
MATHEMATICAL CENTRE TRACTS 63

J.W. DE BAKKER (ed.)

FOUNDATIONS OF
COMPUTER SCIENCE

SECOND PRINTING

MATHEMATISCH CENTRUM AMSTERDAM 1975

AMS(MOS) subject classification scheme (1970): 68A05, 68A20, 68A50

ACM-Computing Reviews-categories: 3.70, 4.35, 5.21, 5.24, 5.25

ISBN 90 6196 Ill 4

First printing 1975

Second printing 1976

Pref ace

J.W. DE BAKKER:

E. ENGELER:

A.N. HABERMANN:

E.J. NEUHOLD:

M.S. PATERSON:

The fixed point approach in semantics: theory

and applications

Algorithmic logic

Operating system structures

Formal properties of data bases

Complexity of matrix algorithms

i

3

57

89

121

181

PREFACE

An Advanced Course on the Foundations of Computer Science organized

by the Mathematical Centre as part of an international effort under the

auspices of the European Communities, was held at the University of

Amsterdam, May 20-31, 1974. This Tract collects the lecture notes of five

of the courses given. The sixth course, given by Dr. R. Kowalski on Predi

cate Logic as a Programming Language in Artificial Intelligence, is sched

uled to appear elsewhere.

We are very grateful to the Netherlands Organization for the Advance

ment of Pure Research (Z.W.O.) for generously supplying the money to orga

nize the Course and to the lecturers for their excellent contributions.

J.W. de Bakker

Director of the Course

THE FIXED POINT APPROACH IN SEMANTICS:

THEORY AND APPLICATIONS

0. Introduction

1. Recursive Procedures as Least Fixed Points

2. Continuity and Scott's Induction

3. Programs and Relations

4. Applications to Program Equivalence.

4.1. A while statement example

4.2. Tree traversal.

4.3. The 91-function

4.4. Miscellaneous .

5. Applications to Program Correctness.

5.1. The inductive assertion method.

by

5.2. Consistency and completeness of the method.

5.3. Hoare's while statement axiom

5.4. A "theorem" due to Dijkstra

6. Exercises.

References. .

J.W. DE BAKKER

3

6

12

19

26

26

27

29

31

33

33

35

44

46

48

51

MATHEMATICAL CENTRE TRACTS 63, 1975, 3-53

THE FIXED POINT APPROACH IN SEMANTICS:
THEORY AND APPLICATIONS

J.W. DE BAKKER

Mathematical Centre, Amsterdam I Free University, Amsterdam, (NL)

0. INTRODUCTION

The present notes are devoted to an exposition of the "fixed point

approach" in programming theory. In particular, we are concerned with those

programming concepts which are related to the control structure of a pro

gram, viz. recursion and iteration. The methods to be developed will be

applied to obtain proofs of program properties and, also, to analyze pro

gram proving methods stemming from a variety of sources.

Let f: V + V be a function mapping some domain V to itself. An element

x E V is called a fixed point of f iff f(x) = x holds. This definition in

cludes the case that V itself is a collection of functions, from E to F,
say. Then, for F: V + V -such F which maps functions to functions we shall

call a functional-, we have again that f E V is a fixed point of F iff

F(f) f, i.e., iff for all x E E, F(f) (x) f(x).

The first three sections of our paper contain the development of the

main mathematical properties of recursion (including iteration as a special

case). We show that recursive procedures are least fixed points -under a

suitable ordering- of the functionals to be associated with the body of

their declarations (section 1). Next, the important notion of the continuity
of these functionals is introduced, and a powerful proof rule (Scott's in

duction rule) is based on it (section 2) . In section 3 we propose a method

for associating binary relations with various programming constructs

-composition, conditionals, while statements, parameterless recursive pro

cedures- and show how to apply the results of sections 1 and 2 to them.

This section also brings the introduction of the so-called µ-notation,

together with its justification. This requires, among others, an extension

of the continuity result of section 2.

The essential ideas of the first three sections were first presented

4

in [29], though the fixed point approach to recursion goes back to KLEENE

(see e.g. [17], p.348). Independently of [29], PARK proposed his so-called

"fixpoint induction" in [26], and BEKIC obtained a number of related re

sults in [5]. The le~st fixed point operator has also been studied exten

sively by the Polish school of programming theory, for which we refer to

[6,7] and the references contained in these papers.

Sections 4 and 5 bring a large number of applications of the results

obtained in sections 1 to 3. We have drawn here mainly from the papers

DE BAKKER [2], DE BAKKER and DE ROEVER [4], and DE BAKKER and MEERTENS

[3], though a few remarks due to other authors are mentioned in section

4.4 and the exercises in section 6. (The advanced parts of these papers

are usually omitted, however.)

There is, besides the results to be treated in these notes, a great

variety of other applications to be found in the literature. A brief and

incomplete survey follows: In a series of papers by MANNA and his colleagues

[9,10,20,21,30], the problems dealing with recursive procedures with more

than one parameter, and the various ways of "parameter passing" are inves

tigated, and an impressive number of examples of Scott's induction are

provided. We also mention their discussion of other induction principles

which have been proposed such as "truncation induction" (MORRIS [25]) and

"structural induction" (BURSTALL [8]). Decidability problems about recur

sive program schemes are treated e.g. in ASHCROFT, MANNA and PNUELI [1]

and COURCELLE, KAHN and VUILLEMIN [12]. In an intriguing paper [15],

HITCHCOCK and PARK investigate the relationship between the µ-formalism

and second order predicate logic, and, moreover, the use of wellfounded

relations in proofs of program termination. Here the notion of greatest

fixed point makes its first appearance, without being explicitly mentioned,

however. The least fixed point operator has also found its place in SCOTT's

models of the A-calculus, where furthermore the relationship with CURRY's

"paradoxical combinator" Y is settled. (No published description of this

seems to exist.) Finally, we mention the formal system embodying (a gener

alization of) the main ideas of section 1 to 3, viz. the LCF (Logic for

Computable Functionals) system of MILNER, who has also implemented this

yielding an interactive program proving facility [23,24].

We now give a summary of the applications we do treat in the present

paper. Section 4 contains a number of examples concerning program equiv

alence. In section 4.1, a simple while statement example is dealt with,

5

the proof of which uses some results with independent interest. Section 4.2

deals with a problem which initially had the appearance of an equivalence

between two tree traversal algorithms, but which is then shown to be an

instance of a much more general equivalence result, not depending on this

specific area. In section 4.3 we study the well-known 91-function, and in

section 4.4 we make a few remarks concerning a (still open) problem, viz.

how to provide a convincing explanation of COOPER's extension of recursion

induction as proposed in [11]. Section 5 deals at some length with the

variety of attacks on proving (partial) program correctness, all going back

to FLOYD's inductive assertion method [14]. After a brief review of this

method in section 5.1, section 5.2 is devoted to a proof of its consistency

and completeness. This may be seen as a generalization of MANNA's approach

to partial correctnes [18]. In section 5.3 we discuss HOARE's axiomatic

framework for proving program properties [16]. In particular, we justify

his while statement axiom, and investigate in how far it fully character

izes such statements. In section 5.4, we try to find an interpretation for

the ideas in a recent paper by DIJKSTRA [13]. We conclude that, if our in

terpretation is right, his main theorem is incorrect. A slight modification,

however, is sufficient to yield a true proposition, which is proven by a

two line application of Scott's induction. Finally, section 6 contains a

small collection of not-too-simple exercises.

The general aim of our paper is to stimulate the reader's interest in

the many new insights which have resulted from the fixed point approach.

No results which essentially extend the literature as listed above, are

given, though a few small remarks and points of presentation may be new.

As said already, considerations which were thought to be of a too advanced

nature have been omitted. Moreover, no attention has been paid to the fixed

point approach in formal language theory, where a few fruitful applications

have also been found.

6

1. RECURSIVE PROCEDURES AS LEAST FIXED POINTS

We shall present an analysis of the main mathematical properties of

recursive procedures, leading to their characterization as least fixed

points of certain transformations.

Let us first consider three simple examples of recursive procedures,

written in ALGOL 60:

(1.1)

(1. 2)

(1. 3)

integer procedure f(x);

f := if x = 0 then else x*f (x-1)

integer procedure g(x);

g :=if x > 100 then x - 10 else g(g(x+11))

integer procedure h(x);

h := h(x)

We see that (1.1) gives the well-known recursive definition of the

factorial function, (1.2) is the remarkable 91-function, the name of which

is derived from the fact that for g(x) we have, for all integer x,

g(x) = if x > 100 then x - 10 else 91 (this is one of the results to be

proven later (section 4.3)). As to the procedure declared by (1.3), this

is immediately seen to lead to a non-terminating computation for each ar

gument x, whence we see that the corresponding function is nowhere defined.

Thus, as soon as we introduce this type of recursive definitions, we are

directly led to the consideration of partial functions, i.e., functions

which may be undefined for some (possibly all) of their arguments. For such

functions, the following definition of a partial ordering ".S." is rather

natural. Also, we give a special name to the least function with respect

to 11 ~":

7

DEFINITION 1.1. Let f,g be partial functions from V1 to V2 •

a. f ~ g iff Vx E v1, y E V2[f(x) = y ~ g(x) = y]

b. n denotes the nowhere defined function (from V1 to V2l.

Remarks:

1. One might emphasize in the notation that Q refers to the sets V1,V2•

This will turn out to serve no purpose and is therefore omitted.

2. Indication of the sets through which the variables, such as x,y above,

range, will usually be omitted in the sequel.

3. Observe that f ~ g iff for all x, whenever f is defined in x then g is

defined in x and both functions yield the same value. Also, f = g iff

f ~ g and g ~ f. Moreover, we clearly have for all f,g,h: n ~ f; f ~ f;

if f ~ g and g ~ h then f ~ h.

We now introduce a general format for the procedures as exemplified by

(1.1) to (1.3). We shall use, instead of ALGOL 60, a shorter notation which

for (1.1) reads: f(x) <>=if x = 0 then 1 else x*f(x-1), and similarly for

(1.2) and (1.3). "<>="may be read as "is recursively defined by". In

general we have declarations of the form

(1.4) f (x) <>= T (f) (x),

where T determines a functional, T(f) a function, and T(f) (x) yields an

element of the domain V of values we are concerned with in the case at hand

(e.g., in (1.1) Vis the set of natural numbers, in (1.2) the set of in

tegers, and in (1.3) any set). T(f) (x) is constructed*) by applying certain

rules of construction, to be given presently, to an initial system con

sisting of

A proper development of the theory would need the introduction of a
formal language used for specifying the T(f), and a system of inter
pretation (including suitable rules of computation) to associate
functions with these formal constructs. In order to adhere to this
distinction, we would require a treatment in a style which we consid
er to be unsuitable for the present introductory exposition. Thus,
the experienced reader will have to forgive a few inconsistencies in
the treatment we give her. A more rigorous development is given in
[31].

8

A given collection of base functions of m ~ 0 variables, the elements

of which are denoted by a,a1,b, ... They map Vm to V. (For m=O they

denote an element of V (a constant).)

A given collection of predicates, of one variable, the elements of

which are p,q, ..• These map V to {0,1}.

The function f.

Before we can give these construction rules, we need to explain two nota

tiona;l conventions:

1. In the sequel we shall make a -modest- employ of the A-notation. For

any variable x, let $(x) be some formula which possibly contains oc

currences of x. Then AX 0 $(x) is the function which maps its argument,

a say, to the result of substituting a for all occurrences of x in

$(x). Example: Let $(x) be the formula x + 2*Y· Then

(Ay- (h•x+2*y) (3)) (4)

(Ax• (AY' x+2*y) (3)) (4)

(Ay' 3+2*y) (4)

(Ax•x+2*3) (4)

3 + 2*4 = 11, whereas

10.

2. We use the following notation for composition of functions: Let b be

any function of m ~ 1

one variable. Then we

by (bo (a1, ... , am)) (x)

write boa.

variables, and let a 1 ,a2 , .•. ,am be functions of

write b 0 (a1 , ... ,am) for the function defined

= b(a 1 (x) , ... ,am(x)). For bo(a) we usually

DEFINITION 1.2 (Syntax for T(f)). T(f) is either

a.

b.

c.

d.

A one-place base function

f

Constructed from already given , 1 (f), T2 (f) by

1.

2.

Composition: Tl (f) 0 T2 (f)

Selection AX" if p(x) then Tl (f) (x) else T2 (f) (x)

Constructed from already given T1 (f), ... ,Tm(f) (m~l) and given m-place

base function b yielding b 0 (T 1 (f) , ... ,Tm(f))

Example 1. We show how to construct the right-hand side of (1.1) according

to the rules of this definition. Choose for p, a 1,a2 ,a3 and b:

AX'X = 0, AX·l, AX'X, AX·x-1 and AXAy. X*y, respectively. Then T(f) = AX"

if p(x) then T 1 (f)(x) else T 2 (f)(x), with T1 (f) = a 1 , T2 (f) = bo(T 21 (f),

T22(f)), T21 (f) = a2, T22(f) = T221 (f)oT222(f) I T221 (f) = f, T222(f) = a3.

Example 2. Next consider (1.2). Let p: Ax•x > 100, a 1: \x•x-10,

a 2: \x•x+11. Then T(g) = \x• if p(x) then T1 (g) (x) else T2 (g) (x), with

Tl(g) =al, T2(g) = T21(g)oT22(g), T21(g) = g, T22(g) = T221(g)oT222(g),

'221(g) = g, '222(g) = a2.

9

Definition 1.2 gave the syntax of our formulas; the next definition gives

their semantics. We show how to evaluate an arbitrary formula T(f) in the

presence of the declaration f(x) <= T0 (f) (x):

DEFINITION 1.3 (Semantics of T(f)). Let f(x) <= T0 (f) (x) be the declaration

of f. The value of any term T(f) is defined inductively by

a. If T (f) - a then T (f) (x) = y if a(x) = y.

b. if T(f) - f, then T (f) (x) y if 'o (f) (x) =y(i.e., in order to

evaluate f (x), we replace f by the body of its declaration, viz.

'o (fl l .
c. If T(f) = T1 (f) 0 T2 (f), then T(f)(x) y if there exists z such that

T2 (f) (x) = z and 'i (f) (z) = y.

d. If T(f) = \x• if p(x) then 'l (f) (x) else T2 (f) (x), then T(f) (x) = y

if either p(x) = 1 and T1 (f) (x) = y, or p(x) = 0 and T2 (f) (x) = y.

e. If T (f) = b 0 (T 1 (f), ... , 'm (f)), then T (f) (x) = y if there exist

x1 , ... ,xm such that Ti (f) (x) = xi, i=l, ... ,m and b(x1 , ... ,xm) = y.

Example: We evaluate g(100) with respect to (1.2) (some shortcuts are

used): g(100) (~)if 100 > 100 then 100 - 10 else g(g(100+11)) <glg(g(111))

(£lg(if 111 > 10-;;-then 111 -10 else g(g(100+11)) (g)g(101) (~)if 101 > 100
- -- (d) -- -

then 101 - 10 else g(g(112) = 91.

Our first result on the functionals T concerns their monotonicity:

LEMMA 1.1. Let T(f) be as given in definition 1.2. Let T(f.), i=l,2,
J.

denote the result of substituting fi for all occurrences off in T(f).

Then we have: If £ 1 ~ f 2 then T(f1J ~ T(f2l.

PROOF. Induction on the complexity of T.

a.

b.

If T(f) = a or T(f) = f, trivial.

Let T(f) = 'i (f) 0 T2 (f). In order to prove T(f1) ~ T(f2), we must show

(definition 1.1): For all x,y, if T(f1) (x) = y, then T(f2) (x) = y.

Assume T(f1l (x) = y. By definition 1.3, there exists z such that

10

T2 Cf1) (x) = z and T1 (f1) (z) = y. By the induction hypothesis and the

assumption we have that T2 Cf2J (x) = z and T1 Cf2l (z) = y. Hence,

CT 1 Cf2) 0 T2 Cf2))(x) = y follows, i.e., T(f2)(x) = y holds.

The remaining cases are also direct from the definitions. D

We now come to an important property of recursive procedures. First

we define, for any formula T(f), Ti(Q) for any integer i ~ O, as follows:

DEFINITION L 4.
0

a. T (n) Q;

b. Ti+l(Q) is the result of substituting Ti(Q) for all occurrences of

fin T(f).

Example: For T(f) as in (1.1), T2 (n) is AX' if x = 0 then 1 ~
x*(AX' if x=O then 1 else x*Q(x-1)) (x-1) which, using the notation AX'W

for n, yields after simplification:

AX" if x = 0 ~ 1 ~ x* (if x-1=0 then 1 else w) •

We have the following lemma:

LEMMA 1.2. Let T(f) be a formula, with f dealared by f(x) ~ T0 (f) (x). If

T (f) (x) = y, then there e:x:ists an integer i (~0, and in general depending
i on x), suah that T(T0 (n)) (x) y.

PROOF. With each evaluation T(f) (x) = y we associate the pair (N,y), where

N is the number of applications of step b of definition 1.3 in the evalua-

tion of T (f) (x) y, and y is the complexity of the formula T(f). We define

CN1,y1l < (N2,y2J iff either N1 < N2 , or N1 = N2 and y 1 < y2 . (A formal

definition of y is left to the reader.) We prove the lemma by induction on

(N,y). Let T(f) (x) = y have as associated pair (N,y), and let the asser

tion of the lemma be proved for all evaluations with (N',y') < (N,y). We

distinguish the following cases:

a. T(f) - a. Then we may take i = 0.

b. T(f) - f. Then, according to step b in the definition of the evalua

tion of f(x) = y, we have that T0 (f) (x) = y, with associated pair

(N-1,y') •. Hence, by the
io

that TO (TO Cm) (X) = y,

indu9tion hypothesis, there exists i 0 such
1 0+1

or TO (Q) (x) = y; thus, t~ing i = i 0 + 1
1 0+1

since, for T(f) ::; f, T(TO (m) (X) = yields the desired result,
i +1

TOO Cm (x) = Y•

c. -r:(f) = -r: 1 (f)o-r: 2 (f). There exists z such that -r: 2 (f) (x) = z, with as

sociated pair CN1 ,y 1), -r: 1 (f) (z) = y, with associated pair CN2 ,y2),

where N1,N2 s ~, y 1,y2 < y. Thus,iby induction, there exist i 1,i2

such that -r: 2 c-r:02 cm> (x) = z'. -r: 1 (-r:0
1 cm> (z) =.y. Let i = max(i1,i2).

The~, by monotonicity, -r: 2 (-r:~(n)) (x) z,-r: 1 (-r:~(.Q)) (z) = y, hence
l. T(-r:0 (n)) (x) = y follows.

d. The remaining two cases follow similarly by induction and monoto

nicity. D

Lemma 1.2 may be reformulated using the following notation: Let

c1.5) f 0 ~ f 1 ~ .•• ~ fi ~ •••

11

be a ahain of functions such that fi ~ fi+l' i=0,1, •••• Each such chain

has a least upper bound (l.u.b.) denoted by u:=O fi, and defined as follows

DEFINITION 1.5~ Let fi,i=0,1, ... be as in (1.5). The function u:=O fi is

defined by: (Ui=Ofi) (x) = y iff for some i ~ O, we have fi (x) = y.

It is easily checked that u:=O fi is indeed a function which satisfies the

l.u.b. requirements:

1) fi ~ u:=o fi, for all i. 2) If fi ~ g for all i,

then u:=O fi ~ g.

Using this notation, from lemma 1.2 we obtain

co i
LEMMA 1.3. Let f be dealared by f(x) C= To(f) (x). Then f ~ ui=O To(m.

~·By definition 1.5, U:=O T~(Q), which is the l:u.b. of the chain
i 00 1

n.~ TO(Q) ~ ... ~ -r: 0 (n) ~ ... , is defined as (Ui=OTO(Q)) (x) = y iff
l.

T0 (n) (x) = y for some i. Now apply lemma 1.2 with T(f) = f. D

As next step we observe that from definition 1.3, part b, we immedi

ately obtain

12

LEMMA 1.4. Let f(x) ~ T(f) (x). Then f(x)

f = T (f) .

Y iff T (f) (X) y, i.e.,

In other words, we have that f is a fixed point of the functional T of the

body of its declaration.

We need one more lemma for the proof of our first theorem:

LEMMA 1.5. Let f(x) ~ T(f) (x), and let g be any function satisfying
00 i

T(g) ~g. Then ui=O T (Q) s g.

PROOF. By the definition of u:=O Ti(Q), it is sufficient to show Ti(Q) s g,

for all i. We use induction on i.

a. i = 0. Clearly, Q ~ g.

b. Assume the result for i: Ti(Q) s g. Then, by monotonicity and the
'+1 i

assumption on g, ,i (Q) S T(T (Q)) ~ T(g) ~g.

THEOREM 1.1. Let f(x) 4= T(f) (x).

a. f = U:=O Ti(Q)

b. Let g be any function satisfying T(g) s g.

Then f ~ g.

c. f is the least fixed point of c.

PROOF.

a. Sis lemma 1.3. By lemma 1.4, f is a fixed point of T, thus, a
fortiori, T(f) Sf. Now apply lemma 1.5.

b. Direct from lemma 1.5 and part a.

c. Direct from lemma 1.4 and part b. D

With this important theorem we conclude our first section.

2. CONTINUITY AND SCOTT's INDUCTION RULE

According to theorem 1.1, for f declared by f(x) 4= T(f) (x), we have

f = u:=O Ti(Q). This result (which may be viewed as a technique for

"successively approximating" a recursive procedure) is applied in the justi-

13

fication of a powerful rule for proving properties of programs with recur

sive procedures, viz. Scott's induction rule. Before presenting it, we

need another important idea. We introduce the notion of continuity of our

functionals, as defined in

DEFINITION 2.1. T(f) is called continuous in f iff for each chain

g0 S g 1 S •·• S gi S the following holds:

THEOREM 2.1. Let T(f) be as in definition 1.2. Then T(f} is continuous in f.

PROOF. Induction on the complexity of T.

a. If T(f) =a or T(f) = f, the proof is trivial.

b. Let T(f) = T1 (f)oT2 (f). We have to show that

Tl (~gi)oT2(~gj) = ku (Tl (gk)OT2(gk))
]_ J

This is established by:

Tl (Ug.) 0 T2 (Ug,) = (ind. hypothesis)
i]_ j J

U T1 (g,) 0 U T2 (g,) = U U(T 1(g.)oT2 (g,)) =(monotonicity)
i]_ j J i j]_ J

U U(Tl(g (' ·»oT2 (g (' '))) = U(T 1 (gk) 0 T2 (gk))
i j max i,J max i,J k

c. Let T(f) = b 0 (T 1(f), ••• ,Tm(f)). Then

d.

T (Ug,) = bo(Tl(Ug,), ••• ,T (Ug,))
i i i i m i i

bo(UT 1 (g,), ••• ,UT (g,)) =
i i i m i

bo(U ••• U (Tl(g.), ••• ,T (g.)))
· · i1 m l.m i1 im

bo(~(Tl (gk), .•• ,Tm(gk)))

~(bo(Tl(gk), ••• ,Tm(gk)))

Similar to part b or c.

= (ind.hyp.)

The continuity of the T(f) plays an essential role in the justifica

tion of Scott's proof rule, as given in the next theorem:

THEOREM 2.2. (Scott's induction rule, simple case). Let T1 (f), T2 (f), T(f)

be as in definition 1.2, with f declared by f(x) <= T(f) (x). Assume that

the following -two conditions are satisfied:

a. T 1 W) S T 2 Wl.

14

b. For any function x, if T1(X) ~ T2 (X) then T1(T(X)) ~ T2 (T(X)).

Then we may conclude that

C. Tl (f} '.:_ T 2 (f}.

i i
PROOF. First we show that Tl (T (Q)} c T2 (T (Q)), for all i, by induction

on i.

1. i = 0. Follows from assumption a of the theorem.
i i

Assume Tl (T (Q)} =. T2(T (Q}). Apply

x = Ti(Q). Then T(X) = Ti+l(Q), and

2. assumption b of the theorem with
i+1 i+l

weobtainT 1 (T (Q)}'.:_T 2 (T (Q)},

as desired.
i i

From Tl (T. (Q)) c T2 (T (Q)) '.for all i, we infer that

U:=Q Tl (T 1 (Q}) ~ U:=Q T2 (T 1 (Q)): By the continuity theorem, from this We
00 1 00 1

obtain T1 (Ui=O' (Q)) '.:_ T2 (Ui=O' (Q)}. An application of theorem 1.1 then

yields T1 (f) '.:_ T2 (f), as was to be shown. 0

COROLLARY 2.2. (Scott's induction rule, general case).

Let T(f), Tli (f), T2i (f), i E I (I any index set) be as in definition 1.2,

and let f(x) 4" T(f) (x) be the declaration of f. Let ~(f) be the family of

inclusions {Tli(f)

are satisfied:

a. ~ Wl holds.

c T2 .Cf)}. 1 . Assume that the following two conditions
- 1 1E

b. For any function x, if ~(X) holds, then ~(T(X}) holds.

Then we may conclude that

c. ~(f) holds.

PROOF. A direct generalization of theorem 2.2. D

Before exhibiting our first examples of applying the rule, we gener

alize our results for systems of n ~ 2 simultaneously declared recursive

procedures. We consider the system of declarations

(2. 1)

or, in shorter notation,

{f. (x) 4" T. (f1 , •.. ,f) (x)}._1 .
i i n i- , ••• ,n

15

First we have to extend definition 1.2, where in clause b we now allow

any of the functions fi, instead of the single f. The obvious extension

of definition 1.3 is left to the reader. Next, we generalize theorem 1.1
-"~f· h . . (i) as follows: For a:ny T = T(f1, ... ,fn)' we U"1' ~net e approx-imat~ons T ,

with respect to (2.1), as follows:
1. T(O) 0,

(i+l) (i) (i)
2. T = T0 (Tl , •.• ,Tn)

It ca:n then be shown that
00 (i)

T = Ui=O T 1.

2. For each system g1 , ..• ,gn such that {T. Cg1 , .•• ,g l c g.}. 1 1 n - 1 1= ,~~ .. ,n
we have {f. ~ g.}._1 •

J. J.. J.- I,.,.• 1Il

3. The system {f1 , •.• ,fn} is the least (simultaneous) fixed point of the

{T1, ... ,Tn}.

Theorem 2.1 also has a straightforward generalization, statement of which

is omitted here. Scott's rule (simple case) for systems becomes: Assume,

for T' = T'(f1 , ... ,fn), T" = T"(f1 , ... ,fn),

a. T'(n, ••• ,0,) ~ T"(n, ••. ,0,).

b. For all functions x1, ... ,xn' if T'(x1, ... ,Xnl ~

T" (x1 , .•. ,Xn) then T' (T 1 cx1 , ... ,Xn), ... ,Tn (X 1, ... ,Xn)) ~

T" (T 1 (x1 , ..• , Xn) , •.. , T n (X1, •.• , Xn)) .

Then we ma,y conclude that

c. T1 (f1 , ••. ,fn) ~ T"(f1 , ... ,fn).

Example 1. As first example we consider the system

(2.2)

We show that a 2°£1 = f 2 , by applying Scott's induction rule twice, with

T1 (£1 ,£2 l and T2 (f1,t2) as in (2.2), and T'(f1 ,f2)::: a 2ot1 , T"(f1,f2) = f 2 .

1. T'(f1,f2J ~ T"(f1,f2). We have to verify

a. a 2°n ~ n. This is clear.

b. Assume a 2ox1 ~ x2 • We show that a 2°T 1 (x1 ,x2) ~ T2 Cx 1,x2):

a2oT1 (X1,X2) = (df.Ti)

a 2o(AX' if p(x) then x else (x1oa1) (x)) =

AX' if p(x) then a 2 (x) else (a2ox1oa1) ~ (ind.)

16

AX" if p(x) then a 2 (x) else (x2°a1) (x)

T2 (Xl ,X2).

2. T" (f1 ,f2) S: T1 (f1 ,f2).

a. Q S: a 2on is clear.

b. Assume x2 s:; a 2°x1 .

T2 (x1,x2) = (df.T 2)

AX" if p(x) then a 2 (x) else (x2°a1) (x) s:; (ind.)

AX" if p(x) then a 2 (x) else (a2ox1oa1) (x) =

a 2 o (AX" if p (x) then x else (X1 oa1) (x) = (df. T 1)

Example 2. Let f(x) <= T(f) (x), with T(f) = AX" if p(x) then x else

f(f(a(x))). We show that f 0 f =f. In this case we do not need to prove two

inclusions, but we apply a slightly modified version of Scott's rule (the

formulation of which is left to the reader) to prove directly the following

equivalence: Let g be any function satisfying g = AX' if p(x) then x else

g(g(a(x))). Let Tl (f) - g 0 f, T2 (f) = f. We show that Tl (f) = T2 (f) by

establishing

a. T1 Wl = T2 W), i.e.,, g 0 Q = Q .. This is clear.

b. Assume Tl (X) = T2 (X), i.e., g 0 X = X. We have Tl (T(X))

go(AX" if p(x) then x else X(X(a(x)))) =

AX' if p(x) then g(x) else (g 0 X0 X0 a) (x) (ind.ass.)

AX' if p(x) then g(x) else (xoxoa) (x) = (ass. on g)

AX' if p(x) then (if p(x) then x else g(g(a(x))))

else (Xoxoa) (;c.) =

AX" if p(x) then x else (XoXoa) (x)

T 2 (T(X)).

From a and b, g 0 f = f follows. Since this has been proved for arbitrary

g satisfying g = T(g), we have in particular that f 0 f =f.

Remarks.

1. In the sequel, when justification of the "Q-case" of Scott's rule is

trivial -which it usually is- no explicit mention will be made of it.

2. The introduction of g in example 2 was needed in order to avoid deal

ing with T2 (f) = f 0 f, which would lead to undesirable complications

in proving that from X = X0 X, T (X) = T (X) 0 T (X) may be inferred. By simi

lar techniques it is always possible to avoid, if necessary, simultaneous

17

induction on all occurrences of f. Again, no explicit attention will

be paid to this in the sequel. (It is even the case that with a

slightly different formal presentation of Scott's rule, we would not

have encountered this difficulty at this place at all).

Before dealing with our third example, which is concerned with func

tions of t;wo variables, we have to make some comments on the extension of

our theory to functions of more than one variable. The syntactic part of

this, which amounts to another extension of definition 1.2, is not diffi

cult. However, some complications arise when we want to extend the evalua

tion rules. Consider e.g. the declaration f (x,y) ., if x = 0 then 0 else

f(x-1,f(x,y)), and suppose we want to evaluate f(l,0). Since the first

argument is# O, we replace f(1,0) by f(O,f(l,0)). We now have a choice

between replacing the inner- or the outermost f. If a computation rule is

chosen which prescribes that the innermost occurrence is always to be

dealt with first, then the computation does not terminate, whereas (con

sistently) choosing the outermost f yields the value O. Thus we see that

different computation rules may lead to different results. The problems

connected with this phenomenon have been investigated extensively in papers

by CADIOU, MANNA & VUILLEMIN [9,10,21,30]. They have reached the conclu

sion that the function determined by a recursive procedure of the form

f(x,y)., T(f) (x,y), say, is not necessarily the least fixed point of the

functional T. However, this seems to be explained by their failure to real

ize that different parameter mechanisms lead to, possibly, different func

tionals which may have different least fixed points. We feel that when such

distinction between the functionals is made, then the least fixed point re

sult remains true. We do not have a complete proof of this,*) but our claim

finds strong support in as yet unpublished work of NIVAT, who also finds no

deviation from the least fixed point characterization. These matters will

not be dealt with any further in our notes: From now on we assume that all

functions defined by a recursive procedure declaration satisfy the least

fixed point property. The sceptical reader may, if he so wishes, impose the

restriction that a computation rule is chosen -such as the equivalent of

call-by-name- which justifies this also in the eyes of MANNA c.s.

*) (Added in proof) A complete proof is given in DE BAKKER [31].

18

Example 3 (MORRIS [25]). Let

f(x,y) <=if p(x) then y else h(f(k(x),y))

g(x,y) <=if p(x) then y else g(k(x),h(y))

We show that f = g, by applying Scott's induction (general case) to the

two equalities: f = g, and :>..x:>..y•f(x,h(y)) = :>..x:>..y•h(f(x,y)). The "S1-case"

is left to the reader. Next assume as induction hypothesis: x 1 = x2 , and

:>..x:>..y·X1 Cx,h(y)) = :>..x:>..y•h(x1 (x,y)). We have

Also

:>..x:>..y•t 1 cx1,Xz(x,y) = (df.f)

:>..x:>..y• if p(x) ~ y else h(X1 (k(x) ,y))

:>..x:>..y· if p(x) then y else xl (k(x) ,h(y))

:>..x:>..y• if p(x) then y else x2 (k(x),h(y))

:>..x:>..y•t 1 cx1 ,x2) (x,h(y)) = (df.f)

(second ind.hyp.)

(first ind.hyp.)

(df.g)

:>..x:>..y• if p(x) then h(y) else h(X1 (k(x),h(y))) (second ind.hyp.)

:>..x:>..y• if p(x) then h(y) ~ h(h(X1 (k(x) ,y)))

>.xA.y•h (if p(x) then y else h(X 1 (k(x),y))) = (df.f)

>.x:>..y•h (t 1 cx1 ,x2) (x,y)) .

Example 4. Recursion induction and fixed point induction.

The first technique for proving equivalence of recursive procedures was

the so-called method of recursion induction, due to McCARTHY [22]. This

works as follows: In order to prove the equivalence f 1 = f 2 , one tries to

find some total f, recursively defined by f(x) <=t(f) (x), such that t sat

isfies t(f1) = f 1 and t(f2) = f 2 • If such f is found, one may infer that

f 1 = f 2 • The method is easily explained using theorem 1.1, part b: From

this we obtain that, under the given assumptions, f = f 1 and f = f 2 • The

requirement that f be total then immediately yields (f=)f1 = f 2 . A variant

of recursion induction is PARK's fixed point induction: Let f be declared

by f(x) <=t(f) (x), and assume we want to show f = g for some g. Then, again

according to theorem 1.1, part b, it is sufficient to show t(g) = g, and

this is the method called fixed point induction by PARK in [26]. It is an

interesting, and as yet open, question to determine precisely which class

of inclusions can be shown by fixed point induction, and which class needs

the additional power of Scott's induction. Observe that fixed point induc

tion uses only the monotonicity of the t's, whereas Scott's induction in

the form presented here uses in addition their continuity. To what extent

this requirement may be weakened has been investigated in [15]. (cf. also

exercise 6. 3.)

19

This concludes our first series of examples of applying Scott's rule.

Many more will follow in sections 4 and 5.

3. PROGRAMS AND RELATIONS

We now introduce a way of looking at programs which will enable us to

apply the techniques of the previous sections to obtain both proofs of a

variety of program properties, as well as an insight in the methods pro

posed for deriving such proofs, such as FLOYD's inductive assertion method,

and its reformulations and extensions as proposed by MANNA, HOARE and

DIJKSTRA.

The first idea is the conception of a program as a specification of

a mapping between states. When a program P with initial state x prescribes

a computation resulting in final state y, we say that y = P(x). It is con

venient to allow also non-deterministic programs. Therefore, we consider

P as a binary relation, and now write xPy to indicate that initial state x

is transformed by P to final state y. Note that xPy 1 and xPy2 , with y 1 F y 2 ,

are possible.

Next, we indicate how certain important programming concepts are mod

elled in such a relational framework. We start with a class of elementary

actions, A,A1 ,A2 , ••• , each of which determines in some way we do not care

to analyze further a relation between states. (If the reader insists, he

may take assignment statements as examples of such elementary actions. The

description of their effect will then need the introduction qf the state

components, corresponding to the variables manipulated by the program.

An assignment changes one such component, and leaves the others invariant.

However, this level of detail will not enter our considerations.) Starting

with elementary actions, more complex programs are constructed by means of

the go-on operator (" ; ") which prescribes sequential execution, the con

ditional-, and the while-statement. Before we deal with these, we intro

duce some further tools. Let V be the domain of states, and let

R,R1 , ••• ,s, ... be binary relations over V, i.e., subsets of V x V. As oper

ations between relations we have:

20

a.

b.

c.

d.

Binary operations. Composition: R1 ;R2 =

{(x,y) I 3z[xR1z and zR2yJ}. Union: R1uR2

{(x,y) I xR1y v xR2y}. Intersection: R1nR2 = {(x,y) I xR1y A xR2y}.

Unary operation. Conversion: R = {(x,y) I yRx}.

Nullary operations. The empty relation {i.e. the empty subset of

V x V) is again denoted by Q. The identity relation I is defined as

I {(x,x) J x E V}. The u:niversai relation is defined as U = V x V.
* 00 i

The star operation: R I u Ru (R;R) U •.• = Ui=O R.

We apply these operations in our modelling of programming concepts. Se

quencing is easy: If the program s 1;s2 maps initial x to final y, then

there must be an intermediate state z with xs 1z and zs2y. Thus, sequential

execution of programs corresponds directly to relational composition. For

the treatment of conditionals, we need a new convention. Consider a state-

ment if p then s 1 else s 2 • Whereas s 1 and s 2 may be considered as binary

relations, this is not the case with the predicate p l), since it maps

states to {0,1}, say. Therefore, we use the following device: With the

predicate p we associate two relations, p 2) and p both of which are sub

sets of the identity relation I, and defined by

p

p

{ (x, x)

{ (x,x)

p (x)

p(x)

1}

o}.

Observe that these definitions imply that p n p = Q. we can now give the

relation corresponding to the statement if p then 8 1 else 82 :

(3. 1)

We shall adopt the convention that " ; "binds stronger than "u", and omit

parentheses such as in (3.1) from now on.

1)

2)

Not all terminologies agree on our use of the words relation and pred
icate. Therefore, we emphasize that in our paper a (binary) relation
is a subset of V x V (elsewhere possibly identified with a two-place
predicate), and a predicate is a mapping from V to {0,1} (elsewhere
maybe called a one-place predicate).

Using p to denote both a predicate and a relation is admittedly
ambiguous, but the reader will soon get used to the transition between
the two, and, hopefully, will eventually appreciate its advantages.

As an example of applying the notation, we look at one of McCARTHY's

axioms for conditionals [22] which states the equivalence of if p then

21

(if p then s 1 else s 2) ~ s 3 , and if p ~ s 1 else s 3 • As corresponding

relations we have p;(p;s1 u p;S2) u p;s3, and p;s 1 u p;s3 , respectively.

The first of these may be simplified by applying some obvious properties

of the relational system such as

distributivity of";" over "u", i.e.,

R1 ; (R2uR3) = R1;R2 U R1;R3
for p,q s I we have p;q = p n q

fl;R=R;fl fl

n u s = s u n = s

etc. (Simple properties such as these will be applied tacitly in the

sequel.) We now obtain p; (p;S1up;s2J u p;S 3 = p;p;S1 u p;p;S2 u p;S3

p;S1 u fl;S 2 u p;S3 p;S1 u fl u p;S3 = p;S1 u p;S3 , as was to be shown.

The next programming construct we treat is simple itePation, in the

form of the while statement while p do s, with the usual semantics: iterate

S as long as p remains true (including the case "do nothing" (I) if p is

false to begin with). As corresponding relation we have

(3.2) * (p;S) p

for which we shall also use the notation p*S. On the base of (3.2) we can

prove simple properties such as 1. p*S = p;S;p*S u p. 2. p*(p*S) = p*S.

3. Cp1vp2l*S = p 1*S;p2*(S;p1*S), etc. We give the proof of the first two,

leaving the third to the reader (see section 4.1, however):

1. p*S = (p;S) \p ((p;S); (p;S) * u I) ;p= p;S; (p;S) * ;p U I;p

= p;S;p*S U p.

2 (* - * * -• P* p*S) = (p; (p*S)) ;p = (p; (p;S) ;p) ;p

(* - * - * - -I u p; (p;S) ;p u p; (p;S) ;p;p;(p;S) ;p u .•.) ;p

(I u p;(p;sJ*;p u n u ..•);p =

pup; (p;sJ*;p;p = p u Cp;s)*;p = (p;s>*•P = p*S.

Manipulations with relations as just exhibited are rather elementary,

and one would hope for a more powerful method of dealing with such simple

properties. This is achieved by the extension of our relational approach

to recursive procedures, making available the tools of sections 1 and 2.

