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GENERAL INTRODUCTION 

Let x1,x2 , ••• denote a sequence of independent and identically distri

buted random variables with common distribution function F. Statistics of 

the form 

(0.1) T 
n 

-1 
n 

n 

l cinxi:n 
i=l 

n = 1,2, •... , 

where X. (1 $ i $ n) denotes the ith order statistic of x1 , ••. ,Xn and the 

i:n 

cin' i = 1,2, ••• ,n are real numbers (weights) are said to be linear combina-

tions (functions) of order statistics, or L-estimators. Many authors have 

established the asymptotic normality of Tn under different sets of conditions 

(see section 1.2); e.g. in STIGLER (1974) it is assumed that the weights 

are given by 

(0.2) i 1, 2, ••. ,n, n ·= 1,2, ..• , 

where J is a smooth bounded function on (0,1), the second moment of Fis 

finite and cr 2 (J,F) > 0 where 

00 

(0.3) cr 2 CJ,F) = f f J(F(x))J(F(y)) (min(F(x) ,F(y)) - F(x)F(y))dxdy. 

-QO -oo 

Under these assumptions Stigler shows that 

(0.4) 

where 

(0.5) 

sup IF* (x) - <P(x) I 
x n 

0 ( 1), as n -+ 00 , 

* F (x) 
n 

P({(T - E(T ))/cr(T) $ x}) 
n n n 
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and ~ denotes the standard normal distribution function. In addition these 

assumptions imply that 

(0.6) lim ncr 2 (T ) 
n 

2 
cr (J ,F) • 

The question which first aroused the author's interest was to obtain 

precise information about the rate of convergence i~ (0.4). Assuming now 

that the third absolute moment of F is finite and imposing a stronger 

smoothness condition on J we prove in chapter 3 that cr 2 (J,F) > 0 implies 

in this case that 

(0. 7) sup 
x 

F* (x) - Hx) I 
n 

as n -+ 00 , 

-! i.e. we establish Berry-Esseen bounds of order n for linear combinations 

of order statistics with smooth weights. Similar results employing a dif

ferent and more practical standardization and for a studentized version of 

these statistics are also proved. 

For several reasons, to be explained in the sequel, it is of interest 

to go a step further and to derive Edgeworth expansions for linear combina

tions of order statistics. General theorems according to which statistics 

of the form (0.1) possess valid Edgeworth expansions will require, of 

course, stronger conditions than before. We now assume that the fourth mom

ent of Fis finite, we impose an even stronger smoothness condition on J, 

and, in addition, we impose a local smoothness condition on F. The latter 

condition, which is due to VAN ZWET (1977) (see lemma 2.1.2), will do what 

Cramer's condition (C) does in the classical case of sums of independent 

* random variables: it guarantees that Fn is sufficiently smooth. In chapter 

4 we prove that cr 2 (J,F) > 0 implies in this case that 

* { K3 2 K4 
(x3-3x) + sup F (x) - ~(x) + </>(x) -i:- (x -1) + 24n n 

6n 2 x 
(0.8) 

2 
K3 

(x5-10x3+15x) }1 -1 + 
72n = o (n ) , as n -+ 00 , 

i.e. we establish an uniformly valid Edgeworth expansion for linear combina

tions of order statistics with a remainder o(n- 1). The function <P denotes 
_! -1 

the standard normal density; the quantities K3n 2 and K4n are the leading 

terms in asymptotic expansions for the third and fourth cumulant of 
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T* = (T - ET ) /o (T ) • Similar results generalizing the type of weights and 

n n n n 
employing a different and more practical standardization of Tn are also 

proved. 

It is a well-known phenomenon that to every. asymptotic result ~or 

linear combinations of order statistics with smooth weights, like (0.7) and 

(0.8), there corresponds a similar result for these statistics with smooth 

F. The Berry-Esseen bound (0.7) for smooth F was de~ived by BJERVE (1977). 

Edgeworth expansions for the case of smooth F are established in chapter 5. 

However, to obtain such results, one is forced to restrict attention to 

trimmed linear combinations of order statistics; i.e. instead of (0.2) one 

has to assume that 

(0.9) 0 for i < na or i > nf3, 

for all n ~ 1 and some 0 <a< J3 < 1. These results include trimmed and 

Winsorized means (see the examples (1.2.2) a~d (1.2.5)) as important special 

cases. An Edgeworth expansion for a-trimmed means (i.e. for the special case 

that c. = (n-2[na])-ln for [na]+l ::> i ::> n-[na]) was derived by BJERVE (1974). 

in 
He exploits a special property of trimmed means which does not carry over to 

the more general statistics we consider. 

There are several reasons to establish Berry-Esseen bounds and Edge

worth expansions for linear combinations of order statistics. In the first 

place we note that from the standpoint of probability theory the type of 

results discussed so far can be viewed as a contribution to the problem of 

extending the classical theory of Edgeworth expansions for sums of independ

ent random variables to certain sums of dependent random variables. However, 

also from a statistical point of view, there are several reasons to be in

terested in such results. First there is the possibility to use these ex

pansions to obtain better numerical approximations to the distribution 

functions of linear combinations of order statistics than can be provided 

by the usual normal approximation. A second and perhaps more compelling 

reason is the fact that Edgeworth expansions can be used to compute higher 

order efficiencies of L-estimators. The introduction of the concept of de

ficiency by HODGES & LEHMANN in 1970 has been the starting point of much 

work in this direction. Let us briefly introduce the concept of deficiency 

and indicate the kind of deficiency computations we shall perform. Let T1 

and T2 be two point estimators. If T1 has a better performance than T2 and 

T1 is based on n observations we need kn = n+dn observations for T2 to 
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perform equally well. We may think of the expected mean square error or 

some other reasonable measure of dispersion as a criterion of performance. 

Here kn and dn have to be treated as continuous variables the performance of 

T2 being defined for real n by linear interpolation between consecutive 

integers. The quantity dn - the number of additional observations needed by 

T2 to perform equally well as T1 - is called the deficiency of T2 with 

respect to T1 . In general, however, dn cannot be determined exactly for 

fixed n and we have to rely on its asymptotic behaviour for n + 00 • Such an 

investigation is useful in particular when for n + 00 the ratio n/kn tends 

to 1; i.e. when the asymptotic relative efficiency of T2 with respect to T1 
is equal to 1. In this case T1 and T2 are, at least to first order, equally 

efficient, and the asymptotic behaviour of dn - which may now be anything 

from 0(1) to O(n) - does provide important additional information about the 

relative performances of the estimators involv.ed. Of special interest is the 

case where dn tends to a finite limit, the asymptotic deficiency of T2 with 

respect to T1 • Of course an asymptotic evaluation of dn is a more delicate 

matter than showing that the asymptotic relative efficiency of T2 with res

pect to T1 is equal to 1. What is needed is an expansion of the type we 

discussed above. With the aid of such expansions we obtain expressions for 

dn with remainder 0(1). In chapter 6 we compute a number of asymptotic de

ficiencies of L-estimators with respect to two other types of estimators: 

M-estimators which are of maximum likelihood type and R-estimators derived 

from rank tests. 

The organization of this study is as follows. In chapter 1 we review 

the literature on Edgeworth expansions and on linear combinations of order 

statistics. A number of preliminary results are collected in chapter 2. 

Chapter 3 is devoted to the problem of establishing Berry-Esseen type bounds 

for linear combinations of order statistics. In chapter 4 we establish 

Edgeworth expansions for these statistics for the case of smooth weights, 

whereas in chapter 5 we do the same for the case of a smooth distribution 

function. Chapter 6 contains deficiency computations for L-estimators with 

respect to M- and R-estimators. The numerical aspects of the expansions are 

briefly discussed in chapter 7. 
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CHAPTER I 

INTRODUCTION 

1.1. EDGEWORTH EXPANSIONS 

The purpose of this section is twofold. In the first place we present 

a brief survey of some of the main results of the classical theory of Edge

worth expansions for sums of independent random variables. Secondly the 

problem of extending the theory of Edgeworth expansions for sums of inde

pendent random variables to more general statistics is briefly considered 

and a review of a number of the more recent results in this area is given. 

We begin by introducing some notations that will be used throughout · 

this study. Let cn,A,P) be a probability space on which a random variable 

(rv) X is defined, having distribution function (df) 

(1.1.1) F(x) P({X ~ x}) 

-1 
for all - 00 < x < 00 • The inverse F of a df F will always· be defined as 

(1.1.2) inf{x: F(x) ~ t} 

for all 0 < t < 1. We shall assume that all rv's will be defined on the 

above mentioned probability space. For any positive integer k the kth moment 

and the kth central moment of x are Exk and E(x-Ex)k respectively, whenever 

well-defined; for any positive number k the kth absolute moment of X is 

Elxlk. The variance E(x-ExJ 2 will also be written as cr 2 (x). For any rv x 

with 0 < cr(X) < oo we introduce 

(1.1.3) X - E(X) 

and 
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(1.1.4) * x x/o (X) (X-E (X)) /o (X) • 

The characteristic function (ch.f.) of a rv X is defined as 

(1.1.5) 

for all - 00 < t < 00 • All integrals will be understood to be Lebesgue

Stieltjes integrals. In the notation of these integrals we always write dF 

for integration with respect to the measure corresponding to F. Finally let 

~ and $ denote the standard normal df and its density. 

The classical theory of Edgeworth expansions is concerned with sums 

of independent rv's. This theory is a well-established part of probability 

theory and there exist a number of excellent accounts of the theory of 

Edgeworth expansions for such sums; e.g. CRAMER (1962), GNEDENKO & 

KOLMOGOROV (1954), PETROV (1972) and BHATTACHARYA & RAO (1976). The latter 

reference contains the extensions of the classical theory to the multi

dimensional case: i.e. to sums of independent random vectors. A nice intro

duction can be found in FELLER (1966). 

Let x1 ,x2 , •.• be a sequence of :independent and identically distributed 

(i.i.d.) rv's with common df F. Let us indicate the expectation and variance 

of x 1 by µ and o2 respectively. We assume that o 2 > 0. Consider, for each 

n ~ 1, the normalized sum 

(1.1.6) * T 
n 

n 

l 
i=l 

(X.-µ) 
l. 

* and let us denote the df of Tn by 

(1.1.7) * F (x) 
n 

P({T* $; x}) 
n 

for all - 00 < x < The Lindeberg-Levy central limit theorem asserts that 

(1.1.8) sup IF~ (x) - ~ (x) I 
x 

0 (1), as n -+ 00 , 

2 
provided 0 < o < 00 • When higher moments of x1 exist precise information 

* concerning the rate of convergence of F to ~ can be obtained. More specifi-
3 n 

cally if we assume that Elx1 1 < 00 , the Berry-Esseen theorem states that 



(1.1.9) sup IF:(x) - q,(xll = 0(n-!), 

x 

7 

as n + co, 

i.e. the order of the normal approximation to the exact df of a normalized 

sum of i.i.d. rv's is n-!. One way to improve upqn the normal approximation 

is to establish Edgeworth expansions. The main result in this direction is 

due to Cramer. Suppose that 

(1.1.10) Ex4 
1 

< co 

and let K3 = f(x 1-µJ 3/o3 and K4 = f(x1-µ) 4/o4 - 3 denote the third and 

fourt:r cumulant of (X1-µ)/o. Moreover we assume that Cramer's condition 

(C) (CRAMER (1962)) is satisfied; i.e. 

(1.1.11) lim sup IP<t) I < 1 
ltl +co 

where p denotes the ch.f. of x1 .we remark that (1.1.11) implies that for every 

o > 0 there exists E > 0 such that 

sup I p (t) I ~ 1 - E. 

ltl<::o 

THEOREM 1.1. (Cramer). Suppose that the assumptions (1.1.10) and (1.1.11) 

are satisfied. Then o2 > 0 implies that 

(1.1.12) sup I F* (x) - F (x) I = o (n -l) , 
n n 

as n + co 

with 

(1.1.13) 

x 

F (x) 
n 

for all -co < x < co 

2 

{ K3 2 K4 3 K3 

q,(x) - ~(x) 6n! (x -1) + 24n (x -3x) + 72n 5 3 } (x -10x +15x) 

It may be useful to comment briefly on Cramer's result. In the first 

-! -1 
place we remark that the quantities K3n and K4n are the third and fourth 

cumulant of the normalized sum (1.1.6) and that the polynomials appearing 

in (1.1.13) are the Hermite polynomials of order 2, 3 and 5. Secondly we 

note that Cramer's condition (C) (cf. (1.1.11)) is satisfied if F possesses 

an absolutely continuous component. Finally we remark that, although we have 

restricted attention to the case of an Edgeworth expansion with remainder 
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-1 o (n ) (cf. (1.1.12)) Edgeworth expansions for sums of i.i.d. rv's to any 

order can be obtained at cost of a stronger moment condition in essentially 

the same way. Edgeworth expansions with remainder O(n-1 ) will be sufficient 

for our purposes. The proof of Cramer's result is well-known (see, e.g., 

FELLER (1966)). Because it contains in essence already a few crucial ideas, 

which will be of great importance in the more general problem we consider, 

we shall briefly sketch the proof. We follow mainly the one-page version 

of Cramer's proof as given in VAN ZWET (1977). The starting point of the 

proof is a famous result proved by ESSEEN (1945). 

LEMMA 1 • 2 • (Es seen smoothing lemma) • Let m be a positive number, F a df on 

lR and F a differentiable function of bounded variation on lR with 

F(-00 ) = O, F(oo) = 1 and IF' I s m (the prime deno.ting differentiation). Define 

the Fourier-Stieltjes transforms 1/J(t) = 1:00 eitxdF(x) and 1/J(t) = 1:00 eitxdF(x). 

Then there exists a constant C such that for every T > 0 

T 

s ~ I (1.1.14) sup I F(x) - F(x) I 
x 

-T 

* -! -1 n SKETCH OF THE PROOF OF THEOREM 1.1. Let pn denote the ch.f. of n cr Ei=l (Xi-µ), 

i.e. 

(1.1.15) 
! -1 n -! -1 -itn µcr 

p (tn cr ) e for -oo < t < oo 

It follows from assumption (1.1.10) that for ltl = o(n!) 

(1.1.16) * log pn (t) 

* This expansion of log pn(t) can be converted 
t2 

* -1 -4 
(1.1.17) p (t) p (t) + O(n ltle l, 

n n 

where 

(1.1.18) 

as n+ 00 • 

* into an expansion for pn(t): 

For any sufficiently small o > 0 this expansion remains valid for all 
l 

ltl s on 2 because 



(1.1.19) 

Hence it follows that 

(1.1. 20) 

I 

on2 

J 
! 

-on 2 

and also that 

(1.1.21) 

p* (t)-p (t) 

I n n ldt 
t 

-1 
a (n ) , 

p (t) -1 
l~ldt = O(n ), 

It remains to show that also 

(1.1.22) J 

* p (t) 

l~ldt 
-1 a (n l 

as n + 00 

as n + 00 • 

.as n + ""· 

This, however, is a direct consequence of the product-structure (cf. 

(1.1.15)) present in p*(t) and the fact that Cramer's condition (C) (cf. 
n 
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(1.1.11) and the remark following it) can be applied. Since Fn (cf. (1.1.13)) 

is the Fourier-Stieltjes transform of Pn (cf. (1.1.18)) it follows now from 

(1.1.20), (1.1.21), (1.1.22) in combination with an application of Esseen 

smoothing lemma, taking T = n3/ 2 , that the theorem is proved. 0 

The problem to extend the classical theory of Edgeworth expansions 

for sums of independent rv's to more general statistics has been the sub

ject of much work in recent years. Let us first briefly indicate that such 

an extension is plausible and then survey some of the more recent results 

obtained in this area. 
* * 

Suppose that a sequence of statistics Tn with df Fn' n = 1,2, .•• con-

verges in distribution to the standard normal distribution. If we write 

(1.1.23) * p (t) 
n 

itT* 
Ee n 

we are simply saying that 

t2 
-2 

(1.1.24) +e * p (t) 
n 

as n + 00 
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* for all -oo < t < 00 • Suppose now that Tn has cumulants K. ( 1 s j s 4) . 
Jn 

Typically we will have 

(1.1.25) 0, 1, 

* 

_! 
0(n 2 ) and 

-1 
K 4n = 0(n ) • 

w~ can now formally expand log pn in a Taylor series of which the first 

terms are given by 

(1.1. 26) 

* Again expanding formally, we approximate pn itself by 

(1.1.27) 

which is the Fourier-Stieltjes transform of 

2 

(1.1.28) F (x) 
n 

~(x) - $(x){K~n (x2-1) + K24; (x3-3x) + K;; (x5-10x3+15x)}. 

In view of this formal argument it seems reasonable to hope that Fn will 

* indeed provide an approximation to F • Note that in the case of theorem 1.1. 
_! -1 n 

K3n = K3n 2 and K4n = K4n . Of course this heuristic argument will have to 

be verified in each particular case; more precisely one has to show that 

(1.1.29) sup 
x 

* ~ I -1 F (x) - F (x) = a (n ) , 
n n 

with the aid of lemma 1.2. 

as n -+ 00 , 

The validity of (1.1.29) has been established for quite a number of 

estimators and test statistics arising in statistical models. Concerning 

statistics arising in parametric models we mention the work of CHIBISOV 

(1972), (1973a), (1973b), (1973c), (1974) and PFANZAGL (1972), (1973), (1974a), 

(1974b). These authors established Edgeworth expansions for maximum likeli

hood estimators and also for the more general class of minimum contrast 

estimators. We also refer to a recent paper of BHATTACHARYA & GHOSH 

(1978) who obtained some related results. In non-parametric statistics 

ALBERS, BICKEL & VAN ZWET (1976) have established asymptotic expansions 

for the power of linear rank tests for the one-sample symmetry problem. 
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In a parallel paper BICKEL & VAN ZWET (1978) established similar results 

for two-sample rank statistics. Extension of these results to the case of 

general linear rank statistics is an interesting unsolved problem. A review 

of these developments was given by BICKEL (1974) .• The problem to establish 

Berry-Esseen type bounds and Edgeworth expansions for linear combinations 

of order statistics was an open problem at the time of Bickel's 1974 re

view paper, although a number of partial results were known. ROSENKRANTZ & 

O'REILLY (1972) found a rate of convergence not better than n-i for the normal 

approximation to the df of linear combinations of order statistics, using 

the Skorohod embedding method. They also showed that nothing more can be 

obtained by this approach.A nearly optimal error bound of order n-~inn for 

the same problem was derived by EGOROV & NEVZOROV (1976) using an exponen

tial bound due to PETROV (1972) as an important tool. A related result was 

obtained by DE WET (1976). An important stimulus to obtain the optimal rate 

-~ 
of convergence n for the normal approximation to the df's of linear com-

binations of order statistics was given by BICKEL (1974). By an ingenious 

method based on the martingale structure of u-statistics BICKEL (1974) was 

able to use Esseen's smoothing lemma to establish a Berry-Esseen bound of 

_! 
order n 2 for u-statistics of order 2 with a non-degenerate bounded kernel. 

The method of proof of BICKEL (1974) was then used by B.JERVE (1977) and 
I 

HELMERS (1977 ) to obtain Berry-Esseen type bounds of order n- 2 for linear 

combinations of order statistics. We may also mention in this connection 

two papers of HUSKOVA (1977), (1979) who obtained, also applying Bickel's 

-~ 
method, a Berry-Esseen bound of order n for general linear rank statistics, 

both under the hypothesis, contiguous and fixed alternatives. Bickel's re

sult concerning U-statisti.cs was further improved by CHAN & WIERMAN (1977) 

and CALLAERI' & JANSSEN (1978), using the martingale structure inherent in 

U-statistics in a different way. Using the Callaert & Janssen result the 

author (HELMERS (1981)) was able to weaken the conditions in HELMERS 

(1977). These results on Berry-Esseen bounds for linear combinations of 

order statistics are contained in chapter 3. 

The problem to go from these Berry-Esseen bounds to Edgeworth expan

sions for linear combinations of order statistics was considered by VANZWET 

(1977). He was able to derive a bound on the characteristic function of a 

linear combination of order statistics which solves a crucial part of the 

problem to establish Edgeworth expansions for these statistics. Using this 

result of VAN ZWET (1977) (reproduced here as lemma 2.1.2) the author ob

tained Edgeworth expansions for linear combinations of order statistics 
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with a remainder term of order O(n- 1) for n + 00 • Based on totally different 

representations of a linear combination of order statistics these expansions 

were derived for the case of smooth weights (HELMERS (1980)) and for the 

case of a smooth distribution function (HELMERS (1979)). Edgeworth expan

sions for the special case of trimmed means were obtained by BJERVE (1974). 

These results concerning Edgeworth expansions for linear combinations of 

order statistics are contained in the chapters 4 and 5. 

1.2. LINEAR COMBINATIONS OF ORDER STATISTICS 

In this section we review the extensive literature on linear combina-

tions of order statistics. We begin by introducing some more notation that 

will be used throughout this study. 

Let x1,x2, ... denote a sequence of i.i.d •. rv's with common df F and 

let for each n ~ 1 

(1.2.1) ,, x 
n:n 

denote x1 , ... ,xn ordered in ascending order of magnitude. xi:n (1 ,,; i,,; n) 

is called the ith order statistic of a sample of size n. 

Furthermore let for each n ~ 

(1.2.2) 

be a sequence of real numbers called weights. Frequently but not always, 

it will be assumed that these real numbers are generated in one way or an

other by a fixed real-valued measurable function J - called the weight func

tion - defined in (0.1). One such way of generating weights is the following: 

Suppose that for each n ~ 1 

(1. 2. 3) c. 
in 

J(_L) 
n+l 

i 1, 2, ... ,n. 

Weights of the form (1.2.3) are the ones which are most frequently studied 

in the literature. In chapter 4 a quite general way of generating weights 

by means of weight functions is introduced and studied. We also refer to 

that chapter for a discussion of the various ways of generating weights 

found in the literature. Linear combinations (functions} of order statistics, 

or L-estimators, are statistics of the form 



(1.2.4) T 
n 

-1 
n 

Several authors (e.g. SHORACK (1972)) consider the somewhat larger 

class of statistics of the form 

(1.2.5) T 
n 

-1 
n 

n K 

l ci·nh(Xi··.n) + l ~ X. 
i=l k=l -l<n ik:n 
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where h is some function on the support of F, the <\n form a double sequence 

of real numbers and the indices i 1 , ••• , iK satisfy 1 :S: i 1 :S: i 2 :S: ••• :S: iK :S: n. 

Though not indicated in the notation the function h and the indices ik 

(1 ::;; k :S: K) may depend on n. K is fixed. 

We present a few examples. For any real number x the largest integer 

smaller or equal than x will be denoted by [x]. 

EXAMPLE 1.2.1. The sample mean. If we take c. 1 for i 
-1 n in 

1,2, .•• ,n and 

n ~ 1, we see that Tn = n Ei=l Xi, the sample mean. 

EXAMPLE 1.2.2. The o.-trinuned mean. Let Tna denote the a-trimmed mean, 

(1.2.6) T 
na 

(n - 2[na]) -l 
n-[na] 

l xi:n' 
i=[na]+l 

i.e. we take c. = (n-2[na])-ln for i = [na]+l, ••• ,n-[na], n 
in 

and c. = 0 otherwise. 
in 

1, 2, ••. , 

EXAMPLE 1.2.3. L-estimator for logistic location (see,- e.g., DAVID (1970), 

page 224) • Let 

(1.2. 7) 6 i (1 i ) 
n+l - n+l 

for i 1,2, ••• ,n and n ~ 1. Then Tn 
-1 n 

n Ei=l cinxi:n is the L-estimator 

for logistic location. 

EXAMPLE 1.2.4. Gini's mean difference (see, e.g., STIGLER (1974)). Gini's 

mean difference is defined by 

(1.2.8) 

but it can also be written as 
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n 
(1.2.9) G 

n 
4 (n+l) '\ (_L _ .!_) 
n(n-1) i~l n+l 2 Xi:n 

EXAMPLE 1.2.5. The a-Winsorized mean. Let W denote the a-Winsorized mean, na 

(1.2.10) w 
na 

-1 
n ([na]X[na]+l:n + 

+ [na]Xn-[na]:n), 

n-(na] 

l 
i=[na]+l 

X. + 
J.:n 

This example falls into the wider class (1.2.5). We take K = 2, c. = 1 . in 
for i = [na]+l, ... ,n-[na], n = 1,2, ••. , cin = 0 otherwise a.nd dln = d 2n 

[na]n-l for all n ~ 1. 

The above examples illustrate a number of weights that may occur. More 

examples will be given in the subsequent chapters. 

Statistics of the form (1.2.4) were already studied by P. Daniell in 

1920 in an interesting paper "Observations Weighted According to Order" 

published in the American Journal of Mathematics. Daniell was the first to 

give a mathematical treatment of the class of statistics which are linear 

combinations of order statistics. His results include a derivation of the 

optimal weights in the linear combination for estimating location and scale 

parameters and an expression for the asymptotic variance of trimmed means. 

We refer to a paper of STIGLER (1972) for a nice account of these histuri

cal developments. 

The work of Daniell was not noticed by the mathematicians of his time 

and it was in the early fifties that several people became interested again 

in the problem. BENNETT (1952) was concerned with least s~uares estimation 

of location and scale parameters by means of order statistics. Using the 

Gauss-Markov theorem Bennett was able to derive, for fixed sample size n 

and a fixed family of distributions depending only on location and scale, 

unbiased estimators for location and scale which have minimum variance in 

the class of all unbiased estimators which are of the form (1.2.4). We also 

refer to the work of LLOYD (1952), who obtained these results independently 

of Bennett. The computation of Bennett's estimators, however, is very diffi

cult because it requires knowledge of the expectation of any single order 

statistic (up to a location-scale transformation) and the covariance of 

any two of them. For this reason BLOM (1958) and JUNG (1955) have attempted 

to derive large sample approximations to the best unbiased estimators of 

Bennett and Lloyd. They obtained estimators which are "nearly unbiased, 
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nearly best" by using asymptotic approximations to the expectations of the 

order statistics and to their covariances. we refer to DAVID (1970) for a 

recent discussion of these results. 

It seems useful to say a bit more about the work of JUNG (1955). He 

considers weights of the form (1.2.3). Assuming that J is four times dif

ferentiable with bounded derivatives on (0,1) he first derives asymptotic 

integral approximations for the expectation and var~ance of 

-1 -;'n i 
n li=l J(n+l) Xi:n" He then proceeds, by using a calculus of variation 

argument, to find the linear combination of order statistics which is 

asymptotically optimal in the sense that the estimator is asymptotically 

normally distributed, with asymptotic mean equal to the loc~tion or scale 

parameter to be estimated and asymptotic variance attaining the Cramer-Rao 

bound. In fact he does not prove the asymptotic normality of his estimator 

but he only shows that these estimators are asymptotically unbiased and 

have minimum asymptotic variance. 

