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On parameter estimation and determinability for themodel of pattern formation in Drosophila melanogasterM. Ashyraliyev� & J.G. BlomCWIP.O. Box 94079, 1090 GB Amsterdam, The Netherlands
AbstratMathematial modelling of real-life proesses often requires the estimation of un-known parameters. One the parameters are found by means of optimization, it isimportant to asses the quality of the parameter estimates. In this paper we desribehow the quality of these estimates an be analyzed and this methodology is applied tostudy the model for the geneti regulatory network in the Drosophila embryo duringthe early developmental stages.2000 Mathematis Subjet Classi�ation: primary 92C15;Keywords and Phrases: parameter estimation; parameter determinability; regulatorygeneti networks; Drosophila

1 IntrodutionMany real-life proesses an be modelled by Ordinary Di�erential Equations (ODEs) orPartial Di�erential Equations (PDEs). For instane, in developmental biology, systems ofreation-di�usion equations are used to model spatio-temporal patterns of protein onen-trations [1℄. A ommon diÆulty is that the model equations usually have a large number ofunknown parameters, suh as di�usion oeÆients, deay and reation rates, et. Sometimesmissing parameters an be estimated experimentally, but this is rather exeptional. Mostly,it is impossible to �nd missing parameter values diretly. However, usually one an measureother quantities involved in the model. For instane, experimentalists an measure proteinor mRNA onentrations. The unknown model parameters an then be found by parameterestimation tehniques suh that the solution of the mathematial model �ts the measureddata.There exists a number of di�erent optimization tehniques for parameter estimation.The hoie of the tehnique usually depends on the type of model equations (deterministior stohasti), as well as on the level of noise in the data. When the model is deterministiand the data is not too noisy, gradient-based methods are eÆient optimizers [2℄. In thispaper we use the Levenberg-Marquardt (LM) method for that purpose. It is a loal searhapproah, meaning that a suÆiently good initial guess for the parameter values is needed.If available, suh values an for example be obtained from literature. Otherwise, the LM�E-mail address: M.Ashyraliyev�wi.nl
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method has to be ombined with some global searh method, suh as simulated annealing,a geneti algorithm, an evolution strategy, et.One the parameter estimates have been omputed, it is very important to know howreliable they are. For this, on�dene regions an be determined. They allow us to assessthe quality of the parameter estimates. Ideally, one would wish to determine all parametersaurately enough. In pratie, however, this is usually not possible and one has to fae anunertainty in the parameter values. This an be due to insuÆient or noisy data or simplybeause the 'wrong' model is used. In this paper, we do not fous on the latter aspet,assuming that the 'right' model is available.Cell di�erentiation and body plan formation of animals our in embryos at the earlydevelopmental stages [3℄. The proess of ell di�erentiation is initiated by di�erent mor-phogen gradients whih provide the spatial information by dividing the embryo in di�erentregions. This is followed by the formation of onentration gradients of gene produts whihare responsible for body plan formation. The proess of pattern formation is based on theregulatory interations among genes and gene produts involved in geneti regulatory net-works. Mathematial modelling of the orret spatio-temporal pattern formation of geneprodut onentrations helps to reveal the regulatory interations among genes as well as tohave insight into the dynamis of the underlying proesses. In this work, we onsider the gapgene system of Drosophila melanogaster (fruit-y). The mathematial model for this systemis introdued in [4℄ and parameter estimation has been used in [5℄-[7℄ by means of globaloptimization methods. We apply the LM method to estimate the unknown parameters andwe study how well these estimates an be determined, based on the available experimentaldata [8℄. Note that the methodology used is generally appliable for a broad range of models,also arising in other �elds.The paper is organized as follows. In Setion 2 we desribe the theory needed for theparameter estimation problem, with the fous on the gradient-based LM method, and forthe statistial analysis whih is applied to investigate the quality of the estimates obtained.In Setion 3, we study the biologial problem onerning the early stage of development ofDrosophila. The paper is onluded with remarks in Setion 4.
2 TheoryWe onsider a model given by the system of ODEs of the form:8<: dydt = f(t;y; �); 0 < t � T;y(t; �) = y0(�); t = 0: (2.1)
Here the m-dimensional vetor � ontains all unknown parameters, y is an n-dimensionalstate vetor, and f is a given vetor funtion, di�erentiable with respet to t, y and �. Whenomponents of the initial state vetor y0 are not known, they are onsidered as unknownparameters, so y0 may depend on �. In this work, we assume that (2.1) is the 'right' modelfor the problem we are interested in. Let us explain what we mean by a 'right' model. Firstly,it implies that (2.1) is a suÆiently aurate mathematial desription approximating reality.This means that all relevant knowledge about the proesses is inorporated orretly in thevetor funtion f. Thus, the only unertainty in (2.1) is the vetor of unknown parameters�. Seondly, it means that there exists a 'true' value �� for the parameters � suh that2



