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On the convergence of a class of variable metric algorithms 

by 

J.C.P. Bus. 

ABSTRACT 

A class of variable metric algorithms is presented for finding the 

unconstrained minimum of a differentiable function of several variables. 

These algorithms make use of a relaxed strategy for the line search. 

Linear convergence of these algorithms is proved without imposing any es

sential conditions on the updating matrix, provided the function is convex. 

Furthermore, sufficient conditions on the updating matrix to obtain super

linear convergence are given. 
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I. INTRODUCTION 

In this report some results are given about the convergence of vari

able metric algorithms for finding the unconstrained minimum of a differ

entiable function of several variables. Let F be a twice differentiable 

function 

(I.I) n F:ScJR -+JR, 

where S is some convex region in JR.n and F is bounded below on S. 

The variable metric algorithm, introduced by DAVIDON [6] and reformulated 

by FLETCHER & POWELL [10] consists basically of three steps. 

Given a point x and a positive definite symmetric matrix H, then a new 

iterate x*, and a new positive definite symmetric n-th order matrix H* is 

calculated by 

I. Calculate a direction of search 

( I • 2) d = - Hg, 

where g = g(x) is the gradient of Fat x; 

* 2. calculate some approximation a of am, 

( I. 3) 

* 

F(x+a d) = 
m 

set x = x + ad; 

min 
a>O 

(F(x+ad)); 

where a is defined by 
m 

3. calculate a new positive definite symmetric matrix 

(l. 4) 

* where g 

* * * H = H + U(H,x ,x,g ,g), 

* = g(x) and U is some symmetric matrix, which 1.s called the 

updating matrix. The rank of U is usually one or two. 

From the definition of din (1.2), it is clear that 
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(1.5) d~ F(x+ad) = 
T - g Hg< 0. 

Hence, the function is decreasing in the direction d. 

The line search, i.e. the choice of a*, varies from one algorithm to 

another. In some algorithms a* is simply chosen equal to I (see for example 

POWELL [20]), while in other algorithms a* is calculated with cubic or 

quadratic interpolation in order to approximate a in some sense (see for 
m 

example FLETCHER & POWELL [10] or FLETCHER [9]). 

Using a computer for calculating a, it is obviously not possible to ohm 
tain a value which exactly equals a • However, many results about the he-

m * 
haviour of variable metric algorithms are based on the fact that a = a 

m 
(see for example POWELL [21], DIXON [8]). So, these results have only 

theoretical value and are not applicable to the algorithms published. As 

far as we know, only LENARD [14] gave conditions for convergence when the 

line search is not exact. The goal of this report is to choose a strategy 

for the line search which allows us to define a class of algorithms, in 

which the updating formula is not yet specified, and for which convergence 

with a rate that is at least linear, may be proved, provided the function 

is convex. 

In literature, several strategies are proposed to obtain a with as 

few extra function evaluations as possible, without disturbing the fine 

behaviour of the algorithm. One of these is given by GOLDSTEIN & PRICE [II]. 

Their strategy was used in a modified Newton algorithm. However, as is 

shown by FLETCHER [9], it may also be used in variable metric algorithms. 

The idea is based on Taylor series expansion of Fat x. 

Define 

(1.6) h(a) = F(x) - F(x+ad). 

Then, choose 

* a = if h(I) ~ v, 

* otherwise choose a such that 



( I. 7) * v S h(a) S l - v. 

Here vis chosen to be a value between O and 0.5. WOLFE [25] showed that 

the right hand inequality of (1.7) is equivalent to 

( l . 8) 

while the left hand inequality of (1.7) can be replaced by the condition 

that the function 

( l • 9) f(a) = F(x+ad) 

is monotonously decreasing on the interval (O,a ). 
m 
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In section 3 we propose a class of algorithms which make use of (1.8) 

for the line search. In these algorithms we did not specify the updating 

matrix. For constructing this class and for proving convergence for con

vex functions, we use· some results given by LENARD [13], which are sunnned 

up in section 2. 

In section 4 we give conditions that should be imposed on the updating 

matrix in order to obtain superlinear convergence. 

Furthermore, in section 5 we consider some particular updating for

mulas and give some results for the specific members of the given class of 

algorithms that use these formulas. 

In section 6 and 7, we give some numerical results and conclusions. 

An ALGOL 60 procedure implementing an algorithm which uses the updating 

formula given by BROYDEN [3], FLETCHER [9] and SHANNO [23], is given in 

appendix. 

2. PRELIMINARY RESULTS 

(2. I) 

Let F be a given, twice differentiable function 

n F:ScIR +IR, 
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where Sis some convex region in ]Rn and let F be bounded below on s. We 

assume in this section that the second derivative matrix G(x) of F sat

isfies 

(2.2) 

n for all x ES and u # 0 E JR , where m and Mare two positive constants 

and II • II denotes the euclidean norm. In fact, we demand that F is strict

ly convex. The following lemma is easily proved (POWELL [21], LENARD [13]). 

LEMMA 2. 1. If, for any tuJo points x and x', o = x' - x and y = g(x') -g(x), 

where g(x) = VF(x) then 

(2.3) m !loll :s; llrli :s;M !loll, 

Now we give some results due to LENARD [13]. 

