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ABSTRACT
Mathematical modelling of real-life processes often requires the estimation of unknown
parameters. Once the parameters are found by means of optimization, it is important to asses
the quality of the parameter estimates. In this paper we describe how the quality of these
estimates can be analyzed and this methodology is applied to study the model for the genetic
regulatory network in the Drosophila embryo during the early developmental stages.
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Abstra
tMathemati
al modelling of real-life pro
esses often requires the estimation of un-known parameters. On
e the parameters are found by means of optimization, it isimportant to asses the quality of the parameter estimates. In this paper we des
ribehow the quality of these estimates 
an be analyzed and this methodology is applied tostudy the model for the geneti
 regulatory network in the Drosophila embryo duringthe early developmental stages.2000 Mathemati
s Subje
t Classi�
ation: primary 92C15;Keywords and Phrases: parameter estimation; parameter determinability; regulatorygeneti
 networks; Drosophila

1 Introdu
tionMany real-life pro
esses 
an be modelled by Ordinary Di�erential Equations (ODEs) orPartial Di�erential Equations (PDEs). For instan
e, in developmental biology, systems ofrea
tion-di�usion equations are used to model spatio-temporal patterns of protein 
on
en-trations [1℄. A 
ommon diÆ
ulty is that the model equations usually have a large number ofunknown parameters, su
h as di�usion 
oeÆ
ients, de
ay and rea
tion rates, et
. Sometimesmissing parameters 
an be estimated experimentally, but this is rather ex
eptional. Mostly,it is impossible to �nd missing parameter values dire
tly. However, usually one 
an measureother quantities involved in the model. For instan
e, experimentalists 
an measure proteinor mRNA 
on
entrations. The unknown model parameters 
an then be found by parameterestimation te
hniques su
h that the solution of the mathemati
al model �ts the measureddata.There exists a number of di�erent optimization te
hniques for parameter estimation.The 
hoi
e of the te
hnique usually depends on the type of model equations (deterministi
or sto
hasti
), as well as on the level of noise in the data. When the model is deterministi
and the data is not too noisy, gradient-based methods are eÆ
ient optimizers [2℄. In thispaper we use the Levenberg-Marquardt (LM) method for that purpose. It is a lo
al sear
happroa
h, meaning that a suÆ
iently good initial guess for the parameter values is needed.If available, su
h values 
an for example be obtained from literature. Otherwise, the LM�E-mail address: M.Ashyraliyev�
wi.nl
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method has to be 
ombined with some global sear
h method, su
h as simulated annealing,a geneti
 algorithm, an evolution strategy, et
.On
e the parameter estimates have been 
omputed, it is very important to know howreliable they are. For this, 
on�den
e regions 
an be determined. They allow us to assessthe quality of the parameter estimates. Ideally, one would wish to determine all parametersa

urately enough. In pra
ti
e, however, this is usually not possible and one has to fa
e anun
ertainty in the parameter values. This 
an be due to insuÆ
ient or noisy data or simplybe
ause the 'wrong' model is used. In this paper, we do not fo
us on the latter aspe
t,assuming that the 'right' model is available.Cell di�erentiation and body plan formation of animals o

ur in embryos at the earlydevelopmental stages [3℄. The pro
ess of 
ell di�erentiation is initiated by di�erent mor-phogen gradients whi
h provide the spatial information by dividing the embryo in di�erentregions. This is followed by the formation of 
on
entration gradients of gene produ
ts whi
hare responsible for body plan formation. The pro
ess of pattern formation is based on theregulatory intera
tions among genes and gene produ
ts involved in geneti
 regulatory net-works. Mathemati
al modelling of the 
orre
t spatio-temporal pattern formation of geneprodu
t 
on
entrations helps to reveal the regulatory intera
tions among genes as well as tohave insight into the dynami
s of the underlying pro
esses. In this work, we 
onsider the gapgene system of Drosophila melanogaster (fruit-
y). The mathemati
al model for this systemis introdu
ed in [4℄ and parameter estimation has been used in [5℄-[7℄ by means of globaloptimization methods. We apply the LM method to estimate the unknown parameters andwe study how well these estimates 
an be determined, based on the available experimentaldata [8℄. Note that the methodology used is generally appli
able for a broad range of models,also arising in other �elds.The paper is organized as follows. In Se
tion 2 we des
ribe the theory needed for theparameter estimation problem, with the fo
us on the gradient-based LM method, and forthe statisti
al analysis whi
h is applied to investigate the quality of the estimates obtained.In Se
tion 3, we study the biologi
al problem 
on
erning the early stage of development ofDrosophila. The paper is 
on
luded with remarks in Se
tion 4.
2 TheoryWe 
onsider a model given by the system of ODEs of the form:8<: dydt = f(t;y; �); 0 < t � T;y(t; �) = y0(�); t = 0: (2.1)
Here the m-dimensional ve
tor � 
ontains all unknown parameters, y is an n-dimensionalstate ve
tor, and f is a given ve
tor fun
tion, di�erentiable with respe
t to t, y and �. When
omponents of the initial state ve
tor y0 are not known, they are 
onsidered as unknownparameters, so y0 may depend on �. In this work, we assume that (2.1) is the 'right' modelfor the problem we are interested in. Let us explain what we mean by a 'right' model. Firstly,it implies that (2.1) is a suÆ
iently a

urate mathemati
al des
ription approximating reality.This means that all relevant knowledge about the pro
esses is in
orporated 
orre
tly in theve
tor fun
tion f. Thus, the only un
ertainty in (2.1) is the ve
tor of unknown parameters�. Se
ondly, it means that there exists a 'true' value �� for the parameters � su
h that2