However, the comparison of the performance of two estimators (or rather 

two sequences of estimators), with the asymptotic variances as the criterion 

of performance, seems only to be justified when these asymptotic variances 

can be considered as reasonable measures of dispersion of the two estimators 

considered. The classical situation in which this is the case arises, of 

course, when both estimators are asymptotically normally distributed. Thus 

motivated by the work of JUNG (1955) several authors became interested in 

the problem to find sufficient conditions for the asymptotic normality of 

linear combinations of order statistics. 

BICKEL (1967) and CHERNOFF, GASTWIRTH & JOHNS (1967) seem to be first 

to consider this important problem. We shall review very briefly their 

approaches to the problem as well as that of the other contributors to this 

problem who came after them, notably MOORE (1968), STIGLER (1969), (1973), 

(1974) and SHORACK (1969), (1972), (1974). 

Let us start by remarking that the problem of proving asymptotic nor

mality for statistics of the form (1.2.4) (or (1.2.5)) has no easy answer. 

Several sets of sufficient conditions which guarantee that statistics of 

the form (1.2.4) - when appropriately normalized - are asymptotically nor

mally distributed are possible: there exists a kind of balance between the 

restrictions put on the weights and the conditions imposed upon the df F. 

Either heavy restrictions are required for the cin and rather mild condi

tions for F or the other way around. There is also another dichotomy pre

sent in the problem: although a number of different approaches to the 
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problem of providing sufficient conditions for the asymptotic normality of 

statistics of the form (1.2.4) (or (1.2.5)) can be found in the literature, 

essentially two methods of proof appear to exist. 
-1 n 

The first method is to decompose n ~i=l cin Xi:n as follows 

(1.2.11) -1 
n 

n 

l 
i=l 

c. x. S + R 
Ln L:n n n 

such that nSn is a sum of independent rv's to which - when appropriately 

normalized - a form of the central limit theorem can be applied and Rn is 

a remainder term which turns out to be of negligible order of magnitude; 
I 

i.e. n 2 R converges in probability to zero, as n + 00 • Slutsky's theorem n 
can then be applied to conclude the proof. Though this idea is attractive 

because it is simple, the technical problems in carrying out this idea 

are not easy at all. First a decomposition of the form (1.2.11) has to be 

found. Then the program indicated above has to be carried out. There are 

several ways available in the literature to do this. CHERNOFF, GASTWIRTH & 

JOHNS (1967) exploit special properties of exponential order statistics and 

use a Taylor type argument (assuming a smooth df F) to find a decomposition 

of the form (1.2.11). Applying the Lindeberg-Feller central limit theorem 

to their S and making an intricate analysis of EIR I, the first absolute n n 
moment of their remainder term, they succeed in proving asymptotic normality 

for statistics of the form (1.2.4). Their conditions require a smooth F, 

but rather arbitrary weights are allowed. 

A perhaps more elegant idea was used by STIGLER (1969), (1974). His 

approach is to apply Hajek's projection lemma (HAJEK (1968)) to find a 

sum of independent rv's - the projection - which approximates a linear com

bination of order statistics T in mean square and show that this sum, when 
n* 

appropriately normalized, and Tn are mean square equivalent. As a consequence 

of using two different techniques of treating the remainder term STIGLER 

(1969) results require smooth df's, whereas STIGLER's (1974) results require 

a smooth weight function. To conclude our discussion of the various ap

proaches based on a decomposition of the form (1.2.11) let us mention that 

an elegant short proof of the asymptotic normality of statistics of the form 

(1.2.4) was given by MOORE (1968). Moore took advantage of the possibility 

to represent Tn in terms of the empirical df. Assuming rather restrictive 

smoothness conditions for his weight function (the weights are of the form 

(1.2.3)) he can apply a Taylor type argument to complete his proof. Note, 
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however, that the theorem of MOORE (1968) is false as stated (see STIGLER 

(1974)). 

The second method of proving asymptotic normality for linear combina

tions of order statistics is to relate the problem to the weak convergence 

of certain processes on [0,1] with values in certain functions spaces. 

BICKEL (1967) was the first to follow this line of attack and his proof 

was based on the weak convergence of suitably defined "quantile" or "in

verse empirical" processes. He then writes Tn (cf. (1.2.4) l in terms of 

these processes, notes the weak convergence of these processes to a Brownian 

bridge process, and then verifies that the convergence in distribution of 

Tn follows from the weak convergence of the processes on which Tn is a 

functional. BICKEL's (1967) results are somewhat restricted because he does 

not allow the more extreme observations to be weighted more than in the 

case of the sample mean. SHORACK (1969), (1972) has overcome this drawback 

by using the weak convergence of suitable quantile processes in stronger 

metrics than the usual uniform metric. His results allow the weight func

tions to be unbounded and are of the approximately equal strength as the 

various results obtained by Chernoff, Gastwirth & Johns and Stigler. An 

important disadvantage of the approach of proving asymptotic normality via 

the weak convergence of associated processes is that it does not seem suit

able to derive optimal rate of convergence results from it. 

We conclude this review of the problem of the asymptotic normality of 

linear combinations of order statistics by discussing very briefly a few 

special cases and some extensions. First of all we have, ·of course, the 

traditional sample mean (see example 1.2.1). It is well-known that the sam

ple mean is, for any fixed sample size n, the best estimator for the expect

ation of a normal distribution in almost every conceivable sense. When F is 

not normal, but its variance is finite it is also best (in the sense of 

minimum variance) in the class of all uribiased estimators which are linear 

functions of the observations. The special case of trimmed means was con

sidered in detail by STIGLER (1973). He shows that suitably normalized 

trimmed means are asymptotically normally distributed if and only if the 

population quantiles corresponding to the trimming percentages are uniquely 

determined. Another well-known special case is that of a single order stati

stic. It is well-known that "central" order statistics are asymptotically 

normally distributed under certain conditions. SMIRNOV (1944) gives necess

ary and sufficient conditions for this being the case. BALKEMA & DE HAAN 

(1978) have given a detailed description of all possible limitlaws which 
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may arise. REISS (1974) (see also VAN ZWET (1964)) has proved that the 

error of the normal approximation for central order statistics is of order 
_! 

n 2 if the underlying df F possesses a bounded non-zero second derivative. 

Edgeworth expansions for sample quantiles and also for the joint distribu

tion of a finite or slowly increasing number of sample quantiles were 

recently obtained by REISS (1976), (1977). We shall not go into this any 

further because in this study we shall restrict att~ntion to the case when 

essentially all the observations, or at least a positive fraction of them, 

will contribute to the linear combination of order statistics we consider. 

This, of course, includes the sample mean as a special case, but rules out 

sample quantiles and statistics based on a finite or slowly.increasing 

number of order statistics. Finally we remark that for the special case 

that F is the uniform df HECKER (1976) has given necessary and sufficient 

conditions for the asymptotic normality of linear combinations of uniform 

order statistics. The same problem for the case of an exponential df is 

trivial, because then any linear combination of order statistics reduces 

to a sum of independent rv's. 

The case of non-i.i.d but independent rv's was considered by SHORACK 

(1973), STIGLER (1974) and more recently by RUYMGAART & VAN ZUYLEN (1977). 

Known theorems on the asymptotic normality of linear combinations of order 

statistics are extended to the non-i.i.d. case by each of these authors. 

MEHRA & RAO (1975) proved asymptotic normality for linear combinations of 

order statistics when the observations possess a certain dependence structure. 

Although linear combinations of order statistics of a simple type like 
th e.g., trimmed means were already in use in the 19 century (see, e.g. HUBER 

(1972)) it was mainly through the work of TUKEY (1960), (1962) that it be

came clear that the main reason to study and to apply linear combinations 

of order statistics is the usefulness of these statistics in robust estima-

tion problems. Whereas the sample mean may behave very badly when estimating 

location with observations which are not normally distributed, L-estimators 

as well as estimators of different type were constructed which are robust 

under departure of normality and have high efficiency to the sample mean 

under normality. A sophisticated theory of robust estimation was developed 

during the past 15 years by P.J. Huber, F. Hampel and several others. We 

refer to HUBER ( 1977) for an account of this theory and a number of references. 

In particular in the case of estimating the centre of a symmetric distribu

tion it was shown that there are several methods of estimation leading to 

estimators which are both robust and efficient. Besides estimation by means 
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o£ linear combinations of order statistics (L-estimators) , estimators can 

be constructed by the method of maximum likelihood CM-estimators) and by 

the method of deriving estimators from rank tests CR-estimators) which are 

"first order efficient" in the sense that these .estimators are asymptotical

ly normally distributed, with asymptotic mean equal to the parameter to be 

estimated and with asymptotic variance equal to the Cramer-Rao bound.JAECKEL 

(1971) has proved a related, somewhat more general, .result. He shows that 

for fixed F there corresponds to each L-estimator (efficient or not) an 

M-estimator and an R-estimator having, under appropriate conditions, the 

same asymptotic variance. We also refer a paper of SCHOLZ (1974) who has 

shown that, when one compares the asymptotic variances of first order 

efficient L- and R-estimators (when estimating location) the R-estimator 

has a better performance when the supposed underlying df is not the true 

one. In a recent paper BICKEL & LEHMANN (1975) considered what happens when 

the distribution is no longer assumed to be symmetric. They defined measures 

of location, without assuming symmetry, as functionals satisfying certain 

equivariance and order conditions. They discuss classes of such measures 

which can be estimated by L-, R- or M-estimators. Of these three methods 

of estimation it is found that trimmed L-estimators are the only ones which 

are both robust and have guaranteed high efficiency with respect to the 

sample mean for all underlying distributions. 
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CHAPTER 2 

PRELIMINARIES 

In this chapter we shall present a number of results which we shall 

need in the subsequent chapters. We also introduce some more notation which 

will be used throughout this study. Section 2.1 contains two lemma's which 

will be basic tools in our proofs. In the sections 2.2 and 2.3 .we present 

a number of rather technical results which we.shall frequently use in the 

chapters 3, 4 and 5. 

2.1. TWO BASIC TOOLS 

Let x1 ,x2 , ••• denote a sequence of i.i.d. rv's with common df F and 

let X, (1 s i s n) denote the ith order statistic 
i:n 

more let u 1 ,u2 ••• 

let u. (1 s i s 
i:n 

of x1 , ••• ,xn. Further

denote a sequence of independent uniform (0,1) rv's and 

) b h .th d . . f t . 11 n et e i or er statistic o u1 , •.• ,un. I is we -

known that the joint distribution of x1 ,x2 , ••• is the same as that of 

for any df F. Since F is monotone this implies that 
-1 -1 

F (Ul) I F (U2) I ••• 

the joint df of X. , i = 1,2, ••• ,n, n = 1,2, ••• is the same as that of 
-1 i:n 

F (Ui:n>' i = 1,2, ••• ,n, n = 1,2, •••• The empirical df based on u1 , ..• ,un 

will be denoted by rn; i.e. 

(2.1.1) r (s) 
n 

-1 
n for 0 < s < 1 

Here and elsewhere XE denotes the indicator of a set E. 

The first lemma of this section will be used in the estimation of 

certain (small) remainder terms. 

LEMMA 2.1.1. Let {X , n = 1,2, .•• } and {Y , n = 1,2, .•. } be two sequences 
n n 

of rv's and let there exist positive numbers A and b and a number n > 1 

such that for all n ~ 
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(i) 

(ii) 

Then there exists a positive number C depending only on A,b and n but not 

on n such that for all n 

(2.1.2) a2 <x* -Y*) s cn-n+l 
n n 

PROOF. Note first that 

(2.1.3) 

where pn denotes the correlation coefficient of Xn and Yn. Because of 

assumption (i) and the fact that each of the terms on the right of (2.1.3) 

is non-negative we find that 

(2.1.4) a (X ) - a (Y ) 
n n 

and 

(2.1.5) 2(1-p )a(X) a(Y) s An-n. 
n n n 

Using now assumption (ii) and (2.1.4) and noting that n > 1 we see that 

2 -1 
a (Y ) <: !bn 

n 
and assumption 

(2.1.6) 

for n <: n 0 , n0 depending only on A,b and n. Combining this 

(ii) with (2.1.5) we find that 

s A /2 
b 

-n+l 
n 

2 * * 
for all n 2: n0 . Because a (Xn-Yn) = 2(1-pn) we have proved the lemma. D 

The second lemma of this section is due to W.R. Van Zwet. In VAN ZWET 

(1977) he obtains a bound on the characteristic function of a linear com

bination of order statistics, which solves a crucial part of the problem 

of establishing Edgeworth expansions for these statistics. 

Leth be a real-valued measurable function on (0,1) and let Ul:n s 

u2 ,n s •.. s Un:n denote the order statistics of a sample of size n from the 

uniform (0,1) distribution. Let c., i= 1,2, ... ,n, n= 1,2, ... be real 
in 
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numbers and let T be a linear combination of functions of order statistics n 
of the form 

(2.1. 7) T 
n 

-1 
n 

n 

l 
i=l 

c. h(U. ) . 
in i :n 

Note that in the important case h 

the form (1.2.4). 

F-l (2.1.7) reduces to a statistic of 

LEMMA 2.1.2. (VAN ZWET). Suppose that there exist numbers 0 s t 1 < t 2 s 

and positive numbers m, M, c and C such that 

{i) his twice differentiable on (t1 ,t2) with first and second derivative 

h' and h" such that 

h' "= m and lh"I $ M on 

{ii) 

Then for 

ing only 

ing only 

(2.1.8) 

c $ c. $ c 
in 

every positive 

on tl, t2, m, 

on tl, t 2 and 

for all i with 

integer r there exist a positive number A1 

M, c, C and r and positive numbers A2 and y 

r such that 

for all t f. 0. 

PROOF. See VAN ZWET ( 1977) • 0 

2.2. SOME LEMMAS 

depend-

depend-

The first lemma of this section is an obvious result concerning the 

finiteness of certain integrals. For any positive number l the lth absolute 

moment of a distribution F will sometimes be denoted by Sf 

LEMMA 2.2.1. 

(a) Let l be a number >1 and let, for some o > 0, Sf+o 
exists A > 0 depending only on l and o such that 

1 1 1 

(2.2.1) I :[ -1 
(s (1-s)) dF (s) $ A sl+a 

l+o < 00 

0 

(b) If f 1 and 0 0 then (2.2.1) holds with A 1. 

< 00 Then there 



PROOF. Applying integration by parts we obtain 

1 1 

(2 .2.2) f l -l 
(s (1-s)) dF (s) 

0 

1 1 

r -1 I (s(1-s)) F (s) 

0 

1 .!__ 1 

f F-1 (s) (s(1-s))l (1-2s)ds. 

0 
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Both under the assumptions a and b the first term on the right of (2.2.2) 

is easily seen to be zero. To conclude the proof of part a we apply Holder's· 

inequality to the second term on the right of (2.2.2): 

1 .!__ 1 

f F-1 (s)(s(1-s)/ (1-2s)dsl 

0 

1 

s f 
0 

. 1 1 
-1 r-

IF (sll(s(l-s)) ds s 

1 _1 + o £.+0-1 

<f (s(l-s)) l(l+o-1) ds)~ <"' 

0 

The proof of part b is immediate from (2.2.2) and the remark made after it. 

This co,mpletes the proof of the lemma. D 

The second lemma of this section will enable us to estimate certain 

moments. 

LEMMA 2.2.2. Let £. be a positive integer and let, for some ll > O, Sl+o < "'· 

Then for any number p for which pl ~ 2, there exists A > 0 depending only 

on p, l and o, such that 

1 

(2. 2. 3) E<f 
0 

p -1 l 
lr (s)-sj dF (s)) 

n 

PROOF. By Fubini's theorem we have 

1 

E<f 
0 
1 

f 
0 

p -1 l 
lr (s)-sj dF (s)) 

n 

0 

Application of Holder's inequality shows that 
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for all 0 < s 1 , ... ,sp < 1. Hence we know that 

1 1 

E(f lfn(sJ-slpdF- 1 (s))l $ (f 
0 0 

1 

<E I r <sl-s lplll dF- 1 Csl /. 
n 

At this point we use an inequality due to MARCINKIEVITZ, ZYGMUND & CHUNG 

(see CHUNG (1951)): If Y1 , ••. ,Yn are independent rv's with expectation zero, 

we have for all k ~ 

n 
(2.2.4) E I l 

i=l 
Y. 12k $ 

l. 

k-1 Cn 
n 

l 
i=l 

2k 
EIY. I , 

l. 

where the constant C only depends on k. By taking 

with 0 < s < 

(2.2.5) 

i 1,2, •.. ,n 

we find, taking k = pl/2, that 

_cl: 
Elf (s)-slpl s Bn 2 s(l-s) n 

for all 0 < s < 1 and n ~ 1. The constant B depends only on p and l. It 

follows that 

1 

E<f 
0 

p -1 l If (sl-sl dF (s)) n 

_cl: 1 

$ Bn 2 ( f 
0 

1. 
l -1 l (s(l-s)) dF (s)) 

An application of lemma 2.2.1 completes the proof. D 

To formulate the next lemma we need some more notation. Let m be a 

function on (0,1). In certain cases the function m is defined on (0,1) out

side a set of F-1-measure zero in (0,1). Define llmll = ess suplml where the 
00 

-1 ess sup is taken with respect to the measure induced by F . Consider for 

a positive integer k, the function 

1 

(2.2.6) 
= f 

0 

which is properly defined for 0 < ul, ... ,uk < 1 whenever sl < 00 and 

llmlt < 00 • Define a function H by 
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1 

(2.2.7) H(u) I -1 
lx(O,s](u) - sld F (s) 

0 

for O < u < 1. Note that II\ is symmetric in its k arguments and that 

(2.2.8) :s; II mU •H(u.) 
co l. 

for i = 1,2, ••• ,k. 

LEMMA 2.2.3. 

(a) Let l be a positive integer and suppose that al < co Then 

(2.2.9) < co 

(b) Suppose that II mll co < co and al < co. Then 

(2.2.10) 

for any i and with probability one 

(2.2.11) E (m (U. , ••• , u. ) I u. , ••• , u. l = O 
K l.1 l.k l.1 l.k-1 

PROOF. (a) We prove (2.2.9). It is immediate from (2.2.7) that 

H(Ul) :5 I -1 
sd F (s) + I -1 

(1-s)d F (s) 

(O,U1l [Ul, 1) 

Applying the er-inequality (see, e.g., LO EVE (1955), page 155) we find 

El(u1l :s; /-1[E( J 
(O,u1) 

sdF-1 (s))l+E( J 
[Ul, 1) 

-1 l 
(1-s)d F (s)) ] 

Using integration by parts and the finiteness of al and applying the cr

inequality once more we see that 
ul 

sd F- 1 (s))l Elu1F- 1 Cu1> - J F-1 (s)dsll :5 

0 
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1 

$ l--1 <EIF-1 (U1) I.e.+ cJ IF-1 (s) Ids/) 

0 

Similarly we can show that 

f( J -1 .e. .e. .e. 
(1-s)d F (s)) s; 2 fix I 

1 
[Ul, 1) 

so that 

< "' 

which proves (2.2.9). 

(b) By Fubini's theorem we see that with probability one 

1 

E<f 
0 

k -1 
lm(s) I .IJ1 1xco J(u. l -sld F (s) lu. , ••• ,u. l s; 

J- ,s ij i1 ik-1 

Therefore the conditional expectation in (2.2.11) is we11-defined and Fubini's 

theorem can be applied once more to find that 

f(m(Ui , ••• ,u. >lu. , ... ,u. o 
k 1 ik il ik-1 

with probability one. Of course (2.2.10) follows similarly. D 

The next lemma gives conditions which guarantee that the quantity 
2 a (J ,F) (cf. (0.3)) given by 

"' "' 
(2.2.12) cr 2 (J,F) = J J J(F(x))J(F(y))(min(F(x),F(y)) -F(x)F(y))dxdy 

-oo -oo 

is bounded away from zero. We remark that a different expression for 

o 2 (J,F) is given by 

(2.2.13) 2 a (J,F) 

1 

J h~(u)du 
0 

where the function h 1 is given by 
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1 

(2.2.14) J 
-1 

- J(s)(x(O,s](u)-s)dF (s) 

0 

for 0 < u < 1. 

LEMMA 2.2.4. Let J be bounded on (0,1) and let 13 1 < 00 • Suppose that positive 
-1 

numbers M1 and c and numbers 0 ~ tl < t2 ~ 

-1 
F (t2ll F possesses a density f, such that 

and on (tl ,t2), J ;:: c. Then there exists a~ 

1 exist such that on (F (t1J, 
-1 -1 

on (F <_tl), F (t2)), f ~ Ml 

> O depending only on M1, c, t 1 

and t 2 such that 

(2.2.15) 
2 2 

o (J ,F) 2: o0 • 

PROOF. Note first that h 1 is well-defined and finite for every 0 < u < 1. 

Secondly we remark that 

2 o (J,F) 

1 

= J h~(u)du 
0 

2 
h1 (u)du. 

It follows directly from (2.2.14) and the assumptions of the lemma that 

2 
o (J ,F) 

This completes the proof of the lemma. 0 

2.3. BOUNDS FOR MOMENTS OF CENTRAL ORDER STATISTICS 

The first lemma of this section gives conditions which guarantee that 

the kth absolute moment of a trimmed linear combination of order statistics 

is finite. 
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LEMMA 2.3.1. Let, for some o > O, S0 < "' Suppose that numbers 0 < a < S < 1 

and real numbers cin' i = 1,2, ••• ,n, n = 1,2, ••• exist such that 

(2.3.1) 0 for i < [na] and i > [nSJ. 

Then, for any number k > O, there exists a positive integer n 1, depending 

only on k, a, a and o, such that 

(2.3 .2) 

PROOF. The proof is essentially contained in BICKEL (1967). Note that 

assumption (2.3.1) implies that 

n .k k k [nS] k 
I l c. X. I s; CIX[na]:nl + IX[n""·nl l ( l icinl> · 
i=l in i:n µ~. i=[na] 

Application of theorem 2.2a of BICKEL (1967) implies that there exists a 

natural number n1 , depending only on k, a, a and o, such that for n <!: n1 both 
k k 

Elx[na]:nl and f lx[na]:nl are finite. Hence we have proved the lemma. D 

Next we collect some well-known useful facts about order statistics 

from an exponential df. Let z 1 ,z2 , ••. denote a sequence of independent rv's 

with collllllon exponential df E given by 

(2.3.3) E(z) 1 - e-z for 0 s; z < "' 

Let, for each n <!: 1, zi:n denote the ith order statistic of z 1, ••• ,zn. 

It is well-known (see, e.g., DAVID (1970)) that zi:n (1 s; is; n) has the 

same distribution as the rv 

(2.3.4) 
i z. l . J 

(n-j+l) j=l 

(1 s; is; n); i.e. Zi:n is distributed as a sum of independent rv's. 

In the second lemma of this section we obtain estimates for the absol-

ute central moments of exponential order statistics. Note that Ez. v. 
i:n in 

(1 s; i s; n) where 

(2.3.5) 
i 1 

j~l (n-j+l) 
i 1,2, ... ,n. 
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LEMMA 2.3.2. Let 0 < a < S < 1 and let p > 0. Then there exists a positive 

constant A, depending only on a, a and p, but not on n, such that for all 

n ;<: 1 

(2.3.6) max 
[na]:>i:>[nS] 

_E. 

Eiz. -v. IP:> An 2 
i :n in 

PROOF. The proof is an immediate consequence of lemma A.2.4 of ALBERS, 

BICKEL & VAN ZWET ( 1976). 0 

REMARK. The order bound (2.3.6) holds only true for "central" exponential 

order statistics. The "upper" exponential order statistics are of a larger 

order of magnitude. It is exactly for this reason that we have to restrict 

attention to trimmed linear combinations of order statistics in chapter 5. 
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CHAPTER 3 

BERRY - ESSEEN THEOREMS 

3.1. INTRODUCTION AND MAIN RESULTS 

The purpose of this chapter is to obtain precise information about the 

rate of convergence to the normal limit distribution of the df's of linear 

combinations of order statistics. In our main results - stated in the form 
_1 

of three theorems - we establish Berry-Esseen bounds of order n 2 for these 

statistics. Before listing the assumptions needed for the theorems let us 

introduce some notation. Let x1,x2 , ... denote a sequence of i.i.d. rv's .with 

common df F. Consider, for each n 2: 1, statistics of the form 

(3.1.1) T 
n 

-1 
n 

n 

l 
i=l 

c. X. 
in i:n 

(cf. ( 1. 2. 4)) • Furthermore define, for each n <: 1 and real x, 

(3.1.2) * F (x) 
n 

P({T* $ x}) 
n 

where (cf. (1.1.4)) 

(3 .1.3) T* = (T -E(T ))/cr(T ). n n n n 

Let J denote a real-valued bounded measurable function on (0,1). The first 

two assumptions will be needed to prove the first and second main result of 

this chapter. 

ASSUMPTION 3.1.1. As n ~ oo 
i 

max 
15i5n 

i~j 1, •.. , jk 

n 

le. -n J J(s)dsl in 
i-1 

n 
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In addition the weights c. 
Jtn 

[nsl] + 1, l = 1, ••. ,k, n ~ 1, 0 < s 1, ••• ,sk 

(1 $ l $ k) are uniformly bounded in n, jl 

< 1 and the inverse F-l satis-

fies a Lipschitz condition of order a 1 ~ 1- on neighbourhoods of s 1 , ••• ,sk. 

k is fixed. 

ASSUMPTION 3.1.2. The function J satisfies a Lipschitz condition of order 

on (0,1). 

The third assumption is a strengthened version of assumption 3.1.2 

which we shall need to prove the third main result of this chapter. 

ASSUMPTION 3.1.3. The function J is bounded and continuous on (0,1). The. 

derivative J(l) exists except possibly at a finite number of points; J(l) 

1 
satisfies a Lipschitz condition of order a 2 > 2 on the open intervals where 

it exists. The inverse F-l satisfies a Lipschitz condition of order a 3 > t 
on neighbourhoods of the points where J(l) does not exist. 

