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ABSTRACT 

This tract is devoted to spectral properties and asymptotics of the 

singularly perturbed two-point boundary value problems on the interval (-1,1) 

(1±) £(au"+bu'+cu) ± xu•. - Au f, u (±1) A± B, a > O, 

with 0 < £ ~ 1, with A E ~and with C00-coefficients. This problem is often 

referred to as a turning point problem. Moreover, we consider its two­

dimensional analogue on the unit disk n, 

(2) £Lu + lu - Au f, 

where Lis a uniformly elliptic operator with C00-coefficients and where l 
is a first order operator with one non-degenerate critical point at (x,y) 

= (0,0). We take for l the following operators: 

l = ± (xa +µya > 
x y 

and l = ±((x-µy)8 + (y+µx)3 ) , 
x y 

which have a critical point of nodal (µ>0), saddle-point (µ<O) and vortex 

(KfO) type respectively. We prove that problems (1±) have discrete spectra 

for every £ > 0 and that the n-th eigenvalues (nElN) of (1±) converge for 

£ + +0 to - n + ~ + ~, if they are arranged in order of magnitude, thus 

showing that the phenomenon of "resonance", observed by many authors in 

problems of this type, is a spectral effect. The proof is based on the 

perturbation theory for linear operators in a Hilbert space. Similarly the 

spectrum of (2) converges to a discrete set in ~. Moreover, we construct 

asymptotic approximations to the solutions of (1±) and (2) and we prove 

their validity for all A E ~ outside the spectrum by variational inequali­

ties. 





INTRODUCTION 

In the wide variety of singular perturbation problems considerable at­

tention has been devoted to the asymptotic behaviour for £ + +0 of the so­

lution of the real two-point boundary value problem on the interval (-1,1) 

(1) £u" + pu' + qu f, u(±l) prescribed, 0 < £<El: 1, 

with p and q in C00
• The analogous boundary value problem on a bounded domain 

n in several dimensions has long been of interest also; this problem is as 

follows: 

(2) 
n 

£Lu + l pJ.aJ.u + qu 
j=l. 

f, ulan prescribed, 

with pj and q in C00 (Q) and La uniformly elliptic operator. 

0 < £<El: 1, 

If the coefficient p of u' in (1) is (real and) bounded away from zero, 

the behaviour of the solution of (1) for £ + +0 is well understood. The so­

lution of (1) converges for £ + +O to the solution of the reduced problem 

(3) pu' + qu f 

which satisfies the boundary condition at +1 if p > 0 and at -1 if p < O. 

Convergence is non-uniform at the other boundary point and a boundary layer 

of width 0(£) is located there. We can construct uniformly valid asymptotic 

approximations to the solution of (1) of order 0(£n) for every n E :N, cf. 

WASOW [30], O'MALLEY [23] and other works quoted by them. 

Similarly, the asymptotic behaviour of the solution of problem (2) is 

well known if the coefficients pJ. of the first order operator l p.a. do not 
J J 

have a simultaneous zero, i.e. if the associated system of ordinary differ-

ential equations 

dx. 
(4) ___J_ = p 

ds j' j 1, ...... ,n, 

which determines the characteristics, does not have a critical point. In 

that case, the problem (2) has a solution for every £ > 0 and this solution 

converges to the solution of the reduced equation 

(5) 
n 

l pJ.aJ.u + qu 
j=l 

f 
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which takes the boundary condition of (2) at a part of the boundary; if the 

quadratic form, associated with the principal part of L, is positive, this 

part of the boundary consists of those points of ciQ where the inner product 

of the vector p := (p 1 , ..• ,pn) with the outward drawn normal n at ciQ is pos­

itive. At the remainder of the boundary, a boundary layer is located. Asymp­

totic approximations of order 0(En) can be constructed for any n E ~ and 

they are uniformly valid, at least outside neighbourhoods of characteristics 

which are somewhere tangent to ciQ, cf. ECKHAUS & DE JAGER [8], LIONS [21], 

GRASMAN [11], VAN HARTEN [17] and [18] and BESJES [5]. 

We can formulate the problems (1) and (2) differently and consider the 

differential operators associated with them in a Hilbert (or Banach) space. 

In connection with (1) we define the differential operator TE by 

(6) for all u E V(T ), 
E 

where the domain of definition is defined by 

V(T) := {v E L2 (-1,1) I v" E L2 (-1,1) and v(±l) O}. 
E 

The obvious question now is whether TE - A (with A E ~) is invertible and 

whether this inverse converges to the inverse of an operator associated with 

the reduced equation (3). It is easy to show that the spectrum of TE (E>O) 

is contained in the left half-plane and that it moves away to the left for 

E + +0 if p is bounded away from zero. If p is positive we define in con­

nection with (3) the operator T0 , 

(7) T 0 u : = pu' + qu 

V (T ) : = { v E L 2 (-1, 1) I v' E L 2 (-1, 1) and v (1) 0}. 
0 

The spectrum of this operator is empty and we can show that the resolvent 

operator (T -A)-l converges strongly to (T -A)- 1 for all A E ~. cf. KATO 
E 0 

[19]. We can consider problem (2) from a similar point of view, cf. LIONS 

[21]. 

In the second chapter of this tract we describe this approach to prob­

lem (!.). We show that the spectrum of To: disappears at infinity for E + +0 

and that the resolvent operator (T -A)-l converges to (T -A)-l in the 
E 0 

uniform operator topology for every A. This analysis applies to the case 
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where E, p and q are complex valued, provided the real part of p is bounded 

away from zero and E/p tends to zero within a (fixed) closed sector in € 

not containing the imaginary axis. 

If the assumption that the coefficient p does not have a zero (and 

pj' j = 1 ••• n, do not have a simultaneous zero), is abandoned, problem (1) 

(and (2)) is much more complicated, since the usual method of proving con­

vergence by a maximum principle or by G£rdings inequality does not apply for 

non-negative q. 

Recently a large number of papers have been published on problem· (1), 

in which p is assumed to have (at least) one zero in the interior of the 

interval (-1,1). In most of the contributions, only formal approximations 

are computed, i.e. functions are computed which satisfy the differential 

equation and the boundary conditions up to some order of E, and no effort 

is made to prove validity of the approximations. In [3], ACKERBERG & O'MALLEY 

indicate that a formal approximation of the solution of (1) with p(O) = 0, 

p' (x) < 0 and f = 0 shows a peculiar behaviour if q(O)/p' (0) is equal to a 

non-negative integer. In that case the formal approximation is of order 

unity in the interior of the interval, while otherwise it is exponentially 

small (with respect to E).They call this phenomenon (internal) resonance. 

Others, e.g. COOK & ECKHAUS [7], show by more refined (formal) asymptotic 

techniques that "resonance" can be expected if q(O)/p' (0) is somewhere in 

an OclEJ-neighbourhood of a non-negative integer. MATKOVSKY [22] suggests 

that the conditions for resonance may be connected with the eigenvalues of 

a related boundary value problem. In [14] we state that resonance is caused 

by a neighbouring eigenvalue of the problem and in [15] we prove thisi we 

reformulate problem (1) with p(O) = 0, and p' (x) f O, as an eigenvalue prob­

lem, and we show convergence of its eigenvalues. Moreover, we prove conver -

gence of its solutions, if the system is not at an eigenvalue. RUBENFELD 

& WILLNER [25] state a recursive procedure by which for each n E 1N can be 

decided whether system (1) (with p' < 0) has an eigenvalue inside an 0(En)­

neighbourhood of zero. They show that no resonance occurs, if this eigen­

value is outside an O(En+l)-neighbourhood of zero; i.e. they prove that the 

solution of (1) with f = O, p(O) = 0 and p' < 0 is exponentially small, if 

a positive constant a exists such that the disk of radius aEn in € around 

zero does not contain an eigenvalue of (1) for some n E lN and for all suf­

ficiently small positive E. They use LANGER's method for approximating 

turning point problems. However they formulate their criterion in a different 
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way and they do not seem to realize that by doing so they are in fact ap­

proximating the eigenvalues of problem (1). ABRAHAMSSON [1] proves conver­

gence of the solution of (1) with p{O) 0 and p' {x) + O, provided q(O)/p' (0) 

is not equal to a non-negative integer. 

In this tract we give a detailed analysis of the problems (1) and (2) 

in which 9 and Lf Pj[ respectively have exactly one zero in the interior of 

the domain under consideration. Such problems are often referred to as turn­

ing point problems. We reformulate the boundary value problems in terms of 

linear operators in a Hilbert space and we study the behaviour of the spec­

trum of these operators in the limit for £ + +0. We then consider strong 

convergence of the resolvent operators outside the spectrum and we give 

asymptotic expansions of the solutions of the boundary value problems. We 

stipulate that it is necessary first to determine the spectrum and its limit­

ing behaviour for £ + +0. Otherwise we are completely in the dark as regards 

the existence (and the unicity) of a solution and we are faced with such 

apparently curious phenomena as "resonance" {in the sense of [3]) was thought 

to be. 

In the first chapter we deal with abstract perturbation theorems for 

linear operators in a Hilbert space, with spaces of functions {Sobolev spaces) 

and elliptic operators on them and with critical points of first order par­

tial differential operators on :JR. 2 . We restrict ourselves to such results as 

are needed in the subsequent chapters. 

In the second chapter we consider problem (1) with p > 0. With this 

additional condition, the problem is comperatively easy and the asymptotics 

of its solution are well understood, as stated above. We present the problem 

more or less along the lines of KATO [19] and LIONS [21]. This chapter aims 

to illustrate, in a fairly straightforward case, methods to be used later 

on. Moreover, some of the results derived here can be used in the subsequent 

chapters. 

In chapter 3 we study the singularly perturbed turning point problem, 

i.e. problem (1) with the assumptions p(O) = 0 and p'{x) + 0. For convenience, 

we transform it into the following equivalent form: 

(8±) £{(au')' + bu' + cu} ± xu' - AU f, u(l) 0, u(-1) 0, 

where a, band c are C00-functions with a> O, where A is a complex "spectral" 

parameter and £ is a small positive parameter. In connect.ion with the 
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boundary value problems (8±) we define differential operators TE and UE for 

any u in the domains 

(9a) 

by 

(9b) Tu 
E 

E{(au')' + bu' + cu} + xu', 

O} 

U u := E{(au')' + bu' + cu}-xu'. 
E 

The spectra of TE and UE are discrete for any E > 0. We show that if the 

eigenvalues are arranged in order of magnitude, the n-th eigenvalues of TE 

and of UE - 1 converge to -n for E + +0 and for each n E JN. The proof as­

sumes full knowledge of the eigenvalues and eigenfunctions of the Hermite 

operator (harmonic oscillator in Quantum Mechanics) and we show, using per­

turbation theory for linear operators, cf. KATO [19], that the limits of 

the eigenvalues cannot change when we change the operator continuously into 

TE (or into U£-1). 

If A is not an eigenvalue, the problems (8±) have unique solutions 

and we can consider their convergence for £ + +O. We show that the reduced 

problem of (8+), xu' - AU= f and u(±l) = 0, has one continuous solution 

if f is continuous and if ReA > 0 and that the analytic continuation (in 

the A-plane) of this solution approximates (T -A)- 1f up to the order 0(E) 
£ 

in the weighted uniform norm 

(10) I k+~ u f-+ max lxl u(x) I , 
-1SxSl 

provided -A f JN and ReA > - k + 3/2 with k E JN. Similarly, the reduced 

problem of (8-), - xu' - AU= f (without boundary conditions), has one 

continuous solution, if f is continuous and ReA > O; if f is k times con­

tinuously differentiable, this solution can be continued analytically to 

all A E ~ with ReA > - k and this analytic continuation approximates the 

solution of (8-) uniformly up to 0(£) on each subinterval (-o,o) with 

0 < o < 1. By constructing ordinary boundary layers at x = ±1 we obtain uni­

form approximations of the solution of (8-) on the entire interval. If ReA 
is larger than the first eigenvalue, the convergence of the approximations 

can be proved by standard techniques, such as the maximum principle, 

G£rding's inequality or the variational inequality. If ReA is smaller, we 

have to consider related boundary value problems with other boundary 
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conditions in the larger Sobolev space H-n(-1,1) of n-th order distributions 

for problem (8+) and in the smaller space H+n(-1,1) of functions, whose n-th 

derivative is square integrable, for problem (8-). If n is large enough, we 

can construct approximations to the solutions of the auxiliary boundary 

value problem and prove their validity by a variational inequality. Here­

after we can compare the solutions of the original and the auxiliary problems 

and prove convergence of the approximation of the original problems. 

The remaining chapters 4, 5 and 6 are devoted to problems of type (2) 

in which the first order operator l p.8. has one critical point inside Q. 
J J 

For simplicity, we limit the analysis to two-dimensional problems; the re-

sults obtained can easily be extended to problems in JRn with n > 2. We as­

sume that the quadratic form associated with the elliptic operator L is pos­

itive. we formulate problem (2) in a manner similar to (8) and we study it 

with the following three first order operators 

(lla±J ±(xa +µya J, 
x y 

µ E JR+ 
' 

(llb±) ±((x-Ky)3 + 
x 

(y+KX)3 ) 
y 

, K E JR, 

(llc) Xd - µya , µ E JR+ , 
x y 

whose critical points are a node, a vortex and a saddle-point respectively; 

the fields of characteristics associated with these three operators represent 

the three structurally stable (under topological transformations) classes 

in JR2 • The results obtained are analogous to the results in the one-dimen­

sional case, but the proofs are more complicated. 

In chapter 4 we study problem (2) with the first order operators (lla+) 

and (lla-). The eigenvalues converge to the numbers - n - µm with n,m E JN 
in the first and n,m E JN0 in the latter case. Qualitatively, the asymptotic 

behaviour of the solutions can be read from figure 1, in which a domain is 

sketched with (directed) characteristics and with shadings indicating the 

position of the boundary layers. We prove that the solution of (2) & (lla+) 

converges to the solution of the reduced equation, which satisfies the boun­

dary condition at the entire boundary, uniformly on subdomains not containing 

the critical point (0,0) for all A outside the spectrum. We make no effort 

to clarify the structure of the.boundary layer at (0,0), which can be very 

complicated, cf. [13] and [14]. For ReA > 0 we construct an asymptotic 

approximation to the solution of (2) & (lla-); it consists of the solution 
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of the reduced equation which is continuous at (0,0) plus boundary layer 

terms at an. This approximation is an analytic function of A., which can be 

continued into the negative half-plane, if the right-hand side f is smooth 

en<;>ugh; we prove that this analytic continuation converges uniformly in Q 

to the solution of (2) & (11a-) for all A. outside the spectrum by considering 

related boundary value problems in spaces of sufficiently smooth functions. 

fig. 1: characteristics and boundary layers in the case of a 

first order operator with an attracting (11a+) and a 

repelling (Ila-) node. 

In chapter 5 we study problem (2) with the first order operators 

(llb+) and (llb-). The eigenvalues converge to the numbers - 2n - Jml + iKm 

with m € 2Z and n € lN and n € lN0 respectively; the proof is more compli­

cated than in the nodal case, since the limits are non-real. Qualitatively, 

the as:Ymptotic behaviour of the solution can be read from fig. 2. 

fig. 2: characteristics and boundary layers in the case of 

a first order operator with an attracting (11b-) and 

a repelling (llb-) vortex. 

The asymptotic behaviour of the solutions is similar to that of the nodal 

case. 

In chapter 6 we study problem (2), with the first order operator (11c). 

The eigenvalues converge to the number - n - µm +µwith n,m €JN. Quali­

tatively, the asymptotic behaviour can be read from fig. 3. We construct 
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fig. 3: characteristics and boundary layers for a first order 

operator with a critical point of saddle-point type. 

an approximation comprising 1°: the solution of the reduced equation satis­

fying the boundary conditions at the left- and right-hand sides of the do­

main, and 2°: boundary layer terms at the upper and lower sides. We prove 

that it converges uniformly on (closed) subdomains not containing the line 

x = 0, at which an interior boundary layer occurs, for all A outside the 

spectrum. In the special case L = 6 we can study related boundary value prob­

lems in non-isotropic function spaces and we use them to prove convergence 

of the approximation in the weighted uniform norm 

u H- max I lxlk+\u(x,y) I , 
(x,y) di 

provided ReA > - k + 3/2 and f has sufficiently many continuous derivatives 

with respect to y. 

We have limited our analysis of "turning point problems" to linear 

problems in which the coefficient(s) of the first order operator has (have) 

one simple (simultaneous) zero and in which all coefficients are real. What 

happens, when one or more of these conditions are relaxed? 

In [16] we study problem (1) in which p does not have a simple zero, 

i.e. we study the spectrum of the problems 

(12) E (au')' v-1 
± xlxl u' - AU f, u (±1) 0, 

We show that the spectrum shifts away to - 00 for E + +O if v is smaller than 

one and that it tends to a dense set in (-00 ,0) for E + +O if v > 1. It does 

not seem difficult to show that the asymptotic behaviour of the solutions 

of (12) is similar to that of the solutions of (8), provided either v < 1 

or ReA > O; if v > and ReA ~ O, the density of the limit of the spectrum 

may cause additional problems. 



If the coefficients of (8±) are non-real, our analysis remains valid 

-at least so we expect-, provided E and a satisfy the same condition as in 

chapter 2, namely that Rea is bounded away from zero and that Ea tends to 

zero within a fixed closed sector in ~ not containing the imaginary axis. 

9 

Where the interval (-1,1) or the domain ~ contains several "turning 

points", we expect (1°) that the limiting spectrum is the union of the lim­

iting spectra of the restrictions of the problem to disjoint neighbourhoods 
0 

of the turning points and (2 ) that an approximation of the solution can be 

constructed by pasting together approximations on subdomains containing 

only one turning point, cf. [14] §8. 
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DEFINITIONS AND NOTATIONS 

Numbers 

lZ integers. 

JN positive integers, (-JN: negative integers). 

JN0 non-negative integers. 

]R : real numbers. 

]R+: positive real numbers. 

~ complex numbers (with absolute value l•I). 

ReA real part of A E ~. 

ImA imaginary part of A E ~-

argA : the argument of A E ~. A + 0. 

D(z,r) is the open disk in ~with center z E ~ and radius r E JR+. 

dist(V,W) := inf{ lx-yl I x E V and y E W} with V and W subsets of e. 
t(a) : transposed of the vector a E ~2 . 
iSI number of elements of the set S, provided S is a finite set. 

Norms and inner products 

We assume that Q is a· bounded open set in ]R or JR2 with boundary 3Q 

and that u,v are (sufficiently smooth) functions on Q. The subscript Q in 

norms and inner products is skipped, if it is clear from the context to what 

domain is referred to. 

<u,v}Q := <u,v}o,Q := f u(x)v(x)dx. 

[u]Q := max ju(~) I. 
°iErl 

Q 

< (k) (k) \ 
u ,v /o,Q' if Q c ]R, 

k E JN. 
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lul := { J lu(i) IPdiLJl/p, 
o,p,!1 l 

1 :5 p < ""· 

n 

lu'k> I , 
o,p,!1 

if n c :R, 1:5p< 00 , kElN, 

{ k I j k-j Ip }1/p l a a u , 
j=O x y o,p,!1 

lul 0 00 n := es.::..sup lu<i> I = lim lul 0 n1 iulk,oo,n := limlulk n• k € JN. 
' ' XE!°l p+"" ,p, p+"" ,p, 

JI u Ilk n = {lulp n + lulpk ,.,}l/p• ,p,.. o,p,.. ,p, .. 

lul-k,!1 := sup{l\u,v)I Iv€ C00 W), llvllk,n= 1}, k € lN, cf. (1.3b). 

(u,v)-k,!1 := ~{lu+vl~k,!1-lu-vl~k,fl+ilu+ivl~k,!1-ilu-ivl~k,!1}' cf. (1.6b). 

I \(l) and I I (1) f (1 17) \u'v/k u k , c . • • 

I \ <v> 
\u,v/k and I ul~">, cf. (1.28). 

lllulllk and .j: u *k' cf. (6.51). 

[[uJ], cf. (4.Slb). 

II vulln := lul 1,n' provided n c :R2 . 

Spaaes of funations 

space of continuous functions on n, equipped with the maximum norm. 

space of continuous functions on n, whose k-th derivatives are 

continuous, k € lN , equipped with the norm u I-+ lul 00 ,., + lulk 00 ,.,. 
0 Ot 1.lti I 1U 

00 k 
c00 cm := n c w>. 

j=o 

C00 W> 
0 

Ck<n> 
0 

LP(n) 

d<,m 

d<cn> 
0 

H-kW): 

the subset of functions in C00 (!1) with compact support inn. 

closure of C00 (!1i in Ck(fl), k € lN • 
0 0 

closure of C(fl) in the norm u r-+ lul ,.,, o,p, .. 

closure of ckw> in the norm u r-+ 11 u llk,n, 

1 :5 p :5 oo. 

k € lN • 
0 

closure of C~W) in the norm u 1-+ II uJlk,!1, k E lN0 • 

dual of ~(!1) or closure of L2 (!1) in the norm u 1-r lul_k,!1' 

cf. ch.1§2a. 

k € lN, 
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~(Q) subspace of ~(Q), k E lN, cf. ch.1 §2b. 

H(o,k) (Q) cf. (1.43a). 

H(o,k) (Q) 
1 

cf. (1.45). 

supp(f) := closure in Q of the set {~ E Q I f(x) + O} 

Formal differential operators 

We assume that the domain of definition of a formal differential oper­

ator t in a space B is maximal, i.e. that it is equal to the set 

{u E B I tu E B}. 

TU := (au')' + bu' + cu; ' = d/dx) 

with a,b and c E C00 (lR) and a strictly positive. 

IJu := 

i'rn := 

Lu := 

a u 
y 

a2u + a2u. 
x y 

au 
ay . 

aa 2u + 2b3 a u + ca 2u + x x y y 
with a,b,c,d1 ,d2 and 

d 1 axu + d 2 3Yu + d 3u 

d 3 E C00 (Q), such that a and ac-b2 are strictly 

positive. 

L u := a aa u + a b3 u + a b3 u + a ea u is the formally symmetric prin-P xx xy yx yy 
cipal part of L. 

A(. I.) sesquilinear form in <r2 connected with L, cf. (1. 33b) . 

A<-,. l sesquilinear form in Hl (Q) connected with L, cf. (1.33a). 

B (., "l sesquilinear form in Hl (Q)' cf. (4. 86) • 

* * T , L formal adjoints of T and L. 

Linear operators 

We assume that T and A are linear operators in a Banach space B, equip­

ped with the norm 11·11. 

V(T) domain of definition of T. 
R(T) range of T (= 'rD(T)). 
N(T) null-space of T. 

Tlw restriction of T to W, provided W c V(T). 

'I'[q := R(Tjw), provided W c V(T). 

p(T) :={A E <r I T - A has a bounded inverse}, resolvent set of T. 



a (T) := <l:\p (T) I spectrum of T. 

II TI/ := sup{ II Tull I u E V(T) and llull = 1}, norm of T. 

T* dual of T in the dual space of B (adjoint if B is a Hilbert space), 

provided V(T) is dense in B. 
T-bounded : an operator A is called T-bounded with "T-bound"S, if 

V(A) ~ V(T) and· if numbers a and S E JR+ exist such that 

llAull s allull + SllTull for all u E V(T). 

13 

Semi bounded an operator Tin a Hilbert space H with inner product(·,·) 

is called semibounded from above with upper bound d E JR if 

(Tu-du,u) S 0 

Special functions 

Pk : Legendre polynomials 

~ : Hermite polynomials 

for all u E V(T) 

} cf. [2] eh. 22. 

F(•;•;•) : Confluent hypergeometric function, cf. [27]. 

{
1, 

Y : Heaviside's unit step function: Y(x) = 
o, 

of x > 0, 

if x < 0. 

o Dirac distribution, o := Y'. 

Pf.: pseudo-function, cf. (3.26) and [26] eh. 5.6. 

0-symbols 

If S is the sector {A E ~ IImAI s a.ReA} with a ~ 0 and if f and g a 
are continuous functions on Sa, then the expression 

r .... 0, x E Sa, if a > 0, 
f(x) O(g(xl) for 

x .... +o if a 0, i.e. if s JR+ I 

a 

means that numbers r E JR+ and C E JR+ exist, such that If cxi I s CJg(x) I 

for all x E Sa with Ix I s r. Let f and g de.pend on several parameters; the 

order estimate is called uniform with respect to some of these, if C does 

not depend on these parameters. Moreover, the expression 

f (x} o(g(x)) (x + +O) 

means: lim f(x)/g(x) O. 
x++O 
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REMARK. All derivatives are taken in the generalized (distributional) sense. 

If the classical derivative exists, the generalized derivative is identified 

with it. 
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CHAPTER I 

PRELIMINARIES 

This chapter contains a number of results on abstract perturbation 

theorems and on Sobolev spaces, which we will subsequently require. 

1. 1. ABSTRACT PERTURBATION THEOREMS 

15 

Let (H,(·,·)) be a Hilbert space and let T be a densely defined closed 

linear operator on H, then T satisfies the following well-known results: 

THEOREM 1.1. If II '!\ill 2 all ull for all u E V (T) and some a E JEt , then R (T) is 

closedi if, in addition, N<T*) = {O} then T has a bounded inverse and 

llT- 111 s 1/d. 

PROOF. cf. [29] eh. 7.5. D 

THEOREM 1.2. If T is normal, then II (T-A)-1 11 s 1/dist(A,o(T)) for all 

A E p (T) • 

PROOF. cf. [19] eh. 5.3.8. 0 

THEOREM 1.3. Let r be a closed curve of finite length lrl in p(T) which 

separates o (T) in the parts ,; 1 and i: 2 and which encloses i: 1, then the oper­

ator P := ~ fr<T-A)-l dA is a bounded projection which commutes with T 
rr~ 1 2 

and is such that H =PH e (1-P)H and o(TIPH) = I and o(TI (l-P)H) = I , 

where TIPH means the restriction of T to the space PH. If, in addition, T - A 

has a compact inverse for some A E C then P is of finite rank and if T is 

normal then P is orthogonal and II Pll = 1. 

PROOF. cf. [19] eh. 3, th. 6.17. 0 

Let A be a T-bounded operator satisfying 

II Aull s allull + f311Tull for all u E V(T) and for some a,f3 + 
E ]R , 

-1 
let 0 E p (T) and y := llT II, then the family of operators Tt := T + tA 

satisfies the following results: 

THEOREM 1.4. If ltl < (ay+f3)-1, the operator Tt is closed and has a bounded 

inverse; this inverse satisfies 
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(1) -1 I I -1 I/ Tt II ,,; Y (1- t (ay+S)) 

(2) -1 -1 -1 -1 y I s-t I Cay+Sl 
llTt-Ts 11= ll<s-t)TsA,l't II,,; (1-/s/(ay+SJ)Cl-ltl(ay+S)) 

If in addition T-l is compact, then T~ 1 is compact. 

PROOF. cf. [19] eh. 4, th. 1.6. 0 

COROLLARY 1.5. If S < ~. if T is semibounded from above with semibound 
d E :JR. and if T - A has a bounded (compact) inverse for some A E ~ (with 
ReA > d if (T-A)-l is not compact), then there is aµ E ~such that 
T +A - µ has a bounded (compact) inverse. 

PROOF. Since T satisfies for all u E V(T) 

if Ref. > d, 

p(T) contains the set {'A E ~ I ReA > d} by the previous theorem. Since 

with S < !:; 

we can find by the previous theorem a positive real number s such that 
T + A ~ s has a bounded (compact) inverse. 0 

THEOREM 1.6. Let r, Ll and L2 be as in theorem 1.3 and define 
d := maxilEf II (T-11)- 111. If t E JR and [ t[ < (ad+i3)-l, then 

pt := 2!i J (Tt-A)-1 dA 

r 

§ 1.1 

is a family of bounded projections which is continuous in t. Pt commutes 
with Tt, H = PtH e (1-Pt)H and L! := cr(Ttl ) and L~ := cr(Ttl ) are 

PtH (1-PtJH 
separated by r. If, in addition, T - A0 has a compact inverse for some A0 E ~. 
then Pt is of finite constant rank and L! depends continuously on t. 

-1 PROOF. From (1) it is clear that r c p(Tt) for all It/ < (ad+S) I hence 
according to theorem 1.3 the operator Pt is a well-defined bounded projec­
tion which commutes with T (and is of finite rank if (T-A )-l is compact). t 0 
The continuity of Pt with respect to T is a direct consequence of formula (2), 
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II II djs-tl lrl (ad+Sl 
Pt-Ps '° (1-ltl (ad+Sll Cl-ls! (ad+t3)) 

-1 
If (T-A0 ) is compact, the rank of Pt is finite and hence it is constant 

1 and equal to the total multiplicity of~ ; furthermore PtTt is an operator 

of finite rank which depends continuously on t, hence the eigenvalues of Tt 

contained in r depend continuously on t, cf. [19] eh. 2, th. 5.1. 0 

1.2. SOBOLEV SPACES 

a. The space ~(-1,1) with k E JN is the closure of C:(-1,1) with respect 

to the norm u l-+ 11 u 11 k. It consists of those functions f E Ff ( ·-1, 1) , for 

which f(j) (±1) = 0 for 0 o". j o". k - 1. In it we introduce the inner product 

\·,• )k and norm I ·lk by 

I ) I Ckl <kl) \u,vk :=\u ,v and lulk ·-- II u(k) II I )li \u,u k. 

Since positive numbers yk exist such that 

(3a) for all u E rf<-1,1) and k E JN , 

the norm l·lk is on ~(-1,1) equivalent 

space with respect to the inner product 

0 0 

to the norm 11 • 11 k and ~ 
\ • , • )k. Since 

is a Hilbert 

for all u E rfc-1,1) and h E L2 (-1,1), each h E L2 (-1,1) defines the con­
o 

tinuous anti-linear functional ul-+ (h,u) on ~(-1,1), which we will identi-

fy with h. Its norm 

(3b) 1} 

satisfies 

for all h E: L 2 ( -1 , 1 ) and k E: JN. 

H-k(-1,1) is defined as the completion of L2 (-1,1) with respect to the norm 

I· l_k; it is the<·,·) -dual of ~(-1,1), cf. YOSIDA [29] eh. 3.10. 
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d . 
The differentiation operator (~d )J is extended to an operator on 

k k x ( ') . . H- (-1,1) by duality; for h E H- we define h J := dJh/dxJ by 

(4) for all u E ~+j(-1,1). 
0 

§1.2a 

By this definition (d/dx)j is an operator of H-k(-1,1) onto H-k-j(-1,1), 

whose kernel is the span of {1,x, ..• ,xj-l}. Hence its adjoint (-d/dx)j is 

a one-to-one mapping of ~+j(-1,1) into ~(-1,1) whose range is the<·,·)-
o . 1 0 

orthogonal complement of {1,x, ... ,xJ-} and which is isometric by defini-

tion of the norms l·lk+.j and J·lk· 

S~nce (~(-1,1), (·,·)k) is a Hilbert space, we can find for every 

h EH- (-1,1) exactly one v E ~(-1,1) such that (u,h) = <u,v)k for all 

u E Hk(-1,1), and we have 

< > < ) < (k) (k) > < k (2k)) u,h = u,vk= u ,v = u,(-1) v 

We conclude that the mapping Dk := (-l)k(d/dx) 2k is an isometric isomorphism 
_]c -k -k 0 of ff~(-1,1) onto H (-1,1). We define the operator Jk : H (-1,1)-+ H (-1,1) 

by 

(5) 

this operator satisfies 

-k and it enables us to define in H (-1,1) the inner product 

(6b) 

The mapping Jk is an isometric isomorphism of H-k(-1,1) onto the orthogonal 
k-1 2 complement of the set {1,x, ... ,x } in L (-1,1); we can also say that Jk 

stands for a k-fold repeated integration, corrected so that Jkh is orthog­
k-1 onal to the set {1,x, ... ,x }. Define the operator Pk as the orthogonal 

k-1 projection onto the span of {1,x, ..• ,x }, i.e. 

