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INTRODUCTION 

The spectral theorem for bounded selfadjoint (and normal) operators in 

a Hilbert space is a classical result that can be proved in many ways. The 

most interesting proof is certainly that which makes use of the theory of 

* C -algebras. This algebraic approach to spectral theory is very powerful!: 

many theorems can be proved in a relatively simple way. 

The spectral theorem for an unbounded selfadjoint operator is usually 

derived from the corresponding theorem for bounded operators. An algebraic 

spectral theory for unbounded operators was not available. 

It is our aim to fill up this gap in the theory. 

The idea is the following. Instead of considering unbounded operators 

in a Hilbert space, we consider these operators in a suitable locally 

convex space in which they act continuously. 

This idea is very well-known in the theory of partial differential operators. 

Instead of considering a partial differential operator in an L2-space, one 

considers this operator in a space of test functions or in a space of 

distributions (or in a chain of Sobolev spaces). In an abstract form this 

idea was already used by J. SEBASTIAO E SILVA [31] 

So we were led to consider algebras of continuous operators in a locally 

convex space. In this way locally convex algebras enter into the picture. 

Locally convex algebras were examined by many authors. We mention the 

work of WAELBROECK [33], MARINESCU [18], NEUBAUER [21], ALLAN [l] and [3], 

DIXON [7] and MOORE [20]. 

L. WAELBROECK [33] developed a functional calculus for elements of a locally 

convex algebra. The notion of boundedness plays an important role in Wael­

broeck' s work. 

G. R. ALLAN [1] introduced the notion of a bounded element of a locally 

convex algebra. He took this notion as a starting point for a spectral theory 

for locally convex algebras. Furthermore, Allan introduced a new type of 

locally convex algebras, namely the GB*-algebra (cf. Allan [3]), which is a 
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* locally convex analogon of a C -algebra. Allan developed a Gelfand theory 
* for commutative GB -algebras. Further investigations were made by 

P. G. DIXON [7]. 

* In this thesis we shall show how the theory of GB -algebras can be 
applied to the spectral theory of unbounded selfadjoint operators in a 
Hilbert space. We were inspired by the work of MOORE [20], who studied 
spectral theory of operators in a locally convex space and who used formally 
the same methods as Allan did. 

In Chapter 1 we develop the framework which is needed in order to apply 
the theory of Allan. 

Let H0 be a Hilbert space and let T be an unbounded selfadjoint operator in 
H0 with dense domain D(T). Then we consider the space 

This space can be equipped with a locally convex topology such that 

T : H00 --->- H00 is continuous. The relation between the spaces H0 and H00 is 
studied. Here triples and chains of Hilbert spaces play a central role. 

In Chapter 2 we give a brief survey of Allan's theory on locally 
convex algebras. In particular attedtion is paid to the Gelfand theory for 

* commutative GB -algebras. 

In Chapter 3 the results of Chapter 1 and 2 are applied in order to 
obtain an algebraic spectral theory for unbounded selfadjoint operators. 
The idea is as follows. 

Let T be an unbounded selfadjoint operator in a Hilbert space H0 • We con­
sider T as an element of L(H00), the algebra of all continuous linear 

operators in H00 , and we prove that the bicommutant of T in L(H00 ) is a 
commutative GB*-algebra. Then we study the spectral theory of this algebra. 
Among other things we obtain a spectral representation theorem for elements 
of the bicommutant of T. This result is used to derive the spectral theorem 
for unbounded normal operators in a Hilbert space (Cor. 3.5.6). An applica­
tion of the theory is given in section 3.6 where we study the spectrum of 

tensor product operators. 

In this context we mention the work of POWERS [24], [25] and POULSEN [26] 
who studied the representation theory of algebras of unbounded operators. 
There is some resemblance between their methods and the techniques that we 

use in Chapter 3. 

The second main theme of this thesis is formed by an algebraic theory 

of generalized eigenvectors (Chapters 4 and 5). 
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In Chapter 4 we have collected some well-known facts which are need in 

Chapter 5 (direct integrals of Hilbert spaces and disintegration of measures). 

In Chapter 5 we are interested in generalized eigenprojections and 

generalized eigenvectors associated with a spectral measure. Our starting 

point is the well-known theorem due to VON NEUMANN concerning the direct 

integral decomposition of a Hilbert space with respect to a spectral measure. 

The central result describes the relation between the generalized eigen­

vectors corresponding to a spectral measure E(.) and the generalized eigen­

vectors corresponding to a spectral measure F(.) which is the image of E(.) 

under some continuous mapping. We indicate how this result can be applied 

to tensor product operators. 

Notation 

The identity operator in a linear space is denoted by I. 

If T is a linear operator, then 

D(T) denotes the domain of T and 

R(T) denotes the range of T. 





CHAPTER I 

TRIPLES AND CHAINS OF HILBERT SPACES 

In this chapter we consider triples and chains of Hilbert spaces. 

The first section is introductory; here we introduce the notion of a anti­

dual space and the notions of right and left anti-transposed maps. 

In section 1.2 the definition of a triple of Hilbert spaces is given. This 

concept is related to that of a space with "negative norm" which was intro­

duced by LAX [14]. In theorem 1.2.4 we give a characterization of triples. 

In section 1.3 we consider selfadjoint operators related to a triple. We 

make use of a theorem due to BEREZANSKII for which we give a new proof 

(cf. Theorem 1.3.1). The main result of this section is Theorem 1.3.4. 

The definition of a chain of Hilbert spaces is presented in section 1.4. 

Informally speaking one can say that a chain is built up by triples. Another 

definition of a chain of Hilbert spaces is given by PALAIS ([22], eh.VIII, 

§1). PALAIS' definition is more general, but it is not as rich as our defin­

ition. The main result of section 1.4 is Theorem 1.4.3, which is an 

extension of Theorem 1.3.4. 

In section 1.5 we introduce the limit spaces associated with a chain and we 

study the duality in a chain. In theorem 1.5.2 we establish the anti-duality 

between the limit spaces. 

Finally,in section 1.7 tensor products of triples and chains are studied. 

The results of this chapter will be used in Chapter 3 where we consider 

algebras of unbounded operators. 

1.1 ANTI-DUAL SPACES 

Let Ebe a Hilbert space over C with inner product (.,.)E and norm 

II . I~. The linear space of all continuous anti-linear mappings f : E -+ IC is 

called the anti-dual space of E and is denoted by E'. The canonical mapping 

~E : E -+ E' is defined by 
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(u,vEE). 

By the representation theorem of RIESZ, $E is surjective. Furthermore, E' is 

a Hilbert space with inner product 

(u,v E E). 

So $E is a linear isometry onto. 

Let E" be the anti-dual of E'. If we define yE E + E" by 

( f E E 1 , u E E) , 

then yE is also a linear isometry onto. 

Let F be another Hilbert space over IC. The space of all continuous linear 

mappings from E into Fis denoted by L(E,F). For TE L(E,F) the a:nti-tra:ns­
posed T' of T is the map T' : F' + E' defined by 

T' (f) f o T 

1.1.1 LEMMA. Let Ebe a Hilbert space. Then 
(i) $E-' --($;1) t' 

(ii) YE $E,$E. 

PROOF. 

(f E F'). 

(i) Take f,g EE'. Then f = $E(u) and g = $E(v) for some u,v EE. Then 

($E' (f)) (g) = (f,g)E' = (u,v)E. On the other hand, 

($~l) 1 (f)(g) = f($~1(g)) = ($E(u))(v) = (u,v)E. So $E' = ($; 1i'. 

(ii) Let u EE and f EE'. Then f = $E(v) for some v EE. Then 

(yE(u)) (f) = f(u) = $E(v) (u) = (u,v)E and 

($E,$E) (u) (f) = ($E(u) ,f)E' = (u,v)E. So yE = $E,$E. D 

Many theorems for dual spaces and transposed maps also hold for anti­

dual spaces and and anti-transposed maps. 

The following lemma is easily proved. 

1.1. 2 

(i) 

LEMMA. Let E and F be Hilbert spaces and let TE L(E,F). 
-1 -1 If T exists a:nd belongs to L(F,E), then (T') exists a:nd 
-1 -1 I -1 (T'l E L(E',F'); moreover (T ) = (T') • 



(ii) Let T" 

(iii) Let T* 

-1 
E" + F" be the anti-transposed of T'; then T" = y FTy E • 

F +Ebe the Hilbert space ad.joint of T; then T* = $;1T 1 $F. 

1.1.3 DEFINITION. Let E and F be Hilbert spaces and let TE L(E,F). The 

left anti-transposed of T is the map Tl : F' + E defined by 

and the right anti-transposed of T is the map T' 
ft 

F + E' defined by 

1.1.4 LEMMA. Let E and F be Hilbert spaces and let TE L(E,F). Then 

(i} 

I I 

(ii) (T') = (T') 
l l ft ft 

(iii) * (T,e_> $FT and (T') * = T$;l. 
JI,, 

PROOF. We prove the first statement. 
-1 

Since T! = $E T' : 
I 1 I 

(Tl)ft = ($; T') $E 

• 
F' + E, we have (Tt)ft 

T" ($-1) I$ 
E E 

T"$E,$E 

T"yE 

yFT 

(apply 1.1.1 and 1.1.2). 

E + F" and 

The remaining statements are proved in the same way. D 

1.1.5 LEMMA. Let E and F be Hilbert spaces and let TE L(E,F). Then 

* * TT (T~) T~ 

and 
* * TT (Tt) (T,e_> 

PROOF. (T')*T• = T$-lT 1 $ * (apply 1.1.4 and 1.1.2). D TT 
ft ft E F 

3 
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1.2 TRIPLES OF HILBERT SPACES 

As an introduction to our definition of triple (Def. 1.2.1) we consider 

the following situation (cf. BEREZANSKII [4], Chapter 1 and LAx [14]). 

Let H0 be a Hilbert space (with inner product ( • , • ) 0 and norm II • 11 0 ) 

and let H1 be a dense linear subspace of H0 which is itself a Hilbert space 

with inner product (.,.) 1 and.norm II. 11 1 such th«t II u 11 0 s II u 11 1 for all 

U E H1• Let 

be the inclusion map. We introduce a third space H_1 and an embedding 

j : H0 <:.+- H_ 1 as follows. 

Let H_ 1 be the anti-dual space of H1 and let $ : H1 ~ H_1 be the canonical 
* -1 map, i.e. ($(u)) (v) = (u,v\ (u,v e H1). Then $ is unitary, so $ = $ 

Define j : H0 ~ H_1 by 

(j (f)) (u) : = (f ,iu) 0 

* Then (jf) (u) = (f ,iu) 0 = (i f ,u) 1 
* -1 * (recall that$ = $ ). Hence ii 

($i*f> (u). So j 

j *j. 

* * $i and i = j $ 

Since i is injective and R(i) is dense, it follows that R(j) is dense and 

that j is injective. So we can identify H0 (as a linear space) with the 

linear subspace j.(H0 ) of H_1• If f E H0 , then 

I Cf,iul 0 I 
11ull1 

Hence H_1 can be considered as the completion of H0 with respect to the so 

called "negative norm" fi+ lljf 11_ 1 (cf. LAx [14]). 

Now H1 J.. H0 cl. H_1 is called a triple of Hilbert spaces. We shall give 

another definition of this concept and we prove that our definition is 

equivalent to the one giveP- above. 

1.2.1 DEFINITION. Let E, F and G be Hilbert spaces and let i : E c:.+ F and 

j : F <:.+- G be dense embeddings of norm S1 (injective operators with dense 

range) • Then 

E~ Fd G 

is called a tPipZe of HiZbePt spaaes if ii* ·*· J ). 
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1.2.2 PROPOSITION. If E ci F ci G is a triple of Hilbert spaces then there 

exists a unique isometry 

V : G -----!> E 

from G onto E such that Vj ·* J • 

PROOF. Let a,S E R(j). If a= jf and S =jg with f,g E F, then 

* * * * (i f,i g)E = (f,ii g)F = (f,j jg)F = (jf,jg)G = (a,S)G. 

Hence the map i*j-l : R(j) ~ E can be extended to an isometry V from G onto 

* * E (Vis surjective since R(i) is dense in E).Clearly Vj = i Furthermore, 

iV(a) = iVj(f) = ii*(f) = fj(f) = fCa). So iV= j*. The uniqueness of Vis clear. D 

COROLLARY. If E ci F ci G is a triple, then R(i) = R(j*). 

1.2.3 ExAMPLES. Let E, F and G be Hilbert spaces and let i : E c.+ F and 

j : F c.+ G be dense embeddings (of norm 51). Then one can form the following 

three standard triples. 

* 
a) E c:.S. F c:.S. E 1 

•I 
. ].I!. 

b) E 2.+ F c.....,. E', 

c) G' 
jl 

c....+ F c.L G. 

In example a) we have V = I • In b) we have V 

* Inc) we have V = $G (since $Gj = (jf) ). 

* (i lr_l ) • 

Now we come to the main result which gives a characterization of 

triples. 

1.2.4 THEOREM. Let E c::i F c:1 G be a triple of Hilbert spaces. This triple 

can be reduced to any of the three standard triples of 1.2.3. This means 

that there exist unique unitary maps 

v 
'I' 

and <I> 

G ~EI 

G~E' 

E~G' 

such that (with the notation of 1.2.3) 

* Vj i 

'l'j i Jr. 

and i jl<I> 

Moreover, 'I' = $EV and <I> 
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~The existence of V follows from 1.2.2. The mappings V and~ are 

defined by 

and 

It is easily verified that Vj = i~ and that jl~ = i. D 

1.2.5 DEFINITION. Let E c:1 F c:1 G be a triple of Hilbert spaces. Let v, ~ 
and ~be as in 1.2.4. We define a sesquilinear form (.,.) on E x Gas 

follows. 

For u E E and a E G (so Va E E') we define 

(u,a) = (Va) (u) • 

Then (.,.) is a continuous sesquilinear form on Ex G and 

ICu,all ~II u llE II a llG (u E E, a E G). 

REMARK. Note that 

(u,a) (Va) Cul 

-1 
(V u,a)G 

(~u) (a) • 

If a= jf (a E G, f E F), then (u,a) reduces to the inner product (iu,f)F 

of iu and f in F. Indeed, 

* (u,a) = (u,Va)E = (u,i f)E = (iu,f)F. 

So if i and j are considered as identifications, one can say that (u,a) 

reduces to the inner product in F in the case that a E F. 



1.3 SELFADJOINT OPERATORS ASSOCIATED WITH A TRIPLE 

We start with a simple lemma. 

1. 3 .1 LEMMA. Let H be a Hi"lbe!'t spaae and Zet T : H + H be a bounded 

hermiti~rator with o s T s I whiah means O s (Tx,x) s 11x11 2 for aZZ 

x € H. Suppose T is injeative and has dense range. Then T-l is a densely 

defined operator with D(T-l) = R(T) and T-l is a seZfadJoint operator ~I, 
i, e. (T-lx,x) ~ JI x IJ 2 for aU x € D(T-l). 

PROOF. If x,y € R(T) and x Tz, y = Tw, then 
-1 -1 

(T x,y) = (z,Tw) = (Tz,w) (x,T y). 

So T-l is symmetric (T-l c (T- 1>*). 
Suppose that for some y and w we have (T-1x,y) = (x,w) for all x € D(T-1). 

-1 -1 -1 Since T is surjective, w = T z for some z € R(T). So (T x,y) = 
-1 -1 -1 -1 = (x,T z) = (T x,z), since T is symmetric. Hence y = z € D(T ). This 

means that T-l is selfadjoint. Since T ~ O, it follows that 

(Tx,Tx) s II T II (Tx,x). Since 0 s T s I we have II T II s 1. Thus 
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(Tx,Tx) s (Tx,x) for all x € H. Hence (T-1x,x) ~ 11x11 2 for all x E D(T-l). 0 

Now let E and F be Hilbert spaces and let i : E ~ F be a dense 

embedding of norms 1. Then ii* : F +Fis an hermitian operator with 

0 s ii* s I. From the spectral theory for bounded hermitians operators it 

follows that ii* has a unique positive square root (ii*)~. 
Then (ii*)~ satis,fies the conditions of lemma 1.3.1. Hence 

is a selfadjoint operator~ I. And A2 = (ii*)-1 • Indeed, if x € D(A2) and 

y = Ax and z = Ay = A2x, then x = (ii*)~y and y = (ii*)~z, so x = (ii*)z 
2 * -1 and A x = (ii ) x. 2 * -1 Since A, A and (ii ) are injective operators with 

range F, if follows that A2 = (ii*)-1 • 

The linear space D(A) equipped with the norm 

f I-+- II Af llF 

is denoted by D. Then D(A2) is dense in D. This can be seen as follows. 
2 Suppose f €Dis orthogonal (in D) to D(A ); then (Af,Ag)F 0 for all 

g € D(A2). Since R(A2) = D(ii*) = F, it follows that f = 0. 
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The definition of A also appears in BEREZANSKII ([4], Chapter 1). The 
next theorem can also be found in BEREZANSKII. The proof in [4] is complic­

ated and makes use of the spectral theorem for unbounded selfadjoint 
operators; our proof is more di:t·ect. 'l'he uniqueness (cf. 1.3.2) is not 

proved in [ 4). 

1,3.2 THEOREM. R(i) = D(A) and Ai : E +Fis an isometry from E onto F. 
T'he seZfadjoint positive operator A is uniquely determined by these 
properties. 

PROOF. Let f,g E R(ii*) = D(A2). Then 

(Af ,Ag) F 
2 

(A f,g)F * -1 ((ii ) f,g)F 
-1 -1 

(i f,i g)E. 

So the mapping 

u I--+- iu 

is an isometry. Since R(i*) is dense in E and D(A2) is dense in D, it 
follows that i : R(i*) + D(A2) can be extended continuously to an isometry 
i 1 from E onto D. We show that this isometrical extension i 1 coincides with 
the map i when D is considered as a subset of F. For the moment let 

i 0 : D c+ F be the inclusion map. Then 

for all u E R(i *) c E. Since R(i *) is dense in E, it follows that i 0i 1 i. 

This means that R(i) = D(A) and that Ai : E + F is an isometry. 

The uniqueness is proved as follows. Let B be another selfadjoint positive 
operator in F such that R(i) = D(B) and Bi : E + F is an isometry from E 
onto F. 

If iu E D(A2J, then 

(Biu,Biv)F (Aiu,Aiv)F ( 2. . ) A iu,iv F 

for all v E E. So 
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* for all f E R(i) = D(B). This means that Biu E D(B) = D(B) and that 

B2iu = A2iu. So A2 c B2 • Since A2 and B2 are both selfadjoint, we conclude 

that A2 = B2 • Hence (B-1 ) 2 = (B2)-l ii*. Since B-l is the positive square 
-2 

root of B , it follows that A = B. D 

REMARK. Note that we did not use the spectral theorem for unbounded self­

adjoint operators. 

Now we consider the triple 

. ·* 
E~F~E 

Let B0 be the operator 

R(i*) and 

is an isometry from F onto E. 

* 1.3.3 LEMMA. The operator B0 i Ai is the identity operator on E and 
* * i Ai = B0 i i. 

* PROOF. The operator i Ai is a bounded hermitian operator in E and it is 

't' Ad c·*A') 2 ·*A· ·*A· ·*. - 2 s· -l . th .. posi. i.ve. n i. i. = i. i.i. i. = i. i. = B0 ince B0 is e positive 
-2 * -1 * square root of B0 , it follows that i Ai = B0 • Hence B0i Ai is the identity 

-1 * * operator on E. So (Ai) = B0i. Since Aii Ax= x for all x E D(A), it 

l.·* A * * * follows that c B0 i • Hence i Ai = B0 i i. D 

We take now the triple 

E c:.S. F d..- G 

* Let V G ~ E .be the isometry such that Vj i • We define 
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and 

-1 
Then B 

B 

((tiJ~)-l 

-1 -1 v B0 v. so 

1.3.4 THEOREM. Ai is an isometry from E onto F and Bj is an isometry from 
F onto G. Moreover, 

. . -1 BJA1 = V 

and jAi = Bji • 

PROOF. The theorem follows from 1.3.3. D 

Let us consider two Hilbert spaces E1 and E2 and let 

and 

be dense embeddings of norm s 1. We shall identify E1 with its image under 

i 1 and E2 with its image under i 2 ; so E1 and E2 will be considered as sub­

spaces of F. Then the linear space E1 + E2 equipped with the norm 

II x llE +E 
1 2 

is a Hilbert space and the identity map i : E1 + E2 + F is a dense embedding 
of norm s 2. Let A1 be the positive selfadjoint operator in F such that 

D(A1) = E1 and A1 : E1 + F is an isometry from E1 onto F. Similarly, let A2 
and B be the selfadjoint operators in F corresponding to E2 and E1 + E2 
respectively. The relation between A1 , A2 and Bis given in the next 
proposition. 

