC 

b AMS 

b 3 AMS 

Figure 4 

If a supplier relocates his place of business all the tuples with his 

identification must be changed. This is a variable number depending on the 

number of different parts the supplier supplies. If a supplier temporarily 

ceases to supply any parts it becomes impossible to keep his address for 
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future reference in the relation since no undefined values for the attri

butes in the primary key are allowed. D 

The problem we have encountered arises from the situation that the 

attribute SC is functionally dependent only on a part of the primary key. 

To repair this and similar situations E.F. CODD [2] introduced a second 
and a third normal form by prescribing a number of specific restrictions 

on the allowable functional dependencies in a relation. However, function

al dependency is a property of infological interpretations and heavily de

pendent on the intended meaning of a relation. Consequently, the rules for 

restricting the functional dependencies, as required when formulating rela

tions in second and third normal form, are quite complicate, not easy to 

apply and to illustrate and still they are in the end not satisfying. 

Examvle: The 3-ary relation 

workplace(E#, n#, desk#) 

has the following infological interpretation: 

The employees E# may work in many departments identified by the attribute 

n#. A department may have many employees. In each department he works in, 

an employee may have at most one desk (desk#). In addition a desk has its 

place in precisely one department. 

This infological interpretation leads to the functional dependencies 

workplace.(E#, n#) +workplace.desk# 

workplace.desk # + workplace.n# 

According to the definitions given in [2] the "workplace" relation is 

in third normal form, but the problem mentioned in the previous example 

still exists. If a desk, temporarily, is not used by any employee its loca

tion in a department cannot be shared in the workplace relation. 0 

For these reasons we will not investigate any further n-ary relations 

and their different normal forms. In practical applications they may be of 

great value, but for our remaining_conceptual investigations it is suffi

cent to consider binary relations only. 

After giving the principal definitions we shall concentrate much more 

than with n-ary relations on the functions required in a relational data 
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base model to introduce new relations, to define new data categories, to 

insert or update tuples and to control the integrity of the data base (a.t 

least to some degree). We base our discussions on the work of J.R. ABRIAL 

[7], who introduced extensive concepts for handling relational data bases 

and showed the power of his definitions by describing the data base model 

itself using the developed operations and functions. 

Restricting the infological data base models to binary relations elim

inates the problems which arise out of the complex functional dependencies 

possible between the attributes of n-ary relations. To illustrate the dif

ferent notions of a binary relational model we shall use the infological 

contents of the ternary relation "workplace" as it was explained in the pre

ceeding example. 

4.2. The Generation of new Data Categories 

A new category of data values is created by definitions of the form 

identifier cat 

defining a new category with the name expressed by the identifier, e.g. 

E# cat 

To produce a new data value (object) for one of the data categories, 

e.g. a new unique name for an employee, we specify 

generate E# 

If a name is to be given to the created object we formulate 

JOHN generate E# 

The name will be permanently attached to the created data value, and 

the system ensures that no other objects can get the same name. An assign

ment of a new object to a variable may be specified by 

x +- generate E# 
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Objects which are not needed any more in the data base system may be elim

inated by 

kill JOHN or kill x 

4.3. Binary Relations 

Binary relations in the binary relational model (BRM) are specified 

by identifying two categories and two access functions using the formal 

where 

rel(domain 1, domain 2, accfct 

accfct 2 

afn(min,max), 

afn(min,max)) 

- domain and domain 2 are two categories on which the tuples of the rela-

tion are defined. 

- using the notations introduced in the preceding chapter we can express the 

values produced by the application of the functions accfct l(x) and 

accfct 2(y) by 

{r.domain 2: r E rl A r.domain 1 x} 

and 

{r.domain 1: r E rl A r.domain 2 y} 

respectively. The function accfct 1 is a mapping of domain 1 into the 

powerset of domain 2 and accfct 2 is a mapping of domain 2 into the power

set of domain 1 • 

- the access functions accfct 1 and accfet 2 are termed inverse to each 

other. We define an inv operator such that inv(accfct 1) = accfct 2 and 

inv(accfct 2) = accfct 1. Note that this definition of an inversion oper

ator is not equivalent to the conventional mathematical definition of the 

inverse operation 

the two terms min and max define the minimum and maximum cardinality of 

the sets defined by the corresponding access functions. 

Example: The four binary relations 

r 1 (WL, E#, personofwloc = afn(l ,1), afn(0, 00 )) 

r 2 (WL, n#, deptofwloc = afn(l,1), afn(0, 00 )) 
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(WL, desk#, deskofwloc 

(desk#, o#, deptofdesk 

afn(1,1), afn(O,oo)) 

afn(0,1), afn(Q,oo)) 

describe the same infological contents as the ternary relation"work location" 
of section 4.1, except that a desk may now exist but not be associated with 

any employee or department. These are situations which are not expressible 

at all in the ternary relation "work location". 

The four relations may be represented as a graph (see Figure 5) illus

trating the involved data categories and the defined access functions. 

deptofdesk 

Figure 5 

To describe the ternary relation we had to introduce a new category 

WL (work location) which has as its elements data values indicating the 

existence of the infological entity 

employee(#) in dept(#) on desk(#) 

i.e. of the triple in the relation "work location". The implicit functional 

dependencies of department on desks in "work location" is now expressed ex

plicitly by the relation r4 with the access function deptofdesk. 

The above description of the infological meaning attached to the four 

binary relations leads to a number of consequences: 

- The specified cardinalities of the access functions prescribe that, when

ever a data value wl E WL exists, the relations r1, r2 and r3 must contain 

tuples connecting the object wl to an employee, a department and a desk. 

The precise definition of how this can be assured will be given later. 

- A tuple may exist in r4 without the corresponding tuples in the other 

relations. With this property we have eliminated the undesirable depen

dency problems occuring in the relation "work location". 
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4.4. Insertion, Deletion and Tests of Data Values 

A number of operations in this sections have a very close resemblance 

to the operations of the n-ary relational algebra and calculus (see section 

3). For consistency reasons they are included here again, sometimes with 

some slightly modified semantic meaning. 

Insertion of a new tuple 

We write 

deptofdesk(desk) :~d 

where desk is either a desk number or a variable with 

a desk number as value, 

d is either a department number or a variable with a department 

number as value. 

The result of the operation is the inclusion of a new tuple in rela

tion r4. Note that the operation has the implied side effect of 

inv(deptofdesk) (d):3 desk 

When executing the :3 operation the data base system tests whether desk and 

d belong to the proper categories and whether all cardinality constraints 

would still be met after insertion of the new tuple. 

Deletion of a tuple 

With the operation 

deptofdesk(desk):~d 

the tuple (desk,d) will be deleted from the relation r4. The access func

tion deptofdesk will reach cardinality zero for the domain value "desk". The 

system tests during the execution of :$ whether desk and d belong to the 

proper categories. 

When specifying 

deskofwloc (wl) : 1 deskofloc (wl) 
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the corresponding tupl' cannot be deleted from the relation r2. The speci-

fied cardinality constraints enforce that tuple (wl,unknown) still remains 

in the relation. The special data value unknown may be included into a tuple, 

whenever for one of the domains a specific data value is not known in the 

tuple, but the tuple is to be kept in th_ relation. 

Modification of a tuple 

The op, ration 

deptofdesk(desk) + d1 

replaces the old value of the access function deptofdesk(desk) by d 1 • That 

is, it replaces an already existing tuple, say (desk,d') with the new tuple 

(desk,d,). 

Testing for Membership 

To test for membership of d in category n# we write 

d is n# 

The operation yields true when the value represented by d is a department 

number. 

Membership in a relation may be tested using constructs of the form 

d € deptofdesk(desk). 

Com2arison 02erators 

The comparison operators <, >, ~. ~, =, #may be used to compare ob

jects of the relational data base. 

Q?antifiers 

The expression 

3z + inv(personofwloc) (n1)(3y + deskofwloc (z)(deptofwloc(y)=d1J 

determines whether an employee nl has a desk in department d 1 . The quanti

fier expression has the side effect to assign values to the variables z and 

y. Since there is no control provided for assigning a specific one of the 

possible values, the usefulness of this side effect seems doubtful. The 
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formula 

Vz + inv(personofwloc} {nl) (deskofwloc(z) # unknown) 

determines whether employee nl has in each of his departments a desk asso

ciated. 

Set operations 

For the union (u) and the intersection (n) the conventional meaning 

can be retained. 

4.5. Semantic Extentions 

Besides of operations similar to the ones for n-ary relations we have 

introduced simple update, insert and delete facilities, but again without 

too much consideration for infological requirements. Some correctness tests 

have been included in the operations but they are all standard system func

tions and therefore cannot show too much flexibility. 

We now introduce as a semantic extension capability the possibility 

to replace one or more of the built-in operators of the binary relational 

model by user defined actions. For this purpose we establish the operator

function name correspondence shown in Figure 6. 

operator 

generate 

kill 

is 

:3 

:~ 
name of access fct 

E 

function name 

generator 

killer 

recognizer 

upaater 

eraser 

accessor 

tester 

Figure 6 

To prescribe the new actions for one of these operators a programming 

language is required. We only introduce a few concepts, others may be found 

in the paper of J.R. ABRIAL [7]. 
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conditions: 

loops: 

if then else end or if 

for x + f(y) ..•• ~ 1 ..•• end 

do .••. end 

then end 

In the for-loop the ~ 1 mechanism and the assignment x + f(y) ensure 

that the elements defined by the access function f(y) are sequentially pro

cessed. In the do-loop no built-in loop control mechanism exists; it must 

be programmed explicitely. 

value return: 

return (x) 

resume (x) 

The return-statement works in the conventional fashion. However the pro

grams to be defined very often will return sets. The ~-statement spe

cifies the return of a value, but it also allows the continuation of the 

program for additional result elements. 

Example: The generate operation of WL objects should ensure that the re

quired cardinality constraints are not violated. Therefore we define 

generator (WL) + ~(e,d,desk) 

if 7(e is E# 11 d is o# 11 desk is desk #)then failure end 

x + std 

personofwloc (x) + e 

deptofwloc (x) + d 

deskofwloc (x) + desk 

where the standard (built-in) action of generating objects is denoted by 

the operator std. Whenever we now specify 

generate WL 

the program defined above is executed instead of the built-in action for 

generator. Notice however, that for categories c # WL the standard action 

will still be chosen. 

