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We investigate the polynomials Pn, Qm, and R,, having degrees n, m, and s, 
respectively, with P n monic, that solve the approximation problem 

= (! (x" +m+s+2) as x-> 0. 

We give a connection between the coetlicients of each of the polynomials Pn, Qm, 
and R, and certain hypergeometric functions, which leads to a simple expression for 
Qm in the case n = s. The approximate location of the zeros of Qm, when 11 >> m and 
n = s, are deduced from the zeros of the classical Hermite polynomial. Contour 
integral representations of Pn, Qm, R,, and Enms are given and, using saddle point 
methods, we derive the exact asymptotics of Pn, Qm, and R, as 11, m, and s tend 
to infinity through certain ray sequences. We also discuss aspects of the more com­
plicated uniform asymptotic methods for obtaining insight into the zero distribu­
tion of the polynomials, and we give an example showing the zeros of the polyno­
mials Pn, Qm, and R, for the case 11=s=40, m = 45. © 1998 Academic Press 

l. INTRODUCTION 

Hermite-Pade approximation to the exponential function was intro­
duced by Hermite [ 6] who considered expressions of the form 

Pk(x) eskx + Pk-l(x) esk-lx + ... + Pi(X) eS1X = £1'J(xh) 
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as x -+ 0, ( l.l ) 
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102 DRIVER AND TEMME 

where p 1, ... , Pk are polynomials of specified degrees, chosen so that his as 
large as possible. Hermite's investigation of expressions of type ( l.l) was 
motivated by problems arising in number theory and led to his proof of the 
transcendence of e. The formal theory of the two types of Hermite-Pade 
polynomials that arise from expressions of type ( 1.1) was developed by 
Mahler (cf. Mahler [7]) and has yielded many successful applications to 
number theory on the one hand and approximation theory on the other. 
Excellent historical surveys on the development and applications of 
Hermite-Pade polynomial theory and further references can be found in 
Aptekarev and Stahl [ 2] and de Bruin [ 4]. 

Included in expressions of the type ( I. I) is the ordinary Pade approxima­
tion problem for the exponential function, namely, given any pos1t1ve 
integers m and n, find polynomials P n and Qm with deg( P n) ~ n, 
deg( Qm) ~ m, Qm ~ 0, such that 

as x--+ 0. ( 1.2) 

A solution to this problem always exists and the polynomials Pn and Qm 
(which are unique up to normalization) have been thoroughly investigated 
by Saff and Varga [9], who obtained, inter alia, the distribution of the 
zeros of Pn and Qm, as well as those of the remainder term Emn· 

In this paper, we investigate a number of properties of the polynomials 
Pn, Qm, and R,. that arise from the solution of the quadratic Hermite-Pade 
Type I approximation problem, which may be formulated as follows. Given 
arbitrary positive integers n, m, and s, find polynomials Pn, Qm, and R,., 
with P n monic, such that 

as x --+ 0. ( 1.3) 

The explicit formulae for these (unique) polynomials are known; in the 
super-diagonal case n = /11 = s, they were obtained by Borwein [ 3] and for 
arbitrary n, m, and s E N, they can be found in Driver [ 5]. 

We organize the paper as follows. In Section 2, we prove and exploit a 
connection between the coefficients of the polynomials Pn, Qm, and R,. and 
certain hypergeometric functions. For the case n = s, m EN arbitrary, a 
simple closed form for Qm is given, as well as the approximate location of 
the zeros of Qm when n = s and n >> m. Section 3 contains contour integral 
representations of P n• Q,,,, and R,. and we apply saddle point methods to 
obtain the asymptotic behaviour as n--+ ro of Pn, Qm, and R,. where m ~ ocn 
and s - [Jn. In Section 4, we discuss aspects of the more complicated 
uniform asymptotic methods for obtaining insight into the zero distribution 
of the polynomials P n• Qm, and R"'. In addition, we present more details 
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on this point by showing a picture of the zero distribution of the polyno­
mials for the case n = s = 40, m = 45. 

At several places we use properties of special functions and orthogonal 
polynomials for which we refer to Temme [ 10]; all information of this kind 
can also be found in, for instance, Abramowitz and Stegun [ 1 ]. 

2. THE POLYNOMIALS P N' QM, AND Rs 

The polynomials Pn, Qm, and Rs with deg(Pn)=n, deg(Qml=m, 
deg(Rs)=s, Pn monic, that satisfy (1.3) are given by (cf. Driver [5, Eqs. 
(2.9), (2.12), (2.19)]) 

where 

where 

n p. X:j 

Pn(X)=n! L ~' 
j=O J. 