(2.1) represents reality. So, in priniple, all unknown parameters an be determined whensuÆient and aurate enough data is available.Remark 2.1 If the model is given by a system of PDEs, then by applying a spatial dis-retization, it an be redued to (2.1). However, in suh a ase one has to be areful withthe hoie of the grid size of the spatial disretization. On the one hand, the grid should be�ne enough, so that the numerial errors introdued by spatial disretization are negligiblein omparison with the level of noise in the data. On the other hand, requiring an extremely�ne grid would inrease the size of the system (2.1). The latter may be ruial in terms ofomputational omplexity.Let us assume that for (2.1) there are N measurements available. Eah measurement,whih we denote by ~yi, is spei�ed by the time ti when the i-th omponent of the statevetor y is measured. The orresponding model value obtained from (2.1) is denoted byyi(ti; �). The above assumptions imply that the di�erene j~yi � yi(ti; ��)j is solely due toexperimental error. We denote the vetor of disrepanies between the theoretial valuesand the measured values by Y(�). Then the least squares estimate �̂ of the parameters isthe value of � that minimizes the sum of squares
S(�) = NXi=1(yi(ti; �)� ~yi)2 = YT (�)Y(�); (2.2)

see [15, 16℄. We note that (2.2) is an appropriate measure under ertain assumptions, whihwe will disuss in Setion 2.2. Other measures might be used when these assumptions donot hold.2.1 Parameter estimation by the Levenberg-Marquardt methodIn general, any gradient-based optimization proedure seeks a orretion Æ� for the parametervetor, suh that S(�+ Æ�) � S(�) holds. The LM method [10℄ determines the orretion asthe solution of the equations�JT (�)J(�) + �Im� Æ� = �JT (�)Y(�); (2.3)where � � 0 is some onstant, Im is the identity matrix of size m and the JaobianJ(�) = �Y(�)�� is the so-alled 'sensitivity' matrix of size N � m. The entry Ji;j in J(�)shows how sensitive the model response is at the i-th data point for a hange in the j-th pa-rameter. The LM method an be seen as the ombination of two gradient-based approahes:Gauss-Newton and steepest desent. If � = 0 in (2.3), it oinides with the Gauss-Newtonmethod. However, when the matrix JT (�)J(�) is (almost) singular, to solve (2.3), � has tobe positive and for large � the LM method approahes the steepest desent method. Duringthe optimization � is adapted suh that the algorithm strives to exploit the fast onvergeneof the Gauss-Newton method whenever this is possible [10, 11℄.In order to solve (2.3), the singular value deomposition (SVD) of the matrix J(�) anbe used, i.e. J(�) = U(�) �(�) V T (�); (2.4)where U(�) is an orthogonal matrix of size N �m, suh that UT (�)U(�) = Im, V (�) is anorthogonal matrix of size m �m, suh that V T (�)V (�) = V (�)V T (�) = Im, and �(�) is a3



diagonal matrix of size m�m whih ontains all singular values �i in non-inreasing order.Then the orretion Æ� an be found asÆ� = �V (�) ��2(�) + �Im��1�(�) UT (�) Y(�): (2.5)Later, when we study the reliability of the parameters omputed, the SVD will play animportant role again.In order to exeute an LM optimization step, the vetor of disrepanies Y(�), the matrixJ(�) and its SVD have to be evaluated for eah new estimate of �. For this purpose, oneneeds to resolve (2.1) for Y and the additional system of variational equations for the entriesof J , 8><>: ��t �y��i = �f��i + �f�y �y��i ; 0 < t � T;�y(t; �)��i = �y0(�)��i ; t = 0; (2.6)
for i = 1; 2; : : : ;m. We note that the osts for performing the SVD and omputing theorretion (2.5) are negligible in omparison with the omputational osts for solving (2.1)and (2.6).Thus, a single LM step requires the numerial solution of m + 1 oupled systems, eahone onsisting of n ODEs. Fortunately, these systems are oupled in a speial way, namely,for eah i = 1; 2; : : : ;m, system (2.6) is a system of ODEs for �y��i , oupled only with (2.1).The system of equations (2.6) has the same sti�ness as (2.1) and therefore the same stepsize an be used for the time integration of (2.1) and (2.6). Therefore, the one-way ouplingan be used to solve (2.1) and (2.6) eÆiently. Still, this approah has limitations for largesale problems due to omputational osts.Another approah to approximate the matrix J(�) ould be by means of divided di�er-enes instead of numerially solving (2.6). The j-th olumn of J(�) is then given by�Y(�)��j � Y(~�j)�Y(�)Æ~�j ; (2.7)
where the vetor ~�j is obtained by a small perturbation Æ~�j in the j-th entry of �. In this ase,for one LM step system (2.1) has to be numerially integratedm+1 times. With regard to theomputational osts, when f is nonlinear, it is more expensive than the previous approahwhere the linear systems of variational equations are solved. Moreover, the drawbak ofdivided di�erene method is that the numerial approximations (2.7) introdue additionalerrors.Remark 2.2 For large sale problems omputation on a single omputer an beome un-feasible and one needs to use a parallel mahine. Parallelization of the omputational workwhen (2.1) and (2.6) are solved numerially is possible at the level of a time step of the timeintegrator. Therefore, it will be ineÆient due to heavy ommuniation. The advantage ofthe divided di�erene approah is that in this ase (2.1) is solved for m+ 1 di�erent valuesof � independently of eah other. Therefore, parallelization of the omputational work istrivial and an be very eÆient.Remark 2.3 Given f and y0, the partial derivatives �f�y , �f��i , �y0��i (i = 1; : : : ;m) in (2.6)an be, in priniple, found analytially. However, for large sale problems when f has a4