For other operations the same definitional technique can be used. Sup

pose we want to introduce the relation 

rS = rel(E#, desk#, deskofperson = afn(0, 00 ), afn(0, 00 )) 

into our relational model. In addition we define 



accessor(deskofperson) + ~(e) 

if 7(e is E#) then failure end 

for x + inv(personofwloc) (e) 

~(deskofwloa(x)) 

~ 

end 

and also 

updater(deskofperson) + ~(e,desk) 

failure 
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With these definitions we have introduced a new relation into our mod

el, where the access function is fully described in terms of already exist

ing access functions. Using the updater definition we did also eliminate, 

for infological reasons, the possibility that independent tuples may be in

troduced into the relation r5. That is, a person may not have a desk when 

he and the desk do not belong to the same department. 

The semantic extension capabilities may also be used to provide dif

ferent infological models for the various classes of data base users, e.g. 

some kind of schema-subschema correspondence. 

J.R. ABRIAL defines a number of additional facilities for the relation

al data base, but we shall restrict ourself to the techniques and operators 

introduced so far. The main areas left out are 

context (environment) considerations 

process creation and control (to provide for the execution of more than 

one program at the same time). 

After discussing the basic definitional facilities for ~inary ~elation

al ~odels we shall now attempt to describe the BRM formally using the model 

defining capabilities of the BRM itself. 

4.6. The Formal Description of the Binary Relational Model 

Using the concepts of categories, relations, access functions, opera

tors and programming facilities of the BRM we are now able to describe the 

semantic meaning of the model itself with these mechanisms. The total for

mal description becomes quite complicate and cannot be presented here. The 

interested reader may find additional parts in J.R. ABRIAL [7]. 

All data needed for the semantic description of the actions possible 

in a BRM has to be kept in the form of binary relations with associated 

access functions. This organization closely corresponds to the state and 
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figure 7 
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the basic state modification operations as they are introduced with other 

formal description techniques (see chapter 5). In Figure 7 the graph repre

sentation of the required data categories and access functions is given. 

The corresponding relations are immediately derivable from the graph and 

are shown in Figure 8. The individual ranges for the cardinality of the 

access functions will be explained later. 

We now discuss the individual categories and access-function together 

with some of the operations to be defined with their help. Notice, that the 

graph is not complete. Only the parts needed for our further discussions 

have been shown. 

Categories 

The four basic data categories of objects used in the formal descrip

tion of the model are 

relation 

category 

access function 

program 

identifying the actual relations, categories, access functions, and programs 

used in the binary relational model. The other categories are introduced for 

description purposes and will be explained as we proceed. 

Semantic Extension 

The last seven relations in Figure 8 provide for the formal descrip

tion of the semantic extension facility of the BRM. They connect the pro

grams describing special actions for the operations shown in Figure 6 with 

the categories or access functions for which they have been defined. 

Generator-Actions for the Basic Categories 

The creation of new BRM relations, categories and access functions re

quires nonstandard actions. 

The generate process for access functions is defined by the program 

generator(access function)+ afn = ~(n1 ,n2 l 

if ;(n1 is number + n 2 is number) 

f + std 

cardmin(f) + n 1 
cardmax(f) + n2 
return(f) 

then failure end 
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rel(triple,relation,reloftriple 

rel(triple,category,catoftriple 

afn (1, 1) , afn ( 2, 2) ) 

afn (1, 1) ,afn (0 , 00 )) 

rel(triple,access function,afnoftriple = afn(1,1),afn(l,2)) 

rel(access function,number,cararnin 

rel(access function,number,cararnax 

rel(access function,number,cardinal 

rel(access function,category,domain 

afn(l,1) ,afn(O,oo)) 

afn(l,ll ,afn(O,oo)) 

afn ( 1 , 1) , afn ( 0 , 00 ) ) 

afn(l ,1) ,afn(O,oo)) 

rel(access function,category,range = afn(l,1) ,afn(0, 00)) 

rel(connection,access function,cfunction = afn(l,1),afn(0, 00)) 

rel(connection,object,first = afn(1,1) ,afn(0, 00)) 

rel(connection,object,second = afn(l,1),afn(0, 00)) 

rel(category,program,generator = afn(0,1),afn(0, 00)) 

rel (category ,program ,killer = afn ( 0, 1) ,afn (0 , 00 )) 

rel(category,program,recognizer = afn(O,l) ,afn(0, 00 )) 

rel(access function,program,accessor = afn(0,1) ,afn(0, 00 )) 

rel(access function,program,tester = afn(0,1),afn(0, 00 )) 

rel(access function,program,updater = afn(0,1) ,afn(0, 00 )) 

rel(access function,program,~ = afn(0,1) ,afn(0, 00)) 

Figure 8 
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We can see that the cardinality restraints of access functions are es

tablished at the generate time. The construct afn = ~( ) gives the pro~ 

gram the special permanent name afn used when a new access function is de

fined, e.g. in the definition of relations. 

The creation of new relation objects is a little more complicate: 

generator(relation) + rel = ~<c1 ,c2 ,f12 ,f21 > 

if -,(c1 is category /\ c2 is category/\ f 12 is access function /\ 

f 21 is access function)then failure~ 

r + std 

generate triple(r,c1,f12 l 

domainCf12 l + c 1 
range(f12> + c2 
generate triple(r,c1,f21 > 

domain(f21 > + c 2 
range(f21 l + c 1 

~(r) 

where the new elements of the category triple are established by 

generator(triple) + ~(r,c,f) 

if ..,(r is relation /\ c is category /\ f is access function) 

then failure end 

t + std 

reloftriple(t) + r 

catoftriple(t) + c 

afnoftriple(t) + f 

~(t) 

The cardinality restraints shown for the access functions of the rela

tions given in Figure 8 are an immediate consequence of this definition of 

generator(relation) : 

- The access function and its inverse access function are established as 

separate entries in the ternary relation symbolized by the category 

"triple". 

The generation of new categories is defined by 

generator(category) + cat = ~( ) 
c + std 

return(c) 

where the only difference from standard generator action is the introduction 

of the special name cat for the generation capability of categories. 
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The Generate-0perator 

When a new data object is to be created for a BRM category the generate 

operator is to be used. Its semantic meaning is established through the pro

gram 

generate = ~(c) 
if 7(c is category) then failure end 

if 1 (generator(c) = nothing) 

then ~(generator(c)) 

else return(standard generator(c)) 

where a test is made whether a nonstandard generator action has been sup

plied for the category c by testing the presence of such a program with 

generator(c) = nothing i.e. does not exist. 

The standard generator used above and in the generator( ) definitions 

via std is defined by 

standard generator(c) + ~( ) 

x + unique name 

~(x) 

where unique ~ is a not further defined function delivering upon request 

unique names. 

The Creation of new Relational Tuples 

When the operation :3 is to be performed, e.g. f(x):?ly, that is a new 

tuple (x,y) is to be inserted in the relation identified by the access func

tion f, the following programs will be processed: 

:3 = ~(f,x,y) 
if--,(f is access function Ax is domain(f) and y is range(f)) 

then failure end 

if y € f(x) then return end 

if (cardinal(f) = cardmax(f) v 

cardinal(inv(f)) = cardmax(~(f))~ failure end 

if--, (updater (f) = nothing) 

then updater(f) (x,y) 

~if 7(updater(inv(f)) = nothing) 

~ updater(~(f)) (y,x) 

else standard upa.ater(f) (x,y) 

standard upd.ater(inv(f)) (y,x) 

end 

end 

return 



where the standard upaater operation is defined by the program 

standard upaater(f) + ~(x,y) 

c + generate connection 

c function(c) + f 

first(c) + x 

second(c) + y 

return 
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A new element of the ternary relation represented by the category 

"connection" is created to indicate the presence of the tuple (x,yl in the 

relation identified through its access function f. 

The other semantic extensions and operator definitions required for 

the full formal description of the binary relational model can be formulated 

using the same techniques. The interested reader may attempt their defini

tion. The description of some of them is given by J.R. ABRIAL [7]. 

5. THE FORMAL REPRESENTATION OF DATA BASES 

5.1. General Considerations 

The two relational models described in the preceding chapter are both 

based on the same basic data organization concepts, i.e. relations. Still, 

when attempting complete journal comparisons of the models the task soon be

comes very cumbersome. Of course there exist many other data base models, 

usually more implementation oriented than the relational models, such making 

their comparison even less rewarding. Some of the reasons for this problem 

are very often imprecise terminology, wrong specification documents (e.g. 

a "user's guide" against an "implementation guide") and not at least the 

amount of work involved in such a feat. 

How can we avoid some of the problems: 

1) Use the same data base concepts in all models, the same languages: 

This is not a realistic approach as we ourselves have pointed out that 

even a single data base should contain at least three models, i.e. a 

subject matter model, the infological model and the datalogical model. 

Across information systems the problem gets even harder. 

2) Describe the models precise: 

Formal description methods have been applied a number of times even to 
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complex subject areas, e.g. J.R. ABRIAL's selfdescribing binary relation

al model, the Vienna IBM Laboratory using the Vienna Definition ~anguage 

to describe PL/I[16,17]. N. WIRTH and C.A.R. HOARE using an axiomatic 

technique for the description of PASCAL [18]. But to compare different 

data base philosophies when they are reflected ln different programming 

languages and formally described using different definition techniques 

is a complicated task at least. 

The most promising way which seems to be open is to try to combine the 

two solution attempts. In Figure 9a,b a common abstract language is intro

duced as a representation language for all data base models and the same 

language is then used to develop a formal description of the concepts of 

model types. Applied to, say a binary relational data base, this would mean 

we would have to express all its different relations, the manipulation func

tions and semantic extensions using the abstract representation language. 

In addition we would develop (using the same abstract language) a formal 

description of all the concepts used in binary relational data bases e.g. 

like J.R. ABRIAL has used the real binary relational language to express the 

concepts of his model. 

When basing our investigations on such a concept we are now able to 

precede in a much more orderly and less troublesome way: 

1) Using the abstract description of different models (they are all written 

using the same definition mechanisms!) a comparative study of the models 

can be made. 

2) The abstract description of one model concept can be used for a conceptu

al study of models which can be developed using the concept. Theorems 

about their expressive power could be developed, consistency studies 

could be undertaken. 

3) Specific data base models could be investigated. The translation routines 

for mapping it into another model e.g. an infological model into a data

logical model could be investigated and proven correct. The infological 

equivalence of differently organized specific data base models could 

formally be established. 

Using such a concept some work (see E.J. NEUHOLD [10-12] and H. BILLER 

[12]) has already been done. It is based on an expanded version of the Vienna 

Definition Language which has been found quite convenient to express the 

many different concepts which must be covered by such an approach. Of course, 
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considering the large area to be investigated these contributions cover 

very little ground, but we see no principal problem that could arise with 

our approach. 