2 
for all u EL (0,1), 
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where Pj is the j-th Legendre polynomial, then PkJk 

This results in the commutation relation 

(7) for all u E H-k+j(-1,1) 

and j s k. 
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Hence for any pair u E Hj-k(-1,1) and v E H-k(-1,1) with 0 s j s k we find 

the identity 

2 
and any u E L (-1,1) satisfies the inequality 

(Sb) 

By formula (Ba) we are able to compute the \·,·>-k-adjoint of a differential 
-k 

operator on H and to decide whether it is invertible or not, cf. (15). 

-k THEOREM 1.7. The operator Son H (-1,1), defined by 

(9) Su := Tu for all u E V(S) := {u E H-k+2 (-1,1) j (Jku) (±1) O} , 

is semibounded from above and S - A has a compact inverse for some A E ~. 

PROOF. Since by definition Jku E H2 (-1,1) for all u E V(S), the boundary 

conditions u 1-r (Jku) (±1) are well-defined continuous functionals (with 

respect to the graph norm of S) on V(S) by the lemma of Sobolev (lemma 2.6). 

(10) 

From Leibniz' rule we easily derive 

d k 
p(dx) q 

k 

l 
j=O 

hence any u E V(S) satisfies by (6b) and (Ba) 

(11a) 
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(bu' ,u)_k 
k k 

[b (j) Jll Ju' II ll<~lk-jD- 1 ull (11b) $ l (j) 
j=O 

k dx k 

(cu,u)_k 
k 

{~) [c(j)JllJku\J ll<,!lk-jD~ 1 uJJ. (llc) $ l 
j=O J 

From (3) we infer 

(12) II (ddx)k-jDk-luJJ < I ( d )k-jD-1 J 
- yj dx k u j 

Using the inequality 

(13) 
2 2 

pq s ~ p /r + ~ q r for all p,q,r E :11:/ , 

we find from (11) and (12) a positive constant Ck such that 

(14) for all u E V(S), 

hence S is semibounded. 

In order to prove that S - A is invertible for some A E C and has a 

compact inverse, we consider the special operator S0 := d 2/ax2 . By (Sa) it 

satisfies 

for all u and v E V(S), hence S is selfadjoint and, since 
0 

S - A is invertible by theorem 1.1 at least for all A E C with ReA > 0. 
0 

This inverse is compact, for JkS0J~ 1 is the restriction of an operator on 

L2 (-1,1) with a compact inverse. By defining the continuous chain 

St := tS + (1-t)S0 with t E [0,1] we can deduce constants ak and Sk from 

the inequalities (14) such that 

for all u E V(S) and s,t E [0,1]. Since St is semibounded for all t E [0,1] 

and S - A has a compact inverse if ReA > 0, we find from corollary 1.5 
0 + 

numbers t 0 and A0 E :IR such that St - A has a compact inverse for all 
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A with ReA > A • Doing this repeatedly we find increasing 
.f-sequences {t,} and 

J 
{A j} in :R such that St - A has a compact inverse for 

21 

all t € [O,t.J and 
J 

A € C with ReA > Aj. Since we can choose tj - tj-l > l/4Sk, 
the value t = 1 is attained in a finite number of steps. D 

REMARK. The way in which we defined the spaces If-(-1,1) with k € Zl implies 
0 

not only that ~(-1,1) is the(·,·) -dual of H-k(-1,1) and that ~(-1,1) is 
(·,·)k -self dual, but also that the form (·,·)k can be extended to a ses­
quilinear form on If-+n(-1,1) x If--n(-1,1), such that If-+n(-1,1) is the 

0 0 0 

(·,·>k -dual of H~-n(-1,1). This implies the inequality 

If-+n If--n -~ if u E 0 and v € 0 • N.B. The subindex o in ff~ has to be skipped if k ~ O. 

b. The space Y;-c-1,1) is the set of functions u E If-c-1,1) which satisfy 
u(j) (0) = 0 for j E JN and 0 ~ j < k. With respect to the inner product 

0 

(·,·)kit is a Hilbert space; in order to prove this we have to show only 
that the norms u f--> lulk and u f.-;. IJ~lk are equivalent on Y;-c-1,1). In case 
k = 1 we define the operators A and B by 

Au := u' 

Bu := u' 

for all u E VCAJ := {v € H1 (0,1) I v(O) 

for all u E V(B) := {v E H1 (-1,0) I v(O) 

O} 

O} 

1 and we observe that H1 (-1,1) VCA) e VCB). By formula (2.4b) we find the 
inequality 

I 12 2 2 -2 2 
u 1 =II Aullco,l) +II Bull(-l,Ol ::: e llull(-l,1), 

which proves the equivalence of 1·1 1 and 11·111 on H~(-1,1). In case k > 1, 

we take the k-th powers of A and B and proceed in the same way. 

In the space If-c-1,1) we can now define the inner product 

k-1 
c11> (u,v)~ 1 > := (u,v\ + I u<jl co> v<j> co>, 

j=O 

with respect to this inner product If-c-1,1) is a Hilbert space. The norm 
l·l~l) belonging to this inner product is equivalent to the original 

II· Ilk-norm, for any u E If-c-1,1) satisfies 
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(18) llull~= llull~,(0,1)+ llull~,(-1,0) = 

= /IA-ku(k) + kf u(j) (O)xj/j! 11 2 +/I B-ku(k) + kf u(j) (O)xj/j!ll 2 
j=O k j=O k 

and the equivalence of I· l~l) and 11· ll is a simple consequence of this iden­

tity and Sobolev's lemma. The· space Hk(-1,1) admits the decomposition 

(19) ~(-1,1) = ~(-1,1) e ~~ sp{xj} 

and it is easily seen that this decomposition is orthogonal with respect to 

the inner product (·,·)~l). 
In the space J/k(-1,1) we define the differential operator S(k) by 

(20) S(k) := TU 
u 

for all u E V(S(k» := {v E ~+2 (-1,1) j v(k+l) (±1) 

and it satisfies: 

THEOREM 1.8. The operator S(k) is semibounded from above and has a compact 

inverse for some A E ~-

PROOF. We proceed in a way analogous to thm. 1.7. In order to prove the 

semiboundedness we use the inner product (u,v)k + (u,v)0 in ~(-1,1); we 

have 

< ( I) I > = I ( I) (k+l) (k)). = au ,u k \ au ,u 0 

O} 

< (k+l) (k+l)) ( k~l (k) ( (k-j) (j+l) = - au , u + l . a u 
j=O J 

(k-j+l) (j)) (k)) + a u ,u 

and we obtain semiboundedness by straightforward computations with use of 

inequalities of type (16). 

In order to prove the invertibility we consider the special operator 
2 2 

:= d /dx . Let uA be a solution of the equation 

(21) f, u (k+l) (±1) 0 

_ _le (k) 
with f E g·(-1,1), then VA := UA is a solution of the equation 

f(k), VI (±1) 0. 
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It is well-known that S(O) - A has a compact inverse if A~ o(S(O)), hence 
0 0 

uA can be written as 

x 

uA (x) = I 
0 

k-1 
(x-t)k vA (t)dt/k! + L u~j) (O)xj/j!. 

j=O 

Inserting this expression in eq. (21), we obtain the set of equations 

u~j+2 ) (0) - AU(j) (0) 
A 

= f(j) (0), 0 s j s k - 3, 

VA (0) - AU (k-2 > (0) 
A 

f(k-2) (0), 

v~ (0) - AU~k-l) (0) f(k-1)(0), 

( ") 
from which the numbers uAJ (0) can be solved uniquely if A+ 0 and 

A~ o(S(O)). We conclude that eq. (21) has a unique solution for all 
0 

f E Ef C-1,1) and hence that S(k) - A has a compact inverse, if 
0 

A ~ o(S(O)) u {O}. As in the previous theorem we can continue this invert­o 
ibility-property along the chain tS(k) + (1-t)S(k). D 

0 

c. In the space ff (f;/,) , k E lN, where n is the unit disk in JR2 , we define 

the sesquilinear form 

(22) 

and the (semi)norm connected with it, 

(22b) II u II k := {( u,u)0 + ( u,u\}~ . 

The form ( u,v ) 0 + ( u,v )k constitutes an inner product and l.l ~ II u II k a 

norm in Hk(n). 

The restriction of a function defined on n to the boundary is a con-
_.k _.k-1 _.k-~ 

tinuous operator form H (rl) into H- (3$"1) (onto H (3r2), cf. [20]); by 

way of example we show 

LEMMA 1.9. Every function u E H1 (n) satisfies the inequality 

(23) llu ll~n s 2llu II~ + 2llu lln lul 1 ,n · 
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PROOF. Let (r,~) be the polar coordinates; any u E C1 (Q) satisfies 

271 271 

J lul 2 d~ = f f ar(r2 lul 2)dr d~ $ 

0 0 0 

$ 2llu 11 2 + 211 r 2ull lul1 

and since C1(Q) is dense in H1 (Q), this inequality can be extended to all 

u E H1 (Q). D 

REMARK. This lemma is a special example of a large class of "trace theorems", 

which deal with the continuity of the restriction operator to spaces of 

functions on subdomains of lower dimension, cf. [20] eh. 1 §8 and [ 4] §7.58. 

LEMMA 1.10. If u E El<cn> with k E JN is suah that (aiaju)(O,O) = o for aZZ x y 
i,j E JN with i + j :;; k - 2 then rvu E n°(Q) for aZZ v > - k. Moreover, 

0 

constants Ck not depending on v and u exist such that 

PROOF. We begin with the case k = 1. If u E C1 (Q), integration by parts 

yields 

271 1 

II rvull 2 = I f 2v+1 
uu dr M r 

0 0 

2rr 271 1 

= 2v1+2 f lul 2d~ - 2:+2 f f 
2v+2 a r ( uii) dr d~ , r 

0 0 0 

provided v > -1. By lemma 1.9 and by Schwarz' inequality we find 

Since C1 (n) is dense in H1 (Q) this inequality extends to all u E H1 (Q). 
2 If u E H (Q) and u(0,0) = 0, we have the identity 
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(26) u(x,y) = x(axu) (x,y) + y(a u) (x,y) + 
y 

1 

25 

- (ex a +2xya a +y a lu)Cxt,ytltdt. I 2 2 2 2 
x x y y 

0 

We apply the result of the first part of the proof to the first and second 

term of the right-hand side ~nd we apply to the integral a result for the 

inverse of the operator -(xa +ya +2) proved in le111111a 4.11. By (4.64) and 
XO y 

(4.65) we find that any v f H (0) satisfies the inequality 

1 

II J v(xt,yt)tdtll = II (xa +ya +2)-1vll s: lvD , x y 
0 

hence we find for all v > -2 

In conjunction with (25) this yields (24) for k = 2. In order to avoid sus­

picion of a circular reasoning, we stipulate that the proof of le111111a 4.11 

does not depend on the contents of this section. 

If k > 2 we proceed the same way; instead of (26) we use the identity 

(27a) u(x,y) 
k-2 k-j-2 i j i j 1 c d )k-1 I I I xi' yj' a a u(O,O) + (k-1)! ds u(xs,ys) + 
j=O i=O . . x y s=l 

k k j d k I (..) (-t) (ds) u(xs,ys) I dt. 
j=l J s=t 

This formula is proved by iteration of the formula for a function of one 

variable 
1 1 

(27b) w(x) = w(O) + x I w' (xt)dt = w(O) + xw' (0) + x2 I (1-t)w" (xt)dt 

0 0 
1 

= w(O) + xw' (xl - x2 I tw" (xt)dt 

0 

and application of it to u(rcos~,rsin~) considered as a function of r 

alone. 0 

In ~(0) we introduce the second innerproduct (·,·>~v): 
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(28a) 

where Zku is the remainder of the Taylor expansion of order k-1 in (0,0), 

I I (v) the norm connected with this inner product is denoted by • k 

(28b) I I (v) ·= (/ >(v) )l:i u k . \u,u k 

This norm is equivalent to 11 • 11 k in If W l : 

LEMMA .1.12. For eaah k E lN a constant <; exist suah that 

for aZZ u E Ifcni and v E (O,k]. 

PROOF. The left-hand inequality of (29) is a consequence of the identity 
(27) and the right-hand inequality follows from lemma 4.11. 0 

With respect to this new inner product If cnJ admits the orthogonal 
decomposition in the ~k(k-1)-dimensional subspace of polynomials of degree 

s k-2 and the subspace of functions u which satisfy u = Zku: 

Moreover, the monomials xiyj and xmyn are orthogonal with respect to this 

inner product for all i, j, m and n, provided i+j s k-2, m+n s k-2 and 
m+nrr + i+jrr. 

If k is an even number, say k 

If en> the third inner product 

2j with j E JN, we can introduce in 
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. 2 2 ~ 
As is well-known, the norm u 1-+ (II LIJull + llu II ) , defined 

product, is equivalent 

operator s(j~ 

2· 
to the norm u I-+ II u II k . In H J (!"l) we 

by this inner 

define the 

(32) S(j)u :=Lu 

for all u E V(S(j)) 
2· 2 . 

:= {v E H J+ (Q) J (x3 +µy3 )LIJvl 
x Y an 

O}; 

it satisfies: 

THEOREM 1.13. The operator S(j) is semibounded from above and S(j)_ A has 
a compact inverse for some A E C. 

PROOF. In connection with L we define the sesquilinear form A in H1 (r.!) by p 

(33a) A(u,v) :=ff A(Vu,Vv)dxdy, 

Q 

where A is the sesquilinear form in C2 : 

(33b) 

1 u,vEH(!"l), 

Since L is uniformly elliptic, a constant y > 0 exists such that p 

(33c) A(u,u) ?: YluJ~ 

2 L satisfies for all pairs (u,v) E H (Q) Green's formula, p 

(34) (Lpu,v) + A(u,v) 

2Tr 

2 (aEC ). 

f { 2 2- 2 2 - } (ax +2bxy+cy )v3ru + (bx -by +cxy-axy)v3$u I d$, 
o r=l 

where (r,$) denote the polar coordinates. If u and v satisfy the boundary 

condition 

0 (x3 +µy3 )wl 
x y ()Q 

2 2 
(<x +µy )3 + (µ-1)xy3~)w 1 , 

r ~ an 
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we can eliminate the normal derivative ar from the boundary term of (34); 

integrating by parts again, we find 

(35a) 

where h is defined by 

21f 
r 

- J h • CcJ>luvdcJ>, 

0 

(35b) h (cj>) 2 
:= {cxy - axy + bx 

2 2 2 2 2 by + (1-µ)xy(x a+2xyb+y c)/(x +µy )}j . 
r=l 

Setting u v, we find by lemma 1.9 the estimate for the boundary term 

21f 

(36) If h'(cj>)uudcj> I!> 2[h']llull(llull+JuJ 1). 

0 

Since constants C .. exist such that 
1J 

we deduce from the formulae (33c), (34), (35a) and (36) a constant K. such 
J 

that L satisfies for all u E V(S(j)) the inequality 

This implies that the operator S(j) is semibounded from above. 

In order to show that S(j)_ A is invertible for some A EC, we consider 

the special operator s(j): 
0 

It is well-known that S(O)_ A has a compact inverse if ReA > 0, cf. [20] 
0 

eh. 2 §5, SO we define for some f E C00 (Q) and j E JN the function 

vA := (S~O)_A)-l6jf. Let us now assume that a solution of the equation 

6u - AU f, o, ReA > O, 

exists and let us denote it by uA; it clearly satisfies 6juA = vA. 

Applying 6 j times to the equation 6uA = AUA + f we find at the boundary 

the set of relations 
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(39) i 
l!. f I , 

a>< 
0 ~ i ~ j-1, 

which can be solved recursively 

Because f E C00 ('6), the boundary 

for A + 0, since l!.ju = v is known. 
. Ala>< "la>< 

For each s E JR, s ~ 2 the 

J. 00 

values l!. uAI are elements of C (3'6). 
a>< 

operator V which assigns to u E Hs(n) the 

pair (l!.u,ula><) is a one-to-one continuous mapping with a continuous inverse 
s s-2 s-~ from H ('6) onto the cartesian product H ('6) x H can), cf. [20] eh 2 §5 

(for non-integral s the space Hs is defined by interpolation; it satisfies 

Hs c Ht ifs> t). By iteration we find that the operator VJ., which assigns 
2· 

to u EH J(n) the n+l-tuple 

(40) 

is continuous and has a continuous inverse. Hence uA exists and is defined 

uniquely for each f E C00 ('6) by vA and by the set of relations (39), provided 

ReA > O. Since C00 ('6) is dense in H2j(n) and since we find from (38) 

II s(j)u - Aull ~ (constant) ReAllu II , o n n 

this implies that S(j) - A is invertible, if ReA > 0. Since (S(O)_A)-l is 
0 ( . ) -1 0 

compact and since Vj 1 is bounded, (s0 J -A) is compact too. 
By the continuity method, used in the proof of theorem 1.7, we extend 

( ') 
the result to S J • 0 

If M is a uniformly elliptic formal differential operator of second 

order on n, then 

2· 
defines an inner product in H J('6) and a norm which is equivalent to the 

+ . 
original one, provided the constant C E JR. is large enough. If, moreover, 

M is formally selfadjoint (or has real coefficients) and does not contain 

a zero-th order derivative, then all eigenvalues of the restriction of M 

to H2 Cn) n H1 (n) have a negative real part and we can assume C = 1. By 

analogy to (~2) we define the operator S(j) as the restriction of L to 
M 

(42) 
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Replacing ~ in the previous proof by M we find: 

COROLLARY 1.14. The operator S(j) is semibounded from above and S(j) - \ has M M 
a compact inverse for some \ E C. 

d. On the square n := (-1,1) x (-1,1) we define the non-isotropic space 
H(o,n) (Q), with n E lN, as the set of functions 

(43a) 

It is a Hilbert space with respect to the inner product 

The restriction of an element of H(o,n) (Q) to a line y = constant is a 

continuous operation onto L2 (-1,l); by way of example we show 

LEMMA 1.15. Every u E H(o,l) (Q) satisfies the inequaZity 

1 PROOF. If u EC (Q), then we find 

1 1 

llu(•,OJ!l~-l,l) =-I I 
-1 0 

Cl (1-y) lu(x,y) 12dydx ~ y 

Since C1 (n) is dense in H(o,l) (Q), this inequality implies (44) for all 
u E H(o,l) (n). D 

(45) 

Analogously to subsection 1.2b we define H(o,n) (Q) as the subset 
1 

H(o,n) (Q) 
1 

{u E H (o,n) (") I ~j . lN } := " a ul , J E , j < n . y y=o o 

According to lemma 1.15 it is a closed subspace of H0 'n(Q.). In 

L2 (C-1,1) x (0,ll) and L2((-1,1) x (-1,0l) we define the operators A and 
B as the restrictions of Cl to the domains 

y 



§1.2d 31 

V<Al 2 2 ·= {u E L (<-1,l)X(Q,1)) I ayu E L ((-1,l)x(Q,1)) & uly=O = O} 

V(B) 
2 2 := {u EL (<-1,l)x(-1,0)) I 3yu EL ((-1,l)X(-1,0J)&uly=O =O} 

and we observe the identity 

By analogy to (2.4b) we find for any u E V(A): 

1 1 

11 Au 11 ( -1 , 1) x ( o, 1) 11 e 2y u 11 (-1 , 1) x ( o, 1) "' 1 ~ I I 
-1 0 

= II eyull~-1,l)x(0,1)"' e-1 11 e 2yull (-1,l)x(0,1) II ull (-1,l)x(0,1) 

B satisfies an analogous formula. For any u E H(o,n) (Q) this implies the 
1 

inequality 

and we find that the norms 

(46) 

. (o n) are equivalent on H1 ' (Q). Moreover, in conjunction with (44) this implies 

that the inner products (43b) and 

(47) I n n \ n~l (. )-2 / \ u,v I->- \3 u,Cl v/ + L J ! \Cljul , ajvl /(-1,1) 
y y j=O y y=O y y=O 

define equivalent norms in H(o,n) (Q), see also formula (17). 

As a variant on Sobolev's lemma we find 

LEMMA 1.16. If u and 3 u are elements of H(o,l) (Q), then 
x 

(48) lu<x,yll 2 ~ llull 2 + 211auli11aull+2llull II a a ull x y y x 

for all (x,y) E n. 
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2 
PROOF. If u EC (Q) and (x,y) E (-1,0)x(-1,0), we have the identity 

1 1 
2 r I 2 lu<x,y> I = J asato-s> o-t> lu<x+s,y+t> I dsdt; 

0 0 

by executing the differentiations and applying Schwarz' inequality we find 

(48). By a density argument the inequality extends to the larger set. D 

In the space H(o,n) (Q) we define the differential operator S as the 

restriction of L to the set 

(49) V(S(n)) := {u E H(o,n) (Q) lllu E H(o,n) (QJ ,u = 0 
lx=±l 

and 

it satisfies: 

Ol. 
J' 

THEOREM 1.17. The operator S(n) is semibounded from above and has a compact 

inverse for some A E ~-

PROOF. Integration by parts yields for any u E V(S(n)) 

~ IA(anu,anu) + inner products containing derivatives 
y y 

of lower order I, 

hence straightforward computation shows that S(n) is semi-bounded from 

above. In order to prove invertibility we consider the special operator 

( (n)) for all u E V S 

and we operate in the same way as in the proof of theorem 1.8. D 

1.3. CRITICAL POINTS OF FIRST ORDER PARTIAL DIFFERENTIAL OPERATORS IN THE 

PLANE 

The critical points of the first order partial differential operator 
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in the plane 

(50) i :=pa + qa + r, x y 

with real C00-coefficients, are connected with the singular points of the 

system of ordinary differential equations 

(51) dx 
ds = p(x,y), ~-ds - q(x,y); 

33 

its integral curves are the characteristics of i. The origin is a non­

degenerate singular point of (51), if p(O,O) = q(0,0) = 0 and if the 

Jacobian matrix M of (p,q) does not vanish in a neighbourhood of the origin. 

The type of the singularity is determined by M(0,0); by a linear trans­

formation it takes one of the following standard forms 

1. saddle-point: M(O,O) 

2. nodes a: M(0,0) 

b: M(0,0) 

3. vortices a: M(0,0) 

b: M(O,O) 

(1 0) 
0 -µ 

+( 1 0) + with µ E JR, - 0 µ 

+(1 0) 
- 1 1 

± ( 1 v) .L -vl withvEJR,vTO, 

0 1) C1 o • 

Among these non-degenerate singular points we can distinguish three "struc­

turally stable" classes (i.e. the type of a singular point in such a class 

does not change under small perturbations) namely the "saddles" (type 1), 

the attracting centers (types 2a and 3a with a plus sign) and the repelling 

centers (types 2a and 3a with a minus sign). 

In most cases, cf. STERNBERG [28], a smooth coordinate transformation 

(in a neighbourhood of the origin) exists, which transforms equation (51) 

into a linear differential equation and hence the Jacobian M into a con­

stant matrix. Therefore we shall restrict our analysis to problems in which 

i belongs to one of the three structurally stable types with a constant 

Jacobian: 

Node: xa + µyd I µ € JR+, 
x y 

(53) Vortex: (x-vy)ax + (y+vx) a ra + vacp, v € JR, v + o, y r 

Saddle point: xa - µya , µ E: JR+. 
x y 
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CHAPTER II 

PERTURBATIONS OF d/dx. 

On the interval [0,1] of the real line we consider the singular pertur­
bation problem 

(1) ETU + u' - AU f, u(OJ A, u(l) B, 

in which f is a (smooth) complex valued function; A and E are complex para­

meters; without loss of generality we can assume that the coefficient a(x) 
of d2/dx2 in T satisfies a(O) = 1. We are interested in the behaviour of the 
solution of (1) for IEI + 0. We prove L2-convergence of it using a device 

of KATO [19] eh. 8 and construct asymptotic approximations to it in a manner 
analogous to [ 8] and [ 5 ] . The aim of this chapter is to illustrate methods 

to be used later on in a fairly simple case. 

2.1, L2-CONVERGENCE OF THE RESOLVENT OPERATOR 

In connection with the boundary value problem (1) we define the family 

of differential operators TE by 

(2a) T u := 
E 

(2b) T 
0 

u := 

ETU + U 1 I 

U 1 I 

u E V(T) := {v E H2 (0,1) I v(O) 
E 

u € v (T ) : = { v € H1 ( 0 I 1) 
0 

v(l) 

v(l) O}, 

O}. 

The existence and unicity of the solution of (1) with f E L2 (0,1) and E + O 
and its convergence for £ + 0 are equivalent to the invertibility of TE - A 
for £ + 0 and the convergence of the inverse for E + 0. Let S c C be the 

a 
sector 

S : = {A E cc; I I Im A I s aRe A } , a with a E :JR+, 

then we are going to prove that TE - A is invertible if IEI is small enough, 
and that (TE-A)-l converges to (T0 -A)-l in (operator-) norm if£ E Sa and 
£ + o. 
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LEMMA 2.1. If EE S and sufficiently small, the operator T - A has a Cl. E 
bounded inverse, which satisfies (uniformly with respect to £) the inequality 

(3) 

where n E JN and K := ~(a+l}[a-~b - 2na~J 2 + [c - nb + n 2a - na']. o n 

PROOF. For any u E VCT0 } we have 

1 

Re (u•,u) = ~ J (u'u+uu'}dx - ~ u(O}u(O} < 0, 

0 

hence if ReA > 0 we find 

Since T 
0 

-nx 
e u e-nx(T u-nu} and since 

0 

II ull s II e nxull s e nil ull for all n E 'JN and u E L2 (0,1), 

we find for ReA > - n with n E JN 

(4b) II Tu-Aull 
0 

nx 
e u, 

nx 2 2nx -n 2 (ReA+n}lle ull /lie ull 2 (Re>.+n)e llull. 

This inequality proves that the range of T0 - A is closed for all A E C. 
* Since the nullspace of the adjoint T0 - >., 

* Tu 
0 

- u' for all U E 

is zero, T - A is invertible for all A E C. 
0 

{v E Hi(0,1} J v(O) 

For any u E V(T } with E + 0 we have the inequality 
E 

(5) 

O}, 

valid for all t E JR+. With the choice t := (a+l}[a-~b] we find from (4) 
and (5) the inequality 
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with K 
0 

->, 2 
:= ~(a+l)[a b] + [c], 

valid for any u E V(T) with£ ES \{O}; analogously we obtain 
£ a 

( 2nx ) ( nx -nx nx nx ) Re cTu,e u = Re ce Te e u,e u 

§2.1 

( d d d 2 )nx nx) Re c(~ a~+ (b-2na) dx + c + n a - na' - nb e u,e u 5 
dx dx 

Combined with (4) this results in the inequality 

( 6) II T u-1-ull I ( 2nx ) I I JI e 2nxull E 2 Re ETU + u' - :\u,e u 

2 (ReA+n-1 s I K ) e -nil ull 
n 

for all u E V(T ) and for all s E S , A E C and n E JN satisfying the 
s +a o 

relation Rei.+ n > lslK . If A E lR is large enough and ifs ES , T - A 
n a £ 

is invertible by corollary 1.5, hence by inequality (6) TE - A is invertible 

for all A EC, provided s E Sa is small enough, and satisfies (3). 0 

For later use it is convenient to show here that the following stabil­

ity property is a simple consequence of this lellllila: 

2 
COROLLARY 2. 2: If us E H (0, 1) satisfies for some v E lR the estimates 

II (n+d/dx-A)u II = 0(sv), 
€ 

then II u II = 0 ( s v) for s E S and s ->- 0. 
E a 

u (0) 
€ 

PROOF. Since us - xus(l) - (1-x)us(O) E V(Ts) we have by lellllila 2.1 

llu II 
€ 

llu 
€ 

XU (1) 
€ 

5 II (T -A)- 1 11 II (n+d/dx-1.J(u -xu (1)-(1-x)u (0))11 + 0(sv) 
€ € € € 

0(s v). 0 
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This property is called the "inverse stability" of the family TE. 

For simplicity of the computations, we now define the special operator 

TI with V(IT ) := V<TE) and 
E E 

TIEu := E(au')' + u', 

By lemma 2.1 we know that TIE has a bounded inverse if E is sufficiently 

small; we can compute the Green's function of TIE and determine its asymp­

totic behaviour. Moreover, TIE dominates the difference between TIE and TE, 

such that convergence of TI-l implies convergence of T- 1 . First we shall 
E E 

prove the dominance: 

LEMMA 2.3. For any u E V(TE) and E E Sa the difference TE - TIE satisfies 
the inequa Zi ty 

(7) II Tu - IT ull s cllsl~<ll TI ull + llu II), E E E 

in which the constant c1 does not depend on E and u. 

PROOF. Since u(O) u(l) 

(u' ,u) + (u,u') 

0 we have the identity 

1 

J ! (uu)dx = O. 

0 

Since ReE > O and I EI s ( l+a)ReE, this leads to the inequality 

(Sa) 0 s ( E+E) I J a ~u' 11 2 = - ( E+E) ( (au' ) ' , u) ( u' , u) - ( u, u' ) 

- (E(au')' + u' ,u) - (u,E(au'}' + u') $ 

s 211 IT u II II ull 
E 

and taking square roots we find 

(Sb) 

This inequality results in the estimate 
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LEMMA 2.4. A constant c2 exists, such that 

(9) (£ E S and sufficiently small) 
Cl 

i.e. rr~ 1 converges to T:1 in the uniform operator topology for £ 7 0. 

PROOF. The Green's function of IT is 
£ 

§2.1 

(exp A(t) -l){exp(- A(l)) - exp(- A(x))}/(1- exp(- A(l))) 
£ £ £ £ 

if t < x, 

GE (x,t) := 

(exp(- A~x)) -1)(1- exp A(t)~A(ll)/(1- exp(- A~l)l) 
if t > x, 

x 

where A(x) f a~:) ; for each h E L2 (0,1) we find 

0 1 1 

rr- 1h f G (·,t)h(t)dt and T-1h = - f h(t)dt. 
£ E 0 

0 x 

Since A satisfies the inequality p(x-y) s A(x) - A(y) s q(x-y) with 

p := 1/[a] and q := [1/a] if x ~ y, we find 

IG ( t) I < A(t)-A(x) < exp pt-px 
£ x, - exp Re£ - Re£ if t $ x, 

and 

IG (x,t)+ll 
E 

s exp(- A(x))/(1- exp(- A(l)l) 
Re£ Re£ 

A(t)-A(l) 5 
+ exp ReE 

s exp(- ~)/(1- exp(-__£_)) + exp(pt-p) 
Re£ Re£ Re£ ' 

if x s t. 

By straightforward computation we find a constant c2 , such that 

x 1 

II rr- 1h - T-1hll 2 = II f 
£ 0 f 11 2 

GE(x,t)h(t)dt + (GE(x,t)+l)h(t)dt s 

0 x 
1 

IGE(x,t) 12dtdx + f J 
0 x 

IG (x,t) + 11 2dtdx} s 
E 

D 
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Now we are able to prove the convergence of (T -A)-1 : 
E 

THEOREM 2.5. For eaah A E C there exist positive numbers EA and CA, suah 

that the resolvent (TE-A)-l of TE satisfies the inequality 

(10) 

i.e. (T -A)-l aonverges to (T -A)-l in the uniform operator topology for 
E 0 

aU A E C. 

PROOF. By lemma 2.3 and theorem 1.4 (formula (1.2)) we find: 

(11) 

This inequality together with lemma 2.4 proves formula (10) for A = O. 

