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CHAPTER 0 

PRELIMINARIES 

0.0. INTRODUCTION 

Renewal theory is one of the main areas of the theory of random walks 

with stationary, independent increments. In this monograph we want to study 

renewal theory for random walks with stationary increments. The independence 

assumption will be relaxed to certain forms of asymptotic independence. In 

this more general context some of the techniques that were useful if the 

increments are independent cannot be applied any more. Also some of the tra­

ditional theorems, such as Blackwell's theorem, lose their central position. 

As a consequence we have to determine the new problems that interest us in 

this more general theory and we want to develop the techniques with which 

they can be solved. The first part of this introduction indicates in which 

direction we are looking for answers to the questions sketched above. The 

second part of the introduction summarizes the results that we obtain. 

Let (Sn)n~O be a random walk with stationary, independent increments, 

started in {O}. Renewal theory discusses the asymptotic behaviour of the 

renewal measure 

H(B) := I P(SnEB), 
n~O 

1 
B E B , 

and some related topics in random walk theory. One of its main results is 

Blackwell's theorem. Assume that the increments of the random walk are 

strictly positive with finite expectation µ. Under these conditions the 

renewal measure is locally finite. Suppose that the distribution F of the 

increments is nonlattice, i.e. F is not concentrated on a discrete lattice 

Ld := d2Z, d > 0. Then Blackwell's theorem asserts that for any b > 0 

(0.0.1) lim H(t,t+b] 
t-+oo 

~ b. 
µ 
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There is a slightly weaker result that is illuminating from our point 

of view. We associate the renewal measure H to the random walk (Sn)n~O 

started in {O}. To the random walk (Sn-h)n~O we associate the measure 

Th H defined by 

:= l P(Sn-h E B), 
n~O 

B E 81• 

Here ThH is the translation of Hover a distance h. As a consequence of 

Blackwell's theorem we have for any b > 0 

(0.0.2) lim ITh H(t,t+b] - H(t,t+b]I = 0. 
t-+<x> 

This limit relation expresses that the measures ThH and Hare asymptotical­

ly the same. In other words, we derived a property that might be called 

"loss of memory" about the initial position of the random walk. This loss 

of memory plays an important role in our discussions. 

Loss of memory properties, expressed in terms of the random walk are 

also known. We can mention 

(0.0.3) lim lips - p II s +h 
0, h real, 

n-+oo n n 

where II.II denotes total variation. This limit relation is valid for a 

random walk with stationary, independent increments if the distribution F 

of the increments has a density with respect to the Lebesgue measure i. It 

is even valid under a slightly stronger condition. Call F spread out if 

some convolution Fn*, n ~ 1, is not singular with respect to i. If Fis 

spread out then the limit relation (0.0.3) holds too. we can prove that 

(0.0.3} holds if and only if Fis spread out (see Section 5.3). Apparent­

ly it is natural to consider (0.0.3) under the spread out condition: these 

two properties are equivalent. 

For distributions F concentrated on the rational numbers (0.0.3) is 

not valid. There is a simple way to see this. If h is irrational then Ps 
n 

and Psn+h are mutually singular and hence the total variation expression 

in (0.0.3) equals 2. However, a result like (0.0.2) may be valid for such 

distributions F. The reason is that we did not use the total variation 

metric in (0.0.2). In Chapter 1 we shall see that by weakening the metric 

in (0.0.3) we can obtain a more generally valid loss of memory property. 

A loss of memory result like (0.0.3) above can be proved by means of 

a coupling technique. We argue as follows. Suppose we succeed to construct 



a random walk (S~ln;::o' distributeq as (Sn)n;::o such that 

(0.0.4) S' 
n 

where T is a finite random time. By a simple inequality (see Lemma 1.1.1) 

lips• - PS +hll ~ 2 P(S~.,,. sn+h), 
n n 

and hence for n + oo 

II P - P II ~ 2 P (T > nl + o, s s +h n n 

n ;:: 1, 

so (0.0.3) holds. The problem that we did not consider above is the con­

struction of the random walk (S~)n;::o· This is possible if Fis spread out. 
In Chapter 1 we consider problems of this type. There we discuss a coupling 
technique due to ORNSTEIN [1969] and we prove loss of memory results and 
also Blackwell's theorem. 

One of the reasons for the importance of Blackwell's theorem in the 
theory of random walks with independent, stationary increments, is that 
this theorem can be used to prove various other limit results in renewal 
theory (see SMITH L1958] or FELLER [1969]). The independence assumption 

has a crucial role in the proof of these results. Our aim is to relax the 
independence assumption. Then Blackwell's theorem can no longer be used 
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to obtain these limit results. Instead we are forced to prove more detailed 
results than (0.0.1) to get a sufficiently rich theory. To this purpose 
we prove limit results for point processes. 

+ Define the point process Nt' t <: O, on (O,oo) by 

(0.0.5) N~(B) := 

where B c (0, 00 ) is any Borel set. The renewal measure H can be expressed 
in terms of these point processes because 

+ H(t;t+h] = ENt(O,h] 

+ for positive h and t. Therefore, convergence results for Nt' t + oo, yield 
more detailed information than convergence results for the renewal measure H. 

It is quite well possible to obtain also for point processes loss of 
memory properties by means of coupling. Suppose that the increments of the 
random walk (Sn)n;::o are strictly positive and assume that (0.0.4) holds. 
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Define (N +t) ' in terms of (S') >O analogous to 0. 0. 5. On the set { t > S } we n n- T 
have 

For the distribution of these point processes we have the inequality 

and thus we get 

fort~ oo. We can use this convergence result to obtain for example (0.0.2). 

Apparently if we succeed to construct (0.0.4), it is possible to obtain a 

strong convergence theorem. We already mentioned that if the distribution F 

of the increments is spread out and the increments are a stationary, in­

dependent sequence, (0.0.4) can be obtained. However, without the indepen­

dence assumption it will be necessary to develop different methods to prove 

the required convergence theorems. For technical reasons we do not construct 

random walks (Sn)n~O and (S~)n~O with property (0.0.4) in the dependent 

case. Nevertheless this property gives a good idea of the direction in 

which we try to find a solution of our renewal theoretic problems. 

Blackwell's theorem contains a nonlattice condition. If the increments 

of the random walk are independent, this nonlattice condition can be for­

mulated in terms of the distribution F of the increments. The reason is that 

if the increments are independent, F determines the distribution of the 

entire random walk. However, without the independence assumption this is no 

longer true and we also have to adapt the definition of nonlattice. A sim­

ilar problem arises for the spread out condition. These problems will be 

treated in the last chapters. 

The dependence of the increments can cause quite unexpected phenomena. 

For example for random walks with dependent increments transience does not 

imply that the· renewal measure is locally finite. In Section 2.1 we shall 

discuss some examples of random walks with dependent, stationary increments. 

In this monograph we study random walks with stationary increments and 

discrete time parameter. Only the first chapter assumes independence of the 

increments. Later on we assume some form of asymptotic independence. As we 

proceed with our study we require stronger asymptotic independence assumptions. 



Most of our random walk results are formulated in terms of point processes. 

We only consider metric topologies and most of our convergence theorems use 

the total variation metric. The last three chapters form the main part of 

the monograph. There we refine the coupling technique and prove the main 

limit theorems. 

Chapter 1 has an introductory character. It discusses coupling for 

random walks with stationary, independent increments and proves some well 

known results such as Blackwell's theorem. 

Chapter 2 discusses some general properties of random walks. We only 

assume that the increments of the random walk are stationary and do not 

impose any independence assumption. Suppose (Sn)n~O is a random walk start­

ed in {O}. It is often more natural to formulate the results in terms of 

an extension (Sn)nE?.Z of this random walk. This extended process satisfies 

(0.0.6) n E ?Z, 

where the increments (sn)nE?.Z form a stationary sequence of real random 

variables. Such an extended process can always be constructed and has a 

unique distribution. In order not to overburden the notation we shorten 

(sn)nE?.Z' (Sn)nE?.Z'" .. to s2'Z,SZZ, ••.. 
Define for any Borel set B on the real line 

(0.0. 7) N0 (B) := 

5 

If N0 (B) is finite for any bounded Borel set B, the random walk S2'Z is called 

transient. In that case we consider N0 as a point process with values in a 

measurable space (N,VJ, where N is the set of locally finite, integer valued 

measures on the real line and V is some suitable a-field on N (see Section 

o. 3). 

Section 2.1 contains some simple results for transient random walks and 

also discusses some examples. Section 2.2 centers around an inequality, given 

by KAPLAN [1955], that states that for any positive h we have 

uniformly for all real t. This inequality expresses that the expected number 

of points of the random walk on an interval with length h is dominated by the 

expected value of the number of points on an interval (-h,h), centered at 

the origin. We give a simplified proof of this inequality. The main result 
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of Section 2.2 is a related inequality. For any positive hand real t we 

have 

P(No(t,t+h] 2 p) :s; 2 P(No(-h,h) 2 p) 

for any integer p. This inequality determines a bound on the size of point 

clusters on an interval of length h in terms of the distribution of the 

number of points on an interval (-h,h) centered at the origin. The inequal­

ity is used in integrability problems. The proofs of the inequalities above 

are combinatorial and therefore deviate from the main line of our investiga­

tions. 

In Section 2.3 we discuss transience and recurrence of a random walk. 

We prove that it is possible to split up the probability space into two dis­

joint sets, It, the set of transience, and Ir' the set of recurrence. On 

the set of transience N0 is locally finite, i.e. N0 (B) is finite if B is 

bounded, and on the set of recurrence each point Sn is a limit point of the 

random walk, i.e. for each open neighbourhood O of Sn one has the equality 

N0 (o) = 00 • A proof that such a splitting of the probability space in a set 

of transience and a set of recurrence can be given, leads, quite unexpected­

ly to an elaborate argument that can be found in Section 2.3. 

Chapter 3 forms the background for the renewal theoretic results of 

later chapters. Most results in this chapter are known or close to known 

results. Suppose that the random walk S:<Z has stationary, strictly positive 

increments with finite expectation. Define for real t the point process Nt 

on the real line by 

(0.0.8) Nt(B) := l xB(Sn-t), 
nE!iZ 

The point process Nt is a translation of the point process N0 defined by 

(0.0.7) over a distance t. Our aim is to derive convergence theorems for 

Nt, t + 00 • In Section 3.1 we describe the distribution of a point process N 

that arises under weak conditions on the random walk as the limit process 

of Nt, t + 00 • Section 3.2 discusses convergence of Nt to N for t + 00 • One 

of the results shows that if the increments of the random walk form an er-

godic, stationary process then 

t 

(0.0.9) lim 1 I 
t+oo t 

0 

P(N 
s 

E D)ds P(NE D), D E V. 



Thus under the weak requirement of ergodicity we already have Cesaro con­

vergence of Nt to N. The result above can be strengthened somewhat: The 

process of increments is ergodic if and only if 

lim 
t->= 

P (NED), D E V, 

for any D0 E V for which the set {N0 E: D0} has positive probability. The 

limit relation in (0.0.10) does not only express Cesaro convergence of Nt 

to N but also formulates a weak form of asymptotic independence between 

the sets {Nt E D} and {N0 E D0 } for t + 00 • In Chapter 6 we shall prove a re­

sult similar to (0.0.10) but for a stronger convergence concept than Cesaro 

convergence. 

7 

Chapter 4 forms a short interlude in our discussion of random walks 

and renewal theory. Its main aim is to discuss a concept of asymptotic in­

dependence for stationary processes, called weak Bernoulli. To define this 

concept we use a measure of dependence between random variables. Let X and 

Y be random variables (vectors) on the same probability space. The dependen­

ce of X and Y is defined as 

1-(X,Y) := 12 ttp - p xp tt. 
X,Y X Y 

Clearly 1-(X,Y) vanishes if and only if X and Y are independent. A stationary 

sequence X2Z of random variables is called weak Bernoulli if 

(0.0.11) 

i.e. if the dependence between the past (Xk)k~O and the far future (Xk)k~n 

vanishes asymptotically. This condition of asymptotic independence is 

equivalent to 

For a Markov dependent process this simplifies to 

lim ttp I - P tt = 0 a.s. 
n->= xn XO xn 

The first part of Chapter 4 contains some technical results concerning cou­

pling and its relation with the measure of dependence defined above. At the 

end of Chapter 4 we characterize the weak Bernoulli property by coupling. 
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we prove that a stationary process X:;z is weak Bernoulli if and only if 
there exists a probability space with processes X2z and X7z, distributed as 

X:;z, such that (x;> n$O and X2z are independent and 

X" = X' 
n n 

for n ~ <, 

where < is a finite random time. We already saw an example of the use of 
coupling in renewal theory. In view of the coupling characterization of weak 
Bernoulli processes given above, it will hardly be surprising that we can 
use these processes in our generalization of renewal theory. In Chapter 6 
they will have an important role. 

In Chapters 5 and 6 we change our point of view slightly. We suppose 
that there is given a stationary sequence X:;z with values in a Borel space 
r, and assume that the increments of the random walk S:;z are given in terms 
of x:;z by 

n € l?I: t 

where f is a real measurable function on r. We shall say that the random 
walk Szi; is controlled by Xzi;. It is no restriction to assume that such a 
controlling process Xzi; exists: in case it is not given explicitly we can 
always take Xzi; to be the process of increments of the random walk. The 
reason that we study random walks controlled by a stationary process is 
that often the properties of the random walk are given in terms of this con­
trolling process. It is also possible that Xzi; has some useful property that 
is not available for the process of increments. For example Xzi; might be 
Markov dependent. It is also possible to study semi-Markov processes in 
terms of random walks controlled by a stationary sequence. 

In Chapter 5 we study for a random walk Szi;, controlled by a station­
ary sequence Xzi;, the asymptotic behaviour of the distribution of Sn for 
n + 00 • Section 5.3 is concerned with the limit relation 

(0.0.12) limllP -P II s s +h n+oo n n 
0, h real. 

Section 5.2 considers a similar, slightly weaker limit relation. The limit 
relation above expresses loss of memory about the initial position of the 
random walk. It implies that for any bounded interval I on the real line 

lim P (Sn e: I) 0 
n+oo 



and thus describes a property that might be called the spreading behaviour 

of Sn on the real line for n + oo. The asymptotic independence condition 
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that we impose in Chapter 5 is still weaker than (0.0.11). To obtain (0.0.12) 

we have to adapt the spread out condition. The proof of the results of 

Chapt~r 5 is prepared in Section 5.1. There we reduce the study of the limit 

relations to the investigations of sequences of independent, identically 

distributed (i.i.d.) random vectors. It is then possible to obtain (0.0.12) 

by coupling techniques. 

The major difficulty of the theory in the last chapters lies in the 

reduction to the i.i.d. case. To this purpose we use an approximation method. 

It would go too far to discuss in this introduction the problems that we 

get involved with and therefore we have to refer at this point to Section 

5.1. To overcome these problems we are obliged to make an assumption on the 

process Xzi: (condition (5.1.3)). This assumption is satisfied in some impor­

tant cases: if the sequence Xzi: consists of countably valued random vari­

ables and if the sequence X21: is Markov dependent. 

In Chapter 6 we want to describe the convergence of Nt to N for t + 00 • 

In particular we want to strengthen (0.0.9). Suppose that the random walk 

S21: has strictly positive increments with finite expectation. We assume 

that the random walk Szi: is controlled by a weak Bernoulli process Xzi:. Under 

some additional conditions we prove in Section 6.3 that 

(0.0.13) lim lip + - P +II 
t+oo Nt N 

0, 

where N: and N+ are the restrictions to (0, 00 ) of Nt and N. Blackwell's 

theorem can be obtained as a corollary. We obtain an even stronger result. 

Let Nt be the restriction of Nt to (-00 ,oJ. We have 

(0.0 .14) 

This limit relation does not only strengthen (0.~.13), but it also expresses 
- + 

asymptotic independence of the past N0 and the future Nt for t + 00 • The 

proofs of this and other results are prepared in the first two sections of 

Chapter 6. 

In Section 6.4 we consider two special cases, where it is possible to 

give a more complete treatment of the subject. We study the countable case, 

where X21: is a sequence of countably valued random variables and the Markov 

case, where the sequence Xzi: is Markov dependent. We obtain necessary and 

sufficient conditions for the validity of limit relations like (0.0.14) in 
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terms of the properties of the process XZI:. Especially the countable case 
seems to be neglected in the literature. 

The limit theorems of Chapters 3 and 6 describe convergence to a sta­
tionary point process N (or N+). In Section 6.5 we study the mixing proper­
ties of this limit process. The results we obtain in this direction are re­
lated to the theory of special flows, a subject studied in ergodic theory. 
There is a close relationship.between special flows and renewal theory as 
it has been discussed in this monograph. 

0.1. NOTATIONS AND CONVENTIONS 

k The k-dimensional Euclidean space is denoted by JR , k 2 1. Unless 
k otherwise stated we assume it is provided with the Borel a-field B , gener-

ated by its Euclidean topology. A Borel space is a measurable space (I',T), 
for which there exists a 1-1 bimeasurable mapping from r onto a measurable 
subset of the real line. Often we write r instead of (f,T). We assume 
throughout that the random variables that we consider have their values in 
a Borel space. As a consequence, if X and Y are random variables we can 
always select a regular version of the conditional distribution PYIX of Y 
given X. The class of Borel spaces is fairly large. Each Euclidean space 
is a Borel space and moreover each countable product of Borel spaces is 
again a Borel space. So if X := (Xn)n2 l consists of random variables with 
values in a Borel space then X itself has its values in a Borel space. 

The set of natural numbers {1,2, ..• } is denoted by JN and the set of 
integers by Z':. To denote random vectors we use an uncommon but short nota­
tion. Suppose Xn, n E Z':, is a sequence of random variables with values in a 
Borel space (I',T). Let L be an integer set. We write XL:= (X£)£EL" The 
random vector X is considered as a random variable with values in the 

L L L 
Cartesian product (I' ,T) := £~L (I',T). If k is an integer we write 
XL+k := (X£+k)£EL and consider XL+k as a random variable with values in rL. 
These notations are also used if X is defined for n E JN instead of n E Z':, n 
but then we require that L c JN and k 2 0. Using these notations stationarity 
of the process XJN can be described as the property that XJN is distributed 
as XJN+l. The tail a-field of a process XJN is the a-field consisting of the 
events that are XJN+n -measurable for all n 2 0. 

Ifµ is a signed measure on a measurable space we denote by µ+its 
positive and byµ := (-µ)+its negative part. The total variation llµll ofµ 
is defined as the sum of the total mass ofµ andµ+. The minimumµ A v and 



the maximum µ v v of two nonnegative measures µ and v are given by 

(0.1.1) µ /\ v µ v v = µ + (v-µ)+. 

The indicator function XA of a set A is defined as the function with 

value ·1 on A and value 0 on Ac If events A and B satisfy P (A \B) = 0 we 

write A c B a.s. We write A = B a.s. if both A c B a.s. and B c A a.s. If 

to each element A in a a-field A there corresponds a set B in a a-field B 

such that A = B a.s. then we write A c B a.s. 

0.2. ERGODIC THEORY AND STATIONARY PROCESSES 

Ergodic theorists use concepts such as measure preserving transforma­

tions and partitions where probabilists make use of expressions such as 

stationary processes and random variables. First we introduce the language 

of ergodic theory. Then we translate the corresponding concepts into the 

terminology of probability theory. 

Let (n,A,P) be a probability space and Ta measurable mapping from n 

onto itself. Suppose T is measure preserving, i.e. P(T- 1A) = P(A) for all 

11 

A E A. A measurable set A is called invariant if T-lA = A and a.s. invariant 

if T-lA =A a.s. If all invariant sets have probability 0 or 1 we call T 

ergodic. 

A process x22 with values in a Borel space (f,T) is called stationary 

if (Xn) nE2Z and (Xn+l J nE2Z have th.e same distribution. The connection with 

the setting above can be given as follows. Let (n,A) be the Cartesian prod­

uct (r22 , T2Z) := n (r, TJ and take P to be the distribution of x..,,.. Let T 
nE2Z = 

be the shift transformation on r 22 defined by 

n E :;z, y E r 22 • 

The (a.s.) invariant sets for XZZ are the events of the form {X:;z E A} with 

A EA (a.s.) invariant under T. The process X:;z is called ergodic if the in­

variant sets have probability 0 or 1. 

A process-XJN with values in a Borel space (f,T) is called stationary 

if Px =PX • Take (n,A) to be n.,., (f,TJ, let P := PxJN and let the 
JN :N+l JN nE.a.' 

shift transformation T on f be defined by 

n E JN. 

Define (a.s.) invariant sets and ergodicity of XJN as above. By using the 
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Kolmogorov extension theorem we can extend xlN to a stationary process Xzz; 
with a uniquely determined distribution (see BREIMAN [Proposition 6.5]). 

The following result is known as the individual ergodic theorem. 

THEOREM 0.2.1. Let slN be a stationary sequence of real random variables 

with Es~ < oo Then 

n 
lim l l sk = E(i1 jJs) a.s., 
n-+<><> n k=l 

where JS is the a-field of invariant sets for slN. 

~·See BREIMAN [Theorem 6.28] for the proof in case Eis 1 1 < 00 • Apply 
this result and a truncation argument to get the theorem in case Es1 = 00 • D 

References to books, for example to Breiman's book on probability, con­
tain the name of the author and, between brackets, a location in the book. 
If necessary, also its date of publication is mentioned. References to 
articles mention the name of the author and the date of publication. 

0.3. POINT PROCESSES 

Several of our results are given their clearest formulation in terms of 
point processes. This section introduces some of the notations that are in­
volved. First we discuss point processes on the real line. Because some use­
ful examples can be covered by assigning "marks" to the points of a point 
process, we also discuss marked point processes on the real line. Literature 
on point processes can be found in RIPLEY [1976] and KALLENBERG [1976]. 

A point process on the real line can be defined in the following way. 
Let N be the set of integer valued measures m on the real line that are 
finite on bounded intervals. Suppose N is provided with the a-field V gener­
ated by the mappings 

m-+- m(B), 

A measurable mapping N on a probability space with values in (N,V> is called 
a point process on the real line. We allow also that N has its values up to 
a null set in the measurable space (N,V). The distribution of N is the 
measure PN on (N,V) defined by 

D E V. 
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The intensity measure A of N is defined by 

A(B) := EN(B), 

A real number x is called a point of m E N if m{x} > 0 and a multiple point 

if m{x} > 1. Let N1 c N be the set of measures m E N without multiple points. 

A point process is called simple if it has its values up to a null set in 

N1 . Identify the measures m E·N1 with their support. With this identifica­

tion a simple point process becomes a random set. 

Define the translation Tt' t real, on the real line by 

x real. 

This determines a translation of the elements m E N by 

If f is a function on the real line, define 

and note that 

x -1 ' 
Tt B 

x real, 

1 
B E B • 

The point process N is called stationary if the translation Tt as a mapping 

on N for each real t is measure preserving on (N,V,PN). A measurable set 

D E V is invariant under translations if T~ 1D = D for all real t. The point 

process N is called ergodic if each set {NED} with D invariant under 

translations has probability 0 or 1. If N is stationary then 

(0. 3 .1) {N= O} u {N(-oo,O] = N(O,oo.) 00} 

has probability 1 by Poincare's recurrence principle (see HAI.MOS [1956,p.10] 

or BREIMAN [Proposition 6.38]). If N is stationary its intensity measure 

has the form et with t the Lebesgue measure and c E [0,00 ] a constant, called 

the intensity (see HALMOS [1950, XI.60]). In that case the intensity equals 
1 

the expected value of the random variable lim -t N(O,t], as follows from a 
t-*"" 

simple application of the ergodic theorem. 

PROPOSITION 0.3.1. (N,V) is a Borel space. 



14 

PROOF. Each measure m E N can be represented as 

m(B) 

where 

1 
B E B I 

Here we assume that u has its values in the extended real line JR. 1 := [-00 , 00]. n 
Thus also finite measures m can be represented in this way. We have obtained 
an invertible mapping from N onto a measurable subset of n~2Z JR. 1 • It is 
easily seen that this mapping and its inverse are measurable. Hence (N,V) 
is a Borel space. D 

A well known topology on the set of distributions P of point processes 
on the real line is the weak topology with respect to the vague topology on 
N. However, a stronger topology is more useful for the limit problems that 
we discuss. A definition of this topology is given as follows. If P E P and 
v is an absolutely continuous probability measure on the real line define 
v * p by 

(0. 3.2) 

(0. 3. 3) 

and let 

(0.3.4) 

v * P(D) := I T P(D) dv(t), 
1 t 

m. 
-1 

:= P(Tt D), t real. Define the pseudometric dv on P by 

d)P 1,P 2J := llv*Pl - V*P211 

d(P 1 ,P2) := z: 2-n d (Pl ,P2), 
n<:l vl/n 

where v 8 , E > O, is the homogeneous distribution on (0,8). In the appendix 
we show that d is a metric on P. We also prove that the topology induced by 
d is weaker than the topology introduced by the total variation metric on P 
and that the a-topology is stronger than the weak topology on P with respect 
to the vague topology on N. KALLENBERG [1976] discusses this weak topology. 

The reader will be able to reformulate the definitions stated above, 
for point processes on (0 ,oo) , and also for point processes on 2Z or JN. The 
restriction N of a point process N on the real line to an interval I is 

defined as the point process 

N(B) := N(B) 
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for all Borel sets B c I. 

To define a marked point process only a few changes are necessary. Let 

(I',T) be a Borel space, to be called the mark space. If m is a measure on 

JR1 x r define the measure ms on the real line by 

ms (B) := m(B x I'), BE B1• 

Let N be the set of all integer valued measures m on JR1 x r such that ms is 

finite on bounded intervals. Let the a-field V on N be generated by the map­

pings 

m + m(Cl 

on N with c c JR1 x r measurable. A marked point process N on the real line 

with mark space r is a measurable mapping on a probability space with values 
1 in (N,VJ. We also call Na marked point process on lR x r. The translation 

Tt on lRl x I' is defined by 

Tt(x,y} := (x- t,y}. 

Define the translation of measures and functions on JR1 x r as above for 

point processes on the real line. Let also stationarity and ergodicity be 

defined as above and introduce d and d on the set P of distributions of v 
marked point processes as above with v * P defined by (0.3.2). If N is a 

marked point process on JR1 x r let its projection Ns on the real line be 

defined as 

BE B1• 

If N is stationary define its intensity as the intensity of Ns. N is called 

simple if Ns is simple. 

For marked point processes on an interval the definitions can be given 

similarly as above. The translation TtN' t ~ 0, of a marked point process N 

on (0, 00 ) x r is defined as the marked point process on (O,oo) x r, given by 

with B c (0, 00 ) x r measurable. 





CHAPTER 1 

RENEWAL THEORY AND COUPLING; AN INTRODUCTION 

The renewal theorem for random walks with stationary, independent 

increments can be derived in various ways. In recent years some attention 
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is given to proofs of this theorem that make use of coupling techniques. 

These coupling techniques play an important role in this monograph. Because 

they are relatively unknown it seems desirable to show here how the renewal 

theorem can be derived using such a coupling technique. We discuss the 

merits of this coupling technique from several points of view and at the end 

of the chapter we indicate where a possibility exists to apply coupling 

techniques also for random walks with dependent increments. 

The renewal theorem in the lattice case was stated and proved by 

ERDOS, FELLER and POLLARD [1949]. Their proof was immediately generalized 

by BLACKWELL [1948,1953] who gave the nonlattice analogue of the theorem. 

The final version of the renewal theorem without conditions on positivity 

of increments and existence of expectation was given by FELLER and OREY 

[1961]. At present many different methods exist to prove the renewal theorem. 

FELLER [1971, Chapter XI] gives a simple proof using a lemma due to CHOQUET 

and DENY [1960]. This approach was useful to obtain renewal theorems for 

semi-Markov chains (see KESTEN [1974]) and for random walks on groups (see 

REVUZ [1975]1. FELLER and OREY [1961] presented a Fourier analytic method 

of proof that could be used to obtain results on speed of convergence in 

renewal theorems (see SMITH [1966] and STONE and WAINGER [1967]). Apart 

from analytic methods of proof there are also methods of a more probabilistic 

nature. We des_cribe a coupling technique that was given in ORNSTEIN [ 1969, 

Theorem 0.7], where it is developed to study the asymptotic behaviour of the 

convolutions of a distribution 

Let us first describe what is meant by coupling. Suppose X~ and x;; 
are sequences of random variables with values in the same Borel space. Let 

K be an integer set. We say that X' and X" are coupled over K if 
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P (X~ = X~) = 1. 

A similar definition can be given for sequences Xi.r and Xi.J for K c JN. 

To describe asymptotic properties we use the concept successful coupling. 

We say the processes X' and X" are successfully coupled if 

lim P(X~Hn X" ) 
N+n 

1. 
n->«> 

By the lemma below we may conclude that if X' and X" are successfully 

coupled, then 

(1.1.1) llp I 

XJN+n 
- P II ~ 

X" 
JN+n 

2 P (X~+n f. XiJ+n) + 0 

for n + 00 • So successful coupling implies that the processes X~ and XiJ 

asymptotically have the same distribution. 

LEMMA 1.1.1. Let Y' and Y" be random variables with values in the same 

Borel space. Then we have 

0 (Y' ,Y") ·= ~lip -P II ~ P(Y'f.Y"). . Y' yn 

PROOF. Observe that for all measurable sets B 

µ{B) := P{Y'EB,Y'=Y") ~ P{Y'EB). 

A similar relation holds with Y' and Y" interchanged. Hence 

lip -P li=ll(P -µ)-{P -µ)ll~211P -µ11=2 P(Y'.;.Y"}. Y' Y'' Y' y•• yr r D 

The lemma above shows that there is a narrow relationship between 

coupling and certain expressions using total variation. In Sections 4.1 

and 4.2 we study this relationship more closely. Among other results we 

prove that if two distributions PY' and PY" on the same Borel space are 

prescribed, we can construct a probability space with random variables Y' 

and Y", having the prescribed distributions, such that the inequality in 

the lemma above is satisfied as an equality. 

In general, there are several techniques to prove that a coupling is 

successful. The proof of the theorem below forms an example. This proof 

uses the so-called Ornstein coupling. The theorem discusses the spreading 
behaviour of a random walk and is formulated by DOBRUSHIN [1956]. 

We need the following concepts. Define a lattice Ld by 



Ld := {O}, d 00, 

(1.1.2) := dl!Z , 0 < d < 00, 

:= lRl , d o. 

If 0 ~ d ~ co the lattice Ld is called discrete. The smallest lattice on 

which a distribution F on the real line is concentrated, is called its 

minimal lattice. In case it is discrete, F is called lattice. Let Ld be the 

smallest lattice such that F is concentrated on a non centered lattice 

c + Ld' c real. It is called the minimal weak lattice of F and if it is dis­

crete F is called weakly lattice. The first paragraph of the proof below 

shows that the minimal weak lattice exists. 

THEOREM 1.1.2 (DOBRUSHIN). Let F be a probability distribution with a dis­

crete minimal weak lattice La. Suppose (Sn)n~O is a random walk with in­

dependent, F-distributed increments with s0 = O. Then for all h € Ld 

0. 

PROOF. First we describe the minimal weak lattice width d in an alternative 

way. The distribution of F is by assumption discrete. Consider 

By the definition of the weak lattice each element of the set above is con­

tained in Ld. If F{c} > 0 then it is easily seen that F is concentrated on 

c + Ld. These two assertions together imply that d = a 1• 
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Let x0 ,x1 , ••• ,x0,xi,··· be independent random variables, x0 and x0 
having arbitrary distributions G and G', concentrated on Ld and let the 

other random variables have distribution F. First we consider the case that 

F has finite mean. The differences 

k ~ 1, 

have a symmetric distribution with finite, vanishing mean, and by the defi­

nition of a 1, with minimal lattice La1 = Ld. The differences 

S' - S 
n n 

n 

XO - XO + l 6k, 
k=l 

n ~ O, 

form a random walk on Ld with increments with vanishing expectation and 

therefore the meeting time T of S~, n ~ 0, and Sn' n ~ 0, defined by 
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T := inf{n 2 0: S' S } 
n n 

is defined with probability as a finite random variable by the Chung 

Fuchs theorem (see BREIMAN [Section 3. 7]). The random time T is a Markov 

time for (Sn,S~), n 2 0. Define a new process (S~)n20 by 

S" := s n' n 
:= S' n' n > T. 

Write S~ := l~=O Xk' n 2 0. Note that (S~)n20 is formed out of (Sn)n20 by 
replacing the increments Xk, k > T, by Xk, k > T. Using the Markov property 

it is easily seen that this replacement does not affect the distribution. 

So (S~)n20 is distributed as (Sn)n20 . Note that S~ and S~ are coupled for 
n > T, and hence 

flpS"-PS,I/ s 2 P(T2n) + 0 
n n 

for n ->- 00 • Because S" and S have the same distribution we have n n 

n->-oo 

This implies the assertion for distributions F with finite mean. 

The proof above uses that (Xk,Xk), k 2 1, is distributed as a pair of 

independent, F-distributed random variables. However, the proof also works 

if (~,Xk), k 2 1, have a common bivariate distribution with marginals F, 

such that Ld is the minimal lattice of the distribution of 6k. 

If the mean of F is not defined as a finite number the coupling proof 

above fails at one point: It is not clear that the expected value of 6k 

exists. To repair this we use the remark in the preceding paragraph. Write 

F = F + Fm, where F is the restriction of F to (-m ,m) . Choose m so large m m 
that the minimal weak lattice of Hm := 11im11 Fm is Ld. Let the common dis-

tribution of (Xk,Xk)' k 2 1, be given by 

(~F xp)+Fm 
nF 11 m m d 

m 
llF II H x H + Fmd" m m m 

Here F~ is the measure concentrated on the diagonal of m.2 that has margin­

als Fm. It is easily checked that the pair (~ 1 Xk), k 2 1, has marginals F. 

Moreover, on A:= {!xkl 2 m} we have Xk = xk and on Ac the pair (~,Xk:l is 

HmxHm-distributed. Hence, 6k vanishes on A and 6k is on Ac the difference of 

independent, HID-distributed random variables. Hence, the distribution of 6k 
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has minimal lattice Ld. Also lnkl ~ 2m and Enk = 0 exists. So with this 

choice of Px X' the coupling proof can be used again. D 
k' k 

The coupling in the proof above is shown to be successful by means of 

the Chung Fuchs theorem on recurrence of a random walk. The same successful 

coupling can be used to derive the renewal theorem for the lattice case. 

THEOREM 1.1.3 (FELLER, ERDOS,· POLLARD). Let F be a distribution on {O,l, •.. } 

with minimal lattice 2Z and finite, positive meanµ. Suppose that Sn, n ~ 0, 

is a random walk with independent, F-distributed increments such that s 0 = 0. 

Then the renewal measure H(B) := l >O P(S EB), BE B1, satisfies 
n- n 

lim H{n} 
n-+oo 

1 
µ 

PROOF. Suppose first that 2Z is the minimal weak lattice of F. We use the 

coupling construction in the proof of Theorem 1.1.2. Let G be degenerate 

at {O} and define G' to be the so-called survivor distribution, satisfying 

G'{i} := F(i,oo) 
µ 

i ~ o. 

Denote by N the point process on {0,1, ..• } counting the occurrences of the 

Sn-points, i.e. 

N(B) := l X8 (Sn) 
n~O 

for B c {0,1, ... }. Let N, N' and N" be the corresponding point processes 

for the S-, S'- and S"-processes, defined in the proof of Theorem 1.1.2. 

First we show that with this definition,N' is stationary. Let 0 be the 

first entrance time of (S~ln~O into [l, 00 ) and consider Sn:= S~+n- 1, n~ 0. 

Observe that s0 is distributed as s0: 

1 - F(k,oo) + 
µ l 

j=l 

F(O,oo) F(O)j-1 F{k} 
µ 

F(k-1,oo) 
µ 

k ~ 1. 

Using that 0 is a Markov time for (S~ln~O it is easily shown that (S~)n~O is 

distributed as (S) >O" It follows that N' is a stationary point process on 
n n-

{ 0, 1, 2, ..• }. Remark also that 
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EN'{k} P(N'{k} > 0} l F{O}j. 
j=l 

By stationarity and the definition of the survivor distribution we obtain 
EN'{k} = !, k ~ 0. 

µ 

we now apply the coupling construction in the proof of Theorem 1.1.2. 
Note that on the set {n: n > S' 

T 
S"} the point processes N' and N" coincide. 

T 
Therefore, 

fork+ 00 by Lemma 1.1.1. Because N and N" are equally distributed 

H{k} - l = EN"{k} - EN' {k} 
µ 

(P(N"{k} > O} - P(N'{k} > O}} ( l F{O}j} + 0 
j=l 

fork+ 00 • This proves the assertion if l!Zis the minimal weak lattice of F. 
If F has minimal lattice liZ but minimal weak lattice Ld ~ 2Z we employ 

a simple trick used in MEILIJSON [1975]. We insert an atom at {O} in F, i.e. 
we replace F by F := p 60 + (1-p)F, where O< p< 1, and o0 is the probability 
measure degenerate at {O}. Observe that F has minimal weak lattice liZ. We 
can express the renewal measure H associated to F in the renewal measure 
H associated to F. This can be done as follows. We construct a sequence of 
independent,F-distributed increments. ~enerate repeatedly and independently 
with probability p a zero and with probability 1-p an F-distributed random 
variable. Clearly the waiting time from the n-th to the (n+l}-th generation 
of· an F-distributed random variable is geometrically distributed with param­
eter p and expectation ~1 1 • Furthermore, the waiting times and the F-distrib--p 
uted increments are independent. It follows easily that 

H = - 1- H. 1-p 

By the first part of the proof we have, because F has minimal lattice liZ, 

H{n} = (1-p)H{n} + (1-p)•~ = !. 
]J µ 

Here we used that the meanµ of F is µ = (1-p)µ. D 

Apart from some technical details the proof above is an application of 
the Ornstein coupling described in the proof of Theorem 1.1.2. The best 
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known application of a coupling argument in the field of Markov chains with 

a countable state space is the classical coupling. The idea goes back to 

DOEBLIN [1937] and is given in the proof of the theorem below. The theorem 

considers a Markov chain with countable state space. Consult PITMAN [1974] 

for more details. 

THEOREM 1.1.4. Let XJN be an irreducible, positive recurrent, aperiodic 

Markov chain started with arbitrary initial distribution. There is an in­

variant distribution TI such that 

lim Upx - TIU = O. 
n-?-OO n 

PROOF. As is well known, for irreducible Markov chains positive recurrence 

is equivalent with the existence of an invariant distribution. Let TI be in­

variant for the Markov chain XJN. Suppose that X~ is a Markov chain, in­

dependent of XN, with the same transition probabilities as XJN and with 

initial distribution TI. Note that (Xn,X~), n E JN, is an irreducible, 

aperiodic Markov chain with an invariant distribution TIXTI. Hence (Xn,X~), 

n E JN, is positive recurrent and, therefore, the meeting time 

is defined as a finite random variable with probability 1. The process XiJ 

defined by 

X" := x n' n 
:= X' n' n > T, 

is distributed as XJN, as can be seen by using the Markov property. Because 

also X~ and Xi.J are successfully coupled we have for n -+ 

Upx - TIU = Upx,,- Px,U s 2 P(T~ nl -+ o. D 
n n n 

It is well known (see PITMAN [1974]) that Theorem 1.1.3 can 

be derived from Theorem 1.1.4. So the classical coupling yields another 

proof of the renewal theorem. Let us compare the classical and the Ornstein 

coupling. 

First we investigate the Ornstein coupling. Consider the meeting time T 

of the processes Sn and S~, n ~ 1, occurring in the proof of Theorem 1.1.2. 

We can see as follows that ET 00 • Consider the random walk l~=l ~k' n ~ 1. 



24 

Because E~k = 0 we have by FELLER [XII.2] that the expected entrance time 

of this random walk into (0, 00 ) is infinite. Similarly this holds for the 

entrance time into (-00 ,0). Hence if G and G' are not degenerate at the same 

point, that is if with positive probability s0-s0 is positive or negative, 

then the entrance time T of I~=l ~k into the point -(s0-s0 ) has infinite 

expectation, i.e. ET = oo. As a consequence the Ornstein coupling is a very 

slow coupling device. However'· it can be used for distributions F that have 

infinite mean. It is interesting to compare it at this point with the clas­

sical coupling. 

For the classical coupling it is possible under conditions on moments 

of recurrence times to give estimates for the speed of convergence of 

P(T~n) to 0 for n ~ oo. In this way PITMAN [1974] and LINDVALL [1977b] ob­

tain estimates for the asymptotic behaviour of the renewal measure. Clearly 

in this respect the classical coupling is more useful than the Ornstein 

coupling. The classical coupling has a disadvantage. An example in FREEDMAN 

[p.45] shows that null recurrent Markov chains cannot be studied using the 

classical coupling. The classical coupling cannot be used to give a proof 

for the ergodic theorem for Markov chains due to OREY [1962] for the null 

recurrent case. However, by means of the Ornstein coupling Orey's theorem 

can be proved also in the null recurrent case. In that case one uses the 

Ornstein coupling for distributions with infinite mean. 

If a distribution F on the real line is not concentrated on a discrete 

lattice, then F is called nonlattice. If F is not weakly lattice, then we 

call F strongly nonlattice. The result below is the continuous analogue of 

Theorems 1.1.2 and 1.1.3. Part (i) is due to KERSTAN and MATI'HES [1965] 

and part (ii) is Blackwell's theorem. The method of proof is again the 

Ornstein coupling, but now we use neighbourhood recurrence of the random 

walk. 

The measure v occurring in assertion (i) of the theorem below has only 

a technical significance: It provides a smoothing of the distributions and 

without it, conclusion (i) does not hold (see also Example 3.2.6). 

THEOREM 1.1.5.· Let F be a probability distribution on the real line. Suppose 

Sn, n ~ 0, is a random walk with independent, F-distributed increments and 

with s0 = O. 

(i) Let F be strongly nonlattice. For all absolutely continuous probabil­

ity measures v on the real line and for any real h we have 

lim II V*P - V*P II = 0. s s +h 
n~ n n 



(ii) Let F be a nonlattice distribution concentrated on [0, 00 ) with finite 

positive meanµ. The renewal measure H(B) := l >O P(S EB), BE B1 , 
n- n 

satisfies for every positive h 

h 
lim H(t,t+h] = 

µ t-+oo 

PROOF of (i).A real number x is called point of increase of F if 

F(x-s,x+s) > 0 for all positive s. Remark that the set 

{y-x: x and y are points of increase of F} 

is not contained in any discrete lattice because F is strongly nonlattice. 