In the following a brief introduction into those parts of VDL are 

given which we shall meet later. The other concept3 can be found in the lit

erature [16,17]. 

5.2. The Extended Vienna Definition Language 

The Vienna Definition Language is based on the idea that an abstract 

interpreter working on an abstract data object (its state) can represent 

the semantic meaning of the interpreted language, algorithm, concept, etc. 

Some of the concepts incorporated in VDL are listed below: 

- Conditional expressions 

They are used in LISP like form 

(prop 1 -+ expr 1 , 

prop2 -+ expr2 , 

propn -+ exprn) 

where propi are thruth valued expression and expri are expressions yield
ing genal objects as values. 

- Functional composition 

(fog) (x1 , ••. ,xn) D=f f (g (x1 , ..• ,xn)) 

- Operators and basic values true(T) and false(F) 

T, F, ., , /\, v, =, :::. , 3, V, 3S, Vs, n, u, - , E, c, .::..1 <, s, ~, >, f:., 
n 

Eti=O 
The operators are used in their conventional meaning but in 3S and VS the 

S specifies the range of all variables bound by the quantifier. The opera-
. n 

tor Eti=O defines an n-ary conjunction. 

- Abstract objects and selectors 

It is assumed that there exists a set of elementary objects EO and a 

countable set of simple selectors s. 
* We define S to be the set of all s 1os2 o ••• osn where si ES, 1 $ i $ n. 

The identity element with respect to the operation o is denoted by I. The 

sequences s 1°s2 ° .•. 0 sn are termed (composite) selectors. 



An (abstr>act) object is defined by a finite set of pairs <K:eo> called 

the chaPacte~istic set c where K e s* and eo e EO. 
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Example: The characteristic set of the object x, denoted by x is given by 

The object may be represented as a tree with named branches 

x 

Figure 10 

To restrict objects to trees of the above nature the characteristic 

set C of a well formed object must satisfy the condition 

where 

Intuitively: 

a) Branches identifying the immediate descendents of a node must be uniquely 

named, or 

b) elementary objects may only be attached at leaves of the tree. 

The characteristic set of an elementary object eo is {<I:eo>}. The empty 

characteristic set defines the nuZZ object n. 

- Functional application of selectors 

The application of a composite selector K to an object x, written K(x), 

is defined by the characteristic set 
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Example: Using the object x of Figure 10 we apply s 2 and get 

- The µ-operator (i.e. "make"-operator) 

* Given an object x and a pair <K:y> with K E S and y an object we in-

troduce an operation µ(x;<K:y>) defined by 

µ(x,<K:y>) {<T:eo>:<T:eo> Ex A•dep(K,T)} u 

{<T°K:eo>:<T:eo> E y} 

The first part represents the characteristic set x whose K component has 

been deleted; the second part is the characteristic set of an object with 

y as its K component only. 

ExamEle: Using the object x of Figure 10 and y defined by 

we get 

- Extensions of the µ-oEerator 

al µ(x;<K1'Y1>,<K2'Y2>, ... ,<Kn:yn>) Df µ(µ(x;<K1'Y1>);<K2'Y2>, .•• ,<Kn:yn>) 

b) µ(x;{<K:y>:prop}) 

The second operand must be a finite set of pairs <K:y>. Arranging 

these elements in any linear order and applying the operation defined 

in a) yields the result, provided that the order of the pairs chosen 

is not significant. If the order is significant, the result is unde

fined. In addition µ(x;{}) = x 

c) µ0 (x;M) 

The second operand must be a finite set of objects. If !Ml = n, 

then n distinct selectors are taken out of the countable set of selec

tors D and pairs <s:e> are formed with the n elements of M giving a set 

of n pairs to which the µ-operation like in b) is applied. 
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Note: This operation is needed when no specific selectors are speci

fied but where a set of objects still has to be combined into a single 

larger object, e.g. records in a file. 

- Predicates 

Special classes (categories) of objects are defined by predicates 

applicable to the objects. The members of a category of objects defined 

by a predicate are precisely those objects which satisfy the predicate. 

Predicates may be a priori given, may be constructed using first 

order predicate logic or are defined by the special forms: 

a) (<s1:p1>,<s2:p2>, ••• ,<sn:pen>)(x) Df 

n 
(3x1x2 ••• x ) (Et pi (xi) A x 

n i=O 

Example: The predicate 

p o=f (<sl :pl>,<s3°s2:p2>,<s4°s2:p3>) 

defines the category of objects x such that 

where pi (eoi), 1 s i s 3, holds. 

n 
b) p-collD(x) Df (3x1x2···X s1s2···S) (Et (p(x,) A Si€ D) A 

n n i=l i 

x = µ(n;<s 1 :x1>,<s2 :x2>, ••• ,<sn:xn>)) 

The predicate defines a category of objects, called a aoZZeation of ob

jects, where the iDllllediate subordinate selectors do not have to be spe

cified but are members of a given set D. 

- The abstract interpreter 

The abstract interpreter to be used in interpreting abstract objects 

(states) and defining by this interpretation the semantic meaning of the 

described entity is specified by the quadruple 



170 

where Z is a set of states, where z is a subset of the wellformed objects. 

A is a state transition function 

~0 is the initial state, ~O E L 

Le is a set of endstates Le ~ L 

A computation is defined as a sequence 

~o ~1 · · · ~n · · · 

where ~i+l E A(~i). The computation terminates if there exists an n such 

that ~n E Le· 

The state transition function defines all the actions of the inter

preter. To specify these actions for a specific formal description re

quires quite an extensive "abstract language" type mechanism. We shall not 

need it for the remaining discussions. therefore the interested reader is 

referred to the literature [16,l'iJ. 

Extensions to the abstract interpreters have also been developed (see 

E.J. NEUHOLD [19]) but again they leave the frame of our present investiga

tions. 

5.3. Relational and Hierarchical Data Organizations 

To illustrate the formal description technique and its applicability 

we specify a few properties of hierarchical and normalized n-ary relation

al data organizations and use formal means for a brief comparison. Addition

al applications may be found in Cl0-12]. 

Notice, the following discussions are concerned with classes of rela

tional and hierarchical models and not with a specific data base represent

ed in hierarchical or relational form. 

In accordance to the approach outlined in section 5.1 we do not in

vestigate the relational view as introduced by E.F. CODD directly but rather 

an abstract version of it, where the mapping from the concrete to the ab

stract version (see Figures 9a,b) is assumed to have happened. This con

version could either have been defined formally, similar to the translator 
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technique used for transforming concrete PL/I into its abstract form (see 

[17] and literature referenced there) or it could have been developed (as 
it actually has happened) by informal reasoning. 

We define the various components of the relational view of data first, 

to be followed by the formal description of the hierarchical organization. 

The Relational Model 

Elementa:r:y objects: ER 

numbers: defined by the predicate is-number 

character strings: defined by the predicate is-char-string 

Simple selectors: S 

relation selectors: the set RS is defined by the predicate is-rs 

domain selectors: the set DS is defined by the predicate is-ds 

tuple selectors: the set TS is defined by the predicate is-ts 

The sets RS, DS and TS are distinct. 

RS n DS RS n TS DS n TS = {} 

Wellformed relational models in first normal form 

is-relat-model-ln(x) Df is-relation-group 

is-relation-group(x) Df VSs(s(x) # n ~ (is-rs(s) A is-relation(s(x)))) 

is-relation(x) Df VSs(s(x) # n ~ (is-ts(s) A 

is-tuple(s(x)) A VSt((t(x) f n At f s) ~ 

(s(x) f t(x) A STRUCT-EQV(s(x) ,t(x)))))) 

is-tuple(x) D=f VSs(s(x) # n ~ (is-ds(s) A is-elem-item(s(x)))) 

is-elem-item(x) Df is-number(x) v is-char-string(x) 

where 

STRUCT-EQV(x,y) Df 
(is-number(x) + is-number(y), 

is-char-string(x) + is-char-string(y) 

is-tuple(x) + VSs((s(x) f n = s(y) f nJ A 

STRUCT-EQV(s(x) ,s(y))) 

The restrictions placed into the definitions of the predicate is-rela

tion ensure that all tuples are different but have the same structural de-



172 

finition as specified by the function §_:r'RUS_:r'_:-_E:.Q.V~-

The Hierarchical Model. 

Elementary objects: EH 

numbers: defined by the predicate is-number 

character strings: defined by the predicate is-char strings 

* selectors: the set S defined by the predicate is-sel 

Simple selectors: S 

group selectors: the predicate is-gs defines the set GS 

collection selectors: the predicate is-cs defines the set CS 

The sets GS and CS are distinct 

GS n CS = {} 

Wellformed hierarchical models 

is-hierarch-db(x) D'f is-group(x) 

is-group(x) D=f VSs(s(x) ~ Q ~ 

(is-gs(s) A is-data-constr(s(x)))) 

is-data-constr(x) D=f is-group(x) v is-collection(x) v 

is-elem-data(x) 

is-collection(x) D=f VSs(s(x) f Q ~ 

(is-cs(s) A is-data-constr(s(x)))) 

is-elem-data(x) = is-number(x) v is-char-string(x) v is-selector 

This definition of hierarchical models allows very general data 

structures. For example 

-files, i.e. collections of groups, where each element, i.e. record, has 

a different structure, 

- networks, where the network properties are expressed by the use of selec

tors as elementary objects, 

are part of wellformed hierarchical models 

We shall now illustrate possible investigations by describing the 

interrelationships of relational and hierarchical data organizations. 



The Relational Model as a Restricted Hierarchical. 

Model 

Elementary objects 

* ER = EH - S (i.e. no selectors may appear as elementary ob-

jects in a relational mode) 

Selectors. 

We require the relations 

to hold. 

RS c GS 

DS c GS 

TS c CS 

We now provide a function RELATIONAL-MOD{x) which, when applied to 
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a hierarchical data base x, establishes whether the hierarchical data base 

is of a form allowed for relational models. 