P·= n-j (111 + n-k- j)(s +k) 2-k 
1 I m s 

k=O 

m.~J k+ ·(m+n-k-j)(s+k) lj·= f..., (-1) J 
J k=O 11 S 

s r.xj 
Rs(x) = 2•-nn !( - 1 im L ~' 

j=O } . 

where 

s-j ·(m+s-k-j)(n+k) 
'j = I ( - i Jl 2 -k 

k=O Ill 11 

(2.1) 

for )=0, ... ,11; (2.2) 

(2.3) 

for j = 0, ... , 111; ( 2.4) 

(2.5) 

for j = 0, ... , s. ( 2.6) 

We observe that each of the polynomials P n' Qm, and R. depends on all 
three positive integers n, 111, and s and the subscript merely denotes the 
degree of the polynomial in each case. Writing Pn(x) = P(n, m, s; x), 
Qm(x) = Q(n, 111, s; x), and R.(x) = R(n, m, s; x), the following symmetries 
follow immediately from ( 2.1)-(2.6 ), 

(-1r2n-•s! 
P(s, m, n; -x) = 1 R(n, m, s; x) 

11. 
(2.7) 
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and 

(-l)mr-ss! 
Q(s, m, n; -x) = Q(n, m, s; x). 

n! 
(2.8) 

It is evident from (2.7) that any information regarding the polynomial Pn 
immediately yields corresponding results about the polynomial Rs, whereas 

( 2.8) tells us that when n = s, Qm is an even (odd) polynomial in x when 
m is even (odd). 

Our first result establishes a connection between the coefficients if P no 

Q"" and Rs and certain 2 F1 hypergeometric functions. We recall the defini­
tion of the Gauss function 

(2.9) 

where 

. {ex( ex+ I)· .. (a +k- I)= I'(rx +k)/I'(a.), 
(a)k .= I, 

if k ;?!: l, 
if cx;"'O, k=O. (2.lO) 

If tE N, it follows immediately from (2.10) that 

{( -1 )k t!/(t-k)! 
(-t)k= 0 

for 0 ~ k ~ t, 

for k > t. 
( 2.11) 

Therefore, the hypergeometric series 2 F1(-t, b; c; z), tE N, is a polynomial 
of degree t in z and, from (2.10) and (2.1 l ), we have for b, c EN, 

' (t)(b+k)!c! 
2 F1 (-t,b+l;c+l;z)=k~o k b!(c+k)!(-z)k. (2.12) 

THEOREM 2.1. Let pJ, qJ, and rJ be given by (2.2), (2.4), and (2.6), 
respectively. Then 

j=O, l, .. ., n, ( 2. l 3a) 

.(n+m-j) qJ=(-1)1 11 2 F1(J-m,s+l;j-11-rn; -1), 

j=O, 1, .. ., m, ( 2.14a) 

. (s +rn - j) . . 
rJ=(-1)1 rn 2 F1 (J-s,n+I;;-s-m;~), 

j=O, I, .. .,s, (2.15a) 
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Another way of writing this is 

j=O, 1, ... , n, (2.13b) 

. (n + m + s + 1 - j) q1 = ( - 1 )1 . 2 F1 (j - m, s + 1; n + s + 2; 2 ), 
m-1 

j=O, 1, ... , m, (2.14b) 

j=O, 1, ... , s, (2.15b) 

As an immediate consequence of Theorem 2.1, we can express the coef­
ficients p1, q1, and r1 as the constant terms in appropriate Jacobi polyno­
mials. 

COROLLARY 2.1. For any n, m, s E 1\1, if &<t· Pl denotes the Jacobi polyno­
mial of degree k with parameters ex and p, then 

P. = ji!(m +s+ I, j-m-n-1)(0) 
J n-; ' 

. = 2m-j( _ 1 )m ji!U-~-n-1,i-m-s-I l(O) q, m-1 ' 

(2.16) 

(2.17) 

(2.18) 

Unfortunately, the value of the constant term in the Jacobi polynomial 
g)I~"' Pl(x) is not known in general. However, when n = s, the coefficients qi, 
and therefore the polynomial Qm, can be expressed in a simple form. 

THEOREM 2.2. Let qi and Qm be given by (2.14a) and (2.3 ), respectively. 
Suppose that 

n=sEN and m E l\J is arbitrary. (2.19) 

(a) For j = 0, ... , m, we have 

form-jodd, 

for m - j even. 
(2.20) 
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(b) We have 

Lm/2J (n + k)I Xm-2k 

Qm(x)=(-1r+12n+1 L k! . (m-2k)!' 
k=O 

where LP J is the integer satisfying LP J ~p < LP J + 1, H'ith p E IR. 
(c) Fur m even, m=2p, pE N, we have 

while, for 111 odd, m = 2p + 1, p E N, H'e have 

(2.21) 

(2.22) 

(2.23) 

Remarks 2.1. ( 1) The hypergeometric function 1 F 2 ( a; b, c; z) that 
occurs in ( 2.22) and ( 2.23) is defined by 

(2.24) 

where (ah is defined in (2.10). Using (2.11 ), we see that the F-functions in 
(2.22) and (2.23) are each polynomials of degree p in the variable x 2/4. The 
even (odd) nature of Qm(x) when m is even (odd) and n=s observed in 
( 2.8) is therefore also apparent from ( 2.22) and ( 2.23 ). 

