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Abstract

Mathematical modelling of real-life processes often requires the estimation of un-
known parameters. Once the parameters are found by means of optimization, it is
important to asses the quality of the parameter estimates. In this paper we describe
how the quality of these estimates can be analyzed and this methodology is applied to
study the model for the genetic regulatory network in the Drosophila embryo during
the early developmental stages.
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1 Introduction

Many real-life processes can be modelled by Ordinary Differential Equations (ODEs) or
Partial Differential Equations (PDEs). For instance, in developmental biology, systems of
reaction-diffusion equations are used to model spatio-temporal patterns of protein concen-
trations [1]. A common difficulty is that the model equations usually have a large number of
unknown parameters, such as diffusion coefficients, decay and reaction rates, etc. Sometimes
missing parameters can be estimated experimentally, but this is rather exceptional. Mostly,
it is impossible to find missing parameter values directly. However, usually one can measure
other quantities involved in the model. For instance, experimentalists can measure protein
or mRNA concentrations. The unknown model parameters can then be found by parameter
estimation techniques such that the solution of the mathematical model fits the measured
data.

There exists a number of different optimization techniques for parameter estimation.
The choice of the technique usually depends on the type of model equations (deterministic
or stochastic), as well as on the level of noise in the data. When the model is deterministic
and the data is not too noisy, gradient-based methods are efficient optimizers [2]. In this
paper we use the Levenberg-Marquardt (LM) method for that purpose. It is a local search
approach, meaning that a sufficiently good initial guess for the parameter values is needed.
If available, such values can for example be obtained from literature. Otherwise, the LM
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method has to be combined with some global search method, such as simulated annealing,
a genetic algorithm, an evolution strategy, etc.

Once the parameter estimates have been computed, it is very important to know how
reliable they are. For this, confidence regions can be determined. They allow us to assess
the quality of the parameter estimates. Ideally, one would wish to determine all parameters
accurately enough. In practice, however, this is usually not possible and one has to face an
uncertainty in the parameter values. This can be due to insufficient or noisy data or simply
because the 'wrong’ model is used. In this paper, we do not focus on the latter aspect,
assuming that the ’right’ model is available.

Cell differentiation and body plan formation of animals occur in embryos at the early
developmental stages [3]. The process of cell differentiation is initiated by different mor-
phogen gradients which provide the spatial information by dividing the embryo in different
regions. This is followed by the formation of concentration gradients of gene products which
are responsible for body plan formation. The process of pattern formation is based on the
regulatory interactions among genes and gene products involved in genetic regulatory net-
works. Mathematical modelling of the correct spatio-temporal pattern formation of gene
product concentrations helps to reveal the regulatory interactions among genes as well as to
have insight into the dynamics of the underlying processes. In this work, we consider the gap
gene system of Drosophila melanogaster (fruit-fly). The mathematical model for this system
is introduced in [4] and parameter estimation has been used in [5]-[7] by means of global
optimization methods. We apply the LM method to estimate the unknown parameters and
we study how well these estimates can be determined, based on the available experimental
data [8]. Note that the methodology used is generally applicable for a broad range of models,
also arising in other fields.

The paper is organized as follows. In Section 2 we describe the theory needed for the
parameter estimation problem, with the focus on the gradient-based LM method, and for
the statistical analysis which is applied to investigate the quality of the estimates obtained.
In Section 3, we study the biological problem concerning the early stage of development of
Drosophila. The paper is concluded with remarks in Section 4.

2 Theory

We consider a model given by the system of ODEs of the form:

dy
= =f(t,y,0), 0<t<T,
3~ [ty.0) (2.1)

v(t,0) =yo(8), t=0.

Here the m-dimensional vector # contains all unknown parameters, y is an n-dimensional
state vector, and f is a given vector function, differentiable with respect to ¢, y and §. When
components of the initial state vector yo are not known, they are considered as unknown
parameters, so yo may depend on 6. In this work, we assume that (2.1) is the right’ model
for the problem we are interested in. Let us explain what we mean by a 'right’ model. Firstly,
it implies that (2.1) is a sufficiently accurate mathematical description approximating reality.
This means that all relevant knowledge about the processes is incorporated correctly in the
vector function f. Thus, the only uncertainty in (2.1) is the vector of unknown parameters
f. Secondly, it means that there exists a ’true’ value 6* for the parameters 6 such that



(2.1) represents reality. So, in principle, all unknown parameters can be determined when
sufficient and accurate enough data is available.

Remark 2.1 If the model is given by a system of PDEs, then by applying a spatial dis-
cretization, it can be reduced to (2.1). However, in such a case one has to be careful with
the choice of the grid size of the spatial discretization. On the one hand, the grid should be
fine enough, so that the numerical errors introduced by spatial discretization are negligible
in comparison with the level of noise in the data. On the other hand, requiring an extremely
fine grid would increase the size of the system (2.1). The latter may be crucial in terms of
computational complexity.