ompliated nonlinear form, this an be a tedious work to do. In suh ases, these derivativefuntions an be generated automatially by using a symboli mathematis pakage, likeMaple [12℄ or Mathematia (Wolfram Researh, In).Remark 2.4 Numerial integration of (2.1) and (2.6) requires a fast and reliable ODEsolver. Searh in the parameter spae may lead to some values of � suh that the systemsof ODEs beome sti� [9℄. Therefore, an impliit sheme is the best hoie for time integra-tion both with respet to omputational speed and for stability reasons. Moreover, usingan impliit sheme allows us to exploit the spei� oupling between (2.1) and (2.6) in aneÆient way. At eah time step integrating �rst (2.1) provides the solution vetor y andthe LU deomposition of the Jaobian matrix Im � � �f�y , where � is the time step. Thenthe alulation of �y��i from (2.6) redues to a simple forward substitution and baksubsti-tution. In our simulations we use the impliit multistep Bakward Di�erentiation Formulas(BDF) [13℄.Remark 2.5 When the model inludes algebrai equations, the systems of ODEs (2.1) and(2.6) hange to Di�erential Algebrai Equations (DAEs). Sine we use an impliit solver forthe time integration, the method we have desribed here is readily appliable for that typeof models.Remark 2.6 When the unknown parameters have to obey ertain onstraints, linear ornonlinear, some additional work might be needed. If the orretion Æ� found by (2.5) leadsto violation of some onstraints, then by the introdution of Lagrange multipliers a modi�edorretion an be found, whih �ts all onstraints. For the onstrained minimization problemwe refer the reader to [14℄.2.2 Statistial analysis of obtained parametersAbove we used �� to denote the 'true' parameter vetor, for whih (2.1) desribes realitywith suÆient auray, and by �̂ we denote the parameter vetor whih minimizes (2.2).Remarkably, even having a 'right' model and an estimate �̂ for the parameter vetor whih�ts the data well, does not mean that the whole modelling problem is resolved suessfully.It is important to know how reliable the obtained estimate is. In other words, we needinformation about the di�erene �̂ � ��. In order to investigate the quality of the estimate�̂, one needs to inlude some statistial analysis [9, 15, 16℄.We assume that the measurement errors in ~yi are independent of eah other and normallydistributed and that the system (state vetor y) is well saled, so that the error distributionshave zero mean and onstant standard deviation �. Then, �̂ is a maximum likelihoodestimate [15℄-[16℄. By assumption the model with the 'true' solution �� desribes reality, so~yi � yi(ti; ��) + �i; i = 1; 2; : : : ; N; (2.8)where �i are the measurement errors, for whih�̂ � �� � Nm�0; �2 �JT (�̂)J(�̂)��1� (2.9)holds approximately [15℄. Here Nm(�; �) denotes the m-dimensional multivariate normaldistribution. Notie that (2.9) holds exatly when y is linear in �. The (1 � �)-on�dene5