(2.1) represents reality. So, in prin
iple, all unknown parameters 
an be determined whensuÆ
ient and a

urate enough data is available.Remark 2.1 If the model is given by a system of PDEs, then by applying a spatial dis-
retization, it 
an be redu
ed to (2.1). However, in su
h a 
ase one has to be 
areful withthe 
hoi
e of the grid size of the spatial dis
retization. On the one hand, the grid should be�ne enough, so that the numeri
al errors introdu
ed by spatial dis
retization are negligiblein 
omparison with the level of noise in the data. On the other hand, requiring an extremely�ne grid would in
rease the size of the system (2.1). The latter may be 
ru
ial in terms of
omputational 
omplexity.Let us assume that for (2.1) there are N measurements available. Ea
h measurement,whi
h we denote by ~yi, is spe
i�ed by the time ti when the 
i-th 
omponent of the stateve
tor y is measured. The 
orresponding model value obtained from (2.1) is denoted byy
i(ti; �). The above assumptions imply that the di�eren
e j~yi � y
i(ti; ��)j is solely due toexperimental error. We denote the ve
tor of dis
repan
ies between the theoreti
al valuesand the measured values by Y(�). Then the least squares estimate �̂ of the parameters isthe value of � that minimizes the sum of squares
S(�) = NXi=1(y
i(ti; �)� ~yi)2 = YT (�)Y(�); (2.2)

see [15, 16℄. We note that (2.2) is an appropriate measure under 
ertain assumptions, whi
hwe will dis
uss in Se
tion 2.2. Other measures might be used when these assumptions donot hold.2.1 Parameter estimation by the Levenberg-Marquardt methodIn general, any gradient-based optimization pro
edure seeks a 
orre
tion Æ� for the parameterve
tor, su
h that S(�+ Æ�) � S(�) holds. The LM method [10℄ determines the 
orre
tion asthe solution of the equations�JT (�)J(�) + �Im� Æ� = �JT (�)Y(�); (2.3)where � � 0 is some 
onstant, Im is the identity matrix of size m and the Ja
obianJ(�) = �Y(�)�� is the so-
alled 'sensitivity' matrix of size N � m. The entry Ji;j in J(�)shows how sensitive the model response is at the i-th data point for a 
hange in the j-th pa-rameter. The LM method 
an be seen as the 
ombination of two gradient-based approa
hes:Gauss-Newton and steepest des
ent. If � = 0 in (2.3), it 
oin
ides with the Gauss-Newtonmethod. However, when the matrix JT (�)J(�) is (almost) singular, to solve (2.3), � has tobe positive and for large � the LM method approa
hes the steepest des
ent method. Duringthe optimization � is adapted su
h that the algorithm strives to exploit the fast 
onvergen
eof the Gauss-Newton method whenever this is possible [10, 11℄.In order to solve (2.3), the singular value de
omposition (SVD) of the matrix J(�) 
anbe used, i.e. J(�) = U(�) �(�) V T (�); (2.4)where U(�) is an orthogonal matrix of size N �m, su
h that UT (�)U(�) = Im, V (�) is anorthogonal matrix of size m �m, su
h that V T (�)V (�) = V (�)V T (�) = Im, and �(�) is a3



diagonal matrix of size m�m whi
h 
ontains all singular values �i in non-in
reasing order.Then the 
orre
tion Æ� 
an be found asÆ� = �V (�) ��2(�) + �Im��1�(�) UT (�) Y(�): (2.5)Later, when we study the reliability of the parameters 
omputed, the SVD will play animportant role again.In order to exe
ute an LM optimization step, the ve
tor of dis
repan
ies Y(�), the matrixJ(�) and its SVD have to be evaluated for ea
h new estimate of �. For this purpose, oneneeds to resolve (2.1) for Y and the additional system of variational equations for the entriesof J , 8><>: ��t �y��i = �f��i + �f�y �y��i ; 0 < t � T;�y(t; �)��i = �y0(�)��i ; t = 0; (2.6)
for i = 1; 2; : : : ;m. We note that the 
osts for performing the SVD and 
omputing the
orre
tion (2.5) are negligible in 
omparison with the 
omputational 
osts for solving (2.1)and (2.6).Thus, a single LM step requires the numeri
al solution of m + 1 
oupled systems, ea
hone 
onsisting of n ODEs. Fortunately, these systems are 
oupled in a spe
ial way, namely,for ea
h i = 1; 2; : : : ;m, system (2.6) is a system of ODEs for �y��i , 
oupled only with (2.1).The system of equations (2.6) has the same sti�ness as (2.1) and therefore the same stepsize 
an be used for the time integration of (2.1) and (2.6). Therefore, the one-way 
oupling
an be used to solve (2.1) and (2.6) eÆ
iently. Still, this approa
h has limitations for larges
ale problems due to 
omputational 
osts.Another approa
h to approximate the matrix J(�) 
ould be by means of divided di�er-en
es instead of numeri
ally solving (2.6). The j-th 
olumn of J(�) is then given by�Y(�)��j � Y(~�j)�Y(�)Æ~�j ; (2.7)
where the ve
tor ~�j is obtained by a small perturbation Æ~�j in the j-th entry of �. In this 
ase,for one LM step system (2.1) has to be numeri
ally integratedm+1 times. With regard to the
omputational 
osts, when f is nonlinear, it is more expensive than the previous approa
hwhere the linear systems of variational equations are solved. Moreover, the drawba
k ofdivided di�eren
e method is that the numeri
al approximations (2.7) introdu
e additionalerrors.Remark 2.2 For large s
ale problems 
omputation on a single 
omputer 
an be
ome un-feasible and one needs to use a parallel ma
hine. Parallelization of the 
omputational workwhen (2.1) and (2.6) are solved numeri
ally is possible at the level of a time step of the timeintegrator. Therefore, it will be ineÆ
ient due to heavy 
ommuni
ation. The advantage ofthe divided di�eren
e approa
h is that in this 
ase (2.1) is solved for m+ 1 di�erent valuesof � independently of ea
h other. Therefore, parallelization of the 
omputational work istrivial and 
an be very eÆ
ient.Remark 2.3 Given f and y0, the partial derivatives �f�y , �f��i , �y0��i (i = 1; : : : ;m) in (2.6)
an be, in prin
iple, found analyti
ally. However, for large s
ale problems when f has a4