( 2) The assumption ( 2.19) that n = s is restrictive. However, it can be 
shown that, for general n, m, s E N, alternate coefficients of Qm involve a 
factor (n-s) and are zero only when (2.19) holds. No simple closed form 
of Qm seems possible in the general case. 

Some information regarding the approximate location of the zeros of the 
polynomial Qm(x) when n is much larger than m and n =scan be obtained 
from (2.21) by comparing Qm(x) with the Hermite polynomial 

Lm/2J ( -1 )k (2xr-2k 
H m( x) = m ! k ~ o k ! ( m - 2k) ! 

We have the following corollary. 

(2.25) 

COROLLARY 2.2. With the assumptions cd" Theorem 2.2, when n >> m, 

(2.26) 
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and hence the ::eros of Qm(x) lie approximately in the interval ( -2i J n(m + 1 ). 

2ijn(m + 1 )) on the imaginary axis. 

Table 2.1 shows the zeros of Q10 on the positive imaginary axis with 
n = s = 20, compared with the approximations obtained from the zeros of 
the Hermite polynomial. 

The connection between the coefficients of the polynomials P n (and Rsl 
and the hypergeometric functions given by (2.13a) (and (2.15a)), does not 
seem to provide the same degree of simplification obtained for the coef­
ficients of Qm, perhaps because the p/s are intrinsically more complicated. 
However, it is possible to obtain exact closed expressions for the first two 
coefficients Po and p1 , as well as the recurrence relation satisfied by the p/s. 
We have the following result: 

THEOREM 2.3. Suppose that pj is given by (2.13a)for j=O, ... , n and that 
n = s while m E N is arbitrary. Fur any m, n E N, let 

D(m,n) :=(m+2n)(m+2n-2)···(m+2). 

Then 

Po= D(m, n )/n !, 

p 1 = [D(m, n)-D(m-1, n)]/n!, 

and for j = 2, ... , n, we have 

(2.27) 

(2.28) 

(2.29) 

Pj = ( 2n + m2- j + 2 ) { ( 2n + m + 3- ; ) Pj- 1 - ( n - j - 2) p j- 2 } . ( 2.30) 

Remarks 2.2. (I) When m = n = s, we see from (2.28) that 
p0 = 3m( 3m - 2) ... ( m + 2 )/m ! for all m E N. This gives an exact expression 

TABLE 2.1 

Zeros on the Positive Imaginary Axis of Q 10 , with 
n = s = 20, Compared with the Approximations 

Obtained from ( 2.26) 

Zeros of Q10 Approximations Relative errors 

3.44274827i 3.06700270i 0.12 
10.32157031 i 9.27172912i 0.11 
17.17259049i I 5.71225622i 0.09 
23.933 I 3689i 22.65344077i 0.06 
30.06525844i 30.73394148i 0.02 
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in place of the asymptotic p0 ~3m(3m-3)···(m+2)/m! obtained in 
Borwein [ 3], in particular Proposition 3( a) with x = 0. 

(2) Form even, say m = 2p, we have from (2.27) and (2.28) that 

_2n (n+ P) Po- · n 

2.1. Proofs of the Theorems and Corollaries 

Proof of Theorem 2.1. From (2.2) with n-j=t, (2.11) and (2.24) we 
have, for 0 ~ t ~ n, 

·= ~ (m+t-k)!(s+k)! 2_k=(m+t)! ~ (-t)ds+l)k 2 -k (231 ) 
P1 L..., I lkl(t k)' ltl L..., ( t) kl ' . k=O m.s . . - . m . . k=O -m- k . 

from which (2.13a) immediately follows. The identities (2.14a) and (2.15a) 
follow from the same method. In general the function 2 F1(a, b; c; z) is not 
defined if c = 0, -1, -2, ... , but in (2.13a)-(2.15a) the a-parameter equals 
also a non-positive integer value, with lal ~ lei. In that case the F-function 
is well-defined. We use a well-known transformation of the F-function to 
obtain (2.13b )-(2.15b ), where the c-parameter is a positive integer and 
which are more convenient representations. We use (cf. Temme [ 10, 
p. 113]) 

I'(c) I'(c-a-b) 
2 F1(a,b;c;z)= ( b) 2 F1(a,b;a+b-c+l;l-z), r c-a) I'(c-

a= 0, - 1, - 2, .... (2.32) 

Applying this formula to (2.13a)-(2.15a) we observe that all arguments in 
the gamma functions in front of the F-function in (2.32) become equal to 
non-positive integers. Hence some care is needed in applying the transfor­
mation. To verify (2.13a)-+ (2.13b) we use'the property 

I'(z) =(-l)k I'(I-z) 
I'(z-k) I'(k+ 1-z)' 

k=O, 1, 2, ... 

and introduce a small parameter e. That is, we write using a = j - n, 
b = s + 1, c = j - n - m, 