region for �� is determined by the inequality(�� � �̂)T �JT (�̂)J(�̂)� (�� � �̂) � mN �mS(�̂)F�(m;N �m); (2.10)where F�(m;N �m) is the upper � part of Fisher's distribution with m and N �m degreesof freedom. For instane, with � = 0:05 we have a 95% hane that �� lies in this region.This ellipsoidal on�dene region allows us to assess the quality of the omputed parametervetor �̂. The ellipsoid de�ned by (2.10), is entered at �̂ and has its prinipal axes diretedalong the eigenvetors of JT (�̂)J(�̂). Using the SVD (2.4) for J(�̂), we getJT (�̂)J(�̂) = V (�̂)�2(�̂)V T (�̂);and the eigenvetors of JT (�̂)J(�̂) are the olumns of the matrix V (�̂). So, the ellipsoid hasits prinipal axes direted along the olumn vetors of the matrix V (�̂). Moreover, the radiialong these prinipal axes are inversely proportional to the orresponding singular values �i,the diagonal elements of �(�̂). This all an be seen by using the following transformation(rotation) z = V T (�̂)(�� � �̂); (2.11)yielding (�� � �̂)T �V (�̂)�2(�̂)V T (�̂)� (�� � �̂) = zT�2(�̂)z = mXi=1 �2i z2i : (2.12)On the other hand, sine S(�̂)=(N �m) is an unbiased estimator of �2, the equation for theellipsoid an be rewritten as mXi=1 �2i z2i = r2�; (2.13)where r2� � m�2F�(m;N �m) is proportional to the variane in the measurement errors.This form is more onvenient to deal with beause z an be onsidered as a set of unorrelatedvariables, and one the onlusion has been drawn for the determinability of z, the probleman be transformed bak, revealing us the quality of �̂.Now, we assume that the model (2.1) is properly saled, suh that all parameter valuesare of the same order of magnitudes, and that we are interested only in the �rst few digitsof the parameter values. Let us introdue the sphere given bymXi=1 z2i = r2� ; (2.14)where r� de�nes the level of auray one desires for the parameter estimates. For instane,if the parameters are of order O(1) and one is interested only in the �rst two digits to theright of the deimal point, then r� = 0:01. In order to be able to determine zi auratelyenough, the radius along the ellipsoid's i-th prinipal axis shouldn't exeed the radius of thesphere, whih leads us to the following inequality�i � r�r� : (2.15)A graphial representation of the ellipsoid and the sphere is given in Figure 2.1 for the2-dimensional ase. If only the �rst k largest singular values satisfy (2.15), then only the6
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Figure 2.1: Example of an ellipsoidal on�dene region and an auray sphere in the 2-dimensional ase; learly, z1 is well-determined, while z2 is not.
�rst k entries of z are estimated with the required auray and no suÆient informationis available for the remaining omponents of z. Now, realling (2.11) and the fat thatV desribes a rotation around the enter of the ellipsoid, it beomes lear that only theset of the �rst k largest singular values ontain useful information about the quality ofthe parameter estimates. Eah orresponding eigenvetor de�nes a parameter or a linearombination of parameters whih is well-determined. In the ase when a prinipal axis of theellipsoid makes a signi�ant angle with the axis in parameter spae (i.e., there exists morethan one signi�ant entry in the eigenvetor), this orresponds to the presene of orrelationamong parameters in �̂. The remaining degrees of freedom in the parameters, orrespondingwith the smaller singular values, annot be determined (with suÆient auray) by meansof the available experimental data.To summarize, the level of noise in the data in ombination with the auray require-ment for the parameter estimates, de�nes the threshold for signi�ant singular values in thematrix �. The number of singular values exeeding this threshold determines the numberof parameter relations that an be derived from the experiment. How these relations relateto the individual parameters is desribed by the orresponding olumns in the matrix V .The largest entries in these olumns indiate the well-determined parameters and, on theother hand, if entries are small, then the orresponding parameters annot be determinedwith reasonable auray.From (2.10) one an also derive dependent on�dene intervals for the parameter esti-mates, whih are the intersetions of the ellipsoidal region with the parameter axes(�i : j�i � �̂ij � r�r�V (�̂)�2(�̂)V T (�̂)��1ii ) ; i = 1; 2; : : : ;m; (2.16)and independent on�dene intervals, whih are the projetions of the ellipsoidal region onthe parameters axes��i : j�i � �̂ij � r�r�V (�̂)��2(�̂)V T (�̂)�ii� ; i = 1; 2; : : : ;m: (2.17)
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Clearly, small independent on�dene intervals for �̂i indiate that it is well-determined.However, in some ases onsidering only individual on�dene intervals an be misleading.For instane, in the presene of a strong orrelation between parameters, the dependenton�dene intervals underestimate the on�dene region while the independent on�deneintervals overestimate it.Finally, (2.13) indiates that having, for instane, two times more aurate data so thatthe standard deviation � is halved, will derease the radii along the ellipsoid's prinipalaxis by a fator of 2. Therefore, in ase of very small singular values �i (i.e. stronglyelongated ellipsoids) more aurate data obtained by the experimentalist will not improvemuh the quality of the orresponding parameter estimates. In suh a ase, one ertainlyneeds additional measurements of a di�erent type (e.g., di�erent omponents, di�erent timepoints, or in the ase of PDEs di�erent spatial points).
3 A large-sale biologial test problemIn this setion we study the model of the geneti regulatory network at the early stageof development of Drosophila melanogaster. In partiular, we are interested in the spatio-temporal pattern formation of gap gene expression in the Drosophila embryo during theearly leavage yles 13 and 14A. The gap gene system inludes the genes Bioid (bd),Caudal (ad), Hunhbak (hb), Kruppel (Kr), Knirps (kni), Giant (gt) and Tailless (tll). Itis known that before yle 13 there is no (signi�ant) expression of gap genes in the embryo.The proess of pattern formation for gap gene expression is initiated by gradients of thematernal proteins bd, hb and ad. The size, loation and dynamis of gap domains dependon regulatory interations between the genes involved in the system. This regulatory networkis well studied in [5℄-[6℄. There, a global searh approah based on simulated annealing(SA) is used for the estimation of the parameters in the gap gene model. A more eÆientapproah, namely ombining a global searh method, the Stohasti Ranking EvolutionStrategy (SRES), with a loal diret searh method, Downhill Simplex (DS), is introduedin [7℄. The quality of the parameter estimates is measured by the root mean square (RMS)of the disrepany vetor and onsidered to be 'good' if RMS < 12:0 and if there are nospei� pattern defets in the model response [5℄-[7℄. As explained in the previous setionwe should notie that this de�nition of the quality of parameter estimates an be rathermisleading. In fat, RMS shows the quality of the �t of the model response to the data butdoes not give any information about the quality of the parameter estimates. Our aim is to�nd the parameter estimates that give a good �t and to apply statistial analysis in orderto investigate how reliable these estimates are.3.1 The mathematial modelWe �rst outline the main aspets of the mathematial model whih is used to desribe themehanism of pattern formation at the early developmental stage of the Drosophila embryo.Detailed information an be found in [4℄-[6℄. The hange of the level of onentrations ofgene produts is desribed by the system of ODEsdgaidt = Ra�0� NgXb=1W bagbi +magbdi + ha1A� �agai +Da �gai+1 � 2gai + gai�1� ; (3.1)
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where a and b denote gene produts, gai denotes the onentration of gene produt a atnuleus i, gbdi denotes the onentration of maternal protein bd (onstant in time) atnuleus i, Ng = 6 is the number of genes, and the funtion�(x) = 12 � xpx2 + 1 + 1� (3.2)is a sigmoid funtion. Note that indexes a and b used in (3.1) are integers. To avoidmisunderstanding genes ad, hb, Kr, kni, gt, tll are enumerated from one to Ng, respetively.Indexes with integers and abbreviations of genes are used here interhangeably. For instane,D2 is the same as Dhb.In the system (3.1) there are in total m = 66 unknown parameters. These inlude theregulatory weight matrix W of size Ng�Ng with the entries W ba representing the regulationof gene a by gene b, maternal oeÆients ma representing the regulatory e�et of bd ongene a, promoter thresholds ha, promoter strengths Ra, di�usion oeÆients Da, and deayrates �a.Sine the nulei are equally distributed along the anterior-posterior (AP) axis of theembryo, (3.1) an be seen as a disretized (in spae) form of a system of one-dimensionalreation-di�usion equations. The region of interest inludes 30 and 58 nulei at the entralpart of the embryo during the yles 13 and 14A, respetively. Therefore, there are 180 and348 equations in the system (3.1) at the yles 13 and 14A, respetively. Initial onditions att = 0:0 (beginning of yle 13) are presribed by gradients of hb and ad and zero levels forthe other genes. The model simulates until gastrulation at t = 71:1. At the boundaries theentral di�erene in the last term in the right-hand side of (3.1) is replaed by a one-sideddi�erene (no-ux onditions).During the mitosis phase between yles 13 and 14A (see Figure 3.1) the protein pro-dution in the embryo is shut down and therefore the �rst term in the right hand side of(3.1) does not ontribute anything. Mitosis starts at t = 16:0 and ends at t = 21:1. At theend of the mitosis all nulei simultaneously divide. This is done by doubling the numberof nulei, dividing di�usion oeÆients by 4 so that the distane between nulei is halved,and opying the onentration values from eah nuleus to its daughter nulei. The latterprovides the initial onditions for equations (3.1) in yle 14A.3.2 The dataThe data set, onsisting of N = 2702 measurements, is available from the FlyEx database [8℄.The level of measurement error is less than 5%, see [17℄. Figure 3.1 shows the time pointsTi (0 � i � 8) when measurements were taken. Figure 3.2 shows the gene expression data
T0 T1 T2 T3 T4 T5 T6 T7 T8