Consider a procedure declaration of the form

22

(3. 3) procedure P;T(P)

where T(P), the procedure body, is a statement of one of the forms discus

sed above, and made up by means of composition and selection from the ele

mentary actions, and, possibly, P itself. e.g., we might have as instances

of (3. 3)

procedure P 1 ; p;A;P 1 up

(3.4)

etc. (Note that a call of P 1 has the same effect as performing p*A). A

point of possible confusion should be mentioned here. The procedures we

just introduced are parameterless, whereas the recursive procedures of

sections 1 and 2 were assumed to have n 2 1 arguments. This is explained

by considering the procedures as in (3.3) or (3.4) as having the state as

only, suppressed, parameter. In the notation of section 1, we would write

for {3.4):

f 1 (x) <=if p(x) then f 1 (a(x)) else x

f 2 (x) <=if p (x) then a 2 (f 2 Ca 1 (x))) else a 3 (x) •

Thus, we see that there is a direct transliteration between the parameter

less recursive procedures of this section, and the one-parameter recursive

procedures of sections 1 and 2. This is an important insight, since we can

now immediately apply the fundamental results of these sections, which

only need slight notational reformulation. We have:

THEOREM 3.1. Let P <= T(P) be the declaration of a recursive procedure.

a. (Monotonicity) If x1 ~ x2 then T(x 1J ~ TCX2).

b. (Fixed point property) P = T(P).
00 i

c. P = Ui=O T (~).

d. (Fixed point induction)If T(Q)

e. (Least fixed point property) P

f. (Continuity) Let x0 :::_ x1 ~ ... :::_

Then T(U:=OXi) = u:=O T(Xi).

:::.

X.
:l

Q

n
then p :::. Q.

{X:X T(X)}.

::,. & &c u:=o x ..
:l

g. (Scott's induction) From the two asswnptions

1. T1 {Q) S T2 {Q)

2. For GI'bitrary X, if T1{X) s T2(X) then T1{T{X)) s T2{T{X)),

it mzy be aonal:uded that

3. T1 {P) S T2 {P).

h. (Saott's induation, general aase). Left to the reader.

PROOF. Reformulation of theorems 1.1, 2.1 and 2.2. 0

23

~- It may be of interest to compare result e of theorem 3.1 with the

KNASTER-TARSKI result [28] stating that each monotonic function mapping

subsets of some set V to subsets of V (or, more generally each monotonic

function on a complete lattice) has a least fixed point. This is shown as

follows: Let D = O{X: T(X) S X}. Note that {X: T(X) S X} is non-empty,

since V itself is a member of this collection. Let n1 = n{x: T(X) = x}. We

show that D = n1• D.::_ n1 is clear. In order to show n 1 S D, it is suffi

cient to prove that T{D) = D.

a. T{D) s D. Let X be such that T(X) s X. Then, by definition of D, D S X;

hence, by monotonicity of T, T(D) s T(X) s X. We see that T(D) is in

cluded in each X such that T{X) s X, and, since D is the greatest

element with this property, we have that T{D) s D.

b. D s T{D). From part a we have that T(T(D)) s T(D). Hence D s T{D), by

the definition of D.

Thus, we see that the e:r:istenae of a least fixed point of T is already

implied by its monotonicity. In order to obtain the characterization in

terms of successive approximations, i.e., as U~=O Ti(Q), we need in add-

tion the continuity of T. In fact, T(U~_0Ti(Q)) (cont.) U~=O T(Ti(Q))
00 i+l 00 i 00 i-i . = Ui=O T (Q) = Ui=OT (Q). Thus, Ui=O T (Q) is a fixed point which is

{lemma 1.5) included in each fixed point, whence it is the least fixed

point.

Another important result which was not yet mentioned in section 1 or

2 is the following. Consider the system of declarations

(3.5)

24

According to a direct generalization of theorem 3.1, part e, we have

(3.6)

which, e.g. according to the KNASTER-TARSKI result, may be replaced by

In other words, {P1 ,P2) is obtained as the simultaneous least fixed point

of the pair of transformations CT1,T2). However, it can also be approached

as iterated least fixed points in the following sense:

THEOREM 3.2. Let P1 ,P2 be as in (3.6), and let

P'
1

n{x1 x1 Tl (Xl,n{x2:X2 T2(X1,X2)})}

P' 2 n{x2 x2 T2 (Pi ,X2)}.

Then P1 pt' p2 P2·

~· By the definitions of Pi, P2 we have Pi

= T2 (Pi,P2l· (This uses the fact that n{x2 : x2

Tl (Pi ,P2l, P2

T2 cx1,x2J} is monotonic

in x1 , verification of which is left to the reader (who may either work

this out for himself, or consult theorem 3.3)). Hence we infer that

pl =- pi I p2 =- P2, by (3.6). Now let P2 ~f. n{x2: x2 T2 (Pl ,X2)}. Since

T2 (P1 ,P2) = P2 , we have P2 =. P2; hence, T1 {P1,P2) =- T1 (P1 ,P2) = P1. Repla

cing P; by its definition we obtain T1 (P1 ,n{x2 : x2 = T2 CP 1,x2J}) .::_ P1 ; thus

by the definition of Pi and fixed point induction, it follows that Pi=. P1 .

From this we conclude that T2 (Pi,P2) =. T2 (P1 ,P2) = P2 , and P2 =. P2 follows

by the definition of P2 and fixed point induction. 0

Remark. The straightforward generalization of this theorem to a system with

n > 2 declarations is left to the reader.

Next, we introduce a new notation, which provides an alternative for

denoting recursive procedures. Consider the declaration P e=T(P). Clearly,

one would expect a procedure Q, declared by Q e= T (Q) , to have the same effect

as P, assuming that T(Q) is obtained from T(P) by substituting Q for all

occurrences of P in T, and, moreover, that T(P) did not contain any

25

occurrences of Q to begin with. Thus, we see that in procedure declarations

one is confronted with another instance of the phenomenon of a variable
binding operator (such as V which binds x in Vx[x > y + x+1 > y], or A which

binds x in Ax•x+2*y). This is made explicit in the following notation: For

a procedure P declared by P ,.. T(P), we denote P by

µX[T(X)].

E.g., for P1 declared by P1 ,..p;A;P1 up, we have P1 = µX[p;A;X up], and

for P2 declared by P2 ,..p;A1;P2 ;A2 u p;A3 , we have P2 = µX[p;A 1 ;X;A2 u p;A3 J.
The µ-operator has the usual consequences for the notions of free and

bound occurrences of variables. In particular, all occurrences of X in

µX[T(X)] are bound, and an occurrence of Yin some T1 is free iff it is

not a bound occurrence. Moreover, if Y is any variable not occurring free

in T, we have that µX[T(X)] = µY[T(Y)], where T(Y) is the result of sub

stituting Y for all free occurrences of X in T(X). (Without the proviso on

Y, we would obtain e.g. the undesirable result that µX[p;Y;X u p] and

µY[p;Y;Y u p] are equivalent. The reader should check that this would imply

the absurd result that, for any Y, P*Y = p.)
The µ-notation can also be applied directly to systems of procedures

in a way which is justified by theorem 3.2. Let P1 ,..T1 (P1 ,P2l,

P2 ,.. T2 (P1 ,P2) be such a system. Then, by theorem 3.2, P1 =

= µX[T 1 (X,µY[T 2 (X,Y)])], P2 = µY[T2 (P 1 ,Y)]. In order to obtain the full

profit of this notation, we are interested in the justification of an iter

ated version of Scott's induction (examples will follow in the next section).

This requires the following extension of our (monotonicity and) continuity

result from theorem 3.1:

THEOREM 3.3.

a. Let T(X,Y) be monotonic in x and Y. Then µX[T(X,Y)] is monotonic in Y.

b. Let T(X,Y) be continuous in x and Y. Then µX[T(X,Y)] is continuous in
Y.

PROOF.

a. (Monotonicity). Let Yl ~ Y2 , Pl = µX[T(X,Y 1)J, P2 = µX[T(X,Y 2)J. We

show that P1 ~ P2 . By fixed point induction, it is sufficient to show

T(P2 ,Y1) ~Pr By the fixed point property, P2 = T(P2 ,Y2). Now

26

T(P2 ,Y 1) ~ T(P2 ,Y2 l follows by the monotonicity of T(X,Y) in Y.

b. (Continuity). Let YO~ Y1 ~···~ u:=O Yi. We show that

µX[T(X,U.Y.)] = U. µX[T(X,Y.)]. By monotonicity, µX[T(X,Y.)] ~
i i i i i

µX[T(X,l!.Y.)]; hence, U. µX[T(X,Y.)] c µX[T(X,U.Y.)] is established.
i i i i - i i .

To prove the reverse inclusion, we introduce the notation 'I'i (X, Y),

defined by T0 (x,Y) = n, Ti+l(X,Y) = T(Ti(X,Y) ,Y). By the continuity

of Tin X, µX[T(X,Y.)] = u. Tj(n,Y.),
i J i

and µX[T(X,U.Y.)] =
i i .

= U. Tj(n,U.Y.). Thus, we see that we
J . i i .

have to prove U. TJ(n,U.Y.) ~
J i i

u. U. TJ(n,Y.) = U. U. TJ(n,Y.).
j J i jJ i i

Thus, it is sufficient to show

T (Q,UiYi) ~ Ui T (Q,Yi). We use induction on j.

1. j = 0. Clear.

2. Assume the result for j. Then

j+l
T (Q,UiYl) = (df.)

j
T(T (Q,UiYi),UiYi) ~ (ind. hypothesis)

T(UiTj(Q,Yi),UkYk) (cont. of T(X,Y) in X and Y)

j
Ui Uk T(T (Q,Yi),Yk) (mon. of T(X,Y) in X and Y)

j
Ui Uk T(T (0,,Y max(i,k)) ,Ymax(i,k)) =

U T(Tj(Q,Y) ,Y)
n n n

·+1 u TJ W,Y) .
n n

With this theorem we have completed our presentation of the main math

ematical properties of programs with recursive procedures in a relational

framework. We saw that the important notions developed in the first two

sections can be carried over to this setting, and, moreover, that a new

notation required some additional justifications. The next sections will

bring a variety of applications of these ideas.

4. APPLICATIONS TO PROGRAM EQUIVALENCE

4.1.. A while statement example

We derive a series of results, having some independent interest as

well, leading up to the proof of (p1vp2)*S = p 1*S;p2*(S;p1*S). We shall

use "f.p.p." (fixed point property), "f.p.i." (fixed point induction), and

"1. f .p.p." (least fixed point property) to indicate an appeal to theorem

3.1, parts b, d and e respectively.

a. µX[T(X,X)] = µX[µY[T(X,Y)]].

27

~: Call the left-hand side P1 and the right-hand side P2 . By f.p.p,

P2 µY[T(P 2 ,YJ]; hence, by f.p.p. again, P2 = T(P2 ,P2). Hence,

by l.f.p.p., P1 S P2 •

2: By Scott's induction it is sufficient to show: if X S P1 then

µY[T(X,Y)] s P1 . In order to establish this, we apply once more

Scott's induction, and now we must show: if X S P1 , and Y S P1 ,

then T(X,Y) ~ P1. Since P1 T1 (P1 ,P1) by f.p.p., the result

follows by monotonicity.

(Observe that we have here a case of iterated Scott's induction,

as justified by theorem 3.3.)

b. µX[Tl (T2 (X))] = T1 (µX[T 2 (Tl (X))]) , or Pl = T1 (P2) for short.

c: Assume X S Ti (P2). Then T1 (T2 (X)) S T1 (T2 (Tl (P2))) =Ti (P2l,
by monotonicity and f.p.p. Hence, the result follows by Scott's

induction.

2: Assume T1 (X) S P1• Then T1 (T2 (T1 (X))) ~ Pl = T1 (T2 (Pl)) by monot

onicity, and the result follows again by Scott's induction.
c. µX[A; T (X)] = A; µ·X[T (A; X)]

Proof: special case of b.

d. µX[p;A 1;x U p;A2 J = µX[p;A 1;X U p];A2
Relational reformulation of example 1 of section 2.

e. (p1vp2)*S =

µX[(p 1up2);S;X u p 1 u p 2J =

µX[pl;S;X u p2;S;X u P1'P2]

µX[p 1;S;X u p1; (p2 ;S;X u p2JJ = (part a)

µX[µY[p 1;S;Y u p1; (p2 ;S;X u p2JJ = (part d)

µX[µY[p 1;S;Y u p 1J(p2 ;S;X u p 2)J = (def. *)

µX[p 1*S; (p2;S;X u p 2)J = (part c)

p 1*S;µX[p 2;S;p1*S;X u p2J = (def. *)

p 1*S;p2*(S;p1*S).

4.2. Tree traversal

We present an example (taken from [4]) which originated from the de

sire to prove the equivalence of two ways of tree- (actually, forest-)

28

traversal. It soon appeared, however, that the desired equivalence is a

special case of a more general result. First we state the original problem.

We use the "family-oriented" terminology for trees: Let s and b be predi

cates which when applied to node x, are interpreted as

s(x) is true iff x has a son

b(x) is true iff x has a younger brother.

Let S, B and F be elementary actions which, when applied in node x, have

the following effect:

S(x): visit the eldest son of x

B(x): visit the next-younger brother of x

F(x): visit the father of x.

Let A be an arbitrary elementary action, to be performed in all nodes of

the tree, without side effect on the traversal mechanism. Let

Qt µX[A; (s;S;X;F u '§); (b;B;X u b)]

Q2 µ"X[A; (s;S;X;b* (B;X) ;F u s)].

The following relationship was conjectured to hold between Q1 and Q2:

However, a need was felt for a formal verification of this equivalence,

and this was provided in the following way: First of all, some study of the

form of the definitions of Qi and Q2 , and their alleged relationship,

yielded that the result to be shown is in fact independent of the special

domain of trees and is a special case of a rather general equivalence

stated as: Let us define

(4.1)

(4. 2) pi (Y) µX[T 1 (TO(X,Y))]

(4. 3)

29

Then

(4.4)

Assuming this to be established, we see that our tree-traversal result may

be obtained by taking

TO(X,Y)

Tl (X)

T 2 (X)

Y;X

b;B;X u b
A; (s;S;X;F U s)

In fact, with this choice for the T's, P0 = µX[T2 (X);T1 (X)] = 21 ,

P1 (Y) = µX[b;B;Y;X U b] = b*(B;Y), and P2 = µX[A;(s;S;X;b*(B;X);F Us)]

= 22 , whence T0 CP 1 (P2),P2) = P2;P1 CP2) = P2;b*(B;P2) = 22;b*(B;Q2), as was

to be shown.

We now prove (4.4).

£: we have, by (4.2) and (4.3), that P1 CP2 l = T1 (T0 CP 1 CP2 l ,P2l, and

p2 = T2(To(P1 (P2),P2)). Hence, To(T1 (To(P1(P2),P2)), T2(To(P1 (P2) ,P2)))

= T0 CP1 CP2J,P2J, and P0 s T0 CP 1 CP2),P2) follows by (4.1) and l.f.p.p.

~= By (4.1), T1 CP0) = T1 (T0 CT1 CP0),T2 CP0))). Hence, by (4.2) and l.f.p.p.

Using this, we show that T0 CP 1 CP2),P2) £PO by Scott's induction on P2 •

Assume T0 CP1 (X),X) s P0 • We prove that then

To(Pl (T2(To(P1 (X),X))), T2(To(P1(X),X))) s Po. Using the induction

assumption, this simplifies to verification of T0 CP1 CT2 CP0)) ,T2 CP0)l S

P0 = T0 CT1 CP0J,T2 CP0)), which follows by (4.5), using the definition

of P0 and monotonicity. D

The result of this section has been further generalized by

DE ROEVER in [27].

4.3. The 91-function

In (1.2) we defined the 91-function g(x) (which was first considered

By McCARTHY) as

30

g(x) <=if x > 100 then x - 10 else g(g(x+11))

and promised to show that g(x) h(x), with h(x) defined as

h(x) <= if x > 100 then x - 10 else 91

a. g S h.

By f.p.i. it is sufficient to show

Ax· if x > 100 then x - 10 else h(h(x+11)) s Ax•h(x).

We have

Ax· if x > 100 then x - 10 else h(h(x+11)) =
Ax• if x > 100 then x - 10 else h(if x+11 > 100 then x+ll-10 else 91) =

Ax• if x > 100 then x - 10 else if x + 11 > 100 then h(x+l) else h(91)

AX" if x > 100 then x - 10 else 91 =
Ax•h(x)

since, if x ~ 100 and x + 11 > 100, then either 89 < x < 100,

whence h(x+l) = 91, or x = 100, whence h(x+1) = h(101) 91.

b. h s g.

Let k(xl <=if x > 100 then x - 10 else k(x+1). Then h = k. In fact,

h ~ k follows as in part a; that k s h can be proved from basis prop

erties of the integers (see below), as exhibited in [2]. The proof of

this is not repeated here. We now show k s g: It is sufficient to show

Ax·g(x) s Ax·g(g(x+10)). This follows once more by Scott's induction.

As hypotheses we take X s Ax•g(x) and X s Ax·g(g(x+10)).

We verify that

1. Ax• if x > 100 then x - 10 else X(X(x+11)) s Ax•g(x),

which is clear, and

2. Ax• if x > 100 then x - 10 else X(X(x+11)) s Ax·g(g(x+10)).

The left-hand side of this inclusion is rewritten as

Ax• if x + 10 > 100 then (if x > 100 then x-10 else X(X(x+ll)))

else X(X(x+11))

and the right-hand side as

Ax• if x + 10 > 100 then g(x) else g(g(g(x+10+11))).

Now we see that the left-hand side is indeed included in the

right-hand side since

Ax· if x > 100 then x - 10 else X(X(x+11)) ~ Ax•g(x),

by the definition of g and the first hypothesis, and

31

Ax•X(X(x+11)) ~ AX"g(g(g(x+10+11))), which follows from X ~ g and

X ~ AX•g(g(x+10)).

(The basic properties of the natural numbers referred to above are the fol

lowing: We use the relational version, with S the successor relation,

S: predecessor, and p 0 (=test for zero) = S;S n I (- denoting complemen

tation with respect to the universal relation U.) Then we postulate:
v v v* * S;S = I, S;S ~ I, and U ~ S ;p0;s From these assumptions one can show

that 1) p0 is an "atom", Le., p 0 ;U n U;p0 ~ p 0 • 2) r ~ µX[p0 u S;X;S].

Property 2, together with a suitable inductive definition of the ">" rela

tion, is used in [2] to show that k c h.)

4.4. Miscellaneous

We present here two remarks which are a side-effect of our attempts

at an understanding of the method described in COOPER [11]. We shall not

try to summarize the method, since part of our problem is that we do not

sufficiently grasp what is proposed in it. We conjecture, however, that

remark 1 and I or remark 2 have some (possibly common) generalization ex

plaining COOPERS's ideas.

REMARK 1. Let P1 , P2 , P3 and P4 be defined by

µX[T1 (X)]

µX[T 2 (X)]

µX[Tl (T2 (X))]

µX[T 2 (Tl (X))]

Suppose we know that P1 , P2 , p3 and P4 are all total functions. Then

pi= p2 iff p3 = P4.

PROOF.

a.

b.

Assume P3 = P4 • We have

P3 = µX[T1 (T2 (x)J] = (cf. section 4.1, part b)

T1 (µX[T 2 (T1 (X))]) = Tl (P4) = (assumption) Tl (P3).

Hence, P1 ~ P3 , by £.p.i. Similarly, P2 ~ P4 . Since P 1 and P2 are

total functions, P1 = (P3=P4=JP2 follows.

Assume P1 = P2 . We have

pl = Tl(P1) = T1 (P2) = T1(T2(P2)) = T1(T2(P1)).

Hence, P3 ~ P1 , by f.p.i., and similarly P4 ~ P2 . That p 3 P4 now

32

follows as in part a. D

REMARK 2. Let T1 , T2 be continuous, dnd such that

a. T 1 WJ =T2 WJ.

b. For some fixed i ~ 1, and all X,
i

T 1 (T2 (X))

Then µX[T l (X)]

T 2 (T1 (X)).

µX[T 2 (X)].

PROOF. We first show that, for each k=l,2, ...

(4. 6)
1 . .k-1

T /i+ ... +i (ill)

by induction on k.

1. Basis step: T2 (Q) = T1 (Q) is direct from assumption a.

2. Assume the result for k. From assumption b we obtain that for each
l i*l integer l ~ 0: T2 (T1 (X)) T1 (T2 (X)). Thus, we derive

T~+l(Q) = T2 (T~(Q))

1 . .k-1
T (T +i+ •.. +i Wl)

2 1

. (1 . . k-1) 1 Tl.* +i+ ... +i + (Q)
1

(ind. hyp.)

. (1 . . k-1)
Ti* +i+ ... +i (T (Q))

1 2

1 . .k
T/i+ ••• +i (Q).

This gives the proof of (4.6). Now u;=O Ti(Q)

by monotonicity of T1 and T2 • D

(ass. a)

For some time it was thought that remark 2 could not be proved using

only the pure µ-calculus (i.e., using only Scott's induction, and not the

characterization of recursive procedures as infinite unions). Recently

however, MILNER showed (private communication) how such a proof could be

given: Assume a and b above (i=2,say), and let P1 = µX[T 1 (X)],

P2 µX[T 2 (X)].

1. P2 ~ P 1 • This is easily shown by applying Scott's induction to obtain

the proof of T2 (P 1) ~ P 1 •

2. P 1 ~ P2 • We apply the general form of Scott's induction to ~(P 1),

where ~(X) consists of the three inclusions

(4. 7)

(4.8)

(4.9)

~(Q) is immediate from the assumption that T1 (Q)

~(X), and show ~(T 1 (X)), i.e.,

(4.10)

(4.11)

(4 .12)

The proofs of these are obtained as follows:

(4.10): immediate from (4.7)

(4.7) (4 .8)
(4.11): T1 (Ti(X)) ~ T1 (T 1 (T1 (X))) c

T1 (T1 (T2 (X))) ~(ass. b) T2 (T 1 (X))

(4. 8)
(4.12): T1 (X) ~ T2 (X)

(4.9)
~ T2(P2) = p2

Thus, ~(P 1) holds by Scott's induction, implying P1 ~ P2 . D

33

It is of some interest to observe that remark 2 cannot be proved using only

monotonicity of T1 and T2 . This was shown by VUILLEMIN, who provided a

counter-example for i = 1, see exercise 6.3.

5. APPLICATIONS TO PROGRAM CORRECTNESS

5.1. The inductive assertion method

A program P is called partially correct with respect to the (initial)

and final) predicates p and q iff

(5.1) Vx,y[p(x) A xPy + q(y)]

34

i.e., iff for all states x,y, if state x satisfies p, and P transforms x

to y, then state y satisfies q. This is the formulation which leads to the

inductive assertion method, as proposed by FLOYD [14] and further developed

by HOARE [16] and MANNA (e.g. [18,19]).

OUr aim here is to study the theoretical properties of the method, and

in particular to prove its consistency and completeness in the framework

of our relational theory (section 5.2). Furthermore, we shall deal in some

detail with HOARE's formulation of the method when applied to while state

ments, and investigate the power of the axiom he has proposed (section 5.3).

Finally, we spend some attention on ideas in a recent paper by DIJKSTRA

[13], which we try to interpret in our framework, with as main result a

very short proof of a (corrected) version of the main result of that paper

(section 5. 4) •

For the benefit of the reader who has not seen the inductive assertion

method before, we first briefly explain it using a simple example from

[14]. Consider the following flow diagram for calculating the sum of the

<E----------p: n ? 0

sum:= 0

i:=

A "'" - - - - - - - - - r: sum

~----+--< i o> n

sum:= sum+a.
1

i:= i+l

<2- ___ q: sum

!

l

i-1
Ia.,io>n+l

j=I J

n

I a.
j= I J

For this program we want to show that, if the initial condition p: n ? 0

is satisfied, then the final condition q: sum= 1~ 1 a., holds. This is
LJ= J

done via the introduction of a suitable intermediate (so-called inductive)

assertion r, which has to satisfy:

35

1. Basis step: When control arrives at point A in the diagram for the

first time, the current values of the variables satisfy r. This follows

since 0, i 1 imply Ii-1 (=0), and n <:: o, i 1 imply sum = = sum = a. = j=l J
i 5 n + 1.

2. Inductive step: Assume r holds at point A at any intermediate stage

in the computation. Then we verify that r holds again when control

arrives in A after once going through the loop. I.e., assume sum=

,i-i · < 1 s· th ·t f th t t · tak k lj=l aj, i - n + . ince e + exi o e es is en, we now

that i 5 n. Executing sum:= sum+ a. gives sum 1 ~ 1 a .. Next,
i lJ= J I i-1 i:= i + 1 yields that sum= a and i 5 n + 1, together estab-j=l j'

lishing r.

From 1 and 2 we conclude that r holds at all stages of the computation.

Thus, when eventually the - exit from the test is taken, it is easily

checked that ...,(i5n) and r together imply q.

It should be observed that the method does not deal with terrrrination.

Separate means are needed in the example to prove that i 5 n will become

false eventually. (This explains the qualification partial in our termi

nology. When termination is also shown, it is customary [18] to speak of

total correctness.)

Further details of the inductive assertion method, with many examples,

can be found e.g. in [19].

5.2. Consistency and completeness of the method

Relationally, we write for (5.1)

(5.2) p;P S P;q.

By way of introduction to the general problem, we shall first deal with the

simple case that P is a while statement, say P r*S. The formulation of

the inductive assertion method for this case can be read off from the

following picture:

36

-E-------p

-E------- s

s + r

~--G

In order to prove p;r*S ~ r*S;q, we try to find intermediate s such that

(5. 3)

The consistency of the inductive assertion method is then expressed by the

following formula (from second-order predicate logic):

(5 .4) Vp,q [3s l s;r;; : ;;S;s l :> p;r*S ~ r*S;q l
s;r ~ r;q j

* -Verification of (5.4) is immediate, by using r*S (r;S) ;r.

The completeness of the method is expressed by the converse of (5.4) :

l p<r•S £ r>S,q * 3, [p ~ ;,s,.] l (5.5) Vp,q s;r;S ~

s;r ~ r;q

(This is actually a reformulation of ideas by MANNA, which needs to be

refined, however, in order to deal with his treatment of total correctness,

see [3].)

Before proving (5.5), we first develop some further tools. Let us look

once more at (5.1)

Vx,y[p(x) A xPy + q(y)].

This may be rewritten in two other, equivalent, forms:

Vy[3x[p(x) A xPy] + q(y)]

Vx[p(x) + Vy[xPy + q(y)]]

leading to the introduction of two new operators, denote by 11 0 11 (not to

37

be confused with the operator denoting composition of functions of section

1) and "+", respectively.

DEFINITION 5. 1.

(poP) (x) ++ 3y[p(y) A yPx]

(p+p) (x) ++ Vy[xPy + p(y)].

From the definition the following lennna is easily obtained:

LEMMA 5.1.

1. p;P S P; (pop)

(p+q);P S P;q.

2. For all p,q, if p;P S P;q, then p 0 P sq and p =. (p+q).

3. pop n {q p;P S P;q}

p+q U {p p;P S P;q}.

Some further properties of "o" and "+" are collected in lemma 5.2.

LEMMA 5.2.

1. nop = pon = n, P + I = I, I + p = p.

2. P;IoP = P, (p+n) ;P n.

3. poq = p n q = p;q, I S (p1-+p2) iff Pl S P2 •

4. po(P1;P2) (poP1)oP2 , (P1;P2) + p = Pl + (P2+p).

5. po(P1uP2) (poPl) u (poP2), (P 1uP2) + p = (Pl-+p) n (P2-+p}.

6. If Pi S P2 , then poP1 S p 0 P2 , and P2 + p S P1 + p.

7. If p S q, then p 0 P .'.:_ qo P, and P + p '.:_ P + q.

8. (puq)op =(pop) u (qoP), p + (pnq) = (p+p) n (p+q).

9. If Pisa function (i.e., P;P s I), then (pnq)op = (poP} n (qop).

If Pisa function (i.e., ¥1P s I), then P + (puq) = (p+p) u {P+q).

38

PROOF. Clear from the definitions. D

Let U, as before, denote the universal relation, and let

denote complementation with respect to I. Then

LEMMA 5.3.

1.

2.

U;p;~ r.
v paP.

PROOF. Left to the reader. D

this time

The operators "o" and "+" provide us with the tools to prove (5.5)

and its generalizations. For (5.5), we may take either s = p 0 (r;s)*, or

s = (r;s)*;r + q. we verify only that the first choice of s satisfies the

conditions.

a. P = P n I = poI .:: * po (r;S) ,

using lemma 5.2, parts 3 and 6.
* b. (po(r;S)) ;r;S .:: * r;S; (po (r;S)) iff (lemma 2 .1. 3)
* (p 0 (r;S))o(r;S) .:: p 0 (r;S) * iff (lemma 2. 2. 4)
* * po((r;S) ;r;S) .:: po(r;S) if (lemma 2.2.6)

* * (r; S) ;r;S ::_ (r;S)
* and the last inclusion is clear from the definition of

c. (po(r;s)*);r .:: r;q iff (lemma 2.1. 3)

(po(r;s)*)or .:: q iff (lemma 2.2.4)
* (p 0 ((r;S) ;r) l .:: q iff

po (r*S) .:: q iff (lemma 2.1.3)

p;r*S .:: r*S;q

and the last inclusion holds by assumption. D

The next step is to extend (5.4) and (5.5) to flowcharts which are

not just simple while statements. Here we use the well-known idea of as

sociating a system of recursive procedures with a flowchart, such that

execution of, say, the first procedure of the system is equivalent to

executing the flowchart. We shall not describe this association in any

formal detial, but illustrate it by an example. Consider the diagram:

39

-<----PI (QI)
~--'--~

+

Two solutions are provided, which are dual to each other in a rather nat

ural sense:

1.

2.

p1 <= A1;P2

p2 <= p1;A2;P3 u P1;A3;P4

P3 <= p2;P5 u P2iA3;P4

p4 <= P3IP3 u P3iP5

PS<= I.

Q1 <= I

Q2 <= Ql;A

Q3 <= Q2;p1;A2 U Q4;P3

Q4 <= Q2;p1;A3 u Q3;p2;A3

Qs ""'Q3;p2 u Q4•P3·

We expect the reader to have no difficulties in convincing himself that

execution of the flowchart is equivalent to execution of either P1 or Q5 •

Lacking a formal definition of the way a flowchart is executed, we cannot

present a formal proof of this. What we do prove is (the generalization of)

the equivalence between P1 and Q5 .

40

Let us consider the general form of a system of declarations of which

that for P1 to P5 is a special case:

(5 .6)

which we compare with the "transposed" system

Q . ""' Q1 ; Al . u .•• u Q ; A . u /J. . I
J ,J n n,J J

j=1, .•. ,n+l

with /J.j defined as

j=2, ... ,n+1.

We shall prove by Scott's induction that

(5. 7) j=l,2, ... ,n+l.

Once this has been done, the result P1 = Qn+l is immediately obtained:

Application of (5.7) with j = 1 yields that P1 = l1 1 ;P1 ;:: Q1:P 1 ;:: Qn+l'

and with j = n + 1 we get Qn+l = Qn+l;I = Qn+l'Pn+l S P1 .

1.

2.

Proof of Qj;Pj;:: P1 , j=l,2, .•. ,n+l. By Scott's induction it is suf

ficient to verify that from the assumption Xj;Pj;:: P1, j=1, .•. ,n+1.

we may infer that {(U~=l Xk;l\ .) u /J.J.};PJ. S P 1 , j=l, ... ,n+l.
. ,Jn

We have, for J=l, ... ,n+l, that Uk=l ~;1\,j;Pj S
n

(df.Pk) Uk=l Xk;Pk

;:: (ind. ass.) P1 . Also, /J.j;Pj;:: P1 , j=1, .•. ,n+1, is immediate from the

definition of IJ.j.

Proof of Q,;P. c Q 1 ,j=1, ... ,n+1. Assume
J J - n+

We have, for j=1, ... ,n,Q.;{(U~=l A. k;~)
n J J,

c Uk_l(Q,;A. k;Xk U Q,;A. l);:: (df. Qk)
- J J, J J,n+

Qj;Xj S Qn+l' j=1, ... ,n+1.

U A. +l} J ,n

n
~ Uk=l (Qk;Xk) u Qn+l S (ind. ass.) Qn+l" For j=n+l,

We now return to the main theme of this subsection: the consistency

and completeness of the inductive assertion method. For the flowchart case,

i.e., for systems such as (5.6), this is formulated as follows:

Let {5.6) be given. We are interested in the partial correctness of P1 ,

say, with respect to given p,q. Now we assert that

41

p. ;A .. c Ai .;pj' J~ l. l.,J - ,]

i=1, •.• ,n, j=1, ..• ,n+i

PROOF.

1. If Direct by Scott's induction.

2. Only if: Assume p;P1 S P1;q. We have two possible solutions for the

Pi : Pi= Pi+ q, and pi p 0 Qi. We verify the first solution.

From p;P1 S P1;q we have p S (P1+q) = p 1 . Also, Pn+i = Pn+l + q
= I + q q. In order to show that p. ;A .. s A .. ;p., we must check

l. l.,J l.,J J
whether (P.+q);A .. SA. ,;(P.->q), i.e.,

l. l.,J l.,J J
Vx,y[Vz[xP.z + q(z)] A xA .. y + Vt[yP.t + q(t)]]

l. l.,J J
Assume Vz[xP.z + q(z)], xA .. y, and yP.t. Then xA .. ;P.t, hence xPit, l. i,J J l.,J J
and q(t) follows. 0

The result just proved can be extended to systems of recursive pro

cedures which are not restricted to the "regular" form of (5.6). (Note that

there is a natural way of associating a grammar with the system (5.6) which,

according to standard terminology, is regular. The systems to be dealt with

presently have arbitrary context-free grammars associated with them.) We

shall not present the full development of this, which is rather complicated

and the main topic of our paper [3]. Rather than doing this, we shall give

some hints on the direction this generalization takes.

First we consider a declaration of the form

(5.8)

We are interested in the extension of the preceding results to such P.

The solution needs an extension of the inductive assertion method in that

now an infinity of intermediate assertions is used. In fact, we have that

42

p;P S P;q iff

(5.9) Vp,q P S P0 -,

3{p, ,q,}
i. i. i=O, 1, .•.

f=O, 1, ••.

The proof of the if-part is again direct. For the only-if-part we define

or

i
pi = poAl

qi po(nQi

i=O, 1, ...

i=O, 1, ..•

i=O, 1, •••

i=O, 1, •••

Verification that these two solutions for the pi,qi satisfy the conditions

is left to the reader. The following example may help the intuition. Con

sider as special case of (5.8):

P <= [n>O I n:=n-1];P;[n:=n+1] u [n=O]

in a notation we hope is self-explanatory. we want to show that for each

non-negative integer n, we have nPn. This is proved by taking, for some

fixed n0 , pi (n) as: n = n0 - i, and qi (n) =pi (n). It is not difficult

to see that the pi,qi satisfy the conditions of (5.9) for this particular

choice of the A1 ,A2 and A3 • Hence, p0 ;P s P;q0 , or Vn,m[n=n0 A nPm ~ m=n0J,

which is equivalent to Vn[nPn], is established. D

The situation becomes more complex with our next example:

The simple indexing of the assertions used above (pi,qi,i=0,1, •••) is now

no longer sufficient. Instead of this, we use assertions indexed with fi

nite sequences of O's and l's: Let E be the empty such sequence, and cr an

* arbitrary element of {0,1} • Then we have as analogue of (5.9):

p;P £ P;q

(5.10) Vp,q

'
such that I

odo, 1}*

43

The proof of the if-part of (5.10) is again not difficult, but the only

if-part needs additional tools which will not be developed in these notes.

(see [3] for the full story). What we do provide is an indication how to

view (5.10) in such a way that application to practical proofs becomes

feasible. Consider the example

P • [n>O] I n:=n-1];P;[t:=t+1];P;[n:=n+1] u [n=O].

(The reader might recognize here part of the control structure of the re

cursive solution of the towers of Hanoi puzzle. The result proved presently

yields the nUmber of necessary disc-movements.) We want to prove that

(n,t)P(n,t+2n-1). A direct proof using (5.10) is possible but awkward. A

more convenient method is based upon a stronger version of (5.10):

Vp,q

iff I p;P = P;q

3V,f: V V,g: V-+ V,{p(o),q(o)} V o0 E V such that OE 1

P.:: p(oo), q(f(o));A2 .:; A2;p(g(o))

q(ool .:: q q(g(o)) ;A3 £ A3;q(o)

p(o);A4 £ A4 ;q(o)
OEV

l
I
I

I
J

44

* i.e., instead of assertions p,q indexed by oE{0,1} we use p,q with a,

element of some suitable domain V, as parameter. Applying the idea to our

example, which manipulates states x consisting of pairs of integers (n,t),

we make the following choices for V, p,q, f and g. Let V also consist of

pairs (v,T) of integers. We put

p(a) (x)

q(a) (x)

f (cr)

g(o)

p(v,T) (n,t): {n=v, t=T}

q(V,T) (n,t): {n=v, t=T+2v-1}

f (V, T)

g(V,T)

(V-1,T)
v-1 (v-1,T+2) .

We easily see that these choices satisfy our requirements, i.e., that

1.

2.

3.

4,

{n=v, t=T}[n>O I n:=n-1] :: [n>O I n:=n-l]{n=v-1, t=T}
v-1 v-1 {n=v-1, t=T+2 -1}[t:=t+1] :: [t:=t+l]{n=v-1, t=T+2 }
v-1 v-1 v {n=v-1, t=T+2 +2 -1}[n:=n+1] ~ [n:=n+l]{n=v, t=T+2 -1}

{ n=\J, t=T} [n=O] :: [n=OHn=v, t=T+2 v -1}.

From this we conclude that p(cr);P ~ P;q(cr), i.e., that

{n=:v, t=T};P <::: P;{n=v, t=T+2v-1}, as was to be demonstrated. D

5.3. Hoare's while statement axiom

In [16], HOARE has proposed an axiomatic formulation of the FLOYD

method. As basic formal construct he uses {p}P{q}, which is another way

of writing p;P ~ P;q. Various axioms and proof rules are then given, de

pending upon the form of the P. E.g., for Pan assignment statement,

x: = e, say, HOARE's axiom (H) is: {p[x/e]} x:
a

e{p}, where p[x/e] de-

notes the result of substituting the expression e for all occurrences of

x in p. (Complications arise in the definition of substitution when x is

a subscripted variable. Treatment of this is omitted here (and in most

other places the method is presented as well!)). As rule for composition

(He) we have: if {p}P1{q} and {q}P2{r}, then {p}P1 ;P2{r}. We shall be con

cerned in particular with HOARE's while statement axiom (H) which reads
w

as follows: If {pAu}S{u}, then {u}p*S{,pAu}. In words, if S leaves property

u invariant (under the additional assumption that p holds), then p*S also

leaves u invariant. Moreover, p is always false upon exit from the while

statement.

(For the uninitiated reader, application of the system to FLOYD's

sU11DDation example may be helpful. We want to show that

{n~O}s:

step is the application of H as follows:
i-1 w

Choose for u: {s = '· 1 a., is n+1}.
l]= J

For p we have: i s n.

,i-1 \i-1
We verify whether {s = lj=l aj, i s n+1, i s n}S{s = l·-i aj, i S n+1}

"---------...;;...-__ __,, '---v--'_,;]::;..-_ __;~------"

u

{ - \i . 1 < } { s - lj=l aj, i+ - n+l i:=i+l s

p u

l i-1
1 aJ., is n+1} and j=

{s+ai = l~=l aj, i+i s n+l}s:=s+ai{s = l~=i aj, i+1 s n+l}.

The desired result then follows by He. Filling in the further details of

the proof is omitted.)

Relationally, Hw is written as

{5.11) Vu[u;p;S S p;S;u,.. u;p*S S p*S;p;u]

45

The question now arises whether (5.11) is a complete characterization of

the while statement, i.e., whether the following holds: Let X be any rela

tion satisfying

(5.12) Vu[u;p;S S p;S;u • u;X S X;p;u]

Is X = p*S? The answer is no, as can be seen by taking e.g. X

we do have that X s p*S. This is proved as follows l)

f!. However,

1. First we show that the following holds:

If Vu[u;X s X;u • u;Y s Y;u] then Y s x*.

Proof: Take x0 fixed, and define u0 (x) ~ x0x*x. It is direct that

* * u0;X S X;u0 ; hence, u0 ;Y S Y;u0 , i.e., Vx,y[x0X x A xYy + x0x y].

