stichting
mathematisch
centrum MC

DEPARTMENT OF NUMERICAL MATHEMATICS NW 25/79 APRIL

J.C.P. BUS

A COMPARATIVE STUDY OF PROGRAMS FOR SOLVING NONLINEAR
EQUAT IONS

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
profit institution aiming at the promotion of pure mathematics and its
applications. It {8 sponsored by the Netherlands Government through the
Netherlands Onganization for the Advancement of Pune Research (Z.0.0).

AMS(MOS) subject classification scheme (1970): 65HIO

First printing December 1975
Second edition March 1976
"hird printing April 1979

A comparative study of programs for solving nonlinear equations
by

J.C.P. Bus

ABSTRACT

In this report we propose a method for comparing the efficiency and
reliability of programs for solving systems of nonlinear equations. We use
this method for comparing a great number of existing programs. The results
of these comparisons are given in such a way that it is easy for the user
to decide which program he should choose for solving a given system of

nonlinear equations.

KEY WORDS AND PHRASES: Systems of nonlinear equations, comparison of ef-

ficiency and reliability of programs.

CONTENTS

Introduction

ey
°

Statement of the problem

Theoretical background

. Description of methods known

. Selected programs

Classification of problems and selection of testproblems
. Rules for users

Evaluation of numerical experiments

0 N O BN
°

Conclusions

Acknowledgements
References

Appendix

INTRODUCTION

In recent years, the testing of numerical software becomes more and
more important. There are several reasons for this development. One is the
creation of large user libraries of numerical programs (IMSL [32], NAG [38],
NUMAL [39] etc.), where the need for choosing the programs to be included,
makes testing very urgent. Another reason is the confusing variety of pro-
grams in some fields of numerical mathematics, which makes it impossible for
the unsophisticated user of numerical software to choose the right program
for solving his problem. A lot of papers are devoted to the testing of soft-
ware (HAGUE et al.[29], HILLSTROM [30], LOOTSMA [34], EINARSSON [23], HULL
[31] etc.). However, many of the ideas suggested in the various papers are
controversial or contradict each other. Therefore, we want to point out
clearly the purposes of this report. In our opinion, the process of select-
ing useful numerical software consists of three stages:

- analysis of the theoretical properties of the underlying algorithms;
- analysis of the practical performance of the algorithms;
- analysis of programs.

We will elucidate these three stages.

1. Analysis of theoretical properties
The algorithms should have a sound mathematical basis. It should be

clear on what conditions convergence is guaranteed.

2. Analysis of practical performance
We are interested in two desirable properties.

a. The work that has to be done to solve a problem. We say that an algorithm
is more efficient than another for solving a problem, when the work that
has to be done for solving this problem with this algorithm is less than
for solving with the other algorithm,

b. The capability of an algorithm to compute accurate answers to severe
problems or to compute answers at all to such problems. This is called
reliability or robustness.

One should realize that the most efficient algorithm for solving rela-
tively easy problems may frequently fail in solving severe problems. More-

over, an algorithm that is capable of solving severe problems will usually

not be efficient for solving easy problems. For instance, evaluating a func-
tion for all representable numbers on a computer is clearly a robust method
for finding a solution of an equation in one variable, however, using inter-
polation will be far more efficient in most cases but may fail sometimes.

In most practical cases, the user does not know in advance whether his
problem is relatively easy to solve. Hence, he wants to choose the algorithm
that has both the highest probability that it solves his problem and is the
most efficient algorithm for solving it. However, the arguments above indi-
cate that these wishes are rather contradictory in most cases. Hence, the
user has to choose the appropriate algorithm by a method of trial and error.
The goal of this report is to tell him which algorithm is the best to try
first and which one when the first is failing and so on.

In performing an analysis of the relative efficiency and reliability
of some algorithm one should have some measure for these properties. For
many non-iterative algorithms it is easy to count the number of basic arith-
metical operations (+,-,%,/) and the number of evaluations of the functions
involved, if there are any. This gives a very practical measure of the ef-
ficiency of such algorithms. Furthermore, a theoretical analysis of non-iter-
ative algorithms will usually give enough information about the reliability.
However, for iterative algorithms these problems are far more complicated.
Although it is possible to count the number of arithmetical operations as
well as the number of function evaluations performed at each iteration step,
provided that there are no iterative subprocesses, we do not know the num—
ber of iteration steps needed to obtain a certain result. Therefore, we
have to make programs which implement the iterative algorithms in order to
be able to get this number for a representative set of testproblems. Clear-
ly, the reliability of the algorithm is measured by just counting the num-
ber of failures while solving the problems of the given set. By measuring
the efficiency, however, we feel that we should not take into account the
failures of an algorithm, since we know that it may fail in solving rela-
tively difficult problems. Therefore, it is necessary to create a set of
relatively easy testproblems in a sense that should be specified clearly.
This set should be used for comparing the efficiency of all algorithms. Ob-
viously, the notions efficiency and reliability as used in this report are

dependent on the sets of testproblems chosen. Selection of these sets should

be based on thorough theoretical and practical arguments. We tried to do
so, but we do realize that it is still far from being ideal.

Finally, we want to emphasize that a measure for the efficiency of an
algorithm should be as independent as possible of the environment in which
the algorithm is used. Therefore, computation time is a very bad measure,
since it depends on the running system of the computer (usually swapping
time is added to normal computation time), on the hardware (the ratio of
the time needed for addition and for multiplication varies from one computer
to another), on the compiler used (see PARLETT & WANG [42]) and on many

other things which are difficult to define precisely.

3. Analysis of programs
Examples of properties that the program should satisfy are:

a. the program should be well-structured (built up from independent modules),
so that error detection becomes easy;

b. stopping criteria should be such that the required results can be guar-
anteed (if at all possible); some kind of error messages should be given
when the algorithm breaks down;

c. machine-dependent quantities should be avoided if at all possible, other-
wise they should be defined explicitly and the computation should be such

that under- and overflow is avoided.

In this report we will be concerned with the first two stages with re-
spect to the problem of solving systems of nonlinear equations, although
the first stage is mainly restricted to giving relevant literature,

In section 1 the problem is defined. In section 2 some theoretical
background is given. Particularly, Newton-like algorithms are briefly dis-
cussed. In section 3 we describe the methods known and mention relevant lit-
erature about convergence and stability. In section 4 we list the programs
which are chosen for testing. We did only choose those programs of which
an implementation in ALGOL 60 or FORTRAN is readily available from the lit-
erature, We did not implement algorithms by ourselves since one of our pur-
boses is to present the unsophisticated user a guide for choosing an exist-
ing program for solving his problems.

In section 5 we define the testproblems and we propose a classification

of these problems. In section 6 we summarize the results of section 1 to 5

4

®

in some rules of thumb for the user, We give him the tools which should en-
able him to classify his problem. The main part of this report, at least
quantitatively, consists of section 7 where the numerical experiments are
described and where the results are given in tables and diagrams. In sec-
tion 8 conclusions about the efficiency and reliability of the various pro-
grams are given. Here we give the user the information that is necessary to
make a reasonable decision about which program he should choose for his prob-
lem.

Finally, the unsophisticated user is advised to examine his problem in
the way that is advised in section 6, subsequently, to choose the program
with the help of the conclusions given in section 8, and finally, to read
the description of the program given in section 4 and to perform the modi-
fications proposed there. Doing so, he will not be involved with theoreti-
cal considerations and yet he will take advantage of the results of this re-

port as much as possible.

1. STATEMENT OF THE PROBLEM

We consider the problem of solving a system of nonlinear equations.
Let F denote an n-dimensional continuous (nonlinear) function of n variables,

defined on some region D ¢ R":

(1.1) F: D c R" - R",

Then we want to compute.some vector z € D, such that
(1.2) F(z) =0 ¢ R",

In numerical analysis, a wide variety of problems may be formulated in such
a way that the solution of a system of nonlinear equations is required for
solving these problems. For instance, solving a two point boundary value

problem

u" = f(t,u), 0
u(0) =a, u(l) =8,

"
rt
A

.

with a finite difference or finite element method gives rise to a system of

nonlinear equations if f£(t,u) is nonlinear in u. Other problems, for which
solving may require the solution of a system of nonlinear equations are

elliptic boundary value problems, integral equations or two-dimensional var-

iational problems (see ORTEGA & RHEINBOLDT [40]).

Algorithms for solving nonlinear problems are usually iterative. I.e.,

given any initial approximation X, to z, the algorithm generates a series

. . <o
of approximations {Xi}i—l to z, such that

1lim x. = 2z,
100

It is very obvious that the choice of the initial guess may highly affect
the convergence of the sequence {Xi} to the solution vector z. Therefore,

we give a more precise definition of the problem considered

given F: D c R" > R™ and X, € D;
(1.3)
calculate z € D, such that F(z) = 0.

We denote this problem by
(1.4) [F(x) = 0; Xy DJ.

In this report we compare programs for solving problem (1.3).

2. THEORETICAL BACKGROUND

2.1. General theoretical considerations

An iterative m—step method which uses the function and its first deri-

vative for solving problem (1.3) may generally be defined by:

given XO,...,X -1’

calculate for k = m-1,m,m+1,...

(2.1.]) Xk+1 = (bm(xk"“’xkdm‘l'l’F(xk)"..’F(xk'm*l)"](xk)’...’J(Xk"‘m"']))’

where J(x) is the so-called Jacobian matrix of partial derivatives. Speci-

fic examples are

[
]

¢(Xk) X, [J(Xk)]—lF(xk) (Newton's method),

(2.1.3) X1 w(xk)

(2.1.2) X4l

x - M) ' Fx),

where M(xk) will usually be some approximation to J(xk). Most methods con-
sidered in this report, including Newton's method, can be given in the form
(2.1.3). Therefore, we will pay some special attention to these so-called
Newton-like methods.

A theoretical analysis of Newton's method, which is based on the New-
ton-Kantorovich theorem can be found in the literature (e.g. ORTEGA & RHEIN-
BOLDT [40], COLLATZ [16], RALL [45]). For this method, one can prove that

the error in ¢(x) as an approximation to the solution z satisfies:

(2.1.4) l¢(x)-zl < S(x,z)ﬂx—zﬂz,

where S(x,2z) depends on ﬂ[J(x)]-lﬂ and the norm of the second derivative of
the function in some region containing x and z (COLLATZ [16], BUS [14]).
Hence, provided S(x,z) is bounded (i.e. J(x) is nonsingular and the second
derivative is bounded) the asymptotic order of convergence of Newton's meth-

od is quadratic.

However, the use of iteration formula (2.1,3) leads to the more compli-
cated bound for the error in Y(x):

(2.1.5) ly(x)-zl < cl(x)n[J(x)]“lunx-zn +

+ (cl(X)"[J(X)]—lﬂ + 1)S(x,z)||x-z|12,

where cl(x) is a measure for the error in M(x) as an approximation to J(x)

(BUS [14]). It is obvious from (2.1.5) that superlinear convergence of the
method given by (2.1.3) can only be guaranteed if

(2.1.6) cl(x) = 0(lx-zl), for x > z,

For somewhat different treatments of the convergence analysis of methods

as given by (2.1.3) we refer to ORTEGA & RHEINBOLDT [40] or BOGGS & DENNIS
[1].

2.2. Numerical aspects

Using a method as given by (2.1.3) on a computer, we are confronted
with two kinds of problems due to the finite word length of a computer. The
first one is that in computing M(xk) as an approximation to J(xk), the best
we can obtain anyhow is a relative error which is about the same as the pre-
cision of arithmetic. Hence (2.1.6) cannot be satisfied. The second problem
is the stability of the method for solving the linear system in each itera-

tion step. Using gaussian elimination for solving a linear system
Ax = b

we obtain an upper bound for the relative error in the solution

(2.2.1) %éﬁl < «(A)Re = g

where e is the precision of arithmetic, x(A) = HAHHA_IH is the condition
number of the matrix A and R is some constant, mainly depending on the or-
der of the system and specific details of the method used (WILKINSON [491]).
It is assumed that «(4) << l/e.

Let @(x) be the value obtained By evaluating the right hand side of
(2.1.3) with precision of arithmetic ¢. Then, we obtain for the error in

¥(x) as an approximation to z (BUS [14]):

(2.2.2) 13G0-zl < elxl + Lx)lx-zl + Qx)lx-zl2,

where

B(x) + (1 + B(x))eGITIEI,

(2.2.3) L(x)

(1 + L(x))S(x,2z),

(2.2.4) Q(x)

I

(2.2.5) B(x) (1+e)a(x) + €,

a(x) and S(x,z) are given by (2.2.1), with A replaced by J(x), and (2.1.%),
respectively, and c(x) is a measure for the error in M(x) as a numerical
approximation to J(x).

Hence, using a method defined by (2.1.3) for solving problem (1.3),

8

we can not expect to obtain a numerical solution in a relative precision

which is higher than the precision of arithmetic. Furthermore, convergence

at all depends on the value of

S(x,z), the convergence factor of the exact Newton method, which depends on
the problem,

c(x) , a measure of the error in M(x) as a numerical approximation to J(x),
which depends on the method as well as on the problem,

B & a , which reflects the condition number of the linear subproblem and
depends on the problem as well as on the method used for solving
the linear system.

Anyhow,

(2.2.6) I'(x) = L(x) + Qx)Ix-zl,

for x in some region U, containing the solution, is the critical number
which reflects whether a problem is easily solvable by a given method.
1f

rx) <1, for x e U

then convergence is assured for each'starting point in U. Since almost all
methods given in this report may be described by (2.1.3), we will use in

section 5.2 the quantity

(2.2.7) I = sup I'(x),
xeU
where
(2.2.8) U ={xj}uixe R" | Ix-zl < r(x)},
r(x) = elxl + l¢(x)-zl + L(x)l¢(x)-xl,

for selecting problems which are easy or difficult to solve (see also BUS

[141).

2.3. The influence of scaling

It is well known that scaling of the variables may influence the be-

haviour of a method for solving problem (1.3).

9

Suppose problem (1.3) is given and we introduce new variables x defined
by

(2.3.1) x = Dx,

where D is some diagonal matrix with positive nonzero diagonal elements

di (i=1,...,n). Then we obtain for the Jacobian matrix

JE) =< F@E) = Jx)Dp !

4
ax

and for the tensor of partial second derivatives

_ _ 3F, (x)
- 1
By = a.d, LIEACOR

Hence, B(x), c(x),“[J(x)]—]" and S(x,z) are all changed by scaling and there-
fore the number I may well be reduced. However, it is hard to prove such a
statement for a specific problem. In practice, it seems best to scale the
variables such that they all have about the same order of magnitude. Another
reason for scaling in such a way may be that one wants to have all variables

in about the same relative precision (see section 2.4).

2.4. The choice of stopping criteria

Since the methods used for finding the solution of a system of non-
linear equations are iterative, we have to find some stopping criteria.
For these methods, the most commonly used criteria are

(2.4.1) ka—xk_lﬂ < toﬂxkﬂ + ot

(2.4.2) HF(xk)H < tys

where tO’ t,, t, are tolerance values which should be given by the user.

. 2
These criteria can be applied since these quantities are known in each iter-
ation step. In all methods discussed in this report, the calculation of a
new iterate is dome by some kind of linear approximation of the function

and the error in such an approximation is highly dependent on the second

10

derivative of the function. When we take a Newton-like method as an example,

we see from (2.2.2) that
“E(xk)—zﬂ .
T~ =7 X 2

Hence, if the right hand side is nearly equal to 1 then the step length may

(2.4.3) T Ixl + r(x).

satisfy (2.4.1) while the error in @(xk) as an approximation to z may be al-
most arbitrarily large. We see from (2.2.3) and (2.2.4) that I'(x) may be
nearly equal to 1, without “xk-z“ being small, when "[J(x)]-lﬂ and/or the
norm of the second derivative is large relative to 1. Therefore, it is de-
sirable to use both criteria (2.4.1) and (2.4.2) in an algorithm for solving
nonlinear systems, although one should realize that this is also not enough
to guarantee the required precision. In order to be sure, it is necessary

to know more about the behaviour of the function considered.

Finally, we should point out that scaling of the variables in such a
way that each variable has about the same order of magnitude, is desirable
when the usual norms are used (e.g. the euclidean or maximum-norm) in (2.4.1)
and (2.4.2) and when one wants to obtain the variables in about the same

precision.

3. DESCRIPTION OF METHODS KNOWN

3.1. Newton's method and some of its modifications

The most commonly known method for solving nonlinear equations using
analytical derivatives of the function is Newton's method (also called the
method of Newton-Raphson). This method is defined by (2.1.2). However, in
this form, it has the disadvantage that the user has to supply analytical
expressions for the elements of the Jacobian matrix. This may be very dif-
ficult or even impossible. To remove this difficulty one can approximate
the elements of the Jacobian matrix with difference formulas. Methods ob-
tained in this way are sometimes called discretized Newton methods and they
are included in the class of Newton-like methods which are defined by (2.1.3).
However, the approximation of the Jacobian matrix with difference formulas
requires, even in its simplest form, at least n extra function evaluations

(n denotes the number of variables). This appears to be inefficient, as

11

will be shown from the experimental results. A second disadvantage of using
discretized Newton methods is that they are sometimes very semsitive to the
step size used. In fact, this step size should be balanced in such a way
that the truncation error and the error due to cancellation of significant
digits by subtracting two almost equal function values have the same order
of magnitude. However, the truncation error depends on the norm of the sec-
ond derivative tensor which is usually not available.

A second disadvantage of Newton's method, which is in fact shared with
all Newton-like methods, is the possibility of divergence in cases that the

Jacobian matrix is (mearly) singular for some x . There is a simple strategy

=
for avoiding an unstable behaviour when the Jacobian is only nearly singular.
This is by using step size control. Instead of formula (2.1.2) the itera-

tion is then defined by
G.1.1) 3(x) = x - wE)[IE)T FE),

where the scalar w(x) determines the step length and is chosen, for in-

stance, such that the method is norm—reducing in the sense that:
(3.1.2) IF(p(x))I < IF(x)I.

A strategy which can also deal with singular Jacobian matrices was origin-

ally given by LEVENBERG [33] and MARQUARDT [35]. It can be defined by:
- T -1
(3.1.3) o(x) = x - [J(x) + 2x)J (x)] FE),

where A(x) = 0 is chosen such that J(x) + AJT(X) is nonsingular and mostly
such that (3.1.2) is satisfied.

A very elegant method for avoiding the problems of a singular Jacobian
matrix is the use of the Moore-Penrose pseudo-inverse. Here the iteration

is defined by
(3.1.4) #(x) = x - [Jx)TFx),

+ . .
where A denotes the pseudo-inverse of the matrix A.
One should note that for all these methods, the solution of a linear

system is needed or even the calculation of the pseudo-inverse. Since the

12

number of arithmetical operations needed for such calculations is of order
n cubed, it may be inefficient for large n.

In order to give a theoretical analysis of the given methods, one
should realize that they are all Newton-like methods, even the one given by
(3.1.4) if the Jacobian matrix is assumed to be nonsingular. Therefore, the
theory in section 2 can be applied. For a detailed analysis see BOGGS &
DENNIS [1], BUS [14] or ORTEGA & RHEINBOLDT [40].

3.2. Generalized secant and related methods

The secant method for solving the equation
f(t) =0e R, te R,

which can be defined by

. e - E(e (et) ’
k+1 k f(tk) - f(tk—l)

can be extended to n dimensions. Then we calculate the next iterate as the
intersection of n hyperplanes which interpolate F(x) at given points in a
neighbourhood of x (see ORTEGA & RHEINBOLDT [401).

This method can be formulated as a Newton-like method in the following

way:
1 n .
let x, x ,...,Xx be given;
(3.2.1) H= [x—xl,...,x‘xn]
be the matrix with columns x - xl, i=1,...,n; then
-1
(3.2.2) y(x) = x - [M(x,H)] F(x),
where

(3.2.3) M(x,H) = [F(x+He)) = F(x),...,F(x+He) - F(x)JH !

is an approximation to J(x). (Here e, denotes the i-th unit-—

vector.)

13

Obviously, this method requires the solution of a linear system in every
iteration step. In order to avoid this we can use [M(x,H)]—l, or rather the
triangularized form of M(x,H), in a certain number of subsequent iteration
steps. Such a modified generalized secant method can be defined by the super-
iteration (SCHWETLICK [471):

let x,xl,...,xn be given,
let moreover H and M(x,H) be defined by (3.2.1) and (3.2.3)
respectively
then
set v(O)(x) = X3

for k = 0,1,...,u compute
3.2.4) vE Dy = vy C e, m) 17 r0® @)
(3.2.5) o(x) = v D),

where u is some fixed value which should depend on the order of

convergence of the iteration.

We call this a super-iteration, sincé u + | modified iteration steps are
taken together asone step. Another useful modification of the generalized
secant method is proposed by GRAGG & STEWART [28]. In their method the or-
thogonal decomposition of the subsequent matrices M(x,H) is used. The ad-
vantage is that, once this orthogonal decomposition is calculated, which
requires O(n3) arithmetical operations, only O(nz) arithmetical operations
are required to obtain the orthogonal decomposition of the matrix used in
the next step.

With the formulations (3.2.2) and (3.2.5) we may agsin use the analy-
sis of Newton-like method to obtain results about the convergence behaviour.
However, the error in M(x,H) as an approximation to J(x) (in (3.2.2)) or
J(v(k)(x)) (in (3.2.5)) is the most important problem here (note that H is
singular when X seeerX are linearly dependent). For further results about
the stability and convergence of these methods, see GRAGG & STEWART [281,
ORTEGA & RHEINBOLDT [40] and ROBINSON [46].