RELATIONAL-MOD(x) Df 

(3Ss(s(x) f n A (, is-rs{s) V is-group(s(x)) V 

is-eiem-data(s(x)))) --->- F, 

T --+ VSs (s {x) f n c RELATION (s (x)))) 

RELATION (x) D-f 

(3Ss(s{x) f Q A (is-coIIection(s(x)) v is-eiem-data(s(x)) v 

7 is-ts(s))) V 3SsI3Ss2 {sI#s2AsI {x) F Q A s2 (x) f' n A 

TUPLE(x) Df 

( sI (x) = 52 (x) v ., STRUCT-EQV ( sI (x) , s2 (x)))) -..+ F, 

T --+ VSs(s(x) f' n ~ TUPLE(s(x)))) 

(3Ss(s(x) f Q A (is-group(s(x)) v is-coIIection(s(x)) v 

., is-ds (s))) --r F, 

T --->- VSs(s(x) # n ~ ELEMENT(s(x)))) 

ELEMENT(x) Df 

is-seI (x) - F 

T --rT 
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The definition of the truthvalued function RELATIONAL-MOD has been 

made in such a way, that the restrictions which must be placed on a hier

archical data base in order to make it a wellformed relational data base 

all appear in the first proposition of the various functions. 

Similar formal descriptions and investigation:; of other models have 

been made. For example in H. BILLER & E. NEUHOLD [12] a description for the 

SCHEMATA and SUBSCHEMATA of the DBTG Report [20] has been given. The same 

paper also contains formal criterea, which ensure a usage-equivalence of 

different data bases. This equivalence definition is given both for retrieve 

and change operation on data bases and it takes (at least in part) infolog

ical interpretations into account. 

5.4. A Sample Data Base 

Before we close our discussions let us investigate how a specific 

data base may look when it is specified using the formal description appa

ratus. We select a very simple model of an airline reservation data base 

and present it in a form compatible with the relational view of data, that 

is, in the form of abstract, normalized, n-ary relations. 

For these relations we give the predicate definitions: 

is-relational-model 
Df 

( <s-flight: is-flight-collT§, 

<s-reservation: is-reservation-coll> ) 
TS 

is-flight 0-f (<s-flight ~ : is-integer>, 

<s- # seats: is-integer>, 

<s-departure: is-char string>, 

<s-from: is-char-string>, 

<s-to: is-char string>) 

is-reservation D=f (<s-flight # : is-integer>, 

<s-date: is-char-string>, 

<s-ticket # : is-integer>, 

<s-seat #' is-char-string>} 

Where the selectors s-f light and s-reservation are elements of the relation 

selectors RS. All other explicit selectors are elements of the domain selec

tors DS. 
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Using VDL expanded we could now specify a different model of the air

line reservation data base, e.g. a hierarchical model, and again using VDL

expanded describe the mapping from one to the other. The formal system could 

then be used for an automatic translation of user queries oriented toward 

one of the models into user queries oriented toward the other. The formal 

system also allows systematic considerations of the time efficiency of such 

translations and of possible optimization strategies. In addition, the for

mally specified translation mechanism provides a precise framework for the 

investigation of the infological equivalence of the two models. Some of this 

work may be found in the literature [10-12] other is left to the interested 

reader. 

6. SUMMARY 

Starting with an infological analysis of the user of data base sys

tems, i.e. a human being, we have defined a few required charateristics of 

these information systems. Preceding first to n-ary relational models, which 

are probably the most formally defined models where large commercial imple

mentations are at least under way if not finished, we observed a number of 

difficulties for further formal investigations. To simplify the problem for 

the moment we concentrated on binary relational models and their formal 

description. 

However we then wanted to expand our view again, but on a very formal 

bases. For this reason the extended VDL concepts were introduced to allow 

both, the abstract description of specific data bases, but also the formal 

description and investigation of the different approaches to the design of 

information systems. 

We can now conclude that some progress has been made in the develop

"ment of formal properties of data bases. Much work steill remains to be done, 

especially in the area of unified description of information systems and 

in the field of infological interpretations to be given to the data stored 

in the data bases. 
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COMPLEXITY OF MATRIX ALGORITHMS 

M.S. PATERSON 

Warwick University, Coventry, (GB) 

1 . INTRODUCTION 

In studying the complexity of algorithms we deve.lop techniques for 

evaluating the amount of 'resource', usually time or storage space, used 

by new or existing programs; we attempt to prove lower bounds for the re

sources required by any program which performs a given task; we look for 

interesting relationships among different algorithms for the same problem 

or explore possible connections between seemingly unconnected problem 

areas; and in all we aim for a deeper understanding of the essential diffe

culties of, and possible solutions to, a variety of computational problems. 

In this series of lectures I shall only be considering a restricted 

class of algorithms, all concerned with matrices. There are several reasons 

for my choice. Firstly, matrix methods have important applications in many 

scientific fields, and frequently account for large amounts of computer 

time. The practical benefit from improvements to algorithms is therefore 

potentially very great. Secondly the basic algorithms, such as matrix mul

tiplication are simple enough to invite total comprehension, yet rich 

enough in structure to off er challenging mathematical problems and some 

elegant solutions. Finally, the subject matter is well enough known for us 

to start immediately without an extensive introduction. 

Definitions of matrix arithmetic. 

If A is a p x q matrix and B a q x r matrix then their product C A.B 

is a p x r matrix with entries given by 

c .. 
l.J 

for i 1, ... ,p and j 1, ... ,r. 

Sometimes it is also useful to think of A as composed of its p row vectors 

! 1, ••• ,~, and Bas composed of its r column vectors ~1 , ... ,~. Then cij 
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is the inner product of vectors A. and B .. 
-i -J 

The sum of two matrices A, B with the same dimensions is the matrix 

C A + B given by 

c .. 
l.J 

for all i, j. 

Arithmetic complexity. 

A computer program for an arithmetic algorithm will usually execute 

many instructions other than the explicit arithmetic operations of the al

gorithm. There will, for example, be fetching, storing, loading and copying 

operations. The proportion of the total execution time which is spent on 

such 'overheads' will be very dependent on the computer and programming 

language used. For simplicity and independence we shall usually take ac

count only of the arithmetic operations involved. This measure will be re

ferred to as the arithmetic complexity. The consequences of this simplifi

cation in particular practical applications must of course be carefully 

considered. 

It is easy to see that in the product of a p x x matrix by· a q x r ma

trix (a p x q x r product) each of the pr entries of the product can be com

puted using q multiplications and q - 1 additions. We can write this arith

metic complexity as q·~ + (q-1)·~ and then get a total for the p x q x r 

product of 

pqr·~ + p(q-l)r·~· 

The sum ot two p x q matrices uses only pq.~. We shall never distinguish 

between the complexity of a basic addition and a subtraction and such an 

operation will be referred to as an addition/subtraction (a/s) . Similarly 

we shall sometimes write "rrrultiplication/division' (m/d) . 

The kinds of question to which we shall seek answers are: 

"Can product be computed by another algorithm using fewer operations?" 

"What is the minimum number of arithmetic operations required?" 

The first question is answered affirmatively; the second has as yet only 

very incomplete answers. 



2. WINOGRAD'S ALGORITHM FOR MATRIX PRODUCT. [Win 70] 

To compute a 1 .b1 + a 2 .b2 certainly requires 2 multiplications/divi

sions (and 1 addition/subtraction), and more generally we shall show in 

Section 6 that a 1 .b1 + ... + an.bn requires n multiplication/divisions. An 

alternative way to compute a 1.b 1 + a 2 .b2 is the following. 

result 

bl .b2 

(a1+b2). (a2+b1) 

µ3 - µ1 - µ2. 

It needs considerable insight to see the significance for matrix product 
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of this identity which, at first glance, appears merely to take more multi

pl~cations and more additions than the obvious algorithm. The important 

feature is that µ 1 and µ 2 are multiplications which involve only a's and 

only b's respectively. Why is this so important? 

We have already remarked that matrix product can be regarded as fin

ding the inner product of each row of one matrix with each column of the 

other matrix. If in the sub-algorithm used for inner product there is a 

computation involving the elements from only one of the vectors then it 

can be performed just once for that row (column) instead of every time that 

vector is used. This idea of 'pre-processing' is very important and leads 

in this instance to Winograd's algorithm. The algorithm is described first 

for the simple case of n x n matrices with n even. 

For~= (x 1 , •.. ,xn) define 

(i) For each row ~i of A compute W(~i) , and for each column ~j of B 

compute W(B,). 
-J 

(ii) For each pair (i,j), if a= A. and b =B., compute 
-i -J 
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The arithmetic complexity for (i) is 

2n(n/2.~+(n/2-1) -~) 

and for (ii) is 

2 
n . (n/2.~+(3n/2+1) .~) 

which gives a total of 

Neglecting the lower order terms, we have exchanged roughly n3/2 multipli

cations for an extra n3/2 additions/subtractions. The algorithm is easily 

extended to the general p x q x r product. If q is even the algorithm is 

essentially the same. If q is odd then one elementary multiplication in 

each inner product is done in the conventional manner and added in separa

tely, which does not significantly affect the arithmetic complexity. The 

extra storage requirements of Winograd's algorithm are minimal; just one 

extra location for each row and column is needed to store the value of W. 

This algorithm is of obvious value whenever ~ > ~· Typical applica

tions are when the matrix elements are complex numbers or multiple-preci

sion numbers. A significant restriction of the algorithm is that its cor

rectness depends on the commutativity of multiplication. This is seen in 

the original identity for a 1b 1 + a 2b2 above. 

Let us consider the case of complex matrices in further detail. Assu

ming that the complex numbers are represented by pairs of reals giving 

their real and imaginary parts, the obvious algorithm to compute 

(x+iy). (u+iv) (xu-yv) + i(xv+yu) 

takes 4m + 2~, whereas complex addition costs 2a. This seems a good appli

cation for Winograd's algorithm. If we are on the look-out for unusual 

methods, we may find the following alternative for complex product. 

y.v 

3 
(x+y) . (u+v) 
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Then (x+iy) .(u+iv) = (A 1-A 2) + i(A3-A 1-A2). 

Although this identity is reminiscent of the identity underlying Winograd's 

algorithm, note that commutativity of multiplication need not be assumed 

here. Since this method uses 3~ + 5~, instead of 4m + 2~, it requires a 

situation where ~ is much larger than a to be useful. If the elements in

volved are themselves large matrices this condition holds. This observa

tion yields a new class of algorithms for complex matrix product. Note the 

relevance of the remark above about commutativity. 

Given complex matrices, A and B, split them into their real and ima

ginary parts so that we may write 

A X + iY B U + iV 

where X, Y, U, V are real matrices. Then the identity above is used to com

pute A.B using only 3 real matrix products and 5 real matrix sums. 

We now have a plethora of algorithms to consider, of which we identi

fy eight. Given two complex matrices they may be multiplied directly using 

either the classical method (C) or ~inograd's algorithm (W), and then the 

complex entries can be multiplied in the ~traight-forward way (S) or the 

.1:!.nusual, .1:!,nderhand (?),way (U) given by the above identity. We can denote 

these methods by 

CS, CU, WS, WU. 