24.225 30.475 36.725 42.975 49.225 55.475 61.725 67.97510.5500.0

Cycle 13 Cycle 14AMitosis

Figure 3.1: Time axis and the points when measurements were taken: one in yle 13and eight in yle 14A; mitosis is the phase between two yles when there is no proteinprodution in the embryo.
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at time points Ti (0 � i � 8). Note that measurements for the onentrations of all geneproduts at all time points are available, exept ad at T7, T8 and tll at T0, T1, T2.T0 T1 T2
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Figure 3.2: Gene expression data at di�erent time points. Graphs show relative proteinonentration (with a range from 0 to 255 uoresene units) plotted against position onthe AP axis (the region of interest is saled to [0; 1℄).It is not known how the experimental errors are distributed. However, measurementvalues are the outomes of sophistiated data proessing proedures, see [17℄. In fat, alldata points are values integrated over spae and averaged over the number of individualembryos (the number of embryos varies from 9 to 62 for di�erent time points and di�erentgenes [8℄). Therefore, from a statistial point of view, it is reasonable to assume that theexperimental errors are normally distributed.3.3 The experimental setupWe apply the LM method to estimate the parameters for the gap gene system. Sine theLM method is a loal searh approah, the hoie of initial values for the parameter vetoris important for onvergene. Fortunately, for this problem there is extensive informationavailable in the literature. We use 80 di�erent initial values for the parameter vetor �
10