Let us assume that for (2.1) there are N measurements available. Each measurement,
which we denote by ¢;, is specified by the time ¢; when the ¢;-th component of the state
vector y is measured. The corresponding model value obtained from (2.1) is denoted by
Ye; (ti,0). The above assumptions imply that the difference |§; — y., (t;, 6*)| is solely due to
experimental error. We denote the vector of discrepancies between the theoretical values
and the measured values by Y(#). Then the least squares estimate 6 of the parameters is
the value of # that minimizes the sum of squares

5(6) = Z(y (t:,0) — 5:)* = YT ()Y (6), (2.2)

see [15, 16]. We note that (2.2) is an appropriate measure under certain assumptions, which
we will discuss in Section 2.2. Other measures might be used when these assumptions do
not hold.

2.1 Parameter estimation by the Levenberg-Marquardt method

In general, any gradient-based optimization procedure seeks a correction §6 for the parameter
vector, such that S(6+ §0) < S(#) holds. The LM method [10] determines the correction as
the solution of the equations

(JT(0)J(0) + AI,,) 66 = —JT(9)Y(6), (2.3)

where A > 0 is some constant, I,, is the identity matrix of size m and the Jacobian
J(0) = mgég) is the so-called ’sensitivity’ matrix of size N x m. The entry J;; in J(6)
shows how sensitive the model response is at the i-th data point for a change in the j-th pa-
rameter. The LM method can be seen as the combination of two gradient-based approaches:
Gauss-Newton and steepest descent. If A = 0 in (2.3), it coincides with the Gauss-Newton
method. However, when the matrix J7 (6).J(6) is (almost) singular, to solve (2.3), A has to
be positive and for large A the LM method approaches the steepest descent method. During
the optimization ) is adapted such that the algorithm strives to exploit the fast convergence
of the Gauss-Newton method whenever this is possible [10, 11].

In order to solve (2.3), the singular value decomposition (SVD) of the matrix J(6) can
be used, i.e.

J(0) =U(9) 2(0) VT (9), (2.4)

where U(6) is an orthogonal matrix of size N x m, such that UT (0)U(6) = I,,,, V() is an
orthogonal matrix of size m x m, such that VI'(8)V(0) = V(0)VT(8) = I,,,, and £(0) is a



diagonal matrix of size m x m which contains all singular values o; in non-increasing order.
Then the correction §6 can be found as

56 = =V (8) (Z2(0) + AL,) "' =(6) UT(6) Y(6). (2.5)

Later, when we study the reliability of the parameters computed, the SVD will play an
important role again.

In order to execute an LM optimization step, the vector of discrepancies Y(6), the matrix
J(0) and its SVD have to be evaluated for each new estimate of §. For this purpose, one
needs to resolve (2.1) for Y and the additional system of variational equations for the entries
of J,

0 dy of Of Oy
otoe;  06; Oy 06;’
00;  00; 7
for i = 1,2,...,m. We note that the costs for performing the SVD and computing the
correction (2.5) are negligible in comparison with the computational costs for solving (2.1)
and (2.6).

Thus, a single LM step requires the numerical solution of m + 1 coupled systems, each
one consisting of n ODEs. Fortunately, these systems are coupled in a special way, namely,
for each i = 1,2,...,m, system (2.6) is a system of ODEs for g—g’i, coupled only with (2.1).
The system of equations (2.6) has the same stiffness as (2.1) and therefore the same step
size can be used for the time integration of (2.1) and (2.6). Therefore, the one-way coupling
can be used to solve (2.1) and (2.6) efficiently. Still, this approach has limitations for large
scale problems due to computational costs.

Another approach to approximate the matrix .J(#) could be by means of divided differ-
ences instead of numerically solving (2.6). The j-th column of J(6) is then given by

0<t<T,
(2.6)

oY (9) _Y(67)—Y(6)
a6]’ - (55]

: (2.7)

where the vector 67 is obtained by a small perturbation 5éj in the j-th entry of #. In this case,
for one LM step system (2.1) has to be numerically integrated m+1 times. With regard to the
computational costs, when f is nonlinear, it is more expensive than the previous approach
where the linear systems of variational equations are solved. Moreover, the drawback of
divided difference method is that the numerical approximations (2.7) introduce additional
erTors.

Remark 2.2 For large scale problems computation on a single computer can become un-
feasible and one needs to use a parallel machine. Parallelization of the computational work
when (2.1) and (2.6) are solved numerically is possible at the level of a time step of the time
integrator. Therefore, it will be inefficient due to heavy communication. The advantage of
the divided difference approach is that in this case (2.1) is solved for m + 1 different values
of 8 independently of each other. Therefore, parallelization of the computational work is
trivial and can be very efficient.