ompli
ated nonlinear form, this 
an be a tedious work to do. In su
h 
ases, these derivativefun
tions 
an be generated automati
ally by using a symboli
 mathemati
s pa
kage, likeMaple [12℄ or Mathemati
a (Wolfram Resear
h, In
).Remark 2.4 Numeri
al integration of (2.1) and (2.6) requires a fast and reliable ODEsolver. Sear
h in the parameter spa
e may lead to some values of � su
h that the systemsof ODEs be
ome sti� [9℄. Therefore, an impli
it s
heme is the best 
hoi
e for time integra-tion both with respe
t to 
omputational speed and for stability reasons. Moreover, usingan impli
it s
heme allows us to exploit the spe
i�
 
oupling between (2.1) and (2.6) in aneÆ
ient way. At ea
h time step integrating �rst (2.1) provides the solution ve
tor y andthe LU de
omposition of the Ja
obian matrix Im � � �f�y , where � is the time step. Thenthe 
al
ulation of �y��i from (2.6) redu
es to a simple forward substitution and ba
ksubsti-tution. In our simulations we use the impli
it multistep Ba
kward Di�erentiation Formulas(BDF) [13℄.Remark 2.5 When the model in
ludes algebrai
 equations, the systems of ODEs (2.1) and(2.6) 
hange to Di�erential Algebrai
 Equations (DAEs). Sin
e we use an impli
it solver forthe time integration, the method we have des
ribed here is readily appli
able for that typeof models.Remark 2.6 When the unknown parameters have to obey 
ertain 
onstraints, linear ornonlinear, some additional work might be needed. If the 
orre
tion Æ� found by (2.5) leadsto violation of some 
onstraints, then by the introdu
tion of Lagrange multipliers a modi�ed
orre
tion 
an be found, whi
h �ts all 
onstraints. For the 
onstrained minimization problemwe refer the reader to [14℄.2.2 Statisti
al analysis of obtained parametersAbove we used �� to denote the 'true' parameter ve
tor, for whi
h (2.1) des
ribes realitywith suÆ
ient a

ura
y, and by �̂ we denote the parameter ve
tor whi
h minimizes (2.2).Remarkably, even having a 'right' model and an estimate �̂ for the parameter ve
tor whi
h�ts the data well, does not mean that the whole modelling problem is resolved su

essfully.It is important to know how reliable the obtained estimate is. In other words, we needinformation about the di�eren
e �̂ � ��. In order to investigate the quality of the estimate�̂, one needs to in
lude some statisti
al analysis [9, 15, 16℄.We assume that the measurement errors in ~yi are independent of ea
h other and normallydistributed and that the system (state ve
tor y) is well s
aled, so that the error distributionshave zero mean and 
onstant standard deviation �. Then, �̂ is a maximum likelihoodestimate [15℄-[16℄. By assumption the model with the 'true' solution �� des
ribes reality, so~yi � y
i(ti; ��) + �i; i = 1; 2; : : : ; N; (2.8)where �i are the measurement errors, for whi
h�̂ � �� � Nm�0; �2 �JT (�̂)J(�̂)��1� (2.9)holds approximately [15℄. Here Nm(�; �) denotes the m-dimensional multivariate normaldistribution. Noti
e that (2.9) holds exa
tly when y is linear in �. The (1 � �)-
on�den
e5