1.3.5 PROPOSITION. 

-2 -2 -2 B = A, -'- A2 



-2 PROOF. Since B 

].·* * * 
= i1 + ir 

* -2 i , Al ·* i.2 , we have to show that 

By E1 $ E2 we denote the direct sum of E1 and E2 equipped with the norm 

2 2 ~ 
c 11 x 1 11 + 11 x 2 11 l 

It is easy to see that A restricted to the orthogonal complement of the 

kernel N(A) of A is an isometrical isomorphism. 
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Let x E E1 + E2 and f E F. Take x 1 E E1 and x 2 E E2 such that x x 1 + x 2• 

Then 

* * (xl,ilf)El + (x2,i2f)E2 

* * ((x1,x2),(ilf,i2f))E $E 
1 2 

* * It is easily verified that (i1f,i 2f) is orthogonal to the kernel N(A) of A. 

So 

We conclude that i* 

1.4 CHAINS OF HILBERT SPACES 

Now we come to our definition of a chain of Hilbert spaces. 

1.4.1 DEFINITION. A sequence {H I p E Z} of Hilbert spaces together with 
p 

a sequence of maps {i I p E z} such that 
p 

i : H l ~ H p p+ p (p E Z) 

is a dense embedding of norm~ 1, is called a aJzain of Hilbert spaaes if 
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for all p E Z: 

i i 
H c:.J?_ H p-l 
p+l p c._::__.._ Hp-1 

is a triple of Hilbert spaces. 

A chain of Hilbert spaces may be constructed as follows. 

Let H1 and H0 be Hilbert spaces and let i 0 : H1 c.+ H0 be a dense embedding 

of norm $ 1. Define by induction 

Hp+l H' 
p-1 (p=l ,2,3, ••• ) 

and 

H 
p-1 

H' 
p+l (p=0,-1,-2, ••• ). 

Furthermore, define 

i 
H c:.J?_ H by i p+1 p p (p=1,2,3, ••• ) 

and 
i 

H ~H p p-1 by i p-1 (p=0,-1,-2, ••• ). 

Note that we use 1.2.3 c) for the definition of H in the case p ~ 1 and 
p 

that we use 1.2.3 b) for the definition of H in the case p $ O. 
p 

Let us consider a chain of Hilbert spaces {H p EE}. The inner 
p 

product and the norm in H are denoted by (. ,.) and II II respectively p p p 
(p E E) • The map 

i 
p 

is a dense embedding of norm$ 1 (p E Z). For p < q the map 

i 0 ip+l 0 ... 0 i : H Co.>- H is denoted by i 
p q-1 q p p,q 

a dense embedding of norm $ 1 (p,q E Jl,' p < q). For p 

defined by 

A ( (i t) ~) -l 
p pp 

and for p,q E E, p < q the map A is defined by p,q 

A 
p,q 

( (i t ) ~)-l 
p,q p,q 

Note that i p,q 
E Jl, the map A 

p 

is 

is 

also 



We want to examine the relation between the maps A and A • We need the 
p,q p 

following lemma. 

1.4.2 ~Let p,q E z. and p < q. Then 

(i) i i * 
p,q p,q 

(i i* )q-p and 
pp 

(ii) i* i = (i* i )q-p. 
p,q p,q q-1 q-1 

13 

~ We only prove the first relation. We have to show that for all p E z 
and k E :N 

i i* 
p,p+k p,p+k 

The proof proceeds by induction with respect to k. 

For k = 1 the relation holds for all p E z. 
Assume that the relation holds for some k E :N and for all p E z. For all 

p E Z we have 

i i* 
p,p+k+l p,p+k+l 

i i i* i* 
p p+1,p+k+1 p+l,p+k+l p 

. (' ·* )k.* 
l.p l.p+1 l.p+1 l.p 

Ci i*>k+l D 
pp 

1.4.3 THEOREM. Let p € z and k € N. Then 

(i) A is a selfadjoint positive operator in H with d.omain 
p,p+k p 

D(Ap,p+k) = ip,p+k(Hp+k) c HP, 

i i k 
H c p,p+~ H c p- '~ H is a triple of Hilbert spaces, 

p+k p p-k 
(ii) 

k 
(iii) A p+k = A , p, p 

(iv) Ak i 
p p,p+k 

H --+- H is an isometry onto. 
p+k p 

(v) k If q E E and p < q, then i A i 
p,q q q,q+k 

PROOF. -
(i) Follows from 1.3.2. 

(ii) Follows from 1.4.2. 

Ak i 
p p,q+k 
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(iii) From the relation (i) in 1.4.2, it follows that A-l 
p,p+k 

= Ak. 
p 

Hence A k p,p+ 
(iv) Follows from (iii) and 1.3.2. 

(v) This is an easy consequence of 1.3.4. D 

Sequences of Hilbert spaces which are in fact chains in our sense 

appear at several places in the literature. PIETSCH [23] considers the 

spaces D(Ak) (k EN) where A is a selfadjoint positive operator in a Hilbert 

space. And STUMMEL [32] considers an abstract version of Sobolev spaces. 

PALAIS ([22], Ch. VIII) gives also a definition of a chain; his definition 

is more general and is not as rich as ours. 

1.5 DuALITY IN A CHAIN 

We consider a chain of Hilbert spaces {H I p E .Z}. The inner product 
p 

and norm in H 
p 

are denoted by(.,.) and 11 .11 respectively. We shall p p 
identify Hp+l with its image i (H 1 ) in H (p E .Z). So {H Ip E .Z} will p p+ p p 
be considered as a decreasing sequence of Hilbert spaces (decreasing as 

p -+ co)• 

Let {A I p E .Z} be the sequence of operators as defined in 1.4. We define p 
linear spaces H00 and H_00 by 

H n H 
00 p 

and 
pE.Z 

H u H -co p 
pE.Z 

c H 
-co (p E .Z) • Then H00 c H 

p 
k Furthermore, we define linear operators A 

for x E Hp+k" These operators are well defined by 1.4.3 (v). 

And Ak I H is an isometry from H onto H · so 

(1) 

p+k p+k p' 

k k 
(u,v) = (A u,A v) k p p- (U,VEH), 

p 

and Ak leaves invariant H00 • Moreover, Ak considered as an unbounded operator 
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in H with domain D(Ak) = H c H is selfadjoint and positive. 
p p+k p 

For the rest of this section we fix some integer p E ~. For u E H00 and 

a E H_00 we want to define (u,a) . 
p 

For any k E JN 

is a triple of Hilbert spaces. By 1.2.2 there exists an isometry 

such that 

v 
p,k 

v i 
p,k p-k,p 

·* 
l.p,p+k 

It follows from 1.3.4 that 

(2) 

On Hp+k x Hp-k a sesquilinear form (.,.)p,k may be defined by (cf. 1.2.5) 

From (2) it follows that 

So 

(u,a) k p, 
-1 

(V ku,a) k p, p-

2k 
(A u,a) k 

p-

k -k 
(u,a) k = (A u,A a) 

p, p (u EH , a EH k). 
p+k p-

Now we take u E H00 and a EH • Suppose that a EH k for some k EN. We 
-00 p-

shaw that (u,a) k is independent of the choice of k. 
p, 

Indeed, if s E JN, then 

(u,a) k+ p, s 
( k+s A-k-s ) 
A u, a 

p 

Since a E H k' A-k-sa E H • Now, if we consider As as an unbounded self-
p- p+s 

adjoint operator in H with domain H , it follows that 
P p+s 
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(u,alp,k+s 
k -k 

(A u,A a) 
p 

(u,a) k • p, 

This proves that (u,a) k is independent of k. 
p, 

If u,a E: H , then (u,a) k equals the inner product (u,a) of u and a in p p, p 
H (cf. 1.2.5). Therefore (.~.) k is also denoted by(.,.) • So we have p p, p 
the relation 

(3) k -k (u,a) = (A u,A a) 
p p 

(u E: H, a E: H ). 
00 -oo 

We note that for any k E:lll the form(.,.) is a continuous sesquilinear form 
p 

(4) I (u,a) I s II u II +k 11 a II k p p p-

Furthermore, we note that for any f E: (H kl 
p-

there exists a unique u E: H p+k 
such that 

f(a) = (u,a) p (a E: H k) p-

(cf. 1.2.5). Similarly, for any f E: (Hp+k>' there exists a unique a E: Hp-k 

such that 

1. 5.1 

(5) 

f(u) = (u,a) 
p 

LEMMA. If u E: H00 and a E: H_00 then 

(Au,a) = (u,Aa) • p p 

PROOF. Suppose a E: H k 1 for some k E:lll. Then Aa E: 
--- p- + 
Since A is a selfadjoint operator in H with domain 

p 

-k 
H k and A a E: H 1• p- p+ 
Hp+l' it follows that 

The left hand member equals (Au,a) and the right hand member equals 
p 

(u,Aa) • This proves the lemma. 0 
p 
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Now the space H_ 00 will be equipped with the locally convex inductive 

limit topology, i.e. the finest locally convex topology on H_00 such that all 

inclusion maps 

H 
p 

<::-+ H 
-oo 

(p E ,l;) 

are continuous. The anti-dual of H_00 , i.e. the linear space of all continu­

ous anti-linear functionals on H_00 , is denoted by (H_00 ) '.The space H00 will 

be equipped with the projective limit topology, i.e. the coarsest topology 

such that all inclusion maps 

H00 C-+ H 
p 

are continuous. 

The anti-dual of H00 is denoted by (H00)'. 

(p E .E) 

The space H00 is semi-reflexive (cf. SCHAEFER [29], Ch. IV, 5.8). It is also 

barrelled, hence it is reflexive (cf. SCHAEFER [29], Ch. IV, 5.5 and 5.6). 

1.5.2 THEOREM. Let p E .E. 

(i) The map <!>p : H00 + (H_ 00)' defined by 

(<!> u) (a) : = (u,a) 
p p 

is an algebraic isomorphism from H00 onto (H_00 ) '. 

(ii) 

(iii) 

H rlense in H and H is rlense in H_ 00 (so H00 is dense in H_00). 
p p 

The map ~ : H + (H ) ' defined by p -oo 00 

(~ a) (u) : = ~ 
p p 

is an algebraic isomorphism from H_00 onto (H00 )'. 

PROOF. 

(i) First note that <!>Pu E (H_00 ) '. Indeed, if a E Hp-k' then 

I(<!> u) (a) I 
p 

(u EH). 

So <!> u I H k is continuous on H k for all k E JN. By the definition of 
p p- p-

the locally convex inductive limit topology it follows that 

<!> u E (H )1 • So <!> is well defined. 'loreover, <!> is injective (if 
p -oo p p 
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(ii) 

(u,cx) = 0 for all a EH k' then u = 0). p p-
We show that ~ is surjective. Suppose f E 

p 
definition of the locally convex inductive 

(H_00 ) '. Then again by the 

limit topology, f I H k 
p-

is continuous on H k for all k € l'l u {O}. So 
p-

for all k E l'l u {O} 

th ere exists an element uk E Hp+k such that 

f(cx) = (u ,ex) 
k p 

for all a E H k" In particular p-

f(cx) (u ,a) 
0 p 

for all a E HP. Hence uk = u0 is independent of p, and u0 E H00 • And 

f = ~pu0 • 

Let ~ : H ~ H' be the canonical map defined by p p p 

(~ u) (v) 
p 

= (u,v) 
p 

Consider the injections 

and 

Let 

i H ~ H 

j 

i' 

p -oo 

H 
00 
~ H 

p 

(H ) 1 -H' 
-oo p 

(u,v EH). 
p 

be the anti-transposed of i. Then it is easily verified that the 

following diagram is commutive: 

(H ) I ~ H' 
-oo p 

~Pr r~p 
H ~ H 

00 j p 

Since j and hence i' are injective, R(i) = H is dense in H • Since p -oo 

i is injective, R(j) = H00 is weakly dense in H and hence dense in H • 
p p 



(iii) If a E Hp-k' then 

I ('¥ a) (u) J = J (u,a) J $ II u JI +k II a II k 
p p p p-

From the definition of projective limit topology it follows that 

'¥ a E H'. p 00 

If '¥ a = 0 
p 

(a E H kl; then (u,a) = 0 for all 
p- p 

dense in H by (ii) , it follows that a = O. So 
p 

show that'¥ is surjective. Suppose f E (H) '. 
p 00 

and some k EN 

J f (u) J $ c II u II k p+ 

u E H00 • Since H00 is 

'¥ is injective. We 
p 

Then for some c ~ 0 

Since H 
00 

is dense in Hp+k' there is a unique a E Hp-k such that 

f(u) 

So f = '¥ a. D 
p 

Results similar to 1.5.2 (i) and (iii) also appear in the work of 

STUMMEL ([32], Kap. III, §1). 

The first statement of 1.5.2 (ii) (H dense in H ) is well-known but is 
00 p 
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usually proved with the spectral theorem for unbounded selfadjoint operators. 

Let p E !I!.. In the next theorem we consider the anti-dual pair (H00 ,H _00 ) 

with the anti-duality (.,.) • 
p 

1.5.3 THEOREM. 

(i) The locally convex inductive Zimit topology on H_00 coincides with the 

strong topology S(H_00 ,H00). 

(ii) H00 is reflexive and its strong anti-dual is H_00; also, H_00 is reflexive 

and its strong anti-dual is H00• 

(i) For k EN we consider the injection i : H 
00 

c.+ Hp+k And let 

i' : H' + HO:, be the anti-transposed of i. 
p+k 

Let 
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be th.e map defined by 

Then.$p,k is an isomet~ onto (cf. 1.2.4 and 1.2.5). 

Furthermore, let IJI : H +a• be as in 1.5.2 (iii). Then it is easily 
. ·p -oo co 

verified that the followinci-diagram is connnutative: 

H' ~ H' p+k co 

$,i;>,kl lljlp 

Hp-k ~ H -co 

The map i' is continuous with respect to the strong topologies on H~k 

and H~ (cf. HORVATH [12], p. 256). So 

is continuous. This holds for all k E JN. Hence by the definition of the 

locally convex inductive limit topology T on H_co, it follows that the 

topology T is finer than 6(H_00 ,H00). On the other hand, the topology T 
is admissible with respect to the pair (H00 ,H_00 ) by 1.5.2 (i). Hence 

T = S{H_oo,Hco). 

(ii) We have seen already that H00 is reflexive. 

Since by (i) the space H_00 is the strong anti-dual of H00 , it follows 

that H_co is also reflexive and that its strong anti-dual is H00 

(cf. HORVATH [12], p. 229). 0 

1.6 THE CHAIN ASSOCIATED WITH A SELFADJOINT OPERATOR 

Let H0 be a Hilbert space (with inner product (.,.) 0 and norm II. 11 0 > 

and let T be an unbounded selfadjoint operator in H0 with domain D(T). Set 

A 
2 = I + T , 

where I denotes the identity operator in H0 • It is well-known that A is a 

selfadjoint positive operator. 



With the operator A we can associate a chain as follows. 

For H1 we take the linear space D(A) equipped with the inner product 

(u,vl 1 : (Au,Av) 0 

The inclusion map i 0 : H1 c:..+ Ho is a dense embedding of norm ~ 1. 

A chain of Hilbert spaces {H(Al I p € .Z} may be constructed in the way 
p 

indicated at the beginning of section 1.4. This chain is called the chain 

generated by H0 and A. The inner product and the norm in H~A) are denoted 

by (.,.) and 11 • 11 respectively. 
p p 

Furthermore, we define: 

n 
pEZ 

equipped with the projective limit topology, and 

u 
p€.Z 

equipped with the locally convex inductive limit topology. 

21 

The selfadjoint operator corresponding to i 0 : H1 c:..+ H0 (which is the 

operator ((i0i~)~)- 1 , see section 1.3) is equal to A; this follows from the 

uniqueness property in Theorem 1.3.2. 

By using 1.4.3 we conclude 

(i) D(Ak) = H~A) and 11 u Ilk= 11Aku11 0 (k E lll), 

(ii) A can be extended to H(A) and this extension which is again denoted by 
p 

A, maps H(A) isometrically onto H(A)l (p € .Z). 
p p-

From (ii) it follows that A leaves invariant H~A) and that A 

is continuous. And furthermore, it follows from (ii) that 

A : H(A) + H(A) is continuous. 
-oo -oo 

By 1.5.2 (ii) the space 

is dense in H0 • 

Let us consider the space D(T) equipped with the inner product 

(x,y)D(T) (x,ylo + (Tx,Tylo • 



Let i : H1 c.+ D(T) and j : D(T) c.+ H0 be the inclusion maps. 

Then we have the following proposition, 

1.6,1 PRoPOSITION. 

(i) H1 is dense in D(T) and i : H1 c.+ D(T) is a continuous map of norm ~ 1, 
(ii) H1 cl D(T) ci H0 is a triple of Hitbert spaces. 

PROOF. 

(i) If y E D(T) is orthogonal to H1 in D(T), then (x,y) 0 + (Tx,Tyl 0 = 0 

for all x E H1 = D(T2). So ((I+T2)x,y) 0 = 0 for all x E H1 • Since 

A = I + T2 maps H1 onto H0 , it follows that y = O. 
For x E H1 we have 

2 2 2 2 II (I+T lxll 0 - llx11 0 - 11Txll 0 = 

2 2 2 ((I+T )x,(I+T )x) 0 - ((I+T )x,x) 0 

2 2 ( (I+T )x,T x) 0 

2 
JI Tx IJ 0 + II T x II 0 ;::: 0 • 

Soi is continuous and its norm is ~ 1. 

(ii) For u E H1 and f E D(T) we have 

(iu,f) D (T) 

On the other hand, 

(iu,f) 0 (T) 

* Hence j = Ai0i • 

(jiu,jf) 0 + (Tjiu,Tjf) 0 

(Ajiu,jf) 0 

* (u,i f) 1 

Since Ai0 is an isometry onto, it follows that j*j u*. D 

1.6.2 LEMMA. T leaves invariant H00(A) and T maps H(A) continuously into 
k+l H(A) So 

k • 
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is aontinuous. 

PROOF. By 1.6.1 (i) 

II x llD(T) ~ II x 11.1 

Hence 

Hence for x E I\:+l (k E :N) 

JI x 11k+1 • 

This proves the lemma. D 

1.7 TENSOR PRODUCTS OF CHAINS 

We recall briefly some facts about tensor products of Hilbert spaces 

(cf. PALAIS [22], Ch. XIV). 

If E1 and E2 are Hilbert spaces, then there is a natural inner product 

on their algebraic tensor product E1 ® E2 characterized by 

(x1 ,x2 E Ei 

and y 1 ,y2 E E2). 

The completion of this pre-Hilbert space is denoted by E1 ® E2• It is called 

the Hiibert spaae tensor produat of E1 and E2 • 

If F1 and F2 are also Hilbert spaces and 

(k=1,2) 

is a bounded linear operator, then it is easily seen that 

is bounded and in fact lJ T1 ® T2 Jl Jl T1 II JI T2 1J. So T1 ® T2 extends to a 

bounded linear transformation from E1 ® E2 into F1 ® F2; this extension is 
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denoted by T1 ® T2 • If T1 and T2 are injective, then T1 ® T2 is also 

injective (its adjoint has dense range). 

(unbounded) selfadjoint 

I+ T2 • Let {H(A) I p E z} be 
p 

Now consider a Hilbert space H?l) and an 

operator T with dense domain in H6 1 . Put A:= 
(1) the chain of Hilbert spaces generated by H0 and A. Then A can be extended 

to a continuous operator on H(A) : = U H(A) (equipped with the locally 
-oo pd: p 

convex inductive limit topology). And the extension of A maps H(A) iso­p+l 
metrically onto H(A) (p E Z) 

p 
Furthermore, we consider a Hilbert space H6 2) and a selfadjoint operator S 
with dense domain in H62 ). Let {H~B) I p E Z} be the chain of Hilbert 

spaces generated by B: =I+ s2 (I= identity operator on H6 2>). 
If 

i H(A) 
"'--4-

H(A) 
q p 

and 

j H(B) ~H(B) 
q p 

(p,q E z, p > q) are the inclusion maps, then 

~ 

i ® j 

is a continuous injection with dense range. 