First suppose F has finite mean. Let x0 ,x1 , •.• ,x0,xi,··· be independent, 

x0 and x0 having arbitrary distributions G and G' and suppose the other 

random variables have distribution F. Remark that 6.k Xk - Xk, k ~ 1, has 

expectation 0 and is nonlattice. Let Sn := l~=O Xk, n ~ O, and 

S~ = l~=O Xk, n ~ O, and observe that by the Chung Fuchs theorem 

S' - S 
n n 

n 

so - so + l t;k' 
k=1 

n ~ 0, 
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is a neighbourhood recurrent random walk. Let n be positive. It follows that 

T:= inf{n ~ 0: ls'-sl<n} n n 

is finite a.s. As in the proof of Proposition 3.1.2 it follows that 

s~ := l~=O Xk1 n ~ O, with 

Xk := xk, 

:= xk, k > T 1 

is distributed as Sn, n ~ 0. Furthermore, by the definition of T 

(1.1.3) S" s• + D, n ~ T, n n 

with IDI < n a.s. Hence for any Borel set B E B1 we have on {n ~ T} 

1! 
s J: X (S")dt 

TtB n s r XT B (S. l dt 1 
0 t n 

1! JS 1 JS lPl !J ~ X (S'+D+t)dt - - X (S'+t)dtl ~ 2 ~ 2 
s O Bn s 0 Bn s s 

Let v 8 be the homogeneous distribution on (O,s). The expectation of the 
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terms occurring in the difference are V *Psn(B) e: n 
and v *Ps,(B). 

e: n 
It follows 

that by the definition of total variation 

llve:*Ps" - \) *P I II e: s 
$ 2 (P (n < T) + 2 !J) 

e: 
+4 !J 

e: n n 

for n + 00 • Because n is arbitrary this implies (i) for v = "e:· By the remark 
to inequality A.1 we obtain (i) for general v (see the appendix). If F has 
no finite mean one uses the technique described at the end of the proof 
of Theorem 1.1.2. 

PROOF of (ii). Suppose for the moment that Fis strongly nonlattice and 

consider the proof of (i). Take G to be degenerate at {O} and let G' be the 
survivor distribution for the nonlattice case, i.e. the distribution with 

density 

f(x) := 

:= 0 

- F(x) 
µ 

x > O, 

x s O, 

with respect to the Lebesgue measure t. Define for Sn' n ~ O, the point 
process N by 

1 B € B , 

and let N' and N" be defined similarly for the S'- and S"-processes. The 
intensity measure of N' is given by G'*H. By using Laplace transforms it is 
easily shown that this measure coincides with !ion (Q,oo). By (1.1.3) µ 
we have because IDI < n 

IN" (t,t+h] - N' (t,t+hJ I s N' Ct-n,t+nl + N' (t+h-n,t+h+nl 
(1.1.4) 

+ N' (t,t+h]x(t ) (S') +N"(t,t+hlx(t 00) (S"). -n, 00 T -n, T 

Consider the third term in the right-hand side of (1.1.4). It is easy to 
see that N' (t,t+h] is stochastically less or equal than N[O,h). Furthermore, 
EN[O,h) is finite (compare FELLER [VI.6 and VI.10]). By choosing n suffi­
ciently large in 
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EN' (t,t+h]X(t ) (S') $EN' (t,t+hJx[ ) (N' (t,t+h]) -n, 00 T n, 00 

+ nP(S~ E (t-n,m)) 

the f~rst term on the right can be made arbitrarily small. Then take t 

sufficiently large to make the second term arbitrarily small. This estimate 

can also be given for the last term in (1.1.4). Because N" is distributed 
1 as N and N' has intensity measure µton (Q,oo) we obtain from (1.1.4) 

lim sup IEN(t,t+h] - ~/ s ~ + ~ + 0 + 0 
t-700 µ £ £ 

and because n is arbitrary positive this proves (ii). In case F is non­

lattice we insert an atom at {O} and argue as in the proof of Theorem 

1.1.3. D 

NOTE to Theorem 1.1.5(i). The limit property of Theorem 1.1.5(i) is also 

sufficient for F to be strongly nonlattice. To see this observe that if F 

is concentrated on a discrete displaced lattice c+Ld, d > O, then 

Vc:*Psn is concentrated on 

{x+y: 0 < y < £, x E nc+Ld}. 

If £ is small enough then for a suitably chosen h the measures Vc:*Psn and 

v *Ps +hare mutually singular, thus contradicting the limit property. 
£ n 

NOTE to Theorem 1.1.5(ii). LINDVALL [1977] gave another coupling proof for 

the Blackwell theorem. He proves the existence of a properly defined meet­

ing time by using the Hewitt-Savage 0-1 law. 

We did not construct a successful coupling of s~ and S~: for n ~ T the 

random walks run parallel at a short but possibly nonvanishing distance. 

Thus we did not obtain 

(1.1.5) lim lip 
n-+00 Sn 

P II s +h n 
0. 

However, it is possible to prove this limit relation, but under stronger 

conditions than those used in the theorem above. HERMANN [1965] shows 

that if some convolution Fn*, n ~ 1, is non singular with respect to the 

Lebesgue measure, then (1.1.5) holds. Chapter 5 is concerned with a general­

ization of this result for random walks with dependent increments. 
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An application of the Ornstein coupling to random walks with dependent 
increments causes some problems: both the Markov property and the recurrence 
properties of a random walk with independent, identically distributed 
(i.i.d.) increments are used. However, in later chapters we shall see that 
still,much can be done. 

A subject studied in Chapter 4 is successful coupling. Suppose that 
there are given two processes. XJlll and XID with values in the same Borel 
space. We show in Section 4.3 that there exists a probability space with 

processes XJlll and XID, distributed as X:N and XID respectively, such that 

n ~ O, 

so such that the inequality in Lemma 1.1.1 is satisfied as an equality, 
uniformly in n ~ 0. Hence, if 

lim lip - PX' II 0 
n-><x> XJlll+n Jlll+n 

then 

so then the processes XJlll and XN are successfully coupled. Apparently 
successful couplings can be constructed under quite general circumstances. 

The Ornstein coupling uses that the increments of the random walk are 
stationary, independent (so i.i.d.). We want to relax the independence to 
asymptotic independence. In Section 5.1 we show that even if the increments 
of the random walk are dependent, something as an i.i.d. property can be 
regained. Suppose that X::Z is a stationary, weak Bernoulli process. Let 
there be given an integer set L* := {1, ••• ,i} and an integer m ~ 1. We show 
that it is possible to construct a process X::z such that 

P (X2Z f. X::z ) 

is small and such that the process X::z has the property that the m random 
vectors 

x 
L*+k. 

J 

$ j $ m, 

are i.i.d. Here k 1, ••• ,km are integers that are constructed such that 
km >> • • • >> k 1 • The process X ::Z, constructed in this way, is in general 
not stationary. In Chapter 5 we show how this approximation property of X::Z 



can be used to obtain results as (1.1.5) for random walks with dependent 

increments. 
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The applications of coupling, mentioned above are only concerned with 

renewal theory. Coupling techniques are also used in other fields of proba­

bility theory. A broad field of applications of coupling is the study of 

Markovian lattice interactions. Here coupling was introduced by VASERSHTEIN 

[1969] and DOBRUSHIN [1971]. See LIGGETT [1977] for a survey of the 

literature. 





CHAPTER 2 

RANDOM WALKS WITH STATIONARY INCREMENTS 

2.1. TRANSIENT RANDOM WALKS 

Suppose slN is a stationary sequence of real random variables. The 

process (Sn)n20 , defined by 

(2. 1.1) n 2 1, 
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is called a random walk with stationary increments SN· If s2Z is a station­

ary sequence of real random variables we define a process S2Z by requiring 

(2.1.2) 

The process S2Z is called a random walk with stationary increments S:zz· 
Though a definition of Sn for both positive and negative n looks uncommon, 

it frequently is useful. Define for any Borel set B E B1 

(2.1.3) N(B) := l 
nE2Z 

In general, N(B) is a random variable with values in the extended real line. 

Define the set of transience It of S2Z by 

I := {N is finite on all bounded intervals}. t 

The complement I r of It is called the set of recurrence of S2Z. We often 

assume that S~ is transient, i.e. It has probability 1. In that case N can 

be seen as a point process on the real line. We use the concepts sets of 

transience and recurrence also for random walks (Snln20 , with the obvious 

meaning. 

Several results, known for random walks with stationary, independent 

increments are also valid without the assumption of independence. In this 
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chapter we discuss some of these results, but we also give examples of re­

sults that cannot be generalized. In Section 2.3 we show that an important 

property involving transience and recurrence can also be obtained without 

independence; if 0 is a limit point of (Sn)n20 then each Sk is a limit point 

of (Sn)n20 ; if O is not a limit point of (Sn)n20 then Skis not a limit 

point of (Sn)n20 for each k. However, other properties related to tran­

sience and recurrence do not generalize: In the independent case the inter­

val finiteness of the intensity measure of N is equivalent with transience, 

but this is not true in the general case (see Example 2.2.7). For results 

that hold in the general case, the proof is often quite different from the 

corresponding proof that uses independence. 

In this section we discuss some simple results for transient random 

walks. Suppose S2Z is a transient random walk with stationary increments. 

The increments may assume both positive and negative values. We prove the 

existence of a random walk S2Z with stationary increments s2Z that are non­

negative, such that N defined by 

(2.1.4) N(B) := l 
nE2Z 

1 
B E B I 

coincides with N a.s. There are several relations between s2Z and S:;z· 
Ergodicity of szz implies ergodicity of ~2Z and if Es 1 exists as a finite 

number then Es 1 = E~ 1 • The main argument that we use in the proofs is a 

rearrangement of the points Sn of the point process N. This argument is al­

ready known. KAPLAN [1955] and DALEY and OAKES [1974] use it in similar 

results. Note that the result described above does not fit in the context of 

random walks with stationary, independent increments: if s2Z consists of in­

dependent random variables, then this is not necessarily true for S:;z• 
At the end of the section we discuss some other results for transient 

random walks and we present some examples. In Proposition 2.1.9 we give a 

criterion for transience. 

First we discuss a reformulation of stationarity. 

PROPOSITION 2. "1 .1. Let s2Z be a sequence of real random variables and let 

S2Z be defined by (2.1.2). Define the process S~k) by 

s (k) := 
n n E 2Z. 

The process s2Z is stationary if and only if S~k) is distributed as S2Z for 

all integers k. 
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PROOF. SZZ and ~ZZ mutually determine each other by (2.1.2). A similar re­

lationship holds for S~k) and its increments ~~k) . Hence ~2Z is distributed 

as ~~k) if and only if s2Z is distributed as s~k) . D 

We need a side result concerning the range of S21:. It is easily seen 

that the condition of the lemma is satisfied if the random walk Sl'Z is tran­

sient. 

LEMMA 2.1.2. Let S2Z be a random walk with stationary increments. If for 

n + oo (or for n + -oo) 

IS I 
n 

then apart from a null set 

inf 
nE2Z 

s 
n 

PROOF. The extended real random variab'ie 

is nonnegative and satisfies ~O = sk+sk. Hence 

and because {so < 00 } = {sk < 00 } we have 

P(ISkl > c, so< oo} $ P(c <so< oo} + P(c < sk < oo} 

= 2 P(c < s0 < 00 }. 

Here the equality follows because by Proposition 2.1.1 the distribution of 

sk does not depend on k. Let k + oo. Because !Ski _!'..,. 00 we obtain 

P(sO < 00 ) $ 2 P(c < s 0 < 00). 

Because c is arbitrary it follows that {s0 < 00 } is a null set and therefore 

supnE2Z Sn oo a.s. 

yields that inf nE2Z 

An application of the same argument for S~ := (-Sn)nE2Z 

s -oo a. s. D n 

We want to give the definition of a process that will be called the 

rearrangement of S2Z. To this purpose we first consider a sequence sl'Z of 
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real numbers. We assume that the sequence s2Z has the property that only a 

finite number of its elements are situated on each finite interval and that 

infinitely many elements occur in both (-00 ,0] and (0, 00 ). We construct an in­

dex sequence tZl, forming a permutation of Zl, with t 0 = 0 and such that 

(2.1.5) 

To this purpose we add to each index n an index m, called its successor, in 

the following way: If for some i > n we have si = sn, we let m be the smal­

lest of these i. Otherwise consider the smallest si in sZl that is larger 

than sn. If this determines i uniquely we take m = i and otherwise we let m 

be the smallest of the indices i. In this way we constructed to each n its 

successor m. We write n am. To each n there exists also a unique "predeces­

sor" m, such that man. Thus if we take t 0 = 0 we can construct a sequence 

tZl such that 

(2.1.6) 

while (2.1.5) is satisfied. It is easy to see that each sn occurs in (2.1.5) 

and that each n occurs once in (2.1.6). Thus we constructed tZl, depending 

on sZl, satisfying to our requirements. 

Note that if Sz;:; is transient, then by Lemma 2.1.2 the requirements 

mentioned above for sz;:; are met by Sz;:; with probability 1. 

DEFINITION 2.1.3. The process SZl, with increments ~Zl' is called the 

rearrangement of a transient random walk S2Z with stationary increments ~Zl' 

if S = s, , n E Zl, where, with probability 1, T = is a permutation of 21: n n = 
such that 'o O and 

::::; ..... , 

S 1 n E 2Z. 
'n 

Note that if Sz;:; is the rearrangment of S2Z then the point process N 

defined by (2.1.4) coincides with N defined by (2.1.3) with probability 1. 

THEOREM 2.1.4. Let Sz;:; be a transient random walk with stationary increments. 

Suppose its rearrangement SZl and T 2Z are as in Definition 2. 1. 3, and have 

processes of increments ~Zl and v2Z. Then we have 

(i) the process s~ defined by 



S - S , n E :ZZ, 
Tk+n Tk 

is distributed as Sz;:: for all integers k; 

(ii) the process ( (~ , v ) ) ..,., is stationary. 
n n nE= 
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PROOF 'of (i). Let sz;:: := (sn) nEZZ be a sequence of real numbers satisfying 

the requirements mentioned in the introduction to Definition 2.1.3. The 

proof is based on the following simple observation. For any k we have -ka 0 

for the sequences sz;:: if and only if Oak for the sequence (sn-k-s-k)nEZZ" 

Observe that for an arbitrary Borel set B E Bz;:: we have 

1 
P (Sz;:: E B) 

Because (i;;n+k) nEZZ is 

P(Sl 2Z E B) 

This proves (i) for k 

l P(T 1=k, (Sn+k - Sk) nEZZ E B) 
kEZZ 

l P(Oak for Sz;::' (Sn+k-Sk)nE2ZEB). 
kEZZ 

distributed as (sn) nEZZ we have 

l P(Oakfor (Sn-k - S -k) nEZZ' 8z;:: E B) 
kEZZ 

l P(-ka 0 for S2Z, S2Z E B) 
kE2Z 

P (SZ1: E B) • 

1. Similarly the assertion follows for other k. 

PROOF of (ii). Consider again the sequence s2Z. Let t2Z be the index sequen­

ce constructed in the introduction to Definition 2.1.3 and let the mapping 

ljJ be defined by 

The index sequence belonging to 

1 
is t2Z : = (tn+l - t 1 ) nE2Z and therefore 

1 
( (st - st l \zl. 

n+l 1 nE2Z 

Because of (i) we have ljJ (S2Z) d 1jJ (S~) and by the definition of ~::z and v2Z 

assertion (ii) follows. D 
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COROLLARY 2.1.5. If S2Z is a transient random walk with stationary increments 

then its rearrangement s2Z is also a random walk with stationary increments. 

The point processes N and N coincide with probability 1. 

PROOF. Obvious from the theorem above and Definition 2.1.3. D 

To study relationship between Ei;: 1 and E!;:1 , we use that 

lim ! N(O,t] = lim ! N(O,t] 
t-+oo t t-+oo t 

together with the following lemma. 

LEMMA 2.1.6. Let sn, n 2 0 be a sequence of real numbers such that 

Sn 
limn= µ, 
n-+oo 

with 0 $ µ $ 00 • Let n := #{n 2 0: s < s $ t}. Then we have s,t n 

lim no,t 
t t-+oo j:;' 

0, 

n 
lim -~,t = oo, 
t-+oo 

O<µ<oo, 

µ 00 , 

µ 0. 

PROOF. For 0 < µ < 00 the proof is carried on in the following way. Let E > 0 

be arbitrary. The number K of points (n,sn) outside the cone 

{ (n,x): (µ-E)n $ x $ (µ+E)n, n 2 O} 

is given by 

K := #{n 2 0: sn < (µ-E)n} + #{n 2 0: sn > (µ+E)n}. 

By our assumptions on sn, n 2 0 it follows that K is finite. Obviously we 

have the inclusion 

{n2 0: s $ t} u {n2 0: s > (µ+E)n} :i {n2 0: (µ+E)n$ t} n n 

and as a consequence 

(2.1.7) 

Furthermore, the inclusion 

S < (µ-E) n} 
n 



holds and hence 

(2.1.8) #{n~O: s :>t} $ #{n~O: (µ-E)n:>t} + K. n 
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The assumptions on sn, n~ O, also imply that #{n~ 0: sn < O} is finite. Com­
bination of (2.17) and (2.1.8) yields 

n . nO,t 1 $ lim inf -9.L!:. $ $ µ+E t l:i.m sup -t- µ-E t-..oo t-..oo 

for 0 < E < µ. So we have proved the assertion for 0 < µ < "'· 
For µ the lemma is proved using (2.1.8), while in the argument (µ-e;) 
has to be replaced by any arbitrarily large number. 

For µ = 0 the assertion is proved using 

The last set on the right contains n -t., t elements and by our assumptions the 
set in the middle is finite, so 

n 
lim inf -t,t > 

t - E 
t-><><> 

for all E > 0. 0 

PROPOSITION 2.1.7. Let S2Z be a transient random walk with stationary in­

crements Szz· Suppose Szi: is its rearrangement. If Els1 J if finite then the 
process of increments ~2Z of Szi; satisfies 

E (~ 1 IJ_) > 0 a.s., 
s 

where J s and J~ are the invariant a-fields of szi; and ~zi;. In particular, 

if szi; is ergodic EI s 1 J = E~ 1 · 

PROOF. First we show E(~ 1 1J_)>O a.s. By the general properties of condition­s 
al expectation we h.ave, because sn ~ 0 a. s. 

a > O} c {E(~ IJ-l > O} a.s. 
n n s 

By stationarity we have E(~ JJ_) = E(~ 1 JJ_) a.s., so 
n I; I; 

u 
nEl'Z 

{s > O} c {E(~ 1 IJ-l > O} a.s. 
n s 
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By taking complements it follows that 

{EC~ 1 1J-) = O} c {Vn: ~ = O} s n 
{Vn: S O} a.s. 

T 
n 

Because S:IZ is transient the last set has probability 0, so we have 

E(~ 1 IJ-l > 0 a.s. s 
The relation between the conditional expectations of s1 and ~1 is a 

consequence of the property that N = N a.s. By the ergodic theorem 

By Lemma 2.1.6 

(2.1.9) lim N(O,tl = 1 . N(-t,Ol 
t-><o t t~ t 

1 
---- < 00 a~s .. 
E(~llJ_) 

s 
Another application of the ergodic theorem shows that with probability 1 

(2.1.10) 
s 

lim nn = ECs 1 JJs) a.s., 
n-><o 

Hence on the set A 

lim N(O,t) = lim N(-t,O) 
t-><o t t-)<X> t 

So on A we have by (2.1.9) that EC~ 1 1J_) = JE(s 1 1Js) I. The complement of A 

is a null set. This is proved by notin~ that on Ac we have by Lemma 2.1.6 

and (2 .1.10) 

lim N(-t,t) 
t 

00 a.s. 

c This contradicts with (2.1.9) unless P(A ) = 0. If s:IZ is ergodic we clear-

ly have JEs 1 J = E(~ 1 1J_) a.s. This proves the proposition. D 
s 

As a consequence of the next proposition it follows that ~:IZ is 

ergodic if s:z is ergodic. 

PROPOSITION 2.1.8. Suppose S:IZ is a transient random walk with stationary 

increments S::z• Let its rearrangement Szz have increments ~zz· Then 

J~ c Js a.s., where Js and J~ are the invariant a-fields of sz:: and S::z· 



PROOF. Suppose s2Z is a sequence of real numbers of which only a finite 

number are situated in each finite interval and of which infinitely many 

occur in both (-00 ,0] and (0, 00 ). Denote the increments of s2Z by x2Z := 
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- $ (sn - sn-l)nE2Z and let R be the set of sequences x2Z obtained in this way. 

We consider two mappings on R. The first is the shift transformation T given 

by 

Tx2Z := (xn+l)nE2Z .. 

To define the second, T, let t2Z be th~ sequence of indices defined in the 

introduction of Definition 2.1.3. Let T be given by 

It is useful to denote 

By the definition of T we have on the set R 

and by the definition of tk 

Hence 

Tk <j>(x2Z) 
~k 

= <j>(T X2Z) = <j>(T 
~ 

X2Z) • 

Let k run along the integers. Because t2Z permutes 2Z the sequence ~ runs 

along the integers too. We obtain our key equality 

(2.1.11) k 
k E 7.l } = { </>T ( x7.l) : k € 2Z}. 

Suppose the set B c R is shift invariant, i.e. 

x2Z E B - T x2Z E B, 

or equivalently 

-1 By using (2.1.11) it is easily seen that the set</> (B) is also shift in-

variant. 
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The proof is now carried on as follows. Because S~ is transient, 

I;~ E R a.s. Suppose that A is a.s. invariant for ~~· i.e. there is a shift 

invariant set B E B~ such that 

A = a~ E B} a.s. 

Because~~ =~(I;~) it follows that 

A={~~ E B n R} ={I;~ E ~-l(BnR)} a.s., 

with ~-l(BnR) shift invariant. This proves that A is also a.s. invariant 

for 1;~. D 

The next proposition gives a criterion for transience of a random walk 

in terms of its behaviour around the origin. In Sections 2.2 and 2.3 we shall 

meet other examples of global properties that are determined by the behav-

iour at the origin. 

PROPOSITION 2.1.9. Suppose S~ is a random walk with stationary increments 

and let N be defined by (2.1.3). If on some open interval I of the origin 

N(I) < oo a.s. 

then this holds for any bounded interval, i.e. s~ is transient. 

~·We may suppose that for a symmetric interval I= (-£,£), £ > 0, we 

have N(-£,E) < a.s. Define 

Write Ak+l as 

By Proposition 2.1.1 it follows that P(~+l) =P(~) for all k, and because 

by our assumption P(A0 ) = 1 we have P(~) = 1 for all k. So with the excep­

tion of a null set we have for all k 

Therefore we may conclude that S~ is transient. D 
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The remaining part of the section contains some examples. The most 
well known example of a random walk with stationary increments is a random 
walk where the increments are both independent and stationary. For these 
processes we can prove: 

PROPOSITION 2.1.10. Let s:;z be a transient random walk with independent, 
stationary increments. Suppose its rearrangement Sl!Z has increments ~l!Z. 
Then E~ 1 is finite if and only.if E~ 1 exists and is finite. 

~· Suppose that E~ 1 exists and is finite. In that case we have to prove 
that E~ 1 is finite. We may assume that E~ 1 # 0 for otherwise this would 
contradict transience of the random walk (see FELLER [VI.10]). We can assume 
that 0 < E~ 1 < 00 , because the negative case can be treated similarly. By 
FELLER [XII.2] the first ascending record of S:;z has finite expectation. 
The definition of ~l shows that this record dominates ~ 1 , so E~ 1 < 00 • 

The converse is proved by using the renewal theorem for distributions 
without expectation. Suppose that E~ 1 < oo but that E~ 1 is not defined. 
FELLER [XI.9] asserts that for each bounded interval I 

lim E 
t+±oo 

l XI(S + t) 
n~O n 

0. 

Hence for the point process N defined by (2.1.3) we have 

lim E TtN(I) 0, 
t+±oo 

where Tt is the translation on the real line. Thus for the Cesaro average 
we have 

(2.1.12) lim EN(-t,t) 
2t o. 

By BREIMAN [Corollary 6.33] the process ~:;z is ergodic, so by Proposition 
2.1.8 also ~l!Z is ergodic. By the ergodic theorem we have for the rear­

ranged sequence Sn = s,n 

s, s,_n 
lim ____!!. = -lim ~~= 1 a s 
n+oo n n+oo n E~l •• 

and by Lemma 2.1.6 

1 . N(-t,t} 
im 2t 

t+oo 
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By Fatou's lemma and the finiteness of Es 1 

lim inf EN(-t,t) ~ 
2t 

> o. 
t->«> 

This contradicts (2.1.12), so Es1 has to exist and by Proposition 2.1.7 the 

expectation !Es 1 1 = Es 1 exists as a finite number. D 

EXAMPLE 2.1.11. Let X:Nbe a Markov chain on a Borel spacer started with an 

invariant probability measure. As is mentioned in Section 0.2 the process 

can be extended to a stationary process x22 • Let f be a real valued mea­

surable function on r. The process sZl defined by 

n E 2Z, 

is stationary and determines by (2.1.2) a random walk S2Z with stationary 

increments. Using a terminology of Chapter 5, we shall say that S2Z is 

controlled by X2Z. In Section 6.4 we study the properties of this random 

walk. 

EXAMPLE 2.1.12 (superposition on a trend). Let ((s~,s~))nE2Z be a stationary 

sequence of pairs (s~.s~) of real random variables. Let S~ be the random 

walk with increments s~- We call S~ a trend if S~ (w) is monotone as a func­

tion of n for almost every w. The process S2Z defined by 

(2.1.13) n E Zl, 

is called a superposition on a trend. Szz. is a random walk with stationary 

increments 

n E 2Z. 

The next proposition shows that many random walks are superpositions 

on a trend. 

PROPOSITION 2. _1 .13. A random walk SZl with stationary increments, such that 

lim S 
n n->«> 

00 a .. s. 

is a superposition on a trend. 



PROOF. The process 

l;;n := inf S 
m<-:n m 
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is nonascending, but may differ from 0 if n = O. Define S~ := l;;n-1;; 0 , n € ~, 

and take s~ to be the process of increments of Siz. Note that 

has the form (2.1.13) if we define s~ := Sn - l;;n' n € 2Z. We still have to 

prove that ( (!;~,!;~)) ne2Z is stationary. Let s2Z be the process of increments 

of S2Z and observe that 

S' n 

s" n 

inf (Sm - 8n-1) - inf (Sm - 8n-1) 
m<-:n m<:n-1 

m m 
inf l s -k 

min(O, inf l Sk) I 

m<:n 

s 
n 

k=n 

- inf S 
m<:n m 

m 

- inf l l;k. 
m>n k=n+l 

m<:n k=n 

Hence (1;~,I;~) can be written as a function of (sn-l'l;n,l;n+l'""") not 

depending on n. It follows that ((l;~,l;~))nE2Z is stationary. 0 

A random walk S2Z with stationary, independent increments szz has 

important symmetry properties. The symmetry makes it possible to use the 

duality principle (see FELLER [XII.2]). The duality principle makes use 

of the fact that the process s2Z is exchangeable, i.e. for each permutation 

(km, .•• ,kn) of (m, ..• ,n) the random vectors (sk , ... ,l;k ) and (I; , ••• ,!; ) m n m n 
are equally distributed. Because of this property the random walk S2Z is 

distributed as the random walk S2Z With increments ~n := S-n' n E 2Z. 

If one only assumes that the increments s2Z of the random walk are 

stationary, then there still are several symmetry properties. For example 

the process s2Z with so = 0 and with increments ~n = s_n, n € 2Z, is a 

random walk with stationary increments. For each n the random variables Sn 

and S are equally distributed. By DOOB [Chapter X] each invariant event of n 
l;N differs at most a null set from an invariant event of ~N and vice versa. 

However, there is also asymmetry: The invariant sets 
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{lim S = co} 
~ n 

and {lim S = -co} n 

do not always have equal probability. Below we present an example of such a 
phenomenon. Clearly the process of increments of the random walk in the 
example is not exchangeable. 

EXAMPLE 2.1.14 (random walks and asymmetry). Our example will have the 
property that lim~ Sn = co a·.s., while limn-+-co Sn does not exist a.s. We 
construct a superposition on a trend as in Example 2.1.12. Let~~ consist 
of independent random variables, distributed as the absolute value of a 
Cauchy distributed random variable. Let ~~ = 1 for all n and take Sit; and 
SZt as in Example 2.1.12. We have S~ = n, n E :rt;, and because ~~ ~ 0 a.s. 

(2. 1.14) co) = P(lim inf Sn 
n-+-co 

-co) 1. 

With a simple application of the Borel Cantelli lemma applied to 

A := {S >M} = {~"> ~" + M-n}, n n n 0 n < O, 

one proves that for all real M 

P(lim sup An) 1 
n-+-co 

and hence lim supn-+-co Sn= 00 a.s. Together with (2.1.14) it follows that 
the random walk Sit; has the required properties. 

2.2. POINT CLUSTERS AND THE BEHAVIOUR AT THE ORIGIN 

Suppose Sit; is a transient random walk with stationary increments. Let 
N be defined by (2.1.3). We want to investigate the number of points 
N(t,t+h] lying in an interval with length h > 0. Especially we want to find 
an estimate for the probability that a large number of points occur in the 
interval (t,t+h], i.e. we estimate the "cluster size". Our main result is 

(2. 2.1) P(N(t,t+h] ~ p) ~ 2 P(N(-h,h) ~ p), P > O, 

which, heuristically speaking, expresses that the size of point clusters 
occurring at a point t of the real line is dominated by the size of point 
clusters at the origin. our investigation departs from an inequality given 
by KAPLAN [1955] for the renewal measure. 



The renewal measure H is defined as 

(2. 2. 2) H(B) := l P(Sn E B), 
n?:O 

BE 81• 

The symmetrized renewal measure Hs is defined as the intensity measure of 

N, i.e. 

Hs (B) : = l P (Sn E B) , 
nE2Z 

BE 81. 

Note that Hs is symmetric around the origin, because by stationarity each 

random variable Sn is distributed as -s-n, n E 2Z. If the increments of 
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the random walk are stationary and independent then the following inequality 

is valid (see FELLER [VI.10, Theorem 1]) 

H(t,t+h] ~ H(-h,h) 

for positive h and real t. Its proof is a simple application of the Markov 

property. KAPLAN [1955] gave an analogue of this inequality for random 

walks with stationary increments. Its most elegant presentation is given in 

terms of the symmetrized renewal measure as 

with t real and h positive real. Its proof is based on a combinatorial lem-

ma. 

The importance of inequality (2.2.1) can be judged from an application 

that we shall give in an integrability problem. Let us consider the global 

renewal theorem. This theorem considers the limi tbehaviour of 1 H (O,t] (see 
t 

Theorem 2.2.6 below). By means of the ergodic theorem one easily obtains 

that 

(2. 2. 3) ~ N(O,t] 

converges a.s. for t + 00 • The question that interests us now, is whether 

the expected value also converges. Kaplan obtains from his inequality 

that~ Hs(O,t] = 0(1) fort+ 00 , if Hs is bounded on a neighbourhood of 

the origin. Convergence of this expression can be obtained if the uniform 

integrability of (2.2.3) is proved. We achieve this by using (2.2.1). There 

is also another approach to this problem. DALEY [1971] gives a proof of the 

global renewal theorem using Palm theory. A similar problem is discussed in 

DELASNERIE [1977] for Blackwell's theorem (see Corollary 3.2.4). 
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The section begins with a proof of the inequalities mentioned above. 

Then we prove the global renewal theorem and finally we investigate the re­

lationship between transience of a random walk and the finiteness of the 

renewal measure on bounded sets. 

THEOREM 2.2.1 (KAPLAN). Suppose S2Z is.a transient .random walk with station­

ary increments. The point process N defined by (2.1.3) satisfies 

EN(t,t+h] $ EN(-h,h) 

with t real and h positive. 

LEMMA 2.2.2. Let X and Y be independent random variables with a common 

distribution function F. We have 

P(Y-X € (t,t+h]) $ P(Y-X € (-h,h)}. 

PROOF of Theorem 2.2.1. By Corollary 2.1.5 we may suppose without restrict­
ing generality that the increments of S2Z are nonnegative. The symmetry 

f h s( ) EN(B} 81 ' l' th t 1 h t o t e measure H B := , BE ,imp ies a we on y ave o prove 

the theorem for t ~ 0. Observe that 

-1 
I N ( sk + t, sk + t + h J , 

k=-n 
n ~ 1, 

are the partial sums of a stationary sequence of random variables. An appli­

cation of the ergodic theorem shows 

N (n) 
E lim -n- = EN(t,t+h]. 

n-700 

Similarly one proves that 

satisfies 

Apparently 

-1 
N (n} : = 

0 I N(Sk-h, sk+hl 
k=-n 

N(n) 

E lim - 0- = ( h h) n EN - , • 

our task is to prove that 

N(n) N{n) 

E lim -- $ E lim - 0-. n n n.....,, n.....,, 



We want to apply Lenuna 2.2.2. Let F Fw be the probability measure 

-1 
F(B) := n l XB(Si(w)), 

i=-n 

Then Lenuna 2.2.2 yields 

1 (n) 1 (n) 
2 M s 2 MO ' 
n n 

where 

M(n) 
0 

:= #{(i,j): -n s i ,j 

and 

M(n) :::::= #{ (i,j): -n s i, j 

Compare M(n) with 

BE 81 . 

$ -1, s.-s. E (-h,h)} 
J 1. 

$ -1, s.-s. E (t,t+h]}. 
J 1. 

(n) 
N #{(i,j): -n $ i $ -1, j E 2Z, S .-S. E (t,t+h]}. 

J 1. 

Because t ~ 0 we may suppose that i < j in the expression for N(n) above. 

We obtain that 

N(n) - M (n) = #{ (i,j): -n s i s -1, j ~ 0, S .-S. E (t,t+h]} 
J 1. 

is constant for n sufficiently large. Comparison of N6n) with 

simpler: Note that N6n) ~ M6n). We can now obtain from M(n) s 

(n) N(n) 

lim _N~- s lim ~0~ a.s. 
n n n-+«> 

The theorem follows by taking expectations. D 

(n) Mo is 

M(n) that 
0 
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PROOF of lenuna 2.2.2. We first prove the lenuna for distributions F that are 

concentrated on a finite set of points A:= {x1 , ... ,x} and have mass~ in 
n n 

each of these points. The statement of the lenuna translates as follows. 

Let c 0 c AXA be the set of points lying in the strip 

{ (x,y): y-x E (-h,h)} 

and C c AxA the set of points in the strip 

{ (x,y): y-x E (t,t+h]}. 

The assertion of the lemma can be restated as #c s #c0 . We prove it for 
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t > 0 and use induction on n. Consider 

and define 

(2. 2. 4) m := n(x.). 
1. 

OS: i OS: n, 

Remark that the maximum number of elements x. in any interval (x,x+h] 
J 

is dominated by n(xi) for each xi E (x,x+h], so this maximum is at most m. 

Let j be the smallest index for which the maximum (2.2.4) is attained. 

We shall remove all pairs containing an element x. from C and c0 . By the 
J 

definition of m the number of elements in c0 of the form (xi,xj) or (xj,xi), 

1 OS: i OS: n, is equal to 2m- 1. By our remark to (2.2.4) the number of elements 

in C of the form (x. ,x.), 1 OS: i OS: n, is not more than m. By the choice of j 
J 1. 

as the smallest index for which the maximum (2.2.4) is attained the number 

of elements in c of the form (x. ,x.), 1 OS: i OS: n, is at most rn- 1. So the 
1. J . 

number of elements removed from c is at most 2m- 1 and therefore does not 

exceed the number of elements removed from c0 . By our induction argument 

we have #c OS: #c0 for the new sets c and c0 . Hence this inequality has to be 

valid for the original sets c and c0 too. This proves for t > 0 the asser­

tion, in case F is a discrete distribution consisting of a finite number of 

atoms with equal mass. By continuity the assertion follows also for t = 0 

and by applying a reflection around zero we obtain the assertion for t < 0. 

If F is arbitrary, let Fn, n ~ 1, converge weakly to F. By the proper­

ties of weak convergence it is easy to see that the inequality of the lemma 

is valid for a set of (t,h) that is dense in ]Rx (0, 00 ) and by continuity 

arguments on the distribution function of X - Y the inequality follows. 0 

The combinatorics used in the proof of the lemma above is due to 

BALKEMA [1977]. KAPLAN [1955] gives an example that shows that his inequal­

ity is sharp in a suitable sense. We shall discuss inequality (2.2.1) now. 

With the exception of the combinatorics the proof is parallel to the proof 

above. 

THEOREM 2.2.3. Suppose SZZ is a transient random walk with stationary in­

crements and let N be defined by (2.1.3). For any real t and real positive 

h we have 

P(N(t,t+h] ~ p) OS: 2 P(N(-h,h) ~ p), 



where p is any positive integer. 

The combinatorial lemma cannot be formulated as simply as before. 

LEMMA 2.2.4. Let m be a finite, integer valued measure on the real line. 

Define for any B E B1 

m {B) 
p 1 I 

:= 0, 
if m{B) 
else, 

~ p, 

where p is any positive integer. Then we have for h > 0 

f mp(x+t, x+t+h]dm(x) $ 2 I mp(x-h, x+h)dm(x). 
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In the proof of the lemma we restate its assertion in terms of a count­

ing problem. 

PROOF of Theorem 2.2.3. The proof is parallel to the proof of Theorem 2.2.1. 

The probabilities in the inequality are written as expectations of limits 

of Cesaro averages. The proof is reau·ced to a comparison of 

M(n) 
:= #{i: #{j: s. E (Si +t, s.+t+hJ} ~ p} 

J ]. 

and 
M(n) := #{i: #{ j: s. E (Si-h, si+h)} ~ p}. 0 J 

Here the indices i and j are running along -n, ... ,-2,-1. We use Lemma 2.2.4 
-1 and choose mas the measure for which m(B) equals the number of (S. (w)). 

(n) (n) i i=-n 
in each Borel set B. By using Lemma 2.2.4 we obtain M s 2M0 and as 

before in Theorem 2.2.1 we derive the inequality from this observation. D 

PROOF of lemma 2.2.4. We represent m by a sequence x 1 s ... 

satisfies 

s x that 
n 

m(B) B E B1 • 

Note that x 1 , .•• ,xn are uniquely determined by m. We call this sequence of 

real numbers the points of m. Let t be real. Say that xi has a distant 

cluster if (xi+t, xi+t+h] contains at least 

cluster if (xi-h, xi+h) contains at least p 

p points xj,and xi has a close 

points x. . Define 
J 
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We claim 

(2. 2. 5) 

c 

:= {i: x. has a close cluster}, 
]_ 

:= {i: x. has a distant cluster}. 
]_ 

Note that this implies the assertion of the lemma, which can be restated 

as #c ~ 2 #c0 . 

We write i R j (or (i,j) ER) if j belongs to the distant cluster of i, 

i. e. xj E (xi +t, xi +t+h], and i E C\c0 . If i R j then we have j E c 0 and 

hence R is a subset of (C\C0 ) x c 0 . We obtain the inequality 

(2. 2. 6) 

because for each i E c\c0 the interval (x.+t, x.+t+h] contains at least p 
]_ ]_ 

points xj (these belong to the distant cluster of xi). We also have the 

inequality 

(2. 2. 7) #R :,; (p-1) #c0 . 

This is proved as follows. Fix some j E c 0 such that iRj for some i. Then 

j is in the distant cluster of i. Let also j be in the distant cluster of 

~·We necessarily have lxi-xkl <h. Let i 1 < ... < ir be the sequence of 

all indices k such that j is in their distant cluster. If r 2 p then xi 

would have a close cluster, i. e. i E c 0 . However, this would contradict i R j 

by the second statement in the definition of R. So r :'.> p-1 and to each j E c 0 
there correspond at most p-1 indices i with i R j. This implies (2. 2. 7). The 

two inequalities (2.2.6) and (2.2.7) together yield (2.2.5) and hence the 

assertion of the lemma follows. D 

Theorem 2.2.3 has a useful corollary. 

COROLLARY 2.2.5. Suppose Szz; is a transient random walk with stationary 

increments and let N be defined by (2.1.3). If EN(-h,h) < 00 for some 

h = h0 > 0, then the family of random variables N(t,t+h], t real, is uni­

formly integrable for all h. This assertion holds also for a transient 

random walk (Sn)nzO with N replaced by 

(2. 2. 8) 
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PROOF. First we consider the random walk S:;z. Observe that by Theorem 2.2.3 

we have E~(N(t,t+h]) $ 2 E~(N(-h,h)) for any nonnegative nondescending func­

tion ~- Choose the function ~ to be 

~ (x) := x, x 2 p, 

:= 0, x < p. 

We obtain 

I N(t,t+h]dP $ I N(-h,h)dP, 

N(t,t+h]2p N(-h,h)2p 

uniformly in t. By our assumptions the right-hand side converges to 0 if 

p -+ DO for h = h 0 . Hence the sequence 

N(t,t+h], t E JR1, 

is uniformly integrable for h = h 0 , and then also for any h > 0. 

To prove the assertion for N+ we argue as follows. Observe that because 

S is distributed as -s n -n 

EN(-h,h) = l 
nEZil 

P (Sn E (-h,h)) $ 2 EN+ (-h,h) - 1 < DO 

for h = h 0 . By Proposition 2.1.9 we know that S:;z is transient. Hence the 

assertion of the corollary holds for N and therefore also for N+. D 

As an application we prove the global renewal theorem as a direct con­

sequence of the ergodic theorem. The proof by DALEY [1971] uses Palm theory 

and subadditive functions. The detour along (2.2.1) makes the present proof 

longer than if the integrability question would be settled with Palm theory. 

THEOREM 2.2.6. Suppose (Sn)n20 is a transient random walk with stationary 

increments sJN. Let the renewal measure H, given by (2.2.2), be finite on 

a neighbourhood of the origin. If Es 1 $ exists and E(s 1 [Js) > 0 a.s., 

where J s is the invariant a-field of sJN' then 

lim H(O,t] E 
1 

t-+oo t E<s 1 1Jsl 

Here we have to 
1 o. read - := 



• 
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PROOF. By the ergodic theorem 

So the sequence (Sn)n~O is transient. By Lemma 2.1.6 we have 

+ 
1 . N (O,t] 1 
t~ t = ~ := E(~llJ~) a.s., 

where N+ is defined by (2.2.8). By BREIMAN [Proposition 5.19] it is suffi­

cient to show that~ N+(O,t] is uniformly integrable to obtain the asser­

tion. 