3 
THEOREM 3.1.1. Let Eix1 1 < oo and suppose that the assumptions 3.1.1 and 

2 
3.1.2 are satisfied. Then a (J,F) > 0 (cf. (2.2.12)) implies that 

(3.1.4) as n -+ 00 

our second theorem is a modification of theorem 3.1.1 in which we shall 

employ a different and more practical standardization. Let us introduce the 

quantityµ= µ(J,F) by 

1 

(3.1.5) µ µ(J,F) f -1 
J(s)F (s)ds 

0 

and define, for each n ~ and real x, the df Gn by 

(3.1.6) 
I 

P({n2 (T -µ)/O$x}) 
n 

with o2 = o 2 (J,F) as in (2.2.12). 

THEOREM 3.1.2. Suppose that the assumptions of theorem 3.1.1 are satisfied. 

2 
Then a (J,F) > 0 implies that 

(3.1. 7) supjG (x) - Hx) I 
n 

x 

as n -+ 00 
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In the third and final main result of this chapter we establish a Berry
! 

Esseen bound for a studentized version of n 2 (T -µ)/cr; i.e. a= cr(J,F) is 
n 

estimated by its natural estimator which is given by 

(3 .1.8) s 
n 

where Fn denotes the empirical df based on x1, .•. ,Xn: 

(3 .1.9) F (x) 
n 

-1 
n 

n 

l X (Xi) 
i=l (-oo,x] 

for - 00 < x < Introduce, for each n ~ 1 and real x, the df Hn by 

(3.1.10) H (x) 
n 

6 THEOREM 3.1.3. Let Elx11 < 00 and suppose that the assumptions 3.1.1 and 
2 3.1.3 are satisfied. Then a (J,F) > 0 implies that 

(3.1.11) sup!H (x) - <l>(x) I 
n 

x 

Weights of the form (cf. (1.2.3)) 

(3.1.12) c. 
in 

as n -+ 00 

i = 1,2, ... ,n, n ~ 1 are frequently studied in the literature, (see, e.g., 

STIGLER (1974)). The following proposition ensures that we may replace as

sumption 3.1.1 by (3.1.12) in each of the theorems 3.1.1 - 3.1.3. 

PROPOSITION 3.1.4. Let either assumption 3.1.2 or assumption 3.1.3 be satis

fied. Then assumption 3.1.12 implies assumption 3.1.1. 

PROOF. As in either case J is Lipschitz of order 1 on (0,1) we immediately 

find that 

i max IJ(-1 ) 
l:Si:Sn n+ 

i 
n 

- n J J(s)dsl 

i-1 
n 

which completes the proof. D 

as n -+ 00 
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It is useful to comment on these results. In the first place we remark 

that, except for possibly finitely many weights, the weights are approxi-

-1 
mated, up to an error of order 0(n ), by a smooth weight function. An im-

portant example in which this is the case is provided by proposition 3.1.4. 

In the theorems 3.1.1 and 3.1.2 the function J must be Lipschitz of order 1. 

In theorem 3.1.3 we need a stronger smoothness condition, but still we allow 

points of non-differentiability. The price for this is a local smoothness 

condition on the inverse F-1 . In the second place we require the finiteness 

of the absolute third moment of the underlying df Fin the theorems 3.1.1 

and 3.1.2. In view of the classical Berry-Esseen theorem this seems a natu

ral condition. In theorem 3.1.3, on the other hand, we assume the finiteness 

of the sixth moment of the df F. Note that, if we take J - 1 and multiply 

the statistic in (3.1.10) by the 
n-1 l 

harmless factor (~-) 2 , a Berry-Esseen 
n 

_l 
bound of order n 2 for the Student t-statistic follows as an important spe-

cial case. In CHUNG (1946) the same doubling of the order of the required 

moment is needed to obtain an Edgeworth expansion for the t-statistic. In 

section 3.5 we indicate that theorem 3.1.3 remains valid when the sixth 

th 
moment assumption is replaced by a 4.5 absolute moment for the underlying 

df F. 

It may be remarked that trimmed and Winsorized means are not included 

as special cases in the theorems 3.1.1 and 3.1.2. However, BJERVE (1977) 
_l 

has obtained a Berry-Esseen bound of order n 2 for trimmed linear combina-

tions of order statistics. His result admits quite general weights on the 

th th . 
observations between the a and S sample percentiles (0 < a < S < 1) but 

he does not allow weights to be put on the remaining observations. In addi

tion the underlying df F must satisfy a rather restrictive smoothness condi

tion. It is worth noting that in contrast with Bjerve's result we allow 

weights to be put on all observations and the underlying df need not even 

be continuous. Theorem 3.1.1 was proved for weights of the form (3.1.12) 

assuming a finite third absolute moment, assumption 3.1.3 and the rather 

restrictive requirement f~ IJ(l) (s) Id F-1 (s) < oo in HELMERS (1977). This 

latter requirement was removed in HELMERS (1981). The present chapter ex

tends the latter paper. 

To conclude this section let us give an example which illustrates the 

importance of allowing points of non-differentiability in the condition for 

the weight function. Although our results cannot be applied to trimmed means 

they apply to the linearized smooth trimmed means which were advocated by 

STIGLER (1974) for use in estimation problems when, e.g., the observations 
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are drawn from discrete populations. These smooth trimmed means are generated 

by the function J, according to (3.1.12), where 

J(s) (s - .C:.) 2 ~ 
2 Cl 

.c:. < s $ Cl. 2 -

h Cl < s < 1-ci 

0 

with h = 2(2 - 3ci)-1 . 

otherwise 

1 _ .c:. 
2 

In section 3.2 we prove theorem 3.1.1. Theorem 3.1.2 is proved in sec

tion 3.3 and theorem 3.1.3 in section 3.4. A refinement of theorem 3.1.3 

is indicated in section 3.5. 

3.2. PROOF OF THEOREM 3.1.1. 

The purpose of this section is to provide a proof for theorem 3.1.1. 

We shall need four lemma's. In the first lemma we shall approximate Tn by 

a rv Vn given by 

(3. 2 .1) v 
n 

1 

f J(s)F~ 1 (s)ds 
0 

n 

l 
i=l 

i 
n 

J J(s)ds X. 
i: n 

i-1 
n 

where F is as in (3.1.9). Let lihll sup0 1 ih(s) I for any function h on n <s< 
(0,1). In certain cases the function his defined on (0,1) except at a fin-

ite number of points. Then II hli will denote the supremum of I h I on the do

main of h. For notation see also section 3.1. 

LEMMA 3.2.1. Let Ex~< 00 • Suppose that assumption 3.1.1 is satisfied and that 

J is bounded and continuous on (0,1). Then o 2 (J,F) > 0 implies that as n + 

(3. 2.2) 2 * * o (T - V ) 
n n 

PROOF. It follows from Ex2
1 < 00 that Ex~ < 00 for any 1 s i s n. Further

i:n 
more it is well-known (see, e.g., BICKEL (1967)) that the conditional ex-

pectation of X. is non-decreasing in X. (1 s i < J' s n) with probability J:n i:n 
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one. This result directly implies that the covariance between Xi:n and Xj:n 

is non-negative for all 1 s i ~ j s n. Obviously this implies that 

(3.2.3) 

holds, provided a.a. s b.b. for all 1 s i,j s n. To prove (3.2.2) we first 

1 J 1 J 

note that without loss of generality we assume that.k = 1 in assumption 

3.1.1. Using inequality (3.2.3) twice we see that 

i 

(3.2.4) 

n 
n 

c. 

f 2 - v ) 20 2 { I X. I in - J (s)ds I) o (T s 
n n i=l 

i:n n 

i~\ 
i-1 

n 

J{s)dsl) 

n 

Using assumption 3.1.1 and applying (3.2.3) once more we obtain 

(3. 2. 5) 

+2n-2[maxlc. j+llJll] 2o 2 (x. ) 
n~l J1n J1:n 

2 -C! 

To proceed we ~rove that o (X. ) O{n 1) as n + 00 • Let yn denote the 
J 1 :n 

beta-density of the uniform order statistic U. (j 1 = [ns 1J+l) and let 
J 1 :n 

E be the set 
n 

(3. 2 .6) E 
n 

[ns1 ]+1 

{u, 1 u -
n+l 

for some fixed m > O. The complement of E in (0,1) will be denoted by Ee. 
n n 

Then we have that 

(3. 2. 7) E(x. 
J 1 :n 

j 
_ F-1(-1))2 

n+l 

I {F-1 (u) 

E 
n 
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J -1 -1 j 1 2 
+ (F (u) - F (n+l)) yn(u)du 

EC 
n 

2 
Because Ex1 < oo we can use lemma 4 of STIGLER (1969) to see that the second 

integral on the right hand side of (3.2.7) is 0(n-r) for any r > 0, as n + 00 , 

provided we choose m sufficiently large (depending on r). The Lipschitz 

condition of F-l on a neighbourhood of s 1 can be used to treat the first 

integral on the righthand side of (3.2.7). Since j 1: 1 s s 1 < j: we have for 

sufficiently large n and some constant c > 0 that 

(3.2.8) J 
(F-l (u) -1 j 1 2 - F (n+l)) yn(u)du 

E n 

C•Elu. 
jl 2a.1 

$ --1 
J1 :n n+l 

jl 
It follows from this and the well-known fact that, as limn~ ~ s 1 for 

h 2a. -a. 
o < s 1 < 1, Elu. 

J1 :n 
on the righthand side 

- ~-I 1 = O(n 1) as n + oo, that the first integral 
n+l -a. 
of (3.2.7) is Oen 1) as n + 00 • This and (3.2.5) to-

gether imply that 

(3.2.9) 
2 

CJ (T - V ) 
n n 

as n + 00 

To complete the proof of the lemma we remark that it is not difficult to 

check from theorem 1 and remark 2 of STIGLER (1974) that limn~ na 2 (Vn) = 

a 2 (J,F) > 0 holds under the assumptions of the lemma. Combining this and 

(3.2.9) with lemma 2.1 .1 we see that (3.2.2) holds. D 

Define for 0 S u S 1 the function 

(3.2.10) 

and let c 

(3. 2.11) 

1 1 

1/J(u) J J(s)ds - (1-u) J J(s)ds 

u 0 

.1 ( ; 0 J s)ds. Note that 1/J(O) 1/1 (1) 

v 
n 

i 
n 

Jl iL 
n 

-1 
J(s)ds F (U. ) 

i:n 

O. Now we can write 



n 

l 
i=l 

1 

f ljJ(fn(s))d F-1 (s) 

0 

-1 
+ en 

-1 
+ en 

n 
l F-l(U. ) 

i:n 
i=l 

-1 
+ en 
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where the last inequality holds with probability 1. We use the fact that, 

almost surely, none of the rv's u1,u2, ••• take values in the discontinuity 

set of F-l. 

To proceed we note that, as J is Lipschitz·of order 1 on (0,1) (cf. 

assumption 3.1.2), we can approximate Vn from above and below by 

(3.2.12) 

and 

(3.2.13) 

w 
n+ 

w n-

1 

f {lji(s) + (fn(s)-s)lji'(s)}d F-1 (s) 

0 

1 

2 -1 
(f (s) - s) d F (s) 

n 

f {ljJ(s) + (fn(s) -s)ljJ'(s)}d F-1 (s) 

0 

1 

f 
2 -1 

- K (r n (s) - s) d F (s) 

0 

for some fixed K > 0 and all n ~ 1; i.e. for all n ~ 

(3 .2.14) 

It will be convenient to have 

-1 
+ en 

-1 
+en 

i=l 

2+e: 
LEMMA 3.2.2. Let Eix1 1 < oo for some e: > 0 and suppose that assumption 

3.1.2 is satisfied. Then cr 2 (J,F) > 0 implies that as n + oo 

(3.2.15) 
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and 

(3.2.16) 
<r (W ) 

n-
cr (V ) 

n 

PROOF. It is immediate from (3.2.11), (3.2.12) and assumption 3.1.2 that 

1 

(3. 2.17) Iv -w+I =O<f (r (s)-s) 2dF-1 (s)) n n n 
0 

as n + "'. Application of lemma 2 '. 2. 2 (with p 

ly) implies that 

(3.2.18) 

and 

(3.2.19) 

Elv - w I n n+ 

2 cr (V 
n 

- W ) s; E(V - W >2 
n+ n n+ 

2 and l 1 and 2 respective-· 

2 as n + "'· As in the proof of lemma 3.2.1 we also have that limn+= ncr (Vn) = 
cr 2 (J,F) > 0 under the present assumptions (cf. STIGLER (1974)). The Cauchy

Schwarz inequality implies that lcr(Wn+) - cr(Vn) f s; cr(Wn+·-Vn) and (3.2.15) 

follows. The proof of (3.2.16) is similar. 0 

In the following lemma we relate Wn+ and Wn- to appropriate U-stati-

stics U and U Define, for each n ~ 1 n+ n-

n 
(3.2.20) u n+ l 

i=l 

and 

n i-1 
(3.2.21) u 

n- l 
i=l 

l 
j=l 

h (U. ,U.) 
- J. J 

where the functions h+ and h are given by 

(3.2.22) 

and 



(3.2.23) 

for 0 < u,v < 1, with (cf. (2.2.14)) 

(3.2.24) 

and 

(3.2.25) 

1 

f 
-1 

- J(s) <x(O,s](u) -s)d F (s) 

0 

h 2 (u,v) = +2K 
,K 

1 

f 
-1 

(x(O,s](u) -s) (x(O,s](v) - s)d F (s) 

0 

for 0 < u,v < 1 and K as in (3.2.12) and (3.2.13). 

LEMMA 3.2.3. Let Ex~ < oo and suppose that assumption 3.1.2 is satisfied. 

2 
Then a (J ,F) > 0 implies tllat as n + 00 

(3.2.26) 2 * * 2 a (W - U ) = 0(n- ) 
n+ n+ 

and 

(3.2.27) 2 * * a (W U ) 
n- n-

PROOF. We first prove (3.2.26). In view of (3.2.10) and (3.2.12) we can 

rewrite W as 
n+ 

(3.2.28) w 
n+ 

1 1 

f 
-1 

ijJ(s)d F (s) - f -1 
J(s)(fn(s)-s)dF (s) 

0 0 

1 

f -1 
+ c (f n (s) - s) d F (s) 

0 

1 

+ K f 
0 

(f (s) - s) 2d F-l (s) 
n 

-1 
+ en 

Because of the definition of r (cf. (2.1.1)) we have 
n 

(3.2.29) 

1 

f (fn(s) -s)d F-1 (s) = n-l 

0 

f 

n 
\ 
l 

i=l 

[U., 1) 
l 

-1 
(-s)d F (s) + 

-1 
(1-s)d F (s)) 

39 
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Now integration by parts, the finiteness of E(x11 and the fact that, al

most surely, none of the rv's u1,u2 , •.. take values corresponding to the 
-1 

discontinuities of F , shows that 

1 1 

(3.2.30) f (r n (s) - s) d F -l (s) = -n -l 

0 
+ f -1 

F (s)ds 

0 

holds with probability 1. Thus (cf. (3.2.24) and (3.2.25)) 

(3.2.31) w - Ew 
n+ n+ 

-1 
n 

-1 -2 
+2 n 

1 
n n -1 f l l h 2 K(U,,U,) - Kn 

i=l j=l , i ·J 
0 

-1 
s(l-s)d F (s) 

with probability 1. In view of this, (3.2.20) - (3.2.25), we easily check 

that 

(3.2.32) 

Thus 

(3.2.33) 

-2 
- n 

-2 
- Kn 

n 

l 
i=l 

1 

+ Kn-1 J s(l-s)d F-1 (s) 

0 

1 

2 2 -2 ~ J + 2K cr (n l 

i=l 0 

2cr2 (n-2 

1 

2n-3cr 2 (J,F) + 2n-3K2cr 2 cf 
0 

Define Has in (2.2.7). Then 

1 

(3.3.34) cr2(J 

0 

2 -1 
Cx(O,s] cu1> - s) d F (s) l < 00 
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because of lemma 2.2.3.a. This proves that 

as n + oo 

2 2 
As it is easily verified that limn+oo ncr (Wn+) cr (J,F) > 0 we have, in 

view of lemma 2.1.1, proved (3.2.26). The proof of (3.2.27) is similar. 0 

In the fourth and final lemma of this section we establish Berry

Esseen bounds for u* and u* 
n+ n-

3 
LEMMA 3.2.4. Let flx1 1 < 00 and suppose that J is bounded on (0,1). Then 

2 
cr (J,F) > 0 implies that as n + oo 

(3.2.35) 

and 

(3.2.36) 

suplP({u* s x}) - ~(x) I 
n+ 

x 

suplP<{u* s x}) - ~(x) I 
n-

x 

PROOF. It follows from lemma 2.2.3.b that (cf. (3.2.22)) 

(3.2.37) 

with probability 1. Also note that fh~(u1 J = cr 2 (J,F) > O_(cf. (2.2.13)) so 

that we find that the conditional expectation (3.2.37) has a positive var

iance. Moreover lemma 2.2.3(a) yields 

< 00 

and therefore· 

The conditions of the Berry-Esseen theorem of u-statistics (CALLAERT & 

JANSSEN (1978)) are therefore satisfied and-(3.2.35) follows. The proof of 

(3.2.36) is similar. 0 



42 

We are now in a position to prove theorem 3.1.1. In the first place we use 

lemma 3.2.1 and Chebychev's inequality to find that 

(3.2.38) as n -+ 00 

Using this we see that 

(3.2.39) * Fn(x) = P({T* ::;; x}) 
n 

P({T* ::;; X A IT* - v*I < n-!}) 
n n n 

+ p ({T* ::;; X A IT* - v*1 ~ n-! }) 
n n n 

::;; P({v* 
n 

::;; x + n -!}) + P({IT* 
n 

- v*I ~ n-l}) 
n 

as n -+ 00 

uniformly in x. A similar argument yields the opposite inequality 

(3.2.40) * Fn(x) as n -+ 00 

uniformly in x. Secondly we remark that, because of (3.2.14), 

(3.2.41) 

and similarly 

(3.2.42) 

for - 00 < x < 00 and n ~ 1. This, together with lemma 3.2.2 yields that 

(3.2.43) * _! * P({V ::;; x + n 2 }) ::;; P({W ::;; Xn+}) 
n n-

and 

(3.2.44) 

for appropriate sequences xn+' n = 1,2, .•• and xn-' n = 1,2, ••• satisfying 



(3.2.45) 

as n + "'· We can now simply repeat the argument leading to (3.2.39) and 

(3.2.40), using lemma 3.2.3 and Chebychev's inequality, to find that 

2 2 

(3.2.46) P({W* xn+}) P({U* 
-3 

+ 0(;3) 
$ $ $ x + n }) 

n- n- n+ 

and 
2 2 

(3.2.47) P({W* }) <: P({U* 
-3 

+ 0(;3) 
$ x $ x - n }) 

n+ n- n+ n-

as n + "'• uniformly in x. Combining all these inequalities we obtain that 

2 1 

(3.2.48) P({T* :5 x}) :5 P({U* :5 x + n- 3}) + 0(n 2) 
n n- n+ 

and 
2 1 

(3.2.49) P({T* :5 x}) <: P({U* :5 x - n- 3}) + O(n 2i 
n n+ n-

as n + "'• uniformly in x. Applying now lemma 3.2.4 we see that the first 

terms on the right of (3.2.48) and (3.2.49) are equal to ~(x + n-2/ 3) + 
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I n+ 

O(n- ) and ~(x + n-2/ 3) + O(n-1) respectively for n + "'• uniformly in x. 

- I 
As these two terms are easily seen to be equal to ~(x) + O(n- ), as n + "', 

uniformly in x, the proof of the theorem is complete. 

3.3. PROOF OF THEOREM 3.1.2. 

To start with we remark that for each n <: and real x 

(3. 3 .1) G (x) = F* (xcrn -lcr -l (T ) + (µ - f (T ) ) cr -l (T ) ) 
n n n n n 

2 2 
withµ= µ(J,F) and cr = cr (J,F) as in (3.1.5) and (2.2.12). Using this 

identity and applying theorem 3.1.1 we find 

(3. 3 .2) 
_l -1 1 I 

sup I G (x) - ~(xcrn 2 0 (T) + (µ-f(T ))cr- (T lll = O(n- 2 ) 

n n n n 
x 

as n +"' 
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To proceed we shall need asymptotic approximations for crn-!cr-1 (T) and 
n 

(µ-f(T ))cr-l(T ). 
n n 

2+£ 
LEMMA 3.3.1. Let Eix1 ! < oo for some£> 0 and suppose that the assump-

tions 3.1.1 and 3.1.2 are satisfied. Then cr 2 (J,F) > 0 implies that as n + 00 

(3. 3. 3) 

and 

_l -1 
lcrn 2 cr (T) -11 

n 

_l 
0(n 2 ) 

(3.3.4) 
-1 _! 

j(µ-E(T ))cr (T )j = 0(n 2 ). 
n n 

PROOF. We first prove (3.3.3). 

3.2.1 (cf. (3.2.9)) that cr 2 (T 

It was already shown 

- V ) = O(n-512) and n . 2 n 
cr (J,F) > 0 holds for n+oo. Also note that, in view 

O(n-2) as n + oo. Hence 

(3.3.5) cr 2 (T ) 
n 

cr 2 (w ) + 0(cr(T )cr(T - w )) 
n+ n n n+ 

in the proof of lemma 

lim ncr 2 (v ) = 
n+oo n 2 

of (3.2.19), cr (Vn-wn+) 

3 

cr 2 (w ) + O(n- 2), 
n+ 

as n + 00 

This and a simple computation using (3.2.31) and lemma 2.2.3 yields 

3 

(3.3.6) 
2 -1 2 -2 

cr (T ) = n cr (J,F) + 0(n ) 
n 

as n -+ 00 

and a simple Taylor expansion argument completes the proof of (3.3.3). To 

prove (3.3.4) we first use assumption 3.1.1 and (3.2.18) to see that 

(3. 3. 7) ET 
n 

This and relation (3.2.28) gives 

1 

as n -+ 00 

(3. 3 .8) f -1 
ETn ~(s)d F (s) + cEx1 + (r (s) -s) 2d F-1 (s))) 

n 

as n -+ 00 

Applying lemma 2.2.2 (with p = 2 and l = 1) to the third term on the right 

and integration by parts (cf. (3.2.10)) to the first term on the right of 
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(3.3.8) yields 

as n -+ 00 , 

withµ= µ(J,F) as in (3.1.5). This combined with (3.3.3) proves (3.3.4). D 

To complete the proof of theorem 3.1.2 we use (3.3.3), and (3.J.4) and 

apply a simple Taylor argument to find that 

as n-+ 00 , uniformly in x. This combined with (3.3.2) completes the proof of 

theorem 3.1.2. 

3.4. PROOF OF THEOREM 3.1.3. 

To prove theorem 3.1.3 we first need two lemma's. To start with we 

2 
remark that sn (cf. (3.1.8)) can also be written as 

1 1 

(3.4.1) s 2 =I I J(r (s))J(r (t)) (r (s) "r (t) - r (s)r (t))dF-1 (s)dF-1 (t) 

n n n n n n n 

0 0 

Using this and (2.2.12) arrive at the following decomposition of 
2 

we 
s : 

n 

1 1 

(3.4.2) 
2 2 

+ I I (J(r (s))J(r (t)J - J(s)J(t)) • 
s cr 

n n n 
0 0 

crn(s) " r Ctl n 
- f (s)f (t))d F-l(s)d F-l(t) + 

n n 

1 1 

+ f I J(s)J{t) crn(s)" r Ct> 
n 

- r Cs>r (t) 
n n 

- s A t + st) • 

0 0 

•d F-l(s)d F-l(t) 2 + y + R cr n n 

where 

(3.4.3) y 
n Ynl + Yn2 
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with 

(3.4.4) 

and 

(3 .4. 5) 

The functions g 1 

(3 .4 .6) 

and 

(3.4.7) 

-1 
n 

-1 
n 

and g 2 are given by 

1 

f f (1) . -1 -1 
2 J (s)J(t)(X(O,s](u)-s)(sAt-st.ldF (s)dF· (t) 

0 0 

1 t 

2 ff J(s)J(t){(x(O,s](u) -s) (1-t) - (X(o,tJ(u) -t)s}-

0 0 

-1 -1 
•d F (s)d F (t) 

for 0 < u < 1. Finally 

(3.4.8) 

where 

(3.4.9) 

(3.4.10) 

and 

1 1 

f f {J(f (s))J(f (t)) - J(s)J(t) -
n n 

0 0 

- J(l) (s)J(t) (r (s) - s) - J(s)J(l) (t) (r (t) - t) }• 
n n 

•{s At - st}d F-l (s) d F-l (t) 

1 1 

f f (J(f (s))J(f (t)) - J(s)J(t)) • 
n n 

0 0 

·<r (s) Ar (t) - r (slr (t) - sAt+st)d F-1 (s)d F-1 (t) 
n n n n 



(3.4.11) R == 
n3 

1 

-(f 
-1 2 

J(s)(fn(s)-s)dF (s)) 

0 

Note that the first double integral on the right of (3.4.2) is equal to 
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Ynl + Rnl + Rn2 and that the second double integral on the right of (3.4.2) 

is precisely Yn2 + Rn3 • 

• El 12+e: 
LEMMA 3.4.1. Let x1 < oo for some e: > 0 and suppose that assumption 

. 2 
3.1.3 is satisfied. Then a (J,F) > 0 implies that 

(3.4.12) 

except on a set with probability 0(n-ll as n + oo. 

PROOF. The proof will consist of two parts. In the first place we shall 

prove that 

(3.4.13) 

(cf. (3.4.9}} except on a set with probability 0(n-l} as n + 00 • To prove 

this it will be no loss of generality to assume that J(l) does not exist 

at only one point, says== u 1• By the Markov inequality it clearly suffices 

to show that 

3 

(3.4.14} Ocn- 2 Clnn>-2 l, as n + 00 

Let, for each n ~ 1, An be the random set 

(3.4.15) A 
n 

with rn as in (2.1 .1). The complement of An in (0,1} will be denoted by A~. 