* * T T * T LEMMA 2.2. Let x = x +ad, where g (x)d < 0 and g (x )d = 8g (x)d, for 

some e, - 1 :s; e :s; 1. Let 

T cos 1/i = g (x) d/ ( 11 g (x) 11 II d II ) • 

Then 

(2.4) * F(x) - F(x) 

PROOF. See LENARD [13]. 0 

As a consequence of lemma 2.2 we have: 

LEMMA 2.3. Let x be the position of the minimwn of F(x), then 

(2.5) 
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PROOF. See LENARD [13]. 0 

Using lemmas 2.2 and 2.3 we obtain the following theorem. 

THEOREM 2.4. Let an iterative method for calculating the minimum of F 
00 

generate a sequence of points {~}k=o· 

Denote 

(2.6) 8 = oT g / oT g 
k k k+l k k' 

where 

(2. 7) 

Assume that 

(2.8) F (~+ 1) '.> F(~)' k 0,1,2, ... , 

(2.9) - (8 )2 
k 

2: c, k = 0,1,2, ... , 

(2.10) T 
11 gk 11 11 ok 11 , k 0,1,2, ... , - gk 0k 2: r = 

00 

for two constants c and r with O < c, r < 1. Then {xk}k=O converges to a 

minimum of F at a rate that is at least linear. 

PROOF. (See also LENARD [13]) Using inequalities (2.4) and (2.5) and de-

noting 

(2.11) cos l/Jk k = 0,1,2, ... , 

we obtain 

(2. 12) 

Hence, using (2.8) up to (2.10) leads to 
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(2.13) -1 2 
1 - M m c r < 1, 

which proves the theorem. D 

3. A CLASS OF VARIABLE METRIC ALGORITHMS 

Let 

(3. 1) U = U(A,u,v) 

be a synnnetric matrix for any given matrix A and vectors u and v. Then, 

we define a variable metric algorithm A(U), depending on U as follows. 

Algorithm A(U) 

AO. (Initialisation) 

Let x0 be an initial guess for the position of the minimum of F, let 

H0 be a synnnetric initial approximation to the inverse hessian (matrix 

of second derivatives) of Fat x0 and let rand c be given constants 

such that O < r, c < 1. 

Then, fork= 0,1,2, ••• we compute ~+land ~+l as follows: 

Al. (calculation of search direction) 

set pk = - ~gk, if II ~II is bounded, 

pk = - gk otherwise; 

if 
T 

- gk Pk 2'. r 11 gk 11 11 pk II , then set dk = pk, 

if 
T 

~ - II gkll II pkll then dk - gk pk r set = - pk, 

otherwise, compute ;\k > 0 such that 

(3. 2) 
T 

II gkll II ;\kgk + ~gkll gk(;\kI+Hk)gk = r 



A2. (line search) 

calculate ak > 0 such that 

(3.3) 

and 

(3.4) ~ I - c; 

A3. (calculating new approximation). 

set ~+l = ~ + akdk; 

A4. (updating metric) 

7 

It is easily shown that Ak > 0 and ak > 0 always exist such that (3.2) 

up to (3.4) are satisfied; (3.2) is based on an idea, first given by 

LEVENBERG [16] and used by MARQUARDT [17]. Choosing the direction of search 

according to Al ensures us of having a direction in which the function is 

sufficiently decreasing. If Ak is increasing, then dk tends to the steepest 

descent direction (-gk). 

The following theorem is an immediate consequence of theorem 2.4 and 

the construction of algorithm A(U). 

THEOREM 3.1. Let F be given by (2.l) and let its second derivative satisfy 

(2.2). Let x0 ES, H0 be a given symmetric matrix and c and r constants 

such that O < c, r < I. Then, for any symmetric U(A,u,v), the sequence of 

points {~}~=O' generated by A(U), converges to the position of a minimum 

of Fat a rate that is at least linear. 

In most variable metric algorithms known, the initial matrix H0 and 

the updating formula U are chosen, such that Hk remains positive definite. 

It seems more likely to do so, since H(x) = G-1(x) is positive definite at 

the position of the minimtm1 and our goal is to let~ be as good an 



8 

approximation to H(~) as possible. Restricting ourselves to such updating 

formulas we may simplify algorithm A(U) by replacing Al by: 

Bl. (simplified calculation of search direction). 

set if 11 I\ 11 is bounded 

otherwise. 

If - g~ pk ~ r 11 gk II II pk II , then set dk = pk, otherwise, compute 

Ak > 0 such that (3.2) is satisfied and set 

In the sequel, the algorithm obtained in this way is called B(U). 

The advantage of algorithms A(U) or B(U) is the separation of the 

different problems arising in variable metric algorithms. On one hand we 

specify the choice of the direction of search and the line search in such 

a way that convergence is assured. On the other hand we are completely free 

in choosing the updating formula U in order to try to obtain superlinear 

convergence. 

4. CONDITIONS FOR SUPERLINEAR CONVERGENCE OF A(U) 

In this section we derive conditions for U, such that algorithm A(U) 

converges superlinearly. Before stating the final theorem, we give a lemma. 

The proof of this lemma, as well as the proof of the theorem, is based on 

the proof of a similar theorem given by GOLDSTEIN & PRICE [II]. Their theo

rem, however, was given for a Newton algorithm with a strategy for the line 

search based on (1.6) and (1.7). 