Because EN+(-h,h) < 00 for some h > 0 the sequence 

N+ (t,t+h], t real, 

is by Proposition 2.2.5 uniformly integrable for all h > 0. By Fatou's 

lemma and Theorem 2.2.1 

N+(O,t] + 
E~ $ lim inf E t $ EN (-1,1) < 00 

t-+a> 

Write 1\ := {N+(k,k+l] ~ p}, k ~ O, and note that on~ we have 

~ N+(k,k+l] s ~· Hence 

We obtain 

+ J 
N+(O,t] 

t dP 
N (0,t]~pt 

[t] 

$ l J N+(k,k+l] 
[t] 

k=O 
1\ 

lim sup 
t-+a> 

s sup 
x 

+ J 
N (0,t]~pt 

J 
+ N (x,x+l]~p 

[t] 

l 
k=O 

J !? x 
+ t c 

N (O,t]~pt 1\ 
dP + dP. 

N+(O,t] 
t dP 

N+(x,x+l]dP + p lim sup P(N+(O,t]~pt). 
t-+a> 

Because the term on the right is at most p P(~ ~ p) we obtain by the fini­

teness of E~ and the uniform integrability of N+(x,x+l], x E JR1, that the 

right-hand side of the last inequality is arbitrarily small if p is arbitrar­

ily large. D 
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Above we have seen that several results that are known for random walks 

with independent, stationary increments have an analogue for random walks 

without this independence requirement. However, there is an important excep­

tion. For random walks with independent increments transience is equivalent 

with ~initeness of the renewal measure on bounded sets (see FELLER [VI, 10]). 

This result does not hold for random walks with stationary increments. 

EXAMPLE 2.2.7. Let XJil be a p0sitive recurrent, irreducible.Markov chain 

with countable state space r, started with an invariant probability measure. 

The process XJil is stationary and according to Section 0.2 can be extended 

to a stationary process X:IZ. Let y € r be an element of the state space and 

let f be the indicator function of {y}. Let S:IZ be the random walk with in­

crements (f(Xn))nE:IZ" 

Suppose that T is the first entrance time after 0 of the state y, i.e. 

T := inf{n > 0: xn = y}. 

Let (p.) ">l be the conditional distribution of T given {x0 = y}. We shall 
J )-

suppose that this distribution has finite first and infinite second moment. 

Observe that 

p (T = j) l P(X .=y,X ·+l~y, ••• ,X. l~y,X.=y) 
i=O -i -i J- J 

by the stationarity of the Markov chain. By our assumptions on (pj)j~l we 

have 

l j p (T=j) 
j=1 

P(XO=y) l 
i=O 

co co 

P(Xo=y) l j 
j=O 

~ i(i+l)p. 
i 

In terms of the random walk S:IZ this means for the symmetrical renewal 

measure Hs that Hs{O} = 00 • But because y is recurrent we also know that S:IZ 

is transient. 

Further discussions on the finiteness of the renewal measure and its 

connections with Palm theory can be found in NEVEU [1976, Proposition II.24] 

and DELASNERIE [1977]. 
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2.3. RECURRENCE AND TRANSIENCE OF A RANDOM WALK 

In Section 2.1 we defined sets of transience and recurrence for a 

random walk with stationary increments. In the present section we shall 

study,this subdivision somewhat closer. Especially the concept of recurren­

ce will be clarified. For random walks with stationary, independent incre­

ments the subject has been thoroughly studied (see BREIMAN [Section 3.7]). 

The following result gives a clear picture. In Corollary 2.3.4 we shall see 

what remains if we do not assume independence. Let the lattice Ld be defin­

ed by ( 1.1. 2) • 

PROPOSITION 2.3.1. Let (Sn)n~O be a random walk with stationary, independent 

increments and let N be given by 

(2.3.1) N (B) : = l XB (Sn) ' 
n~O 

There are two possibilities: 

(i) for all bounded intervals I 

N(I) < oo a.s; 

BE B1 • 

(ii) there is a lattice Ld, 0 $ d $ 00 , such that for each interval I 

N(I) 0 a.s. if I n Ld = </J, 

a.s. else. 

The random walk is called transient or recurrent, depending on the occurren­

ce of case (i) or case (ii) respectively. 

PROOF. See BREIMAN (Corollary 3.36). 0 

The arguments used in the proof of the proposition above depend on 

the Markov property. It follows from this result that in the independent 

case the set of transience has probability 0 or 1. However, this 0-1 proper­

ty does not hold if the independence assumption is not satisfied. The fol­

lowing example illustrates this. 

EXAMPLE 2.3.2. We consider a mixture of probability measures. Let (S ) >Q 
oo 1 1 n n-

be the coordinate process on the measurable space n~O (lR ,B ). Let P1 and 

P2 be probability measures on this measurable space such that (Sn)n~O is a 

random walk with stationary, independent increments under P1 and P2 and is 

transient under P 1 and recurrent under P 2 . Then under P : = ~P 1 + ~P 2 the 



process {Sn)n20 is a random walk with stationary increments for which both 

the set of transience and of recurrence have probability ~-
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The example shows that we should not characterize a process as transient 

or recurrent. To overcome this difficulty we have introduced in Section 2.1 

the notions of sets of recurrence and transience of a random walk. It will 

be shown that under the condition of ergodicity we can regain the 0-1 prop­

erty. 

The concept of transience is placed in a different light if we consider 

the assertion of Proposition 2.1.9. If SZZ is a random walk and N is defined 

by (2.1.3) then the random walk is transient if and only if for any open 

neighbourhood I of the origin N(I) < 00 a.s. This suggests that the behaviour 

at the origin determines transience and recurrence of a random walk. We show 

that the sets 

(2. 3. 2) 
J 

r 
:= {O is a limit point of (Sn)n20 }, 

c 
:= Jr, 

coincide a.s. with the sets of recurrence and transience of a random walk. 

In fact we shall show something more. With probability each point Sn' 

n 2 0 is a limit point of the random walk as soon as 0 is a limit point of 

the random walk. To formulate another property we introduce the following 

notations. Lets := (sn)n20 be a sequence of real numbers. Define the set 

Ar{s) of right limit points of s in the sequence s as 

A (s) 
r 

> ••• -+s}. 
n 

The set Ai(s) of left limit points of sin the sequences is defined similar­

ly. Let A00 (s) be the set of infinitely multiple points of s ins, so 

A00 (s) : = { sn: sm = sn for infinitely many m}. 

THEOREM 2.3.3. Let S := (Sn)n20 be a random walk with stationary increments. 

Define Jr and Jt by (2.3.2). Then apart from a null set Jr and Jt coincide 

with the sets of recurrence and transience Ir and It of S. Apart from a null 

set on It no point Sn, n 2 O, is a limit point of S and on Ir each point Sn' 

n 2 0, is a limit point of S, possibly an infinitely multiple point or else 

both right and left limit point of S, i.e. for all n 2 0 
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If SZl is a random walk with stationary increments then the sets of recur­

rence of (Sn}n~O and (S_n)n~O and also the sets of transience of these ran­

dom walks coincide apart from a null set. 

In this more general context we can obtain as the result corresponding 

to Proposition 2.3.1: 

COROLLARY 2.3.4. Let (Sn)n~O be a random walk with stationary, ergodic 

increments and let N be defined by (2.3.1). There are two possibilities: 

(i} for all bounded intervals I 

N(I} < oo a.s; 

(ii) for all intervals I 

{N(I) =0} u {N(I) =oo} 

has probability 1. 

PROOF of Corollary 2.3.4. Observe that the set 

{N is finite on bounded intervals} 

is an invariant set for the process of increments ~N and hence has proba­

bility 0 or 1 by the ergodicity assumption. Suppose it has probability 0. 

We shall prove that (ii} holds. By the definition of the recurrent set Ir 

we know that P(Ir) = 1. Let I be an interval, open or closed. By Theorem 

2.3.3 we know that apart from a null set if some Sn E I, it is an infinitely 

multiple point or both right and left limit point. Therefore, for all n 

{SnE I} c {N(I) =oo} a.s., 

from which the assertion is easily inferred. D 

The proof of Theorem 2.3.3 will be prepared in several steps. Through­

out the rest of this section we shall make some assumptions about the space 

on which the random variables are defined. By the arguments given in Section 

0.2 we may assume that ~Zl is the coordinate process on JR2Z we assume that 

the probability measure P is defined on nQZl (:JR1 ,B1} and is invariant under 

th h . f f . :£ . b e s i t trans ormation T on lR given y 

(Tx) n := xn+l, n E Zl. 

The process SZl is determined by 



s0 (x) := O, 

where x E m.'lZ. 

x 
n 
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Sn (x) - sn-l (x), n E :iZ, 

The proof is based on the following idea. Suppose we want to show that 

on a subset n c lR2Z the random walk s2Z is transient, i.e. n c It a.s. We 

show in Proposition 2.3.8 that it is already sufficient to prove transience 

for certain subsequences of S2Z. Thus a proof that rl is included in the 

set of transience is considerably simplified by this proposition. This re­

sult is used in Proposition 2.3.9 to prove transience for a special class 

of random walks. Then the theorem is proved by means of a lemma. 

The following proposition and its corollary serves as a preparation 

for the proof of Proposition 2.3.8. The argument is narrowly related to the 

proof of Theorem 2.1.4. 

PROPOSITION 2.3.5. Let T be the shift transformation. Suppose on a mea­

surable subset ri 1 c lR2Z having positive probability, there exists a bijection 

T of ri 1 onto itself, given by 

Tx = Tf(xlx, 

where f is a measurable, integer valued function on the restriction of 

(m.2Z ,826 ) to n 1 • Let T be measure preserving under P. Then T is measure 

preserving under P (•) := P(•lri 1). 
rl1 

PROOF. Let the inverse of T on ri 1 be given by 

~-1 
T x T g(x) 

x, 

The relation between f and g is described by 

f(x) = k 
k 

<=> g(T x) = -k. 

Let A c ri 1 be a measurable set. Because T is a bijection of ri 1 onto itself 

we have 

k 
P(f(x)=k, T XEA, X E rl 1). 

Because Tk is measure preserving we have, using the relation between fand g, 

P(T-l A) = l P(g(x) = -k, x E A, T-kx E rl 1) 
kEZZ 

Because A and T-l A are included in ri 1 we obtain 

P(A). 
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for all measurable sets Ac n 1 . 0 

COROLLARY 2.3.6. Under the assumptions of Proposition 2.3.5, let (Tn)naz on 
n1 be'defined as a sequence with increments (fT11- 1> i· e 

T 0 (x) 

Tn+l (x) 

: = 0, 

T (x) + £c?1x), 
n 

.n€2Z' •• 

n € :?Z, 

for x € n1 • Then (STn)n€2Z is a random walk with stationary increments 
under Pn "1. 

PROOF. Define on n1 the process s := (Sn)n€2Z and observe that 

STk = (S s ) Tk +n - Tk n€2Z 

for each integer k. By Proposition 2.3.5 the process (STk)k€2Z is station-

ary under Pn , so the increments (ST - STk)k '" are a stationary process.O 1 k+l €u.. 

Central in the proof of Theorem 2.3.3 is the proposition below. It 
extends an argument applied by KAPLAN [1955] to investigate transience for 
a class of random walks discussed in Example 2.1.11. 

In our formulations we use the notion of a random integer set, i.e. a 
random set on the integers 2Z, as defined in Section 0. 3. Note that the 
realizations of such a random set are integer sets K c :?Z. Define for K c 2Z 
the set 

K- k := {j-k: j € :?Z} 

for all integers k. First we discuss an example. 

EXAMPLE 2.3.7. Suppose a random integer set M satisfies for all x € lRZ': 

M(Tx} = M(x} - 1. 

Define A:= {0-€ M} and observe that 

M (x) = { n € 2Z: Tnx € A}. 

Let A be the set of all .x € "JR.Z': for wh.tch. ~.x € A for infinitely many posi­
tive and infinitely many negative n. Let A be the set of all x for which 
Tnx € A for some n. By Poincare's recurrence theorem (see HALMOS [1956, p.10] 



or BREIMAN [Proposition 6.38] the sets A and A coincide a.s. and therefore 

A coincides a.s. with {M ¥ </!}. 
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Let (sn) nE!iZ be a sequence of real numbers and let K c !iZ. We say that 

the sequence (s ) K is transient if on each bounded interval there occurs 
, n nE 

only a finite number of elements of this sequence. 

PROPOSITION 2. 3. 8. Let M be a random integer set defined on lRZl satisfying 

for all x E lRZl 

M(Tx) = M(x) - 1. 

If SM is transient a.s. then 

{M ¥ </!} c {s:;z is transient} a.s. 

PROOF. We apply Proposition 2.3.5. Define A, A and A as in Example 2.3.7 and 

let Ql := A n A. Because A = A a.s. and A c A we have A = Ql a.s. Consider 

for x E Ql the set M(x) and write its elements as 

0 < T l (x} < ••• 

The mapping 

Tx 
T l (x) 

:= T x, 

clearly is a bijection onto Ql and by Proposition 2.3.5 is measure preserv­

ing under PQ (•) := P(•IQ1). As in the proof of Corollary 2.3.6 we derive 
1 ~k 

that the sequence (ST )kE!iZ with S := (Sn)nE!iZ is stationary and thus 

(ST ) is a random walk with stationary increments. Because SM is tran-
k kEZl 

sient P - a. s. the random walk (STk) kEZl is PQ 1- a. s. transient and by Lemma 

2.1.2 the range of this random walk exceeds every positive and negative 

bound PQ 1-a.s. We shall describe a covering of the real line. Define 
+ + 

(STk)kE2Z as follows. If for some j > k we have STk STj'take STk := STk 

and otherwise let 

:= inf{S 
T 

n 
s 

T 
n 

> S 1 n E !iZ}. 
Tk 

With this definition the real line is covered by 

(2. 3.3) 
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and each point of JR is covered exactly once. With En denoting expectation 
1 

with respect to Pn1 we write 

+ E., N[O,S ) 
"1 'o 
~k 

Using that (ST )kEZ'; is a stationary sequence, we obtain 

+ E., N[O,S ) 
"1 'o 

l En #{ S . -S E [ 0, S + - S ) : 0 ~ j < 1: l} 
kE2.Z 1 J 1: -k 1: -k 1: -k 

l En #{s. E [S ,S+ ): 0 ~ j < '1}. 
kEZZ: 1 J '-k '-k 

Because (2.3.3) covers each element of JR exactly once 

+ E., N[O,S ) 
"1 'o 

EQ 'l 0 

1 

Note that because P is invariant under T and A is invariant, the measure 

P(• IA) is invariant under T. By Kac's identity (see BREIMAN [Proposition 

6. 38]) 

En (i: 1) = 1/P(AjA) 
1 

and hence for k 0 

< 00 Pn - a.s. 
1 

~k 
By the stationarity of (ST )kEZZ: this holds for all integers k. Hence we 

have 

n1 c {Sz>; is transient} P-a.s. 

Because T is measure preserving and the set on the right-hand side is in­

variant under T one easily deduces that for all n 

Tnn1 c {szz: is transient} P-a.s. 

The union of the sets on the left-hand side is A. According to Poincare's 

recurrence principle A coincides P- a.s. with {M#}. This proves the 

proposition. D 

We apply the proposition for a subclass of random walks with points 

that are isolated from the right in a particular sense. 



PROPOSITION 2.3.9. Let Ebe a positive random variable that is invariant 

under T. Suppose that 

#{n > 0: Sn E [0,E)} = 0. 

Then Sze; is a transient random walk. 

PROOF. By using stationarity it is easily seen that we may strengthen the 

assumption to 

for all integers k. The proof will be split up in a nonprobabilistic and 

a probabilistic part. 
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liZ liZ Part 1. Let r2 1 c JR be the subset of all x E JR such that s : = (Sn (x)) nEliZ 

has the following properties. There is a number e, depending on x, such 

that for all m 

(j} ~n > m: s E [s m'sm+e} n 
( j j} 3n > m: s € (sm-e'sm) n 
(j j j) 3n < m: s E (sm,sm+e). n 
An example of such a sequence s is given by 

s := + n-1' n < o, 
n 

:= 0 n = O, 

-1 + 1 
:= Afl' n > 0. 

Choose some fixed x E r2 1 and consider s. We shall construct descending sub­

sequence (s) out of s that satisfy some suitable properties. Similar to what 

we did in Section 2.1 we shall introduce here a notion of successor of an 

index. Because of (j) all elements sn are different. Consider 

(2. 3.4) < s }. 
m 

By (jj) the set in (2.3.4) is not empty and by (j) the maximum is attained 

at some uniquely determined index n, that we shall call the successor of m 

with respect to s. By using the conditions (j) and (jjj) we can also show 

that to each n there exists an index m such that n is successor to m. This 

index m is uniquely determined as the index m for which 
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is attained as a minimum. As a consequence we can form index sequences 

where mn+l is successor to mn, n E 2Z. Observe that if m0 is prescribed the 

sequence is uniquely determined. Each subsequence (sm __ ) is descending 
--u nE2Z 

with stepsizes between 0 and -e and by (j) every two subsequences can be 

"separated" in the following way. There is a number c such that all elements 

of one subsequence are above c and all elements of the other one are below 

c. Hence if there is a subsequence for which limn-l-00 Smn and 

limn-+-oo smn = 00 then this subsequence is, apart from a renumbering, the only 

one and contains every element of s. Let x E n1 and take (T (x)) '77 to be 
~ n nE.u. 

the subsequence with m0 = m0 (x) chosen as 0. The mapping T defined by 

T l (X) 
Tx := T x, x E n1 , 

is a bijection of n1 onto itself. 

Part 2. Define 

Al := {~n > 0: Sn E (-E,0)} 

and let 

M1 (x) := {n E 2Z: 
n 

T x E Al}. 

Because SM contains only elements Sm' for which there is no n > m such 
1 

that Sn E (Sm-E' Sm+E) we easily see that sM 1 is transient. Hence by Propo-

sition 2.3.8 

{Ml # </J} c { S2Z is transient} a. s. 

Define 

A2 := {~n < 0: Sn E (0,E)} 

and let 

Because sM2 contains only elements Sm for which Sn i [Sm,Sm+E) if m # n, 

we can conclude that SM is transient. Hence 
2 

{M2 # <P} c {S2Z is transient} a. s. 

Observe that n1 , as defined in part 1, is given by >& 1 rp}. By 



Corollary 2.3.6 the process (STn)nEl'Z defined on Ql is a random walk with 
stationary increments under PQ 1 (•) := P(•jQ1). Because the increments are 
negative the ergodic theorem assures us that 

and hence 

lim 
n-><x> 

s 
T 

n 
n 

lim S 
T n-><x> n 

lim 

s 
T 

n 
n < 0 

- lim S 
T n+-oo n 

PQ - a.s. 
1 

PQ - a.s. 
1 

Ql c {s26 is transient} a.s. 

so also 

LEMMA 2.3.10. Let N+ be the point process determined by (Sn)n>O and define 

AO := {lim N+[O,o) < oo}. 
o+o 

The random set M defined by 

satisfies 

X E 

{M0 'I</>} c {s26 is transient} a.s. 

PROOF. Let 

Al := {lim N+[O,o) 
o+o 

The inclusion 

(2. 3.5) 

O} and M1 (x) := {n E Zl: 
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D 

n is immediate. To prove that also~ holds in (2.3.5), suppose that T x E A0 
for some n. Hence there are only a finite number of Sm, m > n, such that 
Sm E [Sn, Sn+o) for a finite o > 0. If for none of these Sm' m > n, holds 

n Sm Sn then clearly T x; A1 . Else let m' be the largest m with Sm= Sn' 
m>n, and observe that Tm x E A1 • This shows that we also have~ in (2.3.5). 
Define h(x) as the length of the largest set [O,o), o > 0, containing no 
points Sn, n > O, i.e. 

h(x) := sup{o 2 O: N+[O,o) O}. 
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Define for x E lRlZ 

£(x) := ~(1 A sup{h(Tnx): n E 2Z}). 

Observe that the random variable £ is invariant under T and define 

Notice that 

and by the invariance of £ under T 

Because {M2 i' </>} is an invariant set, one easily shows that 

is invariant under T. Observe that all points in sM2 are separated by dis­

tances of at least £. Hence SM is transient and by Proposition 2.3.9 
2 

P (S 22 is transient 

As a result of {M2 i' </>} = {M0 # </>} the lemma is proved. D 

PROOF of Theorem 2.3.3. We shall use Lemma 2.3.10. Let S+ := (Sn)n>O and 

S := (Sn)n<O" Define 

First we prove 

n {Sn E A00 (S±) U Ar(S±)}. 
nE2Z 

G~+ c { s 22 is transient} a. s. 

Let N+ be the point process determined by S+ and observe that 

{O ~A (S+) u A (S+)} = {lim N+[0,8) < 00 }. 

00 r 8t0 

Denote this set by A0 . Observe that 

k 
is equivalent with T x E A0 and hence 
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with M0 defined as 

By Lemma 2.3.10 we have 

G~+ = {M0 of If>} c {S:;z is transient} a. s. 

A similar argument applied to (S_n)nE2Z shows 

Ge c {S is transient} a.s. r- 2Z 

This argument applied to (-Sn) nE:?Z shows that for 

GJI.± := 

we also have 

n 
nE2Z 

c 
GJI.± c {s2Z is transient} a.s. 

Hence the set 

has probability 1. The assertions of the theorem follow as an immediate 

consequence. D 

NOTES to the Proof of Theorem 2.3.3. 

1° The proof of I = J a.s. uses the order properties of the real line. r r 
Does a similar property hold for random walks in the plane? 
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2° If Theorem 2.3.3 is formulated for S:;z instead of for (Sn)n~O its proof 
simplifies considerably. In that case Proposition 2.3.9 is superfluous. 

0 

3 Note that Proposition 2.1.9 is a consequence of Theorem 2.3.3. 

EXAMPLE 2.3.11. Let X := (Xn)n~O be a sequence of stationary, independent 
random variables on the real line. Define l;n := Xn - Xn-l' n E JN, and let 
S := (Sn)n~O be a random walk with stationary increments l;N, i.e. 

s 
n n ~ O. 
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We investigate the set of limit points of S. If s := (sn)n~O is a sequence 

of real numbers, define the set of limit points of s by 

L(s) := {x E JR1 : there is a subsequence snk + x fork+ 00 }. 

Clearly L(s) is a closed set. If x is a point of increase of the distribu­

tion F of Xn, n ~ O, i.e. if for each E > 0 

F(x-E, x+E) > o, 

then Xn E (x-E, x+E) i.o. with probability 1. Let C be the set of points of 

increase of F. The set C is closed and satisfies P (Xn i C) = 0, n ~ 0. We 

obtain from the properties of C mentioned above that 

L(S) = L(X) - x0 = C - x0 a.s. 



CHAPTER 3 

PALM THEORY 

3.1. EXISTENCE OF A LIMIT DISTRIBUTION IN RENEWAL THEORY 

Let Sl'Z be a transient random walk with stationary, strictly positive 

increments. Define a point process N0 on the real line by 

(3.1.1) B € B1 • 

Note that N0 and Szz: mutually determine each other. Let Tt, t real, be the 

translation on the real line, defined as in Section 0.3 and write 
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Suppose that the distribution of Nt converges for t + oo in some sense. The 

present section is meant to provide a description of the limiting distribu­

tion Q. The limiting distribution Q will be expressed in terms of the dis­

tribution Q0 of N0 • We thus obtain a mapping Q0 + Q between two subclasses 

of distributions of point processes on the real line. A closer study of 

this mapping will show that it is invertible. Most of the results that are 

obtained here are already known. They are part of the so-called Palm theory 

originated by PALM [1943]. However, our approach is somewhat uncommon. It 

has the advantage that it yields immediately a formula for the limit dis­

tribution Q in the renewal theoretic convergence problem sketched above. 

There is also a disadvantage: the present approach is suitable for point 

processes on the real line and also for marked point processes on the real 

line. However, our approach is not suitable for point processes on more 

general spaces, because we use the order properties of the real line. A 

review of other methods in Palm theory can be found at the end of this sec­

tion. 

The first proposition contains an aspect that is possibly unknown in 

the literature. It considers random walks without the restriction that the 
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increments are positive, i.e. the two-sided case. This result has an in­

teresting aspect: Renewal theory frequently deals with the two-sided case 

by considering an imbedded random walk consisting of record values (see 

BLACKWELL [1953] and also KESTEN [1974]). Here we succeed in giving a 

definition of the limiting distribution Q without the use of records. In 

Chapter 6 we apply this result to get a generalized version of Blackwell's 

theorem and other results. It would have been possible to generalize the 

other propositions to cover the two-sided case also. This would however 

lead us out of the field of point processes and does not seem to yield a 

better understanding of the theory. Therefore, with the exception of the 

first proposition, we assume that the random walks have strictly positive 

increments. 

Let the measurable space (N,V) be defined as in Section 0.3. In for-

1 ( 3 1 3) th . Jb Ja th f. . . mu a . . we use e convention a = - b" In e irst proposition we 

consider for arbitrary D E V 

(3.1. 2) 

t 

lim ~I XD(TsNO)ds. 
t-- 0 

PROPOSITION 3.1.1. Let the point process NO be defined by (3.1.1) with S~ 

a random walk with stationary, ergodic increments, such that ES 1 E (0, 00). 

Denote the distribution of N0 by Q0 . Then the limit in (3.1.2) exists a.s. 

and equals 

(3.1.3) Q(D) 
1 

:= --E 
ESl 

sl 

I XD(TsN0 )ds. 

0 

As a function in D the measure Q is a probability measure describing the 

distribution of a stationary, ergodic point process N with finite intensity 
1 

ES 1 • 

PROOF. Clearly Q is a signed measure with mass at most Els 1 1/Es 1 • Define 

for t > 0 

+ 
Mt.:= inf{n 2 1: Sn 2 t}, 

Mt := sup{n 2 1: Sn ~ t}. 

Sn 
By the ergodic theorem limn.._ n 

Therefore, the random variables M~ 
ES 1 a.s. and hence limn.._ Sn = 00 a.s. 

and Mt are properly defined. Remark that 
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s :::; t :::; s +· M- Mt t 

An application of lim 
Sn 

ES 1 this inequality yields -= a.s. to n->oo n 

+ 
Mt Mt 1 

lim sup t :> ES , lim inf ~ a.s. 
t->oo 1 t 

+ 
Mt 1 Because M~ :> M~+1 it follows that limt.._ t =ES a.s. 

1 
Using another appli-

cation of 

0 

follows 

sk 

that 

! k~1 I Xn(TsNO)ds 

sk-1 

1 n k 
n l g(T 1;2Z) 

k=l 

converges a.s. Here 1;2Z is the process of increments of S2Z and T is the 

shift transformation on lli.2Z. Because l;zi; is ergodic, the limit for n + oo of 

the expression above coincides a.s. with 
sl 

E I Xn(TsNO)ds. 

0 

Observe the inequality 

s -
Mt 

I Xn(TsNO)ds 

0 

Using this inequality and the results above it follows that (3.1.2) equals 

Q(D) a.s. Because (3.1.2) is nonnegative for all D it follows that Q is a 

nonnegative measure that has mass Q(N) = 1. Observe that (3.1.2) does not 
-1 change if D is replaced by Ts D for any real s. So Q is s 

invariant under 

translations. Because lim ...E=ES 1 a.s., we have n->oo n 
1 1 

limt.._ t N0 (0,t) = ESi a.s. 
by Lemma 2.1.6. So apart from a null set for any t 

1 1 TtNO E n0 := {m E N: lim t m(O,t) = ES 1}. 
t->oo 

Hence Q(D0) = 1, so a point process N with distribution Q has intensity 

E~ 1 • Let DE V·be invariant under all translations Tt. If for some w the 

limit (3.1.2) is not 0 then for some and hence for all t we have TtN0 (w) ED. 

So for this w the limit (3.1.2) equals 1. Hence (3.1.2) has its values in 

{0,1} and therefore Q(D) = 0 or 1. So a point process N with distribution Q 

is ergodic. 
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NOTES to Proposition 3.1.1. 

1° In case the increments of the random walk are positive with distribution 

F one easily calculates the distribution of the smallest positive point 

0 

W of N as 
t 

P (W ~ t) I t(l-F(x))dx, t <': 0. 

0 

This distribution is called the survivor distribution (see FELLER 

[XI.4]). The point process N described in Proposition 3.1.1 can be 

identified as the "steady state" to which a renewal process with 

independent increments converges. 

2 If the increments of s 31 are not ergodic but are stationary with 

ES 1 E (0, 00 ), then (3.1.3) also describes the distribution Q of a station­

ary point process N with intensity -S1 . To prove this let S * : = lim .! S E 1 n-><onn 
and define p(D) by (3.1.2). Using the arguments in the proof of the prop-

1 * osition, we obtain in this case that Q0 (D) =~-*ES p(D). The proper-
ES 

ties of N mentioned above are easily checked. 

3° The proposition can be given for marked point processes too: Assume that 

(f,T) is a measurable space. Define the marked point process 

1 
B E B xr, 

where s 0 := 0 and (Sn-Sn-l'Xn)nE!iZ is a stationary, ergodic sequence. 
Assume that Es 1 is finite and positive. Then the assertions about (3.1.2) 

and Q mentioned in the proposition hold. The proof given above applies 

also in this more general case. 

In the rest of this section we only consider random walks s31 with 

strictly positive increments. We also assume that the stationary point 
processes N on the real line that we consider, are simple and satisfy 

P (N f. 0) = 1. 

By (0.3.1) it is equivalent to assume 

P (N(-oo,O] N(O,oo) 00) 1. 

These assumptions are satisfied for the process N defined in the proposition 

above, as can be easily seen from (3.1.3) and our assumption on S!iZ. 
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Suppose the stationary point process N satisfies to these assumptions. 

We can enumerate its points to obtain a sequence uzz; satisfying with proba­

bility 

(3.1.4) N(B) l Xu (B), 
nEliZ n 

1 
B € B , 

••• < u_ 1 < u0 < o ~ u 1 < •••• 

Proposition 3.1.1 describes how to define to a given point process N0 of 

the form (3.1.1) with distribution Q0, a stationary point process N with 

distribution Q. The next proposition deals with a converse. Consider for 

arbitrary D E V 

(3.1.5) 
1 n 

limn l xD<Tu N). 
n..- k=l k 

PROPOSITION 3.1.2. Let N be a simple, stationary, ergodic point process on 

the real line with intensity A E (0, 00). Denote its distribution by Q. Then 

the limit (3.1.5) is defined a.s. and equals 

(3.1.6) 

As a function in D the measure Q0 is a probability measure, describing the 

distribution of a point process N0 that can be written as (3.1.1), with Szz 

a random walk with stationary, ergodic, strictly positive increments with 

finite expectation ES1 = 1/A. 

PROOF. Following MATTHES [1963], remark that A Q0 (D) is the intensity of 

the thinned process ND obtained by removing all points Uk from N, except 

for the points with Tuk N E D. It is easily seen that because N is ergodic, 

ND ·is ergodic too. Hence by the ergodic theorem 

The argument we follow below is similar to what we did in the proof 

of Proposition 3.1.1. Note that N assumes its values with probability 1 in 

the set 

N00 := {m E N: m is simple, m(-oo,O] = M(O,oo) = oo}, 

because N is simple, ergodic and has positive intensity. Using that 
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limt->= i_ N(O,t] 

Observe that 

1 
\ a.s. a simple argument shows limn->= ~ Un 

1 
X a.s. 

Applying the Cesaro convergence properties of ND and Un obtained above, one 

proves that the limit in (3.1.5) equals Q0 (D) a.s. From the expression 

(3.1.6) it is clear that Q0 -is a measure and by the definition of intensity 

Q0 is a probability measure. Because NE N00 a.s. one obtains, using (3.1.5) 

or (3.1.6), that Q0 (N00 ) = 1. Similarly it follows that Q0 has mass 1 on the 

set D0 := {m EN: m{O} = 1}. Let N0 := N00 n D0 and let V0 be the restriction 

of V to N0 . we may assume that N0 is the identity on (N0 ,V0 ,Q0 ). Construct 

a sequence of ascending random variables SZZ with s 0 = 0 such that 

By using that 

n n 

lim - I xD(Tu N) = lim -n1 I xD<Tu N) 
n->= n k=l k n->= k=1 k+l 

it follows that the sets {N0 ED} and {Ts 1N0 ED} have the same probability 

for all D. Hence SZZ has stationary increments. If D1 is invariant for the 

process of increments of SZZ then D1 satisfies 

n E 2Z. 

Clearly in that case for a given w we have xD1 (TunN) = 0 for all n E ZZ, 

or else XDl (TunN) = 1 for all n E ZZ. Hence the limit (3.1.5) has its 

values in { 0, 1}. Above we saw that this limit equals Q (D ) a. s. Hence if n 1 is 
0 1 

invariant Q0 (D1) = 0 or 1. This proves ergodicity. To see that ES 1 = ~ ob-

serve that by stationarity N has its values in 

1 D := {m E N00 : lim t m(O,t] \} 
t->= 

with probability 1. Hence by (3.1.6) we get Q0 (D) 

theorem and Lemma 2.1.6 we also have 

Therefore, using Q0 (D) = 1 we obtain Es1 
1 
x· D 

1. By the ergodic 
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NOTE to Proposition 3.1.2. If N ~ 0 a.s. is not ergodic, but is simple, 

stationary with finite intensity It, then (3.1.6) also describes the distri­

bution Q0 of a point process N0 that can be written as (3.1.1) with s2Z a 

random walk with stationary, strictly positive increments with finite ex-

pectation~- To prove this let A* := lim ~ N(O,t] and define ~(D) by 
I\ t->oo t 

(3.1.5). Using the arguments above we obtain in this case that Q0 (D) 

1 * =EA* EA ~(D).The other properties of N0 mentioned above, are now easily 

checked. 

The propositions above describe mappings Q0 + Q and Q + Q0 . The fol­

lowing theorem shows that these mappings are mutually inverse. 

Let ~ be the set of distributions Q0 of point processes N0 on the 

real line given by ( 3. 1. 1), with S2Z a random walk with stationary, strictly 

positive increments having finite expectation. Let Q be the set of distri­

butions Q of point processes N on the real line that are simple, stationary, 

a.s. nonvanishing and have finite intensity. 

THEOREM 3.1.3. Let ~ and Q be defined as in the paragraph above. We use 

the notations (3.1.1) and (3.1.4). The definitions (3.1.3) and (3.1.6) 

describe mutually inverse mappings on ~ and Q. 

PROOF. Let 8 and 8' be the mappings described by (3.1.3) and (3.1.6), 

respectively. By the notes to the propositions above the mappings are 

properly defined. The proof is split up in two parts. 

Part 1. 6°8' is the identity map. To show this suppose that Q0 

arbitrary Q E Q, so 

(3.1. 7) 

8'Q for 

where A EN(0,1] and f is nonnegative measurable. Choose f such that 

s1 

E~1 J Xn(TsNO)ds 
0 

for any DEV. Equation (3.1.7) becomes 

un+1 

i E I J x (T N) as 
Un E ( 0, 1 J ES 1 U D s 

1 
AES E 

1 

U n 

J N(0,1]+1 ( )d 
XD T N s. u s 

1 
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Because 

Hence_ 

T1N is distributed as N 

UN(O, 1 ]+1 

I Xn(TSN)ds 
1 

1 

8QO(D) = _1_ E f 
;\ESl 

0 

1 and 88'Q Q. 

u1 

~ J Xn(TsN)ds. 

0 

DE V, 

Part 2. 8 1 08 is the identity map. To show this suppose Q 

so 
s1 

Ef(N) = E~l E f f(TsNO)ds, 

0 

with f nonnegative measurable. Choose f such that 

for any D E: V, so 

8'Q(D) 

Because Ts N0 is 
n 

8 'Q(D) 

distributed as N0 we get 

s -s 
1 I o 

-n+l -n 

= ;\ES 1 l E X(s,s+1](-S_n)XD(NO)ds 
nEIB 

s-n+l 

J Xc-1,oJ(slxD<Nolds 
s 
-n 

1 
=;\ES QO(D). 

1 

This implies 8-' 8Q0 = Q0 • D 

Let N be distributed as Q E Q. The following proposition, due to 

MATTHES [1963] shows that we can consider Q0 as the distribution of N, 

conditioned to the occurrence of a point at O. The measure Q0 is called 

the Palm measure of Q. 



PROPOSITION 3.1.4. Let N be a stationary, simple point process on the real 

line, a.s. nonvanishing and having finite intensity. Let Q0 be the distri­

bution of T01N, given u1 < o, for some o > 0, where u!iZ is defined by 

(3.1.4). The distribution Q0 defined by (3.1.6) satisfies 

~- See MATTHES [1963] or LEADBETTER [1972]. D 
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The proposition abovegives the connection with Palm theory. The aim of 

Palm theory is to define for a point process N on some arbitrary space, the 

distribution of N conditoned to the occurrence of a point at some given 

fixed element of the space. The theory can be traced back to PALM [1943-44] 

who is concerned with streams of telephone calls. KHINTCHINE [1960] and 

SLIVNYAK [1962-66] made Palm's proofs rigorous and extended his results. 

They introduce conditional probabilities for point processes N on the real 

line by means of ratios 

lim P(N(a,b] 
o+o 

j I NC-o,oJ "' 1>. 

RYLL-NARDZEWSKI [1961] defined Q0 using the Radon-Nikodym and the Fubini 

theorem. His paper also gives a 1-1 correspondence for point processes on 

the real line similar to Theorem 3.1.3. Earlier this 1-1 correspondence 

was given by KAPLAN [1955], who departed, as we did, from a renewal theo­

retic point of view. Ryll-Nardzewski's defining method can also be used 

for point processes on more general spaces, as is done by MECKE [1967], 

KUMMER and MATTHES [1970] and PAPANGELOU [1974]. Another approach, suitable 

for point processes on the real line (or marked point processes) was given 

by MATTHES [1963] who defined 

AD 
Qo<Dl == T 

with AD and A the intensities of ND and N, as used in the proof of Proposi­

tion 3.1.2. Several authors gave reviews of Palm theory. We can mention 

DALEY and VERE JONES [ 19 7 2 J , KERSTAN, MATTHES and ME CKE [19 7 4 J , DE SAM 

LAZARO and MEYER [1975] and NEVEU [1977]. 
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3.2. PALM THEORY AND LIMIT BEHAVIOUR 

The results that will interest us here and also in Chapter 6 are con­

cerned with the convergence of Nt := TtNO for t + 00 in distribution to a 

limit,point process N, where N0 is defined by (3.1.1). In this section we 

discuss three different types of convergence that can be obtained under 

the following three conditions of asymptotic independence: 

(i) ergodicity of the increments of the random walk; 

(ii) mixing of N; 

(iii) triviality of the right tail a-field of N. 

The limit result we obtain in connection with (i) is the simplest and from 

our point of view the most interesting. It is given in Proposition 3.2.2. 

In this proposition we impose assumptions on the random walk and obtain a 

renewal theoretic result. The conditions (ii) and (iii) are not formulated 

immediately in terms of random walks and it is in general difficult to 

prove them. In Section 6.5 we indicate assumptions on the random walk under 

which (ii) and (iii) can be obtained. 

Most of the propositons in this section are close to known results. In 

particular we can mention DELASNERIE [1977] who proves Blackwell's theorem 

out of (ii) (see Corollary 3.2.4). 

Let N be a stationary point process on the real line, with distribution 

Q, defined on the measurable space (N,V> (see Section 0.3). First we shall 

discuss three well known conditions of asymptotic independence on N. The 

first condition is ergodicity, defined in Section 0.3. Equivalent with 

ergodicity is 

t 

lim 1 I 
t+oo t 

0 

for all sets D0 ,D1 E V. This can be proved by means of the ergodic theorem 

for continuous time (see DE SAM LAZARO and MEYER [1975]). The second con­

dition of asymptotic independence is called mixing. The point process N is 

said to be mixing if 

-1 
lim Q(Do n Tt Dl) = Q(Do)Q(Dl) 
t+oo 

for all sets D0 ,D1 E V. Clearly mixing is stronger than ergodicity. We 

define an even stronger concept of asymptotic independence. Let the sub­

cr-fields vt c v, -00 $ s < t $ 00 , be induced by the mappings 
s 



m + m(B) 

on N1, where Bis any Borel set contained in (s,t). The point process N 

has trivial right (or left) tail a-field if n V00 (or n vt ) contains only 
t t t - 00 

sets with probability 0 or 1 under Q. This condition implies mixing of N. 

To see this apply the next lemma and an approximation argument (compare 

SMORODINSKY [chapter VII]). 

LEMMA 3.2.1. A point process N with distribution Q has trivial right tail 

a-field V00 := Q v: if and only if for all D0 E V 

for t + 00 • 

sup !Q(D n D0) - Q(D) Q(D0) I + O 
DEV~ 

PROOF. Note that for D E V00 

t 

Q(D n Do) - Q(D)Q(Do} = f Q(DolV:) - Q(Do)dQ. 

D 

The expression above is maximized for D 

minimized for D = (D+)c. Hence 

gt := sup
00 

!Q(Dn D0) - Q(D}Q(D0 ) I = ~ J !Q(D0 1V:} - Q(D0} !dQ. 

DEVt 
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Using that the left-hand side is monotone, together with a martingale theo­

rem (see BREIMAN [5.24]} we obtain 

lim gt = ~ J !Q(DolV00
} - Q(Do} ldQ. 

t+oo 

If V00 is trivial the right-hand side vanishes. Else some DO E V00 does not 

have the 0-1 property, in which case the right-hand side clearly is strict­

ly positive. This proves the lemma. D 

In the convergence results below we use the following notation. If Q0 
is a probability measure on (N,V) we write Qt for the measure 

D E V. 

Similarly we denote Qt(•Jn0) for the measure TtQo(·JD0}, where n0 is any set 

with positive Q0-measure. 
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First we consider ergodicity. The result that we obtain is close to 
SLIVNYAK [1962-66] who also considers Cesaro convergence properties. 

PROPOSITION 3.2.2. Let SZZ be a random walk with stationary, strictly 
positive increments having finite expectation. Let Q0 be the distribution 
of N0 'defined by (3.1.1). The process of increments of Szz is ergodic if 
and only if 

lim 
t t-roo 

Q(D)' D E V, 

for all D0 E V with positive Q0-measure, where Q is defined by (3.1.3). 

PROOF. To prove the only if-part observe that if the increments of SZZ are 
ergodic, then by Proposition 3.1.1 we have 

lim t 
t-roo 

t 

I XD(T5 N0)ds = Q(D) a.s. 

0 

The convergence above holds P-a.s. and therefore also P(•JN0ED0)-a.s. The 
left-hand side is bounded by 1. By the bounded convergence theorem we may 
take expectations with respect to the conditional measure. Hence the limit 
relation in the proposition above follows. To prove the if-part let D0 E V 
be a set that is invariant under Tt, t real. If Q0 (D0J > 0 then by the 
limit relation in the assertion of the proposition and the invariance of 
D0 under T 

1. 