We begin by remarking that the first factor (within curly brackets) in the 

integrand of (3.4.9} is in absolute value 

l+a 

(i} Ocir Cs>-sl + lr Ct> -tl 2> when s E An' t € Ac 

n n n 

(ii} 

l+a2 
+ lr Ct>-tl> Ac 

0(ir Cs>-sl when s E t € A 
n n n' n 

(iii) O c I r c s > - s I + I r c t> - t I > when s,t E A 
n n n 
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(iv) 
l+a2 l+a 

0(1r (sl -sl + lr (tl -tl 2 J when s,t E Ac 
n n n 

where the order symbol is uniform with respect to the values of s and t 

considered in each case. A further simplifying remark is that the second 

factor (within curly brackets) is the integrand of (3.4.9) can be bounded 
l l 

above by (s(l-s)) 2 (t(l-t)) 2 for all 0 < s,t < 1. Also note that 

1 ! -1 
! 0 (s{l-s)) 2 d F (s) < oo by lemma 2.2.1 and the moment condition of the 

lemma. Combining the above considerations we can easily verify that to prove 

(3.4.14) it suffices to show that 

3 

(3.4.16) E< J 
-1 2 

lr (s) -sld F (s)) 
n 

-2 -2 
0(n (lnn) ) 

and 

(3.4.17) 

A 
n 

holds as n + 00 • 

l+a2 1 2 
\r (s)-s\ dF- (s)) 

n 

3 
-2 -2 

0(n (inn) ) 

It is convenient to introduce at this point the well-known Kolmogorov

Smirnov statistic 

(3.4.18) D 
n 

sup lr (s) - s\ 
O<s<l n 

It was shown by DVORETSKY, KIEFER & WOLFOWITZ (1956) that 

(3 .4.19) 
2 

P({D <! A}) :S c exp(-2A ) 
n 

for all n ~ 1, A ~ 0 and a positive constant c independent of n and A. This 

obviously implies that 

(3.4.20) EDm 
J n 

p ({D 
n 

<! xm})dx 

0 

2 

:S c J exp(-2xm)dx 0 (1), 

0 

for any fixed m > 0. Hence we obtain that 

(3 .4. 21) 

m 

E( sup lr (s) -sllm = O(n- 2), 
O<s<l n 

as n -+ 00 

as n -+ 00 • 



Let U0 be the neighbourhood of the point u1 on which F-l satisfies a Lip

schitz condition: 

(3.4.22) U 0 = { s: Is - u1 I < o, 0 < s < 1} 

c 
Let U0 denote the complement of u0 in (0,1). To treat the expectation in 

(3.4.16) we remark that 

(3.4.23) rcJ -1 2 2f( I -1 2 
lr (s) - sid F (s)) ~ I r (s) - s Id F (s)) + 

n n 

A Annu0 
n 

2f( J 
-1 2 

lr (s) -sld F (s)) 
n 

c 
Annu0 

The first expectation on the right of (3.4.23) is bounded above by 
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E 2+2a3 -1-a3 
(supO<s<llrn(s) -sll , which is O(n ) for n+"', in view of (3.4.21). 

If X denotes the indicator of the set {sup lr (s) - sl > o} we see 

n O<s<l n 

that the second integral on the right of (3.4.23) is bounded above by 

X •!0
1 lr (s) -sld F-1 (s). Using this and the Cauchy-Schwarz inequality we 

n n 
find that 

(3.4.24) f( I -1 2 
lr (s) -sld F (s)) 

n 

1 

~ (P({xn = l}))!•<E<J lrn(s) -sld F-1 (s)) 4)!. 

0 

Application of (3.4.19) with A = on! and lemma 2.2.2 yields that the second 

0 -1 2 
expectation on the right of (3.4.23) is (n exp(-25 n)) for n +"'·This 

completes the proof of (3.4.16). To establish (3.4.17) we replace the set 

Ac by (0,1) and we apply lemma 2.2.2 once more to find that this expecta-

n -1-a 
tion is O(n 2) as n + "'· This proves (3.4.17) and the first part of the 

proof is complete. 

Next we shall prove that 

(3.4.25) 
-! -1 

I R • I = 0 (n (i.nn) ) 
ni 

for i 2,3, 

_! 

(cf. (3.4.10), (3.4.11)) except on set with probability O(n 2 ) as n +"'·We 

first prove (3.4.25) for i = 2. As J is Lipschitz of order 1 on (0,1) we 
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clearly have 

(3.4.26) JJ(r (s))J(r (t)) -J(s)J(tll =0(Jr (sl-sl + Jr Ctl-tl> n n n n 

as n + oo, uniformly for all 0 < s,t < 1. Also note that we may restrict, 

for reasons of symmetry, integration in (3.4.10) to O < s $ t $ 1 and then 

(3.4.27) r Csl A r (tl - r (sl r (tl - s A t + st = n n n n 

Now (3.4.26) and (3.4.27) together ensures that it suffices to prove (in

stead of (3.4.25) for i = 2) 

1 t 

(3.4.28) f f {Jr (sl -sl + Jr etl -tJ}. n n 
0 0 

·{I er esl - sl Cl-tl - er esl - sl er Ctl - tl -n n n 

-1 -1 -i -1 - er (t)-t)sJ}dF (s)dF etl =Oen (.lnn) ) 
n 

except on a set with probability 0(n-i) as n + 00 • Because the integrand in 
2 

e3.4.28) can be bounded by 4Jr (s) -sJlr (t) -tl +er esl -s) (1-t) + 

er etl - t) 2s, it is easily inf:rred fromn the moment c:ndition of the lemma 
n 

and two applications of integration by parts that the left-hand side of 

(3.4.28) is of order 

(3.4.29) 

1 

occf 
0 

! 

+ f 
0 

1 

+ I 

-1 2 lr (s) -sld F (s)) 
n 

as n + oo 

Application of lemma 2.2.2 (with l = 1, p = 2+2c) yields that the (l+c)th 
-1-£ absolute moment of the first term in (3.4.29) is 0(n ), so that, using 
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Markov's inequality for (1 + E)th absolute moments, this term is of order 

_l -1 _l_E/2 l+E 

O(n 2 (inn) ) , except on a set with probability 0(n 2 (inn) ) as 

n + 00 • To treat the second term in (3.4.29) we first note that, because of 

the moment assumption of the lemma, this term can also be written as 

c f~ s -l+E/ (4+ 2E) (r (s) - s) 2d K(s) where 

n -1 l -1 
K is the df on (O,!l determined by 

the equation dK(s) = c s 2 d F (s) for 0 < s < ! with c 
l l -1 
f~s 2dF (s). 

Using this, Jensen's inequality, Fubini's theorem and the fact that 

we know from (2.2.5) that 

(3.4.30) 

2+£ 

Elr (s) -sl 4 
n 

-1-£ 
8 

0(n s(l-s)) 

as n + 00 , uniformly in 0 < s < 1, we obtain 

(3.4.31) 

! 

-1+--E__ 2 1 + ~ 
s C4+ 2E:) (r (s) - s) dK(s)) 

n 

-1+--8-- 1 + £ 
{s (4+ 2E) (r (s) - s) 2} 8 dK(s) 

n 

-1-£ 2 +£ 

f 
8 4 

~ s Elrn(s) -sl dK(s) 

0 

E 

/-s d F-l(s)), as n + 00 • 

Using now the moment condition of the lemma (taking E < 1) we can apply 

E -1 E 

lemma 2.2.1 (with i = C! - 9l ) to find that the (1 + 3lth absolute moment 

0 -1-E:/8 
of the second term in (3.4.29) is (n ) , so that, applying Markov's 

E 
_l -1 

inequality for (1 + 9lth absolute moments, this term is 0(n 2 (inn) ) , ex-

-1-E/16 l+E:/8 
cept on a set with probability 0(n 2 (inn) ) as n + 00 • The third 

term in (3.4.29) can be treated likewise, and the proof of (3.4.28) and 

hence of (3.4.25) for the case i = 2 is now complete. Because 1Rn3 1 (cf. 

(3.4.11)) is almost identical with the first term in (3.4.29) we have also 

proved (3.4.25) for the case i = 3. In view of (3.4.8) the proof of the 

lemma is now complete. D 
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In the second lemma of this section we convert (3.4.2) into a stocha
-1 

stic expansion for crsn 

4+E 
LEMMA 3.4.2. Let Elx1 1 < oo for some E > 0. Suppose that J is continuous 

on (0,1), differentiable except possibly at a finite number of points, and 

that J(l) is bounded on the open intervals where it exists. The inverse F-l 

puts mass zero at the points where J(l) remains undefined. Then cr 2 (J,F) > 0 

implies that 

(3.4.32) 
_l -1 

0 (n 2 (inn) ) 

I 

except on a set with probability O(n- 2 ) as n + oo. In addition we have that 

(3.4.33) 

_! 
also except on a set with probability 0(n 2 ) as n + oo. 

PROOF. In view of (3.4.12) we may rewrite (3.4.2) as 

(3.4.34) 
2 -2 

s a 
n 

_l _l 
except on a set with probability 0(n 2 ) as n + 00 • Since (l+x) 2 

0(x2) for x + 0 this implies (3.4.32) provided we can show that 

(3.4.35) 2 -~ -1 
Y = 0(n (inn) ) 

n 

-1 
1 - 2 x + 

_l 
except on a set with probability O(n 2 ) as n + oo. To see this we first note 

that the function g 1 (cf. (3.4.6)) is bounded on (0,1). In second place we 

remark that a simple computation using the conditions of the lemma and apply

ing integration by parts yields that 

(3.4.36) 
-1 2 

:<; Al (1 + (F (u) ) ) 

for 0 < u < 1 and some constant A1 > 0. Using this and the Marcinkievitz 

Zygmund, Chung inequality (cf. (2.2.4)) we obtain 

(3.4.37) 
2+£ 

EIY I 2 :<; 
n 
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where the constant A2 > 0 depends only on A1 and E. Together with the mom

ent assumption of the lemma this ensures that EIY 12+E/2 = O(n-l-e/4) as 
2 _1 n -1 

n + oo, so that by Markov's inequality Y = O(n 2 (lnn) ), except on a set 

with probability 0(n-l-e/S(lnnJ 1+E/4) a: n + oo. This proves (3.4.35) and 

hence (3.4.32). Obviously (3.4.33) is a consequence of (3.4.32) and the 

fact that P({IY I > d}) = O(n-l-e/4 ) for any fixed d > 0 and n + 00 • This 
n 

completes the proof of the lemma. D 

we are now in a position to prove theorem 3.1.3. To begin with we note 

that in the proof of theorem 3.1.1 two types of arguments occur. The df of 

T* is approximated by that of v* by showing that P({IT* - v*I ~ n-!}) = 

n ! n n n 

O(n- ) and the same reasoning is involved later in the transition from Wn+ 

(or W ) to U + (or U ) . In view of (3.4.33) this type of argument remains 
n- n n-

* * * * cr 
valid if we multiply T , V , w +' and U + by~. The second type of argu-

n n ru: n- sn 

ment is based on the inequality Wn- ~ Vn ~ Wn+ which leads to (3.2.43) and 

(3.2.44). We can duplicate this part of the proof also to show that 

(3.4.38) 

and 

(3.4.39) 

* -1 -! * -1 -! 
P({V crs ~ x + n }) ~ P({W crs ~ x }) + O(n ) 

n n n- n n+ 

* -1 P ({V crs 
n n 

as n + 00 , with xn±' n = 1,2, ••. as in (3.2.45). Together-all this leads to 

(3.4.40) 

c;tnd 

(3.4.41) 

~ P({u* crs-1 
n- n 

2 

~ x + ; 3}J + O(n-!l 
n+ 

2 

P({u*+crs-1 ~ x + n- 3}) + 0(n-!) 
n n n-

as n + 00 , uniformly in x. As an example of the computations involved we 

prove 

(3.4.42) P({v*crs -l 
n n 

_! 

~ x }) + 0(n 2 ) 
n+ 

as n + 00 , for sequences xn+' n = 1,2, •.• satisfying (3.2.45). Using (3.2.41) 

and (3.4.33) and lemma 3.2.2 we see that 
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P ({v*os -1 I 

(3.4.43) $ x + n -2}) $ 
n n 

* -1 
o(W ) 

-1 
f(W -v ) _! n- n- n n 2}) $ P ( {W OS ---+ OS 

o(V ) 
$ x + n- n o(V ) n n n 

* 
O(W ) f(W -v-) I -1 -1 -1 p ({W n- n- n n-2 2}) OS ---+ Os $ x + n OS $ + n- n o(V ) n o(V ) n n n 

P({w* os-1 
o(W i -1 

E (W -v ) I -1 n-+ ---+ OS n- n o(V ) n 
n 

* -1 _l 
$ P ( {W OS $ { (x + n 2 ) 

n- n 

+ P({os -l > 2}) 
n 

* -1 P ( {W OS 
n- n 

uniformly in x. This proves (3.4.42). 

+ 

Starting with (3.4.40), (3.4.41) we 
* -1 bound for Tnosn by establishing one for 

2 

(3.4.32), lemma 3.2.4 and Mill's ratio we 

(3.4.44) 

n- n n-2 n 2}) $ x + OS > o(V ) n n 
I E (W -v l I o(V ) 

n- n 
a (W n) }) a (V ) } + 

n n-

as n + 00 

begin by proving a Berry-Esseen 

LJ* os-l and u* os 1 . In view of n+ n n- n 
find that 

as n + 00 

* -1 u* -1 -2 Thus instead of Un±osn we may consider n± (1 - 2 o Yn)' which can be 

written as 

(3.4.45) 
n i-1 
l l h 2 K(U.,U.)}• 

i=l j=l I l J 

$ 

where g is the sum of g1 and g2 (see (3.4.6) and (3.4.7)). It is clear from 
-1 the proofs of the lemma's 2.2.3 and 3.4.2 that h 1 (u) = O(IF (u) ll and g(u) = 

0(1F-1 (u) 12) for u + 0 and 1. Also note that (cf. the remark preceding lemma 
-1 3.2.3) that 2K•H(u) majorizes h21 K(u,v) and that H(u) = 0( IF (u) I) for 

u + 0 and 1. Using all this together with Eh 1 (u 1J = Eg(U 1) = 0 and 

Eh2,K(Ul,U2) 0 and exploiting the independence present, we arrive at 

(3.4.46) 2 -3 n i-1 n 
0 (n-3 ) o (n l l l h2,K(Ui,Uj)g(Uk)) 

i=l j=l k=l 



55 

assuming a finite fourth moment of F, and 

-2 
n 

0(n-1J (3.4.47) E(n l h 1 (Ui)g(Ui.)) 
i=l 

and 

2 -2 
n -3 

(3.4.48) o (n l hl (Ui)g(Ui)) 0(n ) , as n -+ 00 

i=l 

where we have to assume the sixth moment assumption of the theorem for 

(3.4.48) to hold. Combining these results with an application of Chebychev's 

inequality we find that the terms in (3.4.45) corresponding.to the sums con-
_l 

sidered in (3.4.46), (3.4.47) and (3.4.48) are 0(n 2 ) except on a set with 

_! 

probability 0(n 2 ) as n-+ ""· 
* -1 

To conclude our proof of a Berry-Esseen bound for Un±osn we have to 

consider the rv's 

(3.4.49) 

n i-1 
l l (h; ( U.) g (U.) + hl (U.) g (U. ) ) } . 

i=l j=l l. J J l. 

-2 -2 
- o n 

-1 
Upon multiplication with a harmless factor 1 + 0(n ), because of the non-

exact standardization in (3.4.49), these rv's are U-statistics with kernels 

(3.4.50) 
-2 -1 

h 1 (u) + h 1 (v) ± h 21 K(u,v) - 2o n(n-1) (h1 (u)g(v) + h 1 (v)g(u)) 

for 0 < u,v < 1, to which the Berry-Esseen theorem for U-statistics 

(CALLAERT & JANSSEN (1978)) can be applied. We argue as in the proof of 

lemma 3.2.4 to validate this application of the Callaert-Janssen result. 

Note again that the sixth moment assumption of the theorem is needed to en

sure a finite third absolute moment of h 1 (U1Jg(U 2J. Hence a Berry-Esseen 

* -1 
bound for U +os follows, and this obviously implies a Berry Esseen bound 

* _1n_ n 
for T OS 

n n 
To conclude our proof of theorem 3.1.3 let us note that 

(3.4.51) 
! 

n 2 (T -µ)/s 
n n 

* -1 l 
{T o n 2 o (T ) 

n n 

Combining now the argument leading to the proof of theorem 3.1.2 (cf. lemma 
-1 

3.3.1 and the remark made after it) with the bound for osn given in 
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(3.4.33) we can complete our proof of theorem 3.1.3. 

3.5. A REFINEMENT 

Going through the proof of theorem 3.1.3 we see that the sixth moment 

condition is really needed at only two points in the proof. First we need 

the sixth moment condition in (3.4.48). However, application of an inequal
th ity of VON BAHR & ESSEEN (1965) for the p absolute moments of sums of 

i.i.d. rv's (1 s p s 2) (see also PETROV (1975), page 60) shows (we take 
3 

p = 2) that the term considered in (3.4.48) is of sufficiently small order 

of magnitude, whenever the finiteness of a 4.5th absolute moment is assumed. 

The second place in the proof we need to reconsider is the application 

of the Berry-Esseen theorem of CALLAERT & JANSSEN (1978) to the U-statistic 

with kernel (3.4.50). In HELMERS & VAN ZWET ("1982) the conditions needed in 

the Callaert-Janssen result are relaxed. Application of this stronger re

sult shows that only a fourth moment of F is needed to establish a Berry

Esseen bound for the U-statistic with kernel (3.4.50}. Hence theorem 3.1.3 
th remains valid when the sixth moment assumption is replaced by a 4.5 ab-

solute moment for the underlying df F. 



CHAPTER 4 

EDGEWORTH EXPANSIONS FOR LINEAR COMBINATIONS OF 

ORDER STATISTICS WITH SMOOTH WEIGHT FUNCTIONS 

4.1. INTRODUCTION AND MAIN RESULTS 
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In the previous chapter we have obtained Berry-Esseen bounds of order 

_l 
n 2 for the accuracy of the normal approximation for linear combinations of 

order statistics. In this chapter we investigate higher order approximations 

to the df's of these statistics. We shall establish Edgeworth expansions for 
-1 

linear combinations of order statistics with remainder O(n ) in the case of 

smooth weights. These have been derived in HELMERS (1980); the present chap

ter contains the results of this paper. 

Let x1,x2 , ••• be a sequence of i.i.d rv's with common df F and let us 

consider statistics of the form 

(4.1.1) T 
n 

-1 
n 

n 

l cinxi:n 
i=l 

(cf. (1.2.4), (3.1.1)), where xi:n (1 :> i :> n) denotes the ith order stat

istic of x1, ••• ,xn and the cin' i = 1,2, ••• ,n, n = 1,2, ••. are real numbers. 

Let, furthermore, J 1 and J 2 be real-valued bounded measurable functions on 

(0,1). We begin by listing the assumptions needed to prove the main results 

of this chapter. We recall that llhll = sup0 1 !h(s) I for any function h de-
<s< 

fined on (0, 1). 

3 
ASSUMPTION 4.1.1. There exists a number y > 2 such that as n + 00 

ASSUMPTION 4.1.2. 

i 
n 

lcin - n J J 1 (s)ds -

i-1 
n 

i 
n 

J J 2 Cs)dsl 

i-1 
n 

(i) The function J 1 is twice differentiable on (0,1) with first and second 

bounded derivative J(l) and J( 2) on (0,1). The function J 2 is bounded 
1 1 
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on (0,1). 

(ii) The functions Ji 2) and J 2 satisfy Lipschitz conditions of order a 1 > 0 

and a 2 > 0 respectively on (0,1). 

ASSUMPTION 4.1.3. There exists numbers 0 s t 1 < t 2 s 1 such that 

J 1 (s) > 0 

-1 -1 and such that on (F (t1J, F (t2JJ Fis twice differentiable with positive 

density f and bounded second derivative f'. 

Before we formulate the first main result of this chapter let us intro

duce some more notation. Introduce functions h 1 , h 2 and h3 (cf. (2.2.6), 

(2.2.14)) by 

1 

(4.1.2) f -1 
- J 1 (s) <x(O,s](u) - s)d F (s) 

0 

1 

(4.1.3) - f ( 1) -1 
J 1 (s) <x(O,s](u) -s) <x(O,s](v) -s)d F (s) 

0 

1 

(4.1.4) h3 (u,v,w) - f 
(2) 

Jl (sJ<xco,sJ(uJ-sJCx(O,sJ(vJ-sl• 

0 
-1 

• <x(O,s](w) - s)d F (s) 

for 0 < u,v,w < 1. Furthermore define, for each n ~ 1 and real x, the func

tion Fn by 

(4.1.5) F (x) 
n 

4>(x) - 2 K4 (x3 - 3x) 
(x - l) + 24n + 

5 3 } (x - lOx + 15x) 

where 4> and ~ are the df and density of the standard normal distribution. 

The quantities K3 = K3 (J 1,FJ and K4 = K4 (J1 ,FJ are given by 



(4.1.6) K3 

and 

(4.1.7) K4 

1 

K3(Jl,F) [ f 3 
3 

h 1 (u) du + 
a (J 1 ,F) 0 

1 

+ 3f f h 1 (u)h1 (v)h2 (u,v)dudv] 

0 0 

1 

K4(Jl,F) 
r f 

4 
4 L 

h 1 (u) du 
a (J 1 ,F) 0 

1 

4 
- 3a (J l , F) + 1 2 

f f 
0 0 

1 1 

+ff f (4h 1 (u)h1 (v)h1 (w)h3 (u,v,w) + 

0 0 0 

where (cf. (2.2.13)) 

(4.1.8) 
2 a 

1 

f h~(u)du 
0 
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In the first theorem of this chapter we establish an asymptotic expan

sion with remainder O(n- 1) for (cf. (3.1.2)) 

(4.1.9) 

where 

(4.1.10) 

* F (x) 
n 

P({T*:>x}), 
n 

T* = (T - E (T ) ) /a (T ) 
n n n n 

for the case of smooth weights. 

-oo < x < 00 

4 
THEOREM 4.1.1. Let Ex1 < 00 and suppose that the assumptions 4.1.1, 4.1.2 

and 4.1.3 are satisfied. Then, 
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(4.1.11) suplF*(x) - F (x) I 
n n 

-1 
0 (n ) I as n + "'· 

x 

Note that the expansion Fn does not depend on the function J 2 • This is 

due to the exact.standardization we have employed in theorem 4.1.1. 

The second theorem in this chapter is a modification of theorem 4.1.1 

which lends itself better to applications. Since a different standardization 

is used in this case, our expansion will not only depend on J 1 and F but 

also on J 2 • We shall establish an asymptotic expansion with remainder O(n-1) 

for the df (cf. (3.1.6)) 

(4.1.12) G (x) = P({n!(T - µ)/cr s x}) 
n n 

for - 00 < x <"'where (cf. (3.1.5)) 

1 

(4.1.13) 

and cr 2 

(4.1.14) 

f J 1 (s)F-1 (s)ds 

0 
2 a (J 1,F) as in (4.1.8). Introduce a function h4 by 

1 

h4 (u) = - f J 2 (s) <x(O,s](u) -s)d F-1 (s) 

0 

for 0 < u < 1. Furthermore quantities a 

given by 

(4.1.15) 

and 

(4.1.16) b 

1 1 

1 

--- [ 2-l f s(l-s)Jil) (s)d F-l (s) 
cr(Jl,F) 0 

1 

- f J 2 (s)F-1 (s)ds] 

0 

1 

~2~~- [ f Ch1 (u)h2 (u,u) + 2h1 (u)h4 (u))du + 
2cr (J1,F) O 

I I -1 2 ] + (2 h 2 (u,v) + h 1 (u)h3 (u,v,v))dudv 

0 0 

Finally define, for each n ~ 1 and real x, the function Gn by 
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(4.1.17) 

THEOREM 4.1.2. Suppose that the assumptions of theorem 4.1.1 are satisfied. 

Then, 

(4.1.18) suplG (x) - G (x) I 
n n 

-1 o (n ) , as n + 00 • 

x 

It is useful to coUUDent on these results. In the first place we remark 

that in spite of its unusual appearance assumption 4.1.1 covers a number of 

interesting situations, whenever assumption 4.1.2(i) is also satisfied. Four 

examples of the validity of these assumptions are provided by 

(4.1.19) 

(4.1.20) 

(4.1.21) 

and 

(4.1.22) 

i 
c. = J (-) 
in 1 n 

i 
n 

cin = n f J 1 (s)ds 

i-1 
n 

where J 1 is a function on (0,1) satisfying assumption 4.1.2(i). In each of 

these four cases it is easy to verify that assumption 4.1.1 holds with y = 2 

and 

(4.1.23) J2(s) <! - s)Ji1) (s) 

(4.1.24) J2(s) ! Jill (s) 

(4.1.25) J2(s) 0 

(4.1.26) J2(s) 
(1) (2) 

= n - s)Jl (s) + !s(l-s)Jl (s) 

respectively. The weights (4.1.19) were considered by CHERNOFF et al. (1967) 
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and STIGLER (1974). MOORE (1968) studied weights of the type (4.1.20) and 

BICKEL (1967) investigated weights of the form (4.1.21). The weights given 

in (4.1.22) do not seem to appear in the literature, but weights of this 

form are of course well-known in the theory of rank tests. 

We note that it is clear from the proof of theorem 4.1.1 (see (4.2.16)) 

that theorem 4.1.1 remains valid if we weaken assumption 4.1.1 slightly by 

requiring y > 1. On the other hand, to prove theorem 4.1.2 we need assump

tion 4.1.1 as stated. Since assumption 4.1.1 is satisfied in all of the 

above cases, we have preferred to formulate theorem 4.1.1 in its present 

form. 

In the second place we may remark that the assumptions . 4 .1 . 1 and 4 .1 . 2 

together put a rather restrictive smoothness requirement upon the weights. 

In particular the results of this chapter do not include trimmed means and 

the more general class of trimmed linear combinations of order statistics. 

For complementary results for these statistics the reader is referred to 

chapter 5. 

In the third place we note that assumption 4.1.3 is needed to ensure 

* sufficient smoothness of Fn and Gn' which is what Cramer's condition (C) 

(cf. (1.1.11)) does in the classical case of sums of independent rv's (cf. 

lemma 2.1.2; see also theorem 4.1 of VAN ZWET (1977)). Finally we require 

the finiteness of the fourth moment of the underlying df F. In view of 

Cramer's result for sums of i.i.d rv's (cf. theorem 1.1) this seems a 

natural condition. 

Next we give a few applications of theorem 4.1.2. First of all we have, 

of course, the sample mean ( cf. example 1. 2 .1) • As in this case J 1 ( s) = 1 , 

J 2 (s) = 0 the assumptions of theorem 4.1.2 concerning the weights are triv

ially satisfied, we obtain Cramer's result (cf. theorem 1.1) as a very spe

cial case under a slightly stronger smoothness condition for the df F. 

As a second application of theorem 4.1.2 we consider the L-estimator 

(cf. example 1.2.3) 

(4.1.27) T 
n 

-1 
= 6n 

n 
l: i c1 - -L)x 

i=l n+l n+l i:n 

in the case of the logistic distribution F(x) 
2 In this case J 1 (s) = 6s(1-s), J 2 (s) = 3(1-2s) , 

-x -1 
(1 + e ) for - 00 < x < oo. 