* * This implies that Vy[x0Yy + x0x y]. Since x0 was arbitrary, Y S X

follows.

2. Assume (5.12). Since X;p;u s X;u, application of part 1 yields that
* x s (p;S) • Taking u - I in (5.12) yields that X S X;p. Hence,

x s X;J;> S * -(p;S) ;p = p*S. D

This result settles the question as to the precise status of HOARE's

1)
This proof is due to SCOTT.

46

axiom: In itself, it does not give the whole truth about the while state

ment. In particular, it is not a consequence of the axiom that

p*S = p;S;p*S up. However, taken together with the f.p.p., it does char

acterize the while statement, i.e., for each X which satisfies

a. X = p;S;X U p
b. Vu[u;p;S S p;S;u => u;X S X;p;u]

we have X = p*S.

The next question which arises is whether (5.11) may be strengthened

in such way that a complete characterization is obtained. This is easy

to answer on the basis of the results of the preceding section. In fact,

we have: Let X satisfy

[s;r;; : ;;S;s]j
s;r S r;q

Then X = r*S

By (5.4) and (5.5) it is sufficient to show: Assume

Vp,q[p;X S X;q <==>p;r*S S r*S;q]

Then X = r*S.

Now this result is nothing but a simple consequence from the fact that

X SY..,,. Vp,q[p;Y s Y;q => p;X s X;q], the proof of which is immediate by

taking, for fixed XO' p(x) ++ x = XO' and q(x) ++ xoYx. D

5.4. A "theorem" due to Dijkstra

In this section we try to provide an interpretation to the ideas

developed in a recent paper by DIJKSTRA [13]. It will turn out that a

corrected version of the main result of that paper is immediately obtained

by an application of Scott's induction.

DIJKSTRA also takes (HOARE's formulation of) partial correctness as a

starting point. Consider once more (5.2):

p;P S P;q

47

Now, quoting from [13]: "We consider the semantics of a program P fully

determined when we can derive for any postcondition q to be satisfied by

the final state, the weakest precondition that for this purpose should be

satisfied by the initial state. We regard this weakest precondition as a

function of the postcondition q and denote it by fp(q) ,".

This suggests to us that what is meant here is that

fp(q) = P + q = U{p I p;P s P;q}. The use of the function fp(called a

"predicate transformer" by DIJKSTRA) in the paper furthermore seems to im

ply that satisfaction off (q) guarantees termination, i.e., that f (q)
p v p

should be taken as fp(q) (IoP) n (F+q)

(or, f (q) (x) ++ 3y[xPy] A Vz[xPz + q(z)]), or, equivalently, that
p v

fp(q) = (qop) n (F+q). The addition of the requirement of termination is

in particular motivated by DIJKSTRA's "law of excluded miracle", which is

his way of referring to the fact that fp(Q) = n. Observe that, for P a not

everywhere defined program, (P+n) F n, and we see that the interpretation

fp(q) = P + q fails. DIJKSTRA also imposes the restriction that P be a ..,
function, in which case fp(q) reduces to qoP, as can easily be checked by

the reader. With this interpretation, the axioms in [13] become provable.

E.g., the first four of them are the first halves of lemma 5.2, parts 1, 4,

7, 8, 9.

Next, we look at the main result from [13], which DIJKSTRA has bap

tized as "Fundamental Invariance Theorem for Recursive Procedures". We

again quote from [13]: Consider a text, called H", of the form

H" : • • • H' . • • H' . • . H' ••.

to which corresponds a predicate transformer fH" such that for a specific

pair of predicates q and r, the assumption q S fH' (r) is a sufficient as

sumption about fH' for proving q S fH 11 (r). In that case the recursive pro

cedure H given by

proc H; •.• H •.• H ..• H .••

enjoys the property that

48

First we observe that, as stated, this theorem is incorrect. Choose

q =I, r = Q. Then the hypothesis reduces to: I::. fH 1 (Q) is a sufficient

assumption to prove I ::. fH" Wl, or, by the "law of excluded miracle",

I ::. Q is a sufficient assumption to prove I ::. Q. This is clearly satisfied,

and we infer that In fH(I) ::. fH(Q), i.e., fH(I) = Q. This is nothing but

the assertion that Vx~3y[xHy], i.e., His nowhere defined. Since H was an

arbitrary procedure, we have derived a contradiction.

It is not difficult, however, to remedy the situation. The corrected

version is: Assume

a. If q n fH' (I) ::. fH' (r) then q n fH" (I) s;: fH" (r) .

Then we may conclude that

b. q n fH(I) s fH(r).

This may be seen as follows: Let us rewrite q n fH(I) S fH(r):

Vx[q(x) A fH(I) (x) -+ fH(r) (x) J , or

v v
Vx[q(x) A 3y[yHx] + 3t[r (t) A tHx]J , or

Vx,y[q(x) A xHy -+ 3t[xHt A r(t)J , or

Vx,y[q(x) A xHy + r(y)],

where the last step follows since H is a function. Thus, we see that

q n fH(I) S fH(r) is nothing but a complicated way of writing q;H S H;r

Thus, the theorem obtains the form: Assume

a. If q;H' ::_ H' 'r then q;H" ::_ H";r.

Then we may conclude that

b. q;H f. H;r.

Since H" text (H') = T(H'), say, and for H we have the declaration

proc H;T(H), we finally see that the theorem is a direct consequence of

Scott's induction. D

6 • EXERCISES

6.1. (The 0 -operator with while statements [2,4])

a. Show that po (q*A) = q n µX[p u (qnX) oA] .

b. Assume p u p = I, po A,
l

s pi, i=l,2. Is it true that

q*(p;Al u p;A2) p;q*A1 u p;q*A2?
v

c. Let pop := poP.

Assume p Up= I, Aop E p. Show that (q*A)op E ((pAq)*A)op,

(q*A)op E ((pAq)*A)op.

6.2 (Extinction of relations [3])

Let, for any R, Rt be defined by

49

i.e., Rt denotes the result of iterating Ras long as it is defined.
t E.g., when R is the relation of "direct descendant" in a tree, R

connects the root of the tree with all its leaves.
t tt ttt a. Show by an example that R,R ,R and R may all be different.

tttt tt b. Show that, for all R, R = R .

6.3 (Continuity vs. monotonicity, cf. 4.4 (VUILLEMIN))

Let T1 ,T2 satisfy the properties as suggested by the following picture:

'•'

00 i
i~Tl([l)

50

Derive from this picture that for T1 ,T2 satisfying

1. T1 cn> = T2 cn>,
2. Tl(T2(X}} = T2(T1(X}), for all x,
3. T1,T2 monotonic,

it is not necessarily the case that µX[T 1 (X}]

6.4 (Greatest fixed points}

a. (PARK}. Let T be monotonic. Let

respect to U. Prove

denote complementation with

µX[T(X}] vX[T(X)]

where vX[T(X)] is the greatest fixed point of T, i.e.,

vX[T(X}] = U{X:X = T(X)}.

b. ([15] and MAZURKIEWICZ). Let R be any relation, and let p be de

fined as

p U{q I q qoR}.

Show that p(x) holds iff there exists an infinite sequence

x=x0 ,x1 ,x2 , •.• , such that x0 Rx1 Rx2 ••••

c. Interpret µX[R+X] for any R.

6.5 (Axiomatization of the natural numbers)

Let S (successor) be a relation satisfying

1. s;s =I. 2. s;s =I. 3. u = 5t,s*
Put p0 = S;S n I (t and - as in 6.2 and 6.4). Prove

a.

b.

Po•u n U;po
I = µX[pO U

= Po·
S;X;S].

c. Let F be any function satisfying p0 ;F
v

F = µX[p0 ;Al U S;X;A2J.

6.6 (Applications in formal language theory)

Let E be any alfabet, E* and £ as usual,

Let, for A,B = E*, AB = {wx I w € A, x €

for T any monotonic function from 2E* to

subset of E* satisfying X = T(X).

a,b,a1, ... ,an, b 1 , ... ,bm €E.

B}, let aB = {a}B, etc. Let,
E*

2 , µX[T(X)] be the least

a.

b.

51

Let, in standard notation, G
L(G) µX[aXb u t].

({S},E,{S+asb,S+e},S). Show that

Let a* = µX[aX u E]. Prove that {a,b}* a*(ba*i*. (cf. 4.1).

c. Let

d.

. {S+b1, ••• ,S+bm }
({S} ,E,

s+sa1, ••. ,s+san

S+b1, ••. ,S+bm

·({S T} "' S+b1T, ••• ,S+bmT
I I'-' I

T+al, ••• ,T+an

T+a1T, ••• ,T+anT

,S)

,S)

Show that LCGl) = LCG2J using fixed point techniques (cf. 5.2;

this result is used e.g. in the usual proof of the Greibach Normal

Form theorem) •
* + Let a be as in part b, and a a*a. Prove, using the notation

of 6.4 referring to a universe consisting of all finite and in

finite sequences over E = {a,b}:

REFERENCES

[1] ASHCROFT, E.A., Z. MANNA & A. PNUELI, Deaidab7,e properties of monad

ia funationaZ sahemes, J.ACM, 20 (1973) 488-499.

[2] DE BAKKER, J.W., Reaursive Proaedures, Mathematical Centre Tracts 24,

Mathematisch Centrum, Amsterdam, 1971.

[3] DE BAKKER, J.W. & L.G.L.T. MEERI'ENS, On the aompZeteness of the in

duative assertion method, to appear in Journal of Comp.

Syst. Sc.

[4] DE BAKKER, J.W. & W.P. DE RoEVER, A aaZauZus for reaursive program

sahemes, in Automata, Languages and Programming (M. Nivat, ed.),

p. 167-196, North-Holland, Amsterdam, 1973.

52

[5] BEKIC, H., Definable operations in general algebra, and the theory of

automata and flOllJcharts, Report IBM Laboratory Vienna, 1969.

[6] BLIKLE, A., An algebraic approach to the mathematical theory of pro

grams, cc PAS Report 119, Warsaw, 1973.

[7] BLIKLE, A. & A. MAZURKIEWICZ, An algebraic approach to the theory of

programs, algorithms, languages and recursiveness, in Proc. of

an International Symposium and Summer School on the Mathematical

Foundations of Computer Science, Warsaw-Jablonna, 1972.

[BJ BURSTALL, R.M., Proving properties of programs by structural induction,

Computer J., J:l, (1969) 41-48.

[9] CADIOU, J.M., Recursive definitions of partial functions and their

computations, Memo AIM-163, Stanford University, 1972.

[10] CADIOU, J.M. & Z. MANNA, Recursive definitions of partial functions

and their computations, in Proc. of an ACM Conference on Proving

Assertions about Programs, p. 58-65, ACM, 1972.

[11] COOPER, D.C., On the equivalence of certain computations, Computer J.,

2. (1966) 45-52.

[12] COURCELLE, B., G. KAHN & J. VUILLEMIN, Algorithmes d'equivalence et

de reduction a des ex-pressions minimales dans une classe

d 1equations recursives simples, to appear in Proc. 2nd. Col

loquium on Automata, Languages and Programming, Springer Lecture

Notes in Computer Science, 1974.

[13] DIJKSTRA, E.W., A simple a.xiomatic basis for programming language

constructs, Indagationes Mathematicae, 36 (1974) 1-15.

[14] FLOYD, R.W., Assigning meanings to programs, in Proc. of a Symposium

in Applied Mathematics Vol. 19-Math. Aspects of Computer Science

(J .T. Schwartz, ed.), p. 19-32, 1967.

[15] HITCHCOCK, P. & D.M.R. PARK, Induction rules and proofs of program

termination, in Automata, Languages and Programming (M. Nivat,

ed.), p. 225-251, North-Holland, Amsterdam, 1973.

[16] HOARE, C.A.R., An a.xiomatic basis for computer programming, c. ACM,

11. (1969) 576-580.

[17] KLEENE, S.C., Introduction to Metamathematics, North-Holland,

Amsterdam, 1952.

53

[18] MANNA, Z., Mathematical theoY'!J of partial correctness, in Symposium

on Semantics of Algorithmic Languages (E. Engeler, ed.),

p. 252-269, Lecture Notes in Mathematics, Vol. 188, Springer,

Berlin, 1971.

[19] MANNA, Z., Introduction to the Mathematical TheoY'!J of Computation,
McGraw-Hill, 1974.

[20] MANNA, Z., S. NESS & J. VUILLEMIN, Inductive methods for proving

properties of programs, c. ACM, !§_ (1973) 491-502.

[21] MANNA, Z., & J. Vuillemin, Fixpoint approach to the theory of compu
tation, c. ACM, ~ (1972) 528-536.

[22] MCCARTHY, J., A basis for a mathematical theOY'!J of computation, in

Computer Programming and Formal Systems, p. 33-70 (P. Braffort

& D. Hirschberg, eds.), North-Holland, Amsterdam, 1963.

[23] MILNER, R. Implementation and applications of Scott 1s Zogic for

computable functions, in Proc. of an ACM Conference on Proving

Assertions about Programs, p. 1-6, ACl'c., 1972.

[24] MILNER, R., Logic for computable functions, description of a machine
implementation, Memo AIM-169, Stanford University, 1972.

[25] .MoRRIS, J.H., Another recursion induction principle, c. ACM, .!..!•
(1971) 351-354.

[26] PARK, D., Fixpoint induction and proof of program semantics, i.n

Machine Intelligence, Vol. 5, (B, Meltzer & D. Michie, eds.),

p. 59-78, Edinburgh University Press, Edingburgh, 1970.

[27] DE RoEVER, W.P., Operational, mathematical and axiomatized semantics
for recursive procedures and data structures, Report ID 1/74,

Mathematisch Centrum, Amsterdam, 1974.

[28] TARSKI, A., A lattice theoretical fixpoint theorem and its applica
tions, Pacific J. of Math., ~ (1955) 285-309.

[29] SCOTT, D. & J.W. DE BAKKER, A theory of progra1ns, unpublished notes,

IBM Seminar, Vienna, 1969.

[30] VUILLEMIN, J., Proof techniques for recursive programs, IRIA Report,

1973.

[31] (added in proof) DE BAKKER, J.W., Least fixed points revisited,

Report IW 22/74, Mathematisch Centrum, Amsterdam, 1974.

ALGORITHMIC LOGIC by J;:. ENGELER

Algorithmic Logic • . . • . 57

1. Formulas and Their Meaning. 58

2. Expressing Properties of Programs in Infinitary Languages 63

3. Formalization of the Notion of Computation in First-Ord1r

Logic • • • • • • • . • • • . • 69

4. The Axiomatization of Algorithmic Theories. 75

5. The Group of a Problem. • • . • 81

MATHEMATICAL CENTRE TRACTS 63, 1975, 57-85

ALGORITHMIC LOGIC

E. ENGELER

Eidgenossische Technische Hochschule, ZUrich, (CH)

Algorithmic logic, like so many mathematical concepts, is perhaps best

defined by a closure operation. Let me indicate the first few steps in the

iteration:

Methods of formal logic applied to study basic concepts and problems about

algorithms, (meaning, correctness of programs, proofs of existence of

functions viz. construction of algorithms, etc.).

Algorithmic study of methods in logic, (decision procedures and their com

plexity, simplification of Boolean expressions, etc.).

Algorithmic study of methods of logic to study algorithms, (automatic

proofs of correctness of programs, automatic program generation, etc.).

etc.

The overriding aspect of algorithmic logic, thus conceived, is the

stress put on the formal manipulative component: the concept of an algorithm

as a formula, linked with other means of formal expression in a formal

logical system. Such a formal system should ideally be powerful enough for

the three main modes of employ for a formal system:

unambiguous expression of the relevant notions (for example: properties

of programs such as termination, equivalence, partial correctness),

availability of a formal proof system

treatment of metatheoretic questions about the formal system (e.g. limits

of realizability of proof procedures on a computer, relations to other

systems of logic).

It is clear, that as goals become more definite, choices of the formal

systems become more important and more varied. For the present exposition

we select only a small sampling of algorithmic problems, chosen in order to

make the presentation of the formal system particularly simple, but still

representative enough to show the spirit of algorithmic logic.

58

1 . FORMULAS AND THEIR MEANING

We are all familiar with the fact that, as mathematical scientists,

we can at once recognize the meaning of a given formula. For example:

Formula

(x2-z sin y)/(y-x)
3 2

(x>O) + (3x-x y>x -2xy)

var x,y: integer;

begin y := O;

while sqr(y) # x do y := y+l

end.

Meaning

partial fur..ction JR x JR + IR

Boolean function IR x JR +]3

partial function JN x JN + JN xJN •

These examples are taken from formal languages, and our ability to

determine their meanings depends on the fact that formulas can be uniquely

decomposed in components whose meaning in turn determines uniquely the

meaning of the composite formula.

Let us consider a simple example, namely the language first-order

predicate logic for the natural numbers

N <N,+, • ,=,0, 1>,

to be denoted by

L(+, • ,=,0, 1).

The set of formulas is determined by a contextfree grammar on the terminal

alphabet

(,) ,A,V ,•,3,V,O, 1,+, • ,=,x,o, 1, ... ,9.

This grammar is best presented by its syntax diagram

variable:

59

term:

variable

formula:

,__ __,term term

1---~---l>lformula formula

variable formula

To each diagram corresponds a set of expressions, called a syntactical

category (va.riahles, teY'ms, formulas). We may consider each line of a dia

gram involving boxes as defining an operation on the syntactical categories.

E.g. the line

----8-EJ-8-B-8-
associates to any pair T 1,T2 of elements of teY'mS another element of teY'mS

where the right-hand side is the string of symbols obtained by concatenating

the symbols"(", ")", "+",and the strings T 1 and T2 in the order indicated.

Not all expressions in L(+,•,=,0,1) are composite by means of one of

the eight operations associated to the grammar. Such expressions are called

atoms; in the present case the terms 0 and 1 and all variables are atoms.

60

We are now ready to state the two basic properties of the language which

will allow us to define semantics:

(i) (Induction axiom).

L(+,•,=,0,1) is the closure of the set of atoms under the syntactical

operations o1, .•• ,o8 •

(ii) (Unique readability axiom).

Each composite expression determines uniquely an operation Oi and

component expressions out of which it is composed.

{Abstractly: if a= Oi (a1, ••• ,anil' b = Oj(b1, ••• ,bnjl are composite

elements and a= b then i = j and a 1 = b 1, a2 = b2 , ••• ,ani= bni.}

These two axioms make L(+,•,=,0,1) a uniquely readable (or "structured")

language; in the terminology of contextfree grammars one would say that the

grammar given by the diagrams is unambiguous. Their importance lies in the

fact that they allow us, quite generally, to define mappings

S: L(+,•,=,0,1) + M

into any non-empty set M by recursion. To determine S it is sufficient to

prescribe its effect on the atoms and its behaviour with respect to compo

sitions 01, ••• ,08 : Let M #~and let p 1, •.• ,p8 be operations on M of the

same arity as the operations o1, •.. ,o8 •

THEOREM. For any funation s0 : atoms + M there exists a unique extension

S: L(+,•,=,0,1) + M suah that S(O. Ca1, ••• ,an.ll = p,(S(a 1), ••• ,S(an.ll for
i i i i

The proof of this theorem generalizes the well-known proof of the

existence of recursively defined number-theoretic functions; we leave it

to the reader. Instead, we illustrate the use of this theorem for the intro

duction of semantics for L(+,•,=,0,1). {For notational convenience we

restrict the language to finitely many variables, say x1 , ••• ,xn. Also, we

write, as customary in mathematics x1,x2 , ••• instead of x1,x2, ••. ,xs2, •••

as prescribed by the grammar.} Since terms n fol'l11UZas =~.we may treat the

definition of S on these two syntactical categories disjointly, and propose

+ (set of functions Nn + N),

SF: formulas+ (set of functions Nn + {true,false}).

The details of the definitions of ST and SF are obvious from the intended

meaning:

S (x.Ha1 , ••• ,a] =a.; T i n i

ST(O)[a1, ••• ,an] O;

ST(1)[a1 , ••. ,an] 1;

ST((T1+'2}l[al, ... ,an] = ST(Tl)[al, •.. ,an] + ST(T2)[al, ... ,an]

where + on the right-hand side designates addition in N;

ST((Tl,T2))[a1, ..• ,an] = ST(Tl)[al, ••• ,an] • ST(T)[al, ••. ,an].

true if ST(T 1)Ca 1, ••• ,an] = ST(T 2)Ca1, •.• ,an]'

S ((T =T)) = {
F 1 2 false otherwise;

S ((,PAtjJ))[a1,. .• ,a] = S (,P)[a1 , .•• ,a] AS (tjJ)[a1 , .•• ,a], F n F n F n
where A on the right-hand side designates the Boolean "and";

SF((,PVtjJ))[a1, ... ,an] = SF(,P)[a1 , ... ,an] v SF(tjJ)[a1 , ... ,an];

SF((1,P))[a1, .•. ,an] = 1SF(,P)[a1, ... ,an];

S (3x.</J)[a1 , ... ,a]
F i n

{
true if S (</J)[a1, ..• ,a. 1,m,a.+ 1, .•• ,a]
-- F J..- J.. n

= true for some m E N,

false otherwise;

s (Vx.</J)[a1 , ..• ,a] = {
F J.. n

true if SF(</J)[a1 , ••• ,ai-l'm'ai+l'"""'an]

= true for all m E N,

false otherwise.

{The semantic function SF allows us to define the concept of "a formula <P

without free variables holds in N" by

We shall use this abbreviation in sections below.}

61

As a second example of a structured language we introduce a rudimentary

programming language PASIC.

o1------.
identifier:

62

assignment:

identifier identifier

identifier

identifier

~----------1 0 >-------

statement:

>-----------1assignment

identifier statement statement

identifier statement

sequence of statements

_sequence of statements:

-----~""I statement ~sequence of statements

I J
program:

----~~~!sequence of statements

The reader observes that this language is a small fragment of PASCAL.

For the immediate expository purposes at hand it is however expressive

enough. In particular, it can easily be shown that PASIC programs suffice

to compute all partial recursive functions.

Indeed, "the function computed by the program rr" is the first type of

meaning, semantics, that we associate to PASIC programs. Thus, let rr be a

PASIC program in which all identifiers that occur are among x 1 , •.. ,xn.

S: PASIC + (set of partial functions Nn + Nn)

is defined recursively as follows according to the three syntactical

categories assignments, statements, sequence of statements.

SA(xi := x.)[a1 , •• .,a J = [a1, ... ,a. 1,a.,a. 1, •.. ,a];
J n i- J i+ n

SA(xi := Sx.)[a 1 , .•• , a J [a1 , •.. ,a. 1,a.+1,a. 1 , •.• ,a];
J n i- J i+ n

SA(xi := Px .) [a 1 , ••• , a J [a1, ... ,a. 1,a.-1,a. 1, ..• ,a J;
J n i- J i+ n

SA(xi : == O)[a1 , ... ,an J = [al, ... ,ai-l'O,ai+l'"""'an J.

sst')[al, ... ,an] = [al, ... ,an];

Sst(a)[a1 , ••• ,an] = SA(a)[a1 , ••• ,an]' where a is any assignment;

sst (if xi = 0 then 11, else 112J[a1, ... ,an]

Jl sst<111)[al'"""'an] if ai = 0,
sr~<112)[a1, ..• ,a J otherwise;

01..- n

0 do 11) [a1,. . .,an]

{
(Sst(11)0Sst(while xi

[a1 , ••• ,an] otherwise;

{
(SSt(rr)oSSt(~ xi

[a1 , ••• ,an] otherwise;

SSt(begin E end)[a1 , ••• ,an] = SSS(E)[a1 , .•• ,an].

63

o,

{In the four recursive definitions above we have used the symbol o for corn-

position of functions; 11, 111 , 112 are statements, E is a sequence of state

ments.}

Finally, we define S on PASIC programs by

'!I. 2. EXPRESSING PROPERTIES OF PROGRAMS IN INFINITARY LANGUAGES

As we will show in section 3, the first-order language L(+,•,=,0,1) is

quite sufficient to express all that may be desirable to say about PASIC

programs run on the natural numbers. Since first-order logic is a good

enough tool to work with, all is well. However, the need to extend the

64

logical frame of first-order arises as soon as PASIC is generalized to

formulate programs that operate on other types of data. Indeed, we shall

even prove that some extension is necessary.

To appreciate the more general setting for PASIC, assume that we have

an arbitrary relational structure

where A '/' ~'
m.

A : f. :A J -+
J

n.
R. are relations on A: RSA i, i=1, ... ,n, f.

1. J
A, j=l, •.• ,m. Assume furthermore that we are

are operations on

in possession of

some devices, oracles as it where, which allow us to effect the decisions

corresponding to the relations Ri and the operations corresponding to the

operation fj, just as for the natural numbers

N = <N,=0,S,P,O>

we assumed the executability of the basic tests

and basic assignments

x.
1.

:= o.

In other words, we make the obvious replacements in the syntax diagram of

PASIC with

i=1, ..• ,n,

respectively

:= f.(XK , ••• ,xK),
J 1 n.

j=1, .•. ,m.

1.

Let us first specify what kinds of properties of programs we envision for

our - still to be determined formalism - to express.

65

Termination

Let TI be a PASIC program for~ with identifiers x1 , ..• ,xn.

TermTI(x1, •.. ,xn) is the formula, which should express that TI terminates on

input x 1, •.• ,xn. Thus

is true if in!! the program TI terminates for all inputs. {We shall from now
+

on use the abbreviation x for x 1 ••. xn.}

Transduction

Let TransTI(x1, ... ,xn; y 1, ... ,yn) express that TI, if it terminates on input

x1, •.• ,xn at all, will terminate with values y 1, ..• ,yn assigned to the

identifiers.

Strong equivalence

Using the transduction formula, we may express that TI 1 and TI 2 are equi

valent by

Partial correctness

Given that the values assigned to the identifiers x1, .•. ,xn at input time

satisfy the formula ~(x 1 , •.• ,xn) and assuming that TI terminates on this in

put, do the values assigned to these identifiers at output time satisfy the

predicate ljJ ? This question is formulated by

-+-+ -+ -+
!! F VxVy(~(x) A TransTI(x,y) ~ ljJ(y)).

Thus, in addition to the power of expression for TermTI and TransTI, our

proposed language should be able to formulate the relevant pre- and post

conditions for program correctness investigations.

Algorithmic solvability

The language should also be strong enough for the formulation of problem

predicates that might interest us. By this we mean a formula

P(x1, .•. ,xn,y1, ... ,yn) which poses an algorithmic problem in the following

sense: does there exist a program TI(x1, ..• ,xn) whose output, if it exists,

is always a solution of p?

66

Formally

+-+ -++ -+-+
~ F VxVy(TransTI(x,y) ~ p(x,y)).

This list could be prolonged; but what we learned from it is the fact, that

many important algorithmic problems are of the form

-+ -+
~ F Vz<j> (z),

-+
where <j>(z) is a finite Boolean combination of termination and transduction

predicates. Thus, the immediate goal is to find a language which expresses

these predicates.

The following definition associates a regular language, lang(TI), the

language of the program TI to each PASIC program TI. Words in this language

are formed from symbols

+
.R. . ,
J 1 1 ... im.

J

associated to the tests Rj(xi 1, .•• ,ximj), and

il •.. in.
/k J

associated to the assignments x. := fk(xi 1, ••• ,xi). The basic idea is that
J nk

a word in the language of TI describes a possible path through the program TI,
+

successive symbols .fk showing which assignments were made, .Rl.~ 1. which J J ••• n.
decision branch was taken. The definition of lang(TI) is obvious 1 J

from this idea and the fact that such definitions may be given by recursion.

{We again make the distinction between assignments, statements, statement

sequences and programs in a step-by-step definition of lang(TI).}

S~(xi :=

s~t<

s~t(a)

f. (Xk 1 ••• 1 X]r))
J 1 '"ni

Ss't(if R. (xk , .•• ,xk)
- l. 1 mi

ss't(while R. (xk· I ••• ,xk) --- l. l. mi

ii ••. in
/k k
A, (the empty word);

S~(a) if a is an assignment;

lang (TI 1) v . R
l. kl •.. kmi

S~t(begin I: end)

s~5 (rr) = s~t(rr);

s~t (rr) ·S~5 (I:);

s •(begin I: end) = s~5 (I: l.

{Here rr, rr 1, rr2 denote statements, I: a statement sequence.}

67

Next, we associate to any w E lang(rr) a quantifier-free first-order

formula ~w(x 1 , ... ,xn) which expresses that rr, upon input x1, ..• ,xn' takes

path w through rr. The definition of ~w is by induction on the length of w.

Now, we simply define

W E

V ~ (x1, ••• , x) •
lang(rr) w n

There should be no need for a formal proof of the fact that

Termrr(a1, ••• ,an) holds in~ for elements a 1 , .•• ,an of A iff rr terminates on

input a 1, .•. ,an; we have constructed it that way. But in the course of this

construction we were forced to admit infinite disjunctions (of a very con

structive kind) and so extend first-order logic. The best-known logical

framework already in existence to treat this extension is Lw 1w (see

books by C. KARP and by KEISLER). {Since the present author was an early

contributor to the field it was natural for him to think in those terms.}

A construction very similar to the one used above gives us a (possibly

infinite) formula Transrr(x1, ... ,xn' y 1, ... ,yn) expressing the transduction

predicate. We define

68

as a first-order quantifier-free formula, expressing that TI, on input
x1, ••. ,xn takes path w through TI and obtains final values y 1 , •.• ,yn. The

only difference to the definition of $w is for A = w in which case we set

Altogether:

Actually, TransTI can be expressed as TermTI, for some appropriate TI'. From

the fact alone that TermTI can be expressed as an infinite disjunction of

quantifier-free first-order formulas we can draw some pretty conclusions.

DEFINITION. ~has the unwind property iff for any program TI which terminates

for all inputs there exists a strongly equivalent program TI' which has no

loops and for which lang(TI') s lang(TI).

It has been noted (e.g. by PATERSON, private communication), that some

structures such as the reals do have the unwind property. We give a criterion

by which this will follow.

Let algT(~) = {V;$(x) : $ is a finite Boolean combination of formules Term TI
and~ F V~$(~)}. We shall show in section 4 that algT for the reals has the

property that it can be axiomatized by a set of universal first-order form-
+ + + v + ules, say r. Now, if A F Vx Term (x) then r f- Vx w l () $w(x). - TI € ang TI

By the compactness theorem of first-order logic it follows that there exists

a finite subset w s lang(TI) such that r f- V~ w"!w $w(;). Let TI' be a

(loop-free!) program such that lang(TI') = w. We have TI' strongly equivalent

to TI as easily seen. More generally:

THEOREM. A has the unwind property iff there exists a set r of universal
first-order formules such that all ternrination sentences of algT(A) follow
from r.

PROOF. One direction has been shown above as a consequence of compactness.

In the other direction, let r be the set of all universal first-order sen

tences which follow from AlgT(!i) and assume that ~has the unwind property.
-+ -+ Let TI be such that~ F Vx Term (x) and let TI' be as a loop-free program TI

strongly equivalent to TI and with lang(TI') S lang(TI) as per assumption.
+ +

Then Vx TermTI 1 (x), which is a universal first-order sentence, holds in!
,.,. + + v + and hence Vx Term ,(x) Er. Thus I'~ Vx l (') ~w(x) and a fortiori

+ v TI + WE ang 1T
r ~ Vx 1 (l ~w(x), since lang(TI') S lang(TI). 0

WE ang TI

69

COROLLARY. If TI halts for all inputs in all models of a first-order theory r
then TI aan be unwound. 0

3. FORMALIZATION OF THE NOTION OF COMPUTATION IN FIRST-ORDER LOGIC

In special cases, in particular if number theory can be interpreted

into the theory of a structure, it is possible to stay within the framework

of first-order logic in order to express the basic algorithmic notions. In

the present section we take advantage of this fact and use it to give an

exposition of the very beautiful result of RABIN & FISCHER on the complexity

of decision procedures for additive number theory.

Let us consider the natural number system

JN = <N 1 + / • r: / Q 1 1 >

and its corresponding first-order language

L(+, • ,=,0, 1).

As mentioned before, all computations (i.e. partial recursive functions) can

be performed by PASIC programs on the capabilities P (predecessor),

S (successor), 0 (zero function) and =O (test for zero) alone. {Remark: the

language L(P,S,=0,0) is, however, not sufficient to express termination.

This follows from the fact that it is decidable, while the halting problem

for PASIC is undecidable.}

Our first goal is to associate to each program TI the set of "computation

sequences" associated to it and to define that concept in an appropriate

formal fashion.

Let us explain the notion by a simple example.

70

The program

begin

end

while x2 'F 0 do

begin

end

x2 := px2;

xl := sxl;

has two variables and seven lines, which we number as indicated (these

numbers are not labels). A aorrrputation sequence according to this program

is a finite sequence of natural numbers

The parts (yil yi2) indicate the values of x1 and x2 at the successive stages

of the computation; the numbers pi indicate the line numbers arrived at.

This sequence is a computation sequence according to u iff

pi ql A Vi(l ::> i ::> m-1

{[pi ql A y12 F 0 A pi+l q3 A Yi+l,1 = Yi,1 A Yi+l,2 = Y1,2]

v [pi q1 A yi2 = O A Pi+l = q7 A Yi+l,1 = Yi,1 A Yi+l,2 y 1,2]

v [pi q3 A Pi+1 = qs A Yi+1,1 Yi,1 A Yi+l,2 = Yi,2 - 1]

v [pi qs A Pi+l = q1 Ayi+1,1 Yi,1 + l A Yi+l,2 = Yi,2]})

We express, for purposes that will become apparent later, the same

fact by using a particular encoding of computation sequences by means of

the GOdel B-function defined as follows:

f(b,c,h) b mod (1 + (h+ 1) • c) •

Using the Chinese remainder theorem, it can be shown:

for any sequence k0, ••• ,k1 there exist b,c such that

kh = f(b,c,h), 0 s h s 1.

Thus, we propose to choose b,c such that

f(b,c, (i-1) (n+1) + j)}
1 :;:; i :;:; m,

f(b,c,i(n+l))
1 :;:; j :;:; n (=2).

The formula defining computation sequences of length m can now

obviously be rewritten as a formula

71

with the aid of the function symbol f. To write Bn(b,c,m) as a formula of

L(+,•,=,0,1) we need to express the predicate:;:; in that language, which is

easy, and define the relation f (b,c,h) = r, which is accomplished by

3y(b=(1+(h+1) •cl •y+r A 3x(r+x = 1+(h+1) •c)).

The formula Bn(b,c,m) which is obtained by the rewritings indicated

above is the main tool for expressing algorithmic notions in L(+,•,=,0,1).

For example, it can be used to show the result (of CHURCH), that

there is no decision program for L(+, • ,=,O, 1). We use below a variant of

that proof to show that there is no practical decision program for the

language L(+,=,0,1). {PRESBURGER has shown in 1929 that a decision procedure

exists; the best known procedure take something of the order 222n steps on

formulas of the length n. The result below shows that there is no hope

of drastically improving this.}

Let a GOdel-numbering of formulas~ E L{+,=,0,1) be given; assume that it

can be easily computed (see below) and that the length l~I of the GOdel

number of ~, written to base 2 does grow linearly in the length of the

formula ~.

Let, for any PASIC program n(xl, .•• ,xn), the partial function

be the function computed by n. {See earlier sections for the method to

define S(n)}. By S(n)[a1 , ... ,an] we denote the value of S(n) at the argument

(a1, ... ,an).

72

THEOREM (RABIN & FISCHER 1973). Asswne that~ is a decision program of

L(+,=,0,1), i.e. assume that for all closed forrrrulas $ E L(+,=,0,1) we have

if $ holds in JN,

S(~)[~,0, ... ,0]
otherwise.

Then there exists c such that for infinitely many forrrrulas $ the program ~

takes more than 22cl~I steps.

PROOF.

1. To each rr E PASIC and each k E N we propose to construct a formula

$ k E L(+,=,0,1) which holds exactly if
1T'

{ s(rr)[n,k,o, .•. ,oJ o
2

k

and 1T stops on this input in at most 2 steps.

We shall take care that I~ kl
1T,

O(k) and observe that $rr,k can be "easily

computed".

2k
Observe: on input [s,0, ..• ,0] a computation of length m $ 2 can find

values of the variables at most of size 22k+ s (the biggest increase of a

variable in one step is by 1). Thus, let us concentrate ons$ k and observe

the bound of 22k+l.

Next, one shows that if m,s are within these bounds that the encoding

222k+4
of computation sequences by means of f can be accomplished by b,c $

These observations can be put to immediate use as follows. The following

formula expresses (in a somewhat extended language) the property $ k'
1T I

2k -13b3c3m(m $ 2 A Brr(b,c,m) A f(b,c,(m-1)(n+1) + 1) 0).

However, multiplication is used in these formulas in various places (even

after the symbol f is eliminated as above). The basic observation now is

the following

(a) there exists a formula M~(x,y,z) E L(+,=,0,1) and numbers r, ~ 222i such
* * i ~

that IM. I = O(i) and M. (x,y,z) ~~ x=y,z A x,y,z $ rn.
1 1

(b) there exists a formula Lk(m) E L(+,=,0,1) such that ILk(m) I = O(k) and

~(m) ~ m $ 22k

73

Thus, the above proposal for a formula for ~ k can be realized, using the
1f, k

known bounds on b,c, by 13b3c3m(b,c s rk+4 Am s 22 A Bir(b,c,m) A ..•)

translated by making the appropriate substitutions: Replacing multiplication
- * -k+4 * * in Bir by ~+4 we obtain Bir (b,c,m), etc.: 13b3c3m(~+4 (0,0,b) A ~+4 (0,0,c) A

~ * Lk(m) A ~+4(b,c,m) A ...). Provided that we have indeed these Lk and~'

the formula ~ k is thus obtained, and grows - clearly - linearly in k in
1f'

the sense of O(k).

2. Supposing, then, that we have~ k E L(+,=,0,1), let us finish the proof
1f I

of the theorem. Let L be the program as per assumption. Consider the follow-

ing program p :

p:

be CJ in

end

if "xl =Godel number of a program ir" then "x1 := ~ir x2"; ,
x2 := O;

{The routines in quotation marks would still have to be written, our

* assumptions on Godel-numberings and ease of computation of Mk, ~ are to be

used to observe that these routines do not take more than polynomial time.}

Now

S(p)[rr,k,0, ... ,0] S(L)[~ k,O, ••• ,OJ
1f,

if ~ k' 1f ,

else

if S(ir)[rr,k,O, •.. ,OJ ins 22k steps,

otherwise.

A program P with the above property, has the property - as is immediately

seen - that P terminates on [P,k,O, ..• ,] at best in> 22k steps. Hence E

terminates on[~ k,0, ... ,0] in 0(22k) steps, while I~ kl = O(k). p, p,

* 3. We need to find Mk, Lk.

Let us start with a predicate Mk(x,y,z) which accomplishes somewhat less

* than Mk.

M~(x,y,z) ** x=y,z A 0 s z s 22n- 1.

{This would already give us Lk(m), by the observation that ms 22k is

expressed by Mk(O,O,m).}

74

Clearly

M0{x,y,z) d~f {z=O A x=O) V {z=l A x=y)

will do. The step from n to n+1 relies on the remark that for a ~ 2 we have

which is immediate from a 2-1 (a+l){a-1). Namely, we set

A M~{X41Y1Z4) A x=x2+x3+x4>•

Note that 0 s z s 22n- 1 by assumption, since they occur in the context
i

M~(.,.,zi). It follows, because

2n 2 2n+1
that 0 s z s (2) - 1 by the above remark, hence 0 s z s 2 - 1. Moreover,

we observe

Unfortunately JM' 1 J ~ 5 • IM'J, which won't do. But observe the form of M' : n+ n n+l

+ +
where wi are subsequences of the sequence w of variables. By predicate logic,

the above formula is equivalent to

+ + vs+ + + +
3wVv{{i=l v=wi ~ M~(v)) A C(w)),

whose length is now additive in the length of M' : JM' 11 n n+
IM'I = O{n). The thus changed Mn' will be denoted by M.

n * n
In order to obtain M let us first define:

n

c+JM' J, hence
n

x=r'
n

"x smallest w with Vz3y(Mn(O,O,z)-> Mn(w,y,z))".