I'( c) I'( c - a - b) = Jim I'( c + e) I'( c + e - a - b) 
I'( c - a) I'( c - b) • - o I'( c + e - a) I'( c + e - b) 

I'(m+ 1) I'(n+m +s- j+ 1) 
= 

I'(n +m -j+ 1) I'(m +s +2)° 

;) 

I 
i 
I 

I 
I 
\ 
I 
I 
' i 
; 
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This gives the result in ( 2.l 3b ). The results for q1 and r1 follow in a similar 
way. I 

Proof of Corollary 2.1. We have (cf. Temme (10, p. 151]) 

( n + a:) ( 1 - x) #~""P\x)= n 2 F1 -n,a+,B+n+l;a+l;-2-. (2.33) 

It follows from (2.13b) and (2.33) with a=m +s+ I, .B = j-m-n -1, and 
x=!, that 

Then ( 2.16) follows in the same manner. The relation for q1 follows from 
applying (cf Temme (10, p. 110]) 

2 F1(a, b; c; z) = (l -z)-a 2 F1 (a, c-b; c; z~ 1), (2.34) 

which transforms the F-function with argument - 1 into one with argu­
ment ~- A few manipulations with binomial coefficients and gamma func­
tions (again with negative integer arguments) give the proof of ( 2.17 ). I 

Proof of Theorem 2.2. (a) From (2.17) with n =s, we have, for 
j=O, ... ,m, 

The parameters in the Jacobi polynomial are equal, and hence the Jacobi 
polynomial reduces to a Gegenbauer polynomial ( cf. Temme [ 10, p. 152] ), 

CY(x)= (2y)k ,ji>Cy-1/2,y-1/2J(x) 
k (y + l/2h k ' 

which vanishes at x = 0 when k is odd. For (m - j) even, say m - j = 2k, we 
use 

which gives with y = -n - 2k- ~' after using standard properties of the 
gamma function, 

ql = ( - 1 )1 ( n : k). 
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In particular we have used (2.11) and the duplication formula 

fi I'(2z) =22z- 1r(z) I'(z + ~). 

(b) From (2.3) with n =s, and (2.20), we have 

where 

for m-jodd, 

for m - j even. 

Therefore, form even, say m = 2p, it follows that 

Q ( -Q - -2n+1 I ~ (n+ p-k) x2k 
m x) - 2p( x) - n. k ':, o n ( 2k) ! 

P (n+p-k)' x21c 
2n+ I " · 

= - k'::o (p - k)! (2k)! · 

Reversing the order of summation yields that, for m even, 

m/2 (n+k)' xm-2k 

Qm(X) = -2n+I k~O k! . (m-2k)!° 

Similarly, for m odd, 

n+I (m-1)/2 (n+k)! Xm-2k 

Qm(X)=2 k~O k! (m-2k)!' 

and combining (2.36) and (2.37), we obtain (2.21). 

(c) From the definition (2.24), we have 

( 
1 x2) co ( _ p) x2k 

iF2 -p; -n-p,2;4 = L (- - ) ~1/2) k' 221c· 
k=O n p k k • 

Using (2.10) and (2.11 ), a simple calculation shows that 

{ 
p!(n+p-k)! 

(-ph - n+ ' -k' 2k'' (-n-p)dl/2)kk!22k- ( p).(p ).( ). 
0, 

O~k~p. 

k>p. 

(2.35) 

(2.36} 

(2.37) 

(2.38) 

(2.39) 
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Therefore, from (2.38) and (2.39), we obtain 

( 1 x2) p! P (n+p-k)! x2k 

iF2 -p;-n-p,2;4 =(n+p)!k~o (p-k)!(2k)!' (2.40) 

and (2.22) follows from (2.43) and (2.40). Similarly, 

( 3 x2 ) p! P (n+p-k)! x2k 

1F2 -p;-n-p,2;4 =(n+p)!k~o (p-k)! (2k+l)!' (2.41) 

and (2.23) follows from (2.45) and (2.41 ). I 

Proof of Corollary 2.2. For each k, k = 0, ... , Lm/2J, if n is large com­
pared with m, we have (cf. Temme [10, p. 67]) 

(n+k)!= k[l k(k+l) /(]( _2 )] 
I n + 2 +C' n . n. n 

Therefore, for n >> m, it follows from (2.21) that 

Qm(x) = ( - l)m+l 2n+ In! nm/2 L n I X I + &(l/n) . (2.42) [
Lm/2j k-m/2 m-2.k ] 

k-o k. (m-2k). 