If Q0 (D0 ) = 0, consider the complement of D0 and argue as above to obtain 
c 

Q(D0 ) = 1. It follows that each translation invariant set D0 has Q-measure 
0 or 1. Hence N is ergodic. By Propositions 3. 1. 1 and 3. 1. 2 and the 1 - 1 
correspondence given in Theorem 3.1.3 it follows that N is ergodic if and 
only if the process of increments of Szz is ergodic. Hence the if-part of 
the proposition follows. D 

Another Cesare limit result is given in Chapter 2. It is the global 
renewal theorem (Theorem 2.2.6). This theorem discusses the limit behaviour 
of the intensity measure of N0 • 

DELASNERIE[1977] discusses results for mixing point processes N. 
Blackwell's theorem can be studied from this point of view. Using different 



methods we derive related results. A central position in our approach is 

taken by Proposition 3.1.4. With this approach, only a few changes are re­

quired to obtain also a limit result for the case where N has a trivial 

right tail a-field. 

The proposition below considers V*Qt<·ln0) instead of Qt(•jn0). The 

first measure is a "smoothed" version of the second one. As is shown in 

Example 3.2.6 the proposition does not hold without this smoothing. The 

limit relation that is obtained in the following proposition may look un­

common. However, the note following Proposition A.2 shows that the limit 

relation implies weak convergence of Qt<·ln0 ) to Q(•) with respect to the 

vague topology on N. This type of convergence is better known. 
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PROPOSITION 3.2.3. Let N be a stationary, mixing, simple point process on 

the real line with finite, positive intensity. Suppose Q is the distribution 

of N, and Q0 is defined by (3.1.6). Then for all n0 with positive Q0-mea­

sure 

lim v*Qt<nln0) = Q(D), 
t~ 

D E V, 

for any absolutely continuous probability measure v on the real line. 

PROOF. Because by stationarity V*Q Q, we have to show 

fort+ 

Using an inequality, analogous to A.1, it is easy to see that it is suffi-

cient to prove the limit property only for v 

distribution on (0,£). 

We have to show that 

£ 

:= ! J 
0 

v£, £ > O, the homogeneous 

converges to Q(D)Q0 cn0) for t + 00 • Proposition 3.1.4 is our main tool. By 

the definition of Q0 stated in that proposition, we have 

and therefore 

(3.2.1) g - E(! 
t £ 

£ 

J X0 (TU1+t+s N)ds XD (TUN) iu1 < o) + 0 
0 0 1 

for o + 0. 
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Define 

Observe the inequality 

(3. 2. 2) 

E 

Ii I 
0 

E 

1 J I 2U1 X (T N)ds - - x0 (Tt+s N)ds 5 D u1+t+s E E 
0 

and note that on the set C '° {u.1 < o} an upper bound for the right-hand side 

is~. With the definition of C and using this upper bound in (3.2.2) we E 

obtain from (3.2.1) 

E 

(3.2.3) gt - E(~ f X0 (Tt+s N)Xc ds)/P(U 1 < o) + 0 

0 

for o + 0. By the definition of mixing and by the stationarity of N 

for t + 

(3.2.4) 

P({T N E D} n C) + PN(D)P(C) t+s 

Hence by (3.2.3) 

gt - Q(D)P(C)/P(Ul < o) 

is arbitrarily small as o + 0 and t + 

Proposition 3.1.4 that 

P(C)/P(Ul < o) 

Q(D)P{C) 

Furthermore, for o + 0 we have by 

is arbitrarily close to Q0 (n0 ). Hence we obtain from (3.2.4) fort+ 00 

as was to be proved. D 

The corollary below gives in a conditional form, a limit property as 

in Blackwell's theorem under the requirement of mixing. In an uncondition­

al form it is due to Neveu (see DELASNERIE [1977]) and can be proved under 

slightly weaker conditions. 

COROLLARY 3.2.4. Let N be a stationary, mixing, simple point process with 

finite, positive intensity A. Suppose Q is the distribution of N, and Q0 is 

defined by (3.1.6). Let N0 be distributed as Q0 and suppose the (symmetric) 

renewal measure 
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H(B) := EN (B), 
0 

1 
B E B I 

is finite on a neighbourhood of the origin. For any D0 E V with P (N0ED0) > 0 

lim E(N0 (t,t+h] 
t-+<>o 

Ah, h > o. 

PROOF. We apply Proposition 3.2.3 with v = VE, E > O, the homogeneous dis­

tribution on (0,E) and the uniform integrability of N0 (t,t+h], t real, 

proved in Corollary 2.2.5. By the uniform integrability we have for arbi­

trary small o > O, if t and p are large enough 

(3. 2 .5) l P(N0 (t,t+h] ~ n) < o. 
n>p 

Let 0 < E < h be arbitrary and observe 

p 

~ l P(No(t,t+h] ~ n I No E Do) 
n=l 

~ -
£ 

t+E 

f 
t 

p 

l P(No(s-E,s+h+E] 
n=l 

The last term converges by Proposition 3.2.3 for t + 00 to 

p 

l P(N(-E,h+t:] ~ n). 
n=l 

Because the intensity measure of N is A.Q, with !l the Lebesgue measure, this 

sum is arbitrarily close to (h+2E)A for p large. The left term is, fort 

and p large enough, arbitrarily close to A(h-£). Because Eis arbitrary, 

the middle term is arbitrarily close to Ah for t and p large enough. The 

assertion follows by combining this with (3.2.5). D 

The next proposition considers the strongest of the three conditions 

of asymptotic independence. If Q is the distribution of any point process 

on the real line, we denote by Q+ the distribution of the restriction to 

(0, 00 ) of the point process N. 

N 

PROPOSITION 3.2.5. Let N be a stationary, simple point process on the real 

line with trivial right tail a-field and finite, positive intensity. Suppose 
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Q is the distribution of N, and Q0 is defined by (3.1.6). Then for all D0 
with positive Q0-measure 

with respect to the metric d defined by (0.3.4). 

PROOF. Consider the proof of Proposition 3.2.3. By checking the argumenta­

tion in this proof it can be seen easily that the convergence 

for t + holds uniformly in D E V~. Note that at the step where we former-

ly used mixing, now an application of Lemma 3.2.1 is used. The assertion of 

the proposition follows immediately from this uniform convergence and 

definitions (0.3.3) and (0.3.4). D 

In the proposition above we cannot use the total variation metric, but 

instead we have to be satisfied with a convergence result of this type for 

smoothed versions of the probability measures. The example below illustrates 

why this has to be done. 

EXAMPLE 3.2.6. Let F be a nonlattice distribution, concentrated on (0, 00 ) 

with finite mean. Let s2Z be a random walk with independent, F-distributed 

increments and define N0 by (3.1.1). Let N be distributed as the measure 

Q defined by (3.1.3). From TOTOKI [1970] it follows that N is a mixing 

point process. 

Suppose that F is concentrated on the rational numbers ~- Let D0 := N 
and define D to be the set of integer valued Radon measures on m1 that are 

concentrated on ~. Note that 

1, if t E g) 1 

0, else. 

Obviously we cannot prove 

Q (•/D) +Q(•) 
t 0 

for convergence on each set D E V, or for convergence in total variation. 

Therefore, we had to "smooth" the measure Qt(" !n0 ) in Proposition 3.2.3. 
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The conditions on N in the last two propositions, mixing and trivial 

right tail cr-field, are not always easy to check. TOTOKI [1970] needs 

Blackwell's theorem in its usual form (Theorem 1.1.S(ii)) to prove a result 

that implies that N is mixing. Apparently in this context Corollary 3.2.4 

is no~ very useful to prove Blackwell's theorem in its usual form. We are 

left with the question how to prove the mixing condition on N under assump­

tions on the random walk. This problem occupies us in the remaining chap­

ters. In Section 6.5 we obtain results in this direction and in particular 

we generalize Totoki's result. 





CHAPTER 4 

A MEASURE OF DEPENDENCE, 
COUPLING AND WEAK BERNOULLI PROCESSES 
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The renewal theoretic results derived in Chapter 1, use an independence 

assumption. To be able to weaken this assumption we study in this chapter 

i(X,Y), a measure of dependence between random variables X and Y. We also 

investigate a concept of asymptotic independence for processes, that is 

called weak Bernoulli. We show that this concept of asymptotic independence 

is in a certain sense a coupling property. This seems to be promising be­

cause such coupling properties enabled us in Chapter 1 to derive renewal 

theorems. The first half of this chapter is concerned with the study of the 

dependence between two random variables, while the latter half considers 

the dependence relation for sequences of random variables. 

4.1. A MEASURE OF DEPENDENCE 

In this section we quantify the dependence between two random variables 

X and Y, defined on the same probability space, by a number i(X,Y). We in­

vestigate this measure of dependence in the first three propositions. In 

Section 4.2 we consider the relation between i(X,Y) and coupling. The last 

part of Section 4.1 contains some technical results, needed in Chapters 5 

and 6 for error estimates. 

We assume that the random variables that we consider have their values 

in a Borel space. As a consequence, if X and Y are random variables on a 

probability space, there exists a regular version of the conditional dis­

tribution Pyjx' i.e. PYjx(B) is a probability measure as a function in B 

for fixed w, and is X-measurable for fixed B (see BREIMAN [Theorem 4.34]). 

The assumption mentioned above is not very restrictive. Every real random 

vector obviously has its value in a Borel space and because a finite or 

countable product of Borel spaces is again a Borel space it follows that 

each random vector that consists of a finite or countable number of random 

variables with values a Borel space, has its values in a Borel space too. 



86 

In general a Borel space is not provided with an algebraic or topological 

structure. However, the set of probability distributions on a Borel space 

can be topologized by means of the total variation metric. 

In the first two sections of this chapter most results are formulated 

for real random variables. Since every Borel space is isomorphic with a 

measurable Borel set on the real line (in the sense that there is a mea-

surable bijection), the results are automatically valid for random variables 

with values in a Borel space. 

Define for random variables X and Y with values in the same Borel space 

8(X,Y) := !llP -P II. x y 

Note that 8 is bounded by 1 and that 8 is not a metric on the space of 

random variables but on the space of their probability distributions. The 

random variables X and Y may be defined on different probability spaces. We 

have 

(4.1.1) 8 (X, Y) II (P -P ) +II = II (P -P ) -II = 1 - II P 11 p II x y x y x y . 

If X and Y are random variables on a common probability space with values 

in possibly different Borel spaces, we define 

l. (X, Y) 

The number 1.(X,Y) is a measure of dependence. It vanishes if and only if X 

and Y are independent and it is bounded by 1. 

PROPOSITION 4.1.1. If X and Y are real random variables, then 

1.(X,Y) = ~EllPYjX- Pyll. 

PROOF. Define for sets B c JR.2 

B(x) := {y: (x,y) E B}. 

Choose a regular conditional distribution P I . Using REVUZ [Lemma 1.5.3] Y X=x 
it follows that there exists a measurable set B c JR.2 such that 

on B(x), 

on B(x)c. 

Hence (B(x),B(x)c) is a Hahn decomposition for PYjX=x- PY. By (4.1.1) 



.L (X, Y} PX,Y(B} - pxxPY(B} 

J PYJx=x(B(x}} - Py(B(x})dPX(x) 

= ~Ell p I - p II. y x y 

PROPOSITION 4.1.2. If X and Y are real random variables and f is a real 

measurable function on the real line, then 

.L(X,f(Y}} S .L(X,Y}. 

~· By the definition of total variation we have for any real pair of 
random variables Y and Y' 

(4.1.2) 

Similarly we have 

By Proposition 4.1.1 this implies the assertion. D 

If f is invertible we have 

.L(X,Y) = .L(X,f(Y)). 

This is proved by applying the proposition above twice. 

We also define the conditional dependence 
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D 

Here Px,zJy denotes a regular version of the conditional distribution of 
(X,Z) given Y. The measure of dependence .LY(X,Z) vanishes a.s. if and only 
if the triple (X,Y,Z) is Markovian, i.e. if X and z are independen~ givenY. 
The following proposition shows that under a certain type of conditioning 
the dependence does not increase very much. 

PROPOSITION 4.1.3. Let f be a real measurable function on the real line 

and let X and Y be real random variables. Then 

E.Lf(Y) (X,Y) S 2.L(X,Y). 

PROOF. By the triangle inequality we have 
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Ellp I - p I II $ Ell p I - p II + Ell p - p I II 
X Y,Z X Z X Y,Z X X X Z 

and hence by Proposition 4.1.1 

E.Lz(X,Y) !> .L(X,(Y,Z)) + .L(X,Z). 

The assertion follows if we choose z = f(Y) and apply Proposition 4.1.2. D 

In Chapters 5 and 6 we often approximate the distribution of a triple 

(X 1,x2 ,x3) by a triple (Y1,Y2 ,Y3) that is Markovian. The following proposi­

tion estimates the error made in such an approximation. 

PROPOSITION 4.1.4. Let X := (X 1,x2,x3) and Y := (Y1 ,Y2 ,Y3) be triples of 

real random variables. If Y is Markovian, then 

To prove this proposition we need two simple lemmas. In their formula­

tion we make use of the following notation. Let ~ be a finite measure on 

the real line and let P1 , .•• ,Pn be transition probabilities on the real line. 

Define the measure H : = ~ x P 1 x ••• x P n on :m.n+l by 

f Pl (xl ,Bl) • • • Pn (xl ,Bn)d~ (xl)' 
Bn+l 

where B1, ••• ,Bn+l are Borel sets on the real line. Suppose that also p is a 

finite measure and that R1 , ••• ,Rn are transition probabilities on the real 

line. Define 

µk : = ~ x P l x ••• x Pk - p x Rl x • , • x 1\, 

LEMMA 4.1.5. If P 
n 

R then IIµ U = llµ 111. 
n n n-

0 !> k !> n. 

PROOF. Let B c lRn+l be measurable and define for x E En 

1 B(x) := {x 1 E lR : (x,x 1) E B}. 
n+ n+ 

Using this notation we have 

where we write x 1 : = (x) 1 • A similar equality holds for p x R1 x ••• x Rn. 



Writing 

we obtain 

\l (B) 
n 

This implies 

IIµ +11 
n 

If dµn-1· 

\l (B) ,,; 
n sup I f dµn-l 

Q,,;f ,,;1 

Because the reverse inequality is trivially valid this implies the asser­

tion. D 

PROOF. The first term v1 in the difference 

(4.1.3) 

can be written as 
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A similar expression can be given for the second term v 2 in (4.1.3). Hence 

It follows that 

Together with a similar estimate for (v 1-v2) this implies the assertion 

of the lemma. D 

PROOF of Proposition 4.1.4. Let Pi and Ri, i 

ities on the real line defined by 

1,3 be transition probabil-

P.(x,B) :=P(X. E Blx2=x), R.(x,B) :=P(Y. E BIY2=x). 
i i i i 

Let n and p be the distributions of x 2 and Y2 , respectively. 

Because Y is a Markov triple and by the triangle inequality 
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(4.1.4) lip -P II x y 

The last inequality is a consequence of the definition of ~x2 and the 

triangle inequality. Observe that the last term in (4.1.4) equals 

by Lemma 4.1.5. From (4.1.4) we obtain 

In the last inequality we used Lemma 4.1.6. The resulting inequality, 

multiplied by ~. is easily translated into the assertion of the proposi­

tion. D 

In Chapters 5 and 6 we also need some error estimates for distributions 

of pairs of random variables. Suppose X := (X1 ,x2 J and Y := (Y 1 ,Y2 J are 

pairs of real random variables. From Lemma 4.1.6 we obtain 

(4.1.5) 

Note that the equality holds if x1 and Y1 have the same distribution. From 

Lemma 4.1.5 with n = 1 we can conclude that if for some suitable regular 

version of the conditional distribution holds 

(4.1.6') 

then 

(4.1.6") o (X, Y) 
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4.2. COUPLING AND A MEASURE OF DEPENDENCE 

Let X and Y be real random variables on the same probability space. 

We say that X and Y are partially coupled with probability p if 

P(X=Y) = p. 

Suppose there are given distributions PX and PY on the real line. We want 

to construct random variables X and Y on the same probability space, under 

the condition that their distributions are PX and PY, respectively, in such 

a way that the probability p of partial coupling is as large as possible. 

We shall show that p can be maximized. If this probability p is maximal, we 

say that X and Y are maximally coupled. In this section we also discuss 

other problems of this type. Corollary 4.2.S is the main result in this 

section. It will be frequently used in the sequel. 

The first two propositions are taken from SCHWARZ L1978]. 

PROPOSITION 4.2.1. Let PX and PY be probability distributions on the real 

* line. There exists a joint distribution P Y with the following properties: x, 
* and PY; (i) the marginals of PX,Y are PX 

(ii) among the distributions P 
X,Y 

for which (i) holds, 

equals II P AP II • 

* the distribution P 
X,Y 

maximizes P(X=Y). The maximum x y 

PROOF. Suppose the distribution P on JR2 has marginals PX and PY. Let ----- X,Y 
µ6 be the restriction of PX,Y to the diagonal 6 of JR2 and defineµ to be the 

projection of µ6 on the real line. Because µ is dominated by both PX and 

PY, µ is also dominated by Px"Py. Hence we have 

(4.2.1) P(X=Y) 

* We have to select a distribution P for which the equality holds. Let 
* x, y 2 * 

µ 6 be the measure on the diagonal 6 of JR with marginals µ : = P x"P Y. 

Let p : = IIµ *11 and define 

if p 1, 

else. 

By (0.1.1) this distribution has marginals PX and PY. The total mass con­

centrated on the diagonal is at least 11µ:11 =lip AP II. Hence with the choice 
Ll x y 
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* PX,Y := PX,Y the equality holds in (4.2.1). D 

Thus we have shown that the equality in 

P(X=Y) s lip AP II x y 

can be attained, or differently, by (4.1.1), the equality in 

P (XfY) ~ o (X, Y) 

can be attained. 

A similar result can be given for the number ~(X,Y). If X,Y and Y' are 

real random variables with Y' independent of X and distributed as Y, then 

we prove below that 

P(YfY') ~ ~(X,Y). 

Also here the equality can be attained. 

PROPOSITION 4.2.2. Let PX,Y be a probability distribution on m.2 . There 

exists a probability distribution p* Y Y' on m.3 such that 
* * * x, , 

(i) Px,Y = Px,Y and Py•= Py•lx =Py; 

(ii) among the distributions P , for which (i) holds, the distribution * X,Y,Y 
P Y , minimizes P(YfY'). The minimum equals ~(X,Y). x, , y 

PROOF. If P Y Y' satisfies (i) then by the first proposition x, , 

(4.2.2) P(Y=Y' !xJ s lip I A p I I II = llp I A p II. y x y x y x y 

By (4.1.1) and Proposition 4.1.1 we have 

and hence 

(4. 2. 3) 

P(Y=Y') s EllP I A p II = 1 - ~(X,Y) y x y 

P(YfY') ~ ~(X,Y). 

Following the Argument in the proof of the first proposition we can construct 

a probability measure P(x,•) on m.2 , with marginals P I and PY, while the Y X=x 
mass on the diagonal ~ of m.2 is maximized. This can be done such that 

P(x,B) for each BE B2 ismeasurable in x. Define the distribution P:,Y,Y' on 

m.3 by requiring that 



Because p*(Y=Y' lxl is chosen maximal, the equality holds in (4.2.2) and 

hence in (4.2.3). This proves (ii). To prove (i), note that the choice of 

the marginals of P(x,•) implies that 

J PYlx=x(B2)dPX(x) 
Bl 
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P~,Y' (B 1xm1xB3) = J PY(B3)dPx(x) = Px(B1lPy(B3). D 
Bl 

We call the probability space (Q 1 ,A 1 ,P') an extension of the probabil­

ity space (Q,A,P) if there is a measurable mapping IT from Q' onto Q. If X 

is a random variable on (Q,A,P), we identify the random variable X' :=X 0 IT 

on the extended space with X and say that the random variable X on the ex­

tended space is a random variable on the original space. The example below 

shows how to extend a given probability space with a new random variable u, 
that is independent of all random variables on the original space and has 

some prescribed distribution. 

EXAMPLE 4.2.3. Provide the unit interval (0,1] with its Borel a-field 8 and 

define on ((0,1],8) the Lebesgue measure £0• Consider the probability space 

(Q' ,A• ,P') := W,A,P) x ( (0,1],8,£0 ). 

Let IT and Ube the projections on the first and second coordinate of Q'. 

The probability space is thus said to be extended with a random variable U 

that is homogeneously distributed on (0,1]. 

EXTENSION LEMMA 4.2.4. Consider on a probability space (Q,A,P) a random 

* variable X with values in a Borel spacer. Suppose P Y is a distribution 
x, * 

on a Cartesian product of Borel spaces rx f' such that PX= PX. The prob-

ability space W,A,P) can be extended with a random variable Y' with values 

* in r• such that PX,Y' = PX,Y' while the dependence structure is not affect-

ed, in the sense that 

for any random variable z on the original probability space, with values in 

a Borel space. 

PROOF. If r• = lR. 1 we argue as follows. Define the transition probability 

p*(x,B) * := p I (B), 
Y X=x 
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where PYIX=x is a regular conditional distribution. The distribution func­

tion 

F (t) := p* (x, (-00,t]), 
x 

has a right continuous inverse F-l 
x 

-oo < t < oo, 

Consider the probability space (n 1 ,A 1 ,P 1 ) defined in Example 4.2.3 and 

define 

Y ' -1 : = FX (U). 

Thus we defined the extension with Y'. We still have to prove that this 

extension has the required properties. The simultaneous distribution of 

* (X,Y') is PX,Y because 

P(Xss, Y'St) J P(U s Fx(t) lx=x)dPX(x) 

(-oo IS J 

= I Fx(t)dP;(x) = p* ((-oo,s]x (-oo,t]). 
(-oo,s] X,Y 

To prove that the extension did not affect the dependence structure we use 

that each random variable on the original space is independent of U. Hence 

if Z is a random variable on the original space, then (Z,X) and U are in­

dependent. This yields that 

p - p 
zlx,u - zix· 

Because (X,Y') is (X,U)-measurable this implies that 

This completes the proof if r• = JR1 . If r• is not the real line we know 

that the Borel space r• is isomorphic to a measurable subset of the real 

line and thus the construction of the required extension is reduced to the 

case that we already considered. D 

COROLLARY 4.2.5. Suppose on a probability space there is defined a pair 

(X,Y) of random variables, with values in Borel spaces. The probability 

space can be extended with a random variable Y', independent of X and dis­

tributed as Y such that 

P (Y'i'Y') i (X, Y) , 

while the dependence structure is not affected in the sense that 



(4. 2. 4) p = p I z/x,Y,Y' z X,Y 

for any random variable z defined on the original probability space, with 

values in a Borel space. 

* PROOF, Choose PX,Y,Y' as in Proposition 4.2.2. The restriction to real 
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random variables in that proposition is clearly superfluous, because of the 

isomorphy of a Borel space with a measurable subset of the real line. Use 

the extension lemma above, to extend the probability space with a random 

variable Y' such that 

* PX,Y,Y' PX,Y,Y' 0 

The extension thus obtained has the required properties. 0 

NOTE. The property (4.2.4) implies that for any pair of random variables z 

and Z' on the original space with values in arbitrary Borel spaces holds 

p 'I I Z,Z ,X,Y,Y 

and hence 

p I I I = p I '. Z X,Y,Y ,z Z X,Y,Z 

Thus the measure of dependence 

.L(Z,(Z',X,Y)) = .L(Z,(Z',X,Y,Y')} 

is not affected by the extension with Y'. 

4.3. SUCCESSFUL COUPLING 

If X and X' are random variables with values in the same Borel space, 

then 

P(XjX') ~ o(X,X'). 

If the equality occurs, the random variables are called maximally coupled. 

In the preceding section we investigated how to construct maximally coupled 

random variables. In the present section we discuss a similar problem for 

sequences of random variables. In particular our results yield successful 

couplings for sequences of random variables. 
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Problems of maximal coupling for Markov sequences are investigated in 

GRIFFEATH [1975,1976] and PITMAN [1976]. It is interesting to observe, that 

a slight change of formulation of their results yields similar results that 

are, however, also valid for arbitrary sequences. In this new setting the 

Markov dependence appears to be inessential. 

The main result in this section is Theorem 4.3.3. It relates a Cesaro 

convergence property to a successful coupling of processes. In the follow­

ing section this result will form an important tool. 

Theorem 4.3.1 is taken from GRIFFEATH [1976]. Its proof can be found 

there. Suppose X:N is a Markov chain on a Borel space r with stationary 

transition probabilities. If x 1 has distribution µ we denote by Pµ the dis­

tribution of XlN The distribution µ is called the initial distribution. 

THEOREM 4.3.1. Suppose µ and v are initial distributions for the Markov 

chain XID described above. There exists a probability space with processes 

xThT and x~, distributed as Pµ and Pv respectively, such that xn and x~ are 

maximally coupled and moreover 

cS (X ,X') I 
n n 

n 2 1. 

It will be clear that the Markov property has an important role in the 

theorem above. By (4.1.6) it implies that 

o<x ,x'l 
n n 

n 2 1. 

Using this property it can be seen that the result below, valid for arbi­

trary sequences of random variables, implies the maximal coupling theorem 

for Markov chains, given above. See GOLDSTEIN [1979] for a direct proof. 

THEOREM 4. 3. 2. Let XlN and X~ be sequences of random variables with values 

in a Borel space r. There exists a probability space with processes XlN and 

X~, marginally distributed as XlN and X~ respectively, such that for all 

n 2 0 the random vectors XJN+n and X~+n are maximally coupled. 

PROOF. Let T be the cr-field on the Borel space r. Consider the transition 

probability on rlN x TJN defined by 

P(x,B) :=xB(Tx), x E rJN, B E TID, 

where Tx := (xn+llnE::IN. Observe that Yn := X:IN+n' n 2 O, and Y~ := x~+n' 

n 2 0, are Markov chains on the Borel space rlN with transition probabilities 
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as defined before. Apply to (Yn)n20 and (Y~)n20 the maximal coupling theorem 

for Markov chains given above. This yields the required result. D 

Both theorems above are useful to construct successful couplings (see 

Chapter 1); Note that by the definition of maximal coupling the processes 

XJN a~d Xm are successfully coupled if an only if for n + 00 

PX' II + 0. 
JN+n 

The remaining part of this section is involved with a proof of the fol­

lowing relation between a Cesaro convergence property and a particular kind 

of successful coupling. 

THEOREM 4.3.3. Let XJN and Xm be sequences of random variables with values 

in a Borel space f. The limit relation 

(4. 3 .1) 
n-1 

limll~ l P 
n+oo n i=O xlN+i 

n-1 
l p I 

n i=O XJ!'Hi 
0 

is a necessary and sufficient condition for the existence of a probability 

space with processes XJN and Xm, marginally distributed as XJN and Xm 
respectively, such that for some nonnegative, integer valued random 

variables cr 1 and cr2 

x 
n+cr 1 

X1 I n+cr2 
n E JN. 

PROOF. The necessity of (4.3.1) is a consequence of Proposition 4.3.4 below. 

To prove that (4.3.1) is a sufficient condition, assume that 

0 
n 

n-1 
:= ~II~ I 

n i=O 

n-1 

I 
n i=O 

P II + o xm+i 
for n + 00 • Suppose er is an integer valued random variable, homogeneously 

distributed on {O, ... ,n-1} and independent of XJN. Let er' be a random variable, 

independent of Xm and distributed as er. We can rewrite on as 

0 
n 

~llp x 
JN+cr 

PX, II. 
JN+er' 

Using Proposition 4.2.1 and Extension lemma 4.2.4, this equality might be 

used to construct a probability space such that, with the notations used in 

the statement of the theorem, 
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p (Xll'Hcr 
1 

x~+a ) 
2 

1 - 0 • 
n 

Here the right-hand side is close to 1 for n large. However, we want the 

right-hand side to coincide with 1 and therefore we argue somewhat differently. 

Let sJN be a sequence of independent random variables, independent of 

XJN with P(sn=O) P(sn=l) = L n 2'. 1, and let crJN be defined by 

(4. 3. 2) n 2'. 1. 

Let s~ be independent of X~, distributed as t;JN and define a~ similar to 

aJN above. Because the random variables an are homogeneously distributed on 

{0,1, .•. ,2n-1} we have 

n 2'. 0, 

and because sJN and s~ are independent of XlN and X~ respectively, we even 

have 

o n lllp - PY' 11, 
2 

2 y 
n n 

where 

y := (XJN+cr , slN+n) n 
n 

and Y' := (X' s' ) · 
n lN+cr~, lN+n 

Note that the random variables Yn+l'Yn+2 , ..• can be expressed into Yn, i.e. 

YJN+n = f(Yn) and similarly Y~+n = f(Y~). Using (4.1.2) we obtain 

,,; lllp 
2 y 

n 
- P II 

Y' 
n 

for n + 00 • By Theorem 4.3.2 there exists a probability space with processes 

YJN := (XJN, ~JN) and Y~ := <X~, ~:iN>, distributed as Ylli and Y:N respectiv-

ely, such that the random variables YJN and Y' are maximally coupled 
+n lN+n 

for n 2'. 1. Hence 

for n + Therefore the random time T defined by 

T := inf{n 2'. 0: y 
n 

Y'} 
n 

is finite with probability 1 and so for n = i: 



x -JN+cr 
n 

x• -JN+cr' 
n 
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where crJN and cr~ are defined in terms of ~JN and ~~ analogous to (4. 3. 2). 

Hence we have 

x -JN+cr 
T 

0 

PROPOSITION 4. 3. 4. Let XJN and X~ be sequences of random variables with 

values in a Borel spacer. Suppose that for any£> 0 there exists a prob­

ability space with processes XJN and x::r.i, marginally distributed as XJN 

and X~ respectively, such that for some nonnegative, integer valued random 

variables o 1 and o2 

x• l~l-£. 
JN+o2 

Then the Cesaro convergence (4.3.1) holds. 

PROOF. Let P and P' be the distribution of XN and X~ respectively. We 

shall decompose P and P' as 

(4.3.3) p p 
£ 

and P' P' + 
£ 

The measures Pk,£ and Pk,£ are defined as follows. Let A 

and define 

for measurable sets B c rJN. We can now define P and P' by requiring 
£ £ 

(4.3.3). The total mass of the Pk,£-measures is P(A) and hence 

II P II = 1 - p (A) s £. 
£ 

Similarly we obtain llp•ll s £. 
£ 

In the argument below we need some new notations. Let T be the shift 

transformation on rJN; For measures R on rJN we denote by TnR the measure 

defined by 

(4. 3. 4) 

for measurable sets B c rJN. 
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Using the definition of A one easily observes that 

(4. 3.5) k,£ 2: 0. 

The idea of the proof is to substitute (4.3.3) into the expression in 

(4.3.1) and then to use (4.3.5) to get an estimate of the expression in 

(4.3.1). In the signed measure 

n-1 n-1 
I ( I TiP k , .Q, - I TiP I ) 

k,£2:0 i=O i=O k,£ 
(4.3.6) 

i+k '+£ the terms of form T Pk,£ are cancelled by the terms Ti Pk,£ Using this 
i observation it follows that the terms T Pk,£' 0 s i < n, that are not can-

celled in this way have their index i in 

{i: 0 s i < k} if .Q, s k, 

{i: 0 S i < k or i+£-k 2: n} if .Q, > k. 

The total variation of the positive part of (4.3.6) is therefore at most 

I (kAn + (.Q,-k) + A n) IJpk II o (n) 
k, £2:0 , .Q, 

for n + A similar estimate holds for the negative part of (4.3.6) and 

hence 

n-1 . 
s ! I llTi(P -P')li + !.o(n) s 2E + 0(1), n + 

n i=O E E n 

Because E is an arbitrary positive number, (4.3.1) follows. 0 

4.4. WEAK BERNOULLI PROCESSES 

In Chapter 1 we used coupling as our main tool to prove results in 

renewal theory. To generalize these theorems for random walks with station­

ary increments, we want to determine a class of stationary processes that 

can be characterized by coupling properties such as used in Chapter 1. For 

this purpose we introduce a class of stationary processes, the weak 

Bernoulli processes, that are determined by a certain asymptotic independence 
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property. We compare this class of processes with the better known classes 
of ~- and a-mixing processes. The section contains several examples of weak 
Bernoulli processes. From the point of view of Chapter 1 an important result 
is Theorem 4.4.7 that characterizes the weak Bernoulli processes by a cou­
pling property. This seems to be promising to get an extension of the re­
sults in Chapter 1. 

The main results in Chapter 6 are renewal theorems for weak Bernoulli 
processes. In Sections 6.4 and 6.5 we shall see that it is more natural to 
study these renewal theorems for a slightly larger class of processes, the 
Cesaro weak Bernoulli processes. The second half of this chapter studies 
these processes and characterizes them in Theorem 4.4.9 by a coupling 
property, very similar to the coupling property described in Theorem 4.4.7 
for weak Bernoulli processes. 

Let Xz;>; be a stationary sequence of random variables with values in a 
Borel space r. The process Xz;>; is called weak Bernoulli if 

(4.4.1) 

satisfies lim L O. According to Proposition 4.1.2 this requirement is n+00 n 
equivalent to 

lim EllP J - P II 0, 
n->= x:JN+n X:JNc x:JN+n 

or to 

(4.4.2) um 11p I 
n->= x:JN+n X:JNc 

- P II 
x:JN+n 

0 a.s. 

The equivalence of the last two limit relations follows because the total 
variation expression in (4.4.2) is by (4.1.2) nonascending inn. 

The concept weak Bernoulli was suggested by Kolmogorov under the name 
completely regular (see VOLKONSKI and ROZANOV [1959]). Later it was used 
in connection with the isomorphism problem in ergodic theory (see 
FRIEDMAN and ORNSTEIN [1970]). From the point of view of ergodic theory 
the concept weak Bernoulli is not entirely natural because the weak 
Bernoulli property is not preserved under the isomorphism concept used in 
ergodic theory (see SMORODINSKY [1971]). However, from our probabilistic 
point of view it is quite satisfactory. This will be obvious from Theorem 

4.4.3, but even more from the results in Sections 6.4 and 6.5. 
Let us first compare the weak Bernoulli property with other conditions 
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of asymptotic independence. Define for a stationary process X:ZZ the measure 

n 2 1. 

Let an and ~n' n 2 1, be the smallest real numbers such that 

µ (Bx B') s a , n n 

µn(Bx B') s ~n PX (B'), 
JN 

holds for all measurable sets B on rlNc and B' on rm. The sequence xzz is 

called a-mixing if limn-l--00 an = 0 and ~-mixing if limn-><x> ~n = 0. 

PROPOSITION 4.4.1. an S in S ~n' n 2 1. 

PROOF. Because µn is a difference of probability measures, we have 

i = 1 11µ II= sup µn(B), n 2 n 

where the supremum is taken over all measurable sets B c rJNcx rJN. Hence 
the first inequality holds. To prove the second inequality, consider the 
measurable space rlNc provided with the probability measure PxJNc· Let 
~n be the L00-norm of 

- PX (B)), 
lN+n 

where the supremum is taken over all measurable sets B on rlN. It is easily 
seen that ~n = ~n' n 2 1. Furthermore, by Proposition 4.1.1 we have 

in Eg (XJNc J and hence .Ln s ~ n. D 

It follows that weak Bernoulli is implied by ~-mixing and implies 
a-mixing. BRADLEY [1978] gives an example of an a-mixing sequence that is 
not weak Bernoulli. The following result is well known. 

PROPOSITION 4.4.2. If a stationary sequence Xzz is a-mixing, it has trivial 
right {or left) tail a-field, and therefore is also ergodic. 

PROOF. Remark that if Am is XJNC+m-measurable and A is a right tail event 
(so is XJN+m-n -measurable) , then 

s a 
n 

for each n 2 1. Because limn-l--00 an= 0 it follows that Sm O, m 2 1. Choose 
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a sequence Am' m ~ 1, such that P(A ~Am) + 0 for n + 00 • It follows that 

P(A) - P(A) 2 = 0 and hence each right tail event A has probability 0 or 1. 

A similar argument holds for left tail events. D 

Using OREY [1971, Proposition 1.4.3] or REVUZ [1974, Proposition 6.2.4] 

it can be easily seen from (4.4.2) that the properties trivial tail cr-field, 

a-mixing and weak Bernoulli coincide if X2Z is a Markov sequence. In that 

case by REVUZ [1974, Section 6.3] the property ~-mixing implies exponentially 

fast convergence, i.e. ~ !> abn, n ~ 1, for some positive a with 0 < b < 1. n 

Let us now discuss some examples of weak Bernoulli processes. 

EXAMPLE 4.4.3. A stationary sequence X2Z of independent, real random vari­

ables is obviously weak Bernoulli. 

EXAMPLE 4.4.4 (Markov chains). Let XJN be an irreducible, positive recur­

rent, aperiodic Markov chain with a countable state space r. Suppose that 

XJN is started with the invariant probability measure w of the Markov chain 

and extend XJN to a stationary process X2Z. Using the Markov property it 

follows that on {x0=y} 

and hence by (4.1.6) 

By a well known convergence theorem for Markov chains (see BREIMAN [Theorem 

7.38]) the right-hand side converges to 0 for n + 00 and hence 

Up J - P tt + 0 a.s. 
XJN+n XJNC XJN+n 

It follows that the process XlZ is weak Bernoulli. 

EXAMPLE 4.4.5 (continued fraction transformation). Each irrational number 

w in the unit interval I has a continued fraction expansion 

1 
1 

x1 (w) + ( ) x2 w + 

where the numbers Xn (w) E JN, n ~ 1, are defined as follows. Let 
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Tw := (~) mod 1. Then x 1 (w) = ~ - Tw and xn+l (w) = Xn(Tw) = ••• = x 1 (Tnw). 
Provide the unit interval with the Borel a-field B (I). Let 2I be the Lebesgue 
measure on the unit interval. Then XJN is a sequence of 2I-a.s. defined 
random variables. If the unit interval is provided of Gauss's measureµ, 
given.by 

µ(B) 1 
l+x_dx, BE B(I), 

then XJN is a stationary process on (I,B(I) ,µ), as is proved in BILLINGSLEY 
[Section 1.4]. Extend XJN to a stationary process X2Z. It is known that X2Z 
is <j>-mixing with exponentially decreasing <P , n + 00 , (see IOSIFESCU [ 1978]) n 
and hence X?Z is weak Bernoulli. 

EXAMPLE 4.4.6 (chains with complete connections). Let x22 be a stationary 
sequence of random variables with values in a finite set r. Suppose there 
is a strictly positive, measurable function g on rJNc such that 

for n + LEDRAPPIER [1976] proves that if g satisfies 

I sup I log g(~) I < 00 , 

n~O g(y) 

where the supremum is taken over all y ,y E rJNc with yk 

then X?Z is weak Bernoulli. 

yk, -n s k s 0, 

Ledrappier's paper, mentioned above, contains also other examples. It 
discusses a lattice model studied in statistical mechanics, that describes a 
particle system on the integers 2Z. If a site n E 2Z is occupied then Xn : = 1 

and else Xn · = 0. There can be defined a distribution of X?Z, called a 
Gibbs measure, such that under some continuity conditions on this distribu­
tion, it can be proved that X?Z is weak Bernoulli. LEDRAPPIER [1976] men­
tions also other papers that discuss weak Bernoulli processes. 

THEOREM 4.4.7. A stationary sequence XLZ of random variables with values 
in a Borel space r is weak Bernoulli if and only if there exists a probab­
ility space with processes X:i-zand X~ marginally distributed as x22 , such that 
Xi.ic and X~ are independent and Xi,i and XiJ are successfully coupled. 

PROOF. If there exists a probability space as described in the theorem, then 
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because of the independence of X:Nc and X?z and by Lemma 1 • 1 • 1 

S P (X:R.Hn of Xm+n) -+ 0 

for n -+ 00 • 

To prove the converse, assume that X2Z is weak Bernoulli, i.e. (4.4.2) 

holds. We can select a regular conditional distribution 

µ (BJ := Px Ix = (BJ, 
X JN JNCX 

such that with the notation (4.3.4) 

for n -+ 00 , up to a PxlNc-null set. It is no restriction to assume that this 

holds for all x. By Theorem 4.3.2 we can construct a pair (XiN ,XJ?,il of 

random vectors, marginally distributed as µx and PxlN such that for each 

n <: 0 the random vectors XiN+n and X~+n are maximally coupled, i.e. 

n <: O. 

Because 5n -+ 0 for n -+ 00 the processes XiN and X~ are successfully coupled. 

Note that the probability measure Px thus constructed, depends on x. 

We have to define a probability space (n,A,P) on which also X~c and 

XJ?,ic are defined. Using Leim!la 4.2.4 we can extend the probability space 

with a random vector X~c such that (P x> X~ = Pxzz; • Also the new probabil­

ity space depends on x. Using that the random variables have their values 

in a Borel space it is possible to show that 

(P x) X' X" (B) 
JNC I 2Z 

is measurable in x for each measurable set B. Note that the requirements 

and PX' X" Ix• =x = (Px)x, X" 
JN I 2Z JNC JNC I 2Z 

determine a simultaneous distribution 

PX' X" X' :Iii I 2Z I JNC 

on processes (X:k ,XZz:) on a probability space, say W,A,Pl. Because with 
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these requirements the random vector X~, given X~c=x, has conditional 
distribution PX IX = , it follows that X~ is distributed as X2Z. We also JN JNC X 
have 

PX" Ix' =x 2Z JNC 
(Px)X" 

2Z 

and hence X~c and X~ are independent. Note also that X~ is distributed 
as X2Z. Because Xj.,i and Xm are successfully coupled, the probability space 
(~ 1 A,P) satisfies the requirements. D 

NOTE. By the if-part in the proof of the theorem above we have 

P (X~+n # Xm+n) 2 .in' n 2 0. 

Apparently by the second part of the proof we can construct (X~ ,x;z) such 
that the equality holds: The probability at the left equals 

I o (x) d PX' (x) = .Ln, n 2 O. 
n JNC 

Here we apply Proposition 4.1.1 with on on(x) defined in the proof above. 

Another class of processes for which a coupling property almost simi­
lar as above holds, are the Cesaro weak Bernoulli processes. Let Xzz be a 
stationary sequence of random variables with values in a Borel space. The 
process Xzz is called Cesaro weak Bernoulli if 

(4.4. 3) 
n-1 

lim II! L 
n-+oo n k=O 

o. 

A weak Bernoulli process is Cesaro weak Bernoulli. To see this apply the 
following proposition and note that (4.4.4) follows from (4.4.2). 