from [7℄. Eah of these parameter sets is obtained by using an evolution strategy (globalapproah) ombined with diret searh (loal approah).With the notations introdued in Setions 3.1-3.2, RMS is de�ned as
RMS(�) =vuut 1N NgXa=1 NXi=1 8Xj=0 �aj (gai (Tj ; �)model � gai (Tj)data)2;where N is the number of nulei and �aj is equal to zero for T ll at j = 0; 1; 2 and for ad atj = 7; 8, and is equal to one otherwise. We note that only 41 of the initial parameter setshave RMS(�) < 12:0, see Table 3.1.The searh spae for parameters is de�ned by the linear onstraints10:0 � Ra � 30:0; 0:0 < Da � 0:3; 5:0 � ln(2)�a � 20:0; a = 1; : : : ; Ng; (3.3)and by the nonlinear onstraintsNgXb=1 �W bagbmax�2 + �magbdmax�2 + (ha)2 � 104; a = 1; : : : ; Ng; (3.4)

where gbmax and gbdmax are the maximum values in the data set for gene b and protein bd,respetively. Note that in [5℄-[7℄ threshold parameters ha for genes Kr, Kni, gt, and hb are�xed to negative values representing a onstitutively repressed state for the orrespondinggenes [18℄. Fixing some parameters to spei� values may severely restrit the searh spaeleaving some solutions out of onsideration. Contrary to their approah, we inlude thresholdparameters for these genes in the searh by putting the onstraints �10:0 � ha � 0:0.In order to make the analysis of parameter estimation easier, we sale in advane allparameters used in (3.1) in the following way:~Ra = 0:1Ra; ~Da = 10Da; ~�a = 10�a; ~W ba = 102W ba ; ~ma = 102ma; ~ha = ha;for all genes a and b. Note that the hoie of the saling fators for Ra, Da, and �a is basedon the searh ranges of the orresponding parameters. The hoie of the saling fators forregulatory weights W ba and maternal oeÆients ma is based on the fat that the maximumlevel of protein onentration for all genes in the data set is of order O(102). Thus, all saledparameters are of order O(1).3.4 Results of parameter estimationThe least squares estimation using the LM method yields a signi�ant derease of RMS in allsimulations, see Table 3.1. There are only 5 initial parameter sets having RMS < 10:0, withthe best �t having RMS = 9:56. After using the LM method there are 71 �nal parametersets whih have RMS < 10:0 and among them there are 69 having values of RMS uniformlydistributed between 8.37 and 9.43. It is diÆult to make a distintion between these 69parameter estimates based only on RMS values. Therefore, in our analyses, we take intoaount all of them. We note that there is a distint gap between the RMS values of thehosen 69 parameter sets and the RMS values of the remaining parameter estimates.
11



RMS < 10:0 10:0 � RMS < 12:0 12:0 � RMS < 14:0 RMS � 14:0�in 5 36 21 18�̂ 71 3 1 5Table 3.1: Numbers in the table show the number of parameter estimates with orrespondingranges for RMS, where �in and �̂ orrespond to the parameter estimates before and afterusing the LM method, respetively.
Parameter estimates found by the LM method also produe a better �t than thosepreviously obtained in [5℄-[7℄. In Figure 3.4 the model response for one of our parametersets (green lines) is ompared to the data (red lines) and to the patterns obtained withthe parameter set from [5℄ (blue lines). The patterning defets reported in [5℄, suh asthe expression of hb at the anterior and posterior borders, are mainly resolved. However,there are two problems, mentioned in [5℄-[6℄, that remain unsolved with the new parameterestimates. The �rst one is related to the arti�ially high level of gap gene expression atyle 13, i.e the model responses are muh larger than the data values yielding large positivedisrepanies. This is apparently due to the model itself. It might be needed to inludesome delay in the proess of protein prodution to be able to overome the poor �t at yle13, as it is proposed in [5℄-[6℄. The seond one is related to the absene of boundary shiftsfor the posterior hb domain in the model responses.Kr Kni Gt Hb