Comparing (2.42) with the Hermite polynomial Hm(x) given in (2.25), we 
see that, for n >> m, 

Since it is well known ( cf. Temme [ 10, p. 168] ) that the zeros of the 

Hermite polynomial Hm(x) lie in the real interval ( -J2m + 1, J2m + 1 ), 
we deduce from (2.43) that the zeros of Qm(x) for n » m lie approximately 

in the interval ( -2 jn(m + 1) i, 2 Jn(m + 1) i) on the imaginary axis. I 

Proof of Theorem 2.3. Putting n = s and j = 0 in ( 2. l 3b) we have 

( m+2n+ 1) . . 1 Po= n 2 F1(-n,n+l,m+n+2,2). (2.44) 

Applying (2.34), we obtain 

( m + 2n + 1) -n . . Po= n 2 2 F1(-n,m+l,m+n+2,-l). 
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Now, (cf. Temme [ 10, p. 129] ), 

;:. 2-br(b-a+l) 
2 F1 (a, b; b - a+ 1; -1) = v 1l I'( 1 + b/2 _a) I'( 112 + h/2). 

(2.45) 

Therefore, from ( 2.44) and ( 2.45) with a= - n, b = m + 1, and from the 
duplication formula ( 2.35 ), it follows that 

2nI'(n+m/2+ 1) 1 
Po= 1 I'( 12 1) =1 D(m, n). n. m + n. 

This yields ( 2.28 ). Next, putting n = s and j = 1 in ( 2. l 3a ), we obtain 

(m+2n)! ( I) 
P1=(m+n+l)!(n-l)! 2 F1 -n+l,n+l;m+n+2;"2. (2.46) 

Denoting 2 F1(a, b; c; z) by 2 F1; 2 F1(a +I, h; c; z) by 2 F1(a + ), and so on, 
we have the contiguous hypergeometric function relation ( cf. Temme [ 10, 
p. 122]) 

(b-a)(l-z) 2 F1 =(c-a) 2 F1(a-)-(c-b) 2 F1(b-). (2.47) 

With a= -n + 1, b = n + 1, c = m + n + 2, z = !, (2.47) becomes 

n2 F1( -n +I, n + 1; m + n + 2; !l 
= ( m + 2n + 1 ) 2 F1 ( -n, n + I; m + n + 2; ! ) 

-(m+l) 2F1(-n+l,n;m+n+2;!). (2.48) 

Applying (2.34) on the final F-function in (2.48) and (2.45) we obtain 

( 1) (m+n+l)! 
2F1 -n+l,n;m+n+2;2 =(m+l)!D(m,n)· (2.49) 

From (2.46), (2.48), (2.49), and (2.44), it follows that 

n ! (m + n + 1 )! n ! (m + n + 1 )! (m + n + 1 )! 
(m+2n)! Pi= (m+2n)! Po- m! D(m,n)' 

whence we obtain (2.29). Finally, from (2.13a) with n =s, we have for 
j=O, ... ,n, 

(m + 2n - j + 1 )! ( . 1) 
Pj=(m+n+l)!(n-j)!2F1 -n+J,n+l;m+n+2;"2. 
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Therefore, using the contiguous function relation ( cf. Temme [I 0, p. 122]) 

a(I -z) 2 F 1(a+) = [2a-c + (b-a) z] 2 F 1 + (c-a) 2 F1(a- ), 

we obtain ( 2.30 ). I 

3. CONTOUR INTEGRAL REPRESENTATIONS AND 
ASYMPTOTICS 

The polynomials Pn, Qn, and Rs that satisfy (1.3), and are given by 
(2.1 )-(2.6), admit simple contour integral representations. In the super­
diagonal case n = m = s, these representations were already know to 
Mahler ( cf. Mahler [ 7] ). 

THEOREM 3. l. Let n, m, and s be arbitrary positive integers and let C be 
a circle, centre at the origin, radius rE(O, 1). Let Pn(x), Qm(x), and R,(x) 
be the polynomials given hy (2.1 }, (2.3 ), and (2.5 ), respectively. Then 

2s+l(-1r+1n! ex• 
Q ( x) = l dv ( 3 2) 

m· 2ni Jcvm+l(v+l)n+l(l-v)'+ 1 ' . 

2s+l( -1 r+s n! exv 
Rs(X) = 2ni t vs+l(v + 1 r+ I (v + 2)n+l dv. (3.3) 

Proof Expanding e ±x• in its Maclaurin series and using Cauchy's 
integral theorem and Leibniz' rule, a comparison of the coefficients of 
powers of x on the right hand sides of (3.1 ), (3.2), and (3.3) with (2.2), 
(2.4 ), and (2.6 ), respectively, proves the result. I 

In order to analyze the asymptotic behaviour of the polynomials Pn(x), 
Qm(x), and Rs(x) given by (3.1 ), (3.2), and (3.3), respectively, we let 

N =n + 1, M=m+I, S=s+I, (3.4) 

and assume that all these parameters are large. We write 

M=rxN and S=(JN, (3.5) 

where rx and fJ are real, positive constants. We write ( 3.1) in the form 

2s+l{-J)n I 
p (x) = n. J: e-Nfi(•>e-xv dv (3.6) 

n 2ni j c ' 
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where 

p(u) :=ln[u(v+ 1 )"' (v+2)P]. ( 3. 7) 