In essence, r~ is the least common multiple of numbers s 22n- 1. It can be

shown, using Hadamard's theorem on the distribution of primes, that there

exists c 1,c2 such that

s r' s
n

Let a be such that a•c 1 s 1 and define

r r' n a•n

22n
which ensures rn ~ 2 , as desired. Furthermore, let i3 be such that

2
rn s ri3·n·

* Now, Mn(x,y,z) is defined by

"x,y,z $ rn A x mod q _ y mod q • z mod q

2a•i3•n
for all q $ 2 - 1"

This definition will work in L(+,=,0,1) since r~, hence rn is defined in

that framework and multiplication now takes place in a range for which

formulas M can be used. The correctness of the formula follows from the
n

following two remarks.

If x,y•z $ least common multiple of {q: qss} then x = y•z iff x mod q -

y mod q • z mod q (mod q) for all q

arithmetic.} Now, if x,y,z $ r then
n

l.c.m{q: qs22a.i3.n_1}.Thus, takings

s s. {Which
2

x,y•z s rn
2a•i3•n

2 ,

is easy from modular

< r = r' = - S·n a•i3•n
we obtain the definition

75

for M*. Again, we see IM*I = O(n), and that it is "easy to compute" in the n n
sense used above. D

4. THE AXIOMATIZATION OF ALGORITHMIC THEORIES

Let~= <A,R1, •.• ,Rn,f1 , .•. ,fn> be a data structure, and let algL be

the corresponding algorithmic language. For the present purposes (i.e. for

expressing the kind of algorithmic facts that are of interest to us for now)

76

we let algL consist of all finite Boolean combinations of formulas Termn,

where n ranges over all PASIC programs associated to the structure fl• (see

section 2).

algL is clearly a constructive sublanguage of Lw , consisting moreover only
1W

of universal formulas, i.e. of formulas whose only quantifiers are prefixed

to the formula and are universal quantifiers. Clearly, we can expect some

rather special properties of such languages, some of which will be made use

of in the sequel.

The first task is to devise an appropriate formal deductive system for

algL. For this purpose any proof system for Lw w will do - as long as it
1

has the subformula property. This means that the proofs must always be ob-

tainable through rules whose antecedents consist only of subformulas of the

conclusions. Instead of writing down such a system if full detail (which

the reader may do if he likes by consulting LOPEZ-ESCOBAR, Fund. Math. 1965,

p. 253 ff). we discuss briefly a system which works directly with the

programs.

Let n(x1 , .•• ,xn) be a PASIC program, and let A be a data-structure in

which n is defined. We write A I= n[a1, ••• ,a] if n terminates in A on input
- n

<a 1, ••• ,an>. In analogy to predicate logic we introduce meanings for

fl I= n 1vn2 , flF •n, etc •• In addition, we allow prefixed universal quantifiers,

being true, as an example, if n terminates in ~ on all possible inputs. Let

us call AlgL the set of all such expressions. Let M,N be sets of formulas

of AlgL; we write

M I= N

if f for each A in which all expressions $ hold true at least one expression

in N holds true (free variables both in M,N are assigned the same element

of fl).

Clearly, if M' and N' are sets of straight-line programs and M' I= N'

then M I= N for any sets M and N with M' s M, N' s N. We shall take such

pairs M,N as a.xioms of our formal system. Indeed, our formal system is

devised only to derive pairs of sets of formulas (P,Q) such that P I= Q.

77

Thus it starts by the axioms introduced just now, which we write

M I- N (called a sequent)

and proceeds from these by rules of proof as enumerated below. These rules

are understood as: the sequent below the bar follow from the sequent or

sequents above the bar.

Conventions

(a) a denotes a straight-line program;

(b) TI denotes a statement;

(c) E denotes a sequence of statements.

(d) Furthermore, we introduce an additional line in the syntax diagram

for PASIC:

undefined

is a statement with no variables; the intended meaning is a program

which never terminates on any input.

(e) The expression whilek b ~ TI is an abbreviation for the statement

g_ -.b ~undefined~ TI;

if -ib then undefined else TI;

if -,b then undefined ~ TI;

if b ~ undefined

k lines

(f) If TI(x1, ••• ,xn) denotes a program with variables x1, ••• ,xn and if

t 1, ••• ,tn are terms, then TI(t1, ••• ,tn) denotes the program which starts

by (simultaneously) assigning to x 1, ••• ,xn the values t 1, ••• ,tn respect

ively and then proceeds to do TI; analoguously for ~Ct 1 , ••• ,tn).

Rules of proof

(0) M u {~} I- N, M u{ljl}f-N
M U {~vljl} F N

(1) M I- N U {~,~}
M I- N U {~vljl}

(2) M U {~} I- N
M F N u h~}

78

(3)

(4)

Mi-Nu{<j>}
MU{-,<)>} I- N

M u {begin cr; if b then undefined else 11 2 ; i:: end} I- N,
M u {~a; if b ~ 11 1 else undefined; i:: end} I- N

M u {begin cr; if b then 11 1 else 112 ; i:: end} 1- N

(5) M I- N u {begin cr; if b then undefined else 112; i:: end,
begin cr; if b then 11 1 else undefined; l: end}

M I- N u {begin a; if b then 11 1 else 112 ; i: end}

(6) Mu {begin cr; whilek b do 11; i: end} I- N, k=l,2, •..

M u {begin a; while b do 11; i: end

M I- N u {begin a; whilek b do 11; i: end (7) k= 1 ' 2 , ••• }

M I- N U {begin a; while b do 11; i: end}

(8) M u {begin cr; i: 1; i:2 end} I- N

M U {begin a; begin i: 1 end; 1:2 end} I- N

(9) M I- N u {begin a;

M I- N u {begin a;

(10) MU {~(t)} I- N
MU {Vx<j>(x)} I- N

(11) MI-Nu {<j>(y)}
MI-Nu {Vx<j>(x)}

i: 1; i:2 end}

begin z: 1 end; i:2 end}

if t is any term

if y is a variable not occurring
in the conclusion.

Observe that the above axiom system for I- lacks effectiveness on

several counts, which preclude the possibility of using the rules of proof

"backwards" in order to decide a given sequent. First, the axioms are not

given in an effective way, second, there is a rule, rule (7) which is in

finitary, i.e. the conclusion requires infinitely many premisses. This

cannot be circumvented by any adequate proof system for algorithmic logic:

Either one has an infinitary rule or one has an incomplete proof system. The

infinitary rule of our system of algorithmic logic is closely related to

Carnap's rule of arithmetic (which makes it complete) and serves as an

induction principle. There are parallels, and distinctions, to be made

with recursion induction (MCCARTHY), truncation induction (MORRIS),

fixedpoint induction (PARK), computational induction (SCOTT), structural

induction (BURSTELL). But we cannot here embark on these. Neither shall we

prove the ComEleteness theorem M ~ N iff M I- N is provable, which follows

by translation of the well-known methods in infinitary logic. We shall,

however, have occasion to use this result.

79

Let us now return to algL. For a particular structure A we are interest

ed in those closed formulas Vx1 ••• xn ~(x1 , ••• ,xn)' with~ E algL, which are

true in !_. As we have seen, such formulas allow us to express important

enough algorithmic properties of !_to warrant special attention. Let

algT(!_) denote this set, we call it the algorithmic theory of !.· In the

presence of a complete proof system for algL, we may reasonably ask for an

axiomatization of various algorithmic theories: Conceivably, an axiom

system for algT(!_) may have more than just!_ as a model, which would provide

us with additional insight into the power of computation (computations

failing to distinguish between the various models).

Let, for any r the deductive closure r~ be defined as

~ + + I + + r {Vx~(x) ~ E algL, r ~ Vx~(x) provable}.

We seek, for given !_, a set r such that

algT(~).

(i) Let!= <N,S,O,=O>. be the natural number system. Then algT(!) is

axiomatized by finitely many axioms, namely the Peano axioms

Vx(S(x) F 0)

VxVy(S(x)=S(y) ~ x=y)

Vxc';:lo00 s(i) (0) =x)

which are clearly universal quantifications of formulas of algL(!}

expressing termination of appropriate programs. Namely: if JN'=

<N',S',0',=0'> satisfies the Peano axioms then N' - !•hence,

{Peano axioms} ~ ~ iff ! F $.

(ii) The ordered field of reals

-1
<R,$,+,•,-, ,O,l>

80

may be axiomatized by the axioms of an archimedian ordered field:

ordered field axioms (universally quantified first-order formulas
-1

of L(~,+,·,-, ,0,1)) 1 Voo

archimedian axiom a>O A b>O -> n=i a+a+ .•. +a ~b.
~

n

These axioms can clearly be expressed by equivalent formulas of algL.

They may serve as axiomatization. Clearly, if {arch.O.f.} ~ ~then

~~ F ~ since ~~ is such a field. Conversely, if ~< F ~ and !'._ is

arch.o.f. then, by algebra, F s R. Since universal formulas are

inherited by substructures, !'._ F ~; hence {arch.o.f} ~~by the com

pleteness theorem.

Thus, from a computational point of view, all arch.ordered fields are the

same (as regards that algorithmic properties). The field of reals of course

is not computable in the technical sense; this would ask for an inter

pretation of~~ into!:!_ by which all tests~ and operations ·,+, ... become

computable number theoretic functions. However, the axioms have some

computable models, e.g. the rationals and the algebraic numbers.

{We could have asked something more of the axioms, namely to characterize

those structures F for which the following statement holds:

for all ~ E algL. Then the axioms for archimedian order would not suffice;

e.g. it is simple to devise a program which holds for all inputs on the

rationals, but does not so on the reals. The class of structures which

have this stronger property could be called the computationally closed fields.

Using Tarski's decision procedure for the reals it can be shown (ENGELER

1968), that such fields are obtained from the rationals by admitting all

reals which are the limits of nested intervals (a ,b) E Q2 computable by
n n

a program in successive loops.}

(iii) Slightly harder is the task of axiomatizing the algorithmic

theory of the reals without the ordering relation. It can be shown to

lead to the axioms for formally real fields, (see ENGELER 1973). An

important fact of this axiomatization is that it leads to (universal)

first-order formulas; this will be used in section 5. The reader

may puzzle a moment about this difference between ordered and non

ordered reals, because, clearly, ordering can be defined algebraically

81

in formally real fields (use notion of positiveness). But this defini

tion is, as the axiomatization theorem proves, not expressible in

algL.

Even if, for a given structure ~· there is no axiomatization inunediately

available, we may ask for those structures ~which are algoPithmieaZZy

equivalent to A. One sufficient criterion (LOPEZ-ESCOBAR 1966) can be

borrowed from L : Let IsoSub(A) be the class of isomorphic copies of sub-
w1w -

structures of £:_: Then £:_ is algorithmically equivalent to B iff IsoSub(~)

IsoSub(~). This criterion can be considerably improved.

5. THE GROUP OF A PROBLEM

In this last lecture, the author may be allowed to ride a personal

hobby, namely the structural relations between programs and problems. We

have some promising results, but most of what we'll show now is of a

programmatic nature.

Let r be an algorithmic theory, and let p E algL be an algorithmic problem,

say

where for given x1 , •.• ,xn we seek solutions yi making p hold. Let Y be the

set of solutions (for given x1, ..• ,xn), and assume that we have programs

1Ti(x1 ,. .. ,xn) computing the y1 (using some additional capabilities perhaps).

Often, the nature of the problem p imposes on Y an mathematical structure,

e.g. symmetries may put a group structure on Y.

Let us take the paradigm of classical Galois theory. There p(x0 , •.. ,xn,y)

is a polynomial over a field F, a0 , .•• ,an E F and say, y 1 , ..• ,yn EE, the

splitting field of p over F. If p is separable then the Galois group of p

is G(E/F), the set of automorphisms of E leaving F pointwise fixed. This

group can be determined by algebraic manipulations with P (determined in

principle, the complexity of the algorithm is large polynomial). An in

vestigation of the structure of the group (e.g. for its solvability) leads

at once to solution programs Tii. Indeed, as can be observed, the group

G(E/F) is also present as a group of substitutions on the Tii.

82

Without going into the details of this connection in this particular case,

let us rather ask for conditions which allow us to develop a Galois theory

with respect to arbitrary rand p. As it turns out, this can be done for

an interesting array of theories.

Let r be a set of (universally closed) algorithmic formulas and let P (x,y)

be an algorithmic problem. (Observe that we have, for notational convenience,

chosen n = 1).

We first formulate an analogue to the notion of "separable polynomial":

DEFINITION. p is well-posed in r if there exists a set Y of new variables,

and a diagram 6(x,Y) with the following properties:

(a) r u 6(x,Y) is consistent,

f U 6(x,Y) ~ P(x,yi) for all yi E Y;

(b) y.fy. E 6(x,Y) for all if j;
]_ J

(c) f U 6(x,Y) U p(x,y) ~ {y=y, : y. E y}.
]_]_

{By a diagram 6(x,Y) we mean a set of basic, i.e. negated and unnegated

atomic, formulas of the laguage of r augmented by Y, such that for any such

formula a either a E 6(x,Y) or •a E 6(x,Y)}. Let L0 (x) denote the set of

basic formulas in x. Next, we need a rather strange-looking property of r,

which will, however, be seen to follow from a far more familiar concept.

DEFINITION. r has the pernrutation property with respect to p if, whenever

6(x,Y) and 6'(x,Y) satisfy (a), (b), (c) above and if 6(x,Y) n L0 (x) =

6'(x,Y) n L0 (x) = 6 (x) then there exists a permutations E S(Y), the set

of all permutations of Y with

6' (x, Y)

{~s(yi , •.• ,yi) is defined as ~(s(yi), ... ,s(yi)), and 6s(x,Y)
s 1 k 1 k

{a : a€ 6(x,Y)}}.

The more familiar property mentioned above is the amalgamation property.

DEFINITION. r has the amalgamation property, if for any models ~· ~l' ~2 of

r and injections f 1 and f 2 , there exists a model c of r and injections g1

and g2 such that the following diagram commutes:

f1

,:-------1'-j:,
~2~~~~~~~~~~--c

g2

The following is a list of theories, expressable in algL, which have the

amalgamation property:

groups, lattices,

various fields (e.g. arch.o.fields, formally real fields),

various geometries,

Boolean and cylindrical algebras,

differential fields.

By the results below, Galois theory becomes available for these theories

in a uniform manner. {Generalizations of G-th have been known in some of

the cases, these turn out to be special cases of our approach.}

THEOREM. If r is a set of universaUy quantified a"lgorith:mie formulas and
if r has the amalgamation property, then r has the permutation property
with respect to a"l"l p.

The proof is obtained by building Herbrand-models of r U 6(x,Y) and

83

r u 6'(x,Y) and using universality of r. The details need not interest us

here, (see ENGELER 1974). But now, in presence of the permutation property,

we may at once define the group of a well-posed problem.

DEFINITION. Let p(x,y) be well-posed in r, let 6(x,Y) have properties (a},

(b), (c} and let 6 (x) = 6 (x, Y) n LO (x). We set

L'
G6(x) { t E S (Y) f U 6(x,Y) ~ o/ - o/t, all o/ E L'(x,Y)},

where L' is a sublanguage of algL, L0 ~ L'.

THEOREM. If r has the permutation property with respect to p(x,y), then
(i) G~;x) is a group (under composition of permutations) and depends

on"ly on 6(x);

84

(ii) if L' is contained in the cZosu:t'e of L0 under infinite disjunctions

or if r u 6(x,Y) is L'-compZete (i.e. if r is L'-modeZ-compZete), then
L' LO

G6(x) G6(x);

(iii) G~?x) {s € S(Y) 6(x,Y) = 6s(x,Y)}.

~· We prove only some of the statements above; a full account is in

ENGELER 1974.
L' The fact that G6 (x) is a group is shown by observing closure under composi-

- ti - t2 tion as follows: Assume that r U 6(x,Y) r $1 = $1 r U 6(x,Y) r $2 = $2
ti t1 tit2

all $1 , $2 • Take <fl2 = <fl1 andnoticethatru6(x,y)l-<P 1 ::$1 ,by logic then
- tit2 r U 6(x,Y) r <fli = <fll If r U 6(x,Y) is L'-complete, i.e. if for all

L'
<fl € L' either r U 6(x,Y) r <fl or r U 6(x,Y) r 1$, then G6 (x) = {s € S(Y)

6(x,Y) = 6s(x,Y)}. Namely: Suppose that s € S(Y) transforms 6(x,Y) into it

self, but that for some <fl € L' we have r u 6(x,Y)~ <fl = <jls. Then by com

pleteness, either <fl and l<jlsare provable from r u 6(x,Y), or symmetrically.

In the first case we would have r u 6s(x,Y) I- <fls and hence r u 6(x,Y) I- <Psi a
L' s

qo~tradict!on. Conversely, if s € G6 (x) then r u 6(x,Y) r <fl + <fl for all

<fl € 6(x,Y). But r U 6(x,Y) r <fl for all <fl € 6(x,Y), hence r u 6(x,Y) r <fls,

all <fl € 6{x,Y). By completeness of 6(x,Y) we have therefore, 6(x,Y) =
s

6 (~.YI. 0

For now we have done no more than define a group of permutations. What

does it have in common with the group of automorphisms in the classical case?

Our result above allows to make the connection: Let ~(x), ~(x,Y) be the

minimal models of r u 6(x), r u 6(x,Y) respectively. {For such universal

theories, these are simply the models on the Her brand uni verse of x, Y u {x}.)

Let G(~(x,Y)/~(x)) be the group of all automorphisms of ~(x,Y) which leave
Lo

~(x) pointwise fixed. Then G6 {x) ~ G(~(x,Y)/~(x)), as we will presently show.

Thus, we have recouped the old type of definition; ~(x,Y) "splits p over

~(x) ".

Clearly, any automorphisms€ G(A(x,Y)/A(x)) induces a permutations' € S(Y)

such that 6(x,Y) = 6s' (x,Y); thi: is ju:t the meaning of automorphism.
s•

Conversely, ifs' € S(Y) guarantees 6(x,Y) = 6 (x,Y) then the map of the

Herbrand terms in {x} u Y can be obtained from s' and is an automorphism. 0

Of course, we have not said anything yet about how to get the group

from a problem ptatement. We expect this to be a major problem for any non

trivial r. Even the case of free monoids is completely open: what is the

group of

if w1,w2 are words in the generators of the free monoid and some unknowns

Y1•···•Yn?

85

The case of classical Galois theory suggests that we seek a resolvent,
i.e. a formula (polynomial) in the (unknown) solutions such that the group

of p is just the group of permutations in the resolvent, which leave it

fixed.

In the general case we know (non-constructively) at least that such a

resolvent exists if the theory and the problem satisfy some additional

requirements.

THEOREM. If r has the perrrrutation property with respect to p, and if P is
of degree n then there exists a finite conjunction of basic formulas

LO 8 (x,y1 , .•• ,yn) such that G~(x) {s E S(y1, •.. ,yn) : I' U ~(x,y 1 , ••• ,yn)

I- e :: es} . If , moreover, r is first-order, then there even exists a
finite conjunction P0 of basic forrrrulas such that r u ~(x) I- p(x,y) =
Po(x,yl.

The proof of the first part is quite easy, all we need is to observe how to

eliminate finitely many permutations from S(y 1, ••• ,yn) which fail, by not

transforming some basic formula into an equivalent one, to belong to the

group. The second part involves a use of the compactness theorem of first

order logic (hence the additional condition on f). D

What we learn from this theorem is that for ~=' classical Galois theory can

deal with all algorithmic problems of finite degree. This is open for ~~·

whose algorithmic theory is not first-order.

OPERATING SYSTEM STRUCTURES

1. Introduction ••

2. Coordination of Concurrent Processes.

3. Communication and System Deadlocks

4. Storage Management.

5. Scheduling Policies

6. System Design Issues.

by A.N. HABERMANN

89

93

98

103

108

114

MATHEMATICAL CENTRE TRACTS 63, 1975, 89-118

OPERATING SYSTEM STRUCTURES

A.N. HABERMANN

Carnegie-Mellon University, Pittsburgh, Pa. (USA)

1. INTRODUCTION

1.1. One may wonder why Operating Systems is considered a valid topic in its

own right. In the past the primary reason has been that it was difficult to

construct a system which operated reliably enough to satisfy its users.

At present the subject is of interest to computer scientists because of the

special nature of the problems it has spawn. There is in the first place

the aspect of concurrency: a variable set of almost independent computations

share the facilities and resources of a machine. The term concurrency has

a connotation slightly different from parallel computation. The latter is

used when a given computation is organized such that some parts are executed

in overlapping time intervals. The former brings into the picture the ques

tion of how to design and maintain the proper environment in which a vari

able set of computations can be executed simultaneously.

Another reason why Operating Systems is (still) considered a valid

topic .is because of the size and variety of the programs involved. These

aspects confronted us with the necessity of organizing the design of pro

grams and developing a methodology for documentation, maintenance, modifi

cation and error detection,. correction and recovery.

Finally, the design of operating systems generated a variety of inter

esting problems. To name a few, processor allocation stimulated queuing

theory; storage management pushed the design of data structures and a whole

spectrum of placement and replacement algorithms; the general problem of

sharing devices led into the study of scheduling, system deadlocks and pro

tection against unauthorized access.

It may be that Operating Systems will not anymore be seen as a coherent topic

in the near future. On the one hand the drastic changes in machine architec

ture and the need for highly specialized systems make it difficult to see

90

what future operating systems will have in common that is not present in

other large programs. On the other hand, the categories above, which are

presently considered part of Operating Systems will be integrated into the

general field of program construction. So, the title of the topic may loose

its significance, the objects of research will rem~in, be it as part of an

other classification.

1.2. The function of an operating system essentially is to transform a

given machine into a preprogrammed machine which is (meant to be) more con

venient to its user community. An operating system is a set of programs

which together realize such a transformation. One gets some feeling for the

nature of such programs considering an oversimplified machine model consis

ting of a central processor (CP), a mainstore (MS), a card reader (CR) and

a line printer (LP). Among the instructions which CP can execute are an in

put command and an output command. When CP executes an input command, CR

places the information found on a card in a designated area of MS. Similarly,

when CP executes an output command, a line image is taken from a designated

area in MS and is printed on the line printer paper. The actual reading of a

card (or printing of a line) is performed character by character, entirely

controlled by a control unit which is part of the input or output device.

Such a control unit must be activated by a command transmitted to the device

controller by the central processor. Let us assume that the store is large

enough to hold a user program, its data and the necessary control programs.

A straight forward strategy for running user programs on this machine is

given by this sequence of steps:

repeat read card deck

compile user program

load user program + support programs

execute loaded program

print out results

until machine halt

However, there is no built-in hardware which executes these steps, nor

is there a mechanism which activates these steps in the desired order.

There must apparently be a program already stored in MS which controls the

sequence of steps. This program is the frame work of an operating system

for the given machine and mode of running user programs. Traditionally, the

compile, load and execute phase are not considered as part of an operating

91

system. But the programming of the transition from one phae to the next and

also the input and output phases are part of the design task of an operating

system.

1.3. Two very common types of operating system are a "batch system" and a

"timesharing" system. The basic idea of a batch system is to assemble a

series of user programs called a "batch", run those programs successively

while in the meantime printing the output of a preceding batch and assem

bling a new batch. It is desirable to continue reading as fast as possible

because an input device is very slow compared to a central processor.

On the other hand, the size of an MS does not allow us to read arbitrarily

far ahead. Also, output is at times generated much faster than it can be

printed. This conflict was solved by adding a relatively slow, but very

large, back-up store (BS) to the machine. When a new batch is assembled,

the jobs are stored on this secondary storage device. The jobs are succes

sively transferred to MS at the time that their compilation starts. Gener

ated output is also stored on BS from where it is retrieved when the time

has come to print it out.

A timesharing system gives its user direct access to programs and data

stored in the machine via a teletype or scope terminal. Every user has his

private working space and a set of data objects called "files". Files can

be shared by several users. The system controls the terminal input and out

put, it provides a set of basic operations on files and it protects a user's

files against misuse by others.

Below follows a schematic description of a batch-system known as

"Spooling System", because the first systems of this type used magnetic

tapes as back-up storage.

Input path: CR + inbuf (in MS) + input batch (on BS) + READ buf (in MS)

Output path: WRITE buf (in MS) + output batch (on BS) + outbuf (in MS) + LP

Controlprograms: CRcontrol, LPcontrol, BScontrol, READ,WRITE

CRcontrol:

repeat wait until CR is done with copying a card image into MS

increment card count

if current inbuf full then

wait until other inbuf empty

send request for dumping current inbuf to BScontrol

92

fi

switch current to other inbuf

clear card count

prepare next card command

send command to CR device

until CR control halt

function READ=

BScontrol:

designate an MS area as next READ buf

send load request to BScontrol

wait until BScontrol signal, completion

repeat wait until some transfer request

until

i + select one of the pending requests

prepare transfer command on behalf of requesti

send command to BS device

wait until BS device is done

signal completion of transfer to requestori

BScontrol halt

It would lead us too far into questions of programming and design if

we described a timesharing system model in a similar way. The description

above supplies enough of a frame work to discuss matters of coordination,

cooperation and communication among almost independent action sequences.

1.4. The term rrrultiprogra:mming is used to describe a situation in which

several partially executed computations are partly leaded in MS. Multypro

gramming is possible independent of the number of central processors (we

need at least one). A central processor can switch from one process to an

other through a hardware interrupt.

The term process has been very useful for the design and description

of operating systems. It denotes the activity which is invoked when input

is submitted to an abstract machine in its initial state. An abstract ma

chine defines a mapping of a set of input data onto a set of output data.

It consists of a pair {P,s} where P is a processor which is controlled by

a given program, and S is a set of three states: the initial state, the

busy state, and the final state. A process is the activity of an abstract

machine which transforms a given input data set into a resulting output

data set. The process terminates if the abstract machine reaches its final

state.

93

The term process is often used to denote both process as described

above and abstract machine. An abstract machine or process is called paral

lel if it can execute several instructions of its control program simulta

neously; otherwise it is called sequential.

A process is called I/O deterministic in the case nf a functional relation

ship between input and output. That is to say, the term applies to a pro

cess (or abstract machine) for which the output is uniquely determined by

given input.

Examples of abstract machines are: a card reader, a central processor,

the device controllers for card reader, line printer, back-up storage as

described previously.

2. COORDINATION OF CONCURRENT PROCESSES.

2.1. Concurrency may cause race conditions if several processes operate on

shared data in overlapping time intervals. For example, let processes

P1, P2 , ..• ,Pn (n>l) operate on a common stack which is implemented as an

array STACK [l:M] and a variable top. Initially all elements of the stack

array have a meaningful value and top = M. The processes either take an

element from the stack or return one. The number of returns by one process

never exceeds the number of times it takes one. (The stack elements could

for instance represent free storage frames.)

The operations on the stack are

take element (x) = T1 : x + STACK[top]; T2 : top+ top-1

return element (x) = R1 : top+ top+l; R2 : STACK[top] +- x

The storage hardware protects against access conflicts. If two process

es attempt to access a storage cell at the same time, the storage device

accepts only one and allows the other to proceed after the first is done.

So, operations on the stack elements in the programs above can not get con

fused. But the sequence of the operations still may cause trouble. The

timing could for instance be

when one process calls take element (a) and another return element (b) . The

result is that the returned element gets lost while the element taken from

the stack has not been properly removed. Other timings would also be disas-

94

trous; e.g. R1 ; T1; T2 ; R2 or T1; T1 ; T2 ; T2 • Coherent pieces of program

which must not be executed in overlapping time intervals are called crit

ical sections. The set of all critical sections in a system can be parti

tioned in a set of classes of mutually critical sections. we mark the crit

ical sections of one class by a unique bracket pair for that class. If we

choose [] for the stack operation, we get:

take element (x) [T1 : x + STACK[top]; T2 : top+ top-1]

return element [R1 : top+ top+ 1; R2 : STACK[top] + x]

2.2. The rule that a process does not return more elements than it takes

prevents overflow of the stack. However, a process should not try to take

an element while the stack is empty (i.e. we require top ?0). The operation

take-element (x) is therefore replaced by the function

remove-element(x) = wait until stack not empty; take-element(x)

this arrangement makes that the processes cooperate in maintaining a

correct state of the stack.

Question: why can "wait until staak not empty" not be programmed as part

of take-element(x)?

Implementation of "wait until stack not empty" is not trivial.

Wrong is

while top 0 do < nothing > od

because, when an element is returned, two processes may find the condition

in the while clause false and proceed.

Two solutions:

a) embed remove-element in another critical section

remove-element(x) ={while top=O do< nothing> od; take-element(x)}

so that only one element can be removed at a time.

b) use Dijkstra's P,V operations and apply to a semaphore "free" initialized

at M.

remove-element(x)

return-element(x)

P(free); take-element(x)

] ; V(free)

Definition of P and V operation:

P(sem=semaphore) =
if (sem+-sem-1) < 0 then

stop calling process; put it on waitinglist(sem)

j + select process from readylist; start pro~ess j

fi

V(sem=semaphore)

if (sem+-sem+l) ~ 0 then

j + select process from waitinglist(sem)

transfer process j from waitinglist (sem) to readylist

fi

P,V on semaphore sem are themselves critical sections

Embed in bracket pair implemented by LOCK and UNLOCK:

~ lockbit =

constant locked = 0, unlocked = 1

operation LOCK(ref lb=lockbit) =

95

begin local x = locked; while x = locked do exchange (x,lb) od end

operation UNLOCK(ref lb=lockbit) = lb + unlocked

end

A semaphore is a triple: (semcount,semwaitinglist,semlockbit).

Critical sections can be programmed with LOCK and UNLOCK or with P,V oper
ations, except for P,V themselves. The advantage of P,V operations is that
waiting processes are not busy, whereas LOCKed processes are.

2.3. P,V operations as used in the preceding programs do not take care of

deadlock situations nor of scheduling rules. These can be taken care of if

a P operation is replaced by a critical section + a P operation on a so

called private semaphore. A V operation must then be replaced by a corre
spending critical section. A private semaphore is a semaphore whose owner

performs a P operation on it, but no other process does.

Let RV be a request vector and E an array of private semaphores. A version

of remove-element(x) and return-element(x) in which deadlocks and scheduling
can be taken care of is

remove-element(x) [RV.+l;considerallocationto(i)]; P(E.)
l l

96

returnelement(x) [top+-top+l; STACK(top)+x; free+free+1

if RV -I Q_ then

j + select from RV; considerallocationto j) fi]

where considerallocationto(i) =

if free > 0 and deadlockfree(i) then

free+ free -1; xi + STACK[top]; top+ top - 1

RVi + 0; V(Ei)

fi

An alternative solution to deadlock and scheduling problems is a system in

which a "supervisor"or "monitor" owns the critical data structure. In such

a system all requests for modifications are addressed to the supervisor.

Let RM be a vector indicating remove requests and RT a vector indicating

return requests.

remove-element(x)

return-element(x}

RMi + 1; V(monitorsem); P(Ei)

RTi + 1; V(monitorsem); P(Ei)

Monitor:

P(monitorsem)

if RT -I .£ then j + select from RT

top + top +1; STACK[top] + xj;

RT. + O; V(Ej)
J

else j + select from RM; RM. +
J

"spotted" fi

while free > 0 and 3k ~ = "spotted" do

free + free +1

if allocationto(k} is deadlockfree then

free+ free - 1; ~ + STACK[top]; top+ top -1

~ + O; V(Ek)

od

2.4. On the other hand, cooperation implies in many case some form of sched

uling and it can be used on purpose to implement desirable scheduling rules.

However, if one writes the programs with P,V operations, it is often very

difficult to verify that the desired scheduling is present and remains un

disturbed.

There are three ways of approaching the problem of program correctness.

The first approach tries to give an answer to the question: "Given a pro

gram, prove that it is correct". This approach was first attempted by

97

R. FLOYD with his method of inductive assertions and later refined by

C.A.R. HOARE with his axiom system representing language semantics. An

other approach is the one which attempts to answer the question. "Of which

classes of progrC1J11 can I prove the correctness". This is the approach by

SCOTT/DE BAKKER et al with their fixed point computations and also of

PATERSON with the program schemata. A third approach tries to answer the

question: "How can I construct a correct program", This line of thought is

followed by DIJKSTRA in his structured programming and also by DENNIS/HOLT

et al. by means of PETRI nets.

We follow the third approach if we specify in a set of strict rules

how program may be constructed for the problem we want to solve. We will

establish such a set of rules for synchronizing concurrent processes.

The synchronization of a process will be represented as a string of brackets

of various types. The state of the system is given by an unordered set of

open and close brackets. An initial state will be given. Execution of a pro

cess means that it attempts to place brackets into the state in succession

according to its program. A process is allowed to move whenever it can, but

these three rules restrict the possibilities:

Rl: the state can always be modified by adding an open bracket

R2: a close bracket can be added if and only if there is a matching open

bracket in the state(if it cannot move, it must wait)

R3: a matching bracket pair in the state cancels out

this rule allows us to forget part of the history)

Example 1: P] f
initial state: [

Q g

Q cannot move in the initial state, but P can. When P is done, Q can

move, but P cannot. The model represents the interaction between device and

control process. Note that there may be many Ps and Qs.

Example 2: P } f { [

initial state [{
G g

Q has priority over P, because if a Q is waiting while a P is executing

f, this P enables a Q to proceed before it enables another P.

98

Example 3: (Cigarette Smokers Problem)

Sources: S1 =] ((
r w

S2 =] ((
r b

S3 = J ((
w b

Agency: R selector+4{ w =) selector+2{ B)selector+1{
r set w set b set

selector:

Sinks: RW == } selector + 0 [initial state: [
set=6

RB= } selector + 0 [provable is: the regular expr
set=S

WB = } selector + 0 [

. * (Sxy;Ax•":J;Sinksel)

set=3 represents the system's behavior.

3. COMMUNICATION AND SYSTEM DEADLOCKS

3.1. A communication path between two processes can either be fixed for all

times, or it can be established for the exchange of one piece of information,

or it can be created for a sequence of information exchanges. The communica

tion of a device control process and its peripheral device is an example of

a fixed communication path. The second mode of communication is known as

message switching or a mailingsystem. A sender process places a message in a

queue. Receiver processes remove messages from the queues. An extended, mul

tiprogramming, version of the batch system discussed earlier could be de

signed with a mailing system for transfers between the two storage levels.

The sender processes would be the processes which request the transfers, the

receiver would be the BScontrol process. The third class of communications

could be named the class of dialogues. Here a sender process monopolizes a

receiver process for an indefinite length of time. Processes communicate with

peripheral devices such as magnetic tape units in this manner.

In a mailing system senders and receivers operate on the Communication

buffer by means of the operation deposit and receive. The buffer provides

space for several messages so that the senders may get somewhat ahead of the

receivers. If the buffer is implemented as an array B[1:Nl where N is the

upperlimit of the number of messages which are permitted to be in the buffer

we may use two pointers front and rear, both initialized at zero, pointing

respectively to the frame from which the last message was taken and the frame

in which the latest message was placed.

Let @ denote addition modulo N; this operation is used for advancing the

pointers front and rear.

d3:

~~g~~(m=message)

P(numframe)

{rear + rear Ell

B[rear] + m }

V(nummes)

~~£~~~~(m=message)

P (nummes)

lfront + front Ell 1

r3: m + B[front]

V(numframe)

Semaphore numframe is initialized at N and semaphore nummes at zero.

99

Deposit may proceed only if there is room in the buffer for another message.

Receive may commence only if there are messages in the buffer.

If there are many senders, it is necessary to cast operation deposit in a

critical section because of the use of the rear pointer likewise for using

the frontpointer if there are many receivers.

It is not necessary to put the operations on the buffer in deposit and

receive in critical sections using the same semaphore. This means that si

multaneous operations by senders and receivers can be allowed. One can prove

that the pointers rear and frame never point to the same frame when the

statements d3 and r3 are executed simultaneously. This can easily de derived

from the bracket representation:
N

,---A--,
s = J } d3: •.• {(initial state:[[•.• [

K) .'5; r3: •• ·le o:

SKETCH OF A PROOF.

Let rear have the valuer and front the value f; let"# ... " mean the .
number of ..• added to the state.

Let r 1 and f 1 be the number of times that rear and front were incremented.

The equality r = f is equivalent to r 1 = f 1 mod(N).

At the time that a sender executes statement d3 and a receiver state-

ment r3 we have

] 2 r 1 = 1 + #(and #) 2 f 1 = 1 + #[,

because all but the last sender added an open parenthesis to the state and

all but the last receiver added an open square bracket. The bracket rules

enforce #(2#) and #[2#] - N, so

1
r + #(2 1+#) 2 1 + f 1 and

fl + #[2 1+#] -N 2 1 - N + r 1 + r 1 S fl + N-1

100

Thus, 1 + f 1 $ r 1 $ f 1 + N - 1, so 1
r f 1 mod(N) is not true.

3.2. In a dialogue communication system deadlocks may occur.

Let a machine have six magnetic tape units MT1 , ••. ,MT6 and assume there

are users of three different types:

a type P user takes one MT at a time;

a type Q use~ starts using one MT, asks later for another one and releases

the units in either order;

a type R user needs at some time three MTs simultaneously. A deadlock occurs

if users R1, R2 and R3 are holding two MTs each. In that case everyone of

them is going to ask for another MT and no one is willing to give up an

MT yet.

The problem can be solved if we program the classes P, Q and Ras

follows:

p) MT (

Q

R

with initial state:

initial state: ((

[[[[[

{ { { {

([([{

Three users of type R each holding two MTs would not be possible, be

cause they would have placed six close square brackets in the state whereas

there are only five open square brackets.

The problem presented is one in the category of one-type of resource

deadlock. A general statement of the problem is: a set if n (n>l) competing

processes c1, ••. ,Cn use resources R1, •.. ,Rt (t>l). Given for all

i E {1, .•• ,n} that Ci ultimately needs claimi resources and is using at the

moment alloci resources, test whether the given allocation state may degen

erate into a deadlock state.

$ claimi $ t for all i E {1, •.• ,n}. A state for

is called realizable. Define ranki = claimi -

alloci. A process Ci is entirely satisfied if ranki = 0. We assume that it

will release the resources allocated to it at some time after that.

we assume that 0 $ alloc.
l.

which this relation holds

The value of ranki is also in the range [O, ... ,t].

101

Let xk be the number of processes for which rank < k s claim. We call this

number the number of promotions in rank= k. Vector x = (x1 ,x2 , ..• xt) de

scribes the promotions in all ranks.

Define

Define

t
l x. and vector E.= (p1 ,p2 , •.• ,pt).

j=k J

t = (t,t-1,t-2, ..• ,1); vector t is constant

THEOREM. the relation 12. s ! is a necessary and sufficient condition for a
safe state. (safe in the sense that the state cannot degenerate into a dead

lock state).

SKETCH OF A PROOF.

Promotions counted in pk for given k E {1, ... ~t} helped competitors with a

claim~ k to reach at most rank= k - 1. Processes which reached rank=

k - 1 are able to get all the resources needed if and only if at least k -

resources are available. Every promotion counts for one allocation, so the

number remaining after the promotions counted in pk equals t - pk. So, the

processes at rank = k - 1 are able to finish if and only if

t - pk ~ k - 1, or pk s t + 1 - k, or pk s tk

Thus, all processes are able to finish if and only if 12. s !

Let yk represent the number of competitors starting with claim k.

Define

t

l yk and n = (n1 ,n2 , ••• nt)
j=k

Of course, E.. s 12.· Thus, E. s ! is a necessary condition for safe states.

The interesting point is that E. does not depend on the allocation, but sole

ly on the set of competitors. Vector E. changes only if another process is

admitted to this set or if one departs. The test !!_ s !._could nicely be ap

plied as an admission test. we may expect to make higher scores of success

in the safety test E s .!:. if the admission test rules out sets of competitors

which generate only unsafe states.

It turns out that the total number of possible values for E. is T (2t),
t

102

whereas the number of acceptable values is only A= (2~) - (~!2) for (t~2)
The usefulness of applying an admission test is shown by the fact that

~ = c({:). This says that the acceptable states constitute a decreasing

Iraction of the total number of possible states when·t increases.

One can show that not all states are reachable if the admission test

is applied. The number of reachable states is R = (2~) - (~!3). It n~ver
theless seems useful to apply and admission test, because t = t + c(t:)
3. 3. Define

t

l nj and N = (N1 ,N2 , ••• ,Nt)
j=k

one can easily show that £ s _!!, so N s t is a sufficient condition

for safe states.

Unfortunately, N1

t
l n.
1 J

So N1 S t 1 implies that total claim s t.

t

l j * yj
j=l

total claim

This says that requiring !! s t is equivalent to requiring that the

processes together claim not more than the available number of resources.