LEMMA 4.1. Let F be given by (2.1), Zet its second derivative G(x) satisfy 

(2.2) and Zet, moreover, G(x) satisfy a Lipschitz condition: 



( 4. I) II G(x) - G(x') II :;; LIi x-x' II, 

for all x, x' ES a:nd a certain constant L. Let the sequence of points 
00 

{xk}k=O be generated by algorithm A(U), where r:;; m/(3M) and c:;; 0.5. 

Denote, for• arbitrary N 

(4. 2) 
00 

T (N) = { u E JR.n I u = I µkgk, for certain uk} 
k=N 

a:nd assume that for all E > 0 there exists a:n N such that 

(4.3) 

for aU k ;:,: N and u E T (N) . Then, a:n N0 exists such that ok = - l\gk for 

aU k > N0 . 

PROOF. First we prove that an integer N exists, such that 
I 

(4.4) 0 I 11 11 2 < uTH.u <_ 2rn3 11 u 11 2 , < 2M u - --k 

for all k > NI and u E T(NI), u # 0. 

Choose 

(4.5) E = I/(2M). 

Then, an NI exists such that (4.3) is satisfied for all k > NI and . 

u E T(NI). 

Writing 

(4. 6) 

and using 

(4. 7) 

9 
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for all k > N1 and u e T(N 1), we obtain with (2.2): 

(4.8) -1 2 T -I 2 
(M -E:) II ull :S: u l\u :S: (m +E:) II ull 

Hence, with the special choice of E:, we obtain immediately the required 

result (4.4). Analogously, we can prove 

(4. 9) 

for all u e T (NI) and k > NI. Now, substituting pk = - l\gk and using (4.8) 

and (4.9) we obtain 

T T 

(4. 10) 
-gkpk gkHkgk 

>~ ~ for all k > NI . 
II gkll II pk 11 

= 
II gk II 11 f\gk II 

r, - 3M 

Since 11 ~ 11 1.s bounded for all k > N 1, we may therefore choose dk = pk in 

step Al of algorithm A(U). 

For proving the existence of an integer N2 , such that ak = I satisfies 

(3.3) and (3.4) for all k > N2, we choose E: = 1/12. 

Using theorem 3.1 we know that {x.}~ 0 converges to x with F(i) 1.s 
l. 1.= 

minimal. Hence, with Taylor's theorem, 

(4.11) 

Now, choose N' such that 

(4. 12) - 3 2 
11 ~ - x 11 :s: 2m E: / ( 2 7LM ) 

and 

(4.13) 

for all k > N' and u e T(N'). Using Taylor's theorem again, we obtain 

(4. 14) 



(4. 1 S) 

Since~= - l\gk we have 

(4. 16) 

and 

(4. 17) 

Using (4.1), (4.11), (4.12) and the fact that dk = - l\gk we have, for 

k > N' 

(4. 18) 

I I 

For the second term in the right hand side of (4.17) we obtain with (2.2), 

( 4 • 4) and ( 4 . 1 3 ) 

(4. 19) 

Substituting (4.16), (4.18) and (4.19) in (4.15) we obtain 

(4.20) for all k > max(N 1,N'). 

Hence, with the choice of e: and c we have proved that (3.4) is satisfied 

for ak = I and for all k > N2 = max(N 1,N') 

Finally, we have to prove that an N3 exists, such that 

(4.21) for all k > N3 • 
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Therefore, denote 

(4.22) h(x,a) = - (F(x) - F(x+ad))/(ag1d). 

With Taylor's theorem we may write 

(4.23) 

(4. 24) a 
- - + a 2 

With (4.18) this leads to 

for all k > N1, ~ N and arbitrary E > O. Hence, by the definition of h, 
~• l 

we obtain fork> N3 

(4. 25) 

Choosing E < I proves (4.21). By combining (4. 10), (4.20) and (4.21) and by 

choosing N0 = max(N2 ,N3 ) we have proved the lemma. D 

Using this lemma we are able to prove the following theorem about the 

superlinear convergence of algorithm A(U). 

THEOREM 4.2. Det F be given by (2.1) and let its second derivative G(x) 

satisfy (2.2) and (4.1). Let, moreover, r, c and the updating formula U 

satisfy the conditions of lemma 4.1. Then, the sequence of points, generated 

by A(U), converges superlinearly to a point at which F(x) has a minimum. 

PROOF. Suppose lim x. = x. Then, using Taylor's theorem 
k➔oo K 



for nk = ¾: + 8 (i-xk), 0 ~ 8 ~ J • 

Hence 

With 

we obtain 

Using Taylor's formula again gives 

(4.26) 

for arbitrary E > 0 and k > N = N(E). 

This completes the proof. D 

It is obvious from (4.26), that the asymptotic order of convergence 

of algorithm A(U) depends on 

If Sk = 0 ( 11 u 11 p ) for some p > I, then the order of convergence of algo

rithm A(U) equals min(2,p). 

5. SOME PARTICULAR UPDATING FORMULAS 

(5. I) 

We consider in this section the following updating formulas: 

D 
U (H, cS, y) 

ocST 
= -- -

T 
Hyy H 

T 
y Hy 

13 



which is, originally due to DAVIDON [6]; 

F 
(1 

T \ T T T 
(5. 2) U (H, o ,y) = + y Hy oo Hyo + oy H 

ory) ory - oTy 
, 

which is due to FLETCHER [9], BROYDEN [3], and SHANNO [23]; 

(5.3) c D F u (H,o,y) = eu (H,o,y) + (t-e)u (H,o,y), 

where e 
[9]). 