F-l (s) = ln (s ( 1-s) -l) and the 

conditions of theorem 4.1.2 are easily verified; we findµ= µ(J 1 ,Fl = 0, 
2 2 

a a (J1 ,FJ = 3 and after a number of computations 
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(4.1.28) 

2 

[ 1 3 ( 11-11 ) ] -1 
q,(x) - !p(x) 20n(x - 3x) + --n- x + O(n ) 

as n + 00 • As a third application we consider Gini's mean difference (exam-

ple 1.2.4) in the case of the uniform distribution F(x) 
-1 

We now have J 1 (s) = J 2 (s) == 4(s- ll, F (s) ==sand the 

rem 4.1.2 are again satisfied. We findµ== µ(J 1 ,Fl ==I' 

and after a number of computations 

(4.1.29) 

== x for 0 s x s 1 • 

conditions of theo-
2 2 . 1 

o o (J1,F) 45 

l 

[ -2•5 2 2 1 3 10 5 3 2 ] 
q, (x) - <I> (x) ~(x -1) + 28n (x -3x) + 441 n (x -10x +15x) +; x + 

-1 
+ O(n l, as n + 00 ; 

_l 

We note that there is no term of order n 2 in the expansion (4.1.28). 

This is due to the fact that in this case F is symmetric about its expecta

tion and the weight functions are both symmetric about!. In the expansion 

(4.1.29), on the other hand, there is a term of order n-l present because 

the weight functions are no longer symmetric. Recently CALLAERT, JANSSEN & 

VERAVERBEKE (1980) (see also JANSSEN (1978)) derived Edgeworth expansions 

for U-statistics. As Gini's mean difference in the case of an uniform dist

ribution is a U-statistic satisfying the conditions of their theorem the 

expansion (4.1.29) can also be obtained from their results. 

In section 4.2 we prove theorem 4.1.1. Theorem 4.1.2 is proved in sec

tion 4.3. Extensions are given in section 4.4, 

4.2. PROOF OF THEOREM 4.1.1. 

The purpose of this section is to provide a proof of theorem 4.1.1. 

Since our proofs will depend on characteristic function arguments let us 

* * denote by p (t) the ch.f. of T and by p (t) the Fourier-Stieltjes transform 

~ oo n itx ~ ~ n n 
p (t) = f e d F (x) of F (see (4.1.5)). 

n -oo n n 

We shall show that for some sufficiently small £ > 0 
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(4. 2 .1) I 
(4.2.2) I 

3 
£ 2 

n <It I <n 

and 

(4.2.3) I 
ltl>log(n+l) 

l'P (t) I ltl-1dt 
n 

-1 o (n ) 

-1 o (n ) 

-1 o (n ) 

holds as n + 00 • An application of Esseen's smoothing lemma (lemma 1.2) will 

then complete our proof. 

* We first prove (4.2.1). We shall essentially have to expand pn(t) for 

these "small" values of It I • To start with we define for 0 ~ u ~ 1 ( cf. 

(3.2.10)) the functions 

1 

(4.2.4) ijli (u) = I Ji (s)ds - (1-u)Ji 

u 

where Ji = J~ Ji (s)ds for i = 1,2. Then, by following the argument given in 

(3.2.11), we find that with probability one 

1 

(4.2.5) T 
n I -1 -1 (1J! 1 (rn(s)) + n ijl 2 (rn(s)))d F (s) + 

0 

n 

l 
i=l 

i i 
n n 

-1 
n 

I I -1 + n l (c. - n J 1 (s)ds - J 2 (s)ds)F (Ui:n), 
i=l in 

i-1 i-1 
n n 

( 1) 
Let J 1 be twice differentiable with first and second derivative J 1 and 

(2) (2) 
J 1 on (0,1). Let J 1 and J 2 be bounded on (0,1) and let s1 = Elx1 1 < 00 • 

Introduce for each n ~ 1 the rv Sn by (the superscript denoting differen

tiation) 



(4.2.6) 
-1 (1) -1 (1) 

+n 1/J 2 (s) + (rn(s)-s)(1ji1 (s) +n 1/1 2 (s)) + 

2 
(r n (s) -sl (2) 

+ 2 1/11 (s) + 

Note that 11/1. (u) I $ 411J.llu(1-u) for 0 < u < 1, i 
(1) 

1,2, and that 1/1 1 
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- - (t) - ~ (2) ell e3) 
Jl + Jl' 1/12 - -J2 + J2' 1/11 = -Jl and 1/11 

(2) 
-J1 on (0,1), so that 

it is easily verified that Sn is a well-defined rv. Later on in this section 

it will become clear that T* - s* is, under appropriate conditions, of 
n n 

negligible order for our purposes. 

It is convenient to introduce some more notation. Define rv's I for 
mn 

m = 1,2,3,4 and n ~ 1 by 

1 

(4.2. 7) f -1 -1 
Iln Jl es) ern(s)-s)d F (s) n 

0 

(4. 2.8) 

1 2 

f Jil) (s) 
er (s)-s) 

d F-l es) n 
I = - 2 2n 

0 

(4.2.9) 

1 er (s)-s) 3 

f Ji2) (s) d F-1 es) n 
I3n 6 

0 

h 3 (Ui,Uj,Uk) 

and 

1 

(4.2.10) I = -1 f 4n -n 
0 

n 
l hl eui) 

i=l 

-1 -2 
2 n 

-1 -3 
6 n 

-2 
n 

n 
l 

i=l 

n 
l 

i=l 

n 
l 

j=l 

n 
l 

j=l 

where the functions h 1 , h 2, h3 and h4 are given by (4.1.2) - (4.1.4) 

(4.1.14). It is easily checked that 

4 4 

(4. 2.11) s s - Es l I l (I - EI mn) 
n n n m=l mn m=l 

mn 

Furthermore define rv's J form= 1,2,3,4 and n ~ 1 by 
mn 

(4.2.12) J 
mn 

I /a(S ) 
mn n 

eI - EeI ))/a(S l 
mn mn n 

h 2 eui,Uj) 

n 

l 
k=l 

and 
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so that 

(4.2.13) * s 
n 

4 

l 
m=1 

J 
mn 

The proof of (4.2.1) will be split up in a number of lemma's. In the first 

lemma in this section we derive an asymptotic expansion for the variance 

of S . 
n 

LEMMA 4.2.1. Let Exi < 00 and suppose that assumption 4.1.2(i) is satisfied. 

Then, 

(4. 2.14) as n -+ oo 

2 2 
where o = o (J1 ,F) is as in (4.1.8) and b 

addition o2 and o2b are finite. 

PROOF. In view of (4.2.11) o2 (s ) = o 2 (~ 4_ 1 I ) . It follows directly from 
2 n _1 2m~ mn 

(4.1.8) and (4.2.7) that o (Iln) = n o • Also note that it is immediate 

from (4.2.7), (4.2.8) and an application of lemma 2.2.3.b that 

1 

n-2 f 
0 

n n n 

l l l Eh1 (Ui)h2 (uj,Uk) 
i=l j=l k=l 

h 1 (u)h2 (u,u)du. 

2 
Next we consider o (I2n). Using lemma 2.2.3.b once more we directly find 

that 

Because we also know that (EI 2nl 2 

1 

2 n -1 -2 f f 

Similarly we can prove that 

0 0 

-2 
n 

as n -+ 00 

2 -3 
h 2 (u,v)dudv + O(n ) , as n -+ 00 

1 

f f 
0 0 

-3 
h 1 (u)h3 (u,v,v)dudv + 0(n ) 
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as n 4 oo, and also that 

h 1 eu)h4 eu)du. 

0 

Finally we remark that it is easy to prove using similar arguments as above 

that 

-3 
Oen >, as n 4 00 

and also that in view of the Cauchy-Schwarz.inequality 

5 
-2 

Oen ), as n 4 oo, 

2 

Combining all these results we here proved e4.2.14). The assertion that o 

and o2b are finite is a simple consequence of lemma 2.2.3ea) and the formulas 

for o2 and b given in e4.1.8) and e4.1.16). 0 

LEMMA 4.2.2. Let Ex~ < 00 and suppose that assumption 4.1.2(i) is satisfied. 

Then o2 eJ 1,F) > 0 implies that for any fixed real number m 

~ ~-1 

e4.2.15) lo-mes) - n2o-ml = Oen2 ), 
n 

as n 4 oo 

where o2 2 
o eJ 1,F) is as in e4.1.8). 

PROOF. The statement is innnediate from lemma 4.1.1. 0 

* The next lemma will enable us to show that T 

* 
n 

order for our purposes. Let 'n denote the ch.f. of 

* - S is of negligible 
* n s . 
n 

2+0 
LEMMA 4.2.3. Let, for some o > O, Eix1 1 < oo and suppose that the assump-

2 
tions 4.1.1 and 4.1.2 are satisfied. Then o (J 1 ,F) > 0 implies that for 

every e: > O 

e4.2.16) f 
Cl.1 Cl.2 

* * _1 -1-mine2 , 2' y - 1) +e: 

IP et) -t et>lltl dt=Oen ) 
n n 

as n 4 oo, 

PROOF. It follows from lemma X.V.4.1 of FELLER e1966) that 
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(4.2.17) IP* (tl - T* (t) I ~ ltlEIT* - s*I 
n n n n 

for all t and n ~ 1. Using (4.2.5), (4.2.6), assumption 4.1.2(ii) and 

applying Taylor's theorem we see directly that 

(4.2 .18) 

1 

f 
l+al -1 2 

O(E( Jrn(s)-si dF (s)) + 

0 

1 1+a2 -2 

f I r (sl 
-1 2 

+ n E( - sl d F (s)) + 
n 

0 

i i 
n n 

2 -1 
n 

f f + cr (n l (cin - n J 1 (s) ds - J 2 (s)ds) • 
i=l i-1 i-1 

n n 

-1 
• F (U. ) ) ) • 

i:n 

Application of lemma 2.2.2 with l = 2 and p = 3+a1 and p = 1 +a 2 respec

tively implies that the sum of the first two terms on the right of (4.2.18) 

is 

(4.2.19) as n + 00 

To treat the third term on the right of (4.2.18) we need inequality (3.2.3). 

Using this inequality and assumption 4.1.1 we see directly that 

i i 
n n 

2 -1 n 

f f 
-1 

cr (n l (c. - n J 1 (s)ds - J 2 (s)ds)F (Ui:n)) 
i=l in 

i-1 i-1 
n n 

0 -1-2y 
(n ) ' as n -+- 00 

Combining this result with (4.2.19) it is easy to conclude that 

(4.2.20) cr 2 (T - S ) 
n n 

as n + 00 To complete our proof we remark that it follows from an 
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application of the lemma's 2.1.1 and 4.2.2 (with m = -2) that (4.2.20) im

plies that 

(4.2.21) 
-2-min(cx 1,cx 2) _2y 

Oen l +Oen > 

as n + 00 • This combined with (4.2.17) proves (4.2.16). D 

Next define for real t and n ~ 1 

(4.2.22) 
itl 2 

( ) E ln J J J ) (it) 12 ) 
'1n t = e (l + it( 2n + 3n + 4n + 2 2n • 

In the following lemma we shall approximate•: by 'in for all ltl ~ n£. 

3+o 
LEMMA 4.2.4. Let, for some o > O, Eix1 1 < oo and suppose 

4.1.2(i) is satisfied. Then cr 2 (J1 ,F) > 0 implies that 

that assumption 

_i+ 3£ 
* -1 0 2 

ltn(t) - 'ln(t) I ltl dt = (n ) (4.2.23) f 

as n + 00 • 

PROOF. Application of lemma X.V.4.1 of FELLER (1966) yields that 

* it Jl it(J2 +]3 +]4 ) 

It (t) - t 1 (t) I = !Ee n(e n n n - 1 -
n n 

. <J J J > - Citl 2 ;2 ·i I 
- it 2n + 3n + 4n 2 2n ~ 

for all t and n ~ 1. It is not difficult to verify from the proof of lemma 

4.2.1 and from lemma 4.2.2 that the coefficient of t 2 on the right in the 

above inequality is O(n-3/ 2), as n + 00 • An application of the c -inequality, 
r 

lemma 2.2.2 with l = 3 and p = 2,3 and 4 respectively and of lemma 4.2.2 

3 -3/2 
shows that also EI J 2n + J 3n +] 4n I = 0 (n ) , as n + 00 • Combining these re-

sults we easily check that (4.2.23) is proved. D 
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We continue with the analysis of 'ln(t). For convenience we write a~ to 

indicate no 2 (sn) and we denote the ch.f. of h 1 (U 1 l by p. To start with we 

remark that it follows from (4.2.22) that (cf. (1.1.3)) 

(4.2.24) T ln (t) 
n t 

p (-.--) + 
n'on 

it 
-l-

it n-3 t n 2 o 
+ --5- P (-1-)n(n-1)(n-2)Ee n 

n2o n 

(it) 2 n-4 t 
+ 32 P (-_-1 -) n(n-1) (n-2) (n-3) • 

Sn a n 2a 
n n 

(it) 2 n-3 t 
+ 32 P (--r-)4n(n-1) (n-2) • 

Sn on n 2 on 



(it) 2 n-3 t 
+ ---:i2 p (~) 2n(n-1) (n-2) • 

Sn r; n n zr;n 

(it) 2 n-2 t 
+ ---:i2 p (~)4n(n-1) • 

Sn on n 2 on 

In the next lemma we derive an asymptotic expansion for the factors 

n-m l 
p (t/(n 2 o )) appearing in the terms on the right of (4.2.24). 

n 
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4 
LEMMA 4.2.5. Let Ex1 < 00 and suppose that assumption 4.1.2(i) is satisfied. 