14

3.3. Quasi-Newton methods

One of the most remarkable Newton-like algorithms is the so-called
quasi-Newton algorithm (DAVIDON [18], BROYDEN [71, [8], POWELL [441).
In this algorithm the Jacobian matrix or its inverse is approximated by a
matrix which is updated in each iteration step with the information gained

so far about the function. The algorithm can be defined by:

(3.3.1) P(x) = x - Qx)F(x),

QW ()) = Q(x) + U(x,y(x),F(x),F(x)),Q(x))
or
(3.3.2) ¥(x) = x - [P(x)] 'Fx),

P(W(x)) = P(x) + U(x,y(x),F(x),F(p(x)),P(x)).

The updating of the matrices Q and P requires no additional function evalu-
ations. Clearly, the formulation given by (3.3.2) requires the solution of
a linear system. So in this formulation the number of arithmetical opera-
tions needed per iteration step is proportional to n cubed. Therefore, at
least from a theoretical point of viéw, formulation (3.3.1) is preferable
since the number of arithmetical operations needed per iteration step is
only proportional to n squared. We can use the same analysis as for Newton-
like algorithms (see BUS [14]) to obtain results about the convergence be-
haviour of formulation (3.3.2) and in a slightly modified way also of for-
mulation (3.3.1). However, proving reasonable bounds for the errors in Q(x)
and P(x) as approximatibns to [J(x)]“1 and J(x) respectively, appears to

be a hard problem. An analysis of quasi-Newton methods is given by BROYDEN
[9] and DENNIS & MORE [201,[21].

3.4. Methods of component-wise approximation

These methods can be defined by the following formula (see also ORTEGA
& RHEINBOLDT [40]):

i= 1,...,n,

k=0,1,...,

a3« @ 6 @y

15
(n (n)

T .
where X, = (xk s e Xy) € R" and g(l): R > R for i = lye..,n.

Hence, a new approximation xéi? to the j-th component of the solution vector
is used as soon as it is available. The choice of g; is usually based on ex-

panding the function into a Taylor series at the point

((1) (i-1) (i) (n)

Xpep12 o F e X ey)Tand neglecting second and higher order terms.
Examples of such methods are the Gauss-Seidel algorithm and successive over-
relaxation methods (see ORTEGA & RHEINBOLDT [40], section 7.4).

A remarkable algorithm which we will also incorporate in this class is
given by BROWN [2]., This method is based on expanding a component, say
F(i)(x), of the function F(x) = (F(])(x),...,F(n)(x))T into a Taylor series.
Neglecting second and higher order terms, we obtain a linear approximation
which is equated to zero and solved for one of the variables, x(j) say.
Subsequently, another function component is expanded into a Taylor series
as a function of the remaining n - 1 variables (x(j) is substituted) and
equated to zero again. After n such steps we obtain a mew approximation to
the solution vector. For a detailed description see BROWN [2]. He also gives
theoretical justifications for his method and some results about the con-
vergence behaviour. For further theoretical results about methods of compon-—

ent-wise approximation see ORTEGA & RHEINBOLDT [401].

3.5. Continuation methods

The continuation methods (DAVIDENKO [17], BROYDEN [8], MEYER [36] and
ORTEGA & RHEINBOLDT [40]) have a rather special place among the methods for
solving systems of nonlinear equations, because, in fact, the problem is
transformed into a sequence of problems of the form (1.3) which might be
easier to solve than the original problem. Let the problem [F(x) = O;XO;D]
(cf. (1.4)) be given. Then this problem is replaced by the sequence of

problems

(3.5.1) Pk: [G(x,ek) = O;Zk—l;D]’ k=1,...,m,

where zO = xo and z, is a solution of Pk’ k =1,...,m. Furthermore,

il

G(x,em) F(x)

16

and a solution of G(x,eo) should be easy to calculate. Examples of G are
(BROYDEN [81, MEYER [36])

(3.5.2) G(x,ek) F(x) - (l—ek)F(xo)
or

(3.5.3) G(x,ek)

(x—xo)(l—ek) + ekF(x),

where 0 = 60 < 61 < .. < em = 1. These methods are primarily designed to
remove the difficulty of choosing a good initial guess. Hence, these methods
are designed to be robust rather than efficient.

Obviously, we can use any method of the preceding sections for solving

the subproblems P k=1,...,m.

k’
3.6. Additional remarks

In practice, it appears to be almost impossible to separate the algor-
ithms according to the theoretical framework given in this section. Several
procedures known use mixtures of the methods described and quite often, the
first step is entirely different from all others. For instance, the initial
approximation to the inverse Jacobian used in quasi-Newton methods is usual-
ly obtained with forward difference formulas and inversion. However, summing
up the basic tools used in the various algorithms is sufficient to make this
report comprehensible.

Considering the data that are required by the various algorithms, we
can distinguish two classes:

1. algorithms that use a Jacobian matrix whose elements are obtained by the
evaluation of analytical expressions supplied by the user;

2, algorithms that only require the programming of the function.

In the first case, the efficiency is dependent on the ratio between the

time needed to evaluate the function and the time needed to evaluate the

Jacobian matrix. As will appear from our comparisons, the use of an algor-

ithm that requires analytical derivatives will not necessarily be more ef-

ficient than using an algorithm that requires only function evaluatioms.

17

4., SELECTED PROGRAMS

4.1. Introductory remarks

The goal of this report is to test those programs for solving systems
of nonlinear equations that are available as computer programs in ALGOL 60
or FORTRAN from the literature or well-known software libraries. The sources

from which the programs are selected are:

o

. Collected Algorithms from CACM,

. Computer Jourmnal,

. Computing,

Mathematical Science Library [37],
NUMAL, [391,

[« N, I NV

. Some specific papers as are given by BROWN [2], GRAGG & STEWART [29] and
POWELL [4417.
It should be pointed out here that we did not test programs for minimizing
sums of squares of nonlinear functions which can also be used for solving
systems of nonlinear equations. In our opinion this should be the scope of
a separate test report. Furthermore, we will not consider programs that
implement continuation methods. In fact, the program used for solving the
subproblems that arise in these methods should be selected on the basis of
this test report, while the choice of G(x,6) and the stepsize (cf. section
3.5) is outside the scope of this report. Therefore, one of the programs
(nonlinb) given by BROYDEN [8] is omitted.

For two reasons we distinguish between programs written in ALGOL 60
and in FORTRAN. Firstly, since arithmetical operations and elementary func-
tions deliver different results in different languages, a problem defined
in ALGOL 60 differs from the mathematical analogue in FORTRAN. Therefore
the tests are not quite comparable. Secondly, we like to give the user a
possibility to overview the field of programs which are available in the
programming language he uses.

The source texts of the programs are given in the appendix. In this

report we will denote the programs to be tested by capitals.

18

4.2. Programs written in ALGOL 60

PROGRAM A

This program, written by Kok (see also NUMAL [39], section 5.1) is based
on Newton's algorithm (see section 3.1). We supplied analytical deriva-
tives. No step size control is performed. There are no method dependent
control parameters in this program. In each iteration step one evaluation
of the function, one evaluation of the Jacobian matrix and the solution

of a linear system have to be performed.

PROGRAM B

This program, written by Kok, is based on Newton's algorithm with step size
control (cf. (3.1.1)). We supplied analytical derivatives. In this algor-
ithm, w(x) is chosen by successively trying the values Z_k for k = 0,1,2,...
.+..5u-1, where the upper bound u should be supplied by the user. In fact,

w(x) = Z-r, where r = 0 if

N

IF(x-s)l < IF(x)I
otherwise, r is the minimum of u and the smallest value of k such that

IF(x-2"Ks)l < IF(x)l

and

=(k+1)

IF(x-2 I > IFE-2"%)0,

where s = [J(X)]_]F(X). In this program an error exit is incorporated when

in t subsequent iteration steps the value of w(x) is chosen to be 2", The
value of the integer t should also be given by the user. We chose u and t

(Zn [6] and Zn [7] in the program given in the appendix) as follows:
u=15, t=1,

No other method dependent control parameters have to be set by the user.
In each iteration step one evaluation of the Jacobian matrix and the

solution of a linear system have to be performed. The number of function

evaluations in an iteration step depends on the value of r in that step.

If r = 0, then one evaluation of the function is performed, otherwise

19

r + 2 evaluations of the function are performed.

PROGRAM C

This program is the same as program A, except for the evaluation of the
Jacobian matrix, which is done by approximating it with forward difference
formulas with step size equal to 107 4%+ 10—4, where x denotes the ar-
gument vector. There is no difference in the source texts of the programs
A and C since the user has to program the evaluation of the Jacobian
matrix. In each iteration step n + | evaluations of the function and the

solution of a linear system have to be performed.

PROGRAM D

This program is the same as program B, except for the evaluation of the
Jacobian matrix, which is done by approximating it with forward difference
formulas with step size equal to]0‘4ﬂx|| + 10_4. As for the programs A
and C there is no difference between the source texts of the programs B
and D. In each iteration step a linear system has to be solved. The number
of function evaluations in a certain iteration step depends on the value
of r (see program B). If r = 0 then n + | otherwise r + n + 2 evaluations

of the function have to be performed.

PROGRAM E

The Newton—like algorithm as given by PANKIEWICZ [41]. This algorithm is
the same as algorithm C except for the choice of the step size, used to
approximate the Jacobian matrix with forward differences. In fact, this
step size should be given initially by the user and it is multiplied by
0.1 in every step. Since choosing the step size too small may cause
singularity of the approximation to the Jacobian matrix, we followed the
advise of PANKIEWICZ [41] to use the given procedure repeatedly.

As is required, we incorporated a procedure for solving linear systems.
Furthermore we changed some minor details concerning error exits such

that it became more convenient for our test programs.

20

PROGRAM F
This is a program given by SCHWETLICK [47], which is based on the modified
generalized secant algorithm given by (3.2.5). In order to be able to

deal with zero vectors, we incorporated in our program stopping criterion

(2.4.2) and replaced the statements:

g:= ylk] x eps

and
if abs(k) > abs(eps) x abs(g)
by
g:= ylk] x eps + eps x eps
and

if abs(h) > abs(epsxg) + abs(eps)

We chose eps = 0.0001. This value is used as a step length to obtain the
matrices H and M(x,H), (in fact xi is chosen to be x + eps x el, where
el denotes the i-th unit vector). Furthermore the value of pivot is
chosen equal to the precision of computation (=]0—14). This value is
used to check whether or not the matrix H (cf.(3.2.1)) is singular.

In each (super-) iteration step of this algorithm the solution of a
linear system is required and at least n + 1 (cf.(3.2.5)) evaluations

of the function have to be performed.

PROGRAM G
This program, given by DULLEY & PITTEWAY [22], is based on the generalized

secant algorithm (formula (3.2.2)). As is required, we incorporate a
procedure for solving linear equations (Bus, NUMAL [37], section
+3.1.1.1.1.1.3). The value of the control parameter <nitstep, which is

used as a step length in the same way as eps is used in program F, is
chosen equal to 0.0001.

21

In each iteration step of this algorithm the solution of a linear system

is required and one evaluation of the function is required.

We tested two versions:

program Ga: the program given by DULLEY & PITTEWAY [22] with the minor
changes described above;

program Gb: the same program but with the change incorporated, which is
proposed by VANDERGRAFT & MESTENYI [48].

PROGRAM H

This program is given by BROYDEN [8] (procedure nonlina) and is based on
the quasi-Newton algorithm defined by (3.3.1). Initially, an approximation
to the inverse Jacobian matrix is obtained by using the updating formula

with fixed steps along the coordinate axis. We like to point out here that
3

this requires 3n~ multiplications, while normal inversion of a forward
difference approximation to the Jacobian matrix would only require n3
multiplications (neglecting lower order terms). So it seems to be rather
inefficient to use the method in the form proposed by Broyden.

In the source text that we used, we chose the step size in the initializing
phase relative to the value of the arguments:

|xi| X 10—6 + 10—10

We used a version which is converted for use with the software library
NUMAL [39].

After the rather expensive initializing phase the number of arithmetical
operations per iteration step is only proportional to n squared.
Furthermore n + 1 evaluations of the function have to be performed in the

initializing phase and one in each iteration step.

PROGRAM I

This program is based on the method of component-wise approximation given
‘by BROWN [2] (see also section 3.4). The source text that we use is al-
ready adapted to our software library NUMAL [39]. Apart from some details,
such as adding absolute tolerances where only relative tolerances were

used, it is equivalent to the source text given by BROWN [2].

22

In this program, difference approximations to the elements of the Jacobian
matrix are made with a step size equal to 0.001. Furthermore, instead of
supplying some procedure for calculating the vector function F(x), one
should supply a procedure that calculates the i-th component of this vec-
tor F(x), for given i (lsisn).

Furthermore it is advised to define the function in such a way that its
linear components come first.

The number of multiplications needed per iterative step is 0.25 na, where
lower order terms are neglected, and the number of function-component
evaluations equals (n2+3n)/2 in each step. For a more up to date im-

plementation of this method see program O.

4.3. Programs written in FORTRAN

PROGRAM J

This is the program, based on Newton's method, which is available in the
MSL [37] software library as routine NEWI. The Jacobian matrix is approxi-
mated with forward difference formulas and there is a possibility of incor-
porating step size control. The step size control is donme in terms of a
fraction of the norm of the current solution vector. In fact, the step

vector is multiplied repeatedly with the factor
min(E/(SZ/(Sl+0.001))%, 1)

until (3.1.2) is satisfied. Here S2 denotes the norm of the current solu-
tion vector squared, S1 is the norm of the step vector squared and E is
the so-called maximum fractional change allowed. When E is chosen large
enough, no step size control is done.

As was suggested in the manual, we changed the statement

RATIO = SQRT(S2/S1)

RATIO = SQRT(S2/(S1+0.001)),

in order to be able to deal with the zero vector as initial guess.

23

We tested this program for two values of E:
Program Ja: E = 10100, so that no step size control can occur;
Program Jb: E

size control should work as well as possible.

0.18, a value suggested in the manual, such that step

For both programs the solution of a linear system is required in each
iteration step. Furthermore, without step size control, n + | evaluations
of the function have to be performed in each iteration step, with step

size control this number may be more.

The source text of this program is not given in the appendix since it is

not free for publication.

PROGRAM K

This program is given by GRAGG & STEWART [28], and is based on the
generalized secant algorithm. The matrices appearing are kept as products
of orthogonal matrices (see section 3.2). We made two changes to the
source text as given by Gragg and Stewart. The first one is on line 3000
of subroutine SSM which reads in our program : MCEPS = 1.E-14 since

the precision of computation on the computer used is about that value.
The second one is the correction of a small programming error on line
3200 of subroutine SSM which should read : OUTBND = NN + 3.

The program has the feature to deal directly with linear function compo-
nents. We did not use this feature for the general tests.

The user has to provide n + | starting guesses of the solution vector.
Since in our problems only one initial guess is given we generate them

automatically as follows:

RO
(4.3.1)
X(g)=xo+se(k) ,k= 1,.-., n.

(k)
0
the k-th unit-vector and s some fixed value. We do,

Where XO denotes the given initial guess, X
(k)
e

the k—th starting guess
. for the program,

in fact, consider two programs:

Program Ka: s = 0.5 3
Program Kb: s = 0.001.

24

For both programs, Householder orthogonalisation of two n-th order matri-—
ces (see WILNINSON [50]) is necessary initially, which requires 8n3/3
arithmetical operations (neglecting lower order terms).The iteration
steps require only 0(n2) arithmetical operations. The number of function
evaluations needed per step may vary from 1 up to n. We do not give the
source text that we used, since it is fully given by Gragg and Stewart,

apart from the two small corrections mentioned above.

PROGRAM L

This program, which is available in the MSL [37] software library is based
on the generalized secant algorithm given in section 3.2 (formula (3.2.2)).
As in program K, the user has to provide n + 1 starting guesses, which are
chosen accordihg to formula (4.3.1) with s = 0.5.

In each iteration step the solution of one or two linear systems is re-
quired.(There is a recovery scheme in cases the matrix appears to be
singular.) In each iteration only one evaluation of the function is per-

formed. The source text of this program is not free for publication.

PROGRAM M

This program, which is available in the MSL [37] software library is based
on the quasi-Newton algorithm defined by (3.3.2). In each iteration step
the solution of a linear system and one evaluation of the function has to

be performed. The source text is not available for publication.

PROGRAM N

This program is given by POWELL [44] and is basically an implementation

of a quasi-Newton method as defined by (3.3.1). A version of this program
is also available in the NAG [38] software library. Here, this method

is combined with the steepest descent method for minimizing IF(x)l and
with Newton's method with forward difference approximations to the
Jacobian matrix. Initially, and in some iteration steps, the approximation
to the inverse Jacobian matrix is (re-)set by inverting the forward dif-
ference approximation to the Jacobian matrix. Hence, initially and in

some iteration steps, the number of arithmetical operations is O(n3) (ne-

glecting lower order terms). In all other steps it is proportional to n2.

25

The number of function evaluations needed in a particular step depends on
what kind of step it is.

The value of the control parameter DMAX is chosen to be equal to 10.

DMAX controls the changes in the variables and is used in an error condi-

tion. For the control parameter DSTEP we tested two values:

Program Na: DSTEP = 10“4 ;
Program Nb: DSTEP =]0_7 .

DSTEP is used as a step size for the forward difference approximation, but
also for controlling the updating of the approximation to the Jacobian ma-
trix. We used the source text given by Powell except for the change of
line 0092 where the call of subroutine MBOIB for solving a linear system

is replaced by a call of the subroutine INVERS from the MSL [37] software
library.

PROGRAM O

This program is obtained from the University Computer Center of the Uni-
versity of Minnesota and is based on the method of component-wise approxi-
mation of BROWN [4]. A FORTRAN-version of this algorithm which is the same
as we used is available in the IMSL [32] software library.

The program has the same properties as program I. In the program the value

for the step length to calculate the forward difference approximations to
8

the elements of the Jacobian matrix has been given the value 10
We tested the program for two different values for the step length:
Program Oa: steplength 10—4
Program Ob: steplength 10—8.
Furthermore we used an absolute tolerance value in the stopping criterion

in order to be able to solve problems with the zero-vector as a solution.

4.4. General remarks about the programs selected.

Although it is desirable that both stopping criteria (2.4.1) and
(2.4.2) are used in a program for solving systems of nonlinear equations,
almost none of the programs given in this section meets these require-
ments. In our opinion it is not too hard to incorporate these criteria.
However, we did not do so for testing, partly to reduce the possibility

of making errors, partly because different norms are induced by the

26

various programs, so that they would not be equivalent after all.

Finally we give in table 4.1 the work that has to be done by the
various programs in the initializing phase, Ai say, as well as per ite-
ration step, AS say. In fact, we give the number of multiplications needed
in the initializing phase and per iteration step. Since, these numbers
will usually depend on the number of variables n, we denote Ai and AS as
functions of n and only give the highest order term.

However, if the highest order term is of order nz, we neglect all.
For program F, As denotes the work per super—-iteration and for program L,

we assume that one linear system is solved per iteration step.

TABLE 4.1

Size of magnitude of Ai and AS relative to n

PROGRAM A,
i s

-

1
W
'.jw

|
W

1
=
::’u ":u :jw

1.3
- In

1 3
- in
n sometimes n®

4
- In

o Z 2 H ®"R o H T O H H 9 o0 w >
w
=]
w
I

27

5. CLASSIFICATION OF PROBLEMS AND SELECTION OF TESTPROBLEMS

5.1. Classification of problems

We consider the class ¥ of all problems of the form (1.4). When we
measure the efficiency of a program for solving some problem from class V
we may distinguish the following three characteristics which influence .
this efficiency.

a. The degree of difficulty for solving.
b. The number of variables of the problem.
c. The computational effort of an evaluation of the function, i.e. the
number of basic arithmetical operations needed to evaluate the functionm.
Before defining precisely these characteristics we like to point out why
the first characteristic is important. It is obvious that it is desirable
to know in advance whether a problem is easily solvable or not. However,
the degree of difficulty also deﬁends on the method used and, in practice,
it is very hard, or even impossible, to measure it before solving the
problem. Hence, a classification according to this characteristic will,
in general, not be very helpful to the user. However, it is extremely im-
portant for comparing the efficiency of the various programs. Since none
of the programs for solving nonlinear systems is such that it solves all
problems from class Y we have to take into account that the programs

tested fail sometimes. Therefore we have to decide whether a failure is
due to a difficultly solvable problem or to bad programming of the method.

If the problem appears to be difficultly solvable then it makes no sense
to draw from this failure the conclusion that the program is inefficient,
for then all programs will appear to be inefficient. Clearly, we need a
precise definition of the notions easily solvable and difficultly solv-—
able. Although several definitions are possible we choose one which is
based on the fact that all methods considered in this report can be de-
fined as Newton-like methods in some way or another, and which appears to
be convenient. In fact, we use as a model-method the Newton-like method
.defined by (2.1.3), where M(xk) is calculated with forward difference ap-
proximations. For this method we can compute an upper bound for the error
in M(x) as an approximation to J(x), by calculating the second derivative

and using the mean value theorem. Hence, for this method we can calculate

28

an upper bound for the number I' (cf.(2.2.7)) of a certain problem. (For
more details and an example see BUS [14].) When this upper bound appears
to be less than 1, then, obviously, the problem is easy to solve by this
Newton-like method. However, we do not use this number | so rigorously,
because we made a lot of choices and sometimes, crude estimates. There-

fore, we end up with the definition:

DEFINITION 5.1.1

A problem is easily solvable when the number T, given by (2.2.7), for this
problem and for Newton's method with forward difference approximations to
the Jacobian matrix, has an order of magnitude about 1 or less.