However, if the processes do not use their claim number of resources all

the time, such a requirement would be very restrictive and leave a certain

number of resources idle. Moreover, the processes would be restricted with

respect to concurrency and this causes degeneration in throughput.

A weaker condition is more helpful.

THEOREM, if there is a k E {1, ... ,t} for which Nk s tk then N1 s t 1 for all
1 E {k, ... ,t}

SKETCH OF A PROOF (by induction)

t + 1 - k + Nk+l S t + 1 - k - nk

0 then Nk 0 and Nk+l O, so Nk+l s 1 - k is true

if nk > 0 then~ ~ 1, so Nk+l s t + 1 - k - 1 s t - k.

In applying the admission test and safety test it is advantageous to remem

ber the smallest index k for which Nk s tk. The test E'.. S ! or l2. S t can be

broken off after index k - 1, because n1 s N1 s t 1 and p 1 s N1 s t 1 for

lE{k, ... ,t}.

Define the booking factor>

k-1

I
b = total claim = Nl = i=l ni + Nk

t t t

where k is the smallest index for which Nk s tk.

The upperbound bmax for b depends on the index k:

l [k~l] b $ t l n1. + Nk
i=l

$ l [kfl (t+1-k) + (t+l-k)] ~
t i=1

k
l (t+l-i)

t i=l

$ ~ [(t+l) * k - ~ k * (k-1)] $ k (1- k;!)

i

0 t

k +

b (k) max

2t

103

If the smallest index for which Nk S tk equals one, bmax = 1. This says

that if the total claim is not permitted to be larger than the total avail

able number of resources, then the booking factor should not be permitted

to be larger than one. This confirms what we expect. The value bmax can be

used to force a reasonable cut off point in the tests, because i 1·. can be

used to set a value for the index k.

4. STORF,GE l\'l.ANAGEMENT

4.1. Basic to all automatic storage management systems is the notion of

vir>tuaZ addr>eBs. A virtual address is the position of a program instruction

or data item relative to a chosen base address. Code generated by a compiler

or writte!l in an assembly.language by a programmer is entirely expressed in

terms of virtual addresses. The purpose of using virtual addresses is to

104

make the program and its data completely independent of the specific loca

tions where it resides when being executed. This gives the operating system

the flexibility of moving a program and its data from one area to another

without affecting the logic of the program. The value of a base address is

not specified by a compiler or assembly language programmer, it is entirely

under control of the operating system.

The virtual addresses used in a program are interpreted at execution time

and are mapped into physical locations. How the mapping is performed depends

on the chosen address translation mechanism of the computer in use. Address

mapping is in most machines partly done in hardware, so that the "normal
case" is handled efficiently. The most common storage management strategies

are: swapping, segmentation and paging.

swapping: a virtual address is a positive integer va; the address map is

defined by/ loc +Base+ va,/where Base is set by the operating system be-

fore execution commences. In addition to the Base an upper limit is set for

a program and its data and the address map checks for va overflow.

Segmentation: a virtual address is a pair (s,w), where sis an index point

ing into a "segment table", ST, and wan offset within a segment. The seg

ment table maps the segment indices onto physical base locations.

The address map is

/ loc + ST[s] + w/

The mapping hardware tests for segment table overflow (by s) and segment

overflow (by w).

Paging: a virtual address is also a pair (p,w) , where p is an index pointing

into a "page tab~e", PT, and wan offset within a page. The page table maps

the page indices onto a fixed set of physical base locations which are a

multiple of the chosen "page size".

The address map is

/ 1oc + PT[p] + w /

Overflow tests can entirely be avoided if the lay-out of a virtual address

is fixed and page tables have a fixed length. This makes the mapping much

faster than in case of segmentation.

4.2. The address translation of a swapping system is much faster than that

of a segmentation system. However, a segmentation system has the advantage

that

a) not all segments of a program and its data have to be loaded in MS.

This saves transfer time in both directions

b) segments not written into don't have to be copied on BS

c) it is easier to fit smaller pieces together in MS than large ones.

Swapping and segmentation have in common the 9henomenon of "external

fragmentation".

MS:

When segments of various sizes have been loaded and removed, there

105

are some unused pieces of storage space scattered through store. One gets

some feeling for the amount of space wasted through external fragmentation

using Runth 's 50% rule. This rule says that the number of holes (=unused

pieces of storage) is on the average half the number of blocks in use.

If the average hole size equals k * average used block size, then an esti

mate of the fraction wasted is

For k

~ * N * k * a + N * a m
k

~ we find that as much as 20% of the store may be wasted!

4.3. When a segment is to be loaded in MS, a hole must be found which is

large enough to accomodate the segment. Two most obvious algorithms for

doing this are the first fit algorithm and the best fit algorithm. The for

mer starts at some hole and steps through the set of holes until it finds

one large enough. The latter inspects all the holes and selects the smallest

one which is large enough for the given segment. The first fit algorithm

performs especially in a satisfactory manner if it remembers where it left

off the last time and starts searching from there the next time. If it would

start always at the beginning, the small pieces tend to accumulate at the

front end of the list.

Experimental data has shown that a well-organized first fit algorithm

outperforms a best fit algorithm.

When a block of used space is released, it must be added to the list

of holes. If the list is not ordered, the hole can be appended at the end

of the list. aowever, this has the disadvantage that it is very hard to

merge the new hole with a neighboring hole (if any). If the list is ordered

by ascending store address, such neighboring holes can be detected and

106

merging can take place right away. In that case the release function has

this structure:

release(address,size)

go down the list of holes until address < ADDRESS (next hole)

or nexthole = NIL

insert given new hole in the list

if adjacent to left neighbor hole, merge with leftneighbor

if adjacent to right neighbor hole, merge with rightneighbor.

One could adopt yet another strategy and not bother about merging in

function release so as to speed up the execution of this function. By the

time that the placement algorithm cannot find a hole large enough, this

algorithm goes through the list and merges adjacent holes as far as neces

sary.
0

Yet another approach is never to merge holes, but instead compact when

need be. If the placement algorithm cannot find a hole large enough, it

moves all the blocks in use to one end of MS (assuming the code is reloca

table!). This procedure automatically leaves one maximal hole at the other

end of MS. Experience with this strategy is generally not encouraging.

4.4. All management systems have in common the fact that space must be

created in MS if not enough is available when a segment or page must be

placed into MS. In case of paging, the size is fixed, so it is always suffi

cient to throw one page out for every page that must be loaded into MS.

Algorithms that select a page or segment to be thrown out of MS are known

as replacement algorithms.

The best algorithm one can imagine is BELADY's algorithm. It selects

the page with the largest future reference interval; that is to say, it

picks out the page which will be referenced later than any other page pres

ently in MS. Unfortunately, this algorithm cannot be realized in practice,

because the future reference string is (probably) unknown.

Other algorithms which have been investigated are

a) random; this algorithm is based on the belief that the future reference

string is unpredictable. This, however, turns out not to be true.

b) Round Robbin (RR); this algorithm is based on the idea that page frames

are used for almost equal length in time. The algorithm employs a pointer

which cycles through the page frames and it is believed that by the time

the pointer returns to a frame, the page in that frame is likely to be

of little interest.

107

c) First In First Out (FIFO); this algorithm selects the page which has

been in MS longer than any other page. It allows for pages to be dis

carded and frames to be released (which RR does not do), but it assumes

that the interest in a page is a uniform and descending function of its

lifetime.

d) Least frequently used (LFU); here the idea is that a page which has not

frequently been referenced in the past will also not be referenced fre

quently in the future. Therefore, the page which will probably be re

ferenced later than any other page is in all likelihood the least fre

quently referenced page.

e) Least recently used (LRU); this algorithm is based on the assumption

that the least recently referenced page is probably the least frequently

used page or a page which is of no interest anymore. It assumes that the

probability of referencing a given page in MS is proportional to the

length of time this page has not been referenced till the present time.

Many experiments have been carried out to measure the performance of

these algorithms. The objective is to minimize the number of page turns.

The results of these experiments are unanimous in the sense that LFU and

LRU show a significantly better performance than RR or FIFO. The graphs

one usually sees are like the one plotted below.

percentage of

pagefaults

' ' ' ' ' ' ' '--random
' '

' RR

~FIFO

Ms size +

LRU
LFU

However, there is a question of how hard it is to implement the algo

rithms. The implementation of FIFO or RR is clearly trivial. The implemen

tation of LFU is rather inefficient. Every time a page is referenced,

a count must be incremented and when the replacement algorithm is activated

108

all pages must be scanned after computing their frequency of use. This over

head has shown to be too elaborate and the algorithm is therefore not ap

plied anymore in present day systems.

A straight forward implementation of LRU is not much better. Every

time a page is referenced, it must get a time stamp and when the replace

ment algorithm is invoked, it must find the oldest page. Contemporary ma

chine architecture, however, enables an acceptable approximation of LRU

which can be implemented quite efficiently. The address mapping is consider

ably improved if the machine uses a small associative memory AM. The AM

contains a few copies of page table entries. We call a page which has a

descriptor in AM "active" and the others "passive". An entry in AM consists

of a key and a value. AM responds to the question: give me the value of the

entry whose key is x. Address translation takes place as follows (for given

virtual address(p,w))

if (Temp + AM [p]) ~ 0 then lac + Temp + w

else addressexception fi

so that the most likely case does take a minimal amount of time. Address

exception occurs if the page descriptor is not in AM. At that time the page

descriptor must be copied in AM at the expense of removing one which is

presently in AM.

The LRU can be approximated if we consider the moment that a page is

removed from AM as its last reference. Since we are interested in the rel

ative age of a page, the page which is removed from AM is appended to a

list of "used pages". The pages longest in the list is selected in the re

placement algorithm. If a page in the "used page" list is referenced again,

it is removed from the list and its descriptor is copied into AM. The list

operations can be designed very efficiently if page indices are used.

5. SCHEDULING POLICIES

5.1. A scheduling policy is applied if several processes wish to use a set

of resources while not all resource requests can be satisfied simultaneously.

Scheduling algorithms can be classified in two major groups: one consisting

of algorithms which take into account the history of a process with respect

to using the resource set and an other one in which such history is forgot

ten. The latter group consists primarily of two very simple disciplines,

RR and FIFO. The FIFO algorithm is particularly suitable in those cases in

which no other scheduling criterion is relevant. It can fairly be stated

that FIFO is considered as the default scheduling rule.

Scheduling is particularly relevant in case of preemptive resouraes.

109

These are resources such as a central processor or main storage of which

the system can decide to take them away from the user without disturbing

the logic of the user's computation. Whether FIFO or RR is the suitable

discipline for scheduling a preemptive resource type depends on the service

times needed by the users (this term is here used in the sense of proaess).

The total time which elapses between a resource request and re.lease of that

resource is known as the response time. This time depends on the service

time the user needs and on the time a user has to wait until the resource

becomes available.

One can easily show that, if a FIFO rule is applied, the response time

depends on the number of waiting users and the average service time. Such

a discipline works very much against the small users which need only a short

service time. The RR discipline does not have this disadvantage, it guaran

tees a user a response time proportional to the service time needed. On the

other hand, the overhead caused by applying an RR discipline is much higher

than for a FIFO discipline, because the resource is preempted more frequent

ly and it takes time to deallocate and reallocate a resource. So, if users

vary widely in needed service time, an RR discipline is to be preferred,

but, if not, FIFO performs more satisfactorily.

5.2. We discuss some history-minding scheduling disciplines for using a

central processor. First we discuss a linear priority scheme, then a weight

ed CP utilization discipline and finally deadline scheduling.

A linear priority scheduling discipline attaches to every user a pri

ority which is a linear function of time. While the user runs on a CP, its

priority changes by

6p = a ~t

and while the user is waiting, its priority changes by

6p b 6t, where b ~ 0.

Let Ci (ti be the characteristic function of useri describing whether useri

is running or not. If useri enters the system at t = t 0 with an initial pri

ority = 0, the priority at t > t 0 is

110

or

t t

p(t) =a I Ci(u) du+ b J [1-C. (u) J du
J_

p(t)

t

b(t-t0) + (a-b) J
to

C. (u) du
J_

This priority function would not be acceptable for an implementation

because of the fact that it has to be updated for all users every time that

the function is used, no matter whether the user is running or waiting.

We require that an implementation satisfies the rule that the priority must

be~dated only for a running user by the time it stops running, but not

for a waiting user.

A function which satisfies the implementation rule is the virtual
axorivaZ time. This is the moment in time that a user would have started so

as to reach its current priority if it had been waiting all the time.

In the picture below the virtual arrival time is found as the parallel pro

jection of the current priority on the t-axis.

p

I
I

I
a I --- -- ---- ------- ---- ------r·-:

I i
I I

I '
I

I
I
I
I

I S

v(t)

a = tan a

b tan s

to entry time

tl starting to run

t present

p, or in more general terms,

t

b (t-t0) + (a-b) J

to

C. (u) du
J_

Hence

t

vt t 0 + (1-E) I Ci(u) du

to

111

The virtual arrival time satisfies the implementation rule, because

~v (i-£) ~t for a running process and

~v = (i-£) * o for a waiting process.

The scheduling algorithm selects the process with the left most virtual

arrival time on the t-axis. Which one this is depends on the value of the

constant (i-£). The ratio E determines the speed at which the virtual ar

rival time moves along the t-axis.

Let O < a < b. In this case 0 < £ < 1, so 0 < (i-£) < 1. Consider a period

of time in which no new processes arrive while several processes are either

waiting or running. The virtual arrival time of waiting processes does not

change, but that Of a running process moves to the right (and must have

been to the left of the others when it started running). After a while the

virtual arrival time of a running process will overtake the virtual arrival

time of a waiting process. At that moment time has come to stop the running

process and allocate a resource to the waiting process. The speed of over

taking is determined by the ratio E· It is low if a is close to b and high

if b is much greater than a. The scheduler behaves as an RR discipline.

However, if a new process arrives, it is placed on the t-axis to the right

of all others. So it starts waiting and it may take a while before the cur

rent group of users overtakes the newly arrived process. This is why

KLEINROCK called this scheduling strategy the "selfish RR" discipline; it

is asif the current users try to keep the resource for themselves and admit

a newcomer reluctantly.

Let 0 < b s a. In this case (1-£) s O. The virtual arrival time of a running

process travels this time to the left. Since the virtual arrival time of a

waiting process does not change, the running process remains the one with

the left most virtual arrival time. So, in this case the policy is a pure

FIFO discipline.

Other policies emerge if the domain of a and b is chosen differently.

An additional convenience of applying one of the possible linear scheduling

112

disciplines is the fact that the ratio ~ can be used as a tuning pa:r>ameter

of the system. The value can be varied until the desired optimal perfor

mance in a given system is achieved.

5.3. The weighted CP utilization discipline takes into account how long

ago a process was using the resource. Let the resource be a single central

processor and let Ci(t) be the characteristic function describing whether
1n or not processi is running. In a single processor system, L C. (t) = 1.

i=1 J.

Define

t

fi (t) = a J Ci (u) ea(u-t) du as the weighted CP

utilization measure for processi. The value of fi (t) is the sum of the

colored areas in n
the picture. L

i=1
f.

J.
c. t

J.

_} _____ ~--~

t
Unfortunately, fi (t) does not satisfy the implementation rule, because

for a waiting process:

Define

-a (t+llt)
llfi = a e

t

F. (t) f C. (u) = a
J. J.

t+llt

J Ci(u) eau du - a e-at r
-oo -oo

t
au

du and S(t)
J

au e = a e

F. (t)
J.

satisfies the implementation rule, because

t+llt

.!IF.
J

C. (u) au
du 0 (since C. (u) = a e

J. J. J.

t process)

at e

The change of Fi(t) for a running process is given by

t+llt

LIFi = a f eau du LIS

t

au
e du ,, 0

0 for a waiting

Thus, when a process stops running, we compute LIS and add this value to

S(t) and to Fi (t), where Pi is the stopped process.

113

The rate at which waiting process "ages" (i.e. the rate at which its

CP utilization measure decreases in time) is determined by

F. (t+l'it)
:l

F. (t)
:l

s. (t)
:l

s. (t+l'it)
:l

at
e

1 * a{t+l'it)
e

= e
-al'it

Rl (1-at'lt)

The parameter a can be used to tune the behavior of the scheduler. In one

time unit fi is reduced to (1-a) times the original value.

5.4. The objective of a deadline scheduler is to guarantee every process a

negotiated fraction of CP time. E.g. it may be decided that the system con

sists of a batch process which receives 20% of the CP time and a time

sharing subsystem which receives 80% of the CP time. However, it is not

sufficient to specify just these fractions, we must also specify within

which time limit such a fraction must be allocated. Without this specifica

tion we could allocate 80% of every hour to the time-sharing system and 20%

of every hour to the batch process. This would have the awkward effect that

the time-sharing users might wait for a full 12 minutes if the batch process

uses its fraction in one contiguous time interval!

Define for every user Ui a "cycle time" Ci within which the promised frac

tion of CP time must be allocated. The value of Ci may be in the order of

one hour for the batch process and in the order of one second for the time

sharing system.

A user appears to the deadline scheduler as a triple (di,ci,fi) where

di is the next deadline for user Ui. The quantity di is an absolute moment

in time (a future moment) at the end of the first interval of length ci for

which the fraction fi has not yet been entirely allocated.

The scheduler follows this policy: the resource is allocated to the

user whose deadline is the closest. This user receives an amount of

fi * ci of CP time so that this user is satisfied until his next deadline.

When the amount has been used, the deadline of this user is incremented by

c. and the CP is allocated to the next user whose deadline is the closest. l.

If there is a tie, the order of allocation is immaterial.

114

Example: u1

Moves:

next deadline: 4 6 6 9

t+

u
2

8 12 10 12 12

must of course be true, otherwise CP time would be over committed.

6. SYSTEM DESIGN ISSUES.

6.1. Every process must be protected against errors which may occur in an

other process. That is to say, an error occurring in one process should not

destroy valid information in another process. This means in the first place

that one process should not have arbitrary access rights to information

which is part of another process (a process should, for instance, not write

outside its allocated storage area). It means furthermore that the integrity

of data shared by concurrent processes must be preserved. Shared data must

either not be accessible at a given moment, because it is being modified,

or it must be in a well-defined state, recognizable by any process which

has a right to access it. In this last lecture we focus on the latter point

of preserving the integrity of shared data structures.

The integrity can be preserved if processes can not perform arbitrary

operations on a shared data structure. Instead, the set of possible opera

tions must be precisely specified and the processes must be forced to u~e

these operations and no others. Programming languages provide since long a

very powerful tool for specifying such operations, viz. procedure declara

tions. Such a declaration allows the designer to separate the specification

and the implementation. At the call site the implementation is irrelevant,

all that matters is the specified effect of the procedure call. At the place

of the definition, the implementation may be modified provided that the

specifications do not change. This arrangement greatly enhances debugging,

code improvement and other modifications.

115

We need a tool for specifying datastructures analogous to the procedure

declaration used for specifying operations. Such a tool is a type definition

(or a class definition in SIMULA 67). A type definition describes the struc

ture of a class of objects and it defines the operations which can be per

formed on objects of such type. The structure of the typed objects is inter

nal to the type definition, i.e. outside the type definition one has no

access to the internal structure of a typed object. (this kind of protection

is unfortunately missing in the class concept of SIMULA 67, but this is the

only thing missing. The SIMULA classes are entirely adequate in all other

respects.)

A typed object behaves outside the type definition as "atomic".

Only the names of the operations are exported outside the type definition.

The type definition protects a datastructure against errors or malicious

use and it allows us to implement a characteristic behavior of a data struc

ture as part of its definition instead of as part of the calling sequences.

For example, a process in a concurrent system can be on the waiting

list of a semaphore, or it can be in the readylist or it may be running.

We wish to implement the rule that a process may be on one list at a time

only. In a conventional approach to this problem one would reserve a link

field in every process control block and use this linkfield to link process

es together in various lists. One would have to check the programs to make

sure that it can never happen that two different linkfields point to the

same process.

Instead we define

end

~ process

local prior integer (0); ref succ =self

operation exchlink (ref p,q = process) =
begin~ x = p.succ

p.succ + q.succ; q.succ + x

end

The only way to modify a successor field outside the type definition

is through a call of procedure exchlink. One can easily see that the type

definition preserves the property that suec defines a permutation of the

116

processes, so the rule is satisfied.

Another example: the receiver queue. Senders transmit messages to receivers.

The senders are allowed to get arbitrarily far ahead of the receivers (the

message queue has no upperbound). The receivers must wait as long as the

message queue is empty.

~ mlist =

local head nullmessage, length= integer (0),

listempty = lockbit (locked), listlock = lockbit (unlocked)

comment a definition of lockbit was given on page 10

proc append (ref m message, ref ml = mlist) =

begin

end

LOCK (ml. listlock)

<<put message (m) at the end of list (ml)»

if (ml.length+ ml.length + 1) = 1 then UNLOCK (ml.listempty) fi

UNLOCK (ml.listlock)

proc remove (!.:!. ml

be51in

mlist) ref message

local cond = Boolean (false)

repeat LOCK (ml.listlock)

if (cond +ml.length > 0) then

ml. length + ml. length - 1; « remove + first of list (ml) »

fi

UNLOCK (ml.listlock)

until cond do

od

end remove

end type mlist

LOCK (ml.listempty)

The desired properties are introduced as part of the type definition and

are preserved independent of where such a message list is used.

6.2. In addition to specifying exactly the set of operations, it may also

be necessary to apply such operations in some order. For example. one cannot

start reading a file unless an open file command has first been given.

117

A tool for specifying the order of executing operations on a shared

datasructure is a so-called path expression. In its most simple form, the

syntax of a path expression is a list of steps separated by semicolons and

surrounded by the keywords path and end. A step is a list of operation names

separated by commas. More elaborate constructs are still under investigation.

Example: ringbuffer

We define first a type oneslot buffer

and then the type ring buffer

~ oneslot buffer =

local slot = message; path write; read end

Operation write (- -)

Operation read (- -)

end

The given path enforces alternating executions of write and read.

~ ringbuffer (N=integer) =

~ ring [N] oneslot buffer

local front, rear = integer (0)

path advancefr; copyfr end; path advancerr; copyrr end

operation deposit (m = message, ref rb = ringbuffer) =

begin advancerr (rb); write (m,rb.ring[copyrr(rb)]) end

operation receive (- -)

end type ringbuf fer

The paths assure that the front pointer cannot be advanced twice in a row,

nor can it be copied twice in a row. So, senders calling deposit will access

successive ringbuffer slots. It may happen that more than N senders call

deposit, so two senders may point to the same slot after all. But the write,

read path in the type definition of one slot buffer assures that only one

of these senders writes into that slot before it is read out.

6.3. If we add the possibility of concurrent execution to the path expres

sions, simple path expressions are already a powerful design tool.

118

Concurrent execution is indicated by a curly bracket pair { }.

Example: path {read}, write end

This path expression allows many concurrent reads or one write.

This path slightly favors reading, because another process can start

reading as long as others are reading whereas writing cannot commence until

all reading has stopped. Reading and writing can be given an equal chance

by the combination of these two paths:

path readreq, WRITE end; path {read}, write end

where READ = !2_ readreq; read~ and WRITE = write.

Before actual reading can start, permission must be obtained by passing

readreq. (One can program the Readers/Writers problems and variations with

a combination of three paths).

6.3. Finally some remarks about implementation.

The path expressions in their simple form can easily be translated

into bracket representations. The translation rules are

.!_path - end

2 f;g

3 f,g

4 {f}

f

+ invent a new bracket pair d b

+ replace semicolon by a close and open bracket of a new

chosen bracket type

+ distribute the bracket pair surrounding f,g over f and g

separately

+ dot the brackets around f indicating that only the first

and the last execution must use the brackets.

(f,g); {h,(j;k)} end

F) f[

G) g[

H]h(
) '

J]j{

) f[K }k (

j k

The path assures that the number of executions of K is

less than or equal to the number of executions of].

FORMAL PROPERTIES OF DATA BASES by E.J. NEUHOLD

1. Introduction .• 121

121

121

124

124

126

130

130

134

136

137

138

143

147

147

147

150

151

153

155

2.

3.

The Infological Approach to Data Bases.

2.1. The Infological Model of

2.2. The Data Concept .
2.3. The Information Concept.

2.4. The Information System

The Relational View of Data

3.1. General Definitions ..

3.2. Functional Dependence.

Human Mind.

3.3. Candidate Keys and Primary Keys.

3.4. The First Normal Form of Relations

3.5. Operations on Relations.

3.6. The Relational Calculus.

3.7. Relational Completeness.

4. Binary Relations •.•.•

4.1. Some Deficiencies of n-ary Relations

4.2. The Generation of New Data Categories.

4.3. Binary Relations ...•.

4.4. Insertion, Deletion and Tests of Data Values

4.5. Semantic Extensions ..

4.6. The Formal Description of the Binary Relational Model. 157

5. The Formal Representation of Data Bases 163

5.1. General Considerations • . . 163

5.2. The Extended Vienna Definition Language. 166

5.3. Relational and Hierarchical Data Organizations 170

5.4. A Sample Data Base 174

6. Summary 175

References 176

MATHEMATICAL CENTRE TRACTS 63, 1974, 121-177

FORMAL PROPERTIES OF DATA BASES

E.J. NEUHOLD

University of Stuttgart, Stuttgart, (D)

1. INTRODUCTION

When investigating the formal properties of data bases one soon real

izes that the formal theories in this area are not yet very advanced. No

conclusive theory exists and as a consequence many different techniques

have been developed. They are basically very similar, but it is still hard

to relate them to each other and to compare their descriptive power.

Instead of investigating all formal work on data bases we shall con

centrate on a few essential activities. Especially, we shall disregard the

most theoretical approaches, as they are still only applicable to very

simple date base models (e.g. C. PAIR [13]). The implementation and hard

ware oriented investigations (e.g. R. BAYER [14], R.W. TAYLOR [15]) also

leave the frame of our discussions. They are usually of high complexity and

contain many machine dependent parameters and considerations.

The work underlying these lecture notes is mainly derived from the

papers by E.F. CODD [1-6], J.R. ABRIAL [7], B. SUNDGREN [8-9] and E.J.

NEUHOLD [10-12]. The general aim of the paper is to stimulate readers in

terest in the application of precise formal notions to the data base area,

where a large range of usually only vaguely defined terms and concepts

contributes to the confusion and misunderstandings among the representatives

of the field. No results which essentially extend the range of the refer

enced literature are given though a number of remarks and positions taken

may be new.

2. THE INFOLOGICAL APPROACH TO DATA BASES

2.1. The Infological Model of the Human Mind

The organization of a data base and of the information system where

the data base is just one part depends very heavily on the characteristics

122

repeated
perception

induction

perception

deduction

I
I
I
I
I

~ __ ---~n~~~now~qge _______ I

Figure 1: Infological model of the human mind.

outside

human mind

frame

of

reference

123

of the ultimate users of the system, usually human beings.

To develop a proper framework for the design of information systems

we first have to study the working of the human mind as the medium where

the data extracted from a data base will be processed to contribute to the

problem solution attempted by the person. Figure 1 contains an infological
model of the human mind (see also [8]) where the following important as

pects may be observed:

- The existence of an outside reality is assumed. In this reality it is al

ways possible, at least in principle, to determine whether a specific

statement about the reality is true or false. This assumption is necessary

as soon as we want to conjure that statements, which users cannot agree

upon, have no place in data bases. Such an agreement is necessary for

the exchange of information between users, one of the essential proper

ties of the information systems we want to investigate.

- To gain any knowledge at all about the reality, concepts must be formed

(or given to the human being). This formation process is achieved by the

repeated perception of pieces of the reality and it continually goes on

during a persons life. New concepts are formed, obsolete concepts are de

leted and old concepts may be forgotten.

- The concepts together with perception of the reality allow the formula

tion of specific knowledge.

- Concepts and definitions together with specific knowledge allow the in

duction of new concepts and definitions and of empirical laws.
- The specific knowledge, the empirical laws and the apriori given laws

of logic allow the deduction of other specific knowledge and of new em

pirical laws.

- Inductions and deductions take place with respect to the frame of refer
ence. The frame of reference Fp(t) of a person P at time t encompasses

all the concepts, definitions, specific knowledge and general knowledge

perceived, deduced or deducible, a person has at time t.

- A person may be more or less conscious of different parts of his frame

of reference. For such a part k of his frame of reference a consciousness
function c(k,P,t) can be given for the person P at time t which may take

on values between zero and one. The value of c(k,P,t) is zero if and only

if k ~ Rp(t). The value is one if the person P is immediately aware of k

at time t.

Changes in the consciousness value may arise through the ongoing percep

tion or through the usage of k in induction or deduction processes.

124

- Knowledge may be explicit or implicit. Explicit knowledge exists already

as specific knowledge, laws, concepts or definitions whereas implicit

knowledge is deducible knowledge which has not yet been deduced or per

ceived.

2.2. The Data Concept

The addition of new knowledge may increase and decrease the conscious

ness of already existing knowledge in RP(t) or it may even distort the

frame of reference and produce inconsistent knowledge, such endangering

the inductive and deductive processes of the mind. For these reasons a:r•ti

ficial extensions of the human mind have been used for a very long time.

The artificial extensions allow to store knowledge and to corrrmunicate know

ledge to other persons through the use of data.

DEFINITION. If a person arranges intentionally one piece of reality to

represent another, then the former arrangement is called data. The ar

ranged piece of reality is the mediufn used for storing data.

Examples of such arrangements are: digital and analog representations,

spoken and written languages etc. Observe that the intention of making such

an arrangement is important. Coincidents where one piece of reality by ac

cident represents some other piece do not count as stored data. However it

is allowed, that a person only makes the arrangement for storing data, where

as the actual storing is done automatically, for example with the help of

automatic sensors.

2.3. The Information Concept

Information is defined as synonymous with new knowledge. With this

definition a large number of observations can be made using the already

investigated properties of knowledge.

Information is knowledge and can only exist in the mind of a human being

where it is part of his frame of reference, or more precisely I ~ R (t
+ p

I E Rp(t) and I E Rp(t).

- Information therefore is always related to a reference person. If infor

mation is to be stored a reference person (at least some "average" user)

is always assumed for whom the data are intended. However it is usually

the case that no such "average" user exists and a lot of complicated data

base problems result through erroneous extraction of information from the

stored data.

125

- Information is always related to a set of old knowledge, the reference

knowledge, i.e. RP(t-). For example when a message is sent to some per

son a typical frame of reference is assumed for the receiver of the mes-

sage.

- For every information an external source must exist. Otherwise it would

not be new knowledge but would already exist in some explicit or impli

cit form in the reference knowledge.

Sources of Information

Only two sources of information are possible:

a) perception of a piece of reality

b) perception of data representing a piece of reality. Such data are called

a d.a.ta message or a d.a.ta record.

The Forming of Information

The creation of new knowledge from a piece of reality or a data mes

sage is illustrated in Figure 2. To allow the interpretation of a data mes

sage a corrrpatible frame of reference RP(t) must exist. Otherwise the prop

er concepts, definitions and interpretation rules would not be available

and the message would remain meaningless or would be interpreted the wrong

way. The conceptual message contains the semantic contents of the inter

preted message. Using this meaning of the message together with the old

knowledge (reference knowledge) the updated knowledge can be derived. No

tice however that a message may be meaningful but will still not convey

any information if the meaning it represents is already part of the expli

cit or implicit knowledge of the person.

Even if a message does not carry any information, the action of send

ing the message may convey information. For example A knows but is also

told by B that "the flight from New York to Amsterdam leaves at 9 p.m.".

A receives among others the informations:

- B knows that "the flight from New York to Amsterdam leaves at 9 p.m.".

- B does not know that A knows "the flight from New York to Amsterdam

leaves at 9 p.m.".

The processes for forming of information do not ensure that the receiver P

of a message interprets it as it was intended by the sender. Even if the

frames of reference for two persons are compatible it is not sure that they

will get the same information. If their knowledge differs at all then one

of them may already know part of the meaning contained in the message.

Among further properties of information are:

126

A person may be more or less conscious of information as it need not be

placed with a high consciousness value into his frame of reference.

- Information may be explicit or implicit. If not all possible deductions

are performed at the derivation time implicit information results which

at a later point in time may become explicit knowledge through the de

duction processes.

- A data message may also have value as a reminder, even if no information

is conveyed. It may, for example, increase the level of consciousness of

some knowledge or it may make implicit knowledge explicit.

2.4. The Information System

Using the infological theory as presented so far we can now relate

the developed concepts to the information systems and their data bases. A

number of valuable properties of these systems can be derived immediately:

- A data base represents the medium for storing data and since all data

are representations of pieces of reality it provides a model of the re

ality. Human beings have used models for a long time. Usually manipula

tions on the model are much easier and faster than on the reality itself.

Different operations and their effects can be composed before they are

actually carried out. The model also provides for an extension of the

human abilities, where access to data and information is much faster than

through observation of the reality.

- The data base provides a source of information for the user and therefore

leaves the range of being a simple extension of his mind. Other users

may leave messages in the data base which eventually will convey new

knowledge to the user of the data base.

- The information system as an extension of the human mind can help as a

reminder of knowledge with a low level of consciousness. But where does

it become important? For example when calculating

5 + 12 I definitely will not use the information system.

18.562 + 4.2436 I may use the information system if it is easy to use,

next to my desk and ready.

sin(4.253) I will use the information system.
We can deduce that it is important for an information system and its data

base to be readily available and in its external representation of mes

sages close to a form which can easily be interpreted by the user.

- The user support system should help the user in his different actions

127

when solving some problem. According to Figure 1 this involves percep

tion, conceptualizations, inductions and deductions. Perception is sup

ported via automatic data gathering equipment. Deduction support ranges

from automatic theorem proving to simple arithmetic calculations. For

conceptualization and induction processes current and probably planned

systems provide very little direct help.

- Data base builders and users must have compatible frames of references

to allow for the proper interpretation of messages. For example, in the

statement

salary + 15000,

it is necessary to know whether "salary" is specified by day, month or

year, whether the currency is Dollars, Gulden or Lira and also whether

the number representation is decimal octal etc.

However it is not necessary that all interpretation rules are a

priori knowledge of the users. They can be provided as messages to such

users as long as some basic compatible frame of reference exists, to in

terpret the messages carrying new, additional interpretation rules.

Comp0nents of the Information System

To construct information systems which have the properties listed pre

viously a few major components can be identified:

- The data base must provide for the storing of the allowed basia data

values. These values include numbers, names, descriptions, e.g. 15000,

J. SMITH, "Sala;py is in $ and per year", "Employe!' may be pe!'son or

aO!"pO!'ation". The italic names provide the identification of the differ

ent data aatego!'ies existing in the infological base. As a general guide

line, data are usually grouped into a category, if their interpretation

by a human being leads to a highly overlapped semantic content in this

resulting conceptual message.

- Relations and dependenaies between the data in the data base must be ex

pressed by organizational concepts (e.g. data hierarchies), algorithms,

laws, and interpretation rules.

128

Examples: a)

!\
first-name last-name

b) sin (x) Df program
c)ry true = .false

;-~-~~-~
spouse children address

I \ \
first-name f.n. f.n. f.n.

d) yearly-salary = 13 * monthly-salary

e) salary: fixed, decimal, 5 digits.

- To allow for the adjustment of the time dependent properties of data

bases it is necessary to provide manipulation functions, as, for example

for the reorganization of data dependencies or for the deletion/addition

of data relations, algorithms, data classes etc.

- Many different users with a wide variety of knowledge will use an infor

mation system. To provide each one with a support facility closely re

lated to his frame of reference and subject area it becomes necessary to

organize the data base system in such a way, that the data representations,

dependencies and relations can easily be adjusted. This leads to a facil

ity for defining subject oriented data base submodels.

- To communicate with the information system a user must be able to access,

update, insert data, to use algorithms and to receive support for his

deduction problems. Here again facilities closely related to the frame

of reference of the information system user are required.

Organization of an Information System

Based on the infological approach to data base systems we can now dis

cuss the design and the operation of such a system. Figure 3a describes the

various steps involved in the design of the data base system. Figure 3b il

lustrates the transfoi'lllations which occur when a user action is to be per-

formed.

Starting with the piece of reality which is relevant for a user or

class of users a subject matter model of the reality is constructed, which

closely corresponds to their frame of reference and allows simple inter

pretations and deduction processes. With the help of the infological theory

the different subject matter models are combined into a common infological

129

model. The datalogical model is derived from the infological model through

the application of data base design theory and the specific design goals.

The final mapping of the datalogical model to the physical devices provides

us with the physical data base which will contain all the information stored

in the system.

If a user of the information system requests some action to be per

formed, he will state this request in a form closely related to his frame

of reference, and therefore to the piece of reality which he has knowledge

about. In the context of the information system this means that the actions

will be specified with respect to his subject matter model. To perform the

actions on the stored data a translation process of the user request must

take place. With the help of the infological model, the datalogical and

the physical data base description the user actions are transformed into

operations on the physical data base. Selected or produced results then

are transferred back to a form which the user can interpret.

The approach to information systems described in Figure 3 is still

very far from the current abilities of data base systems. In practically

all systems the subject matter models, the infological model and the data

logical model are combined into a single model. As a consequence the de

signers and users have to be aware of all the infological, datalogical

and physical aspects of their information system at the same time.

The designer must know about the subject matter models of all users.

He has to specify the representation of data, their grouping and their

dependencies. He must know about design decisions to be made to realize

space and/or time efficiency. The user, on the other side, has to perform

in his mind the necessary translation processes, to transform the required

action from the form suggested by his frame of reference to the physical

operations of the data base.

In the past the data base systems have all been very simple in the

infological sense. In their design it was assumed, at least implicitely,

that

- only a very small slice of the reality had to be covered,

- a large (nearly total) overlap of the frames of references for all users

did exist,

- a relatively small volume of data had to be stored or only simple opera

tions (like "read-next record") were allowed, thus reducing the problems

in achieving efficiency.

For large shared data base systems this simplistic approach will not

130

be sufficient. It will be necessary to separate the infological and data

logical aspects of the system. Arising problems can then be dealt with

separately, and no person has to have knowledge about all the different re

quirements resulting from the infological and datalogical properties of in

formation systems.

The next chapters will discuss data organizations and data manipulation

facilities which can be viewed as being oriented to the infological model

of the data base. In the last part of the paper we will introduce a repre

sentation and description technique for which it is hoped that it will al

low the uniform description of all the different levels of an information

system.

3. THE RELATIONAL VIEW OF DATA

3.1. General Definitions

In the previous chapter a number of levels for different data models

have been introduced. We shall now concentrate our investigations toward

the infological data base model as an intermediory between the individual

subject matter models and the already computersystem and device dependent

datalogical model.

The principal components of the infological model which are to be

investigated in this chapter are the different basic data categories and

the principles involved in describing the dependencies and relations be

tween the data values. From the many different approaches which exist for

the description of data base models only few are sufficiently machine and

device independent to be adoptable as infological data models. The rela

tional view of data bases as introduced by E.F. CODD [1-6] has all the re

quired characteristics and in addition has been and still is extensively

investigated by many people doing data base research and development. Un

fortunately the investigations have been carried out without much explicit

considerations for the infological aspects of the model. Of course, many

infological concepts have been used implicitely, but I believe a consider

able amount of misunderstanding between the people involved in data base

research could have been avoided if infological influences would have been

presented and illustrated explicitely.

In this chapter we shall use the term relation in its accepted mathe-

131

matical sense, whereas the term relationship will be used inl§ormally to ex

press any kind of interrelations between data. In addition we shall consi

der the term data base to be synonymous with infological model of a data

base.

Given sets o1 ,o2 , ••• ,on {not necessarily distinct), Risa relation

on these n sets, if it is a set of elements of the form Cd1 ,d2 , ••• ,dn)'

where dj € oj for 1 s j s n. In other words R is a subset of the cartesian

product o 1xo2x ••• xon. The relation R is said to be of degree n. oj is the

j-th doma.in of R. The elements of a relation of degree n are called n-tuples.

A data base B is a finite collection of time varying relations defined

on a finite col"lection of domains o 1 ,o2 , ••• ,op. As time progresses each re

lation may be subject to insertion of new elements, deletion of existing

ones and alteration of components of existing elements each time resulting

in a new instance (i.e. set of n-tuples) of the relation.

Example: The data base B is a collection of two relations, describing em

ployees and children,

employee {man#, name, birth year, children)

children {childname, birth year)

defined on the five domains man~. name, birth year, children, childname.