= 8(H,o,y) is some parameter such that O ~ ek ~ 1 (see FLETCHER 
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Before proving some properties of these updating formulas we give two 

lemmas which appear to by useful. 

LEMMA 5.1. Let A be a syrrmet:raic matrix with eigenvalues Al~ A2 ~ ... ~ An. 

* Let A be obtained from A by adding a syrrmetric perturbation matrix of rank 

1 to it 

(5.4) 

for some vector v and some scalar a IO. 

Let the eigenvalues * * * * of A be denoted by Al ~ A2 ~ ~ A . Then, n 

(5.5) a > 0 * * * => Al ~ Al ~ A2 ~ ~ A ~ A n' l'l 

(5.6) a < 0 * * => Al ~ Al ~ A2 ~ ~ A ~ A . 
n n 

PROOF. See WILKINSON [24], section 44-47. □ 

* LEMMA 5.2. Let A and A be given as in lerrma 5.1. Let x. denote the eigen-
1. 

vector of A corresponding to eigenvalue A., i = l, ... ,n. Then, the fol-
1. 

lowing implications hold for q,p = 1, ... ,n. 

(5.7) T 
V X = 0 => 

p 
A is an eigenvalue of A* 

p 
and x is the corresponding eigenvector. 

p 
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(5. 8) * * if >.. = >.. = = >.. => >.. = = >.. = >.. a > 0 
p p+l q p+l q q' 

* * * if >.. = >.. = >.. = = >.. q-1' a < o. 
p p p+l 

(5.9) * (q=p-1 , p, p+ I) T q '::f >.. = >.. => V X = 0 or >.. = >.. and p. 
q p p q p 

T PROOF. Suppose A= ~\X, where A= diag(>.. 1,>.. 2 , •.• ,>..n) and Xis the orthog-
T onal matrix of eigenvectors x 1, ••• ,xn. Then, with the notation u =Xv, we 

have 

(5. IO) 

* T Hence, the eigenvalues of A are those of A+ auu. Some elementary algebra 

shows that these eigenvalues are equal to the roots of the equation 

n 
(5. 11) K(µ) = TT (>...-µ) 

1 i= l 

T 
where u = (u 1,u2 , ... ,un) 

Then 

K(µ) = (>.. -µ) 
p 

r ~ 
li=l 

i-::fp 

n 
+ a I 

j=l 

(>... -µ) 
1 

2 
n 

u. TT (>... -µ) = 0, 
J i= 1 

1 

i-::fj 

n 
2 n 

<\-µ)] + a I u. TT 
j=l J i= 1 
j'::fp i:# j 'p 

* K(>.. ) 0 and eigenvalue of A since Hence, = >.. is an Furthermore, 
p p 

(5. 12) * AX 
p 

T = (A+avv )x = >.. x 
p p p 

we proved implication (5. 7). 

+ au v = >.. x, 
p p p 

In order to prove (5.8), assume that>.. = >.. = 
p p+l 

K(µ) 

= /\ . Then, 
q 

where I = { i I I ~ i < p, q ~ i ~ n} and I. = I\ {j}. Therefore, using lenrrna 
J 

5.1, we have proved implication (5.8). 
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* 
1 ' Finally, suppose A = A p' q = p - p or p + I. Then, 

q 

2 
n 

* (A.-A*) K()1. ) = a.u n = o. 
q p i=l 1 q 

i#p 
T 

Hence, u = v x = 
p p 

0 or A.= A* for some i # p. Using lennna 5.1, simple 
1 q 

checking yields A 
q 

= A . This completes the proof. D 
p 

LEMMA 5.3. If H0 is positive definite, then 

(5. 13) 
C 

U (H . , o . , y . ) , 
J J J 

where Uc is defined by (5.3), is positive definite for aZZ kif o!y. > O 
J J 

for aZZ j s; k. 

PROOF. First we prove the statement fore= 1 in (5.3), by showing that, 

if~ is positive definite, then ~+l is positive definite. To simplify 

the notation we will omit the indices k and the superscript D, and mark 

with an asterisk those quantities which should have subscript k+l. 

Denote 
T 

H = H - Hy; H • 
y Hy 

Then, by lennna 5.1 and the positive definiteness of H, the eigenvalues 

(5.14) 

~ .•. ~ A of H satisfy 
n 

-
> A = O, 

n 

where the last equality holds since Hy= O. Hence y is an eigenvector of 

H with eigenvalue 0. 

With (5.1) we obtain 

Therefore, denoting the eigenvalues of H* by A;~ A;~ 

by lennna 5.1 and oTy > 0 that 

* ~ A , we know 
n 
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* -~ >.. ~ >.. = O. 
n n 

Since A # O, we know by (5.14) that "-n-l # "-n' so that using lemma 5.2 
T n * -and o y > O, we see that A > >.. = 0. Hence H* is positive definite, which 

n n 
proves that~ is positive definite for all k. As simple checking may show, 

we have the relation 

(5.15) F -1 -1 D 
[H + u (H,o,y)] = H + u (H,y,o). 

F -1 Hence, with the same arguments as above we can prove that (Hk) and, con-
F sequently, ~ is positive definite. Therefore, using (5.3) the lemma is 

proved. D 

It is obvious that algorithm B(Uc) converges at least linearly for 

any quadratic function with a positive definite hessian matrix (see section 

3 for the definition of algorithm Band (5.3) for the definition of Uc). 