Now it is easily verified that 

(together with the natural inclusion maps) is again a chain of Hilbert 

spaces. We want to examine the relation between this chain and the chains 
{H(A)} and {H(Bl}. 

p p 

1. 7. 1 THEOREM. Let k ,l E JN. The operator A k ® Bl considered as an unbounded 
operator in H6A) 0 H6B) with domain H~A) ® HlB) is closable; its closure 
which is denoted by Ak ® Bl is selfadjoint and positive and its domain is 

(A) ~ (B) (A) ~ (B) k ~ l (A) ~ (B) Hk ® H,e_ c H0 ® H0 . Moreover, A ® B is an isometry from Hk ® Hl 
onto HdA) ® HdB). 

PROOF. Since Ak H ~B)_, HO(B) . ~ -~ are isometric surjections 
it follows that 

c : 
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is also isometric and onto. If C is considered as an unbounded operator in 

H(A) ® H(B) with dom · H(A) ® H~B), it is easily verified that C is sym-0 0 ain k ~ 

metric. Since C is also surjective, it follows that C is selfadjoint. 

It remains to prove that C is positive. The following argument is taken 

from SAKAI ([28], p. 60). If 

n 

l 
then i=1 

(C~,I;) = 

For any family of complex numbers (A 1 , .•• ,An), 

n 

l 
i ,j=l 

l -
(By. ,y.JA. A. 

1 J 1 J 

Hence the matrix ((Blyi,yjl)~,j=l is positive and so it is a positive linear 

combination of one-dimensional projections. Since any one-dimensional pro­
- n 

jection is of the form (A.A.) .. , we have 
1 J i,J=1 

n k l l (A x.,x.)(B y.,y.) <': 0. 
i,j=l 1 J 1 J 

This implies that C is positive. This proves the theorem. D 

Later on (in Chapter 3) the space H(A) ® H(B) will also be denoted by p p 
H(A®B) 

p 
(p E Z) . 

Furthermore, 
H~A®B) n H(A®B) 

pd: 
p 

and 
H(A®B) u H(A®B) 

-00 p pEZ 

1. 7 .2 LEMMA. H~) ® H(B) is dense in H(A®B) where the latter space is 
00 00 

equipped with the projective Zimit topology. 

PROOF. By 1.5.2 (ii) the space H(A) ® H(B) is dense in H(A) ® H(B). Hence 

H~A) ® H~B) is also dense in 
00 00 

p p 

H(A®B) 
p 

So H(A) ® H(B) is contained in H
00
(A®B) and is dense in H(A®B) O 

00 00 00 ~ 

(p E Z). 
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CHAPTER II 

LOCALLY CONVEX ALGEBRAS 

In this chapter we present some facts of the theory of locally convex 

algebras as developed by G.R. ALLAN ([1] and [3]). The results will be 

used in the next chapter. 

2.1 LOCALLY CONVEX ALGEBRAS AND GB*-ALGEBRAS 

2.1.1 DEFINITION. Let A be an algebra over C which is a locally convex 

Hausdorff space. A is called a loaally convex algebra if the multiplication 

is separately continuous; this means that the mappings 

x f--+- ax and x f--+- xa (x E A) 

are continuous for all a E A. 

An element x E A is called bounded if for some 0 ~ A E C the set 

{(Ax)n I n EN} is a bounded subset of A. The set of bounded elements is 

denoted by b(A). 

Let A be a locally convex algebra. By B we denote the collection of 

all subsets B of A such that B is absolutely convex, bounded, closed and 

B2 c B (here B2 = {b1b 2 I b1,b2 E B}). 

For each B E B let A(B) denote the subalgebra of A generated by B. Then 

( 1) A(B) {AX I A E c, x € B} • 

The relation 

(2) II x II B = inf{A > 0 I x E AB} 

defines a norm on A(B) which turns A(B) into a normed algebra. 
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2.1.2 DEFINITION. The locally convex algebra A is called pseudocorrrplete if 

each of the normed algebras A(B) (B E B) is a Banach algebra. 

2.1.3 REMARK. If x EBE B, then {xn In EN} c B. Hence x E b(A). So 

A(B) c b(A). So pseudocompleteness is in fact a property of b(A). 

2.1.4 PROPOSITION. Let A be a locally convex algebra. 

(i) If A is pseudocorrrplete, then any closed subalgebra of A is pseudo­

corrrplete. 

(ii) If A is sequentially corrrplete, then A is pseudocomplete. 

(iii) If A is corrorrutative and pseudocomplete, then B is outer-directed by 

inclusion, i.e. if B1 ,B2 E B, then there is some c E B such that 

Bl U B2 c C. 

PROOF. See ALLAN ([1], (2.8) and (2.6)). 0 

2.1.5 THEOREM. Let A be a pseudocomplete locally convex algebra. If 

x,y E b(A) and xy = yx, then xy and x+y E b(A). So, if A is corrorrutative and 

pseudocomplete, then b(A) is a subalgebra of A. 

PROOF. See ALLAN ([1], (2.10)). 0 

2.1.6 DEFINITION. Let A be a locally convex algebra with unit e. The 

spectrum of x EA, denoted by crA(x) (or just cr(x)) is that subset of 

c* (: = c u { 00}) defined as follows: 

(a) for A f 00 , A E cr(x) iff Ae - x has no bounded inverse, 

(b) 00 E cr(x) iff x is not bounded. 

The resolvent set p(x) : c*\cr(x). 

2.1.7 THEOREM. Let A be a locally convex algebra with unit e which is 

* pseudocorrrplete. If x E A, then cr(x) is a non-errrpty closed subset of c and 

p(x) is precisely the set on which the A-valued function 

is locally holomorphic. 

PROOF. See ALLAN ([1], (3.10)). 0 
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2.1.8 DEFINITION. Let A be a locally convex algebra. If a continuous 

involution 

* x 1--+ x 

is defined in A, then A is called a locally convex *-algebra. An element x 

* of a locally convex -algebra is called 

hermitian if x = x*, 

and normal if xx* = x*x. 

The set H c A of all hermitian elements is a closed real-linear subspace 

of A. 
* * A locally convex -algebra A with unit e is called symmetric if (e + x x) 

has a bounded inverse for all x E A. 

2.1.9 PROPOSITION. Let A be a pseudocomplete symmetric algebra. If h E A 

is an hermitian element, then cr(h) cJR*(: =JR u {oo}). 

PROOF. See ALLAN ([3], (2.2)). 0 

2.1.10 DEFINITION. Let A be a locally convex *-algebra with unit e. By B* 
we denote the collection of all subsets B of A such that 

(i) 

(ii) 

(iii) 

B is absolutely convex, bounded and closed, 
2 B c B, e E B, 

B = B*(: = {b* I b E B}). 

* * A locally ~onvex -algebra A with unit e is called a GB -algebra 
* * (generalized B -algebra or generalized C -algebra) if 

(i) A is pseudocomplete, 

(ii) A is symmetric, 

(iii) B* has a greatest member which is denoted by B0 • 

The algebra A(B0 ) is a *-subalgebra of A which contains all normal elements 

of b(A). (If x is a normal element of b(A), put x = h + ik where h,k EH. 
Then x* E b(A), since x E b(A) and the involution is continuous. Since x is 

normal, it follows by 2.1.5 that h,k E b(A). But then, for some BE Band 

some A> 0, we have Ah E B; hence Ah E B n B* E B* and so h E A(B0). 

Similarly k E A(B0 ) and so x E A(B0J). 
In particular, if A is commutative, then 

(3) b(AJ 



2.1.11 THEOREM. If A is a GB*-algebra, then A<B0 J is a c*-algebra with 

unit (the norm in A(B0 J is defined by the Minkowski functional of B0J. 

PROOF. See ALLAN ([3], (2.6)). 0 

The proof makes use of the following theorem which explains the name 

* GB -algebra. 
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2.1.12 THEOREM. Let A be a Banach algebra with unit and with a continuous 
involution. Then A is a c*-algebra (= B*-algebra) iff 

(i) A is symmetric, 

(ii) B* has a greatest member. 

PROOF. See ALLAN ([2]). 0 

2.1.13 THEOREM. A closed *-subalgebra of a GB*-algebra A that contains the 

unit of A, is also a GB*-algebra. 

PROOF. See ALLAN ([3], (2.9)). 0 

2.2 FuNCTIONAL REPRESENTATION THEORY FOR COMMUTATIVE GB*-ALGEBRAS 

b(AJ 

b(AJ 

In this section A will be a commutative GB*-algebra with unit e. Then 

A(B0 ) where B0 is the greatest member of the collection B* and 

* A(B0 ) is a commutative c -algebra with unit (cf. 2.1.10 and 2.1.11). 

* We denote by M the spectrum of the commutative C -algebra A(B0); so M 

is the set of all non zero multiplicative linear functionals on 

b(A) = A(B0 ) in the topology o(M,b(A)J. 

Then M is a compact Hausdorff space. 

Let C(M) be the algebra of all continuous complex-valued functions on M 

topologized by the uniform norm and with complex conjugation as an involut-

ion. 

The Gelfand map 

b(A) ---+- C(M) 

is defined by 
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x<4>> 4> (x) ((j> € M) • 

"' By the theorem of GELFAND-NAIMARK, the Gelfand map is an isometric -iso-

morphism of b (A) onto C (M) • It i.s our aim to extend the Gelfand map to the 

whole algebra A. 

2.2.1 THEOREM. Let A be a aommutative GB*-algebPa with unit. Then 

aoPPesponding to any 4> E M thePe is a unique funation 

- * 4> : A -+ c 

suah that 

(i) ~ is an extension of 4>, 

(ii) ~ is a "paptial homomoPphism" in the following sense - ~ (a) (j>(Ax) = A(j>(x) (:>.. € c, x €Al with the aonvention O.co = O, 

(b) ~(x 1 +x2 ) = ~(x 1 ) + (j>(x2 ) (x1 ,x2 E A) pPovided that ~(x 1 ) and ~(x2 ) 
ape not both co, 

(c) ~(x 1x2 l = ~(x 1 l4>(x2 l Cx1 ,x2 €A) pPovided that the paiP 

(~(x 1 ),~(x2 ll is F (O,co) and F (co,O), 

(d) (j>(x*> = (j>(x) (x € A) with the aonvention that;; co, 

-1 PROOF. For h € H, chooseµ € p(h), µ F co. Then y : = (µe - h) € b(A). 

Define 

-1 

{
µ - (j>(y) 

4>' (h)_: = 
co 

if 4><Y> F o, 

if (j>(y) o. 

If x € A, then x = h + ik with h,k € H. Define 

(j>(x) 4>' (h) + i4>' (k) 

where the right hand member is interpreted as co if either or both of 

4> I (h) I 4> I (k) iS co, 

One has to show that these definitions make sense and that 4> satisfies (i.) 

and (ii). For details we refer to ALLAN ([3], (3.1)). D 

2.2.2 LEMMA. Let x € A. Then the funation 

A * x:M--+-C 
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defined by 

x<q,> q,(x) (q, E M) 

is aontinuous. The set 

N {q, E M [ ;(x) = oo} x 

is a nowhere dense alosed subset of M. 

PROOF. See ALLAN ([3], (3.6) and (3.9)). 0 

2.2.3 DEFINITION, Let X be a topological space and let F be a collection 

of continuous c*-valued functions on x. Then F is said to be a 

funations on X provided that 

* -algebra of 

(i) each f E F takes the value 00 on at most a nowhere dense subset of X, 

(ii) for any f ,g E F and A E C the functions 

* -Af, f+g, fg, f (= f) 

defined pointwise on the dense subset of X where f and g are both 

* finite are extendible (necessarily uniquely) to continuous C -valued 

functions on X which also belong to F (these extensions will also be 

* denoted by Af, f+g, fg and f respectively). 

The next theorem is a generalization of the theorem of GELFAND­

NAIMARK. 

2.2.4 THEOREM. Let A be a aommutative GB*-algebra w1'.th unit. Then the 

Gelfand map 

of A into the set of c*-valued functions on M, given by 

:Kcq,i , q,(x) (x E A, q, E M), 

is a * * A * -isomorphism of A onto a -algebra A of aontinuous c -valued funations 
on M. 

PROOF. See ALLAN ([3], (3. 9)). 0 

COROLLARY. Let x E A. Then cr(x) = {x(q,J I q, E M} • 
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PROOF. See ALLAN ([3], (3.10)). 0 

COROLLARY. An element x EA is hermitian iff o(x) clR.*. 

* 2.2.5 DEFINITION. Let X be a compact subset of C . Then c0 (X) denotes the 

algebra of all continuous complex-valued functions vanishing at 00 on x. And 

c1 (X) denotes the algebra of all continuous functions 

f:XnC--+C 

such that 

(:\. E X n C) 

for some constant c and some n E JN (which may be different for different f) • 

2.2.6 THEOREM. There exists a unique homomorphism of c0 (o(x)) (x E Al into 

b(A) 

suah that 

(i) if f(;\) 

if g(;\) 

c0 (o(x)) --+ b(A) 

f i- f(x) 

(1 + IAl 2>-l then f(x) = (e + x*x)-l and 

A(l + IAl 2l-l then g(x) = x(e + x*x>-1, 

(ii) for any f E c0 (cr(x)) and any$ EM 

f<x>"<$l = f(xC$l l . 

PROOF. See ALLAN ([3], (3.11)). 0 

2.2.7 THEOREM. Let x EA. The map f ~ f(x) of 2.2.6 may be extended unique­

ly ·to a *-isomorphism of c1 (o (x)) into A 

c1 (o(xl l --+A 

f t-r f(x) 

suah that 

(i) if u 0 (A) = 1 then u0 (x) = e 

(ii) if u 1 (A) = A then u 1 (x) = x 

(iii) for any f E c1 (o(x)) and$ EM 

f(x>"<$> = fCx<$> > 



PROOF. If f E c0 (cr(x)) then f 0 x E C(M) and f ox is thus the Gelfand 

image of a unique element of b(A); this element will be denoted by f(x). 

For a given f E c1 (cr(x)), choose n so that if gn(A) : = f(A)/(1 + IAJ 2)n 

then gn E c 0 (cr(x)). Then gn(x) has been defined already. 

Define f(x) : = g (x) (e + x*x)n. 
n 

For details, see ALLAN ([3], (3.11) and (3.12)), D 
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CHAPTER Ill 

SPECTRAL THEORY AND GB*-ALGEBRAS 

* In this chapter we show how the theory of GB -algebras of ALLAN can be 

applied to spectral theory of unbounded selfadjoint and normal operators. 

If T is an unbounded selfadjoint operator in a Hilbert space H0 , then 

T can be considered as a continuous operator on the locally convex space H00 

(cf. section 1.6). In section 2 we investigate the structure of the bicom­

mutant r:(T) of T in the algebra L(H00 ) of all continuous linear operators 

in H • We define an involution and we show that the algebra f"(T) is a GB*-
oo 00 

algebra in the sense of Allan. The main tool for characterizing the bounded 

elements of this algebra will be a lemma due to LAX [15]. 

In section 3 it is proved that any element C of r;(T) is closable as an 

operator in H0 and that its closure c is a normal operator in H0 . The 

relation between the spectrum cr(C) of C in r;(T) and the spectrum cr(C) of C 

(as an operator in H0 J is also given. 

In section 4 and 5 we develop the spectral theory of the algebra r;(T), In 

particular a spec1:ral representation theorem is derived (cf. 3.5.2 and 

3.5.4). 

* Finally, in section 6 tensor products of GB -algebras are considered. We 

generalize a result of L. & K. MAURIN [19] concerning the spectrum of tensor 

products of selfadjoint operators. 

3.1 GENERALITIES ON SPACES L(E) 

Consider the algebra L(E) of all continuous linear operators on a 

locally convex Hausdorff space E. 

The space L(E) with the topology of uniform convergence on bounded sets of 

E (the uniform topology) is denoted by LS(E)i and L(E) with the topology 

of pointwise convergence (the strong topology) is denoted by L0 (E). 

The following lemma is well-known. 



3.1.1 LEMMA. Let Ebe a barrelled loaally aonvex Hausdorff spaae and let 

B c L(E). Then the following statements are equivalent;' 

(i) B is bounded in L6 (E), 

(ii) B is bounded in L cr(E), 

(iii) B is equiaontinuous in L(E). 

PROOF. See SCHAEFER ( [ 29 J, Ch.III, 4.1) • D 

3.1.2 DEFINITION. Let 

<jl : ExF--+ G 
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be a bilinear function where E, F and G are locally convex spaces. For each 

u EE, write <jiu : F + G for the function <jlu(v) : = <jl(u,v) (v E F). Similarly 

<jlv: E + G (v E F) is defined by <jlv(u) : = <jl(u,v) (u EE). 

Then <jl is called separately continuous if <jiu and <jlv are continuous for u E E 

and v E F. 

And <jl is called left (respectively, right) hypoaontinuous if for every set 

B1 c E the set {<jiu J u E B1} is equicontinuous in L(F,G) (respectively, for 

every bounded set B2 c F the set {<jlv J v E B2 } is equicontinuous in L(E,G)). 

3.1.3 LEMMA. Let Ebe a loaally aonvex Hausdorff spaae. 

(i) The multipliaation in LS(E) and L0 (E) is separately aontinuous. So 

L6CE) and L0 (E) are loaally convex algebras. 

(ii) If E is barrelled, then the multipliaation in L0 (E) is left hypo­

aontinuoue. 

(iii) If Eis barrelled, then the multipliaation in L6(E) is left and right 

hypoaontinuous. 

PROOF. Let us prove the second part of (iii). 

Let N be a bounded set in E and let V be an absolutely convex closed neigh­

bourhood of 0 in E. Then 

uN,V {s E L(E) J s(N) c v} 

is a neighbourhood of 0 in LS(E). For TE L(E), define RT 

~(S) : = ST(S E L(E)). 

Let B be bounded in L6(H00). Then 

L(E) + L(E) by 
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{S ST(N) c v for all T € B} 

{s I u T(N) c s-1 cv>} • 
TEB 

Since B is equicontinuous, the set M U T(N) is bounded in E. Hence 
TEB 

is a neighbourhood of 0 in LB(E). This proves that the multiplication in 

L8(E) is right hypocontinuous. D 

3.2 THE BICOMMUTANT OF T IN L(H ) AS A GB* -ALGEBRA 
00 

We consider the situation described in section 1.6. Let H0 be a separ­

able Hilbert space and let T be an unbounded selfadjoint operator in H0 • 

Put A = I + T2 where I denotes the identity operator on H0 • Let 

{HP Ip EE} be the chain of Hilbert spaces generated by H0 and A (cf. 1.6)1 

the inner product and the norm in H are denoted by (., • ) and II • II p p p 
respectively. Then for k E :N 

and the inner product in Hk is given by 

k k 
(u,v)k = (A u,A v) 0 • 

Furthermore, we introduce 

H 
00 

n 
pEE 

H 
p 

with the projective limit topology, and 

H 
-oo 

u 
p€Z 

H 
p 

with the locally convex inductive limit topology. 

Let L(H ,H ) (-00 s p,q s 00 ) be the space of continuous linear trans­p q 
formations of H into H ·we abbreviate L(H ,H) by L(H) (-oo s p Soo). p q' p p p 



And let L.(H ,H) (p,q E .Z) be the set of linear operators with domain H00 
'L p q 

37 

(which is dense in each H by 1.5.2 (ii)) which extend by continuity to be 
p 

in L(H ,H }; again L.(H) : = L.(H ,H ). 
P q 'L P 'L P P 

The norm of an operator Sin L(H ,H) or in L.(H ,H) (p,q E .Z) is denoted 
p q 'L p q 

by II S 11 ; we put II S 11 : = II S II if S E L(H ) (p E .Z). 
p,q p p,p p 

The operator A can be extended to an operator in L(H_00 ) (cf, section 

1.6); this extension is again denoted by A, Moreover, A maps Hp+l isometric­

ally onto H (p E .Z), So the restriction of A to H00 (also denoted by A) is 
p 

in L(H ). 
00 

Furthermore, T leaves invariant H00 and the restriction of T to H00 , which is 

also denoted by T, is in L (H00 ) (see 1. 6. 2) • 

3.2.l DEFINITION. Let A be a subset of L(H) (-00 S p S 00 ). Then the 
p 

aommutant of A is the set 

r •(A) 
p 

{S E L(H ) I SC 
p 

CS for all c E A} . 