Otherwise the problem is difficultly solvable.

We will denote the class of easily solvable and difficultly solvable
problems with superscripts e and d respectively. So ¥® denotes the class
of easily solvable problems, Wd the class of difficultly solvable problems.

As far as classification according to the number of variables is
concerned, we distinguish between small and large problems, where the
choice of the bound, n = 15, is a matter of practical experience.

The last classification quantity is induced by the fact that for
most programs tested the number of basic arithmetical operations needed
to perform one iteration step is not neglectable relative to the number
of arithmetical operations needed to evaluate the function when the func-
tion is not too complicated. Therefore, neither the number of function-—
evaluations, nor the number of iteration steps is a good measure for the
efficiency of the programs. We should use a combination of these two
quantities, which depends on the expensiveness of the function. For small
problems we use only a distinction between cheap and expensive functions
where it is mainly a matter of feeling how to classify a certain problem.
For large problems, however, we can relate this quantity to the number of
variables n. When we express the number of arithmetical operations needed

B

to evaluate a function as a polynomial in n and we assume that an® is its
leading term, where B is some integer, usually equal to 1,2,3 or 4 and

o is some real, then we distinguish between:

29

very cheap problems :

1}
—
A

cheap problems

]

expensive problems

w T ™ ™
I

v

1]
~ W
-

very expensive problems :

Combining this with classification according to the size we obtain the

following classification of problems in the class ¥& of easily solvable
problems:

e
¥gp ¢ small (n<15), cheap and easily solvable problems;
e . .
WSZ : small (n<15), expensive and easily solvable problems;

Wzl : large (n>15), very cheap (B=1) and easily solvable problems;

sz : large (n>15), cheap (B=2) and easily solvable problems;
WEB : large (n>15), expensive (B=3) and easily solvable problems;
WEA : large (n>15), very expensive (B24) and easily solvable

problems.

We obtain analogously for the subclass Wd of difficultly solvable problems

the classes:

d .4 .4 .4 d d
s1° Yoo Yoo Ygp» ¥p3 and ¥y,

¥ 227 Y43

5.2 Definition of testproblems

We have chosen a number of testfunctions known from literature.
Most of them are used with several initial guesses, since it depends
highly on the choice of the initial guess, whether a problem is easily

solvable or not.

5.2.1 (BROWN [3]).

n
- (n+1) + X, + Z X.o L= 2,...,m3
j=1

F. (%)

n
-1+ T x..
j=1

]

F, (%)

30

Initial guess: x; = 0.5, i = 1,...,n.
Order : n =2, 3, 5, 10, 15 and 25.
Solutions Poxg =1 (1= 1l,.e..,n)3

for instance for n = 5, approximately:
x = (-0.579, =0.579, —0.579, -0.579, 8.90)" .

Remarks: All function components are linear except for the first one.

5.2.2 (BROWN [3]).

2
Fl(x) =X T X, - 1,

F,(x) = (x, - 27+ (x, - 0.5)7 - 1.

Initial guess: 0. (0.1, Z)T,
1. (2, 0.57,
2. (-1, 1.5)7T,
3. (1, 0.99)7T .
Solutions : (1.54634288, 1.39117631)7,
(1.06734609, 0.139227667)",

approximately.

5.2.3 (FREUDENSTEIN & ROTH [26], BROWN [3])

F, (%)

F, (%)

- 13 + X+ ((—x2 + 5)x2 - 2)x2,

- 29 + x + ((X2 + l)x2 - 14)x2.
Initial guess: 0. (15, ‘Z)T,
1. (-5, 07,
T
2. ("5.’ 3) 9
3. (0, 2.24)7,

Solution s (5, A)T.

5.2.4 (CARNAHAN, LUTHER & WILKES [15], BROWN & CONTE [5])

Fl(x) = (.5 sin (xlx2 - x2/(4w) - x1/2,

]

FZ(X) (1 = 1/¢4m) (exp(2x1) - e) + elen - 2exy.

Initial guess: 0. (0.6, 3)T,
. (0.4, 3)T,

Solutions : (0.5, W)T,
(0.2994487,2.836928)T, approximately,
(1.604571, -13.36290)", approximately.

5.2.5 (BROWN & CONTE [5])

Fl(x) = 3x1 + x, + 2X§ - 3,
FZ(X) = —3xl + 5x2 + 2x]x3 -1,
F3(x) = 25x]x2 + 20x3 + 12,

Initial guess: (0, O, O)T.
Solutions ¢ (0.2900523, 0.6874306, ~0.8492385)T,
(1.1, -0.8, O.S)T, approximately.

5.2.6 (BROWN [3])

2

Fl(x) =X - 2x2 + 1,

F.(x) = x, + 2x2 - 3
) 1 2 ~ 3

Initial guess: 0. (0, I)T,
1. (-0.5, 1T,
T
2. (], "0-5) 9
3. (1, -0.26)T.
Solutions : (1, l)T,
(-1.402680, 1.483683)T, approximately.

5.2.7 (POWELL [44])

Fl(x) 10000% %, ~ 1,

2
Fz(x) = exp(—xl) + exp(—xz) - 1.0001.

T
Initial guess: 0. (0, 1)7,
1., -n%
T .
Solution : (1.09810—5, 9.106) , approximately.

Remark: This problem is badly scaled.

32

5.2.8 (POWELL [44])

|
W

Fl (X) =
FZ(X) = x x, — l.
T
Initial guess: 0. (-1, 2),
1. (—]’ _Z)T’
T
2. (0.01, 0)".
Solution (1, I)T.

5.2.9 (BROYDEN [8])

Fl(x) = lO(x2 - xf)

Fz(x) =] - ;-

Initial guess: 0. (-1.2, 1.0)T.
Solution : (1, l)T.
5.2.10 (BROYDEN [8])
2

Fo(x) = 2(x, - 1) - 400x1(x2 - %)
Fy(x) = 200(x, - xf).

Initial guess: 0. (-1.2, 1.0)T

1. (-1, nT,

Solution :(1, 1)T_

b

5.2.11 (POWELL [44])

F,(x) = 10x,/(x, + 0.1) + 2x5.

Initial guess: 0. (3, lsT,
. (0, T,
2. (-1, T,

3. (=0.9, 0.24)7,

Solution : (0, O)T.

5.2.12 (POWELL [43])

Fl(x) = 2(xl + 10x2) + 40(x] - x4)3,
_ 3

Fz(x) = 20(x1 +]OXZ) + 4(x2 - 2x3) R
_ 3

F3(x) = lO(x3 - x4) - 8(x2 - 2x3) .

_ _ 3 _ 3
F4(x) = lO(x3 x4) 40(xl Xé) .
Initial guess: (3, -1, 0, l)T.

Solution . (0, 0, 0, O)T.

Remark: The Jacobian matrix has only rank two at the solution.

5.2.13 (DEIST & SEFOR [19])

6
Fi = jZl cot (Bixj)’ i=1,...,6,
j#i
where Bl = 0.02249, 82 = 0.02166, 83 = 0.02083,
B4 = 0.02000, 85 = 0.01918, 86 = 0.01835.
Initial guess: X, = 75.0, i=1,...,6.
Solution s (121.850, 114.161, 93.6488, 62.3186,

41.3219, 30.5027)T, approximately.

5.2.14 (FLETCHER [24])

Chebyquad, a function defined by the ALGOL 60 program given by
FLETCHER [24]:

Order: n = 2, 3, 4, 5, 6, 7 and 9.

Initial guess: X, = i/(n + 1), i=1,...,n.

For reasons of brevity we omit the solution vectors.

5.2.15 (GHERI & MANCINO [27])

= i = IyY
Fi ani + (1 2) +

.
j#i

where 2z.. = /x? + ﬁg s i,j = l,...,0.

1]

n
. O,. o, . .
Zl[zij(51n (ln(zij)) + cos (ln(zij)))], i=1,...n,

33

34

Order : n = 10, 20, 30, 50.
ei . x = —F(0) (&K
Initial guess: X F(0) (2cK)
where
K=28n+ (¢ +# 1)(n - 1) and
c=8n - (a+ 1)(n-1).

We distinguished between the following cases:

0. o =75, g =14 , y=3;
1. a=l+, B=7’ Y=1;
2. a=7, 8=17 , y=4.

]

A solution for n = 50 of case (g is given by GHERI & MANCINO [27].

5.2.16 (FLETCHER & POWELL [25])
F(x) = e = (As(x) + Be(x)),
where A and B are n x n matrices, whose elements are generated as

random integers between -100 and +100, s(x) and c(x) are n-vectors

such that:

s(x)

]

(sin(xl), sin(xz),..., sin(xn))T and

c(x) = (cos(xl), cos(xz),..., COS(Xn))T.
e 1s a vector, calculated as follows. Let X be a vector, whose elements
are generated as random numbers between -7 and +m, then
e = As(x*) + Be(x').
Order : n= 10, 20, 30, 40.
Initial guess : x* + 0.01 §, where the elements of § are random
numbers between - and +m and x as used for
calculating e.

. * .
Solution : x , as used for calculating e.

5.2.17 (BROYDEN [11])

N 2 2
Fi(x) = (kl + k2xi)xi + 1 - k3j§1 (xj + Xj),
i

where Ii = {k I k#1i, max(l,i~r1)sks min(n,i+r2)}

and rl, r2, kl, k2 and k3 are given integers.
Order: n = 20, 30.

35

Initial guess: X, = -1, i=1,2,...,n.

We distinguish between the following cases:

0. rl=3, r2=3, kl=1, k2=1, k3=1;
l. r1=5, r2=1, kl=1, k2=1, k3=1;
2. rl=5, r2=5, kl=2, k2=1, k3 =1 ;
3. r1=3, r2=2, kl=3, k2=2, k3=1;
4. rl=4 , r2=4 kl=2, kK2=5, k3 =1

For reasons of brevity we do not give the solution vectors.

Remark: The Jacobian matrix of this function is a band matrix with lower

band width rl and upper band width r2.

5.2.18 (BROYDEN [11])

Fi(x) (3 - kxi)xi + 1 - x

i-1 i+1

Fl(x) = (3 - kxl)x] + 1 - 2, ,

2
Fn(x) = (3 - kxn)xn + 1 - Xn—lf
where k is a given integer.
Order: n= 5, 10, 20, 30, 40.
Initial guess: X, = -1, i=1, 2,...,n.

We distinguish between the following cases:

0. k=0.1,
1. k=0.5,
2. k=2.0.

For reasons of brevity we do not give the solution vectors.

Remark: The Jacobian matrix of this function is a tridiagonal matrix.

In the sequel we will denote a given testfunction by a triple
(p,n,c), where p denotes the last number of the subsection in which it
is defined (1 up to 18), n the number of variables (i.e. the order of
the problem) and c the starting point or case. For instance, testfunction
(18,20,1) denotes the testfunction given in 5.2.18, with order 20 and
for k = 0.5 .

36

5.3. Classification of testproblems

We classify our testproblems according to the same rules as
given in section 5.1. However, the data that we derive from our prac-
tical experience (the number of function-evaluations and iteration
steps) is independent of the expensiveness of the function. Hence, we
do not have to distinguish between cheap and expensive problems, this
would only be necessary if we use computation time as a measure.

We obtain four sets of testfunctions.

Set T: : (1,2,0) , (2,2,0) , (2,2,2) ,
(4,2,0) , (4,2,1) , (6,2,1) ,
(8,2,0) ,
(15,10,k) , k = 0,1,2 ,
(18,n,k) , n= 5,10 and k = 0,1,2 .

[]

[

Set Tz : (15,n,k) , n = 20,30,50 and k = 0,1,2 ,
(17,m,k) , n = 20,30 and k = 0,1,2,3,4 ,
(18,n,k) , n = 20,30 and k = 0,1,2 ,
(18,40,k), k = 1,2 .

Set T: : (1,0,0) , n=3,5,10 ,

2,2,1) , (2,2,3) ,

(3,2,¢) , ¢=0,1,2,3,
(5,3,0) ,

(6,2,c) , c=0,2,
(7,2,¢) , ¢ =0,1,
(8,2,e) , c=1,2,
(9,2,0) ,

(10,2,¢), c= 0,1,

(11,2,¢), ¢ =0,1,2,3,
(12,4,0) , (13,6,0) ,
(14,n,0) , n= 2,3,4,5,6,7,9 ,

(16,10,0).
d
Set T£ : (1,n,0) , =n= 15,25,
(16,n,0) , =n = 20,30,40 ,

(18,40,0) .

37

Although all problems of sets T§ and Tz are easily solvable in the

sense of definition 5.1.1., it is not certain that all problems of sets
d e
’1‘S and TZ are difficultly solvable since we calculated rather crude upper

bounds for the number I' (cf.(2.2.7)) and it may be possible that T is

small enough although we could not prove it. However, the given distinc-

tion is sufficient for our purpose.

e
We use TS as a test set for the classes of functions W:l and sz, T: for
e

e e e d d
ng, sz, W23 and W24, and analogously TS for Ws and V¥ 32’ and Tg for

d .d a d
g1° Yoo Yy3 and ¥, .

1
Y

Furthermore, Tz and Tz are used for testing the efficiency, while Tg and

Tg are used for testing the reliability.

6. RULES FOR USERS

In this section, we give some rules of thumb for the non-specialist
user of algorithms for solving systems of nonlinear equations. In fact,
we summarize the results of the preceding sections, in such a way that the
user is able to classify his problem. After that, it appears from the con-—

clusions of section 8 which algorithm will most likely solve his problem.

6.1. Information available

Theoretically, the use of numerical approximations to the Jacobian
matrix will always slow down convergence to the solution (see BUS [14]).
However, in practice the use of forward difference approximations to the
elements of the Jacobian matrix will usually give as good results as
evaluation of the analytical expressions. In fact, it depends on the
smoothness of the function and the choice of the step length in the for-
ward difference formula (see section 3.1).

If analytical expressions for the Jacobian matrix are available,
‘then the user should compare the number of arithmetical operations re-
quired for evaluating the function and the number of arithmetical opera-
tions required for evaluating the analytically given Jacobian matrix.

It depends highly on the ratio between these numbers, whether it is

efficient to use analytical expressions for the calculation of the

38

Jacobian matrix. A final ruling on this point, based on experimental re-

sults, will be deferred to the conclusions in section 8.

6.2. The stze of the problem

The number of variables, i.e. the order of the nonlinear system,
and the number of arithmetical operations required for evaluating the
function, defines the size of the problem. The user should decide in

which of the classes defined in section 5.1, his problem has to be placed.
6.3. Special features of the problem

It may be possible that the way in which the problem is formulated,
will give some preference for one algorithm above another.
Properties that should be noted are:

a. are some or most of the function components linear;

b. 1is the evaluation of one component of the function independent
of evaluation of the other components or has a lot of work to-
be done for all components together.

Conclusions about the effect of these properties on the efficiency and

reliability of the algorithms are given in section 8.

6.4. Solvability of the problem

If the user can derive an upper bound for the value of T as de-
fined by (2.2.7), it may considerably/simplify the process of choosing
the right algorithm. If this number is less than ! or its order of
magnitude is about 1, then he should choose the most efficient algorithm.
However, if the order of magnitude of the number I' is about Ve: or more,
where € denotes the precision of computation, then he might prefer the
most reliable algorithm.

Unfortunately, for most practical problems, it is not possible to give a
.reasonable estimate of the number TI'. Since all algorithms may fail on se-
vere problems, the best we can advise is, once the problem is classified
according to the rules 6.1 up to 6.3, one should choose the most efficient

algorithm for this problem. If it fails in solving the problem, then

39

a more reliable algorithm can be used subsequently.

6.5. Secaling of the variables

In practice, it appears to be desirable to scale the variables

in such a way, that their order of magnitude is about the same (see sec—

tion 2.3).

6.6. The stopping criteria and source text to be used

When one chooses a program according to the conclusions given in
section 8, one should use the source text, which is given in appendix, or
one can use the source text to which is referred.

However, in the last case, one should incorporate the changes mentioned
in section 4. In either case the conclusions are based on the values for
the input parameters as given in section 4.

Concerning the stopping criteria, the user is advised to incorporate both

criteria (2.4.1) and (2.4.2) when it is not done already.

6.7. Interpretation of results

The user should be cautious in interpreting his results. Neither
a small norm of the function, nor a small step length in the last
iteration step does necessarily imply a small error in the approximate
solution vector. Validation of such statements can be done only if an

estimate of the value of T (cf.(2.2.7)) is known.

7. EVALUATION OF NUMERICAL EXPERIMENTS
7.1. The method of evaluation

7.1.1 Evaluation of the relative efficiency.

As is already pointed out in the introduction and in section 5.1,
‘we use a set of easily solvable testproblems for comparing the efficiency
of the various programs. In fact, we use the sets T: and Tz. We say that
a program is reasonable if it solves all easily solvable testproblems.
Let p denote some easily solvable problem of the form (1.4). Let R

be some program for solving problems of the form (1.4) and let the number

40

of iteration steps n_, the number of function evaluations n; and the number
of evaluations of the Jacobian matrix ng, which are needed for solving pro-
blem p by program R, be obtained experimentally. Then, the total amount of

work which has to be done by program R in order to solve problem p can be
defined by:

(7.1.1.1) A(R,p) = Ai + o X As +np X AF + oy X AJ,

where Ai and AS denotes the work done in the initializing phase and per

iteration step respectively (cf. section 4.4) and AF and A denote the

J
work needed to evaluate the function and its Jacobian, respectively.

Hence, we say that program R is more efficient than program Q for solving

problem p if

A(R,p) < A(Q,p).

Note that, for reasonable programs, we may assume that the numbers n_, Ny
and n; are finite, since p is easily solvable (compare section 5.1).
Clearly, formula (7.1.1.1) is not very useful for our purpose since
we should solve the problem before we can compute A(R,p) and we like to
know the efficiency of a program for solving some problem before we do
actually solve it, in order to be able to choose the most efficient pro-
gram. Therefore we will define the notion "expected relative efficiency'.
Let & be some class of easily solvable problems and suppose T is a repre-
sentative set of testproblems from the class &. Let, moreover, A be a
class of reasonable programs for solving problems from class ¢. Then we
obtain experimentally the number n, n and n., for all programs R ¢ A

F J
and all problems p € &. Therefore, we obtain

A(R,p) for all R e A and p ¢ 9,

provided Ai, As, AF and AJ are known.
Then, the expected relative efficiency of program R ¢ A, for solving a

problem of class ¢ is defined to be:

41

(7.1.1.2) E(R,A,T,d) =_}£) maxA((AR(’Qp)-))’
peT Qeh P

where £ denotes the number of testproblems in T. Obviously, there remains

the problem of measuring Ai’ AS, AF and AJ. As we did before, we will ex-

press them in basic arithmetical operations (additions plus multiplications)

(see section 4.4).

Since AF and AJ are usually related, we express this relation by

(7.1.1.3) Al = vyA

J F

We will use only rough estimates for the quantities AF’ A. and As since
precise values are highly dependent on the way of programming. How we
estimate these values depends on the kind of problems that are involved.

We distinguish between the classes of easily solvable problems defined

in section 5.1.

Class Wil. The quantities Ai’ AS and AF are all small for all programs and
all problems in this class. Hence, the expected relative efficiency is
always acceptable. Therefore, the approximated expected relative effi-

ciencies of all programs for solving a problem of class Wz are defined

1
to be equally high:

= e e

(7.1.1.4) E(R,A,WSI,WS]) = c,

for all R ¢ A, where A is some set of reasonable programs, ¢ is some value
between 0 and 1 and the bar above E denotes that it is an approximated
value. Note that the quantity in (7.1.1.4) does not depend on a set of
testproblems. In fact, only the reliability of a program is important

. e
if one wants to solve a problem of class wsl’

Class sz. For these problems we may neglect AS and Ai relative to AF.
Hence, we may approximate A(R,p) by:

_ e
(7.1.1.5) A (Ry,p) = A(R,p) = (nF+anY) X AF, for R € A and { ¢ Wsz.

42

We obtain:

= e ey _ 1 A(R,p0)
(7.1.1.6) ER,A,T,¥) = ¢ Xe TN
peT™ QeA
s
Classes Wzl, sz, WEB and W§4. For the problems we express AF as a func-

tion of the number of variables n and neglect lower order terms

(cf. section 5.1).

- _ B
(7.1.1.7) AF = an

9

for some integer B and real a. For the quantities Ai and AS we use the

. e
approximations given in table 4.1. Doing so we obtain for p ¢ T :

1)

(7.1.1.8) A(R,p) [ns/3 + (nF+'YnJ)anB—3]n3, for R ¢ {A,B},

(7.1.1.9) A(R,p) = [ns/3 + anFn6_3]n3, for R ¢ {C,D,E,F,G,J,L,M},

(7.1.1.10) A(H,p) = [3 + unFnB_3]n3,
(7.1.1.11) A(R,p) = [nn/4 + anFnB~?]n3, for R ¢ {1,0},
(7.1.1.12) A(K,p) = [8/3 + anFnB'3]n3,

(7.1.1.13) A(N,p)

[1 + n; + anFnB—3]n3,

1
where n_ denotes the number of iteration steps that the Jacobian matrix
is reset to the inverse of the forward difference approximation.
Using (7.1.1.8) up to (7.1.1.13) we obtain the approximate expected re-

lative efficiency similarly to (7.1.1.6), where the set of testproblems

i1s chosen to be Tz.