For each quadruple contained in the employee relation there exists an in

stance of the children relation describing the c.hildren of the employee. n

From the above definitions a number of observations can be made and

additional concepts on properties of the relational model can be developed:

- The domains o 1 ,o2 , ••• ,op may be simple or nonsirnple. A simple domain is

defined as a set of basic data values, a nonsimple domain has instances

of relations as its elements. In the above example all domains except

"children" are simple. The nonsimple domain "children" has instances of

the relation children, i.e. sets. as elements.

- A domain O. contained in a relation R describes the range of values the
J

j-th component of the n~tuples in the relation may have.

- A compound domain is the cartesian product of k (k>l) simple domains.

- The simple domains of the relational view of data bases closely corres-

pond to the categories of basic data values found in the infological

model.

- The only infological relationships and dependencies between data which

can be expressed using the relational view of the data base must be ex

pressible within the framework of relations with simple and nonsimple

domains.

132

The set of-ples representing a relation R at time t is called an in

stance of R.

- Not all the domains of the n-ary relation R need be distinct. If the same

domain appears more than once in a relation R, the different occurrences

could be identified through ordering of the domaLns. Instead of retaining

such an ordering we shall introduce distinct names, called attribute

names, which will uniquely identify the different occurences of domains

in the relation R. The domain occurrences in a domain are now order in-

dependent and will be called attributes of the relation R.

Example: For the description of parts and their contained subparts a "com

ponent" relation will be defined on two occurrences of the domain "part".

With the help of attribute names we specify the relation as follows: com

ponent (sub-part, super-part, quantity) where both attributes "sub-part" and

"super-part" correspond to the domain part existing in the relational mod-

el. D

- The two values v 1 and v 2 , contained in the attributes A1 and A2 or R

respectively, are associated with each other if in the current instance

of R there exists at least one n-tuple which contains v 1 and v2 as the

respective values for the attributes A1 and A2 •

A relation R is called normalized or in first normal form if it has the

property that none if its attributes are nonsimple. An unnormalized re

lation is one which is not in first normal form.

To restrict a data base to normalized relations has a large number of

advantages. The most important probably is, that the infological complexity

of unnormalized relations is very high. Data interpretation in the rela

tionally expressed hierarchies is complicated and many problems of implicit

data dependencies arise. As we shall see later in this paper even the first

normal form of relations is of high infological complexity and additional

restrictions have been developed to reach simple but still sufficient data

base models.

Normalized relations can be stored as two dimensional matrices with

homogeneous values in the columns. This representation does not require

pointers or hash addressing schemes and seems to be the form best fitted

for bulk data transfer between systems of different structure.

Most data base models containing unnormalized relations may be normal

ized automatically. Before we can discuss the normalization procedure a few

133

additional concepts have to be introduced. It should be noted however, that

because of the very high infological complexity of unnormalized relations,

the automatic normalization process has to make strict assumptions about

the reference knowledge to be used for the interpretation of the restruc

tured relations.

- We introduce the notation R.A to denote the attribute A of R, and r.A

to select the value of the attribute A in the tuple r (rER). This nota

tion can be expanded to a list of attributes A= (A 1 ,A2 , ••• ,Aj) of R.

The expression R.A then denotes a collection of attributes in R. The no

tation r.A is expanded to

with the additional definition

r.A = r

in case the list A is empty. We shall use the notation A to identify the
- -attributes of R which are not contained in A. Similarily R.A and r.A are

defined.

Example: The current instance of the relation

employee (man #, name, birth year, children)

may contain the quadrupel

r = (1345, J. SMITH, 1936, {(JILL, 1964) })

Given the list A (name, birth year),

r.A (J. SMITH, 1936)

r.A (1345,{ (JILL, 1964) }J 0

- For the manipulation of relations we introduce a concatenation of two

tuples

134

Its result is defined by the (n+m)-tuple

- Two simple domains are union-corrrpatibZe if the infological interpretation

of their data values allows us to combine the values into a single data

category. Observe, that the property of union-compatibility is heavily

dependent on the interpretation of the respective data values and there

fore on the reference knowldege of the data base user.

Two compound domains D and E are union-compatbile if they are of the

same degree (say n) and for every j (1jn) the j-th simple domain in D

is union-compatible with the j-th simple domain in E. Two relations R,S

are union-compatible if the compound domains of which R and S are sub

sets are union-compatible.

3.2. Functional Dependence

When setting up a relational data base the designer must decide on

the degree and the properties of the relations to be incorporated in the

model. The relational data base is the datalogical model in the general in

formation system and must combine the different aspects of the subject mat

ter models which, as abstractions of the reality, closely correspond to

the reference knowledge of the various users.

One such important aspect is the functional dependence between attri

butes in a relation R. It arises whenever in the n-tuples found in R some

compound values are not independent from each other.

We define more formally:

The attribute A2 of relation R is functionaZZy dependent on attribute A1
of R if, at every instant of t-irne, each value of A1 has no more tfian one

value in A2 associated with it under R.

The infological aspects of this definition can be seen immediately in

the request that the condition must hold "at every instant of time". This

property cannot be checked without knowledge of the modelled reality and

135

the abstraction and specification processes involved. We write R.A1 + R.A2
if A2 is functionally dependent on A1 in R and R.A1 f R.A2 if A2 is not

functionally dependent on A1 in R. If both R.A1 + R.A2 and R.A2 + R.A1 hold,

we write R.A1 ++ R.A2 and R.A1 and R.A2 are at all times in a one-to-one

correspondence. The functional dependency satisfies the transitivity con

dition; if R.A1 + R.A2 and R.A2 + R.A3 then R1A1 + R.A3.

The definition of functional dependence can be extended to collection

of attributes. If D and E are distinct collections of attributes of R, then

E is functionally dependent on D if, at every instance of time, each D value

has no more than one E value associated. In case the attribute collection E

is a subset of D we speak of trivial funational dependenae since the re

quirements for functional dependence are trivially satisfied.

Example: To illustrate functional dependence we use a relation

S(Empl #, Dept #, Div #)

where either the reference knowledge or the abstraction from reality deter

mines that

Empl # is the employee serial number

Dept # is the number of the department to which the employee belongs

Div # is the serial number of the division to which the employee belongs.

In addition the infological framework may supply the time independent prop

erties

- an employee never belongs to more than one department

- a department never belongs to more than one division

- an employee belongs to the division to which his department belongs.

Actually these properties are important during the whole lifetime of the

data base. Consequently they should themselves be kept in the database

system. We shall discuss in the next chapters how this can be achieved at

least for a simple subconcept of our relational model.

Using the infological properties and relationships we immediately de

rive, e.g.

R. Empl # + R. Dept #

R. Dept # + R. Div #

R(Empl #, Dept #) + R. Div #

136

If we know in addition that

- many employees work in one department

- many departments are associated with a given Division

then we can define

R. Dept # f R. Empl #

R. Div # f R. Dept #

An example of a trivial dependence is given through

R(Empl #, Dept #) + R. Empl # D

3.3. Candidate Keys and Primary Keys

We define a aa:ndidate key Kofa relation R(A1 ,A2 , ••• ,An) as a col

lection of attributes (possibly one) with the following properties:

Pi : Unique identifiaation

In each tuple r of the relation R the value of the attributes contained

in K uniquely identifies the tuple, i.e.

P2: Non-redundanay

No attribute in K can be deleted without destroying the property Pl.

With the definitions given earlier we are able to deduce two additional

properties of candidate keys

P3: Each attribute of R is functionally dependent on each cnadidate key of

R. (An immediate consequence of trivial dependency, transitivity of

functional dependence, and property Pl.)

P4: The collection of attributes of R found in a candidate key K is a

ma:x:imaZ funationaUy independent set. That is,

a) every proper subset s1 of K is functionally independent of every

other proper subset s2 of K when

and

137

b) no attributes of R can be added to K without destroying the function-

al independence of K.

(Part a) is a consequence of the transitivity of functional dependence,

of trivial dependence and of property P2. Part b) is an immediate con

sequence of property P3.)

One of the candidate keys is selected as the primary key of the rela

tion R. Its selection usually depends on infological reasons, e.g. ease

of its interpretation with the help of the reference knowledge of the human

users. The primary key serves for the unique identification of the indivi

dual tuples contained in the relation. It may appear for this identifica

tion purpose as a foreign key in some other relation where an infological

dependency to R exists. In order to be always able to use the primary key

for tuple-identification purposes it is not possible that undefined values

for any of its component attributes are allowed. In all other respects the

primary key can be handled like-any other candidate key.

Exam2le: In the two relations

warehouse (ident #, pa:r>t #,quantity-on-hand)

part (pa:r>t #, name, price)

the primary keys have been written in italics. If it is known that the part

names will be unique at all times, the attribute "name" represents a candi

date key of the relation "part". In the "warehouse" relation the attribute

part # is a foreign key and in this example also part of the primary key. D

3.4. The First Normal Form of Relations

We have observed that the unnormalized relations add considerably to

the task of message interpretation and require in addition complex mechan

isms for their realization in the physical data base.

Using the definitions of functional dependence and primary keys a nor

malization process for unnormalized relations can be given:

Step 1: Starting with a relation R which does not appear in any nonsimple

attributes (a top relation)

the collection of attributes representing its primary key is selected.

- the immediately subordinate relations are expanded with this attribute

collection,

138

- a new primary key in the expanded subordinate relation is formed, which

consists of the old primary key and the inserted collection of attributes,

- all value adjustment in the subordinate tuples are made by copying the

primary key value from the containing tuple of R,

- all nonsimple attributes are deleted from the top relation.

Step 2: Repeat the process for all nonsimple, expanded attributes.

Example 1: The already discussed data base B with the relations

employee (man #, name, birth year, children)

children (ehildncone, birth year)

and the primary keys identified by italic letters will be transformed during

the normalization process to the normalized relations

employee (man#, name, birth year)

children (ehildncone, man #, birth year) D

The normalization process can only be applied to relational data base

models which satisfy the following two conditions:

1. The graph of interrelationships of nonsimple attributes is a collection

of trees.

2. No primary key has a ?omponent attribute which is nonsimple.

In the remainder of our discussions on the relational view of data

bases the term relation will always mean relations in first normal form

except when explicitely noted differently.

3.5. Operations on Relations

In order to work with a relational model of a data base operations

have to be defined which allow the manipulation of operations, especially

the restructuring of relations and the formation of new relations out of

existing ones. Further operations on relational data bases will be dis

cussed in chapter 4.

The operations to be discussed in this section belong to two princi

pal classes; a) traditional set operations and b) operations meaningful

because of the infological interpretation given to the relational data

base model.

139

Traditional Set 0perations

The set operations union (u), interseation (n) and differenae (-)can

be used with their accepted mathematical meaning with the only restriction

that they can only be applied to union-compatible relations.

The aartesian produat R x S can be applied to any (even unnormalized)

relations. The result of the operation is a relation of degree two with the

nonsimple attributes R and S. As a consequence, the result of the cartesian

product is always an unnormalized relation even if the relations R and S

are normalized. It has the additional property that each instance of the

relations R and S appearing in the tuples of R x S contains only one ele

ment.

Relational Cartesian Product

Much more important than the normal set theoretic cartesian product is

the relational cartesian product. Given two relations R,S of degree n,m res

pectively we define the relational aartesian produat by

R 0 S {(rs): r ER As Es}

with the resulting degree n + m.

Projection

To allow access to parts of relations the projection operation is de

fined. Given the relation R and r one of its tuples we define the projec

tion of R on a list of attributes A in R as follows:

R[A] {r.A r E R}.

The resulting relation has the degree card (A).

Examples of projections:

Given the relation R containing three tuples

R(Al A2 A3)

a 3 g

b g

c 2 f

we apply different projection operations and get as results

140

a

b

c

b g

c f 0

Join

To combine two relations without using the full expansion capabilities
of the relational cartesian product the join operation has been introduced.
We assume two relations R and S and two comparable lists of attributes A
and B of the relations R and S respectively. The comparability of two attri
bute lists with respect to a comparison operator p is defined such that

- the length of both lists is equal, say k,

each pair of attributes Ai E A and Bi E B, 1 s i s k, is comparable with
respect to the operator p (one of the operators=,~. <, s, ~.>),that
is for every element of R.A and every element of S.B the operation yields

either true or false but not undefined.

The comparison r.Aps.B is true iff for all

Aj E A, Bj E B the comparison r.Ajpd.Bj yields true, i.e.

k
VA Vj (r.A.ps.B.)

j=l J J

The p-join of R and S on the attribute lists A and B is now defined by

R(ApB)S {(rs): r ER 11 s Es I\ (r.Aps.B)}.

Examples of joins:

Given the relations

R(A, B, C)

a

a 2

b 2

c 2 5

join operations yield

R(B=D)S(A,B,C,D,E)

a 2 2 u

c 2 5 2 u

S(D,E)

2 u

3 v

R(C>D)S(A,B,C,D,E)

c 2 5 2 u

c 2 5 3 v

141

Natural Join

When joining two relations with respect to the equality operation the

resulting tuples always contain equal values in the respective attribute

positions of the lists A and B. This redundancy can be eliminated (if de

sirable from an infological point of view) with the help of the natural

join operation.

Given two relations R and S and two lists A and B of attributes in R

and S respectively, where A and B are comparable for equality, we define

the natural join of R and s with respect to lists A and B by

R(A*B)S {(rs.B: r ER As ES A (r.A s.B)}.

It is easy to see that the natural join can also be defined in terms of

projections and an equality-join

R(A*B)S (R(A=B)'S) [B]

Example for natural join:

Using the relations given in the examples for the join operation we
get

R(B*D)S(A,B,C,E)

a 2 u

c 2 5 u 0

To increase the convenience in expressing relational operations two

additional operations can be introduced which can both be defined in terms

of already known operations.

Division

Given two relations R and S and two attribute lists A and B in R and

S respectively, where the compound domain defined by A and by B are union
compatible, the division operation is defined by

R[A+B]S R[A] - ((R[i-\] 0 S[B])-R) [A]

Restriction

Given a single relation R and two lists of attributes A and B in R

142

such that they are comparable with respect to the operator p a restriction

can be expressed by

R[Ap B] {r: r E R A (r.A pr.Bl}.

The restriction operation, as shown by E.F. CODD in [3] may also be defined

in terms of joins and projections.

The operations introduced in this secticn can be considered to form a

reZationaZ aZgebra for the formulation of manipulation requests on the re

lations of a relational data base. Humans using an information system will

express data manipulation requests in terms of their specific subject matter

models. These requests, as discussed earlier, will have to be translated in

to data manipulation requests for the infological model and consequently

could be expressed in the relational algebra.

Example of a user request formulated in relational algebra:

Using the normalized relations "employee" and "children" of example 1

we represent the request

"Find the names of employees, eaah of whom has ahiZdren with

the birth year 1965. "

in relational algebra by

(employee (man # = man #)

(children(birth year= birth year){(1965)}[(man #)]))[(name)]

where it is assumed that the single attribute of the relation

{(1965)} has the name "birth year". D

When using the relational algebra for the formulation of data manipu

lation requests a number of disadvantages are apparent:

- Every operation has to be formulated in the framework of relations. That

is, instead of using basic data values directly, e.g. 1965, they have to

be expressed in relational form.

To include additional functions e.g. MAX, SQRT, etc., in the relational

algebra requires, that they are expressed as mappings on relations, a

property which so far has not been developed for these commonly used

functions.

143

- Bearing in mind, that a user wants to formulate his data manipulation re

quests in ways closely corresponding to his subject matter model, the re

lational algebra seems to force unnecessary problems into the required

translation processes (see also the next section) .

3.6. The Relational Calculus

We have seen in the preceeding section that with the relational algebra

a communication between user and information system (at least the infologi

cal model) can be established. However the majority of the users will be

oriented to their own subject matter models and to languages strongly influ

enced by these models and by natural languages.

In such an environment, like in everday life, it will be much more like

ly that the manipulation requests are expressed in terms of properties of

objects, e.g. the birth year 1965 of children, and of combinations of such

properties. Consequently it seems, that we are able to elminate the disad

vantages mentioned in the preceeding section for the relational algebra, by

developing a calculus oriented language for the formulation of data manipu

lation requests on the infological model (see E.F. CODD [3]). Such a langu

age will have the special advantage of being closely related to the subject

matter model oriented methods used by the humans in formulating data manipu

lation requests.

For formulating expression in the relational calculus the following

notions will be used:

basic data values a1,a2, ...

tuple variables r1,r2•···
attribute names d1,d2•···
predicates Pl,P2
comparison symbols =, >, <, ~. ~. F
logical symbols 3, v, v, A, I

delimiters [I JI (')

In addition we assume a one-to-one correspondence between predicates

P1 ,P2 , •.• ,PN and the relations R1 ,R2 , .•. ,~ of the relational model, such

that P. indicates membership of tuples in R ..
J J

Using these basic notions the construction rules for terms can be

formulated:

144

1. A range term has the form P.r where P. is a predicate and r a tuple vari-
J J

able. It establishes that the range of r is the relation R .•
J

2. We first define a tuple component r.d for a tuple variable r and an at-

tribute name d to identify the d component of the tuple.

Assuming tuple components e and f, a comparison symbol panda basic da

ta value a then

epf epa

are join terms.

3. A term is either a range term or a join term.

Well-formed Formulae

The well-formed foY'nTU.lae (WFF) of the relational calculus are defined

as follows:

1) Any term is a WFF;

2) If e is a WFF, so is7e;

3) If e,f are WFF, then (eVf) and (eAf) are WFFs;

4) If e is a WFF in which r occurs as a free variable then 3r(e) and Vr(e)

are WFFs;

5) No other formulae are WFFs.

Range Separability

The use of tuple variables in an infological framework for the selec

tion of data and for the testing of data properties requires that the range

of such variables is clearly defined. Otherwise infological confusion and

wrongly interpreted data messages would be the inevitable result. We there

fore have to restrict the general WFFs to enforce range definitions for all

occurring tuple variables.

The following definitions are made for the purpose of such restrictions:

- A range WFF is a quantifier free WFF all of whose terms are range terms.

A range WFF over r is a range WFF whose only free variable is r.

- A proper range WFF over r must in addition satisfy

a) "?does not occur at all or it immediately follows A. This restriction

excludes range WFFs of the form~Pr specifying as range of r every

thing (!) except the relation R associated with P. A situation where

most likely no infological interpretation for the range of r could be

given.

b) whenever r occurs in two or more range terms, the relations associated

with the predicates in those terms must be union-compatible. Again

this restriction is made to avoid range definitions which cannot be

interpreted in the infological frame.

145

- If a well-formed formula contains quantifiers, the tuple variables bound

by these quantifiers must also have clearly defi~ed ranges. Assume that

e is a WFF with r as a free variable but without a range term in r. Let

f be a proper range WFF over r. When r becomes bound, either by 3r(e) or

Vr(e) we introduce a range specification into the construct by replacing

3r or Vr by the range coupled quantifiers 3f and Vf respectively. The re

resulting WFFs are defined by the equations

3fr(e)

Vfr(e)

3r(fAe)

Vr(fVe)

Notice however, that for an infological interpretation the two constructs

3fr(e) and Vr(7fVe) are not at all equivalent. For the infological inter

pretation of e in the first construct the values of r are restricted to

the range f. In the second construct the values of r ranges over the whole

universe of discourse (i.e. all possible tuples) and it does not seem

likely that a meaningful infological interpretation for e can be found

for every one of these values.

- Finally, a WFF is range-separable if it has the form

where

a) n ~

b) w1 ,w2 , ... ,wn are proper range WFFs over n distinct tuple variables

c) V is either nonexistent or it is a WFF in which every quantifier is

range coupled, every free variable belongs to the set whose ranges

are specified by w1,w2 , •.. ,Wn and V does not contain any range terms.

Examples of range-separable WFFs

P8r 3 A (r3 .d2 = a 1J

P7r 2 A 3P2r 1 (r1.d3 = r 2 .a1)

ExamEles of WFFs not range-separable

P7r 2 A 3r1 ((r1 .a2 = r 2 .a5J v P8r 1J

~P2 r 1 A (r1 .a4 = r 2 .d1J

146

Alpha expressions

Range-separable WFFs allow the specification of logical conditions on

the data values to be selected from a data base. Using only conventional

set definition capabilities we would only be able to construct a (mostly in

coherent) set of tuples. Accordingly we introduce ~ capability to select

from the identified tuples components for constructing the desired target

relation. A simple alpha expression has the form

{(t1 ,t2 , ••• ,~): w}

where w is a range-separable WFF and t 1 ,t2 , ... ,~ are either tuple vari

ables or tuple components where the set of tuple variables appearing in

t 1 ,t2 , ••. ,tk is precisely the set of free variables in w. The list Ct 1,t2 , .••

... ,~) is called the target list and w the qualification expression. The

definition of simple alpha expressions allows the multiple use of a tuple

variable in the target list, providing for situations where a selection of

components of one tuple are required in the target relation.

The result of evaluating a simple alpha expression is a relation which

is a projection, determined by the target list, of that subset of R1@R2® •••

... @Rn which satisfies the qualification expression, and where R1 ,R2 , ... ,'\i
are the ranges of the free tuple variables of w.

Using simple alpha expression we can now define general alpha expres
sions by

1) Every simple alpha expression is an alpha expression

2) If {t:w1} and {t:w2} are alpha expressions, so are

{t: (w1vw2J}

{t: {Wi''\-iw2)}

{t: {w1Aw2)}

3) No other expressions are alpha expressions.

Example of a user request formulated in relational calculus:

Using the normalized relations "employee" and "children" of example 1

and the request

"Find the names of employees, each of whom has children with
birth year 1965. 11

we find the corresponding alpha expression

147

{(r1 .name): is-employee r 1 A

3children r 2 (r2 .birth year

where "is-employee" represents the predicate defining membership in the re

lation "employee".

Comparing this solution with the same example when expressed in rela

tional algebra (see section 3.5) we immediately see that the relational cal

culus expression much closer reflects the original formulation of the user

request. D

3.7. Relational Completeness

The qualification expressions in the relational calculus closely re

flect the constructs allowed in first order predicate calculus. The restric

tions placed on the qualification expressions are due to infological consi

derations but do not restrict the expressive power of the relational calcu

lus. The alpha expressions introduced in section 2.6 can therefore be con

sidered a measure for the expressive power of other relational algebras

and calculi.

E.F. CODD [3] defines a relational algebra or a relational calculus to

be relationally corrrplete if, given a finite collection of relations R1 ,R2 , ..•

•.. ,R in first normal form, the expressions of the algebra or calculus p
permit the definition of any relations definable from R1 ,R2 , .•. ,Rp by using

alpha expressions.

E.F. CODD [3] has proven formally that the algebra defined by the op
erations of section 3.5 is relationally corrrplete. The proof is given in a

constructive manner and exceeds the scope of our current discussions.

But despite the relational completeness of the relational algebra specified

in section 3.5, our observations still remain valid that it is preferable

to use a relational calculus when expressing data manipulation request in

the infological model of an information system.

4. BINARY RELATIONS

4.1. Some Deficiencies of n-ary Relations

In the preceding chapter the infological model of the data base was

defined by a finite collection of relations with assorted degree. Investi-

148

gation pointed out however, that the full generality of the relations was

not needed and a first normal form was introduced. The infological inter

pretation of the relations become much simpler, but as will be illustrated

in the following example, a number of unpleasant characteristics still re

main.

Example: A relation "supply" in first normal form is defined by

supply (s#, p#, SC)

Its infological interpretation states that the attribute s# identifies sup

pliers which supply the pa:t>ts defined by p#. The attribute SC specifies the

city where the supplier is located. In addition, a given part may be sup

plied by many suppliers and a supplier may supply many parts.

Using the definitions of functional dependence given in section 3.2

we get the following principal properties:

supply.s# f supply.P#

supply.P# f supply.s#

supply.s# + supply.SC

In Figure 4 an instance of the "supply" relation is illustrated. We may

use this relation instance to derive some of the still undesirable proper

ties of relations in first normal form.

supply (s#, p#, SC)

a NYC

a 2 NYC

a 3 NYC

b AMS

b 3 AMS

Figure 4

If a supplier relocates his place of business all the tuples with his

identification must be changed. This is a variable number depending on the

number of different parts the supplier supplies. If a supplier temporarily

ceases to supply any parts it becomes impossible to keep his address for

149

future reference in the relation since no undefined values for the attri

butes in the primary key are allowed. D

The problem we have encountered arises from the situation that the

attribute SC is functionally dependent only on a part of the primary key.

To repair this and similar situations E.F. CODD [2] introduced a second
and a third normal form by prescribing a number of specific restrictions

on the allowable functional dependencies in a relation. However, function

al dependency is a property of infological interpretations and heavily de

pendent on the intended meaning of a relation. Consequently, the rules for

restricting the functional dependencies, as required when formulating rela

tions in second and third normal form, are quite complicate, not easy to

apply and to illustrate and still they are in the end not satisfying.

Examvle: The 3-ary relation

workplace(E#, n#, desk#)

has the following infological interpretation:

The employees E# may work in many departments identified by the attribute

n#. A department may have many employees. In each department he works in,

an employee may have at most one desk (desk#). In addition a desk has its

place in precisely one department.

This infological interpretation leads to the functional dependencies

workplace.(E#, n#) +workplace.desk#

workplace.desk # + workplace.n#

According to the definitions given in [2] the "workplace" relation is

in third normal form, but the problem mentioned in the previous example

still exists. If a desk, temporarily, is not used by any employee its loca

tion in a department cannot be shared in the workplace relation. 0

For these reasons we will not investigate any further n-ary relations

and their different normal forms. In practical applications they may be of

great value, but for our remaining_conceptual investigations it is suffi

cent to consider binary relations only.

After giving the principal definitions we shall concentrate much more

than with n-ary relations on the functions required in a relational data

150

base model to introduce new relations, to define new data categories, to

insert or update tuples and to control the integrity of the data base (a.t

least to some degree). We base our discussions on the work of J.R. ABRIAL

[7], who introduced extensive concepts for handling relational data bases

and showed the power of his definitions by describing the data base model

itself using the developed operations and functions.

Restricting the infological data base models to binary relations elim

inates the problems which arise out of the complex functional dependencies

possible between the attributes of n-ary relations. To illustrate the dif

ferent notions of a binary relational model we shall use the infological

contents of the ternary relation "workplace" as it was explained in the pre

ceeding example.

4.2. The Generation of new Data Categories

A new category of data values is created by definitions of the form

identifier cat

defining a new category with the name expressed by the identifier, e.g.

E# cat

To produce a new data value (object) for one of the data categories,

e.g. a new unique name for an employee, we specify

generate E#

If a name is to be given to the created object we formulate

JOHN generate E#

The name will be permanently attached to the created data value, and

the system ensures that no other objects can get the same name. An assign

ment of a new object to a variable may be specified by

x +- generate E#

151

Objects which are not needed any more in the data base system may be elim

inated by

kill JOHN or kill x

4.3. Binary Relations

Binary relations in the binary relational model (BRM) are specified

by identifying two categories and two access functions using the formal

where

rel(domain 1, domain 2, accfct

accfct 2

afn(min,max),

afn(min,max))

- domain and domain 2 are two categories on which the tuples of the rela-

tion are defined.

- using the notations introduced in the preceding chapter we can express the

values produced by the application of the functions accfct l(x) and

accfct 2(y) by

{r.domain 2: r E rl A r.domain 1 x}

and

{r.domain 1: r E rl A r.domain 2 y}

respectively. The function accfct 1 is a mapping of domain 1 into the

powerset of domain 2 and accfct 2 is a mapping of domain 2 into the power

set of domain 1 •

- the access functions accfct 1 and accfet 2 are termed inverse to each

other. We define an inv operator such that inv(accfct 1) = accfct 2 and

inv(accfct 2) = accfct 1. Note that this definition of an inversion oper

ator is not equivalent to the conventional mathematical definition of the

inverse operation

the two terms min and max define the minimum and maximum cardinality of

the sets defined by the corresponding access functions.

Example: The four binary relations

r 1 (WL, E#, personofwloc = afn(l ,1), afn(0, 00))

r 2 (WL, n#, deptofwloc = afn(l,1), afn(0, 00))

152

(WL, desk#, deskofwloc

(desk#, o#, deptofdesk

afn(1,1), afn(O,oo))

afn(0,1), afn(Q,oo))

describe the same infological contents as the ternary relation"work location"
of section 4.1, except that a desk may now exist but not be associated with

any employee or department. These are situations which are not expressible

at all in the ternary relation "work location".

The four relations may be represented as a graph (see Figure 5) illus

trating the involved data categories and the defined access functions.

deptofdesk

Figure 5

To describe the ternary relation we had to introduce a new category

WL (work location) which has as its elements data values indicating the

existence of the infological entity

employee(#) in dept(#) on desk(#)

i.e. of the triple in the relation "work location". The implicit functional

dependencies of department on desks in "work location" is now expressed ex

plicitly by the relation r4 with the access function deptofdesk.

The above description of the infological meaning attached to the four

binary relations leads to a number of consequences:

- The specified cardinalities of the access functions prescribe that, when

ever a data value wl E WL exists, the relations r1, r2 and r3 must contain

tuples connecting the object wl to an employee, a department and a desk.

The precise definition of how this can be assured will be given later.

- A tuple may exist in r4 without the corresponding tuples in the other

relations. With this property we have eliminated the undesirable depen

dency problems occuring in the relation "work location".

153

4.4. Insertion, Deletion and Tests of Data Values

A number of operations in this sections have a very close resemblance

to the operations of the n-ary relational algebra and calculus (see section

3). For consistency reasons they are included here again, sometimes with

some slightly modified semantic meaning.

Insertion of a new tuple

We write

deptofdesk(desk) :~d

where desk is either a desk number or a variable with

a desk number as value,

d is either a department number or a variable with a department

number as value.

The result of the operation is the inclusion of a new tuple in rela

tion r4. Note that the operation has the implied side effect of

inv(deptofdesk) (d):3 desk

When executing the :3 operation the data base system tests whether desk and

d belong to the proper categories and whether all cardinality constraints

would still be met after insertion of the new tuple.

Deletion of a tuple

With the operation

deptofdesk(desk):~d

the tuple (desk,d) will be deleted from the relation r4. The access func

tion deptofdesk will reach cardinality zero for the domain value "desk". The

system tests during the execution of :$ whether desk and d belong to the

proper categories.

When specifying

deskofwloc (wl) : 1 deskofloc (wl)

154

the corresponding tupl' cannot be deleted from the relation r2. The speci-

fied cardinality constraints enforce that tuple (wl,unknown) still remains

in the relation. The special data value unknown may be included into a tuple,

whenever for one of the domains a specific data value is not known in the

tuple, but the tuple is to be kept in th_ relation.

Modification of a tuple

The op, ration

deptofdesk(desk) + d1

replaces the old value of the access function deptofdesk(desk) by d 1 • That

is, it replaces an already existing tuple, say (desk,d') with the new tuple

(desk,d,).

Testing for Membership

To test for membership of d in category n# we write

d is n#

The operation yields true when the value represented by d is a department

number.

Membership in a relation may be tested using constructs of the form

d € deptofdesk(desk).

Com2arison 02erators

The comparison operators <, >, ~. ~, =, #may be used to compare ob

jects of the relational data base.

Q?antifiers

The expression

3z + inv(personofwloc) (n1)(3y + deskofwloc (z)(deptofwloc(y)=d1J

determines whether an employee nl has a desk in department d 1 . The quanti

fier expression has the side effect to assign values to the variables z and

y. Since there is no control provided for assigning a specific one of the

possible values, the usefulness of this side effect seems doubtful. The

155

formula

Vz + inv(personofwloc} {nl) (deskofwloc(z) # unknown)

determines whether employee nl has in each of his departments a desk asso

ciated.

Set operations

For the union (u) and the intersection (n) the conventional meaning

can be retained.

4.5. Semantic Extentions

Besides of operations similar to the ones for n-ary relations we have

introduced simple update, insert and delete facilities, but again without

too much consideration for infological requirements. Some correctness tests

have been included in the operations but they are all standard system func

tions and therefore cannot show too much flexibility.

We now introduce as a semantic extension capability the possibility

to replace one or more of the built-in operators of the binary relational

model by user defined actions. For this purpose we establish the operator

function name correspondence shown in Figure 6.

operator

generate

kill

is

:3

:~
name of access fct

E

function name

generator

killer

recognizer

upaater

eraser

accessor

tester

Figure 6

To prescribe the new actions for one of these operators a programming

language is required. We only introduce a few concepts, others may be found

in the paper of J.R. ABRIAL [7].

156

conditions:

loops:

if then else end or if

for x + f(y) ..•• ~ 1 ..•• end

do .••. end

then end

In the for-loop the ~ 1 mechanism and the assignment x + f(y) ensure

that the elements defined by the access function f(y) are sequentially pro

cessed. In the do-loop no built-in loop control mechanism exists; it must

be programmed explicitely.

value return:

return (x)

resume (x)

The return-statement works in the conventional fashion. However the pro

grams to be defined very often will return sets. The ~-statement spe

cifies the return of a value, but it also allows the continuation of the

program for additional result elements.

Example: The generate operation of WL objects should ensure that the re

quired cardinality constraints are not violated. Therefore we define

generator (WL) + ~(e,d,desk)

if 7(e is E# 11 d is o# 11 desk is desk #)then failure end

x + std

personofwloc (x) + e

deptofwloc (x) + d

deskofwloc (x) + desk

where the standard (built-in) action of generating objects is denoted by

the operator std. Whenever we now specify

generate WL

the program defined above is executed instead of the built-in action for

generator. Notice however, that for categories c # WL the standard action

will still be chosen.

For other operations the same definitional technique can be used. Sup

pose we want to introduce the relation

rS = rel(E#, desk#, deskofperson = afn(0, 00), afn(0, 00))

into our relational model. In addition we define

accessor(deskofperson) + ~(e)

if 7(e is E#) then failure end

for x + inv(personofwloc) (e)

~(deskofwloa(x))

~

end

and also

updater(deskofperson) + ~(e,desk)

failure

157

With these definitions we have introduced a new relation into our mod

el, where the access function is fully described in terms of already exist

ing access functions. Using the updater definition we did also eliminate,

for infological reasons, the possibility that independent tuples may be in

troduced into the relation r5. That is, a person may not have a desk when

he and the desk do not belong to the same department.

The semantic extension capabilities may also be used to provide dif

ferent infological models for the various classes of data base users, e.g.

some kind of schema-subschema correspondence.

J.R. ABRIAL defines a number of additional facilities for the relation

al data base, but we shall restrict ourself to the techniques and operators

introduced so far. The main areas left out are

context (environment) considerations

process creation and control (to provide for the execution of more than

one program at the same time).

After discussing the basic definitional facilities for ~inary ~elation

al ~odels we shall now attempt to describe the BRM formally using the model

defining capabilities of the BRM itself.

4.6. The Formal Description of the Binary Relational Model

Using the concepts of categories, relations, access functions, opera

tors and programming facilities of the BRM we are now able to describe the

semantic meaning of the model itself with these mechanisms. The total for

mal description becomes quite complicate and cannot be presented here. The

interested reader may find additional parts in J.R. ABRIAL [7].

All data needed for the semantic description of the actions possible

in a BRM has to be kept in the form of binary relations with associated

access functions. This organization closely corresponds to the state and

158

figure 7

159

the basic state modification operations as they are introduced with other

formal description techniques (see chapter 5). In Figure 7 the graph repre

sentation of the required data categories and access functions is given.

The corresponding relations are immediately derivable from the graph and

are shown in Figure 8. The individual ranges for the cardinality of the

access functions will be explained later.

We now discuss the individual categories and access-function together

with some of the operations to be defined with their help. Notice, that the

graph is not complete. Only the parts needed for our further discussions

have been shown.

Categories

The four basic data categories of objects used in the formal descrip

tion of the model are

relation

category

access function

program

identifying the actual relations, categories, access functions, and programs

used in the binary relational model. The other categories are introduced for

description purposes and will be explained as we proceed.

Semantic Extension

The last seven relations in Figure 8 provide for the formal descrip

tion of the semantic extension facility of the BRM. They connect the pro

grams describing special actions for the operations shown in Figure 6 with

the categories or access functions for which they have been defined.

Generator-Actions for the Basic Categories

The creation of new BRM relations, categories and access functions re

quires nonstandard actions.

The generate process for access functions is defined by the program

generator(access function)+ afn = ~(n1 ,n2 l

if ;(n1 is number + n 2 is number)

f + std

cardmin(f) + n 1
cardmax(f) + n2
return(f)

then failure end

160

rel(triple,relation,reloftriple

rel(triple,category,catoftriple

afn (1, 1) , afn (2, 2))

afn (1, 1) ,afn (0 , 00))

rel(triple,access function,afnoftriple = afn(1,1),afn(l,2))

rel(access function,number,cararnin

rel(access function,number,cararnax

rel(access function,number,cardinal

rel(access function,category,domain

afn(l,1) ,afn(O,oo))

afn(l,ll ,afn(O,oo))

afn (1 , 1) , afn (0 , 00))

afn(l ,1) ,afn(O,oo))

rel(access function,category,range = afn(l,1) ,afn(0, 00))

rel(connection,access function,cfunction = afn(l,1),afn(0, 00))

rel(connection,object,first = afn(1,1) ,afn(0, 00))

rel(connection,object,second = afn(l,1),afn(0, 00))

rel(category,program,generator = afn(0,1),afn(0, 00))

rel (category ,program ,killer = afn (0, 1) ,afn (0 , 00))

rel(category,program,recognizer = afn(O,l) ,afn(0, 00))

rel(access function,program,accessor = afn(0,1) ,afn(0, 00))

rel(access function,program,tester = afn(0,1),afn(0, 00))

rel(access function,program,updater = afn(0,1) ,afn(0, 00))

rel(access function,program,~ = afn(0,1) ,afn(0, 00))

Figure 8

161

We can see that the cardinality restraints of access functions are es

tablished at the generate time. The construct afn = ~() gives the pro~

gram the special permanent name afn used when a new access function is de

fined, e.g. in the definition of relations.

The creation of new relation objects is a little more complicate:

generator(relation) + rel = ~<c1 ,c2 ,f12 ,f21 >

if -,(c1 is category /\ c2 is category/\ f 12 is access function /\

f 21 is access function)then failure~

r + std

generate triple(r,c1,f12 l

domainCf12 l + c 1
range(f12> + c2
generate triple(r,c1,f21 >

domain(f21 > + c 2
range(f21 l + c 1

~(r)

where the new elements of the category triple are established by

generator(triple) + ~(r,c,f)

if ..,(r is relation /\ c is category /\ f is access function)

then failure end

t + std

reloftriple(t) + r

catoftriple(t) + c

afnoftriple(t) + f

~(t)

The cardinality restraints shown for the access functions of the rela

tions given in Figure 8 are an immediate consequence of this definition of

generator(relation) :

- The access function and its inverse access function are established as

separate entries in the ternary relation symbolized by the category

"triple".

The generation of new categories is defined by

generator(category) + cat = ~()
c + std

return(c)

where the only difference from standard generator action is the introduction

of the special name cat for the generation capability of categories.

162

The Generate-0perator

When a new data object is to be created for a BRM category the generate

operator is to be used. Its semantic meaning is established through the pro

gram

generate = ~(c)
if 7(c is category) then failure end

if 1 (generator(c) = nothing)

then ~(generator(c))

else return(standard generator(c))

where a test is made whether a nonstandard generator action has been sup

plied for the category c by testing the presence of such a program with

generator(c) = nothing i.e. does not exist.

The standard generator used above and in the generator() definitions

via std is defined by

standard generator(c) + ~()

x + unique name

~(x)

where unique ~ is a not further defined function delivering upon request

unique names.

The Creation of new Relational Tuples

When the operation :3 is to be performed, e.g. f(x):?ly, that is a new

tuple (x,y) is to be inserted in the relation identified by the access func

tion f, the following programs will be processed:

:3 = ~(f,x,y)
if--,(f is access function Ax is domain(f) and y is range(f))

then failure end

if y € f(x) then return end

if (cardinal(f) = cardmax(f) v

cardinal(inv(f)) = cardmax(~(f))~ failure end

if--, (updater (f) = nothing)

then updater(f) (x,y)

~if 7(updater(inv(f)) = nothing)

~ updater(~(f)) (y,x)

else standard upa.ater(f) (x,y)

standard upd.ater(inv(f)) (y,x)

end

end

return

where the standard upaater operation is defined by the program

standard upaater(f) + ~(x,y)

c + generate connection

c function(c) + f

first(c) + x

second(c) + y

return

163

A new element of the ternary relation represented by the category

"connection" is created to indicate the presence of the tuple (x,yl in the

relation identified through its access function f.