Then o 2 (J 1 ,Fl > 0 implies that there exists a> 0 and a fixed polynomial P 
l 

in t, such that for any fixed integer m ~ 0 and uniformly for ltl ~ an 2 • 

t 2 3 1 3 
-- _ (it)2 (it) J0 h 1 (u)du 

(4.2.25) IPn-m(-f-l - e 2 (1 n (~ + b) + l 3 + 

n 2on 6n 2 o 
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(it) 4 (!~ h~(u)du-3cr4 J (it) 6 (J~ h~(u)du) 2 
+ ~~~~~~~~~~+ l I 

24ncr4 72ncr6 

t2 
-1 -4 

o(n ltiP(t)e ) , asn-+ 00 

2 2 
where a =a (J 1 ,FJ is as in (4.1.8) and b = b(J 1 ,J2 ,FJ as in (4.1.16). 

-1 -~ n-m 
PROOF. Since a (n-m) ~i=l h 1 (Ui) is a properly standardized sum of inde-

pendently and identically distributed rv's with expectation zero, variance 

one, and finite fourth moment, it follows directly from the classical theory 

of Edgeworth expansions for such sums (see, e.g., GNEDENKO-KOLMOGOROV (1954), 

§41, theorem 2.1, inequality (b)) that there exist a'> 0 such that uni-
! 

formly for ltl ~ a'n 2 

(4.2.26) IPn-m( t ) 

(n-m) 2cr 
- e 

3 1 3 
(it) ! 0 h1 (u)du 

(1 + l 3 + 
6n 2 cr 

. 4 1 4 4 
(it) U 0 h 1 (u) du-3cr ) 

. 6 1 3 2 
(it) U 0 h 1 (u)du) 

+ l I + 
24ncr4 72ncr6 

t2 
-1 -4 

O(n lt!P(t)e ), as n -+ co, 

! ! 
where Pisa fixed polynomial in t. We now replace t by t =t(n-m) 2 cr/(n 2 cr ). 

2 n n 
It follows after expanding e-tn / 2 around t and using the result of lemma 

4.2.1 that we obtain (4.2.25). 0 

The expectations appearing on the right of (4.2.24) are expanded in 

the following lemma. 

4 
LEMMA 4.2.6. Let Ex1 < 00 and suppose that assumption 4.1.2(i) is satisfied. 

2 
Then a (J 1 ,F) > 0 implies that uniformly 

it 
for all t 

(4. 2.27) 

--i- (h1 (Ul)+hl (U2)) 
iEen an 

1 1 

- (it)22 J J 
ncr 0 0 

h 1 (uJh 1 (vJh2 (u,v)dudv -



(4.2.28) 

(4. 2. 29) 

(4.2.30) 

(4.2.31) 

(4.2.32) 
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5 
1 1 

(it) 3 I I 2 -~ h 1 (uJh1 (v)h2 (u,v)dudvl 0 -2 2 4 + n-2 It I 3> 
= (n (t +t ) 

2 3 0 0 
n CJ 

3 
-1 2 -2 

= O(n t + n ltll 

1 

"t J --1- h1 (uJh2 (u,u)dul 

n a 0 

3 1 1 1 

- (it) J J f h1 (ulh1 (v)h1 (w)h3 (u,v,w)dudvdwl ~ 
2 3 0 0 0 

n CJ 

5 
-2 4 -2 3 

= 0(n t + n ltl ) 

1 1 

--!f: f J h 1 (u)h3 (u,v,v)dudvl 

n a 0 0 

3 
-1 2 -2 

= O(n t + n ltll 

3 
-1 2 -2 

=Oen t + n ltll 
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(4 .2.33) 

(4.2.34) 

(4.2.35) 

(4 •. 2.36) 

(4.2.37) 

(4.2.38) 

(4.2.39) 

(it) 4 
-24 

n a 

1 5 

(ff h 1 (u)h 1 (v)h2 (u,v)dudvJ 2
1 = 0(n 2 Jtl 5 + n- 3t 4J 

0 0 

( . t) 2 Jl Jl Jl -t 3 2 2 -~ h 1 (ulh1 (vJh2 (u,w)h2 (v,w)dudvdwll = 0(n ltl +n- t) 
ncr 0 0 0 

_l 
0(n 2 ltl) 

0 (1), 

1 

J J 
0 0 

_! 
0 (n 2 I tl l 

2 h 2 (u,v)dudvl 

as n + 00 • 

PROOF. Because the statements (4.2.27) - (4.2.39) are all proved in essential

ly the same manner we shall only prove (4.2.27), by way of example. Expanding 
! 

exp(it/(n 2 crn) (h1 (U 1)+h1 (U2)) around t = 0 we find that for all t and n ~ 1 
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(4.2.40) 

2 3 
we next show that Eh1 (Ui)h2 cu 1,u2); Eh1 (ui)h2 Cu1,u2> = Eh1 (Uilh2 Cu 1,u2> = 0 

for i = 1,2. We first prove that Eh1 cu1Jh2 Cu1,u2) = O. It follows directly 

from (4.1.2), (4.1.3), (2.2.8), the independence of u 1 and u 2 , and lemma 

2.2.3.a that 

Hence we can write 

because of lemma 2.2.3.b. This proves the assertion. The other statements 

can be proved in the same way. It follows that 
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(4.2.41) 

1 1 -(it): f f 
non 0 0 

1 1 

- (lt)
3 ff 

2 3 0 0 
n o 

n 

Using now (2.2.8) (with m1 

we see that 

so that the term on the right of 

remark that lemma 4.2.2 implies 

h 2J and lemma 2.2.3.a once more, 

(4 .2.41) is 0(n-2o-4t 4 J as n + co. Next we 

that o -1 -1 +0(n- 1J, Insert-= 0 as n -+ oo. 
n 

ing this result in (4.2.41) we have proved (4.2.27). 0 

We are now in a position to prove (4.2.1). We first apply lemma 4.2.3 
cq a. 2 

with 0 < E: < min(T, 2' y - 1) to see that the integral on the left of 

(4.2.16) is o(n- 1), as n + oo. Secondly we use lemma 4.2.4 with 0 < E: <_!_to 
-1 6 

find that the integral on the left of (4.2.23) is also O(n ) as n + 00 • To 

proceed let us note that we can write down pn(t) explicitly as 

(4.2.42) p (t) 
n 



Next we apply (4.2.42) and the results of the lemma's 4.2.5 and 4.2.6 to 

check that for n + oo 

(4.2.43) f ii: 1n(t) - pn(t) I lti-1dt 

ltl::;;an! 

-1 
o (n l 

with a as in lemma 4.2.5. Hence we can conclude that (4.2.1) holds for 
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a1 a2 1 
0 < e: < minC-z, 2' y-1, 6i under the assumptions 4.1.1, 4.1.2, the finite-

ness of s4 Ex~, and the positivity of a 2 (J 1,Fl. According to lemma 2.2.4, 

a 2 (J1,FJ > 0 follows from the assumptions 4.1.2 and 4.1.3, so that (4.2.1) 

holds under the conditions of theorem 4.1.1. 

To prove (4.2.2) we remark first that application of lemma 2.1.2 with 

h -l d 1 5 . l" th = F an r > - + 2E" imp ies at 

(4.2.44) f 
3 

* -1 IP (t) I ltl dt 
n 

-1 
O(n ) 

as n + =, provided positive numbers e and E exist such that e ::;; nicr(T ) ::;; E. 
n 

To see that this is true we first apply the lemma's 2.2.4 and 4.2.1 to find 

1 
that n 2cr(S) is bounded away from zero and infinity and then apply (4.2.20). 

n 
Hence (4.2.2) is shown to hold if we assume that, for some o > O, s2+o < 00 

and that the assumptions 4.1.1, 4.1.2 and 4.1.3 are all satisfied. 

To prove (4.2.3) we simply use (4.2.42) and lemma 2 •. 2.4 to find that, 

under the assumptions of theorem 4.1.1, K3 and K4 are finite. This completes 

the proof. 0 

4.3. PROOF OF THEOREM 4.1.2 

In this section we prove theorem 4.1.2. The idea of the proof is the 

same as that of theorem 3.1.2, but in this case a more precise evaluation 

of the effect of changing the standardization is needed. To start with we 

remark that for each n ~ 1 and real x 

(4.3.1) G (x) 
n 

* -~ -1 -1 
F (xcrn a (T ) + (µ - E (T ) ) a (T ) ) • 

n n n n 

Using this identity and applying theorem 4.1.1 we find that 
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(4.3.2) sup I G (x) 
n 

x 
F (xcrn -!cr -l (T ) + (µ - ET ) cr -l (T ) ) I 

n n n n 
-1 

O(n ) 

as n -+ co. 

-! -1 -1 To proceed we shall need expansions for crn cr (T ) and (µ - ET ) cr (T ) • n n n 

2+0 LEMMA 4.3.1. Let, for Solle o > 0, Eix1 1 <co and suppose that the assump-
2 

tions 4.1.1 and 4.1.2 are satisfied. Then cr (J1 ,F) > 0 implies that 

(4.3.3) -1 -! -1 ICµ - ET )cr (T) - an I= o(n ) 
n n 

and 

(4.3.4) -1 a (n ) , as n -+ co 

with a= a(J1,J2 ,F) and b = b(J 1,J2 ,F) as in (4.1.15) and (4.1.16). 

PROOF. We first prove (4.3.4). Application of lemma 4.2.1, (4.2.20), and 

the Cauchy-Schwarz inequality yields 

(4.3.5) 
ncr 2 (T ) 

n 

Lemma 4.2.1 implies that 

(4.3.6) 
2 

cr 
3 

b -2 
1 - 2- + 0(n ), 

n 
asn-+co 

Combining (4.3.5) and (4.3.6) we find 

(4.3.7) 

a.1 a.2 
-1-min(L 2' 2' Y - 1) 

1 - 2£ + Oen > 
n 

as n -)>- 00 • 

as n-+ co. Inequality (4.3.4) is an immediate consequence of (4.3.7). To 

prove (4.3.3) we first use (4.2.5), (4.2.6), the assumptions 4.1.1 and 

4.1.2 and Taylor's theorem to find that 

(4.3.8) EIT - s I 
n n 

1 

J 
3+a.1 -1 

O(E lrn(s) -sl d F (s) + 

0 
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as n + co. 

Application of lemma 2. 2. 2 with .e. = 1 and p = 3 + CLl implies that the first 

term on the right of (4.3.8) is 0(n-3/ 2-CL1/ 2) as n + co. To treat the second 

term on the right of (4.3.8) we first note that this term is at most 

-1 1 1+CL2 _;1 2 ! . 
n (E(f0 lrn(s) -sl d F (s)) ) and then we apply lemma 2.2.2 once more 

.e. 0 -3/2-CL2/2 
(with = 2 and p = 1 + CL 2) to find that this term is (n ) as n + co. 

Combining these results we obtain 
3 . CLl CL2 

---min(-, -) 

ET =Es +O<EIT -s ll =Es +0(n 2 2 ·2 l +O(n-yl 
(4.3.9) n n n n n 

Using the definition of Sn (see (4.2.6)) and noting that 

3 
E<r (s) - s) 

n 

-2 
n s(l-s) (1-2s), 0 < s < 1 

we can easily check that 

as n + co 

so that (4.3.9) implies that 

(4.3.10) 

3 CLl CL2 
---min(L - -) 

-1 Oen 2 2, 2 -y 
µ - ET acrn + + n ) 

n 

as n +co. Because (4.3.7) directly implies that 

-1 l -1 _l 
a (T) = n 2cr + 0(n 2 ), 

n 

we have proved (4.3.4). D 

as n + co 

To complete the proof of theorem 4.1.2 we use (4.1.5), (4.1.17), (4.3.3), 

(4.3.4) and apply a Taylor expansion argument to find that 

~ _l -1 1 
F (xn 2 cr (T )cr +(µ-ET )a- (T)) 

n n n n 
-1 

Gn(x) + o(n ), as n +co 

uniformly in x. Combining this with (4.3.2) completes the proof. D 
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4.4. EXTENSIONS 

In the theorems 4.1.1 and 4.1.2 we have established asymptotic expan

sions for the df's of linear combinations of order statistics with remain

der O(n-1). However, no new difficulties will be encountered when showing 

that under somewhat stronger conditions the remainder is 0(n-312 i, which is 

of course the natural order of the remainder term. To do this for theorem 

4.1.1 we need a strengthened version of assumption 4.1.2. 

* ASSUMPTION 4.1.2. 

(i) The function J 1 is three-times differentiable on (0,1) with bounded 

first, second and third derivative Jil), J~ 2 ) and Ji 3) on (0,1). The 

function J 2 is differentiable on (0,1) with bounded derivative J~l) on 

(0,1). 

(i'i') Th f t' J( 3 ) d J(l) ' f ' h' d't' f d e unc ions 1 an 2 satis y Lipsc itz con i ions o or er 

a 1 > 0 and a 2 > 0 respectively on (0,1). 

We shall state the results without further proof. 

5 * THEOREM 4.4.1. Let Eix1 1 < 00 and suppose that the assumptions 4.1.1, 4.1.2 

and 4.1.3 are satisfied. Then, 

(4 .4.1) * ~ suplF (x) - F (x) I 
n n 

x 

* 

3 
-2 

0 (n ) , 

with Fn and Fn as in (4.1.9) and (4.1.5). 

as n _,. 

To obtain the corresponding result for theorem 4.1.2 we need also a 

strengthened version of assumption 4.1.1. Let J 3 be a bounded real-valued 

measurable function on (0,1). 

* ASSUMPTION 4.1.1. There exist a number y > 2 such that 

i i 
n n 

IC, 
J 

J 1 (s) ds -
J 

J 2 (s)ds max - n - n 
l:S:i:S:n 

in 
i-1 i-1 

n n 

as n _,. 

-1 

i 
n 

J J 3 (s) ds I 
i-1 

n 
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5 * 
THEOREM 4.4.2. Let Eix1 1 < 00 and suppose that the assumptions 4.1.1 , 

* 4.1.2 and 4.1.3 are satisfied. Then 

3 

(4.4.2) 
~ -2 

suplG (x) - G (x) I = 0(n ) , 
n n 

as n -+o> 

x 

with G and G as (4.1.12) and (4.1.17). 
n n 
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CHAPTER 5 

EDGEWORTH EXPANSIONS FOR TRIMMED LINEAR 
COMBINATIONS OF ORDER STATISTICS 

5.1. INTRODUCTION AND MAIN RESULTS 

In this chapter the results of the preceding chapter will be supple

mented by considering the case of trimmed linear combinations of order 

statistics. We establish Edgeworth expansions with remainder O(n-1) for 

these statistics in the case of a smooth underlying distribution. Again we 

consider suitably standardized statistics of the form (cf. (4.1.1)) 

(5 .1.1) T 
n 

-1 
n 

To prove the first main result of this chapter we shall suppose that 

numbers 0 < a < S < 1 exist for which the following assumptions are satis

fied. 

ASSUMPTION 5.1.1. There exist positive numbers c and c and numbers t 1 and 

t 2 satisfying 0 < a $ t 1 < t 2 $ S < 1 such that 

(i) 0 for all i wit.'1 !. < 
i s cin a or -> 

n n 

n 
(ii) l lcinl 0(n) as n + oo 

i=l 

(iii) $ cin $ c for all i with tl 
i 

t2. c < -< 
n 

ASSUMPTION 5.1.2. There exist numbers a and b satisfying 0 $ F(a) < a < S < 

F(b) $ 1 such that 

(i) F is three times differentiable on [a,b] with positive density f and 

bounded second and third derivative f' and f" on [a,b]. 

(ii) the function f" satisfies a Lipschitz condition of order a 1 > 0 

on [a,b]. 
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Before we state the first main result of this chapter we need some more 

notation. Introduce a function H by 

(5 .1. 2) 
-1 -x 

H (x) = F ( 1 - e ) , O~x<oo 

Furthermore define, for j 1,2, .. .,n, n 1, 2, .•. quantities C! . , s. , 
J ,n J ,n 

y. by 
J ,n 

1) -1 
n 

(5.1.3) C! . (n - j + l c. HI (\!. ) 
J ,n i=j 

in in 

1)-1 
n 

(5.1.4) S. (n - j + l c. H" (V. ) 
J ,n i=j 

in in 

1) -1 
n 

(5.1.5) Yj,n = (n - j + l c. H"' ( \). ) 

i=j 
in in 

where (see (2 .3 .5)) 

i 
1) -1, 

(5.1.6) \) . I (n - j + i 1, 2, ... ,n, n 2 1, 
in j=l 

and H', H" and H'" are the first, second and third derivative of H on the 

interval where these derivatives exist. Note that, under the assumptions 

5 .1.1 (i) and 5 .1.2 (i), the quantities C! . , s. , y j ,n are properly de-
J ,n J ,n 

fined for all n 2 no (no being a sufficiently large positive integer). 

Finally define, for each n 2 no and real x, the function 

K 
(x2-1J 

K4n 
(5.1.7) F (x) <!?(x) - ~(x){~ + 24 (x3 - 3x) + 

n 6 
2 

K3n 
(x 

5 
- lOx 

3 + 15x)} + n--

The quantities K3n and K4n are given by 

J C!, C!, s .. n 2 -2[2 
n 3 

n n 

(5.1.8) K3n I C! . ) l C! . + 3 l I i,n J ,n iVJ ,n] 

j=l J ,n j=l J ,n i=l j=l 
(n-(iAj)+l) 

and 

n 2 )-2[6 
n 

4 
n n C!~ C!, s .. 

(5.1.9) l I 24 l l i,n J ,n iVJ ,n 

K4n C! . C! . + (n-(iAj)+l) 
+ 

j=l J,n j=l J ,n i=l j=l 

n n n C!, C!, C!k s .. k 

+ 4 l l I i,n J ,n ,n iVJV ,n + 

i=l j=l k=l 
(n- ( (i Vj) A (iVk) A (jVk)) +1) (n- (iAjAk) +1) 
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n n n a. a. 8.Vk 8.Vk 
+ 12 l l l i,n J ,n l. ,n J ,n ] 

i=l j=l k=l (n-(iAk)+l) (n-(jAk)+l) 

Here and elsewhere p v q (p A q) denotes the maximum (minimum) of two in

tegers p and q; note that (iv j) A (iv kl A (j v kl is the middle one of 

i, j and k. 

In the first theorem of this chapter we establish an asymptotic expan

sion with remainder O(n-1) for (cf. (4.1.9)) 

(5.1.10) * F (x) 
n 

where (cf. (4 .1.10)) 

(5.1.11) * T 
n 

P({T* :5 x}), 
n 

-co < x < 00 

for the case of a smooth underlying df F. 

THEOREM 5.1.1. Let, for some o > O, Elx1 1° < oo and suppose that there exist 

numbers 0 <a< S < 1 for which both assumption 5.1.1 and assumption 5.1.2 

are satisfied. Then, 

(5.1.12) sup IF* (x) - F (x) I 
n n 

as n + 
x 

It is useful to comment briefly on this result. In the first place we 

note that assumption 5.1.l(i) requires that there are no weights in the 

tails. The basic function of this requirement is to control the order of 

the remainder terms in our expansions. Technically speaking this is reflect

ed in the proof at those points where lemma 2.3.2 (cf. also the remark fol

lowing this lemma) is used to show that certain moments are of a required 

order. The parts (ii) and (iii) of assumption 5.1.1 are rather harmless, be 

cause they are satisfied for almost every conceivable linear combination 

of order statistics which may arise in practice. 

In the second place we may mention that assumption 5.1.2 puts a rather 

severe smoothness condition upon the underlying df F. This, in contrast 

with the results of chapter 4 where a rather stringent smoothness condition 

is required for the weights. Finally, we assume the finiteness of a o-th 

absolute moment of the underlying df F to ensure that the expectation and 

variance of a trimmed linear combination of order statistics is finite for 

all sufficiently large n (cf. lemma 2.3.1). We need this because of the 



85 

exact standardization we have employed in theorem 5.1.1. 

In the third place we remark that trimmed and Winsorized means (see 

the examples 1.2.2 and 1.2.5) are included as important special cases in 

theorem 5.1.1. BJERVE (1974) has derived an Edgeworth expansion for trimmed 

means for the case of a symmetric underlying df F. Because he exploits the 

very special structure of trimmed means his proof needs weaker smoothness 

conditions for the underlying df F than ours. Theorem 5.1.1 was proved in 

HELMERS (1979). The present chapter extends the latter paper. 

As the second main result of this chapter we shall give a modification' 

of theorem 5.1.1 which lends itself better to applications. To obtain such 

a result we replace assumption 5.1.1 by one which requires rather regular 

weights. Let J be a bounded real-valued measurable function on (0,1). We 

shall restrict attention to weights of the form c. = J[i/(n+l)], so that 
in 

(5.1.13) T 
n 

We shall suppose that numbers 0 < a < 6 < 1 exist for which both the assump

tions 5.1.2 and 5.1.3 are satisfied. 

ASSUMPTION 5.1.3. There exist numbers t 1 and t 2 satisfying 0 <a $ t 1 < 

t 2 $ 6 < 1 such that 

(i) J(s) 0 for 0 < s < a and 6 < s < 1 

(ii) the function J is differentiable on (a,6) with bounded derivative 

J(l) on (a,6); the function J(l) satisfies a Lipschitz condition of 

order a 2 > l on (a,6). 

(iii) J(s) > 0 

Introduce the quantityµ= µ(J,F) (cf. (4.1.13)) 

1 

(5.1.14) µ(J,F) I J(s)F-1 (s)ds 

0 

and define, for each n ~ 1 and real x, the df Gn (cf. (4.1.12)) 

(5.1.15) G (x) 
n 

1 
P({n 2 (T -µ)/crsx}) 

n 
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with cr 2 = cr 2 (J,F) as in (2.1.12) (cf. (4.1.8)). Introduce functions i11 , i12 , 

i13 and i14 by 

1 

(5.1.16) - J -1 (1) h 1 (u) J (s) (F (s)) <x (O ,s] (u) .- s) ds 

0 

1 

(5.1.Pl - J -1 (2) h 2 (u,v) J(s)(F (s)) <x(O,s](u)-s)(X(o,s](v)-s)ds 

0 

1 

(5.1.18) i13 (u,v,w) J -1 (3) 
J(s) (F (s)) <xco,s](u) -s) <x(O,s](v) -s). 

0 

·<x(O,s](w) -s)ds 

1 

(5.1.19) J -1 (1) (1) 
<!-s> (J(s)(F (s)) ) <x(O,s](u) -s)ds 

0 

for 0 < u,v,w < 1, where (F-l) (k) denotes the k-th derivative of F-1 • Fur

thermore quantities K3 = K3(J,F), K4 = K4(J,F), a= a(J,F) and b = b(J,F) 

are given by 

(5 .1. 20) 

(5.1.21) 

(5.1.22) 

1 

-3~- [2 J 
cr (J ,F) O 

1 

-3 
h 1 (u)du + 

+ 3 J J i11 (u)h1 (v)h2 (u,v)dudv] 

0 0 

1 __ 1_ [6J 
cr 4 (J,F) 

-4 4 
h 1 (u)du - 12cr (J,F) 

0 

1 

+ 24 J J -2 - -
h 1 (u)h1 (v)h2 (u,v)dudv + 

0 0 

1 

+ J J J (4h1 (u)h1 (v)h1 (w)h3 (u,v,w) + 

0 0 0 

+ 12h1 (u)h1 (v)h2 (u,wJh2 (v,w))dudvdw] 

1 

a= a(J,F) = cr(;,F) [2-l J s(l-s)J(l) (s) (F-l(s)) (l)ds -

0 
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- f ( 1) -1 
0-s)J (s)F (s)ds] 

0 

and 

(5.1.23) 2
1 [-3o2 +2"". 1 h~2 (1) +2-lh~(O) + 

2o (J,F) 
b(J,F) 

1 1 1 

+ f (2h 1 (u)h2 (u,u) +2h1 (u)h4 (u))du +ff -1-2 
(2 h 2 (u,v) + 

0 0 0 

where 

1 

(5.1.24) 
2 . 

o (J,F) I -2 
h 1 (u)du. 

0 

Finally define, for each n ~ 1 and real x, the function Gn by 

(5.1.25) c; <x> 
n 

K3 2 K4 3 
<l?(x) - <f> (x){-1 (x - 1) + 24n (x - 3x) 

·6n 2 

-2 
K3 5 3 

+ 72n (x - 10x + 15x) + 

-- -2 -
a aK 3+a +2b aK 3 3 

- :::T + ( 2n ) x - 6n x } 
n 
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THEOREM 5.1.2. Suppose that there exist numbers 0 < a < S < 1 for which both 

assumption 5.1.2 and assumption 5.1.3 are satisfied. Then, 

(5.1.26) 
- -1 

suplG (x) - G (x) I= O(n ), 
n n 

as n + 00 

x 

Note that theorem 5.1.2 supplements theorem 4.1.2. The present theorem 

covers a class of trimmed linear combinations of order statistics with 

smooth weights, whereas theorem 4.1.2 does not include these statistics. To 

conclude this section we remark that, in case both the assumptions of theo

rems 4.1.2 and the assumptions of theorem 5.1.2 are satisfied, the expan

sions G and G given in these theorems are identical. This affords a wel-
n n 

come check on the laborious calculations leading to K3 and K4 • Straightfor-

wardbut lengthy computations show that indeed K3 = K3 and K4 = K4 in this case. 
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Theorem 5.1.1 is proved in section 5.2, theorem 5.1.2 in section 5.3. 

Some extensions are indicated in section 5.4. 

5.2. PROOF OF THEOREM 5.1.1. 

The proof of theorem 5 .1 .1 will parallel that of theorem 4 .1 .1. Again 

* * our proof will depend on ch.f. arguments. Denote by pn(t) the ch.f. of Tn 

and by p (t) the Fourier-Stieltjes transform n 

(5. 2 .1) - f itx -p (t) = e d F (x) 
n n 

of F (cf. (5.1.7)). As in section 4.2 we shall show that for some suffin 
ciently small £ > 0 

(5. 2. 2) J 

(5.2 .3) f * -1 IP (tllltl dt n 
3 

£ 2 
n <It I <n 

(5.2.4) J 
ltl>log(n+l) 

-1 
O(n ) 

-1 o (n ) 

-1 o (n ) 

as n 7 00 • An application of Esseen's smoothness lemma (lemma 1.2) will then 

complete our proof. We first prove (5.2.2). In section 4.2 the proof of the 

corresponding relation (4.2.1) depends very much on the fact that Tn can be 

written in terms of the empirical df in such a way that a stochastic expan-

sion of the rv T 
n 

used to establish 

itself can be obtained. This expansion of the rv Tn is 

an expansion for p*(t) for ltl ~ n£ for sufficiently small n 
£ > 0 from which (4.2.1) then follows. To establish (5.2.2) we follow an-

other line of attack, though the structure of the proof remains essentially 

the same. Rather than representing a linear combination of order statistics 

in terms of the empirical df we shall exploit a different technique based 

on representing the order statistics in terms of independent exponentially 

distributed rv's. The same idea was used by CHERNOFF et.al. (1967) and 

BJERVE (1977) in proving asymptotic normality and Berry-Esseen bounds for 

linear combinations of order statistics. 
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To start with the proof of (5.2.2) we note that the joint distribution 

of Xi:n' i 1,2, ••• ,n, n = 1,2, ••• is the same as that of H(Zi:n)' i = 

1,2, ••• ,n, n = 1,2, .•• with Has in (5.1.2). Recall (cf. (2.3.3) and the re

mark following it) that the zi:n's are the order statistics of a sample of 

size n from the exponential df E(z) 1 - e-z for 0 s z < Hence we may 

-1 n 
identify Tn with n Ei=l cinH(Zi:n) · 

Introduce, for each n ~ 1, the rv Sn by 

(5.2.5} s 
n 

-1 
n 

with "in (1 s i s n} as in (5.1.6). Here H', H" and H'" denote the first, 

second and third derivative of H on the interval where these derivatives 

are defined. Note that the assumptions of theorem 5.1.1 guarantee that S 
n 

is well-defined for all sufficiently large n. Now the zi:n's are replaced 

i 
by Ej=l Z/Cn-j+l) (cf. (2.3.4)). It follows that Sn can be written as 

(5.2.6) 

where 

(5.2.7) 

(5.2.8) 

(5.2.9) 

s 
n 

-1 n 
n i~l cinH(vin} + Iln + I2n + I3n 

-1 
n 

n 
la. (Z.-1) 

j=l J,n J 

I - 2-ln-1 
2n -

n n l\vj,n 
l l (n-(i/\j)+l) (Z.-l)(Z.-1) 

i=l j=l i J 

6-ln-1 I I I yiVjVk,n 

i=l j=l k=l (n-((iVj)A(iVk)/\(jVk))+l) (n-(i/\j/\k)+l). 

• (Z.-l)(Z.-l}(Zk-1) 
i J 

The quantities a. , 6. and y, are given in (5.1.3) - (5.1.5). Finally 

3,n J,n 3,n 

introduce rv's J , form= 1,2,3 and n ~ n0 by 
mn 

(5.2.10) J mn er - Ee! ll/crcs l 
mn mn n 
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-* 
and the rv Sn by 

(5. 2 .11) -* s 
n 

(s - E<s ll/cr(s l 
n n n 

The proof of (5.2.2) will be split up in a number of lemma's. In the first 

lemma we obtain an asymptotic expansion for the variance of Sn. 

LEMMA 5. 2 .1. Suppose there exist numbers 0 < a < S <- 1 for which both the 

assumptions 5.1.l(i) and (ii) and 5.1.2(i) are satisfied. Then, 

icr 2 <s l -2 
n 2 -2 

n a. S. 
(5. 2 .12) l l i,n i,n 

- n a. -n {2 
(n-i+l) 

+ 
n 

j=l 
J ,n 

i=l 

2 
2-1 

n n sivj,n n n · aiVj ,nY iVj ,n 
+ l l + l l 

i=l j=l (n-(iAj)+l) 2 i=l j=l (n-(iAj)+l) 2 

n n a.A. Y·v· 
+ l l i J,n i J,n }I 

i=l j=l (n-(iVj)+l) (n-(iAj)+l) 

5 
-2 

0 (n ) , 

PROOF. In view of (5.2.6) we have that 

2 -cr ( s ) 
n 

It follows from (5.2.7) that 

-2 
n 

n 

l 

r l. 
mn 

2 
a. 

j=l J,n 

Also note that it is immediate from (5.2.7) and (5.2.8) that 

as n -r 00 • 

-2 
n 

n n n a. S. k 
l l l i,n JY ,n f(Z.-l)(Z.-l)(Zk-1) 

i=l j=l k=l (n-(jAk)+l) i J 

-2 
2n 

n 

l 
i=l 

a. S. i,n i,n 
(n-i+l) 

2 -
Next we consider cr (I 2n). Note first that 
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-2 -1 -2 
n n n n SiVj,nSkVm,n 

Er2n 4 n l l l l (n-(iAj)+l) (n-(kAm)+l) 
i=l j=l k=l m=l 

E(Z.-l)(Z.-l)(Zk-l)(Z -1) 