7.1.2. Evaluation of the reliability

In order to obtain a measure for the reliability we use the set ¢
of testfunctions. The reliability of a program is simply obtained by
counting the number of failures when solving problems of the testset.
Let ¢ be some class of difficultly solvable problems and let T be a re-

presentable set of testproblems from ¢, then the reliability of a programR

43

for solving a problem of class & is defined to be

1

(7.1.2.1) Z(R,T,d) = 2 * (number of problems p e T which are solved

successfully),

where 2 is the total number of testproblems in T. We distinguish between:
a. the reliability for small problems: Z(R,Tg,wg);
b. the reliability for large problems: Z(R,Tg,wg);

c. the reliability for all problems: Z(R,Td,Wd).

7.1.3. General remarks

All experiments reported in the next sections are carried out on a
CDC Cyber 73 computer, with precision of arithmetic of about 14 digits.
The values of the control parameters used are reported in section 4, where
the programs are described. In the tables we give the numbers n_, O, Ny
(programs A and B) and n; (program N). These are the smallest numbers, so
that the euclidean norm of the function vector is less than some threshold.

We chose this threshold 10“7 for the small testproblems (n < 15) and]0“6

for the large testproblems (n > 15). The testing on the convergence behav-
iour of the various programs and on special features of some programs is

reported in section 7.3.

7.2. Efficiency experiments

As is already mentioned in section 4.1, we distinguish between
programs written in ALGOL 60 and those written in FORTRAN. The results
of the ALGOL 60 programs for small and large problems are listed in the
tables 7.1 and 7.2, respectively, and those of the FORTRAN programs in the
tables 7.3 and 7.4. Concerning programs I and O, we assume that we may say
that n evaluations of function components are equal to one evaluation of

the function vector, so that n_ is equal to the total number of fgnction

F
‘component evaluations divided by n. For program L, we did in fact give
the number of linear systems solved instead of n_. In many iteration steps
of this program two linear systems are solved because of some recovery

scheme. However, since the solution of a linear system is the bulk of

44

TABLE

Experimental results for small problems of set Tz

Problem ‘ A B C D

P n ¢ ns n‘F nJ ns n~F nJ ns n’F ns nF

1 210 | 2 1 1 2 1 1 4 1 4

21210 24 | 25 | 24 8 17 8 27 | 76 8 33

2|12} 2 9 10 9 8 13 8 8 25 7 26
4 1210 4 5 4 4 5 4 4 13 4 13
4 1 211 5 6 5 3 9 3 5 16 3 15
6 | 2|1 6 7 6 5 10 5 6 19 5 20
8 1210 2 3 2 2 3 2 2 7 2 7
1510 O 3 4 3 3 4 3 3 34 3 34
15110 1 3 4 3 3 4 3 3 34 3 34
1510 2 3 4 3 3 4 3 3 34 3 34
18 5|0 3 4 3 3 4 3 3 19 3 19
18] 5] 1 3 4 3 3 4 3 3 19 3 19
18| 5 2 4 5 4 4 5 4 4 25 4 25

1810 O 4 5 4 4 5 4 4 45 4 45
1810} 1 4 5 4 4 5 4 4 45 4 45

181 10| 2 4 5 4 4 5 4 4 45 4 45

7.1

and all programs in ALGOL 60

E

F Ga Gb

s | U " | Ps | TF "s | P | s | "F| "s | "F

1 4 4 9 | 12 1 4 3 6 1 | 2.5
10 | 31 28 9 | 12 13 |16 |12 |15 | 6 | 15

8 | 25 17 11 | 14 12 | 15 | 23 | 26 | 9 |22.5
4 | 13 10 7 |10 6 9 7 10| 4 |10

5 | 16 10 25 | 28 11 | 14 | 10 | 13 | 10 | 25

6 | 19 21 10 | 13 17 | 20 | 10 | 13| 8 | 20

2 7 8 4 7 2 5 13 6 1 | 2.5
3 | 34 15 5 | 16 4 [15| 4 | 15| 3 [19.5
3 | 34 15 6 | 17 4 |15 | 4 | 15| 3 |19.5
3 | 34 16 6 | 17 | 4 | 15| 4 | 15| 3 [19.5
3 | 19 20 9 | 15 6 |12 6 | 12| 3 | 12

3 |19 20 9 | 15 6 | 12| 6 | 12| 4 | 16

4 | 25 26 9 | 15 9 | 15| 9 | 15| 4 | 16

4 | 45 40 15 | 26 9 | 20| 9 | 20| 4 | 26

4 | 45 37 17 | 28 7 | 18] 8 | 19| &4 | 26

4 | 45 38 12 | 23 10| 21 9 |20 4 | 26

46

TABLE

results for large problems of

<G T < O WV 1N N N O WO © 1 1N N N
v O - - S N n N M N 5 5 g N NN in QYN g N w0
© O OV o o DY N o 22 DD D00 oo oS
=)
B S S s T T R T G ST 7 ST ST ST ST SE TEES 2GS R S S R
T T 3 O W 1IN 1N 1N O O O © 1N 1N 1N N
G T T T T n 1 n N
IR S S S S A B AN T - - B = B B A S S B L A
©
M M M M M M M M M T NN T NN N T N
M MMM M M MmN M M T NN T NN T
m G T T T T T F T T T NN WO W NN N W W 0 0O N o N
M M MM M M M M NN N NI Y Y S
A e e e R e R B B T e R A A T R A B a T2 T2 TS A A Yo WREC SN SRS S
< G T T T T T T T F T NN WO WO NN N W W W NN O N N NN
P I R R e I e T e I R A R B R G T T Ta T2 TG SRS S V< W QG
O = N O = N O = N O = N M & O = N M F O —m N O m N = ™
g 0 O 0O O O O OO0 0O O O 0 0O O 0 O 0 0 0 0 0 O o0 O O o o
it IS A A dcm e mihin A AA VA OAOOOOCCA A A O OO F T
0
o
v N NN N 1 N NN N N N IS IS IS IS I~ I~ IS IS IS IS 0 00 o 0 0 0 0
P e R e T e T e e D D R B DR D B I B o T B B T B T R R e o T]

3 2) norm of function only 2]0-6

1) norm of function only 710-5

7.2

set Tz and all programs in ALGOL 60

E

F Ga Gb I
nS nF nS nF ?s nF ns nF ns nF ns DF
3 | 64 1| 25 | 6 | 27 |4 25 | 4 | 25| 3] 34.5
3 | 64 1| 25 | 6 | 27 |4 |25 | 4 |25 3| 34.5
3 | 64 1 | 27 | 6 |27 |5 |26 | 5|26 3]36.5
3 | 94 1 36 7 38 |5 |36 | 5 |36 3 | 49.5
3 | 94 1 | 36 | 6 | 37 |4 |35 | 4 |35 3]49.5
3 | 94 1 | 37| 7 |38 |6 |37 | 5 |3 | 3|49.5
3 | 154 1 | s6e | 7 | 58 |4 |55 | 4 |ss| 3795
3 | 154 1 | 56 | 6 | 57 4|55 | 4 /l|ss| 3]79.5
3 | 154 1 | 57| 7 | 58 |5 |56% 5 |56 3/|79.5
3 | 64 2 | 71| 8 | 29 |8 |20 | 6 |27 | 4| 46
4 | 85 2 | 71 | 19 | 40 |8 |20 | 7| 28| 4| 46
4 | 85 2 | 71| 8 | 20 |8 |20 | 7 | 28| 4| 46
5 | 106 2 | 73| 15 | 36 |14]35 | 13|34 | 5| 57.5
5 | 106 2 | 73| s | b |1l o | 13]3]| 5575
3 | 94 1| 76| 7 | 38 38 | 6 37| 4] 66
4 | 125 1| 74 | 22 | 53 s | 7 38| 4| 66
4 | 125 2 | 105| 9 | 40 4 | 8 39| 4| s6
5 | 156 2 | 106 | 15 | 46 |14| 45 | 13| 4s | 5| 82.5
5 | 156 2> | 106 16| o |16 D | 13]4s| 5| 82.5
5 | 106 o | 79 | 24 | 4513] 34 | 11| 32| 5| 575
4 | 85 o | 71| 21 | 42¥ 9 |30 | 8 |20 | 4| 46
4 | 85 2 | 71| 11] 32 |10 31| 8|20 4] 46
5 | 156 3 | 18| 12 o |9]| b | 134 | 5| 825
4 | 125 2 | 105] 22 | 5231 |42 | 8 |39 4| 66
4 | 125 2 | 105 | 11 | 42 |11| 42 | 8|39 4| 66
4 | 165 1| 97| 23| 64 12|53 | 9 |s0| 4| 86
4 | 165 1| 97 | 11 | 52 |11 52| 8|49 | 4 86

3) norm of function only 5]0—6

4)norm of function only 210—6

47

48

TABLE

Experimental results for small problems

Problem Ja Jb Ka Kb L

B s | "F s | F s | TF Bs | UF s F
1|2 4 8 |25 | 1 | 4 1| 4 | 20 | 24
2 | 2 27 | 24 |73 | 8 |13 | 1218 | 2 | D
2 |2 27 | 32 |97 | 18|22 | 12| 16 | 65 | 63
4|2 13 | 4 |13 | 9 |12 | 7|11 | 18|16
4 | 2 13 | 4 |15 | 10|13 | 912 | 4 |0D
6 | 2 18 | 6 |19 | 7 |10 | 8 |12 | 14 | 11
8 | 2 7 | s0| T 2 | s 3] 7 5 | 8
15 | 10 3 | 3 |3 | 5 |16 | 4|18 | 815
15 | 10 3% | 4 |45 | 6 |19 | 4 | 23 | 8 |15
15 | 10 36 | 3 |36 | 5 |18 4|2 | 10] 16
18| 5 19 | 5 (31| 6 |14] 5|15 | 13] 18
18| 5 19 | 4 |25 | 8| 14| 6] 15| 13| 18
18] 5 25 | 5 31| 3| D 8 | 19 | 19| 21
18| 10 45 | 8 | 89 | 10| 25 | 9| 33 | 21| 32
18| 10 45 | 4 |45 | 13| 27| 7] 28 | 17} 30
18| 10 45 | 5 | 56 | 61| T 8| 30 | 23| 33

7.3

of set T:‘ and all programs in FORTRAN

M

Na

Nb Oa 0b
s | PF s | "r Bs | Pr s | Pr Bs | PF
9 12 7 10 7 10 1| 2.5 2 5
15 18 11 14 11 14 6 15 6 15
17 | 20 11 15 11 14 9 |22.5 9 |22.5
7 10 8 12 11 14 4 10 4 10
6 12 11 15 11 14 18 | 45 13 | 33
10 | 13 9 12 9 12 8 20 8 | 20
15 | 22 11 14 11 14 1| 2.5 2 5
4 15 4 16 4 15 2 13 3 119.5
6 17 4 16 4 15 3 119.5 3 [19.5
5 16 5 17 5 16 3]19.5 3 |19.5
8 14 8 15 8 14 3 12 3 12
6 12 6 13 6 12 3 12 3 12
10 | 16 10 | 19 9 15 4 16 4 16
13 | 24 12 | 25 11] 22 4 26 4 26
9 20 22 9 20 26 4 26
11 22 12 | 28 11 23 26 4 26

49

50

TABLE

Experimental results for large problems

Problem Ja Jb Ka Kb L

P B ™ [%™ | % |% | % | | | "
152000 | 3|6 |3 |6]| 5 |27] 4 |38 25
152001 | 3|64 |5 |106] 7 |31] 4 |4 | 8 |25
152002 | 3|64 | 4 |8 | 6 |30 | 5 |4 | 10|26
153 [0 | 3|94 |3 |9]| 5 (38| 5 |62 | 8 |35
15 3 |1 | 3|9 | 3 |156| 7 |62 4 |64 35
153 |2 | 3|9 | &4 |125] 6 |40]| 5 |62 | 10 |36
15 500 | 31546 | 3 |154| 6 |60 | 5 |99 55
150501 | 3|1s46| 5 |256| 6 |59]| 5 [106 55
15 | 50| 2 | 4|25 | 4 | 25| 7 [62] 5 |105 | 10 | 56
17200 | 4|8 |4 | 8 | 26 |62 | 7 |40 | 15 | 69
1720 |1 | 4|8 | 4 | 8 |01 |T | 7 |41 | 15 |49
17202 | 4|85 | 4 | 8 | 23 |60 | 9 |47 | 14 | 69
17 |20 |3 | 5|106 | 6 | 127 8 |166 | 14 |61 | 29 | 56
17| 20] 4 | 5]106 | 5 | 106] 36 |93 | 15|58 | 27 | 75
17 | 30| 0 | 4125 | 4 | 125| 28 |82 | 7 |58 | 15 | 99
17 3|1 | 4|125| 4 | 125| 65 |180| 7 |61 | 17 | 70
17 30| 2| 4|125| 4 | 125] 26 |79 | 11|73 | 16 | 100
17 3|3 | 5|15 | 6 |187] 151 | T | 1493 | 29 | 76
17 30| 4| 5|15 | 5 | 15| 115 17 | 98 | 23 | 103
182/ 0| 48 | 9 |190] 9 | T | 10|51 | 45| T
18|20 1| 4|8 | 4| 8 | 37 |106 49 | 17 | 50
18|20 2| 4|8 | 4 | 8 | 107|201 55 | 23 | 53
183 |0 | 4|126| 9 | 280| 60 [187| 14|80 | 50 | T
1830 1| 4|125] 4 | 1250 01| T | 9 |70 | 17] 70
18| 30| 2| 4|125] 4 | 1250 1241 | 1175 | 23| 73
18| 4 | 1| 4|165| 4 | 165 48 | D | 10|94 | 19 | 91
18| 40| 2 | 4|165| 4 | 165| 208 | T | 12|101 | 21 | 92

7.4

of set T: and all programs in FORTRAN
M Na Nb Oa 0Ob

n | ng no o |ng n, |y n, | ng n. | ng
5 26 1 4 25 4 25 3 34.5 3 |34.5
6 | 27 1 4 | 26 4 |25 3 |34.5 3 |34.5
6 | 27 1 5 |27 6 |27 3 |34.5 3 |34.5
5 | 36 1 5 |37 5 |36 3 149.5 3 |49.5
7 | 38 1 | 4 |35 4 |35 3 149.5 3 |49.5
7 | 38 1 6 |38 6 |37 3 149.5 3 |49.5
5 56 1 5 57 5 56 3 79.5 3 79.5
7 58 1 4 55 4 55 3 79.5 3 79.5
7 58 1 6 58 6 57 3 79.5 3 79.5
6 | 27 1 8 |31 7 |28 4 46 4 46
7 | 28 1 8 |30 8 |29 4 46 4 46
8 29 1 8 30 8 29 4 46 4 46
14 | 35 1 17 | 45 14 | 35 4 46 5 | 57.5
14 | 35 1 17 | 46 13 | 34 5 |57.5 5 | 57.5

37 1 7 |39 7 |38 4 66 4 66

39 1 8 | 40 8 |39 4 66 4 66

39 1 42 8 |39 4 66 4 66
14 | 45 1|17 | 55 14 | 45 4 66 5 | 82.5
14 | 45 1 16 | 53 14 | 45 5 82.5 5 82.5
11| 52 1 15 | 35 15 | 36 5 57.5 5 57.5
9 30 1 10 | 32 10 | 31 4 46 4 46
10 | 31 1110 | 34 9 | 30 4 46 4 46
18 | 49 1 18 | 51 18 | 49 5 82.5 5 82.5
10 | 41 1 | 12 | 46 10 | 41 4 66 4 66
10| 41 1 | 10 | 43 10 | 41 4 66 4 66
10| 51 1| 12| 56 11 | 52 4 86 4 86
10 | 51 1 10 | 53 10 | 51 4 86 4 86

51

52

the work per iteration step, it is convenient to count the solution of a
linear system as an iteration step. In the tables the capital D means that
the program diverged and is terminated by some error exit, T means that
the program is terminated because the number of function evaluations be-
came too high. It is clear from table 7.2 that program G is not a reason~
able program for solving large functions, since it failed to solve some
easily solvable problems and other problems were not solved in the preci-
sion required. For the same reasons we see from tables 7.3 and 7.4 that
the programs L and Ka are not reasonable at all for solving nonlinear
systems, while program Jb should not be used for small problems. This re-
sult for program Ka is rather surprising. We feel that the starting guesses
in program Ka should give better results than those given in program Kb.
This is affirmed by the fact that for many problems the recovery scheme
built in progfam K is used to obtain a new set of starting guesses when
using version Kb. Probably, there are some small programming errors in the
code published by GRAGG & STEWART [28]. Another simple conclusion that can
be derived from tables 7.3 and 7.4 is that the number of function evalua-
tions as well as the number of iteration steps, needed by program Jb for
solving the given problems is always greater or equal to those, needed by
program Ja. For this reason and for the one given above, we will also con-
sider program Jb as not reasonable. These conclusions will also be justi-
fied by the reliability tests given in section 7.3.

Using the results given in tables 7.1 up to 7.4 we will now calcu-
late the values for the approximate expected relative efficiency of the
various procedures for solving the problems from the various classes.

For this calculation we use the notions and formulas from section 7.1.

7.2.1. Efficiency for solving small cheap problems

As is already stated in section 7.1, we define the approximated
éxpected relative efficiency of all reasonable programs for solving pro-
.blems of class W:l equally high (cf.(7.1.1.4)). Only the reliability of

the various programs is important if one wants to solve these problems.

53

7.2.2. Efficiency for solving small expensive problems

In order to evaluate the right ﬁand side of (7.1.1.6) we should know
the value of vy (see (7.1.1.3)). In table 7.5 we give the approximated ex—
pected relative efficiency of the various reasonable ALGOL 60 programs for
solving problems of class sz, for some typical values of y. Since for all
FORTRAN programs the value of y is equal to zero, we can give the required
results in table 7.6 independent of Y.

In our notation A, means the set of reasonable ALGOL 60 programs:
(7.2.2.1) A, = {A,B,C,D,E,F,Ga,Gb,H,I}
and AF denotes the set of reasonable FORTRAN programs:

(7.2.2.2) AF = {Ja,Kb,M,Na,Nb,0a,0b}.

TABLE 7.5
- e e -
E(R’AA’TS’WSZ) , for R ¢ AA
R A B c D E F Ga Gb H I
1 | 0.4 |04 | 0.9 | 0.0] 0.9 | 0.7] 0.6 | 0.5 | 0.5] 0.6
> lo.5 0.5 | 0.9 | 0.9 | 0.9 | 0.7 0.6 | 0.5 0.5] 0.6
s | 0.8 |o.8| 0.8 | 0.8 0.7] 0.6 0.6 0.4 0.4 0.5
n/2 | 0.6 | 0.6 | 0.9 | 0.9 | 0.9 | 0.7 | 0.6 | 0.5]| 0.5 | 0.6
n 0909 | 09| 0.9 | 0.9 | 0.7 0.6] 0.5] 0.5 0.6
o | 1.0 0.9 | 0.6 | 0.5 | 0.5 | 0.4 | 0.4 | 0.3] 0.3 | 0.4

TABLE 7.6

= e e
E(R,AF,TS,WSZ) , for R e AF

Ja Kb M Na Nb Oa 0Ob
0.9] 0.6| 0.6/ 0.6| 0.6| 0.6 0.6

54

As an immediate result of table 7.5 we see that programs A or B (Newton's
method with analytical Jacobian) is only preferable above other algorithms
if vy is small (about 1). '
Furthermore, programs C, D and Ja (Newton's method with forward difference

Jacobian) are not efficient.

7.2.3. Efficiency for solving large very cheap problems

To evaluate the approximated expected relative efficiency of the
e
21
values for n, g and 0y given in tables 7.2 and 7.4 in the expressions

reasonable programs for solving problems of class Y, , we substitute the
(7.1.1.8) up to (7.1.1.13) where B = 1. However, since the first term with-
in the brackets of these expressions is of order | or more and the second

~ term is of order nF/n2 we can neglect the second term for large n.
Doing so, we obtain with the use of a formula similar to (7.1.1.6) the re-
sults given in tables 7.7 and 7.8. These results are independent of o and
Y since they only appear in the terms that we neglected.
Since the programs Ga and Gb are considered to be not reasonable for solv-
ing large problems, we will drop them and use the set ZA of reasonable pro-
grams in ALGOL 60, where

(7.2.3.1) ZA = {A,B,C,D,E,F,H,I}.

TABLE 7.7
- - e e -
E(R,AA,TQ,WQI) ,» for R e AA
A B c D E F H I

0.05] 0.05| 0.05| 0.05|0.05 [0.02| 0.1 1

TABLE 7.8
= e e
E(R’AF’TQ’WQ]) , for R ¢ AF
Ja Kb M Na Nb Oa Ob

0.05| 0.1 0.1 0.05| 0.05 1 1

55

Clearly program F is the most efficient program in ALGOL 60 and the pro-
grams I in ALGOL 60 and O in FORTRAN are relatively very inefficient for
solving large very cheap problems.