The other semantic extensions and operator definitions required for

the full formal description of the binary relational model can be formulated

using the same techniques. The interested reader may attempt their defini

tion. The description of some of them is given by J.R. ABRIAL [7].

5. THE FORMAL REPRESENTATION OF DATA BASES

5.1. General Considerations

The two relational models described in the preceding chapter are both

based on the same basic data organization concepts, i.e. relations. Still,

when attempting complete journal comparisons of the models the task soon be

comes very cumbersome. Of course there exist many other data base models,

usually more implementation oriented than the relational models, such making

their comparison even less rewarding. Some of the reasons for this problem

are very often imprecise terminology, wrong specification documents (e.g.

a "user's guide" against an "implementation guide") and not at least the

amount of work involved in such a feat.

How can we avoid some of the problems:

1) Use the same data base concepts in all models, the same languages:

This is not a realistic approach as we ourselves have pointed out that

even a single data base should contain at least three models, i.e. a

subject matter model, the infological model and the datalogical model.

Across information systems the problem gets even harder.

2) Describe the models precise:

Formal description methods have been applied a number of times even to

164

complex subject areas, e.g. J.R. ABRIAL's selfdescribing binary relation

al model, the Vienna IBM Laboratory using the Vienna Definition ~anguage

to describe PL/I[16,17]. N. WIRTH and C.A.R. HOARE using an axiomatic

technique for the description of PASCAL [18]. But to compare different

data base philosophies when they are reflected ln different programming

languages and formally described using different definition techniques

is a complicated task at least.

The most promising way which seems to be open is to try to combine the

two solution attempts. In Figure 9a,b a common abstract language is intro

duced as a representation language for all data base models and the same

language is then used to develop a formal description of the concepts of

model types. Applied to, say a binary relational data base, this would mean

we would have to express all its different relations, the manipulation func

tions and semantic extensions using the abstract representation language.

In addition we would develop (using the same abstract language) a formal

description of all the concepts used in binary relational data bases e.g.

like J.R. ABRIAL has used the real binary relational language to express the

concepts of his model.

When basing our investigations on such a concept we are now able to

precede in a much more orderly and less troublesome way:

1) Using the abstract description of different models (they are all written

using the same definition mechanisms!) a comparative study of the models

can be made.

2) The abstract description of one model concept can be used for a conceptu

al study of models which can be developed using the concept. Theorems

about their expressive power could be developed, consistency studies

could be undertaken.

3) Specific data base models could be investigated. The translation routines

for mapping it into another model e.g. an infological model into a data

logical model could be investigated and proven correct. The infological

equivalence of differently organized specific data base models could

formally be established.

Using such a concept some work (see E.J. NEUHOLD [10-12] and H. BILLER

[12]) has already been done. It is based on an expanded version of the Vienna

Definition Language which has been found quite convenient to express the

many different concepts which must be covered by such an approach. Of course,

model 1

lang.

model 2

lang.

/

/
/

/

translat.
1,2

lang.

mapping

rules

Figure 9a: Development of representation language mapping rules

mapping

mapping

/

model 2 /<lt'"--M mapping

Figure 9b: Development of specific abstract models

model

\
I
\

abstract

165

form • .desc.
of

odel 1 cpt

form. desc.
of

trans. cpt.

form. desc.
of

model 2 cp

166

considering the large area to be investigated these contributions cover

very little ground, but we see no principal problem that could arise with

our approach.

In the following a brief introduction into those parts of VDL are

given which we shall meet later. The other concept3 can be found in the lit

erature [16,17].

5.2. The Extended Vienna Definition Language

The Vienna Definition Language is based on the idea that an abstract

interpreter working on an abstract data object (its state) can represent

the semantic meaning of the interpreted language, algorithm, concept, etc.

Some of the concepts incorporated in VDL are listed below:

- Conditional expressions

They are used in LISP like form

(prop 1 -+ expr 1 ,

prop2 -+ expr2 ,

propn -+ exprn)

where propi are thruth valued expression and expri are expressions yield
ing genal objects as values.

- Functional composition

(fog) (x1 , ••. ,xn) D=f f (g (x1 , ..• ,xn))

- Operators and basic values true(T) and false(F)

T, F, ., , /\, v, =, :::. , 3, V, 3S, Vs, n, u, - , E, c, .::..1 <, s, ~, >, f:.,
n

Eti=O
The operators are used in their conventional meaning but in 3S and VS the

S specifies the range of all variables bound by the quantifier. The opera-
. n

tor Eti=O defines an n-ary conjunction.

- Abstract objects and selectors

It is assumed that there exists a set of elementary objects EO and a

countable set of simple selectors s.
* We define S to be the set of all s 1os2 o ••• osn where si ES, 1 $ i $ n.

The identity element with respect to the operation o is denoted by I. The

sequences s 1°s2 ° .•. 0 sn are termed (composite) selectors.

An (abstr>act) object is defined by a finite set of pairs <K:eo> called

the chaPacte~istic set c where K e s* and eo e EO.

167

Example: The characteristic set of the object x, denoted by x is given by

The object may be represented as a tree with named branches

x

Figure 10

To restrict objects to trees of the above nature the characteristic

set C of a well formed object must satisfy the condition

where

Intuitively:

a) Branches identifying the immediate descendents of a node must be uniquely

named, or

b) elementary objects may only be attached at leaves of the tree.

The characteristic set of an elementary object eo is {<I:eo>}. The empty

characteristic set defines the nuZZ object n.

- Functional application of selectors

The application of a composite selector K to an object x, written K(x),

is defined by the characteristic set

168

Example: Using the object x of Figure 10 we apply s 2 and get

- The µ-operator (i.e. "make"-operator)

* Given an object x and a pair <K:y> with K E S and y an object we in-

troduce an operation µ(x;<K:y>) defined by

µ(x,<K:y>) {<T:eo>:<T:eo> Ex A•dep(K,T)} u

{<T°K:eo>:<T:eo> E y}

The first part represents the characteristic set x whose K component has

been deleted; the second part is the characteristic set of an object with

y as its K component only.

ExamEle: Using the object x of Figure 10 and y defined by

we get

- Extensions of the µ-oEerator

al µ(x;<K1'Y1>,<K2'Y2>, ... ,<Kn:yn>) Df µ(µ(x;<K1'Y1>);<K2'Y2>, .•• ,<Kn:yn>)

b) µ(x;{<K:y>:prop})

The second operand must be a finite set of pairs <K:y>. Arranging

these elements in any linear order and applying the operation defined

in a) yields the result, provided that the order of the pairs chosen

is not significant. If the order is significant, the result is unde

fined. In addition µ(x;{}) = x

c) µ0 (x;M)

The second operand must be a finite set of objects. If !Ml = n,

then n distinct selectors are taken out of the countable set of selec

tors D and pairs <s:e> are formed with the n elements of M giving a set

of n pairs to which the µ-operation like in b) is applied.

169

Note: This operation is needed when no specific selectors are speci

fied but where a set of objects still has to be combined into a single

larger object, e.g. records in a file.

- Predicates

Special classes (categories) of objects are defined by predicates

applicable to the objects. The members of a category of objects defined

by a predicate are precisely those objects which satisfy the predicate.

Predicates may be a priori given, may be constructed using first

order predicate logic or are defined by the special forms:

a) (<s1:p1>,<s2:p2>, ••• ,<sn:pen>)(x) Df

n
(3x1x2 ••• x) (Et pi (xi) A x

n i=O

Example: The predicate

p o=f (<sl :pl>,<s3°s2:p2>,<s4°s2:p3>)

defines the category of objects x such that

where pi (eoi), 1 s i s 3, holds.

n
b) p-collD(x) Df (3x1x2···X s1s2···S) (Et (p(x,) A Si€ D) A

n n i=l i

x = µ(n;<s 1 :x1>,<s2 :x2>, ••• ,<sn:xn>))

The predicate defines a category of objects, called a aoZZeation of ob

jects, where the iDllllediate subordinate selectors do not have to be spe

cified but are members of a given set D.

- The abstract interpreter

The abstract interpreter to be used in interpreting abstract objects

(states) and defining by this interpretation the semantic meaning of the

described entity is specified by the quadruple

170

where Z is a set of states, where z is a subset of the wellformed objects.

A is a state transition function

~0 is the initial state, ~O E L

Le is a set of endstates Le ~ L

A computation is defined as a sequence

~o ~1 · · · ~n · · ·

where ~i+l E A(~i). The computation terminates if there exists an n such

that ~n E Le·

The state transition function defines all the actions of the inter

preter. To specify these actions for a specific formal description re

quires quite an extensive "abstract language" type mechanism. We shall not

need it for the remaining discussions. therefore the interested reader is

referred to the literature [16,l'iJ.

Extensions to the abstract interpreters have also been developed (see

E.J. NEUHOLD [19]) but again they leave the frame of our present investiga

tions.

5.3. Relational and Hierarchical Data Organizations

To illustrate the formal description technique and its applicability

we specify a few properties of hierarchical and normalized n-ary relation

al data organizations and use formal means for a brief comparison. Addition

al applications may be found in Cl0-12].

Notice, the following discussions are concerned with classes of rela

tional and hierarchical models and not with a specific data base represent

ed in hierarchical or relational form.

In accordance to the approach outlined in section 5.1 we do not in

vestigate the relational view as introduced by E.F. CODD directly but rather

an abstract version of it, where the mapping from the concrete to the ab

stract version (see Figures 9a,b) is assumed to have happened. This con

version could either have been defined formally, similar to the translator

171

technique used for transforming concrete PL/I into its abstract form (see

[17] and literature referenced there) or it could have been developed (as
it actually has happened) by informal reasoning.

We define the various components of the relational view of data first,

to be followed by the formal description of the hierarchical organization.

The Relational Model

Elementa:r:y objects: ER

numbers: defined by the predicate is-number

character strings: defined by the predicate is-char-string

Simple selectors: S

relation selectors: the set RS is defined by the predicate is-rs

domain selectors: the set DS is defined by the predicate is-ds

tuple selectors: the set TS is defined by the predicate is-ts

The sets RS, DS and TS are distinct.

RS n DS RS n TS DS n TS = {}

Wellformed relational models in first normal form

is-relat-model-ln(x) Df is-relation-group

is-relation-group(x) Df VSs(s(x) # n ~ (is-rs(s) A is-relation(s(x))))

is-relation(x) Df VSs(s(x) # n ~ (is-ts(s) A

is-tuple(s(x)) A VSt((t(x) f n At f s) ~

(s(x) f t(x) A STRUCT-EQV(s(x) ,t(x))))))

is-tuple(x) D=f VSs(s(x) # n ~ (is-ds(s) A is-elem-item(s(x))))

is-elem-item(x) Df is-number(x) v is-char-string(x)

where

STRUCT-EQV(x,y) Df
(is-number(x) + is-number(y),

is-char-string(x) + is-char-string(y)

is-tuple(x) + VSs((s(x) f n = s(y) f nJ A

STRUCT-EQV(s(x) ,s(y)))

The restrictions placed into the definitions of the predicate is-rela

tion ensure that all tuples are different but have the same structural de-

172

finition as specified by the function §_:r'RUS_:r'_:-_E:.Q.V~-

The Hierarchical Model.

Elementary objects: EH

numbers: defined by the predicate is-number

character strings: defined by the predicate is-char strings

* selectors: the set S defined by the predicate is-sel

Simple selectors: S

group selectors: the predicate is-gs defines the set GS

collection selectors: the predicate is-cs defines the set CS

The sets GS and CS are distinct

GS n CS = {}

Wellformed hierarchical models

is-hierarch-db(x) D'f is-group(x)

is-group(x) D=f VSs(s(x) ~ Q ~

(is-gs(s) A is-data-constr(s(x))))

is-data-constr(x) D=f is-group(x) v is-collection(x) v

is-elem-data(x)

is-collection(x) D=f VSs(s(x) f Q ~

(is-cs(s) A is-data-constr(s(x))))

is-elem-data(x) = is-number(x) v is-char-string(x) v is-selector

This definition of hierarchical models allows very general data

structures. For example

-files, i.e. collections of groups, where each element, i.e. record, has

a different structure,

- networks, where the network properties are expressed by the use of selec

tors as elementary objects,

are part of wellformed hierarchical models

We shall now illustrate possible investigations by describing the

interrelationships of relational and hierarchical data organizations.

The Relational Model as a Restricted Hierarchical.

Model

Elementary objects

* ER = EH - S (i.e. no selectors may appear as elementary ob-

jects in a relational mode)

Selectors.

We require the relations

to hold.

RS c GS

DS c GS

TS c CS

We now provide a function RELATIONAL-MOD{x) which, when applied to

173

a hierarchical data base x, establishes whether the hierarchical data base

is of a form allowed for relational models.

RELATIONAL-MOD(x) Df

(3Ss(s(x) f n A (, is-rs{s) V is-group(s(x)) V

is-eiem-data(s(x)))) --->- F,

T --+ VSs (s {x) f n c RELATION (s (x))))

RELATION (x) D-f

(3Ss(s{x) f Q A (is-coIIection(s(x)) v is-eiem-data(s(x)) v

7 is-ts(s))) V 3SsI3Ss2 {sI#s2AsI {x) F Q A s2 (x) f' n A

TUPLE(x) Df

(sI (x) = 52 (x) v ., STRUCT-EQV (sI (x) , s2 (x)))) -..+ F,

T --+ VSs(s(x) f' n ~ TUPLE(s(x))))

(3Ss(s(x) f Q A (is-group(s(x)) v is-coIIection(s(x)) v

., is-ds (s))) --r F,

T --->- VSs(s(x) # n ~ ELEMENT(s(x))))

ELEMENT(x) Df

is-seI (x) - F

T --rT

174

The definition of the truthvalued function RELATIONAL-MOD has been

made in such a way, that the restrictions which must be placed on a hier

archical data base in order to make it a wellformed relational data base

all appear in the first proposition of the various functions.

Similar formal descriptions and investigation:; of other models have

been made. For example in H. BILLER & E. NEUHOLD [12] a description for the

SCHEMATA and SUBSCHEMATA of the DBTG Report [20] has been given. The same

paper also contains formal criterea, which ensure a usage-equivalence of

different data bases. This equivalence definition is given both for retrieve

and change operation on data bases and it takes (at least in part) infolog

ical interpretations into account.

5.4. A Sample Data Base

Before we close our discussions let us investigate how a specific

data base may look when it is specified using the formal description appa

ratus. We select a very simple model of an airline reservation data base

and present it in a form compatible with the relational view of data, that

is, in the form of abstract, normalized, n-ary relations.

For these relations we give the predicate definitions:

is-relational-model
Df

(<s-flight: is-flight-collT§,

<s-reservation: is-reservation-coll>)
TS

is-flight 0-f (<s-flight ~ : is-integer>,

<s- # seats: is-integer>,

<s-departure: is-char string>,

<s-from: is-char-string>,

<s-to: is-char string>)

is-reservation D=f (<s-flight # : is-integer>,

<s-date: is-char-string>,

<s-ticket # : is-integer>,

<s-seat #' is-char-string>}

Where the selectors s-f light and s-reservation are elements of the relation

selectors RS. All other explicit selectors are elements of the domain selec

tors DS.

175

Using VDL expanded we could now specify a different model of the air

line reservation data base, e.g. a hierarchical model, and again using VDL

expanded describe the mapping from one to the other. The formal system could

then be used for an automatic translation of user queries oriented toward

one of the models into user queries oriented toward the other. The formal

system also allows systematic considerations of the time efficiency of such

translations and of possible optimization strategies. In addition, the for

mally specified translation mechanism provides a precise framework for the

investigation of the infological equivalence of the two models. Some of this

work may be found in the literature [10-12] other is left to the interested

reader.

6. SUMMARY

Starting with an infological analysis of the user of data base sys

tems, i.e. a human being, we have defined a few required charateristics of

these information systems. Preceding first to n-ary relational models, which

are probably the most formally defined models where large commercial imple

mentations are at least under way if not finished, we observed a number of

difficulties for further formal investigations. To simplify the problem for

the moment we concentrated on binary relational models and their formal

description.

However we then wanted to expand our view again, but on a very formal

bases. For this reason the extended VDL concepts were introduced to allow

both, the abstract description of specific data bases, but also the formal

description and investigation of the different approaches to the design of

information systems.

We can now conclude that some progress has been made in the develop

"ment of formal properties of data bases. Much work steill remains to be done,

especially in the area of unified description of information systems and

in the field of infological interpretations to be given to the data stored

in the data bases.

176

REFERENCES

[l] E.F. CODD, A Relational Model of Data for Large Shared Data Banks,

C. of ACM, Vol. 13, No. 6, June 1970.

[2] E.F. CODD, Further Normalization of the Data Base Relational Model,

Proc. of Courant Symp. on Data Base Systems, ed. R. Rustin,

Prentice Hall, 1972.

[3] E.F. CODD, Relational Completeness of Data Base Sublanguages, Proc.

of Courant Symp. on Data Base Systems, ed. R. Rustin,

Prentice Hall, 1972.

[4] E.F. CODD, A Data Base Sublangua,ge founded on Relational Calculus,

Proc. of SIGFIDET 1971, ACM, Nov. 1971.

[5] E.F. CODD, Interface Beta, Private Communication, 1971.

[6] E.F. CODD, Seven Steps to Rendezvous with the Casual User, Proc. of

IFIP-TC-2 Conf. "Data Base Management Systems", Corsica, 1974.

[7] J.R. ABRIAL, Data Semantics, Proc. of IFIP-TC-2 Conf. "Data Base

Management Systems", Corsica, 1974.

[8] B. SUNDGREN, An Infological Approach to Data Bases, Urval No. 7,

National Central Bureau of Statistics, Stockholm, 1973.

[9] B. SUNDGREN, Conceptual Foundation of the Infological Approach to

Data Bases, Proc. of IFIP-TC-2 Conf. "Data Base Management

Systems", Corsica, 1974.

[10] E.J. NEUHOLD, Data Mapping: A Formal Hierarchical and Relational View,

Report No .. 10, Inst. for Angewandte Informatik, Univ. Karlruhe,

1973. (also Courant Symp. on Data Base Systems, 1971)

[11] E.J. NEUHOLD, The Use of Formal Description Techniques in Large Data

Banks, Proc. of Int. Comp. Sym. of ACM, Venice, 1972.

[12] H. BILLER, E.J. NEUHOLD, Formal View on Schema-Subschema Correspondence,

Proc. IFIP Cong. 1974.

[13] c. PAIR, Formalization of the Notions of Data, Information and Informa

tion Structure, Proc. of IFIP-TC-2 Conf. "Data Base Management

Systems" Corsica, 1974.

[14] R. BAYER, Storage Characteristics and Methods for Searching and Ad

dressing, Proc. IFIP Cong. 1974.

[15] R.W. TAYLOR, Generalized D<lta Base Management System D<lta Structure

and their mapping to Physical Storage, Ph.D. thesis, Univ. of

Michigan, 1971.

OTHER REFERENCES

[16] E.J. NEUHOLD, The Formal Description of Programming Languages, IBM

System Journal, Vol. 10, No. 2, 1971.

[17] P. LUCAS, K. WALK, On the Formal Description of PL/I, Ann. Rev. in

Autom. Programming, Vol. 6, Part 3, 1969.

[18] C.A.R. HOORE & N. WIRTH, An Axioma.tic Definition of theProgramming

Language Pascal, Acta Informatica, Vol. 2, No. 4, 1973.

[19] E.J. NEUHOLD, The Formal Semantic of Operating Systems, ACM Int.

Computing Symposium, Davos, 1973.

[20] CODASYL, Data Base Task Group, Report to the Programming Language

Committee, April 1971.

177

COMPLEXITY OF MATRIX ALGORITHMS by

1. Introduction ••••••••••

2. Winograd's Algorithm for Matrix Product •

3. A Recursive Method & Recurrence Relations

4. Strassen's Algorithm •••••

5. Reduction and Equivalences to Matrix Product.

6. Lower Bounds for Matrix Algorithms over Fields.

7. Matrix Product over Other Structures.

8. Boolean Matrices ••

M.S. PATERSON

181

183

187

188

192

194

199

201

9. Transitive Closure in Other Structures. 207

10. Lower Bounds for Boolean Product over a Monotone Basis. 209

11. Context-Free Language Recognition • 210

References. • • • • • . • 213

MATHEMATICAL CENTRE TRACTS 63, 1975, 181-215

COMPLEXITY OF MATRIX ALGORITHMS

M.S. PATERSON

Warwick University, Coventry, (GB)

1 . INTRODUCTION

In studying the complexity of algorithms we deve.lop techniques for

evaluating the amount of 'resource', usually time or storage space, used

by new or existing programs; we attempt to prove lower bounds for the re

sources required by any program which performs a given task; we look for

interesting relationships among different algorithms for the same problem

or explore possible connections between seemingly unconnected problem

areas; and in all we aim for a deeper understanding of the essential diffe

culties of, and possible solutions to, a variety of computational problems.

In this series of lectures I shall only be considering a restricted

class of algorithms, all concerned with matrices. There are several reasons

for my choice. Firstly, matrix methods have important applications in many

scientific fields, and frequently account for large amounts of computer

time. The practical benefit from improvements to algorithms is therefore

potentially very great. Secondly the basic algorithms, such as matrix mul

tiplication are simple enough to invite total comprehension, yet rich

enough in structure to off er challenging mathematical problems and some

elegant solutions. Finally, the subject matter is well enough known for us

to start immediately without an extensive introduction.

Definitions of matrix arithmetic.

If A is a p x q matrix and B a q x r matrix then their product C A.B

is a p x r matrix with entries given by

c ..
l.J

for i 1, ... ,p and j 1, ... ,r.

Sometimes it is also useful to think of A as composed of its p row vectors

! 1, ••• ,~, and Bas composed of its r column vectors ~1 , ... ,~. Then cij

182

is the inner product of vectors A. and B ..
-i -J

The sum of two matrices A, B with the same dimensions is the matrix

C A + B given by

c ..
l.J

for all i, j.

Arithmetic complexity.

A computer program for an arithmetic algorithm will usually execute

many instructions other than the explicit arithmetic operations of the al

gorithm. There will, for example, be fetching, storing, loading and copying

operations. The proportion of the total execution time which is spent on

such 'overheads' will be very dependent on the computer and programming

language used. For simplicity and independence we shall usually take ac

count only of the arithmetic operations involved. This measure will be re

ferred to as the arithmetic complexity. The consequences of this simplifi

cation in particular practical applications must of course be carefully

considered.

It is easy to see that in the product of a p x x matrix by· a q x r ma

trix (a p x q x r product) each of the pr entries of the product can be com

puted using q multiplications and q - 1 additions. We can write this arith

metic complexity as q·~ + (q-1)·~ and then get a total for the p x q x r

product of

pqr·~ + p(q-l)r·~·

The sum ot two p x q matrices uses only pq.~. We shall never distinguish

between the complexity of a basic addition and a subtraction and such an

operation will be referred to as an addition/subtraction (a/s) . Similarly

we shall sometimes write "rrrultiplication/division' (m/d) .

The kinds of question to which we shall seek answers are:

"Can product be computed by another algorithm using fewer operations?"

"What is the minimum number of arithmetic operations required?"

The first question is answered affirmatively; the second has as yet only

very incomplete answers.

2. WINOGRAD'S ALGORITHM FOR MATRIX PRODUCT. [Win 70]

To compute a 1 .b1 + a 2 .b2 certainly requires 2 multiplications/divi

sions (and 1 addition/subtraction), and more generally we shall show in

Section 6 that a 1 .b1 + ... + an.bn requires n multiplication/divisions. An

alternative way to compute a 1.b 1 + a 2 .b2 is the following.

result

bl .b2

(a1+b2). (a2+b1)

µ3 - µ1 - µ2.

It needs considerable insight to see the significance for matrix product

183

of this identity which, at first glance, appears merely to take more multi

pl~cations and more additions than the obvious algorithm. The important

feature is that µ 1 and µ 2 are multiplications which involve only a's and

only b's respectively. Why is this so important?

We have already remarked that matrix product can be regarded as fin

ding the inner product of each row of one matrix with each column of the

other matrix. If in the sub-algorithm used for inner product there is a

computation involving the elements from only one of the vectors then it

can be performed just once for that row (column) instead of every time that

vector is used. This idea of 'pre-processing' is very important and leads

in this instance to Winograd's algorithm. The algorithm is described first

for the simple case of n x n matrices with n even.

For~= (x 1 , •.. ,xn) define

(i) For each row ~i of A compute W(~i) , and for each column ~j of B

compute W(B,).
-J

(ii) For each pair (i,j), if a= A. and b =B., compute
-i -J

184

The arithmetic complexity for (i) is

2n(n/2.~+(n/2-1) -~)

and for (ii) is

2
n . (n/2.~+(3n/2+1) .~)

which gives a total of

Neglecting the lower order terms, we have exchanged roughly n3/2 multipli

cations for an extra n3/2 additions/subtractions. The algorithm is easily

extended to the general p x q x r product. If q is even the algorithm is

essentially the same. If q is odd then one elementary multiplication in

each inner product is done in the conventional manner and added in separa

tely, which does not significantly affect the arithmetic complexity. The

extra storage requirements of Winograd's algorithm are minimal; just one

extra location for each row and column is needed to store the value of W.

This algorithm is of obvious value whenever ~ > ~· Typical applica

tions are when the matrix elements are complex numbers or multiple-preci

sion numbers. A significant restriction of the algorithm is that its cor

rectness depends on the commutativity of multiplication. This is seen in

the original identity for a 1b 1 + a 2b2 above.

Let us consider the case of complex matrices in further detail. Assu

ming that the complex numbers are represented by pairs of reals giving

their real and imaginary parts, the obvious algorithm to compute

(x+iy). (u+iv) (xu-yv) + i(xv+yu)

takes 4m + 2~, whereas complex addition costs 2a. This seems a good appli

cation for Winograd's algorithm. If we are on the look-out for unusual

methods, we may find the following alternative for complex product.

y.v

3
(x+y) . (u+v)

185

Then (x+iy) .(u+iv) = (A 1-A 2) + i(A3-A 1-A2).

Although this identity is reminiscent of the identity underlying Winograd's

algorithm, note that commutativity of multiplication need not be assumed

here. Since this method uses 3~ + 5~, instead of 4m + 2~, it requires a

situation where ~ is much larger than a to be useful. If the elements in

volved are themselves large matrices this condition holds. This observa

tion yields a new class of algorithms for complex matrix product. Note the

relevance of the remark above about commutativity.

Given complex matrices, A and B, split them into their real and ima

ginary parts so that we may write

A X + iY B U + iV

where X, Y, U, V are real matrices. Then the identity above is used to com

pute A.B using only 3 real matrix products and 5 real matrix sums.

We now have a plethora of algorithms to consider, of which we identi

fy eight. Given two complex matrices they may be multiplied directly using

either the classical method (C) or ~inograd's algorithm (W), and then the

complex entries can be multiplied in the ~traight-forward way (S) or the

.1:!.nusual, .1:!,nderhand (?),way (U) given by the above identity. We can denote

these methods by

CS, CU, WS, WU.

Alternatively the original matrices may be split up and multiplied by real

and imaginary parts separately using methods S or U. The real matrix pro

ducts required are done by C or W, yielding four more methods

SC, UC, SW, UW.

We shall analyse the arithmetic complexity of these methods for n x n x n

product as the ratio of ~to ~varies. This is only a theoretical exercise

since in practice the 'overheads' may be the crucial criterion in a compa

rison of similar algorithms. We set out in the table below the leading

coefficients of the m and ~components of the arithmetic complexity.

186

Method 3
Coefft. of n ·~

3 Coefft. of n ·E£

CS 4 4

CU 3 7

ws 2 4

WU 1~ 5~

SC 4 4

SW 2 6

UC 3 3

uw 1~ 4~

As one would expect from the above discussion, if one is going to split up
the matrices initially it should be done with U rather than S, and if the
matrices are to be multiplied directly, Winograd's is better than C.
Looking at the remaining complexities we find that

(i) if m > a

(ii) if m < ~

(iii) if m = ~

uw has the lowest

UC has the lowest

WS, UW, UC are the joint leaders

but if lower order terms are taken into account UC has the lowest complexi-
3 3 2 ty (3n .~+(3n +2n).~) in case (iii).

In [Bre 70] BRENT compares the running times of some ALGOLW programs
for various matrix product algorithms. He concludes that the methods using
an initial 'U' splitting cannot be helpful, since he found in practice
that no program for complex matrices took as much as three times the time
for real matrices. This was because a large part of the total execution
time was concerned with initialization, and calculating the indices and
addresses of the arguments for operations. A promising approach which I
have not tried out in practice but which may overcome some of the ineffi
ciencies in methods such as UC and UW is the following. We take advantage
of the circumstance that there are three real matrix products, all of the
same dimensions, to be computed and that they may be performed in parallel.
If the corresponding operations of these products are interleaved then

some of the 'overheads' can be shared.

187

3. A RECURSIVE METHOD & RECURRENCE RELATIONS

For a different style of algorithm for matrix product we can use par

titioned matrices and 'block multiplication'. To simplify matters suppose

A, Bare n x n matrices with n > 1. If we regard A, Bas composed of sub

matrices in the following way

A (') I

A11 1 A12

---- ---1- -- -- --
A21 : A22

That the result is correct is easily proved, and uses only the associativi

ty property of addition. The product A.B is thus computed by performing 8

products of the sub-matrices, followed by 4 sums of the resulting sub-matri

ces. The sub-matrix products may be done in a similar manner by further

partitioning into smaller matrices, and so on until the resulting matrices

are small, maybe x 1. Thus we have a recursive procedure for matrix pro-

duct. If we taker= f n/21 Cf xl =least integer~ x) so the partitioning

is as nearly as possible into equal parts, and if we write P(n), S(n) for

the arithmetic complexity of n x n x n product and n x n sum respectively,

we derive the following recurrence relation.

But S(n) 2 n .a O(n2) operations, so we have

Recurrence relations of the above form will occur frequently so we shall

give below a general solution to such forms. For the above relation this

will imply that

P(n)

188

This comes as no surprise to the observant reader who has seen that preci

sely the same multiplications are performed as in the 'classical' algorithm

and the additions have just been rearranged using associativity.

THEOREM. If F is a non-negative function on the positive integers suah that

for some a~ 1, b > 1 and B ~ O,

then if a = logb a

F(n) O(na) if a > B

ocn6J if a < B

= O(na.log n) if a B

PROOF. Left to the reader! 0

4. STRASSEN'S ALGORITHM [Str 69]

In the light of Winograd's algorithm it would be tempting to conjec

ture that, while some trade-off between multiplications and additions is

possible, the total number of arithmetic operations required is of order

n3 for n x n x n product. This is not so! Strassen's simple and astonishing

observation is that for multiplying 2 x 2 matrices only 7 (not 8) multipli

cations are needed, even if multipliaation of elements is non-aommutative.

Using this fact, the block multiplication algorithm described in the last

section may be up-graded to one satisfying:

PCn> ~ 2:... P(rn12l> + ocn2J,

which, by the theorem given above, yields

[log2 7"" 2.80735492].

Recall that P(n) is the total number of arithmetic operations (multiplica

tions, additions/subtractions). It should be apparent that with a straight

forward implementation of this algorithm on a machine with reasonable pro

perties, the total execution time is also of the stated order.

189

Strassen's identities.

We assume for simplicity that A, 8 are n x n matrices, and that n is

even so the matrices can be partitioned into 4 equal quarter-matrices. For

compute:

mi (All+A21}.(8 11+812)

m2 (A12+A22).(821+822)

m3 (A11-A22).(8 11+822)

m4 = All. (8 12-822)

ms (A21+A22) "8 11

m6 (A11+A12) 0822

m7 = A22.(821 - 8 11)

Then

c11 = m2 + m3 - m6 - m7

c12 = m4 + m6

c21 = ms + m7

c22 = ml - m3 - m4 - ms

Thus, P(n) = 7.P(n/2) + 18.S(n/2)

and so P(n)
log27

OCn).

These identities may be conveniently expressed in the form of a dia

gram, where 1(0) in cell (Aij'8kl) represents the term +(-)Aij.8kl" The

connected groups of circles represent the terms occurring in the respective

products. It is now easy to verify the correctness of the identities.

190

B21 B22 B11 B12

e12

A12

e

6

A22
7

e21 e22

e12
All 4

ell

A21

e21 e22

A small improvement may be obtained by applying linear transformations to

the above identities and reducing the number of matrix sums required from

18 to 1S. Of course this has no effect on the exponent, log27, but merely

reduces the arithmetic complexity by a constant factor. The resulting iden

tities and diagram are given below. An amusing feature is that the first

two of the seven products are A11 .B11 and A12 .B21 , which would also be

done by the obvious block multiplication.

ml A11B11

m2 A12B21

m3 (-All +A21 +A22) (B11-B12+B22)

m4 (A11-A21) (-B12+B22)

ms (A2l+A22) (-B11+B12)

m6 (A11+A12-A21-A22)B22

m7 A22(-B11+B12+B21-B22)

Then e11 ml + m2

e12 ml + m3 + ms + m6

c21 ml + m3 + m4 + m7

e22 ml + m3 + m4 + ms

Note the claimed 15 additions is only achieved by a careful sharing of

common terms. PROBERT [Pro 75] has shown that 15 is optimal.

c11 c12

•

s~ c1,

' r I
L ~

)

~ r I c22 -21

L ~
•>

c21 - - - c22

Some related results.

191

Can the 2 x 2 x 2 product be computed using fewer than 7 multiplica

tions? WINOGRAD [Win 71] shows that, even if multiplication is commutative,

7 is the optimal number. HOPCROFT & MUSINSKI [Hop 73] show that, for any

non-commutative ring obtained by adjoining indeterminates to a commutative

ring, any algorithm with 7 multiplications for 2 x 2 x 2 product can be got

by applying linear transformations to Strassen's algorithm. An example is

provided by the two sets of identities given above. They also use a notion

of duality of linear forms and of algorithms to show that the minimum number

of multiplications required is the same for p x q x r, p x r x q, q x r x p,

q x p x r, r x p x q and r x q x p products, and thus depends only on the

triple {p, q, r}. This symmetry is implicit in the tensor formulation of the

problem used in [Str 72] and [Fid 72]. Using results from [Hop 71] with this

result we have that the minimal number for the triple {p, q, 2} is

r~(3pq + max(p,qlll ,

e.g. 7 for p = q 2 , and 15 for p = q = 3.

It is clear that any improvement on Strassen's bound using the same

kind of recursion has to be based on a larger basic product than 2 x 2 x 2.

192

If 3 x 3 matrices could be multiplied using only 21 multiplications (non

commutative) then a faster algorithm would be obtained since log321 < log27.

Nothing better than 24 has yet been achieved, but neither has any close lo

wer bound been proved. For 4 x 4 matrices, obviously 48 would need to be

achieved. A recursion could be based also on non-square decompositions.

The results of HOPCROFT & MUSINSKI show that a result of k multiplications
3 for p x q x r product, yields k for pqr x pqr x pqr product and hence an

exponent for n of 3.log k.
pqr

In an algorithm for the product of matrices of arbitrary shapes and

sizes it is very inefficient merely to fill out the matrices with O's to

the next power of two. Halving each dimension and adding one row or column

of O's is more efficient, but the best strategy involves partitioning into

varying sizes, using some of the non-square matrix recurrences, and trans

ferring to Winograd's or the classical method for small matrices. It is

certainly inefficient to use Strassen's recursion right down to 1 x 1 ma

trices. Brent [Bre 70] has written and compared programs for Strassen's

algorithm and for the other two algorithms both for real and complex num

bers.

The idea mentioned in section 2 for sharing some of the non-arithmetic

overheads by performing several matrix products in parallel would seem to

be useful in an implementation of Strassen's algorithm also. Care must be

exercised however to avoid an unacceptable increase in the storage required.

5. REDUCTIONS AND EQUIVALENCES TO MATRIX PRODUCT

In STRASSEN's original paper [Str 69], he also shows how any fast ma

trix product algorithm yields a correspondingly fast algorithm for matrix

inversion and computing determinants. These reductions are based on the

following 'block LDU factorization' formula which is easily verified.

~(:' :)~ -1 ~ =C" '") (I
A11IA12

A
-1

A21 A22 A21Al1

if A11 is non-singular, I is the unit matrix, 0 the zero matrix, and
-1

~ = A22 - A21A11A12"
So,

-1
A

-1 -1 -1
+ A11A121i A21A11

-1 -1
-Ii A21A11

193

0 :) li-1

provided Ii is also non-singular. Assuming these non-singularities we have

immediately the recurrence relation for I(n), the arithmetic complexity

of inverting an n x n matrix, given by

I(nl s 2ICf n/2ll + O(P(rn12l> + o<n2l

If we assume an algorithm for product giving P(n)

the general solution given in section 3 yields

Similarly, from the LDU factorization, we have

Det (A11) .net (Ii)

If D(n) is the arithmetic complexity for determinants we have the recur-

rence

D(n) S 2D(f n/2l) + I(f n/21) + O(P(f n/21))

and so with the same hypothesis

The algorithm for inversion uses block LOU factorization recursively

and so will fail, even when A is non-singular, whenever "A11 11 or "Ii" at

any level of the recursion happens to be singular. In general, a pivotal

method, interchanging rows or columns is necessary to obtain non-singular

factorizations. Such a method, still achieving the same O(na) bound, is

given by BUNCH & HOPCROFT [Bun 72].

194

Is it possible that I(n) is of Zawer order than P(n)? We show direct

ly that this is not so.

-A

I

0

A.B)
-B

I

as is easily verified. Thus to find the product of two n x n matrices A, B,

it is sufficient to invert an appropriately constructed non-singular

3n x 3n matrix. We therefore have

P(n) :;; I(3n)

Combining this with a previous result we obtain

THEOREM. Far aZZ a ~ 2,

P (n)

A similar result for squaring matrices follows from

(
0 A)

2
(A.B 0)

B 0 0 B.A

6. LOWER BOUNDS FOR MATRIX ALGORITHMS OVER FIELDS.

No lower bound, for the arithmetic complexity of n x n x n product,
2

greater than O(n) has yet been proved. It is open to conjecture whether

this is because this bound is achievable or because we do not have good

techniques yet for proving lower bounds. For the simpler problem of 'ma

trix times vector' product, WINOGRAD [Win 70] proved a powerful theorem

which we shall describe in this section.

Let F be an infinite field and x 1 , ... ,xn, indeterminates. We consider

straight-line programs (i.e. involving no test instructions) for computing

sets of linear forms of the x's. The basic operations used will be +, -,

x, +,and the initial input values will be taken from Fu {x1 , ... ,x.}, so
l1

that successive values computed by the programs are elements of F(x1 , •.. ,xn),

195

the field of rational functions over F of the indeterminates. We shall

establish lower bounds on the number of multiplications/divisions required.

Let G be any infinite subfield of F. For the purposes of the theorem to be

proved, we think of multiplications and divisions by elements of G as

'free'. We use the phrase 'm/d which is counted" for either a multiplica

tion neither of whose arguments is in G or a division whose divisor is not

in G.

The main idea of the proof is that the first m/d which is counted in

such an algorithm can be eliminated (or made not to be counted) by repla

cing one of the indeterminates by a linear combination of the other inde

terminates with coefficients in G. The resulting algorithm is still a com

putation of some linear forms of the remaining indeterminates. We find a

lower bound on the number of such reductions needed to eliminate all m/d's

which are counted in terms of an algebraic property of the linear forms

computed.

DEFINITION. A set of vectors v 1 , •.• ,v in Fk is G-independent if, for all
~ - -q

cl, ••• ,cq E G, l c .• v. E Gk =>c.= 0 for all i.
i=1 i -i i

The usefulness of the theorem we now state is much enhanced by the genera

lity allowed in the choice of F and G. The slight extra complication of

the proof is thereby justified.

THEOREM. (WINOGRAD) [Win 70]

Let w,~ 1 , •.. ,~n be vectors in Fk, let~ be the k x n matrix with columns

~ 1 , ••. ,0, and let x be the column vector (x1 , ••. ,x). If there is a sub-n ~ n
set of q vectors in {~ 1 , •.•• ~n} which is G-independent then a:ny algorithm
over F computing ~.~ + w has at least q m/d's which are counted.

Note that the subfield G can be chosen freely, but the larger G is

the fewer sets of vectors are G-independent and the fewer m/d's are coun

ted.

PROOF OF THEOREM. Suppose the conditions of the theorem are satisfied but

that there is an algorithm a with only q - m/d's which are counted. If

q = 1 the contradiction is immediate since with no m/d's counted only lin

ear combinations of elements of Fu {x1 , ••• ,xn} with coefficients in G can

be computed and so all the elements of ~ are in G and it has not even a

set of one G-independent column.