Since II (TE-A)- 111 is uniformly bounded with respect to E E Sa, provided IEI 

is sufficiently small, by lemma 2.1, we can prove (10) for all A E C by 

analytic continuation. Consider the Neumann series 

(12) (T -A)-l 
E 

t k -k-1 
l (A-µ) (TE-µ) I 

k=O 

39 

which converges in (operator-) norm if IA-µI ~ II (T -µ)-lll-l. If (T -µ)-l 
-1 E -k E -k 

converges in norm for E ~ 0 to (T0 -µ) , then (TE-µ) converges to (T0 -µ) 

for all k E JN, hence the infinite sum converges for all A within the ra­

dius of convergence; since (10) is true for A = O, this proves (10) for all 

A E C. D 

2.2. ASYMPTOTIC EXPANSIONS 

-1 -1 
The approximation (T -A) f of (T -A) f, which we deduced in the 

0 ~ E 2 2 
previous section is of order 0(E llfU) in L -sense for all f EL (0,1). 

Following more or less the lines of [ 8 ] and [ 5 ] , we construct higher or­

der approximations of (T -A)-lf for a more restricted class of functions. 
1 E 

If f EH (0,1), we have 

II (ET+d/dx-A) { (T -A) -lf - (T -A)-lf}ll 
E 0 

-1 
II ET (T -A) fl 

0 
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and if in addition (T -A)-lf € V(T ), we conclude from cor.2.2 
0 E 

-1 In general however, (T0 -A) f ~ V(TE), i.e. it does not satisfy the boundary 

condition of T at x = 0, so our first objective will be to find a correc-
E2 -1 tion term v € ll (0,1) such that we can apply corollary 2.2 to v + (T0 -A) f. 

Let us now fix the function f € H1 (0,1) and the parameter A € <C and 

introduce the notation u := (T -A)-lf and u := (T -A)-1f. The correction 
E E 0 0 

term v which we are looking for, has to satisfy 

(13) II ETV + v' - Avll 0(£), 

(14) v(O) - u(O) + 0(E) and v(l) Q ( E) 1 

for this implies by corollary 2.2 

llu - u - vii 
E 0 

0(E), (E-+0). 

This correction term v is of order unity at x = 0, but llvll is of order 

0(/E) at most, since llu - u II = 0(h) by theorem 2.5, hence v is of order 
E 0 

unity only on a set of measure 0(r), which has to contain a (right-) 'neigh-

bourhood of the boundary point x = O. 

For a closer look in a neighbourhood of the point x = 0, we stretch 

the x-variable. We define t; := x/jEj and the substitution operator 

s: L2 (0,1)->- L2 (0,1/jEj) by (s fl(O := f(jEjt;J. The norms in both spaces E E 
satisfy the relation 

(15) 
2 

h€ L C0,1). 

This substitution induces on H2 (0,1/le:ll the formal operators (e:T+d/dx)s-1 ; 
E E 

since we are interested only in a neighbourhood of the origin, we expand 

its coefficients into a power series in le:Jt; and define the formal operators 

Pk (kEJN0 ) by 

d2 d 
Po := Y dt;2 + dt; ' 

(note that a(O) 1) 

d2 d 
p 1 ·= yt;a' (0) - + y(a' (0) + b(OJ) d" , 

dt:2 " 
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Pk := ya (k) (0) ~ d22 + y(a (k) (0) + b (k-1) (0)) ,(_-1\! :!; + 
di; 

k-2 
+ yc(k-2) (0) I; 

(k-2)! I 
k ~ 2, 

where y # we define the k-th order remainder operator pk by 

I I j-1 
E p, • 

J 

Clearly there is a constant rk depending on the remainders in the Taylor 

expansions of a, band c, such that for each h E H2 (0,1) 

(16) 

In the equation ETV + v' - AV= 0(E) we substitute x = jEjl;, we expand 

operator and solution formally into powers of E and ignore all but the 

terms of lowest order (with respect to E); for the resulting equation 

p v = 0 we seek a solution v in H2 (0,oo) (this space contains H2 (0,1/IEI) 
0 0 

for all E), which satisfies the boundary condition v (0) u (0). 
0 0 

We find 

In view of (15) and (16) this solution satisfies 

(17a) 

(17b) 

-1 II (n+d/dx-A) s v II 
E 0 

v (0) 
0 

- u (0) 
0 

~ Q(Eu(O)), 
0 

and V (1/E) 
0 

O(e-i/Eu (0)), 
0 

provided EE S and lei + 0, hence we find 
a 

II u 
E 

- u 
0 

- s- 1v II= O(E~(ll f II + lu (0) I) · 
E 0 1 0 

41 

Although we have not increased the order of approximation, we have now devel­

oped all the machinery for obtaining approximations of higher order. Let 
2 vl E H (0,oo) be the solution of the equation povl = AVO - plvo satisfying 

the boundary condition v1 (0) = 0, i.e. 
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v1 (t;) := f k(t;,t) (A.-p 1)v0 (t)dt 

0 

where the kernel k is defined by 

The function v0 + IE!';:-;1 satisfies 

(18a) -1 I I~ II (n+d/dx-A) s (v + E v 1) II 
E 0 

§2.2 

if t: > t, 

ift;<t. 

(18b) O(e-l/Eu (0)), 
0 

hence in the same way as above we find by corollary 2.2 

(18c) 

In order to remove the term u0 (0) from the order estimate, we prove the 

following lemma: 

,l . 1 . -I' LEMMA 2.6. (Sobolev): A& funct~ons u E H (0,1) sat~SJY 

(19) [uJ 2 ,,; 211ull 2 + 2llull llu•ll 

PROOF. Consider the integral 

~ 

lu(x) / 2 = - f d~ { (1-2t) lu(x±t) I 2}dt, 

0 

in which the plus sign is chosen if x ,,; ~ and the 

Hence 

~ ~ 

minus sign 

lu(x) 1 2 ,,; 2 f 
2 

ju(x±t) I dt + 2 f lu(x±t)u' (x±t) !dt 

0 0 

,,; 211ull 2 + 211ull llu•ll 

by Schwarz's inequality. D 

otherwise. 

,,; 
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From this lemma and inequality (4a) we easily find a constant C such that 

(20) lu (OJl 2 s 211u ll(llu'll+llu 11) s 211u 11(<1:>..l+l)llu ll+llfll) s Cilf11 2, 
0 0 0 0 0 0 

hence from (18c) we find 

This approximation can still be improved without additional assumptions on f. 

By (18a) and (20) we have 

so we find from (18b), lemma 2.1 and theorem 2.5: 

(21) 11 u 
£ 

2 
If f is an element of H (0,1), the approximation obtained in (21) is 

2 # 
in H (0,1) too and we see that the difference u£ between u£ and the approx-

imation satisfies the equation 

d # 
(ET+ - -A)U 

dx £ 

2 -1 
E T(T -),_) TU 

0 

where the remainder by (15), (16) and (20) satisfies 

# 
Furthermore u£ satisfies the boundary condition 

# -1 
u (0) = E(T-A.) TU I 

£ o o x=O 
and 

if £ E S and £-+ 0. 
a 

We see that on 0(£) - level we can repeat the procedure in order to obtain 

an approximation, which is of order 0(c 512 i in L2-norm. If f is sufficient­

ly smooth, we can proceed to an arbitrarily high order of £. If f E ~(0,1) 
with n E JN we define un,vn and vn by 

(22a) 
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(22b) := f k(~,t)(Avn-l (t) 

0 

(22c) vn (S) := vn (~) - yun (0) e -~/y, 

and we find: 

n-1 
I 

j=O 
p .v.(tl)dt, 
n-J J 

THEOREM 2.7. If f E ~(0,1) and E + 0 within s , (T -A)-lf admits the 
a E 

asymptotic expansion 

(23) II (T -A)-lf 
E 

§2.2 

The constant in the order term depends on A, on a and on the coefficients 
of T, but not on E and f. 

PROOF. Define 

then by definition we have A (0) = 0. Since the operator p has constant 

coefficients and the coeffic~ents of pk are ~k, ~k-l and ~k- 2 , each function 

vk and vk is a polynomial in~ of degree 2k multiplied by e-~/y; moreover, 

the coefficients in these polynomials depend linearly on u 0 (0) , ... ,uk-l (0). 

Since 

u E H1 (0,1) , 

for some constant C, we find by iteration of this rule constants ~ such 

that 

and analogously to (20) this yields constants C. so that 
J 

lu.coi I ~ c.11 fll .. 
J J J 

We infer from these facts 

(24) 
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and 

(25) II (ET+ dd ->..){(T ->..)-lf + En(T -1')-1rn 1 - A }II= 
x E E n- n 

By corollary 2.2 this results in 

and by theorem 2.5 and estimate (24) we find 

hence (23) is a simple consequence of these estimates. D 

By Sobolev's lemma we can prove regularity of the approximation con­

structed above, i.e. we can prove that the approximation converges in the 

maximum norm too. 

THEOREM 2.8. If f E ffl(0,1) then A is a unifoY'm asymptotic approximation n 
to (T ->..)-lf and 

E 

45 

(26) [(T-J..)-lf - A]= 0(En-l.,illfll) 
E n n for E E Sa and E ~ 0. 

1 PROOF. By lemma 2.6 any u E H (0,1) satisfies 

[uJ 2 ,,; 211ull (llull+llu•ll), 

hence if u E V(T ) we find by (Ba) a constant C such that 
E 

(27) 
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Since A 
n 

xA (1) E V(T ) and since 
n E 

II (T -,\){(T -,\)-lf - A + xAn(l)}ll 
E E n 

by (25), we find from cor. 2.2 

II (T -,\J-lf - A. + xA (1)11 
E n n 

§2.3a 

Substituting this in (27) and using the estimate (24) we prove formula (26). 0 

REMARK. The results on approximations of the solution of problem (1) are 

stated for homogeneous boundary conditions, since inhomogeneous boundary 

conditions can easily be transformed into homogeneous ones. 

2.3. DISCUSSION OF THE RESULTS 

a. The restriction on E, that it should tend to zero within the sector 

Sa, is essential in all lemmas and theorems we proved in this chapter. 

If we choose E in the sector -S we find in a completely analogous way 
-1 a -1 

that (TE-,\) converges to (T0 -,\) for E + O, where 

vd i 
0 

1 
:= {u EH (0,1) I u(O) O} and Tu := u'. 

0 

We see that the boundary condition at x = 0 is lost if E + 0 within Sa 

while the boundary condition at x = is lost if E + 0 within -Sa. More­

over, the spectrum of TE disappears at infinity if E + O; if E E Sa it moves 

away to the left and if E E -S it vanishes at the right-hand side of the 
a -1 

complex plane. In the asymptotic expansion of (TE-,\) f for EE -Sa and 

E + 0 the boundary layer is located at x = 1; the boundary layer terms in 

the expansion are computed in the same way as before after substitution of 

the local coordinate n := (1-x)/E. 

If E tends to zero via the imaginary axes, convergence cannot be ex­

pected. Let us consider for example the special case Il u := EU" + iu' for 
E 

u E V(T ) and E E :JR+ (we multiplied the operator by i in order to make it 

E 1 2 2 I 
selfadjoint). Its spectrum is the set cr(IlE) := {4E - Ek TI k E JN}. 

Every eigenvalue tends to +00 if E + +O, but the spectrum as a whole does 

not vanish for E + +O, since it extends from 1/4E to - 00 for each E > 0. 
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This means that for each 

lim £ = 0, such that 
n-roo n 

real A we can find a sequence £n (nElN) with 

IT - A does not have an inverse for any n E ]N, 
£n 

(IT -A)-l for£+ +0 and A real is out of the 
£ 

and so convergence of 

question. If A is non-real we have at least 

-1 + 
such that Cn -A) exists and is uniformly bounded with respect to £ E E. . 

£ -1 
However, (IT£-A) does not converge for non-real A either, as we can see by 

the choice A = i + £. We find 

-1 2 
(IT£-i-£) (px+q) = - (px+q)/(i+£) - ip/(i+£) + 

where A := q/(i+£) + ip/(i+£) 2 and B := p/(i+£) +A. It is clear that this 

expression does not converge if £ E E.+ and £ + +0. 

4. Dependence on boundary conditions. The asymptotic behaviour of any re­

striction of the formal operator £T + d/dx depends heavily on the boundary 

conditions we impose on its domain. When we take for instance periodic 

boundary conditions (instead of the Dirichlet-boundary conditions used be­

fore) and define 

U u := £u" + iu' for 
£ 

U E vcu > := 
£ 

{v E H2 C0,1) I v(O) = v(l) 

& v' (0) = v' (1)}. 

U u := iu' for U E vcu ) 
0 0 

{v E H1 (0,1) I v(O) =v(l)}, 

£02 + U . Since the eigenvalues of U are the 
0 0 2'k 0 

we see at once that U 
£ 

numbers 2kn (kfZ:::) with the eigenfunction e- i nx, we find by the spectral 

mapping theorem that the eigenvalues of U£ are the numbers 2kn - 4£k2n 2 

with the same eigenfunction. The set of eigenfunctions of U0 is complete, 

so we have for any f E L2 (0,1) 

f (x) 'i' f -2kinx 
l ke , 

kEZ!: 

If A 4 cr(U ) the resolvent satisfies 
£ 
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and if A ~ a(U ) u a(U ) we find the estimate 
E 0 

I 121 2 2 -1 -112 l fk (2kn-4Ek TI -A) -(2kn-A) s 
kEZZ 

-1 
We see that (UE-A) converges in norm to 

convergence is of order 0(s), if the path 

(U -A)-l for E + 0 and that the 
0 

in the s-\-plane is chosen in such 

a way that dist{\,a{UE) u a(U0 )) is bounded away from zero uniformly. 

c. Generalizations and related work. We constructed in this chapter approxi­

mations to the solution of problem (1) and proved their convergence in 
2 L ··sense; only at the end we showed that uniform convergence is a simple 

2 
consequence of L -convergence. The essential points in the proofs are the 

inverse stability (lemma 2.1) of the family of operators TE and the esti­

mate (Ba) of II u •II by II ull and II T ull . It does not seem difficult to extend 
E 

these methods to ordinary and (elliptic) partial differential operators 

for which we can prove the inverse stability. 

The method explained here has advantages over the maximum principle 

method as it was used by ECKHAUS & DE JAGER [ 8 ] since it admits generali­

zations to operators of (even) order higher than two and since it remains 

valid for complex values of the parameters E and A and of the coefficients 

of T (provided Ea E Sa and Rea strictly positive). Furthermore it is simpler 

than the method of BESJES [ 5 ] , who uses Holder norms, since the presence 

of an inner product in L2 makes estimates of type (Sa) much easier and 

since the inverse stability in L2-norm is a direct consequence of Gardings 

inequality. 

Generalizations to elliptic operators on a bounded domain Q c JRn with 

n ~ 2 are possible. In [21] eh. 5 Lions proves weak L2-convergence of the 

inverse operator and it does not seem difficult to prove strong convergence. 
2 

Uniform L -convergence of the inverse is probably not true in general, except 

in case 3Q is nowhere tangent to the characteristics of the first order 

operator. But even then it seems difficult to extend the· proof of §2.1, 

since this proof uses full knowledge of the Green's function of the main 
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part of the operator; the construction of §2.2 can easily be extended in the 

non-tangency case, cf. §4.3. 
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CHAPTER III 

PERTURBATIONS OF xd/dx 

On the interval [-1,1] of the real line we consider the singular per­

turbation problems 

(1±) E:TU ± XU I - AU f, u(±l) =A ± B, 

in which f is a (smooth) complex valued function; A is a complex "spectral" 

parameter and E: is now chosen in JR+ • We are interested in the behaviour 

of its solution for E:--+ +0. First we study a special example; we observe 

that in this case the spectrum does not vanish and converges to -JN (or -lN0 ) 

and we generalize this property to all problems of type (1). Next we prove 

that the solution of (1) converges to a definite solution of the reduced 

equation if A is not a limit point of the spectrum, and we give some order 

estimates of the difference between the solution of (1) and the approximation. 

3.1. EXAMPLES 

Consider the boundary value problem 

(2) iou" + xu' - AU 0, u(±l) A ± B. 

2 
By the transformation x = - 2E:t the equation is transformed into the 

confluent hypergeometric equation 

tu+ (~-tlu + ~Au 0, 

hence the solution of (2) is 

(3) 
AF(-~A;~;-x2/2io) BxF(~-~A;3/2;-x2/2io) 

:= F(-~A;~;-1/2s) + F(~-~A;3/2;-1/2s) 

(u=du/dtl, 

provided none of the denominators vanishes, i.e. provided A is not an eigen­

value of (2); in (3) F(•;•;•) denotes the confluent hypergeometric (or 

Kummer's) function, cf. SLATER [27]. This function has for complex p,q and 

t and for ltl + 00 the asymptotic behaviour 

(4a) F(p;q;t) {I:J.91 ttp-q + e ipTI _lig2_ t -p} ( 1 + Q ( 1/t)) 
r (pl e r (q-pl 
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provided largtl < 3rr/2; the order term depends continuously on t, cf. [27] 
eh. 4.1.1. From this formula we find that the solution of (2) has the asymp-
totic behaviour. 

(4b) u(x;;\,e:) (e:-++O), 

provided;\ f -JN. We see that· the solution of (2) converges on (0,1] to 

the solution of xu' = ;\u which satisfies the boundary condition at x 1, 

and on [-1,0) to the solution of xu' = ;\u which satisfies the boundary con­

dition at -1; clearly the boundary value problem is torn in two in the 
limit for e:-7- +O and the breaking point is x = 0. This agrees with the 

results of the previous chapter; the restriction of (2) to [p,1] with p > 0 

is of type (2.1), hence the limit of its solution satisfies the boundary 

condition at x = 1, just as the restriction of the limit does. However, the 
points;\ E -JN have to be excluded, since at these points a phenomenon 

occurs which we did not observe in the previous chapter, namely these points 
are the limits of eigenvalues of (2) and at these points the solution of 
(2) and any approximation of it do not depend continuously on ;\. 

Let us first prove the persistence of the spectrum. Define the operator 

(5) II u : = e:u" + xu' e: 

It satisfies: 

for all u E V (II e:) : = { v E H2 ( -1 , 1) I v ( ± 1) = 0 } • 

THEOREM 3.1. Let a(IIe:) be the set {;\k(e:) I k e: JN}, where the eigenvalues 
are arranged in such a way that ;\k > ;\k+l for all k e: JN, then the k-th 
eigenvalue satisfies the asymptotic forrrrula 

(6) for e: ->- + O. 

PROOF. First we observe that for each e: E JR+ the spectrum of II consists ~~- e: 
of isolated eigenvalues only. The function u is an eigenfunction 

l.,it2 ~ 
of II iff e: 

the function v(t) := e u(e: t) 
-~ -~ problem on (-e: ,e: ): 

(7) 

is an eigenfunction of the boundary value 

0, -~ v(±e: ) o. 

Since this boundary value problem is of limit point type for e: ->- +O, all 
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its eigenvalues converge for £ + +O to the eigenvalues of the well-known 

Hermite-operator, cf. [ 6] eh. 9.5 example 2, hence t~o Ak(E) = - k. 

From (3) it is clear that the eigenvalues are given by the equations 

0 and o. 

When we insert (4a) in these equations disregarding the (multiplicative) 

(1+0(•))-term and equating the main term to zero, we find (6) by straight­

forward computation. 0 

In order to show that the limit of the solution u(x;A,£) of (2) does 

not depend continuously on A for £ + +O at the negative integers, we insert 

(4a) in (3) with A= -2n and with A= -2n + £, n E JN; in the first case 
Of XIXI A-1 

the coefficient in the approximation of the odd part of u 

vanishes, hence we get 

(8) u(x;-2n,£) 
2 2n-1 1-x2 2 {Ax- n + Bx exp(~)} (1+0(E/x l), E + +O, 

while in the second case formula (4b) remains valid! 

3.2. CONVERGENCE OF THE SPEcrRUM 

Define the operator TE by 

(9a) Tu := ETU + xu' 
£ 

for all u E V (T ) : = {u E H2 ( -1 , 1 ) I u ( ± 1 ) = 0 } ; 
E 

it is connected with the boundary value problem (1+) and its adjoint, 

T*u = ET* - xu' - u, is connected with (1-J. It is our aim to prove by E 

comparison of the operators TE and TIE that the limiting set of rr(TE) for 

E + +O equals the limiting set of rr(ITE). As before we observe that the 

spectra of TE and of TIE consist of isolated eigenvalues and that u is an 

eigenfunction of IT iff u(x)exp(x2/4£) is an eigenfunction of the operator 
E: rr , cf. (7J , 

E 

(9b) IT v 
E 

2 2 
:= exp(x /4E)IlE(exp(-x /4E)v) EV 11 -

2 
(l.:!+x /4E)V. 

Analogously u is an eigenfunction of TE iff u(x) exp{~ J: sds/Ea(s)} is an 

eigenfunction of the operator TE, 
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x x 
(9c) (T v) (x) := exp{~ J sds/e:a(s)}T (v(x)exp{-~ J sds/e:a(sl}) E E 

0 0 

(ET - xb/2a - x2/4e:a - ~) v(x). 

We remark that v <rr ) V<T J = V(T ) and that er (TE) = er (T ) and o (II ) = o (II ) 
E £ E E E E 

by definition; we defined T in this way in order that it should be equal E. 
to a selfadjoint operator plus a small non-selfadjoint perturbation thereof, 

such that we can estimate the norm of its resolvent by the distance to the 

spectrum (cf. theorem 1.2). We define RE as the main part of TE, 

Ru 
E 

2 
:= e:(au')' - x u/4Ea - ~u, 

and connect it to IIE by the continuous chain 

V<R l 
E 

R := (1-t)ITE + tRe:, e:,t t E [0,1]. 

:= V<T J 
E 

We observe that R is selfadjoint for all E and t. e:,t 
The limiting set for e: + +O of er(R ) is known and we will prove e:,o 

that it does not change, when t increases from zero to one. The continuous 

dependence of the eigenvalues of R one: E JR+ and t E [0,1] is a con-e:,t 
sequence of theorem 1.6 and the following lemma: 

LEMMA 3.2. Constants Ci (i = 1, ... ,6) exist such that the inequalities 

(10a) 

(10b) II R u - R u11 s e:- 1 1e: - ol (C3llRe:,tull + c411u11), E,t o,t 

(lOc) llTu-R 1 ullse:~(C511R uJl+c6JlulJJ, 
E E, E,t 

are satisfied for aU u E V(R ), sand t E [0,1] and e: and o E JR+. e:,t 

PROOF. Let u E VCR t) and let p and q be positive C00-functions, then in­e:, 
tegrating by parts twice we find 
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2 2 
II E (pu ' ) ' - x qu/ d 

2 2 2 l:;l:; 2 2 2 
:?: ilE(pu')'ll + llx qu/d + llp q xu'll - [(p(x q)')'] llull 

and taking the square root we obtain 

(11) 
2 2 l:; II E (pu' ) ' II + II x qu/ d + [ (p (x q) ' ) ' ] II ull :?: 

2 2 l:; :;, llE(pu')' - x qu/d + [(p(x q)')'] llull:;, 

:;, l:; II E (pu' ) •II + l:; II x 2 qu/ d ; 

furthermore, we find 

and, if in addition r is a continuous function, 

(13) llxrull l:; -l:; 2 
l:; E [ q r] (II x qu/ E II + II ull ) • 

By substituting pt := 1 - t + ta for p and qt := 1 - t + t/a for q and with 

the aid of the estimates p - p = 0(s-t) and q - q = 0(s-t) we prove t s t s 
the inequalities (10a-b) from (11). Inequality (10c) is a direct consequence 

of (11), (12) and (13) when we substitute a for p and q and tb/2a for r. D 

Further information on the spectrum of R t is obtained from the eigen-
2 2 2 E, 2 

functions xn of the operator Ed /dx - ~x /E with domain H CIR), 

where Hn is the n-th Hermite polynomial. These functions appear to be ap­

proximate eigenfunctions of R for all t E [0,1] and for E E JR+, provided E,t 
E is sufficiently small. 
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LEMMA 3.3. The functions xn satisfy the order estimate 

(15) (£++0) , 

uniformly for aU n E JN and t E [O, 1 J. 

PROOF. From the well-known relations for the Hermite polynomials we obtain 

(16a) 

(16b) 

(16c) 

x' n 

11& 

f 
-11& 

and from the integral we find 

(16d) 

2 2 
exp(-x )Hn(x)dx 

~ n 
$ (2ITE) 2 n ! 

(£-++0). 

Since a E C00 and a(O) = 1, the functions (a-1)/x, (pt-1)/x and (qt-1)/x 

are bounded and since xn is a solution of the equation E:u" + (n+~-x2/4£)u 0, 

we can find constants Ck such that 

in conjunction with the relations (16) this proves (15). D 

REMARK. Strictly speaking, the functions x are not elements of VCR t) 
n £, 

since x (±1;£) + O; this is easily amended by subtracting from x the n n 
constant function Xn(1;£) if n is even and the linear function xxn(1;£) if 

n is odd. When doing this we add to xn an exponentially small (for £++0) 

term, which can be disregarded in all computations. 

Now we are able to prove the convergence of the eigenvalues of T£ for 

£-+ +0. Let {Ak(E:,t) [ k E JN} be the set of eigenvalues of R£,t' arranged 

in such a way that Ak+l < Ak' and let {µk(£) [ k E JN} with Reµk+l < Reµk 

be the spectrum of T£. 
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THEOREM 3.4. The eigenvalues of T and R satisfy the asyrrrptotia estimates 
E E,t 

(17a) 

(17b) 

for E-+ +o and for aU k E JN and t E [0,1] 

PROOF. Let D(z,r) be the open disk with center z and radius rand let Wk(r) 

be the set 

k 
:= {z E C J I z I ~ k + 1 - r} u U D(-j ,r). 

j=l 

Let ;\ E a (R ) and let u be the eigenfunction at ;\ then we have by (10a) 
E 1 S 

and by the selfadjointness of R t 
E, 

0 II R u - >.ull ~ II R u - >.ull - II R u - R ull ~ 
E,s E,t E,s E,t 

hence for all k E lN we have 

Define the number t : = 1/((3m+4)C1+3C2); then we find from (18) that, if 
1 n 1 

cr(R t) c W (-6 ), then cr(R ) cw(.!.) and aw (-2) c p(R ) for all 
E, n E,s n 2 n E,s 

S E [t-t ,t+t ]. n n 
Let n E JN be fixed and let m E JN be such that l~+m 1 t. ~ 1. From 

J=n+ J 
theorem 3 .1 we can find an E such that a (R ) = a (II ) c W <t> for all 

o E,o E n+m 
E E (0, E ] and by what is shown above we have a (R ) c W (-21) for all 

o E,t n+m 
E € (0,E] and t E [O,t ]; furthermore, since D(-k,J6~ n cr(R ) = {;\k(E,0)} 

o n+m E,o 
for 1 $ k $ n + m and since the eigenvalues depend continuously on t and 

awn+m<i> c p(RE,t)' each disk D(-k,t) can contain only the eigenvalue 

;\k(E,t) for t € [O,tn+m]. Let P be the projection E,t,k 

PE,t,k := 2!i J 
30(-k,l.,i) 

-1 
(R t-;\) d>., 

E, 
with k $ n+m 
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on the eigenfunction belonging to the eigenvalue of R contained in E:,t 
D(-k,~); it is orthogonal and it commutes with R (thm.1.3) and hence we E:,t 
have 

(19a) 

Since dist(-k,o(R tl >) ~ ~. we have 
E, R(l-P ) 

E:,t,k 

(19b) 11<R t+k) c1-P t kix:k11 ~ ~11 o-P t kix:k11 . E, £, , £, I 

From the inequalities (15) and (19b), we infer that II (1-P lx II + O and E,t,k n 
hence with (19a) we find that llP kX II + 1 and s,t, n 

(20) (E:++O) 

for 1 s k s n+m and for all t E [O,tn+m]. Since the unbounded component of 

W (.l) is contained in W 1 (-61), we can by (20) find a number El E (0, E0 ] n+m 2 n+m-
such that o(R ) c W 1 <tl for all t E [O,tn+m]. By definition of E:,t n+m- 1 
t 1 we now have o(R t) c W 1 (-2 ) for all t E [t ,t + +t + 1J n+m- E, n+m- n+m . n m n rn-
and we can prove (20) for 1 s k s n + rn - 1 as before. After m steps we 

,n+m find that (20) is true for 1 s k s n and fort E [O,lk=n+l ~] ~ [0,1]. 

This proves (17a). 

If A E o(TE:) and if u is the eigenfunction belonging to A, then we 

find by (10c) 

0 =II T u - AU II~ II R 1u - AU 11-11 T u - R 1u II ~ 
E £ 1 E £ 1 

From this it follows that 

in conjunction with (17a) this proves (17b). D 
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REMARKS. 1. Up to now we considered only problem (1+), in which the term 

xu' is preceded by a plus sign. In connection with the minus sign case we 

define the operator OE with VCUE) 

(21a) u u := ETU - xu' 
E 

:= V(T ) and 
E 

U* It is easily seen that its adjoint E' 

(2lb) * * U u := ET u + xu' + u for u E vcu*> 
E 

V<U l 
E 

satisfies all conditions of theorem 3.4, hence if cr(U ) 
E 

with Revk+l < Revk, then 

(21c) 

E 

(E-++0). 

2. The functions x , defined in (14), are approximate eigenfunctions of 
nA 2 

TE, hence the functions xn := exp(-x /4E)Xn are approximate eigenfunctions 

of TE. By the Rodrigues relation for Hn (cf. [ 2] eh. 22.11) we find 

A 2 ili n i.,n dn 2 
x (x;E) = exp(-x /2E)Hn(x/ 2E) = (-1) (2E) ~exp(-x /2E). 

n dx 

-i., 2 
Since (2En) exp(-x /2E) converges to the Dirac 6-distribution for E + +O, 

A 
the n-th (approximate) eigenfunction xn of Tn converges after suitable 

renormalization to the n-th derivative of 6. 

3.3. STRONG L2-CONVERGENCE OF THE RESOLVENT IN THE PLUS SIGN CASE 

The inverse stability of TE - A in a part of the complex plane results 

from the following lemma: 

LEMMA 3.5. If E E :JR+ and sufficiently smaU and if A E <r with ReA > - i.,, 

the operator TE - A has a bounded inverse, which satisfies (uniformly with 

respect to E) the inequality 

(22) 
-1 -1 

II (T -A) II ,,; (~ + ReA - KE) 
E 

with K 
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PROOF. Any u E V(TE) satisfies 

ilE(au')' +xu' -t..ull llull ~ JRe(E(au')' +xu' -1..u,u)f 

= i(au',u') + (ReA+~)llull 2 if Re/.. > - ~, 

since Re(xu',u) = ~ J1 
x(uu) 'dx = - ~ (u,u), and 

-1 

f(Ebu',u)f ,,; da~u•ll lla-~bull ,,; E(au',u') + J..i[b2 /alllull 2 • 

From these inequalities we find 

provided Rei.. > - ~ + KE. Since by theorem 3.4 TE - A. is invertible if 

Re/.. > - ~ and if E is small enough, this inequality proves formula (22). D 

Guided by the idea that the limit of the solution of (2) still satis­

fies both boundary conditions of (2), we define the presumed limit operator 
T0 by 

Tu := xu' 
0 

for all u E V(T) := {v E L2 C-1,1) [xv' E L2 (-1,1) &v(±l)=O}; 
0 

we stipulate that we can impose two boundary conditions on the domain of 

T since this domain contains functions that are discontinuous at x = 0. 0 

LEMMA 3.6. p (T ) = {/.. E C [ Re/.. > - ~} and 11 (T -/..)- 111 ,,; (~+ReA.)-l if 
0 0 

PROOF. Any u E V(T ) satisfies 
0 

* hence R(T0 -/..) is closed if Re/.. + ~- The adjoint of T0 is T0 , 

* Tu 
0 

- xu' - u for all u E V<T*> 
0 

2 I 2 { v E L .< -1 ' 1 ) xv ' E L ( -1 , 1 ) } ; 
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* it has no boundary conditions. The solutions of the 
-/..-1 -/..-2 

equation T0 u - /..u = 0, 

i.e. of xu' + u + /..u = 0, are a!xl + SxJxJ ; those are square inte­

iff Reil > - ~ and the grable iff ReA < - ~- This proves that N(T*) = {O} 
0 

assertion of the lemma follows from theorem 1.1. D 

-1 2 THEOREM 3.7. If Reil> - ~the resolvent (T -/..) converges in L (-1,1) 
-1 E 2 strongly to (T -ii) for E-+ +0; if, moreover, f EH (-1,1) and Reil> 3/2, 

0 

then 

(EcH-0) • 

PROOF. First we prove the 0(E) estimate and thereafter we show that it 

implies strong convergence for all/.. E p(T0 ) in the same way as in the 

proof of theorem 2.5. 