7.2.4. Efficiency for solving large cheap problems

As in section 7.2.3 we substitute the values for n, g and ng, given
in tables 7.2 and 7.4, in the expressions (7.1.1.8) up to (7.1.1.13), where
B = 2. However, we can no longer neglect the second term in these expres—
sions since np is usually of order n. Therefore, substituting n and B,
there still remain two parameters a and y (see (7.1.1.7) and (7.1.1.3)
respectively). In table 7.9 we list the values for the approximated expec—
ted relative efficiencies of the programs in ALGOL 60 for some typical
values of a (a=1,20) and v (y=1/n, 1,n). Since y = 0 for all programs in
FORTRAN, the results for these programs, given in table 7.10 depend only

on .
TABLE 7.9
— e e - -
E(R,AA,TR,sz) , for R»E AA and some typical values of ¥y anda
R
o Y A B C D E F H I

1 1/n | 0.06 0.06 | 0.2 | 0.2 | 0.2 | 0.1 0.2 1
1 1 0.06 0.06 0.2 | 0.2 | 0.2 | 0.1 0.2 1

1 n 0.2 0.2 0.2 0.2 0.1 0.2 1
200 Yn | 0.1 | o.1 1 1 1 | 0.6 | 0.4] 0.9
20 1 0.1 0.1 1 1 1 0.6 0.4 0.9
20 n 1 1 1 1 1 0.6 0.4 0.9
TABLE 7.10
E(R,AF,T:,WEZ) , for R ¢ AF and some values of a

1 0.2(0.2 | 0.2 | 0.09|0.08 1 1
20 1 0.6 | 0.4 | 0.4 | 0.3 |0.8)| 0.9

56

It is easily seen from table 7.9 that Newton's method with analytical de-
rivatives (programs A and B) is the most efficient method as long as evalu-
ation of the Jacobian matrix is about as expensive as one evaluation of the
function or cheaper. In all other cases, program F (if o=1) or program H
(if a=20) is preferable when a program in ALGOL 60 has to be chosen.

From table 7.10 we see that the most efficient FORTRAN program is program
Nb, for both values of a.

7.2.5. Efficiency for solving large expensive problems

In a similar way as in section 7.2.4 we obtain the results given in

table 7.11 and 7.12. For this class of functions B = 3 (cf.(7.1.1.7)) is
substituted.

TABLE 7.11
E(R,ZA,TE,WEB) , for R ¢ ZA and some typical values of o andy.
R
ol Y A B C D E F H I
1 1 (0.1 0.1 1 1 1 0.6 1 0.4 0.8
1 n 1 1 1 1 1 0.6 | 0.4] 0.8
20 1]0.1 0.1 1 1 1 0.6 {0.310.5
20 | n 1 1 1 1 1 0.6 {0.3 0.5

TABLE 7.12
e
E(R,AF,TQ,W§3) , for R ¢ AF and some values of a
R
o Ja Kb M Na Nb Oa Ob
1 1 0.6 | 0.410.4 | 0.3 | 0.8 | 0.8

20 i 0.6 | 0.4|0.4 | 0.4 | 0.5]| 0.5

As for large cheap problems (section 7.2.4) we see that programs A and B
(Newton's method with analytical derivatives) are superior above the other
programs in ALGOL 60 as long as the evaluation of the Jacobian matrix is
about as expensive as one evaluation of the function or cheaper. Otherwise

program H is preferred. The programs M and N are the most efficient

{

57

programs in FORTRAN.

7.2.6. Efficiency for solving large very expensive problems

In calculating the approximated expected relative efficiencies of the
various programs for solving problems of class th we may simplify the ex-
pressions (7.1.1.8) up to (7.1.1.13) by neglecting the first term within
the brackets relative to the second since B = 4. Therefore, the results do
not depend on a. For the programs in ALGOL 60 we give the results, for

Yy =1 or n, in table 7.13. For the programs in FORTRAN, where y = 0 for all

programs, the results are given in table 7.14.

TABLE 7.13
E(R,KA,TE,?E4) , for R ¢ AA and some values of ¥y
R
Y A B C D E F H I
1 0.1 0.1 1 1 . 0.3 0.5
. n 1 1 1 1 1 . 0.3 0.5
TABLE 7.14
e
E(R’AF’TK’wZ4) , for R ¢ AF
Ja Kb M Na Nb Oa 0b

1 0.6 0.4)0.4 | 0.3} 0.5] 0.5

Again we see that the programs A and B are superior as long as the evalua-
tion of the analytical Jacobian is about as expensive as one evaluation of
the function. Otherwise, program H is the most efficient program in

ALGOL 60. The programs N and M are the most efficient programs in FORTRAN.

7.3 Reliability experiments

Since the reliability of a program, defined by (7.1.2.1), is inde-
pendent of other programs we do not have to distinguish between programs
in ALGOL 60 and FORTRAN when we calculate the reliability. As is mentioned

d .
in section 4.1 and 7.1.2 we use the set T of testfunctions to measure the

58

TABLE

Experimental results for testproblems

Problem A B C D
P n [nS nF ns nF ns nF nS nF
1 3 0 6 7 5 11 6 25 5 26

1 510 17 18 6 17 17 | 103 6 47

1 (10| 0 2 D 12 | 51 2 D 12 | 171

1 |15] 0 2 D 2 D 2 D 1 D
1 125] 0 2 D 2 D 1 D 1 D
2 | 2 i 1 D 1 D 18 | 55 6 34

3120 42 | 43 4 D 56 | 169 4 D

3 (2|1 22 | 23 5 D 65 | 196 5 D

3123 16 | 17 4 14 16 | 49 4 22

6 | 2| 2 100 | T 3 D 67 T 3 D
6 | 2|3 11 12 6 18 11 | 34 6 30
712]0 12 | 13 70 | 367 12 | 37 70 | 507

71211 16 16 4 D 14 | 43 4 D

91 2|0 2 3 15| 71 2 7 15 | 101

7.15
of set Td and programs in ALGOL 60
F Ga Gb I

s g s | TF s | P s TF s | " s | "F
6 | 25 | 6 | 25 6 o | 37 | 0] 4| 6|18
20 | 133 2 D 4 D 1 D 9 15 17 | 68
1 b 2 D 1 D 1 D 56 D 76 T

1 D 2 D 1 D 1 D 37 D 83 T

1 D 2 D 1 D 1 D 4 D 1 D
8 25 16 48 1 D 1 D 97 T 6 15
7 22 19 58 12 15 11 14 17 20 6 15
25 D 8 25 98 T 98 T 97 T 11 |27.5
30 D 25 D 98 T 98 T 97 T 40 T
5 16 5 16 9 12 .9 12 11 14 6 15
12 37 2 D 98 T 15 18 97 T 7 |17.5
7 29 7 29 27 31 18 22 13 17 7 21
6 19 7 21 12 15 8 11 0 I 6 15
26 D 7 D 16 19 55 D 97 T 12 | 30
9 28 11 | 33 62 D 63 D 33 | 36 12 | 30
12 D 10 | 31 23 26 24 27 26 29 12 | 30
11 D 12 | 37 26 | 29 26 | 29 70 | 73 13 |32.5
2 7 2 8 4 7 2 5 3 6 1 | 2.5
2 7 2 7 2 5 2 5 4 7 1 2.5
2 7 2 6 5 8 3 6 3 6 2 5

1) norm of function only 8.410—3

59

60

3) norm of function only 3.610—4

4) norm of function only 1.010—4

TABLE
Problem ¢

P| n ‘ns o n | o n, | o, n_ | ng
10- | 2 6 7 100 T 9 28 44 T
10 | 2 2 3 100 T 8 25 44 T
11 2 15 16 15 16 14 |43 14 43
11 2 13 14 13 14 13 140 13 40
11| 2 15 | 16 4 D 15 |46 4 D
1| 2 17 |18 | 3 D 17 |52 3 |0
12 | 4 19 | 20 19 20 19 |96 19 96
13] 6 6 7 6 7 6 43 6 43
14| 2 -l -1 =-1-14 |13 4 | 13
14| 3 - - - - 4 17 4 17
14 | 4 - - - - -6 31 5 31
141 5 - - - - 5 31 5 34
141 6 - - - - 8 D 5 39
14 | 7 - - - - 6 D 6 59-
14 | 9 - - - - 4 D 5 D
16 | 10 8 9 8 9 8 89 8 89
16 | 20 100 T 7 13 96 T 7 153
16 | 30 6 7 6 7 6 187 6 187
16 | 40 7 8 7 8 7 |288 7 288
18| 40 s |6 | 4| 8| 4315 | 4 | 168

2) norm of function only 2.010—5

7.15 (continued)

F Ga Gb
s F |l Ts | P s || Ts| TR Us | TF | % | T
9 | 28 |7 |21 98 | T 98 | T 97 | T 28 |70
‘9 | 28 |5 |17 | 98 |T 98 | T 97 | T 24 | 60
14 | 43 |13 |44 | 24 |27 | 22 | 25 | 22 |25 | 13 [32.5
1340 |11 [37 | 6 |p | 1417 | 18 |21 | 13 P2.5
15 | 46 |13 |42.| 21 |24 | 23 |26 | 23 |26 | 13 [32.5
21 | 67 |16 |51 6 | D 20 | 23 | 20 | 23 | 11 [27.5
20 | 106 | 16 | 81 6 | D 4 | D 27 | 32 | 57 | T
6 | 43 | 4 | 32 15 |22 14 | 21 0| I 8 | 36
4113 | 4 |12 11 | 14 5 | 8 5 | 8 4 |10
s | 21| 3 |13 8 | D 6 | 10 7 | 11 4 | 12
7136 | 5 |25 17 | 22 12 | 17 9 | 14 4 | 14
7| D | 4 |27 | 53 | D | 10| 16 9 | 15 6 | 24
3| p| 2 |D 3 |p 18 | 25 | 31 | 38 7 |31.5
4 D | 2 | D 44 | D 14 | 22 | 13| 21 5 | 25
1| p | 2 | D 3 | D 3| D 20 | 30 5 | D
6 | 67 | 2 | D 1 | D 1 D 16 | 27 7 |45.5
26| T 1 | D 1 | D 1| D 18|39 | 86 | T
6 | 187 2 | 76 1 | D 1| D 21| 52 | 90| T
25/ T | 2 | D 1 | D 1| » 26| 65 | 75 | T
5126| 2 | D 32*) 73 6 | D 15 | 56 5 107.5

61

62

TABLE

Experimental results for testproblems

Problem Ja Jb Ka Kb L

p n nS D-F nS ILF nS nF nS nF nS nF
1] 3 6 | 26 |32 |13 |12 |23 | 10|20 | 12| D
1] 5 7149 |s0o| T |10 |23 | 7 |22 |45 |T
110 10121 | 50| T | 16|49 | s | 26 | 35 | T
1|15 so| T | so|lT | 16|60 | 6|38 | 26| T
1] 25 1| o |s50] T 1 | D 1| p | 1 | D
2 |2 16| 58 | 6|19 | 8 |11 | 10] 16 | 14| 11
2 | 2 6 | 29 | 7|22 | 8 |12 | 8| 12| 2 | 14
3|2 sol T |so|lT |6 | T | 75| 1T | 120D
3] 2 so| T | 50| T | 20|41 | 78| T | 14| D
3| 2 4014 | 15| 46 | .8 |13 | 13|19 | 2 | &
3|2 412 | 18|55 | 8 |12 | 11|19 | 20 | 16
513 6 | 27 | 29 | 117 | 23 |28 | 15| 22 | 66 | 60
6| 2 50118 | 8| 25 1|4 | 10|15]| 6 | D
6| 2 25| 204 | 50| T 8 |11 | 12|16 | 22| D
6| 2 6|2 | 928 | 7 |10 | 8| 12| 22 19
7] 2 330169 | 18| 55 | 23 | 43 | 20| 37 | 14| D
7| 2 40275 | 50| T | 25|46 | 25| 46 | 7 | D
8| 2 13/ 102 | 50| T 7110 6|10 5 | 8
8| 2 50 26 | 31| 9 | 4| 7 4| 8 | 20| 20
9| 2 10| 53 | 35106 | 2| 5 7110]| 6 | D

7.

16

of set ¢ and programs in FORTRAN

M Na Nb 0a ob
Bs | g U | % S | % | % | Ts| g
21 | 31 8 | 12 8 | 12| 6| 18 | 6 |18
31 | 51 9 | 15 9 | 15| 17| 68 | 17|68
42 | 84 9 | 20 9 |20 | sof| T 1 | D
40 | T 10 | 26 10|20 | 5ol T | 1]0D
28 | T 10 | 36 10 | 36 1| D | 1]D
9 | 12 8 | 11 8 | 11 6 | 15 | 6 |15
10 | 13 9 | 13 9 | 12| 6 | 15| 5 [12.5
83 | T 47 | D 47 | o | 10|25 | 10]25
83 | T 23 | D 23 | b | 19 |47.5]| 19 |47.5
18 | 30 12 | 15 12 | 15| 6 |15 | 6 |15
22 | 30 12 | 16 12 | 15 | 7 [17.5] 7 |17.5
76 | T 11 | 16 12 16| 7|21 |7 |21
10 | 13 10 | 14 10| 13| 6|15)| 6 |15
83 | T 13 | 16 13 |16 | 7 |17.5] 2 | s
13 | 16 9 | 13 9 | 12 | 11 |27.5| 2 | s
31 | 46 114 | 117 132 | 135 12|30 | 7 |D
78 | 151 50 | D so | o | 11|28 | 8 |D
83 | T 95 | D 95 | D 1] 3 | 2|5
83 | T 4 | 8 4 | 8 1] 3 | 2]s
19 | 32 26 | 27 2 | 27| 2| 5 | 3|8

63

64

TABLE
Problem Ja Jb Ka Kb
pin Og | Dp O | Mg s | % | s | TF s | TF
10 | 2 50| T 50 | T 87 | T |87 | T 8 D
10| 2 so| T |50 T |8 |T |8 | T |9 |D
[11] 2 15| 4 | 50| T | 1934|2341 | 4 | D
112 13|40 | 26| 79 | 20 |37 19|36 | 2 | D
1] 2 281205 | 50| T | 20 |36 [23| 41 |17 | D
112 27| 174 | 50| T | 22 {39 | 21|38 | 2 | D
12| 4 19| 96 | 31|15 | 35 |71 | 29| 62 | 56 | 76
136 6 | 43 | 7|50 | 20|32 |15|33 |68 | D
14| 2 6013 | 4l 13| 6 |11 |6 12|19 |16
143 G017 | 41z | 1|19 6| 13 | 26 | 24
14| 4 5028 | 5| 27 | 21|33 9| 16 |47 |57
{145 4126 | 4|26 | 27|43 | 11|19 |70 | T
{14] 6 5137 | 6| 43 | 35|55 | 15| 28 [46 | 51
147 6|5 | 5|4 | 2D 19|36 |4 |D
149 261355 | 26| 341 | 1 | D | 25| 48 1 D
16 | 10 303 | 3|3 | 2140 | 6] 17 |30 |26
16 | 20 3|64 | 3| 64 | 5293 | 6| 28 |100 | T
16 | 30 3096 | 3| 94 | 83 |162] 7| 40 |100 | T
16 | 40 4| 165 | 4| 165 | 160| T | 35| 171 | 100 | T
18] 40 4166 | 9| 370 | 131| 1 | 13| 101 |100 | T

7.16 (continued)

M

Na Nb Oa Ob
ns nF ns nF IIS DF US DF ns DF
83 | T 97 | T 97 | T | 16| 40 | 15| 38
83 | T 97 | T 97 | T | 17 |42.5 | 16| 40
83 | T 134 | 140 125 | 131 | 13]32.5 | 10| D
20 | 23 151 | 154 152 | 155 | 13|32.5 | 10| D
83 T 11 D 11 D 131 32.5 10 D
83 | T 185 | 188 179 | 182 | 11]27.5 | 8| D
29 | 34 57 | 66 78 | 83 | 45| T | 50| T
14 | 35 30 | 38 30| 37 | 6| 27 | 6] 27
6 | 9 5 | 8 s | 8 | 4] 10 | 4] 10
6 | 10 7 |13 8 | 14 | 4| 12 | 4] 12
10 | 18 1| 19 o | 14 | 4| 14 | 12| 42
10 | 16 11 | 20 9 | 15| 5| 20 | 5| 20
12 | 28 31 | 41 29 | 36 | 4| 18| 4| 18
15 | 31 19 | 30 17 | 25 | 4| 20.| 4| 20
22 | 44 28 | 41 31 | 41| 6] 36 | 5| 30
6 | 17 7 | 21 7 | 18| 3|19.5| 3] 19.5
5 | 26 6 | 28 6 | 27 | 3|36.5| 3|34.5
6 | 37 8 | 41 8 | 39| 4| 66 | 3|49.5
8 | sl 9 | 51 9 | s0 | 7/|150.5| 7 [150.5
19 | 60 21 | 65 20 | 61 | 5|107.5| 5[107.5

65

66

reliability and we distinguish between the reliabiltiy for small problems
(Z(R,Tg,Wg)), for large problems (Z(R,T:,WZ)) and for all problems
(Z(R,Td,yd)). In order to be able to calculate these values we give in
table 7.15 and '7.16 the results of the programs in ALGOL 60 and FORTRAN re-—
spectively for the set of testproblems 4,

Besides the notation that is also used in the tables 7.1 up to 7.4 the
capital I in these tables means that the program is already terminated in
the initializing phase because of a singular Jacobian matrix.

As is seen in table 7.15 we do not give experimental results of programs

A and B for solving the problems (14,n,0), n = 2,3,4,5,6,7,9. For these
problems, the analytical Jacobian matrix is not available. Therefore, we
give the reliability of the programs C up to O, which is measured with all
problems in Td, in table 7.17. Furthermore, the reliability of all programs
measured with the problems in 74 except for the problems (14,n,0),
n=2,3,4,5,6,7,9, are given in table 7.18.

We use the notation:

(7.3.1) 7 =14 < {(14,0,0), n = 2,3,4,5,6,7,9}.

Since we do not pretend that ¢ or T is really a representative set of
functions for testing the reliability we do only give one significant fig-
ure in the tables 7.17 and 7.18. From the results given in these tables,
we can draw some simple conclusions.

The statement, given in section 7.2, that the programs Ga, Gb, and L can
not be considered as reasonable programs is affirmed by these results.
Their reliability is only 0.5 or less, i.e. for at least half of the pro-
blems of Td these programs fail. Furthermore, the programs B, D and Jb
(Newton's method with some kind of step size control) are considerably less
reliable than its equivalent without step size control (programs A, C and
Ja, respectively). Since step size control is incorporated to increase

the reliability, we must conclude that this goal is not attained and that
these programs are not useful. The conclusion that program Ka is not use-
ful is not affirmed by the figures, but as we mentioned already, the be-
haviour of program Ka is not clear to us and we feel that there are some

small programming errors in the code published by GRAGG & STEWART [28].

TABLE 7.17

reliability of programs

R Z(R,Tg,‘yg) Z(R,Tg,wfg) z@®,19,vd)
c 0.8 0.5 0.8
D 0.7 0.8 0.7
E 0.7 0.5 0.7
¥ 0.7 0.3 0.7
Ga 0.4 0.2 0.4
Gb 0.6 0.2 0.5
H 0.7 0.8 0.7
0.9 0.3 0.8
Ja 0.9 0.8 0.9
Jb 0.6 0.8 0.7
Ka 0.9 0.5 0.8
Kb 0.9 0.8 0.9
L 0.4 0.2 0.4
0.7 0.8 0.7
Na 0.8 1.0 0.8
Nb 0.8 1.0 0.8
Oa 0.9 .8 0.9
0b 0.7 .8 0.8

There is another conclusion that can be derived from the tables 7.17 and
7.18. Comparing the figures for the program O we must conclude that pro-
gram Oa is to be preferred. Hence, the step length used in the forward
difference formulas to approximate the elements of the Jacobian matrix
should not be chosen as small as 10—8 if the machine precision is about
10—14. To summarize we may say that the ALGOL 60 programs A,C,D,E,F,H and
I are useful where A,C and I are the most reliable programs; furthermore

.the FORTRAN programs Ja,Kb,M,N and Oa are useful, where only program M is

considerably less reliable than the other programs.

67

68

TABLE 7.18
reliability of programs

R Z(R,’f‘:,\yg> Z(R,Tg,wj) Z(R,'T'd,\i'd)
A 0.9 0.7 0.8
B 0.6 0.8 0.6
C 0.9 0.5 0.8
D 0.6 0.8 0.7
E 0.7 0.5 0.7
F 0.7 0.3 0.7
Ga 0.4 0.2 0.4
Gb 0.5 0.2 0.4

0.6 0.8 0.6
I 0.9 0.3 0.8
Ja 0.8 0.8 0.8
Jb 0.5 0.8 0.6
Ka 0.9 0.5 0.8

0.9 0.8 0.9
L 0.3 0.2 0.3

0.6 0.8 0.6
Na 0.7 1.0 0.8
Nb 0.7 1.0 0.8
Oa 0.9 .8 0.9
Ob 0.7 .8 0.7

7.4 Experiments about convergence behaviour and spectial features

of the programs

7.4.1. Convergence behaviour

For the programs C up to I in ALGOL 60 and Ja,Ka,Kb,M,Na,Nb,0a in
- FORTRAN we give some diagrams to show the progress of the iteration as a
function of the number of function evaluations. These diagrams are only
illustrations of the performance of the various programs and, in fact,
only for the classes of functions W:Z and W§4 where the work done per

iteration step can be neglected, these diagrams are illustrations of the

69

relative efficiency. Nevertheless, the diagrams are typical as illustra-
' tions of the behaviour of iterative methods for solving nonlinear systems.