The commutant of f 1 (A) c L(H) is called the bicommutant of A and is denoted 

by r"(A). 
p 

p p 

Since T,A E L(H00 ), f~(T) and f~(A) are defined, Since A 

have 

Hence 

{ 1 ) 

2 
I + T , we 

The algebras mentioned in (1) are clearly closed in L0 (H00 ) and LS(H00). 

Note that r;(A) and r;(T) are commutative subalgebras of L(H00), 

It is our aim to define an involution in f~(A). Then we shall prove 

* tha.t r: (T) is a GB -algebra. 

Before we prove the next lemma we note the following. 

If S E L(H00 ) then for all q E Z there is some p E Z such that 

s E L. ( H I H ) • 
'L p q 
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3.2.2 LEMMA. If S c f !(A) is an equiaontinuous set, then there is some 

k € :N a:nd some aonstant c ~ 0 suah that for all p € .z 

a:nd 

S € L~ (H k'H ) 
',• p+ p 

II s II +k :!> c for all s € S. p ,p 

PROOF. Since S is equicontinuous, there is some k € :N and some c ~ 0 such 

that for all S € S 

(x € H,,.) • 

Hence, for all S € S 

for all p € .Z and all x € H00 • This proves the lemma. D 

(p € .Z). 

3.2.3 DEFINITION. Now we shall define an involution in f!(A). 

Let S € f!(A) and let S' : (H00)'->- (H00 ) 1 be the anti-transposed of S. Let 

ljlp H_00 ->- (H00 ) 1 be as in 1.5.2 (iii). 

Then we define 

s*<P> -1 : = ljl S'ljl 
p p 

So the following diagram is commutative: 

S' 
(H,.,) ' - (Hoo)' 

ljlp f l ljlp 

H - H 
-co -co 

s*<pl 

It is easy to verify that 

(2) (Sx,y) = (x,s*(p)y) 
p p 

This relation can also be taken as a definition of s*(p). 
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We show that 

s*<Pl = s*<ql 

for all p,q € z. We may assume that q = p+k, k € N. First we note that by 

1.5.1 we have A*(p) =A where A denotes for the moment the extension of A 

to H_oo· Since s € f!(A), it follows that s*(p)A =A s*(p). So 

( s*(p+kl ) 
x, y p+k 

Hence s*(p) = s*(p+k). 

(sx,y)p+k = (Aksx,ify)P = 

(Akx,s*<Plify)P = (x,s*(p)Y)p+k 

This result means that s*(p) is independent of p, therefore, we denote it 

* by s . 
* The next step is to show that S leaves invariant H00 • First we prove 

the following lemma. 

3.2.4 LEMMA. Ifs E L~(Hp+k'Hpl for some p E z and some k EN, then s* 

maps H aontinuousZy into H k' p p-

PROOF. For x € H00 and y € H 
p 

c H we have -oo 

I (x,s*yl I 
p I (Sx,y) I S II Sx II II y II S p p p 

Hence 

* S y € Hp-k and 

This proves the lemma. D 

Si~ce S € f!(A) there is some k € N such that S € L~(Hp+k,p) for all p € z. 

Sos* maps H continuously into H k (p € Z). Hence s* leaves invariant H00 • 

p * p- * 
And the restriction of S to H00 , which is also denoted by S, is in L(H00 ). 

* REMARK. Note that A= A (cf. 1.5.1). Since (Tx,y) 0 = (x,Tyl 0 for all 

x,y € H00 (recall that Tisa selfadjoint operator in H0), it follows that 

* T = T 

3.2.5 PROPOSITION. 

(i) In r' (Al an involution s 1--+ s* is defined suah that for aU p E z 
00 
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* (Sx,y)p = (x,S y)p (x,y E H,) • 

(ii) If A is a corronutative *-subalgebra of r:(A), then A is a locally convex 

*-algebra in the topologies induced by LS(H00 ) and L0 (H00 ). 

PROOF. 

(i) For an SE f'(A), s* has been defined in 3.2.4. It is clear that s* is 
00 . 

(ii) 

* again in r~(A). And it is easily verified that S ~ S has all the 

properties of an involution. 

If s E A, then (Sx,sx) = (s*sx,x) 
p p 

* * (S x,S x) 
p 

Hence 

II sx II = II s*x II p p 

So S>-+- s* is continuous with respect to the topology induced by L0 (H00). 

If p E z and M is a bounded subset of H00 , then 

sup II Sx II = sup II s*x 11 
XEM p XEM p 

Hence the involution is also continuous with respect to the topology 

induced-by LS(H00). D 

COROLLARY. r:(A) and r:(T) are locally convex *-algebras in the topologies 

induced by LS(H00 ) and L0 (H00 ). 

* * PROOF. r:(A) and r:(T) are -subalgebras of r:(A) (recall that A A and 

T = T*l and they are also commutative. D 

3.2.6 PROPOSITION, L0 (H ) and L (H ) are pseudocorrrplete locally convex 
µCO (JOO 

algebras. 

PROOF. The space L0 (H,) is sequentially complete since H00 is sequentially 

complete and barrelled (cf. HORVATH [12], p.216). And LS(H00 ) is sequentially 

complete since H00 is bornological (cf. HORVATH [12], p.223). The proposition 

now follows by applying 2.1.4 (ii). D 

COROLLARY. If A is a subalgebra of L ( H,,) which is closed in LS (H,,,l or 

L (H l; then A is pseudocorrrplete. 
a "' 

* COROLLARY. r:(A) and r:(T) are pseudocomplete locally convex -algebras 

in the topologies induced by L0 (H) and L (H ). 
µ oo a oo 
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* we proved that r:{T) is a pseudocomplete locally convex -algebra. In 

* order to prove that r:{T) is a GB -algebra, we have to show that it is 

* symmetric and that the collection B (of r:(T)) has a greatest element. 

First we investigate the bounded elements of r:(T). 

Since H00 is a barrelled locally convex space, the bounded elements are 

the same in the topology induced by L6 (H00 ) and in the topology induced by 

L 0 (H00 ) (cf. 3.1.1). 

The main tool for characterizing the bounded elements is the next 

lemma, which is a generalization of a lemma due to LAX [15]. 

3.2.7 LEMMA. Let H be a Hilbert space with inner product (.,.) and with 

nonn II • II. And let G be a dense Une~ subspace of H with nunn II • II so 

that 

II u II s II u II 

for aU u € G. Let s be a continuous operator on (G, JJ • 11-l with nonn s 1. 

Suppose there is a continuous operator T on (G, IJ • ll-> of nonn s 1 such that 

(Su,v) = (u,Tv) 

for all u,v € G. Then s can be extended to a continuous operator on H with 

nonn s 1. 

PROOF. First we assume that S is hermitian, i.e. (Su,v) = (u,sv) for all 

u,v € G. This case is in fact the lemma of LAX. Our proof of this case 

follows the proof given in BEREZANSKII ([4], p.38). 

Let u € G, II u II = 1. Lets : =II Snu 11 2 (n=0,1,2, ••• ). Then 
n 

for all A € :R. Hence 

2 $ s s sn n-1 n+l 
and 

So 

s 
<-n­
- sn-1 
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Hence 

Now 

So 

s 
n 

Since II u II = s JI u JI~, it follows that s 1 = II Su II s 1. This implies the 

statement for the case that S is hermitian. 

For the general case consider the operator TS; this operator is hermit­
ian. Hence by the first part of the proof, TS can be extended to a continu­

ous operator on H with norm s 1. Let u E G, 11 u 11 = 1. Then 

II Su 11 2 = (Su,Su) = (u,TSu) s II TSu II $ 1 • 

Hence Scan be extended to a continuous operator on Hof norms 1. D 

3.2.8 

(i) 

(ii) 

THEOREM. 

Ifs E r• (A) n Lk(H ) for some p E z then s is a bounded element of 
00 '" p 

LS(H00 ) and L0 (H00 ). 

Let s be a normal element of r~(A). If {sk I k E JN} is bounded (in 
LS (H00 ) or L0 (H00 )}, then s E Lit (HP) a:nd 11 s ll P s 1 fol' aU p E z. 

PROOF. 

(i) Suppose S E r• (A) n L. (H ) and II S II $ 1 for some p E z. Then 
00 '" p p 

SE Lk(H) and II S II s 1 for all q E Z (cf. 3.2.3). Hence for all '" q q 
p E Z and all k E JN 

for all x E H00 • This means that {sk I k E JN} is an equicontinuous set 

in L(H00); hence it is bounded in LS(H00 ) and L0 (H00 ). 

(ii) We assume first that Sis an hermitian element of r~(A). 

Since {Sk I k E JN} is an equicontinuous semigroup of operators on H00 , 

there exists for all p E E a q E Z and a constant c z 0 such that for 

all k E JN U { 0} 

II skx II s c II x II p q (x E H00 ) • 



For a fixed p E Z we define 

II x II sup 
k=O, 1, 2 ••• 

Then JI x II < 00 for all x E H00 and II JI is a norm on H00 • 

Moreover, 

11 x llP s II x II and II sx II s II x II 
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(x E H ) • 
00 

Applying 3.2.7 we obtain that SE L!L(Hp) and that II Slip S 1. This 

holds for all p E Z. 

Now let S be a normal element of f'(A). Then 
00 

(see the proof of 3.2.5 (ii). So {s*k I k EN} is also an equicontinu­

ous subset of L(H00), hence bounded in LS(H00 ) and in Lcr(H 00). 

Since r~(A) is a closed subalgebra of Lcr(H00), it is pseudocomplete 

(cf, 3.2.6). Then from 2.1.5 it follows that {(s*s)k I k E JN} is also 

bounded in LS(H00 ) and Lcr(H00). 

* Since S S is hermitian, it follows from the first part of the proof 

that II s*s II s for all p E .!!I. Hence 
p 

II Sx 11 2 
p 

So II S II S 1 for all p E .Z. D 
p 

(x E H ) • 
00 

3.2.9 THEOREM. Let A be a commutative *-subalgebra of r~(A) which contains 

the identity operator, then 

b(A) =A n L!L(HP) (p E J!I) • 

Moreover, the collection B* of the algebra A has a greatest member B0; and 

an element s E A beZongs to B0 iff II slip s 1 for some p E z (or equivalently 

for all p E Z), 

PROOF. From 3.2.8 it follows that an element S E A is a bounded element of 

A iff S E L!L (HP) for some p E Z (or equivalently for all p E £:). 

Let us define for some p E Z 
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Then BO is independent of p. Clearly B0 E B*. It follows from 3.2.8 (ii) 
that B0 is the greatest member of B*. D 

3.2.10 PROPOSITION. Lets E f'(A) and let c : =I+ s*s where I denotes 
the identity operator on H=' .t~en c is invertible and its inverse c-1 is a 
bounded element of r~(A). 

.. ·PROOF. For all p E Z and x E H00 we have (Cx,x) 

Np2 s (Cx,x) s 11 Cx II 11 x II • Thus p p p p 

11 x 11 2 + II Sx II 2 ; hence p p 

(p E Z., X E H,). 

This proves that C : H00 + H00 is injective and that the range R(C) of C is 
closed in H • 

00 

We show that c is surjective. 

Consider the operator c* = ~- 1 c·~ (cf. 3.2.3). Since C is an hermitian p p 
element of r~(A) it follows that c* I Hoo =c. It is sufficient to show that 
* C : H_00 + H_ 00 is injective. 

Since C E r ~(A) there is a k E JN such that for all p E Z we have 
c E L.(H k'H ). By lemma 3.2.4 

'L p+ p 
into H k (p E Z). p-

* it follows that C maps H continuously p 

* Suppose that C x = 0 for some x E H_00 , say x E H for some p E Z. Let p 
(xn)~=l be a*sequen~e in H00 such that xn + x in HP (hence in Hp-k) as n + 00 • 

Then Cx c x + C x = 0 in H k as n + 00 • Since II Cx II k ~ II x II k' n n p- n p- n p- * 
it follows that xn + 0 in Hp-k as n + 00 • Hence x = O. This proves that C 
is injective. 

So C : H00 + H00 is bijective. If C-l is the inverse of C, then 

11 c-1x 11 s 11 x II p p (p E J2,, X E H00 ). 

Also it is clear that c-1 E f'(A). Therefore, by 3.2.8 (ii), c-1 is a 00 

bounded element of f'(A). D 
00 

3.2.11 DEFINITION. A subalgebra A of L(H00 ) is called full if the following 
condition is satisfied: 

if CEA and c is invertible in L(H00 ), then c-l EA. 



REMARK. If A is a subset of L(H00 ) then r~(A) is a full subalgebra. 

3.2.12 THEOREM. Let A be a full commutative *-subalgebra of r~(A) which 

contains the identity operator. Then A is a syrronetric locally convex 

*-algebra. 
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PROOF. Let S E A and put c : = I + s*s, then C is invertible and its inverse 
---1- -1 A 
C is a bounded element of r~(A). Since A is a full subalgebra, C E • D 

Now we come to the main result of this section. 

3.2.13 THEOREM. Let A be a full commutative *-subalgebra of r~(A) which 

contains the identity operator and which is closed in L6 (H00 ) or L0 (H00). 

Then A is a GB*-algebra in the topologies induced by L6 (H00 ) and L0 (H00). 

PROOF. The proof follows from 3.2.8 (ii), 3.2.6, 3.2.12 and 3.2.9. D 

COROLLARY. r:(A) and r:(T) are commutative GB*-algebras with respect to the 

topologies induced by LS(H ) and L (H ). 
oo cr oo 

3.3 THE ELEMENTS OF THE BICOMMUTANT OF T AS OPERATORS ON H0 • 

From 3.2.9 if follows that 

It is possible to give another description of the algebra b(r:(T)) of the 

bounded elements of r:(T). From this description it will follow that 

* b(r:(T)) is a W -algebra. We need the following definition. 

3.3.1 DEFINITION. Let B be a selfadjoint operator in H0 • The commutant of 

B in L(H0 ) will be the set 

Here SB c BS means: Sx E D(B) for all x E D(B) and BSx 

x E D(B). 

SBx for all 

REMARK. If SE r0(B), then S leaves invariant D(Bk) (k EN). 
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3.3.2 PROPOSITION. Any s E r 0(T) leaves invariant H00 and its restriction 
to H00 is in r~(T) n Ln(H0 ). And ifs E r~(T) n Ln(H0 ) then its continuous 
extension 5(0) to H0 is in r0(T). So (identifying sand 5<0l) we may write 

PROOF. If SE r 0(T), then S leaves invariant D(Tk) (k E JN). So S leaves 

invariant H00 • Moreover, STx = TSx for all x E H00 • And S E L(H00 ) since for 

all p E Z 

-(1) Conversely, lets E r~(T) n Ln(H0 ). Then by 3.2.2 also s E Lh(H1). Ifs 

and S(O) denote the continuous extensions of S to H1 and H0 respectively, 
-(O) I -( 1 ) -(O) ;nvar'ant then it is easily verified that S H1 = S • So S leaves • • 
-(0) -(0) H1 . It is also easy to see that AS = S Ax for all x E H1 • 

Indeed, if (x ) 00
_ 1 is a sequence in H00 such that xn + x in H1 as n + oo, 

-(0) n n- (0) 
then Sxn + s x in H1 and hen.'.'._~0~sxn +AS x in H0 • Since Axn +Ax in H0 , 

it follows that ASxn = SAxn + S Ax in HO as n + 00 

Now suppose that Sis an hermitian element of r~(T). Consider the 

space D(T) equipped with the inner product 

(x,y)D(T) : = (x,y)o + (Tx,Ty)o 

Then H1 is dense i~ D(T) and the inclusion map H1 e+ D(T) has norm ~ 

(cf. 1.6.1). 

For x,y E H1 we have 

-(1) 
(S x,y)D(T) 

-(1) 
(AS x,y)O 

-(1) 
(x,S y)D(T) 

-(1) 
(x,AS y) O 

-(1) -(1) By lemma 3.2.7 (with H, G and S replaced by D(T), H1 and S resp.) S 

has a continuous extension to D(T). This extension has to coincide with 

S(O). So S(O) leaves invariant D(T). Since STx = TSx for all x EH, it 
-(0) -(0) -(0) 00 

follows easily that TS x = S Tx for all x E D(T). So S E r 0(T). 

If S is not hermitian, then we can write S = s 1 + is2 where s 1 and s 2 
are hermitian elements of r~(T) n Ln(H0 ). Then the first part of this proof 

can be applied. 0 
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,.3.3 LEMMA. Let v = (T - iI) (T + iI)-l E L(H0 ) be the Cayley transform of 

T, Then r0(V) = r0(T). 

PROOF. Recall that I - V is injective, D(T) 

T = i(I + V)(I - V)-l. 

R(I - V) and that 

Let BE r 0(v) and take x E D(T). Then x =(I - V)y for some y E H0 • So 

Bx= B(I - V)y =(I - V)By £.R(I - V) D(T) and TBx T(I - V)By = 

= i(I + V)By = Bi(I + V)y = BTx. Hence BE r 0(T). 

Conversely, if BE r0(T) then B leaves invariant D(T) so (T + iI)B(T + iI)-lx 

is well defined (x E H0 ) and (T + il)B(T + iI)-1x = Bx. 

Hence BVx = (T - iI)B(T + iIJ-1x = VBx (x €Ho>· So BE ro(V). D 

3.3.4 THEOREM. b(r:(T)) = r0(T). 

Preoisely: ifs E b(r:(T)), then its oontinuous extensions to H0 is in 

r 0(T) (= the oommutant of r 0(T) c L(H0 }J and oonversely, if S E r 0(T) then 

s leaves invariant H00 and its restriction to H00 is an element of b(r:(T)). 

PROOF. Ifs E b(f:(T)) = r:(T) n Ln(H0 ) (cf. 3.2.9), then s commutes with 

every RE r~(T) n Ln(H0 ) = r0(T) (3.3.2). Hence the continuous extension of 

S to HO is an element of r 0(T). 

Conversely, let SE r0(T). If V 

Cayley transform of T, then by 3.3.3 

-1 
(T - iI) (T + iI) € L(Hol is the 

Using 3.3.2, we obtain 

So Sis a bounded element of L(H00 ) (cf. 3.2.8). 

It remains to prove that SE r:(T). It is sufficient to show that S commutes 

with all hermitian elements RE f~(T). Let R be an hermitian element of 

* f~(T) and let A be a maximal commutative -subalgebra containing Rand 

contained in r~(T). Then A is a full subalgebra of r~(T) (which is itself 

a full subalgebra of L(H) and A is closed in L (H).So, by 3.2.13, A is a 
oo cr oo 

* * GB -algebra. Hence, by 2.1.9, crA(R) c R 

-1 A So (R - iI) E b( ) An Ln(H0 ) (cf. 3.2.9). 
-1 

Hence (R - iI) EA n Ln(H0 ) c f~(T) n Ln(H0 ) r0(T) (by 3.3.2). So S 



48 

commutes with (R - iI)-l and therefore also with R. This means that 
s E r:(Tl. o 

* 3.3.5 COROLLARY. b(f:(T)) is a w -algebra (the norm in b(f:(T)) is defined 
by the Minkowski functional of B0 where B0 is the greatest member of the 
collection B* of the algebra r:(T)). 

PROOF. Let V be the Cayley transform of T. Then r 0(T) 
algebra. D 

* * REMARK. r:(T) may be called a GW -algebra (generalized W -algebra). 

If S is a normal element of f~(A) which is bounded, then S has a 
continuous extension to H0 • In the next theorem we will see that any normal 
element S of f'(A) is closable as an operator on HO and that its closure 
S(O) is a norm:l operator in H0 . Recall that an unbounded operator B in a 

* * Hilbert space is called normal if B B = BB • It is easy to show that B is 
normal iff D(B) = D(B*) and II Bx II = II B*x II (cf. DUNFORD-SCHWARTZ [9], 
p.1258). 

3.3.6 THEOREM. Any normal element of r~(A) is closable as an operator in 
HP (p E Z) and its closure is a normal operator in HP. 

PROOF. We prove the theorem for p = 0. 