region for �� is determined by the inequality(�� � �̂)T �JT (�̂)J(�̂)� (�� � �̂) � mN �mS(�̂)F�(m;N �m); (2.10)where F�(m;N �m) is the upper � part of Fisher's distribution with m and N �m degreesof freedom. For instan
e, with � = 0:05 we have a 95% 
han
e that �� lies in this region.This ellipsoidal 
on�den
e region allows us to assess the quality of the 
omputed parameterve
tor �̂. The ellipsoid de�ned by (2.10), is 
entered at �̂ and has its prin
ipal axes dire
tedalong the eigenve
tors of JT (�̂)J(�̂). Using the SVD (2.4) for J(�̂), we getJT (�̂)J(�̂) = V (�̂)�2(�̂)V T (�̂);and the eigenve
tors of JT (�̂)J(�̂) are the 
olumns of the matrix V (�̂). So, the ellipsoid hasits prin
ipal axes dire
ted along the 
olumn ve
tors of the matrix V (�̂). Moreover, the radiialong these prin
ipal axes are inversely proportional to the 
orresponding singular values �i,the diagonal elements of �(�̂). This all 
an be seen by using the following transformation(rotation) z = V T (�̂)(�� � �̂); (2.11)yielding (�� � �̂)T �V (�̂)�2(�̂)V T (�̂)� (�� � �̂) = zT�2(�̂)z = mXi=1 �2i z2i : (2.12)On the other hand, sin
e S(�̂)=(N �m) is an unbiased estimator of �2, the equation for theellipsoid 
an be rewritten as mXi=1 �2i z2i = r2�; (2.13)where r2� � m�2F�(m;N �m) is proportional to the varian
e in the measurement errors.This form is more 
onvenient to deal with be
ause z 
an be 
onsidered as a set of un
orrelatedvariables, and on
e the 
on
lusion has been drawn for the determinability of z, the problem
an be transformed ba
k, revealing us the quality of �̂.Now, we assume that the model (2.1) is properly s
aled, su
h that all parameter valuesare of the same order of magnitudes, and that we are interested only in the �rst few digitsof the parameter values. Let us introdu
e the sphere given bymXi=1 z2i = r2� ; (2.14)where r� de�nes the level of a

ura
y one desires for the parameter estimates. For instan
e,if the parameters are of order O(1) and one is interested only in the �rst two digits to theright of the de
imal point, then r� = 0:01. In order to be able to determine zi a

uratelyenough, the radius along the ellipsoid's i-th prin
ipal axis shouldn't ex
eed the radius of thesphere, whi
h leads us to the following inequality�i � r�r� : (2.15)A graphi
al representation of the ellipsoid and the sphere is given in Figure 2.1 for the2-dimensional 
ase. If only the �rst k largest singular values satisfy (2.15), then only the6
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z 1 z 2

Figure 2.1: Example of an ellipsoidal 
on�den
e region and an a

ura
y sphere in the 2-dimensional 
ase; 
learly, z1 is well-determined, while z2 is not.
�rst k entries of z are estimated with the required a

ura
y and no suÆ
ient informationis available for the remaining 
omponents of z. Now, re
alling (2.11) and the fa
t thatV des
ribes a rotation around the 
enter of the ellipsoid, it be
omes 
lear that only theset of the �rst k largest singular values 
ontain useful information about the quality ofthe parameter estimates. Ea
h 
orresponding eigenve
tor de�nes a parameter or a linear
ombination of parameters whi
h is well-determined. In the 
ase when a prin
ipal axis of theellipsoid makes a signi�
ant angle with the axis in parameter spa
e (i.e., there exists morethan one signi�
ant entry in the eigenve
tor), this 
orresponds to the presen
e of 
orrelationamong parameters in �̂. The remaining degrees of freedom in the parameters, 
orrespondingwith the smaller singular values, 
annot be determined (with suÆ
ient a

ura
y) by meansof the available experimental data.To summarize, the level of noise in the data in 
ombination with the a

ura
y require-ment for the parameter estimates, de�nes the threshold for signi�
ant singular values in thematrix �. The number of singular values ex
eeding this threshold determines the numberof parameter relations that 
an be derived from the experiment. How these relations relateto the individual parameters is des
ribed by the 
orresponding 
olumns in the matrix V .The largest entries in these 
olumns indi
ate the well-determined parameters and, on theother hand, if entries are small, then the 
orresponding parameters 
annot be determinedwith reasonable a

ura
y.From (2.10) one 
an also derive dependent 
on�den
e intervals for the parameter esti-mates, whi
h are the interse
tions of the ellipsoidal region with the parameter axes(�i : j�i � �̂ij � r�r�V (�̂)�2(�̂)V T (�̂)��1ii ) ; i = 1; 2; : : : ;m; (2.16)and independent 
on�den
e intervals, whi
h are the proje
tions of the ellipsoidal region onthe parameters axes��i : j�i � �̂ij � r�r�V (�̂)��2(�̂)V T (�̂)�ii� ; i = 1; 2; : : : ;m: (2.17)

7



Clearly, small independent 
on�den
e intervals for �̂i indi
ate that it is well-determined.However, in some 
ases 
onsidering only individual 
on�den
e intervals 
an be misleading.For instan
e, in the presen
e of a strong 
orrelation between parameters, the dependent
on�den
e intervals underestimate the 
on�den
e region while the independent 
on�den
eintervals overestimate it.Finally, (2.13) indi
ates that having, for instan
e, two times more a

urate data so thatthe standard deviation � is halved, will de
rease the radii along the ellipsoid's prin
ipalaxis by a fa
tor of 2. Therefore, in 
ase of very small singular values �i (i.e. stronglyelongated ellipsoids) more a