Remark 2.3 Given f and yg, the partial derivatives %, %, % (i=1,...,m) in (2.6)

can be, in principle, found analytically. However, for large scale problems when f has a



complicated nonlinear form, this can be a tedious work to do. In such cases, these derivative
functions can be generated automatically by using a symbolic mathematics package, like
Maple [12] or Mathematica (Wolfram Research, Inc).

Remark 2.4 Numerical integration of (2.1) and (2.6) requires a fast and reliable ODE
solver. Search in the parameter space may lead to some values of 8 such that the systems
of ODEs become stiff [9]. Therefore, an implicit scheme is the best choice for time integra-
tion both with respect to computational speed and for stability reasons. Moreover, using
an implicit scheme allows us to exploit the specific coupling between (2.1) and (2.6) in an
efficient way. At each time step integrating first (2.1) provides the solution vector y and
the LU decomposition of the Jacobian matrix I,,, — T%, where 7 is the time step. Then
the calculation of g—gi from (2.6) reduces to a simple forward substitution and backsubsti-
tution. In our simulations we use the implicit multistep Backward Differentiation Formulas

(BDF) [13].

Remark 2.5 When the model includes algebraic equations, the systems of ODEs (2.1) and
(2.6) change to Differential Algebraic Equations (DAEs). Since we use an implicit solver for
the time integration, the method we have described here is readily applicable for that type
of models.

Remark 2.6 When the unknown parameters have to obey certain constraints, linear or
nonlinear, some additional work might be needed. If the correction 66 found by (2.5) leads
to violation of some constraints, then by the introduction of Lagrange multipliers a modified
correction can be found, which fits all constraints. For the constrained minimization problem
we refer the reader to [14].

2.2 Statistical analysis of obtained parameters

Above we used 6* to denote the ’true’ parameter vector, for which (2.1) describes reality
with sufficient accuracy, and by 6 we denote the parameter vector which minimizes (2.2).
Remarkably, even having a 'right’ model and an estimate 6 for the parameter vector which
fits the data well, does not mean that the whole modelling problem is resolved successfully.
It is important to know how reliable the obtained estimate is. In other words, we need
information about the difference § — 6*. In order to investigate the quality of the estimate
0, one needs to include some statistical analysis [9, 15, 16].

We assume that the measurement errors in §; are independent of each other and normally
distributed and that the system (state vector y) is well scaled, so that the error distributions
have zero mean and constant standard deviation o. Then, 6 is a maximum likelihood
estimate [15]-[16]. By assumption the model with the ’true’ solution 6* describes reality, so

Ui & Ye, (t,0") + e, 1=1,2,..., N, (2.8)
where ¢; are the measurement errors, for which

b0~ Ny 0.0°(170)76) (2.9)

holds approximately [15]. Here N,,(-,-) denotes the m-dimensional multivariate normal
distribution. Notice that (2.9) holds exactly when y is linear in . The (1 — a)-confidence



region for §* is determined by the inequality

S(0)F,(m, N —m), (2.10)

* NT T(p ) * ) m
(0" =0)" (J7(0)70)) (0" =) < —
where F,(m, N —m) is the upper « part of Fisher’s distribution with m and N —m degrees
of freedom. For instance, with o = 0.05 we have a 95% chance that 6* lies in this region.
This ellipsoidal confidence region allows us to assess the quality of the computed parameter
vector §. The ellipsoid defined by (2.10), is centered at 6 and has its principal axes directed
along the eigenvectors of J7(8).J(6). Using the SVD (2.4) for J(6), we get

J7(8)J(8) = V(6= (@)VT(6),

and the eigenvectors of J7(6).J(6) are the columns of the matrix V (d). So, the ellipsoid has
its principal axes directed along the column vectors of the matrix V(). Moreover, the radii
along these principal axes are inversely proportional to the corresponding singular values o;,
the diagonal elements of E(é) This all can be seen by using the following transformation
(rotation)

z=VT(6)(6* - 6), (2.11)
yielding
" — §)T (V(é)EZ(é)VT(é)) 0" 8) =2"S2(0)z =3 o722 (2.12)

On the other hand, since S(f)/(N —m) is an unbiased estimator of ¢, the equation for the
ellipsoid can be rewritten as
Zafz? =rZ, (2.13)

where r2 ~ ma*F,(m, N —m) is proportional to the variance in the measurement errors.
This form is more convenient to deal with because z can be considered as a set of uncorrelated
variables, and once the conclusion has been drawn for the determinability of z, the problem
can be transformed back, revealing us the quality of 6.