Let S E f~(A) be hermitian. Then 

(Sx,y) 0 = (x,sy) 0 (x,y E H,x) • 

Since H00 is dense in H0 , this implies that S, considered as an operator in 
H0 with domain H00 , is closable. Let Sbe its closure. Then it is easy to 
prove that Sis symmetric, i.e. S c Sx where Sx denotes the Hilbert space 
adjoint of S in H0 • Therefore, in order to prove that S is selfadjoint, it 
suffices to show that R(S + iI) = H0 • 

Let A be a maximal commutative *-subalgebra containing Sand contained in 
r~(A). Then by 3.2.13, A is a GB*-algebra; so, by 2.1.9, crA(S) cJR.*. 
Hence R(S + iI) = H00 i$ dense in a0• S:i.v,Ce 

II (S + il)xl/ 0 :::: l/xlf 0 (x € D(f)l, 

't follows that R(-s + 'I) · lo·· ·a· ~H H ~ • is c e;.!;l. ,.,. • er 
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Hence R(S + iI) = H0 • This proves that S is selfadjoint. In particular, any 

two selfadjoint extensions of S are equal. 

Now let C be a normal element of r:(A). Then 

(Cx,yl 0 * (x,c yJ 0 (x,y E H,.,). 

This again implies that C is closable as an operator in H0 • Let C be the 
x -x 

closure of c in H0 and let c = c be the Hilbert space adjoint of c in H0 • 
X- - X 

Then C C and CC are both selfadjoint extensions of the hermitian element 

cc*. These extensions are equal, so cxc = ccx. Thus C is normal. 0 

x 
REMARK. Let S be a normal element of f'(A). And let Sand S be as in the 

00 

*X 
proof of the theorem. We show that S = S 

It is trivial 
*X *X 

that S c S (since S is closed). Moreover, D(S) * D(S ) 

since II Sx II 0 
* "-'TC *X 

II S x 11 0 (x E H00). And D(S) = D(S ) since s* is a normal 

operator in H0 . 
- *X 

Hence S = S 

Using this remark, we can give a description of the closure S of a 

normal element s E r:(A) (as an operator in H0). 

Let 

** S H -+ H 
-oo -co 

be defined by (cf. 3.2.3) 

** s 

** ** ** Then S is continuous and S leaves invariant H00 • Moreover, S 

** For x E H0 such that s x E H0 , we define 

** Sx S x 

Thus S is an operator in H0 with dense domain 

I ** D(S) {x E Ho s x E Ho} . 

The graph 

H 
00 

s. 



so 

** G(S ) { (x,s**x) I x E H_"') 

is closed in H_00 x H_00 • The inverse image of G(s**i under the inclusion map 
H0 x H0 c+ H_ 00 x H_00 is precisely the graph G(S) of s. Hence G(S) is closed 
in H0 x H0 . So s is a closed operator in HO and thus s c s. 

If x E D(S) then 

* cs y,xJ 0 

*X *X 

** (y,s x) 0 (y,Sxl 0 (y E H). 

*x So x E D(S ) and s x Sx. This means Sc S By the remark made above 
we have S = s*x. So we obtain S = S. 

Let S be a normal element of f~(A). The spectrum of S in f~(A) (or, 
which is the same, in L(H00)) is denoted by cr(S). The spectrum of the closure 
of S of Sas an operator in H0 is denoted by o(S). Then we have the follow­

ing theorem. 

3 • 3 • 7 THEOREM. Let s be a norma Z e Zement o.f r ~(A) . Then 

cr(S) = cr(S) n IC • 

PROOF. 
- -1 - -1 a) If A E p(S), then (AI - S) E L(H0 ). We have to show that (AI - S) 

leaves invariant H00 • 

Note that AI - S H00 + H00 is injective and that 

-1 A(AI - S) x 

for all x E R(AI - S) c H00 • 

Since AI - s : D(S) + H0 is bijective, R(AI - S) is dense in H0 • We show 

that R(AI - S) is also dense in H1 . 
-1 Since AI - S commutes with A and hence with A (on H00), it follows that 

R(AI - S) = A-lR(AI S). Since A: H1 + H0 is an isometry onto, it 

follows that R(AI - S) is dense in H1 • 
- -1 00 Now we prove that (AI - S) E r0(A). Let x E H1 and let (xn)n=l be a 

sequence in R(AI - S) such that x -+ x in H1 (and hence in H0 ) as n + oo 
- -1 - -1 n Then (AI - S) xn + (AI - S) x in H0 as n -+ 00 and 

A(AI s;-1xn + A(H - S)-1x in H_1 • On the other hand, since Axn-+ Ax 

in H0 , we have 



- -1 
A(AI - S} 

in H0 as n + 00 • Hence 

(AI - S) -lAx 
n 
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- -1 
--+ (AI - S) Ax 

- -1 
A(AI - S) x 

- -1 
(AI - S) Ax E HO (x E Hl) • 

This relation implies that (AI - S)-l leaves invariant H00 • Hence 
-1 

AI - S : H00 + H00 is bijective and its inverse (AI - S) E f~(A) n L~(H0 ); 

so by 3.2.8 (i), (AI - S)-l is a bounded element. Hence A E p(S). So we 

proved p(S) c p(S}. 

b) Conversely, if A E p(S) n c, then AI - S has a bounded inverse U. By 

3.2.8 (ii), u E LA(H0 J. Let U denote the continuous extension of U to H0• 

We show that A E p (S). 

If x E 

Sx + Sx 
n 

x = U(AI 

D(S) 
00 

and (xn) n=l is 

in H0 as n + 00' then 

- six and 

a sequence in 

U (AI - S)x 
n 

H 
00 

x n 

such that x ->- x and 
n 

->- U(AI - S)x in H0 • so 

JI x 11 0 =JI U(AI - sJx JJ 0 :'.": 11 uJJ 0 II (AI - sJx 11 0 (x E D (S)) • 

So AI - S is injective and R(AI - S) is closed in H0 • Since R(AI - S) is 

also dense in H0 , it follows that A E p(S). D 

3.4 SPECTRAL THEORY OF THE BICOMMUTANT OF T 

* We proved that b(f:(T)) is a W -algebra. Ifs E b(f:(T)) then s has a 

unique continuous extensions to H0 and s E r0(T). The mapping s i--+ s* is 

* an isometric -isomorphism of b(f:(T)) onto r0(T). Since r0(T) = f" (V) 
0 * 

where Vis the Cayley transform of T, b(f:(T)) is isomorphic to the w -
* algebra r0cvJ. The spectrum of the W -algebra b(r:(T)) is a hyper-Stonean 

space (cf. SAKAI [28], 1.18); recall that a compact Hausdorff space is 

called Stonean if the closure of every open set in it is open. 

The spectrum of b(r:(T)) will be denoted by x. 

3.4.1 DEFINITION. Let C00 (X) be the set of all continuous functions 

* f : X --+ C = C U {co} 

co 
such that f takes the value co only on a nowhere dense set. And C (X) will be 

co * r 
the subset of C (X) consisting of all lR -valued functions, where lR* = lR u {oo}. 
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By 2.2.4 the Gelfand map S ,_.. s of b(r:(T)) onto C(X) extends to a 

isomorphism of r:(T) onto a *-subalgebra F of C00 (X). Moreover, 

a(S) = Sex> c ~*. 

* 

We do not introduce a topology in the algebra F, but we consider its 

order structure. 

Recall that a Riesz space is called Dedekind complete if every non-empty 

subset which is bounded from ·above has a supremum. 

Since X is Stonean, we have the following theorem. 

3.4.2 THEOREM. C00 (X) ~s a Dedekind complete Riesz space. More precisely: r 
if f,g E C00 (X) and A ER, then the functions r 

Af I f + g I f v g I f A g 

defined poin-twise on the open dense subset of x where f and g are both 
finite, are extendible to continuousR*-valued functions on x (these 

extensions are also denoted by Af, f + g, f v g and f A g respectively). 

PROOF. See LUXEMBURG-ZAANEN [16], §47. 

REMARK. Usually, C00 (X) is defined as the set of all continuous functions r 
f : X -+R00 

: =Ru {-00 } u { 00 } which take the values± 00 only on a nowhere 

dense set. 

3.4.3 DEFINITION. An element S E r:(T) is called positive if S ~ 0 (or 

equivalently if cr(S) c [0, 00 ]). 

Note that any positive element is hermitian (cf. 2.2.4). Let H be the real 

* linear space of all hermitian elements of r:(T) (then cr(S) cR for all 

s E HJ. 

An order relation on H is defined by 

3.4.4 LEMMA. If A is a commutative c*-algebra with unit of bounded 
operators on a Hilbert space H (with inner product (.,.)}and if 

A -+ C(Y) 

s 1--+ s 

denotes the Gelfand map of A onto C(Y) where Y denotes the spectrum of A, 
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then 

s ~ O iff {Sx,x) ~ 0 for all x E H. 

PROOF. See SAKAI {[28], 1.1.4, p.8). 

3.4.5 THEOREM. Lets E r:(T). Then the following statements are equivalent: 

(i) s is positive, 

{ii) {Sx,x) 0 ~ 0 for all x c H00 , 

{iii) (sx,x) 0 ~ o for all x E D(S), where s denotes the alosure of s in H0 • 

PROOF. The proof of {ii) <=!> (iii) is easy. 

(i) =!> (ii). Let e > O. Since - e ( cr{S), S + eI has a bounded inverse 
-1 A A A -1 : = (S + eI) € L~{H0 ). Since S ~ 0 and C = (S + eI) , it follows that 

C ~ O. Hence by 3.4.4, 

-1 o s {Cx,x) 0 = {{S + eI) x,x) 0 

Since S + eI is a bijection of H00 onto itself, if follows that 

({S + eI)x,x) 0 ~ O 

Since e > 0 is arbitrary, 

{ii)=> {i). It follows that for all p € E 

{Sx,x) ~ 0 
p 

So S is hermitian. 

(x € H00). 

Let e > O. We have to show that S + EI has a bounded inverse. For all p € E 

2 
ell x II S ((S + eI)x,x) S II (S + eI)x II II x II p p p p 

So 

II {S + eI)x II ~ E II x II p p 
(x E H00). 
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This implies that R(S + EI) is closed in H00 • 

By 3.2.2 there is some k EN such that S + EI E Lit (H k'H ) for all p E .z. * p+ p 
Then, by 3.2.4, S +EI maps H continuously into H k (p EE). Since Sis * p p-
hermi tian, S + EI is an extension of S + EI. It follows from (*) that 
* S + EI is injective. Hence R(S + EI) is dense in H00 • 

Thus S + EI : H + H is bijective. From (*) it follows that 
-1 00 00 -1 

(S +EI) E L/t(Hp)' so (S +EI) is bounded. This means that - E ~ cr(S). 
So S is positive. D 

In the next theorem we give a characterization of the algebra 
F c c 00 (x), 

F {f E c00 (X) I f 
A 

s for some s E r:(T)} 

A 

3.4.6 THEOREM. Let f E C00 (X). Then f 

n EN and some constant c ~ o 
s for some s E r:(T) iff for some 

lf(y) I :s; clA(y) In (y E X). 

PROOF. Suppose SE r:(T). Then there is a k E :Nanda constant c ~ 0 such 
that 

k II sx 11 0 :s; ell x Ilk= ell Ax 11 0 

IS(y) I :s; clA(y) lk (y E X). 

Conversely, if f E C00 (X) and lf(y) I :s; clA(y) In (y EX), then A-nf E C(X). 

Hence A-nf = S for some bounded element SE r:(T). Thus f = (SAn)A. D 

3.4.7 THEOREM. His a Dedekind corrrplete Riesz space. 

PROOF. It follows from 3.4.6 that H is a Riesz subspace (even an ideal) of 
C00 (X). We prove it is Dedekind complete. r 
Let {Sa} be a non empty subset which is bounded from above by s. Since 

c;(x) is a Dedekind complete Riesz space, sup Sa = : g exists in c;(x). 
Since S :s; g :s; s, it follows by 3.4.6 that g = B for some B E H. Then a 
B = sup Sa. D 



The relation between the topology and the order of H is given in the 

next theorem. 
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3.4.B THEOREM. Let (Sn):=l be an inareasing sequence of positive elements 

of H with sup Sn S E H. Then for all x E H00 

s x --+ Sx in H as n + 00 
n oo 

PROOF. Since S > 0 we have S S ~ s2 for m ~ n. If p E L and x E H then n-' nm n oo 

for m ~ n 

o :> 11 s x 
m s x 11 2 

n p 
2 2 

(S x,x) - 2 (S S x,x) + (S x,x) :> 
m p nm p n p 

2 2 
:> (S x,x) - (S x,x) 

m p n p 

Since the sequence {(s2x,x) I n EN} converges (inlR), it follows that 
n p 

(S x) 00 
1 converges 

n n= in H00 • 

From s2 $ s2 it follows that 
n 

is equicontinuous in L(H00 ). 

11 s x 11 2 
n P 

Hence, by the Banach-Steinhaus theorem, the pointwise limit C of the sequence 

sequence (S ) 00 

1 is in L(H00). Also it is clear that C EH. Since 
n n= 

(Cx,x) = lim (S x,x) sup (S x,x) (x E H00), we conclude that C 
p n+oo n p n n p 

So c = s. D 
sup S • 

n n 

Let us denote by 0 00 (T) the set of all A E ~ such that AI - T has no 

inverse in L(H00), And let cr(T) be the spectrum of T as an operator on H0 • 

Then we have the following theorem (cf. 3.3.7). 

3.4.9 THEOREM. a (T) = cr(T) n ~ = cr(T) 
00 

PROOF. We have to prove: if AI - T is invertible in L(H00), then AI - T has 

a bounded inverse in L(H00 ) (A E ~). 
A A -1 

Suppose, AI - T has an inverse C E L (H00 ) • Then C E r;;,(T) and c = (A - T) • 

Suppose (A - T) (y) = 0 for some y E X. Then C(y) 00 . Hence by 3.4.6, 
A 

A(y) = 00~ So T(y) = 00 . Contradiction. This means that A - T is nowhere 0 on 

X. Thus AI - T has a bounded inverse. D 
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3.5 THE SPECTRAL MEASURE OF THE BICOMMUTANT OF T 

* Let X again be the spectrum of the commutative W -algebra b(f:(T)). 

Then X is a Stonean space. Let us recall the construction of the spectral 

measure E(.) on X (see OOUGLAS-PEARCY [8]). 

Let M be a Borel subset of x. Since X is a Stonean space there is a 

unique compact open set M such that M 6 M is a set of the first category 

(i.e., a countable union of nowhere dense sets). Then E(M) is defined to be 

the unique element of H such that 

E(M) X~ 
M 

where X~ denotes the characteristic function of M. 
M 

In this way a function E(.) is defined whose domain is the a-algebra of all 

Borel subsets of X and whose values are idempotents in H. The function E(.) 

has the following properties: 

(i) E(M) ~ O, 

(ii) E(X) I (=identity element of f~IT)), 

(iii) E( ~ Mn) = sup I E(Mk) where (Mn):=l is a sequence of pairwise 
n=l n k=1 

disjoint Borel subsets of X. 

Note that a Borel subset of the first category has E-measure 0, 

In this section we shall make use of the theory of integration with 

respect to a Riesz space valued measure (see HACKENBROCH [11]). 

Let us recall the definition of the integral. 

If f is a step function, i.e,. f = l~=l ai XMi : X -+ JR where (Mi) ~=l is a 

pairwise disjoint family of Borel subsets of X, then f fdE is defined by 

n 
l aiE(Mi) 

i=1 

A Borel function f : X -+ [0, 00 ] is called E-integrable if there exists a 

sequence (fn):=l of step functions such that 

(i) 0 $ fn t f pointwise, 

(ii) sup Cf f dE) exists in H. 
n n 

For such a function f we define 

sup 
n 



It can be shown that f fdE is independent of the choice of the sequence 

(f )~ 1 satisfying (i). 
n n= 
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A Borel function f : X +lR* which is E-almost everywhere finite, is called 

E-integrable when f+ and f- (which are defined E-almost everywhere) are 

E-integrable. The integral is defined by 

* A Borel function f : X + C which is E-almost everywhere finite is called 

E-integrable when Re(f) and Im(f) are E-integrable and the integral is 

defined by 

Let L1 (X; E,H) denote the set of all functions f : X +lR* which are E-inte­

grable; two functions that are E-almost everywhere equal are identified. 

3.5.1 THEOREM. 

(i) L1 (x; E,H) is a linear space and the map 

(ii) 

f I-+ JfdE 
of L1 (x; E,H) into His positive. 

(BEPPO LEVI) Let (f ) be a monotone increasing 
n 

E-integrable functions ~ith pointrvise sup f = , n 
B € H (n € N) then f is also E-integrable and 

PROOF, See HACKENBROCH [11]. 0 

sequence of non negative 

f. If ff dE :s; B for some n 

Now we are able to derive a spectral representation theorem for the 

hermitian elements of r:(T). 

3.5.2 THEOREM. 

(i) If B € H then B € L1 Cx; E,H) and B = fBtlE. 

(ii) If f € L1 Cx; E,H)~ then CffdE)A = f except perhaps on a set of the 

first category. 
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PROOF. 
A 

(i) First we assume that B is positive and bounded. Then B is a positive 

(bounded) function in C(X). Since X is a Stonean space, there exists 

an increasing sequence of continuous step functions (gn) such that 

g t B pointwise. Put C : = Jg dE. Then it is a consequence of the n n n 
definition of the spectral measure E(.) that C = g • So C t B. Hence n n n 
c 

n 
t B (in H).Since also C =Jg dE t JBaE (cf. 3.5.1 (ii)), it fol-

n n 
lows that B = JfiaE. 
Now let B be an arbitrary positive element. Then (B A nI) B A nl 

(I is the identity operator on H00 and is the function on X that is 

constantly 1). Since clearly BA nl t B (n E :N), it follows that 

f (B A nit dE t f Ba.E in H (n E JN)• 

By the first part of the proof 

B A nI = f (B A nI( dE • 

Since BA nI t B (becuase BA nl t B), it follows that B = JfiaE. 
For an arbitrary B E H the theorem follows by writing B = B+ - B- where 

B+ and B- are positive elements. 
A 

(ii) If f is a real-valued function in C(X), then f B for some bounded 

element BE H. Since JBaE = B, it follows that CJfdE)A f. 

If f is a real-valued bounded Borel function, then there is a unique 

continuous function g (not taking the value oo), such that f g except 

perhaps on a set of the first category (cf. OOUGLAS-PEARCY [8]). So 

f = g E-almost everywhere. Hence JfdE = JgdE. If g = B then 

JfdE = JBdE =B. Thus CJfdE)A = g, and CJfdE)A = f except perhaps on a 

set of the first category. 

If f : X + [0, 00 ] is a Borel function, the theorem follows by considering 

the sequence (fn) where 

f 
n 

f A nl (n EN). D 

3.5.3 COROLLARY. A Borel subset M c x has E-measure 0 iff it is of the 

first aategory. 
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PROOF. If E(M) = O, then 0 = E(M)A = (fXMdE)A = XM except perhaps on a set 

of the first category (XM denotes the characteristic function of M) . D 

REMARK. In a hyper-Stonean space every first category set is nowhere dense 

(cf. BADE [34], p.102), So from 3.5.3 it follows that E(M) = O iff Mis 

nowhere dense. 

3. 5. 4 THEOREM. (Spectral theorem) Let B E r" (T) and let B denote the 
00 

closure 'of B as an operator in H0 • Let 

B = fBdE, 
n V 

n 

where v 
n 

{y E x[ IB(y) I s n} and E is considered as a measure with values 

in L(H0 ). Let B be the closure of Bas an operator in H0 . 

Then Bnx +Bx in H0 as n + 00 for x E D(B). 

PROOF. It suffices to prove the theorem for B positive. Since Bn t B by 

3.5.1 (ii), it follows by 3.4.8 that Bnx +Bx in H0 for x E H00 • We equip 

D(B) with the graph norm. Then B and Bn considered as operators from D(B) 

into H0 have norms 1. Since H00 is dense in D(B) we may conclude that 

Bnx ->-Bx in H0 for x E D(B). D 

3.5.5 DEFINITION. Let B E r:(T). The spectral measure EB of B (defined on 

cr(B)) is defined by 

where Mis a Borel subset of cr(B). 