If f E H1 (-1,1), we find that dd (T -A)-lf is the solution of the 
x 0 

equation xu' - (A-l)u = f', u' (±1) = f(±l); hence we find by the lemma's 2.6 

and 3.6 

II d -1 II II -1 A-1 I IA-1 (23a) dx((T0 -A) f) = (T0 -A+l) f' + f(l)Y{x)x + f(-l)Y(-x) x 115 

'.". Kl/ f 11 1 I (Re:\-~) , if Re:\ > ~. 

where Y is the unit step (or Heaviside's) function, Y(x) = 1 if x > 0 and 

Y(x) = 0 otherwise, and K is a constant not depending on :\. In the same 

way we prove 

(23b) 
2 

I/..£__ ( (T0 -:\l -lf) I/ 5 K' I/ f 11 2 I (Re:\-3/2) 
dx2 

provided ReA > 3/2 and f E H2 (-1,1). This shows that (T -;\)-lf E V(T) if 
2 0 E 

f E H (-1,1) and if Re:\ > 3/2, and that a constant K" exists, such that 

'.". EK" /If 11 2 I (Re:\-3/2). 
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Hence by lemma 3.5 we find 

if Re/.. > 3/2. 

2 2 -1 Since H (-1,1) is dense in L (-1,1), (T£-A) converges to 

II -1 -1 I for£+ +O, i.e. (T£-A.) f - (T0 -A.) fJ + 0 for all f E 

-1 (T -A.) strongly 
20 

L (-1,1), provided 

Re/.. > 3/2. 

We extend this result to all A£ p(T0 ) by analytic continuation. 

Consider the Neumann-series 

-1 
(T -µ) 

£ l 
k=O 

which is uniformly convergent (with respect to the infinite summation) if 
-1 Jµ - "-I <Re/..+~ - K£ by lemma 3.5. If (T -A) converges strongly for 

£ 1 
£ + +O, all its powers converge strongly too, hence (T -µ)- converges 

£ 

strongly for E + +0 and for all µ within the radius of convergence of the 

infinite sum. Since (T -A.)-l converges strongly for Re/..> 3/2, this proves 
E 

the theorem. 0 

2 COROLLARY 3.8. If f E L (-1,1) a:nd Re/.. > - ~ a:nd if UE a:nd uo are the solu-
tions of the boundary value problems 

(24a) 

(24b) 

(ET+xd/dx-A)UE = f, 

(xd/dx-A.)u 
0 

f, 

u (±1) =A ± B, 
E 

u (±1) =A ± B, 
0 

then lim 0llu - u II 
£++ E 0 

2 
0. If moreover f £ H (-1,1) and Re/.. > 3/2, then 

(25a) (£++0). 

PROOF. The function v (x) := u (x) - A - Bx is an element of V(T ) and 
E E E 

(ET+xd/dx-A.)vE(x) converges to f + AA+ (A-l)B for E + +O; since II (T -A.)- 1 11 
E 

is uniformly bounded if £ is in some closed set [0,EA] and if Re/.. > - ~by 

lemma 3.6, the function v converges to the same limit as 
-1 £ 

(T£-A) (f+AA+(A.-l)B) does and we find that vE converges to 

x 

Alxl"- - A+ Bxlxl"--l - Bx+ f 
x/lxl 

A 
f(t)(~) dt 

t t 



62 

this proves the first assertion. If f E H2 (-1,l) and ReA > t then 

u - u E V(T ) and 
£ 0 £ 

(25b) li(T-A)(u -u )II 
£ £ 0 

II Em II 
0 

by (23), hence (25a) is a con.sequence of lemma 3.5. 0 

-1 -1 REMARK. The convergence (T -A) ---+ (T -A) cannot be uniform i.e. 

§3.3 

1 1 £ 0 
11 (T -A)- - (T -A)- 11 does not converge to zero for £ -+ +O, as the following £ 0 

example shows. Let h be the function 

h(x) := if [xl < Ii and h(x) 0 

then the solution u 
£ 

:= - n-lh of the equation EU" + xu' 
£ 

u (x) 
£ 

1 t 

== ~ J I 
x 0 

2 2 h(s) exp((s -t )/2E)dsdt. 

It is even and positive, hence 

O s u (x) 
E 

0 0 

0 s 

2 2 h(s) exp((s -t )/2E)dsdt s 

2 2 h(s) exp((s -t )/2£)dtds. 

By the inequality ( cf. [ 2 ] formula 7 • 1. 13) 

we find 

2 
---2--1-,- :;; ex 
x+(x +1) 

J 
-t2 

e dt s ------
x+(x2+4/rr)l-, 

x 

0 

:;; 2 J ds 
s+I (s2 +8£/rr) 

0 

otherwise; 

- h, u(±l) 0 is 

if lxl < o. 

On the other hand the solution u 
0 

:= - O, u(±l) 0 is 

u (x) 
0 

{

log o -

O, 

log lxl, if 0 < lxl ::;; o, 

if lxl :::: o. 
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Choose Ci E, then lu (x) I > log 2 if lxl ~ ~ E and lu I < /~rrE', hence 
0 E 

llu - u II <: llu - u II <: E~(log 2-~)~. 
0 E 0 E (-1.i<,l.iE) 

Furthermore II hll /2E, so we have 

which disproves uniform convergence of (T -A)-l for any A E P (T). 
E 0 

3.4. STRONG CONVERGENCE IN H-n(-1,1). 

We proved in theorem 3.4 that the spectrum of TE converges if E + +O, 

but from lemma 3.6 we see that the limit of the spectrum is not equal to 

the spectrum.of the limit-operator; the latter set is much larger. This 

means that (T -A)-lf exists and is an element of L2 (-1,1) if A~ a(T) but 
E 2 E 

it need not have a limit in L (-1,1) for E + +0 if A E a(T0 ). In order to 

answer the question whether we can assign to the sequence (T -A)-lf a limit 
E 

in some weaker sense, we enlarge the space in which the formal operator 

ET + xd/dx acts, in such a way that it contains distributions. This is moti­

vated by the fact that the approximate eigenfunctions converge in (Schwartz-) 

distributional sense to the derivatives of o and by the fact that the non-

square-integrable solutions of the "limit"-equation xu' AU can be inter-

preted as distributions of finite order. The solutions of xu' = AU are 

linear combinations of the distributions 

if A + 1-2j 

(26a) j E JN , 

if A 1-2j 

and 

if A + 2j 

(26b) j E JN 

if A -2j 

with respect to A they are non-vanishing holomorphic distributions on all 

of~, cf. SCHWARTZ [26] eh. 5.6; 18. The symbol Pf. denotes the 
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"pseudofunation", cf. [26] 2 §2 example 2. These distributions can be iden­

tified with square integrable functions iff ReA > - ~; they are elements 
-k 

of H0 (-1,1) iff ReA > - k - ~. 

We reformulate the boundary value problem (1+) in H-n(-1,1) by imposing 

suitable restrictions on the domain H-n+2 of ET + xd/dx; since the function­
-n+2 als u I-+ u(±l) are not continuous on H we replace them by the function-

als ul--r (Ju) (±1), cf. (1.5) and theorem 1.7. We define the restrictions 
n 

T of ET + xd/dx and T of xd/dx by 
E,n o,n 

(27a) 

and 

(27b) 

T u := ETU + xu' 
E 1 n 

foralluEV(T ) :={vEH-n+2 (-1,1)l(Jv)(±1) O}, 
£,n n 

T u := xu' 
o,n 

for all u E V(T ), 
o,n 

V(T ) := {v E H-n(-1,1) lxv' E H-n(-1,1) & (J v) (±1) O} . 
o,n n 

They satisfy the analogues of the lemma's 3.5 and 3.6: 

LEMMA 3.9. A positive consta:nt K exists suah tha-t for ail E E [0,1] the n 
operatox• T - A is invertible if ReA > - ~ - n + KnE' and satisfies E,n 

(28) 

PROOF. If u E V(T ), then by (1.8a) and (1.10) we find o,n 

(29) 

:?: I~ + n + Re A I I u 12 • -n 

The H-n-adjoint of T is the operator T* , 
o,n o,n, 
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* T u o,n - xu' - (2n+1)u 

for all u E VcT*> = {v E H-n(-1,1) Jxv' E H-n(-1,1)}. 
0 

By (26) we see that the solutions of T* u =AU are in H-n(-1,1) iff 
o,n 
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ReA < - n - ~. hence by theorem 1.1 we find p(T ) = {A E C J ReA > - n - ~} 
. o,n 

and (28) follows from (29) in case E = 0. 

If E + 0, TE= ES+ xd/dx in which Sis defined by (1.9); from (1.14) 

and (29) we find for any u E VCT ) 
E,n 

IT u - Aul ~ IRe/ETu+xu'-Au,u)_nl/lul_n E,n -n \ 

~ CReA+n+~-C E) lul 
n -n 

if ReA + u + ~ - C E > O. 
n 

Since TE satisfies the conditions on the operator Sin theorem 1.7, and 

since therefore TE - A is invertible if A is sufficiently large positive, 

this inequality proves (28) in case E ~ 0. D 

Analogously to theorem 3.7 we find: 

THEOREM 3 .10. If n 

verges strongly to 

then 

-1 
E lN a:nd ReA > - n - ~. the resolvent CT -A) eon-o E,n 
(T -A)-1 for E + +O. If, moreover, f" E H-n(-1,1), o,n 

(30) 

for E + +O uniformly for all A contained in a bounded subset of 

{A € C J ReA > -n + 3/2}. 

~· If u E VCT0 ) and (u,xj) = 0 for some j E JN0 , then we find by in­

tegration by parts 

n-1 
Since P is the orthogonal projection on the span of {1,x, ••• ,x } and 

n 
since P J = 0 this implies that P x(J u)' = O for all u E V(T ). By n n n n o,n 
the identity (- d/dx}n Ju= u and the formulae (1.7) and (1.10) we find 

n 
for any u E V (T ) 

o,n 



66 

(31) J xu' 
n 

§3.4 

n d n 
(-1) J { (dx) (x(J u) '-nJ u)} n n n 

(1-P ){x(J u)' - nJ u} 
n n n 

x(J u)' - nJ u. n n 

So we find that u E V(T ) satisfies the equation xu' - AU o,n f if and only 

if Jnu satisfies xv' - AV - nv = Jnf, hence 

(32) 

for all f E H-n(-1,1). By (23) this implies 

which proves (30). The strong convergence is obtained by analytic continua­

tion as in theorem 3.7. 0 

COROLLARY 3.11. If n E JNO, f E H-n(-1,1) and ReA > - n - ~and if u and E,n 
u are the solutions of the boundary value problems o,n 

(33a) 

(33b) 

then 

(ET+xd/dx-A)u 
E,n 

(xd/dx-A)u = f, 
o,n 

f, 

lim 
£-++0 

lu - u I = o. s,n o,n -n 

(Ju ) (±1) 
n E,n 

A ± B 
n n 

(J u ) (±1) =A ± B 
n o,n n n 

If moreove1• f" E H-n(-1,1) and ReA > - n + 3/2 then for E ++Owe have 

(34) lu - u I = O(E(IA l+IB l+lfl +lf"I )/(ReA+n-3/2)). E,n o,n -n n n -n -n 

The proof is analogous to the one of car. 3.8. 
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3.5. ESTIMATES OF ORDER 0(s) IN WEIGHTED NORMS 

If the right-hand sides of (24) and (33) are smooth functions, the 

solutions of the equations are smooth too; as often occurs in differential 

equations, convergence in distributional sense together with regularity of 

the solutions induces convergence in stronger norms also in this case (in 

casu convergence in a weighted uniform norm) . In this section we will prove 

that the solution of (24a) converges to the solution of (24b) in the norms 

u'"- llxn+2ull and ul---> [xn+5/ 2uJ, if f E H2 (-1,1), ReA. > - n - ~and n E JN, 
0 

and that the appoximation is of order 0(s). We remark that this type of 

norms disregards the non-uniformity of the solutions near the point x = 0. 

We can extend the limit-operator T to the space Bk of measurable 
k o,o 

functions u on (-1, 1) for which II x ull < oo with k E JN ; Bk is a Hilbert space 

with respect to the inner product {u,v} 1--r <xku,xkv). In this space we 

define the extension Ek of T010 by 

(35a) Eku := xu' for all u E V(Ek) := {u E Bk I xu' E Bk & u(±l) 

In a way analogous to lemma 3.6 we prove 

LEMMA 3.12. The resolvent set of~ is the set 

p(~) :={A. EC I ReA > - n - ~} 

a:nd for all A. E p(Ek) a:nd f E Bk the resolvent satisfies the inequality 

(35b) 

PROOF. For any u E V(Ek) we have 

/ k+1 k \ k k 
2: I Re\x u',x u/llx ull - ReA.llx ull 

2: (Re"A+k+~)llull. 

Since the null-space of the adjoint is zero for ReA. > - k - ~, this proves 

the lemma. D 

o}. 
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2 
If f E L (-1,1) and if ReA > - k + ~' the solution of equation (33b) 

with ·n = 0 (or of (24b)) is 

(36) u (x,;\) 
o,o 

x 

J 
x/lxl 

I I ;\-1 
+ B x x 

0 

(x A dt J JA f (t) -) - +A x t t 0 
I I 11-1 +Bx x , 

0 

-k If ReA > - 1, u is certainly in H (-1,1) for all k E JN and is a solu-o,o 
tion of the equation xu' - ;\u =fin that space. If Reil ~ - 1, we rewrite 

(36) and find 

(37) u (x,A) 
o,o 

0 

I I A-1 + x x {B - l:i 
0 

1 I (f(t)+f(-t))t-A-ldt} + 

0 
1 I (f(t) - f(-t))t-A-ldt}. 

0 
2 The first integral in the right-hand side of (37) is in L (-1,1) and hence 

certainly in H-k(-1,1) fork E lN. The linear combinations of [xj 11 and 
XIXI A-1 -k are in H (-1,1) in case Re;\ > - k - ~. if we consider them as 

-k "pseudo functions", cf. (26); however, in the space H (-1,1) they are 

solutions of the equation xu' = AU iff A ~ - JN We conclude that 

Pf(u (•,;\)) -k 
AU is in H (-1, 1) and is a solution of xu' - = f in that o,o 

L2 (-1,1) space for all f E iff ReA > - k - l:i and A ~ - JN. 

solution u of (33a) is in L2 (-1,1) if E,o 
Since by theorem 3.4, the 

2 
A~ cr(T ), f EL (-1,1) and E 

E,O 
+ 0, we can consider the convergence of 

lu - Pf(u ) j k for ReA > - k - l:i and A~ - JN; we will prove conver-E,o o,o -
gence of this expression by comparing it to luE,k - uo,kl-k· The solutions 

uE,o and uE,k differ by a solution of the homogeneous equation, so we will 

first examine the convergence of solutions of the homogeneous equation 

ETu + xu' = AU and then prove convergence in the inhomogeneous case. We 

begin with a fundamental estimate: 

LEMMA 3 .13. For each k E l\10 constants Ck and Ek E JR+ exist, such that 

(38a) 

(38b) 
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-k k for aU £ E (0,£k], A. E «:and v E H (-1,1) for which llx v"ll < 00 

PROOF. We have the inequality 

k k+l 112 (39) II £x (av') ' + x v' = 

1 

k 12 II k+1 112 = II £X (av')' I +. x v' + £ f X2k+l (v' (aV1 ) I + (aV 1 ) 1V 1 )dx = 

-1 

k 12 II k+1 112 II £X (av')' I + x v' + 
2k ) -x (xa'-(2k+1)a v'v'dx + 

x=l 
2k+1 _ I + £ax v'v' 

x=-1 

k 2 k+1 11 2 II k 11 2 2' II £X (av' >'II + II x v' - dxa' - (2k+1)a] xv' • 

We estimate the term llxkv'll as follows; if w E H1 (-1,1), then 
0 

1 

(40a) II xk+lw' II 2' I~ I x 2k+l(w'w+w'w)dxl!ll xkwll = (k+l;;) II xkwll 

-1 

and since (1-x2 Jav' E H1 (-1,1) we obtain from this the inequality 
0 

s [a](1+2/(k-~)) II xk+lv' II+ II xk(av') 'II /(k-~). 

This inequality implies 

1 

(41) II xkv' 11 2 s II xk+lv' 11 2 + [1/a] I x 2k(1-x2Jav'v'dx = 

1 

II xk+1v' 112 - [1/a] I 
-1 

-1 

2k 2 -(x (1-x )av')'vdx s 

s II xk+lv' 11 2 + [1/a] II xkvll {[1-x2 Jll xk(av') 'II+ 

+ [2k-(2k+2Jx2 Jll xk-lav'll} s 

s II xk+lv' 11 2 + [~~~]II xkvll { (3k-~) II xk (av')' II + 

+ k(2k+3)[aJll xk+lv' II}· 
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From (39) we now conclude that we can find constants Ck and Ek in JR+ such 

that the inequality 

holds for all v, for which II x 2v"ll < 00 and for all EE (0,Ek]. With little 
. -

additional effort we find in the same way a constant Ck, such that 

for all E E (0,Ek]. Now we can find a constant~, such that 

for all t E (0,1]. In conjunction with (42) this proves (38). 

In order to prove (43a) we set w := Jkv and find the equivalent state-

ment 

and since xkw(k) = (x .!!._ - k+l)xk-lw(k-l) it suffices to prove the exis-dx I 

tence of constants c such that j I 

(43c) llxw' - jwll ,;:; tll (x d~ - j-1) (x ! - jlwll + cjt- 111wll 

for all t E (0,1], j E :iZ and w E L2 (-1,1) with II x 2w"ll < 00 By integration 

by parts we find 

(43d) II xw' - jwll 2 =Re{- \w, (x ! - j-1) (xw'-jw)) + 

- (2j+2) \w,xw'-jw) + [xw(xw'-jw) ]~ 1 },;:; 

,;:; Re{- \w, (x ! - j-1) (xw'-jw)) + [xw-cxw'-jw) - (j+llxlw1 2]
1

} + 
-1 

+ (j+l) (2j+1) llw 11 2 · 

For the boundary term we find 
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2 2 
lw(l) / + lw(-1) I 

1 

J d~(xwW)dx 
-1 
1 

J {(xw'-jw)w + (xW°'-jw)w + (2j+1l lwl 2}dx 

-1 

'.'. 211xw' - jwll llwll + (2j+lll/wl/ 2 

and analogously 

211 (x i!__ - j-1) (xw'-jw)ll llxw'-jwll + dx 

+ (2j+3)11xw' - jw// 2 ; 

hence by Young's inequality we find a constant e. such that 
J 

[xw(xw'-jw) - (j+1Jxlw1 2]
1 ~ 
-1 

~ [ (j+llx/w/ 2 ]~ 1 + {[xlw1 2 ]~ 1 [xlxw' - jw/ 2 ]~ 1 }~ 

for all t E (0,1]. In conjunction with (43d) this proves (43c). 0 
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REMARK. The essential point in the proof of this lemma is the fact that the 

boundary terms due to the integration by parts of the cross product in (39) 

are non-negative and can be skipped in the estimate from below. This means 

that the estimate (38) holds for the operator ET - xd/dx only if u satisfies 

u' (±1) = 0. 

Define the (pseudo-)functions p (•,A) and q (•,A) as the (distrib-e::,n £,n 
utional) solutions of the equation £TU + xu' = Au for all £ ~ O, which 

satisfy the (generalized) boundary conditions 

(J p ) (1) n £,n (-lln(J p )(-1) = (J q )(1) = n £,n n s,n 

(-l)n+l(J )(-1) 1. 
nqi::,n 
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We observe that we write down p and q as if they were only functions £,n £,n 
and not distributions; in fact they are equivalent to C00-functions if E + 0 
or if x + 0. Since J preserves or inverts symmetry if n is even or odd, n 
i.e. 

(44) (J f)(x) = ±(-lln(J f)(-x) n n 
if f(x) ±f(-x), 

we find that p and q are constant multiples of X, and Z,, cf. (26), o,n o,n I\ I\. 

(45) p (o,t.) =a (f.)X, o,n n A 
and q (·,>.) = S (f.)Z ; o,n n A 

the functions an(A) and Sn(A) are meromorphic functions of A which cannot 

have poles or zeros in the resolvent set of T 
o,n 

With the aid of the functions p and q we can 2 o,n o,n 
with f E L (-1,1) in terms of the better accessible 

Ref. > - k - ~- As we argued at the beginning of this section, cf. (36) and 
(37), Pf((Ek->-)-1f) is an element of H-k(-1,1) if Ref.> - k - ~and 
f E L2 (-1,1). Define the numbersµ and v 

n n 

since any u E H1 (-1,1) satisfies 

1 

(46) 12 2 Ju(l) + Ju(-1) I I 2 (xuu) 'dx s llu II + llull llxu'll 

-1 
-n+l and any v EH (-1,1) satisfies 

(47) JI x(J v)• II= Inv+ xv' I , n -n 

we infer from (36) - (37) that µn and vn are bounded by Cllfll/(Re>.+n+~) if 
Ref. > - n - ~ for some constant C > 0. So we find 

(48) 

if f E L2 (-1,1) and Ref. > - k - i, ~ - n - ~; we remark that the only reason 

for the restriction Ref. > - k - ~ is that ~ - A is not invertible for 

other values of A. 
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If the right-hand side f of (33) is chosen in a more restricted class 

of functions, we can prove the much stronger result: 

LEMMA 3.14. If n E JN, ReA. > - n + 3/2 and f E H1 (-1,1), then the solutions 

u of (33a) and u of (33b) satisfy E,n o,n 

(49a) II xn(u -u l II = l 
s,n o,n J O(s<IA I+ IB I + llf 11 1> /(ReA+n-3/2)), 

n~ n n 
[ixl (u -u )]= (s-++0). E,n o,n 

(49b) 

PROOF. In case n = 1 we find from (48) 

xu 11 

o, 1 
(xu' -u ) ' 

o,1 o,1 

By (23a) this results in the estimate 

(50) llxu~ 11 ll =O(llfl1 1 ). 

If n ~ 2 we find from (48) 

xnu" 
o,n 

n-1 , n-2 n-2 -1 
= x f + A.x f + A.(A.-l)x {Pf. (En_2-A.l f + 

+ (A +µ ) p + (B +v ) q } . n n o,n n n o,n 

hence we have the estimate 

(51) llxnu" ll=O((IA I+ IB I+ llfll 1 )/(ReA+n-3/2)). o,n n n 

The estimates (50) and (51) imply for n ~ 

(52) 

= O(s( IA I + IB I + II f 11 1 )/ (ReA+n-3/2)). n n 



74 §3.5 

In conjunction with cor. 3.11 and lemma 3.13 this estimate proves (49a). 

By analogy to Sobolev's inequality (2.19) we derive from the identity 

1 

f d 2k+1 12 - dt {(1-t)(x-tx/lxll lw(x-tx/Jxl) dt, 

0 

valid for all w E H1 (-1,1), the inequality 

Formula (49b) is a consequence of (38), (49a), (52) and (53). D 

Now we can prove our final result on the convergence of (T -A)-1f: 
£ 1 0 

> - n + 3/2 and if f E H2 (-1,1) THEOREM 3.15. If n E lN , A E C\(-JN) and ReA 
1 0 

for n = O and f EH (-1,1) for n f 0, the solution u (·,A) of the boundary 
E 

value problem 

ETU + xu' - AU = f, u(±1) =A± B 

satisfies for £ + +o the asymptotic estimates 

(54a) 

(54b) 

2 if n = 0 and s = otherwise and where u is defined by 
0 

x 

uo(x,A) := AlxlA + BxlxlA-1 + f f(tl(f)A dtt 

x/lxl 

PROOF. If n = 0, (54a) is proved in corollary 3.8 and (54b) is a consequence 

of (25a-b) and (53). If n > 0 we define the matrix M (A) by E: ,n 

(

p (1,A) 
E:,n 

M (A) := 
£ 1 n 

q (1,A) 
E:,n 

p (-1,AJ E:,n 

q (-1,A) 
E,n 

By the previous lemma it depends continuously on E if E: z 0 and 

ReA > - n + 3/2 and the differences between the entries of M (A) and E:,n 
M (A) are of order 0(E:/{ReA+n+3/2)). By (26) and (45) we find o,n 
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M (><) 
o,n 

since a (><) and S (A) do not have zeros or poles if Re>< > - n - ~. M (A) n n o,n 
has an inverse, whose norm is of order 0(r(><+1)) (near the poles of the 

+ r-function). So we can find a number EA E JR , EA= 0(1/f(><+l)), such that 

M (A) is invertible for all EE [0,E,] and (cf. thm.1.4) 
E ,n A 

(55) II M-l (A) - M-1 (A) II s Ell M-l (A) II /Cl-Ell M-l (A) II) £,n o,n o,n o,n 

= 0(Ef(A+1)) 

where II •II denotes in this case the L 2 -norm on the 2 x 2 matrices. 

The solutions of (33a) are related to u as follows: 
E 1 0 

(56) 
t(. \ A +B -u (1,A) 

0 0 E,n 
u (x,><)= u (x,A)+ ) (

p (x,A)) l E,n 
M- Pd 

t:,o c:,n E,n 
~ -B -u (-1 A) o o s,n ' 

q (x,A) 
E,n 

and we see that the assertions of the theorem are a consequence of (55) and 

the previous lemma. D 

REMARK. From the proof of lemma 3.13 we can obtain a third inequality: 

and in the same manner as in (53) we can derive the inequality 

By analogy to (49b) and (54b) this results in the estimate 

(54c) ~ O(E ( ...•. )), 

where the remainder of the order term is as in (54b). 
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3.6. THE MINUS SIGN CASE: ESTIMATES IN A UNIFORM NORM 

In eh. 2 we observed that the boundary layer jumps from one endpoint 

of the interval to the other, when we change the sign of the "reduced" 

formal operator d/dx (or equivalently when we change the sign of Re£) . The 
change of the sign of xd/dx in problem (1+) has the same effect: the 

(major part of the) nonuniformity at x 0 is displaced to the boundary 

points x = ±1 when we go over to problem (1-). If the right-hand side f of 
(1) is identically equal to zero, we can show this in the following way. 

Define the function w(x) by 

x 

w(x) := - f s ds/a(s). 

-1 

and assume that w(l) = O; later on we will deal with the case w(1) f O. 

Let u be the solution of 
E 

(57) ETU - xu' - AU 0, u(±1) = A ± B, 

then v(x) := u(x) exp(w(x)/2£) satisfies, cf. (9b), 

(58) 2 ETV + xbv/2a - x v/4£a - (;1.-~)v 

As in §3.2 we find that the operator U£, 

2 UE := ET + xb/2a - x /4Ea + ~ 

is "nearly" self-adjoint, i.e. 

0, v(±l) 

with Vcu l 
E 

A± B. 

V<T > 
E 

II ~ "'* I ~ ~ U v - U v I= 0(£ {II U v - ;I.vii+ <l;x.J+l)llvll}), £ E E 

cf. (10c). By this inequality, by formula (21c) and by theorem 1.4 we find 
constants E and K in JR+ such that 

0 

(59a) 

for all v E V(U ), EE (0,£] and A EC satisfying 
E 0 

(59b) 
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we now construct a formal approximation to the solution of (58) in a 

manner completely analogous to §2.2. Boundary layers of width 0(E) will 

arise at both endpoints of the interval. We therefore introduce the local 
+ ± variables s-:=(l+x)/E and the substitution operators SE :f(x) j-;. f(±Es+lJ, 

and we make the formal expansions 

k l j-1 ± k ±# 
j=O E pj + E Pk 

+ 
where p~ a(±l) (d/ds±J 2 - 1/4a(±1). Let v±(s) := Ij Ejv~ be the formal 

expansions of the boundary layer solutions; they satisfy 

+ + 
v~<C> 

+ + 
v-:<Cl 

J 

+ 
(A±B) exp(-C /2a(±1)) 

+ 
where the kernels k- are defined by 

+ 
- A.v-: 1 Cs))ds, 

J-

k± (s,t) := k± (t,s) := l:!e -t/2a(±1) (es/2a(±1) _e-s/2a(±1)) 

± if 0 < s < t. Since v are exponentially decreasing for s + 00 , all func-
+ 0 

tions v; are exponentially decreasing, hence if ~ is a C00-function satis-

fying 

(60) ~ (x) if x > 2/3 and ~(x) 0 if x < 1/3, 

then we find by analogy to (2.18a) and (2.25) that the formal approximation 

w (x) := 
E,n 

satisfies the estimate 

(61) 
2 

(n+xb/2a-x /4Ea-A.+l:!)w II 
E ,n 

LEMMA 3.16. If E > 0 and small enough and if A. E C\(-JN ) does not depend 
0 

on E, then the solution u of (57) satisfies for E + +o 
E 
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uniformly with respect to x E [-1,1]. In pa:t>ticula:t' we have 

(63) u (x,A) 
£ 

(A+B) exp((x-1)/Ea(l)) + (A-B) exp(-(x+l)/Ea(-1)) + 

§3.6 

+ O(E(!Ai+IBI)) (e:-++0). 

PROOF. If w(l) = 0 we set v£ := ue: exp(w/2e:) and we find that ve: :s the 

solution of (58). The construction of w implies v - w E V(U ), hence 
E,n E E,n E 

from (59a) and (61) we infer 

(64a) 

Since, furthermore, any function z E V(U ) satisfies 
£ 

~ ~ 
e: llz•ll =O(ijuzll+ llzlJ), 

£ 

we find from (2.19), (61) and (64a) 

(64b) 

multiplication of the functions by exp(-w(x)/2e:) results in (62), since the 

exponential with negative exponent does not enlarge the order of the esti­

mate. 

If w(l) f 0, we assume w(l) < 0 (otherwise we invert the interval) and 

we apply to problem (57) the same transformation as before. This results 

in the same differential equation as in (58) but the boundary conditions 

become 

v(-1) = A - B and v(+1) (A+B) exp(w(1)/2e:). 