Now, we assume that the model (2.1) is properly scaled, such that all parameter values
are of the same order of magnitudes, and that we are interested only in the first few digits
of the parameter values. Let us introduce the sphere given by

D =12, (2.14)

i=1

where 7. defines the level of accuracy one desires for the parameter estimates. For instance,
if the parameters are of order O(1) and one is interested only in the first two digits to the
right of the decimal point, then r. = 0.01. In order to be able to determine z; accurately
enough, the radius along the ellipsoid’s i-th principal axis shouldn’t exceed the radius of the
sphere, which leads us to the following inequality

o> e (2.15)
Te

A graphical representation of the ellipsoid and the sphere is given in Figure 2.1 for the
2-dimensional case. If only the first k largest singular values satisfy (2.15), then only the
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Figure 2.1: Example of an ellipsoidal confidence region and an accuracy sphere in the 2-
dimensional case; clearly, z; is well-determined, while 25 is not.

first k entries of z are estimated with the required accuracy and no sufficient information
is available for the remaining components of z. Now, recalling (2.11) and the fact that
V describes a rotation around the center of the ellipsoid, it becomes clear that only the
set of the first k largest singular values contain useful information about the quality of
the parameter estimates. Each corresponding eigenvector defines a parameter or a linear
combination of parameters which is well-determined. In the case when a principal axis of the
ellipsoid makes a significant angle with the axis in parameter space (i.e., there exists more
than one significant entry in the eigenvector), this corresponds to the presence of correlation
among parameters in 6. The remaining degrees of freedom in the parameters, corresponding
with the smaller singular values, cannot be determined (with sufficient accuracy) by means
of the available experimental data.

To summarize, the level of noise in the data in combination with the accuracy require-
ment for the parameter estimates, defines the threshold for significant singular values in the
matrix 3. The number of singular values exceeding this threshold determines the number
of parameter relations that can be derived from the experiment. How these relations relate
to the individual parameters is described by the corresponding columns in the matrix V.
The largest entries in these columns indicate the well-determined parameters and, on the
other hand, if entries are small, then the corresponding parameters cannot be determined
with reasonable accuracy.

From (2.10) one can also derive dependent confidence intervals for the parameter esti-
mates, which are the intersections of the ellipsoidal region with the parameter axes

-1

0; : 6; — 6] <7y (V(é)z2(é)VT(é)) . i=1,2,...,m, (2.16)

(23

and independent confidence intervals, which are the projections of the ellipsoidal region on
the parameters axes

{9,»:|9i—9}|<r(, (V(é)z—%é)w(é))“}, i=1,2,...,m. (2.17)



Clearly, small independent confidence intervals for 6; indicate that it is well-determined.
However, in some cases considering only individual confidence intervals can be misleading.
For instance, in the presence of a strong correlation between parameters, the dependent
confidence intervals underestimate the confidence region while the independent confidence
intervals overestimate it.

Finally, (2.13) indicates that having, for instance, two times more accurate data so that
the standard deviation o is halved, will decrease the radii along the ellipsoid’s principal
axis by a factor of 2. Therefore, in case of very small singular values o; (i.e. strongly
elongated ellipsoids) more accurate data obtained by the experimentalist will not improve
much the quality of the corresponding parameter estimates. In such a case, one certainly
needs additional measurements of a different type (e.g., different components, different time
points, or in the case of PDEs different spatial points).

3 A large-scale biological test problem

In this section we study the model of the genetic regulatory network at the early stage
of development of Drosophila melanogaster. In particular, we are interested in the spatio-
temporal pattern formation of gap gene expression in the Drosophila embryo during the
early cleavage cycles 13 and 14A. The gap gene system includes the genes Bicoid (bed),
Caudal (cad), Hunchback (hb), Kruppel (K7), Knirps (kni), Giant (gt) and Tailless (tll). Tt
is known that before cycle 13 there is no (significant) expression of gap genes in the embryo.
The process of pattern formation for gap gene expression is initiated by gradients of the
maternal proteins bed, hb and cad. The size, location and dynamics of gap domains depend
on regulatory interactions between the genes involved in the system. This regulatory network
is well studied in [5]-[6]. There, a global search approach based on simulated annealing
(SA) is used for the estimation of the parameters in the gap gene model. A more efficient
approach, namely combining a global search method, the Stochastic Ranking Evolution
Strategy (SRES), with a local direct search method, Downhill Simplex (DS), is introduced
in [7]. The quality of the parameter estimates is measured by the root mean square (RMS)
of the discrepancy vector and considered to be 'good’ if RMS < 12.0 and if there are no
specific pattern defects in the model response [5]-[7]. As explained in the previous section
we should notice that this definition of the quality of parameter estimates can be rather
misleading. In fact, RM S shows the quality of the fit of the model response to the data but
does not give any information about the quality of the parameter estimates. Our aim is to
find the parameter estimates that give a good fit and to apply statistical analysis in order
to investigate how reliable these estimates are.