3.5.6 COROLLARY. Let BE r:(T). Then 

Bx = lim ( J ;\dEB) x 
n+oo D 

n 
where D c ~is the set {z I lzl s n}. 

n 

(x E D(B) 

If V is a bounded normal operator on a Hilbert space and B is in the 

bicommutant of V then there exists a bounded Borel function g on cr(V) such 

that B g(V). This theorem is well-known (see, for example, SCHWARTZ [30], 

p.14). A similar result can be derived for the bicommutant r:(T) of T. 
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3.5.7 DEFINITION. Let F1 (Cf(T)) be the algebra of all Borel functions 

f : o(T) n ~--+~such that !f(A) I s c(1 + IA! 2ln (A E Cf(T) n ~) for 

constant c and some n E E. 

If f E F1 (o(T)) then g : = f 0 Tisa Borel function on X and 

A n 

some 

lg(yll s cJA(y)I (y E X) 

for some constant c and some· n E N. 

From this it follows that g is E-integrable. We define 

f (T) : JgdE 

A 

REMARK. It follows (cf. 3.5.2 (ii)) that f(T) = f 0 T except perhaps on a 

set of the first category. So f(T) = f 0 T E-almost everywhere. 

3 • 5. 8 THEOREM • The map 

F l ( Cf (T) ) r;;, (T) 

f f--+ f(T) 

is a homomorphism onto. And f(T) 

to zero. 

O iff f is ET-almost everywhere equal 

PROOF. We prove that the map is surjective. 

Let B E H c r" (Tl • Then (B - iI)-1 E b(f"(T)) r 0(vJ where V is the Cayley 
00 

iI)-1 
00 

transform of T. Then (B - = g 0 v where g is some bounded Borel func-

tion on cr(V). Hence (B - iI)-l = h 0 T, where h is a bounded Borel function 

on cr(T). So B = f ~ T for some Borel function f on cr(T). 

Since BE r;;,(T), it follows from 3.4.6 that f E Fl (cr(T)). 0 
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3.6 TENSOR PRODUCTS 

We are interested in spectral properties of operators of the form 

P(T ®I, I® S); here T and Sare selfadjoint operators and Pisa poly­

nomial (in two variables). The case T ®I+ I® S has been treated by L. & 

K. MAURIN [19]. In this section we want to show how these results of L. & 

K. MAURIN can be derived in a systematic way. 

The notations are as in section 1.7. 

If PE L(H~A)) and Q E L(H~Bl), then it is easily seen that P ® Q 

Hoo(A®B). 
extends to a continuous linear operator in This defines a mapping 

(the canonical mapping) 

3 • 6 • 1 LEMMA. The canonioa l mapping 

L(H~A)) ® L(H~B))---+ L(H~A®B)) 

is injective. 

PROOF. Suppose 
--(A) 

\n P ® Q defines the zero operator in L(H00(A®B)). If 
li=l i i 

a E H and B 
H(A) ;ooH(B) by 

E H~~l, then a® B defines a continuous linear functional on 

00 00 

(x ® y, a ® Bl 

Then our assumption implies 

0 ((I P. ® Q.) (x ® y), a® s) 
i=l J. J. 

n 
l (Pix,a)o(Qiy,8)0 

i=l 
n 

l (Pi' x ® a) (Qi, y ® Bl , 
i=l 

where x ®a E H~A) ® H~~) is the linear functional on L(H~A)) defined by 

(P, x ®a) (PE L(H(A))) 
00 , 
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and similarly for y ® S. 
Since H(A) ® H(A) is total over L(H~A)) (and H~B) ® H~~· is total over 

L(H~B))~, it f:~lows that 

( Z P. ® Q., 11) * 0 
i=l l. l. 

for allµ E L(HCA'J* ® L(H(B),*, where L(H(AlJ* and L(H(B)J* denote the 
co (A) co· (BJ co , co 

algebraic duals of L(H00 J ahd L(H00 J respectively. Since 

(L(H~AJ) ® L(H~B)), L(H~A) t ® L(H~B) >*) form a dual pair, it follows that 

I~=1 pi ®Qi = o. o 

We put A : = r::, (T) c L(H(A)) and B : = r" (S) c L(H(B». And we con­

sider A® Bas a subset of L(=~A®BJJ. Then we
00

have the ;ollowing inclusions: 

* It follows from 3.2.13 that r::,cA ® BJ is a commutative GB -algebra. We shall 
* prove that it is a GW -algebra, i.e. the bounded elements of r::,<A ® B) form 

* a W -algebra (cf. 3.3.5). 

(iJ 

(ii) 

r~(A ®BJ = r• (b(A) ® b(B)) 

r~(b(A) ® b(B~l n L~(H6A®B)J = r 0(b(AJ ® b(BJJ; 

r 0(b(AJ ® b(BJ) is the commuta:nt of b(A) ® b(B) in L(H6A®B}J; so 
b(Al ® b(B) has to be considered here as a subset of L(H6A®B)). 

PROOF. 

(il Clearly, r~cA ® Bl c r~(b(Al ® b(BJJ. 

Conversely, let SE f~(b(A) ® b(BJJ. It is sufficient to show that S 

commutes with all elements of the form P ® Q where P E A and Q E B are 

hermitian elements. 

Since (P - iI)-l E b(AJ, it follows that S commutes with (P - iI) -l ®I, 

hence with (P - iIJ ® I and with P ® I. Similarly S commutes with I ®Q. 

So S commutes with P ® Q. 

(ii) If c E r~(b(A) ® b(BJ) n L~(H6A®BJ) and s E b(A} ® b(B), then CS= SC 
on H(A®BJ. Hence the continuous extensions of C and S to H(A®BJ corn-

"' 0 
mute with each other. 

-1 -1 Conversely, let c E r0(b(A) ® b(BJ). Since A ® B E b(A) ® b(B), 
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C commutes with A-l ®B-1 • Hence Cleaves invariant H(A®B) and 
co 

c E r~CbCAl ® bCBlJ. D 

3.6.3 THEOREM. b(f"(A ® B)) 
co 

(A®B) 
PROOF. If C E r0(b(A) ® b(B)), then Cleaves HO invariant. In order to 

show that C E r:cA ® B), it suffices to show that C commutes with every 

hermitian elements E r•cA ®BJ. 

The same reasoning as i: the proof of 3.3.4 gives that (S - i)-l is a 
(A®B) normal element of r~(A ® Bl n L~(H0 ) = r0(b(A) ® b(B)) (cf. 3.6.2 (ii)). 

So C commutes with (S - i)-l and hence with s. 
conversely, if c E b(r:<A ® B) = r.:,cA ® B) n L~(H6A®B)) (cf. 3.2.9), then 

c commutes with r~(A ® B) = r~(b(A) ® b(B)) (cf. 3.6.2 (i)). 

So it follows by 3.6.2 (ii) that c E ro(b(A) ® b(B)). D 

3. 6. 4 THEOREM. 

(i) Let c E r.:,cA ® B), then c is closable as an operator in H6A®B) and its 

closure c is a normal operator in H6A®B). Moreover, cr(C) = cr(C) n «: 

( cf. 3. 3. 7) • 

(ii) Let P be a polynomial in two variables. Then the spectrum of 

P(T ®I, I ® S) is the closure (in«:) of the range of Pon the produat 

of the speatra a (T) x cr (S), where cr (T) and cr (S) are the speatra of T 

and s aonsidered as selfadjoint operators on H6A) and H6B) resp.; that 

is 

cr(P-(T ®I, I® S)) P(crcTl, cr(S)) 

PROOF. 

(i) This follows from 3.3.7. 

(ii) Let X, Y and z be the spectra of b(A), b(B) and b(r.:,cA ® B)) respect­

ively. Let 
A * A 

T : X --+ «: and S 

denote the Gelfand images of T and S respectively, And let 

(T ® I) * z --+ «: and (I ® S) * z --+ (C 

denote the Gelfand images of T ® I and I ® S respectively. 
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Let 

be the canonical surjection (recall that b(A), b(B) and b(f~(A ® 8)) 
are isomorphic to C(X), C(Y) and C(Z) resp.). 

Then, for y E z 

(T ®I) (y) = T(cr) and (I® s)"(y) S(f3) 

where (cr,(3) p (y) • Now let 

M1 : = {cr E X j T(cr) ~ oo} and M2 {(3 E Y I S((3) ~ oo} • 

Then (by 3.3.7) 

o<sl 

Let 

Then M is an open dense subset of z and 

So o(P(T ©I, I© S)) is equal to the closure in~* of the set 

{P((T © I) ... (y), (I© S) (y) I y EM} 

= {P(T(cr),S(S)) j cr E M1 , 13 E M2 } = 

= P(crcT),o(S)) • 

This implies the statement. 0 

REMARK. A spectral mapping theorem for tensor products of closed operators 
on Banach spaces was proved bf REED & SIMON [27]. Theit method of proof is 

also an algebraic one. Bowe~et, tTue1 consider onl~ algebras of bounded 
opetators. 
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In this chapter we present some facts which will be needed in the next 

chapter. The first section contains some basic facts about direct integrals 

of Hilbert spaces. In the second section we prove the main theorem concern­

ing disintegration of measures. 

4.1 DIRECT INTEGRALS OF HILBERT SPACES 

As for the theory of direct integrals we follow DIXMIER [6] and 

SAKAI [28]. 

Let Z be a compact Hausdorff space and let µ be a positive Radon 

measure on z. A collection {H(z) I z E Z} of separable Hilbert spaces is 

called a field of Hilbert spaces. The norm and the inner product in H(z) 

are denoted by 11. llz and (.,.)z respectively. Elements of TI H(z) are 
ZEZ called vector fields. 

4.1.1 DEFINITION. A sequence (xn):=l in TIH(z) is called a measurable 

fundamental sequence if 

(i) the functions z t-+ (xn(z),xm(z))z are µ-measurable for all n and m, 

(ii) the sequence (x (z)) 00 1 is total in H(z) for every z E z. 
n n= 

The field {H(z)} is called a measurable field if there exists a measurable 

fundamental sequence (xn) in TIH(z). 

A linear subspace v c TIH(z) is called measurable if 

(i) the functions z 1-+ (x(z),y(z))z are µ-measurable for all x,y E V, 

(ii) V contains a measurable fundamental sequence (xn). 

Let {H(z)} be a measurable field. Let {V} be the set of all measurable 
a 

linear subspaces. We define an order in {V } by set inclusion. Then, by 
a 

Zorn's lemma there exists a maximal measurable subspace v0 • 

Let M(Z,µ) be the linear space of all measurable complex-valued functions 
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on Z. If f E M(Z,µ) and x is a vector field, then fx will be the vector-

field 

fx z 1--+ f(z)x(z) (z E Z). 

If V is a measurable subspace then the linear space generated by 

{fx I f E M(z,µ), x E V} is again measurable. Hence v0 is invariant under 

M(Z,µ). 

4.1.2 THEOREM. Let v0 be a maximal measurable subspaae. Then there exists 

a aountable family (en):=l in v0 suah that (en(z)):=l is a aomplete ortho­
normal system in H(z) for every z E z. 

PROOF. See SAKAI ([28], p.138). 0 

Such a sequence (en) is called a measurable field of orthonormal bases. 

4.1.3 REMARK. The sequence (en) is constructed from a measurable fund­

amental sequence (xn). Let v be another measure on Z such that (xn) is also 

a v-measurable fundamental sequence for the field {H(z)}. 

An analysis of the proof of 4.1.2 shows that the sequence (en) is also a 

v-measurable field of orthonormal bases. 

4.1.4 DEFINITION. Let K0 be the set of all elements x in v0 with 

J11 x(z) II; dµ(z) <"' 

For x,y E K0 we define 

(x,y) : = J (x(z) ,y(z)) z dµ (z) • 

Two elements of K0 are identified when they are almost everywhere equal. 

Then we obtain an inner product space which is denoted by H0 . 

4.1.5 PROPOSITION. 

(i) H0 is a Hilbert spaae. 

(ii) If (xn) is a measurable fundamental sequence in K0, then the linear 

spaae generated by {fxn I f E C(Z), n EN} is dense in H0• 

PROOF. See SAKAI ([28], p.139). 0 
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4.1.6 THEOREM. Let {H(z)} be a measurable field of Hilbert spaces and let 

v0 and v1 be wo maximal measurable subspaces of nH(z). Let H0 and H1 be 

the Hilbert spaces associated with v0 and v1 respectively. Then for each 

z E z there exists a unitary mo:p V(z) of H(z) onto itself such that the map 

which sends x E H0 into the field z r--> V(z)x(z) is a unitary map of H0 onto 

H1 • 

PROOF. See SAKAI ([28], p.140). 0 

4.1.7 DEFINITION. Theorem 4.1.6 shows that we obtain an essentially unique 

Hilbert space H0 from a given measurable field {H(z)}. The Hilbert space H0 

is called the direct integral of the field {H(z)}. 

It is denoted by 

JH(z) dµ (z) • 

The following definition is given for later use. 

4.1.8 DEFINITION. For f E L00 (Z,µ) the multiplication operator Mf on 

fH(z)dµ(z) is defined by 

(x E f H(z)dµ {z)). 

An operator of the form Mf is called a diagonalizable operator. If f E C(Z), 

then Mf is called continuously diagonalizable. 

4.2 DISINTEGRATION OF MEASURES 

Let (z,E,µ) be a complete measure space. And denote by M00 (Z,µ) the 

algebra of all complex-valued bounded measurable functions on Z, by N00 (Z,µ) 

the ideal of all f E M00 (Z,µ) which are locally µ-almost everywhere neglig­

ible and by L00 (Z,µ) the quotient algebra M00 (Z,µ)/N00 (Z,µ). The canonical 

image of f E M00 (Z,µ) in L00 (Z,µ) is denoted by f. By abuse of notation we 

shall sometimes not distinguish between f and f. 

A linear lifting of L00 (Z,µ) is a linear positive map 

satisfying p(1) = 1 and p(f) f for all f E L00 (Z,µ). 

A lifting of L00 (Z,µ) is a linear lifting of L00 (Z,v) which is also multi-
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plicative. 

A theorem of MAHARAM [17] asserts that every finite measure space admits a 

lifting. Using this result one can prove that a measure space (Z,E,µ) admits 

a lifting if it is a disjoint union of µ-summable sets. In particular, if Z 

is locally compact and µ is a positive Radon measure on Z, then a lifting 

exists. For the proofs we refer to A. & C. IONESCU TULCEA [13]. 

Assume that Z is locally compact and µ is a positive Radon measure on Z with 

supp(µ) 

if p(f) 

z. A linear lifting of L00 (Z,µ) is called a strong linear lifting 

f for all real-valued continuous and bounded functions f on z. 
If X is a locally compact metrizable space and µ is a positive Radon measure 

on X with supp(µ) = X, then (X,µ) has the strong lifting property (see A. & 

C. IONESCU TULCEA [13], Ch.VIII, §4). 

To avoid complications of technical nature we restrict ourselves to 

compact spaces with positive Radon measures. 

The proof of the theorem about disintegration of measures is based on the 

Dunford-Pettis theorem. The existence of (strong) liftings permits to remove 

the separability assumptions which are usually made. 

Let T be a compact Hausdorff space and let v be a positive Radon 

measure on T. Let E be a Banach space and let E' be its dual. We denote by 

M00 (T,v; E') the space of all mappings h : T + E' with the following 

properties 

(i) h(T) c E' is bounded, 

(ii) <h,x> E M00 (~,v) for every x E E, where <h,x> denotes the function 

t 1->- <h(t) ,x>. 

Note that II h II 00 sup 11 h(tl 11 < 00 • 

tET 

The next theorem is a representation theorem for continuous linear maps U 

of L1 (T,v) into E'. In the case that E = ~. this representation i~ well• 
1 known. In fact, if U is a continuous linear functional on L (T,v) then 

there exists an element h E L00 (T,v) such that 

U(g) = Jg(t) h(t) dv(t) 
T 

1 
(g EL (T,V)). 

4.2.1 THEOREM (DUNFORD-PETTIS). Let p be a linear lifting of L00 (T,v). Let 

1 
U : L (T,v) --+ E' 
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be a continuous linea:r> map. Then there exists a unique mapping h T _,. E', 

h E M00 (T,v; E') such that 

(i) p<h,x> 

(ii) <Ug,x> 

<h,x> for all x E E, 

fg(t)<h(t),x> dv(t) 
T 

1 for all g E L (T, ) a:nd all x E E, 

(iiil 11 h II II u JI. 

PROOF. Let 

be the adjoint of U (restricted to E).For at ET we consider the linear 

functional 

x ~ (pU' (x)) (t) (x E E) • 

This is a continuous linear functional on E which we call h(t). Thus 

h(t) E E' and 

<h(t) ,x> (pU' (x)) (t) • 

Now one has to verify that h satisfies the required properties. We refer to 

A. & C. IONESCU TULCEA ([13], p.87). 0 

REMARK. If E is a Banach lattice and U is a positive linear map, then U' is 

also positive. So h(t) is a positive linear functional on E for all t E T. 

We apply the Dunford-Pettis theorem in the case that E = C(S), the 

space of all complex-valued continuous functions on the compact Hausdorff 

space S. The dual of C(S) is M(S), the space of Radon measures on S. The 

set of all positive Radon measures is denoted by M+(S). 

The next theorem about disintegration of measures is an adapted version of 

two theorems in the book of A. & C. IONESCU TULCEA [13] (namely Th.2 and 

Th.5 of Ch.IX). 

4.2.2 THEOREM (Disintegration of measures). 

Lets and T be two compact Hausdorff spaces and let TI: s _,._T be a continu­

ous surjeotion. Let µ ~ O be a positive Radon measure on s a:nd let v = TI(µ) 

be the image of µ under the map TI. 
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Suppose that r is a strong lifting of L00 (T,v). Then there is a mapping 
t 1-+ At of Tinto M+(S) with the foZZowing properties 
(i) <f,A> E M00 (T,v) for aZZ f E C(S) and 

r<f,A> = <f,A> for aZZ f e C(S), 

(ii) f <gorr) (s) f(s) dµ(s) fg(t) <f 1 At> dv(t) for aZZ f E C(S) and aZZ 
S l T 
g E L (T,v), 

(iii) <gorr,A> = g for aZZ g E C(T); henoe 
-1 supp(At) c: rr ({t}) and Jl At JI = 1 for aU t E T. 

PROOF. Consider the mapping 

defined by 

U(g) (g o rr)µ 1 (gEL(T,v)). 

This mapping is well defined (see BOURBAKI [5], Ch.V, §6, no 2, Th.1). 

Moreover, U is continuous and positive. So by the Dunford-Pettis theorem, 

there exists a mapping t ...._..At of Tinto M+(S) satisfying (i) and (ii). 

Let g E C(T). Then for all h E C(T) we have 

fh(t) <g 0 rr,At> dv(t) = fhorr(s) gorr(s) dµ(s) 

fh(t) g(t) dv(t) • 

So <gorr,At> = g(t) for µ-almost all t. Thus r(<gorr,At>) = (rg) (t) = g(t) 

for all t E T. Since also r(<gorr,At>) = <g 0 rr,At> for all t E T, it follows 

that <g 0 rr,At> = g(t) for all t E T. D 

REMARK 1. It follows that 

f f(s) dµ(s) = f<f,A > dv(t) 
S T t 

for all f E C(S). This relation can also be written as 

where the integral has to be considered as a weak-star integral. Thus we 

have obtained a disintegration of µ with respect to v. 
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REMARK 2. The mapping t 1-+- At is uniquely determined by (i), (ii) and (iii). 

For, let t f--'-- At be another mapping satisfying (i), (ii) and (iii), then 

J g(t) <f,At> dµ(t) = J g(t) <f,At> dµ(t) 

for all f € C(S) and g € C(T). Hence <f,At> = <f,At> for µ-almost all t. 

So, for all t we have 

(f E C(S)). 

Hence At = At for all t € T. 

We consider the situation of 4.2.2. Relation (ii) can be generalized; 

this relation also holds for bounded measurable functions. 

4.2.3 THEOREM. If f E L00 (S,µ), then 

(i) f is At-measurable for v-almost all t, 

(ii) the map t 1-+- <f, At> ia bounded and v-in tegrab le; and 

SJ g 0 n(s) f(s) dµ(s) = TJ g(t) <f,At> dv(t) 

for all g E L00 (T,v). 