Since the boundary value at x = 1 is already exponentially small, we have 

to construct a boundary layer expansion at x = -1 only. By analogy to (64b) 

we find 

n 
Ve: (x) l 

j=O 

uniformly for x E [-1,1] and hence 
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u (x) 
£ 

n 
exp(-w(x)/2s){~(-x) l sjv~((1+x)/s) + 0(sn+\IA-BI)}. 

j=O J 
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Since w(x) is monotonically increasing on (-1,0) and decreasing on (0,1) it 

has a zero somewhere in (0,1), say at x =a; we see that the exponential 

factor does not destroy the order term on the interval [-1,a]. Choose now 

some S E (O,a) and consider the restriction of (57) to the interval [S,1]; 

to this restriction we can apply corollary 2.2, for the coefficient of the 

reduced operator xd/dx does not have a zero in this interval and uE(S) is 

known to tend to zero exponentially fast. So we can directly verify the 

validity of (62) on the subinterval [S,1] in the same manner as in 

theorem 2.8. D 

The trick used above in the homogeneous case applies also if the right­

hand side of (1-) is nonzero but does not contain the point x = 0 in its 

support. Let us now be the solution of (1-) with f (x) = 0 if lxl ~ a < 1 

and choose S E (O,a) and y > 0 such that w(x) - y 2 0 if lxl < S and 

w(x) - y < 0 if lxl 2 a. Making the transformation 

v (x) 
£ 

us(x) exp((w(x)-y)/2£) 

we obtain again the equation 

(65a) ETV + xbv/2a - x2v/4sa - AV + ~v 

with boundary conditions 

(65b) v(±l) (A±B) exp((w(±1)-y)/2s). 

f exp((w-y)/2s) 

Since both the boundary conditions and the right-hand side of (65a) are of 

order e-8/ 2 £ where 8 := min{y - w(a), y - w(-a)}, we immediately find by the 

above reasoning that the solution vE of (65) satisfies for A E C\(-JN0 ) and 

for £ + +0 

uniformly with respect to x E [-1,1]. On multiplying by the exponential 

we find that u is exponentially small in the subinterval [-S,S], namely 
£ 
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(66) u (X) = 0(exp{(y-6-w(x))/2E}), 
E 

uniformly with respect to x. 

§3.7 

Since the coefficient of the reduced operator xd/dx is bounded away 

from zero on the intervals [-1,-aJ and [a,1J, we can apply theorem 2.8 to 

the restrictions of the boundary value problem (65) to the subintervals 

[-1,-aJ and [a,1J with the additional boundary conditions uC±al = 0(e-e/El. 

Defining 
x 

w(x) 
J 

f (t) (!.)A dt and := -
x t 

C± := A ± B - w(±l) 

0 

we have in first approximation: 

THEOREM 3.17. If A€ C\(-JNO), y € lR+ and f € H2 (-1,1) with 

(-y,y) n supp(f) = ~. then the solution uE of 

(67) ETU - xu' - :>.u f, u(±l) =A ± B 

satisfies for E + +o the asymptotic formula 

(68) UE(X) = W(X) + C+ exp((x-1)/Ea(l)) + C- exp(-(x+l)/Ea(-1)) + 

uniformly with respect to x e [-1,1]. 

REMARK. The order term in (68) depends heavily on y and it will certainly 

increase beyond bound for Y + +0 (if Re:>. ::; I.:!). 

3 • 7 • CONVERGENCE IN lf1 ( -1 , 1) 

If the function f in the right-hand side of (67) is not zero in a 

neighbourhood of the point x = 0, we cannot get any idea of the behaviour 

of the solution of (67) by using the method used in the previous section. 

By the dual of the method employed in the plus sign-case we can give a 

partial answer to this question, namely if f is smooth enough. We define 

a sequence of operators U in the space lf1c-1,1) and prove their inverse 
E,n 

stability in the part Re:>. > - n + I.:! of the complex A-plane. As a dual of 

the plus-sign case, we now have to impose stronger smoothness conditions 
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in order to enlarge the region of inverse stability. If £ > 0 we define 

(69a) U u := £Tu - xu' £,n 

for all u E VCU } := {v E J/1+2 (-1,1) lv(n+l) (±1) O} 
£,n 

and for c 

(69b) 

0 we define 

U u := - xu' o,n 

for all u E V (U ) : = { v E J/1 ( -1 , 1 ) I xv ' E J/1 ( -1 , 1 ) }. o,n 

LEMMA 3.18. The spectrum of U is the set o,n 

(70) a (U ) = { µ E C I Reµ :;; - n + I:!} u ( - JN0 } o,n 

a:nd constants c1 and c2 exist, such that 

(71) II (U ->-)ull ?! {C1 dist(f-,a(U )) - £C2}llu II s,n n o,n n 

for aU u E V (U ) , for aU A E a: satisfying Ref- + n + I:! 2' Ii [xa' /a] and c,n 
for all c 2' O; if, furthermore, >- is such that the right-hand side of (71) 

is positive, then U - A has a bounded inverse. c,n 

PROOF. We observe that the orthogonal decomposition (1.19) of the Hilbert 

space (1/1(-1,1), (·,·)~ 1 )) remains invariant under the action of the operator 

U , so let us consider first the restriction U(l} of U to Ef:1 (-1,1). o,n o,n o,n 
For all u E ~(-1,1) this restriction satisfies: 

I I (1) 
2' (Ref-+n-1:!) u . 

n 

If Ref- :;; - n + I:!, then the solutions x ,___,. lxl -A 
I 1-1-A and x i-+ x x of 

u u = 
o,n 

ad joint 

AU are in Ef:1 (-1,1) and hence A is in the spectrum of U o,n 
of u(l) is the operator 

o,n 

The 
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xu' - (2n-1)u 

for all u E V(u(l)*) := {u E V(U(l)) lu (n) (±1) = O} o,n o,n 

and we see that U(l)* - A has zero o,n 
find by theorem 1.1 and inequality 

null-space if ReA > - n + ~; hence we 

(72) that A E p(U(l)) in that case. 

§3.7 

Since, furthermore, the monomial 
. o,n 

x I-+ xJ with j E JN is the eigenfunction 
0 

of U0 ,n at the eigenvalue -j, we find that (70) 
u E VCU ) satisfies 

is true and that any 

o,n 

<: { lul (l) dist(A,cr(U ) ) }2 . n o,n 

By the equivalence of the norms 11·11 and l·I (l), cf. (1.18), we find a con-n n 
stant cl such that 

(73) llU u-Aull <:C1 1iull dist(A,a(U )) o,n n n o,n 

which proves (71) for £ = 0. 
2 Integration by parts yields for all v EH (-1,1) the identity 

2Re (<au')', xu'+Au) = - ( (<A+);°"+1Ja+xa')u' ,u') + 

+ [xau •il• + 2Re (Aau 'uJr1 
-1 

This implies the inequality 

(74a) 211 £TU-xu'-Aul) 2 <: II £(au')'-xu'-Aull 2 -2£ 2 11 bu'+cull = 

=II £(au'l'll 2 + II xu'+AuJl 2 +£(A.+5:+1J)) a1lu'll 2 +£(xa'u',u') + 

-2£2 11 bu. +cu II + [ xau 'u' +2Re (A'i.i°' u) rl 
-1 

Defining the formal differential operator en of order n + 1 by 

8 := (TU) (n) - _i!_. (au(n+l)) 
n dx 
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we find from (74a) for all u E V(U ), i.e. u(n+l) (±1) = 0, the inequality E,n 

+ E ( A+°f+2n+1-[xa' /a]) II a l:!u (n+l) IJ 2 

Since a constant C exists such that 
n 

for all v E (0,1] and u E Jl1+2 (-1,1), the inequalities (73) and (74b) imply 

formula (71) . 

Since theorem 1.8 implies that U - A is invertible for E f O, pro-E,n 
vided ReA is large 

vertible for all A 

enough, inequality (71) implies that U - A is in­E,n 
E C for which the right-hand side of (71) is positive. 

In a manner analogous "to § 2. 2 we can now construct an 

proximation to (U -A)-1f with f E !11+2 (-1,1) for all A E E,n 
E + +O; we will give a first order approximation only. Let 

as in (60); then we find that the function wE, 

with 

(n+l) -1-x + ljl(-x)w0 (-1,A)exp --ac:1T 

:= (U -A)-lf 
o,n 

x 

f {f (t) 

0 

asymptotic ap-

p ( U ) and for 
o,n 

ljJ E C00 CIR ) be 

. .n+2 is an element of V(U ), provided f Eli (-1,1) and A E p(U ), and that s,n o,n 
it satisfies 

II (u -A.)w (x, A) - f II E,n E n O(Ellfll 2). n+ 

D 
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By lemma 3.18 this implies 

(75) O(s II f II n+2) (e:++O) 

if A E p (U ) . 
o,n 

Since for all n ?: 1 the II· • IJ -norm is stronger than the maximum norm 
. -1 n_l 

and since (U -A.) f and (U -A.) f differ by a solution of the homogeneous £,n e::,o 
equation (57) with boundary conditions u(±l) w (±1,A.) + O(e:n+l), we find 

0 

from the estimates (72) and (75) the result: 

THEOREM 3.19. The solution us of the bou:nda,ry value problem 

(76) E:TU - XU. - AU f, u (±1) A± B 

satisfies the asymptotic formula for e: + +0 

(77) u (x,A.) 
£ 

for aU n E IN, f E ;/1+2 (-1,1) and A. E C\(-JN) with Rei..> - n + l:i and for 
0 

aZl x E [-1,1] uniformly. 

In the transition from (75) to (77) we throw away a considerable amount 

of information about the convergence of the derivatives of we: if n is large. 

It seems, however, that it is not possible to weaken the smoothness con­

ditions on f at x = 0 if the support of f contains the point zero; the ap­

proximation valid up to the line Rei.. = l:i - n depends explicitly on all the 

derivatives of f at x = 0 up to the n-th derivative. In our opinion it is 

not possible to weaken this condition on f in theorem 3.19. In view of the 

discrepancy between the condition f E H2 (-1,1) and O ~ supp(f) (i.e. f is 

C00 in a neighbourhood of x=O) in theorem 3.17 and the condition that f has 

a locally integrable (n+2)-th derivative everywhere in the interval of 

theorem 3.19, it seems plausible that in the latter theorem it is suffi­

cient that f can be written as f + f , in which fp is a polynomial and the 
2 p r 

remainder f is in H (-1,1) and satisfies f(x) = O(xn) for x + 0. This is r 
further supported by the fact that we can obtain an estimate in 1·1_1-norm 

under this condition from the adjoint problem. Since 
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* u u - u 
E 

* ET u + xu' and V(u*) = V(T ), 
E E 

theorem 3.15 applies to u* - 1 too; hence we find 
E 

(78) 

sup 
gEH!(-1,1), lgl 1=1 

o> sup llhll II xn{(u*-1-.\)-1g - (E 2->-)-\}ll 
1 E n-gEH 0 ( -1, 1), lgl 1=1 

O(Ef(Hl)llfll/(Re.\+n-3/2)) (E++O), 

2 provided n E 1'J, f EL (-1,1), ,\ E C\(-IN) and Re.\> - n + 3/2. If we had 

a good estimate of (U -,\-1)-l x~j 1 , we could derive from the estimate 
E x=± 
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in I ·1_1-norm estimates in stronger norms by the analogue of lemma 3.13 for 

the minus-sign case. 

3.8. DISCUSSION OF THE RESULTS 

a. The more general looking boundary value problem, 

(79a) E(av"+bv'+cv) ± xpv' + qv f 

on the interval [a,S] with a < 0 < S and with boundary conditions 

(79b) v(a) = A and v(S) B, 

where a, b, c, p and q are C00-functions on [a,S] with a and p strictly 

positive, can be transformed into (1±). This is performed by a C00-map of 

[a,S] onto [-1,1], which lets the point x = 0 invariant, and a transforma­

tion of the function v into u by 

x 

u(x) := v(x)exp{- f q(t)+.\p(t) at} 
tp(t) 

0 

with .\ := -q(O)/p(O). 

b. Several authors have already dealt with problems of ~ype (79). ACKERBERG 

& O'MALLEY [ 3 ] discovered that the formal approximation of the solution 

of problem (79) showed a sudden growth at non-negative integral values of 
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the quotient q(O)/p(O); they called the unexplained phenomenon "resonance". 

With refined matching methods COOK & ECKHAUS [ 7 ] arrived at a better formal 

approximation of the points where resonance occurs, and computed the coeffi­

cient of the 0(/£)-term in this formal expansion. In [14] we conjectured 

that the phenomenon is caused by a neighbouring eigenvalue of the problem. 

We proved this conjecture in [15]; the proof is given in §3.2. From a 

spectral point of view the sudden growth of the solution of (79) near nega­

tive (non-positive) integral values of A(= -q(O)/p(O)) is caused merely by 

the neighbouring eigenvalue. As is well-known a boundary value problem like 

(79) does not have a solution or its solution is not unique if A is an 

eigenvalue, and, if A is in the resolvent set and tends to a~ eigenvalue, 

the solution will in general tend to infinity. The problem (79) depends 

on two parameters, namely A and s; for s + +0 we proved convergence of its 

eigenvalues and, provided A is constant and A ~ -JN (or A~-JN0 ), convergence 

of its solution. Since II (T -A)-1 11 
s,n 

and M (le) depend continuously on A s,n 
provided ReA > - n - ~ and A ~ - JN , the solution of (79) will converge to 

the same limit if A depends ons in such a way that ~~~O A(s) exists and 
is not in -lN. However, if ~-t~o A(E) is in -lN (or -JN0 ), convergence of 

the solution will depend heavily on the path of (E,A(E)) in :R+ x ~- In the 

example of §3.1 we see that formula (4b) remains valid when we insert 

A = - n + as with a f 0, while from (4a) we infer that the solution (3) is 
2 of order exp((l-x )/2 ) in case a= 0. 

In [25] RUBENFELD & WILLNER state a proof of convergence of the eigen­

values of problem (1-) and of the solutions of the homogeneous equation. 

Their proof is totally different from the one stated above. It is based on 

Langer's approximation methods for turning point problems and it requires 

an enormous amount of explicit computations. 

In [ 1 ] ABRAHAMSSON gives a proof of theorem 3 .19 for real A by an 

a priori-estimate of the form 

provided - n <A< - n + 1 and n E JN, where o is a small positive number 

and A a positive constant, not depending on s. The proof of the a priori 

estimate is based on the fact that we can apply the maximum principle to the 

n-th derivative of equation (76), thus proving smoothness of the n-th deri­

vative of its solution, and that non-existence of the co~stant K leads'to 

a contradiction with the Arzela-Ascoli theorem, which is non-constructive. 
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c. The proofs of convergence of the solutions of (1+) and (1-) are designed 

especially for nonselfadjoint problems and for those A E C, for which the 

associated quadratic forms \T£v - Av,v) and \u£v - Av,v) have non-definite 

real parts. The proofs of convergence for the solutions of (1±) are largely 

contained in [15], but the final result is less general than the results 

we have obtained in this chapter. In [15] we proved uniform convergence 

on closed subsets of [-1,1] not containing the point x = 0 by a maximum 

principle, while here we proved by L2-interpolation convergence with respect 
h [ k+~ J to t e global norm u 1-+ x u , which smoothes down the nonuniformities 

at x = 0. Only if ReA > 2 can we improve estimate (54b) somewhat without 
having to compute boundary layer terms: by a maximum principle we can show 

that this estimate is also true in the norm u I-+ [u], which does not con-
~ tain the weight factor Ix I , cf. [14] and [ 15]. 

We have not tried to reveal the structure of the nonuniformity in a 

neighbourhood of x = O in the plus-sign case, since the solution oscillates 

faster and faster in this neighbourhood and grows larger, as -ReA grows 

larger. For instance the solution (3) has n zero's in an O(.rc)-neighbour­

hood of x = 0 if - n < ReA < - n + 1, while it has maxima of order 0(EReA) 

in between. In the minus-sign case these oscillations will be present too, 

but there we do not observe them in the approximations, since they are 

exponentially small. 

In most theorems we merely give estimates of order 0(E) in the 
2 

L -norm and in the maximum-norm. Both can be generalized considerably 

provided the right-hand side of the equations is smooth enough. For 

expansions of higher order with respect to E we only have to compute formal 

expansions of higher order; their validity is proved in the same way as be­

fore. Moreover, convergence in stronger norms, e.g. in the norms u 1-+ lluil 2 
or u 1-7- [u] + [u'], is not too difficult to achieve. In the plus-sign case 

we get from (38b) by substitution of v' instead of v 

(80) 

and we obtain higher order regularity without any loss of order with respect 

to E but with a higher exponent in the weight factor x. In the minus sign 

case we have estimates of the form 

(81) E ~llu•ll 0 (II nu-xu' 11+11 uli), 

valid for all u E V<U ) (cf. also 2.8a) and hence 
E 

( E-++0) I 
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(82) dlu"U 0(0 ETu-xu • ll+llxu' II) -~ 0{E {Unu-xu•ll+llull)). 

We see that we lose powers of E in the order estimates in this case, but 
since the boundary layer structure is known in this case up to any power 
of E, we can still compute approximations of any order required. 



CHAPTER IV 

ELLIPTIC PERTURBATION OF A FIRST ORDER OPERATOR IN IR2 WITH A 

CRITICAL POINT OF NODAL TYPE 

89 

In this chapter we shall study the degeneration of an elliptic operator 

on a bounded domain Q c :R2 to a first order operator which has a critical 

point of nodal type inside Q. For simplicity we assume that Q is the open 

unit disk, 

2 2 Q := { <x,yl I x + y < 1}. 

On this domain we consider the singular perturbation problems 

(1±) £Lu ± (xa u+µy3 u) - Au 
x y f, ul ()Q = g, 

in which L is a uniformly elliptic (formal) operator of second order, 

L := aa 2 + 2b3 3 + ca 2 + d 1a + d 3 + d x xy y x 2y 3' 

with real C00-coefficients satisfying 

2 
b < ac, a(O,O) c(O,O) and b(O,O) 

and with the formally selfadjoint principal part L , 
p 

L := a aa + a b3 + a ba + a ea p xx xy yx yy 

0 

+ + 2 2 moreover, we assume£ E :R , u E :R , A E ~, f EL (Q) and g EL (3Q). 

Without loss of generality we can make the restrictionµ ~ 1, otherwise 

we change the roles of x and y and divide byµ. 

The problems (1±) have many features in common with the one-dimen­

sional analogues (3.1±) of chapter 3. We shall treat them along the same 

lines as before; first we shall prove convergence of the eigenvalues of the 

operators in L2 (Q) connected with (1±) and thereafter we study convergence 

of the solutions of (1±) for £ 7 +0. 
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4.1. CONVERGENCE OF THE SPECTRUM 

In connection with the boundary value problem (1+) we define the dif-
2 ferential operator T£ on L (n) by 

(2) T u := £Lu + xa u + µy3 u 
£ x y 

for all u E V(T) := {v E H2 (u) / vj 
£ an 

O} . 

As in chapter 3, we will prove convergence of the eigenvalues of T by corn-. £ 
paring T£ to the special operator in which L in (2) is replaced by 6. Un-
like the one-dimensional case it is, in general, not possible to find a 
function w such that the operator exp(w/£) T£ eicp(-w/£) is equal to a self­
adjoint operator plus terms of order 0(;;::) with respect to the main part; 
compare this with the transition of (3.9a) to (3.9c). In case L = 6 the 
transformation 

v(x,y) 2 2 := u(x,y) exp{(x +µy )/4£} 

works well and produces a selfadjoint operator; we will see that this trans­
formation can be used in the general case too, although slightly more effort 
is required. We define the operator T~ with domain V(T ) := V(T ) by 

~ £ £ 

(3) 

in which the coefficients w1 , ••. ,w4 are defined by 

(4a) w1 (x,y) :== x - xa(x,y) - µyb(x,y), 

(4b) w2 (x,y) : = µy - µyc(x,y) - xb(x,y), 

l..i(2x2 2 2 2 2 2 (4c) w3 (x,y) := +2µ y -x a-2µxyb-µ y c), 

(4d) w4 (x,y) := ~(a+µb-l-µ+xd 1 +µyd2 ) 

Since we assume that the principal part of L is equal to 6 at the origin, 

i.e. a(O,O) = c(O,O) = 1 and b(0,0) = 0, we find that the functions 
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wl, ... ,w4 behave near the origin as follows: 

(Sa) w1 (x,y) 2 2 0(x +y ) 

(Sb) w2 (x,y) 
2 2 

0(x +y ) 
2 2 (x +y +0). 

(Sc) w3(x,y) 2 2 . I 13 I 13 ~(x +y ) + 0( x + y ) 

(Sd) w4 (x,y) = O(lxl+lyl) 

In contrast with the one-dimensional case the operator TE now contains a 

non-selfadjoint term which is not small with respect to the main selfadjoint 

part. We therefore devide it into its main selfadjoint part RE, 

(6a) R := E(a aa +a b3 +a bd +a ea ) - w3/E , E xxxyyxyy 

the large nonselfadjoint term A, 

and the small remainder B, 

(6c) B := T - R - A . 
E E 

Furthermore, we define the special operator SE by 

(6d) s v 
E 

2 2 2 
:= E~V - ~(x +µ y )v/E 

and the continuous chain R by 
E,T 

(6e) R := (1-T)SE + TR~, E,T ~ 

for all v E V(S ) 
E 

:= V(T ) 
E 

Td0,1]. 

Convergence of the eigenvalues of Se: is a consequence of theorem 3.1 and 

this is transferred to RE by the continuity method of §3.2. Although Au is 

not small with respect to 11 R u 11 + II ull uniformly on V (T ) , it has an arbi-e: E 
trarily small RE-bound and it is of order 0(/e:) on each joint eigenspace 

of a finite number of eigenvalues of RE; this enables us. to prove convergence 
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of the eigenvalues of RE + A. 

LEMMA 4.1. Each point of the set A, 

(7) A:= {- n - µm I (n,m) E JN 2 }, 

is the limit of an eigenvalue of S and each eigenvalue converges to an 
E 

element of A for e + +O; the total multiplicity of the eigenvalues which 
converge to A EA is equal to /{(n,m) E lN 2 / n + µm =A}/. Moreover, if 
A (e) is an eigenvalue which converges to - n - µm, it satisfies n,m 

(8) A (E) 
n,m (e-++0). 

PROOF. Let D be an open bounded domain in JR2 with a piecewise smooth 
D 2 2 2 boundary and let S be the restriction of e~ - (x +µ y )/4e to the domain E 

V(S~) := {u E H2 (D) I u/aQ = O}, then s 0 is selfadjoint 

inverse and the associated quadratic fo:rn u 1-4 <s~u,u)0 
and has a compact 

is non-positive. 
We can thus arrange its eigen·ralues in a non-increasing sequence such that 

with 

and such that the eigenvalues are counted according to their multiplicity. 
The eigenvalues are characterized by the minimax equation, cf. [10] eh. 11, 

(9) .f.D inf sup (s~u,u)0 , n VcL2(D),dimV:>n uEVl nC00 (D) 

11u11;= 1 

in which V is a linear subspace and v1 its orthocomplement in L2 (DJ. If 
E c D is another domain and if we take the supremum over the smaller set 
v1 n C00 (E) we obtain .f.E, hence .f.E $ .f.0 • With the specific choices o n n n D -~ D = [-1,1] x [-1,1] and E = [-~,~] x [-~,~] we find a(S) = a(n ®µn I ) = 

E E E µ 
= a(n ) + o(µn I ) and by using the coordinate stretching (;,nJ = (2x,2y) 

E eµE - ~ -
in Ewe find o(S) = a(nL 0µnL I ); here n is the operator defined in E -..E -..E µ E 
(3.9b). In conjunction with theorem 3.1 this proves the lemma. D 

LEMMA 4.2. Constants C., i = 1, •.. ,6, exist such that any u E V(T) satisfies 1 E 
the inequalities 
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(10a) //R u-R ul/s /-r-v/(c11/R ull+c211ull), E: 1 \I e:,T E1 T 
T 1 \I E [0,1], 

(10b) 

} O<v<1. 
(10c) 

The proof is completely analogous to the proof of lemma 3.2 and will be 

omitted. D 

As approximate eigenfunctions we use appropriate products of the· func­

tions x, defined in (3.14), 
n 

(11) x (x,y;e:) := k x (x;e:)x (y;e:/µ) n,m nm n m 

in which k is a normalization factor, such that II x II = 1. nm n,m 

LEMMA 4.3. The functions x satisfy the order estimates n,m 

(12b) II Axn-l ,m-l 11 = O(e: ~ (n+m)) 

} (~OJ (12a) 

uniformly for aZZ n, m E JN and T E [0,1]. Furthermore, if e: is smaZZ enough, 
each finite number of these functions is UnearZy independent on !il and 
"approximate Zy orthogona Z 11 • 

PROOF. Since / x ,x .) 2 
\ n,m k,J lR 

0 if n + k or m + j we find, cf. (3.16c), 

(13) (x ,x .. ) n,m i,J Q 
Ix .x .. ) 
\ n,m i,J JR2 \!il 

ff 2 2 
exp(-x -µy )H (x)H.(x)H (y/µ)H.(y/µ)dxdy n i m J 

2 2 
x +y >1/2e: 

O(e-µ/2e:e:-~(n+m+i+j+ll), (e:++O). 

This approximate orthogonality implies the linear independence. The proof 

of the estimates (12) is completely analogous to lemma 3.3 and will be 
omitted. D 
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LEMMA 4.4. The eigenvalues of the operator R with T E [0,1] can be num-£,T 
bered in such a way that 

(14) o(R ) = {>- (£,T) I (n,m) E JN 2} e:,T n,m 

and such that they satisfy for £ + +O 

(15) A:; 3/2 3/2 A (£,T) = - n - µm + 0(£ (n +m )) n,m 

uniformly with respect T E [0,1]. 

PROOF. The proof follows the same lines as the proof of thm. 3.4, but dif­

ferences arise because of the spacing of the points of A and because the 

multiplicity of an eigenvalue can be larger than one. 

Arrange the elements of A in descending order such that 

A a. 
J 

j E JN}, with l . 1 < l . for all j E JN , 
]+ J 

and define the numbers aj;= J.,i(lj+l-lj). If RE, 8 satisfies the lemma for 

some 8 E [0,1], an£ E :IR exists such that the inclusion 
j 

D(o,jl.l+3a.)\D(o,ll.l+a.) c p(R ) 
J J J J £,8 

is true for all£ E (0,£.]. Since R is selfadjoint for all TE [0,1], 
J £ r T 

we find by lemma 4.2 and theorem 1.4 that the inclusion 

ao(o, ll. l+2a.) c p(R ) 
J J E ,T 

is true for all £ E (0 1 £j] and T E [8 - 8j, 8 + 8j] with 

8j := aj/(C2+c1!lj+ll), hence for this £-T-range we can define the orthog­

onal projection 

(16) I 
an(o, 1.e.. I +2a .) 

J J 

on the joint eigenspace of all eigenvalues of R contained in D(o,ll.l+2a.). 
E,T J J 

Since we have assumed that R satisfies the lemma and since the eigen-e: I e 
values of R depend continuously one: and T, the rank of P . is equal e:,T E,T,J 
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to the number of elements of the set 

for all T E [8 - 8j, 8 + 8j]. If -n - µm ~ lj, then 

(17) 

Since the restriction of R to R(1-P .) has no eigenvalues in 
E,T E 1 T 1 J 

D(o,jl.j+2a.), (12a) and (17) yield 
J J 

:".II (R +n+µm)(l-P .)x 1 1 11 /(2a.-l.+n+µm) 
E,T E,T,J n- ,m- J J 

and with the equation II Px 11 2 + II (1-P)x 11 2 this results in 

( 19) li p X II =1+0(E(n3+m3J), 
E,T,j n-1,m-1 (£++0). 

Lemma 4.3 and the formulae (18) and (19) imply that the elements of the set 

(20) {p X I - n - µm ~ lJ. and (n,m) E JN2 } E,T,j n-1,m-1 

are linearly independent; since their number is equal to the rank of P ., 
E,T,J 

they form a basis in R(P .). By (17) we now find 
E 1 T 1 J 

(21) I II l:i 3/2 3/2 [ (R +n+µm)P .x 1 1 = O(E (n +m l), 
E,T E,T,J n- ,m- (£++0). 

Hence in the matrix-representation of the restriction of R to R(P .) 
E,T E,T,J 

with respect to the basis (20) all elements of the main diagonal are of the 

form - n - µm + 0(/E) and all off-diagonal elements are of order 0(/E); 

Gerschgorin's theorem (cf. [31] eh. 2.13) implies 

eigenvalues of R in the disk D(o,jl.l+2a.) and 
E 1 T J J 

provided (15) is true for all eigenvalues of R 8 E, 

that (15) is true for all 

for all T E [ e - e . , e + e . J , 
J J 

in the larger disk 
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o(o,llj+ll+2aj+l). 

In order to prove the assertion of the lemma for T = 1 and for all 

pairs (n,m) € :JN 2 with - n - µm ~ lj, we choose a number kj E JN such that 

as in the proof of theorem 3.4 and we start at T = O, where convergence of 

all eigenvalues of R contained in D(o,ll. kl+3a. k) is a consequence of 
£,O ]+ J+ 

lemma 4.1. By applying the above argument k times by diminishing in the 

i-th step the radius of the disk with 3aj+k-i+l + aj+k-i we finally prove 

the estimate 

A (£,T) = - n - µm + 0(/£), n,m (£'++0), 

valid for all T € [0,1] and for all (n,m) € JN 2 with - n - µm > l .. For each 
J 

j € JN a number kj as defined above exists, since the elements of the set 

i such that A - 1 < l. s A} 
l. 

add up to ~ for all A € A. 

In order to prove the n-m-dependence of the 0-term, we consider the 

projection 

(22a) 

Analogously to (19) and (21) we now find 

(22b) and 

for E + +0 if lk = - n - µm - µ- 1; this proves (15). D 

THEOREM 4.5. The eigenvalues of the operator TE (and hence of TE) aan be 
numbered in such a way that 

(23a) a(T ) 
E 

{ K (E) I (n,m) E JN 2} n,m 
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a:nd such that they satisfy for E + +o 

(23b) 

PROOF. Let E. be such that 3D(O,!f.l+2a.) c p(R) for all EE (0,E,], then 
J J J E J 

we have by (10b) for any u E V(T ) 
. E 

and hence 

(25) II (R+A-\)ull 2 ?: i.,11(R-\)ujj 2 -2JIAP 1 .ull 2 - 2llA(l-P 1 .)uJl 2 ?: E E . E, 1 ] E, 1 ] 

?: i.,11 (R -\)P 1 .ull 2 - 2JI AP 1 .ull + 
E E 1 1 ] E, 1 ] 

+ 1
7
6 11 (R-\)(1-P 1 .)ull 2 -2(BC3C4+ -8

1 11'1) 2 [1(1-P 1 .)u[l 2. E E, ,J E, r) 

Since the restriction of R to R(1-P 1 .) has no eigenvalues larger than 
E E 1 , J 

lj+l we have, if Re\ > lj+l' 

II (R -\)(1-P 1 .)u[I?: (IIm;>,l+Re\-l. 1)11 (1-P 1 .)ull, 
E E 1 1 J J+ E 1 1 J 

hence we can certainly find a number J E :Ril, such that the third line of 

(25) can be estimated from below by 1
5
6 11 (R -\)(1-P 1 .)u[[ 2 for all j ?: J 

E E 1 1 J 
and for all\ with [Re;>,[ ~ i.,ll.I. 