3.1 The mathematical model

We first outline the main aspects of the mathematical model which is used to describe the
mechanism of pattern formation at the early developmental stage of the Drosophila embryo.
Detailed information can be found in [4]-[6]. The change of the level of concentrations of
gene products is described by the system of ODEs

N,

dg? :

755 = Ra® | S WPg? +magl + ha | = Aagf + Da (9801 — 207 + 91 » (3.1)
b=1



where a and b denote gene products, g denotes the concentration of gene product a at
nucleus i, g?°? denotes the concentration of maternal protein bcd (constant in time) at
nucleus ¢, Ny, = 6 is the number of genes, and the function

1 T

is a sigmoid function. Note that indexes a and b used in (3.1) are integers. To avoid
misunderstanding genes cad, hb, Kr, kni, gt, tll are enumerated from one to Iy, respectively.
Indexes with integers and abbreviations of genes are used here interchangeably. For instance,
D5 is the same as Dy,.

In the system (3.1) there are in total m = 66 unknown parameters. These include the
regulatory weight matrix W of size N, x N, with the entries W representing the regulation
of gene a by gene b, maternal coefficients m, representing the regulatory effect of bed on
gene a, promoter thresholds h,, promoter strengths R,, diffusion coefficients D,, and decay
rates \,.

Since the nuclei are equally distributed along the anterior-posterior (AP) axis of the
embryo, (3.1) can be seen as a discretized (in space) form of a system of one-dimensional
reaction-diffusion equations. The region of interest includes 30 and 58 nuclei at the central
part of the embryo during the cycles 13 and 14A, respectively. Therefore, there are 180 and
348 equations in the system (3.1) at the cycles 13 and 14A, respectively. Initial conditions at
t = 0.0 (beginning of cycle 13) are prescribed by gradients of hb and cad and zero levels for
the other genes. The model simulates until gastrulation at ¢t = 71.1. At the boundaries the
central difference in the last term in the right-hand side of (3.1) is replaced by a one-sided
difference (no-flux conditions).

During the mitosis phase between cycles 13 and 14A (see Figure 3.1) the protein pro-
duction in the embryo is shut down and therefore the first term in the right hand side of
(3.1) does not contribute anything. Mitosis starts at ¢ = 16.0 and ends at ¢t = 21.1. At the
end of the mitosis all nuclei simultaneously divide. This is done by doubling the number
of nuclei, dividing diffusion coefficients by 4 so that the distance between nuclei is halved,
and copying the concentration values from each nucleus to its daughter nuclei. The latter
provides the initial conditions for equations (3.1) in cycle 14A.

3.2 The data

The data set, consisting of N = 2702 measurements, is available from the FlyEx database [8].
The level of measurement error is less than 5%, see [17]. Figure 3.1 shows the time points
T; (0 <4 < 8) when measurements were taken. Figure 3.2 shows the gene expression data

Cycle13  Mitosis Cycle 14A
T0 T1 T2 T3 T 4 T5 T6 T7 T8
0.0 10.550 24.225 30.475 36.725 42975 49.225 55.475 61.725 67.975

Figure 3.1: Time axis and the points when measurements were taken: one in cycle 13
and eight in cycle 14A; mitosis is the phase between two cycles when there is no protein
production in the embryo.



at time points T; (0 < i < 8). Note that measurements for the concentrations of all gene
products at all time points are available, except cad at T7, Ty and tll at Ty, Ty, Ts.
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Figure 3.2: Gene expression data at different time points. Graphs show relative protein
concentration (with a range from 0 to 255 fluorescence units) plotted against position on
the AP axis (the region of interest is scaled to [0, 1]).

It is not known how the experimental errors are distributed. However, measurement
values are the outcomes of sophisticated data processing procedures, see [17]. In fact, all
data points are values integrated over space and averaged over the number of individual
embryos (the number of embryos varies from 9 to 62 for different time points and different
genes [8]). Therefore, from a statistical point of view, it is reasonable to assume that the
experimental errors are normally distributed.

3.3 The experimental setup

We apply the LM method to estimate the parameters for the gap gene system. Since the
LM method is a local search approach, the choice of initial values for the parameter vector
is important for convergence. Fortunately, for this problem there is extensive information
available in the literature. We use 80 different initial values for the parameter vector 6

10



from [7]. Each of these parameter sets is obtained by using an evolution strategy (global
approach) combined with direct search (local approach).
With the notations introduced in Sections 3.1-3.2, RM S is defined as

RMS ‘ ! Z Z Z a? g, model - g;',l(Tj)data)Qa

alzl]O

where N is the number of nuclei and «f is equal to zero for Tll at j = 0,1,2 and for cad at
j = 17,8, and is equal to one otherwise. We note that only 41 of the initial parameter sets
have RMS(0) < 12.0, see Table 3.1.