PROPOSITION 4.4.8. The process X2Z described above is Cesaro weak Bernoulli 
if and only if 

(4.4.4) lim II~ 
n 

n~ 

n-1 
I p I - p II 

k=O XJN+k XJNc XJN 

PROOF. The proof is divided into two parts. 

0 a.s. 

Part 1. Let Zn be defined as the expression in (4.4.4). We show first that 
EZn is the expression in (4.4.3). Let on be an integer valued random vari­
able, homogeneously distributed on {O, .•. ,n-1} and independent of X2Z. 



Note that 

z 
n 

lip x 
:Ilil+cr 

n 

By stationarity X:JN is distributed as X:IN+crn and by Proposition 4.1.1 

EZn j_ (X c ,X,., ) • 
:IN ""'+crn 
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It is now easily seen that EZn equals the expression in (4.4.3) and hence 

X?Z is Cesare weak Bernoulli if and only if limn__, EZn = O. Thus we have to 

prove that limn-+«> EZn = 0 if and only if limn__, Zn = 0 a.s. The if-part of 

this assertion is a consequence of the dominated convergence theorem. To 

prove the only if-part we argue as follows. By stationarity 

z 
n+m 

n+m-1 
11_1_ l 

n+m i=O 

n 
n+m 

z + 
n 

m 
n+m 

m-1 
II~ I 
m i=O 

(P I - p ) II. 
X:IN+n+i X:INc X:IN+n+i 

The total variation expression at the right-hand side equals 

llp 
x:JN+n+cr 

m 

I - p x x :INc :JN+n+cr 
m 

and because X can be expressed as a function of X"''+crm, the expres-:IN+n+crm ,.., 
sion above is bounded by 

I - P II 
x:INc x:IN+cr 

Therefore we have the inequality 

z 
n+m 

m 

z . 
m 

Suppose limn__, EZn = 0. By Fatou's lemma this implies that lim inf Zn 0 

a. s. In the se.cond part of the proof we shall show that this implies 

lim z n-><x> n 

Part 2. Let 

(4.4.5) 

0 a.s. Then this will prove the only if-part of the theorem. 

n 2 1, be nonnegative numbers, satisfying 

n m 
an+m '.'> n+m an + n+m am, n,m 2 1. 
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Suppose that lim inf an 0. We shall prove that limn~ an = 0. Let £ > 0 
be arbitrary and choose k so large that ak < ~£. Each number n can be writ­
ten as n = sk+ r with 0 :;; r < k. The inequality (4.4.5) implies that a 1 
dominates all an, n ~ 1. Hence 

Here if n is large enough an < £. It follows that limn~ an o. D 

An equivalent formulation of the concept Cesare weak Bernoulli can be 
given in terms of coupling. 

THEOREM 4.4.9. A stationary sequence X:iZ of random variables with values in 
a Borel space r is Cesaro weak Bernoulli if and only if there is a probabil­
ity space with processes X:iz and X~, marginally distributed as XliZ, with 
X~c and X~ independent such that there are nonnegative, integer valued 
random variables cr1 and cr 2 for which 

n € :JN. 

In the proof of the theorem above we need the following simple lemma. 

LEMMA 4.4.10. If YThl is a sequence of random variables with values in a 
Borel spacer, and cr ~ 0 is an integer valued random variable, then 

PROOF. For 

11! 
n-1 

1 n-1 
lim I Py I p II o. n n YThl+i n~ i=O Thl+cr+i i=O 

n ~ 1 we have 

ln-1 n-1 I 
l.·-~o P(YlN+k+i E B, cr=kl - I P(YThl+i E B, cr=k) 

i=l 

:;; ((n-k) v O}P(cr=k). 

Using this in~quality and the definition of total variation we obtain for 
n + oo 

m 
l (n-k)P(cr=k) 

k=O 
O(n). 

PROOF of Theorem 4.4.9. First we prove the if-part. Let X~ and X~ be 
processes as in the assertion of the theorem. It follows that 

D 



0 a.s. 

and hence by Lemma 4.4.10 

n-1 
1 

n-1 
lim II! l Px, Ix' - l PX" II 

n n Ix· n-+= i=O JN+i JNC i=O lN+i lNC 
0 a.s. 

Because X~c and x;z are independent this yields (4.4.4) and hence XLZ 

Cesaro weak Bernoulli. 

109 

is 

To prove the converse we use (4.4.4). Select a regular conditional dis-

tribution 

By stationarity we have P - ! in-l P Because of (4.4.4), using XlN - n li=O XlN+i · 
notation (4.3.4) 

1 n-1 i 
lim 11- l T µx 
n-+= n i=O 

n-1 

l 
n i=O 

P II 
XJ!'Hi 

0, 

up to a Px -null set. It is no restriction to assume that this property JNC 
holds for all x. We can now argue as in the corresponding part of the proof 
of Theorem 4.4.7. However, instead of Theorem 4.3.2 we use Theorem 4.3.3 to 

construct the successful coupling. D 
EXAMPLE 4.4.11 (periodic Markov chains). Let XJN be an irreducible, positive 
recurrent Markov chain with countable state space r. We do not assume that 

the Markov chain is aperiodic. Extend XlN to a stationary process XLZ. 

Using BREIMAN [Section 7.9] we can prove that 
n-1 

lim 11! l P I - P II = 0 a.s. 
n-+= n i=O ~+1 XO XO 

and by using the Markov property as in Example 4.4.4 we obtain 
n-1 

lim 11! I P I p " 
n-+= n i=O XlN+i XJNc - XJN 

0 a.s. 

Hence the process Xl'Z is Cesaro weak Bernoulli. 

NOTE to Sections 4.1 and 4.2: Prof.dr. J. Fabius remarked that there is a 

large literature on measures of dependence. The measure of dependence L(X,Y), 
studied in the report by SCHWARZ [1978], is investigated earlier in SILVEY 
L1964J*) and already in the fifties Frechet has paid attention to the problem 

* of constructing a simultaneous distribution PX,Y with prescribed marginals. 
*) 

S.D. SILVEY, On a measure of information, Ann. Math. Stat.12_, 1157-1166. 





CHAPTER 5 

THE SPREADING BEHAVIOUR OF Sn 

In this chapter we want to derive limit relations of the type 

(5. 0 .1) lim lip s n-+oo n 
- P II s +h 

n 
0, h real, 
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for random walks with asymptotically independent increments. In Section 5.1 

we show how to reduce the proof of results of this type to coupling prob­

lems for sequences of independent, identically distributed (i.i.d.) random 

vectors. In Section 5.3 we prove (5.0.1) and in Section 5.2 we prove under 

weaker conditions, a similar, weaker limit relation. Section 5.2 makes use 

of the.Ornstein coupling and Section 5.3 utilizes the maximal coupling 

theorem for Markov chains. 

In Chapters 5 and 6 we assume that the random walk S2Z is given in 

terms of a stationary sequence X:;z of random variables with values in a 

Borel space r. A real valued process s22 is called a random walk controlled 

by X2Z if there is a measurable real function f defined on r, such that S2Z 

is given by 

(5. 0.2) n E ZZ:. 

Clearly because X2Z is stationary, Sze; is a random walk with stationary 

increments. 

If S2Z is any random walk and no controlling process XLZ is specified, 

we can always take Xzc; to be the process of increments of S:;z. This process 

controls SLZ: take f the identity on the real line. In the sequel we only 

discuss random walks together with a controlling process. We have already 

seen that this is not a restriction. The reason for discussing controlled 

random walks is that in several examples the properties of the random walk 

are given in terms of X2Z and not immediately in terms of S2Z. Also X2Z 

might have some useful property that is not available for Szz;. One might 

think of Markov dependence (see Example 2.1.11). Also semi-Markov processes 
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can be fitted into this framework (see Section 6.4). 

EXAMPLE 5.0.1. Suppose Y2Z is a stationary, Markov dependent sequence with 

values in a Borel space r0 . Let ~2Z be a real valued process such that ~n' 

given Y2Z and (~k)k;i1n' only depends on (Yn,Yn+l). Then (~n'Yn), n E 2Z, is 

called a semi-Markov chain. Define 

and let f on r be the projection on the second coordinate. Then S2Z, deter­

mined by (5.0.2), is a random walk controlled by the Markov process X2Z. 

5.1. DEPENDENCE STRUCTURE AND COUPLINGS FOR RANDOM WALKS 

Central in our discussion of random walks with dependent increments is 

the use of condition (5.1.3). The first half of this section discusses 

this condition. Theorem 5.1.7 is the main result of this section. It shows 

how the random walk problems of this section can be reduced to the study 

of i.i.d. random vectors. The second half of this section is concerned with 

a proof of this theorem. 

We discuss random walks S2Z controlled by a stationary sequence X2Z, 

i.e. (5.0.2) holds. If K is a finite integer set, we sometimes use the nota­

tion 

(5.1.1) 

In Chapter 1 we obtained results for the spreading behaviour of random 

walks with stationary, independent increments. The main tool that we used 

in the proofs was a coupling technique. In this chapter we want to relax 

independence to some form of asymptotic independence. To be able to use 

also in this context a coupling technique we have to get a good understand­

ing of the dependence structure of the processes that are to be coupled. 

In fact we are only able to use a coupling approach if we impose condition 

(5.1.3) on the controlling process X2Z. We show that the condition is satis­

fied if X2Z is a countably valued sequence or if X2Z is a Markov dependent 

sequence. 

The asymptotic independence condition that we require on X2Z in this 

section is 

(5.1.2) 0 
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for all finite subsets L' and L" contained in zz:. If Xzz: is countably valued 

then (5.1.2) is equivalent with a concept called mixing in ergodic theory 

(see the note to Lemma 5.1.4). The coupling constructions that we want to 

make, use (5.1.2) together with the following condition 

(5.1. 3) 0 

for all finite subsets K c ZZ, where the limit is taken along the directed 

set of finite subsets L c ZZ:, partially ordered by inclusion. Loosely 

speaking the condition requires that for a sufficiently large finite in­

teger setL, the random vectors XK and XLc are approximately independent, 

given XL\K. Condition (5.1.3) is studied in the first two propositions of 

this section. 

Before presenting detailed proofs, we first sketch the background of 

ideas on which the theory in this chapter is founded. In Theorem 1.1.2 we 

derived the limit relation 

lim lip s n-+co n 
- P II s +h 

n 
0 

by means of coupling. Here we want to use a similar approach. In Theorem 

1. 1. 2 we argued as follows. Let Xzz: be the process of increments of szz:. 

We constructed processes X2z and X~, distributed as Xzz:, such that for 

large n with large probability 

(5. 1. 4) S" S'. 0, j ,,; 0, 
J J 

s·~ S'. h, j > n, 
] J 

for some prescribed real h, while also 

where K 
n 

X'~ 
] 

= X'., 
J 

j if. 

X' 
2Z 

: = { 1, •.• , n} and S2z 

respectively. and x~, 

K n' 

and S~ are the random walks with increments 

The result that shows how we can use coupling in our generalized con­

text is Theorem 5.1.7. To get some feeling for the kind of answer that this 

theorem gives, consider a real valued Markov sequence XZZ: and let SZZ: be 

the random walk with increments XZZ:. Consider for some integer k the dis­

tribution 
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and assume that F is not degenerate. Observe that we can construct random 

variables xk and Xk_ that are, given {Xk-l= y-,Xk+l=y+}, F-distributed such 
that the distribution of the difference Xk- Xk is not degenerate. Arguing 

in this way we can construct for any integer k triples (Xk-l'Xk,Xk+l) and 

(~_ 1 (Xk_'~+l> such that 

(5.1.5) 

while the difference Xk_- Xk may be nonvanishing. We shall say that we "vary" 

~, while Xk-l and ~+l remain fixed. 

Take a sequence k 1 < 

triples (Xk·-l'xk·'xk·+l> are 
J J J 

< km of positive integers such that the 

(approximately) independent. This is possible 
by condition (5.1.2). We can then vary Xk·' i.e. we can construct a pair 

J 
(Xk·'Xk.) such that (5.1.5) holds fork= k., 1 s j s m. It is important to J J J 
note that, by the Markov property and the independence of the triples 

(Xk·-l'xkJ·'xk.+ll, 1 s j s m, we can vary Xk· independently for the diffe-J J J rent k., 1 s j s m. Suppose for some real hit is possible to achieve 
J 

m 
l (X" - X' ) = h 

j=l kj kj 

with large probability. Then we can obtain (5.1.4). To see this, define 

Xj : = Xj and Xj : = Xj, j f. {k1, ••• ,km}, and let S~ and S?z be defined as 
usual in terms of X~ and X?z. We have 

m 
S" - S' l (X" - Xk ) h, n ;;:: k m' n n k. j=l J J 

0 n s 0, 

and hence (5.1.4) holds. Similar as in Theorem 1.1.2 we can derive the 
required limit relation (5.0.1). Thus our problem is how to vary Xk , 

j 
1 s j s m, such that I;=l (Xkj- X~j) = h with large probability. Note that 
this is a problem concerning the properties of the sequence of triples 

(Xk·-l'XkJ·,Xk·+ll, 1 S j s m, so the properties of a sequence of independent 
J J 

random vectors. This problem can be solved by methods such as the Ornstein 
coupling (see Proposition 5.2.7}. 

Theorem 5.1.7 formulates the insight above. It indicates the question 
on sequences of i.i.d. random vectors that has to be solved. The theorem is 
not only valid for Markov sequences X2'2: but it applies also to more general 
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processes. To understand how this more general result is obtained, we argue 

as follows. Instead of a sequence of integers k 1 , ..• ,km we consider a se­

quence of finite integer sets K1, ••• ,Km. We want to vary the random vectors 

s j s m. To this purpose we have to overcome the following problems: 

:i;,et X' := Xn, X" := X , n f. U K .. How can we guarantee that x:,,_, and 
n n n J J = 

x~ are distributed as x?Z? 

(ii) Can we vary XKj, 1 s j S m, independently for the different Kj, 

1 s j s m? 

The first question is related to (5.1.5). Above we settled these questions 

by using the asymptotic independence assumption (5.1.2) and the Markov 

property. If the argument above is traced back one will observe that we 

only used the following consequence of the Markov property: 

where K. := {k.} and L.\K. {k.-1,k.+1}. The idea is to replace the Markov 
J J J J J J 

property by condition (5.1.3). This condition requires that if the sets 

Lj ~ Kj are chosen large, then XKj and XLj are approximately independent, 

given XL·\K·· We can again give a positive answer to questions (i) and (ii) 
J J 

above. So we can vary the XKj' independently for the different sets Kj, 

1 s j s m, while xL.\K.' 1 s j s m, remain fixed. Again our problem is, 
J J ~m 

how to vary XK, 1 S j Sm, such that l· 1 (XK·-XK.) = h with large prob-
j J= J J 

ability. To this purpose we have to investigate the sequence XL·• 1 s j s m, 
J 

of (approximately) independent random vectors. 

The idea above is formulated in Theorem 5.1.7. This theorem only re­

quires the conditions (5.1.2) and (5.1.3). Condition (5.1.3) is obviously 

valid for Markov sequences X2Z. In Proposition 5. 1 . 2 we show that it is also 

satisfied for countably valued sequences X2Z. 

PROPOSITION 5.1.1. Let X2Z be a sequence of random variables with values in 

a Borel space f. Define for finite integer sets Kc L 

We have 

if K c L c L', 

fK(L} S 2 fK' (L) if K c K' c L. 
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PROOF. Observe that if L c L' then, given XL'\K' the random vectors XLc 

and XL'c mutually determine each other. Hence 

Take expectations and apply Proposition 4.1.3 to get 

2fK(L). 

Similarly we have 

NOTE. As a consequence of the first inequality of the proposition we have 

lim fK(L) = 0 
L+2Z 

or else lim inf fK(L) > O. 
L::>K 

Hence (5.1.3) is equivalent with the validity of 

D 

with L of the form L := {-£, ... ,£}, for any finite integer set K. Using 

the second inequality it follows that we only have to require this limit 

relation for sets K of the form K := {-k, ... ,k}, k 2 1. If X2Z is station­

ary we can restrict to requiring the limit relation above for sets K of 

the form K := {1, .•. ,k}, k 2 1. 

PROPOSITION 5.1.2. Let X2Z be a sequence of random variables with values 

in a Borel space r. If X2Z is a Markov dependent sequence, or if X2Z is a 

countably valued sequence, then (5.1.3) is satisfied. 

PROOF. First suppose that X2Z is Markov dependent. Take K := {-k, •.• ,k} 

and let L ::i {-k-1, •.. ,k+l}. Observe that 

This proves (5.1.3). 

Let us now consider the countably valued case. Assume r is countable. 

It is sufficient to prove 

(5.1.6) 

with Ln := {-n, ... ,n}, n 2 1, for any finite integer set K. Suppose that 



XK has its values in the countable set {y1 ,y 2 , ... }. By Proposition 4.1.1 

and because ~c Le u (L\K) we have 

By a martingale theorem (see BREIMAN [Theorem 5.21]) we have 
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with Ln as defined above. The expression above is dominated by 2 P(XK=yk). 

Sum over k and apply the dominated convergence theorem to exchange limit 

and summation. We obtain (5.1.6). D 

The process x:?Z in the example below does not satisfy (5. 1. 3). 

EXAMPLE 5.1.3. Let I; be a random variable, homogeneously distributed on 

[0,1) and let a E [0,1) be some irrational number. Define a stationary se­

quence Y :?Z by 

y 
n 

:= 0 

if (l;;+na) mod 1 E [O,~), 

else. 

An important property of this process is that I; is determined by (Yk)k<O' 

up to a null set. Hence the process Y:?Z is deterministic, in the sense that 

Yn+l is, up to a null set, (Yk)k~n-measurable. In particular 

a .. s., 

with o{Yo} the probability measure degenerate at {Y0}. Because a is irra­

tional, there is for each set L := {-i, ... ,i} some y such that 

satisfies 0 < p < 1, where {YL\{O}=y} has positive probability. Because 

Y:?Z is a countably valued sequence, this process satisfies (5.1.3) by the 

proposition above. 

Let Xi , i ~ 1, be a sequence of independent processes, distributed as Y :?Z. :?Z . 
1. Define X : = (X ) . >l n E :?Z. We show that X,.,., does not satisfy (5. 1. 3). First note 

n n 1.- , "-' 
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that if µi and Vi' i ~ 1, are probability measures on {0,1}, with the mea­

sures µi degenerate at {ki}, i ~ 1, then the product measures satisfy 

II n µ. - n v.11 
i~l 

l. 
i~l 

l. 

~ 

211cn µ, - n v.)+11 
i~l 

l. 
i~l 

l. 

2( n µi ({ki}) - n 
i~l ni 

20 - n 
i~l 

v. ({k. }) ) • 
l. l. 

Vi ({ki})) 

Let L be a finite integer set containing {O} and consider the expression 

i 
Observe that XL\{O} 

n 
i~l 

6 . -
xi 

0 

y for infinitely many i ~ a.s. Hence 

and therefore, using Proposition 4.1.1 

for all finite integer sets L ~ {O}. Thus (5.1.3) is violated for X:;z. 

As a first step in the investigation of the dependence structure of 
X:;z we prove the following lemma. It shows that we can replace sections of 
X:;z by new, mutually i~dependent sections, such that the process changes 
only slightly. 

LEMMA 5.1.4. Let X:;z be a sequence of random variables with values in a 
Borel space r such that (5.1.2) is satisfied. Let there be given a finite 

* integer set L and a positive integer m. For each E > 0 there exists a 

r-valued process X:;z for which 6 (X2Z, X2Z) < E such that the following require-
ments are satisfied. 

k 1 < ••• < km 1 .such 

distributed as XL.' 
J 

There are integer sets L. 
~ J 

that XL·' 1 $ j $ m, are m 

1 $ j $Jm. 

* := k. + L , 1 $ j $ m, with 
J 

independent random vectors 

PROOF. We prove the assertion above by induction on m. The prm uss X:;z will 
be defined on the same probability space as x:;z. Furthermore, we show that 
X2Z satisfies 
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(5.1. 7) 

m 
where L : = j ~l Lj and z 1 and z 2 are arbitrary, X2Z - measurable random vari-

ables. Remark that (5.1.7) expresses that the dependence structure is not 

affected by the introduction of the new random variables. The assertion is 

trivial form= 1: Take k 1 arbitrary and X2Z := X2Z. Now suppose that the 

assertion of the proposition and (5.1.7) hold form~ 1. We have numbers 

k 1 < ... <km and a process X2Z as mentioned in the assertion of the propo­

sition, such that (5.1.7) holds. Choose km+l so large that with 

* Lm+l := km+l + L 

.L (XL ,XL) < E - p (X2Z I X2Z) I 

m+l 

m 
where L = j~l L .. Using Corollary 4.2.5 we can extend the probability space 

J 
with a vector XL , distributed as XL· 1 and independent of (XL,XL) such 

j+l J+ 
that 

By (5.1.7) the right-hand side equals .L(XLro+l'XL). Let X be coupled with X 

over L~+l" This defines Xzz;. Clearly Xr. is independent of XL, so XL.' 
!n+l J 

1 ~ j ~ m+l, are m+l independent random vectors. Note that 

~ P (X2Z ;* xzz; l + P (XL ;* xL J < E. 

m+l m+l 

By the note to Corollary 4.2.5 and by (5.1.7) 

This shows that the induction statement holds for m + 1. D 

NOTE. Let (D,A,P) be a probability space and T a measure preserving mapping 

from D onto itself. The mapping T is called mixing if for A1 ,A2 EA 

-n 
lim P(Al n T A2) = P(Al)P(A2). 
n..-

Suppose Xzz; is a stationary process with values in a countable spacer. Let 

the a-field T consist of all subsets of r. Consider the probability space 



120 

:;z :;z :;z 
(f , T ,PX ) and take T to be the shift transformation on r . By using :;z 
that each set A ~ ~ can be approximated arbitrarily well by cilinder sets, 

one observes that T is mixing if and only if (5.1.2) holds. 

The following· theorem is the most detailed result in this section on 

the dependence structure of X:;z. It proves the existence of a "nice" approx­

imation X:;z of X:;z and it is fundamental to the coupling construction in 

Theorem 5.1.7. 

THEOREM 5.1.5. Let XZl be a stationary sequence of random variables with 

values in a Borel spacer, such that (5.1.2) and (5.1.3) are satisfied. 

Let there be given a finite integer set K* and a positive integer m. For 

each E: > 0 there exists a r-valued process X:;z for which o (X:;z ,X:;z) < E:, 

such that the following requirements are satisfied. There is an integer set 

* * L ~ K and a sequence of integers k 1 < ... <km such that, with the 

notations 

* * L. := k. + L K. := k. + K I :". j :". m, 
J J J J m m 

L := j~l L. K := j~l Kj, J 

the process x:;z satisfies: 

(i) XL·' 1 :". j :". m, are independent random vectors distributed as XL.' 
J J 1 $ j $ m; 

(ii) given XL\K the random vectors XLc'xK1 , ••• ,XKm are independent. 

* * PROOF. Select a finite integer set L ~ K such that 

(5.1.8) 

By Lemma 5.1.4 there exist integers k 1 < ... <km such that for a process 

X:;z holds o(X:;z,X:;z) <le;: while, with the notations used above, XL.' 
J 1 $ j $ m, are independent random vectors, distributed as XL·· Define X 

c ~ J ~ 
to be coupled with X over K and construct XK, independent of XLc' given 

XL\K' such that 

(5.1.9) p"' ~ ,~ 
"'K I ••• ,XK XL\K 

1 m 

This can be done by using Lemma 4.2.4. It follows that, given XL\K~ the 

random vectors xK1 , ••• ,XK ,XLC are independent. Because XL·\K· = XL·\K·• 
"'Ill J J J J 
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1 s j s m, are independent random vectors, it follows easily from (5.1.9) 

that XL.= XK·U(L·\K·)' 1 s j s m, are independent random vectors. By apply-
] J J J ~ 

ing Proposition 4.1.4 inductively we shall prove o (X22 ,X22 ) < E. Use 

and (5.1.8) to obtain that for any j with 1 s j s m 

p p 

x Ix K. (L\K)UK u ... UK. l 
J J-

x Ix K. L.\K. 
J J J 

Hence by Proposition 4.1.4 

+ o(XKcuKl ,XKc ) + o(XL.'XL.) . .•. UK. l UK1u .•• UK. l 
J- J- J J 

d 
Because XL. 

J 
right is less 

XL· the second and fourth terms vanish. The first term on the 
J E 

than m by (5.1.8). Hence by an inductive application of this 

inequality we obtain 

D 

The process X2Z constructed in the theorem above, satisfying conditions 

(i) and (ii) in the theorem, will be called the window-frame process, with 

windows K. and frames L.\K .. This terminology can be explained as follows: 
J J J 

In Theorem 5.1.7 below we "vary" the values on the windows, while the values 

on the frames remain fixed (see the introduction of this section). 

Let us first introduce some notations. Suppose there is given a dis­

tribution Fon lR1 x r 0 with r 0 a Borel space. Let (T,Y) := ((Tj,Yj));=l be 

a random vector consisting of m independent, F-distributed increments. We 

can formulate limit properties of the random vector (T,Y) for m ~ 00 by means 

of a class ~ of distributions on the real line. This class is defined as 

follows. Let (T' , Y') and (T", Y") be random vectors, marginally distributed 

as (T,Y), such that Y' Y" while T' and T" are arbitrary. Let ~be the 

class of distributions G of the partial sums 
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where Llj := T'! 
J 

1 :5 j ~ m, 

for all random vectors (T' , Y') and (T", Y") that satisfy the conditions 

above. 

The following example shows how this class of distributions can be 

used to obtain limit properties. 

EXAMPLE 5.1.6. Let Sm := T1 + ..• +Tm and define S~ and S~ similarly in terms 

of T' and T". If the distribution G is defined as above then by Lemma 1.1.1 

Hence if for any E > 0 the sets ~ contain for all sufficiently large m 

elements G with G({h}) > 1-E, then we have 

lim Up - P U o. s s -h m->= m m 

We even have something more. Because Y~ = Y~ we have by Lemma 1.1.1 

1- G({h}). 

So for the simultaneous distribution of (Sm,Ym) we have 

The convergence problems in this chapter will be translated into ques­

tions concerning the elements of ~- For this reformulation the following 

theorem is fundamental. 

THEOREM 5.1.7. Let X2Z be the window-frame process constructed in Theorem 

5.1.5. Suppose f is a measurable function and let F be the common distribu­

tion of the independent random vectors 

:5 j :5 m, 

Jj 
where S is defined using the notation (5.1.1). If GE~ then there is~a 
probability space with processes X~ and X~, marginally distributed as x22 

and coupled over the complement of K:= K1 u ... u Km, such that G is the 

distribution of s"K - s'K. 
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PROOF. Let X::z be constructed as in Theorem 5.1.5. Define for n i K 

(5.1.10) X" := X 
n n 

The random vector (T,Y) defined by 

(T,Y) 

consists of m independent, F-distributed components by property (i) of 

Theorem 5.1.5. If GE 0: there are random vectors (T',Y') and (T",Y"), dis­

tributed as (T,Y), with Y' = Y", such that G is the distribution of 

l,; =l (Tj - T j) . By Lemma 4. 2. 4 the probability space can be extended with a 

random vector (S' ,S") that is, given Y, independent of the other random 

variables, such that (S',S",Y) is distributed as (T',T",Y'). By respectiv­

ely this conditional independence and by (ii) in Theorem 5.1.5 we have the 

equalities 

where S := T. It follows that (S,XKcl is distributed as (S',X:Kcl and as 

(S",XKc>· Construct (XK,XK) such that 

(5.1.11) p I ~ X1 X" Sf=s' S 11 =s 11 X =x K' K , , Kc 
p x p~ ~ ~ x ls=s' x =x x ls=s" x =x K I KC K I KC 

Then both (X:K,S',XKcl and (XK 1 S",XKcl are distributed as (XK 1 S,XKcl and 

by (5.1.10), both X~ and x~ are distributed as X2Z. Because by (5.1.11) the 
K. K. 

j-th compcnents of respectively S' and S" coincide a.s. with S' J and S" J 

and (S' ,S") is distributed as (T' ,T"), it follows that S"K- S'K has distrib­

ution G. D 

Theorem 5.1.7 can be used to obtain (5.0.1) by means of the following 

argument. Suppcse we succeed to show 0:• m ~ 1, has the property mentioned 

in Example 5. L6., i.e. for each h there exists, for m sufficiently large, 

an element GE a; such that G({h}) is close to 1. Using Theorem 5.1.7 we 

can argue as follows. If n > sup K then 

(5.1.12) S" - S' 
n n 

S"K - S'K 
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has distribution G. As in Example 5.1.6 we conclude that 

lim lip~ - P~ O 
m-+«> s s +h m m 

and because X~ and X~ is approximately distributed as XlZ, we obtain, 

using (5. 1.12) 

lim lips 
n-- n 

- p II s +h 
n 

o. 

Apparently we reduced the study of the limit relation above to the investi­

gation of a:, so to the investigation of sequences of i.i.d. random vectors. 

The class of probability distributions a;: has some useful and easily 

verified properties. 

LEMMA 5.1.8. a;: is increasing in m ~ 1. 

PROOF. Let GE a;:. Suppose (Tj,Yj) I 1 s j s m, and (Tj,Yj), 1 s j s m, are 

both sequences of m independent, F-distributed random variables, such that 

G E a;: is the distribution of 

m 

l 
j=l 

(T':- T'.). 
J J 

Let (Tm+l'Ym+l) be F-distributed and independent of the aforementioned 

random variables. Define T~+l := Tm+l andT~+l := Tm+l" Then G is the dis­
tribution of 

m 

l 
j=l 

so G E a;:+1. 0 

(T': - T'.) 
J J 

m+l 

l 
j=l 

(T'~ - T ~) , 
J J 

LEMMA 5.1.9. Let F and F be distributions of pairs of random variables 

(T1 ,Y1 ) and (T1 ,Y1}, where T1 is real and Y1 and Y1 have their values in 

Borel spaces. If Y1 is Y 1-measurable, then 

m ~ 1. 

PROOF. Suppose GE a;:. Then G is the distribution of I;=l Tj-Tj, where 
both 

s j s m, and s j s m, 



are sequences of m independent, F-distributed pairs of random variables. 
There is a measurable function f such that Y1 = f(Y 1). Let Yj := f(Yj). 
Then both 

and ~ j ~ m, 

are independent, F-distributed random variables. Hence G E G~. D 

5.2. LOSS OF MEMORY IN A STRONGLY NONLATTICE RANDOM WALK 
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Suppose SLZ is a random walk controlled by a stationary sequence XLZ. 
In this section we study limit relations such as 

(5. 2. 1) lim llv*P s n-+oo n 
- V*P II s +h 

n 
0 

for all absolutely continuous probability measures v on the real line. We 
have seen in Chapter 1 that if the increments are independent, then nec­
essary and sufficient for the validity of this limit relation is that the 
distribution of the increments is strongly nonlattice. It will be possible 
to give an analogue of this result for random walks S:;z, controlled by a 
stationary sequence XLZ. 

To this purpose we ne,;d a generalization of the concept strongly non­
lattice. For a definition of nonlattice the reader is referred to Section 

6.2. Define the lattice Ld with lattice width d by (1.1.2) and define 
(c) mod d for real c as the smallest nonnegative element of c + Ld. Let SLZ 

be a random walk controlled by a stationary sequence XLZ. The random walk 
SLZ is called weakly lattice with 

d E (0, 00 ] such that for all n 2 

respect to XLZ if there is a number 

1 the random variable en := (Sn) mod d is, 

where Kn:= {1, ... ,n}. Equivalently we up to a null set, 

may require for d 

n 2 1 , and for d E 

XI<ii-measurable, 

= co that S is, 
n 211i 

(Q,oo) that e 

up to a null set, XKc-measurable for 
S /d n 

n is, up to a null set, XKc-measurable 
n for n 2 1. The random walk SLZ is called strongly nonlattice 

to XLZ if the weakly lattice condition is not satisfied. 

EXAMPLE 5.2.1. 

with respect 

(i) Let S:;z be a random walk controlled by its own process of increments 
XLZ and suppose that XLZ is a sequence of independent, F-distributed 
random variables. If the weakly lattice condition above is satisfied 
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for some d E (0, 00 ] then the random variable en := (Sn) mod d is both 

XKn- and xK5-measurable, up to a null set. Hence en is a constant 
with probability 1. A distribution Fis called weakly lattice if Fis 
concentrated on a set c + Ld' d > O, or, equivalently, if for all 

. n* ,n ~ 1 the convolutions F are concentrated on nc + Ld' d > O. It is 
now easy to see that s is weakly lattice (with respect to its process 2Z 
of increments) if and only if F is weakly lattice. 

{ii) Let X2Z be deterministic, i.e. each random variable Xn+l is, up to a 
null set, XJNC+n -measurable. Clearly Sn is, up to a null set, XJNC -
measurable, so is certainly XKg-measurable, n ~ 1. So each random 
walk controlled by X2Z is weakly lattice with d =. 00 • 

{iii) Suppose X2Z is Markov dependent and has its values in a Borel space. 

Note that Sn, given {x0 ,xn+l>, is independent of XI<g. Hence s2Z is 
weakly lattice with respect to X2Z, if for some d E {O,oo] the random 

variable {Sn) mod d is, up to a null set, {x0 ,xn+l)-measurable. Sup­
pose X2Z is stationary, real valued, such that its transition probab­
ility is given by 

P {x,B) = f f {x,y) dy, 

B 

1 
B E B I 

2 with f strictly positive and measurable on lR • Let S2Z be a random 
walk with increments X2Z. With these definitions the conditional 

distribution of s 1 , given {x0 ,x2J, is with probability 1 absolutely 
continuous with respect to the Lebesgue measure. Clearly then s2Z is 
strongly nonlattice with respect to X:;z· 

Before stating the main result of this section, Theorem 5.2.3, we in­
vestigate the concept strongly nonlattice. The following lemma is helpful. 

LEMMA 5.2.2. Let {T,Y) be an lR1 xr0-valued random variable, with r0 a 
Borel space. Then the set V of all d E [0, 00 ] such that {T) mod d is, up to 
a null set, Y-measurable, has a largest element d. 

PROOF. Consider a regular conditional distribution PTJY and let c{Y) +Ld(Y) 
be the smallest displaced lattice on which this conditional distribution 
is concentrated. If (T) mod dis, up to a null set, Y-measurable then PTjY 
is concentrated on a set c' (Y)+Ld ::i c{Y)+Ld{Y) a.s. Therefore the set V has 
the form 
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V = {d E [Q,co]: Ld ~ Ld(Y) a.s.}. 

If V n (O,co) contains two mutually prime numbers d' and d", then V = [O,co]. 
Else if V n (0 ,oo) is not empty, then v has a largest element d E (0 ,co) and 
d E V vanishes or divides d. In case v n (0 ,co) is empty we have V = {O}. 
The assertion of the lemma follows. D 

NOTE. The set V has the form {d E [0, 00 ]: Ld ~ Ld}. 

Suppose K is a finite integer set and let SK be defined by (5.1.1). 
Let K dK be the largest d E [0, 00 ] such that (S ) mod d is, up to a null set, 
XKc-measurable. By the lemma above dK is properly defined. Suppose K' c K 
is a nonempty integer set and observe that 

K' 
(S ) mod dK 

K K\K' 
(S - S ) mod dK 

is, up to a null se4X(K')c-measurable. By the definition of~· and the 
note to the lemma above dK divides dK'' so dK ~ dK,. Thus we proved the 
existence of the limit 

d00 := lim dK, 
K+:ZZ 

where the limit is taken along the directed set of finite integer sets K, 
partially ordered by inclusion. The lattice La.,, is called the minimal weak 
lattice of S:ZZ with respect to X:ZZ, while dco is the largest d E [0,co] such 
that for all n ~ 1, (Sn) mod d is, up to a null set, XKc-measurable, where 

n Kn : = { 1, .•• ,n}. 

The next part of this section is concerned with a proof of (5.2.1) for 
strongly nonlattice random walks. The result is given the form of an equiva­
lence between the strongly nonlattice condition and a limit property. Its 
proof can be found at the end of this section and is a remote application of 
the Ornstein coupling. A refinement of the limit relation of the theorem is 
given in the note to Proposition 6.1.5. 

THEOREM 5.2.3. Let S:zz be a random walk controlled by a stationary sequence 
X2Z with values in a Borel space. Suppose X:ZZ satisfies (5.1.2) and (5.1.3). 
If the random walk S:zz is strongly nonlattice with respect to X:ZZ, the fol­
lowing limit relation holds. For any absolutely continuous probability mea­
sure v on the real line and any real h 
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where Kn:= {1, ••. ,n}. Furthermore this limit property implies that S?Z is 

strongly nonlattice with respect to X::z. 

COROLLARY 5.2.4. If X2Z satisfies the assumptions of Theorem 5.2.3 and 

S2Z is strongly nonlattice with respect to X2Z' then for any absolutely 

continuous probability measure v on the real line and any real h 

lim llv*P s n-+ro n 
- V*P II s +h 

n 
0. 

Consider v as the distribution of a random variable z, independent of 

X2Z. Then we can write (for example) V*Psn = Psn+Z· If the limit relations 

above are rewritten using this notation, then the corollary is a simple 

consequence of the following lemma. 

LEMMA 5.2.5. Let T,T' and Y be random variables, T and T' real and Y with 

values in a Borel space. Then we have 

PROOF. Using (4.1.2) and (4.1.5) we obtain 

llp - P II '° lip - P II T T' T,Y T',Y 

At the end of the preceding section a connection was given between 

D 

the process X2Z and a class ~ of distributions on the real line, defined 

in terms of sequences of i.i.d. random vectors. The proposition below uses 

the Ornstein coupling to study this class ~- In the proof of Theorem 5.2.3 

we translate the knowledge of ~ thus obtained, into the limit relation of 

Theorem 5.2.3. 

The following lemma implies that the number dK, used in the definition 

of the minimal weak lattice above, can be seen as the minimal lattice width 

of a certain distribution on the real line. 

LEMMA 5.2.6. Let (T,Y) be an JR1 x r0-valued random variable with distribu­

tion F, where r 0 is a Borel space. Let d be the largest d E [0, 00 ] such that 

(T) mod d 
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is, up to a null set, Y-measurable. Then d is the minimal lattice width of 

a distribution H on the real line, given by 

H(B) := BE 81 • 

PROOF: Take some d E (0,oo). Define the characteristic function 

U E ]Rl. 

The assertion that (T) mod d is, up to a null set, Y-measurable, is equiva­
lept with 

On the other hand H is concentrated on Ld if and only if 

1 a.s. 

These two equivalences imply the assertion of the lemma. D 

The core in the proof of the limit relation of Theorem 5.2.3 is formed 
by the proposition below. The proof uses the Ornstein coupling for random 
walks. 

PROPOSITION 5.2.7. Let (T,Y) be F-distributed and defined as in the prop-

osition above. Suppose an open interval I contains an element of Ld. Let E 

be arbitrary positive. If m is large enough the set a: contains an element 
G such that 

G(I) > 1-E. 

PROOF. First suppose that T has finite expectation. At the end of the proof 
we indicate what has to be changed in case EJTJ 

Construct a sequence of independent random vectors (T'. ,T'.', Y.), j ;,, 1, 
J J J 

with distribution 

PT' ,T" ,Y(B1XB2XC) = f PTIY=y(Bl)PTIY=y(B2)dPY(y). 
c 

Note that both (T',Y) and (T",Y) have distribution F and that T' and T" are 
independent, given Y. We investigate the random walk 
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z 
n 

n 

== I t.j, 
j=l 

with L'.. := T"- T' 
J j j' 

j ? 1. 

This random walk has independent increments with expectation 0. By Lemma 

5.2.6 the distribution Hof i'.j has minimal lattice La. Let the random time 

T be the first n ? 1 for which Z~ - Z~ E I. By the Chung Fuchs theorem (see 

BREIMAN [Section 3.7]) T is finite with probability 1. Define 

* T T '.' j := J 

:= T'. 
J 

0 ,;; j ,;; TI 

j > T 

By using that T is a Markov time for the sequence (T '. , T'!, Y.) , j <: 1, it 
* J J J 

follows that (T.,Y.), j? 1, is also a sequence of independent, F-distrib-
J J * * uted random variables. The distribution G of z - Z' = l:i:1 1 (T .-T'.) is by 

m m m J= J J 
definition an element of ~ and because 

for m + 00 , the assertion of the proposition follows. 

If EITI = 00 , we choose the distribution of the independent sequence 

of random vectors (T'. ,T'!, Y.) , j <: 1, slightly different: We use a trunca­
J J J 

tion. Let c be some positive number, to be specified later and define 

and let (T '. , T'!, Y.) , j ? 1, have distribution 
J J J 

I (QTIY=y(B1)QTIY=y(B2) + QTIY=y(Bl n B2))dPY(y). 
c 

With these definitions (T', Y) and (T", Y) are both F-distributed and if we denote 

A:= {IT' I > c, /T"/ > c}, then on A we have T' = T" and on Ac, given Y, 

the random variables T' and T" are independent. It will be clear that for 

c + oo we have P(A) + 0 and also 

HpT"-T' - HH + o, 

where His defined as in Lemma 5.2.6. Hence if d is the minimal lattice c 
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width of PT"-T'' then de+ d for c-+ 00 • It follows that if we choose c suf­
ficiently large, then I n Ldc f p. The rest of the proof for the case 
EfTI = 00 is identical with the proof in the finite case. D 

In the course of the proof of Theorem 5.2.3 we need a simple lemma of 
a technical nature, that asserts that if T"-T' is small, then PT" and PT' 
are close in a suitable sense. 

LEMMA 5.2.8. Suppose T' and T" are real random variables. If VE is the homo­

geneous distribution on (0,E:) and p = IT"-T' I then 

PROOF. Observe that for any Borel set B E B1 

E: E: 
1 f XB(T'-t)dt -

1 f XB(T"-t)dt s e. 
E: E: E: 

0 0 

Hence µ := VE:*PT' - VE:*PT" satisfies 

µ(B)+ s 

and because llµll = 2 supB µ(B)+ the assertion of the lemma follows. D 

PROOF of Theorem 5.2.3. First we prove the limit relation. A demonstration 
of the much easier second assertion of the theorem is postponed to the end 
of the proof. By using A.1 it follows that it is sufficient to prove the 
limit relation for distributions v = vE:, so for the homogeneous distribution 
on ( 0 , E:) , E: > 0 . 