J 
In order to estimate the second line of (25) from below, we consider 

the basis, given in (20). We observe that its elements are nearly orthog­

onal if E is small enough, for by (13) and (18) we have 

(26) IP i . x , P i . x . k) = 
\ E, ,J n,m r., ,J :i.., 

=Ix .x. k) + /(1-P 1 .)x ,(1-P 1 .)x. k) = \ n,m i, \ s, ,] n,m E:, 1 ] J., 

0( ( 3/2 3/2) (. 3/2 .3/2)) = E n +m :i.. +J , 

provided n + i or m + k and n + µm + µ + 1 ~ - l. and i + kµ + µ + 1 ~ - l .. 
J J 

This implies 
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(27) P u = I a (e:)P 1 .x , 
e:,l,j n+µm+µ+l5-t. n,m e:, ,J n,m 

(n,m) € n/ o' 
J 

where l la 12 < 211 P 1 .u!J 2 if e: is sufficiently small. Since we have, n,m n,m e., ,J 
furthermore, by (lOb), (12bl and (18) 

II APe:,l,/n)J 5 JI Axn,mll +II A(l-Pe:,!,j)xn)I = 

= O(e: \n+m+l)) + 0(11 (R +n+µm+µ+l)x II+ II (1-P 1 .)x II e: n,m e:, ,J n,m 

(e:++O), 

2 if n + µm + µ + 1 5 - t., {n,m) E JN , formula (27) implies 
J 0 

l.:i 3;2 I JIAP 1 .uJl=O(e: lt.J llP 1 .uJ), e:, ,] J e:, ,J 
(e:++O) 

and from formula (25) we find a constant K > 0 such that 

(28a) JI (R+A-A.)ulJ ~ 1.tlsll (R -A.)ulJ - e:~lt.J 312 11ull e: e: J 

for all j <! J, jReA. I :,; l:i 1 t. J and e: sufficiently small. 
J ~ 

Est;i.mate (,lOc) implies the existence of a constant K <! K, such that 

(28b) 

for all j <! J, JReA.I :,; l.:ilt.1 and e: sufficiently small. In conjunction with 
J 

lemma 4.4 this proves the theorem. 0 

REMARKS. 1. Another useful version of the statements (23b} and (28b) is 

for all A. E ~ and all sufficiently small e:; here t(A.) denotes the point of 

A that is nearest to A.. 

2. The operator Ue: associated with problem (1-), 

(30) U U := e:I,u - Xd U - µy(l U e: x y 
for all u E V(U ) := V(T ) e: e: 
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satisfies the analogue of (29); defining 

~ 2 2 2 2 
U := exp(-(x +µy )/4E)U exp((x +µy )/4£) 

£ £ 

we find that a constant K > 0 exists, such that 

for every A E ~ if £ is sufficiently small; here l(A) denotes the point of 

the limiting set A*, that is nearest to A; 

(32) A* := { - n - µm I (n,m) E JN~}· 

4.2. STRONG CONVERGENCE OF THE RESOLVENT IN THE CASE OF AN ATTRACTING NODE 

As in §3.3 we can prove the inverse stability of TE - A in a part of 

the complex plane and use it to prove strong convergence of {T -A)-1 in L2 -
£ 

sense. Here we refine the argument; we prove strong convergence in Lp-sense 

and we show that this yields uniform convergence of the approximation 

without recourse to Sobolev's inequality or the maximum principle. 

We extend TE to an operator on LP(n) with 1 < p ~ 00 and on C0 (n) by 

defining its domain in LP(n) by 

(33a) 

and in c0 cnJ by V(T) := C2 (n) n C0 (n). Moreover, we define the presumed 
£ 0 

limit operator T as the restriction of xa + µy3 to the sets 
0 x y 

[ {u 

E LP(nJ xa u + µya u E Lp(n) & 

ul an 
O} 

x y 
(33b) V(T0 ) := 

{u E C0 <nl I x3 U + µy3 U E C0 (n) & UI O} 
x Y an 

in LP(n) and C0 (nJ respectively. In some part of the complex plane these 

operators are bounded from below: 

LEMMA 4.6. A constant K E JR exists such tha.t T satisfies the inequality 
E 

(34) IT u - Aul ~ {ReA+(1+µ)/p-EK)!u! 
£ o,p o,p 
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for aZZ p ~ 1 (p=00 included), u E V(T ), s ~ 0 and A E ~­
E 

PROOF. Let p and the conjugated number q be finite (1/p + 1/q = 1); if 

§4.2 

u E tP, then ululp-2 E Lq and lulp = lululp-2 1q . For all u E V(T) with o,p o,q E 

lul 0 ,p = 1 we find the inequality 

(35) IT u - AUi 
E o,p 

In connection with the (symmetric) principal part L of L we define in c2 
p 

the Hermitian sesquilinear form A, 

Since L is uniformly elliptic on Q, 
2 positive and non-degenerated on ~ ; 

A(a,a) ~ IReA(a,a) j. Hence we find 

(37a) - Re (Lpu, ululp-2) = 

the associated quadratic form A(a,a) is 

by Schwarz' inequality it satisfies 

by integration by parts that L satisfies 
p 

~If {pA(uVu,uVu)-(p-2)ReA(UVu,uVU) lulp-4}dxdy ~ 
Q 

~ ~(p-lp-2j) II A(Vu,Vu) lulp-2 dxdy. 

Q 

For a term of Tsu containing a first order derivative, e.g. d3xu, we find by 

integration by parts 

(37b) Re (<laxu, ululp-2) =~II d3xlulp dxdy 

Q 

since lul = 1 we find in particular o,p 

and 

- ~ IIlulp(3xd)dxdy; 

n 
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(37d) 

I .!. ff lulP(pa3+a 2a+2a a b+a 2c-a d1-a d2)dxdyj s p x xy y x y 
Q 

s [d3 + p-1 (a2a+2a a b+a 2c-a d1-a d2)] x xy y x y 

In conjunction with (35) this proves the estimate (34) for all p € (1,oo). 

Since the constant K in (34) can be chosen independently of p, we can take 

the limits p + 00 and p + 1 at both sides of the ~-sign thus proving (34) 

for all p € [1,oo]. D 

REMARK. If u € C2 (Q) we can replace the L00-norm in (34) by the maximum norm, 

since 

(37e) lim lvl = lvl = [v] 
p+oo o,p o, 00 

for all v € C0 (1'l). 

The reduced equation xa u + µya u - Au = f of (1+) can be solved ex-x y 
plicitly. Its characteristics are all curves parametrized by 

x = ext, y = Stµ with cx,a E :Rand t E lR+ 

and along a characteristic the solution is determined by the equation 

t ~~ - AU f(x(t),y(t)). We introduce the characteristic coordinates 

(t,iji) € (0,1) x (lR mod 21T) by 

(38a) (x,y) = (t cos iji, tµ sin iji), 

(38b) (J 1 
2 2 

cos ·1jJ+µsin-1jJ 

Each solution of the homogeneous equation t du = Au can be represented in 
dt 

the form 

(39) 
A u = t h(iji) (his a 21T-periodic function on lR) 
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and it is easily seen that this solution is in Lp(Q) if and only if 

h E LP(JR mod 2n) and ReA > - (1+µ)/p (1$p$oo) • 

A particular solution of the inhomogeneous equation is given by 

(40) u0 (x,y) 

1/t(x,y) 

J 
µ -1-A f(sx,s y)s ds 

provided f is locally integrable. 

LEMMA 4.7. The resolvent sets of T0 in LP(n) and C0 (n) are the sets 

(41) 

=r 
E «:'. Re A > - (1+µ)/p}, if To acts in LP(Q), 

p(T ) 
0 

{A E (I: ReA > O}, if T0 acts in Co(n); 

moreover, each A E p(T ) is contained in p(T ), provided£ E JR.+ is suf f i-0 £ 
ciently small. 

PROOF. The dual of the operator T (acting in Lp or C0 ) is the operator * 0 T = - xa - µy3 - µ - 1 (acting in the dual space), whose domain is not 0 x y 
restricted by any boundary conditions. From (39) we infer that the solutions 
of T*u = AU cannot be continuous functionals on Lp and C0 if ReA > -(µ+1)/p 0 

and ReA > 0 respectively (cf. [29] eh. 4 §9) and hence that N(T*-A) = {O}. 
0 

In conjunction with lemma 4.6 this proves (41). 
If £ > O, L2-invertibility of T - A with A E <1:\A and £ sufficiently E 

small is proved in theorem 4.5. Since the inclusions Lp(Q) c Lq(Q) c C0 (Q) 
are dense for all p, q E [1, 00 ] with p < q, the invertibility in L2 (n) and 
the lower estimate (34) imply invertibility of TE - A in Lp(Q) for all 
p E [l, 00 ] provided ReA > - (1+µ)/p +KE and in C0 (n) provided ReA > KE. D 

By analogy to theorem 3.7 we now find strong convergence of the resol­
vent operator (T -A)-l to (T -A)-l for£+ +O and for all A E p(T ): £ 0 0 

THEOREM 4.8. The resolvent operator (T -A)-1 converges for £ + +o to £ 
(T -A)-1 strongly in all LP(Q)-norms with 1 s: p s: 00 a:nd in the uniform norm, 0 

provided A E p(T ). Furthermore, if A - 2 E p(T) we have the stronger esti-o 0 
mate 
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(42) 

provided ifl 2 < 00 • ,p 

103 

O(sllf 11 2 ), ,p 

REMARK. It is clear that this theorem implies also Lp - or C0 -convergence of 

the solution of (1+) with inhomogeneous boundary conditions. 

PROOF. Formula (40) implies 

1/t(x,y) 

(40') J µ -1-A 
f(sx,s y)s ds. 

Differentiating once with respect to x we obtain with use of formula (38b): 

(43a) 

and for the other first and second order derivatives we obtain similar ex-

pressions. Since by the trace theorem (cf. lemma 1.9 and [ 4] §7.58) the 

LP(aQ)-norms of the restrictions to the boundary fjan and a~(flan) are 

bounded by II fll 2 , we find from lemma 4.6 the estimate ,p 

(43b) IL(T -A)-1fl = O(ll f 112 ) o o,p ,p 

for all p E (1, 00 ] and A E p(T ). 
0 

The remainder of the proof is equal to the proof of theorem 3.7. D 

This theorem generalizes the results of [13] §5 and [14] §5 as far as 

convergence of the solution of (1+) to the solution of the reduced equation 

(without internal boundary layer terms) is concerned. 

4.3. CONVERGENCE OF THE SOLUTION ON AN ANNULAR SUBDOMAIN OF Q 

Theorem 4.8 shows that the norm, with respect to which we proved con­

vergence, deterioriates as ReA decreases. The reason is that the singularity 

of the solutions of the reduced equation at the origin deteriorates as Re;\ 

decreases. In this section we shall restrict the problem (1+) to a subdomain 

not containing the origin and we shall show that we can achieve convergence 

of the solution of (1+) on that subdomain for all A E ~\A with the aid of 

the cut-off method of §3.6. This method is based on the fact that an estimate 
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(independent of E) for the norm of the resolvent of TE is available for all 

A E ~\A, cf. (3) and (29), while such an estimate is not known for T. 

(44) 

E 
Define E and its Q-complement F as the domains y y 

Ey := {(x,y) I x2 + µy2 ~ y2} and 

We begin with a study of the restriction of problem (1 +) to the subdomain 

Fy (y<1). In order to make this restriction "well-posed" for E f 0, we add a 

boundary condition at ClE · we define the operators M and M in LP(F ) and y' E 0 y. 
C0 (F ) as the restrictions of T and To, cf. (33) I y E 

(45a) Mu :=Tu 
E E 

(45b) Mu := Tu 
0 0 

for all u E V(ME) := {v E V(TE) n L1 (FY) I v!aEY 

for all u € V(M) := V(T) n L1 (F ). 
0 0 y 

By removing the singular point (O,O) from the domain, we obtain a problem 

of the same type as problem (2.1) is, in the more general setting of Lp­
spaces. Using the same technique as in the proof of lemma 4.6 we can show, 

as in lemma 2.1, that the spectrum of ME recedes to - 00 for E + +0 and we 

can prove the inverse stability of ME - A for all A E 

LP(F )-spaces with 1 ~ p ~ 00 • In the proof we use the 
y s + 

u "- It u I F with s E JR (which is equivalent to 
o,p,. Y 

norm). 

~ in C0 (F ) and in all y 
weighted Lp-norm 

the ordinary LP(F )­
y 

LEMMA 4.9. Constants K1 and K2 E JR+, depending only on the coefficients 

of L, exist such that M - A satisfies for all p E [1, 00 ] the estimate 
E 

(46a) B (A,s,y,p) ltsul F 
E o,p, y 

and in particular for p = 2 

(46b) 

with 

(46c) 

II tsullp II ts(MEu-Au)IJp ~ sK2 lltsl7u II: + BE(A,s,y,p) II tsull: , 
y y y y 

BE(A,s,y,p) 2 
:= ReA + s + (1+µ)/p - sK1 (l+s/y) 

for all u E V(M ), E E [0,1], y E (0,1], s E JR and A E ~. Moreover, if 
E 

o} 
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Bc(A,s,y,p) > O, then M - A has a bounded inverse in LP(F ). 
~ E: y 

PROOF. Define Lu := tsLt-su, then 

(47) 

where t 

Lu 
-·1 -2 -1 Lu - 2st A(Vu,Vt) + s(s+l)t A(Vt,Vt) - st u(L-d3Jt, 

t(x,y) is defined in (38a), and we find 

~ s 
(EL+x3 +µy3 -s-A) (t u). 

x y 
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Let p and q be finite, i.e. p E (1, 00 ). If u E V(TE:) with£ f 0, then ulaF 0 

and we can use the analogues of the formulae (37a-b-c), in which the inte! 

gration is taken over FY instead of Q. By substituting L for L and tsu for 

u in (34) we find that (46a) is true for £ f 0, provided K1 satisfies 

2 
K1 (l+s/y) [ 2 2 -1 

~ a a+23 3 b+8 c-a d 1-a d 2+(s+1Jd3-st (Lt+2L t) + x xy y x y p 

-2 ] + s(s-l)t A(Vt,Vt) F . 
y 

From (38) it follows that such a constant exists. 

If£= 0 we cannot use (37b) since ulaEy is not zero for all u E V(T0 ). 

We have instead, if ltsul = 1, 
o,p 

(48) - Re (ts(xax+µyay-Au), tps-sululp-2)F 
y 

(ReA+s+(µ+l)/p) ltsulp F + .!.. 
o,p, y p f 

aE 
y 

and this proves (46a) for £ = 0. Since the constant K1 in (46a) does not 

depend on p, the formula remains true when we take the limits p + 1 +0 or 

p -+ oo in it. 

In case p = 2 and £ f 0 we find by integration by parts for each 

u E V(T ) the identity E: 

(49) 

+ ff 
F 

y 

- f I A(Vu,Vu)t2sdxdy + 

F 
y 

i:;{;:i2(at2s) + 23 a (bt2s) + a 2 (ct2s) - d· (d t 2s)-x xy y x 1 
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and this implies (46b). 

The invertibility of M0 is a direct consequence of the invertibility 

of T0 ; by analytic continuation (cf. the proof of theorem 3.7) this prop­

erty is transferred to all A€ C. The invertibility of M£ in L2 is proved 

by the continuity method from the fact that ~ is a one-to-one mapping from 

H2(F) n H1(F) onto L2 (F ); by the density argument, used in lemma 4.7, we y 0 y y . 

extend this result to all tP-spaces and to C0 ; by analytic continuation 

we extend it to all A E ~ for which the right-hand side of (46a) is posi­

tive. D 

REMARK. This lemma is important because it provides a priori estimates in 

the supremum norm and the L2-norm. 

Let u0 be as defined in (40), i.e. u0 

the solution of the boundary value problem 

-1 = (M -A.) f 
0 

on F 
y 

on F 
y 

and let v be 
£ 

(50) £Lv + xa v + µya v - AV x y f, and vj = u I 
3E o 3E 

y y 

which has a unique solution by the previous lemma, providad £ is small enough. 

By definition we now have, if f is smooth enough, 

v - u E V(M ) 
£ 0 £ 

and (M -A) (v -u ) 
£ £ 0 

£Lu • 
0 

Since lemma 4.9 provides estimates of the norms of u0 and its derivatives 

by the norms of f and its derivatives, we find from (38) and (43a) positive 

constants Ci such that 

(51a) 

where [ctsfJ] denotes 

(Slb) [ct8 fJ] := l 
k,j2'0,k+j:~:;2 

Applying again lemma 4.9 and the trace-theorem (lemma 1.9) we find 

(Slc) 

(51d) 

// ts(v£ -u0 ) l/Fy ,; C3£[[tsf]J{1+/ImA. /+(Be (A-2,.s,y ,2) )-2} 

I/ tsV(v£-u0 )1/F ,; C4£~[[t8fJ]{i+IImA/+(B£(A.-2,s,y,2))-3 /2 } 
y 
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2 provided ReA > - s - ~ µ + 3/2 + EK1 (1+s/y) . In the same way we find the 

estimate with respect to the supremum norm on F 
y 

[ts(vE-u0 )]F s C5£[[tsfJ]{1+1ImAl+(BE(A-2,s,y,2))-2} , 
y 

provided ReA > 2 - s + EK1 (1+s/y) 2 . This proves that u0 approximates vE if 

E is small enough. 

In order to show that v in its turn approximates u := (T -A)-1f, we 
£:00 00 £ e: 

choose cut-off functions z E C CIR) and z EC (~) which satisfy 
y 

(52a) 

(52b) 

z(i;) { 0 
if i; < 1, 

0 s z'(i;) s 2 and 
if i; > 2, 

2 2 ~ z (x,y) := z((x +µy ) /y) . y 

We continue the function z v into E by zero and we consider the difference y E y 
wE := uE - zYvE. Applying TE - A to it we find that the result fE satisfies 

(53) f := (T -A)(u -z v ) = (1-z )f - v (T -Ed )z - 2sA(Vv ,Vz ) E E EYE y £ £ 3 Y £ Y 

and has a support which is contained in E2y; moreover, since :E E V(TE) we 

have w (T -A)-lf . We now transform w and f into w and f as follows EE E EE £ £ 

2 2 2 
:= wE(x,y) exp{ (x +µy -9y )/4E} 

2 2 2 fE(x,y) := fE(x,y) exp{(x +µy -9y )/4d , 

then we find by (3) the relation 

w 
£ 

and by (29) the estimate 

(54) II ;; II = o( II 'f II ) , 
£ £ 

(£-++O), 

provided A ~ A (and A fixed). Since supp(f ) c E2 and the exponent of the 
E y 

transforming factor is negative in E3y, the order estima.te O(ll 'fEll) in (54) 

is exponentially small. Moreover, since positive constants Ci exist such 

that 
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(55) 11 vull s vii llull + C1 II ull /v and II llull s C2 JI Lull + C3 II u!I 

for all u E H2 (Q) and v E (0,1] we find from the equation, cf. (3), 

the estimate 

By Sobolev's inequality (in two dimensions), cf. (2.19) and [ 9] eh. 9, 

valid for all u E H2 (Q) and certain positive constants Ci, we obtain the 

estimate 

§4.3 

Hence a constant C exists, depending only on µ,L and the distance between 

A and h such that 

for all (x,y) E Q, y E (0,1/3), 

In order to estimate II f II 
E 

E E (0,1] and f E L2 (Q). 

we use formula (53) and the estimates of 

vE - u0 and u 0 , derived in (51) and (46); we find a constant c1 such that 

(58) s yC1exp(-5y/4E){[f]E + 
2y 

+ y-s[[tsfJ](l+Ey-2){1+1ImAl+(BE(A-2,s,y, 00))-
2}}, 

2 provided ReA > 2 - s + EK1 (1+s/y) ; C1 depends on µ,Land s, but not on 

E,y,A and f. In conjunction with (57) this implies 

(59) I I -1 -s+l ( ) 2 2 2 ) w (x,y) = O(E y [f]+[llf] exp{(4y -x -µy )/4E} , 
E 

provided A ~ hand ReA > 2 - s + EK1 (l+s/y) 2 . Since y can be chosen arbitrar­

ily within (0,1/3), we insert 8y 2 = x2 + µy 2 in (59) and we find from this 
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formula and from (Sld) that the difference between u and u satisfies the 
E 0 

estimate 

(60) lu (x,y) - u (x,y) I 
E 0 

OCdfJ+dMJl (E++O) I 

uniformly for all (x,y) in the annular subdomain Q/E , provided y > 0, y 
A ~ A and y and A are fixed. More precisely stated we have: 

THEOREM 4.10. Positive constants c1 and c2 exist such that the difference 
between u := (T -A)-1f and u := (T -A)-1f satisfies the inequality 

E E 0 0 

unifoY'mZy for aZZ (x,y) E Q satisfying 

2 provided ReA > - s + 2 + sK1 (l+s/y) . c2 depends onZy on µ, s and L; C1 
depends on µ,s,L and A, its A-dependence being 

( 2 -2 ) C1 (A) = 0 {l+(ReA+s-2-EK1 (l+s/y) ) }{1+1/dist(A,A)} 

REMARKS 1. Approximations of higher order on an annular subdomain are ob­

tained by iteration of the above procedure; e.g. we find by analogy to (60): 

2. The assertion of theorem 4.10 can easily be extended to the so­

lution of the inhomogeneous problem (1+): we merely have to add the term 

tA(x,y)g(ljJ(x,y)) to the approximation u0 and the term [gJ 3Q + [g"]aQ to the 

factor [f] + [6f] in the order estimate. 

4.4. A REPELLING NODE; CONVERGENCE FOR ReA > 0 

We now consider problem (1-) and begin by studying the asymptotic be­

haviour of its solution in the case ReA > 0. As we observed earlier in 

§3.6, the change of sign in problem (1) radically alters the asymptotic be-
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haviour of the solution: the region of non-uniformity is transferred from a 

neighbourhood of the origin in the plus-sign case to a neighbourhood of the 
boundary in the minus-sign case. 

In connection with problem (1-) we define the operators UE and U0 in 
the spaces Lp(Q) and C0 (Q) by 

(63a) Uu := ELU - xa u - µy() u for all u E V(u ) := V(T ) , E x y E E 

(63b) Uu := - xa u - µya u for all u E V(U ), 0 x y 0 

( {u ' 
LPm> Xd U + µy() U E LP Wl}, or. x y 

V(u ) := 
0 

{u € C0 mi Xd U + µya u " co (Q)}. 
x y 

These operators satisfy: 

LEMMA 4.11. A constant K exists such that UE satisfies the inequaZity 

(64) iu u - Aul ~ (ReA-(1+µ)/p-EK) Jui E o,p o,p 

for aZZ p E [l, 00 ], u E V(U ), E ~ O and A E ~. Moreover, U - A is invertibZe E E 
if the right-hand side of (64) is positive. 

PROOF •. The proof of the estimate (64) is similar to the proof of (34) and 

the proof of. the invertibility is the same as the one of lemma 4.7. D 

In a manner analogous to §2.2 we now construct an approximation to 

(uE-A)-1f. The solution of the reduced equation U0 u - AU= f of (1-) is, 
cf. (38-39-40), 

1 

(65) - f 
0 

µ A-1 f(xs,ys )s ds. 

Differentiation under the integral sign shows the identities 

hence we find a constant C such that 

(66) IL(U -A)-1fl ,,; ell f 112 /(ReA-(µ+1)/p)' o o,p ,p 
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provided ReA > (µ+1)/p. 

The solution of the reduced equation (u -A)-1f will approximate 
0 

(U -A)-lf in the major part of Q, but since it does not satisfy the boundary 
E: 

condition at 3Q, we have to construct a boundary layer there. We introduce 

the local coordinate I; := (1-t)/E: and define the substitution operator sE: by 

(67) (s u) (1;,iJ!) := u((l-e:l;)cos iJ!, (1-e:l;)µsin iJ!l 
E: 

and the formal expansion of order m 

(68a) ( -1 
s e::L-xa -µy3 )s 

E: x y E: 

m j-1 m # 
l E: PJ. + E: pm; 

j=O 

in particular we find from (38b) 

(68b) 

2 2 2 2 
where a(iJi) := (x +µy ) (x a+2xyb+y c) I (x,y) (cosiJ!,siniJ!) • 

As in §2.2 we define the kernel k by 

(69a) k (I; ,n ,iJ!) 
lexp(-1;/a(iJ!)) 

:= lexp(-1;/a(iJ!ll 

and the functions w. and v. by 
J J 

- exp((n-l;l/a(iJi)), if I; > n 

- 1 , if i; < n 

(69b) for j <: 

(69c) 

(69d) 

v.(l;,iJ!) 
J 

v. (I; ,iJ!) 
J 

:= v.(l;,iJ!) - w. (cosiJi,siniJ!)exp(-1;/a(iJi)). 
J J 

By analogy to theorem 2. 7 we find from lemma 4 .11 and the formulae (66) and 

(69): 

THEOREM 4.12. Positive constants C and e:: exist, such that 
0 

(70) 
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for all p E [1, 00 ], A E ~with ReA > (µ+1)/p and c E (0,c0 ]. C and c0 depend 
on A,µ,p,n and the coefficients of L, but not on f and c. 

PROOF. By definition we have 

and when we apply Uc - A to it we find as result f plus a remainder of the 

same order as (70) is; since lcnv I is also of this order, the validity 
n o,p 

of (70) follows from lemma 4.11. 0 

REMARKS. 1. If f E c2n+4 (Q) we obtain in (70) an estimate in the maximum 

norm, provided ReA > 0. 

2. An asymptotic expansion of the solution of problem (1-) with 

inhomogeneous boundary conditions is easily obtained from (70) by adding 

g(tjJ)exp(-1;/a(tjJ)) to v0 in (69d) and adding O(E:nll g 11 2n+4 ,p,aQ) to the order 

estimate. 

3. The Lp-norm of the boundary layer part in the expansion of 
1 -1 (UE-A)- f tends to zero iff p < 00 ; hence we conclude that (Uc-A) converges 

strongly to (U -A)-1 in Lp-norm with p < 00 but not in the L00-norm and the 
0 

maximum norm. 

4. The constants C and c0 in theorem 4.12 can be chosen indepen­

dently of A for all A within a fixed compact subset of p(U ); this follows 
0 

from the fact that the estimate (64) depends continuously on A. 

4.5. A PROOF OF CONVERGENCE FOR ALL A E ~\A* BY A CUT-OFF METHOD 

•)<., 

In order to enlarge the part of the A-plane in which convergence of 

(U -A)-1f can be proved at least for a restricted class of functions from 
£ 

which f can be chosen, we re-employ the cut-off method, used in §3.6 and 

§4.3, and formula (31), which gives a bound for II (U -A)-1 11 independent 
E 

of E. The result obtained is dual to the result of §4.3: we shall prove 

convergence of (U -A)-1f on all of Q, provided the support of f does not 
E * contain a neighbourhood of the origin and A ( A • 

In LP(FY) and C0 (Fy) we define the restriction Ne of Uc for c ~ O by 

(71) Nu := U u 
£ £ 

for all u E V(N ) 
£ 

V(N ) 
£ 

:= { v E V(u) n L1 (F) I vlaE 
E y y 

O} 
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it satisfies: 

LEMMA 4.13. A constant K1 E JR+, depending only on the coefficients of L, 

exists such that 

(72) 

for aU u E V(N ), EE [0,1], y E (0,1], s ~ O, /.. 
E 

E ~and p E [1, 00 ]. More­
N - /.. has a bounded in­

E 
over, if the right-hand side of (72) is positive, 
verse in LP(F ). 

y 

The proof is identical to the proof of lemma 4.9. D 

If f E C0 (Q) (or f E Lp(Q)) and if the support off is contained in 
Fy' then by lemma 4.13 

1 

(U -t..)-1f = (N -t..)- 1f = - f f(xs,ysµ)s/..-lds 
0 0 

0 

is well-defined and is an element of c°(n) (or Lp(Q)) for all/.. E ~; more­
over, its support is contained in F too. This implies that the asymptotic y 
approximation of (U -/..)-1f, given in (70) and defined for Re/.. > 0, can be E 

continued analytically to the entire complex plane in this case; by lemma 
4.13 it is an asymptotic approximation of (N -/..)- 1f of the same order as 

E 
(70) is, i.e. 

(73) ! 1 n-1 . 1 I (NE-/..)-f- l EJ(w.+z 113s-v.) F =0(t:nllf!J 2 4 ), j=O J t: J o,p, y n+ ,p 

for all /.. E ~. y E (0,1/3) and f with supp(f) n E = 0. 
-1 y -1 * In order to show that (N ->..) f approximates (U -/..) f for all /.. E ~\A , E E 

we assume until further notice that supp(f) n ES = 0 with B > y and we 
define 

u := (U -t..)-1f , E E 

2 2 2 u := u exp( (y -x -µy )/4E), 
E E: 

2 2 2 f := f exp((y -x -µy )/4E) , E 

then 

u (u-t..)-1'.f 
E E 
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and by (31) we infer 

II ~ II = o( II i II ) E E 
(e:++O) 

uniformly with respect to f, provided A f A*. By an argument, similar to that 

of (54-57), we find 

and hence 

(74a) 

cu J = o(e: -1 11 f' II ) 
E E 

( -1 2 2 0 E [f] exp( (y -(3 )/4e:)) 

I I -1 2 2 2 u (x,y) 5 CE [f] exp((x +µy -(3 )/4e:) , 
E 

where C is a constant, depending on L,µ and A, but not on (3,y,£ and f; ex­

plicitly the A-dependence of C is 

(74b) C = 0(1/dist(A,o(U Jl) 
E 

uniformly for all A e: ~- In particular we find from (74a) 

(74c) -1 2 2 
5 E C[f] exp( (y -(3 )/4e:). 

We continue the restriction of u to 3E into F by defining 
E y y 

this function is bounded by (74c) and its first and second derivatives are 

bounded by the first and second tangential derivatives of uE along aEY, 

which in its turn are bounded by [Vu ] and [6u ] . Since as a consequence 
E Ey e: Ey 

of the mean value theorem we have the inequality 

we find from the differential equation Ue:uE 

that 

for all u e: C2 (E ) 
y 

Aue: on EY a constant c 1 such 
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Since u - u € V(N ) this implies the estimate 
E: E: E: 

(75) 

From lemma 4.13, the formulae (73-75) and the equivalence of the norms 

u 1->- [u]F and u !--+- [t-su]F we conclude: 
y y 

THEOREM 4.14. Positive consta:nts C and c: exist such that 
0 

(76) 

for au f € 

c: € (O,c:o]. 

on f and c:. 

2n+4 . C (Q) unth supp(f) n E 
y 

C a:nd c: depend on y,A,µ,n 
0 

= 0, y € (0,1], A E (!:\A*, n E JN and 

and the coefficients of L, but not 

REMARK. 1. The constants C and E can be chosen independently of A for all 

A within a fixed compact subset K of ~\A*; this applies even if K depends 

on c: in such a way that K(c:) is contained in a circle with fixed radius and 

if the distance between K(c:) and o(U ) is larger than some positive power 
E 

of c:. This follows from the fact that the distance between A and o(U) enters 
E: 

the estimate (76) only through formula (74c) and that the order terms in 

(73) and (75) depend continuously on A by lemma 4.13; since the right-hand 
side of (74c) decreases faster than any power of c:, multiplication by a nega­

tive power of c: does not destroy conver~ence. 

2. An asymptotic expansion of the solution of problem (1-) is ob­

tained in the same manner as in remark 2 of the previous section. 

4.6. CONVERGENCE IN H2n(Q) 

The restriction on the support of the right-hand side f of the differen­

tial equation (1-) can be removed, when we strengthen the smoothness con­

ditions on f, as we did in §3.7. Therefore we define in H2n(Q) the auxiliary 

operator U , which is a restriction of c:L - xa - µy3 by a boundary con-c:, n x y 
dition on the highest possible derivative. 