PROOF. See A. & C. IONESCU TULCEA ([13], Ch.IX, Prop.6, p.147). 0 
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CHAPTER V 

EIGENFUNCTION EXPANSIONS 

The idea of using triples of spaces ~ c H0 c ~· to construct general­
ized eigenvectors for selfadjoint (and normal) operators in a Hilbert space 
H0 is to be found at several places. We mention BEREZANSKII [4] and GELFAND 
& WILENKIN [10]. In this chapter we shall develop this theory from an 
algebraic point of view. 

In the first section we consider the question whether the spaces H00 

and H_ 00 (associated with some selfadjoint operator T) are suitable for 
eigenfunction expansions. It turns out that they are not; generalized eigen­
vectors of T which are to be found in H_00 , are already in the space H0 and 
are thus eigenvectors of T. 

The starting point for the algebraic theory is an adapted version of 
the well-known theorem due to VON NEUMANN concerning the direct integral 
decomposition of a Hilbert space H0 with respect to some spectral measure 
E(.). The usual proof of this theorem (cf. DIXMIER [6], Ch.II, §6) has been 
adapted to our purpose, namely eigenfunction expansions. A discussion of 
our proof is given at the end of section 2. 

In section 3 we consider a second spectral measure F(.) which is the 
image of E ( .. ) under some continuous map. We examine the relation between 
the direct integral decomposition of H0 induced by E(.) and F(.). Here we 
make use of the theory of disintegration of measures. 

In section 4 we come to the main subject of this chapter: generalized 
eigenvectors. With any spectral measure E(.) we associate generalized eigen­
vectors. Again, we consider a second spectral measure F(.) which is the 
image of E(.) under some continuous map. Then the results of section 3 are 
used to express the generalized eigenvectors associated with F(.) in terms 
of the generalized eigenvectors associated with E(.). 

The results of section 4 can be applied in order to express the gener­
alized eigenvectors of an operator in a GB*-algebra A in terms of the 



* generalized eigenvectors corresponding to the spectral measure of the C -

algebra b(AJ. This is indicated in section 5, where VON NEUMANN'S theorem 

* is generalized to GB -algebras. 
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In section 6 we indicate how the generalized eigenvectors of an oper­

ator of the form P(T1 ® I, I ® T2J (cf. section 3.6) can be expressed in 

terms of the generalized eigenvectors of T1 and T2 • This generalizes a 

result of L. & K. MAURIN [19] who considered the case T1 ® I + I ® T2 . 

5.1 GENERALIZED EIGENVECTORS 

Let T be a selfadjoint operator in a separable Hilbert space H0 and 

let A : = I + T2·• Let {H p E .!!:} be the chain of Hilbert spaces associated 
p 

n H and H 
pEZ p -co 

u H • p with H0 and A. Let H00 

The operator T can be described in terms of its generalized eigen­

vectors. Generalized eigenvectors are not in the space H0 , but they are 

contained in a bigger space. We show that the space H_00 is not big enough; 

in other words, a generalized eigenvector which is not in H0 , is also not 

in H 
-co 

Let <P be a locally convex space and let <P c:......+ H0 be a continuous 

injection such that <P is dense in H0 . Suppose <P c D(T) and T<P c <P. And 

assume that T maps <P continuously into itself. 

5.1.1 LEMMA. <P c H00 a:nd the injeation <P c:......+ H00 is aontinuous. 

PROOF. It is clear that iP c D!Tk) for all k EN. So iP c H00 • Let k EN. 

Since Ak maps <P continuously into itself, there is a continuous semi-norm 

q on <P such that 

k 
II A u II 0 ,,; q(u) (U E <Jl). 

k 
Thus II u Ilk = II A u II 0 ,,; q(u) (u E <ll). This means that the injection 

<ll c:......+ H is continuous. D 
00 

Now we want to analyse the condition that <ll is dense in H00 and we 

derive some consequences of this condition. We need the following lemma. 
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5.1.2 LEMMA. Let n be a fixed natu:raZ number. For a Zinear subspace 
o/ c D(Tn) the foZZowing assertions are equivaZent: 
(i) there is a A E c with Im(A) # O suah that (T - AI)no/ is dense in H0, 

(ii) for aU A E c with Im(A) 7! O, (T - AI)~ is dense in H0, 

(iii) for every n-tupZe A1 ,A 2 , .•• ,A with A. i cr (T) (=the point speatrwn n J. P 
of T) the spaae (T - A1I) (T - A2I) ••. (T - AnI}o/ is dense in H0 . 

PROOF. The implications (iii) => (ii) => (i) are trivial. 

The implication (i) => (iii) is proved by induction. 

First we consider the case n = 1. Suppose o/ c D(T) and (T - AI)o/ is 

dense in H0 for some A EC with Im(A) # O. Let Ali crp(T) (Al# A). Let 

- -1 V : = (T - AI) (T - AI) 

be the Cayley transform of T (with respect to A). Then Vis a unitary 
operator, D(T) = R(V - I) and T =(AV - \r)(V - I)-l. 

Suppose x is orthogonal in H0 to (T - A1I)o/. Let u E (T - AI)o/. Then 
u = (T - AI)v for some v E o/ and 

* (u,v x) 0 (Vu,xJ 0 = ((T - AI)v,x) 0 

since 

A - 'A 
1 ((T - AI)v,x) 0 = ~ (u,x) 0 
1 

O, 

This holds for all u E (T - AI)o/. Since (T - AI)o/ is dense, this implies that 

* v x 
I 1 - A 

=---x 
r - x-1 

Suppose x ~ O. Then Al E lR, 

A - I' 
Vx = - 1--x 

Al - A 

Al - A 
and x = --- (V - I)x • 

A - I 

Sox E D(T) and Tx = A1x. This is a contradiction since Ali crp(T). 
Now suppose that the implication (i) ~ (iii) holds for some n 2 1. 

n+l n+l . Let 1 c D(T ) and let (T - AI) 1 be dense in H0 for some A E C with 
Im(A) # 0. Let A1, .•• ,A ,A l EC\ cr (T). Let n n+ p 
o/n: = (T - A2IJ ••• (T - AnI)(T - An+lI)o/. By applying the induction hypo-



thesis to (T - AI)~, we conclude that 

(T - AI)~n (T - A2I) •.• (T - An+1I)(T - AI)~ is dense in Ho. Since the 

assertion holds for n = 1, it follows that 

(T - A 1 IJ~n = (T - A1IJ (T - A2IJ ••• (T - An+lI)~ is also dense in H0 • D 
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5.1.3 COROLLARY. (T - iI)nw is dense in H0 for all n EN iff Anw is dense 

in H0 for all n E :N, 

PROOF. Use A= (T + iI) (T - iI). 0 

5.1.4 LEMMA. w is dense in H00 iff (T - iI)nw is dense in H0 for all n EN. 

PROOF. Suppose P is dense in H00 • Since An is a topological isomorphism of 

H onto itself, Anw is dense in H and hence in H0 (n EN). Then from 
co 00 

5.1.3 it follows that (T - iI)nw is dense in H0 for all n EN. 

Conversely, let {T - iI)nw be dense in HO for all n E :N. Suppose that w is 

not dense in H00 • Then there is an element 0 ~ f E H_00 such that {u,f) 0 = 0 

for all u E w. Assume f EH (n EN); then f Anx for some x E H0 • Then it 
-n 

follows that 

{u,f) 0 
n (u,A x) 0 

n 
(A u,x) 0 0 (u E W). 

Since AnW is dense in H0 (cf. 5.1.3), it follows that x = 0. Contradiction. D 

5.1.5 COROLLARY. If w is dense in H, then Ap(T - AlI) •.• (T - A I)W is 
oo n 

dense in H0 (p E .lN and A1, ••• ,An i crp(T) (=the point speatrwn of T)). 

PROOF. Apply 5.1.2 and 5.1.4. 0 

Now assume that w is dense in H . Let i 
co 

w <=...-+ H00 be the injection. 

Let w' be the anti-dual of w. 

Let ~O H_00 --+ (H,)' be as in 1.5.2 (ii) (take p O in 1.5.2). Then 

j : = i'~o H ---+ W' 
-CO 

is injective. We shall identify H_00 with its image under j. Then we obtain 

the following chain: 
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The continuous extension of T to H_00 is also denoted by T. Let T' : W' -->- w' 
be the anti-transposed of T 

an extension of T. 

w -->- w. Then it is easily verified that T' is 

We are interested in eigenvalues and eigenvectors of T'. If T'$ =A$ 

(0 # $ E w•, A E ~),then$ and A are called a generalized eigenvector and 

a generalized eigenvalue of T respectively. 

The kernel of T' - AI is denoted by N(T' - AI). And the kernel of T - AI 

(considered as an unbounded operator in H0 ) is denoted by N0 (T - AI). 

5.1.6 LEMMA. If w is dense in H00, then N(T' - AI) n H_00 = N0 (T - AI). 

PROOF. It is sufficient to prove that N(T' - AI) n H_00 c N0 (T - AI). Take 

f E N(T' - AI) n H_00 and suppose f E H_n for some n EN. Then f = Anx with 

x E Ho. And T'Anx = AAnx. Hence Tx AX. Sox E D(T) and x E No(T - AI). 

Since 
n (u,f) 0 = (u,A xl 0 

for all u E ~, it follows that 

REMARK. This lemma says the following. If f E H_00 is a generalized eigen­

vector of T, then f E H0 (hence f E H00 ). 

We can prove a little more. 

5.1.7 PROPOSITION. Let~ be dense in H00 • Let E denote the linear span of 
all eigenvectors of T' belonging to generalized eigenvalues A i a (T). 

p 
Then En H_ 00 (0). 

PROOF. Let$ l~=1 $k where $k E N(T' AkI) and Aki crp(T) (k=l, •.• ,n). 
Suppose$ E H_00 Then$= Apx for some x E H0 and some p EN. Furthermore, 

for all u E w. Thus 

p 
(v ,A x) 0 

p 
(A v,x) 0 0 
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for all v € (T - Al!) ••• (T - An!)~. Since Ap(T - Al)) ••• (T 

in H0 (by 5.1.5), it follows that x = O. so$= 0. D 
A I)~ is dense 

n 

5. 2 DECa1POSITION OF A HILBERT SPACE WITH RESPECT TO A SPECTRAL MEASURE 

The theorem which is presented in this section is a very well-known 

theorem due to VON NEuMANN; a proof is to be found in DIXMIER ([6], Ch.II, 

§6). The proof we shall give differs from the proof in DIXMIER at several 

points. The reason is that we adapted the proo~ to our needs in the next 

sections. At the end of this section we shall discuss the main points of 

difference. 

Let H0 be a separable Hilbert space with inner product (.,.) 0 and norm 

II • II 0 • 

* Let A be a commutative C -algebra of bounded operators in H0 containing the 

identity operator. For A one can take for example the algebra of bounded 

* elements of GB - algebra. 

The spectrum of A is denoted by S and E(.) will be the spectral measure on 

s of the algebra A. 

5,2,1 THEOREM (VON NEUMANN). ThePe e:x:ists a finite positive BoPel 

measu.l'e µ on s a:ru1 a µ-measur>able field of HilbePt spaces {H(s) I s € s} 

and. .. m isometrvic isomoxphism 

H0 - J H(s) dµ(s) 

of H0 onto fHCs)dµ(s) ~hich tPansforrms A onto the set of all continuously 

diagonalizable opePatoPs on fHCs)dµ(s). 

PROOF. The proof is divided into several parts. 

a) .For the measure µ one has to take a basic measure, i.e. a measure 

which is equivalent to the spectral measure E(.) (a measureµ is said to 

be equivalent to E(.) ifµ and E(,) have the same zero-sets). We give an 

explicit expression for a basic measure. In order to do so we consider a 

second Hilbert space H1 which is densely embedded in H0 such that the 

inclusion map 

is of Hilbert-Schmidt type. The inner product and the norm in H1 are 
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denoted by ( • , • ) 1 and 11 • 11 1 respP.cti vely. 

Let 6 be a Borel subset of s. Then i*E(6)i is a positive nuclear 

* operator; so its trace tr(i E(6)i) is finite. We define µ by 

µ(6) * tr(i E(6)i) 

Then µ is a finite positive Borel measure on s. And it is clear that µ 

is a basic measm:·e. 

b) Now we introduce the spaces H(s) (s ES). 

For x,y E H0 , let µ be the measure defined by x,y 

µ (6) : 
x,y (E(6)x,y) 0 

(6 is a Borel subset of S). 

Then µ is absolutely continuous with respect to µ. Hence by the 
x,y 1 

Radon-Nikodym theorem, there is a function h E L (S,µ) such that x,y 

µ (6) = I h (s) dµ(s) x,y 6 x,y (6 a Borel set in S). 

If x,y E H1 , thenµ (6) = (E(6)ix,iy) 0 x,y 

Iµ (6)lsµ(6lllxll 1 1Jyll 1 • x,y 

This implies that h E L00 (S,µ) and that x,y 

( 1) 

* (i E(6)ix,y) 1 . Hence 

Now let p be a linear lifting of L00 (S,µ). Then we may assume that for 

x,y E H1 

h (s) = (ph ) (s) 
x,y x,y (s E S). 

Since p is a positive linear map it follows that 

(2) Jh <sl I s 11 h II x,y x,y oo 
(s E S). 

From (1) and (2) it follows that for x,y E H1 and s E S 



(3) 

The map 

lh (sll ::> llx1J 1 IJylJ 1 • x,y 

(4) Hi x Hl - C 

(x,y) r--- h (s) x,y 
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is for fixed s E S a sesquilinear form. We show that it is linear in the 

first variable. 

Since µ , + µ ., = µ '+ 11 , it follows that h , + h 11 = h '+ ., x ,y x ,y x x ,y x ,y x ,y x x ,y 
µ-almost everywhere (x',x",y E H1). Since h (s) = (ph )(s) for all x,y x,y 
x,y E H1 , we obtain 

h , (s) + h 11 (s) = h '+ 11 (s) ' x ,y x ,y x x ,y 
(s E S). 

So, for a fixed s E S, the map (4) is a continuous sesquilinear form on 

Hl. 

Let N(s) {x E H1 I h (s) = O} and let x,x 

be the quotient map. The space H1 /N(s) is an inner product space in a 

natural way; the inner product (.,.)sis defined by 

(F(s)x,F(s)y) : = h (s) s x,y 

Let H(s) be the completion of H1/N(s). So H(s) is a Hilbert space with 

inner product (.,.) s and norm II • II s" 

In this way we have obtained a field {H(s)} of Hilbert spaces. If x E H1 

then F(s)x € H(s) is also denoted by x(s) and the vector field si-- x(s) 

is denoted by i. 
c) The field {H(s)} is a measurable field. Indeed, if {x) is a sequence 

n 
which is dense in H1 , then the sequence (xn) is a measurable fundamental 

sequence. So the direct integral fH(s)dµ(s) is defined. 

f h 2 
Note that x € H (s)dµ (s) for x E F1 1 since s 1-+ II x (s) II s h (s) is x,x 
bounded. 

d) Now we define the isomorphism of H0 onto fHCs)dµ(s). 
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Let y 

Then 

1n E ( /::,. ) z where z E H and /::,. is a Borel subset of S Ci=l, •• ,n) • li=l i i i 1 i 

dµy,y l X1::,., X1::,. dµ 
i,j J. j zi,zj 

l X1::,.. (s) X1::,.. (s) h dµ ( s) 
i,j J. J zi,zj 

Hence 

II y II~ = I dµ . l I X1::,., (s) X1::,.. (s) (z. <s> ,z. <sl > dµ ( s) y,y i,j J. J 
J. J s 

n 
zi 11 2 II l X1::,. 

i=l i 

Hence l~=l Xt:,. z. depends only on y and not on i J. 

in de form y = l~=l E(l:J.i)zi. So the map u0 : 

the respresentation of y 

L E(l:J.ilzi ,_.. l x6izi is 

H0 isometrically onto a well defined. And uo maps a dense subspace of 

dense subspace of fH(s)dµ(s). 

Thus u0 can be extended in a unique way to an isometry u of H0 onto 

fH(s)dµ(s). 

e) Finally it is proved that U transforms A onto the set of all continuously 

diagonalizable operators. 

The Gelfand map A _.. C(S) is an isometrical * -isomorphism. Its inverse 

is given by 

For f e CCSI and x,y E ~ 1 we have 

(Tfx,yJ 0 = J f(s) dµx,y(s) 

J f(s)(x(s),y(s))s dµ(s) 

(MfU0x,y) 

where Mf denotes the multiplication by fin fH(s)dµ(s). 
-1 So UOTfx = MfUOx (x E H1). Hence Mf = UTfU • 

This completes the proof of the theorem. O 



This decomposition of H0 as a direct integral is called the direct 

* integral deeorrrposition of H0 with respect to the C -algebra A or the de-

composition with respect to the spectral measure E(.). 

5.2.2 REMARK. We show that 

F(s) : Hl - H(s) 

is a Hilbert-Schmidt map for µ-almost all s E s. 

Let (en) be an orthonormal basis in H1 • Then 

f J 11 F ( s) e JJ 2 dµ ( s) = 
00 

I l h (s) dµ (s) 
n=l S n s n=1 en,en 

l II ien II~ 
n=1 

Since i : H1 c:...-r H0 is a Hilbert-Schmidt map, it follows that 

l:=1 II ien II~ < 00 • So 

l 
n=l 

II F(s)e 11 2 < 00 

n s 

for µ-almost all s E s. 

This means that F(s) is a Hilbert-Schmidt map for µ-almost alls Es. 
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5.2.3 REMARK. The new point in the proof of VON NEUMANN's theorem is the 

fact that we congidered a second Hilbert space H1 • This Hilbert space is 

used to define the basic measure µ. This definition also appears in 

BEREZANSKII ([4], Ch.V, §1) who needs it for other purposes. A consequence 

of this definition is that the functions h (x,y E H1J are in L00 (S,µ). 
x,y 

This means that the theory of liftings can be applied. 

5.3 DECOMPOSITION WITH RESPECT TO THE IMAGE OF A SPECTRAL MEASURE 

Let H0 be a separable Hilbert space and let A c L(H0) be a commutative 

c*-algebra containing the identity operator. The spectrum of A is denoted 

by Sand the spectral measure of A is denoted by E(.). Then the inverse of 

the Gelfand map Al-+ A of A onto C(S) is the map 

( 1) 

J fdE , 
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Let T be another compact Hausdorf f space and let p 

surjection. Then the set 

{T (gop) I g E C(T)} 

S -+ T be a continuous 

is a commutative c*-subalgebra B of A. The inclusion map is denoted by 
j: B ~A. 

The Gelfand map BI-+ B of B onto C(T) is then given by 

(2) scpcqii > (B E B, tjl E S). 

The spectral measure of Bis denoted by F(.). 

We show that F(.) is the image under the map p of the spectral E(.). 
For x,y E H0 the measures µ and v are defined by x,y x,y 

µx,y<.) : = (E(. )x,y) O and \) (.) x,y (F(.)x,yl 0 • 

Leit x,y E H0 and B E B. Then 

(Bx,yl 0 =J A 

B dv x,y 
Since also 

(Bx,y) 0 =sf (jB) dµ 
x,y = f sop dµ 

T x,y 

it follows that v is the image under p of µ • So x,y x,y 

Hence 

(3) E(p-l (LI)) 

v (LI) x,y 

F(LI) 

(LI a Borel subset of T) 

(LI a Borel subset of T), 

which means that F(.) is the image under p of E(.). 

Again we consider a second Hilbert space H1 which is densely embedded 
in H0 such that the inclusion map i : H1 c...+ H0 is of Hilbert-Schmidt type. 
The measures µ and v are defined by 

µ(.): = tr(i*E(.)i) and v(.) * tr(i F(.)i) 

From (3) it follows that v is the image of µ under the map p. 
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For x,y € H1 there exist functions h € L00 (S,µ) and g € L00 (T,v) such 
x,y x,y 

that 

h dµ and dv = g dv 
x,y x,y x,y 

We have established the relation between µ and v and between µ 
x,y x,y 

and v. Now, using disintegration of measures, we derive a relation between 

h and g • 
x,y x,y 

Let p be a linear lifting of L00 (S,µ). Now we assume that there exists 

a strong lifting r of L00 (T,v); if T is metrizable, then a strong lifting r 

certainly exists (cf. A. & C. IONESCU TULCEA [13], Ch.VIII, §4). We may 

suppose that for x,y € H1 

(4) h (s) = p h (s) , g (t) = r g (t) 
x,y x,y x,y x,y 

(sES,tET). 