Choose arbitrary real h and positive o. We have to prove that for n 

large enough 

(5. 2.2) 

if S2'Z is strongly nonlattice with respect to X2'Z, i.e. if li~+:ZZ c\ = 0, 
where dK is defined in the introduction of this section. Choose the set 
K* := {1, ..• ,k*} so large that d := dK* < §oE:. The interval I:= (h-d,h+d) 
has a nonempty intersection with the lattice Ld. Let F 1 be the distribution 
of 

(SK*, X * ) . 
K c 
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By Proposition 5.2.7 we can choose m so large that GE d11 satisfies 
F1 

1 
G (I) > 1 - 90. 

Construct the window-frame process X?Z with m windows, such that 

o (X ,X ) = ~II P - P~ II < 1
1
6 0. 

?Z 2Z x?Z x?Z 

Note that X *\ * is XK*c-measurable. Let F be the distribution of 
K* L K 

(S ,XL*\K*). By Lemma 5.1.9 the set G:;'. contains G:;'.1 , so GE G:;'.· Construct 

X~ and X~ as in Theorem 5. 1. 7. Then the processes X~ and X~ are dis­

tributed as X?Z, and are coupled over the complement of the union K of the 

windows, while S"K - S'K is distributed as G. Let n > sup K. So 

Kn= {1, ... ,n} ~Kand the random variable 

is distributed as ThG and satisfies 

(5. 2. 3) 

This inequality forms the clue to the proof of (5.2.2). 

Because X' and X" are coupled over Kc and are equally distributed 
n 

and so 

Ps, Ix• = Ps"lx" • 
n Kc n Kc n n 

By the definition of p and Lemma 5.2.6, applied to the conditional dis­

tributions above, this implies that 

ttv *P I - v *P I II E s I x I E s "+h x" 
n K~ n Kii 

~ 2 E(l A ~lx~cl· 
n 

Because X~ and X~ are distributed as X2Z and by (5. 2. 3) 

(5.2.4) 

~2E(1A~) 
E 
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Thus we have obtained inequality (5.2.2) in terms of X?l. We still have to 

translate it in terms of X?l. Consider first the left term in (5.2.4) and 

apply (4.1.5) to obtain 

A similar estimate holds for the second term of the difference in (5.2.4). 

We obtain from (5.2.4), using these estimates, 

This proves the first assertion. To prove the second assertion, assume that 

the limit relation holds, but that S?l is weakly lattice with respect to Xzz. 

There exists a positive number d such that (Sn) mod d is, up to a null set, 

XKc-measurable for all n ~ 1. Let v be the homogeneous distribution on 

(O~!d). If h := !d we can choose n so large that 

(5. 2.5) 

On the other hand with the exception of a null set 

is concentrated on c + Ld, where C = (Sn) mod d is, up to a null set, 
n n 

measurable with respect to XKc· By the choice of h and v it follows that the 
n 

two measures occurring as the terms in the difference of (5. 2. 5) are with 

probability 1 mutually singular. This contradicts (5.2.5) and hence Szz: is 

strongly nonlattice with respect to X?l. D 

5.3. LOSS OF MEMORY IN A SPREAD OUT RANDOM WALK 

A probability measure µ on the real line is called spread out if for 

some n ~ 1 the convolution µn* is not singular with respect to the Lebesgue 

measure ~- Suppose SZZ is a random walk with independent, µ-distributed in­

crements. HERMANN [1965] proves that if µ is spread out, then we have for 
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any real h the limit relation 

lim lip s n-+oo n 
- P II s +h 

n 
0. 

Also the converse of this assertion is valid: if for any real h this limit 

relation holds, then necessarily the distribution µ is spread out (see also 

STAM L1967J). In this section we prove a similar result for controlled 

random walks with dependent increments. 

We mentioned in the introduction that this limit relation for random 

walks with independent, stationary increments might be proved by means of 

a coupling construction (see (0.0.4)). We discuss this in the note follow­

ing on Corollary 5.3.7. 

Let us first discuss a generalization of the concept spread out. Let 

s 22 be a random walk, controlled by a stationary sequence x 22 . The random 

walk s 22 is called spread out with respect to x 22 if for some n ~ 1 with 

positive probability the conditional distribution 

where Kn:={l, .•• ,n}, 

is not singular with respect to the Lebesgue measure £. 

EXAMPLE 5.3.1. Suppose s 22 is a random walk with stationary, independent 

increments X!iZ. The spread out condition above is satisfied if and only if 

for some n ~ 1 the distribution µ of the increments satisfies the require­

ment that 

is nonsingular 

- p 
- snjxKc 

n 
with respect to the Lebesgue measure £. In other words, the 

random walk s 22 is spread out with respect to X!iZ if and only if the dis­

tribution µ of its increments is spread out. 

Another example of a spread out random walk is Example 5.2.1 (iii). 

The following theorem is the analogue of the limit result for random walks 

with stationary, independent increments, mentioned in the first paragraph 

of this section. This theorem is the main result of this section. 

THEOREM 5.3.2. Let S2Z be a random walk controlled by a stationary sequence 

X!iZ with values in a Borel space. Suppose x22 satisfies (5.1.2) and (5.1.3). 

If s22 is spread out with respect to x22 then 



(5. 3 .1) 

where K := {1, •.• ,n}, n 2 1. Conversely, the limit property implies that 
n 

S?Z is spread out with respect to X?Z. 
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The proof of the theorem above can be found at the end of the section. 

The limit relation of the theorem is refined in Proposition 6.1.5. As a 

consequence of Lemma 5.2.5 we can obtain the following corollary. 

COROLLARY 5.3.3. If X?Z satisfies the assumptions of Theorem 5.3.2 and 

S?Z is spread out with respect to X?Z, then for any real h 

lim llp 
s n.._ n 

- P II s +h 
n 

o. 

The proof of (5.3.1) will be carried out by applying Theorem 5.1.7. 

First we have to study the class a; mentioned in that theorem. With the 

help of some lemmas it will be possible to reduce the study of this class 

a; to the following simple property of a random walk with i.i.d. increments. 

This property is already known, as we noted in the first paragraph of this 

section. The proof below is based on symmetry considerations. 

PROPOSITION 5.3.4. Letµ be the homogeneous distribution on (-1,1}. Then for 

any real h 

11' m ii "' *µn* - cS *µn*ll O 
0 h -h 1 

where ox is the probability measure degenerate at {x}. 

PROOF. It suffices to prove the result for h > 0. Let (Sn)n20 be a random 

walk with independent, µ-distributed increments started at h. Define T to 

be the first entrance time of this random walk into (-oo,O], i.e. 

T := inf{n 2 0: S ~ O}. 
n 

Becauseµ has .vanishing mean, T is finite with probability 1. Define the 

measure 

and let G+ be the positive part of 
n 

1 
B E B , 
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We prove by induction that 

(5.3.2) n ~ 0. 

Because T is finite a.s. this _will imply the assertion by 

llG II 
n 

2 P(T > n) + 0 

+ for n + 00 • For n = 0 the induction statement is obvious: both G0 and H0 

coincide with oh. Suppose (5.3.2) holds for n ~ 0. To prove that (5.3.2) 

holds for n = n+1 we first show that G+ 1 is concentrated on (0,oo). The n+ 
measure Hn clearly is concentrated on (0 ,oo) • The induction assumption 

(5.3.2) implies therefore that G+ is concentrated on 
n 

(0 ,oo). Let gn be the 

density of \l*G+ with respect to the Lebesgue measure L If x ~ 0 we have n 

(5.3.3) I 
~ I + x (-l, l) (-x-t) dGn (t) gn(-x). 

By symmetry G is the reflection of G+ with respect to 0 on the real line. 
n n 

Remark that (5.3.3) expresses that on [0, 00 ) the density of ll*G+ dominates 
n 

the density of ll*G-. Therefore the measure 
n 

has density 

on [0, 00 ) and by symmetry 

on (-00 ,0]. It follows that G+ is concentrated on (0,oo) and moreover n+1 

To prove the induction statement observe that with Xn+l := Sn+l - Sn 



Hn+l (B) P(Sn + Xn+l E B n (0, 00), T > n) 

+ 
2 Gn+l (B), 

where the first inequality is. justified by the induction assumption. This 

proves (5.3.2) for n = n+l. D 

By using a scaling and a translation it follows from the proposition 

above that for any homogeneous distribution µ on some interval I 

II µn* - n*ll lim <\*µ 0 
n.._ 
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for any real h. The maximal coupling theorem for Markov chains makes it 

possible to translate this limit relation in the following coupling proper-

ty. 

LEMMA 5.3.5. Suppose µ is a homogeneous distribution on an interval I on 

the real line. Let h be any real number. There exists a probability space 

with random walks (s;)nzO and (S~)nzO with independent, µ-distributed 

increments and started in 0 such that 

s;, n 2 o, and S~+h, n20, 

are successfully coupled. 

PROOF. The processes s;, n 2 O, and S~+h, n 2 O, that have to be construct­

ed, are Markov chains with transition probability 

P (x,B) : = F (TxB), 
1 

B E B I x real, 

and initial distributions o0 and oh respectively. Theorem 4.3.1 and the 

limit relation above imply the validity of the lemma. D 

The following lemma investigates the relation between the spread out 

condition and homogeneous distributions. The idea on the background is the 

following. If µ is a probability measure that is not singular with respect 
to the Lebesgue measure 2, then µ dominates a substochastic nonvanishing 

2* measure µ 1 , having a bounded density f with respect to 2. Thenµ dominates 
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2* 2* µ 1 • The measure µ 1 has by the dominated convergence theorem a continuous 

density 

2* J f (x) = f(t)f(x-t)dx. 

2* So if··µ is any Lebesgue nonsingular probability measure then µ dominates 

a measure of the form c.Q,I, whe.re c is a positive constant and .Q,I the re­

striction of the Lebesgue measure .Q, to an interval I. 

LEMMA 5.3.6. Let F be the distribution of two independent random vectors 

(T 1 ,Y1) and (T2 ,Y2), whose components Ti and Yi have their values on the 

real line and in a Borel space r respectively. Suppose with positive prob­

ability PT IY is nonsingular with respect to the Lebesgue measure £. 
1 1 

Then there is a positive constant c and an interval I such that with posi-

tive probability 

PROOF. Select a measurable function f on lR 1 x r such that f ( • , y 1 ) is a 

density with respect to .Q, of the Lebesgue continuous part of PTilYi=yi· By 

REVUZ [Lemma 1.5.3] we may assume that f is bimeasurable. Define g on 
1 2 

lR x r by 

g(t,z) where 

Define z := (Y1 ,Y2 ) and note that 

Using the dominated convergence theorem we obtain that g(t,z) for fixed z 

is continuous in t. By the independence assumption and because with positive 

probability, f(·,Y1 ) and f(·,Y2 ) are not equivalent to a Lebesgue null 

function, it follows that g(•,Z) is not equivalent to a Lebesgue null func-

tion with posi.tive probability. 

We can now choose JxB, with J a bounded open interval in ml and 

B c r2 a measurable set with P(Z E B) > 0, such that g (. ,z) I' 0 on J for 

each z E B. Let B c B be the set of all z E B such that on an interval n 
I c J with length at least 1 holds z n 

g (. ,z) 1 
;:, n Xr ( ·) • 

z 



Because for fixed z the function g(t,z) is continuous in t, it follows 

that B t B for n + oo, so for some n ~ 1 we have P(Z E B ) > 0. Choose 
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n n 1 
numbers t 1 s ... s tm such that J = (t1 ,tm) and 0 < tj+l-tj < 2n' 1 s j s m. 

Define the sets B~ c Bn by 

s j s m. 

By the definition of B we have B 
n n 

Bj and because P(Z E B ) > 0 for 
n n 

some j jo 

P(Z E 
BjO) > o. 

n 

If we choose c = ~ and I := (tJ· ,t. +ll the assertion of the lemma follows.D 
n o Jo 

COROLLARY 5.3.7. The probability space in the preceding lemma can be extend­

ed with a random variable 6 with values in {0,1}, such that the set {6=1} 

has positive probability and on this set 

where µ is the homogeneous distribution on the interval I. 

PROOF. Let U := T1+T2 and Z := (Y1 ,Y2). By the lemma above the set 

C {z E r 2 .. p ~ 
:= uiz=z 

has positive Pz-measure. Define a random variable 8 with values in {0,1}, 

such that on {Z ~ c} we have 6 = O a.s. and on {z E c} 

1 
B E B • 

By the definition of C this is possible. The set {8=1} has probability 

ci(I)P(Z E C) > O and on {6=1} = {6=1, z E c} 

In the note below we show that for random walks with stationary, in­

dependent increments the limit relation (0.0.3) can be obtained by means 

of the coupling property (0.0.4) (see also ORNSTEIN [1969]). A similar 

argument will be used in Proposition 5.3.8. 

D 
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NOTE. Suppose (Sn)n?O is a random walk with stationary, independent incre­

ments sJN. Let us assume that Psi dominates ci1 with c > 0 and i 1 the re­

striction of the Lebesgue measure i to an open interval I. We show that it 

is possible to construct for any real h random walks (S~)n?O and (S~)n?O 

such that 

s~, n 2 o, and s;+h, n 2 0, 

are successfully coupled. Construct { 0, 1 }-valued random variables 8 i, i 2 1, 

such that (8i,si), i 2 1, is a sequence of i.i.d. random vectors with 

Psi[ei =µon {8i=1}, where µ is the homogeneous distribution on the inter­

val I. Construct, independent of this sequence, random walks (T~)nzO and 

(T~)n?O' such as in Lemma 5.3.5, with increments n:ir. and n~ respectively. 

Hence 

T~, n z 0, and 

are successfully coupled. Let 

n 2 1. 

Define s' and s" by c s'.' c if e. 0 and take JN JN l l l l 

s' :=::: flj_ I i 2 1, s" := n" i z 1. 
T. T. i' 

l l 

It is easily checked that SI 
JN 

and s" 
JN 

are distributed as sJN. Note that the 

random walks (S~)n?O and (S") 
n n?O 

with increments s' 
JN 

and s" JN 
satisfy 

S" - S' T" - T~, n z 0, 
T T n 

n n 

and hence 

S' 
n' 

n z 0, and s;+h, n 2 0, 

are successfully coupled, i.e. (0.0.4) holds. Arguing as in Section 0.0 we 

obtain 

lim lip s n-+«> n 
- P II s +h 

n 
0 

for random walks with i.i.d. increments slN' satisfying Ps 1 2 ci1 • 

If the distribution Ps 1 is spread out, there always exists some m 2 



such that G 2* 
:= Psm is not Lebesgue singular and then G 2 c£I for some 

positive c and open interval I. If n = 2km+£, k,£ 2 1, we have 

llp 
s 

n 
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where·the translation T_h is defined as usual. We saw already that the 

right-hand side converges to 0 for k + oo. Hence the limit relation (0.0.3) 

holds in general for spread out random walks with stationary, independent 

increments. Using the coupling theorem for Markov chains (Theorem 4.3.1) we 

can construct (0.0.4) also in this slightly more general case. 

To derive (5.3.1) we apply Theorem 5.1.7 and the knowledge on 0::: con­

tained in the proposition below. 

PROPOSITION 5.3.8. Let F be the distribution of a random vector (T,Y) with 

T real valued and Y with values in a Borel spacer. Suppose that with posi­

tive probability PTjY is not singular with respect to the Lebesgue measure. 

Let h be any real number. If E is arbitrary positive then, if m is large 

enough, the set a:;: contains an element G such that 

G({h}) > 1-E. 

PROOF. Let Ebe arbitrary positive. We have to construct sequences (T'.,Y.), 
~~ J J 
1 !> j !> m, and (T':, Y.) , 1 !> j !> m, both distributed as sequences of 

J J 
independent, F-distributed random variables, such that the distribution G 

of 

m 

l 
j=1 

(T'. - T':) 
J J 

has mass at least 1-E in {h}, if m is large. 

To construct these sequences we use Lemma 5.3.5. Corollary 5.3.7 

provides the link between F-distributed random variables and homogeneously 

distributed random variables. 

Construct a sequence of independent random vectors Xn := (Un,zn,8n), 

n 2 1, distributed as the random vector (T1+T2 ,(Y1 ,Y2J,8), defined in the 

corollary. Define random times 

'o := o, , := inf{k > , · ek n n-1 · 
1}, n 2 1. 

The process T :JN is a sequence of regeneration times for XlN . Moreover, 



142 

Pu ,xlN IT =k,Z. ,i::::n,6. ,u. ,i<n n +n n 1 1 i 

where µ is the homogeneous distribution on the interval I mentioned in 

Corollary 5.3.7. Construct the random walks (S~Jn20 and (s;Jn20 of Lemma 

5.3.5~ independent of XlN. Let the processes of increments of these random 

walks be s::i.i and siJ respectively. In the sequence UN we repJ_ace the U­

values at the regeneration times Tk' k 2 1, by the s'- and s"-values. We 

obtain processes u::i.i and u:m defined by 

n = Tk' k 2 1, 

U' := U else. n n 

Because s::i.i is a sequence of independent, µ-distributed random variables, 

independent of XN, we have 

Psk' ,x,., IT =k,z. ,i:>n,6. ,u. ,i<n,s. ,i<k ... ,+n n 1 1 1 1 

It is now easily seen that the process (U~,Zn,8n), n 2 1, is distributed as 

(Un,zn,8n), n 2 1, so as independent, PT 1+T2 ,(Y1,Y2),e-distributed random 

variables. The same assertion holds for <u;,zn,8n)' n 2 1. 

Using these sequences we shall construct (T~,Yn)' n 2 1, and (T;,Yn), 

n 2 1. Write Zn := (Y2n_ 1 ,Y2nJ' n 2 1. By Lemma 4.2.4 we construct random 

variables (T2n-l'T2nl' n 2 1, such that 

As a consequence we have U~ T2n-l+T2n a.s. and furthermore 

is a sequence of independent,PT1,T2 ,Y1,y2-distributed random variables, or 

differently, (T~,Yn), n 2 1, is a sequence of independent, F-distributed 

random variables. Similarly we construct (T2n-l'T2nl' n 2 1, such that 

p(T" T" U" Z ) 
2n-1' 2n' n' n n21 

This yields a sequence (T;, Yn), n 2 1, of independent, F-distributed random 

variables such that Un = T2n-l+T2n' n 2 1. 



By Lemma 5.3.5 we have if k is larger than some random time 

k k 
h l (I;~ - I;':) = l (U' - U" ) 

j=1 J ] j=l Tj Tj 

and because U~ = U~ for n 0 Tk for each k we have for n large enough 

n 2n 
h I (U!-U'.') = l (T'.-T':J. 

j=l J J j=l J J 

2m Hence for m large enough GF contains an element G such that 

2m 
G ( {h}) P( l (T~ - T':) 

j=l J J 
h) 

is arbitrarily close to 1. Because a; is increasing in m this implies the 

assertion of the proposition. D 
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PROOF of Theorem 5.3.2. The proof of the limit relation is parallel to the 

corresponding part of the proof of Theorem 5.2.3 in the previous section. 

We want to derive that for any positive o, if n is large 

(5. 3. 4) 

The proof can be sketched as follows: Pursue the argument in the proof of 

Theorem 5.2.3. Instead of constructing GE a; such that G(I) > 1- §o with 

I 3 h, wecanachievenowthat G({h}) > 1-§0. Therefore the proof simplifies: we 

do not have to apply the smoothing by convoluting with vE. Instead we obtain 

as the inequality that corresponds to (5.2.4) 

- P II ::; 
sn+hjxKc 

2 P(p00) ::; ~o. 

n 

The application of (4.1.5) to this inequality yields, similarly as we did 

previously, the required assertion (5.3.4). 

A proof that the limit property implies that SZl is spread out with 

respect to X2Z. is given as follows. Choose n so large that on a set B with 

positive Lebesgue measure 

(5. 3. 5) h E B, 

where Kn:= {1, ••• ,n}. Suppose PsnlXKc is with probability 1 singular with 

n 
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respect to the Lebesgue measure £. Then there is a measurable set 
1 Kc 1 1 N c JR. x JR. n such that, using the notation N(x) := {t E lR : (t,x) E JR. }, 

Remark that 

(5. 3.6) 

0 a.s., P(Sn E N(XKcl /xKcl 
n n 

0. 

According to Fubini this integral equals 

f P(Sn E N(XKC) + h)dh. 
n 

This number exceeds by (5.3.5) 

f ~dh = ~£(B) > 0, 

B 

1 a.s. 

thus contradicting (5.3.6). As a consequence S?Z is spread out with respect 

to x?Z. D 

The results in Chapter 5 have an important limitation, that can be ex­

plained as follows. The two main results, Theorems 5.2.3 and 5.3.2 are 

derived under the condition (5.1.2) that requires 

(5. 3. 7) O, 

for any pair of finite integer sets Land L'. By Proposition 4.1.1 and the 

stationarity of X?Z this expression is equivalent to 

lim Ell P I - P II = 0. 
n-+oo XL'+n XL XL' 

It seems attractive to give our limit results and especially Corollaries 

5.2.4 and 5.3.3 a similar form. In case of Corollary 5.3.3 one might think 

of 

(5. 3. 8) 0 

for every real h. Observe that by applying Lemma 5.2.5, we can obtain under 

the conditions of Theorem 5.3.2 



This result is, however, different from (5.3.8). The difficulty in deriv­

ing (5.3.8) can be clarified in the following way. The condition (5.3.7) 
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is an asymptotic independence condition formulated in terms of fixed finite 

integer sets Land L', not depending on n. However, Sn is a function of 

X~, ~n := {1, •.. ,n}, so depends on an increasing number of X-variables as 

n increases. This makes it questionable whether (5.3.8) can be proved 

using only (5.1.2), (5.1.3) and the spread out condition. However, (5.3.8) 

can be derived if we replace (5.1.2) by the condition that XZZ is weak 

Bernoulli. This will be done in Chapter 6. 
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CHAPTER 6 

RENEWAL THEORY 

Let S:ez be a random walk controlled by a stationary sequence X:ez that 

satisfies (5.1.3) and has its values in a Borel spacer. Chapter 6 studies 

renewal theory for this random walk S:ez under a strong assumption of 

asymptotic independence: In most of our results we assume that X:ez is weak 

Bernoulli. 

Section 6.1 studies loss of memory of a stronger type than in Chapter 

5. The results in this section bring us already close to the renewal theo­

retic theorems of Section 6.3. These renewal theorems are obtained from the 

loss of memory results of Section 6.1 by using a formula from Palm theory. 

The renewal theorems of this chapter can be divided into two types: 

theorems for nonlattice and for spread out random walks. The nonlattice con­

cept will be defined in Section 6.2. In our approach, renewal theory for non­

lattice random walks is more difficult than for spread out random walks. The 

reason is that we do not obtain in Section 6.1 loss of memory results for non­

lattice random walks, but for the slightly smaller class of strongly nonlat­

tice random walks. Section 6.2 studies the gap between these two classes of 

random walks. For spread out random walks this difficulty does not arise and 

renewal theory for these random walks does not use Section 6.2. 

Section 6.3 contains renewal theory for random walks controlled by a 

weak Bernoulli process. Assume that ES 1 exists as a finite positive number. 

For simplicity we assume in this summary that S:ez has strictly positive in­

crements. Define the marked point process N0 on the real line with marks 

in r by 

N0 (B) := l XB (Sn,Xn), 
nElZ 

where B c JR1 x r is any measurable set. Define Nt := TtNO and let N~ and Nt 

be the restriction of Nt to (0, 00 ) x r and (-00 ,0] x r respectively. We prove 

that if the random walk S:ez is spread out, then 
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lim DP - P U O 
+ N+ 

t~ Nt 

for some stationary, marked point process N+ on (0, 00 ) x r. There even holds 

a stronger assertion: 

lim Up - P U 
+1 - + 
~~ N 

0 a.s. 
t~ 

+ 
This limit relation expresses loss of memory of Nt for the past N0 • For non-

lattice random walks a similar limit relation holds, using a weaker conver­

gence concept. Blackwell's theorem is obtained as a corollary. 

In Section 6.4 we restrict our attention to special classes of proces­

ses Xzi:, for which it is possible to obtain more complete results. The most 

interesting is the case where we assume that X2Z is a countably valued se­

quence. In this case it is possible to indicate necessary and sufficient 

conditions in terms of X2Z for the validity of the limit relation, obtained 

in Section 6.3 for nonlattice random walks. We also consider the case of 

Markov dependent sequences X2Z. There is an extensive literature in this 

direction. We show that renewal theorems for semi-Markov chains can be ob­

tained from our results and we give a survey of the literature. 

Let N be a stationary, marked point process on the real line with marks 

in r. In Section 6.5 we investigate conditions under which N is weak 

Bernoulli, i.e. 

lim ~(N-,(Tt N)+) 0, 
t~ 

where (•) and (•)+denote restrictions to (-oo,O] x r and (0, 00 ) x r 

respectively. The results in this direction are related to the theory of 

mixing properties of special flows, a subject studied in ergodic theory. 

At the end of Section 6.5 we discuss this relationship. 

6.1. WEAK BERNOULLI PROCESSES AND LOSS OF MEMORY 

In this section we assume throughout that Szi: is a random walk control­

led by a stationary sequence Xzi: of random variables with values in a Borel 

spacer. Moreover we suppose that X2Z satisfies condition (5.1.3). 

In Chapter 5 we derived loss of memory results like 

- P n s +h 
n 

0, h real. 
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It was shown that limit relations of this form were closely connected with 

the property "spread out" and the property "strongly nonlattice". In this 

section we consider a different kind of loss of memory. We want to obtain 

where JNc : = { ••• ,-1,0}, so we discuss loss of memory of the past XlNc of 

the controlling process X:?.l. The condition on asymptotic independence that 

we require in this section to derive such a limit relation is much heavier 

than condition (5.1.2) used in the preceding chapter. We suppose that the 

process X:?.l is weak Bernoulli. In the present context this assumption is 

most clearly formulated as 

lim EllP I 
n-+<><> XJN+n XNc 

- P II 
XN+n 

o. 

The following two theorems are the main results of this section. They bring 

us close to the renewal theory in Section 6.3. In fact we need only a simple 

Palm theoretic consideration to derive our renewal theorems from the present 

loss of memory results. 

A proof of both theorems below can be found at the end of this section. 

THEOREM 6.1.1. Let S:?.l be a random walk controlled by a stationary sequence 

Xzi;' satisfying (5.1.3). The fo::_lowing two statements are equivalent: 

(i) the process X:?.l is weak Bernoulli and S:?.l is spread out with respect 

to xzi;; 

(ii) the random walk S:?.l, controlled by X:?.l, satisfies 

h real. 

A comparison of this theorem with Theorem 5.3.2 shows an interesting 

difference. In Theorem 5.3.2 we construct an equivalence of the spread out 

condition with a limit relation. The asymptotic independence condition is 

not mentioned in this equivalence relation. The theorem above states that 

the limit property (ii) is equivalent with both the spread out condition 

and the condition of asymptotic independence. 

A variation on the same theme is the following limit theorem. If v is 

an absolutely continuous probability measure on the real line and Q is a 
1 

measure on lR x r 1, with r 1 a Borel space, we write 
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f -1 
V*Q(B) = Q(Tt B)dV(t), 

1 for any measurable set B c lR x r 1 • 

THEOREM 6.1.2. Let SZ'.i be a random walk controlled by a stationary sequence 

XZ'.i, satisfying (5.1.3). The following two statements are equivalent: 

(i) the process XZ'.i is weak Bernoulli and SZ'.i is strongly nonlattice 

with respect to XZ'.i; 

(ii) for any absolutely continuous probability measure v on the real line 

0, h real. 

To prepare the proofs of these theorems we shall refine the limit re­

lations of Theorems 5.2.3 and 5.3.2. These limit relations are given in 

Chapter 5 for L1-convergence. It is possible to give them also for a.s.­

convergence and even such that the convergence is uniform on compact sets. 

This result will be described in Proposition 6.1.5 and a note to this prop­

osition. A simple corollary will then pave the way to the proofs of the 

theorems above. 

Define for real h the random variable 

where Kn:= {1, ••. ,n}, n ~ 1. If we consider ~n as a function in h we obtain 

the inequality 

(6.1.1) 

for real h1 and h 2• The functions ~n satisfy also another interesting prop­

erty: 

PROPOSITION 6.1.3. The sequence ~n(h), n ~ 1, is a reverse submartingale, 

i.e. 

PROOF. Because sZ'.i is controlled by x2Z, the increment i;n+l := Sn+l - Sn is 

a function of Xn+l" Hence 
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and because K~+l c K~ we have, using Lemma 5.2.5 for conditional distribu­

tions, given XKc , 
·n+l 

$E(</Jn(h)IXKc ). 
n+l 

Because <P (h), m > n, is XKc -measurable, this implies the assertion. 
m ·n+l 

0 

In Proposition 6.1.5 we strengthen the limit relation used in (5.3.2). 

In its proof we need a consequence of property (6.1.1) that is obtained 

from the following lemma. 

1 
~EMMA 6.1.4. Suppose g: lR + [0, 00 ) is a measurable function that satisfies 

for real h 1 and h 2 

Let £ and b be positive numbers such that 0 < £ < b and define 

B (£) := {h E [-b,b]: g(h) > £}. 

If we have 

with £ the Lebesgue measure, then 

B(£) = t/>. 

PROOF. Let c E [~b,b] and note that the set 

{x E [0,c]: x i B(i£J, c-x i B(i£J} 

has positive Lebesgue measure and thus is not empty. Select a number y in 

this set and note that 

g(c) s g(y) + g(c-y) s ~£. 

Hence g is dominated by ~£ on [~b,b]. Similarly one proves that g is 

dominated by~£ on[-b,-~b]. Because each h E (-~b,~b) can be written as 

sum h = h 1 +h2 of elements out of these two sets, it follows that g is 

dominated by£ on (-~b,~b). D 
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PROPOSITION 6.1.5. If for each real h holds 

(6.1.2) .lim E <j>n (h) = O, 
n-+<><> 

then for each compact set B 

lim sup <f> (h) = 0 a.s. 
n-+<>o he:B n 

PROOF. Define 

<f> 00 (h) := lim sup <j>n(h). 
n-+<><> 

Because <f>n is a reverse submartingale, nonnegative and bounded by 2, we 

have by a martingale theorem (see CHUNG [1974, Theorem 9.4.7]) 

<f>n (h) + <j>oo(h) for n + 00 

for a.s.-convergence and for convergence in L1-norm. Using (6.1.2) it fol­

lows that for each real h we have <j> 00 (h) = 0 a.s. The set 

H := {h: <f>00 (h) = O} 

satisfies, by Fubini's theorem, 

E t(Hc) = I P(<j>00 (h) > O)dt(h) = O. 

Here t is the Lebesgue measure. Observe that (6.1.1) holds also for n = oo. 

Using Lemma 6.1.4 we obtain that <j>00 : 0 a.s. Hence we have for all real h 

lim <j>n(h) = 0 a.s. 
n-+<><> 

and therefore, for n + m, 

Bn (e:) := {h: Vm ~ n: <Pm (h) > e:} -!- t/J a.s. 

If B is a compact set, choose a real number b so large that [-b,b] ~ B. 

Because 

lim t(Bn(e:) n [-b,b]) 
n-+<><> 

0 a.s. 

we obtain by Lemma 6.1.4 that if n is larger than some a.s.-finite random 

number, then 



NOTE. It follows that in (5.3.1) one might also use instead of L1-conver­

gence 

0 a.s., b real. 

A similar property holds for 
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D 

where v is a probability measure on the real line. Also for these functions 

the inequality (6.1.1) holds and for fixed h the 

a reverse submartingale. Hence Proposition 6.1.5 

sequence cjiv (h), n <: 1, is 
n 

holds also for cjiv, n <: 1, 
n 

instead of cjin' n 2: 1. It follows that the limit relation of Theorem 5.2.3 

is equivalent with 

b positive, 

for any absolutely continuous probability measure v on the real line. 

COROLLARY 6.1.6. Suppose K is a finite integer set. Let Ube a real, XK­

measurable random variable. If (6.1.2) holds, then 

0 a.s., 

where Kn:= {1, ... ,n}. 

~· Suppose that m 2: 1 is so large that K c i-{ u Km. By the stationar­

ity of X<Z and (6.1.2) we have for each compact set B 

0 a.s. 

First suppose that U E B a.s. Then by the limit property above and because 

U is X(Kn\Kmlc-measurable, 

(6.1.3) 

for n + 00 • Because Sm is also X(Kn\Km)c-measurable, we have 
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y 
n 

By Lemma 5.2.5, applied to the conditional distribution, given XKC' we have 
n 

Because Yn is bounded, the right-hand side converges to a.s. for n + 00 by 

the bounded convergence theorem and (6.1.3). This proves the assertion for 

bounded U. 

If U is unbounded, note that for each b > 0 

where lim ,jJ n+oo n 0 a.s. by what we already proved. Hence 

lim sup Zn ~ 2 lim P(!UI > bJXKcl = 2Y00 (b) a.s. 
n+oo n+oo n 

by a martingale theorem (see BREIMAN [Theorem 5.24]), where Y00 (b) has 

expectation P(!ul > b) and is monotone in b. Therefore li~ Y00 (b) = 0 

a.s. and so the assertion follows by letting b + oo in the inequality above.D 

PROOF of Theorem 6.1.1. First we show that (ii) implies (i). Obviously (ii) 

implies that X:iZ is weak Bernoulli. Using the triangle inequality it follows 

that 

for n + 00 with h arbitrary real. By an application of (4.1.5) to condition­

al distributions, given X]IJCu(JN+n)' it follows that the expression above 

equals 

Hence also this expression converges to zero for n + 00 • By Theorem 5.3.2 

the random walk S:;z is spread out with respect to X:iZ. Hence (ii) implies 

(i). 

To prove the converse note that it is sufficient to show that 

z 
n 



155 

converges to 0 in L1-norm. This follows from the inequality 

EZn + EllPS +hlx 
n JN+n 

by the definition of Zn and (4.1.5). The last term vanishes asymptotically 

by Theorem 5.3.2 and Lemma 5.2.5. Hence we have to prove limn...,,, EZn = 0. 

Choose m so large that for some arbitrary £ > 0 

and note that by Lemma 6.1.6, with U := S I -m 

(6.1.4) II p - p II = Ell p I - p I II + 0 
S -S ,XKc S ,XKc S -S XKc S XKc n m n n m n n n n n 

for n + 00 • Here the equality is justified by (4.1.5). Construct XJN+n 

independent of XN+n· This is possible by Corollary 4.2.5 in such a way 

that 

Let X and X be coupled over JNC+m. Using (1.1.1) we obtain from (6.1.4) 

that for n sufficiently large 

llp - P_ 

sn-sm,XJN+m ,XNc sn,x~Hn'Xmc 

Because XJNC and XJN+m are independent, the term on the left equals for 

n ~ m 

P_ x P_ 

sn-sm,xlN+n XlNc 

Using (1.1.1) once again, we obtain for n sufficiently large, 
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By Proposition 4.1.3 and the triangle inequality we have 

< 9e: + 9e: = 18e: 

for n sufficiently large. This implies limn-+<x> EZn o. 0 

PROOF of Theorem 6.1.2. The proof of this theorem is almost the same as the 
proof above. we give a sketch. To obtain the proof of (ii) + (i) we apply 
Theorem 5.2.3 instead of Theorem 5.3.2. With .this change we can follow the 
proof above. 

To prove the converse we have to adapt Corollary 6.1.6. By Theorem 
5.2.3 we may suppose that for each absolutely continuous probability mea­
sure v holds 

h real. 

Using the note to Proposition 6.1.5 we prove that if U is XK-measurable 
with K c 2Z finite, then 

lim II V*P I - V*P I II 
n-+<x> sn+u x~ sn xK~ 

0 a.s. 

If this limit relation is used instead of the limit relation of Corollary 
6.1.6, then we can follow the argument in the proof above of (i) + (ii) to 
obtain the assertion. 0 

6.2. NONLATTICE AND STRONGLY NONLATTICE RANDOM WALKS 

Let F be a probability distribution on the real line. In Chapter 1 
Blackwell's theorem is formulated for random walks with independent, F­
distributed increments under a nonlattice condition on F. Apart from a non­
lattice condition a strongly nonlattice concept is used in Chapter 1. In 
Section 5.2 we generalized this strongly nonlattice concept for random 
walks with dependent increments. In this section we define a nonlattice 
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concept for random walks controlled by a stationary sequence X:zz. The main 

results, Theorem 6.2.2 and its corollary, study the gap between the nonlat­

tice and the strongly nonlattice concepts, in case X:;z is weak Bernoulli. The 

proofs of these side-results are tedious and use techniques of Chapter 5. 

A distribution F on the real line is called weakly lattice if F is con­

centrated on a displaced lattice c + Ld' d > O, with Ld defined by (1.1.2). 

Equivalently we can say that F is weakly lattice if Fn* is concentrated on 

a displaced lattice en+ Ld, d > 0, for all n ~ 1. Here the displacement 

en may be different for each n ~ 1, but note that we may choose en= nc 1 , 

n ~ 1. The distribution Fis said to be lattice if Fis concentrated on a 

lattice Ld, d > 0, or equivalently if Fn* is concentrated on c + Ld for all 

n ~ 1, where c does not depend on n ~ 1. Note that in the last formulation 

necessarily c E Ld. 

Let us assume in this section that S:ZZ is a random walk controlled by 

a stationary sequence X:ZZ of random variables with values in a Borel space 

r. In Section 5. 2 we defined S:zz to be weakly lattice with respect to X:zz if 

for some d > 0 the random variable (Sn) mod d is, up to a null set, 

(XJNC ,XJN+n)-measurable, n ~ 1, i.e. if there is a function 

such that 

c 
n 

c 
rJN x rJN ...,. [O,dl, 

n ~ 1. 

Define S:ZZ to be lattice with respect to X:ZZ if for some d > 0 there is a 

function 

such that 

(6. 2 .1) 

JNc JN 
c: r x r ...,. [O,d), 

(S ) mod d 
n c(XJNc'XJN+n) a.s., n ~ 1. 

Here the function c does not depend on n ~ 1. We call S:zz nonlattice 

with respect to X:ZZ if there is no such d > O. In case for a random walk 

S:ZZ no controlling process X:ZZ is specified, we take X:ZZ to be the process 

of increments. 
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EXAMPLE 6 • 2 • 1. 

(i) Let F be a nonlattice distribution on the real line. A random walk 

S2Z with independent, F-distributed increments is nonlattice with 

respect to its process of increments X2Z. To see this, note that 

-we can replace the requirement (6.2.1) in the definition of a lat­

tice random walk above by the condition 

(Sn) mod d = c a.s., 

with c constant, because Sn and (X:Il'Jc ,X:Il'J+n) are independent. There­

fore, the random walk S2'l is lattice with respect to X:ZZ if and only 

if Fn* is concentrated on c + Ld, n ~ 1, for some c E [0,d}, d > O, 

so if and only if F is lattice. This proves the assertion above. 

(ii) A strongly nonlattice random walk is nonlattice (see Example 5.2.1). 

(iii) Let S2Z be controlled by a stationary, Markov dependent sequence X2Z 

with values in a Borel space r. Then s2'l is lattice if and only if 

for some d > 0 there exists a function c: rxr + [0,d), such that 

n ~ 1. 

To see this, note that Sn is (X 1 , ••• ,Xn)-measurable (use (5.0.2)). 

Hence, by Markov dependence, Sn is independent of (X:Il'JC ,XlN+n), given 

(X0 ,xn+l). The assertion is an easy consequence of this observation. 

(iv) Let r be a finite set of positive numbers that are linearly indepen­

dent over the rational numbers. Assume XZZ: is a stationary, weak 

Bernoulli sequence with values in r such that P (Xn = y) > 0 for each 

y E r. Let S2Z be the random walk with process of increments X2Z. 

This random walk example is taken from GUREVI~ [1967]. The random 

walk S2Z is nonlattice with respect to X2Z. This follows by comparing 

Theorem 4.2 in GUREVIt [1967] and Theorem 6.5.9. A direct proof does 

not seem to be easy. 

How can we justify the definition of the nonlattice concept above? In 

Chapter 1 we have shown that for random walks with stationary, independent 

increments the strongly nonlattice condition is equivalent with the limit 

relation 

(6. 2.2) lim llv*Ps 
n-+= n 

- V*P II s +h 
n 

o, h real, 
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for any absolutely continuous probability distribution v on the real line. 

In Section 5.2 we could justify our definition of strongly nonlattice by 

proving in Theorem 5.2.3 that the strongly nonlattice condition is equiv­

alent to a limit relation similar as (6.2.2). Such a justification is also 

given,for the nonlattice concept in Sections 6.4 and 6.5. 

In the following theorem we compare the lattice and weakly lattice 

concepts. The proof of the theorem can be found at the end of the section. 

It needs a long preparation. 

To explain the contents of the following theorem, consider a random 

walk Sl'Z that is weakly lattice with respect to Xl'Z with minimal weak lat­

tice width d = 00 , i.e. there are measurable functions en such that 

n ;:,, 1. 

Our aim is to investigate how the functions en depend on n. We prove that 

if Xl'Z is weak Bernoulli, there is a constant c such that 

n ;:,, 1. 

In general we have the following result: 

THEOREM 6. 2. 2. Let Sl'Z be a random walk controlled by a stationary sequence 

Xl'Z with values in a Borel space r. Suppose Xl'Z is weak Bernoulli and satis­

fies condition (5.1.3). Let Sl'Z be weakly lattice with respect to X2Z, with 

minimal weak lattice width d. Then there exists a real number c and a mea-

surable function 

such that 

(S - nc) mod d 
n 

COROLLARY 6.2.3. Let the conditions of Theorem 6.2.2 hold. If Sl'Z is non­

lattice with respect to Xl'Z then d is finite, and in case d > 0, the numbers 

c and d are mutually prime. 

PROOF. Use the definition of nonlattice. D 

Assume that the conditions of Theorem 6.2.2 hold. By the definition 

of weakly lattice we have 
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n 2' 1, 

for r llic x rlli + 1 functions en: JR • Suppose that we succeed to select en, 

n 2' 1, such that on the domain of the functions en 

(6.2. 3) n 2' 1, 

where c is a constant, not depending on n. Then we can define the function 

c by c := (c - nc) mod d. Note that c does not depend on n. Then the as­
n 

sertion of the theorem follows because, using this definition of c, we have 

(Sn) mod d = (c (Xllic ,Xlli+n) + nc) mod d a.s. 

Apparently we have to investigate the difference in (6.2.3). 

Of great importance in the considerations below is the following prop­

erty of weak Bernoulli processes. Define the measures Pn, n 2' 1, on 
rJNc x rJN by 

p 
n n "' 1. 

Because Xz:; is weak Bernoulli, we have 

lim lip 
n n-><» 

o. 