Alternatively the original matrices may be split up and multiplied by real 

and imaginary parts separately using methods S or U. The real matrix pro

ducts required are done by C or W, yielding four more methods 

SC, UC, SW, UW. 

We shall analyse the arithmetic complexity of these methods for n x n x n 

product as the ratio of ~to ~varies. This is only a theoretical exercise 

since in practice the 'overheads' may be the crucial criterion in a compa

rison of similar algorithms. We set out in the table below the leading 

coefficients of the m and ~components of the arithmetic complexity. 
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Method 3 
Coefft. of n ·~ 

3 Coefft. of n ·E£ 

CS 4 4 

CU 3 7 

ws 2 4 

WU 1~ 5~ 

SC 4 4 

SW 2 6 

UC 3 3 

uw 1~ 4~ 

As one would expect from the above discussion, if one is going to split up 
the matrices initially it should be done with U rather than S, and if the 
matrices are to be multiplied directly, Winograd's is better than C. 
Looking at the remaining complexities we find that 

(i) if m > a 

(ii) if m < ~ 

(iii) if m = ~ 

uw has the lowest 

UC has the lowest 

WS, UW, UC are the joint leaders 

but if lower order terms are taken into account UC has the lowest complexi-
3 3 2 ty (3n .~+(3n +2n ).~) in case (iii). 

In [Bre 70] BRENT compares the running times of some ALGOLW programs 
for various matrix product algorithms. He concludes that the methods using 
an initial 'U' splitting cannot be helpful, since he found in practice 
that no program for complex matrices took as much as three times the time 
for real matrices. This was because a large part of the total execution 
time was concerned with initialization, and calculating the indices and 
addresses of the arguments for operations. A promising approach which I 
have not tried out in practice but which may overcome some of the ineffi
ciencies in methods such as UC and UW is the following. We take advantage 
of the circumstance that there are three real matrix products, all of the 
same dimensions, to be computed and that they may be performed in parallel. 
If the corresponding operations of these products are interleaved then 

some of the 'overheads' can be shared. 
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3. A RECURSIVE METHOD & RECURRENCE RELATIONS 

For a different style of algorithm for matrix product we can use par

titioned matrices and 'block multiplication'. To simplify matters suppose 

A, Bare n x n matrices with n > 1. If we regard A, Bas composed of sub

matrices in the following way 

A ( ' ) I 

A11 1 A12 

---- ---1- -- -- --
A21 : A22 

That the result is correct is easily proved, and uses only the associativi

ty property of addition. The product A.B is thus computed by performing 8 

products of the sub-matrices, followed by 4 sums of the resulting sub-matri

ces. The sub-matrix products may be done in a similar manner by further 

partitioning into smaller matrices, and so on until the resulting matrices 

are small, maybe x 1. Thus we have a recursive procedure for matrix pro-

duct. If we taker= f n/21 Cf xl =least integer~ x) so the partitioning 

is as nearly as possible into equal parts, and if we write P(n), S(n) for 

the arithmetic complexity of n x n x n product and n x n sum respectively, 

we derive the following recurrence relation. 

But S(n) 2 n .a O(n2) operations, so we have 

Recurrence relations of the above form will occur frequently so we shall 

give below a general solution to such forms. For the above relation this 

will imply that 

P(n) 



188 

This comes as no surprise to the observant reader who has seen that preci

sely the same multiplications are performed as in the 'classical' algorithm 

and the additions have just been rearranged using associativity. 

THEOREM. If F is a non-negative function on the positive integers suah that 

for some a~ 1, b > 1 and B ~ O, 

then if a = logb a 

F(n) O(na) if a > B 

ocn6J if a < B 

= O(na.log n) if a B 

PROOF. Left to the reader! 0 

4. STRASSEN'S ALGORITHM [Str 69] 

In the light of Winograd's algorithm it would be tempting to conjec

ture that, while some trade-off between multiplications and additions is 

possible, the total number of arithmetic operations required is of order 

n3 for n x n x n product. This is not so! Strassen's simple and astonishing 

observation is that for multiplying 2 x 2 matrices only 7 (not 8) multipli

cations are needed, even if multipliaation of elements is non-aommutative. 

Using this fact, the block multiplication algorithm described in the last 

section may be up-graded to one satisfying: 

PCn> ~ 2:... P(rn12l> + ocn2J, 

which, by the theorem given above, yields 

[log2 7"" 2.80735492]. 

Recall that P(n) is the total number of arithmetic operations (multiplica

tions, additions/subtractions). It should be apparent that with a straight

forward implementation of this algorithm on a machine with reasonable pro

perties, the total execution time is also of the stated order. 
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Strassen's identities. 

We assume for simplicity that A, 8 are n x n matrices, and that n is 

even so the matrices can be partitioned into 4 equal quarter-matrices. For 

compute: 

mi (All+A21}.(8 11+812) 

m2 (A12+A22).(821+822) 

m3 (A11-A22).(8 11+822) 

m4 = All. (8 12-822) 

ms (A21+A22) "8 11 

m6 (A11+A12) 0822 

m7 = A22.(821 - 8 11) 

Then 

c11 = m2 + m3 - m6 - m7 

c12 = m4 + m6 

c21 = ms + m7 

c22 = ml - m3 - m4 - ms 

Thus, P(n) = 7.P(n/2) + 18.S(n/2) 

and so P(n) 
log27 

OCn ). 

These identities may be conveniently expressed in the form of a dia

gram, where 1(0) in cell (Aij'8kl) represents the term +(-)Aij.8kl" The 

connected groups of circles represent the terms occurring in the respective 

products. It is now easy to verify the correctness of the identities. 
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B21 B22 B11 B12 

e12 

A12 

e 

6 

A22 
7 

e21 e22 

e12 
All 4 

ell 

A21 

e21 e22 

A small improvement may be obtained by applying linear transformations to 

the above identities and reducing the number of matrix sums required from 

18 to 1S. Of course this has no effect on the exponent, log27, but merely 

reduces the arithmetic complexity by a constant factor. The resulting iden

tities and diagram are given below. An amusing feature is that the first 

two of the seven products are A11 .B11 and A12 .B21 , which would also be 

done by the obvious block multiplication. 

ml A11B11 

m2 A12B21 

m3 (-All +A21 +A22) (B11-B12+B22) 

m4 (A11-A21) (-B12+B22) 

ms (A2l+A22) (-B11+B12) 

m6 (A11+A12-A21-A22)B22 

m7 A22(-B11+B12+B21-B22) 

Then e11 ml + m2 

e12 ml + m3 + ms + m6 

c21 ml + m3 + m4 + m7 

e22 ml + m3 + m4 + ms 



Note the claimed 15 additions is only achieved by a careful sharing of 

common terms. PROBERT [Pro 75] has shown that 15 is optimal. 

c11 c12 

• 

s~ c1, 

' r I 
L ~ 

) 

~ r I c22 -21 

L ~ 
•> 

c21 - - - c22 

Some related results. 
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Can the 2 x 2 x 2 product be computed using fewer than 7 multiplica

tions? WINOGRAD [Win 71] shows that, even if multiplication is commutative, 

7 is the optimal number. HOPCROFT & MUSINSKI [Hop 73] show that, for any 

non-commutative ring obtained by adjoining indeterminates to a commutative 

ring, any algorithm with 7 multiplications for 2 x 2 x 2 product can be got 

by applying linear transformations to Strassen's algorithm. An example is 

provided by the two sets of identities given above. They also use a notion 

of duality of linear forms and of algorithms to show that the minimum number 

of multiplications required is the same for p x q x r, p x r x q, q x r x p, 

q x p x r, r x p x q and r x q x p products, and thus depends only on the 

triple {p, q, r}. This symmetry is implicit in the tensor formulation of the 

problem used in [Str 72] and [Fid 72]. Using results from [Hop 71] with this 

result we have that the minimal number for the triple {p, q, 2} is 

r~(3pq + max(p,qlll , 

e.g. 7 for p = q 2 , and 15 for p = q = 3. 

It is clear that any improvement on Strassen's bound using the same 

kind of recursion has to be based on a larger basic product than 2 x 2 x 2. 
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If 3 x 3 matrices could be multiplied using only 21 multiplications (non

commutative) then a faster algorithm would be obtained since log321 < log27. 

Nothing better than 24 has yet been achieved, but neither has any close lo

wer bound been proved. For 4 x 4 matrices, obviously 48 would need to be 

achieved. A recursion could be based also on non-square decompositions. 

The results of HOPCROFT & MUSINSKI show that a result of k multiplications 
3 for p x q x r product, yields k for pqr x pqr x pqr product and hence an 

exponent for n of 3.log k. 
pqr 

In an algorithm for the product of matrices of arbitrary shapes and 

sizes it is very inefficient merely to fill out the matrices with O's to 

the next power of two. Halving each dimension and adding one row or column 

of O's is more efficient, but the best strategy involves partitioning into 

varying sizes, using some of the non-square matrix recurrences, and trans

ferring to Winograd's or the classical method for small matrices. It is 

certainly inefficient to use Strassen's recursion right down to 1 x 1 ma

trices. Brent [Bre 70] has written and compared programs for Strassen's 

algorithm and for the other two algorithms both for real and complex num

bers. 

The idea mentioned in section 2 for sharing some of the non-arithmetic 

overheads by performing several matrix products in parallel would seem to 

be useful in an implementation of Strassen's algorithm also. Care must be 

exercised however to avoid an unacceptable increase in the storage required. 

5. REDUCTIONS AND EQUIVALENCES TO MATRIX PRODUCT 

In STRASSEN's original paper [Str 69], he also shows how any fast ma

trix product algorithm yields a correspondingly fast algorithm for matrix 

inversion and computing determinants. These reductions are based on the 

following 'block LDU factorization' formula which is easily verified. 