1, J m 

s. s. 
2 

-2 
n n -1 -2 

n n SiVj,n 
-1 l l i,n J ,n l l 4 n (n-i+l) (n-j+l) 

+ 2 n 
(n-iAj+l) 2 

i=l j=l i=l j=l 

as n + 00 • 

Because we also know that 

<Ei2nl 2 
-1 -2 

n s. 2 
4 n ( l i ,n ) 

i=l 
(n-i+l) 

we have proved that 

2 

2 - -1 -2 
n n SiVj,n 0 -3 

cr (I2n) 2 n l l 
(n-(iAj)+lJ 2 

+ (n ) , 

i=l j=l 

as n + 00 • 

Similarly we can show that 

n n aiVj,nyiVj,n 
2 cov(Iln'i3n ) l l + 

i=l j=l (n-(iAj)+l) 2 

n n aiAj,nyiVj,n -3 
+ l l + 0(n ), 

i=l j=l (n-(iVj)+l) (n-(iAj)+l) 
as n -+ 00 

Finally we remark that it is easily inferred from lemma 2.3.2 and the Cauchy

Schwarz inequality that 

5 
-2 

0 (n ) , as n + 00 , 

under the assumptions of the lemma. Combining all these results we see that 

(5.2.12) holds. D 

LEMMA 5.2.2. Suppose there exist numbers 0 < a < S < 1 for which both the 

assumptions 5.1.1 and 5.1.2(i) are satisfied. 

(i) There exist a number 8 > 0 such that 

(5. 2 .13) 
-1 

n 
n 

l 
j=l 

Ct ~ > 8 
J ,n 
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for all sufficiently large n. 

(ii) For any fixed real number m 

(5 .2.14) 
~-1 

0(n2 ) , as n -r 00 • 

PROOF. We first prove (5. 2 .13) . The idea of the proof is the same as that 

of lemma 2.2.4. It was already noted in section 5.1 that the quantities 

a. , j = 1,2, ••. ,n, n 2 1 are properly defined for all sufficiently large 
J ,n 

n. To proceed we remark first that 

-1 
n 

n 

l 
j=l 

2 -1 
a. 2 n 

J ,n 

-1 -2 
2 n (n-[nt1 ]) 

[nt2J 

l 
j=[nt1J+l 

n 

l 

2 
a. 2 

J ,n 

c -H' (\! ) ) 2 

j=[nt1J+l i=j 
in in 

Using the assumptions of the lemma we see that for [nt1J+l $ j < k $ [nt2J 

and sufficiently large n, 

n n 
l cinH' (\!in) - l cinH' (\!in) 

i=j i=k 

where M maxa$x$b f(x). Hence 

[nt2 J 

l 
j=[nt1 ]+1 

is minimized for 

n 

l c. H' (\!. ) 
in in 

i=j 

k-1 

l cinH' (vin) 
i=j 

A simple summation completes the proof of (5.2.13). Part (ii) of the lemma 

is immediate from lemma 5.2.1 and (5.2.13). D 

* -* The next lemma will enable us to show that Tn - Sn is of negligible 
-* -* order for our purposes. Let 'n denote the ch.f. of Sn. 
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0 
LEMMA 5.2.3. Let, for some o > O, Elx1 1 < oo and suppose that there exist 

numbers 0 <a < 8 < 1 for which both the assumptions 5.1.1 and 5.1.2 are 

satisfied. Then we have for every g > 0 
al 

-1--+g 

e5 .2.15) I Oen 2 l, as n + 00 • 

PROOF. We start by noting that, in view of lemma 2.3.1, the moment assump

tion ensures that every moment of Tn is finite for sufficiently large values 

of n. An application of lemma X.V.4.1 of FELLER e1966) implies that 

e5.2.16) 

for all t and sufficiently large n. Replacing Tn by n-l E~=l cinaezi:n), 

using the formula for S ecf. {5.2.5)), Taylor's theorem and an exponential 
n 

bound for exponential central order statistics we see directly that 

n 

e5.2.17) a2 eT - s J ~ E eT - s J 2 
n n n n 

Oen-2Ee l 
i=l 

-n n 
+ Oee 1 ) 

3+al 2 
le. llz. -v. I ) + 

in i:n in 

for some constant n1 > O. Application of lemma 2.3.2 yields now that 

e5.2.18) 
2 -

a eT - S ) 
n n 

-3-a1 
Oen l, as n + 00 

Combining e5.2.18) with the lemma's 2.1.1 and 5.2.1 we see that 

e5.2.19) 2 * -* O eT - S ) 
n n 

-2-a1 
Oen l, as n + 00 • 

This together with e5.2.16) proves (5.2.15). D 

Next define for real t and all sufficiently large n 

e5.2.20) :C ln et) 

In the following lemma we shall approximate :r: by Tln for all ltl 
g 

~ n • 
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LEMMA 5.2.4. Suppose that there exist numbers 0 < a < S < 1 for which both 

the assumptions 5.1.1 and 5.1.2(i) are satisfied. Then we have for every 

E: > 0. 

(5. 2. 21) I IT°*(tl - 1:1 (tl 1 ltl- 1dt 
n n 

_l+ 3E: 
2 0 (n ) , as n ~ 00 

PROOF. Application of lemma X.V.4.1 .of FELLER (1966r yields that 

- -
itJl it(J2 +]3 ) 

IEe n{e . n n - 1 -

J J _ .(itl 2 1-2 }I 
- it ( 2n + 3n) 2 2n ~ 

for all t and sufficiently large n. It follows easily from the proof of 

lemma 5.2.1 and from lemma 5.2.2(ii) that the coefficient t 2 on the right 

in the above inequality is O(n-3/ 2), as n ~ oo, An application of the c -
- - 3 -3/2 r 

inequality and of lemma 2. 3. 2 shows that also EI J 2n + J 3n I = 0 (n ) as 

n ~ oo. Combining these results we easily check that (5.2.21) is proved. D 

We continue with the analysis of Tln(t). For convenience we write o~ 
to indicate ncr 2 (sn) and we denote the ch.f. of z1 - 1 by n; i.e. 

(5 .2.22) 
it -1 

n(t) = (e (1-it)) 

To start with we remark that it follows from (5.2.20) that 

(5 .2.23) 
n a. t 

.n1 n(~l + 
J= n 2o 

1.. t n S I:' k,n 
+ -----.-- l 

2n 2o k=l (n-k+l) 
n 

n 

n 
it 

--r:,- ak n (Zk-1) 
a t n 2cr ' 

( j ,n ) E n n - 1-- e 
it 0 

n 

it n 
+-,- l 

2n 2o k=l 
n 

l 
l=l 

(n-(kAf}+l) 

l~k 



it 
-1 -(Ilk (Zk-1)+<l 0 (Z 0 -l)) 
n2o ,n -t..,n -t.. 

•Ee n (Zk-1) (Z.e-1) + 

't n n 
+-].- l l 

2n~cr k=1 l=l 
(n-(k/\l)+l) (n-(kvl)+l) 

n lfk 

+ it I 
2nicr k=l 

n 

n 

l 
l=l 
lfk 

Cl. t 

<-j;-l 
n CJ 

n 

it n n n Ykvlvm,n 

+ Gnlcr kil .e.I1 roI 1 (n-((kvl)A(lvm)A(kvm))+l) (n-(kA.lAm)+ll 

n lfk m#,k 

• (Z -1) (Z -1) (Z -1) + 
k l m 

(].'t)2 n a2 
+ __ l k,n 

8ncr2 k=l (n-k+ll 2 
n 

95 



96 

(it) 2 n n 

it 
132 --y:-(\ (Zk-l)+a.o (Zu-1)) 

kV.l n n a.. t n 2o ,n -<-,n -<-

+ ---=2 l l 
4no n k=l l=l 

( . ) 2 n 
+~I 

-2 l 
Sno k=l 

n 

( . ) 2 n 
+~I 

-2 l 
4no k=l 

n 

#k 

n 

l 
l=l 
lf k 

n 

l 
l=l 
ltk 

' 2 n n( I~ JEe n 
(n-(kA.l)+l) j=l n2o 

jfk,.l n 

13 13 
k,n .l,n 

(n k+l) (n-l+l) 

13 13 k,n kv.l,n n 
(n-k+l) (n-(kATI+i) j!Jl 

jfk,.l 

a.. t 
n ( J ,n) 

n 2cr 
n 

it -i::-(\ n(Zk-l)+a.o (Zu-1)) 
n a ' -l...,n .{... 

·Ee n 2 
( (Zk-1) - 1) (Z -1) (Z 1) 

k r 

+ (it) 2 ~ 
-2 l 

4no k=l 
n 

n n 

l l 
l=l m=l 
Uk mfk 

m# 

13 13 m,n kV.l,n 
(n-m+l) (n-(kAl)+l) 

it -i::-(\ nf Zk -1) +al (Z o-1) +a. (Z -1)) 
n a ' ,n ..{... m,n m 

•Ee n 

+ (it) 2 ~ n n 
-2 l l l 

2non k=l l=l m=l 
lf k mf k 

m# 

13 13 kVm,n .lvm,n 
(n-(kAm)+l) (n-(.lAm)+l) 

it -i::-(\ JZk-l)+a..l (Zu-l)+a. (Z -1)) 
n a ' ,n .{... m,n m 

•Ee n 

a.. t 
nC-1.F--l 

n 2cr 
n 



(it) 2 n 
+-- l 

-2 
8ncr k=l 

n 

n n n 

l l l 
l=l m=l p=l 
irk ~k pfk 

~l pfl 
pfm 

(n-(kAl)+l) (n-(mAp)+l) 

n 
.n1 J= 

jfk,l,m,p 

it 
-,---(ak (Zk-1)+a 0 (Z 0 -1)+a (Z -l)+a (Z -1)) 
n2o ,n -L,n ,(, m,n m p,n p 

•Ee n 

• (Z -1) (Z -1) (Z -1) (Z -1). 
k l m p 
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To proceed we have to expand each of the fourteen terms on the right 

hand side of (5.2.23). Note that p (t), the Fourier-Stieltjes transform of 
n 

F , can be written down explicitly as 
n . 

t2 
-2 

p (t) = e (1 -
n (5.2.24) 

with K3n and K4n as in (5.1.8) and (5.1.9). Now the same kind of argument 

that was used to prove the lemma's 4.2.5, 4.2.6 and relation (4.2.43) can 

also be applied to prove the following lemma. 

LEMMA 5.2.5. Suppose there exist numbers 0 < a < S < 1 for which both the 

assumptions 5.1.1 and 5.1.2 are satisfied. Then there exist a number a> 0 

such that 

(5.2.25) f l~ln(t) - pn(t) I lti-1dt 

· iti~an! 

3 
-2 

Oen >, as n -+ 00 

PROOF. Let us illustrate the type of computation involved by deriving ex

pansions for the first and third term on the right of (5.2.23). To start 

with we remark that 

is the 
n 

(1:j=1 

n a. t 
.n <~l 
J=l n!o . 

n 
- -!- -1 n 

ch.f. of J 1 = n cr 1:. 1 a. (Z.-1) (cf. (5.2.10)). Note that 

2 -! n n n . J= J,n J 
a. ) 1:. 1 a. (Z.-1) is a properly standardized sum of independent, 

J,n J= J,n J 

non-identically, distributed rv's with expectation zero, and finite absolute 

moment of any order. As the assumptions of the lemma easily imply that 
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as n -+ 00 

it follows directly from the classical theory of Edgeworth expansions for 

sums of independent rv's that for some number a' > 0 and uniformly in 
l 

ltl ::; a'n 2 

t2 

I n a. t --2 J ,n 
j];Il n (-~----.-) - e ( 1 + 

n 2 2 

o:j=l (l,j ,nl 

(it) 3 n 3 (it)4 n 4 . 6 n 3 2 
l:j=l a. l:j=l a. . (it) (l: ·=1 a. J I 

+ J ,n+ J ,n+ J JI ) 
3 

2 
2 2 3 

)2 
n n n 2 4(l:j=l a. ) 18 (l:j=l a. ) 

3 (l:j=l Cl, J,n J ,n 
J ,n 

3 t 2 

O(n- 2 ltlP(t)e-4 ), as n -+ 00 

where P is a fixed polynomial in 
n 2 l l_ 

t(l:. 1 a. ) 2 /(n 2 o ) • It follows 

t. We now replace t by t = 
-t 2;2 n 

after expanding e n around t and using J= J,n n 
the result of lemma 5.2.1 that for some number a > 0 and uniformly in 

ltl ::; an! 
t~ 

(itJ 2b (it) 3 n 3 

I jal 

a. t 
2 ( 1 

l: . 1 a. 
(S.2.26) n<....Jr!!:-l n J= J ,n+ - e + 

n 2cr 
n 2 3 

l:j=l a. n J ,n n 2 ) 2 
3(l:j=l a. 

J ,n 

+ 

(. ) n l:n 4 
it j=l aj ,n 

n 2 2 + 
4 (l:. 1 (l,, ) 

J= J,r1 

as n + 00 , where P is a fixed polynomial in t (different from above) and 2bn 

denotes the coefficient of n-2 in the expansion for a2 (s) (cf. (5.2.12)) 
n 

As a second example of the computations involved we expand the third 

term on the right hand side of (5.2.23). We shall show that uniformly for 
l 

I tl ::; an 2 • 



(5.2.27) I . n n Bk /) n a. t 
].~ I I V.(..,n .!}1 nc..1•_r1>. 
~ k=l £.=l(n-(k/\f.)+l) _J- n~ 

n £.;'k J?'k ,£. n 

(it) 3 n 
- < 3 I 

- k=l 

2 u:~=l a;,/ 
4 2 8 

(it) I I <\,g'£.,nkv£.,n 

+ o:~ Cl~ l 2 k=l £.=1 (n-kAl+1) + 
J=1 J ,rt 

3 t 2 

O(n- 2 ltlP(t)e- 4 ), as n + "'· 
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it 
To prove this we first expand exp(::J:: (ak,n(Zk-l)+a.e.,n<Z,e.-1))) around t=O 

to find uniformly for all t n °n 

it 
-r-<\ '.Zk-ll+<z (Z,e.-1)) 
n2o ,n ,n 

(it) 2 

!Ee n (Zk-1) (Z,e.-ll ---a a -
no2 k,n .e.,n 

n 

(it) 3 
--3-

2-3 
no 

n 

«/ a,, + a a 2 > I 
k,nt:.,n k,nl,n 

4 -2 
0(t n ) 

as n + "'· Next we observe that it is easily inferred from (5.2.26) that for 

fixed positive integers k and £. and uniformly for all ltl ~ an! 

t 2 3 3 
~ t -z- (it) E~=l aj,n 

1 n (~) - e (1 + ---------3 ) 
!-

n20n n 2 2 
3 ( E . l a. l 

J= J, rt 

t2 

0 (n- 1 1 tlP (t) e-4 ) 
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as n + oo. Combining these results with an application of lemma 5.2.2(ii) to 

check that 

-1 
a 

n 

we find that (5.2.27) holds. D 

as n-+ 00 , 

We are now in a position to prove (5.2.2). We first apply lemma 5.2.3 
-1 

with 0 < E < a 1/2 to see that the integral on the left of (5.2.15) is O(n l 

as n + 00 • Next we use lemma 5.2.4 with 0 < E < ~to find that the integral 

on the left of (5.2.21) is O(n-1) as n + oo. Combining these results with 

lemma 5.2.5 we can conclude that (5.2.2) holds for 0 < E < min(a 1 /2,~) under 

the assumptions of theorem 5.1.1. To see that (5.2.3) and (5.2.4) are also 

true we simply note that the argument leading to (4.2.2) and (4.2.3) also 

goes through (with obvious minor modifications) under the assumptions of 

theorem 5.1.1. This completes the proof of theorem 5.1.1 D 

5.3. PROOF OF THEOREM 5.1.2. 

To prove theorem 5.1.2 we first need three lemma's. In the first lemma 

we show that K3n and K4n (cf. (5.1.8) and (5.1.9)) are the leading terms in 

* * asymptotic expansions for the third and fourth cumulant K3n and K4n of 

* T (cf. (5.1.11)). 
n 

8 
LEMMA 5.3.1. Let, for some 8 > 0, EJx1 J < oo and suppose that there exist 

numbers 0 <a< S < 1 for which both the assumptions 5.1.1 and 5.1.2 are 

satisfied. Then, 

(5 .3 .1) 

(5 .3 .2) 
-1 

K 4n + o (n ) , as n -+ 00 , 

with K3n and K4n as in (5.1.8) and (5.1.9). 

PROOF. We first note that by several applications of Holder's 

and an argument as in the proof of (5. 2 .17) , we can show that 

(5. 2 .11)) is negligible for our purposes. Secondly, we remark 

inequality 

* -* T -s (cf. 
n n 

that a re la-

tively straightforward computation using (5.2.11) and applying the lemma's 

2.3.2 and 5.2.2(ii) shows that 



(5 .3. 3) 

(5.3.4) Es*4 
n 
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Rewriting the quantities on the right of (5.3.3) and (5.3.4) with the aid 

of (5.2.5) - (5.2.9) and (5.2.14) gives the desired results after a number 

of computations. D 

In the second lemma of this section we show that K3n and K4n can be 

- _l - -1 
replaced by K3 n 2 and K4 n in (5.3.1) and (5.3.2). 

0 
LEMMA 5.3.2. Let, for some o > 0, Elx11 < oo and suppose that there exists 

numbers 0 <a< a< 1 for which both the assumptions 5.1.2 and 5.1.3 are 

satisfied. Then, 

(5.3.5) 

(5.3.6) * - -1 -1 
K4n K4 n + O(n ), as n ~ 00 , 

with K3 and K4 as in (5.1.20) and (5.1.21). 

PROOF. As an example of the computations involved we prove (5.3.5). We begin 

-1 n i -1 
by remarking that Tn = n Ei=l J(n+l)F (Ui:n) (cf. (5.1.13)) can be writ-

ten as 

(5.3.7) T 
n 

-1 
n 

n 

l 
i=l 

. 2 i 3 
(U. _-2:_) (U --) 

i:n n+l (F-1) (2) (__!.._) + i:n n+l 
+ 

+ R 
n 

2 ~1 6 

where Rn is a remainder, which is easily seen (the argument leading to 

(5.2.17) goes through with obvious modifications) to have moments of suffi

ciently low order of magnitude, so that this term can be neglected for our 

purposes. Next we observe that this fact, (5.3.7) and several applications 

of Holder's inequality yields 

(5.3.8) f(T - ET ) 3 
n n 
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• (F-1) (1) (~) (F-1) (1) (-j-) (F-1) (1) (~) 
n+l n+l n+l 

E(U. - 2-_) (U. - _j_) (U - ~) 
i:n n+l J:n n+l k:n n+l 

3 -3 
+2n 

n n n 

l l l 
i=l j=l k=l 

as n -+- 00 • 

Inserting the relations (cf. DAVID & JOHNSON (1954)) 

(5 .3.9) 

and 

(5.3.10) 

E<u. - ~l (u - _;L_l (u - ~l = 
i:n n+l · j:n n+l k:n n+l 

2 (i/\ j/\k) (n+l-2 (( i Vj) /\ (i Vk) /\ ( j Vk) ) ) (n+l-i Vj Vk) 

(n+l) 3 (n+2) (n+3) 

2 (i/\k) (n+l-iVk) (j/\k) (n+l-(jVk)) + O(n-3) 

(n+1) 6 

as n 7 00 , into (5.3.8) and replacing the resulting Riemann sums by the cor

responding Riemann integrals, we arrive at 

(5.3.11) 

1 

E(Tn-ETnl 3 n-2[2 J J J J(s)J(t)J(v)(F- 1 (s))(l)(F-l)(l)(t)• 

0 0 0 

•(F-1 ) (1) (v) (s/\t/\v) (1 - 2((sAt)V(sAv)V(tvv))) (1-(sVtvv))dsdtdv 

1 

+ 3 J J J J(s)J(t)J(v) (F- 1 ) (l) (s) (F-l) (l) (t) (F-l) (2 ) (v) • 

0 0 0 

5 

• (s/\v - sv) (t/\v - tv) dsdtdv ]+ o (n 2 ) 



1 

2 f - 3 n- {2 h 1 (u)du + 3 

0 

1 5 

ff h 1 (u)h1 (v)h2 (u,v)dudv} + O(n 2J 

0 0 

as n + 00 , 

where we have used (5.1.16) and (5.1.17) in the last line. Because it is 
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easily inferred from (5.3.7) and the argument following it that a-1 (T ) = 
n 

proved (5.3.5). The proof of (5.3.6) ! -1 _! 
n 2a (J,F) + 0(n 2 ) as n ~ 00 we have 

is similar but more laborious. The formula for the fourth cumulant of 

n- 1 Lni"=l J(-2:..._) (F-l) (l) (-2:..._) (U. - ill (cf. VAN ZWET (1979), p.100) and 
n+l n+l i:n n+ · 

relations similar to (5.3.9) & (5.3.10) (cf. DAVID & JOHNSON (1954), p 238) 

are employed. D 

In the 
_! -1 

an 2 a (T ) 
n 

third and final lemma of this section we derive expansions for 

and (µ - f(T ))a-l(T). The lemma and its proof are parallel to 
n n 

that of lemma 4.3.1. 

0 
LEMMA 5.3.3. Let, for some o > 0, Eix1 1 < 00 and suppose that there exists 

numbers 0 <a< S < 1 for which the assumptions 5.1.2 and 5.1.3 are satis

fied. Then, 

(5. 3 .12) 

and 

(5.3.13) 

with a 

-1 - _l 
I ( µ - ET ) a (T ) - an 2 j 

n n 

-1 -1 - -1 
I on 2 0 (T ) - 1 + bn I 

n 

-1 o (n ) 

-1 o (n ) , as n -+ 00 , 

a(J,F) and b b(J,F) as in (5.1.22) and (5.1.23). 

PROOF. We first prove (5.3.13). Starting with (5.3.7) we first note that 

(cf. the argument given after (5.3.7)) 

(5.3.14) 

-2 
+ n 

n n 

I I 
i=l j=l 

n 

I 
i=l 

·E(U. - ~) (U 
i:n n+l j:n 

J(-2:..._) (F-1) (1) (~) (U. - ~)) + 
n+l n+l i:n n+l 

_j_) 2 + 
n+l 
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-1 2 -1 
+ 4 a (n 

n 

l 

-1 -2 
+ 3 n 

i=l 

n n 

l l 
i=l j=l 

•E(u. _ __:!:_)(U. 
i:n n+l J :n 

5 

_j_) 3 + 0 (n- 2) I 
n+l 

as n -+ 00 

To approximate the first term on the right of (5.3.14), we first note 

that this term is equal to 

(5.3.15) 
-1 -2 

(n+2) n 
n n 

l l 
i=l j=l 

• ( ( ___:!:__ A _j_) - ___:!:__ _j_) 
n+l n+l n+l n+l · 

A simple analysis shows that this can be written as 

(5. 3.16) 
-1 

(n+2) 

1 

f f 
0 0 

-2 
</l(s,t)dsdt + n 

asn-+ 00 

1 

f f 
3 a;- </l(s,t) (1-2s)dsdt 

0 0 

where </l(s,t) = J(s)(F-l)(l)(s)J(t)(F-l)(l)(t)(sAt-st) on the unit square. 

Note that the fact that <P is not differentiable at points (s,s) causes no 

problems. After a little calculation it follows from (5.3.16) that 

(5. 3 .17) 2 -1 a (n 
n 

l 
i=l 

1 

n- 1cr 2 + n-2[-3cr 2 + 2 f E1 (u)h4 (u)du + 2-lhi(l) + 2-1hi(O)] + 

5 
2 

+ 0 (n ) I 

0 

as n -r 00 • 

Next we obtain approximations for the other three terms on the right of 

(5.3.14). Now only first order approximations are needed because these terms 
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are of a lower order than the term considered in (5.3.15). Argueing similar

ly as in the proof of lemma 5.3.2 we find 

(5.3.16) 

(5 .3.19) 

and 

(5.3.20) 

-2 
n 

n n 

l l J(2._) J(j-) (F-1) (1) (2._) (F-1) (2) (-j-). 
n+l n+l n+l n+l 

i=l j=l 

1 

•E(u. 2._)(U 
i:n n+l j:n 

-2 f -2 
2n h1 (u)h2 (u,u)du + O(n ) 

-1 2 -1 
4 o (n 

1 1 
-2 

~n f f 
-2 -2 
h 2 (u,v)dudv + O(n ) 

-1 -2 
3 n 

0 0 

n n 

I I 
i=l j=l 

i j 3 
·E(u. --) (U. --) 

i:n n+l J:n n+l 
-2 

n 

1 

f J 
0 0 

0 

-2 
h 1 (u)h3 (u,v,v)dudv + O(n ) 

as n + oo. Combining all these results we see that 

(5. 3. 21) cr 2 (T ) 
n 

from which (5.3.13) is immediate. 

To prove (5.3.12) we first remark that it is immediate from (5.3.7) 

and the remark made after it that 

(5. 3. 22) ET 
n 

-1 
n 

3 
2 

+ a (n l , as n -+- 00 • 

It follows after replacing these Riemann sums by integrals that 
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1 

(5.3.23) ET 
n \l + n -1{ f n - s) (JF - l) (1) ( s) ds + 

0 
1 3 

+ 2 
-1 

f 
-1 (2) J (s) s ( 1-s) (F ) (s) ds} + o (n 2 J 

0 

from which 

3 

ET 
-1 -2 

(5 .3 .24) \l - acrn + o (n ) 
n 

follows by integration by parts. Because (5.3.13) directly implies that 

(5 .3 .25) 
~ -1 _! 

n a + 0 (n 2 ) , as n + 00 , 

we have proved (5.3.12). D 

We are now in a position to prove theorem 5.1.2. We first apply theorem 

5.1.1 and the lemma's 5.3.1 -5.3.3 to find, after a simple Taylor argument 

that sup I G (x) - G (x) I = o (n -l) (cf. (5 .1. 26)) under the assumptions of x n n 
theorem 5.1.2 and the additional requirement that S0 < 00 for some o > 0. Fi-

nally we show that this moment assumption is in fact superfluous. To see this 

we simply note that as both the expansion Gn and the standardization we have 

employed (cf. (5.1.15)) do not depend on p-1 outside some closed subinterval 
-1 of (0,1), we may modify F on neighbourhoods of 0 and 1 appropriately so 

that the moment assumption is satisfied. This completes the proof of theorem 

5.1.2. 

5.4. EXTENSIONS 

In the theorems 5.1.1 and 5.1.2 we have established expansions for the 

df's of linear combinations of order statistics with remainder O(n- 1). Again, 

as in section 4.4, we remark that we shall encounter no new difficulties 

when showing that under somewhat stronger conditions the remainder is 

O(n- 312 ). To do this for theorem 5.1.1 we need a strengthened version of 

assumption 5.1.2. We suppose that numbers 0 < a< S < 1 exist for which the 

* assumptions 5.1.1 and 5.1.2 are satisfied. 
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ASSUMPTION 5.1.2.* There exist numbers a and b satisfying 0 s F(a) < a < 

S < F(b) s 1 such that 

(i) F is four times differentiable on [a,b] with positive density f and 

bounded fourth derivative f"' on [a,b]. 

(ii) The function f'" satisfies a Lipschitz condition of order a 1 > 0 on 

[a,b]. 

We shall state the results without further proof. 

0 
THEOREM 5.4.1. Let, for some o > O, Elx11 < oo and suppose that there exist 

. * 
numbers 0 < a < S < 1 for which the assumptions 5.1.1 and 5.1.2 are satis-

fied. Then, 

3 

* -2 
sup IF (x) - F (x) I : 0(n ) , 

n n 
as n -+ 00 

x 

* with Fn and Fn as in (5.1.10) and (5.1.7). 

To obtain the corresponding result for theorem 5.1.2 we need also a 

strengthened version of assumption 5.1.3. We shall suppose that numbers 

* * 
0 <a< S < 1 exist for which the assumptions 5.1.2 and 5.1.3 are satis-

fied. 

* ASSUMPTION 5.1.3. There exist numbers t 1 and t 2 satisfying 0 < a s t 1 < 

t 2 s S < 1 such that 

(i) J(s) 0 for 0 < s < a and S < s < 1 

(ii) the function J is differentiable on (a,S) with bounded derivative 

J(l) on (a,S); the function J(l) satisfies a Lipschitz condition of 

order 1 on (a,S). 

(iii) J(s) > 0 

THEOREM 5.4.2. Suppose that there exist numbers 0 < a < S < 1 for which 

* * both assumtion 5.1.2 and assumption 5.1.3 are satisfied. Then, 
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sup f Gn (x) 
x 

G Cxl I n 

3 
-2 

0 (n ) I 

with Gn and Gnas in (5.1.15) and (5.1.25). 

as n -+ 00 

We conclude this section with two remarks concerning the results ob

tained in this and the preceding chapter. In the first place we remark that, 

although we have presented our results for a fixed array of weights and a 

fixed df F, it is easy to construct classes of weights and distributions 

for which the expansions are valid uniformly. As the remainder terms depend 

on the weights and F only through certain constants, upperbounds and lower 

bounds, occurring in our conditions, the order of the remainder - O(n-1) or 

O(n- 3/ 2) - will always be uniform for fixed values of the constants, upper

bounds and lower bounds appearing in the conditions of the statement we 

are proving. 

In the second place we conjecture the existence of valid Edgeworth 

expansions for linear combinations of order statistics in the case where the 

weight functions may exhibit a finite number of discontinuities. Such a re

sult would contain the theorems 4.1.1, 4.1.2 and 5.1.2 as special cases. The 

weakening of the smoothness conditions for the weight functions (cf. the 

assumptions 4.1.2 and 5.1.3) will then naturally entail a local smoothness 

condition on the underlying df F. There will be no need to trim. Such a 

more general result would be obtained by establishing an expansion for the 

conditional characteristic function of a linear combination of order stat-

istics, where conditioning is on order statistics XJ.'-l·.n and X. when the 
[ i-1 J.,:n.h]. weight functions possess a discontinuity in the interval n n By ex-

ploiting the independence created in this way and by drawing heavily on the 

techniques developed in chapter 4 we can - in pri:ro.ciple - derive an expansion 

for the conditional ch.f. An expansion for the ch.f of a linear combination 

of order statistics then follows by taking the expectation. A main source 

of technical difficulties will be that the conditioning would change the 

standardization of the statistics considered. Although a proof along these 

lines appears to be very technical and laborious it would be interesting to 

obtain the conjectured more general results. 
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CHAPTER 6 

DEFICIENCIES OF L-ESTIMATORS 

-1 
In the two preceding chapters we derived expansions to O(n ) for the 

df's of linear combinations of order statistics. In this chapter we compute 

deficiencies of L-estimators with the aid of these expansions. In section 

6.1 we obtain asymptotic deficiencies of first order efficient L-estimators, 

for estimating the centre of a symmetric distribution, with respect to maxi

mum likelihood estimators and R-estimators derived from rank tests. In sec-

tion 6.2 the distribution of the observations is no longer assumed to be 

symmetric. We show that in the asymmetric location case a phenomenon, first 

noted by PFANZAGL (1979), that "first order efficiency implies second order 