In order to prove superlinear convergence in this case we need the follow

ing theorem. 

THEOREM 5.4. Let F be a quadratic function with positive definite hessian 

G and let H0 be any positive definite syrrmetric matrix. Let the sequence 

of matrices {Hk}~=O be generated by B(Uc), where Uc= Uc(H,o,y) is defined 

by (5.3). Then we have 

(5. 16) lim II (Hk-H)u II / II ull = 0, 
k-+oo 

for all u E T(N). Here H = G-l and T(N) is defined by (4.2). 

! l l 
PROOF. Define~= G2 HkG 2 and zk = G2 ok Then, using yk = Gok for quadratic 

functions, we have fore= 1 in (5.3): 

(5. 17) 
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Consider Z(N) = {u E lRn I u = I~=N µkzk, for certain µk}. Then, since 

Z(N 1) c Z(N2) if N1 ~ N2, and :m.n is finite-dimensional, there exists an 

N0 such that Z(k) = Z(N0) for all k ~ N0 . Suppose Pis a projector on 

Z(N0). Then Pzk = zk and denoting Lk = P~P we have from (5.17). 

(5. I 8) 

By the definition of~ and~ and using (2.3) and lemma 5.3 we know that 

Lk is positive semi-definite for all k. 

We restrict ourselves to the nonzero eigenvalues 

A;l) ~ A~2) ~ ~ A~r) of Lk whose corresponding eigenvectors 

xk 1>, ... ,x~r) are in Z(N0), where r equals the dimension of Z(N0). 

Let 

-
Lk = 

have eigenvalues 

A (I) 
k 

T 
LkzkzkLk 

L -k T 
zkLkzk 

-(I) 
Ak ~ 

-(2) 
Ak 

~ 
-(1) 

~ /2) 
Ak k 

~ 

~ 

~ i~n), then lemma 5.1 shows that 

~ A(r) 
k 

and since Lkzk = 0 we see that the eigenvalues of Lk+l are equal to 

A~l) , .•. ,A~r-l) and I. Since Z(k) is r-dimensional for all k > N0 we know 

that NI ~No+ r exists, such that ZNo'ZNo+l'''''ZNJ span the whole space 

Z(N0). Hence, using (5.7) we may conclude that an index j(N0~j~N 1) exists,· 

such that ztx~l) # 0. Now suppose 
J J 

Then with lemma 5.2, we see that 

gument leads to A (I)# A(2) for 
m m ' 

(q-1) (q) 
AN+· # AN .• Repeated use of this ar-

O J O +J T (2) 
some m > N0 + j. Since z.x. # O, for 

J J 
some J ~ m, we obtain with (5.10), that a number N2 exists such that 



Therefore, using the fact, that all Lk have an eigenvalue equal to 1, we 

have shown that 11.~l) converges to 1 fork tending to infinity. 

Analogously, we can prove that 11.~r) converges to 1, since 
,(r) -- ,(r-l) ~ ,(r) Th f d h L t t . Ak+l Ak Ak • ere ore we prove tat k converges o a ma rix 

with all eigenvalues, corresponding to eigenvector in Z(N0), equal to 1. 

Hence 

II (Lk-I)ull / II ull ➔ o, 

for all u E Z(N0) and k tending to infinity. Since Pis a projector on 

Z(N0) we have 

11 (~ - I) u 11 / 11 u 11 ➔ o, 

for all u E Z(N0) and therefore 

(5. 19) 

Since G is positive definite we can show 

(5.20) 

! 
This is easily seen using G2 z 

k 

which holds because of 

u = 

and 

u = 

00 

I 
k=N 

0 

00 

I 
k=N 

0 

µkyk ~ u = 

00 

I 
k=N 

0 

00 

I 
k=N 

0 

vkyk, with VN = - ]J 

0 NO 

vk = µk - µk+ 1 • 
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Using (5.19) en (5.20), the theorem is proved for Uc= UD (8=1 in (5.3)). 

However, with yk = G<\ and (5.15) we can use the same arguments for proving 

that 

1 im ll C c!-c) u I I I 11 u l I = o, 
k--+m 

for all u E {u E ]Rn Ju= l~=N vkok, for certain N0 and vk}. Therefore the 

theorem is also proved for uc0= uF (8=0 in (5.3)) and, in fact, for all 

8,0~8~1. □ 

As an immediate consequence of theorem 4.2 and 5.4 we have the fol

lowing extension of a theorem given by FLETCHER [9]. 

THEOREM 5.5. Let F be a quadratic function with positive definite hessian 

G and let H0 be any positive definite symmetric matrix. Then, the sequence 

of points {~}~:=O generated by algorithm B(Uc), where Uc is defined by (5.3), 

converges super•Zinearly to a minimum of F. 

In our opinion, theorem 5.5 is an indication for the usefulness of 

theorem 4.2 as a tool for proving superlinear convergence of algorithm A(U) 

for various updating formulas U and for more general (convex) functions. 

6. NUMERICAL COMPARISONS 

In order to obtain some insight in the practical usefulness of alga-
. ( ) . 1 d 1 . h ( D) h D . . b (5 I) rithm AU, we have imp emente a gorit m AU , were U is given y . , 

and algorithm A(UF), where UF is given by (5.2). 