The search space for parameters is defined by the linear constraints

In(2)
100 < R, £30.0, 00< D, <03, 50< \ <200, a=1,...,Ng, (3.3)
and by the nonlinear constraints
Ng
> (Weghas)” + (maglide)” + (ha)? <10%, a=1,...,N,, (3.4)
b=1

where g® and ¢%? are the maximum values in the data set for gene b and protein bed,

respectively. Note that in [5]-[7] threshold parameters h, for genes Kr, Kni, gt, and hb are
fixed to negative values representing a constitutively repressed state for the corresponding
genes [18]. Fixing some parameters to specific values may severely restrict the search space
leaving some solutions out of consideration. Contrary to their approach, we include threshold
parameters for these genes in the search by putting the constraints —10.0 < h, < 0.0.

In order to make the analysis of parameter estimation easier, we scale in advance all
parameters used in (3.1) in the following way:

R, =0.1R,, D, =10D,, X, =10\,, W’ =10*W?, 1, =10*ma, ha = ha,

for all genes a and b. Note that the choice of the scaling factors for R,, D,, and ), is based
on the search ranges of the corresponding parameters. The choice of the scaling factors for
regulatory weights W?° and maternal coefficients m,, is based on the fact that the maximum
level of protein concentration for all genes in the data set is of order O(10%). Thus, all scaled
parameters are of order O(1).

3.4 Results of parameter estimation

The least squares estimation using the LM method yields a significant decrease of RMS in all
simulations, see Table 3.1. There are only 5 initial parameter sets having RM S < 10.0, with
the best fit having RM S = 9.56. After using the LM method there are 71 final parameter
sets which have RM S < 10.0 and among them there are 69 having values of RMS uniformly
distributed between 8.37 and 9.43. It is difficult to make a distinction between these 69
parameter estimates based only on RMS values. Therefore, in our analyses, we take into
account all of them. We note that there is a distinct gap between the RMS values of the
chosen 69 parameter sets and the RMS values of the remaining parameter estimates.
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RMS <10.0 | 10.0< RMS <12.0 | 120 < RMS <14.0 | RMS > 14.0
o 5 36 21 18
0 71 3 1 )

Table 3.1: Numbers in the table show the number of parameter estimates with corresponding
ranges for RM S, where 6*™ and 6 correspond to the parameter estimates before and after
using the LM method, respectively.

Parameter estimates found by the LM method also produce a better fit than those
previously obtained in [5]-[7]. In Figure 3.4 the model response for one of our parameter
sets (green lines) is compared to the data (red lines) and to the patterns obtained with
the parameter set from [5] (blue lines). The patterning defects reported in [5], such as
the expression of hb at the anterior and posterior borders, are mainly resolved. However,
there are two problems, mentioned in [5]-[6], that remain unsolved with the new parameter
estimates. The first one is related to the artificially high level of gap gene expression at
cycle 13, i.e the model responses are much larger than the data values yielding large positive
discrepancies. This is apparently due to the model itself. It might be needed to include
some delay in the process of protein production to be able to overcome the poor fit at cycle
13, as it is proposed in [5]-[6]. The second one is related to the absence of boundary shifts
for the posterior hb domain in the model responses.

Kr Kni Gt Hb

50 50 250 250
200 200 200 200
150 150 150 150
0 i w ”
5 A 5 A sok A 50
0 o 0

0 0102 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0701 02 03 04 05 06 07 8 09 1 070102 03 04 05 06 07 08 09 1
250 250 250 250
200 200 200 200
150 150 150 150
um 1w w mn

50 s0 50 50 jA
0 o 0 0

0 0102 03 04 05 06 07 0% 05 1 001 02 03 04 05 06 07 08 05 1 070102 03 0% 05 06 07 48 09 1 070102 03 04 05 06 07 08 0 1
50 50 250 250
200 200 200 00
150 150 150 150
w w w Inn
0 0 s 50

0 0 0
0010203 04 050607 08 09 1 0 01020304 050607 08 09 1 0 010203 04 050607 0809 1 0 010203 04 0506 07 08 09 1

Figure 3.3: Comparison between data (red lines), patterns obtained by parameter set from [5]
(blue lines) and patterns with the parameter set yielded from the LM search (green lines)
for the expression of gap genes Kr, Kni, gt, and hb at early (t = 24.225, first row) mid-
(t = 42.975, second row) and late (¢ = 67.975, last row) cycle 14A. Axes are as in Figure 3.2.