efficiency" also holds true for L-estimators. 

6 .1. DEFICIENCIES OF EFFICIENT L-ESTIMATORS E'OR THE CENTRE OF SYMMETRY 

Let x1 ,x2 , ... be i.i.d rv's with df F(x-8), where Fis known and has 

a density f that is positive on R' and symmetric about zero. Let f be five 

times differentiable and let us define functions 

(6.1.1) 

(6.1.2) 

lji. (x) 
]. 

i:;. (x) 
]. 

f (i) (x) /f (x), i 1,2, •.. ,5 

(i) 
(log f (x)) , i 0,1, ... ,5 

where i:; 0 = log f. Let J 1 and J 2 denote real-valued bounded measurable func

tions on (0,1). L-estimators SL= 8L(X1 , ... ,Xn) for estimating the centre 

of symmetry e are given by 

(6.1.3) 
-1 

n 

As in chapter 4 we shall suppose that 

n 

l 
i=l 

c. X. 
in i:n 
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(6.1.4) 

as n + 00 , 

(6.1.5) 

i i 
n n 

max le. - n f J 1 (s)ds f J 2 (s)dsl O(n-yl 

l$i$n in 
i-1 i-1 

n n 

with y > l (cf. assumption 4.1.1). We now add the assumption 
2 

-1 
n 

n 

l cin 
i=l 

for all n 2 1, by which we simply restrict attention to translation in

variant L-estimators. Without loss of generality we may therefore assume 

that 6 = 0. Probabilities are then denoted by PO. 

L-estimators for the centre of symmetry 6 which are - at least to first 

order - efficient are obtained if we choose 

(6.1.6) 

where 

(6.1.7) 

-1 -1 
J 1 (s) = -(I(f)) 1;; 2 (F (s)), 

0 < I (f) f 1/J~(x)dF(x) < oo 

0 < s < 1 

is the Fisher information number. Note that (6.1.6) and (6.1.7) together 

ensure that!~ J 1 (s)ds = 1 whenever 

(6.1.8) f 
(2) If (x) I dx < oo 

We also note that J 1 is symmetric around!. We add the assumption 

(6.1.9) O<s<l. 

Note that (6.1.4) and (6.1.5) together imply that!~ J 2 (s)ds 0. 

Define, for each n 2 1 and real x, 

(6.1.10) 

(6.1.11) 

L (x) 
n 

L (x) 
n 



where the quantities n1 , n2 and n3 are given by 

(6.1.12) 

(6.1.13) 

and 

(6.1.14) 

(I(f)J-2 • J l/J~(x)dF(x) 

I I 
2 

s3 (x)i,; 3 (y)(F(x)AF(y) - F(x)F(y)) 

-1 
• (f (x) f (y)) dxdy .. 
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THEOREM 6 .1.1. Let the assumptions (6 .1. 5) - (6 .1. 9) as well as the assump

tions of theorem 4.1.2 be satisfied. Then, 

(6.1.15) 
~ -1 

suplLn(x) - Ln(x) I = O(n ) , as n -+ "'· 

x 

PROOF. We begin by noting that the symmetry of F, J 1 and J 2 ensures that 

the quantitiesµ= µ(J,F) (cf. (.4.1.13)), a= a(J 1 ,J2 ,Fl (cf. (4.1.15)) 

and K3 = K3 (J 1 ,Fl (cf. (4.1.6)) are easily seen to be equal to zero. It 

follows, in view of theorem 4.1.2, that 

(6.1.16) 
K4 3 b -1 

<P(x) - ,P(x){ 24n (x - 3x) + n x} + O(n ) , as n -+- 00 

wj_th K 4 = K 4 (J,F) and b = b(J 1 ,J2 ,Fl as in (4.1.7) and (4.1.16). It remains 

to compute K4 and b. We start the computation by remarking that a simple 

integration by parts yields (cf. (4.1.2)) 

1 

(6.1.17) I -1 
J 1 (s) (X(O,s](u) - s)d F (s) 

0 

u 1 

I -1 
J 1 (s) sdF (s) - f -1 

J 1 (s) (1-s)d F (s) 

0 u 
-1 

F (u) 

-(I(f))-l f 
( 1) 

l/J 1 (x)F(x)dx + 

+ (I(f))-l 
J 

l/J~ 1) (x) (1 - F(x))dx 

-1 
F (u) 
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F-l (u) F-l (u) 

-1 I -(I(f)) lfJ 1 (x)F(x) + (I (f)) -1 f lfJ 1 (x)f(x)dx 

-1 
+(I(f)) lfJ 1 (x)(l-F(x)) + (I(f))-l f lfJ 1 (x) f (x) dx 

F-l (u) 

(I(f))-llfJ 1 (F-l(u))(l-u) + 

+ (I(f))-l f lfJ 1{x)f(x)dx = -(I(f))-ll/Jl(F-l(u)), 0 < u < 1, 

where we have used that 1:
00 

1/Jl (x)f(x)dx = 1:00 f(l) (x)dx = 0. It follows 

directly from (6.1.17), that 

(6.1.18) 

(6.1.19) 

1 

f h~(u)du = (I(f))-2 f 1/J~(x)dF(x) 
0 

1 

f h~(u)du = (I(f))-4 f 
0 

4 
lfJ 1 {x)dF(x) 

Similarly, after a number of tedious computations, we obtain (cf. (4.1.2), 

( 4 . 1. 3) and ( 4 • 1. 4) ) • 

1 

(6 .1.20) 

(6.1.21) 

(6 .1. 22) 

f f 
0 0 

(I(f))-4 •{-~ f 1/J~(x)dF(x) + <f 2 2 
lfJ 1 (x)dF(x))} 

1 1 

ff f h 1 (u)h 1 (v)h1 (w)h3 (u,v,w)dudvdw = 

0 0 0 

1 

4 
+-

3 
f 1jJ ~ (x) dF (x) } 

f f f h 1 (u)h1 (v)h 2 (u,w)h2 (v,w)dudvdw = 

0 0 0 
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co 

(I(f)}-4{ J ljl~(x)dF(x) - t J ljl~(x)dF(x) - ( J ljl~(x)dF(x)) 2 }. 
-co -co -co 

Combining all these results we have obtained, in view of the definition of 

K4 (cf. (4.1.7)), 

(6.1.23) 

where n1 and n2 are given in (6.1.12) and (6.1.13). Next we have to compute 

b. In the same way as above we can show that 

(6.1.24) 

(6.1.25) 

and 

(6.1.26) 

1 

1 

J h 1 (uJh2 (u,u)du = -
0 

1 1 

J J h 1 (uJh3 (u,v,v)dudv 

0 0 

-1 -1 -1 
(I(f)) (l;(F (0))+ l';(F (1))+ 2 

1 1 

J J 
0 0 

2 
h 2 Cu,v)dudv = 

co co 

= (I(f))-2 J J z;3(x)1';3(y) (F(x)AF(y)-F(x)F(y)} 2 (f(x)f(y))-ldxdy. 

1 

J h1 (uJh4 (u)du = 
0 

(I(f))-l J ljll (F-1 (u))h4 (u)du =· 

0 

(I(f))-l f J 2 (s) f ljll (F- 1 (u)} (X(O,s](u)-s)dudF-1(s) 

0 0 

1 

(I(f))-l J J 2 (s)ds 0. 

0 

where (6.1.26) is easily inferred from (6.1.6) and the fact that 

1 
! 0 J 2 (s)ds = 0. Combining these results we find that (cf. (4.1.16)). 

(6.1.27) 

where n3 is given in (6.1.14). This completes the proof. 0 
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The L-estimators considered in theorem 6.1.1 are efficient and a nat

ural competitor is of course the maximum likelihood estimator (MLE) SM 

SM(x1, ••• ,Xn) which solves the equation 

(6.1.28) 
n 

l 1/11 (Xi - SM) 
i=l 

0 

with 1/1 1 as in (6.1.1); note that SM is uniquely determined whenever the 

density is strongly unimodal; i.e. log f is concave. 

Define, for each n ;,: 1 and real x 

(6.1.29) 

and 

(6.1.30) M (x) 
n 

· xcj> (x) (n1-3> x2 
4>(x) + -n- {- _2_4_ + 72 (Snl - 12n2 + 9)}. 

THEOREM 6.1.2. (ALBERS, BICKEL & VAN ZWET (1976)). Suppose that f is posi-

tive, synunetric about zero and strongly unimodal and 

5 

(6.1.31) lim sup f 11/Jj (x+y) lj f(x)dx < 00 I 

y + 0 
-oo 

j 1, ... ,5. 

Then for every C > 0 

3 

sup IM (x) - M (xl I 
-2 

(6.1.32) 0(n ) I 

lxlsc n n 
n + oo. 

PROOF. see lemma 7 .1 of ALBERS, BICKEL & VAN ZWET. D 

HODGES and LEHMANN (1963) have introduced R-estimators SR= SR (X 1 , ••• , 

... ,Xn) derived from rank tests. Let 0 ~ z 1 s z 2 s .•. s zn be the ordered 

absolute values of x 1, ••• ,X and define V. = 1 if the X. corresponding to 
n J i 

Zj is positive and vj = 0 otherwise for j = 1,2, ••• ,n. Consider a vector 

of scores a= (a1 , .•. ,an) and let TR = TR (X 1 , ... ,Xn) be given by TR 
n 

Ej=l ajvj. We assume that the scores ai are non-negative and non-decreasing 

in j = 1,2, ••• ,n. Rank tests for the hypothesis S = 0 against S > O, which 

are based on TR with either a. =-El/i 1 (F- 1 (!(1+U. )) or a. =-l/J 1 (F-1 (!(1 +_j_1)), 
J J:n J n+ 

where Ul:ns .•• sun:n are order statistics from the uniform df on (0,1), are 

known to be first order efficient against contiguous location alternatives 

F(x-S), s = 0(n-!) (see, e.g., HAJEK & SIDAK (1967)). 
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From these results efficient R-estimators can be obtained by defining 

(6.1.33) 

n 

6R = l sup{t:2TR(x1-t, •.• ,xn-t) > l aJ.} 
j=1 

n 

+ l inf{t:2TRCx1-t, ••• ,x -tl < l a.} 
. n j=l. J 

i.e. 6R is the midpoint of the interval between the upper and lower 0.5 

confidence bounds for 6 induced by the rank tests TR. 

Define, for each n ~ 1 and real x, 

(6.1.34) R (x) 
n 

(6.1.35) .R (x) 
n 

n 2 

+ x4> (x) {-nl _ Ej=l cr ('!' 1 (Uj :n) l 

~(x) n 12 - 2I(f) - + 

2 

+ ~2 (5n 1 - 12n 2 + 9)} 

h U/ (t) '''1(F-1(1+2t)). were , 1 ='I' 

THEOREM 6.1.3. (ALBERS (1974)). Suppose that f is positive, symmetric about 

zero and strongly unimodal and such that 

co 

(6.1.36) J 
m. 

lim sup 11/1. (x+y) I Jf(x) dx 
y + 0 J 

-co 

< co, 

4 
with m1 = 6, m2 = 3, m3 = 3, m4 = 1, and 

'l'"(t) 

lim sup t(l-t) l-!--I < t 
t+0,1 '1'1 (t) 

(6.1.37) 

Then for every C > 0 

(6.1.38) sup IR (x) - R (x) I 
lxl~c n n 

-1 
O(n ) , 

PROOF. see lemma 5. 3 .1 of ALBERS ( 1974) . 0 

j 1, •.. ,4 

as n + 00 • 
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We are now in a position to compute deficiencies of L-estimators 8L with 

respect to MLE's 8M and R-estimators 8R. Since we are only considering esti

mators e that are distributed symmetrically about the centre of symmetry we 

may take (cf. ALBERS, BICKEL & VAN ZWET (1976)) the s-quantile s(8,s) of 

§ - 8, for any fixed ! < s < 1, as a measure of performance of the estimator 

e. For any fixed value of s, we define the deficiency d of a sequence of _ n,s 

estimators {§ 2 ,n} with respect to an estimator 8l,n by the equation 

(6.1.39) s(82 d ,s) ,n+ 
n,s 

s(e 1 ,sJ 
,n 

with the convention that s is determined by linear interpolation for non

integral values of n + d 
n,s 

Define 

(6 .1.40) d(L,M) 

and 

(6.1.41) 

n 2 
l:j=l cr ('I' 1 (Uj :n)) 

I (f) 

THEOREM 6.1.4(i). Let d (L,M) be the deficiency of any L-estimator (6.1.3) 
n,s 

satisfying (6.1.4) - (6.1.9) with respect to the maximum likelihood estimator 

for estimating 8 in F(x-8). Suppose that the assumption of the theorems 

6.1.1 and 6.1.2 are satisfied. Then, for ! < s < 1, 

(6.1.42) la (L,Ml - d(L,Ml I 
n,s 0 ( 1) ' as n ->- 00 

(ii) Let d (L,R) be the deficiency of any L-estimator (6.1.3) satisfying 
n,s 

(6.1.4) - (6.1.9) with respect to an efficient R-estimator 8R for estimating 

8 in F(x-8). Suppose that the assumptions of the theorems 6.1.1 and 6.1.3 

are satisfied. Then, for ~ < s < 1, 

(6.1.43) Id (L,R) - d (L,R) I 
n,s n 0 ( 1)' as n->-



PROOF.(i) Writing S and S for SL and SM we see that for some~ 
L,n M,n 

(6.1.44) 

(6.1.45) 
-1 

s + O(n ) 
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as n + oo. The theorems 6.1.1 and 6.1.2 now provide expansions for the probab-

ilities in (6.1.44) and (6.1.45). To find d we replace n by n + d and 
_1 1 n,s n,s 

x by i;(l+d n ) 2 in the expansion L (cf. (6.1.11)) and equate the result 
n,s n 

to the expansion M (cf. (6.1.30)) in the point x = i;. Taylor expansion with 

-1 n -1 ! 
respect to dnn in L +d (I; ( 1 + d n ) l yields 

n n,s n,s 

(6.1.46) 
-1 ! 

L d (I; ( 1 + d n ) ) 
n+ n 

n,s 

-1 
+ o (n ) , as n + 00 • 

Relation (6.1.42) now follows after some simple algebra. 

(ii) Relation (6.1.43) follows similar, now using the theorems 6,1.1 and 

6.1.3. D 

We remark that the asymptotic expressions d(L,M) and d (L,R) are inde
n 

pendent of s. Thus, to the order 0(1), the deficiencies d (L,M) and 
n,s 

d (L,R) are asymptotically independent of the particular choice of the 
n,s 

quantile used to measure the performance of the estimators. Another inter-

esting property of the asymptotic expressions (6.1.40) and (6.1.41) is that 

they are independent of the weight func~ion J 2 . The reason for this pheno

menon is of course that the expression Ln does not depend on J 2 (cf. 

(6.1.26)). 

We now briefly reconsider the various types of weights discussed in 

section 4.1 and show how our results apply. L-estimators SL with weights of 

the form 

i 
n 

(6.1.47) c. n f J 1 (s)ds 
in 

i-1 
n 
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or 

(6 .1.48) 

(cf. (4.1.21) and (4.1.22)) are translation invariant, whenever J 1 is chosen 

according to (6.1.6). Also note that the function J 2 , determined by the re

lation (6.1.4), is symmetric around~ in each of these two cases. L-estima-

tors 6L with weights of the form 

(6.1.49) 

or 

(6.1.50) 

c. 
in 

J (!.) 
1 n 

(cf. (4.1.19) and (4.1.20)), on the other hand, are not translation invdriant 

whereas in the case (6.1.50) the function J 2 (cf. (4.1.24)) is not symmetric 

around ~. However these L-estimators are easily modified to satisfy the re

quirements of translation invari.ance and symmetry of the weight functions 

involved. 

It follows from theorem 6.1.4 that L-estimators with weights of the form 

(6.1.47) and (6.1.48) have asymptotic deficiency zero with respect to each 

other. The same result does not hold for L-estimators with weights of the 

form (6.1.49) and (6.1.50). We should note however that, after due modifi

cation, the asymptotic deficiency will be zero with respect to each other 

for L-estimators with these type of weights as well. 

To conclude this section let us give one example of theorem 6.1.4. We 

consider the problem of estimating the centre 6 of the logistic distribution 

(6.1.51) F(x - 6) 
-(x-6) -1 

[1 + e ] , -oo < x < 

We compare first-order efficient translation invariant L-estimators 6L 

6L(x1 , ••• ,Xn) given by the weight function 

(6.1.52) 6s(l-s), 0 < s < 1, 
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with the maximum likelihood estimator eM = eMcx1 , ••• ,Xn)' which is the solu

tion of equation (6.1.28), where $1 (x) = tanh(x/2). We also compare SL with 

the first order efficient Hodges-Lehmann R-estimator SR= 9R(X1 , ••• ,Xn), 

which is in this case given by 

(6.1.53) SR•'! median {(X. +X,)} 
l:Si,j:Sn l. J 

As the assumptions of theorem 6.1.4 are satisfied in this case we. find after 

a number of computations 

(6.1.54) 

(6.1.55) 

d(L,M) = 2(10-112)- 0.2 ~ 0,06 

d (L,R) = 2(10-112)- 0.5 ~ - 0,24 • 
n 

6.2. THE ASYMMETRIC LOCATION PROBLEM 

Let x1 ,x2 , ••• be i.i.d. rv's with df F(x-9), where Fis known and has 

a density f that is positive on R'. In the previous section we investigated 

the higher order performance of efficient L-estimators of e in the case of 

a symmetric distribution. Here we consider briefly what happens if the dis

tribution F is no longer symmetric. In this asymmetric case we shall compare 

efficient L-estimators of the location parameter e to the maximum likelihood 

estimator of e. 

The purpose of this section is to show that the Edgeworth expansions 

of the df's of efficient L-estimators and of the maximum likelihood estima

tor agree not only in their leading terms of order 1 but also in their sec

ond order terms of order n-!, provided these estimators are adjusted in such 

a way that they are median-unbiased to order O(n-i). It is only in the third 

order terms of order n-l that differences begin to show up. This phenomenon 

"first order efficiency implies second order efficiency" was shown to hold 

for estimators admitting a certain stochastic expansion by PFANZAGL (1973; 

(197~. (see also CHIBISOV (1972)). We shall prove that the same phenomenon 

holds true for adjusted L-estimators of the form 

(6.2.1) 
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-1 n 
where eL = n l:i=l cinxi:n (cf. (6.1.3)) andµ= µ(J 1 ,F), a= a(J 1,J2,F), 

2 2 
a =a (J,F) and K3 = K3 (J 1 ,Fl are defined in (4.1.13), (4.1.15), (4.1.8) 

and (4 .1.6) • 

As in section 6.1 J 1 and J 2 are bounded real-valued measurable functions and 

we again suppose that the assumptions (6.1.4) - (6.1.8) are satisfied. Of 

course J 1 and J 2 are no longer symmetric. Let 

3 00 

-- r 
n4 = (I(f)) 2 J ijJ~(x)dF(x) (6. 2 .2) 

where I(f) and ip 1 are defined in (6.1.7) and (6.1.1). 

THEOREM 6.2. Let the assumptions (6.1.5) - (6.1.8) as well as the assumptions 

of theorem 4.1.2 be satisfied. Then, 

l~ n4 2 I 

(6.2.3) supJPO({(n(I(f))) 2 6L :S; x}) - <!> (x) + ~ x ~(x) I O(n- 2 ) 

x 12n 2 

as n -+ 00 

PROOF. From the construction of 8L it follows that 

(6.2.4) 

:S; x + 
l -1 K30 

(n(I(f))) 2 (µ - n (acr + ~6~)}) 

where in the last line we have used the fact that eL is first order effi

cient. Theorem 4.1.2 now provides an expansion for the probabilities in 

(6.2.4). 

(6.2.5) 

_! _! 
an 2 } + o (n 2 ) 

as n -+ 00 • 



It remains to compute K3 . To begin with we use (6.1.17) to see that 

1 

(6. 2 .6) f 3 -3 
h 1 (u)du = -(I(f)) f lj!~(x)dF(x) 

0 
where h 1 and lj! 1 are defined in (4.1.2) and (6.1.1). Secondly, we remark 

that 

(6.2. 7) 

1 

3 f f h 1 (u)h1 (v)h2 (u,v)dudv = 

0 0 

1 1 

-3(I(f))-2 f J~l)(s){f 1J! 1 (F-1 (u))(x(O,s](u)-s)du} 2dF-1 (s) 

0 0 

1 

-3(I(f)) -2 I J~l) (s) f(F-l (s) )ds 

0 
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where we have used a simple integration by parts in the third line. Again 

applying integration by parts we see that (cf. (6.1.6)) 

1 

(6.2.8) f (1) -1 -1 f (2) 
- J 1 (s)f(F (s))ds = (I(f)) 1J! 1 (x)dF(x) 

0 

(I(f))-llj!~l) (x)f(x) [,, - (I(f))-l f 1/Jil) (x)f(l) (x)dx = 

(I(f))-l f f(l) (x)f(2) (x) f(x)dx = (I(f))-1 f 
f2(x) 1/11 (x)1/J2(x)dF(x) 

Hr(f))-l f 1/J~(x)dF(x) 

where 1J! 1 and1J! 2 are defined in (6.1.1). Combining (6.2.6), (6.2.8) with 

(6.1.18) we find, in view of the formula for K3 (cf. (4.1.6)) 

n4 
K3 = T (6.2.9) 
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This completes the proof of (6.2.3). 0 

We remark that in theorem 6.2 we have established the second order term 
_! 

of order n 2 of the Edgeworth expansion for the adjusted L-estimator SL. 
_! 

Note that SL is median-unbiased up to an error O(n 2 ); i.e. 

(6.2.10) as n + 

_! 
We also remark that (6.2.3) and (6.2.10) even holds with O(n 2 ) replaced by 

-1 _! -1 
0(n ) . The corresponding relation with O(n 2 ) replaced by O(n ) does not 

hold true anymore in general. Because, to the order considered, the expan

sion (6.2.3) coincides with the Edgeworth expansion for the "adjusted" maxi

mum likelihood estimator 8 for 8 (see PFANZAGL (1973) p. 1006-1007), the 
! ~ M ! ~ 

df's of (nI(f)) 2 (8L-8) and (nI(f)) 2 (8M-8) agree not only in their leading 

terms but also in their second order terms. Using formal expansions only 

TAKEUCHI and AKAHIRA (1976) arrived at the same result. 
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CHAPTER 7 

FINITE SAMPLE COMPUTATIONS 

In the chapters 4 and 5 we derived asymptotic expansions for the df's 

of linear combinations of order statistics under various sets of conditions. 

In the sections 7.1 and 7.2 we investigate the performance of these expan

sions as approximations for the finite sample distributions. In particular 

we compare these expansions with the usual normal approximation. 

7.1. AN L-ESTIMATOR FOR LOGISTIC LOCATION 

In this section we consider (cf. example 1.2.3) the L-estimator 

(7 .1.1) T 
n 

-1 
= 6n 

n 
l i (1 __!___) x 

i=l n+l - n+l i:n 

in the case of the logistic distribution F(x) 

From section 4.1. we know that 

-x -1 
(1 + e ) for -oo < x < 

(7 .1.2) _!_)X. ::; x}) 
n+l i:n 

[ 1 3 ( 1 L'1l 2 ; ] -1 
<I> (x) - <P (x) 20n (x - 3x) + --n- x + o (n ) 

as n + 00 • We shall investigate how well the exact df is approximated by the 

expansion in (7.1.2) for small samples. We shall also compare this approxi

mation with the usual normal approximation. For sample sizes n = 3 and n = 4 

we have computed the multiple integrals involved in the computation of the 

exact df. For larger sample sizes the amount of computation that is neces

sary for this method becomes prohibitive and we have relied on Monte-Carlo 

simulation. For sample sizes n = 3,4,10 and 25 we have performed a Monte

Carlo estimation based on 25.000 samples. The agreement between the results 

from the numerical integration and the Monte-Carlo results for 
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sample sizes n = 3 and n = 4 was satisfactory. The results of the simulation 

are given in the following table. We give the Monte-Carlo estimate G for 
n 

the exact df in (7.1.2), the expansion Gn and the normal approximation, for 

n = 3,4,10,25 and various values of the argument. 

TABLE 7.1 

x 

0.0 .5000 .5000 .5000 .5000 .5000 .5000 .4991 .5000 .5000 

0.2 .5640 .5536 .5663 .5601 .5734 0 5716 .5758 -5762 .5793 

0.4 .6262 .6069 .6307 .6190 .6445 0 6409 .6492 .6495 .6554 

0.6 .6850 .6592 .6919 .6759 .7089 0 7058 .7152 • 7177 .7257 

0.8 .7391 • 7100 .7469 .7318 .7680 0 7647 • 7728 • 7788 .7881 

1.0 .7875 • 7583 • 7963 • 7790 .8196 I 
0 8164 .8295 .8314 .8413 

1.2 .8248 .8032 .8391 .8236 .8629 -8604 .8756 .8752 .8849 

1.4 .8658 .8439 .8752 .8627 .8985 0 8966 .9100 .9102 .9192 

1.6 .8958 .8797 .9049 .8960 .9275 0 9256 .9376 .9374 .9452 

1.8 .9202 .9100 .9287 .9234 .9486 0 9478 .9580 .9576 .9641 

2.0 .9397 .9347 .9474 .9454 .9646 ·9645 .9732 -9711 .9772 

2.2 .9550 .9543 .9618 .9622 .9764 0 9766 .9830 -9824 .9861 

2.4 .9669 .9691 .9726 .9748 .9845 ·9850 .9895 0 9890 .9918 

2.6 .9758 .9798 .9807 .9837 .9905 ·9907 .9942 .9934 .9953 

2.8 .9825 .9873 .9865 .9899 .9937 .9945 .9963 0 9963 .9974 

3.0 .9875 .9863 .9907 .9939 .9959 ·9968 .9982 .9979 .9987 

Inspection of this table shows that the agreement between the estimat

ed exact df Gn and the expansion Gn (cf. (7.1.2)) is already quite reason

able for n = 3. It also shows that the expansion performs much better than 

the normal approximation as approximations of the finite sample exact df's. 

7.2. GINI'S MEAN DIFFERENCE FOR THE UNIFORM DISTRIBUTION 

In the previous section we have investigated a case in which there is 

no n-! term present in the expansion. It seems of interest to consider also 

situations where a n-!-term has to be taken into account. As an example in 

which this is the case we consider Gini 's mean difference ( cf. example 1. 2. 4; 

which is given by 
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(7.2.1) T = 4(n+1) ~ i 1 
n n(n-1) i:l <n+1 - 2)Xi:n 

in case of the uniform distribution F(x) 

we know that 

x for 0 ~ x ~ 1. From section 4.1 

(7 .2 .2) P({3.5!nl c4 (n+l) I (_i_ - .!..ix. - .!..i ~ x}) 
n(n-1) i=l n+1 2 i:n 3 

<11 (x) - .p (x) lr ~(x2-1> + - 1-cx3-3xl + .J:..Q_(x5-1ox3 +15xl + ±. x] + 

21n~ 28n 441n n 

as n + ~. For sample size n = 3 the exact df is easily obtained. For sample 

sizes n = 3,4,10 and 25 we have performed a Monte-Carlo simulation based on 

25.000 samples. The agreement between the exact df and the Monte-Carlo re

sult for n = 3 was satisfactory. The results of the simulation are given in 

table 7.2. Again G denotes the Monte-Carlo estimate of the exact df in 

- ~ -~ -1 

(7.2.2); G 1 and G 2 are the expansion with remainder O(n ) and O(n ) 
n, n, 

respectively. Inspection of this table shows that already for sample size 

n = 3 the expansion G 2 performs better than the expansion G 1 and the 
n, n, 

normal approximation. 
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x G3 G3,1 G3,2 G4 G4, 1 

-3.0 .0332 .0057 .0155 .0277 .0051 

-2.6 .0715 .0143 .0394 .0548 .0130 

-2.2 .1132 .0307 .0844 .0884 .0284 

-1.8 .1744 .0577 .1528 .1339 .0548 

-1.4 .2358 .0984 .2356 .1926 .0961 

-1.0 .3035 .1587 .3142 .2639 .1587 

-0.6 .3760 .2480 .3750 .3451 .2515 

-0.2 .4522 .3746 .4240 .4360 .3808 

0 .4922 .4509 .4509 .4818 .4575 

0.2 .5335 .5331 .4837 .5306 .5393 

0.6 .6113 .6995 .5725 .6191 • 7030 

1.0 .6869 .8413 .6858 .7095 .8413 

1.4 .7583 .9369 .7998 .7957 .9345 

2.8 .8210 .9858 .8907 .8706 .9829 

2.2 .8774 1.003 .9491 .9310 1.001 

2.6 .9254 1.005 .9798 .9682 1.004 

3.0 .9642 1.003 .9932 .9868 1.002 

TABLE 7.2 

~ ~ ~ 

G4,2 GlO GlO, 1 GlO 2 

.0125 .0093 .0037 .0067 

.0318 .0212 .0099 .0175 

.0687 .0417 .0231 .0392 

.1261 .0752 .0478 .0764 

.1989 .1281 .0904 .1316 

.2753 .2029 .1587 .2053 

.3468 .2983 .2599 .2980 

.4178 ._4104 .3955 .4103 

.4575 .4730 .4731 .4731 

.5022 .5390 .5540 .5392 

.6078 .6684 .7114 .6733 

• 7247 .7868 .8413 .7947 

.8317 .8770 .9289 .8878 

.9115 .9409 .9760 .9474 

.9603 .9781 .9953 .9791 

.9848 .9936 1.001 .9931 

.9951 .9988 1.001 .9981 

- ~ 

G25 G25 1 

.0046 .0029 

.0116 .0080 

.0251 .0197 

.0525 .0435 

.1006 .0869 

.1755 .1587 

.2810 .2652 

.4151 .4048 

.4858 .4830 

.5571 .5633 

.7027 .7167 

.8211 .8413 

.9088 .9254 

.9602 .9716 

.9862 .99f9 

.9957 .9987 

.9994 1.000 

~ 

G 
25 2 

.0040 

.0110 

.0262 

.0549 

.1033 

.1773 

.2804 

.4107 

.4830 

.5573 

.7014 

.8227 

.9089 

.9602 

.9854 

.9957 

.9990 

cp 

.0013 

.0047 

.0139 

.0359 

.0808 

.1587 

.2743 

.4207 

.5000 

.5793 

.7257 

.8413 

.9192 

.9641 

.9861 

.9953 

.9987 

I 
' 

...... 
"-' 
Cl\ 
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