5.3.1 THEOREM. Suppose that there exists a strong lifting r of L00 (T,v) and 

assume that (4) holds. Then there exists a mapping t 1-+ At of Tinto M+(S) 

and a v-zero-set N c T suah that for aZZ t t N and for aZZ x,y E H1 

<h ,At> = g (t) • 
x,y x,y 

~ By 4.2.2 there exists a mapping t I->- >.t of T into M+(S) such that 

(i), (ii), (iii) of 4.2.2 and 4.2.3 hold. 

For x,y € H1, let N' be the set of all t E T for which h is not At-
x,y x,y 

measurable. Then-by 4.2.3 it follows that v(N' ) = 0 and that x,y 
t 1->-<h ,A> (which is defined fort t N' ) is bounded and v-measurable. 

x,y t x,y 
Also 

Since 
J f(t)<h ,At>dv(t) = J (f 0 p)(s)h (s)dµ(s) 

T x,y S x,y 

J (fop) (s)h (s)dµ (s) 
x,y =J 

=J 
J 

(fop)(s)dµ (s) 
x,y 

f (t)dv (t) = 
x,y 

f(t)g (t)dv(t) 
x,y 

it follows that 

<h ,At> = g (t) x,y x,y 

(f € C(T)). 
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for all t t N , where N c T is a subset of v-measure O. x,y x,y 
Now, let D be a countable dense set in H1 . Then there exists a set N c T 

with v(N) = 0 such that for all t t N and for all x,y E D 

(5) <h ,)et> = g (t) x,y x,y (t /_ N). 

we show that (5) holds for all x,y E H1 • 

Let x,y E H1 and let (xn) and (yn) be sequences in D such that xn-+ x 

and yn ->-yin H1 as n + 00 • Now recall that (x,y) 1-'-h (s) is a continuous x,y 
sesquilinear form on H1 and that 

I h ( sl I s II x 11 1 II Y 11 1 x,y (s E S). 

So 

s II x - xn IJ IJ y lJ 1 + II xn 11 1 ll y - yn 11 1 (SES 1 nEN). 

Hence h converges to h uniformly on S. In the same way it follows Xn,Yn x,y 
that g converges to g uniformly on T. This implies that (5) holds Xn1Yn x,y 
for all x,y E H1 • 0 

Let fH(s)dµ(s) be the direct integral decomposition of H0 with respect 

to E(.) (as constructed in the proof of 5.2.1). Similarly, let fG(t)dv(t) 

be the direct integral decomposition of H0 with respect to F(.). 

Let U : H0 -->- f1t(s)dµ (s) and V : H0 -->- fG(t)dv(t) be the corresponding iso­

morphisms. The image of an element x E H0 under u and V are denoted by 

(s i- x(s)) and (t I-+ x(t)) 

respectively. 

5.3.2 THEOREM (continuation of 5.3.1). Forti N, the field {H(s) I s Es} 
is a "At-measurable field of Hi'.lbert spaces. The map 

U(t) G(t) ---+ J H(s) d"At ( t I. N) 

which takes i(t) E G(t) (x E H1 J into the vector fields~ i(s) is well 
defined and is an isometry of G(t) into fH(s)d"At. 
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PROOF. Let D be the set introduced in the proof of 5.3.1; so D = {xn):=l is 

a countable dense set in H1 • Then {xn(s)):=l is dense in H(s) (s ES). And 

the functions s H- {x (s) ,x (s)) = h (s) (n,m E N) are At-measurable 
n m s xn,xm 

fort t N. Thus fort t N, the field {H(s)} is At-measurable. So the direct 

integral f H{s)dAt is defined for all t t N. 

If x E H1 , then s H-x{s) is an element of fHCs)dAt {t t N). Indeed, 

(6) J 11x(s)11 2 dAt = J h (s) dAt = g (t) s x,x x,x 
h 2 

II x(t) lit (t t N). 

So the vector fields f-+-x(s) (as an element of fHCs)dAt) depends only on 

x(t). This means that the map which (for fixed t t N) takes x(t) € G(t) into 

the vector fields i-+-x(s) is well defined. It follows from (6) that this 

map is an isometry of a dense subspace of G(t) into fH(s)dAt (t t N). So it 

can be extended to an isometry U(t) of G(t) into fH(s)dAt (t t N). D 

5.3.3 REMARK. The question arises whether U{t) is surjective (t t N). In 

the following special case the answer is affirmative. 

* Suppose that A is the C -algebra generated by an hermitian operator 

A E L(H0 ) which leaves invariant H1 • Then there exists a sequence (fk) 

which is dense in C(S) such that Tfk leaves invariant H1 (k EN). 

Since S is metrizable we may suppose that p is a strong lifting. A con­

sequence is that for all x E H1 

(s € S, k € N). 

This means that U(t) maps (Tf x )A(t) E G(t) into the vector field 
kn 

fkxn E fHCs)dAt (t; N). Since the set {fkxn I k,n EN} is dense in fH(s)dAt 

(cf. 4.1.5 (ii)) it follows that U(t) is surjective (t t N). 

5.4 APPLICATION TO EIGENFUNCTION EXPANSIONS 

The notations in this section will be the same as in the previous 

section. 

Let H_1 be the anti-dual of H1 ; we obtain the triple H1 c::...__,. H0 c::...__,. H_ 1 • 

Then (a,u) 0 is well defined for a E H_1 , and u E ~l (cf. 1.2.5). 

We proved that (x,y) t-+-h (s) (x,y E H1 ) is a continuous sesquilinear x,y 
form on H1 for all s E s. Hence there exist continuous linear operators 
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such that 

(1) h (s) = (P(s)x,y) 0 x,y 

The meaning of these operators P(s) is the following. 

suppose A EA leaves invariant H1, then for x,y E H1 

(s E S) 

µAx (ll) ,y (AE(ll)x,y) 0 = J A(s)dµ = J A(s) (P(s)x,y) 0dµ 
ll x,y ll 

is equal to 

µAx (ll) = J hAx (s)dµ ,y ll ,y 

(ll is a Borel subset of S). Hence 

(2) (P(s)Ax,y) 0 A(s) (P (s)x,y) 0 

for µ-almost all s E s. Now recall that for all x,y E H1 

(P(s)x,y) 0 = h (s) = (ph ) (s) x,y x,y (s E S) 

where p is a linear lifting of L00 (S,µ). If p is supposed to be a strong 
Zifting, then it follows from (2) that for all x,y E H1 

(P(s)Ax,y) 0 = A(s) (P(s)x,y) 0 

for alls ES. Thus, for all A EA leaving invariant H1 , 

(3) P(s)A A(s) P(s) ( S E S) • 

For this reason the operators {P(s) I s E S} are called generalized eigen­
projeations corresponding to the spectral measure E(.). 

REMARK. The operators {P(s)} were introduced in another way by BEREZANSKII 

[4], Ch.V, §2. 

Let {Q(t) I t E T} be the set of generalized eigenprojections corres­

ponding to the spectral measure F(.). Then the next proposition is an 

immediate consequence of 5.3.1. 
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Q(t) = J P(s) dAt (t I. N) 1 

where the integral has to be intef'Preted as a weak integral, i.e. 

(Q(t)x,y) 0 = fCP(s)x,y) 0dAt.for x,y E H1 (t;. N). 

PROOF. By 5.3.1 we have 

g (t) = J h (s) dAt x,y x,y (t I. N). 

The result follows since 

and h (s) = (P(s)x,y) 0 • x,y 

Let D = (xn):=l be the set (dense in H1) which was introduced in the 

proof of 5.3.1. Then the sequences i--+-x (s) (n E :N) is a µ-measurable 
n 

fundamental sequence for the field {H(s)} on the measure space (S,µ). 

D 

Let en : s 1-+ en(s) (n E :N) be the µ-measurable field of orthonormal bases 

that can be constructed from the sequence (s 1-+x (s)) (cf. 4.1.3). 
n 

The sequence (s !--+- xn (s)} is also a At-measurable fundamental sequence 

(t ;..N} (cf. the proof of 5.3.2). Hence (en) is also a At-measurable field 

of orthonormal bases. 

The sequence of.fields (en) is used now to obtain generalized eigenvectors. 

Let F(s) : H1 -+-H(s) be the canonical map and let F(s)~: H(s) -+-H_1 
be the right anti-transposed of F(s). Since F(s) has dense range, F(slk is 

injective. Since (P(s}x,y} 0 = (F(s)x,F(s)y)s = (F(s)~F(s)x,y) 0 {x,y E H1) 

it follows that 

(4) P(s) = F(s)~F(s) (s ES). 

The ranges of P(s) and,!'(s)~ are denoted by E(s) and H(s} respectively. 

Then E(s) is dense in H(s). So 

(5) E(s) c H(s) c EcSl (s ES). 
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Now <j>n(s) E H_1 is defined by 

(6) ( S E S, X E H11 n E N) • 

Thus <j>n(s) = F(s)~en(s). Since F(s)~ is injective the sequence (<j>n(s)):=l 
is linearly independent. Furthermore, the functions 

s 3 s !----->- <l>n (s) E H_1 

are weakly µ-measurable, because <l>n(s) (x) 

for all x E H1 (n E N) • 

(n EN) 

(e (s),~(s)) is µ-measurable n s 

Assume that A EA leaves invariant H1 • Then A: H1 --+H1 is continuous. 

This is a consequence of the closed graph theorem (the graph of A: H1 -+-H1 
is the inverse image of the graph of A: H0 -+-H0 under the inclusion map 

H1 x H1 <:..-+ H0 x H0 ; so the graph of A: H1 --+- H1 is closed). The anti­

transposed of A : H1 --+- H1 is denoted by A' : H_1 --+- H_1 • 

Let us assume that (3) holds. Since F(s)~ is injective, it follows from (3) 

and (4) that 

F(s)Ax 

Thus 

(7) 

Hence 

So 

(8) 

A(s)F(s)x 

A(s)x(sl 

<P (s) (Ax) = (e (s) ,A(s)x(s) l n n s 

A(s)<j> (s)(x) 
n 

A(s)<j> (s) 
n 

(X E Hl, S E S) • 

(x E H1 , s E S) • 

( S E S 1 n E N) • 

For this reason the elements {<j> (s) I n EN, s E S} are called generalized n 
eigenvectors corresponding to the spectral measure E(.). 

Now let (f ) be the v-measurable field of orthonormal bases constructed n 
from the sequence (t 1->- x (t)). And let {ij! (t) I m EN, t E T} be the n m 
corresponding set of generalized eigenvectors. 

The relation between the sets {<j> (s)} and {ij! (t)} is given in the next n m 
theorem. 
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5.4.2 THEOREM. Suppose that the cond~tions of 5.3.1 ax>e fulf~lled. Let 

t H- At and N be as in 5.3.1. Then for t i N and m E 1'I there exists a 

s~quenae (yn(s)l of At-measurable functions (depending on t and m) such that 

ijJ (t) = l f y (s) rb (s) dAt(s) (t i N) 
m n S n n 

where the summation and integration ax>e to be taken in the weak sense. 

PROOF. Let U(t) : G(t) -1- fH(s)dAt be as in 5.3.2. The vector field 

U(t)fm(t) E fH(s)d t is denoted by z s H- z(s). Then 

z ~ U(t)f (t) 
m 

k 
lim l (z(s),en(s))s en(s) 
k-+<x> n=1 

where the limit is taken in the space .fH(s)dAt (cf. DIXMIER [6] Ch.II, §1, 

Prop.6). 

Let (z,x! denote the inner produc in jH(s)dAt of z and s I-+ x(s (x E Hl). 

Since U(t) is an isometry it follows that 

A 

I'm (t) (x) = (fm (t) ,x) t ~ (z x.' 

= l J 
nS 

(z(s),r'r (s)) (e (s),x(s)) dt 
n s n s 

= l J 
nS 

D 

5.5 EIGENFUNCTION EXPANSIONS FOR UNBOUNDED OPERATORS 

Consider an unbounded selfadjoint operator B in the separable Hilbert 
2 space H0 • Let A :=I + B • We form the chain of Hilbert spaces generated by 

H0 and A and we consider the corresponding space H00 (cf. 1,6). 

* Then by 3.2.13 the algebra A : = r:(B) is a GB -algebra. The algebra b(A) 

of bounded elements of A is a w*-algebra (see 3.3.5). Its spectrum is 

denoted by s. 

Let fH(s)dµ(s) be the decomposition of H0 with respect to b(A) and let 

u : H0 -1- J H ( s) dµ ( s) be the corresponding isomorphism (see 5. 2 .1 ) • 

Then VON NEUMANN's theorem can r;e ext"nded to the GB*-algebra f"(B) as 
00 

follows. 

5.5.1 THEOREM. Let c E r:(B) and let c denote the closure of c as an 

operator in H0. Then u c u-1 is the multiplication by c in the space 

fH(s)dµ(s). 
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PROOF. If c is an hermitian element of r:(B) and Ai a(C) (A EC), then 

CA : = (C - AI) -1 E b(r:(B)). If CA denotes the continuous extension of CA 

to HO' then u. CA u-1 is the multiplication operator 

(z E f H (s)dµ (s)). 

Since c = A + 1/CA and CA (C - AI)-l (cf. 3.3.7)' it follows that u c u- 1 

is the multiplication operator 

z r-+ cz (z E UD (C)). 

If C is an arbitrary element of r:(B), we write_c = c 1 + ic2 where c 1 and 

c 2 are hermitian; then we apply the preceding result. 0 

* Let T be the compact space cr(B) (cJR) where cr(B) denotes the spectrum 

of B in f" (B). Then 
00 

A 

B S-+ T 

A 

is continuous. Let F(.) be the image under B of the spectral measure E(.) 

of b(r:(B)). 

The spectral measure F(.) is called the spectral measure of B. 

Let fG(t)dv(t) be the decomposition of H0 with respect to F(.) and let 

V: H0 --+ fG(t)dv(t) be the corresponding isomorphism (cf. 5.2.1). 

-1 5.5.2 LEMMA. The operator VBV is the multiplication operator M in 
fG(t)dv(t) given by 

M : z I-+- tz 

(z is a vector field in f G(t)dv(t) for which the vector field 
tz : t I-+- tz(t) belongs to fG(t)dv(t)}, 

PROOF. The space T and the spectral measure F(.) can be viewed as the 

* spectrum and the spectral measure of some C -subalgebra of b(r:(B)). So, if 

f E C(T), then the multiplication operator Mf : z-+ fz on fG(t)dv(t) cor­

responds to the multiplication by g = f 0 Bon fH(s)dµ(s). 

Taking g : = 1/(A - B) (with Im(A) ~ 0) then it follows that (AI - B)-l 

corresponds the multiplication by f(t) = 1/(A-t) on jG(t)dv(t). Now take 

inverses and the lemma follows. 0 
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Since T is metrizable, the space L00 (T,v) possesses the strong lifting 

property. So we may assume that the conditions of 5.4.2 (or 5.3.1) are full­

filled. This means that the generalized eigenvectors corresponding to F(.) 

can be expressed in terms of the generalized eigenvectors corresponding to 

E ( •) • 

5.6 EIGENFUNCTION EXPANSIONS AND TENSOR PRODUCTS 

The results of the preceding sections and of section 3.6 can be used 

to obtain information about generalized eigenvectors of a tensor product 

operator. 

Let Hbl) and Hb2) be separable Hilbert spaces and let A1 c L(Hbl)) and 

A2 c L(H62)) be commutative C -algebras containing the identity operator. 

The spectrum and the spectral measure of A. are denoted by S. and E. ( • ) 
i i i 

respectively (i=l,2). 

* The spectrum of the C -tensor product A1 © A2 (which is the closure of 

A1 © A2 in L(Hbl)@ H62))) is s1 x s2 (cf. SAKAI [28], p.62). The spectral 

measure of A1 ® A2 is denoted by E(.). If lli c Si is a Borel subset of Si 

(i=l,2) then E(lll x ll2) =El (lll) ® E2(ll2). 

The spectral measure E is called the tensor product of E1 a:nd E2 • 

Let i 1 : H~ 1 ) c..-,. Hb 1) and J 2 ; Hi 2 ) c..-,. H6 2 ) be Hilbert-Schmidt embeddings 

with dense range. Then 

is injective, has dense range and is of Hilbert-Schmi<.i.t type. 

f (1) ~ (2) 
Let H(s1 ,s2 )dµ(s 1 ,s2) be the direct integral decomposition of H0 ® H0 

with respect to the spectral measure E(.) as constructed in 5.2.1 (replace 
(1) ~ (2) (1) ~ (2) . 

H0 and H1 by H0 ® H0 and H1 © H1 respectively). 

The direct integral decompositions of H6l) (with respect to E1 (.)) and H( 2) 
. f(l) (1) 0 

(with respect to E2 (.)) are denoted by H (s1 )dµ (s1 ) and 

f (2) (2) . 
H Cs2 Jdµ (s2) respectively. 

The notations in the next proposition are as in 5.2.1. 

5.6.1 PROPOSITiON. For µ-almost all (s 1,s2) E s 1 x s2 there exists a sur­

jective isometry 
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such that 

V(s1 ,s2) cics1 ) © y(s2)) 

(x E H;l) and y E ai2>i. 

PROOF. Since for nuclear operators c 1 and c 2 , tr(c1 ® c 2) = tr(c1 Jtr(C2l, 

it follows that µ (Li1 x Li2 ) = µ (1) (Li1 )µ <2 > (Li2) (Li1 and Li2 are Borel subsets 

of s1 and s2 resp.). So 

(1) µ 

H (l) (2) It is also easily verfied that for xi E 0 and yi E H0 (i=1,2) 

(2) 

(3) 

It follows from (2) and (3) that 

(4) 

for all (s1,s2) outside some set of µ-measure O, depending on x 1,x2 ,y1,y2 • 

Using the separability of Hil) and Hi 2 ), one can show that there exists a 
H (1) 

1 
subset K of s1 x s2 of µ-measure 0 such that (4) holds for all x 1 ,x2 E 

and y1 ,y2 E H1 2) and for all (s 1,s2) i K (cf. the proof of 5.3.1). 

Let (s1,s2) i K. Consider the elements 

and 

n 

l xi ©Yi 
i=l 
n 

~ l ii(s1) ® yi(s2) 
i=1 

h Ho> d <2 > c· 1 l h th 11~·11 11~< lll werexiE 1 an yiEH1 1=, .•• ,n.Wesow at.,,= .,,s1,s2 ; 
the norm of 0 is taken in H(l) (s1) ® a< 2 l (s2) and the norm of ~(s 1 ,s 2 ) is 

taken in H(s1 ,s2). 
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Indeed, 

II~ IJ 2 

l 
i,j 

l 
i,j 

g (s ,s ) 
x. 0y. ,xj®y. 1 2 

l. l. J 

So it follows that the map 

defines a linear isometry of a dense set of H(l) Cs1l i H( 2lcs2l onto a dense 

set of H(s1,s2). So this map has a unique continuous extension to an iso­

metry of HC1lcs1J i HC 2>cs2l onto H(s1,s2J. 0 

Let {cp~l) Cs1> I s 1 E s1 , n E :N} and {cp~2 ) Cs 2} I s 2 E s2 , m EN} be the 

generalized eigenvectors corresponding to E1 and E2 respectively. 

Then it follows from 5.6.1 that 

is a set of generalized eigenvectors corresponding to E. Note that 

These results can be used to obtain information about the generalized 

eigenvectors for a tensor product operator. 

Let B1 and s 2 be selfadjoint operators in H6l) and H62) respectively. 

Let s1 : = O(B1) and s2 : = o{B2l denote the spectra of s 1 and B2 in the 

* GB -algebras r:cs1J and r:cs2J respectively {cf. section 5.5). 

The spectral measures of s 1 and s 2 are denoted by E1 {.) and E2 {.) resp. 

Let E(.) be the tensor product of E1 (.) and E2 (.). 

Now, if P is a polynomial in two variables, then 
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is defined as in 3.6.4. The spectral measure F(.) of C is the image of E(.) 

under the map 

(in general this map is not continuous). 

Combining 5.4.2 with the results of this section one proves that the 
generalized eigenvectors corresponding to F(.) can be expressed in terms of 

the generalized eigenvectors corresponding to E1 (.)and E2 (.). 

This generalizes a result of L. & K. MAURIN [19]. 
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