Information about the regulatory matrix for all parameter sets is given in Table 3.2.
Triplets show the number of parameter sets in which a regulatory weight falls into one of the
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following categories: repression (values < —0.005)/ no interaction (values between —0.005
and 0.005)/ activation (values > 0.005). Based on the highest value in the triplets, the table
is coloured such that the background colours represent activation (green), no interaction
(light-blue), or repression (pink).

bed cad hb Kr gt kni tll
cad | 60/5/4 69/0/0 69/0/0 69/0/0 69/0/0 69/0/0 69/0/0
hb 0/0/69 0/1/68 0/1/68 3/57/9 | 3/29/37 | 69/0/0 | 4/41/24
Kr 0/0/69 0/0/69 24/45/0 0/4/65 67/1/1 | 43/26/0 | 69/0/0
gt 0/0/69 0/0/69 7/47/15 69/0/0 0/0/69 | 0/11/58 | 45/24/0
kni 5/4/60 0/7/62 69/0/0 38/31/0 | 51/18/0 | 0/0/69 67/2/0
tl 42/7/20 | 12/6/51 | 42/16/11 | 64/3/2 60/4/5 67/2/0 | 0/11/58

Table 3.2: Maternal coefficients and regulatory weight matrix for the gap gene system based
on 69 parameter sets found by the LM method. Numbers show how many parameter sets
have repression / no interaction / activation for corresponding regulatory weight. Colours
indicate activation (green), no interaction (light-blue), or repression (pink) based on the
maximum values in triplets.

Our results are in good agreement with the results obtained in [5]-[7]. Namely,

cad and bed activate gap genes hb, Kr, gt, and kni;

e gap genes hb, Kr, gt, and kni have autoactivation;

terminal gap gene tll represses gap genes Kr, gt, and kni;

mutually exclusive gap genes strongly repress each other, these correspond to weights
WgItﬁ’ ng(tr’ W}I;l:”’ and Wl?r?ﬁ

Previous results also suggest that pairs of overlapping gap genes, namely, hb and gt, hb and
Kr, gt and kni, Kr and kni, either have no interaction with each other or repress each
other, except for the effect of gt on hb, see [5]. These regulations are partially confirmed
here. However, we find that the effect of Kr on hb and hb on gt can be positive as well
in some cases. A striking difference is that kni mostly activates gt while previously it was
found that there was no interaction between them.

Scatter plots in Figure 3.4-3.5 show the range of the parameter estimates for the gap
gene system. For each individual parameter indicated on the horizontal axis, its estimated
values (red circles) are plotted along the vertical axis. Most of the parameters have a broad
range of possible values, meaning that they are not uniquely found. The only exceptions are

e : : hb pKr ypikni 11
some entries in the regulatory weight matrix, such as Wji’, W™, Wi, and Wy

3.5 Determinability of parameters

We apply the statistical analysis introduced in Section 2 to all 69 parameter sets obtained
by the LM method to asses the quality of estimates.
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Figure 3.4: Scatter plots of parameters in the regulatory weight matrix for the gap gene
system.

Ellipsoidal confidence regions corresponding to parameter estimates are given by (2.10).
A trivial check reveals that none of the parameter estimates lies in the ellipsoidal confidence
regions of all other parameter sets. Note that this does not necessarily imply that there are
69 different minima or solutions for the parameter vector.

Dependent and independent confidence intervals for each parameter set can be computed
by (2.16) and (2.17), respectively. We check if the corresponding confidence intervals fall
into the repression, no interaction, or activation category. Colours in Table 3.2 do not
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Figure 3.5: Scatter plots of parameters h, R, D and ty,5 = In(2)/\.

change when only dependent confidence intervals are taken into account. However, including
independent confidence intervals one can no longer make any qualitative conclusions about
the entries in the regulatory weight matrix. So, individual confidence intervals are not
informative for our purpose.

For each parameter set f, the SVD (2.4) of the Jacobian J(f) yields the matrices V (f)

and X(6). In order to find the number of singular values in ¥(6) satisfying (2.15) we need to
quantify 7, and r.. We are interested only in the first digit to the right of the decimal point of

the scaled parameters and therefore we take r. = 0.1. Since o ~ A‘C;(j)n = % RMS(@),
we have
N m R
e & oy/m Fu(m, N —m) ~ N m Fy(m,N —m) RMS(0).
—m

For @ = 0.05 we then obtain r, ~ 9.4 RMS(f) (the choice of a does not make much
difference here due to the large value of N).

Investigation of all parameter sets shows that, on average, 15 singular values satisfy (2.15)
meaning that at most 15 parameters or linear combinations of them can be determined with
two digits accuracy. There is a set of parameters which have significant entries in the first 15
columns of all V matrices. It includes regulatory weights Wgad, W;{‘d, k“gg, Wtcl‘lld, Who
promoter thresholds hg,, hg:, hyi, decay rate A.qq, and promoter strength Ry,;. However,
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inspection of the first 15 columns of the V' matrices shows that there is not a single parameter
which can be determined individually. It means that a principal axis of the ellipsoid makes
an angle with the corresponding axes in parameter space. The same holds for other principal
axes of the ellipsoid defined by the columns of the matrix V' corresponding to singular values
which do not satisfy (2.15).