~(:' :)~ -1 ~ =C" '") ( I 
A11IA12 

A 
-1 

A21 A22 A21Al1 

if A11 is non-singular, I is the unit matrix, 0 the zero matrix, and 
-1 

~ = A22 - A21A11A12" 
So, 



-1 
A 

-1 -1 -1 
+ A11A121i A21A11 

-1 -1 
-Ii A21A11 
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0 : ) li-1 

provided Ii is also non-singular. Assuming these non-singularities we have 

immediately the recurrence relation for I(n), the arithmetic complexity 

of inverting an n x n matrix, given by 

I(nl s 2ICf n/2ll + O(P(rn12l> + o<n2l 

If we assume an algorithm for product giving P(n) 

the general solution given in section 3 yields 

Similarly, from the LDU factorization, we have 

Det (A11 ) .net (Ii) 

If D(n) is the arithmetic complexity for determinants we have the recur-

rence 

D(n) S 2D(f n/2l) + I(f n/21) + O(P(f n/21)) 

and so with the same hypothesis 

The algorithm for inversion uses block LOU factorization recursively 

and so will fail, even when A is non-singular, whenever "A11 11 or "Ii" at 

any level of the recursion happens to be singular. In general, a pivotal 

method, interchanging rows or columns is necessary to obtain non-singular 

factorizations. Such a method, still achieving the same O(na) bound, is 

given by BUNCH & HOPCROFT [Bun 72]. 
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Is it possible that I(n) is of Zawer order than P(n)? We show direct

ly that this is not so. 

-A 

I 

0 

A.B) 
-B 

I 

as is easily verified. Thus to find the product of two n x n matrices A, B, 

it is sufficient to invert an appropriately constructed non-singular 

3n x 3n matrix. We therefore have 

P(n) :;; I(3n) 

Combining this with a previous result we obtain 

THEOREM. Far aZZ a ~ 2, 

P (n) 

A similar result for squaring matrices follows from 

( 
0 A ) 

2 
( A.B 0 ) 

B 0 0 B.A 

6. LOWER BOUNDS FOR MATRIX ALGORITHMS OVER FIELDS. 

No lower bound, for the arithmetic complexity of n x n x n product, 
2 

greater than O(n ) has yet been proved. It is open to conjecture whether 

this is because this bound is achievable or because we do not have good 

techniques yet for proving lower bounds. For the simpler problem of 'ma

trix times vector' product, WINOGRAD [Win 70] proved a powerful theorem 

which we shall describe in this section. 

Let F be an infinite field and x 1 , ... ,xn, indeterminates. We consider 

straight-line programs (i.e. involving no test instructions) for computing 

sets of linear forms of the x's. The basic operations used will be +, -, 

x, +,and the initial input values will be taken from Fu {x1 , ... ,x.}, so 
l1 

that successive values computed by the programs are elements of F(x1 , •.. ,xn), 
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the field of rational functions over F of the indeterminates. We shall 

establish lower bounds on the number of multiplications/divisions required. 

Let G be any infinite subfield of F. For the purposes of the theorem to be 

proved, we think of multiplications and divisions by elements of G as 

'free'. We use the phrase 'm/d which is counted" for either a multiplica

tion neither of whose arguments is in G or a division whose divisor is not 

in G. 

The main idea of the proof is that the first m/d which is counted in 

such an algorithm can be eliminated (or made not to be counted) by repla

cing one of the indeterminates by a linear combination of the other inde

terminates with coefficients in G. The resulting algorithm is still a com

putation of some linear forms of the remaining indeterminates. We find a 

lower bound on the number of such reductions needed to eliminate all m/d's 

which are counted in terms of an algebraic property of the linear forms 

computed. 

DEFINITION. A set of vectors v 1 , •.• ,v in Fk is G-independent if, for all 
~ - -q 

cl, ••• ,cq E G, l c .• v. E Gk =>c.= 0 for all i. 
i=1 i -i i 

The usefulness of the theorem we now state is much enhanced by the genera

lity allowed in the choice of F and G. The slight extra complication of 

the proof is thereby justified. 

THEOREM. (WINOGRAD) [Win 70] 

Let w,~ 1 , •.. ,~n be vectors in Fk, let~ be the k x n matrix with columns 

~ 1 , ••. ,0, and let x be the column vector (x1 , ••. ,x ). If there is a sub-n ~ n 
set of q vectors in {~ 1 , •.•• ~n} which is G-independent then a:ny algorithm 
over F computing ~.~ + w has at least q m/d's which are counted. 

Note that the subfield G can be chosen freely, but the larger G is 

the fewer sets of vectors are G-independent and the fewer m/d's are coun

ted. 

PROOF OF THEOREM. Suppose the conditions of the theorem are satisfied but 

that there is an algorithm a with only q - m/d's which are counted. If 

q = 1 the contradiction is immediate since with no m/d's counted only lin

ear combinations of elements of Fu {x1 , ••• ,xn} with coefficients in G can 

be computed and so all the elements of ~ are in G and it has not even a 

set of one G-independent column. 

If q > 1, then consider the first m/d which is counted. If both argu-
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ments are in F then the result is also in F and there is no need for that 

operation since the result could have been taken as an input. Otherwise 

at least one argument, the divisor if the operation is a division, is in 

F(x1 , •• ,xn) , F, and since it has been computed without any m/d which 

counts, it must be of the form 

n 

f + l ci.xi 
i=l 

where f E F for all i 

and not all the ci are zero. Without loss of generality we can assume that 

en f 0 and since multiplication by elements of G is free we may as well 
n-1 

assume that c -1. If we precede a by a computation of o = f + g + l c .. x. 
n i=l i i 

for some g E G, and then replace any occurrence of xn as an input by o,the 

m/d we have been considering has g as its argument and is no longer coun

ted. Since the computation of o requires no m/d which is counted, we have 

a new algorithm a' with at most q - 2 m/d's which are counted. The ele

ment g is chosen with the sole requirement tha1 no division by zer0 wiL 

occur in a'. This is possible since G is infinite and there are only a fi-

ni te number of "bad" values to be avoided. a' has indeterminates ; . 

and computes~··~·+~· where~·= (x 1 , ..• ,xn_1l 

for j 1, ... ,n-·1, 

and ~· 

We claim that ~· has a set of q - 1 G-independent columns. Suppose 

not and define !il~ = Q. Let Q = {!ili1 , ••• ,!iJiq} be a set of q inde~=rdent 

columns of~. By the supposition 3d1, ••• ,a 1 E G so that Gk 3 l d .. !iJ! 
q-1 q- j=l J ij 
I d .. !ili . + k1!il for some k 1 E G, by the definition of the !il's. Without 

j-1 J j n 
loss of generality we may suppose a1 i 0. Similarly 3e2 , .. ,eq E G such that 

that 

for some k2 E G. Eliminating the explicit I/Jn terms between these two lin

ear combinations produces a contradiction to the G-independen .. ' of Q, sin

ce the coefficients k 1 , k2 must both be non·-zero and ~o the coefficient of 

I/) i the final linear combination 'Ls non-zero. An inducti.ve argument now 
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proves the theorem. 0 

To illustrate the power of the theorem, the first corollary shows that 

Horner's rule for evaluating polynomials uses the minimal number of m/d's. 

n 
I i COROLLARY 1. For any infinite fietd G, any aZgoritrun computing x y 

i=O i' 
from G(y) u {x0 , ••• ,xn} requires at Zeast n m/d's. 

2 n PROOF. Let F = G(y) and take~ to be the 1 x (n+1) matrix (1 y y •.• y ). 

Since the last n 'columns' are G-independent, the theorem can be applied 

with q = n. 0 

The main result we require for 'matrix x vector' products is proved 

by a pleasing interchange of roles~ 

COROLLARY 2. Let x be a p x q matrix and l = (y1 , ... ,yq) a coZumn vector. 

Any aZgoritrun for computing x.l requires at Zeast pq m/d's even when ope

rations on y atone are not counted. 

PROOF. Let F = G(y1 , .•. ,yql so that 'operations on l alone' produce values 

in F and need not be counted. Define ~ to be the p x pq matrix 

i Y1 Y2 ... yq 

0 Y1 Y2 ·•• Yq 

p 0 I Y1 l Y2 ... yq 

pq 

and X to be the column vector (x11 , .•. ,x1q,x21 , ..• x2q, ... xpq). Then ~-~= x.r, 

and the set of all pq columns of ~ is G-independent. D 

Note. In the proof of both corollaries we assumed that multiplication was 

commutatuve even over indeterminates. This was not necessary. We only need 

to prove a symmetric form of the theorem for computations of x.~ + 1/J. 

Of course it cannot be deduced from corollary 2 that the product of 

a p x q matrix X with a q x r matrix Y requires pq.r m/d's since the r 

columns of Y need not be multiplied independently, and indeed Strassen's 

algorithm beats this bound. 

FIDUCCIA [Fid 71,72] and WINOGRAD [Win 70] have proved several interest-
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ing extensions of the above theorem. In particular a proof of the following 

appears in [Fid 72]. 

THEOREM (FIDUCCIA). 

Under the aonditions of Winograa:·s theorem (above), if <I> has an r x c sub
matrix 8 and there are no non-trivial veators a E Gr, S E Ge suah that 
a.8.S E G, then at least r + c - 1 m/d's are required to aompute <I>.x. 

An immediate corollary of this theorem is that at least three real 

multiplications are needed to multiply two complex numbers represented by 

their real and imaginary parts. We shall not give a proof of the theorem 

here, but shall give an idea of the technique by proving the corollary 

directly. This time we remove the last m/d which is counted, by elimina

ting its occurrences from the linear forms. This particular result is pro

ved also in [Win 71]. 

THEOREM. To aompute xu - yv and xv + yu from m. u { x, y, u, v} requires at 
least 3 m/d's, even if m/d's by elements ofm. are not counted. 

PROOF. Suppose there is an algorithm computing these forms using only 2 

m/d's. Let µ 1 , µ 2 be the results of the first and second m/d respectively. 

Then since µ 2 can occur at most linearly in xu - yv and xv + yu, we can 

eliminate µ 2 to get a non-trivial linear combination 

which can be computed with only one m/d which is counted This can be 

written as a matrix times vector in the form 

Winograd's theorem can now be applied, with F =m.(x,y), G ='JR.. Since 

{A 1x+}. 2y,A 2x-A 1y} are m.-independent for any A1 ,}. 2 E: m., not both zero, the 

theorem yields a contradiction. D 

We saw in section 2 that three multiplications are sufficient, so 

this result is the best possible. A further corollary of Fiduccia's theo

rem is that at least seven multiplications/divisions are required to com

pute the product of two quaternions presented in the usual form. 
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7. MATRIX PRODUCT OVER OTHER STRUCTURES 

we have so far only considered matrices over rings. The operation of 

matrix product is readily generalized however to other structures. In this 

section we shall consider some structures in which this operation has use

ful applications. Given the binary operators® and ED over some structure 

S, the product of two matrices A,B, over S is given by 

c .. 
l.J 

for all i, j. 