Hence Pn, n 2' 1, is a Cauchy sequence and by (4.1.1) we have the property 

(6. 2.4) limllP AP 111 
n n+ 1. 

n-><» 

This property will help us to investigate the difference cn+l - en. 

Let us consider the substochastic measures Fn, n 2' 1, on the real line, 

defined by 

The measures Fn' n 2' 1, contain important information about cn+l-cn. 

LEMMA 6.2.4. Fn, n 2' 1, is a nondescending sequence of measures. 

PROOF. Note that fork 2' 1, using the notation (5.0.2), 
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(Sk + f("x:+i>> mod d 

Apply this equality for k = n and k = n+l to get for any Borel set B on the 

real line 

Fn(B) I XB((cn+l (x,y) - cn(x,y)) mod d)dPn A Pn+l (x,y) 

I xB(([cn+2(x,Ty) - f(yl)] - [cn+1(x,Ty)-f(y1)]mod d) 

dPn A _Pn+l (x,y). 

Here we write Ty:= (yn+l)n~l' if y (yn)n~l· Because for each measurable 

set ecr:Nc x r:N we have 

Pn({(x,y): (x,Ty) € C}) Pn+l(C), 

it follows that 

Pn A Pn+l ({ (x,y): (x,Ty) € C}) :5 Pn+l A Pn+2(C) • 

Therefore we have with z ty 

= Fn+1 (B), B € 81 . 0 

By (6.2.4) the total mass of Fn converges to 1 for n + 00 • By the lemma 

above it follows that Fn converges in total variation to a probability mea­

sure F. Our aim is to prove that F is degenerate at {c}. Once this is 

proved it is not very difficult to show that (6.2.3) holds. We already saw 

above that this proves the theorem. 

The follo~ing proposition shows how we can study F. 

PROPOSITION 6. 2. 5. Let X2z and X~ be processes on the same probability space, 

such that 

o (X?L: ,x::z), o (X?L:, x~) < e, 

while 
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(6. 2. 5) X'. 
J 

x·~ 
J 

j ~ o, 

XII • > 
j+l J n. 

Then we have 

lip (S" 
n+l 

S') mod d - Fil < SE. 
n 

PROOF. Write en, c~ and C~+l for en (X]ll!C ,xlli+n), ••. and write P~ and P~+l 

for PX' X' , .... Using (4.1.1) we obtain the inequality 
:r;ic' N+n 

Using a similar estimate for S~+l we obtain 

(6.2.6) P((S~+l - S~) mod d F (C~+l - C~) mod d) < 2E:. 

By our assumption on o (XliZ, X~ ) and a (XliZ, X?z) we have 

~II p - p I II < £, 
n n 

i11P - P" 111 < E: n+l n+ 

and because P' 
n 

P~+l by (6.2.5), one easily derives that 

R := pn A p~ A pn+l A p~+l 

has at least mass 1- 2£. The substochastic measure G on the real line, 

defined by 

is dominated by Fn and hence 

By the definitions of C~, c~+l and (6.2.5) 

G ~ p(C" - C') mod d 0 

n+1 n 

Therefore, by the triangle inequality, 

E:. 
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lip - Fii 
(S " -s ' ) mod d n+l n 

:::; lip (S" -S') mod d- P (C" -c•) mod a 11 

n+1 n n+l n 

< 2•2£ + (1- llGll) + 2£ + (1- llGll) < 10£. 

In this inequality we used in the estimation of the first term (6.2.6) and 

(1.1.1), and in the last term F ~ F ~G. 0 
n 

Using the proposition above it will be possible to obtain a proof that 

F is degenerate in the following way. Suppose that we succeed in construct­

ing processes x~, X?z and X:zz, approximately distributed as X:zz, such that 

(6. 2. 7) X, X' j :::; o, x. X'.' j :::; n, 
J J J J 

Xj+l j > k, X" j > n+k, 
j+l 

where n >> k. Then we have 

(6. 2.8) X'. 
J 

X'! 
J 

j :::; 0, 

X" 
j+l 

j > n+k. 

As a consequence we have, with large probability, 

(S"n+k+l) mod d. 

Apart from this property we have, with large probability, 

(S~+k+l - s~+k+l) mod d ( (S~+k+l - sn+k) + (Sn+k - s;+k+l)) mod d 

where 

and 

By (6.2.7) and Proposition 6.2.5 the random variables z 1 and z 2 are approx­

imately distributed as F. Suppose that, using n >> k, it is possible to show 
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that z 1 and z 2 are independent. Then by means of 

it is easy to show that (Z 1) mod d 

prove,that Fis degenerate. 

c, with c constant. This will then 

To be able to prove that X:;z can be approximated as mentioned above, 

we have to investigate the dependence structure of the weak Bernoulli 

process X:;z. To this purpose we formulate below an approximation lemma. 

This lemma uses that X:;z is a weak Bernoulli sequence with values in a 

Borel spacer, for which condition (5.1.3) holds. 

Define the integer sets K := {1, •.• ,k} and L := {-£1 , ... ,£2} ~Kand 

write 

Suppose X:;z is a sequence of random variables with values in r such that 

(i) XJNC and XJN+k are independent, while 

o (XJN+k , XJN+k ) < E; 

(ii) XK is conditionally independent of XLC' given XL\K=x, with its condi­

tional distribution given by 

LEMMA 6. 2.6. Suppose X:;z is weak Bernoulli and satisfies (5.1. 3). If X:;z 

satisfies (i) and (ii) then for each E > 0 there is a number k = k(E) and 

for each k 2 k there is a number£= £(E,k) such that, if £1,£ 2 2 £ then 

PROOF. Choose k k(E) so large that 

and take for any k 2 k a number £ 

This is possible because X:;z satisfies (5.1.3). By (i) and the triangle 
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x P_ 

xlN+k 
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and hence, using in the first term Proposition 4.1.2 and in the second the 

triangle inequality, 

J.(XNc ,XlN+K) + ~II (P - P_ 
X]NC X 

JNC 

x p II 
XJN+k 

+~Up x {P - P_ )tt < E+E+E 3c. 
XlNc XN+k xlN+k 

Because Kc~ L\K we have by (4.1.2) 

and by (ii) and (4.1.6) 

Because (XK,XL\K'XLcl forms a Markov triple by (ii), we have by Proposition 

4. 1.4 

< c+3e:+3c+3c 10£. D 

NOTE. We can choose k(c) decreasing in c and i(k,e:) decreasing in E and 

increasing in k. 

With the approximation lemma above we can construct pairs of processes 

(X~ , X~ ) as were used in Proposition 6. 2. 4. The example below illustrates 

this. Denote for integer sets J 

n+J := {n + j: j E J}. 

EXAMPLE 6.2.7. Consider a sequence X:;z of random variables with values in 

r. Suppose there are defined integer sets K : = n + { 1, ••• ,k} and 

L := n+ {-i1 , ..• ,i2 } ~ K. Let p be an integer, such that the sets 



166 

K' := n+ {1, ... ,k+p}, 

are nonempty integer sets. Let Xiz be a process, satisfying 

X' 
j 

j ::; n, x. 
J 

x. 
J-p 

j > n+k+p, 

while X~, is, given XL, \K, =x, independent of X2Z, with conditional distrib­

ution 

p I • 
XK' XL' \K' =x 

We call X~ a lengthening of X:iZ with length p at L\K. Suppose that the 
~ln) 

prOCeSS X:iZ I defined by 

~(n) x. 
J := xn+j' j € 2Z I 

satisfies (i) and (ii). By Lemma 6.2.6 we have, if k+p ~ k(E) and 

£ 1,£ 2+p ~ .11,(k+p,E) 1 that 

We shall use lengthenings in applications of Proposition 6.2.4. In partic­

ular we construct the process X~ and x;,z in ( 6. 2. 7) as lengthenings of Xzz:. 

The following result is the key to the proof of Theorem 6.2.2. 

PROPOSITION 6.2.8. Under the conditions of Theorem 6.2.2, the distribution 

F is degenerate. 

PROOF. The first part of the proof consists of a construction of a process 
~(n) 

X:iZ such that (i) and (ii) hold for both XZZ: and the process X:iZ , defined 

in the example.above. The second part of the proof constructs lengthenings 

x~ and x;z of the process X:;z such that (6. 2. 7) holds (see the example 

above for the definition of a lengthening). 

Part 1. Let n be some positive number. We want to apply Lemma 6.2.6. Take 

an integer k ~ k(n) and choose ,11, 1 ,,11, 2 ~ Jl,(k+l,n). Define the integer sets 



Kl:= {1, ... ,k}, Ll := {-J!,l'"""'J!,2}' 

K2 : = n + { 1, ••• ,k}, L2 : = n + { - J!, 1 ' ••• 'J!, 2} ' 

where n is chosen such that inf L2 - sup L1 > m, with m so large that 

Apart from the conditions on X2Z and x;;) mentioned above, we shall also 

need that xL1 and xL2 are independent. 

We can write 2Z as a disjoint union 
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where M1 : = JNc and M3 : = IN+ n + k. The set M2 can be split up as a disjoint 

union 

+ * where L1 c L1 and L2 c L2 • By Corollary 4.2.5 we can construct XL+' distrib-
1 

uted as XL+1· and independent of X _, such that 
L2 

* P(X + 
Ll 

By our choice of 

* P(X + 
Ll 

This defines X~ 
*J 

constructed XM 
2 

# x +) 
Ll 

J. (X ,X 
+ -

Ll L2 

) . 

n and the stationarity of x2Z 

# x +l 
Ll 

:;; J. (XJNc , xlN+m ) < n. 

+ * for j E L1 . Let X. := 

* J * 
Xj for all other j E M2. Thus we 

are independent, while such that XL! and xL2 

Construct XM , XM and XM as independent random variables, distributed as 
* 1 2 3 ~ ~ ~ 

XMl' XM2 and XM3 . Construct (XK1,xK2), given (XLl\Kl'XL2\K2J = (x 1 ,x2J, 
independent of the random variables mentioned before, with its conditional 

distribution, given by 

Because X are independent, also X and X 
Ll \Kl L2 \K2 

are 
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independent. Hence using the properties of (XK1 ,XK/' also xL1 and xL2 are 

independent. 
~cnl To derive (i) and (ii) for X2Z and X2Z we argue as follows. We have: 

(j) XM and XM are independent and 
2 3 

Using the properties of (XK ,XK ) and the independence of X \ and 
1 2 L1 Kl 

X \ we obtain L2 K2 
(jj) X'K2 is, given xL2\K2 ' independent of xM2UM3 and has the "right" con-

ditional distribution. 

By duplicating the proof of Lemma 6.2.6 we obtain from (j) and (jj), because 

k ~ k(n) and i 1 ,i2 2 £(k,nl 2 2Ck+l,n), that 

o(XM UK UM ,xM UK UM) < lOn. 
2 2 3 2 2 3 

Note that X:zz; satisfies (i) and (ii) with e: 

1oon, 

lOn. By Lemma 6.2.6 

because k 2 k(n) 2 k(10nl and i 1 ,i 2 2 £(k+l,n) 2 £(k,10n) by the note to 
~(n) 

Lemma 6.2.5. As a consequence also X2Z satisfies (i) and (ii) with e: = 100n. 

Part 2. Consider X:zz; (with XL and xL2 independent). Lengthen X2Z with 1 at 
1~ 

L1 \K1 to get X?z and lengthen X2Z with 1 at L2 \K2 to get X~. Thus we con-

structed (6.2.7). 

We still have to make one important remark. Let 

Ki := {1, •.. ,k+l} and 

Note that the lengthenings can be given such that, given (XLt\K1 ,xL2 \K2l, 

the random vectors (X~ 1 ,XK) and (XK2,,,xK2 l are independent. Therefore, also 
1 1 

and 

are independent. Because k, i 1 and i 2 are sufficiently large, we have by 

Example 6.2.7 

0 (X:zz;' X?z) ,o (X?.l ,x~) < 10. lOOn lOOOn. 

We can now argue as we sketched in the paragraph following on Proposition 



6.2.5. By this proposition we have, using (6.2.7), 

(6.2.9) lip - Fil,llp - Fii < 5.lOOOn 
zl z2 

SOOOn. 

Using _(6.2.7) once more, we have 

(6.2.10) (S~+k+l - s~+k+ll mod d 

For s~+k+l we have, using (4.1.1), 

P (S~+k+1 'f. cn+k+1 (X:Nc ,X::IN+n+k+1)) 

s 0 (X:;z ,X:k l + P (Sn+k+l 'f. cn+k+l (XJNC ,X:N+n+k+1 l l 

< lOOOn + 0 1ooon. 

A similar inequality holds for S~+k+l" By the consequence (6.2.8) of 

(6.2.7) 

and therefore 

P((S~+k+l - s~+k+ll mod d 'f. O) < 2.1ooon = 2000n. 
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By (6.2.10) it follows that for the independent random variables z 1 and z 2 

Let $1 and $2 be independent, F-distributed random variables. By (6.2.9) 

Because n > 0 is arbitrary, it follows that $1-$2 E Ld a.s. In case d = 00 

we have Ld = {D}. In that case the independent random variables $1 and $ 2 
coincide up to a null set and hence are constants. It follows that F is 

degenerate at {c} for some real number c. If 0 < d < 00 , let f denote the 

characteristic function of F. Because $1-$ 2 E Ld a.s. we have 

2 --
1 f (w) I = f (w) f (w) = 1, 
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and hence F is concentrated on a set of the form c + Ld. Because F is the 

limit in total variation of measures Fn' n ~ 1, concentrated on [O,d), it 
follows that Fis concentrated on [O,d). Hence Fis degenerate at {c} 
with c := (c) mod d. D 

The assertion of Theorem 6.2.2 follows without many problems from the 
proposition above. We still need one simple lemma. 

LEMMA 6.2.9. Let en' n ~ 1, be a sequence of functions and Pn' n ~ 1, be a 
sequence of measures on a measurable space r 0 • Suppose that for n, m ~ 1, 

e 
n 

Then there is a function e such that for all n ~ 1 

e = e n 

(1) (2) PROOF. we construct a sequence e ,e , ••• such that 

(n) 
e = ei, Pi-a.s., s i s n. 

Take e(l) := e 1• Let e(n-l) be given, n > 1. Observe 

e (n-1) 
ei, Pi-a.s., 

e n' 
p 11 Pi-a.s., 1 $ i s n-1. n 

It is now easily seen that we can define e(n) such that 

(n-1) e , 

e 
n 

s i s n-1, 

Pn-a.s. 

This inductive definition yields a sequence e(n), n € 

coincides with e. for n ~ 
l. 

i apart from a P.-null 
l. 

set. 

e := lim e 
(n) 

n.-

on the set where this limit exists and e := 0 on the 

set. Clearly e = ei apart from a Pi-null set for all 

:N, such 

Define 

complement 

i ~ 1. D 

that e (n) 

of this 

PROOF of Theorem 6.2.2. By Proposition 6.2.8 there is a constant c such 
that Fis degenerate at {c}. Hence by Lemma 6.2.4 all Fn, n ~ 1, are 



degenerate at {c}. Hence for all n 2 1, 

c, 

and therefore we have for fixed m 2 1, 

m 
( l (cn+k - cn+k-l))mod d 
k=l 

(m c) mod d, P A ... A P -a.s. n n+m 

Define measures F and F on the real line by n,m n,m 

F (B) 
n,m 

F (B) 
n,m 

Clearly F 2 F Note that n,m n,m 

lip A ••• A p II n n+m 
llF II 

n,m 
F ({(m c) mod d}) n,m 

,;; F ({(m c) mod d}). n,m 

By applying (6.2.4) it follows that the left-hand side converges to 1, so 

lim F ({(m c) mod d}) 1. n,m n-+«> 
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Using the argument in the proof of Lemma 6.2.4, one shows that Fn,m' n 2 1, 
forms a nondescending sequence of measures. Hence, using the limit relation 
above, it follows that for n,m 2 1, 

(cn+m - en) mod d (m cl mod d, p A P -a.s. n n+m 

So for n,m 2: 1 ·, 

(c - n c) mod d (c - m c> mod d, p A P -a.s. n m n m 

By Lemma 6.2.9 there exists a function c such that 
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c = (c - n c) mod d, 
n P -a.s. 

n 

for all n ~ 1. Together with the definition of en this implies the assertion 

of the theorem. D 

6.3. RENEWAL THEORY - THE GENERAL CASE 

In this section we present renewal theorems for random walks, control­

led by a weak Bernoulli sequence X:;z. In Section 3.2 we already discussed 

renewal theoretic limit relations. These were of a much weaker type than 

the limit relations in this section. 

Apart from the weak Bernoulli condition we assume that X:;z satisfies 

(5.1.3). This condition is valid, if X2Z is a Markov dependent sequence 

or if X:;z consists of countably valued random variables. In Sections 6.4 

and 6.5 we study these two special cases closer and discuss the relevant 

literature. 

The main results in this section are Theorems 6.3.1 and 6.3.2. We 

obtain a generalization of Blackwell's theorem as a corollary. The proofs 

consist of an application of the loss of memory results in Section 6.1 to 

the Palm theoretic formula (3.1.3). Theorem 6.3.1 considers spread out 

random walks and Theorem 6.3.2 nonlattice random walks. The proof of the 

last theorem causes some problems. For strongly nonlattice random walks 

the proof is a straightforward application of the loss of memory results 

in Section 6.1. To cover also the slightly larger class of nonlattice random 

walks, we need the long argument given in Section 6.2 and some additional 

propositions. As we shall see in Sections 6.4 and 6.5 the nonlattice random 

walks form the natural class of random walks for which Theorem 6.3.2 can 

be proved. 

In the following two theorems we consider a random walk S , control­:;z 
led by a stationary, weak Bernoulli sequence X:;z, with values in a Borel 

space r. Define the marked point process N~ on (0,oo) x r by 

(6.3.ll 

where B c (0, 00 } x r is any measurable set and the translation Tt is defined 



173 

as in Section 0.3. Let ES 1 be a finite and strictly positive number. In this 
section we do not impose the restriction that the increments of the random 
walk are positive. 

+ our aim is to prove convergence theorems for Nt' t + oo. The distribu-
tion Q+ of the limit process can be described in the following way. Define 
the marked point process N0 on the real line by 

l XB(Sn,Xn)' 
nEZI: 

where B c JR1 x r is any measurable set. Define the distribution Q of a 

marked point process N on the real line by 
sl 

(6.3.2) Q(D) := E~ E f XD(TtNO)dt, D E V. 
1 0 

The distribution Q is defined on a measurable space (N,V), described in 
Section 0.3. With these definitions Q is the probability distribution with 
Palm measure Q0 := PNo· The limit distribution Q+ will be the distribution 
of the restriction N+ to (0, 00 ) x r of the marked point process N with dis­
tribution Q. 

The proof of the first theorem below will be given, following on Corol­
lary 6.3.3. The proof of the second theorem needs some preparation and is 
given at the end of this section. 

THEOREM 6.3.1. Let Xzz;be stationary, weak Bernoulli and assume (5.1.3). 
Suppose Es1 exists as a finite, strictly positive number. If the random 
walk Szz; is spread out with respect to Xzz;, then 

(6.3.3) lim lip - Q+O = 0 a.s., 
t+m N~lx:Nc 

where Q+ is defined above. 

THEOREM 6.3.2. Let Xzz; be stationary, weak Bernoulli and assume (5.1.3). 
Suppose ES1 exists as a finite, strictly positive number. If the random 
walk Szz; is nonlattice with respect to Xzz;, then for any absolutely contin­
uous probability measure v on (O,oo) 

(6.3.4) a.s., 
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where Q+ is defined above. 

The behaviour of the renewal measure 

H(B) := n~O P(Sn E B), 

can be obtained as a corollary to these theorems. Let JI, be the Lebesgue 

measure and denote by JI,+ the measure on the real line that coincides with 

JI, on (0, 00 ) and vanishes on (-00 ,0]. If m is a measure on the real line and 

I is an interval, denote by II roll 1 the total variation of the restriction of m 

to the interval I. 

COROLLARY 6.3.3. Let XZ1: be stationary, weak Bernoulli and assume (5.1.3). 

Suppose ES 1 exists as a finite, strictly positive number. If the renewal 

measure H is finite on a neighbourhood of the origin, then we have: 

(i) If the random walk Szz; is spread out with respect to XZ1:, then for 

any positive h 

lim llH 
t+±oo 

0. 

(ii) If the random walk SZ1: is nonlattice with respect to XZ1:, then for any 

positive h 

lim H(t,t+h] 
t+±oo 

Jl,+(t,t+h] 
ESl 

0. 

+ PROOF of Corollary 6.3.3(i). We use the uniform integrability of N0 (and 
+ Nt) following from Corollary 2.2.5, together with limit relation (6.3.3). 

The process Xzz; is ergodic by Propositions 4.4.1 and 4.4.2, so by note 

3° to Proposition 3.1.1 the marked point process N with distribution Q is 

stationary and ergodic. Furthermore, its intensity, i.e. the intensity of 

the projection Ns of Non the real line, is E~ . Let (N+)s and (N~)s be 
+ + 1 the projection onto (0, 00 ) of N and Nt. Uniformly for Borel sets B c (O,h] 

we can give for positive t the following estimate. Because the intensity of 
(N+)s is 1 

ES1' 

JI, (B) I 
ES 1 

n 
~ n l !P((N~)s(B) =k) - P((N+)s(B) =k) I 

k=O 

+ l k P((N~)s(O,h]=k) + l k P((N+)s(O,h]=k). 
k>n k>n 
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By choosing n large, the two last sums can be made arbitrarily small, 
+ + + s because of the uniform integrability of N0 (and Nt) and because (N ) has 

finite intensity respectively. Then by choosing t large, the first sum on 
the right can be made arbitrarily small because of (6.3.3). This proves (i) 
for t ,-+ 00 • 

Using that limn-+oo Sn= 00 a.s., it follows that with probability 1 only 
finitely many Sn' n 2 O, are negative. By the uniform integrability of N0 
one easily obtains (i) for t -+ 

+ PROOF of (ii). Use the uniform integrability of N0 and (6.3.4). A similar 
argument is already given in the proof of Corollary 3.2.4. D 

NOTE to Corollary 6.3.3. For random walks with independent, stationa~y in­
crements (i) and (ii) are known. In that case (ii) is Blackwell's theorem 
and (i) is known in a stronger form. BRETAGNOLLE and DACUNHA-CASTELLE [1966] 
presented the last mentioned result (see also STONE [1966] and REVUZ [chap­
ter 5]). 

PROOF of Theorem 6.3.1. By Theorem 6.1.1 we have the loss of memory property 

(6. 3.5) 0, h real. 

Because Xz;>; is weak Bernoulli, the process x26 is also ergodic by Proposi-
tions 4.4.1 and 4.4.2. By the ergodic theorem lim 1 S = ES 1 a.s. and n-+oo n n 
because ES 1 > O, we have in particular limn-+oo Sn a.s. In the first part 
of the proof we derive from the loss of memory property (6.3.5) above, 
the limit relation 

(6.3.6) lim "P - P U 

t-+oo N:+h I Xmc N: 
0 a.s., h real. 

In the second part of the proof we use Palm theory. By note 3° to 
Proposition 3.1.1 the distribution Q, defined by (6.3.2), is invariant 
under translations. In part 2 of the proof, we use (6.3.2) to prove 

(6. 3. 7) 

The asserted limit relation follows from (6.3.6) and (6.3.7). 

~- Define the marked point process Nn on (0, 00 ) x r by 
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where B c (0,oo) x r is any measurable set. This marked point process is 

(Sn,XlN+n )-measurable. We obtain 

by noting that the total variation expression above is dominated by the 

total variation expression in (6.3.5). Because limn-+«> Sn 

a. s. , the set 

lim S 
n+-00 n 

is increasing in t, its probability tending to 1 fort+ 00 • On An(t) the 

restriction of the point processes N0 and Nn to (t,oo) x r coincide and hence 

by (1.1.1) 

EUP - P n S 

N~+h J x1'1c N~ 

+ 2 P(A (t+h)c) + 2 P(A (t)c). 
n n 

By choosing n large, the first term on the right can be made arbitrarily 

small and then, by choosing t large, the other two terms on the right can 

be made arbitrarily small. This proves that 

converges to 0 in L1-mean fort+ oo. By (4.1.2) the expression above is 

nonascending. Hence we have also a.s.-convergence, i.e. (6.3.6) holds. 

Part 2. Because Q is invariant under translations and X2Z is stationary, 

we have 

Q(D) 
1 

ES E 
1 

0 

J Xn<Tt+h No)dh, 

s_l 

D E V. 

Hence Q is expressed in terms of N0 • On the set A0 (t), defined above, we 

have N~ = (Tt NO)+, where (•)+denotes the restriction to (0, 00 ) x I'. Because 
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A0 (t)c + ~ a.s. for t + =, it follows that 

0 a.s. 

Hence we obtain from (6.3.6) that for t + = 

:= llP - P 
(Tt+hNO) +·1xlNc 

II + 0 a.s. + 
Nt 

.. 

The random variable s_1 is XJilC-measurable. By the dominated convergence 
theorem for conditional expectations (given s_1), we have fort+= 

for all real h. Hence by 

0 

Zt := E; f 
1 s 

-1 

dominated convergence we have for t + = 

llp - P II dh + 0 a.s. 
(Tt+h No>+ls_l N: 

Because lztl 5 2ls_1 1 is uniformly integrable, we obtain by dominated con-
vergence for t + m 

llQ+ - P II 5 Eiztl + O. 
N+ 

t 

Hence (6.3.7) holds and together with (6.3.6) for h 
(6.3.3). D 

0 this yields 
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Theorem 6.3.1. is obtained above as an application of the loss of 
memory result in Theorem 6.1.1. Theorem 6.3.2 will be derived similarly by 
using the loss of memory result in Theorem 6.1.2. There is, however, a 
difference that causes some problems. Theorem 6.1.2 considers strongly 
nonlattice random walks, whereas Theorem 6.3.2 is involved with the slight­
ly larger class of nonlattice random walks. Section 6.2 was meant to de­
scribe the gap.between these two classes of random walks. 

In Chapter 1, at the end of the proof of Theorem 1.1.3, we used a 
simple trick to construct out of a nonlattice random walk a strongly non­
lattice random walk. We inserted in the distribution of the (independent) 
increments an atom at {O}. The required limit relation could be obtained 
easily from the corresponding limit relation for the new, strongly nonlattice 
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random walk. The same idea will be used also in the present context. The 

following three propositions contain the necessary prerequisites. 

Suppose S2Z is a random walk controlled by a stationary sequence XZZ 

with values in a Borel spacer, such that 

o, n € zz, 

where f is a measurable real function on r. Let szz be a sequence of in­

dependent, {0,1}-valued random variables, with p := P(s0 = 1) between 0 and 

1, and suppose that s2Z and X2Z are independent. Consider the random set 

and let 

be its elements. Suppose y is some element, not contained in r. Define the 

process Xzz by 

if k Tn for some integer k, 

:= y else, 

for n € ZZ. Then XZZ is a stationary sequence of random variables with 

values in the Borel space f := {y} u r. Extend f to f by taking f(y) := 0 

and define the random walk Sl'Z by requiring 

n E ZZ. 

In the following propositions we investigate how the (Cesaro) weak Bernoulli 

property, the nonlattice concept and condition (5.1.3) behaves in the tran­

sition from xzz to X2Z. 

A well known type of example of Cesaro weak Bernoulli processes are the 

periodic Markov chains in Example 4.4.11. 

PROPOSITION 6.3.4. If X2Z is Cesaro weak Bernoulli, then Xzz is weak 

Bernoulli. 

PROOF. By Theorem 4.4.9 the condition that X2Z is Cesaro weak Bernoulli is 

equivalent with the existence of a probability space with processes X~ 
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and x;z, both distributed as Xzi;, such that Xllic and x;z are independent 
and for certain finite random times cr1 and cr 2 

(6.3.8) X' 
n+cr 1 

X" I n+cr2 
n 2 1. 

Assume that this probability space exists. We want to construct X~ 

and x;z, both distributed as .X;:z' such that XIDc and X~ are independent 
and for some finite random time cr 

X' 
n+cr 

X" 
n+cr' 

n 2 1. 

By Theorem 4.4.7 we shall then have proved that Xzi; is weak Bernoulli. 
Let ;:JN and Ti, be mutually independent, independent of the random 

variables mentioned before and distributed as TJN. Let cr be the meeting 
time of 

and T" 
n+cr2 ' 

n 2 1. 

By the Chung Fuchs theorem this meeting time cr exists with probability 1 
(compare the proof of Theorem 1.1. 2). Define T ID by 

TI 
n+cr 1 

:= T 
n+cr1 

n < cr, 

:= T" 
n+cr 2 

n 2 cr. 

Given Z := (cr1 ,cr2 ,X2z ,x;z>, the processes TJN and Ti, are independent and 
distributed as TJN. Using the Markov property, one observes that, also 
given z, TID is distributed as TJIJ. 

Let Tllic and Tiic be mutually independent, independent of the random 
variables mentioned before and distributed as TJNC" It follows that T?z 
and x~ are independent and hence X~ defined by 

X' := X' 
n k 

if n Tk for some k, 

:= y else, 

is distributed as X2Z. A similar definition can be given for x;z and also 
this process is distributed as X?Z. Because (XIDc'TIDc) and (X;z,T;z) are 
independent, also Xllic and x;z are independent. 
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If k 2: CJ we have Tk' T" Note that for n 2: +CJ 1 k+CJ 2 
a := -r.!.. = t!! 

CJ+CJ1 CJ+CJ2 

we have two possibilities. If n does not have the form T' T" for k+CJ 1 k+CJ 2 
some k 2: CJ, then 

X' y X". n n 

Otherwise n T' 
k+CJ 1 

T" 
k+CJ 2 

for k 2: CJ, so 

X' X' X" X". n k+CJ 1 k+CJ 2 n 

Hence for all n 2: CJ holds 

X' X". n n 

Thus we verified in the last two paragraphs a necessary and sufficient 

condition for X2Z to be weak Bernoulli. D 

PROPOS~TION 6.3.5. If S?Z is nonlattice with respect to x::z' then we have 

(i) nonlattice with respect to X2Z ; 

(ii) is weak Bernoulli, then S?Z is strongly nonlattice with respect 

to X2Z; 

(iii) if X?Z is Cesaro weak Bernoulli, then S?Z is strongly nonlattice with 

respect to X2Z. 

PROOF of (i).We use the following easily verified property. Suppose (Y 1 ,Y2J 

and Z are independent. If Y1 is, up to a null set, (Y 2,zJ-measurable, then 

Y1 is, up to a null set, Y2-measurable. 

We prove (i) by contradiction. Suppose S?Z is lattice with respect to 

X2Z, i.e. for some d > 0 there is a measurable function c such that 

c(XJNC'XJN+n) a.s., n 2: 1. 

Let on := i;; 1 + •.• + i;;n and note that (XJNc ,XN+n) and (XNc ,XJN+CJn ,i;;JNC ,i;;JN+n) 

mutually determine each other. Hence there is a measurable function c such 

that 

(S mod d 
CJ 

n 2: 1. 
n 

Note that (CJn,X?Z) and (i;;JNC ,i;;N+n) are independent. Using the first para­

graph of the proof and this independence property, it is easily seen that 



there is a measurable function c such that 

(S mod d 
CI 

n 
c (Xmc ,xlN'+CI ) a. s., 

n 
n :2: 1. 

The process XZZ and the random variable Cin are independent. Furthermore, 
P ( CI = n) is positive. It follows that n 

n :2: 1, 

thus contradicting the assumption of the proposition. 

PROOF of (ii). Suppose d00 is the width of the minimal weak lattice of SZ2: 
with respect to XZ2:. Let dn be the minimal lattice width of the distribu­
tion Fn on the real line, defined by 

1 
B € B I 

where Kn:= {1, ••• ,n}, n :2: 1. By Lemma 5.2.6 and the definition of the 
minimal weak lattice width in Section 5.2, we have dn ~ d00 for n + 00 • Be­

the limit is attained if d > 0. co 
cause d divides d 1 for each n :2: 1, 

Q ~ ~n+ 
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Define dn 1 d00 and FQ similarly for the random walk SZZ with re:pect to XZZ. 
The property that SZ2: is strongly nonlattice with respect to Xzz: can be 
expressed by d00 o. 

If for all n :2: 1 

or 

(SCI ) mod d is a.s. (XlN'c ,X:N+CI ,z;;:Nc ,z;;:N+n )-measurable, 
n n 

then, by the property mentioned in the first paragraph of the proof of (i), 
also 

(SCI ) mod d is a.s. (X:Nc ,XlN'+CI )-measurable, 
n n 

and hence, 

Therefore, d00 :2: d00 • Suppose d00 > 0. We have to prove that d00 

assumption that Xzz is weak Bernoulli. 

O, under the 

Because of the limit property (6.2.4) and the definition of d00 , we can 
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choose n so large that d00 is the lattice width of Fn and 

(6.3.9) µ := P A P # 0. 
X:Nc 'KJN+n X:Nc 'XJN+n-1 

By Corollary 6.2.3 there exists a real number c and a real measurable func­

tion c, such that 

(6.3.10) 

where c and d00 are mutually prime. Consider 

Because { cr = n} 
B 

B € 81• 

{r; 1 = ..• = r;B = 1} has positive probability, it is easily 

seen that Fn >> Fn and hence dn divides d00 • Similarly it can be seen that 

F >> G 
n n 

whereµ is defined by (6.3.9). By (6.3.10) the measure Gn is concentrated 

on c + Ldoo. Because c and d00 are relatively prime and because the minimal 

lattice width dn divides d00 , it follows that dn 0 and hence also d00 ~ dn 

vanishes. So S:?Z is strongly nonlattice with respect to Xl!Z. 

PROOF of (iii). The process Xl!Z is defined in terms of Xl!Z and r;:?Z, say 

as Xl!Z := g(Xl!Z, r;:?Z). Let r;::z, r;;z and Xl!Z be independent, with r;::z and 

r;Zz sequences of independent {0,1}-valued random variables, such that 

{r;' = 1} and {r;"= 1} both have probability /P, where p := P(l';n= 1). Then the 
n n 

process r;l!Z defined by ~n : = r;~ A r;~, n E l!Z, is distributed as r;l!Z. 

The process x::z : = g (X:?Z, r;:k;) is weak Bernoulli by Proposition 6. 3. 4 

and the random walk S:k; controlled by X:k; is, by (i) , nonlattice. The pro­

cess Xiz : = g (X:k; , r;Zz) is weak Bernoulli by Proposition 6. 3. 4 and the 

random walk Siz controlled by Xiz is strongly nonlattice by (ii) . Because 

Xiz = g(X:?Z ,~~), with ~:?Z distributed as r;zi.: and independent of X:?Z, it 

follows that X:?Z is distributed as x;;. Hence we proved (iii). D 

PROPOSITION 6.3.6. If XZ'.:is weak Bernoulli and satisfies (5.1.3), then X:!Z 

satisfies (5.1.3). 

PROOF. We have to show (by the note to Proposition 5.1.1) that for each set 



K:={1, ..• ,k} 

lim E ~ (XK,XLc) 0, 
!l-+<» XL\K 

where L := {-!l, ••• ,!l}. By the second inequality of Proposition 5.1.1, it 

follows that it is sufficient to prove for sets K and L of the form above 
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To this purpose we construct a process X~, approximating Xz;;, such that 

(X~,X~\K'X~c~ is a Markov triple. The assertion can then be derived easily. 
The process X~ will be constructed such that for some process X~, approx­

imating Xz;;, we have 

X' 
n 

X' 
k if n = Tk for some integer k, 

y if i'.;n = O. 

* * Construct XlNc and XlN as independent processes, distributed as XlNc 

* and XlN , respectively. Let T n, 

* 
n ?: 1, be the n-th index for which i'.;j = 1, 

c j > k, and let Tn := Tn' n $ 0. Define for n € K 

(6. 3 .11) X' := 
n 

:= 

y 

* ~ 

if i'.;n = 0, 

* if n = Tk for some integer k, 

* * and note that X~c is defined in terms of (;:;Kc, XJNC , XlN). The random vector 
i'.;K is independent of this random vector. We define the process X~ as fol­

lows. Let ok := l~=l i'.;i and take 

* X' := x n > Ok' n n-ok 

* := x n $ 0. n 

This defines X~c with Ki'.; := {1, ... ,ok}. Let Li'.; be defined as 
1; 

0 - + l L := { -0 !l I • • • I 0 !l} f with ail := /:;,I 1; 
i=-!l 

J. 

!l 
+ l a!l := i'.;i. 

i=l 

Define X~ , independent of (X~c,i'.;zz), given (X~ \K K,..,L,..) 
1; 1; 1; ;:;' ~ ~ 

(x,K' ,L'), 
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with conditional distribution PX Ix -x· We can now define X' by K' L'\K'- Zl 

X' := X' 
n k 

:= y 

if n 

if (,; 
n 

Tk for some integer k, 

0. 

This definition is consistent with (6.3.11). Moreover, the independence of 

* * c,;K and {(,;KC'xlr'JC ,XID~ and the definition of X' imply that XL'c and X' are Kc,; K 
independent, given :~\K~ * 

To estimate o (X~ ,XZl) we use Lemma 6.2.6. Note that XJ:.JC = Xi<c and 
* Xlli = X~+cr k are independent anq distributed as X:Nc an~ XN, respectively. 

Take some E > 0 and let k be some integer, larger than k(E). By Lemma 6.2.6 

and the note to this lemma 

lflp P tt < 10E 
2 x~ I c,;zz - xzz: 

on the set 

By the independence of XZl and c,;2Z we have Pxzz: I l',;zz: = Pxzz: and hence on A 

Using (4.1.5) we obtain 

(6.3.12) lflp 
2 ~ 

X' 
2Z 

Using this estimate for X~ we can now prove the assertion. Let XZl 

be a process such ~at (XK~XL\K'XLcl forms a Markov triple and XL and XKC 
are distributed as XL and XKC' respectively. We have to estimate 

:= E ~ (XK,XLC). 

XL\K 

By the triangle inequality 

To estimate the first term on the right, we use Proposition 4.1.4 and for 

the second term we use (6.3.12). We obtain with K = {1, •.• ,k} and 



L {-t, ... ,R.} 

fK(L) $ (0+ a.+ a.+ a.)+ a. 4a., a. := lOE P(A) + P(Ac). 

Letting R, + oo we obtain 

lim sup fK(L) $ 40E P(k(E) $ crk $ k) + 4(1-P(k(E) $ crk $ k)). 
i~ 

By choosing k >> k and letting k + oo we obtain for arbitrary positive E 

lim lim sup fK(L) s; 40E, 
k~ R,+oo 

which proves the assertion. D 
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NOTE. It is not clear whether the proposition is valid if the weak Bernoulli 
assumption on X2Z is weakened to the requirement that X2Z is Cesare weak 
Bernoulli. 

PROOF of Theorem 6.3.2. First we suppose that S72: is strongly nonlattice 
with respect to x2Z. The proof of (6.3.4) is obtained by some simple changes 
in the proof of Theorem 6.3.1. Instead of Theorem 6.1.1 we use Theorem 
6.1.2. All probability distributions P PN+' Q+, etc., have to be Sn,XJN+n' t 
replaced by 

where v is an arbitrary, absolutely continuous probability measure 

on (0, 00). Note that because Q+ is invariant under Tt' t ~ O, we have 
V*Q+ = Q+. With these changes the proof of Theorem 6.3.1 can be followed 
to get (6.3.4). 

In case the strongly nonlattice assumption is not satisfied, we con­

sider the random walk S:?Z, controlled by X72:, a_:: defined in the introduc­
tion of Proposition 6.3.6. By this proposition X72: is weak Bernoulli and 
by Propositi~n 6.3.8 X72: satisfies (5.1.3). By Proposition 6.3.5 (ii) the 
random walk S:;Z is strongly nonlattice with respect to X72: and hence by 
what we proved above 

(6. 3. 13) 0 a.s., 

~+ ~+ 
whure Nt and Q are defined in the obvious way. Let N0 be the point process, 
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defined by 

N0 (B) := l XB(S ,X ), 
n€:<Z n n 

where--B c JR1 x r is a~y ~easurable set. We can ~btain N0 out of N0 b: 

removing all points (Sn,Xn), n € :;z, for which xn = y. Write N0 = e (N0 ) 

and similarly N~ = 6+(!\:).~Note that Q+ = ~oe:1 • Using these remarks and 

the property that XJNC is XJNC -measurable, one obtains from (6. 3.13) that 

(6.3.4) holds. D 

NOTE to Theorems 6.3.1 and 6.3.2. 
0 

1 In case the increments of S:;z are not strictly positive, we can strength-

en both theorems above slightly. Define for positive t 

't := inf{n ~ 0: Sn > t}. 

+ If S:;z has strictly positive increments, then Nt and (s,t,XJN+<t) mutu-

ally determine each other. In case this condition is not fulfilled, it 

is possible that with positive probability for n > 't holds that Sn < t. 

So in that case N~ does not determine (s,t,X:N+< ). 
-+ t JN 

Define the marked point process Nt on (O,oo) x r by 

-+ 
Nt(B) := 

c(O,oo) x r:N -+ where B is any measurable set. Note that Nt and 

(S<t'X:N+<t) mutually determine each other. Both Theorems 6.3.1 and 

6.3.2 remain valid if in (6.3.3) and (6.3.4) the marked point process 
+ -+ Nt is replaced by Nt. The proofs of both theorems are easily adapted 

to cover also this assertion. 

2° Note that V*Q+ = Q+. Hence the limit property (6.3.4) is equivalent 

with 

a a.s., 

where dv is the pseudo-metric defined by (0.3.3). This type of conver­

gence is unusual. It is, however, strong enough to permit us in Section 

6.4 to give converse results. The appendix discusses the topology 

corresponding to this convergence concept. Recently McDONALD [1978] used 
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a similar convergence concept in renewal theory for semi-Markov chains. 

Using the notations and assumptions given in the introduction to Theo­
rems 6.3.1 and 6.3.2, we can prove the following result for a Cesaro weak 
Bernoulli sequence X2Z that consists of countably valued random variables. 

THEOREM 6.3.7. Let X2Z be a stationary, Cesaro weak Bernoulli sequence of 
countably valued random variables. Suppose ES 1 is finite and strictly posi­
tive. If the random walk Szz is nonlattice with respect to X2Z, then for 
each absolutely continuous probability measure v on (0, 00 ) we have 

~· We apply the idea given in the last paragraph of the proof of 
Theorem 6.3.2. Note that X2Z is countabl: valued, so satisfies (5.1.3) by 
Proposition 5.1.3. B: Proposition 6.3.4 X2Z is weak Be:noulli and by Prop­
osition 6. 3. 5 (iii) s2Z is nonlattice with respect to X2Z. Hence by Theorem 
6.3.2 

0 a.s. 