Let us investigate here possible reasons for correlations among parameter estimates. Lack
of accuracy of the data cannot be the reason for that. More accurate data would simply make
the ellipsoid shrink but not rotate and therefore it would not improve the determinability
of parameters.

We have also checked whether data insufficiency may cause the nondeterminability of
parameters. This is done in the following way. Assume that a larger data set was available,
say we had measurements for all gene products, in all nuclei, at 71 uniformly distributed
time points. With these choices the total number of measurements would be N = 21180.
Since the Jacobian depends only on the model responses and not on the values of the data,
we can generate a new Jacobian j(é) including all 'ghost’ data points. From the SVD of the
corresponding J(0) we get the matrices V() and £(#) which define new ellipsoidal regions.
The ellipsoids are slightly rotated in comparison with the initial ones but not enough to
make the principal axes of the ellipsoid get closer to the parameter axes. From this we
conclude that lack of data points is not the reason for these correlations.

Correct application of the statistical analysis for the parameter estimates described in
Section 2 implies that the measurement errors are independent and come from a normal
distribution. To study whether these assumptions affect the determinability we conduct
the inverse experiment. We take one of the parameter sets obtained by the LM search,
having RMS = 8.38, and we denote it by #*. By integrating the model equations with
0* we generate an exact data set at the same data points as the initial data set. To the
exact data values we add errors drawn from the normal distribution with zero mean and
standard deviation equal to 8.5. From the exact and the perturbed data set, we compute
RMS(6*) = 8.17. The perturbed data set is used for the parameter estimation by means
of the LM search. Note that by constructing this inverse problem, we make sure that the
assumptions about the measurement errors are correct. With 40 different initial values of 6
from [7] we obtain 34 parameter estimates having RM S between 7.95 and 8.25. The ranges
of the values of the obtained parameters remain broad (data is not shown here). Inspection
of the corresponding V matrices shows that parameters are not determinable due to the
correlations, similar to the original problem.

We conclude that the observed correlations among parameters are a property of the
model. Since an explicit form of the dependence of the state vector on the parameters is
not known, the use of reparametrization techniques is not feasible. Note that the majority
of parameters in (3.1) appear in the argument of sigmoid function ®. If the model (3.1) is
used to obtain only the qualitative information, such as the signs of regulatory weights, then
the particular mathematical form of this function is of no importance [4]. However, it has
to be studied if the choice of the sigmoid function affects the determinability of parameters.
Preliminary results suggest that the correlations among parameters are reduced when the
sigmoid function defined by (3.2) is replaced by a piecewise linear function.

To summarize, the statistical analyses show that parameters in (3.1) cannot be deter-
mined individually due to the correlations among the parameters. The observed correlations
are a property of the model itself, not the data. Further investigation is needed to study the
model equations to remove the correlations so that the parameters can be well determined.
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Finally, we remark that the statistical analysis, introduced in Section 2, has been derived
for models that are linear in §. In the nonlinear case, it holds approximately and the accuracy
of the approximation depends on the type of nonlinearity. Obviously, the solution of (3.1)
is nonlinear in 6 and therefore all conclusions which are drawn here are approximate in that
sense.

4 Concluding remarks

In this paper we have applied the Levenberg-Marquardt (LM) optimization method to esti-
mate the parameters in the model of the genetic regulatory network in Drosophila embryo.
Statistical analysis is used to study the quality of the obtained parameter estimates, i.e.
how well the parameters are determined with the available experimental data.

The parameter estimates obtained with the LM method fit the data better than the pa-
rameters known from literature. For instance, the defects in the patterns of gene product of
Hunchback, reported in [5], are removed here. Qualitative conclusions with the new param-
eter sets are in good agreement with the results stated previously. Namely, the regulatory
interactions among genes involved in gap gene system are confirmed here, with only one ex-
ception. We found that gene Knirps activates gene Giant while previously it was stated that
there was no interaction between them. Large ranges for the values of parameter estimates
suggest that the parameters are not unique.

Determinability studies based on statistical analysis show that the model cannot be used
as a quantitative tool. None of the parameters used in the model can be determined in-
dividually due to correlations among parameters. We have shown that these correlations
are not related to a lack of data. The nondeterminability stems from the intrinsic correla-
tions among parameters in the model. Further investigation is needed to modify the model
equations in order to remove the observed correlations.

The products of mathernal genes regulate gap genes, but not vice versa [19]. Deter-
minability studies based on statistical analysis suggest that the model (3.1) can be reduced
in size with respect to the number of equations and the number of parameters, by removing
the model equations for gene cad. However, this is an open question for further work.
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