These two algorithms are compared with an implementation of an algo

rithm given by FLETCHER [9], which is called algorithm Fin this section. 

A detailed description of this implementation, together with an ALGOL 60 

procedure, is given in BUS [4]. 

The functions, used for comparison are known from literature. 

I. A function given by ROSENBROCK [22]. 



F(x) 

T The initial guess is chosen to be (- I . 2, I) . 

2. A function given by LEON [15]. 

F(x) 

The initial guess is (-1.2,-l)T. 

3. A function given by BEALE [I]. 

F(x) = 

where c 1 = 1.5, c2 = 2.25 and c3 = 2.625. 

The initial guess is (0.1,0.l)T. 

4. A function given by FLETCHER & POWELL [10]. 

F (x) 

where 

and 

: arctan 

2·rr8 

'IT + if x I < 0. 

The initial guess is (-1,0,0)T. 

5. A function given by COLVILLE [5], also known as Wood's function. 

F(x) 

21 
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The initial guess is (-3,-1,-3,-I)T. 

6. A function given by POWELL [18]. 

F(x) 

T The initial guess is (3,-1,0,I) . 

7. Another function given by POWELL [19]. 

The initial guess is (O,I,2)T. 

8. A function given by BOX [2]. 

IO 
F(x) = l (exp(-ix 1/IO) - exp(-ix2/IO) - x3(exp(-i/IO) -

i= I 

T The initial guess is (0,20,I) • 

In all tests H0 is chosen equal to the identity matrix, c = 0.0001 and 

r = 0.01 or 0.1. The testing has been done on a Cyber 73 computer with a 

machine precision of 48 bits. The results are listed in table 6.1, where 

nf denotes the number of function evaluations and ni the number of itera

tion steps needed to obtain the position of the minimum within a relative 

and absolute precision of 10-5. In this table N means that 151 function 

evaluations were not sufficient to obtain the required result, but the 

algorithm did converge. D means that no convergence or convergence to a 

non-minimizing stationary point occurred. 
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table 6.1. 

F 
Alg. A(U) Alg. A(UD) 

0. 1 0,01 0. I 0.01 ALG. F 
function 

r = r = r = r = 

n. nf n. nf n. nf n. nf n. nf 1. 1. 1. 1. 1. 

I 28 37 32 42 72 I 13 34 40 40 46 

2 - N 55 5s* - N - N 70 73* 

3 27 31 27 31 32 36* - N 28 32 

4 - N 40 57 56 106 50 61 46 62 

5 12 14 12 14 13 15 13 15 12 16 

6 I I 21 I I 21 12 22 12 22 12 14 

7 82 134 73 97 - N - D 70 83 

8 76 150 21 30 - N - D 30 35 

* precision not reached. 

Table 6.1 indicates that algorithm A(UF) with r = 0.01 is at least 

as efficient as algorithm F. Furthermore, the choicer= 0.1 appears to be 

bad for ill-conditioned problems, i.e. problems for which m/M (see (2.2)) 

is very small relative to I. This is affirmed by the theory, since in lerrnna 

4.1 r is related to the quantity m/M. Finally, using the updating formula 
D 

U seems to be a bad choice for ill-conditioned problems. As is mentioned 

earlier in various papers (e.g. FLETCHER [9]), the tendency to singularity 

of the matrices~ (k=0,1,2, ... ) is greater than of the matrices H:. 

7. DISCUSSION 

In this report, we gave a class of variable metric algorithms without 

specifying the updating formula. It is proved that these algorithms are 

convergent (at least linearly) for convex functions. Furthermore, conditions 

on the updating formula are given to obtain superlinear convergence. In our 

opinion, the separation of the problem of the line search on one hand and 

the choice of the updating formula on the other hand, provides a good 
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starting point for examinating the various updating formulas. It is clear 

that the choice of the updating formula is only a tool for increasing the 

order of convergence, since chasing Hk = I will give also a convergent 

algorithm. Although LENARD [14] gave conditions for superlinear convergence 

of a Davidon-Fletcher-Powell-algorithm with a relaxed strategy for the line

search, these conditions are not very transparent and difficult to imple

ment in an algorithm. Moreover, she considered only DAVIDON's [6] updating 

formula (cf. (5.1)), which is not as good as the formula given by FLETCHER 

[9], BROYDEN [3] and SHANNO [23] (cf. (5.2)), as is shown by the results 

in section 6. We hope that the results given in this report will contribute 

to a more general convergence theory for variable metric algorithms in op

timization. 
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APPENDIX 

In this appendix we give the text of an ALGOL 60 procedure imple

menting algorithm A(UF). A description of the meaning of the formal para

meters is also given. The procedures which are given as "code"-declarations 

are described in HEMKER [12]. 