urate data obtained by the experimentalist will not improvemu
h the quality of the 
orresponding parameter estimates. In su
h a 
ase, one 
ertainlyneeds additional measurements of a di�erent type (e.g., di�erent 
omponents, di�erent timepoints, or in the 
ase of PDEs di�erent spatial points).
3 A large-s
ale biologi
al test problemIn this se
tion we study the model of the geneti
 regulatory network at the early stageof development of Drosophila melanogaster. In parti
ular, we are interested in the spatio-temporal pattern formation of gap gene expression in the Drosophila embryo during theearly 
leavage 
y
les 13 and 14A. The gap gene system in
ludes the genes Bi
oid (b
d),Caudal (
ad), Hun
hba
k (hb), Kruppel (Kr), Knirps (kni), Giant (gt) and Tailless (tll). Itis known that before 
y
le 13 there is no (signi�
ant) expression of gap genes in the embryo.The pro
ess of pattern formation for gap gene expression is initiated by gradients of thematernal proteins b
d, hb and 
ad. The size, lo
ation and dynami
s of gap domains dependon regulatory intera
tions between the genes involved in the system. This regulatory networkis well studied in [5℄-[6℄. There, a global sear
h approa
h based on simulated annealing(SA) is used for the estimation of the parameters in the gap gene model. A more eÆ
ientapproa
h, namely 
ombining a global sear
h method, the Sto
hasti
 Ranking EvolutionStrategy (SRES), with a lo
al dire
t sear
h method, Downhill Simplex (DS), is introdu
edin [7℄. The quality of the parameter estimates is measured by the root mean square (RMS)of the dis
repan
y ve
tor and 
onsidered to be 'good' if RMS < 12:0 and if there are nospe
i�
 pattern defe
ts in the model response [5℄-[7℄. As explained in the previous se
tionwe should noti
e that this de�nition of the quality of parameter estimates 
an be rathermisleading. In fa
t, RMS shows the quality of the �t of the model response to the data butdoes not give any information about the quality of the parameter estimates. Our aim is to�nd the parameter estimates that give a good �t and to apply statisti
al analysis in orderto investigate how reliable these estimates are.3.1 The mathemati
al modelWe �rst outline the main aspe
ts of the mathemati
al model whi
h is used to des
ribe theme
hanism of pattern formation at the early developmental stage of the Drosophila embryo.Detailed information 
an be found in [4℄-[6℄. The 
hange of the level of 
on
entrations ofgene produ
ts is des
ribed by the system of ODEsdgaidt = Ra�0� NgXb=1W bagbi +magb
di + ha1A� �agai +Da �gai+1 � 2gai + gai�1� ; (3.1)
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where a and b denote gene produ
ts, gai denotes the 
on
entration of gene produ
t a atnu
leus i, gb
di denotes the 
on
entration of maternal protein b
d (
onstant in time) atnu
leus i, Ng = 6 is the number of genes, and the fun
tion�(x) = 12 � xpx2 + 1 + 1� (3.2)is a sigmoid fun
tion. Note that indexes a and b used in (3.1) are integers. To avoidmisunderstanding genes 
ad, hb, Kr, kni, gt, tll are enumerated from one to Ng, respe
tively.Indexes with integers and abbreviations of genes are used here inter
hangeably. For instan
e,D2 is the same as Dhb.In the system (3.1) there are in total m = 66 unknown parameters. These in
lude theregulatory weight matrix W of size Ng�Ng with the entries W ba representing the regulationof gene a by gene b, maternal 
oeÆ
ients ma representing the regulatory e�e
t of b
d ongene a, promoter thresholds ha, promoter strengths Ra, di�usion 
oeÆ
ients Da, and de
ayrates �a.Sin
e the nu
lei are equally distributed along the anterior-posterior (AP) axis of theembryo, (3.1) 
an be seen as a dis
retized (in spa
e) form of a system of one-dimensionalrea
tion-di�usion equations. The region of interest in
ludes 30 and 58 nu
lei at the 
entralpart of the embryo during the 
y
les 13 and 14A, respe
tively. Therefore, there are 180 and348 equations in the system (3.1) at the 
y
les 13 and 14A, respe
tively. Initial 
onditions att = 0:0 (beginning of 
y
le 13) are pres
ribed by gradients of hb and 
ad and zero levels forthe other genes. The model simulates until gastrulation at t = 71:1. At the boundaries the
entral di�eren
e in the last term in the right-hand side of (3.1) is repla
ed by a one-sideddi�eren
e (no-
ux 
onditions).During the mitosis phase between 
y
les 13 and 14A (see Figure 3.1) the protein pro-du
tion in the embryo is shut down and therefore the �rst term in the right hand side of(3.1) does not 
ontribute anything. Mitosis starts at t = 16:0 and ends at t = 21:1. At theend of the mitosis all nu
lei simultaneously divide. This is done by doubling the numberof nu
lei, dividing di�usion 
oeÆ
ients by 4 so that the distan
e between nu
lei is halved,and 
opying the 
on
entration values from ea
h nu
leus to its daughter nu
lei. The latterprovides the initial 
onditions for equations (3.1) in 
y
le 14A.3.2 The dataThe data set, 
onsisting of N = 2702 measurements, is available from the FlyEx database [8℄.The level of measurement error is less than 5%, see [17℄. Figure 3.1 shows the time pointsTi (0 � i � 8) when measurements were taken. Figure 3.2 shows the gene expression data
T0 T1 T2 T3 T4 T5 T6 T7 T8

24.225 30.475 36.725 42.975 49.225 55.475 61.725 67.97510.5500.0

Cycle 13 Cycle 14AMitosis

Figure 3.1: Time axis and the points when measurements were taken: one in 
y
le 13and eight in 
y
le 14A; mitosis is the phase between two 
y
les when there is no proteinprodu
tion in the embryo.
9