The symbols used in these diagrams are explained by the following reference
tables.

programs in ALGOL 60:

£x ¢ program C

e

program D

we

: program E ;

O o> X

program F ;

program Ga;

s

¢ program Gb;

b3
X
<> program H ;

O : program I ;
programs in FORTRAN:

program Ja;

: program Ka;

¢ program M ;

program Naj;

X
O
x : program Kb;
X
<O
X

program Nb;

z; program Ob.

One can see from these diagrams, that, once convergence starts, it is
going fast (superlinearly or even quadratically).

Furthermore, there appears to be no reason to expect that one program is
is more efficient to obtain the solution in a high precision than another

program. The same holds if only low precision is required.

70

14 —
13 + 0

12 +

10 A4 1l

-10| OG(NORM OF FUNCTION)
]

~
]
+-

1
1
AN
e
. — W
) i 4 “.
v :
2y ie -
v
v

1

-3 ; ; I t ; + ! i
1 10 20 30 40 50 60 70 80
NUMBER OF EVALUATIONS

FUNCTION 2 , ORBER 2 , CRSE O

PROGRAMS IN ALGOL 60 DIAGRAM 7.1

14

13

12

11

10

-10| OG(NORM OF FUNCTION)

71

(D

‘) 4

] { | | Il | | | Il]

T 1 I 1 T 1
6 8 10 12 14 16 18 20 22 24 26
NUMBER OF EVALURTIONS

FUNCTION 2 , ORBER 2 , CRSE 2

PROGRAMS IN ALGOL 60 DIAGRAM 7.2

7

N

14 -
13 4
12 +
1+ >

10 4

-10| OG(NORM OF FUNCTION)

)

D 1 3] 1 1 l | [l |] L]
T T T 1 T T T T

T T L 1
1 2 3 4 S 6 7 8 g 10 11 12 13
NUMBER OF EVALURTIONS

FUNCTION 4 , ORDER 2 , CRSE O

PROAGRAMS IN ALGOL 60 DIAGRAM 7.3

73

14 -+

13 +

12 +

11 +

10 + o
n

-10| OG(NORM OF FUNCTION)

1)

()

l f 1
1 S 10 15 20 25 30
NUMBER OF EVALUARTIONS

FUNCTION 4 , ORDER 2 , CASE 1

PROGRAMS IN ALGOL 60 DIAGRAM 7.4

74

14 —

13 +

11 +

-10 OG(NORM OF FUNCTION)

$

-

(1)

1 1 1 1 |

PROGRAMS IN ALGOL 60

FUNCTION

6

ORDER

1 I 1 T 1 1
12 14 16 18 20 22 24

NUMBER OF EVALURTIONS

2 . CRSE 1

DIAGRAM 7.5

14 -

13 +

12 +

11 +

10 +

- 10 0G(NORM OF FUNCTION)

75

A
PN

|

e

 {

X —X

[~

4 i i)

PROGRAMS IN ALGOL 60

FUNCTION

8

ORDER

T 1 1 % 4
14 16 18 20 22
NUMBER OF EVALURTIONS

2 ., CASE ©

DIAGRAM 7.6

76

14 -
13 T P
12 +

11 + "

-10LOG(NORM OF FUNCTION)

V4

%

F { : |
1 5 10 15 20 25 30
NUMBER OF EVALUATIONS

FUNCTION 2 , ORDER 2 , CRSE O

PROGRAMS IN FORTRAN DIAGRAM 7.7

14

13 +

12 +

10 +

-10 OG(NOGRM OF FUNCTION
|

77

=

PROGRAMS IN FORTRAN

FUNCTION

2

»

ORDER

I
20

[
25

{
30

NUMBER OF EVALURTIONS

2

CASE 2

DIAGRAM 7.8

78

14
13
12
11

10

- 10| OG(NORM OF FUNCTION)

| 1 | 1 - ! 1 —
T 1 T T T

2 4 6 8 10 12 14
NUMBER OF EVALURTIONS

FUNCTION 4 , ORDER 2 , CRSE O

PROGRAMS IN FORTRAN DIAGRAM 7.9

14
13
12
11

10

-10 . 0G(NORM OF FUNCTION)

PROGRAMS IN

79

N A e S e
1 5 10 15 20 25 30 35 40 45 SO
NUMBER OF EVALURTIONS

FUNCTION 4 , ORDER 2 , CASE 1
FORTRAN DIAGRAM 7.10

80

14
13 + 0

12 + Q

10 +

- 10 BG(NORM OF FUNCTION)

-3 f t { f t f } } t f %
1 2 4 6 8 10 12 14 16 18 20 22
NUMBER OF EVALURTIONS

FUNCTION 6 ., ORDER 2 ., CRSE 1

PROGRAMS IN FORTRAN DIAGRAM 7.11

81

D

/]

-101 OG(NORM OF FUNCTION)

| | |
1 1 L

6 7 8
NUMBER OF EVALUATIONS

FUNCTION 8 , ORDER 2 , CRSE O

PROGRAMS IN FORTRAN DIAGRAM 7.12

82

Hence, as long as the precision is not too high, relative to the round-
off error in the function and/or its Jacobian, the efficiency of the pro-

gram is not influenced by the precision required.

7.4.2. Special properties and features

The use of most programs is about the same. The user should provide
the function and sometimes its Jacobian matrix, the precision required and
sometimes some controlling parameters. For most programs the function has
to be programmed such that for a given argument vector the whole function
vector is calculated. However, the programs I and O require the programming
of the function such that only one component of the function vector is cal-
culated for a given argument vector. This may have severe consequences for
the efficiency of programs I and O when the evaluation of one component is
almost as expensive as evaluation of the whole function vector.

An advantage of the programs I and O, which is induced by the underlying
algorithm, is that solution of problems for which part of the function
components are linear can be done relatively very efficient if the function
components are ordered in the right way. We will illustrate this feature

by the following example.

If we reorder the function components in problem (1,n,0) (see section

5.1.1) such that the first (n-1) are linear and the last one is non-
linear, thus:

n
- (n+1) + X + 2 X. 1=1,...,n -1,

Fi(x)
n j=1

Fn(X)

]
1
+
o]

then, this problem is solved by the program I and O and solution is re-
markably efficient. The difference between solving problem (1,n,0) and its

reordered analogue with the programs I and Oa is illustrated by table 7.19.

TABLE 7.19

Influence of reordering function components

such that linear ones come first for the

programs I and O and problem (1,n,0)

program I program Oa
.§ normal reordered normal reordered
5 g | Dy n N ng | ng n n,
2 1 2.5 4 - 10 1 2.5 4 10
3 6 18 5 15 6 18 5 15
5 17 | 68 5 20 17 | 68 6 24
10 76 T 6 39 50 T 7 46
15 83 T 7 63 50 T 7 63
25 1 D 7 98 1 D 7 98

The reason for this behaviour is that in the reordered case the linear

components are treated first so that a much better approximation to the

83

solution is used by the time that the nonlinear component is approximated.

All other programs use a method of vector-wise approximation so that re-

ordering does not influence the behaviour of the program.

However, program K has a mechanism for treating linear components

apart.

The user may define the problem function as an underdetermined linear

system together with an underdetermined system of nonlinear equatiomns. For

program K the number of nonlinear equations has to be at least two. The re-

sults of using this mechanism for problem (1,n,0) are given in table 7.20.

84

TABLE 7.20

Influence of the use of the feature
for linear components in the programs

Ka and Kb for problem (1,n,0)

program Ka program Kb

H normal |with feature normal with feature
9

8 ns g s iy Bs g ns g
3 12 | 23 5 10 10 | 20 5 11
5 10 | 23 8 16 7 22 5 12
10 16 | 49 6 13 5 26 5 12
15 16 | 60 8 16 6 38 5 12
25 1 D 7 14 1 D 5 12

Clearly, the reliability of the programs I, K and O is influenced by the
use of these features. When we assume that the user takes full advantage

of these features, then we should do.the same if we compute the reliability
of these programs and we should replace the values for the programs I, Ka,
Kb and Oa in table 7.17 by those given in table 7.21. We see from this
table that program Oa is fully reliable if we give only one significant
digit for these values. In fact, it failed only once by solving 40 diffi-
cultly solvable problems. As is seen from table 7.16 it failed to solve

problem (12,4,0). This problem has a singular Jacobian matrix (rank 2) at
the solution.

TABLE 7.21

Reliability for some programs if special features are used.

R Z(R,T:,‘i/csl) Z(R,Tg,‘y:) z@®,1% v
I 0.9 0.5 0.8
Ka 0.9 0.7 0.8
Kb 0.9 I 0.9
0a I 1 1

85

The last remark about the behaviour of the programs which is induced by
the experimental results is concerning the failure detection of the pro-
grams. Most of the programs do only generate an error exit if the matrix
of the linear system appears to be (numerically) singular. Sometimes, step
size control (program B and D) or a resetting mechanism (program N) gives
a possibility to detect divergence or convergence to a stationary point
which is no solution, so that an error exit can be generated. However, we
see from the tables 7.15 and 7.16 that rather often the program has to be
terminated by the user by choosing some upper bound for the number of func-
tion evaluations. Sometimes, this facility is built in in the program, so
that the best results obtained so far are given as output, héwever, in
other cases the user himself should build in a jump out of the program by
programming the function in such a way, which is very undesirable.
In either case, the user has to choose some upper bound on the number of
function evaluations or iterations without having any reasonable idea about
it, since this depends heavily on the method used and the problem to be
solved.

We feel that good failure exits are essential for a good program,
however, we do not judge the given programs on this criterion in this

report.

8. CONCLUSIONS

8.1. General remarks

As we mentioned before, the method of choosing a program for solving
a system of nonlinear equations will usually be a method of trial and
error as long as we do not know whether the problem is easily solvable.
However, with the results given in section 7 we feel that we can give
the user reliable information about what program he should try first and
if it fails what will be the best to try subsequently and so on. We dis-
tinguish between the six classes of problems WS]’ wsZ’ Wzl’ wQZ’ W23
and WQA defined in section 5.1 and we assume that the user is not able to
determine whether his problem is easily solvable or not. Our method of

choosing is as follows:

86

—~first of all drop all programs that are not reasonable (see
section 7.1); these are the programs B,D,Ga,Gb,Jb,Ka,L and Ob;

—then the most efficient program in ALGOL 60 and FORTRAN is chosen;
if two programs are equally efficient, then the most reliable is
chosen; (we use Z(R,Td,wd) from tables 7.18 and 7.21) ;

-as the next choice we take the next efficient program whose relia-
bility is higher than the reliability of the program that is chosen
first (for both ALGOL 60 and FORTRAN);

-we repeat this brocess until we do not have any choice any more;

-we will not use program C if program A can be used more efficiently
and vice versa, since these programs are the same, except for the

use of an analytical or approximated Jacobian matrix.

Hence, we obtain for a certain class of problems a sequence of programs
in ALGOL 60 and in FORTRAN. So, all the user has to do is to determine in
which class his problem should be placed, to read the conclusions given
“about: this class and to try and solve his problem with the programs in the
order given. Only if he is not interested in efficiency he should choose
the last program of the sequence of programs in the language he uses,
since this is the most reliable one;

The conclusions are based on the assumption that the user makes use of
the features of some programs mentioned in section 7.4.2 if one or more
of the function components are linear.

Furthermore, it is obvious that we assume that the programs are

used in the form as described in section 4.

To simplify our conclusions we do not distinguish between programs Na

and Nb. There is always a slight preference for program Nb.

For convenience we say that a cheap Jacobian is available if the user can
supply analytical derivatives of the function and the evaluation is about
as expensive as one evaluation of the function or cheaper. Furthermore,
we formalize the notation of the sequences of programs as follows:
'a semicolon between two programs means that one should try first the
program mentioned before the semicolon and if it failed then one should
try the program behind the semicolon; an or-symbol (v) between two pro-

grams means that there is no preference between these two programs,

87

the user should try one of them. So we end up with the following conclu-

sions for the various classes of problems.

8.2. Solving small cheap problems (WS‘ in section 5.1)

Programs in ALGOL 60 : A v CvVv I

b

where A can only be used if analytical derivatives are available.

Programs in FORTRAN : Oa.

8.3. Solving small expensive problems (?Sz in section 5.1)

Programs in ALGOL 60 :

if a cheap Jacobian is available then: A, otherwise: H; I.

Programs in FORTRAN : Oa.

8.4. Solving large very cheap problems (WQI in section 5.1)

Programs in ALGOL 60 : A v C ; I

’

where A can only be used if analytical derivatives are available.

Programs in FORTRAN : Ja ; Oa.

8.5. Solving large cheap problems (Wgz in section 5.1)

Programs in ALGOL 60 :

if a cheap Jacobian is available then: A,
otherwise:

if o (defined by (7.1.1.7)) is about | or less then: F ; C ,

otherwise: H ;3 F ; I .

Programs in FORTRAN : N ; Kb ; Oa.

8.6. Solving large expensive problems (W£3 in section 5.1)

Programs in ALGOL 60 :
if a cheap Jacobian is available then: A,
otherwise, if o is about 1 or less then: H ; F ; I,

otherwise H ; I.

88

Programs in FORTRAN :
if o is about | or less then: N ; Kb ; Oa ,

otherwise: N ; Oa.

8.7. Solving large very expensive problems (WR4 in section 5.1)

Programs in ALGOL 60 :
if a cheap Jacobian is available then: A,

otherwise: H ; I .

Programs in FORTRAN : N ; Oa.

8.8. General conclusions

We see that the following programs in ALGOL 60 are useful for having

available (for instance in a software library):

A, C, F, H, I.

Except for A and C (both Newton's method) they are based on different types
of algorithms. Program F is based on the secant algorithm, program H on the
quasi-Newton algorithm and program I on a method of component-wise approxi-
mation. As far as programs in FORTRAN are concerned it is sufficient to

have available:

Ja, Kb, N, Oa.

Here again we have Newton's method (Ja), a secant method (Kb), a quasi-
Newton method (N) and a method of component-wise approximation (0Oa).
The comparison of the programs in ALGOL 60 indicates that it might be use-
ful to have a FORTRAN-version of program A.

Furthermore it should be noted that translation of the programs K
and N in ALGOL 60 may change the picture and the modifications in Oa re-

lative to its analogue in ALGOL 60, program I, seems to be worth while.

89

ACKNOWLEDGEMENTS,

The author is very grateful to mrs. M. Werkhoven and A.C. IJsselstein, who
helped him with a lot of programming and plotting and to J. Kok for providing
a version of Newton's method which was adapted to our software library.

He also likes to thank prof. P.J. van der Houwen, P.A. Beentjes and J. Kok
for their contributions in the discussions about the framework of this re—
port and for their careful reading of the manuscript.

Finally he likes to thank ms. I. Cannegieter and D. Zwarst for the work

that had to be done to get this report typed and printed.

90

REFERENCES

[1] BOGGS, P.T. & J.E. DENNIS, A Continuous analogue analysis of nonlinear
tterative methods, Cornell Univ., TR 200, Ithaca (1974).

[2] BROWN, K.M., Algorithm 316; solution of stmultaneous non-linear equa-
tiong, Comm. ACM, 19'(1967), 728-729.

[3] BROWN, K.M., A quadratically comvergent Newton-1like method based wpon
Gaussian elimination, SIAM J. Num. An., 6 (1969) 560-569.

[4] BROWN, K.M., Computer oriented algorithms for solving systems of si-
multaneous nonlinear algebraic equatioms,
In: G.D. Byrne & C.A. Hall (eds.), Numerical solution of sys-

tems of nenlimear algebraic equations, Academic Press (1973).

[5] BROWN, K.M. & S.D. CONTE, The solution of simultaneous nonlinear equa-
tions, Proc. ACM 22nd Nat. Conf., (1967) 111-114.

[6] BROWN, K.M. & M. FRISCH, Private commnication.

[7] BROYDEN, C.G., A class of methods for solving nonlinear simultaneous
equations, Math. Comp., 19 (1965) 577-593.

[8] BROYDEN, C.G., 4 new method of solving nonlinear simultaneous equa-
tions; algorithm 44, Comp. J., 12 (1969) 94-99, 406-408.

[91 BROYDEN, C.G., The convergence of single—rank quasi-Newton methods,
Math. Comp., 24 (1970) 365-382.

[10] BROYDEN, C.G., Recent developments in solving nonlinear algebraic
systems,

Int P. Rabinowitz (ed.), Numerical methods for nonlinear

algebraic equations, Gordon & Breach, (1970).

(I11] BROYDEN, C.G., The convergence of an algorithm for solving sparse non-
linear systems, Math. Comp., 25 (1971) 285-294.

123 BROYDEN, C.G., Quasi-Newton, or modification methods.
In: G.D. Byrne & C.A. Hall (eds.), Numerical solution of non-
linear algebraic equations, Academic Press (1973).

91

[13] BROYDEN, C.G., J.E. DENNIS & J.J. MORE, On the local and superlinear

convergence of quasi-Newton methods, J.1.M.A., 12 (1973)
223-245.

(141 BUS, J.C.P., 4n analysis of the convergence of Newton-like methods
for solving systems of nonlinear equations, Mathematisch

Centrum, report NW 20/75, Amsterdam (1975).

[15] CARNAHAN, B., H.A. LUTHER & J.0. WILKES, Applied numerical methods,
Wiley (1964).

(16] COLLATZ, L., Funktional Analysis und numerische Mathematik, Springer
(1964), English ed., Academic Press (1966).

[17] DAVIDENKO, D.F., On a new method of numerical solution of systems of
nonlinear equations (russian), Dokl. Akad. Nauk. SSSR. 88
(1953) 601-602.

(18] DAVIDON, W.C., Variable metric methods for minimization, Argonne
Nat. Lab. report 5990 (1959).

[(19] DEIST, F.H. & L. SEFOR, Solution of systems of nonlinear equations
by parameter variation, €omp. J., 10 (1967) 78-82.

[20] DENNIS, J.E. & J.J. MORﬁ, A characterization of superlinear conver-—
gence and its application to quasi-Newton methods, Math. Comp.
28 (1974) 549-560.

[21] DENNIS, J.E. & J.J. MORE, Quasi-Newton methods, motivation and theory,
Cornell Univ. report TR 217 (1974).

[22] DULLEY, D.B. & M.L.V. PITTEWAY, Algorithm 314, Finding a solution
of n functional equations in n unknowns, Comm. ACM 10 (1967)
726.

[23] EINARSSON, B., Testing and evaluating of some subroutines for nume-—
rical quadrature,
In: D.J. Evans (ed.), Software for numerical mathematics,
Academic Press (1974).

[24] FLETCHER, R., Function minimization without evaluating derivatives —
a review, Comp. J. 8 (1965) 33-41.

92

[25] FLETCHER, R. & M.J.D. POWELL, 4 rapidly convergent descent method
for minimization, Comp. J. 6 (1963) 163-168.

[26] FREUDENSTEIN, F. & B. ROTH, Numerical solutions of systems of nonlinear
equations, J. ACM 10 (1963) 550-556.

[27] GHERI, G. & 0.G. MANCINO, 4 significant example to test methods for
solving systems of nonlinear equations, Calcolo 8 (1971)
107-113.

[28] GRAGG, W.B. & G.W. STEWART, A stable variant of the secant method

for solving nonlinear equations, Carnegie Mellon Univ. rep.
(1974).

[29] HAGUE, S.J. et al., NAG Project note, number 5, (1974).

[30] HILLSTROM, K.E., MINPACK I, A study in the modularization of a

package of computer algorithms for the unconstrained nonlinear

optimization problem, Argonne Nat. Lab. rep. TM-252 (1974).

[31] HULL, T.E. et al., Comparing numerical methods for ordinary differen—
tial equations, SIAM J. Num. An. 9 (1974) 603-637.

[32]1 IMSL, International Mathematical and Statistical libraries,

Reference manual.

[33] LEVENBERG, K., 4 method for the solution of certain nonlinear pro-
blems in least squares. Quart. Appl. Math. 2 (1944) 164-168.

[34] LOOTSMA, F.J., Non-linear optimization in.industry and the develop—
ment of optimization programmes, Paper to be presented at the

Conf. on Optimization in Action, Bristol (1975).

[35] MARQUARDT, D.W., An algorithm for least-squares estimation of non-
linear parameters, SIAM J. 11 (1963) 431-441.

[36]1 MEYER, G.H., On solving nonlinear equations with a one-parameter
operator imbedding, SIAM J. Num. An. 5 (1967) 739-752.

[37] MSL, Math. Science Library, Reference manual.

(38] NAG, Numerical Algorithms Group, Library manual.

(391

(401

[41]

[42]

[43]

[44]

[45]

[461]

[47]

[48]

[49]

[50]

93

NUMAL, A library of numerical procedures in ALGOL 60, Reference ma-
nual, Mathematisch Centrum, Amsterdam (1974).

ORTEGA, J.M. & W.C. RHEINBOLDT, Iterative solution of nonlinear

equations in several variables, Academic Press (1970).

PANKIEWICZ, W., Algorithm 378, discretized Newton-like method for
solving a system of simultaneous nonlinear equations,
Comm. ACM 13 (1970) 259-260.

PARLETT, B.N. & WANG, Y., The influence of the compiler on the cost
of mathematical software; in particular on the cost of trian—

gular factorization, TOMS 1 (1975) 35-46.