Let M be a uniformly elliptic differential operator on Q of second 

order, which is such that the coefficients of the principal part of 

M(xa +µy3 ) - (x3 +µy3 +2µ)M 
x y x y 
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are non-negative C00-functions which are zero in a neighbourhood of the 

boundary. The following construction yields such an operator. Choose a func­

tion S E C00 (n) satisfying 
0 

O ~ SCx,yJ ~ 2 - 2µ, if (x,y) E n 

S(x,y) 2 - 2µ, 

and define a by, cf. (65), 

1 

a(x,y) := + J 
0 

2 2 
ifx +y ~l:i 

µ 2µ-3 (2-2µ-S(xs,ys ))s ds; 

since the integrand is non-negative and zero in a neighbourhood of s 0, 

a is C00 and a ~ 1. This implies that the operator 

(77a) M := a2 + 3 aa 
y x x 

is uniformly elliptic on ~l and satisfies the relation 

(77b) M(xa +µya ) - (xa +µya +2µ)M = (2-2µ)8 sa . x y x y x x 

By analogy to (3.69) we define in H2n(Q) the operators U and U 
E,n o,n 

for all n E :N by 

(78a) u u := ELu - xa u - µya u E,n X y 

for all u E V(U ) ·= {v E H2n+2 (n) I (xa +µya )~v, O} , 
E,n x Y an 

(78b) U U := - Xd - µy3 U o,n x y 
( = U u) 

0 

for all u E V(U ) := {v E H2n(Q) I U v E H2n(Q)} . o,n o 

LEMMA 4.15. The spectrum of U is the set o,n 

(79) o(U ) := {A E ~ I ReA ~ ~ + l:iµ - 2nµ} u A* o,n 

and a constant c2n > O exists such that U satisfies the estimate o,n 
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(80) II u U-AU 112 2 c2 v II u 112 dist (>., )\ * u{AE:\C I Ref.>-2nµ+µv+~µ+~}) o,n n n n 

for alZ n E JN, u E V(U ), f. E \C and v E (0,2n]. o,n 
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PROOF. Instead of the usual inner product, we use in H2n(Q) the equivalent 

inner product\·,·)~~), cf. lemma 1.12. It admits the orthogonal decomposi­

tion (1.30) of H2n(Q), which is invariant under the action of U. 

If u E V(U ) and v := a 2~-j3ju, we find integrating by p~rts o,n x y 

(81a) [[ a2n-j3j(U u->.u)[[ 2 [Re l(u -f.-\Jj-2n+j)v,v)l;llvll x y o,n \ o 

+ f 
()Q 

If u = Z2nu' cf. (1.30), we find 

(81b) II r v- 2n(U u->.u) [[ [[ r v- 2nu [[ = 
o,n 

I / ( ) v-2n 2 v-2n-2 v-2n )1 2 Re\ U0 -f.-2µn+µv r u + (1-µ) (v-2n)x r u,r u 

(ReA+2nµ-)Jv-~µ-~) [[ rv-2nulf 2 + (1-µ) (2n-v) If xrv-2n-1u[[ 2 + 

f 2 2 -+ (x +µy )uud~. 
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If u xkym is a monomial of degree less than 2n 1, we find 

(81c) I k I (v) (U -A)x ym 
' o,n 2n 

I k I (v) 
= (f.+k+)Jm)x ym 

2n 

2n The orthogonal decomposition (1.30) of H (Q) and the formulae (81a-b-c) 

imply the estimate 

(81d) I I (v) 

U u-f.u 
o,n 2n 



118 §4.6 

provided 0 < v $ 2n. Lemma 1.12, concerning the equivalence of the norms 

I ·I~~) and II ·II 2n, and inequality (81d) imply (80) . 

Since U is a restriction of U , lemma 4.11 implies that a solution 
o,n o 2n 

of the equation u u - u = f exists for each f EH cnJ; formula (80) o,n 
implies that this solution is unique and hence that U 

o,n 
- 1 has a bounded 

inverse. By analytic continuation it follows from (80) that U 
o,n - A is 

invertible for all A for which the right-hand side of (80) is non-zero for 

some v > O, hence the complement of the set given in (79) is contained in 

the resolvent set of U . For other values of A the operator U - A is o,n 2 o,n 
not invertible: the equation U u = Au has in H n(n) the non-trivial solutions 

0 

a cv.+2n 
u = t y 

this proves formula (79). D 

if A 

if A 

- a - a.µ - 2nµ with Rea > - I:! 

- j - µk with j,k E :JN; 

LEMMA 4.16. Positive constants n1, ..• ,n4 exist, such that U satisfies £,n 
the estimate 

(82) II U u-Alill ~ II ull {n 1 vdist(A,A*ufo1Recv.>-2nµ+µv+l:iµ+~})-£\\2 } £,n n n 

for all u E V(U ), n E :N, v E (O,n] and A E C, provided ReA > - 2nµ + n3 -1:! £,n 
and ImA < £ n4 . If, moreover, the right-hand side of (82) is positive, 
then U - A is invertible. £,n 

PROOF. We consider in H2n(n) the (equivalent) inner product 

cf. (1.41). With respect to this inner product we have for any u E V(U ) 
E ,n 

(83) 211 w(u -A)ull 2 + 211 u u-Aull 2 ~ II u u-Aull 2 - 211 £Lull 2 + £,n E,n o,n 

- 2£Re /ref1(x3 +µy3 +A)u, L Wu> \ x y p 

for this formula we find an estimate from below as follows. From (81d) and 



§4.6 

the equivalence of the norms u I-+ I u I ~~) and u 1-+ 11 M11 u 11 + II uH we find a 

constant cl > 0 such that 

(84) II K1(u u-:>..u) 11 2 + II (U u-:>..u) 11 2 <!: o,n o,n 

<!: C1v2{(11 M1'1ull 2 + llull 2 )dist(:>..,A*u{aE«:IRea>-2nµ+µv+~+~µ}) 2 + 

+ I CReA.+2n+µj-j-~µ-~) II a~n-jayju II ~Q lf 
j=O 

Since the operator L K1 - K1L is at most of order 2n + 1, we can find a 
p 

constant c2 such that 

In order to estimate the inner product in (83) we introduce in H2 (Q) the 

sesquilinear forms A, cf. (1.33), and B, 

(86) A(u,v) :=II A(Vu,Vv)dxdy, 

Q 

SCu,v) :=II B(Vu,Vv)dxdy, 

Q 

where A and Bare sesquilinear forms in ~2 , defined by (36) and by 
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Since Lp is a uniformly elliptic operator, positive constants ~j exist such 

that 

(87) 

1 2 
for all v EH (Q). If w EH (Q) and satisfies the boundary condition 

we find from (1.35a) 

(88b) 

211 I h(~)v(cos~,sin~)a~w(cos~,sin~)d~. 
0 
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Integrating by parts we find in the same way 

(89a) 2Re lxa v+µya v,L v) -
\ x y p 

B(v,v) = 

27T 

I 
0 

12 2 2 2 I 12 I 12 {<a+c/µ> lxa v+µya v -<x c-2µxyb+µ y al c a v +a v /µ)}I a~ 
x Y y x r=l 

for all v E H2 (Q); if in particular v satisfies the boundary condition (88a), 

the right-hand side of (89a) is non-positive due to the uniform ellipticity 

of L and we find a positive constant ~4 such that 

(89b) - 2Re I xa v+µya v,L v) + B(v,vl 
\ x y p 

Using formula (77b) we reduce the inner product term in the right-hand 

side of (83) to 

(90) - 2£Re <M'1cxa +µya +A)u,L M'1u) = x y p 

= - 2£Re \Cxa +µya +2nµ+A)M'1u,L ff1u) - 2£Re /Ru L Mn ) x y p \ 'p u, 

where R is the operator of order 2n, cf. (77b), 

R := (2-2µ) 
j=O 

2n(l-µ) sa 2M'1- 1 
x 

+ derivatives of order less than 2n. 

Since the coefficients of all terms of R are zero in a neighbourhood of the 

boundary, we find integrating by parts repeatedly 

(91a) I . .n \ If ( 2 • .n-1 2 . .n-1 ) - Re \Ru,LPM u/ = 2n(l-µ) ai3A V3xM u,V3XM u dxdy + 

Q 

+ 2n(1-µ) 

+ 2n(l-µ) 
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where the coefficients y,. are derivatives of products of a and aS with 
1.J 
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a, b and c. The positivity of a and S implies the existence of a positive 

constant s 5 such that 

Using the formulae (1.35a), (87), (88b), (89b) and (91b) we can estimate 

the right-hand side of (90) as follows: 

(92) - 2£Re lr.vf cxa +µya +A)u,L r.vfu) = 
\ x y p 

211 
. .n . .n J' 2 2 -1 2 2 • .n 12 £B(rv1 u,l"l u) + E { (x +µy ) (aµy -2bxy+cx /µ) I a ,Jt1 u } I r=ld<fl + 

0 
211 

+ E (A+'f+4nµ) A(Wu,Wu) + 2£Re I h (<fl ){ (A+2nµ) (Wu) (a q,Jlfm} I r=l d<j> + 

0 

2 E(A+A+4nµ-s2)A(Wu,Wu)-£ <ss (n-nµ) + s3l Cll Wull 2 + II u 11 2 ) + 

+ £s 4 1Wul~,ari - £ImAChJIWul 1 ,ari11Wull 8ri + 

- £(ReA+2nµ)[h'Jll Wull~Q · 

If ReA + 2nµ - ~µ 

terms of (84) and 

the formulae (83), 

-1 2 - ~ - £[h'](ReA+2nµ) - ~£s4 ([h]ImA) 2 o, the boundary 

(92) add up to a non-negative quantity and we find from 

(84), (85) and (92) the estimate 

II W{U u-Au) 11 2 + II U u-Aull 2 2 e:,n e:,n 

2 (II Wu 11 2 + II u 11 2 ) {c1 v2dist (A ,A* u foE<I:I Rea>-2nµ+µv+l.i+l.iµ}) 2 + 

- £2C2 - £(s5 Cn-nµ)+s 3) }, 

provided ReA > - 2nµ + s 4 • This proves (82). 

The invertibility of U - A is now a simple consequence of estimate £,n 
(82) and corollary (1.14). D 
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Using this lenuna we can prove convergence of formal approximations of 

the solution of the auxiliary equation U u - Au = f and show that we can e:,n 
derive from it convergence of the analytic continuation (in the A-plane) of 

the approximation of (U -A)-1 , which is given in (70), provided f is smooth e: 
enough and A~ A*. If f E If1(Q) and ReA + nµ > ~µ + ~. we find from lemma 

4.15 the analytic continuation 

with 

1 

f ~ µ A-1 
f(xs,ys )s ds 

0 

f (x,y) := f(x,y) -

Let z be as defined in (52b) and f E H2n+2 (Q); we split f up in two y 
parts, 

(93) f 

such that fA is zero in a neighbourhood of (0,0) and (U0 -A)- 1fA is zero in 

a neighbourhood of the boundary and is contained in the domain of U e:,n 
Lemma 1.16 now implies 

(94a) li(U -A)-1f,-(U->.)- 1f,)) 2 =O(e:liLf,11 2 )=0(e:))fli 2 2 ) 
1 E , n I\ o 11. n I\ n n+ 

provided A ~ A* and ReA + 2nµ > ~ + ~µ + n4 . The trace theorem (lemma 1.12) 

implies 

Since (U -A)-1f, and (u ->.)- 1f, differ by a solution of the homogeneous E,n A £ 1 0 A 

equation U u = >.u, we can estimate the difference between (U ->.)-1f, e:,o1 e:,n I\ 

and (U ->.)- f, with the aid of theorem 4.14 and we find e:,o I\ 

(94b) 

Applying theorem 4.14 directly to the remainder f>. we find from the estimates 

(94): 
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THEOREM 4.17. Positive constants C and s exist, such that 
0 

(95) 

2n+2 * for all f EH (Q), n E JN, EE (0,s0 ] and A E ~\A satisfying 
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ReA + 2nµ > '1 + !:!µ + n4 • C and_ s0 depend on n,A,µ and the coefficients of L 

but not on f and s. The functions v0 and w0 are (the analytic continuations 

of the functions) defined in (69b and d} . 

REMARK. In the same way we can prove convergence of the analytic continua­

tion of the higher order approximations given in theorem 4.12. 

4.7. DISCUSSION OF THE RESULTS 

In this chapter we have constructed (formal} approximations to the 

solutions of the Dirichlet-problems (1+} and (1-) for all A E t\A and 

A E C\A* respectively, provided the right-hand side f is smooth enough, and 

we have proved convergence of these approximations for E + +0. This con­

vergence is uniform in all of Q for the formal approximation to the solution 

of (1-). 

For a first order approximation of the solution of (1+} we obtain uni­

form convergence of order 0(s} if and only if ReA > 2 (and by regularisation, 

cf. [12], we obtain uniform convergence of order O(sv) iff ReA > 2v and 

v E (0,1]). If -(1+µ)/p < ReA s 0 with p ~ 1, the difference (T -A)-lf + 
E 

- (T -A)-1f cannot converge to zero uniformly, since (T -A)-1f is (in general) 
0 0 

not continuous at the origin, however it converges still in Lp-sense; more-

over, we can construct a uniformly convergent approximation, which contains 

an internal boundary layer in a neighbourhood of the origin, cf. [13] and 

[14]. If ReA is smaller than or equal to the first eigenvalue, i.e. if 

ReA s - µ - 1, we can prove (uniform) convergence for approximations of (1+) 

only in an annular subdomain of Q not containing a neighbourhood of the 

origin and we do not know how convergence of any formal approximation in a 

neighbourhood of (0,0) can be proved. 

In the one-dimensional analogue we find that any formal approximation, 

which satisfies the differential equation (3.1+) and the boundary conditions 

up to the order O(s), is a (valid) asymptotic approximation of the solution 

up to 0(s) with respect to the weighted norm 
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I-+ - , ,k+l.i ] 
u L x u (-l,l) , 

provided ReA > - k + 3/2 and provided A is not the limit of an eigenvalue. 

The analogous statement for problem (1+) in two dimensions would be that 

any formal approximation converges in the weighted norm 

provided ReA > sµ - ~µ + 3/2 and A ~ A. However, when we try to generalize 

the proof of theorem 3.15 and the lemma's, on which it depends, we encounter 

the fact that lemma 3.13 is essentially one-dimensional. The inequalities 

(3.43a and b) depend on the fact that every differential operator Din one 

dimension is "elliptic", such that all derivatives of lower order are D­

bounded with arbitrarily small D-bound (cf. §1.1). In several dimensions 

this is not true: for µ = 1 and k = 2 the analogue of (3.43b) would be 

(96) 

for all t E (0,1] and w E H3 (n); with the choice w = x(r)eim$, with 

x E C00 (0,1), x nonnegative and m E JN we have form+ 00 
0 

2 II r t.wll 
2 2 

m II r xii (O,l) + 0(m) , 

3 2 3 II r art.wll = m II r arxll (O,ll + O(m) , 

11w11 oc1i 

this contradicts (96). 

The results of this chapter can easily be extended to the more general 

Dirichlet-problem on the bounded domain Q c JRn 

n 
ELU + l pJ,djU - AU 

j=l 
f, ((). :=()/()x.) 

J J 

where Lis a second order uniformly elliptic operator on n, where LP.a. is 
00 J J 

a first order operator with C -coefficients and with exactly one critical 

point of nondegenerate nodal type, cf. §1.3, inside n and where Q is an 

open bounded set in JRn whose boundary is a connected C00~manifold of dimen­

sion n-1 which is nowhere tangent to the characteristics of Ip.a .. According 
J J 
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to STERNBERG [28] we can linearize the equations for the characteristics of 

Lp.3., cf. §1.3, and then we can apply the entire machinery developed in J J 
this chapter. 
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CHAPTER V 

PERTURBATION OF A FIRST ORDER OPERATOR OF VORTEX TYPE 

In this chapter we study degeneration of an elliptic operator on the 

unit disk Q c JR2 to a first order operator, which has a critical point of 

vortex type at (x,y) (0,0). In the domain Q we consider the singularly 

perturbed boundary value problems 

(1±) ELu ± (Cx-Ky)a u + (y+Kx)3 u) - Au 
x y 

f, 

where Q, L, E, A, f and g are as in (4.1±) and KE JR; without loss of gener­

ality we can assume K > 0. We shall use polar coordinates (r,$) and rectan­

gular coordinates (x,y) = (r cos$, r sin$) collateral for the same point of 

Q; e.g. we have 

(2) (x-Ky)a + (y+KX)d 
x y 

The asymptotic behaviour of the solutions of the problems (1±) is the 

same as that of the problems (4.1±) of the previous chapter and their proofs 

can easily be adapted to this case. We shall therefore merely state the 

results and for a proof refer to the corresponding results in the nodal case. 

Only the proof of the convergence of the eigenvalues will be reconsidered 

in detail, since a part of it differs considerably from the proof theorem 4.5. 

Let the operators TE, TE, RE, A and B and the functions wj be as de­

fined in chapter 4 formulae (4.2-3-6) and (4.4) respectively with µ = 1 and 

define in connection with (1+) the operator T by 
E 1 K 

(3) T 
E 1 K 

V(T ) 
E 1 K 

:= V(T ). 
E 

Applying the transformation (4.3) to T we find 
E 1 K 

(4) T u 
E,K 

2 2 
:= exp(r /4E)T (u exp(-r /4E)) 

E,K 
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We shall show that the spectrum of TE,K converges for £ + +O to the set AK, 

(5) A : = { - 2n - Im I + iKm I n E JN, m E 2Z } . 
K 

By separation of variables it is easy to show that the spectrum of the 
2 

special operator S := £6 + K3~ - ~r /E converges to AK. However, it is 
E,K 't' 

not possible to transfer this property directly to RE + Kd<P by the continu-

ity method of lemma 4.4. Since RE + Kd<P is not normal (it cannot be made 

selfadjoint by a transformation of type (4.3) since its spectrum is non­

real), we do not know how to estimate the norm of its resolvent by a func­

tion of the distance to the spectrum; consequently no criterion is available 

for the smallness of additional perturbations. Therefore we shall use a 

slightly different method. 

We construct an alternative set of approximate eigenfunctions for 

RE, which is simultaneously a set of eigenfunctions for a<P and we show that 

the commutant of RE and a<P is RE-bounded and is small on the span of a finite 

number of such approximate eigenfunctions; this implies that the eigenvalues 

of RE and a<P add up approximately, provided £ is small enough. 

The approximate eigenfunctions x , defined in (4.11), are (for µ=1) 

the eigenfunctions of the selfadjointn~:erator £6 - r 2/4E on the domain 

H2 (JR2 ). Since the operator a<P (with domain H1 (JR2 )) is normal and since it 
2 

commutes with £6 - r /4E, a complete set of simultaneous eigenfunctions 

exists. Separation of variables in the equation £6u - r 2u/4E = AU with re­

spect to polar coordinates yields the normalized eigenfunctions 

(6) \jJ (r 1 <j>; E) 
n,m 

lml im<P 2 2 
:= h r e exp(r /4E)F(n+lmJ;1+lml;-r /2E) n,m 

2 
of the operators £6 - r /4£ and a<P at the eigenvalues - 2n - lml and im 
respectively, with n E JN and m E 2Z; ljJ is a (finite) linear combination n,m 
of the functions xk . with k + j + 2 = 2n + Im\. Clearly these functions ,J 
are approximate eigenfunctions of T at the approximate eigenvalues 

E 1 K 
- 2n - lml; they satisfy lemma 4.3 and the set 

(7) {P .l/J l2n+lml~j,nEJNandmE2Z} E,J n,m 

is a nearly orthogonal basis in R(P .) in the sense of (4.26), where P . 
E 1 J E, J 

is the orthogonal projection on the joint eigenspace of BE, belonging to all 

eigenvalues of RE, contained in D(O,j+~), cf. (4.16). 
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In addition to lemmas 4.2 and 4.3 we show that 3$ is RE-bounded and that 

the commutant of RE and 3$ has an arbitrarily small RE-bound. 

LEMMA 5.1. Positive constants s. exist such that aZZ u E V(T) satisfy the 
J E 

estimates 

(Ba) II a$ull ~ slll REull + szllu II 

(Bbl 1\RE3$u-3$REu,u)I ~ s3ll REull 11 ull + s4ll uil 2 

and such that the approximate eigenfunctions satisfy 

for aZZ n E JN, m E :ZZ and e: E (0,1]. 

PROOF. Integrating by parts once we find for any u E V(T ) 
E 

hence a constant C exists such that 

In conjunction with the two-dimensional analogue of inequality (3.11) this 

proves (Ba). The commutant of RE and 3$ is the formally selfadjoint second 

order operator 

(9a) 

where w5 := (x3 -y3 )w3 and where M is the matrix 
y x 

( d f 3 ) I 
x y 
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(9b) ( 
ya a - xa a - 2b 

x y 
M := 

a - c + ya b - xa b x y 

a - c + y() b - xa b ) x y 

ya c - xa c - 2b 
x y 

Since a(0,0) = c(0,0) = 1 and b(0,0) 0 we have 

(9c) M = (0) + O(r), 
2 2 2 

r=x+y+O 

and from (4.4c) we infer 

(9d) 3 
w3 = OCr ) , r + O. 

Since~ is a finite linear combination of the functions xk ., cf. (4.11), 
n,m ,J 

estimate (Sb) is a consequence of formula (3.16). The proof of (Sa) is 

similar to the proofs of formulae (3.lOa) and (4.lOa). 0 

THEOREM 5.2. The eigenvalues of the operator T aan be numbered in suah 
£,K 

a way that 

(10a) cr (T ) = { 7f ( e:, K) I n e: JN , m e: 7l } e:,K n,m 

and a aonstant K > O, not depending on e:,K,n and m, exists suah that 

(10b) 17f (e:,K) - 2n - lml - iKml S Ke:~(n+lml) 3/2 . n,m 

PROOF. First we shall deduce a lower bound for JI (Re:+K<l<f>+A-A.)uJI from the 

known lower bound of IJ (R -A.)uJJ derived in lemma 4.4. Any u e: V(T ) satis-e: e: 
fies 

if A.= a+ is with a,8 e: JR, this implies 

2JJ (Re:+A+K<l<f>-A.)ull 2 ~ II (Re:+K<l<f>-A.)ull 2 - 21JAull 2 

=JI Re:u-aulJ 2 + II K<l<f>u-i8ull 2 + (K(Re:a<f>-a<f>Re:)u,u)- 211 AuJj 2 . 
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Using the method by which we derived (4.28b) from (4.25), we obtain from 
this inequality and from the lemmas 5.1 and 4.2-3-4 the estimate 

(11) 

ch.5 

where C is a constant not depending on A,K and E. We remark that the nega­
tive term in the right-hand side of (11) is of order O(E~) only (and not of 
order 0(E) as it is in (28b)); this is due to the fact that (8c) is of order 
O(E~). Estimate (11) considerably restricts the freedom of movement of the 
eigenvalues of T since all eigenvalues of T depend analytically on E,K £,K 
K and since the eigenvalues of R are contained in small disks around the £ 
points - k - 1 with k E JN I no eigenvalue of T can cross a line 

£\ 
£,K 

Re A = - k - ~ if £ and are small enough. Also the imaginary part of an 
eigenvalue cannot grow too fast: the spectrum is contained in the (semi-) 
cone 

In order to prove this we use the inequality 

valid for all s E (0,1]; estimating its right-hand side from below, using 
(8a) and Young's inequality and inserting the result in (11) we obtain the 
inequality 

(13) 

the coefficient of II u 11 2 in its right-hand side is bounded away from zero 
if A is outside the cone K and s and E are small enough. We conclude that 
the eigenvalues of T , contained in the strip jReA+k+lj <~cannot escape £,K 
a fixed bounded set in the limit for E + +0; their total multiplicity is 
constant and it is equal to k, since this is true for T 

£,o 
Let QE,k be the orthogonal projection on the joint eigenspace of RE 

belonging to all eigenvalues contained in the intersection 

{A I - ~ < ReA + k + 1 < ~} n K, 
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cf, (4.22a), and let N k be the orthogonal projection onto the span of the 
E, 

(orthonormal) set 

(14) {ljJ. I 2j + lml =k+ 1, j € lN andm€ ?l}. 
J,m 

From (4.19) we infer 

where 2j + lml = k + 1, and hence, since the ranks of Q k and N k are 
EI e:, 

equal, we have 

this implies (by [19] eh. I theorem 6.34) the identities 

(15) II Q k - N kll = II (1-N k)Q kll = II (1-Q k)N kll = O(e: !.:ik3/ 2). 
E 1 £ 1 e:, E, £ 1 £ 1 

Since Ka$ commutes with NE,k and is normal and since the spectrum of its 

restriction to R(N k) is the set 
E, 

j € :JN I j ~ k} I 

we find from (15) a constant nk such that 

~ dist(ifl,sk) (II Q kull - II Q ku - N kull ) ~ e:, E, E, 

If A is in the strip IReA + k + 11 < !.:!, lemma 4.4 yields the inequalities 

II (1-Q k) (R u-a.u) II ~ !.:ill (1-Q , )uJI , E, E E,K 
(a := Rel..), 

II Q k(R u-a.u) II ~ {a.+k+1-e: !.:ik3/2 ~k) II Q kull E, E E, 
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hence from formulae (11) and (16) we find a constant nk such that 

(17) II T u-!.ull;?: (l..! dist(A,{k+l+iK(k-2j+l) lj E JN,j Sk}-nk£1..ik312 )llull. £,K 

Moreover, if u is orthogonal to w with 2n + lml = k + 1 and if A is con-n,m 
tained in the disk D(k+l+imK,min(l.;,K)), then the formulae (16) and (17) 
imply 

(18) C > O; 

hence T 
£,K - A is invertible modulo w for all A in the disk. Formula (17) n,m 

implies that the eigenvalues of T , which are contained in the strip £,K 
!Rei. + k + 1 / < l.;, are already contained in the union of disks of radius 
0(£1..i) around the points k + 1 + iK(k-2j+l) with j E JN and j s k and formula 
(18) implies that the rank of the eigenprojection 

M := f £,n,m 
3D(2n+imi+iKm,p) 

with 2n + lml = k + 1 and 0 < p < min(l.;,K) is at most one. Since the total 
eigenprojection of the strip !Rei.+ k + ll <~is of rank k, the rank of 
M is one and D(2n+lml+iKm,C£1..i) contains precisely one eigenvalue. From E,n,m ~ 
(17) we find II M IJ S 3 and choosing p = 0(£) we find from (18) a E,n,m 
constant K > 0 such that 

II M ull S £~Hull £,n,m 

for all u in the orthogonal complement of w ; since M is a non-trivial n,m E,n,m 
projection of rank one this implies 

for all sufficiently small £. Since by lemma 4.3 a constant C > 0 exists, 
independent of K and £, such that 

II (T -2n-lml-iKm)W II S £l.;C(n+lmi) 312 
E,K n,m 

we find 
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(19) 3£ l:;C(n+m) 312 ~ llM (T -2n-Jml-iKm)ljJ II ~ £,n,m E,K n,m 

~Irr (E:,K) - 2n - lml - iKml llM ljJ II. n,m s,n,m n,m 

This proves the theorem. D 

REMARK. The formulae (17) - (l8) - (19) imply the analogue of formula (4.29): 

(20) 

and an analogous one for the operator associated with problem (1-). 

In the spaces Lp(Q) and C0 (Q) we define the family of operators 

T :=Tc+ K3~ with£ E [0,1], KE :IR and T as defined in (4.33). The £,K ~ ~ E: 
characteristics of T are parametrized by 

0 1 K 

(x(t) ,y(t)) = (etcos(Kt+cjl ), etsin(Kt+cjl l), 
0 0 

and the solution of the reduced equation of (1+), 

(xa +y3 u+Kx3 -Ky3 )u Au + f, x y y x 0, 

is the function 

1 

(21) u(rcoscjl,rsincjl;A,K) := - f ( t . t ) (r)A dt f tcos(cjl+Klog-),tsin(cjl+Klog-) - ~. r r t t 
r 

By analogy to the theorems 4.8 and 4.10 we find 

THEOREM 5.3. The resoZvent set of T is the set 
0 1 K 

ReA > - 2/p} if V(T ) c LPcnJ, 
0 1 K 

(22a) P (T ) 
O,K 

I ReA > O} if V(T ) c C0 (n). 
0 1 K 

The resoZvent (T -A)-1 converges strongZy to (T -A)-1 in LP(Q) or E: 1 K 0 1 K 

C0 (n) if A E p(T ) and it satisfies for £ + +o the asyrrrptotic formulae 
0 1 K 
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provided ReA > 2 - 2/p a:nd 

(22c) 0(e:[f]+E:[t.f]) 

provided A ~ A and y > O. 
K 

In connection with problem (1-) we define the family of operators 

U . U + K3~, where U as defined in (4.63). If A€ p(U ) = 
E 1 K * E 'l' E 0 1 K 

= p(T +2/p), we find 
0 1 K 

(23) ((U -A)-1f)(rcoscjl,rsin</l) 
0 1 K 

1 

I A-1 
f(rtcos(cjl-Klogt) ,rtsin(</l-Klogt))t dt; 

0 

• .n ( -1 if f € li (Q), we can continue U -A) analytically up to the line 
0 1 K 

ch.5 

ReA = - n - 1. In order to construct the boundary layer terms at an we in-

troduce the substitution operator 

(s u)(f,,iji) := u(r,;cos(ijJ-Klogr,;),1,;sin(\jJ-Klogr;)) with r; := 1 - e:f, 
E,K 

and the formal expansion of order m 

s (e:L-ra +Ka~)s- 1 
£,K r ~ E 1 K 

in particular we find 

where 

~ j-1 m # 
l e: PJ. + e: pm; 

j=O 

2 2 2 2 
:= (Cx+KyJ a+ 2K(y -x lb+ (y-KxJ c)I a(ljJJ 

By analogy to (69) we define 

(x,y}=(coslji,sinlji) 

- exp(<n-sl/a(iJil), if s > n, 

k (s, n, iji) 

- 1, if s < n, 
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w := (U -11)-lf , 
0 O,K 

w. := - (U -11)-l Lw. 1 for j ;,, 1, J O,K J-

:= J 
0 

v.(t;,ijJ) := -;,(t;,ijJ) - w.(cosijJ,sinijJ)exp(-t;/a(iJi)). 
J J J 

Continuing these expressions analytically into the negative half-plane as 

far as possible we find by analogy to the theorems 4.12 and 4.17: 

THEOREM 5.4. Positive constants C, E and n exist such that 
0 

(24) [ -1 k-l j -1 ] k 
(U -A) f - L E (w.+z 113s v.) ,;; CE II £11 2k 2,t 2 • 

E 1 K j=O J E, K J + + 

for aZZ k,l E JN, f E H2k+2l+2 (Q) and EE (0,E ], provided 
0 

A ~ { -2n-1 m I +iKm I n E JN , m E 7l } 
0 

and Re;\ + 2l > 1 + n. 

The constants C, E and n do not depend on E and f; n does not depend on 
0 

l and n. 

135 
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CHAPTER VI 

PERTURBATION OF A FIRST ORDER OPERATOR OF SADDLE-POINT TYPE 

On the unit square n := .{ (x,y) I lxl < 1, lyl < 1} in F..2 we consider 

the singular perturbation problem 

(1) e:Lu + xa u - µya u - AU 
x y 

f, g, 

where L, e:, A, f and g are as in (4.1±) and µ E lR+. We shall investigate 

the behaviour of the solution of (1) for e: + +0 and we shall show that the 

spectrum of the differential operator in L2 (n), connected with (1) converges 

to the set 

(2) A := {- k - µj - 1 I k, j € lN L 
0 

We have chosen a domain n with a non-smooth boundary, such that the charac­

teristics of the formal limit operator xa - µyo , the curves lxlµy con-
x y 

stant, are nowhere tangent to the boundary. By doing this we avoid in the 

construction of a first order formal approximation complications caused by 

tangency problems, cf. [11], [17] and [18]. 