at time points Ti (0 � i � 8). Note that measurements for the 
on
entrations of all geneprodu
ts at all time points are available, ex
ept 
ad at T7, T8 and tll at T0, T1, T2.T0 T1 T2
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Figure 3.2: Gene expression data at di�erent time points. Graphs show relative protein
on
entration (with a range from 0 to 255 
uores
en
e units) plotted against position onthe AP axis (the region of interest is s
aled to [0; 1℄).It is not known how the experimental errors are distributed. However, measurementvalues are the out
omes of sophisti
ated data pro
essing pro
edures, see [17℄. In fa
t, alldata points are values integrated over spa
e and averaged over the number of individualembryos (the number of embryos varies from 9 to 62 for di�erent time points and di�erentgenes [8℄). Therefore, from a statisti
al point of view, it is reasonable to assume that theexperimental errors are normally distributed.3.3 The experimental setupWe apply the LM method to estimate the parameters for the gap gene system. Sin
e theLM method is a lo
al sear
h approa
h, the 
hoi
e of initial values for the parameter ve
toris important for 
onvergen
e. Fortunately, for this problem there is extensive informationavailable in the literature. We use 80 di�erent initial values for the parameter ve
tor �
10



from [7℄. Ea
h of these parameter sets is obtained by using an evolution strategy (globalapproa
h) 
ombined with dire
t sear
h (lo
al approa
h).With the notations introdu
ed in Se
tions 3.1-3.2, RMS is de�ned as
RMS(�) =vuut 1N NgXa=1 N
Xi=1 8Xj=0 �aj (gai (Tj ; �)model � gai (Tj)data)2;where N
 is the number of nu
lei and �aj is equal to zero for T ll at j = 0; 1; 2 and for 
ad atj = 7; 8, and is equal to one otherwise. We note that only 41 of the initial parameter setshave RMS(�) < 12:0, see Table 3.1.The sear
h spa
e for parameters is de�ned by the linear 
onstraints10:0 � Ra � 30:0; 0:0 < Da � 0:3; 5:0 � ln(2)�a � 20:0; a = 1; : : : ; Ng; (3.3)and by the nonlinear 
onstraintsNgXb=1 �W bagbmax�2 + �magb
dmax�2 + (ha)2 � 104; a = 1; : : : ; Ng; (3.4)

where gbmax and gb
dmax are the maximum values in the data set for gene b and protein b
d,respe
tively. Note that in [5℄-[7℄ threshold parameters ha for genes Kr, Kni, gt, and hb are�xed to negative values representing a 
onstitutively repressed state for the 
orrespondinggenes [18℄. Fixing some parameters to spe
i�
 values may severely restri
t the sear
h spa
eleaving some solutions out of 
onsideration. Contrary to their approa
h, we in
lude thresholdparameters for these genes in the sear
h by putting the 
onstraints �10:0 � ha � 0:0.In order to make the analysis of parameter estimation easier, we s
ale in advan
e allparameters used in (3.1) in the following way:~Ra = 0:1Ra; ~Da = 10Da; ~�a = 10�a; ~W ba = 102W ba ; ~ma = 102ma; ~ha = ha;for all genes a and b. Note that the 
hoi
e of the s
aling fa
tors for Ra, Da, and �a is basedon the sear
h ranges of the 
orresponding parameters. The 
hoi
e of the s
aling fa
tors forregulatory weights W ba and maternal 
oeÆ
ients ma is based on the fa
t that the maximumlevel of protein 
on
entration for all genes in the data set is of order O(102). Thus, all s
aledparameters are of order O(1).3.4 Results of parameter estimationThe least squares estimation using the LM method yields a signi�
ant de
rease of RMS in allsimulations, see Table 3.1. There are only 5 initial parameter sets having RMS < 10:0, withthe best �t having RMS = 9:56. After using the LM method there are 71 �nal parametersets whi
h have RMS < 10:0 and among them there are 69 having values of RMS uniformlydistributed between 8.37 and 9.43. It is diÆ
ult to make a distin
tion between these 69parameter estimates based only on RMS values. Therefore, in our analyses, we take intoa

ount all of them. We note that there is a distin
t gap between the RMS values of the
hosen 69 parameter sets and the RMS values of the remaining parameter estimates.
11



RMS < 10:0 10:0 � RMS < 12:0 12:0 � RMS < 14:0 RMS � 14:0�in 5 36 21 18�̂ 71 3 1 5Table 3.1: Numbers in the table show the number of parameter estimates with 
orrespondingranges for RMS, where �in and �̂ 
orrespond to the parameter estimates before and afterusing the LM method, respe
tively.
Parameter estimates found by the LM method also produ
e a better �t than thosepreviously obtained in [5℄-[7℄. In Figure 3.4 the model response for one of our parametersets (green lines) is 
ompared to the data (red lines) and to the patterns obtained withthe parameter set from [5℄ (blue lines). The patterning defe
ts reported in [5℄, su
h asthe expression of hb at the anterior and posterior borders, are mainly resolved. However,there are two problems, mentioned in [5℄-[6℄, that remain unsolved with the new parameterestimates. The �rst one is related to the arti�
ially high level of gap gene expression at
y
le 13, i.e the model responses are mu
h larger than the data values yielding large positivedis
repan
ies. This is apparently due to the model itself. It might be needed to in
ludesome delay in the pro
ess of protein produ
tion to be able to over
ome the poor �t at 
y
le13, as it is proposed in [5℄-[6℄. The se
ond one is related to the absen
e of boundary shiftsfor the posterior hb domain in the model responses.Kr Kni Gt Hb
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Figure 3.3: Comparison between data (red lines), patterns obtained by parameter set from [5℄(blue lines) and patterns with the parameter set yielded from the LM sear
h (green lines)for the expression of gap genes Kr, Kni, gt, and hb at early (t = 24:225, �rst row) mid-(t = 42:975, se
ond row) and late (t = 67:975, last row) 
y
le 14A. Axes are as in Figure 3.2.Information about the regulatory matrix for all parameter sets is given in Table 3.2.Triplets show the number of parameter sets in whi
h a regulatory weight falls into one of the12