The derived operator (analogous to l being derived from +) is well-defi-

ned if ED is associative. In all the structures and pairs of operators we 

consider, ED is also commutative and® distributes over ED (i.e. a®(bEDc) 

(a®b)@(a®c).) It is easy to verify that these properties on the basic 

operators induce the same properties for matrix product and matrix sum, 

where the sum C = A ED B is given by 

c.' 
l.J 

a .. ED b .. 
l.J l.J 

for all i, j. 

We usually denote matrix product by A.B for brevity, but use the fuller 

form A[;]B when it is necessary to mention the operators explicitly. 

In all but one of the structures considered ® is also associative and 

induces the same property for the matrlx product. 

Examples. 

® ED Domain 

1. x + IR, a:' Z, Zlk and other rings. 

2. " v {true, false} - Boolean algebra 

3. v " l 4. I\ jt1 {true, false} 

5. "' I\ 
J 

6. + minimum ~o u { 00} 

7. min max IR U {+oo,-oo} 

8. • 
(concatenation) 

u subsets of I*, 'languages' - regular algebra. 
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A further example concerned with context-free grammars will be considered 

in section 11. 

Using the definition of matrix product directly, one may compute an 

I x K x J product over any of these structures using IJK ®'sand IJ(K-1) 

e•s. The identities of STRASSEN (or WINOGRAD) cannot be used unless there 

is an inverse operator toe, a 'minus', but it is clear that Strassen's 

algorithm works over an arbitrary ring. Winograd's algorithm also requires 

commutativity of®· 

The first product, ~ , over the 2-element Boolean algebra will be 

called Boolean product. The W product is a dual operation to this. If -.A 

denotes the matrix got by complementing each entry of A, it can be seen 

that 

A [J B ..,((-,A) CJ (-.B)) 

To avoid confusion this product will not be mentioned again. We shall de

note true and false by 1 and 0 respectively. In this notation, the opera

tions of A and x are identical over the domain {0,1}. Similarly~ and +mod2 
are identical. Hence the ~ product is isomorphic to the product over 

z2 , the ring of integers modulo 2. Strassen's algorithm could be used. 

The [:.) product can be related to a string matching problem. Given 

two binary n-vectors ~, !:_, regarding a as a row vector and b as a column 

vector, 

if ~· !:_ are identical 

0 otherwise. 

Thus, given two sets A, B, of binary n-vectors, all matching pairs of vec

tors from A and B can be found by computing A ~ B where A is the set of 

rows of A, and B is the set of columns of B. 

The computation of W product can be reduced to two ~ products and low

order operations by the identity 

A unit is an element !:. such that 

e © x = x = x ® e for all x. 
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A zero is an element z such that 

z®x=z=x®zandzillx=x for all x. 

All the structures given, except (5), have a unit and a zero. 

~ 

1. 

2. 

3. 0 

4. 

5. 

6. 0 

7. "' 

8. OJ 

0 

0 

0 

no element has the ® property of ~ 

~ i.e. the set containing only the empty string, 

and the empty set respectively. 

A further important property, satisfied in only (2), (3), (6) and (7) 

above, is that 

e ill x for all x. 

This absortive property of the unit will be used later. Structures with a 

unit and zero have a unit matrix .!_, and a zero matrix Q_, with appropriate 

properties, given by 

e if i j 

zifi#j 

8. BOOLEAN MATRICES 

0 .. 
l.J 

for all i, j. 

Boolean matrices have important computational applications as represen

tations of binary relations on finite sets, or, equivalently, finite direc

ted graphs, where 



202 

Aij if i is related to j ((i,j) is an arc) 

0 otherwise. 

The ~ product corresponds to composition of relations. Provided ® is 

associative, as it is for Boolean product, we can define powers of a square 

matrix A by 

I 

for n ~ 0. 

If A represents a directed graph, then 

2 
(A ) ij 1 .+ 3 path of length 2 from i to j 

and more generally, for all k ~ 0 .. 

k 
(A ) ij 1 .+ 3 path of length k from i to j, 

where by convention there is a 'path of length 0' from i to i, for all i. 

Thus the connectedness relation ("there is a path from i to j") is given 

by the matrix 

* A 

* For relations, A is the (reflexive and) transitive aZosure of the rela-

tion A. 

Since there is a path from i to j in an n-node directed graph if and 

only if there is such a path of length less than n, we have for an n x n 

matrix A, 

* 2 n-1 A IVAVA v ... VA 

We can further show that 

A* -= (IVA) n-l for al.t m ~ n-1, 

so that one fairly efficient way to compute A* is to form I v A and then 



square the result flog2 (n-lll times in succession. There are even better 

methods however. 

LEMMA 1. * * * * (AVB) (A .B) .A 

'PROOF'. (AVB)* IV (AVB) V (AVB) 2 V 

203 

{all finite products of A's & B's} arranged by length 

{all finite products of A's & B's} arranged by number 

of B's 

* * * * * * A VA .B.A VA .B.A .B.A V •.. 

(A*.si*.A* D 

LEMMA 2. If A is the pm>titioned matPix (~; !- -~ -) 
where A11 is square then 

* ( A;l : 0 ~ A = -~~:A-;-lj--r-/ 

'PROOF'. 

0 (I 0) (All 
A = 0 I ' Al= 

A21 

D 

We can now derive an expression for the closure of a partitioned matrix in 

terms of the closures of sub-matrices. 

where E 
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PROOF. 

* 
* ((11 ) c A12)) A v 

A21 A22 

* * * ((11 0 

) {o 
A12)) (All ) \o 

by Lemma 1 

A21 0 A22 A21 

* * * ((11 * 
0 ) ( 0 

A12)) (All * ) by Lemma 2 

A21A11 I 0 A22 A21A11 

* * * 
( 

0 
A11A12) (All * :) 

0 E A21A11 

* * * :) ( 
I A1~:12E) (Al 1 * by a symmetric version 

0 A21Al1 of Lemma 2 

'result claimed'. D 

The formula given in the theorem, taking A11 to be an f n/21 x f n/21 subma

trix, together with the fact that the closure of a 1 x 1 matrix is 1, 

yields a recursive algorithm for the transitive closure of Boolean matri

ces. If C(n), P(n), are the numbers of Boolean operations required for the 

transitive closure, product, respectively, of n x n matrices, we get the 

recurrence relation 

Hence for all a ~ 2, if P(n) 

for a different method. 

The converse is trivial since 

(: A 

0 

0 
(: A 

I 

0 

O(na), see also [Mun 71] 

so that if C(n) = O(na), then P(n) S: C(3n) = O(na). So we have shown that 

transitive closure and product are of the same order of complexity. Using 
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the naive algorithm for Boolean product, we get an O(n3 ) algorithm for the 

transitive closure of n x n matr~ces. 

An interesting observation due to FURMAN [Fur 70], and M.FISCHER & 

MEYER [Fis 71] is that an indirect application of Strassen's algorithm to 

Boolean product is possible, although the structure concerned is not a 

ring. With the notations 0,1, for false and true respectively, A and x 

are identifiable for 0,1-valued arguments while v and+ differ in that 

1 v 1 = 1 but 1 + 1 = 2. However it is apparent that if we multiply to

gether two 0,1 matrices over the integers and then in the product replace 

each non-zero entry by 1, we get exactly the Boolean product of the matri

ces. If the matrices are of size n x n we have a product algorithm which 
log27 

uses O(n ) arithmetic operations, and hence a closure algorithm of the 

same order. This is not quite the result we want since for a Boolean pro

duct we should insist on Boolean basic operations. For n x n matrices, no 

entry in the product can exceed n, though intermediate values in the recur

sive calls of Strassen's algorithm may perhaps be considerably larger. If 

the arithmetic is done in Zn+l then the true integer result must be unique

ly determined since it is known to lie in the range [O,n]. We can represent 

elements in :l.n+l by binary vectors of length flog2 (n+lll and perform ring 
addition in O(log n) Boolean operations (by simulating ordinary digital 

circuitry). Ring multiplication done in the conventional way takes 
2 O((log n) ) operations but this could be improved to 

O(log n.loglog n.logloglog n) using the methods in [Sch 71]. We have shown 

therefore 

THEOREM. Usin.g the operations A, v, 1 (or any other corrrplete basis), for 
any £ > O, n x n x n Boolean product and n x n transitive closure can be 

log27 l+£ 
corrrputed in O(n . (log n) ) basic operations. 

It is of interest that warshall's 0(n3) algorithm for transitive clo

sure [War 62] corresponds approximately to Jordan elmination for matrices 

over fields. 

Symmetric Boolean Matrices 

This important special case of Boolean matrices correponds to undi

rected graphs and symmetric relations. It is simple to show that for al

most any structure the product for symmetric matrices is of the same order 
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of complexity as the general product, since the square of the symmetric 

matrix 

(~-t-~- ~~-) 
ATI 0 1 B 

I I -------t---
0 ; BT : 0 

I ' 

where MT is the transpose of M, contains the product A.B as a sub-matrix. 

The proof, in this section, above, showing product and closure to be of 

the same order of complexity, breaks down if the extra condition of symme

tricity is imposed. Indeed there is a rather simple O(n2J algorithm for 

the transitive closure of symmetric Boolean matrices. 

Given an n x n symmetric Boolean matrix A, define the function 

Next(i) least j > i such that Aij 

0 if none such • 

* The following informal program computes A . 

for i 1 ( 1) n 

j := next (i) 

if j f. 0 then ~ow(j) := Row(j) v Row(i) 

else 

[
Afoiri k:= 

=1(1) i-1 

[if ~i = 1 then Row (k) := Row(i) 

The reader is invited to carry out the non-trivial proof that this algo

rithm is correct. The O(n2) bound can be shown as follows. The only parts 

which require attention are the row operations, which take O(n) basic ope

rations each time. The v operation is only executed at most n times. The 

row copying instruction is also executed at most n times since each row is 

copied into at most once. 



9. TRANSITIVE CLOSURE IN OTHER STRUCTURES 

Most of the results and formulae of Section 8 carry over to other 

structures we have described. The general definition of (reflexive and) 

transitive clos"ure is of course 

* A 
m<'=O 

I is defined. 
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For structures 2, 3, 6, 7, where the unit has the absorbtive property, we 

can prove the identities 

* A 
o::;;m<n 

(IalA)m for any m <'= n - 1. 