Applying the saddle point method ( cf. Olver [ 8, Sect. 7.3, Theorem 7.1]) to 
the integral in ( 3.6 ), a simple calculation shows that for all real, positive 
values of et and p, p(v) has derivative equal to zero at a point, say u0 , lying 
in ( -1, 0), and at another point to the left of -1. The contour C can be 
chosen to run through v0 . Moreover, jJ"(v0 ) #0 and, in fact, p"(v0 ) is real 
and negative for all et, fJ > 0. Therefore, as N-+ ro, we deduce from ( 3.6) 
that ( cf. Olver [ 8, Theorem 7.1]) 

(3.8) 

where if fi"(u 0 ) = -k~ say, k0 > 0, we choose the branch of 
(2jJ"(v0 )) 112 =iJ2k0 , in accordance with (cf. Olver [8, Eq. 7.07]). In 
Theorem 3.2 more details are given for a special case. 

Similarly, for Qm(x), we have from (3.2) 

(3.9) 

where 

i}(v) :=ln[v"'(v+ 1)(1-v)P]. (3.10) 

In this case we can choose C to run through two saddle points: i}( u) has 
derivative equal to zero at two distinct points, v 1 E ( - 1, 0) and v2 E ( 0, I) 
for all et, fJ > 0. 

The asymptotic formulae for Pn, Qm, and Rs are rather cumbersome 
arithmetically for arbitrary et, fJ > 0. We shall, therefore, restrict ourselves 
to the (rather natural) case when fJ = 1 in ( 3.5 ), although the method 
works for all et, fJ > 0. 

THEOREM 3.2. Let Pn(x), Qm(x), and R,(x) be given by (3.1 ), (3.2), and 
( 3.3 ), respectively, and assume that (3.5) holds with fJ = 1. Set 

p:=J;h, 
( 3. l l ) 

D n, <X : = p I - "'( 2n + ctn )( 2n + ctn - 2 ) ... ( Cl.n + 2 ) . 
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Then, as n -+ oo, we have 

Pn(X)"' Dn,"exO-Pl, (3.12) 

Qm(x) ,._, ( -1r+ 1 Dn,'1.[eXP + ( -1 r e-XP], (3.13) 

Rs(x),..,(-lrDn,"e-x<t-pl. (3.14) 

The asymptotics are uniform with respect to x on compact subsets of C. 

Remark 3.1. When oc = 1, we see from (3.11) that Dn, I= 3n(3n-2) · · · 
(n+2), while p=l/,ji The asymptotics (3.12), (3.13), and (3.14) then 
agree exactly with the asymptotics for the polynomials in the diagonal case 
( cf. Borwein 53, Proposition 3] ), obtained by a different method. 

Proof Putting f3 = 1 in ( 3. 7) and differentiating with respect to v, we see 
that 

p'(v)=O when v = - 1 ± p. 

Setting 

Vo:= -1 + p, ( 3.15) 

it follows from (3.7) that 

( oc + 2)N (oc + 2)M/2 
exp[ -Np(v0 )] = ( -1 )N - 2- --oc- ( 3.16) 

and 

2p"(v0 )= -2(oc+2) 2. ( 3.17) 

Therefore, from ( 3.8 ), as N-+ oo, recalling that N = n + l, we have by 
(3.16) and (3.17) that 

2n+ 1(-ltn! 2(-lt+l (oc+2)n+l -o<(n+l)~ x(l-p) 
Pn(x),._, p --e 

211:i2n+ 1i j2 (oc + 2) n + 1 

n! (oc+2r -cx(n+l) x(l-p) 
=-- p e . 

jbcJn+l 
(3.18) 

Now, from (3.11 ), we have 
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and applying Stirling's formula, it follows that as n--+ oo, 

n! (ix.+2)n -<X(n+l) 

Dn "' " h: c-;-;- p . 
' ...;2n ...;n +I 

(3.19) 

We deduce ( 3.12) from ( 3.18) and ( 3.19 ). Turning to the polynomial 
Qm(x), with /J= I, set 

q(v) := ln[v"'( 1-v2 )]. (3.20) 

Then q'(v)=O when v= ±p, so that the integral in (3.9) has two (simple) 
saddle points inside C at the points on the real axis given by 

( 3.21) 

Moreover, from (3.20), we have 

j = 1, 2, (3.22) 

while 

( IX.+ 2)M/2 (IX.+ 2)N exp(-Nq(vi)) = -a- --2- (3.23) 

and 

( IX.+ 2)M/2 (IX+ 2)N exp(-Nq(v2)}=(-J)M -ix.- --2- · (3.24) 

We must choose the branches of ( 2q" ( v)) 1/ 2 at v = v 1 and u = v2 in accord­
ance with Eq. (7.07) of Olver [8], namely, 

(2q"(v1)) 112 = -i fi (ix.+ 2), 

( 2q" ( V2)) l/l = i fi (IX. + 2 ). 