 0

 50

 100

 150

 200

 250

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 50

 100

 150

 200

 250

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 50

 100

 150

 200

 250

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 50

 100

 150

 200

 250

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

 0

 50

 100

 150

 200

 250

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 50

 100

 150

 200

 250

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 50

 100

 150

 200

 250

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 50

 100

 150

 200

 250

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

 0

 50

 100

 150

 200

 250

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 50

 100

 150

 200

 250

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 50

 100

 150

 200

 250

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 50

 100

 150

 200

 250

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Figure 3.3: Comparison between data (red lines), patterns obtained by parameter set from [5℄(blue lines) and patterns with the parameter set yielded from the LM searh (green lines)for the expression of gap genes Kr, Kni, gt, and hb at early (t = 24:225, �rst row) mid-(t = 42:975, seond row) and late (t = 67:975, last row) yle 14A. Axes are as in Figure 3.2.Information about the regulatory matrix for all parameter sets is given in Table 3.2.Triplets show the number of parameter sets in whih a regulatory weight falls into one of the12



following ategories: repression (values � �0:005)/ no interation (values between �0:005and 0:005)/ ativation (values � 0:005). Based on the highest value in the triplets, the tableis oloured suh that the bakground olours represent ativation (green), no interation(light-blue), or repression (pink).bd ad hb Kr gt kni tllad 60=5=4 69=0=0 69=0=0 69=0=0 69=0=0 69=0=0 69=0=0hb 0=0=69 0=1=68 0=1=68 3=57=9 3=29=37 69=0=0 4=41=24Kr 0=0=69 0=0=69 24=45=0 0=4=65 67=1=1 43=26=0 69=0=0gt 0=0=69 0=0=69 7=47=15 69=0=0 0=0=69 0=11=58 45=24=0kni 5=4=60 0=7=62 69=0=0 38=31=0 51=18=0 0=0=69 67=2=0tll 42=7=20 12=6=51 42=16=11 64=3=2 60=4=5 67=2=0 0=11=58
Table 3.2: Maternal oeÆients and regulatory weight matrix for the gap gene system basedon 69 parameter sets found by the LM method. Numbers show how many parameter setshave repression / no interation / ativation for orresponding regulatory weight. Coloursindiate ativation (green), no interation (light-blue), or repression (pink) based on themaximum values in triplets.Our results are in good agreement with the results obtained in [5℄-[7℄. Namely,� ad and bd ativate gap genes hb, Kr, gt, and kni;� gap genes hb, Kr, gt, and kni have autoativation;� terminal gap gene tll represses gap genes Kr, gt, and kni;� mutually exlusive gap genes strongly repress eah other, these orrespond to weightsWKrgt , W gtKr, W knihb , and Whbkni;Previous results also suggest that pairs of overlapping gap genes, namely, hb and gt, hb andKr, gt and kni, Kr and kni, either have no interation with eah other or repress eahother, exept for the e�et of gt on hb, see [5℄. These regulations are partially on�rmedhere. However, we �nd that the e�et of Kr on hb and hb on gt an be positive as wellin some ases. A striking di�erene is that kni mostly ativates gt while previously it wasfound that there was no interation between them.Satter plots in Figure 3.4-3.5 show the range of the parameter estimates for the gapgene system. For eah individual parameter indiated on the horizontal axis, its estimatedvalues (red irles) are plotted along the vertial axis. Most of the parameters have a broadrange of possible values, meaning that they are not uniquely found. The only exeptions aresome entries in the regulatory weight matrix, suh as Whbgt , WKrhb , W knigt , and W tllhb .3.5 Determinability of parametersWe apply the statistial analysis introdued in Setion 2 to all 69 parameter sets obtainedby the LM method to asses the quality of estimates.
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hange when only dependent on�dene intervals are taken into aount. However, inludingindependent on�dene intervals one an no longer make any qualitative onlusions aboutthe entries in the regulatory weight matrix. So, individual on�dene intervals are notinformative for our purpose.For eah parameter set �̂, the SVD (2.4) of the Jaobian J(�̂) yields the matries V (�̂)and �(�̂). In order to �nd the number of singular values in �(�̂) satisfying (2.15) we need toquantify r� and r�. We are interested only in the �rst digit to the right of the deimal point ofthe saled parameters and therefore we take r� = 0:1. Sine � �q S(�̂)N�m =q NN�m RMS(�̂),we have r� � �pm F�(m;N �m) �r N mN �m F�(m;N �m) RMS(�̂):For � = 0:05 we then obtain r� � 9:4 RMS(�̂) (the hoie of � does not make muhdi�erene here due to the large value of N).Investigation of all parameter sets shows that, on average, 15 singular values satisfy (2.15)meaning that at most 15 parameters or linear ombinations of them an be determined withtwo digits auray. There is a set of parameters whih have signi�ant entries in the �rst 15olumns of all V matries. It inludes regulatory weights W adKr , W adgt , W adkni , W adtll , WhbKr,promoter thresholds hKr, hgt, htll, deay rate �ad, and promoter strength Rkni. However,