For those of the structures (all except (5)) with a unit and a zero, the 

partitioned matrix closure formula holds whenever both sides are well-defi

ned. The problem here is that the closure of 1 x 1 matrices, i.e. single 

elements may not be defined. With an absorbtive unit, x* =~for all x. For 

(8), x* always exists as a set of strings and is denoted by •x*•. In rings 

such as in (1) and (4), 

any x f- 1, 

* e e + e + e + ... is undefined. In a field, for 

* x 1 + x + x2 + ... 

can be taken to be (1-x)-1 . It is the strong similarity between A* and 

(I-A)-l for matrices over a field which accounts for the correspondence 

between the matrix closure recurrence and the block LDU factorization which 

has undoubtedly struck the reader. The principal difference between the 

form of algorithms for matrix inversion over fields and for transitive clo

sures over other structures is because of the need in the former case to 

avoid singular sub-matrices and elements. The usual JORDAN elimination al

gorithm for matrix inversion therefore uses pivoting, while the algorithms 

of WARSHALL [War 62] and FLOYD [Flo 62] are quite analogous over structu

res (2) and (6) respectively except that they do not need to pivot. The 

structures (6), (7), (8), can all be regarded as generalizations of (2), 

and they are all isomorphic to (2) when their domains are restricted to 

just the zero and the unit. Whereas matrices in (2) correspond to directed 

graphs, in these three structures we have directed graphs labelled with 
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elements of the structure. Associated with any path in the graph is, in 

(6) the sum of the labels of its edges, in (7) the minimum of its labels 

and in (8) the concatenation of its labels. 

~ product. Regarding the lables as direct distances between pairs of 

nodes, the transitive closure is the matrix giving the shortest path between 

all pairs of nodes. Floyd's algorithm [Flo 62] is a simple, 'in place', 

algorithm for this with a complexity of O(n3). The recursive closure formu

la provides a family of different O(n3) methods for the reflexive and tran

sitive closure. An algorithm which uses 0(n3 ) comparisons and O(n5/2) addi

tion/subtractions is given in [Hof 72]. 

~ product. This structure is somewhat similar to the preceding one. 

An example of an application is the problem of transporting a wide load 

between points of a transportation network in which there are bridges of 

varying widths. The maximum width for a given pair of points is given by 

the maximum over all paths of the minimum width along each path. 

~ product. An application is in the theory of finite automata. A finite 

automaton is a finite directed graph labelled with subsets of a finite 

alphabet l· The language accepted by an automaton is the set of strings 

over I which label all possible paths from an initial node to one of a set 

of final nodes. This is of course a union of entries of the transitive 

closure of the matrix describing the automaton. A regular set can be de

fined as a set of strings formed from subsets of a finite alphabet using 

the operations of union, concatenation and transitive closure of sets. 

One half of Kleene's theorem states that the language accepted by a finite 

automaton is a regular set. An easy inductive proof of this follows from 

the recursive formula for matrix closure. This was shown by CONWAY [Con 71] 

from whom I first heard of this useful formula. In this structure there 

seems little to be said about the "computational complexity" unless it 

would be related to the expression length of the representation obtained 

for regular languages. 

An axiomatic treatment of the generalization of Floyd's closure algo

rithm to other algebraic structures can be found in [Bru 72]. Many examples 

of such structures are given by [Pai 70], and a useful survey of this area 
appears in [Bru 74]. 
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10. LOWER BOUNDS FOR BOOLEAN PRODUCT OVER A MONOTONE BASIS 

THEOREM. Any algorithm computing the Boolean product of an I x K matrix 
and an K x J matrix using only binary A and v as basia operations requires 
at least IJK A's and IJ(K-1) v•s. Furthermore any algorithm achieving both 
these lO"wer bounds is equivalent, using only the associativity of v and 

the commutativity of A and v, to the naive algorithm. 

we shall give here just an outline of the IJK lower bound for A's to 

illustrate the proof methods. (A full proof of the theorem is given in 

[Pat 75].) 

The proof is by induction on K. The result is trivial for K = O. Sup

pose now K > 0 and the result has been proved already for K - 1. The in

puts to the algorithm are the elements of the two matrices, a 11 , ..• ,aIK' 

b 11 , ••• ,bKJ say. The final results are the values 

V a. A b . 
1,.;k,.;K ik kJ 

for i 1, ... ,I and j 1, ... ,,:r. 

We consider 'straight-line' programs with operations /\ and v. We use 0,1 

for false and true, and regard Boolean expressions as sets, identifying A, 

v, with intersection and union respectively. Thus we could write 

Suppose we are considering an algorithm for I x K x J product with the mi

nimum number of A and v operations. We refer to initial inputs and the val

ues computed at each step as issues. 

LEMMA 1. If for some issues, and for some 1,i', iii', ail v ai'l s s 

then s can be replaced by 1 without affecting the outputs of the algorithm. 

The same is true for b 1 j v blj' (jij') and ail v blj" 

Of course a conclusion that an issue can be changed to 1 contradicts the 

minimality of the algorithm. 

For each i,j, define the predicate Q .. on issues by 
l.J 

and b 1 . rj. s. 
J -
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An initiaZ occurrence of Q .. is an instruction for which the result satis
l.J 

fies Q .. but neither of the arguments does. The set of initial occurrences :LJ 
of Q .. is denoted by I (Q .. ) • 

l.J l.J 

LEMMA 2. Any instruction in I(Qijl must be an A vith arguments x,y, satis
fying : a , 1 C: X I b 1 . C: Y • l. - J -

Suppose I(Q .. ) n I(Q.,.,) 1' j1J and (i,j) # (i',j'), then Lemmas 1 and 2 im-l.J l. J 
ply together that one of the arguments of any instruction in the intersec-

tion can be 

each I(Qij) 

Qij" 

If the 

the inputs, 

replaced by 1, contradicting the minimality assumption. Also 

is non-empty since no input satisfies Q .. but c .. does satisfy 
l.J l.J 

valuation ail = 1 for all i, blj 0 for all j, is imposed on 

then all the A instructions in all the I(Q .. ) can be eliminated 
l.J 

because of the "ail .::_ x" condition of Lemma 2. Thus we get a new algorithm 

with at least IJ fewer A-instructions, and the (i,j) output is now clearly 

k~2 aik A bkj" The new algorithm therefore computes an I x (K-1) x J pro

duct. By the inductive hypothesis this algorithm still has at least 

I.J.(K-1) A-instructions, so the original algorithm had at least IJK. The 

lower bound for V-instructions is proved similarly. 

As we remarked in the previous section,~ product and I mini pro-
~ max 

duct are isomorphic to Boolean product when the domain is restricted, there-

fore the results of the theorem carry over to analogous results in those 

structures. This theorem for Boolean product implies an O(n3) lower bound 

for Boolean transitive closure. The results are of particular interest in 

juxtaposition with the fast algorithms derived from Strassen's algorithm 

which are possible when complementation is permitted, and with the ~ 
~ 

product algorithm using subtractions given in [Hof 72]. 

11. CONTEXT-FREE LANGUAGE RECOGNITION 

In this section I shall introduce the sub-cubic time context-free Ian-

guage recognition algorithm recently discovered by VALIANT [Val 74]. For this 

purpose I shall simplify the presentation of context-free grammars by ta

king them to be in Chomsky normal form and by not distinguishing between 

terminal and non-terminal symbols. This involves no real loss of genera

lity. A context-free grammar (cfg) is a finite alphabet l = {A1 , .. ,A} 
q 
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with a finite set of productions P, each of the form 

for some i,j,k. 

For any finite strings w1 ,w2 overland any production Ai+ Ajl\ in P, we 

write 

* If ~ is the (reflexive and) transitive closure of =>, we define for each 

Ai E L 

{w I A. ! w} 
J. 

i.e. the set of strings over l derivable from A .• The recognition problem 
J. 

considered here is the following: "Given a cfg G and a string w, is 
w E L ? 11 

Al. (In the usual terminology we are recognizing arbitrary senten-

tial forms.) 

We define ® and @ for the context-free matrix product with respect to 
a cfg G. The domain is all subsets of the alphabet l• and @ is set union. 

® is defined by 

which is roughly the "inverse of the production relation" applied to the 

concatenation of s1 ,s2 . Thus 0, the empty set is the 'zero' and there is 

not necessarily any unit. If required, a natural unit could be adjoined by 

augmenting l with A, the empty string, and adding the productions A+ A 

for all A E l u {A}, so that {A} becomes a unit. We do not do this here. 

An unusual feature of this ® is that it is not associative, and so 

the corresponding matrix product is not. We must therefore give a new defi

nition of the transitive closure since matrix powers are not uniquely de

fined. we define 

A, 

a, A (i) .A (n-i) 

O<l<n 
for n > 1, 
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and finally, 

A+ A (n) 

n>O 

is the (non-reflexive) transitive closure. The previous closure algorithms 

described here all rely on associativity and so are not applicable in this 

case. 

* It can be proved from the definitions of © and "" that for all 

x,x1 , ••• ,Xk El• (k~l) X ! x1 ••• xk if and only if a product of the sets 

{x1}© ••• ©{Xk}, associated in some way, contains x. If w = x 1 ••. xn-l E Ln-l, 

let M(w) be the n x n matrix with 

M(w). '+l 
1.' 1. 

for i 1, ... ,n-1, 

and all other entries 0, i.e. w is written in the diagonal immediately 

above the main diagonal. 

THEOREM 1. For all A. E l a:nd u,v, (l~u<v~n) 
1. 

+.> A. E (M(w))+ 
1. UV 

PROOF. By induction on v - u. 0 

COROLLARY. The recognition problem can be solved by computing (M(w))+ and 

checking whether A1 is a member of the ( 1,n) entry. 

We also have: 

THEOREM 2. For a:ny cfg, the corresponding cf matrix product requires the 

same number of operations to within a constant factor as for Boolean pro
duct. 

PROOF. Immediate from the next two Lemmas. 0 

LEMMA 1. If the cfg has only the single producUon A+ AA, then the cf pro

duct is equivalent to Boolean product. 

LEMMA 2. If G1 , G2 , G3 are cfg's over l a:nd have sets of productions P1 , P2 
and P1 u P2 respectively, then for matrices c, D, 



213 

where ©i is the product operation for Gi. 

VALIANT [Val 74] describes a very ingenious, simple, recursive algo
rithm for computing the transitive closure of triangular matrices. His main 
theorem implies: 

THEOREM 3. For context-free product, if P(n) = O(na) for some a > 2 then 
C(n) = O(na), where c is the complexity of triangular transitive closure. 

h . . b1 b 1 d . t" 0( 2.81) COROLLARY. Te recogn~t~on pro vem can e SO&Ve ~n ~me n . All pre-
viously known algorithms require at least O(n3). (See for example, Younger's 
algorithm [You 67].) An alternative account of Valiant's algorithm can be 
found in [Pat 74]. 
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