( 3.25) 

( 3.26) 

Then, from ( 3.9) together with ( 3.23 ), ( 3.24 ), ( 3.25 ), and ( 3.26 ), we deduce 
that as N( or n)-+ oo, 

( -1 )Mn I (a+ 2)n p -M 
Qm(X)"- . {exp+(-l)me-xp} 

j2n(n +I) 

"'(-Ir Dn,<X{exp+ (-I r e-XP}, (3.27) 

where, in the last line, we have used (3.19). This proves (3.13). Noting that 
when fJ=l, R,(x)~(-lrPn(-x}, the asymptotic (3.14) follows from 
( 3.12 ). The results hold uniformly with respect to x on compact subsets of 
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lC, because we assume that x is independent of the large parameter n ( cf. 
Olver's theorem mentioned in connection with ( 3.8) ). I 

The contour integrals for the polynomials P 11 , Q,,,, R,, and £,,,,,., can be 
written in the form 

2"+ 1n! e-' ,.r e __ ,.,,. 

Pn(x)= - 2ni 'fc1(1-w)"+1wm+1(l+w)"+1dw, (3.28) 

2s+1n! p e-xll' 
Qm(x) = --2-.- ) +I +1 . I dw, 

m c0 ( I - w 11 w111 ( I + II')"+ 
(3.29) 

2·'·+ In! e-x f e-.rn· 
R,(x) = - 1 1 . 1 dw, (3.30) 

· 2ni c_ 1 (1-w)"+ w"'+ (1 +w)"+ 

2s+ln! e-x e-.\"11' 

E,,,,,_,(x)=- 2 . J. (l )"+I m+I(l+ y+ 1 dw, (3.31) m 'fc -IV w w 

where C; is a circle, centre at IV= j, radius r E ( 0, I), and C is a circle, cen­
tre at the origin, radius r >I. The result for the remainder £ 11111.\.(x) defined 
in ( 1.3) follows from adding up the results in ( 3.28 )-( 3.30 ). So, in fact, we 
have the same integral representation for the quantities P,,, Q111 , R_,., and 
Enms• but with different contours of integration; see Fig. 3.1. Of course, all 
contours can be deformed without crossing the poles. 

To obtain the asymptotic behaviour of the remainder, we cannot simply 
use the results in ( 3.12 )-( 3.14 ). Adding up these results gives 

E 11111s(x) = P,,(x) e- 2x + Q111(x) e-x + R_,(x)-0, 

which does not give useful information, but is in agreement with the 
approximating property of the Hermite-Pade method. A better estimate for 
Enms follows from (3.31 ), by taking into the account the exponential func­
tion when computing the saddle point. 

8 
~l 

c 
FIG. 3.1. The contours for P,,, Q,,., R .. £,,,,,,for (3.28)-(3.31 ). 
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THEOREM 3.3. Let Enms(x) be defined by (3.31 ); assume that n, m, and s 
tend to oo and x=o(n+m+s). Then 

(3.32) 

Proof We write ( 3.31) in the form 

(3.33) 

where 

1 
q(w) = (1-1/wt+ 1 ( 1 + l/wy+i · 

The function e-xw;wn+m+s+ 3 has a saddle point at w0 = -(n+m +s+3)/x, 
which tends to infinity, and q(w)= 1 +(n-s)/w+ ··· = 1 +o(l) in a 
neighborhood of the saddle point, and in fact on a circle with radius I w0 j. 
This proves the theorem. I 

4. FURTHER ASYMPTOTIC ASPECTS AND ZERO DISTRIBUTION 

The asymptotic estimates given in ( 3.11H3.14) and ( 3.32) cannot be 
used to obtain detailed information on the zeros, because the zeros occur 
outside compact sets as the orders n, m, s tend to infinity. A first insight 
on this phenomena can be obtained from Corollary 2.2; it follows (under 
the conditions given there) that the zeros of Qm are at least cr1( Jn) and at 
most &fam). From the estimate in (3.13) of Theorem 3.2 we infer that 
zeros can be expected (again, under the conditions given there) if x is 
near the points ikn/p, k = ± 1, ±2, ... if m is odd, or near i(k + ~) n/p, 
k = ± 1, ± 2, ... if m is even. When n = s, ( 2.26) and Table 2.1 suggest that 
the zeros of Qm are indeed purely imaginary. This is not true, in general, 
as we discovered for the case n = s = 15, m = 14. In this case Qm has ten 
zeros on the imaginary axis and four in the complex plane at the points 
± 1.684078371 ± 29.25218473i, these four being the large zeros. See also the 
example in Subsection 4.2 and Fig. 4.2 later in this section. 