POWELL, M.J.D., An iterative method for finding stationary values of
a function of several variables, Comp. J. 5 (1962) 147-151.

POWELL, M.J.D., A hybrid method for nonlinear equations; A FORTRAN
subroutine for solving systems of nonlinear algebraic equa-
In: P. Rabinowitz (ed.), Numerical methods for nonlinear alge-

braic equations, Gordon & Breach (1970).

RALL, L.B., Computational solution of nonlinear operator equations,
Wiley (1969).

ROBINSON, S.M., Interpolative solution of systems of nonlinear
equations, SIAM J. Num. An. 3 (1966) 650-658.

SCHWETLICK, H., Algorithm 12; q discrete method for the solution of
finite—-dimensional systems of nonlinear equations, Comp. 5

(1970) 82-88.

VANDERGRAFT, J. & C. MESZTENYI, Remark on algorithm 314, Comm. ACM
12 (1969), 38-39.

WILKINSON, J.H., Rounding errors in algebraic processes,
Her Majesty's Stationary Office (1963)

WILKINSON, J.H., The algebraic eigenvalue problem,
Clarendon Press (1965).

94
APPENDIX

In this appendix we give source texts of some programs which have
been changed with respect to the text given in the references. Some of
them are already adapted to the software library NUMAL [39]. Some other
programs are changed. We give these texts, mainly to show what source
texts are tested. Therefore, source texts of programs which are not
changed by us, can be found in literature and we did not list those here.
Furthermore the source texts of the subroutines NEWT (program J), NONLIQ
(program L) and QNWI (program M) from the MSL software 1ibrary are not

listed since they are not available.

Since some of the programs in ALGOL 60 make use of procedures de-
clared by code numbers, we will give a short explanation of their perfor-

- mance. Detailed descriptions and source texts are given in NUMAL [39].

real procedure vecvec(l,u,shift,a,b) ;
vecvec delivers the inner product of the vectors given in
al 1:u] and b[1+shift : u+shift].
real procedure matvec(l,u,i,a,b) ;
matvec delivers the inner product of the vector given in
b[l:u] and the row-vector given in ali:i,l:u].
real procedure tamvec(l,u,j,a,b) ;
tamvec delivers the inner product of the vector given in
bl1l:u] and the column-vector given in all:u,j:jJ].
procedure dupvec(1l,u,s,a,b) ;

dupvec duplicates the vector given in b[l+s : u+s] to all:ul.

procedure elmvec(l,u,s,a,b,x) ;
elmvec adds x times the vector given in b[l+s : u+s]
to the vecor given in al[l:u].

procedure elmcolvec(l,u,j,a,b,x) ;

elmcolvec adds x times the vector given in b[l:u] to the

column-vector given in all:u,j:jJ.

procedure

95

gsssol(a,n,aux,b) ;
gsssol solves the linear system of order n, whose matrix is
given in all:n,1:n] and whose right-hand side is given in
bl[1:n]. The solution is overwritten on b[1:n]. The matrix
elements are overwritten. In the auxiliary array aux one
should give in aux [2] the precision of arithmetic and in
aux [4] some controlling parameter (advised value 8). The

rank of the matrix is delivered in aux [3].

The parameter lists of the tested procedures in ALGOL 60 are made as uni-

formly as

funct

jacobian

in

out

.
.

.
°

.

possible. The parameters have the following meaning:

order of system ;
the initial guess as input and the solution as output ;
the functionvector; on exit the functionvector at the calcu-

lated solution ;

a boolean type procedure;

boolean procedure funct(n,x,f) ; the parameters have the same
meaning as above and the program is terminated if the proce-
dure delivers false for some argument vector ;

a procedure for calculating the Jacobian matrix ;

procedure jacobian(n,x,f,jac,funct) ;

the Jacobian matrix is delivered in jac[l:n,1l:n] ;

the other parameters have the same meaning as above ;

some auxiliary array to provide tolerance and values for
control parameters (input) ;3

some auxiliary array in which some by-products are delivered;
For the programs E up to I out [5] # O means that no solution
is found; for the programs A up to D out [6] # 6,4 means that

no solution is found.

Since the given texts are not really intended for use, but only to vali-

date our conclusions and to show what changes are made to the original

source texts, we assume that the short description above will be suffi-

cient.

96

"COMMENT® NEWTONS METHOD, PROGRAM A OR C3

"PROCEDURE® PROGRAM A(N, X, F, FUNCT, JACOBIAN, IN, OUT):
"VALUE" Ny "INTEGER® N3

"ARRAY® X, F, IN, OUTs

"BOOLEAN® "PRQLEDURE® FUNCT;

"PROCEDURE® JACOBIAN,

"BEGIN" WINTEGER" TEXT, IT, ITMAX, FEyAL, FEVALMAX}
"REAL® RN, RE| TO{PAR, ABSTOLPAR, ABSTOLRES, STAp, NORMX;
"BOOLEAN® TESTVHE)

. WARRAY® JACI1iN & 1,18N), SOL[1 3 NJ, AUXIL &t 719

"REAL#"PROFEDURE" VECYEC(L, U, SHIFT, A, B); "CODE" 34010,
"PROCEDURE® DUPVFC(L, U, 8, A, B)y "CODE" 31030,
"PROCEDUREn GSSSOL (A, N, AUX, B)jp »CODE® 34232y

"BOOLEAN"*PROCEDURE" LOC FUNCT(N, X, F)y
?VAkUEf Ny_ "INTEGER" N1 "ARRAY" X, Fy

"BEGIN' LOC FUNGTim TEST THFis FUNET(N, X, F)
_ WAND® TEST TWFy FEVALi= FEVAL ¢ 1

"END® LOC FUNCT)

ITMAX3s FEVALMAXtim IN[4)p AUX(2)2® N = IN[O)g,
AUX(4) s gs RELTOLPAR{® INC1] #x 24 ABSTOLPARym IN[2] #x 2y
ABSTQLRESgw IN(31 %4 2y TEXTi® 81 TEST THFia "TRUE")
8TAPig OUTI1]13m QUTISIsw OUTL7) 1= 03
PUNCT(N, X, $OL)s RNs® VECVEC(1, N, 0, SOL, SOL)s
OUT (3138, 80RT(RNy; FEVALg= {9 ‘
"FOR® ITesg 1, IT + 1 "WHILE" IT <= ITMAX "AND®
. FEV4L .< FFVALMAX "DQ"
"BEGIN® OUT[S)i=m Ty JACOBIAN(N, X. 80L, JAC, LOCFUNCT);
"IF® *NOT® TEST THF "THEN®
"BEGIN® TEXTsg 33 "GO TO¥ FAIL WEND"y
GSSI0L (JAC, N. AUX, SOL)y .
"IE® AUX(S) “m N "THEN"WBEGIN" TEXTt= 13 “GO TO" FAIL "END"»
STaPss VECVEC(}, N, 0. SOL, SOL)
NOBMXtg VEGVEEL (1, Ns 0, Xo X,
"IF® $TAP > RELTOLPAR x_NORMX § ABSTOLPAR
_MOR® IT @ { "AND® 8TAP > 0 “THEN" i
"BEGIN® ELMVEC(1, Ny O, Xo 80L, = 1)y FEVALS= FEVAL + 113
®IF% WNOT" FUNCT(N, X, F) "THEN"
"BEGIN® TEXTis 23 "GO TO" FAIL “FND"y
RN'* VECVEC(I. N, 0, Fo Fli
“IFn RN <= ABSTOLRES "THEN"
“BEGIN® TEXT|S 43 ITMAXi= IT _“END*
"ELSE" DUPVEC(1, N, 0, SOL, F)
"END® TTERATJON AND TESTS "ELSE"
"BEGIN® TEXTtm 63 ITMAXgm IT "END®

"END® OF ITERATINNSS

FAIL 3
OUT(11p® SORT(STAP)s OUTI(2)tm SQRT(RN)) OUT (4] 1= FEVAL)
OUT (6]} ss YEXTy; OuT(81ts AUX(3)s OUT(9) 1=z AUXIS]

"END® PROGRAM Ag

"COMMENT® NEWTONS METHOD WITH STEP SIZE CONTROL, PROGRAMS B AND Dj
*PROCEDURE® PROGRAM A(N, X, F, FUNCT, JACOBIAN, IN, OUT)y

"VALUE" Ny YINTEGER" Ni

"ARRAY" X, F, IN, OUT;

"BOOLEAN" WPRQCEDYRE® FUNCT}

"PROCEDURE® JACOBIAN-

"BEGIN" SINTEGER® I, J, INR, MiT, TEXT,
1T, ITMAX, INRMAX, TIM, FEVAL, FEVALMAX,
"REAL® RHQ., REB1. RES2., RN, RELTOLPAR, ABSTOLPAR, ABSTOLRES,
STAP, NORMX3
"BOOLEAN" CQNY, TESTTHF, DAMPING ONj _
"ARRAY"® JAC[1iN & 1,18N], PR, FU2, SOLIf t NI, AUXI1 3 71;

*REAL®WPROCEDURE® VECVEC(L, U, SHIFT, A, B); "CODE" 340103
"PROCEDURE"™ DUPYFC(L, U, S, A, B)y "CODE" 31030,
"PROCEOURE™ ELMVFC(L, U, S, A, B, X)3 "CODE®" 34020}
"PROCEDURE® GSSSaL (A, N, AUX, B)s "CODE"™ 342323

"BOOLEANMWPROCEDURE" LOC FUNCT(N, X, F)i

"VALUE Ny "INTEFER" Ng "ARRAY“ X, F1u

"BEGIN" LOC FUNCT3*® TEST THFis FUNCT(N. X, F)
"AND®" TEST THFjs FEVAL:s FEVAL ¢ 1!

WEND" LOC FUNCT)

ITMAX ® FEVALMAX2a IN[U4)y AUX[213® N & IN[O)g TIMi= INI7)
AUX[&):: 81 RELTALPARY= INI[1) #w 2y ABSTOLPAR;z IN[2] x» 2y
ABSTOLRESis INI31 #x 23 INRMAXi® IN(6])
DUPVEC(’.l N' Qn PRO X)s
TEXTjz 81 _MJTis 0y TEST THFim “TRUE*,
RES2ta STAPim OUT(1)}% QUTtS) 1= 0UT[71!= 0
FUNCT(N. X, 80L)e RN13 VECVEC(1, N. 0, SOL, SOL)J
OUT (3138 SGRT(RNy; FEVALI® 13 DAMPING ONim "FALSE";
"FOR" ITis 1o IT ¢ | "WHILE" IT <m ITMAX "AND®
FEVAL. < FEVALMAX "DO"
"BEGIN“ OUI(Sltl IT; JACOBIAN(N, X, 8OL, JAC.,» LOCFUNCT),
nig% ¥ TEST THF MTHEN®
"BEGIN® TEXTig 33 "GO TO® FAIL "END"
"IF® AYX[3] ¥p N MTHEN®
"BEGIN® TExT;- 13 "GO TO® FAIL “END"y
STAPS=_VECVEC(}, N, 0, $0L, 80L);
RHQ18 21 NORMxgm VECVEC(1, N, 0. X4 X1
L4 3 SIAE > RELTOLPAR # NORMX + ABSTOLPAR
CWOR® [T m § PAND® STAP » 0 "THEN®

97

"BEGIN®"FOR" INRis 0, INR ¢ |
"NH;Lﬁﬂnlrn INR & { STHEN® DAMPING ON "QRw RES2 »=z RN
WELSE" ¥ CONV "AND®™ (RN <s RESj "OR" RES2 < RES}) "DO"
"B!GIN"'COHMENT' DAMPING STOPS WMEN
RO_> RY_ "AND® R1 «= R2 (BESY RESULT I8 Xi{, RY)
NITH X{ 2 X0 # 1 » DX, [t® 1, o5, .25, ,125, ETC. 3
RHO13 RHO / 23 "IF® INR » ("THEN"
"BEGIN®" RESi11s RES2) DUPVEC(1, N, 0, F, FU2)y
DAMPING ONgz INR » |
NENDN
"FOR® Jia { "STEP® { WUNTIL" N "DOw
. PRIIL§s X(I) = RHO « §OLI(I1g
TEST THFg® FUNGT(N, PR, FU2)} FEVAL:: FEVAL ¢+ 1
"IF® "NOT® TEST THF "THEN®
"BEG;N' TEXTg= 23 "GO TO» FAIL "END",
RES21® VECVEC(Y, N, 0, FU2, FU2), cONV:- INR >z INRMAX
"ENp® DAMPING OF STEP VECTOR:
"IFw c0NV WTHEN"
"BEGINMWCOMMENT® RESIDUE CONSTANT; MITi= MIT 4+ i3
‘ nIF® MIT < TIM "THEN" CONVis mFALSE™
"END" "ELSF" MITiz 0
"IF®" INR » § "THEN®
"BEGIN" RMOgs RHO = 23 ELMVEC(i, N, 0, X, SOL, = RHO);
. RNg® RES11 "IF¥ INR » 2 “THEN® OUT(7):s IT
"END#WELSE®
"BEGIN® DUPVEC(&. Ne 0, X, PR)t RNiz RES2;
. DUPVEC(Y, N, 0, F, FU2)
”END"

"IF% RN <= ABSTOLRES ®THEN®
“BEGIN" TEXT:I 4y ITMAX3z IT WEND®®ELSEn
"IF® CONV "AND® INRMAX » 0 ®THEN®
"BEGIN' TEXTtz Sy ITMAX3m IT_"END"
"ELSE™ DUPVEC(1, N, 0, SOL, F)
"ENDM ITERATION WITH DAMPING AND TESTS "ELSEW
NBEGIN' TEXTim 63 RHOtm 13 ITMAX3s IT ®END®
"END" OF ITERATIONS)

FAIL 3
OUT ({1138 SORT(STAP) * RHO; OUTI(2) s SART(RN)3 OUTI[4) 3= FEVALj
OUT (6388 TEXTy; OuT(8) s AUX([3); OUT(9)3s AUXIS)

"END® PROGRAM By

"COMMENT™ RISCRETIZED NEWTON METHOD OF PANKIEWICZ, PROGRAM Ej
"PROCEDURE" PRQGRAM EfN, X, F, FUNCT, IN, OUT)y
"VALUE"™ Ny "INTEGER"™ Ny "ARRAY" X, F, IN, OUT
"BOOLEAN" nPROCEQURE"_FUNCTy _
"COMMENT® ALGORITHM 378 FROM CACM BY W, PANKIEWICZ, ALGOR 378 SOLVES
A SYSTEM OF NONLINEAR EQUATIONS)
"BEGIN®
"REAL" nPROCEDURE® VECVEC(L,U,8,A,B)y "CODE"™ 340103
"INTEGER" "PROCEDURE™ NJELIN (N, H, W, EPS, Y, Z),
"VALUE® N, H, W, EPSy "INTEGER" Nj "REAL" H, W, EPS}
"ARRAY" Y, 29
"BEGIN® "INTEGER"™ M, I, K; "REAL"™ ALPHA, Ry "BOOLEAN" B1, B2}
"ARRAY" A 1 t N, | ¢ N ¢+ 11, V {1 s NI, AUX[137]}

"PROCEDUBE™ GSSSOL (A, N, AUX, B)s
"CODE" 34232

"PROCEDURE® GAUSS (U, A, Y)3 "INTEGER"™ Ujp "ARRAY" A, Y,
"BEGIN® WINTEGER® I, Jj “ARRAY™ HA [1 t U, 1 t Ul, HY (1 1 Ul

"EOR® 13m { nSTEP"™ { "UNTIL® U %DO"

"BEGIN" HY [T)las A (I, U + 1)y

"FOR® Jis_i "STEP" { MUNTIL® U
. "Do"™ HA [1, Jlt= A I, \”,

"END® AUX(213t® "ei0y AUX[d4)t= B3

G$§SOL (HA, U. AUX, HY), ,

"IF" AUX (3] < U "THEN® "GOTO" ERROR})

"EOR® Igm 1 "STEP"™ 1 "UNTIL" U "DO" Y [Ilts HY (1]
"END® L .
"PROCEDURE® FC(X,F)1
"ARRAY" X, F3

99

100

"BEGIN" CNTsg CNT ¢ L3
"IF® CNT > IN f4) "THEN"®
"BEGIN® NIELTNi® = 43 "GOTO" END "END"j
"1F® ® FUNCT (N, X, F) "THEN®
"GOTOR ALARM
WEND® FCy

0
POCZATEK; Bism *TRUE"; FC(Y,2);
"FOR® lig 1 %STEP" | "UNTIL" N *pOw
"BEGIN®™ A (I, N ¢ 11ys Rtz Z [1); R18 ABS (R)y
Blnl B1 "ANDP R < EPS;
YEND®3
"IF" By ”THEN" "GOTO" KONLECS
"FOR® Ilu 1 "STEP® 1 WUNTIL® N "pO®
*BEGIN" R:- Y (T1s Y (I1s= R ¢ Hy FC (Y, Z)1
"FOR® Kgz { PSTEP" § "UNTIL™ N *DO® A (K, Ilt= Z [Kly
Y tIlss R
"ENDwn
GAUSS (N, A, V)s ALPHAR= g)
*FORw Iim { ®STEP" 1 WUNTIL®™ N "DO® ALPHA1m ALPHA = V [I1}
"IF® ALPHA_- 0 "THEN" "GOTQ" ALPHy; ALPHAis H / ALPHA;
"FOR® Itz § "STEP" 1 "UNTIL" N
"DO" Y l;):l Y 1) e V II) » ALPHAg Hiz H & Wy
MiZ M ¢ 1)
"GOTo" PQCZATEK,
KONIEGS NIELINts Mg "GOTO® ENDj
ALARMy NIEL}N g e {3 "GOTO" END,
ERROR: NIEL:Nxs e 23 "GOTO"® ENO;
ALPHI NJELINja = 34
END3 QUT (4las M ¢ OUTI4),
"END® NTIELINS

"INTEGER® TEL, CNT. ITT;
oUT[4) 150}
TELss CNT3® 09
REPEATS ITris NIELIN N, IN (9), IN (101, IN (1), X, F)3
TELs® TEL ¢ {1
"IF® (ITT = @« 2 "0R" ITT = = 3) "AND" TEL < 3
"THEN® HGQTQ' R[PEAT!
A ITT > 0 'TH!N* ouT tS]s: 0 "ELSE™ OUTIS]jmelTTy
ouT (11;= 8QRT ;VE:VEC (L, N, 0, Xo %))
OUT ([2)1;= 8QRT (VECVEC (1, N, 0, F, F))) OUT (31ta CNT;
ouY f6) 3= TEL
"END® PROGRAH E

"COMMENT® MODIFIED GENERALIZED SECANT METWOD, PROGRAM Fy
"PROCEDURE" PROGRAM F(N, X, F, FUNET, IN, OUT)y
"YALUE"™ Ny "INTEGER™ N3 "ARRAY" X, Fo IN, QUT}
"BOOLEAN® "PROCEDURE® FUNCT; A .
"COMMENT® ALGORITHM {2 FROM COMPUTING BY W SCHHETLICK,
ALGOR 12 SOLVES A SYSTEM OF NON LINEAR EQUATIONS,
"BEGIN® . _ .)
wPROC!DURE: FU (N, X,Fa)y "VALUE® N; ®INTEGER® Ny
"ARRAY"™ X,gAg
"BEGIN® CNTt8CyTely
LS L SNT > IN{4] "THEN® #BEGIN® QUT(S] e84y »GOTO"™ Ly "ENDwy
"IF" TFUNCTIN,X,FAY "THEN® "BEGIN® QUTIS) g=%y "GOTO® L4 "END";
"END® FUjy . .
"REAL" "PRQCEDURE" VECVEC(L,U,S,A,B)} YCODE™ 34010,
"REAL® RES; "INTEGER™ CNT,IT,I; =ARRAY® Y [1iN),
*SWITCH" DIvimLy, L2,_ L3y . .
"PROCEDURE™ REGULA(D,FU,EPS,PIVOT, IMAX) TRANSS (X,¥) EXITs (DIV);
"VALUE" D,gPS,PIVOT, IMAX}
"INTEGER" p, IMaX
*REAL" EPS,PIVOT,
"ARRAY" x,yy
"PROCEDURE= FU,
"SWITCH® OV _
"BEGIN® WINTEGER® I,JCK,L.P,Q,NR,KMAX;
*REAL® G,.Hp
"BOOLEAN® TESTy .
"ARRAY® FF[130],0EI TAL12D,110)
"INTEGER™ "ARRAY" PERM[11D);
"COMMENT® BESTIMMUNG YON KMAX;
Ki® 035 His 03 Gi® IN(1,618033989)/0,
"FOR" Kgy Kol "WHII'E" G > H "DQ® ‘
"BEGIN" Him Gy Gim LN((SQRT({K+2) » 545) &+ Key) # 0,5)/(K+D)
"END® Kj .
KMAX$18 Koy
FULDsXsEYs . _
YCOMMENT® ITERATIONSBEGINNG
"POR™ Lyg | WSTEP® | WUNTIL® IMAX »pOw