calling sequence: 

the heading of this procedure is: 

procedure minimize(n, x, g, h, funct, in, out); 

value n; integer n; 

array x, g, h, in, out; real procedure funct; 

the meaning of the formal parameters is: 

n: <arithmetic expressio;;>,; 

the number of variables of the function to be minimized; 

x: <array identifier>; 

array x[l : n]; 

the independent variables; 

entry: an approximation of the position of a minimum; 

exit: the calculated position of a minimum; 

g: <array identifier>; 

array g [ 1 : n] ; 

exit: the gradient of the function at the calculated 

position of the minimum; 

h: <array identifier>; 

a one - dimensional array h[l : n x (n + 1) 2]; 

the uppertriangle of an approximation of the inverse 

hessian is stored columnwise in h; i.e. the (i ,j)-th 

element is given in h[j x (j + 1) ~ 2 + i]; 

if in[9] > 0 initializing of h wi 11 be done automatically 

27 
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and the initial approximation of the inverse hessian wi 11 

equal the unit-matrix multiplied with the value of in[6]; 

if in[9] < 0, then no initializing of h wi 11 be done and 

the user should give in h an approximation of the inverse 

hessian at the starting point; 

the uppertriangle of an approximation of the inverse 

hessian at the calculated position of the minimum is 

de I i ve red i n h; 

funct: <procedure identifier>; 

the heading of this procedure should be: 

real procedure funct(n, x, g); value n; 

integer n; array x, g; 

funct:= the value of the function evaluated at the point 

as g i ven in x [ 1 : n]; 

the meaning of the formal parameters is: 

n: <arithmetic expression>; 

the number of variables; 

x: <array identifier>; array x[1 :n]; 

entry: the value of the variables for which the 

function has to be evaluated; 

g: <array identifier>; array g[1:n]; 

exit: the gradient of the function; 

in: <array identifier>; 

array in [ 0 : 1 0] ; 



entry: 

in[0]: the machine precision; for the cyber 73 a suitable 

va 1 ue is 10-14; 

in[l], in[2]: the relative and absolute tolerance for the 

improvement of the variables (relative to the 

current estimates of the variables); 

in[3], in[4]: the relative and absolute tolerance for the 

difference between the penultimate and the ultimate 

function value; 

the process is terminated if the improvement of the 

variables is less than norm(x) x in[l] + in[2], and the 

improvement of the function value is less than 

abs(f) x in[3] + in[4]; here norm(.) denotes the 

euc 1 i dean norm; 

in(S]: the maximum number of function evaluations allowed; 

since the process is terminated at the end of an 

iteration step, it may happen that the actual 

number of function evaluations , given in out[4], 

exceeds the value of out[S] at the end of the 

process; 

in[6]: the maximum steplength allowed; 

in[7]: a value that is used for calculating the direction 

of search, see section 3; usually, a suitable value 

is 0.01; 

in[8]: a value that is used for calculating the steplength 

, see section 3; usually, a suitable value is 10-4; 
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in[9]: a value for controlling the initialisation of h, 

see above; when no information about the inverse 

hessian at the starting point is known, then the 

user is advised to set in[9]:= 1; 

in[lO]: a lowerbound for the function value; 

out: <array identifier>; 

a r ray out [ 1 : 6] ; 

exit: 

out[l]: this value gives information about the termination 

of the process; 

out[l] = 0: normal termination; 

out[l] = 1: the process is terminated at the end of a 

step in which the number of function evaluations 

exceeded the value of in[S]; 

out[l] = 2: this is only possible when input is wrong; 

for instance, in(O] = 0 or in[9] < 0 and h is not 

i n i t i a 1 i zed we 11 ; 

out[l] = 3: the procedure cannot improve the function 

value, while the steplength in the last step was 

not small enough; this may happen if programming 

of the gradient is wrong, if the precision asked 

for is too high, or if the function is very flat 

in a neighbourhood of the position of the 

minimum (the problem is i II-conditioned); 

out[2]: the calculated minimum value of the function; 

out[3]: the value of the function at the initial guess; 



out[4]: the number of calls of funct necessary to obtain 

the calculated result; 

out[S]: the total number of iteration steps performed; 

out[6]: the euclidean norm of the stepvector in the last 

iteration step. 

data and results: 

usually the precision of the calculated position x of the minimum 

wi 11 be at least equal to norm(x) x in[l] + in[2]; however, we can 

not guarantee such a result; the solution will possibly not 

satisfy this condition if the hessian matrix is singular at the 

position of the minimum; the user can discover such a situation by 

examining the approximation to the inverse hessian at the position 

of the minimum which is given in h; when the norm of this matrix is 

very large relative to 1 then it is very likely that the hessian 

matrix is (almost) singular at the solution, and that the precision 

is not reached. 

source text: 

procedure minimize(n, x, g, h, funct, in, out); 

value n; integer n; 
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array x, g, h, in, out; 

real procedure funct; 

begin integer it, fcntmax, fcnt, err; 

real f, f0, macheps, rtol, atol, rtolf,atolf, r, c, h0, 

alfa, nrmdelta, fmin, smx; 

array delta, g0[l :n]; 

real procedure vecvec(l, u, shift, a, b); code 34010; 

real procedure symmatvec(l, u, s, a, b); code 34018; 

procedure inivec(l, u, a, x); code 31010; 

procedure in i symd ( l , u, s' a, x); code 31013; 

procedure elmvec ( l, u, shift, a, b, x); code 34020; 

procedure mu l vec ( l, u, shift, a, b, x); code 31020; 

procedure dupvec ( l, u, shift, a, b) ; code 31030; 

boolean procedure zeroin(x, y, fx, tolx); code 34150; 

real procedure mininder(x, y, fx, dfx, tolx); code 34435; 

real procedure eval(n, x, g); value n; integer n; 

array x, g; 

begin fcnt:= fcnt + 1; if fcnt > fcntmax then err:= 1; 

eva l := funct (n, x, g) 

end eval; 

procedure update(h, n, delta, gamma); value n; 

integer n; array h, delta, gamma; 

begin integer i; real dg; array hg[l :n]; 



procedure fleupd(h, n, v, w, cl, c2); code 34213; 

for i := step 1 until n do 

hg[i] := symmatvec(1, n, i, h, gamma); 

dg:= 1 / vecvec(1, n, 0, delta, gamma); 

fleupd(h, n, delta, hg, dg, 

(1 + vecvec(1, n, 0, gamma, hg) x dg) x dg) 

end update; 

procedure length(x, alfa, delta, nrmdelta, f, g); 

real alfa, nrmdelta, f; array x, delta, g; 

begin real dg, dg0, f0, lb, t, aid; array x1[1:n]; 

real procedure 1 infu(par); value par; real par; 