4.1. Some Aspects of Uniform Asymptotic Methods 

As explained at the end of the previous section, the four quantities P n, 

Qm, R,, and Enms all have the same integral representation 

f -rp(w) dw 
e 2 , 

w(l -w ) 
( 4.1) 
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with different contours and with 

</J( w) = zw + n In( 1 - w) + m In w + s In( 1 + w ), ( 4.2) 

where we now write z instead of x, to underline that the argument is com­
plex. The saddle points of the integrand are the zeros of the derivative of 
<fa. There are three saddle points defined by the cubic equation 

zw3 + ( 1 + n +s) w2 + (n -s-z) w-m = 0 (4.3) 

and the saddle points are real when z is real. When z > 0 the saddle points 
occur in ( - oo, -1 ), ( - 1, 0), and (0, 1 ); the saddle point contours have 
the shape of a parabola, with the real w-axis as axis of symmetry, with 
summits through the saddle points and with openings at %v = + oo. For 
P n and Enms one single "parabola" can be used, through the positive saddle 
and the saddle point at the left of w = -1, respectively. For Qm two 
parabolas are needed to encircle the pole at w = 0. One parabola runs 
through the saddle point between 0 and 1, and the other one through the 
saddle point between -1 and 0; the parabolas are joined at 9\w = + oo to 
close the loop. A similar contour can be used for Rs. When z < 0 the saddle 
point contours have the same pattern but with parabolas with openings at 
ffiw= -oo. 

A first idea about the location of the saddle points when z is complex can 
be obtained by considering rather large and rather small values of izl 
("small" and "large" mean compared with n + m + s ). When z moves along 
a large circle in the complex plane, the saddle points describe small circuits 
around the three poles at w = -1, 0, 1. When l=I is small, one saddle point 
describes a large circuit around the three poles, and the other two saddles 
describe small circuits around, say, w = ± ~· In Fig. 4.1 we show the paths 
of the saddle points when z describes a semi-circle in the upper half plane. 

For certain complex values of z two or three saddle points may coincide. 
It is known from uniform asymptotic (cf. Olver [8] or Wong [12]) that 
Airy functions can describe the asymptotic behaviour of the integrals when 
two saddle points coincide. It is also known that in the z-plane strings of 
zeros arise near z-values that make the saddle points coalesce. 

When n = s two saddle points coincide when z solves the equation 

::4 + (n 2 + lOnm - 2m 2 ) z2 + m(m + 2n) 3 = 0. (4.4) 

When n=s=4m and 

z2 = -27m2 ( 4.5) 
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1:1 small 

::> 0 -I 
z<O 

1::1 large 

nnf\ 
-I 

FIG. 4.1. Trajectories of the saddle points when: describes a circular arc in the upper half 

plane. 

three saddle points coincide at 

W= ±i/Ji (4.6) 

It is possible to describe all this by replacing the phase function </!( w) 

with a quartic polynomial, 

( 4.7) 

which in fact is a conformal mapping of the w-plane to the (-plane, where 

the three parameters x, j], )' follow from substituting the values of the three 

1t·-saddles and at the same time the three values of the three corresponding 

(-saddles, which are the zeros of 

C + a(+ jJ = 0. (4.8) 

When we follow this procedure we need to investigate the Pearcy-type 
functions 

F;(rx, {J) = _l_. J e - << 1/41 (4 + < i;21 x( + ;1c +i'ij"( () d( 
2m c1 

(4.9) 

along certain contours C; in the complex plane, where ix, /J are complex 

constants, and (in our problem) depend on the complex parameter z and 
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the non-negative integers n, m, s, and f contains the derivative dw/d( that 
arises when we transform (4.1) into (4.9) by using the mapping (4.7). 

4.2. An Example for the Zero Distribution 

In Fig. 4.2 we give the zeros of the polynomials P,,, Q,,., R .•. with 
n = s = 40, m = 25. The open dot indicates the zeros of the polynomials P,, 
and R.,. Those in the left-hand plane are the zeros of P,,; the zeros of R,,. 
occur in the right-hand plane. The zeros of Q,,, are given by black dots; 33 
zeros occur on the imaginary axis, the remaining 12 zeros occur in the 
neighborhood of the black squares indicated by zk, k = 1, 2, 3, 4. 

The four values zk solve Eq. ( 4.4) for the chosen values of n, m, s. For 
these values of :: two saddle points of </>( w) defined in ( 4.2) coincide, and 
Airy-type asymptotic approximations can be derived for all integrals 
(3.28)-(3.31). As follows from the picture, and as remarked earlier, near zk 
the zeros of the polynomials and the remainder arise. The zeros of E11 • 111 .... 

are not shown, because at present not enough numerical details are 
available for high degree cases. The zeros of the remainder are located 
along curves that start near the four points zk and run to ± ioo. 

-100 100 

-50 

•••••• 
-100 

FIG. 4.2. The zeros of P,,, Q111 , R.,. with n=s=40, m=45. The black dots indicate the 
Q-zeros, the open dots those of P,, (left-hand plane), and R,, (right-hand plane); for an 
explanation of the role of the points =k we refer to the text of Subsection 4.2. 
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