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inspetion of the �rst 15 olumns of the V matries shows that there is not a single parameterwhih an be determined individually. It means that a prinipal axis of the ellipsoid makesan angle with the orresponding axes in parameter spae. The same holds for other prinipalaxes of the ellipsoid de�ned by the olumns of the matrix V orresponding to singular valueswhih do not satisfy (2.15).Let us investigate here possible reasons for orrelations among parameter estimates. Lakof auray of the data annot be the reason for that. More aurate data would simply makethe ellipsoid shrink but not rotate and therefore it would not improve the determinabilityof parameters.We have also heked whether data insuÆieny may ause the nondeterminability ofparameters. This is done in the following way. Assume that a larger data set was available,say we had measurements for all gene produts, in all nulei, at 71 uniformly distributedtime points. With these hoies the total number of measurements would be N = 21180.Sine the Jaobian depends only on the model responses and not on the values of the data,we an generate a new Jaobian ~J(�̂) inluding all 'ghost' data points. From the SVD of theorresponding ~J(�̂) we get the matries ~V (�̂) and ~�(�̂) whih de�ne new ellipsoidal regions.The ellipsoids are slightly rotated in omparison with the initial ones but not enough tomake the prinipal axes of the ellipsoid get loser to the parameter axes. From this weonlude that lak of data points is not the reason for these orrelations.Corret appliation of the statistial analysis for the parameter estimates desribed inSetion 2 implies that the measurement errors are independent and ome from a normaldistribution. To study whether these assumptions a�et the determinability we ondutthe inverse experiment. We take one of the parameter sets obtained by the LM searh,having RMS = 8:38, and we denote it by ��. By integrating the model equations with�� we generate an exat data set at the same data points as the initial data set. To theexat data values we add errors drawn from the normal distribution with zero mean andstandard deviation equal to 8:5. From the exat and the perturbed data set, we omputeRMS(��) = 8:17. The perturbed data set is used for the parameter estimation by meansof the LM searh. Note that by onstruting this inverse problem, we make sure that theassumptions about the measurement errors are orret. With 40 di�erent initial values of �from [7℄ we obtain 34 parameter estimates having RMS between 7.95 and 8.25. The rangesof the values of the obtained parameters remain broad (data is not shown here). Inspetionof the orresponding V matries shows that parameters are not determinable due to theorrelations, similar to the original problem.We onlude that the observed orrelations among parameters are a property of themodel. Sine an expliit form of the dependene of the state vetor on the parameters isnot known, the use of reparametrization tehniques is not feasible. Note that the majorityof parameters in (3.1) appear in the argument of sigmoid funtion �. If the model (3.1) isused to obtain only the qualitative information, suh as the signs of regulatory weights, thenthe partiular mathematial form of this funtion is of no importane [4℄. However, it hasto be studied if the hoie of the sigmoid funtion a�ets the determinability of parameters.Preliminary results suggest that the orrelations among parameters are redued when thesigmoid funtion de�ned by (3.2) is replaed by a pieewise linear funtion.To summarize, the statistial analyses show that parameters in (3.1) annot be deter-mined individually due to the orrelations among the parameters. The observed orrelationsare a property of the model itself, not the data. Further investigation is needed to study themodel equations to remove the orrelations so that the parameters an be well determined.
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Finally, we remark that the statistial analysis, introdued in Setion 2, has been derivedfor models that are linear in �. In the nonlinear ase, it holds approximately and the aurayof the approximation depends on the type of nonlinearity. Obviously, the solution of (3.1)is nonlinear in � and therefore all onlusions whih are drawn here are approximate in thatsense.
4 Conluding remarksIn this paper we have applied the Levenberg-Marquardt (LM) optimization method to esti-mate the parameters in the model of the geneti regulatory network in Drosophila embryo.Statistial analysis is used to study the quality of the obtained parameter estimates, i.e.how well the parameters are determined with the available experimental data.The parameter estimates obtained with the LM method �t the data better than the pa-rameters known from literature. For instane, the defets in the patterns of gene produt ofHunhbak, reported in [5℄, are removed here. Qualitative onlusions with the new param-eter sets are in good agreement with the results stated previously. Namely, the regulatoryinterations among genes involved in gap gene system are on�rmed here, with only one ex-eption. We found that gene Knirps ativates gene Giant while previously it was stated thatthere was no interation between them. Large ranges for the values of parameter estimatessuggest that the parameters are not unique.Determinability studies based on statistial analysis show that the model annot be usedas a quantitative tool. None of the parameters used in the model an be determined in-dividually due to orrelations among parameters. We have shown that these orrelationsare not related to a lak of data. The nondeterminability stems from the intrinsi orrela-tions among parameters in the model. Further investigation is needed to modify the modelequations in order to remove the observed orrelations.The produts of mathernal genes regulate gap genes, but not vie versa [19℄. Deter-minability studies based on statistial analysis suggest that the model (3.1) an be reduedin size with respet to the number of equations and the number of parameters, by removingthe model equations for gene ad. However, this is an open question for further work.
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