following 
ategories: repression (values � �0:005)/ no intera
tion (values between �0:005and 0:005)/ a
tivation (values � 0:005). Based on the highest value in the triplets, the tableis 
oloured su
h that the ba
kground 
olours represent a
tivation (green), no intera
tion(light-blue), or repression (pink).b
d 
ad hb Kr gt kni tll
ad 60=5=4 69=0=0 69=0=0 69=0=0 69=0=0 69=0=0 69=0=0hb 0=0=69 0=1=68 0=1=68 3=57=9 3=29=37 69=0=0 4=41=24Kr 0=0=69 0=0=69 24=45=0 0=4=65 67=1=1 43=26=0 69=0=0gt 0=0=69 0=0=69 7=47=15 69=0=0 0=0=69 0=11=58 45=24=0kni 5=4=60 0=7=62 69=0=0 38=31=0 51=18=0 0=0=69 67=2=0tll 42=7=20 12=6=51 42=16=11 64=3=2 60=4=5 67=2=0 0=11=58
Table 3.2: Maternal 
oeÆ
ients and regulatory weight matrix for the gap gene system basedon 69 parameter sets found by the LM method. Numbers show how many parameter setshave repression / no intera
tion / a
tivation for 
orresponding regulatory weight. Coloursindi
ate a
tivation (green), no intera
tion (light-blue), or repression (pink) based on themaximum values in triplets.Our results are in good agreement with the results obtained in [5℄-[7℄. Namely,� 
ad and b
d a
tivate gap genes hb, Kr, gt, and kni;� gap genes hb, Kr, gt, and kni have autoa
tivation;� terminal gap gene tll represses gap genes Kr, gt, and kni;� mutually ex
lusive gap genes strongly repress ea
h other, these 
orrespond to weightsWKrgt , W gtKr, W knihb , and Whbkni;Previous results also suggest that pairs of overlapping gap genes, namely, hb and gt, hb andKr, gt and kni, Kr and kni, either have no intera
tion with ea
h other or repress ea
hother, ex
ept for the e�e
t of gt on hb, see [5℄. These regulations are partially 
on�rmedhere. However, we �nd that the e�e
t of Kr on hb and hb on gt 
an be positive as wellin some 
ases. A striking di�eren
e is that kni mostly a
tivates gt while previously it wasfound that there was no intera
tion between them.S
atter plots in Figure 3.4-3.5 show the range of the parameter estimates for the gapgene system. For ea
h individual parameter indi
ated on the horizontal axis, its estimatedvalues (red 
ir
les) are plotted along the verti
al axis. Most of the parameters have a broadrange of possible values, meaning that they are not uniquely found. The only ex
eptions aresome entries in the regulatory weight matrix, su
h as Whbgt , WKrhb , W knigt , and W tllhb .3.5 Determinability of parametersWe apply the statisti
al analysis introdu
ed in Se
tion 2 to all 69 parameter sets obtainedby the LM method to asses the quality of estimates.
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atter plots of parameters in the regulatory weight matrix for the gap genesystem.
Ellipsoidal 
on�den
e regions 
orresponding to parameter estimates are given by (2.10).A trivial 
he
k reveals that none of the parameter estimates lies in the ellipsoidal 
on�den
eregions of all other parameter sets. Note that this does not ne
essarily imply that there are69 di�erent minima or solutions for the parameter ve
tor.Dependent and independent 
on�den
e intervals for ea
h parameter set 
an be 
omputedby (2.16) and (2.17), respe
tively. We 
he
k if the 
orresponding 
on�den
e intervals fallinto the repression, no intera
tion, or a
tivation 
ategory. Colours in Table 3.2 do not
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hange when only dependent 
on�den
e intervals are taken into a

ount. However, in
ludingindependent 
on�den
e intervals one 
an no longer make any qualitative 
on
lusions aboutthe entries in the regulatory weight matrix. So, individual 
on�den
e intervals are notinformative for our purpose.For ea
h parameter set �̂, the SVD (2.4) of the Ja
obian J(�̂) yields the matri
es V (�̂)and �(�̂). In order to �nd the number of singular values in �(�̂) satisfying (2.15) we need toquantify r� and r�. We are interested only in the �rst digit to the right of the de
imal point ofthe s
aled parameters and therefore we take r� = 0:1. Sin
e � �q S(�̂)N�m =q NN�m RMS(�̂),we have r� � �pm F�(m;N �m) �r N mN �m F�(m;N �m) RMS(�̂):For � = 0:05 we then obtain r� � 9:4 RMS(�̂) (the 
hoi
e of � does not make mu
hdi�eren
e here due to the large value of N).Investigation of all parameter sets shows that, on average, 15 singular values satisfy (2.15)meaning that at most 15 parameters or linear 
ombinations of them 
an be determined withtwo digits a

ura
y. There is a set of parameters whi
h have signi�
ant entries in the �rst 15
olumns of all V matri
es. It in
ludes regulatory weights W 
adKr , W 
adgt , W 
adkni , W 
adtll , WhbKr,promoter thresholds hKr, hgt, htll, de
ay rate �
ad, and promoter strength Rkni. However,
15