_!.i. par= 0 then linfu:= f0 else 

begin dupvec(1, n, 0, x1, x); 

elmvec(1, n, 0, x1, delta, par); 

1 infu:= f := eval (n, x1, g) 

end linfu; 

real procedure dlinfu(par); value par; real par; 

_!.i. par= 0 then dlinfu:= dg0 else 

dl infu:= dg:= vecvec(1, n, 0, delta, g); 

real procedure tol; 

tol :=(_!.i. (dg / dg0) 4 2 ~ c A f < f0 then aid 

else sqrt(vecvec(1, n, 0, x1, x1)) x rtol + atol); 

33 



34 

dgO:= vecvec(1, n, 0, delta, g); fO:= f; 

if it> n v hO < 0 then alfa:= 1 else 

begin alfa:= (fmin - f) x 2 / dgO; 

t:= (sqrt(vecvec(1, n, 0, x, x)) x rtol + atol) / 

nrmdelta; if alfa < t then alfa:= t 

end; lb:= O; 

aid:= smx / nrmdelta; if alfa > aid then alfa:= aid; 

f:= mininder(alfa, lb, linfu(alfa), dlinfu(alfa), to]); 

if alfa = 0 then 

begin err:= 3; nrmdelta:= 0 end 

else .ii_ alfa + 1 thei:, 

begin mulvec(1, n, 0, delta, delta, alfa); 

nrmdelta:= nrmdelta x alfa 

end; dupvec(1, n, 0, x, x1) 

end length; 

boolean procedure test(er, a, nd, ed, ng, eg); 

value er, a, nd, ed, ng, eg; integer er; 

real a, nd, ed, ng, eg; 

test:= er+ 0 v (a= 1 And< ed Ang~ eg); 

boolean procedure direction(delta, nd, g, h); 

real nd; array delta, g, h; 

begin integer i; real ghg, nrmg2, aid, y, nrmg, par; 

boolean d; 

nrmg2:= vecvec(1, n, 0, g, g); nrmg:= sqrt(nrmg2); 



for i:= 1 step 1 until n do 

delta[i]:= -symmatvec(1, n, i, h, g); 

nd := sq rt ( vecvec ( 1 , n, 0, delta, delta)) ; 

ghg:= - vecvec( 1, n, 0, g, delta); 

aid:= nd x nrmg x r; l!_ ghg > aid then 

d:= true else l!_ ghg < -aid then 

begin mulvec(1, n, 0, delta, delta, -1); d:= true end 

else 

begin real procedure f(par); value par; real par; 

begin array v[1:n]; 

dupvec(1, n, 0, v, delta); 

elmvec(1, n, 0, v, g, - par); 

f:= nrmg2 x par+ ghg - sqrt(vecvec(l, n, 0, v, v)) 

x n rmg x r 

end f; 

y := O; 

for i := 1 step 1 until n x (n + 1) 7 2 do 

begin aid:= abs(h[i]); if aid> y then y:= aid 

end; y:= y x n x 2; par:= 0; 

if~ zeroin(par, y, f(par), abs(par) x macheps + 

macheps) then d:= false else 

begin d:= true; elmvec(1, n, 0, delta, g, -par); 

nd:= sqrt(vecvec(l, n, 0, delta, delta)} 

end 

end; direction:= d 

end direction; 
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macheps:= in[O] x 2; rtol:= in[l]; atol:= in[2]; rtolf:= in[3]; 

atolf:= in[4]; fcntmax:= in(S]; smx:= in[6]; r:= in[7]; 

c:= 1 - in[8]; hO:= in[9]; fmin:= in[lO]; it:= err:= fcnt:= O; 

out[3]:= f:= eval (n, x, g); if hO > 0 then 

beg i n i n i vec ( 1 , n x ( n + 1 ) -:- 2 , h , 0) ; 

inisymd(l, n, 0, h, hO) 

end initialisation; 

iteration: it:= it+ 1; 

dupvec(l, n, 0, gO, g); fO:= f; 

l..f. ~ direction(delta, nrmdelta, g, h) then err:= 2 

else length(x, alfa, delta, nrmdelta, f, g); 

l.f. test(err, alfa, nrmdelta, sqrt(vecvec(l, n, O, x, x)) x 

rtol + atol, fO - f, abs(f) x rtolf + atolf) then goto end; 

mu 1 vec ( 1 , n, 0 , gO , gO , -1) ; e 1 mvec ( 1 , n, 0, gO , g, 1 ) ; 

update(h, n, delta, gO); 

goto iteration; 

end: out[l]:= err; out[2]:= f; out[4]:= fcnt; out[5] := it; 

out[6]:= nrmdelta 

end minimize; 