101

“BEGIN™ "COMMENT® aERECHNUNG DER STEIGUNG DELTA;
"FOR® Kis D "STEP" e} "UNTIL" 1 "DO"
"BEGIN" Gtz Y(K) = X[K]§ X(K)t® Y([K)}
FUtDeX.FF)y TEST1s "TRUE"S
CORRy "“FpR® Jt=_j "STEP® | "UNTIL" D "pO"
"QEGIN® Hyz FFLI) e F([1]}
L ABS(H) ¢ ABS(G) = ABS(H) "THEN"
"BEG;N“ "rOMMENT" KORREKTUR VON X3
RIF® © TEST "THEN"
'5EGIN~ OUT ({4l =Ly "GOTO" DIV(1] “END"3
GisY[K1 x EPS ¢+ EPS » EPSy XtK) g3X[K)wG; FUCD,X,F)s
XK}tz Y IK]} TESTi= "FALSE") *"GOTO" CORR
HEND™ xonn;xTUR' .
~ DELTAI(I.K13= H/Gy Frllss FFILI]
"END® I
"END® Kj
"CO"MENT' DRgIErKZERLEGUNG VON DELTA}
"FORw Kis nSTEP™ 1 "UNTIL®™ D "DO" PERM(K}i= K3
”FORn Pl- 1 "STFP® { "UNTIL® Dei "pO"
"BEGIN" Hiz 01
"FQR® x;- P "STEP" | "UNTIL™ D *DO"
"BEGIN® Gis ABS(DELTAtK Pl)y
"IFY G > H "THEN
"BEGIN® Hiw Gy Qi® K "END"
"END" PIVOTSUCHE)
"IFY N < ABS(PJVOT) "THEN"
'a;GIN' OUT (4l el "GOTO" DIVI2) M“END"}
Ngis PERM([Q]ly His {/DELTA[Q,P)
;rog' Kgs 1 »STEP® | 'UNTIL' D *DO* FFIK}g=z DELTALQ,K) g
wDy .
"FOR' 1180 "STEP" 1 "UNTIL" P #DO"
"BEGIN® "IF"_13Q "THEN® "GOTO" WEITER)
"FOR® Kisi ®STEP® | WUNTIL® Pel "DO"
DELTA[J,KY 2aDELTALILK) g
Gis DELTATJ,PYym DELTA(I,P] = Hy
"FOR® K13 P41 "STEP® { "UNTIL" D *pO"
DELTA[J K112 DELTA(T,K] e FPIK] « Gj
PERM [JIts PERM[I]) Jis Jeiy

WEITER: "gND" 1,

"FOR™ Kym 1 ®STEP"™ | "UNTIL" D 00" DELTA(P,K]tw FF[K]j
PERMIP] 18 NR

"END® P, pREJECK7ERLEGUNG;

"COMMENT® STUFENITERATION,

"FOR= Ji1g. 0 "STEP® { ®UNTIL® KMAX_»DO"

"BEGIN® *IF® 1 » 0 "THEN® FU(D,Y,F)s
"FOR® K3s | wSTEP® | "UNTIL® D »pO"
"BEGIN® Jis PERMIK]; FFIKlis F[J)
"END" K, PERMUTATION DER RECHTEN SEITE,
"COMMENT" ELTMINATION DER RECHTEN SEITE,
"FORY Pi= 2 ®STEP™ { *UNTIL" D *DO"
"BEGIN® Him FF (P -

"FQR™ Ki=m_| "STEP"™ { "UNTIL" Pei "DO" His H e DELTAIP,K)
. % FE(K)s FFIPlgm M
"ENDY By v S
"FOR® Pys D #STEP™ o SUNTIL® { *DO»
"BEGIN® N3y FFIP1; ,
"FQR® Ki® P+l "STEP®™ | WUNTIL" D "DO" Him HeDELTA[P,K]

. % FEIKls FFIPlgs H/DELTALP,P]
"END* P, ELIMINATION DER RECHTEN SEITE;
"COMMENT® ABBRUCHTEST; ,
RES13SART(VECVEC(1,D,0,F,F))s TESTim RES <3 IN{[1);

"FOR® Kim 1 ®$TEP® | WUNTIL® p wpO® i
"BEGIN® Him FFIK]; Gts XUK)gm Y[K]y Gy= Y[K)is GeH)
"IF® ABS(H) > ABS(EPS % G) + ABS(EPS) WTHEN"
. TESTis "FpL8E"
"END® Ky . } .
"IF® TEST "THEN" "GOTO® SCHLUSS
"END® I, STUFENTTERATION;
"END" |y _
OUT (4l 1gLely "GOTQ® DIVI3), i
SCHLUSS; OUT(3) 1m8QRT (VEEVEC(1,D,0.F,F))s OUT[4] 1sL
SEND® REGULA;

"FOR® Iis j "STEP"™ 1 WUNTIL"™ N »DpO"
YIll3s X271 = g1 + INP81) ¢ IN[B)s CNTis 0}
REGULA(N. FU. IN[B]. TNIO" IN[a4l, x' Yo DIV),
OUTISIgs o, nGgatQ" Ld,
Lis OUT(Sl3= 13 ®goTO® Ly
L2s OUT(Sly= 25 »GOTO* Lay
L3y OUT(S]ys 35 *gOTO® Lay . .
L4t OUTI1)i= SQRT(VECVECYSI, N, 0., Y, Y))1 OUT(3)1= CNT
"END" PROGRAM F,

103

104

"COMMENT® METYOD OF DULLFY AND PITTEWAY, BASED ON GENERALIZED SECANT
METHOD, PROGR4M G,
"PROCEDURE" PROGRAM G(N, Xs F, FUNCT, IN, OUT)3 "VALUE" N3 "INTEGER" N}
"ARRAY®™ X, F, INo OUT; "ROOLEAN" "PROCEDURE"™ FUNCT)
wBEGIN® nREAL® 'PROchURrw VECVEC(L, U, 1, A, B)j "CODE® 34010y
"PROCEDURE® 'S!'- X)3 "ARRAY® F, X3
"BEGIN® nlf% SpunNcT(N, X, F) "THEN®
"BEGIN® OUTlslzu 5' "GOTO® EXT "END®,
CNTE® ENT 4 13 "IF® CNT > IN[4) "THEN"
"BEGIN® OUTIS) 3= gy "GOTO"™ EXT "END"
"END® FCj

*INTEGER™ £NT, COUNT; MARRAY" ACCEST([1gN]s

"PROCEDURE® NDINVT(FUNCTIONS,INITSTEP,ERROR,CYCLES,X,F,ACCEST,N);
"VALUE® Ny _®PROCEDURE® FUNCTIONS; "REAL" INITSTEP,ERROR;
*INTEGER™ ;YCLES Ny "4ARRAY" X,F,ACCEST,
*BEGIN" ®RpAL" WORK,SUMSQRES, PREVREa.
"INTEGER" 1,J;
"BOOLEAN® surr;nu
"ARRAY" PREVF(1gN]) ,COPYDELF[TsN,1tN],DELX,DELF 1IN, 11Ne1],
AUX(187 '
“PROCEpuRE' GSQOL(Q,N AUX,B)y "CODE" 34232)
AUX {21 1s"e10s AUX[q) 1883 COUNTsto; SUMSQRES1=1"30
FUNCTIONS (PREVF,X) s
"FOR" I;s § "STEP" { "UNTIL® N "DO"
*BEGIN® X(I1gs XII1 & INITSTEP
FUNCTIONS(E,X)5. .
"FOR® Jie { "STEP" 1 "UNTIL®™ N ®pO*®
*BEGIN" DELFII,Jlis FLJ) o PREVF(J])
"COMMENT® IF_THE REMARK OF VANDERGRAFT aAND MESZTENYI SHOULD
B chORPgRArED, THEN THE LASY STATEMENT SHOULD START WITH
DELF tgnl’ !-
DELX[T,J] g8 o
"ENO® DIFFERENCTNG INITIAL POINT,
DELXfI,I) s INITSTEP)
X{Ilss X[11 o INITSTEP;
"END" SEYTING UP THE INITIAL MATRIX OF POINTS,

105

ITERATES
SNITCHl, "TRUE";
PREVRESgm S8UMSQRES,
TRYAGAINg)
¥YFOR® Jgm § *STEP® { ®UNTIL® N ®*DOW
"BEGIN® F(]ll1a PREVFI[I); ,
"FORw Jgg { "STFP® { "UNTIL"™ N "DO" COPYDELF(I,J)ls= DELFI(I,J]
YEND® COPYING DELF FOR DESTRUCTIVE USE IN PROCEDURE EQGNSOLVE}j

GSSOL(CQOPYDELFoNsAUX,F)g "IF" AUXI3)<N "THEN" "GOTO" INLINE;
SUMSQREgE® 01
YFOR® I;m 1 "STEP® § “UNTIL" N "DOV
"BEGIN® WORKiw QI _
"FOR® Jts § "STFP" 1 "UNTIL®™ N ¥pQ* ,
WORK ;s WORK o DFLX[I,J) # FLJ1) ACCEST[11t= WORK;
X[I1gs X[1] ¢ WORKj
SUMSQRES s SUMSGRES ¢ WORK » WORK
"END" CALCULATION OF NEXT POINT;
COUNTss COUNT ¢ 13
FPUNCTIONS(F, X)5. . o
nIF® COUNT > CYCLES "THEN" "BEGIN® QUTI[S5)3=3y "GOTO" EXIT "END";
"IF» SUMSQGRES « ERROR * ERROR "AND®
(ERROR » 0 _"QR" SUMSQRES > PREVRES) "THEN"
"BEGIN" 0UT([5)3®0¢ PGOTO" EXIT "END"g
"FOR® Igm { "STEP® { mUNTIL® N "DO"
"BEGIN® WORKss F[I1 e PREVF(I]}
PREVF [1]3s F (1],)
*FORs Jim N "STEP® ef "UNTIL™ 1 "DO"
"BEGIN" DELX(I,J¢1]8s DELX(I,J] e ACCEST(I}s
DELF(1,J+113m DELFII,J) = WORK
"ENDn CALCULATION OF NEW DIFFERENCES}
DELX (1,118 =ACCESTII]
DELF(I,1)s8 =HORK
"END" MQVING POINTS UP ONE PLACE IN TABLESS
"GOTO" YTERATES
INLINES .
"FOR® Iym | PSTEP" 1 "UNTIL® N "DO"
"BEGIN® DELX[I.Nlis DELX[I,Neils
DELF I,N)tg DELFII,N¢1]
"END" DISLARDING ALTERNATIVE POINT,
SWITCHgg. =~ SWITCHj]
WIF® SW{TCH PTHEN" QUT(S] 3=y “ELSE® "GOTO" TRYAGAINg
EXITe ..
"END® NDINyTy

 CNTi® 03 NDINVEEFE, INI81, INI21, IN[41, X, F, ACCEST, N}y

ExTy QUTI1]1® BGRTCVECYER(L, No 0, ACCEST, ACCESTY):
OUT(S!;. CNT3 ouUTI2] = SQRT(VECVEC(1, Ns 0y Fo F))s

. oUTI4) g8 COUNT

nEND" PROGRAM G

106

"COMMENT" QUAST<NEWTON METHOD OF BROYDEN, PROGRAM Hy
"PROCEQURE® PROGRAM H(N, X, F, FUNCT, IN, OUT);
"VALUE®™ Ny “INTEGER" Ny WARRAY" X, F, IN, OUT}
"BOOLEAN" “PRQCEDURE® FUNCT)
"BEGIN® ®INTEGER® I, J, FCOUNT, MAXF, ERR, IT,
"REAL® SA, YOLRES, RELTOL, ABSTOL, RES;
"ARRAY® Y, P, VI1gN), HELIN, 1IN}
"SWITCH" LABELt= LBy, LB2, LB3, LB4, LBSy

"REAL® "PROCEDURE® VECVEC(L, Us S, A, B)s "CODE" 340109
"REAL® "PROCEDURE® MATVEC(L, U, I, A, B)s "CODE® 34011}
"REALw ®*PROQCEDURFn" TAMVEC(L, U, I, A, B)s "CODE® 34012
"PROCEDURE"™ DUPVFC(L, U, S, A, B)y "CODE" 310303
"PROCEDURE" ELMVFC(Ls, U, $. A, B, X)3 "CODE" 340201
"PROCEOURE™ ELMCOLVEC(L, U, 1, A, B, X)3; "CODE" 34022;

"PROCEDURE® STEP{TP1, TP2)y "VALUE" TPi, TP2;
"INTEGER" TPi, TP23
"BEGIN" ";NTEGERn Ig "REAL' 8BB) mARRAY" SB([13N)
ELMVEC(;. N, 0., X, P, 1)'
DYPVEG(1, Ny Q¢ Vo F)y FUNCT (N, X, F)3
FCOUNTsz FCOUNT 4+ 1)
DYPVEC (1. No 0o Y, F)3
ELMYEC(). N, 0o Yy V, o))
"EOR® gz 1 wSTEP® | WUNTIL® N »DO"
"BEGIN® SBB;: 881(I)g= MATVEC(L, N, I, H, Y)g
Villt= SRB e PI[I]
HENDN
35|=VECVEC(1. N, 0, SB; P)s
"IF" SA 8 0 “THEN" "GOTO' LABEL([TP2)
"FOR® I3m | WSTEP"™ { "UNTIL® N #DO"
ELMCOLVEC(!, N, I, H, Vv, eTAMVEC(1, N, I, H, P
) 7 8a)
"END™ BTEP:
RELTOLt® IN([1]s AB8TOLtm IN[2)3 TOLRESEs IN[3)}
MAXFI INUY g
rUNCT¢N, X, F)1 FCOUNTt® 1y ITi® ERRI® 0}
"FOR" 138 { PSTEP® | "UNTIL* N "DO"
"BEGIy® P:111: 0y HII,111% 13
"FOR® Jim I + { "STEP" | WUNTIL® N »DO"
Hil,J1sms HEJ,I)18 0
"END" INITIALIAZATIONg
“FOR" I3= | "S8TEP" | "UNTIL® N *DQ"
'BEGIN" P(I!ls "eb % ABB(X[I1) ¢ "ef03 STEP(S, 4)j
Prilis
WENDW cchULQTION oF INITIAL ITERATION MATRIX;g
REPEATS IT3® IT ¢ 13
"FOR"™ Itm { "STEP® | "UNTIL" N "DO"
P(Il'Q «MATVEC (1, Ny, 1, Hy F)3
STEP(3, 2)1
RESs® SQRTCVECVEC(L, N, 0, Fo F))y
nIF" SQRT(VECVEC(1. Ny 0, P, P)) «
SGRT(VECVEL (1, N, Qo X, X)) & RELTOL + ABSTOL "AND"
RES < TOLRES 'THFN" "GOTO" EXIT)
nIFe FCOUNY « MAXF "THEN® nGOTO"™ REPEAT,
LB1t ERRjm 11 "GOTO" EXIT)
LB2s ERRys 53 "GOTO" EXITj
LB3s ERRy= 23 "GOTO" EX]ITy
LB4y ERRys 63 "GOTO™ EXIT}
LBSt ERRisg_7y "GOTO™ EXIT;
EXITi OUT(j)ea, SQRT(VECVEC(}, N, 0, P, P))s OUT(2):m RES)
OUT(3)sm FCOUNT; OUT(4]zsm ITy OUTCSIll ERR
WEND® PROGRAM My

107

"COMMENT® BROWNS METHOD OF COMPONENTeWISE APPROXIMATION,
PROGRAM 1
"PROC[DUR:" PROGRAM I(N, X, FA, FUCOM, IN, OUT);
"VALUE™ Ny WINTEGER® N3y PARRAY" X, FA, IN, oUTy
"BOOLEAN® 9"PROCEDURE"™ FUCOM;
"COMMENT® ALGORITHM 316 FRQM CACM BY K,M, BROWN,
ALGOR 3§46 SO VES A SYSTEM OF NON LXNEAR EQUAYIONSl
"BEGIN" "INTEGER® 1,J,K,M, ITEMP,JSUB,KMAX,KPLUS, TALLY,TIM,CNT,
MAXIT, ERR. FMAX}
"REAL® F,H,HOLD,FPLUS,DERMAX,TEST,FACTOR,PT, HCOE,XI,TH,
RELTOL, ABSTOLS
nINTEGER® "ARRAY® POINTER(1gN,13N],J8UBL1INT
PARRAY® TEMP,PART[1gN], COE[!!N 1IN & 1]y

"QEAL® wPROCFDURE"™ VECVEC(L, U, 8, A, B)y "CODE" 340103
"PROCEDURE"™ NDUPVEC(L, U, S, A, BYp *CODE" 31030y
"PROCEDURE" FLMVEC(L, U, S, A, B, X)s "CODE» 34020y
"PROCEDOURE" aACK SUBST(K)} "VALUE® K3 "INTEGER" Kj
'BEGINH "INTFGER" KM, KMAX,J8UBs "REAL"™ XKMAX}
"FOR® KMps K "STEPH » 1 MUNTIL® 2 "pO»
"BEGIN" KMAX3® ISUB[KM e 115 XKMAXism 01
"EOR® Jgm KM WGTEP® { WUNTIL® N "pO®
"BEGTN® JSUBI8 POINTERIKM,J1
XKMAX32 XKMAX ¢ COE[KM < 1,J8UB] # X[JSUB]
"END'
X(KMAXI:s XKMAX ¢ COE[KM & {,N ¢ 1}
OIEN ®

"END® BACK SUBSTy

"PROCEDURE" THEORFU(N, K, X, F)3 "VALUE" N, K;
FINTEGER® Ny K1 ”REAL' Fg "ARRAY" X
'aEGIN" CNT:p CNT ¢ 1y "IF® CNT » FMAX "THEN"
"GEGIN" FRRis 1; "GOTO® EXIT "END"j
RIFn % FUCOM(N, K, X, F) ATHEN"
"BEGIN® FRRi® 23 "GOTO" EXIT "END"g FAlK)1® F
"END® THEORFU;

RELTOLUtg INIUID ABSTOL:- IN[2) .
ngxeu :Ntal. MAXITgs IN[4) ¢« 2 / Ny ERRim CNT1s 01
"EOR® Mgm o { "STEP" { PUNTIL® MAX IT ®DO"
"REGIN® "FOR" Jis | “"STEP" { wUNTIL® N "DO"
PQINTER[!. Jlgs J3
"FOR® Kgm 1 "STEP® | “UNTIL® N #DO"
"BEGIN" wIF" K » § wTHEN®" BACK SURST(K)y
THEQRFU(N K,X,F)s FACTOR:E Mol
AGAING TALL Yis 03
¢ IH;ORn f1g8 K "STEP® { 9UNTIL® N nDO"

108

"BEGTN® ITEMPga POINTER([K,1]y HOLDi=z X(ITEMP);
Hg® FACTOR « HOLDs “IF" H = 0 "THEN" Hiz FACTORy
X(ITEMP] 1% HOLD ¢ Wy
“IF" K » § "THEN" BACK SUBST(K);
THEORFU(N, K, X, FPLUS) ¢
PTi® PART[ITEMP]l 18 (FPLUS = F) /s My
Y[ITEMP]l 38 HOLD; | A ,
. M"IF" ABS(F s PT) » %20 "THEN" TalLLYs® TALLY ¢ 1
ﬂEND”,

"IF" TALL Y > N ® K "THEN"
"BEGIN" FACTQRys FACTQR + 103
"IF" FACTOR > ,5 PTHENY
"BEGIN" ERRim 4j ®GOTO" EXIT WEND")
~ PGOTO" AGAIN
*END®; o
"IF" K 8 N "THEN"
"BEGIN® "IF" ABS(PT) 3 0 "THEN")
"BEGIN" ERRgm S5y "GOTO™ EXIT WEND"
. HCOEs® 03 KMAX3® ITEMPy "GOTO® END K
"END" s .
KMAXt® POINTERIK,KYj) DERMAX;= ABS(PART [KMAX])
KPLUSt® X + 1
"FOR® Jiw K PLUS "STEP" | "UNTIL® N "pO*
"BEGIN® JSUB:s= POINTER(K,1); TEST;= ABS(PARTIJSUB));
"IF" TEST « DERMAX "THEN®
POINTER[(KPLUS,]] t8JSUB "ELSE"
"BEGIN" DERMAXi® TEST; POINTERI[KPLUS,I) = KMAX g
. KMAXis JSum
. MEND"
TEND"s .
RIF® DERMAX & § "THEN®
"BEGIN" ERRg® 33 "GOTO" EXIT "END"y
ISUBIK)j® KMAXy HCOE1m 0+
"FOR® Jis KPLUS "STEP® | ®UNTIL® N wDQO"
"BEGIN" JSUBt= POINTER(KPLUS,J1y PTix PART[JSUB],
COE(K,JSUB) 12 « PT ; PART IKMAX] g
. HCOEts HCOE + PT & X(JSUB)
"ENDRy < .
END K3 HCOE$® COE([K,N ¢ 1]t (HCOE = F) 7/ PARTIKMAX) +
) X [KMAX)
"ENDY K, . o
X[KMAX)3m HCOEy "IF" N » { "THEN" BACKSUBST(N);
"IF® M. 8 = | "THEN® "GOTO" JUMP,
ELMVEC(1, N, 0, TEMP, X, e1)y
"IF® SQRT(VECVEC(1, N, 0, TEMP, TEMP)) «
"THEN® "GOTO" EXIT,

JUMPy DUPVECt1, N, 0, TEMP, X);
. "END" My .
EXIT OyT (1) s $QRT(VECVEC(1, N, 0, TEMP, TEMP))y
QUT (3138 CNT / N3 OUT[S]g® ERR,
OuT(4)am "IF® ERR 8 0 WTHEN" M 4 2 "ELSE" M ¢ |
"END" PROGRAM I;