We have already studied problem (1) in [13] and [14]; on that occasion 

we constructed a first order approximation to its solution and we proved 

its validity by the maximum principle, provided ReA is larger than the 

largest eigenvalue. Here we shall mainly state some results on local con­

vergence of the solution of the general problem (1) for all A € ~//\; more­

over, in the particular case L = ~ we shall obtain global results, by con­

sidering a related problem in a non-isotropic space. 

1. CONVERGENCE OF THE SPECTRUM 

In connection with the boundary value problem (1) we define the dif-
2 

ferential operator Te: on L (f!) by 

(3) T u := e:Lu + xa u - µya u 
e: x y 

for all u € V(T ) e: 

(e:>O) 

2 
:= {v € H (f!) I vlan O}. 
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The spectrum of TE satisfies: 

THEOREM 6.1. The eigenvalues of TE can be numbered in such a way that 

(4) o(T ) = Jlil (E) I (n,m) E JN 2 } s n,m o 

and such that they satisfy for E ->- +o 

(5) A (E) 
n,m 

uniformly with respect to (n,m) E JN2. 
0 

PROOF. Let W E Ceo (JR2) satisfy 

w(x,y) \ 
2 

- \ µy 
2 

+ 0(r3 J = x 

l:i + 0(r) 
(6) 2 

r 
2 2 

x +y -+O 
2 a w(x,y) 
y 

-l:i µ + 0(r) 

a a w(x,yJ = O(r) 
x y 

and define the transformed operator TE by 

(7) 

Since the functions wi satisfy the relations (4.5) we can apply theorem 4.5 

to T . D 
E 

REMARKS: 1. By analogy to (4.29-31) the proof yields a constant KE JR+, 

depending on the function w, such that TE - ii satisfies the estimate 

(8) 

for all u E V(T ), ii E ~and EE JR+ and small enough; f(il) denotes the 
E 

point of A that is nearest to ii. 

2. The limiting set of the spectrum does not depend on the form of 

the domain Q considered, provided (0,0) is contained in the interior of Q. 
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2. STRONG CONVERGENCE 

We begin by proving convergence of the solution of (6.1) for A in the 

right half of the complex plane, using the analogue of the method of §4.2. 

We extend TE to an operator in Lp(Q) with 1 ~ p ~ 00 and in C0 (n) by defining 

its domain in Lp(Q) by 

(9a) 

and in C0 (Q) by V(T) := C2 (Q) n C0 (Q). The presumed limit operator T0 is 
E 0 

the restriction of xa - µya to the sets 
x y 

(9b) 
l (u d:(OJ I xa u - µy(l U E LP<nl &u(±l,y) O} 

x y 
V(T ) := 

0 

{u E C (Q) I xa u - µya u E C0 (Q) & u(±l,y) O} 
x y 

in Lp(Q) and C0 (Q) respectively. We emphasize the fact that the boundary 

condition of T0 applies only to that part of the boundary, from which the 

characteristics emanate: the value of a solution of a first order (partial) 

differential equation cannot be prescribed at more than one point on each 

characteristic. 

LEMMA 6.2. A constant K E lR exists such that 

(10) IT u - Aul ~ (ReA+(l-µ)/p-KEllul E o,p o,p 

for all E E [0,1], u E V(T ), p E [1, 00 ] and A E ~- Moreover, T - A has a 
E E 

bounded inverse on LP(Q) if ReA + (1-µ)/p > KE and T - A has a bounded in­
o 

verse on LP(Q) if and only if ReA > (µ-1)/p. The same is true in C0 (n) if 

l/p is replaced by zero. 

PROOF. Consider for p E (1, 00 ) and u E V(T) with lul = 1 the inner product 
E o,p 

and proceed as in the proofs of the lemmas 4.6 and 4.7. D 
,, 

This lemma implies convergence of a formal approximation to the solution 

of problem (1), provided ReA > (µ-1)/p. Similarly to remark 3 of §4.4 
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(pag.112) we find as a first result: 

THEOREM 6.3. If 1 

strongly in LP(Q) 

-1 ~ p < 00 and if ReA > (µ-1)/p, then (T -A) converges 
£ 

to (T -A)-1 for £ + +o. 
0 

PROOF. If ReA > 2 and if f E C2 (Q), the function u, defined by 

1 

(11) J f(xt- 1 ,ytµ)tA-ldt, 

lxl 
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is an element of C2 (Q). It satisfies the differential equation of (1) and 

the boundary value at x ±1 up to 0(£). By the usual matching technique, 

cf. (4.67-69) and [8], we match it to the boundary value at y = ±1. Using 

the local coordinates n± := (l+y)/£ and the substitution operators 

(12a) 

we find the formal expansions of the operator 

(12b) 

± 
S I 

£ 

in the upper and lower boundary layers along the lines y = ±1 respectively; 

in particular the lowest order parts of the operators are 

(12c) 

and the lowest order parts of the boundary layer expansions are 

(12d) 
+ 

v~ (x,nl := - u0 (x,±l)exp(-µn/a(x,±1)), 

cf. (2.22) and (4.69). The composition 

(13) 

with z as in (4.52), satisfies by definition PAE V(T£) and 

I (T -A)P, - fl 
£ A 0,p £ + +o, 

hence by lemma (6.2) we find 
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(14) 

rc ._,. +o, 

provided ReA > (µ-1)/p. Since C2 (Q) is dense in Lp(Q), this implies strong 

Lp-convergence of (T -A)-l for all A E ~with ReA > (µ-1)/p and for all 
E: 

finite values of p. D 

If ReA > 2 and if f 

fact an approximation of 

E C2 (Q), then the function PA, cf. (12b), is in 

(T -A)-1f of order 0(rc) in the maximum norm. In 
E: 

order to obtain an approximation of order 0(rc) in the max-norm for ReA ~ 2 

we have to add to PA an expansion in the interior boundary layer along the 

line x = 0 with the local variable s = x/.ff:.; the complexity of the formal 

approximation increases as ReA decreases. In [13] and [14] we constructed 

such a formal approximation and proved its validity for A E lR and A > - 1 

by a maximum principle. Using lemma 6.2 we can extend the validity of that 

approximation to non-real A satisfying ReA > - 1. 

3. CONVERGENCE ON SUBDOMAINS OF Q 

The restriction ReA > - 1, necessary in the previous section for a 

proof of convergence, can be removed either by assuming that the support of 

the right-hand side of (1) does not contain the line y = 0 or by restricting 

the domain of convergence to a closed subset of Q that does not contain the 

line x = 0. This is achieved by a cut-off method analogous to the method 

used in §§3.6, 4.3 and 4.5. 

Let w be as defined in (6) and let it, moreover, be such that the 

level curves w(x,y) = y are nowhere tangent to the characteristics lxlµY 

constant of xa - µya for any y E JR. we define the subdomain E and its x y y 
complement F by 

y 

(15) E := {(x,y) E Q I w(x,y) ~ y} y and F := Q\E ; 
y y 

clearly the line y 0 is contained in F if y < 0 and the line x = 0 is 
y 

contained in E if y ~ 0. We stipulate that we can choose the function w in y 
such a way, that F with y < 0 is only a small strip along the line y = 0 y 
and (by another choice) that E with y > 0 is only a small strip along the y 
line x = 0. On these subsets of Q we define the auxiliary operators ME and 
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N as the restrictions of T to the domains 
E E 

(16a) V(M ) := {u E V(TE) n L1 (FY) I ul 3F \aQ = 0 if E f o}, E 
y 

(16b) V(N ) := {u E V(TE n L1(EY) I ul 3E \aQ = o}. E y 

By analogy to the lemmas 4.9 and 4.13 we find: 

LEMMA 6.4. M - A 
E 

has a bounded inverse in LP(F ) and C0 (F ) for every 
y p y 0 

AE<J'.:andy> O and N - A has a bounded inverse in L (E ) and C (E ) for 
E y y 

every A E <r: and y < 0, if E E [0,E0 ] and if E0 , depending on A, is small 

enough. Moreover, constants K and K exist such that M and N satisfy the 
E E 

estimates 

(17a) 

(17b) I k k I x ull II x (M -A)ull F E F 
y y 

for all u E V(M ), provided y > O, and 
E 

(17c) 

for all u E V(N ), provided y < 0. B is defined by (4.46), 
E E 

2 
BE(A,k,y,p) :=Rei-+ k + (1-µ)/p - EK(l+k/y) • 

The constants K and K depend only on the function w and on the coefficients 

of L. 
The proof of this lemma is similar to that of 4.9 and 4.13. 

With the aid of this lemma we shall show that (the analytic continu­

ation of} P, approximates (T -A)-lf up to 0(E} for E + +0 on F with y > 0 
A E y 

or on Q if supp(f) c E with y < O, provided A E p(T ); in order to do so 
y E 

we first construct a better formal approximation than PA is. 

For all A E a(T ) we define u as the analytic continuation of the 
0 0 

integral in formula (11); lemma 6.4 implies that the restriction of u to 
0 

F with y > 0 is as smooth as f is and that this is even true in Q if y 
supp(f) c E with y < 0. In order to construct in the boundary layers at y 
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± 
y ±1 terms of higher order than v0 , cf. (12d), we define the kernels 

(18a) 
.
·= fexp(-µ~/a(x,±1))-exp(µ(n-~)/a(x,±1)), 

k±(~,n,x) 
exp(-µ~/a(x,±1)) - 1, 

and the functions 

(18b) == I 
0 

with the restriction x f 0 if necessary. 
+ 

if ~ > n I 

if ~ < n 

Since the second terms vl of the boundary layer expansions are non-

zero at the lines x = ±1, we take a closer look at the corner points: we 

stretch also the x-variable there. In a neighbourhood of (1,1) we introduce 

the local coordinate z:; := (1-x)/E and the substitution operator aE, 

(a u) (l;;,y) := u(l-Ez:;,y) 
E 

and we make the formal expansion of the transformed operator 

(19) +( ( +)-1 a s EL+xa -µya ) a s 
EE X y EE 

-1 # 
E R + R • 

0 

We find that R0 is the operator 

R 
0 

2 2 
:= a(1,1)3T + 2b(l,1)d d + C(l,l)d + d - µ3 

.., c;; n n c;; n 

and that the coefficients of the remainder R# are bounded by a polynomial 

of degree (at most) one in i;; and n, independently of E. Let V be the solu­

tion of the equation R0V = 0 in the quadrant i;; > 0 and n > 0 satisfying the 

boundary conditions 

V(O,n) + - v 1 (1,r,) and V(z:;,O) o). 

+ Since v 1 satisfies 

+ 
v 1 (1,nl O(n exp{-n/a(1,1l}(a u )(1,1)) 

x 0 

the Phragmen-Lindel6f theorem, cf. [24], implies that Vandall derivatives 
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of it are of the order 

(20) 
2 2 ., 

O(exp{-K(n +z; ) }), 2 2 
n + z; + '°• 

for some K E JR+; this implies that R#V is uniformly bounded (independently 

of E) and also exponentially decreasing. We cut the function V off outside 

a neighbourhood of the corner by defining 

+ -1 ) V1 (x,y) := z(4y)z(4x)(<cr s) V (x,y). 
. E E 

In the other corners of n we construct in the same manner functions v2 , v3 

and v4 and we define the formal approximation 

4 
P := u + z(4yl(s+)-1 (v++Ev+1) + z(-4yl(s-)(v-+Ev-1) + \ V 

A 0 E 0 E 0 j~l E j • 
(21) 

(with the restriction x f 0 if necessary). If f E C3 (n), the construction 

implies 

(22a) 

(22b) p 
AlannaF 

y 

0(dfJ+dVllf]J, E -+ +0, 

0, 

for each y > O; if, in addition, supp(f) c Ey with y < O, then PA is an 

element of V(T ) and it satisfies 
E 

(23a) 0(E[f]+E[Vllf]), E ->- +0, 

(23b) 

REMARK. = 0(E) for E -+ +o. Formula (21) implies [P'A-PA]F 
y 

3 
_T_H_Eo_RE_M_6_._s. If f E C (Q) and A E Q:\A, the formal approximation PA Batis-
fies for every a E JR + the estimate 

(24a) O(dfJ+dVllfJ), 

if, in addition, supp(f) c E with y < 0, then 
y 

E ->- +0; 
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(24b) E: + +o. 

3 The order terms in (23) are uniform with respect to f e C (Q) and depend on 

A,a,µ,w and the eoeffieients of L. 

PROOF. We define u := (T -A)-1f. If the support of f is contained in E E: E: y 
we find from (8) the estimate. 

II u exp{cw-y) /E:) II = II (T -A)-1 exp{(w-y) ;£)II $ E: E: 

with CA := 2{IA-l(A) I E:~Kll(A) 1312}-1, provided A EA and E: is small enough. 

By analogy to (4.74a) and (4.75a-b) this implies 

(25a) 

(25b) 

A 
where CA and CA are (constant) multiples of CA; we see that uE: and its 

derivatives are exponentially small in F . 
00 y 

Let zaS with a < B be a C -function satisfying 

(26) zaB(x,y) 

[V'z ] s C(B-a) as 

if 

if 

(x,y) E Ea 

(x,y) E FB 

for all a,B E :IR and some C E :IR+. 

If a,B,y E :IR and a < B < y and if supp(f) c Ea we find 

hence formula (25) implies 

and, since u z 0 E V(N ), (19c) implies E: µy E: 
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(27) 

provided a< B < y < 0. In conjunction with the formulae (17c) and (23) 

formula (27) implies estimate (24b). 

If the support of f is not restricted and if y > O, we define uE as 

the solution of 

(28) (EL+x3 -µy8 -A)U f in F x y y 

ul 8F PA I ' i.e. u PA E V(M ). 
8F 

E E 
y y 

Assuming 0 < y < B < a and continuing uEzyB into Ey by zero we find, cf. 

(4.53), 

(29) (T -A)(u -z B~) 
E E y E 

+ 2EA(Vv ,Vz 8). 
E y 
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Since the support of the right-hand side of (29) is contained in E8 , for­

mula (25a) implies 

(30) i(u -z Su )<x,yll,:; C,E-1exp((l3-w(x,y))/E)ll (T-A)(u -z Su )II EYE I\ E EYE 

for E + +O. In conjunction with the formulae (17a-b) and (28) this implies 

estimate (24a). D 

REMARK. In order to prove convergence of PA in the maximum norm we can use 

the maximum principle for elliptic differential operators as an alternative 

to lemma 6.4. It has the advantage that we need not construct the local ex­

pansions EV. at the corners of Q for an approximation of order 0(E), since 
J 

it yields this order of approximation already if the difference between the 

formal approximation and the solution at the boundary is of order 0(E), 

cf. [8] theorem 3. However, the maximum principle has the drawback that 

it is less suitable for complex-valued problems. In such cases we have to 

consider the equations for the real and imaginary parts as a system of two 

coupled real equations and we have to apply the usual maximum principle 
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to both equations separately in a suitable way. We obtain an a priori esti­

mate in the norm u 1-->- [xku] ,y > 0, only if A is in the sector 
Fy 

ReA > - k + ~IImAI; for details we refer to the proof of lemma 5.10 in [15]. 

4. CONVERGENCE IN NON-ISOTROPIC SPACES 

The solution u0 of the reduced equation of (1), cf. (11), shows the re­

markable effect that, if f is smooth enough, it becomes smoother (at the 

line x = 0 only) by differentiation with respect toy: if f E C00 (Q), then 

(31) if ReA > k - µj and k,j E JN0 • 

This suggests that it would be advantageous to consider problem (1) in a 

space of functions which are differentiable with respect y a number of times 

(and not with respect to x) . We shall restrict the analysis to the case 

L = A; it is not known whether it can be generalized to all elliptic pertur­

bations. 

We define in H(o,n) (Q) the auxiliary operator 

(32a) T u := EAu + xa u - µy3 u, E,n X y 
for all u E V(T ) , E,n 

(32b) 

(note that T f T ). By theorem 1.17 this operator is semibounded from 
E,O E 

above and has a compact inverse. For any u E V(T ) and E ~ 0 we have the E,n 
estimate 

(33) 

provided ReA > - nµ 

directly since u 1-7 

- ~ + ~µ. This inequality cannot be used in H(o,n) (Q) 

II anull is not a norm in that space. Therefore we shall 
y 

split up this space into two invariant subspaces in such a way that equation 

(32a) disintegrates in n ordinary differential equations in one of them and 

such that the other is isomorphic (and approximately isometric) to H~o,n) (Q), 

cf. (1.45), and is equipped with the norm u f-+ 11 anull 
y 



§6.4 

(34a) 

We define the polynomials h . by 
E,J 

!:;' h ,(y) := (E/2µ) JH.(y/µ/2E), 
E' J J 

j € JNO I 

where Hj is the j-th Hermite polynomial; they satisfy 
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(34b) E + +O 

uniformly with respect toy E [-1,1]. In L2 (lR; exp(-µy2/2El) these polyno­
mials form a complete orthogonal system of eigenfunctions of the Hermite 

2 2 (o n) operator Ed /dy - µyd/dy. We continue any f E H ' (Q) by zero outside 
Q and we expand it in a Hermite series with respect to y, 

I 
j=O 

(35a) f f ,h . 
E 1 ] E 1 J 

(35b) f .(X) := (2TI)-l:;(µ/E)j+l:; ~ f 
E,J J. 

2 h ,(y)f(x,y)exp(-µy /2e)dy, 
E1] 

the integral existing almost everywhere in (-1,1) and f . E L2 (-1,1). 
E,J 

In.serting Rodrigues' relation for Hj, integrating by parts j times and using 
the identity (1.27b) we find 

f . (x) 
E,] 

I:; 1 f (µ/2TIE) 71 
J· 

. . 2 
(-l)Jf(x,y)aJ exp(-µy /2e)dy = 

y 

1 . I:; 1 j-l k . k . k 1 I y=l = 71 (3Jf)(x,0)+(µ/2Tie) 71"' I (-1) +J(a f)(aJ- - exp(-µy/2el) + 
J. y J. k=O y y y=-1 

1 

I:; 1 f + (µ/2TIE) 71 
J. 

2 2 f '+2 exp(-µy /2e)y (1-tJ(a~ f)(x,yt)dtdy. 

0 

Denoting by U the operator defined in (3.69b) we find o,o 

1 I (1-t)(a;+2f)(·,yt)dt 

0 

and by (3.72) we find the estimate 

1 

II I ·+2 
(1-t) (a~ f) (x,yt)dtllc-i, l) '.". 

0 

8 ·+2 
3 II (a~ f) (x,y) 11(-1,1) 
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for almost every x E (-1,1). By Schwarz' inequality and lemma 1.15 we find 

a constant C. such that 
J 

(36) 
1 . ·+~ . II f .- -:-i- aJfl lie 1 ll,, C.£-J exp(-µ/2£l(ll aJfll+llfll) + £,J J. y y=O - , J y 

8 ~ j+2 J f 4 2 l ~ + 3j ! (µ/211£) II ay fll l y exp(-µy /£)dyJ 

£ -+ +0. 

Analogously we find 

£ -+ +o, 

and approximations of higher order can be derived similarly. 

In H(o,n) (n) we define for £ ~ 0 the projection operator Z by 
£,n 

(37a) z f := f -
£,n 

n-1 

I 
j=O 

f .h . 
£,] £,J 

where f . := lim 0 f . and h . := yj. Since h . is a polynomial, it 
0 1 ] £++ £ 1 ] 0 1 ] £,] 

satisfies 3nZ f = aynf. From (36) we infer that the range of Z is the y £,n o,n 

subspace H1{o,n) (n), cf. (1.45), and that Z satisfies the estimates 
£,n 

(37b) (

0(£\llfll+ lla~fll)), 
IJz f-Z fll = E,n o,n 

0(£(11 fJI + II an+ltll )), y 

uniformly with respect to f. Moreover, since the norms 

£ -+ +o, 

{ 2 2 Li.., { 2 n-l 2 }~ 
(38a) f I-+ II f II + II anytll J 2 and f I-+ II ant II + I II f .11 (-1 1) 

y j=O o, J , 

are equivalent in H(o,n) (Q), cf. (i.43b) and (1.47), the norm 

{ 
2 n-1 2 }~ 

(38bl f ,__,. 11 anfll + I lit . II <- 1 1 , 
y j=O £, J , 

is equivalent to these two norms. Hence, in R(Z ) the norms E:,n 
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(38c) and 

are equivalent and we see that we can use estimate (33) in that subspace. 

(39) 

If u E V(T ) is written as £,n 

n-1 
u = l 

j=O 
u .h . + z u, 

£ 1 ] £ 1 ] E,n 
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then it is easily seen that Z u is an element of V(T ) and that u . is £,n £,n £,J 
in H2 (-1,1) n C0 (-1,1); if u is a solution of the equation T u - AU= f, o £,n 
then u . is a solution of the equation £,J 

(40a) £U" . + xu' . - (A+µj)u . £,J £,] £,J 

and the remainder of (39) satisfies 

(40b) (T -A)Z u 
E,n £,n 

z f, 
£,n 

f , I 
£,] 

u(±l) 

z u E V<T ), e: ,n e: 

0, 

by virtue of the Hermite expansion (35). Hence 

u . 
E: I J 

provided\ ~ a(IT -µj), 
E: 

( ' =d/dx) 

where ITe: is the operator defined in 3.5. From theorem 3.15 we find the esti­

mate 

(41) 

1 

II xkflu . (x) - J 
E: I J 

lxl 

O(e:ll fe:,jl1 1,(-l,llr (A+µj+ll/(ReA+k+µj-3/2J), 

provided k E JN and ReA + k + µj > 3/2. Defining u . by 
o,J 

1 

u . (x) := J O,J 
f .(x/t)tA+µj-ldt 
O,J 

( -1 ) =(Ek-A-µj) f ., cf. (3.35a) , 
O,J 

lxl 

we find from lemma 3.12 and formula (36) the estimate 

1 

II xk{u . (x) - J O,J 
lxl 

f . (x/tltA+µj-ldt}ll( 1 1 E:' J - , ) 

O(e:<llf 11+11 aj+2fll l/(ReA+k+µj+1ll), y e: -+ +o. 
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In conjunction with (41) this implies the estimate 

(42a) 
k '+2 II x (u .-u .) II (-l l) = O(E (II f II+ II aJ fll Jr p .. +µj+l) / (ReA+k+µj-3/2)) E,J 01) t Y 

for E + +0 and likewise we obtain from theorem 3.15 the estimate 

(42b) [xk+l:!(u .-u .>](· 1 l) =0(ECl!fll+llaj+2f ll>r<A+µj+l)/(ReA+k+µj-3/2)) 
E 1 J 0 1 ] - 1 y 

for E + +0, provided ReA > - k - µj + 3/2. 

Now we shall approximate the solution of (40b). We restrict the operator 

T to R(Z ) n V(T ). Inequality (33) with E = 0 and the equivalence of the o o,m o 
norms (38c) in R(Z ) imply the invertibility of the restriction of T0 - A o,m 
and the existence of a constant C such that 

m 

(44) 

for all u E R(Z ) n V(T ) , provided ReA + mµ + I:! > I:!µ • By analogy to (11), o,m o 
(12) and (13) we define 

(45a) - ( )-1 u := T -A Z Z f 
o,n o o,n E,n 

-+ 

and u o,n 
( -1 

:= T -A) Z f 
o o,n 

(45b) v- (x, 11) 
o,n := - -n-1( n+l- \ c-µ) a u I 1exp(-µ11> 

y o,n y=±l· 

(45c) 

and we define P, by skipping the hats in (45b and c).We remark that we 
"'n 

have to define u in the manner as it is done in (45a) and that we cannot _1 o,n 
take (T -A) Z f: since this last expression and its y-derivatives of 

0 E,n 
order less than n need not be zero at the line y = O, it cannot be continued 

to all A in the negative half-plane with Re A + nµ + I:! > I:!µ • Moreover, in 

order to be able to use the equivalence of the norms (38c) we have to project 

the formal approximation P, back into R(Z ). From (44) and (36) we find 
"'n E,n 

the estimate 

(46a) II PA,n-PA)I +II a;(PA,n-PA,n)ll = 

= O(ECllf JI+ II an+2fll>I (ReA+nµ+l:i-1:!µ)) 
y 
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and analogously 

(46b) ~ n -II z P -P II +II a (z P -P ) II = E,n \,n \,n y E,n \,n \,n 

for all f E H(o,n+2 l (Q), provided Re\ > - nµ - ~ + ~µ. By definition we now 

have 

Z P E VCT ) n R(Z ) . E,n \,n E,n E,n 

Since anz f = anf for all f E H(o,n) (Q) we find y E,n y 

(47) llan{(T -\)Z P, -Z f}JI y E,n E,n "'n E,n 

provided Re\ > - rn with 

r := ~ min {2nµ - µ -3, 2nµ - 5µ + 1}. n 

In conjunction with formula (33) this implies for E + +O 

(48) 

= O(E (II f II+ II anMll l (Re\+r ,-l (ReA+nµ+~-l:;µ)- 1 ) y n 

for E + +0 and Re\ > - r ; the equivalence of the norms (38c) in R(Z ) n s,n 
implies that this estimate is also true with respect to the norm of H(o,n) (Q) 

and in conjunction with estimate (46b) we find 

(49a) 

= 0(£ (II f II+ II anMll ) (Re\+nµ+l:;-1:;µ)-l (Re\+r ,-1) y n 

for E + +0, provided Re\ > - rn. 
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With the aid of lenuna 1.16 and the estimate of £11 vanull 2 in formula 
%y 

(33) we obtain instead of (49a) an estimate of order 0(£ ) with respect to 

the maximum norm. Straightforward computations yield the estimate 

(49b) 

= 0(£ % (II f II + II anllf II ) (ReA+nµ+~-~µ) -l (ReA+r ) -l) 
y n 

for £ + +O, provided ReA > - rn. Formulae (42) and (49) yield an approxima­

tion of the composition 

(50) 

Defining integers k(j) such that 

r ~ R(j) + µj - 3/2 < r + 1 
n n 

and defining the norms 111 • l\\n and 1: • *n by 

(51a) 
n-1 k ( . ) . 

\llull~ := II a~ulln + jio II x J a~uiy=oll c-1,1> 

(51b) 1: u *n := [aynu],. + nf [xk(j)+~ajul ] 
" j=O y y=O (-1,1) 

we find from formulae (42) and (49): 

LEMMA 6.6. For any f E L2 cni with ~f E H(o,n) (0.) the resoZvent operator 

(T -A)-1 satisfies for £ + +0 the estimates 
£,n 

(52a) 

(52b) 

where 

K , (f) 
n, I\ 

1 

I 
lxl 
1 

I 
lxl 

-1 µ A-1 II f(xt ,yt Jt dt I 
n 

-1 µ /..-1 
f(xt ,yt )t dt * n 

=0(E:K ,(fJ), 
n,I\ 

% 0(£K ,(fl), 
n, I\ 

n-1 -1 -1 
:=(\I fll+ II anMll) I f(A+µj+l) (ReA+rn) (ReA+nµ+'2-~µ) , 

y j=O 
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provided ReA > - rn a:nd A f A. 

REMARK. The norm u I-+ lllu Ill , with respect to which we have proved conver­n 
gence, is strictly weaker than the norm of H(o,n) W). 

The max-norm estimate (52b) does not give a bound for the value of 

(T -A)-1f at x = 0. We shall show that it is bounded by some negative power E,n -1 
of Eby reconsidering the terms h .(IT -A-µj) f . of formula (50), which 

E,J E l E:,J 
are possibly unbounded. If k E JN, g EH (-1,1) and Rea> - k + 3/2, we find 

by theorem 3.15 

Hence at the points x 

1 

I g(x/t)ta-ldt}](-1,1) 

lxl 

O(e: II g 111, (-1, 1) r (a+1) I (Rea+k-3/2)), 

±TI£ with T E [1,2] we have 

1 

E + +0. 

(53) A ± B := (rr -a)-1gl 
£,T £ 1 T E x=±T~ 

I g(±T/£/t)ta-ldt + O(E-k+~) 
T;/£ 

E ->- +0. 

Defining the substitution operator eE by (6Eu) (~) := u(~//£) and the func­

tion pE by 

we find by (3.7) that pE is the solution of the boundary value problem on 

the interval (-T,+T): 

(54) p (±T) = A ± B , E E,T E,T 

provided T is chosen such that a is not an eigenvalue of the problem. Since 

problem (54) is selfadjoint and since a is not an eigenvalue, a constant 

C exists, cf. thm.1.2, such that 
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By Sobolev's inequality and the differential equation of (54) we find a 

constant C' such that 

Transforming back we find that {IT -a)-1g satisfies 
e: 

(56) 

e: -+ +O, 

provided k € JN and Rea > - k + 3/2. In conjunction with (49b) this yields 

the bound for (T -A)-1f: 
e:,n 

(57) 

provided ReA > - r and A f A. 
n 

e: -+ +o' 

Finally we can compare {T -A)-1f and {T -A)-1f; we shall show that 
e:,n e: 

their difference is exponentially small (with respect to e:) outside neigh-

bourhoods of the lines y = ±1. We consider the difference 

(58a) 

it is an element of VCT ) and it satisfies the equation 
e: 

(58b) 

For the function w in transformation (7) we make the specific choice 

w(x,y) 2 2 2 2 2 
:= ~µx (l+µx ) (1-y )/(µ+x ) - ~µy ; 

it satisfies (6), its level curves are nowhere inn tangent to the character­

istics lxlµy =constant and it is constant at the lines y = ±1. Defining 

de: by 

and using (7) we find 
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(58c) 

Since the exponential is smaller than one in Q, we find from (57) the esti­

mate 

£ ..,. +o, 

where Kn,' (f) := K , (f) + K , (8 f); by (8) this implies A n,A n,A+µ y 

£ + +0, 

provided Relc > - rn and A 4 A. As in (4.74) and (4.75a-b) we find from the 

differential equation (58c) and from Sobolev's inequality the estimate 

£ + +0; 

hence a constant C exists, such that 

(59) $ CE-k(n-l)-~exp(-(w+~µ)/E)K , (f), 
n,A 

for all (x,y) E Q, provided Relc > - r and A f A. Since w + ~µ is positive n 
in the interior of Q, we find from lemma 6.6, theorem 6.5 and estimate (59) 

the final result: 

THEOREM 6.7. If n* is a subset of o which is equal to~ minus small neigh­
bourhoods of the points (0,±1), then (T -/c)-1f satisfies on n* the estimates 

E 

(60a) O(EK , (fl), n,A 

(60b) 

where k := R(n-1) is the integer satisfying r $ 
n 

where r is defined by r := ~ min {2nµ - µ - 3, _ n n 

K is defined by 

E + +0, 

£ ..,. +o, 

k + µn - µ - 3/2 < r + 1, 
n 

2nµ - 5µ + 1} and where 

K , {f) n,A 

n-1 
: = ([ f]+[Vllf]+ II an [If II) l r (A+µj+l) (ReA+r ,-1 (Re/c+nµ+~-~µ) -l; 

y j=O n 

the estimates are uniform with respect to f E H(o,n) (Q) satisfying 
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[f] + ['VM] + IJ ClnLlfjj < oo 
y 

a:nd A E ~\A satisfying ReA > ~ r . 
n 

REMARK. If we enlarge the power of the weight-factor in (60b) , we obtain an 

estimate which is valid on the entire domain: 

(60c) [ k+2 ( -1 ) ] ~- ) x (T -A) f-P, = 0(£ K ' (f) I 
E I\ Q n," E + +0, 

provided ReA > - r and A f A. From (59) we infer that this estimate is true n 
in a strip of width 0(/;;:) around the line x = 0. In order to prove this esti-

mate outside the strip we have to compute explicitly the a-dependence of 

estimate (24a) of theorem 6.5. As in estimate (4.61) of theorem 4.10 we 

find that estimate (24a) remains true if the subdomain Fa depends on E and 

if it is equal to n minus a strip of width 0(/E) around the line x = 0. 
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