This implies the assertion. D 

6.4. RENEWAL THEORY - THE COUNTABLE AND MARKOV CASE 

In the preceding section we obtained renewal theorems for random walks, 
controlled by a stationary sequence X2Z. We assumed that X2Z was weak 
Bernoulli and required that the random walk was spread out or nonlattice. 
The question that interests us in this section is whether these conditions 
are well chosen. To this purpose we study two special classes of processes 
that allow us to obtain more detailed results. In both cases condition 5.1.3 
is satisfied. 

In the first half of this section we study a countably valued sequence 
X2Z. It appears to be natural to replace the weak Bernoulli condition on 
X2Z by the slightly weaker assumption that X2Z is Cesaro weak Bernoulli. 
We then obtain in Theorem 6.4.1 a necessary and sufficient condition for 
the validity of the limit relation (6.3.4) (or (6.':.:1.2)) that was derived in 
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the preceding section. 

In the second half of Section 6.4 we apply our results to obtain 

renewal theorems for functionals on Markov chains. Also the renewal theory 

for semi-Markov chains fits into this context. Theorem 6.4.5 describes the 

main result. The literature in this direction is fairly extensive. our 

method of proof differs considerably from the methods that are usually 

applied. However the result, Theorem 6.4.5, is close to other limit theorems 

in this direction. At the end of the section we give a survey of the 

literature. 

Let SZ1: be a random walk controlled by a stationary sequence X:;z, with 

values in a Borel space r. Suppose S:;z has strictly positive increments 

with finite expectation. Let N0 be the marked point process on the real 

line with marks in r, defined by 

(6.4.1) l XB (Sn ,Xn) ' 
nEZ!: 

where B c JR1 x r is any measurable set. Define Nt := TtN0 , t real, and 
+ -let Nt and N~ be the restrictions of Nt to (0,oo) x r and (-oo,O] x r, respect-

ively. Let Q be defined as in the introduction to Theorem 6.3.1. With 

these notations we have the following theorem. 

THEOREM 6.4.1. Let S:;z be a random walk, controlled by a countably valued 

sequence XZ!:. Assume that S:;z has strictly positive increments with finite 

expectation. The following two statements are equivalent: 

(i) XZ!: is Cesaro weak Bernoulli and s:;z is nonlattice with respect to X:;z. 

(ii) For each absolutely continuous probability measure v on (0, 00 ) we have 

(6.4.2) 

PROOF. We may assume that r is countable. By Proposition 5.1.2, condition 

(5.1.3) is satisfied. By Theorem 6.3.7 we have (i) -+ (ii). The converse 

follows from the following two propositions. D 

PROPOSITION 6.4.2. Let SZ!: be a random walk, controlled by a stationary 

sequence XZ1:, with values in a Borel space r. Suppose SZ!: has strictly 

positive increments. If (6.4.2) holds, then XZ!: is Cesaro weak Bernoulli. 

PROOF. By (6.4.2) we have 
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- V*P II 
N~ 

0 a.s. 

Let Y be a v-distributed random variable, independent of N0 • The limit rela­

tion above can be written as 

0, 

up to a PN_-null set. Fix some m not contained in this null set. Consider 
0 

the probability space on which N0 is defined. For any positive t we can 

construct, using Proposition 4.2.1 and Lemma 4.2.4, a pair (N0 ,Y) with 

distribution PN / ___ xv, such that o No-m 

(6. 4. 3) Pm-(N~+Y 'I N~+Y) ~llP - P II. 
N~+Y/N~=m- N~+Y 

Here the probability measure Pm- depends on m-. The marked point process 

N0 has the form 

1 
where B c JR x r is measurable, 

-+ 
increments. On the set {Nt+Y 

s 
n+o s -, n+o 

where a and a are given by 

x 
n+o 

0 and Szi; has strictly positive 

n 2 1, 

a := inf{n 2 0: Sn+Y > t}, a := inf{n 2 0: S +Y > t}. 
n 

Because the right-hand side in (6.4.3) tends to 0 for n ~ 00 , we have 

by Proposition 4.3.4 that 

n-1 
lim II~ l 
n~ n k=O 

1 n-1 
l Pm 

n 
k=O XlN+k 

0. 

The marked point process N0 is distributed as P / _ _ and hence 
N 0 NO=m 
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The first term in the last limit relation equals PX:JN by stationarity. Be­

cause N0 and X:JNC mutually determine each other, it follows that, up to a 

null set, 

n-1 
lim llp 
n-+<x> xm 

I 
n k=O 

By Proposition 4.4.8 the process X2Z is Cesare weak Bernoulli. D 

PROPOSITION 6.4.3. Let S2Z be a random walk, controlled by a stationary 

sequence x2Z I with values in a Borel space r. Suppose s2Z has strictly 

positive increments. If (6.4.2) holds for any absolutely continuous 

probability measure v on (0, 00), then S2Z is nonlattice with respect to XZl. 

PROOF. Suppose that S2Z is lattice with respect to X2Z. For some d > 0 there 

is a real function c such that 

n ;;,, 1. 

We derive a contradiction with (6.4.2). 

Let (N,V) be the measurable space, defined in Section 0.3 for marked 

point processes. Suppose m is the restriction to (-oo,O] x r of some element 

in N. Define D(m-) to be the set of all m E N, such that their restriction 

to (-oo,Q] x r ism-, while m has the form 

m(B) I XB(sn,xn)' B c lR1 x r, 
nE2Z 

(6. 4.4) . . . < s -1 < so 0 < s1 < ... 

(sn) mod d c (x:JNC ,xlN+n), n ;;,, 1. 

Lett;;,, 0. Define $t(m) to be the element of N that vanishes on the 

set (0,t) x r and coincides with m on the complement of this set. Note that 

$t maps D(m-) onto D(m-). 

Consider an element m E D(m-) of the form (6.4.4), with s 1 > t. Leth 

be real, such that h+t ;;,, 0 and define m by requiring 

s 
n 

m(B) 

n :<;; O, s 
n 

B c JRl x r. 



Note that m E D(m-) if and only if h E Ld. In case h E Ld' the mapping 

m + m is an invertible mapping from ~t(D(m-)) onto ~t+h(D(m-)). 

Denote the restriction of m E N to (Q,oo) x r by m+ and define for 

t <: 0 
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From the remarks in the preceding paragraphs, it follows that if t+h <: O, 

the sets Dt(m-) and Dt+h(m-) coincide if h E Ld and are disjoint if hi La. 

Define for arbitrary positive £ the set 

Let v be the homogeneous distribution on [0,£) with 0 < £ < ~d. Then the 

measures 

(6. 4. 5) and 

are concentrated on 

and 

respectively. Because these sets are disjoint, the two measures in (6.4.5) 

are mutually singular. This contradicts (6.4.2) because (6.4.2) implies 

that the total variation of the difference of these two measures vanishes 

asymptotically with probability 1. D 

Suppose S2Z has strictly positive increments. The two propositions 

above imply that if the limit relation of Theorem 6.3.2 holds (i.e. (6.4.2)) 

then necessarily Xl'Z is Cesaro weak Bernoulli and S2Z is nonlattice with 

respect to X2Z. The corresponding assertion holds also for the limit rela­

tion of Theorem 6.3.1. If this limit relation holds, then necessarily x26 
is Cesaro weak Bernoulli and, as we shall see below, S2Z is spread out 

with respect to X2Z. 

PROPOSITION 6.4.4. Let S2Z be a random walk, controlled by a stationary 

sequence X2Z, with values in a Borel space r. Suppose S?Z has strictly 
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positive increments. If (6.3.3) holds, then SZl is spread out with respect 

to XZl 

PROOF. Suppose SZl is nonlattice with respect to XZl. We derive a contradic-

tion. By assumption PS /x X is singular with respect to the Lebesgue 
, n ]NC' :IN+n 

measure i or, equivalently, 

and 

are mutually singular. Let en and its complement form a Hahn-decomposition 

f f . f fJNC,yefJN or µ 1 - µ 2 • De ine or x E ~ 

We have 

(6.4. 6) 

while 

en := {s E JR1 : (s,x,y) E en}. 
x,y 

1, 

is an i-null set a.s. 

Let the measurable space (N,V) be defined as in Section 0.3. Define 

D(m-) E V to be the set of all m E N such that m is their restriction to 

(-00 ,0] x f, while m has the form 

s 
n 

n ~ 1. 

Let m+ be the restriction of a measure m E N to (0, 00 ) x r and define 

Remark that by (6.4.6) we have 

(6. 4. 7) 1 a.s. 
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Because (6.3.3) holds, we can choose t so large that 

Eli (P - P ) +II < ~ 
N+,N- N+ jN-

t 0 t+h 0 

for h ;:: 0, 

and hence by (6.4.7) 

E P + _(Dt(N~)) ;:: ~ 
Nt+h,NO 

(6.4.8) for h ;:: 0. 

By the definition of Dt(N~) 

and hence 

by Fubini's theorem and because ~ X is a.s. an i-null set. Because 
by (6.4.8) the left-hand side of tirec iafil:+zinequality is infinite, we derived 
a contradiction. D 

In Theorem 6.4.1 above we saw that if r is countable, there is a quite 
complete description of the conditions under which the limit relation 
(6.4.2) holds. It was possible to give necessary and sufficient conditions 
for the validity of (6.4.2). In case r is an arbitrary Borel space, it is 
more difficult to obtain such a complete theory. Below we discuss renewal 
theory for arbitrary r under a simplifying condition. we assume Markov 
dependence. 

Suppose (Xnln;::o is a Markov chain on a Borel space r, with transition 
probability P(x,c). Ifµ is the distribution of x0 , we callµ the initial 
distribution of the Markov chain and we denote the distribution of (Xnln;::o 
by P • In case µ is degenerate at {x}, we write P instead of P • µ x µ 

The limit theory for the iterates Pn(x,C) of the transition probabil-
ity P(x,C) is ·thoroughly studied in case the state space r is countable. By 
using Doeblin's idea of looking at the excursions between successive visits 
of Xn to some fixed element of r, this limit theory is reduced to renewal 
theory for random walks with independent increments. In case r is not count­
able, it is possible that there are no recurrent points and so this idea 
cannot be used. However, for a special class of Markov chains on arbitrary 
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state space r, the so-called Harris chains, there exists a fairly good 

analogy with the situation for countable r. 
A Markov chain (Xn)n~O is called recurrent in the sense of Harris, or 

shortly, a Harris chain, if there exists a positive, a-finite, invariant 

measure non r, such that for each initial distributionµ 

P(Xn € c infinitely often) = 

for all sets c with positive n-measure. The limit theory for this class of 
Markov chains can be found in OREY [1971] or REVUZ [1975]. The analogy 
between Harris chains and Markov chains on countable state space is fairly 
large. It is even possible to use Doeblin's idea, mentioned above, in a 
slightly revised form (see GRIFFEATH [1976], NUMMELIN [1978a], or ATHREYA, 
NEY L1978]). 

Below we discuss renewal theory for functionals on a Harris chain. We 
assume that n is a probability measure and study the following random walk. 
Let f be a strictly positive measurable function on r and define 

(6.4.9) n ~ 1. 

Analogous to earlier definitions, we call the random walk spread out (with 
respect to the Markov chain) if for some n ~ 1 with positive Pu-probability 
(Pn>s Ix x is not singular with respect to the Lebesgue measure £. The n-1 O• n 
random walk is called lattice if for some d > 0 there is a real function c 
on r 2 , such that 

n > 1. 

Otherwise, the random walk is called nonlattice. Define the marked point 
+ process Nt' t positive, on (0,oo) x r by 

where B c (O,oo) x r is measurable. Let (N+,V+) be the measurable space in 

which N~ has its values. Assume that EnSl is finite. Here En denotes the 
expectation with respect to P • Define Q+ to be the probability distribu-n 
tion, given by 



With these notations and assumptions we have the following result. 

THEOREM 6.4.5. For any arbitrary initial distributionµ on r we have 

(i) if the random walk is spread out, then 

(ii) if the random walk is nonlattice, then 

for all absolutely continuous probability measures v on (0, 00). 
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PROOF. First we prove (i) for aperiodic Harris chains. By OREY [Theorem 

1.7.1], or REVUZ [Theorem 6.2.8], we have, if the Harris chain has arbitrary 

initial distribution µ, 

(6.4.10) lim II (P ) - rrll 
n->w µ xn 

o. 

Because rr is invariant, the process (Xn)n~O is stationary under Prr. Extend 

this process to a stationary sequence X?Z on a probability space (~ 1 A 1 P). 

Let the random walk S?Z be given by (5.0.2). By (4.1.6) and the Markov 

property 

By (6.4.10) this expression converges a.s. to 0 for n + 00 and so, by 

(4.4.2), the process X?Z is weak Bernoulli. Because X?Z is Markov dependent, 

it satisfies (5.1.3) by Proposition 5.1.2. Hence by the spread out condition 

in (i) and Theorem 6.3.1 

(6.4.11) 0 rr-a.s. 

By the Markov property we can write for each n ~ 0 and D E V+ 

P (N+ED,s st) = .r J (PxlN+ (D) d(P J8 I (sJd(P )x (xJ. 
µ t n f [O,t] t-s µ n Xn=x µ n 



196 

Using the definition of total variation and the triangle inequality, we 

obtain 

II (P ) - Q+ll 
µ + 

Nt 

s I I II (PX) + 
f[O,t] Nt-s 

By (6.4.10) and the bounded convergence theorem, together with (6.4.11), the 

limit relation of (i) follows from this inequality. 

In case the Harris chain is periodic, we use an idea, similar to the 

argument at the end of the proof of Theorem 1.1.3. Let r• be a duplicate of 

r that is disjoint with r. we consider a new Markov chain (X ) >Q on 
~ ~ ~ n n-
r := f U f'. If X E f, we denote by X and x' the elements off and f' 

respectively that correspond to x. Define the transition probability of 

the new chain, by requiring 

P(x,C) := p xc<x') c c r• I 

:= (1-p)P(x,C) C C f I 

where 0 < p < 1 for some p. Extend f to r, by defining f(x') := 0 for 

x' Er•. Consider the n-th transition of the new chain. With probability p 

this transition is to f', and with probability (1-p) to f. In the first case 

nothing changes: Sn= Sn-land if rand r• would be identified, Xn Xn-l" 

In the second case the chain makes, conditionally, a transition that is 

described by the transition probability of the original chain. 

The new Markov chain is easily seen to be an aperiodic Harris chain. 

and the random walk (Sn)n~O is spread out with respect to (Xn)n~o· The 

argument above yields the limit relation of (i) for the new chain. Clearly, 

this implies the limit relation for the original chain. 

To prove (ii) one uses Theorem 6.3.2 instead of Theorem 6.3.1. The 

proof is similar as above and will be left to the reader. D 

NOTE. If the limit relation of (i) holds for any initial distribution µ, 

then necessarily the random walk is spread out. This follows from Proposi­

tion 6.4.4. If the limit relation of (ii) holds for any initial distribu­

tion µ, then necessarily the random walk is nonlattice. This follows from 

Proposition 6.4.3. 
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The theorem above holds also for semi-Markov chains. Let (Xn)n~O be 
a Harris chain on a Borel space r with an invariant probability measure n. 
Let (~n)n~l be a sequence of strictly positive random variables, such that 

~n' given ((Xj)j~O'(~j)j~O,j~n), only depends on (Xn-l'Xn)' with its con­
ditioQal distribution 

not depending on n ~ 1. Renewal theory for the random walk 

Sn := ~1 + ••• + ~n' n ~ 1, 

is known as limit theory for semi-Markov chains. We assume that Ens1 is 
finite. Here En denotes expectation under the assumption that the initial 
distribution of (Xn)n~O is n. Define the spread out and nonlattice condi­
tion as above. 

PROPOSITION 6.4.6. With these definitions, Theorem 6.4.5 holds again. 

PROOF. Define r := r x (O,~J x r and consider the Markov chain (Xn)n~O on 
r, given by 

n ~ 0. 

Note that (Xn)n~O is a Markov chain with invariant probability measure 

- -n(C) :=En X_(Xn). 
c 

To prove that (Xn}n~O is a Harris chain, select a set c with positive n­
measure and take E > 0 so small, that 

c := {x E r: Exx-<x,~ 1 ,x 1 J > E} 
c 

has positive n-measure. By OREY [Proposition 1.5.l(i)] and our choice of c, 

{X E C infinitely often} c {X E C infinitely often} a.s. n n 

Because (Xn)n~O is a Harris chain, it follows that for each initial distrib­
ution of (Xn)n~O on r, the set on the left has probability 1. Hence also 
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(Xn)n~O is distributed as a Harris chain. Define f on r to be the projection 

on the second coordinate of r. We apply Theorem 6.4.5 to the new Markov 

chain (Xn)n~O. By using the Markov property, it follows that if (Sn)n~O is 

spread out (nonlattice) with respect to (X ) >O' this holds also for 
~ n n-

( Sn) n~U with respect to (Xn)n~O. Theorem 6.4.5 applied to the new Markov 

chain yields the required assertion. D 

There is a much simpler approach to the results discussed in Theorem 

6.4.5, if the transition probability P(x,C) of the Harris chain (Xn)n~O 

satisfies the following domination property. There is a nonvanishing measure 

~on a subset Cc r, such that for all x E c 

P(x,o) ~ ~(·). 

Using this assumption, it is possible to consider the Harris chain as a 

regenerative phenomenon. Then one can obtain renewal theoretic theorems, 

using classical methods as described in SMITH [1958] or FELLER [1971,XI.8]. 

This approach is given in NUMMELIN [1978b] and ATHREYA, McDONALD, NEY [1978]. 

At present it does not seem possible to obtain Theorem 6.4.5 and Proposi­

tion 6.4.6 in full generality with this approach (see Section 3 of the last 

mentioned paper). 

The literature concerning renewal theorems for semi-Markov chains is 

quite large. In case r is countable, the times of visit to some fixed 

recurrent point form a sequence of regeneration epochs for the process and 

then one can apply the theory of regenerative phenomena. A well known survey 

is SMITH [1958]. Also Markov chains with noncountable state space are in­

vestigated, and in particular Harris chains. KESTEN [1974] contains a good 

list of references. We can mention OREY [1961] who uses operator theoretic 

theorems. Also RUNNENBURG [1960] discusses a class of Harris chains, satis­

fying a Doeblin condition. JACOD [1971,1974] has a result that is close to 

Proposition 6.4.6(ii). His method of proof makes use of space-time harmonic 

functions, a technical tool known in the theory of Harris chains as present­

ed in OREY [1971). McDONALD [1978] also discussed this topic for Markov 

chains on a general state space. He uses space-time harmonic functions too. 

Some of his results come close to both Proposition 6.4.6(i} and (ii). How­

ever, his main interest is transient chains. KESTEN [1974] considers Markov 

chains on a separable metric space and is quite different from the last 

mentioned papers. It is possible to apply the results in this paper also 

to processes that are not described by means of a Markov chain. 
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EXAMPLE 6.4.7 (Kesten). Let X2Z be a stationary sequence of random variables 
with values in a finite spacer. Let f be a function on rand define 
(Sn)nzO by (6.4.9). The process Yn := XJNC+n' n E 2Z, is a Markov chain on 
f := flNc with stationary transition probabilities. Let dl be the metric 
on r, defined by 

:= else, 

and define d on r by 

This makes r a separable metric space. Under some conditions, under which 
the requirement that if d(y1,y2) is small, then in some particular sense 

is close to 

it is possible to derive renewal theorems of a different type than we did 
in Chapter 6 (see KESTEN [1974,Conditions I]). The model given above, is 
related to the distance diminishing models in IOSIFESCU and THEODORESCU 
[1969]. 

6.5. MIXING AND REMIXING FOR FLOWS 

The main result in Section 3.1, Theorem 3.1.4, establishes a 1-1 
correspondence between a class Q of distributions of stationary point pro­
cesses N on the real line and a class ~ of distributions of point processes 
N0 , given in terms of a random walk S2Z with stationary increments. One of 
the interesting properties of this 1-1 correspondence is that it behaves 
nicely with respect to ergodicity: N is ergodic if and only if the process 
of increments of S2Z is ergodic. So a mixing property of N, ergodicity, in­
duces and is induced by a mixing property of N0 . This section considers a 
similar "mixing and remixing" property. It investigates how the weak 
Bernoulli condition behaves under the 1-1 correspondence. 

The first two theorems are the main results. We assume that N0 is given 
in terms of a random walk S2Z controlled by a stationary sequence X2Z. Es­
pecially the second of these theorems, where we require that X?Z is countab­
ly valued, has a quite satisfying form. Both theorems are obtained as simple 
applications of results in the preceding two sections. 
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In the second half of this section we deduce from the results mentioned 

above a property of flows. Flows are studied in ergodic theory. In particular 

the theory of mixing properties of special flows is narrowly related to 

renewal theory. Theorem 6.5.9 forms the main result in this direction. We 

discu~s the related literature and show that this theorem improves on re­

sults in GUREVIt [1967] and TOTOKI [1971]. 

Let N be a marked point_ process on m.1 x r, where r is a Borel space. 

We denote the restriction of N to {O ,oo) x r and (-oo,Q] x r by N + and N 

respectively. Suppose N is stationary. N is called weak Bernoulli if 

- + 
lim .L(N , (TtN) ) = 0 
t-+<» 

or equivalently (compare (4.4.2)) 

lim llp( l+i - - P +II 
t-+<» TtN N N 

0 a.s. 

To describe the most interesting of our results in this section, the weak 

Bernoulli condition is slightly too strong. Say N is smoothed weak Bernoulli 

if for each absolutely continuous probability measure v on (0, 00 ) holds 

In the results below we assume that X2Z is a stationary sequence with 

values in the Borel spacer. Let SZZ: be a random walk, controlled by X2Z, 

with strictly positive increments having finite expectation. Define the 

marked point process N0 by 

(6. 5.1) 

for any measurable set B c m1 x r. Let N be a marked point process with dis­

tribution Q given by 

(6. 5. 2) D E V. 

Here (N,V) is the measurable space, defined at the end of Section 0.3. The 

marked point process N is stationary. This is proved by using notes 2° and 

3° to Proposition 3.1.1 (or see MATTHES [1963]). 

With these notations and assumptions we have the following two theorems. 



THEOREM 6. 5.1. If X:;z is weak Bernoulli and satisfies (5.1. 3), then 

(i) if S:;z is spread out with respect to X:;z then N is weak Bernoulli; 
(ii) if S:;z is nonlattice with respect to X2Z then N is smoothed weak 

Bernoulli. 

A more complete result can be obtained if X2Z is countably valued. 
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THEOREM 6.5.2. Suppose X2Z is countably valued. N is smoothed weak Bernoulli 

if and only if X2Z is Cesaro weak Bernoulli and S2Z is nonlattice with 

respect to X2Z. 

The first theorem, case (i), is a consequence of Proposition 6.5.3 and 
Theorem 6.3.1. Case (ii) of the first theorem follows from Proposition 
6.5.4 and Theorem 6.3.2. The last theorem follows from Proposition 6.5.4 
and Theorem 6.4.1. 

With the notations and assumptions in the introduction to both theorems 
above, we have the following two propositions. 

PROPOSITION 6.5.3. N is weak Bernoulli if and only if 

(6.5. 3) 

PROOF. The proposition compares a limit property of N with a limit property 

of N0 . 

First we prove the if-part. By the stationarity of X2Z and (6.5.2) 

0 

PN(D') 
1 

f Xo' (TsNO)ds ES E 
1 

s_l 

0 
1 J PT N IN_ (D' )ds, D' E V. ES E 

1 s 0 0 
s_l 

The last equality follows because S_ 1 is N;-measurable. Let D E V+ x V­
+ -and take t ~ 0. With the choice D' := {m EN: ((Ttm) ,m) ED} we have 

Let o be the probability measure degenerate at x. Note that x 
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p (D) 
+ -

(TtN) ,N 

x cS (D) ds, 

(TsNO) 

Here we assume that the distributions Q+ and Q of N+ and N are defined 

on the measurable spaces (N+,V+) and (N-,V-). We also have 

(D)ds, 

Using the last two equalities we obtain 

(6.5.4) 

By (6.5.3) and the bounded convergence theorem, the last expression vanish­

es for t -+ "' 

To prove the only if-part we use the analogue of Proposition 3.1.4 for 

marked point processes. Let Ns be the projection of N on the real line. 

Suppose first that U is the smallest nonnegative point of Ns. We have (see 

MATTHES [ 1963]) 

(6. 5. 5) 0. 

By using a reflection around the origin it follows that we may also take U to 

be the largest nonpositive point of Ns. Write N0 := T0 N. Assume that N is 

weak Bernoulli, so with Q+ P~ 

lim Up - Q+tt 
t-+oo (T tN) +IN-

0 a.s. 

The latter random variable U is N--measurable. Hence we may replace t by 
+ 

t+ U in the limit relation above and therefore (TtN) by (TtN0 ) . Note that 

N and (N~,U) mutually determine each other. By (4.1.5) we have the equality 

llp 
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By the observations we made above, the right-hand side vanishes for t + 00 • 

Hence for all o > 0 

- Q+ x P II 
N~J lul<o 

0 

and by (6.5. 5) 

lfp 

f t . Q+ d (4 1 2) th th or + 00 • Using = PN+ = P(TtN)+ an • • , one proves at e expres-
sion in (6.5.3) is nonincreasing. Hence the limit relation above implies 
(6. 5. 3J. D 

PROPOSITION 6.5.4. N is smoothed weak Bernoulli if and only if for each 
absolutely continuous probability measure v on (O,oo) 

(6. 5.6) 0 a.s. 

PROOF. The proof is parallel to the proof of Proposition 6.5.3. We only 
give a sketch. 

In the if-part one derives instead of (6.5.4) 

v + -
.L ( (TtN) ,N ) 

If (6.5.6) holds, then this expression converges to 0 for t + 00 • Hence 

for t + oo in L1-mean and because this expression is nonincreasing, we also 
have a. s. -conv.ergence_. 

To prove the only if-part, one derives, following the proof of Proposi­
tion 6.5.3,from the smoothed weak Bernoulli property, that 

Also as before, one proves, by means of (6.5.5), that this implies 
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o. 

Hence one obtains (6.5.6). D 

In Proposition 6.5.6 we compare the smoothed weak Bernoulli property 
with other, better known concepts of asymptotic independence. First we prove 
a lemma. 

LEMMA 6.5.5. If Q is the distribution of a stationary marked point process 
1 on lR x r, with r a Borel space, then 

lim Q(D ~(TtD)) = 0, 
t-+O 

D € 0. 

PROOF. By the definition of a Borel space, we may assume that r c [0,1]. 
The mapping f defined by 

m E N, t real, 

is measurable for D E V. To see this, let 01 be the class of all D E 0 for 

which f is measurable. Then 01 contains all sets of the form 

D := {m E N: m(IXJ) ~ k}, 

where I and J are intervals of the form (a,b] and k E :N. Hence by 

KALLENBERG [1.4] the set 01 generates 0. Because 01 is a monotone field, 
it follows by HALMOS [1950,I.6] that 0 = 01• 

By stationarity we have for each real s 

Q(D~ (TtD)) = J lf(m,s)-f(m,s+t) ldQ(m) 

and hence for any h > 0 

h 

hl J J lf(m,s)-f(m,s+t) ldQ(m)ds. 

0 

By Fubini's theorem we may exchange the integrals and because f(m,•) is 

measurable. 
h 

g(t) :=ii. J Jf(m,s)-f(m,s+t) Ids+ 0 

0 

for t + 0. The assertion follows by the dominated convergence theorem. D 
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Define Vt c V, -oo S s < t S oo, to be the a-field, induced by the map­
s 

pings 

m + m(B), 

with B,c (s,t) x r measurable. A marked point process N has trivial right 

(or left) tail a-field, if the sets 

{N E D}, 

have probability 0 or 1. 

PROPOSITION 6.5.6. If a stationary marked point process N is smoothed weak 

Bernoulli, then it has trivial right (and left) tail a-field. 

PROOF. Lemma 3.2.1 holds also for marked point processes, i.e. N has trivial 

right tail a-field, if its distribution Q satisfies 

(6.5. 7) lim sup IQ(DnD0 J - Q(D)Q(D0 J I 
t+oo DEV~ 

0 

for all D0 E V. This is proved similarly as in Lemma 3.2.1. Because each 
t set D0 E V can be approximated arbitrarily close by sets D0 E V_00 , t real, 

it suffices to prove (6.5.7) for all D € Vt, t real. By stationarity we 

only have to prove (6.5.7) for all DO€ V~:: 
Also by stationarity we have Q((T~ 1D) nD0) Q(Dn (TsDO)) for any s ~ O, 

and so 

0 Suppose DOE V_00 and let v be the homogeneous distribution on (O,e). Uniform-

ly for D E v: we have, using Lemma 6.5.5, 

IQCD n D0J - Q(D)Q(D0J I 

s 0(1) + EHv*P +I _ - P +U, e + O, 
(TtN) N N 

and because N is smoothed weak Bernoulli the assertion follows. 0 
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The two theorems in the beginning of this section, are results on the 

theory of mixing properties for flows. An introduction in the theory of 

flows and their relation with point processes can be found in DE SAM LAZARO 

and MEYER [1975] and NEVEU [1977]. 

1 A measurable flow on a measurable space (Q,A) is a family (8t' tE lR ) 

of mappings et: Q + Q such that 

(i) es 0 et = es+t on Q for sand t real, with 80 the identity; 

(ii) the mapping (t,w) + etw from IR1 x Q + Q is measurable. 

The flow is called measure preserving if for all real t 

P(A), A E A 

-1 A set A is called invariant under the flow if et A A for all real t. 'rhe 

invariant a-field J is the set of invariant events A E A. A flow on a prob­

ability space is called ergodic, if each invariant set has probability 0 

or 1. 

EXAMPLE 6.5.7. Let Q be the distribution on (N,V) of a stationary marked 

point process. The family (Tt' t E IR1) on (N,V) is a measure preserving 

flow on (N,V,Q). 

Let (8t' t E JR1J be a measure preserving flow on a probability space 

(Q,A,P). The flow is called a K-flow if there is a a-field 8 c A such that 

(l. l 8 · · · · e- 18 c e-1B f 11 1 < t is increasing, i.e. s t or a rea s - ; 

(ii) 8 is generating, i.e. UtElRl e;;_18 generates A; 
(iii) the a-field ntEIR1 8~ 1 8 is trivial, i.e. contains only sets with 

probability 0 and 1. 

As in SMORODINSKY [1971, Theorem 7.5] one proves that a K-flow is mixing, 

i.e. 

It follows that a K-flow is ergodic. 

EXAMPLE 6.5.8. Let Q be the distribution of a stationary, marked point 

process N with trivial left tail a-field. Using the definitions of Section 

0.3, the flow (Tt: t E JR1) on (N,V,Q) is a K-flow. To see this, let 

Dt c V be defined as in the introduction to Proposition 6.5.6 and take 
s 0 

8 := V • 
-co 
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Suppose that Sl?Z is a random walk, controlled by a stationary sequence 
x2Z. Let Sl?Z have strictly positive increments with finite expectation. Let 
N be a marked point process with distribution Q, given by (6.5.1) and (6.5.2). 

THEOREM 6.5.9. Let Xl?Z be weak Bernoulli and satisfy (5.1.3). In case S2Z 
is nonlattice with respect to Xl?Z, the flow of translations on (N,V,Q) is 
a K-flow. Otherwise there is some t ~ O, such that Tt is not ergodic on 
(N,V,QJ. 

PROOF. The first assertion forms a weakening of Theorem 6.5.1. This follows 
from Proposition 6.5.6 and Example 6.5.8. To obtain the second asser-

tion, assume that Sl?Z is lattice with respect to Xl?Z, i.e. for some d > 0 
there exists a measurable function c: rJNC x rlN + [O,d), such that 

n <! 1. 

Let D0 c N be the set of all m E N ~f the form 

m(B) B c lRl x r, 

0 < s 1 < ••• 

for x E rl?Z such that 2Z , 

-co < m < n < co. 

The point process N0 defined by (6.5.1) has its values in D0 and the 

measure Q is concentrated on D := UtElRl Dt, with Dt := TtD0 • 

The sets Dt and Du coincide if (t-u) mod d = 0, and otherwise Dt and 
Du are disjoint. Define a function w on D (so Q-a.s. on NJ by 

w(m) := inf{t <! 0: m E Dt} 

and note that ~tw(m) is, as a function in t, a saw-teeth function with 
period d. Hence w is Q-a.s. invariant under Ta. Furthermore, the sets 
{O $ w < ~d} and {~d $ w < d} have probability ~. Because these sets are 
Q-a.s. invariant, it follows that Td is not ergodic on (N,V,Q). D 

~· For a countably valued sequence Xl?Z, the theorem holds also under the 
weaker condition that X2Z is Cesare weak Bernoulli. This follows by using 
Theorem 6.5.2 instead of Theorem 6.5.1. 
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The theorem above is related to the theory of mixing properties of 

special flows. 

EXAMPLE 6.5.10 (special flow under a function). Let T be a bimeasurable, 

measure preserving bijection on a probability space W,A,P). Suppose F is 

a strictly positive, measurable function on Q. Define a random walk S by 
. 2Z 

(6. 5.8) s0 (w) := O, n-1 
Sn(w) - sn-l (w) = F(T w), n E 2Z 1 

and assume that s 1 has finite expectation. Define the probability space 

(n,A,Pl to be the restriction to 

Q := {(u,w): 0 s u < F(w)} 

of the product 

(1R1 B1 _1_ o2 (" A l 
' 'ES "' x "' 'p . ' 

1 

where 11, is the Lebesgue measure. The family (6t, t E JR1) defined by 

8t(u,w) 

is a measurable flow on (Q,A), called a special flow under a function. 

The concept special flow under a function, described in the example 

above, is quite old. It is introduced by AMBROSE [1941] and it appears that 

also Von Neumann was interested in this concept. AMBROSE [1941] proves that 

every ergodic flow can be represented as a special flow. This result was 

extended by AMBROSE and KAKUTANI [1942] to a very general class of flows. 
1 In these results the following isomorphy concept is used. A flow (6t' t E lR ) 

on (Q,A,P) is isomorphic to a flow (8~, t E JR1J on (Q 1 ,A 1 ,P') if there is 

an a.s. bimeasurable bijection ~: Q ~ Q' that commutes with the flow and 

is measure preserving. 

For the flow of translations on (N,V,Q) in Theorem 6.5.9 it is quite 

simple to cons.truct the isoinorphy with a special flow. 

2Z EXAMPLE 6.5.11. Assume X2Z is the coordinate process on Q := r The 

random walk S2Z is controlled by X2Z and so, is given by ( 5. 0. 2) . Hence 

s2Z is given by (6.5.8) with 
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where f is a strictly positive, measurable function on r. Define Pon 
rn,AJ n 

nE2Z ( r, T) to be the distribution of X2Z. We show that the special 
JRl) on (~, 7 ,~P) · · h · t th 1 flow (et, t E " A is isomorp ic o e flow (Tt, t E IR ) on 

<N,V,Q), with Q defined by (6.5.1) and (6.5.2). 
1 Define for w = (u,w) E D the measure m = cj> (w) on JR x r by 

with B c JR1 x r measurable. Because P is concentrated on 

-lim s 
n 

n-+-oo 

00} 

the mapping cj>: n + N is defined with probability 1. From the definition 
of Q it follows that cj>(D) has Q-measure 1. Note that X2Z(w) = w. It is 
easily proved that cj> is an a.s. bimeasurable bijection that commutes with 
the flow. The mapping cj> is measure preserving because 

s1 

Q(D) f XD(TsNO)ds 
0 

F(w) 

I I 
0 

1 
XD(cj>(u,w)) ES d£(u)dP(w). 

1 

In ergodic theory most results are formulated for the special flow de­
scribed above, rather than the flow of translations on (N,V,Q). Several 
papers give conditions under which the flow above is a K-flow. Important 

v 
is GUREVIC [1967], that discusses several sets of conditions under which the 
K-property can be proved. The technique that he uses is quite different 
from our approach. 

Close to Theorem 6.5.9 is the following result in GUREVIt [1967]. 
Suppose S2Z is a random walk with stationary increments X2Z having values 
in a finite set r c (0, 00). If X2Z is weak Bernoulli and the elements of 
{y E r: P(X0 =.y) > O} are independent over the rational numbers, then the 
special flow mentioned above is a K-flow. 

Throughout his paper GUREVIt [1967] assumes that the "ceiling function" 
F admits a finite or countable number of values. To remove the finiteness 
condition on F, TOTOKI [1970] discusses the K-property for the special case 
where S2Z has i.i.d. increments that are not necessarily countably valued. 
Note that instead of a finiteness condition, our result in this direction, 
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Theorem 6.5.9, uses condition (5.1.3). 

BLANCHARD [1976] discusses the nonfinite case too. His result is in the 
spirit of one of the theorems in GUREVI~ [1967] for the finite case. Special­
ized to a probabilistic context his result can be described in the following 

+ -way. tet Fn and Fn be the completion of the a-fields generated by XlN+n and 
XlNc+n respectively, n E zz;. Suppose that 

F~ n F~ 

contains only events with probability 0 or 1. If the distribution of s 1 is 
nonlattice, then the special flow discussed above is a K-flow. 

Other results for special flows are given by RATNER [1974,1978]. In 
these papers it is assumed that Xzz; is i.i.d. but there is used another 
choice for F, than in Example 6.5.11. Both papers discuss the K-property 

but consider also stronger mixing properties. 
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APPENDIX A 

A. A TOPOLOGY ON A SET OF DISTRIBUTIONS OF POINT PROCESSES 

Let P be the set of distributions of (marked) point processes. This 

appendix investigates d, defined by (0.3.4). Pirst we show that dis a 
metric on P and later we compare the topology induced by d with better known 
topologies on P. Our results apply.both to point processes on the real line 
R : = :JR1 and to marked point processes on R : = m1 x r. We assume that the 
Borel space r is the unit interval r := [0,1]. Only in the second proposi­
tion this assumption forms a restriction. The measures P E P are defined on 
the measurable space (N,V) defined in Section 0.3. If f is a measurable 
function on R, write for m E N 

mf == I fdm, 

R 

if this integral exists. 

PROPOSITION A.1. dis a metric on P. 

PROOF. The symmetry of d and the triangle inequality are easily checked. We 
have to prove that d separates. Let N1 and N2 be point processes on the same 
probability space with distributions P1 and P2 , for which d(P 1,P2) = 0. 

1 Suppose Yn, n ~ 1, are random variables, homogeneously distributed on (0,n)' 
and independent of N1 and N2• Let f be an arbitrary continuous function on 
R with compact support C. By KALLENBERG [3.1] it is sufficient to prove 

d 
N1f = N2f to get P1 P2 . We let n + oo in 

Take a compact set c 1 ~ C such that TYC c c1 for all 0 ~ y ~ 1. Because 
f is uniformly continuous on c1 and N1 and N2 are finite on c1 we have 
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d lim Ni(Tynf) = Nif a.s., i = 1,2, and hence it follows that N1f = N2f. 
n-+oo 

D 

Let µ and v be absolutely continuous probability measures on the real 

line. The pseudometric dv, defined by (0.3.3), is invariant under transla­

tions of v. Furthermore, because llv*P - µ*Pll s llv-µ11, we have 

The measure v can be approximated in the total variation metric by a prob­

ability measure with a continuous density with respect to the Lebesgue mea­

sure i (see HALMOS [1950, Section 55]) and also by a probability measure µ 

of the form 

k 

µ k l Tt VE, 
j=l j 

where v, E > O, is the homogeneous distribution on (0,E). We may even sup­
E 1 

pose E = ; 1 n ~ 1. Therefore we can obtain that 

(A.1) 

where II v-µll can be made arbitrarily small. Hence to prove that 

0 it is sufficient to show limn-+oo d(Pn,P~) = 0. 

PROPOSITION A.2. The topology introduced by d on P is stronger than the 

weak topology on P with respect to the vague topology on N. 

PROOF. The space of Radon measures N on R is Polish in the vague topology 

(see KALLENBERG [A7.7]). By PARTHASARATY [II.6.2] it follows that the space 

of probability measures Pon (N,V), provided with the weak topology, is a 

separable metric space. Hence to prove that the weak topology on P is weaker 

than the topology introduced by the metric d it suffices to show that 

sequential convergence in a-metric implies weak convergence (see DUGUNDJI 

[Chapter X]). 

Let Nn' n ~ 0, be (marked) point processes on a probability space 

with distributions Pn, n ~ 0, such that limn-+oo d(Pn,PO) = O. To prove weak 

convergence KALLENBERG [4.2] shows that it is enough to prove for n 4 

(A. 2) 
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for all f E F, the set of continuous real functions with compact support 
on R. Let Yk, k ? 1, be random variables that are homogeneously distributed 
on (0,1/k) and independent of Nn, n? 0. Because limn-><» d(Pn,PO) = 0, we 
have 

(A. 3) 

if n + 00 , for any k ? 1 and f E F. 
Take a compact set c 1 ~ c so large that Tye c c 1 for all O s y s 1 

and let g E F be a function on R such that Tyg? on c 1 for all 0 $ y $ 1. 
Hence 

Because the left-hand side converges in distribution, the sequence Nn(c 1), 

n ? O, is uniformly tight. Observe that 

u {sup/f-T f/ > ..£.} 
Yk 2m 

for any m > 0. Because of (A.3) and because f is uniformly continuous, we 
obtain (A.2). D 

NOTE. To obtain weak convergence of Pn to P0 , n + 00 , we used the assumption 
limn-><» d(Pn,PO) = 0. However, this assumption can be replaced by 

lira (V*Pn(D) - V*Po(D)) 
n-><» 

0, D E V. 

To see this, observe that (A.3) holds for simple functions f. This can be 
proved by using the limit relation above with D := {m E N: m (Ei) = ki, 1 $ i $ j}, 

where Ei are bounded measurable sets and ki, 1 sis j, are integers. By an 
enclosure argument one obtains (A.3) for all f E F. Then weak convergence of 
Pn to P0 , n + 00 , can be proved as before. 

There is another metric on P: the total variation metric. This metric 
is stronger than d, because 
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llv*P1 - V*P 211 ~ 2 suplv*P 1 (D) - V*P2 CD) I 
DEV 

~ 2 suplP1 {D) - P2 CD) I 
DEV 

In many results we prove convergence with respect to d", with v absol­

utely continuous, or better with respect to the metric d. There are two 

reasons that force us to use the "smoothing" V*P of the elements P E P. On 

the one hand the total variation metric is quite often too strong (see 

Example 3.2.6). On the other hand the weak topology mentioned in the prop­

osition above, is too weak to allow us to describe limit results like 

Theorem 6.4.2. 
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