inspe
tion of the �rst 15 
olumns of the V matri
es shows that there is not a single parameterwhi
h 
an be determined individually. It means that a prin
ipal axis of the ellipsoid makesan angle with the 
orresponding axes in parameter spa
e. The same holds for other prin
ipalaxes of the ellipsoid de�ned by the 
olumns of the matrix V 
orresponding to singular valueswhi
h do not satisfy (2.15).Let us investigate here possible reasons for 
orrelations among parameter estimates. La
kof a

ura
y of the data 
annot be the reason for that. More a

urate data would simply makethe ellipsoid shrink but not rotate and therefore it would not improve the determinabilityof parameters.We have also 
he
ked whether data insuÆ
ien
y may 
ause the nondeterminability ofparameters. This is done in the following way. Assume that a larger data set was available,say we had measurements for all gene produ
ts, in all nu
lei, at 71 uniformly distributedtime points. With these 
hoi
es the total number of measurements would be N = 21180.Sin
e the Ja
obian depends only on the model responses and not on the values of the data,we 
an generate a new Ja
obian ~J(�̂) in
luding all 'ghost' data points. From the SVD of the
orresponding ~J(�̂) we get the matri
es ~V (�̂) and ~�(�̂) whi
h de�ne new ellipsoidal regions.The ellipsoids are slightly rotated in 
omparison with the initial ones but not enough tomake the prin
ipal axes of the ellipsoid get 
loser to the parameter axes. From this we
on
lude that la
k of data points is not the reason for these 
orrelations.Corre
t appli
ation of the statisti
al analysis for the parameter estimates des
ribed inSe
tion 2 implies that the measurement errors are independent and 
ome from a normaldistribution. To study whether these assumptions a�e
t the determinability we 
ondu
tthe inverse experiment. We take one of the parameter sets obtained by the LM sear
h,having RMS = 8:38, and we denote it by ��. By integrating the model equations with�� we generate an exa
t data set at the same data points as the initial data set. To theexa
t data values we add errors drawn from the normal distribution with zero mean andstandard deviation equal to 8:5. From the exa
t and the perturbed data set, we 
omputeRMS(��) = 8:17. The perturbed data set is used for the parameter estimation by meansof the LM sear
h. Note that by 
onstru
ting this inverse problem, we make sure that theassumptions about the measurement errors are 
orre
t. With 40 di�erent initial values of �from [7℄ we obtain 34 parameter estimates having RMS between 7.95 and 8.25. The rangesof the values of the obtained parameters remain broad (data is not shown here). Inspe
tionof the 
orresponding V matri
es shows that parameters are not determinable due to the
orrelations, similar to the original problem.We 
on
lude that the observed 
orrelations among parameters are a property of themodel. Sin
e an expli
it form of the dependen
e of the state ve
tor on the parameters isnot known, the use of reparametrization te
hniques is not feasible. Note that the majorityof parameters in (3.1) appear in the argument of sigmoid fun
tion �. If the model (3.1) isused to obtain only the qualitative information, su
h as the signs of regulatory weights, thenthe parti
ular mathemati
al form of this fun
tion is of no importan
e [4℄. However, it hasto be studied if the 
hoi
e of the sigmoid fun
tion a�e
ts the determinability of parameters.Preliminary results suggest that the 
orrelations among parameters are redu
ed when thesigmoid fun
tion de�ned by (3.2) is repla
ed by a pie
ewise linear fun
tion.To summarize, the statisti
al analyses show that parameters in (3.1) 
annot be deter-mined individually due to the 
orrelations among the parameters. The observed 
orrelationsare a property of the model itself, not the data. Further investigation is needed to study themodel equations to remove the 
orrelations so that the parameters 
an be well determined.
16



Finally, we remark that the statisti
al analysis, introdu
ed in Se
tion 2, has been derivedfor models that are linear in �. In the nonlinear 
ase, it holds approximately and the a

ura
yof the approximation depends on the type of nonlinearity. Obviously, the solution of (3.1)is nonlinear in � and therefore all 
on
lusions whi
h are drawn here are approximate in thatsense.
4 Con
luding remarksIn this paper we have applied the Levenberg-Marquardt (LM) optimization method to esti-mate the parameters in the model of the geneti
 regulatory network in Drosophila embryo.Statisti
al analysis is used to study the quality of the obtained parameter estimates, i.e.how well the parameters are determined with the available experimental data.The parameter estimates obtained with the LM method �t the data better than the pa-rameters known from literature. For instan
e, the defe
ts in the patterns of gene produ
t ofHun
hba
k, reported in [5℄, are removed here. Qualitative 
on
lusions with the new param-eter sets are in good agreement with the results stated previously. Namely, the regulatoryintera
tions among genes involved in gap gene system are 
on�rmed here, with only one ex-
eption. We found that gene Knirps a
tivates gene Giant while previously it was stated thatthere was no intera
tion between them. Large ranges for the values of parameter estimatessuggest that the parameters are not unique.Determinability studies based on statisti
al analysis show that the model 
annot be usedas a quantitative tool. None of the parameters used in the model 
an be determined in-dividually due to 
orrelations among parameters. We have shown that these 
orrelationsare not related to a la
k of data. The nondeterminability stems from the intrinsi
 
orrela-tions among parameters in the model. Further investigation is needed to modify the modelequations in order to remove the observed 
orrelations.The produ
ts of mathernal genes regulate gap genes, but not vi
e versa [19℄. Deter-minability studies based on statisti
al analysis suggest that the model (3.1) 
an be redu
edin size with respe
t to the number of equations and the number of parameters, by removingthe model equations for gene 
ad. However, this is an open question for further work.
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