If q > 1, then consider the first m/d which is counted. If both argu-

196

ments are in F then the result is also in F and there is no need for that

operation since the result could have been taken as an input. Otherwise

at least one argument, the divisor if the operation is a division, is in

F(x1 , •• ,xn) , F, and since it has been computed without any m/d which

counts, it must be of the form

n

f + l ci.xi
i=l

where f E F for all i

and not all the ci are zero. Without loss of generality we can assume that

en f 0 and since multiplication by elements of G is free we may as well
n-1

assume that c -1. If we precede a by a computation of o = f + g + l c .. x.
n i=l i i

for some g E G, and then replace any occurrence of xn as an input by o,the

m/d we have been considering has g as its argument and is no longer coun

ted. Since the computation of o requires no m/d which is counted, we have

a new algorithm a' with at most q - 2 m/d's which are counted. The ele

ment g is chosen with the sole requirement tha1 no division by zer0 wiL

occur in a'. This is possible since G is infinite and there are only a fi-

ni te number of "bad" values to be avoided. a' has indeterminates ; .

and computes~··~·+~· where~·= (x 1 , ..• ,xn_1l

for j 1, ... ,n-·1,

and ~·

We claim that ~· has a set of q - 1 G-independent columns. Suppose

not and define !il~ = Q. Let Q = {!ili1 , ••• ,!iJiq} be a set of q inde~=rdent

columns of~. By the supposition 3d1, ••• ,a 1 E G so that Gk 3 l d .. !iJ!
q-1 q- j=l J ij
I d .. !ili . + k1!il for some k 1 E G, by the definition of the !il's. Without

j-1 J j n
loss of generality we may suppose a1 i 0. Similarly 3e2 , .. ,eq E G such that

that

for some k2 E G. Eliminating the explicit I/Jn terms between these two lin

ear combinations produces a contradiction to the G-independen .. ' of Q, sin

ce the coefficients k 1 , k2 must both be non·-zero and ~o the coefficient of

I/) i the final linear combination 'Ls non-zero. An inducti.ve argument now

197

proves the theorem. 0

To illustrate the power of the theorem, the first corollary shows that

Horner's rule for evaluating polynomials uses the minimal number of m/d's.

n
I i COROLLARY 1. For any infinite fietd G, any aZgoritrun computing x y

i=O i'
from G(y) u {x0 , ••• ,xn} requires at Zeast n m/d's.

2 n PROOF. Let F = G(y) and take~ to be the 1 x (n+1) matrix (1 y y •.• y).

Since the last n 'columns' are G-independent, the theorem can be applied

with q = n. 0

The main result we require for 'matrix x vector' products is proved

by a pleasing interchange of roles~

COROLLARY 2. Let x be a p x q matrix and l = (y1 , ... ,yq) a coZumn vector.

Any aZgoritrun for computing x.l requires at Zeast pq m/d's even when ope

rations on y atone are not counted.

PROOF. Let F = G(y1 , .•. ,yql so that 'operations on l alone' produce values

in F and need not be counted. Define ~ to be the p x pq matrix

i Y1 Y2 ... yq

0 Y1 Y2 ·•• Yq

p 0 I Y1 l Y2 ... yq

pq

and X to be the column vector (x11 , .•. ,x1q,x21 , ..• x2q, ... xpq). Then ~-~= x.r,

and the set of all pq columns of ~ is G-independent. D

Note. In the proof of both corollaries we assumed that multiplication was

commutatuve even over indeterminates. This was not necessary. We only need

to prove a symmetric form of the theorem for computations of x.~ + 1/J.

Of course it cannot be deduced from corollary 2 that the product of

a p x q matrix X with a q x r matrix Y requires pq.r m/d's since the r

columns of Y need not be multiplied independently, and indeed Strassen's

algorithm beats this bound.

FIDUCCIA [Fid 71,72] and WINOGRAD [Win 70] have proved several interest-

198

ing extensions of the above theorem. In particular a proof of the following

appears in [Fid 72].

THEOREM (FIDUCCIA).

Under the aonditions of Winograa:·s theorem (above), if <I> has an r x c sub
matrix 8 and there are no non-trivial veators a E Gr, S E Ge suah that
a.8.S E G, then at least r + c - 1 m/d's are required to aompute <I>.x.

An immediate corollary of this theorem is that at least three real

multiplications are needed to multiply two complex numbers represented by

their real and imaginary parts. We shall not give a proof of the theorem

here, but shall give an idea of the technique by proving the corollary

directly. This time we remove the last m/d which is counted, by elimina

ting its occurrences from the linear forms. This particular result is pro

ved also in [Win 71].

THEOREM. To aompute xu - yv and xv + yu from m. u { x, y, u, v} requires at
least 3 m/d's, even if m/d's by elements ofm. are not counted.

PROOF. Suppose there is an algorithm computing these forms using only 2

m/d's. Let µ 1 , µ 2 be the results of the first and second m/d respectively.

Then since µ 2 can occur at most linearly in xu - yv and xv + yu, we can

eliminate µ 2 to get a non-trivial linear combination

which can be computed with only one m/d which is counted This can be

written as a matrix times vector in the form

Winograd's theorem can now be applied, with F =m.(x,y), G ='JR.. Since

{A 1x+}. 2y,A 2x-A 1y} are m.-independent for any A1 ,}. 2 E: m., not both zero, the

theorem yields a contradiction. D

We saw in section 2 that three multiplications are sufficient, so

this result is the best possible. A further corollary of Fiduccia's theo

rem is that at least seven multiplications/divisions are required to com

pute the product of two quaternions presented in the usual form.

199

7. MATRIX PRODUCT OVER OTHER STRUCTURES

we have so far only considered matrices over rings. The operation of

matrix product is readily generalized however to other structures. In this

section we shall consider some structures in which this operation has use

ful applications. Given the binary operators® and ED over some structure

S, the product of two matrices A,B, over S is given by

c ..
l.J

for all i, j.

The derived operator (analogous to l being derived from +) is well-defi-

ned if ED is associative. In all the structures and pairs of operators we

consider, ED is also commutative and® distributes over ED (i.e. a®(bEDc)

(a®b)@(a®c).) It is easy to verify that these properties on the basic

operators induce the same properties for matrix product and matrix sum,

where the sum C = A ED B is given by

c.'
l.J

a .. ED b ..
l.J l.J

for all i, j.

We usually denote matrix product by A.B for brevity, but use the fuller

form A[;]B when it is necessary to mention the operators explicitly.

In all but one of the structures considered ® is also associative and

induces the same property for the matrlx product.

Examples.

® ED Domain

1. x + IR, a:' Z, Zlk and other rings.

2. " v {true, false} - Boolean algebra

3. v " l 4. I\ jt1 {true, false}

5. "' I\
J

6. + minimum ~o u { 00}

7. min max IR U {+oo,-oo}

8. •
(concatenation)

u subsets of I*, 'languages' - regular algebra.

200

A further example concerned with context-free grammars will be considered

in section 11.

Using the definition of matrix product directly, one may compute an

I x K x J product over any of these structures using IJK ®'sand IJ(K-1)

e•s. The identities of STRASSEN (or WINOGRAD) cannot be used unless there

is an inverse operator toe, a 'minus', but it is clear that Strassen's

algorithm works over an arbitrary ring. Winograd's algorithm also requires

commutativity of®·

The first product, ~ , over the 2-element Boolean algebra will be

called Boolean product. The W product is a dual operation to this. If -.A

denotes the matrix got by complementing each entry of A, it can be seen

that

A [J B ..,((-,A) CJ (-.B))

To avoid confusion this product will not be mentioned again. We shall de

note true and false by 1 and 0 respectively. In this notation, the opera

tions of A and x are identical over the domain {0,1}. Similarly~ and +mod2
are identical. Hence the ~ product is isomorphic to the product over

z2 , the ring of integers modulo 2. Strassen's algorithm could be used.

The [:.) product can be related to a string matching problem. Given

two binary n-vectors ~, !:_, regarding a as a row vector and b as a column

vector,

if ~· !:_ are identical

0 otherwise.

Thus, given two sets A, B, of binary n-vectors, all matching pairs of vec

tors from A and B can be found by computing A ~ B where A is the set of

rows of A, and B is the set of columns of B.

The computation of W product can be reduced to two ~ products and low

order operations by the identity

A unit is an element !:. such that

e © x = x = x ® e for all x.

201

A zero is an element z such that

z®x=z=x®zandzillx=x for all x.

All the structures given, except (5), have a unit and a zero.

~

1.

2.

3. 0

4.

5.

6. 0

7. "'

8. OJ

0

0

0

no element has the ® property of ~

~ i.e. the set containing only the empty string,

and the empty set respectively.

A further important property, satisfied in only (2), (3), (6) and (7)

above, is that

e ill x for all x.

This absortive property of the unit will be used later. Structures with a

unit and zero have a unit matrix .!_, and a zero matrix Q_, with appropriate

properties, given by

e if i j

zifi#j

8. BOOLEAN MATRICES

0 ..
l.J

for all i, j.

Boolean matrices have important computational applications as represen

tations of binary relations on finite sets, or, equivalently, finite direc

ted graphs, where

202

Aij if i is related to j ((i,j) is an arc)

0 otherwise.

The ~ product corresponds to composition of relations. Provided ® is

associative, as it is for Boolean product, we can define powers of a square

matrix A by

I

for n ~ 0.

If A represents a directed graph, then

2
(A) ij 1 .+ 3 path of length 2 from i to j

and more generally, for all k ~ 0 ..

k
(A) ij 1 .+ 3 path of length k from i to j,

where by convention there is a 'path of length 0' from i to i, for all i.

Thus the connectedness relation ("there is a path from i to j") is given

by the matrix

* A

* For relations, A is the (reflexive and) transitive aZosure of the rela-

tion A.

Since there is a path from i to j in an n-node directed graph if and

only if there is such a path of length less than n, we have for an n x n

matrix A,

* 2 n-1 A IVAVA v ... VA

We can further show that

A* -= (IVA) n-l for al.t m ~ n-1,

so that one fairly efficient way to compute A* is to form I v A and then

square the result flog2 (n-lll times in succession. There are even better

methods however.

LEMMA 1. * * * * (AVB) (A .B) .A

'PROOF'. (AVB)* IV (AVB) V (AVB) 2 V

203

{all finite products of A's & B's} arranged by length

{all finite products of A's & B's} arranged by number

of B's

* * * * * * A VA .B.A VA .B.A .B.A V •..

(A*.si*.A* D

LEMMA 2. If A is the pm>titioned matPix (~; !- -~ -)
where A11 is square then

* (A;l : 0 ~ A = -~~:A-;-lj--r-/

'PROOF'.

0 (I 0) (All
A = 0 I ' Al=

A21

D

We can now derive an expression for the closure of a partitioned matrix in

terms of the closures of sub-matrices.

where E

204

PROOF.

*
* ((11) c A12)) A v

A21 A22

* * * ((11 0

) {o
A12)) (All) \o

by Lemma 1

A21 0 A22 A21

* * * ((11 *
0) (0

A12)) (All *) by Lemma 2

A21A11 I 0 A22 A21A11

* * *
(

0
A11A12) (All * :)

0 E A21A11

* * * :) (
I A1~:12E) (Al 1 * by a symmetric version

0 A21Al1 of Lemma 2

'result claimed'. D

The formula given in the theorem, taking A11 to be an f n/21 x f n/21 subma

trix, together with the fact that the closure of a 1 x 1 matrix is 1,

yields a recursive algorithm for the transitive closure of Boolean matri

ces. If C(n), P(n), are the numbers of Boolean operations required for the

transitive closure, product, respectively, of n x n matrices, we get the

recurrence relation

Hence for all a ~ 2, if P(n)

for a different method.

The converse is trivial since

(: A

0

0
(: A

I

0

O(na), see also [Mun 71]

so that if C(n) = O(na), then P(n) S: C(3n) = O(na). So we have shown that

transitive closure and product are of the same order of complexity. Using

205

the naive algorithm for Boolean product, we get an O(n3) algorithm for the

transitive closure of n x n matr~ces.

An interesting observation due to FURMAN [Fur 70], and M.FISCHER &

MEYER [Fis 71] is that an indirect application of Strassen's algorithm to

Boolean product is possible, although the structure concerned is not a

ring. With the notations 0,1, for false and true respectively, A and x

are identifiable for 0,1-valued arguments while v and+ differ in that

1 v 1 = 1 but 1 + 1 = 2. However it is apparent that if we multiply to

gether two 0,1 matrices over the integers and then in the product replace

each non-zero entry by 1, we get exactly the Boolean product of the matri

ces. If the matrices are of size n x n we have a product algorithm which
log27

uses O(n) arithmetic operations, and hence a closure algorithm of the

same order. This is not quite the result we want since for a Boolean pro

duct we should insist on Boolean basic operations. For n x n matrices, no

entry in the product can exceed n, though intermediate values in the recur

sive calls of Strassen's algorithm may perhaps be considerably larger. If

the arithmetic is done in Zn+l then the true integer result must be unique

ly determined since it is known to lie in the range [O,n]. We can represent

elements in :l.n+l by binary vectors of length flog2 (n+lll and perform ring
addition in O(log n) Boolean operations (by simulating ordinary digital

circuitry). Ring multiplication done in the conventional way takes
2 O((log n)) operations but this could be improved to

O(log n.loglog n.logloglog n) using the methods in [Sch 71]. We have shown

therefore

THEOREM. Usin.g the operations A, v, 1 (or any other corrrplete basis), for
any £ > O, n x n x n Boolean product and n x n transitive closure can be

log27 l+£
corrrputed in O(n . (log n)) basic operations.

It is of interest that warshall's 0(n3) algorithm for transitive clo

sure [War 62] corresponds approximately to Jordan elmination for matrices

over fields.

Symmetric Boolean Matrices

This important special case of Boolean matrices correponds to undi

rected graphs and symmetric relations. It is simple to show that for al

most any structure the product for symmetric matrices is of the same order

206

of complexity as the general product, since the square of the symmetric

matrix

(~-t-~- ~~-)
ATI 0 1 B

I I -------t---
0 ; BT : 0

I '

where MT is the transpose of M, contains the product A.B as a sub-matrix.

The proof, in this section, above, showing product and closure to be of

the same order of complexity, breaks down if the extra condition of symme

tricity is imposed. Indeed there is a rather simple O(n2J algorithm for

the transitive closure of symmetric Boolean matrices.

Given an n x n symmetric Boolean matrix A, define the function

Next(i) least j > i such that Aij

0 if none such •

* The following informal program computes A .

for i 1 (1) n

j := next (i)

if j f. 0 then ~ow(j) := Row(j) v Row(i)

else

[
Afoiri k:=

=1(1) i-1

[if ~i = 1 then Row (k) := Row(i)

The reader is invited to carry out the non-trivial proof that this algo

rithm is correct. The O(n2) bound can be shown as follows. The only parts

which require attention are the row operations, which take O(n) basic ope

rations each time. The v operation is only executed at most n times. The

row copying instruction is also executed at most n times since each row is

copied into at most once.

9. TRANSITIVE CLOSURE IN OTHER STRUCTURES

Most of the results and formulae of Section 8 carry over to other

structures we have described. The general definition of (reflexive and)

transitive clos"ure is of course

* A
m<'=O

I is defined.

207

For structures 2, 3, 6, 7, where the unit has the absorbtive property, we

can prove the identities

* A
o::;;m<n

(IalA)m for any m <'= n - 1.

For those of the structures (all except (5)) with a unit and a zero, the

partitioned matrix closure formula holds whenever both sides are well-defi

ned. The problem here is that the closure of 1 x 1 matrices, i.e. single

elements may not be defined. With an absorbtive unit, x* =~for all x. For

(8), x* always exists as a set of strings and is denoted by •x*•. In rings

such as in (1) and (4),

any x f- 1,

* e e + e + e + ... is undefined. In a field, for

* x 1 + x + x2 + ...

can be taken to be (1-x)-1 . It is the strong similarity between A* and

(I-A)-l for matrices over a field which accounts for the correspondence

between the matrix closure recurrence and the block LDU factorization which

has undoubtedly struck the reader. The principal difference between the

form of algorithms for matrix inversion over fields and for transitive clo

sures over other structures is because of the need in the former case to

avoid singular sub-matrices and elements. The usual JORDAN elimination al

gorithm for matrix inversion therefore uses pivoting, while the algorithms

of WARSHALL [War 62] and FLOYD [Flo 62] are quite analogous over structu

res (2) and (6) respectively except that they do not need to pivot. The

structures (6), (7), (8), can all be regarded as generalizations of (2),

and they are all isomorphic to (2) when their domains are restricted to

just the zero and the unit. Whereas matrices in (2) correspond to directed

graphs, in these three structures we have directed graphs labelled with

208

elements of the structure. Associated with any path in the graph is, in

(6) the sum of the labels of its edges, in (7) the minimum of its labels

and in (8) the concatenation of its labels.

~ product. Regarding the lables as direct distances between pairs of

nodes, the transitive closure is the matrix giving the shortest path between

all pairs of nodes. Floyd's algorithm [Flo 62] is a simple, 'in place',

algorithm for this with a complexity of O(n3). The recursive closure formu

la provides a family of different O(n3) methods for the reflexive and tran

sitive closure. An algorithm which uses 0(n3) comparisons and O(n5/2) addi

tion/subtractions is given in [Hof 72].

~ product. This structure is somewhat similar to the preceding one.

An example of an application is the problem of transporting a wide load

between points of a transportation network in which there are bridges of

varying widths. The maximum width for a given pair of points is given by

the maximum over all paths of the minimum width along each path.

~ product. An application is in the theory of finite automata. A finite

automaton is a finite directed graph labelled with subsets of a finite

alphabet l· The language accepted by an automaton is the set of strings

over I which label all possible paths from an initial node to one of a set

of final nodes. This is of course a union of entries of the transitive

closure of the matrix describing the automaton. A regular set can be de

fined as a set of strings formed from subsets of a finite alphabet using

the operations of union, concatenation and transitive closure of sets.

One half of Kleene's theorem states that the language accepted by a finite

automaton is a regular set. An easy inductive proof of this follows from

the recursive formula for matrix closure. This was shown by CONWAY [Con 71]

from whom I first heard of this useful formula. In this structure there

seems little to be said about the "computational complexity" unless it

would be related to the expression length of the representation obtained

for regular languages.

An axiomatic treatment of the generalization of Floyd's closure algo

rithm to other algebraic structures can be found in [Bru 72]. Many examples

of such structures are given by [Pai 70], and a useful survey of this area
appears in [Bru 74].

209

10. LOWER BOUNDS FOR BOOLEAN PRODUCT OVER A MONOTONE BASIS

THEOREM. Any algorithm computing the Boolean product of an I x K matrix
and an K x J matrix using only binary A and v as basia operations requires
at least IJK A's and IJ(K-1) v•s. Furthermore any algorithm achieving both
these lO"wer bounds is equivalent, using only the associativity of v and

the commutativity of A and v, to the naive algorithm.

we shall give here just an outline of the IJK lower bound for A's to

illustrate the proof methods. (A full proof of the theorem is given in

[Pat 75].)

The proof is by induction on K. The result is trivial for K = O. Sup

pose now K > 0 and the result has been proved already for K - 1. The in

puts to the algorithm are the elements of the two matrices, a 11 , ..• ,aIK'

b 11 , ••• ,bKJ say. The final results are the values

V a. A b .
1,.;k,.;K ik kJ

for i 1, ... ,I and j 1, ... ,,:r.

We consider 'straight-line' programs with operations /\ and v. We use 0,1

for false and true, and regard Boolean expressions as sets, identifying A,

v, with intersection and union respectively. Thus we could write

Suppose we are considering an algorithm for I x K x J product with the mi

nimum number of A and v operations. We refer to initial inputs and the val

ues computed at each step as issues.

LEMMA 1. If for some issues, and for some 1,i', iii', ail v ai'l s s

then s can be replaced by 1 without affecting the outputs of the algorithm.

The same is true for b 1 j v blj' (jij') and ail v blj"

Of course a conclusion that an issue can be changed to 1 contradicts the

minimality of the algorithm.

For each i,j, define the predicate Q .. on issues by
l.J

and b 1 . rj. s.
J -

210

An initiaZ occurrence of Q .. is an instruction for which the result satis
l.J

fies Q .. but neither of the arguments does. The set of initial occurrences :LJ
of Q .. is denoted by I (Q ..) •

l.J l.J

LEMMA 2. Any instruction in I(Qijl must be an A vith arguments x,y, satis
fying : a , 1 C: X I b 1 . C: Y • l. - J -

Suppose I(Q ..) n I(Q.,.,) 1' j1J and (i,j) # (i',j'), then Lemmas 1 and 2 im-l.J l. J
ply together that one of the arguments of any instruction in the intersec-

tion can be

each I(Qij)

Qij"

If the

the inputs,

replaced by 1, contradicting the minimality assumption. Also

is non-empty since no input satisfies Q .. but c .. does satisfy
l.J l.J

valuation ail = 1 for all i, blj 0 for all j, is imposed on

then all the A instructions in all the I(Q ..) can be eliminated
l.J

because of the "ail .::_ x" condition of Lemma 2. Thus we get a new algorithm

with at least IJ fewer A-instructions, and the (i,j) output is now clearly

k~2 aik A bkj" The new algorithm therefore computes an I x (K-1) x J pro

duct. By the inductive hypothesis this algorithm still has at least

I.J.(K-1) A-instructions, so the original algorithm had at least IJK. The

lower bound for V-instructions is proved similarly.

As we remarked in the previous section,~ product and I mini pro-
~ max

duct are isomorphic to Boolean product when the domain is restricted, there-

fore the results of the theorem carry over to analogous results in those

structures. This theorem for Boolean product implies an O(n3) lower bound

for Boolean transitive closure. The results are of particular interest in

juxtaposition with the fast algorithms derived from Strassen's algorithm

which are possible when complementation is permitted, and with the ~
~

product algorithm using subtractions given in [Hof 72].

11. CONTEXT-FREE LANGUAGE RECOGNITION

In this section I shall introduce the sub-cubic time context-free Ian-

guage recognition algorithm recently discovered by VALIANT [Val 74]. For this

purpose I shall simplify the presentation of context-free grammars by ta

king them to be in Chomsky normal form and by not distinguishing between

terminal and non-terminal symbols. This involves no real loss of genera

lity. A context-free grammar (cfg) is a finite alphabet l = {A1 , .. ,A}
q

211

with a finite set of productions P, each of the form

for some i,j,k.

For any finite strings w1 ,w2 overland any production Ai+ Ajl\ in P, we

write

* If ~ is the (reflexive and) transitive closure of =>, we define for each

Ai E L

{w I A. ! w}
J.

i.e. the set of strings over l derivable from A .• The recognition problem
J.

considered here is the following: "Given a cfg G and a string w, is
w E L ? 11

Al. (In the usual terminology we are recognizing arbitrary senten-

tial forms.)

We define ® and @ for the context-free matrix product with respect to
a cfg G. The domain is all subsets of the alphabet l• and @ is set union.

® is defined by

which is roughly the "inverse of the production relation" applied to the

concatenation of s1 ,s2 . Thus 0, the empty set is the 'zero' and there is

not necessarily any unit. If required, a natural unit could be adjoined by

augmenting l with A, the empty string, and adding the productions A+ A

for all A E l u {A}, so that {A} becomes a unit. We do not do this here.

An unusual feature of this ® is that it is not associative, and so

the corresponding matrix product is not. We must therefore give a new defi

nition of the transitive closure since matrix powers are not uniquely de

fined. we define

A,

a, A (i) .A (n-i)

O<l<n
for n > 1,

212

and finally,

A+ A (n)

n>O

is the (non-reflexive) transitive closure. The previous closure algorithms

described here all rely on associativity and so are not applicable in this

case.

* It can be proved from the definitions of © and "" that for all

x,x1 , ••• ,Xk El• (k~l) X ! x1 ••• xk if and only if a product of the sets

{x1}© ••• ©{Xk}, associated in some way, contains x. If w = x 1 ••. xn-l E Ln-l,

let M(w) be the n x n matrix with

M(w). '+l
1.' 1.

for i 1, ... ,n-1,

and all other entries 0, i.e. w is written in the diagonal immediately

above the main diagonal.

THEOREM 1. For all A. E l a:nd u,v, (l~u<v~n)
1.

+.> A. E (M(w))+
1. UV

PROOF. By induction on v - u. 0

COROLLARY. The recognition problem can be solved by computing (M(w))+ and

checking whether A1 is a member of the (1,n) entry.

We also have:

THEOREM 2. For a:ny cfg, the corresponding cf matrix product requires the

same number of operations to within a constant factor as for Boolean pro
duct.

PROOF. Immediate from the next two Lemmas. 0

LEMMA 1. If the cfg has only the single producUon A+ AA, then the cf pro

duct is equivalent to Boolean product.

LEMMA 2. If G1 , G2 , G3 are cfg's over l a:nd have sets of productions P1 , P2
and P1 u P2 respectively, then for matrices c, D,

213

where ©i is the product operation for Gi.

VALIANT [Val 74] describes a very ingenious, simple, recursive algo
rithm for computing the transitive closure of triangular matrices. His main
theorem implies:

THEOREM 3. For context-free product, if P(n) = O(na) for some a > 2 then
C(n) = O(na), where c is the complexity of triangular transitive closure.

h . . b1 b 1 d . t" 0(2.81) COROLLARY. Te recogn~t~on pro vem can e SO&Ve ~n ~me n . All pre-
viously known algorithms require at least O(n3). (See for example, Younger's
algorithm [You 67].) An alternative account of Valiant's algorithm can be
found in [Pat 74].

REFERENCES

Bre 70 BRENT R., 'Algorithms for matrix multiplication', STAN-CS-70-157
(March 1970) Computer Science Dept., Stanford U.

Bru 72 BRUCKER P., 'R-Netzwerke und Matrixalgorithmen', Computing .!.Q. (1972)
271-283.

Bru 74 BRUCKER P., 'Theory of matrix algorithms', Mathematical Systems in
Economics 13 (Verlag Anton Hain KG, 1974).

Bun 72 BUNCH J. & J. HOPCROFT, 'Triangular factorization and inversion by
fast matrix multiplication', TR 72-152 (1972) Computer Science
Dept., Cornell u.

Con 71 CONWAY J., Regular Algebra & Finite Machines. (Chapman and Hall,
1971).

Fid 71 FIDUCCIA c., 'Fast matrix multiplication', Proc. 3rd Annual ACM Symp.
on Theory of Computing (1971), 45-49.

Fid 72 FIDUCCIA c., 'On obtaining upper bounds on the complexity of matrix
multiplication', Complexity of Computer Computations, eds.
R. Miller & J. Thatcher (1972 Plerum Press, N.Y.) 31-40.

214

Fis 71 FISHER M. & A. MEYER, 'Boolean matrix rrrultiplication and transitive
closure', IEEE Conf. Record of 12th Annual Symposium on Switch

ing and Automata Theory (1971), 129-131.

Flo 62 FLOYD R., 'Algorithm 97, Shortest Path', CACM~· 6, (June, 1962)

345-345.

Fur 70 FURMAN M., 'Application of a method of fast rrrultiplication of matri
ces in the problem of finding the transitive closure of a
graph', Dokl. Akad. Nauk SSSR 194 (1970) p.524 (Russian).

English translation in Soviet Math. Dokl . .!..!_ (1970) p.1252.

Hof 72 HOFFMAN A. & s. WINOGRAD, 'Finding all shortest distances in a direc
ted network', IBM Journ. of R. and D., ..!.§_ 4 (July 1972) 412-414.

Hop 71 HOPCROFT J. & L.KERR, 'On minimizing the number of rrrultiplications
necessary for matrix rrrultiplication', SIAM J. Appl. Math. 20

(1971)' 30-35.

Hop 73 HOPCROFT J. & J. MUSINSKI, 'Duality applied to the complexity of
matrix multiplication and other bilinear forms', SIAM J. Compu

ting, ~. 3, (Sept. 1973) 159-173.

Mun 71 MUNRO I., 'Efficient determina-tion of the transitive closure of a
directed graph', Information Processing Letters l_ {1971) 56-58.

Pai 70 PAIR c., 'Mille et un algorithmes pour les problemes de cheminement

dans les graphes ', Revue Fran7aise d' Informatique et de Recher

che operationelle, B-3, (1970) 125-143.

Pat 74 PATERSON M., 'Complexity of product and closure algorithms for

matrices', Proc. Int. Congress of Math., Vancouver, 1974.

Pat 74 PATERSON M., 'Complexity of monotone networks for Boolean matrix
product', to appear in Theoretical Computer Science 1_ (1975).

Pro 75 PROBERT R., 'Additive symmetry in matrix product computations',
Report 75-1 (January 1975) Dept. of Comp. Sci., U. of Saskatche-

wan, Saskatoon.

Sch 71 SCHONHAGE A. & v. STRASSEN, 'Fast rrrultiplication of large numbers',

Computing?_ (1971) 281-292 (German with English summary).

str 69 STRASSEN v., 'Gaussian elimination is not optimal', "Numer. Math. 13

(1969) 354-356.

215

Str 72 STRASSEN v., 'Evaluation of 1'ational funations', Complexity of Com

puter Computations, eds. R. Miller & J. Thatcher (1972 Plenum

Press, N.Y.) 1-10.

Val 74 VALIANT L., 'General aonte:x;t-free reaognition in less than aubia

time', to appear in JCSS.

War 62 WARSHALL s., ~theorem on Boolean matriaes', JACM 9 (1962) 11-12.

Win 70 WINOGRAD s., 'On the number of multipliaations neaessary to aorrrpute

aertain funations', Comm. Pure Appl. Math. 23 (1970) 165-179.

Win 71 WINOGRAD s., 'On multipliaation of 2 x 2 matriaes', Linear algebra

and its applications ! (1971) 381-388.

You 67 YOUNGER D., 'Reaognition and parsing of aontext-free languages in

time n31 , Inf. and Control. 10 (1967) 189-208.

OTHER TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS

A leaflet containing an order-form and abstracts of all publications men
tioned below is available at the Mathematisch Centrum, Tweede Boerhaave
straat 49, Amsterdam-1005, The Netherlands. Orders should be sent to the
same address.

MCT T. VAN DER WALT, Fixed and almost fixed points, 1963. ISBN 90 6196
002 9.

MCT 2 A.R. BLOEMENA, Sampling from a graph, 1964. ISBN 90 6196 003 7.

MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model
and method, 1964. ISBN 90 6196 004 5.

MCT 4 G. DE LEVE, Generalized Markovian decision processes, part II: Pro
babilistic background, 1964. ISBN 90 6196 006 1.

MCT 5 G. DE LEVE, H.C. TIJMS & P.J. ~'1EEDA, Generalized Markovian decision
processes, Applications, 1970. ISBN 90 6196 051 7.

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 1.

MCT 7 W.R. VAN ZWET, Convex transformations of random variables, 1964.
ISBN 90 6196 007 X.

MCT 8 J.A. ZONNEVELD, Automatic nwaerical integration, 1964. ISBN 90 6196
008 8.

MCT 9 P.C. BAAYEN, Universal morphisms, 1964. ISBN 90 6196 009 6.

MCT 10 E.M. DE JAGER, Applications of distributions in mathematical physics,
1964. ISBN 90 6196 010 X.

MCT 11 A.B. PAALMAN-DE MIRANDA, Topological semigroups, 1964. ISBN 90 6196
011 8.

MCT 12 J.A.TH.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MoKKEN & A. VAN
WIJNGAARDEN, Formal properties of newspaper Dutch, 1965.
ISBN 90 6196 013 4.

MCT 13 H.A. LAUWERIER, Asymptotic expansions, 1966, out of print; replaced
by MCT 54.

MCT 14 H.A. LAUWERIER, Calculus of variations in mathematical physics, 1966.
ISBN 90 6196 020 7.

MCT 15 R. DooRNBOS, Slippage tests, 1966. ISBN 90 6196 021 5.

MCT 16 J.W. DE BAKKER, Formal definition of programming languages with an
application to the definition of ALGOL 60, 1967. ISBN 90 6196
022 3.

MCT 17 R.P. VANDERIET, Formula manipulation in ALGOL 60, part 1, 1968.
ISBN 90 6196 025 8.

MCT 18 R.P. VAN DE RIET, Formula manipulation in ALGOL 60, part 2, 1968.
ISBN 90 6196 038 X.

MCT 19 J. VAN DER SLOT, Some properties related to compactness, 1968.
ISBN 90 6196 026 6.

MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for solving partial
differential equations, 1968. ISBN 90 6196 027 4.

MCT 21 E. WATl'EL, The aompaatness operator in set theory and topology,
1968. ISBN 90 6196 028 2.

MCT 22 T.J. DEKKER, ALGOL 60 proaedures in numeriaal algebra, part 1, 1968.
ISBN 90 6196 029 0.

MCT 23 T.J. DEKKER & W. HOFFMANN, ALGOL 60 proaqdures in numeriaal algebra,
part 2, 1968. ISBN 90 6196 030 4.

MCT 24 J.W. DE BAKKER, Reaursive proaedures, 1971. ISBN 90 6196 060 6.

MCT 25 E.R. PAERL, Representations of the Lorentz group and projeative
geometry, 1969. ISBN 90 6196 039 8.

MCT 26 EuROPEAN MEETING 1968, Seleated statistiaal papers, part I, 1968.
ISBN 90 6196 031 2.

MCT 27 EUROPEAN MEETING 1968, Se7eated statistiaal papers, part II, 1969.
ISBN 90 6196 040 1.

MCT 28 J. OOSTERHOFF, Combination of one-sided statistiaal tests, 1969.
ISBN 90 6196 041 X.

MCT 29 J. VERHOEFF, Error deteating deaimal aodes, 1969. ISBN 90 6196 042 8.

MCT 30 H. BRANDT C:ORSTIUS, Exaeraises in aomputational linguistias, 1970.
ISBN 90 6196 052 5.

MCT 31 W. MoLENAAR, Approximations to the Poisson, binomial and hypergeo
metria distribution funations, 1970. ISBN 90 6196 053 3.

MCT 32 L. DE HAAN, On regular variation and its appliaation to the weak
aonvergenae of sample extremes, 1970. ISBN 90 6196 054 1.

MCT 33 F.W. STEUTEL, Preservation of infinite divisibility under mixing
and related topias, 1970. ISBN 90 6196 061 4.

MCT 34 I. JUHAsZ, A. VERBEEK & N.S. KROONENBERG, Cardinal funations in
topology, 1971. ISBN 90 6196 062 2.

MCT 35 M.H. VAN EMDEN, An analysis of aomplexity, 1971. ISBN 90 6196 063 o.
MCT 36 J. GRASMAN, On the birth of bounda.ry layers, 1971. ISBN 90 6196064 9.

MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DuIJVESTIJN, E.W. DIJKSTRA,
P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN
ARETZ, W.L. VAN DER PoEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES&.
G. ZOUTENDIJK, MC-25 Informatiaa Symposium, 1971. ISBN 90
6196 065 7.

MCT 38 W.A. VERLOREN VAN THEMAAT, Automatia analysis of Dutah aompound words,
1971. ISBN 90 6196 073 8.

MCT 39 H. BAVINCK, Jaaobi series and approximation, 1972. ISBN 90 6196 074 6.

MCT 40 H.C. TIJMS, Analysis of (s,Sj inventory models, 1972. ISBN 90 6196 075 4.

MCT 41 A. VERBEEK, Superextensions of topologiaal spaaes, 1972. ISBN 90
6196 076 2.

MCT 42 W. VERVAAT, Suaaess epoahs in Bernoulli trials (with appliaations in
number theory), 1972. ISBN 90 6196 077 O.

MCT 43 F.H. RuYMGAART, Asymptotia theory of rank tests for independenae,
1973. ISBN 90 6196 081 9.

MCT 44 H. BART, Meromorphia operator valued funations, 1973. 1.ISBN 906196 082 7.

MCT 45 A.A. BALKEMA, Monotone transfoY'l71ations and Zimit ZCO;)s, 1973.
ISBN 90 6196 083 5.

MCT 46 R.P. VAN DE RIET, ABC ALGOL, A portable language for formula manipu
lation systems, part 1: The language, 1973. ISBN 90 6196 084 3.

MCT 47 R.P. VAN DE RIET, ABC ALGOL A portable language for formula manipu
lation systems part 2: The compiler, 1973. ISBN 90 6196 0851.

MCT 48 F.E.J. KRUSEMAN A.RETZ, P.J.W. TEN HAGEN & H.L. OUDSHOORN, In ALGOL
60 compiler in ALGOL 60, Text of the MC-compiler for the
EL-XB, 1973. ISBN 90 6196 086 X.

MCT 49 H. KOK, Connected orderabZe spaces, 1974. ISBN 90 6196 088 6.

MCT 50 A. VAN WIJNGAARDEN, B.J. MAILLOUX, J.E.L. PECK, C.H.A. KOSTER,
M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS & R.G. FISKER
(eds.) , Revised report on the a Zgori thmic language ALGOL 6 8.
ISBN 90 6196 089 4.

MCT 51 A. HORDIJK, Dynamic progr(])7l1Tling and Markov potential theory, 1974.
ISBN 90 6196 095 9.

MCT 52 P.C. BAAYEN (ed.), TopoZogicaZ structures, 1974. ISBN 90 6196 096 7.

MCT 53 M.J. FABER, MetrizabiZity in generalized ordered spaces, 1974.
ISBN 90 6196 097 5.

MCT 54 H.A. LAUWERIER, Asymptotic analysis' part 1, 1974. ISBN 90 6196 098 3.

MCT 55 M. HALL JR. & J.H. VAN LINT (eds.)' Combinatorics, part 1: Theory
of designs finite geometry and coding theory, 1974.
ISBN 90 6196 099 1.

MCT 56 M. HALL JR. & J.H. VAN LINT (eds.), Combinatorics, part 2: Graph
theory; foundations, partitions and combinatorial geometry,
1974. ISBN 90 6196 100 9.

MCT 57 M. HALL JR. & J.H. VAN LINT (eds.), Combinatorics, part 3: Combina
torial group theory, 1974. ISBN 90 6196 101 7.

MCT 58 W. ALBERS, Asymptotic expansions and the deficiency concept in sta
tistics, 1975. ISBN 90 6196 102 5.

MCT 59 J.L. MIJNHEER, Sample path properties of stable processes, 1975.
ISBN 90 6196 107 6.

MCT 60 F. GOBEL, Queueing models involving buffers. ISBN 90 6196 108 4.

* MCT 61 P. VAN EMDE BoAS, Abstract resource-bound classes, part .1.
ISBN 90 6196 109 2.

* MCT 62 P. VAN EMDE BoAS, Abstract resource-bound classes, part 2.
ISBN 90 6196 110 6.

MCT 63 J.W. DE BAKKER (ed.), Foundations of computer science, 1975.
ISBN 90 6196 111 4.

MCT 64 W.J. DE SCHIPPER, Symmetries closed categories, 1975. ISBN90 6196
112 2.

MCT 65 J. DE VRIES, TopoZogicaZ transformation groups 1 A categoricaZ ap
proach, 1975. ISBN 90 6196 113 O.

* MCT 66 H.G.J. PIJLS, LocaZZy convex algebras in spectral theory and eigen
function expansions. ISBN 90 6196 114 9.

* MCT 67 H.A. LAUWERIER, Asyrrrptotic analysis, part 2.
ISBN 90 6196 119 X.

* MCT 68 P.P.N. DE GROEN, Singulary pertlibed differential operators of
second order. ISBN 90 6196 120 3.

* MCT 69 J.K. LENSTRA, Sequencing by enumerative methods.
ISBN 90 6196 125 4.

* MCT 70 W.P. DE RoEVER JR., Recur>sive program schemes: semantics and proof
theory. ISBN 90 6196 127 o.

* MCT 71 J.A.E.E. VAN NUNEN, Contracting Markov decision processes.
ISBN 90 6196 129 7.

* MCT 72 J.K.M. JANSEN, Sirrrple periodic and nonperiodic Lame functions and
their applications in the theory of eletromagnetism.
ISBN 90 6196 130 0.

* MCT 73 D.M.R. Leivant, Absoluteness of intuitionistic logic.
ISBN 90 6196 122 x.

* MCT 74 H.J.J. Te Riele, A theoretical and corrrputational study of general-
ized aliquot sequences. ISBN 90 6196 131 9.

An asterisk before the number means "to appear".

