
stichting

mathematisch

centrum

AFDELING NUMERIEKE WISKUNDE NW 16/75

J.C.P. BUS

ON THE CONVERGENCE OF A CLASS OF VARIABLE METRIC

ALGORITHMS
.'v

~
MC

MARCH

2e boerhaavestraat 49 amsterdam

t!lb1.IU l Ht:J:.K M.l\ THEMATISCH Cl:.N1RU'f\A

M'ISTERDAM

PJun:te.d a;t .the. Ma;themauc.at Ce.n.ttr.e., 49, 2e. Bovr.haa.vu.tM.a,t, Am-6.tvr.dam.

The. Ma;thema;Uc.a,f, Ce.n.ttr.e., 6ounde.d :the. 11-.th 06 Fe.b1tu.a1ty 1946, -<-6 a. non
p1to6i:t ..i.Yll.):ti..t!Ltion cuming a;t :the. p1tomo.tlon 06 pWte. ma;themauc.6 a.nd i:t6
a.pp.U.c.auon./.1. I.t -<-6 1.:,ponl.)01te.d by :the. Ne.:thell1.a.nd6 Govvr.nme.n:t :thll..ou.gh :the.
Ne.:thell1.a.nd6 01tga.nizauon 601t .the. Advanc.eme.n:t 06 PUite. Rue.Mc.h (Z.W.O),
by .the. Mu.nic.ipa,f_,i_:t,y 06 Am-6.tvr.dam, by .the. Unive.Mi:ty 06 Am-6:tvr.dam, by
.the. F1te.e. Un,.i,ve.Mi:ty a;t Am-6.tvr.dam, and by indu.1.:,;t,uu.

AMS (MOS) subject classification scheme (1970): 65K05, 90C30.

On the convergence of a class of variable metric algorithms

by

J.C.P. Bus.

ABSTRACT

A class of variable metric algorithms is presented for finding the

unconstrained minimum of a differentiable function of several variables.

These algorithms make use of a relaxed strategy for the line search.

Linear convergence of these algorithms is proved without imposing any es

sential conditions on the updating matrix, provided the function is convex.

Furthermore, sufficient conditions on the updating matrix to obtain super

linear convergence are given.

KEY WORDS & PHRASES: Unconstrained minimization, variable metric methods.

CONTENTS

I.

2.

3.

4.

5.

6.

7.

Introduction

Preliminary results

A class of variable metric algorithms

Conditions for superlinear convergence of A(U)

Some particular updating formulas

Numerical comparisons

Discussion

Acknowledgements

References

Appendix: An ALGOL 60 procedure

3

6

8

13

20

23

24

24

27

I. INTRODUCTION

In this report some results are given about the convergence of vari

able metric algorithms for finding the unconstrained minimum of a differ

entiable function of several variables. Let F be a twice differentiable

function

(I.I) n F:ScJR -+JR,

where S is some convex region in JR.n and F is bounded below on S.

The variable metric algorithm, introduced by DAVIDON [6] and reformulated

by FLETCHER & POWELL [10] consists basically of three steps.

Given a point x and a positive definite symmetric matrix H, then a new

iterate x*, and a new positive definite symmetric n-th order matrix H* is

calculated by

I. Calculate a direction of search

(I • 2) d = - Hg,

where g = g(x) is the gradient of Fat x;

* 2. calculate some approximation a of am,

(I. 3)

*

F(x+a d) =
m

set x = x + ad;

min
a>O

(F(x+ad));

where a is defined by
m

3. calculate a new positive definite symmetric matrix

(l. 4)

* where g

* * * H = H + U(H,x ,x,g ,g),

* = g(x) and U is some symmetric matrix, which 1.s called the

updating matrix. The rank of U is usually one or two.

From the definition of din (1.2), it is clear that

2

(1.5) d~ F(x+ad) =
T - g Hg< 0.

Hence, the function is decreasing in the direction d.

The line search, i.e. the choice of a*, varies from one algorithm to

another. In some algorithms a* is simply chosen equal to I (see for example

POWELL [20]), while in other algorithms a* is calculated with cubic or

quadratic interpolation in order to approximate a in some sense (see for
m

example FLETCHER & POWELL [10] or FLETCHER [9]).

Using a computer for calculating a, it is obviously not possible to ohm
tain a value which exactly equals a • However, many results about the he-

m *
haviour of variable metric algorithms are based on the fact that a = a

m
(see for example POWELL [21], DIXON [8]). So, these results have only

theoretical value and are not applicable to the algorithms published. As

far as we know, only LENARD [14] gave conditions for convergence when the

line search is not exact. The goal of this report is to choose a strategy

for the line search which allows us to define a class of algorithms, in

which the updating formula is not yet specified, and for which convergence

with a rate that is at least linear, may be proved, provided the function

is convex.

In literature, several strategies are proposed to obtain a with as

few extra function evaluations as possible, without disturbing the fine

behaviour of the algorithm. One of these is given by GOLDSTEIN & PRICE [II].

Their strategy was used in a modified Newton algorithm. However, as is

shown by FLETCHER [9], it may also be used in variable metric algorithms.

The idea is based on Taylor series expansion of Fat x.

Define

(1.6) h(a) = F(x) - F(x+ad).

Then, choose

* a = if h(I) ~ v,

* otherwise choose a such that

(I. 7) * v S h(a) S l - v.

Here vis chosen to be a value between O and 0.5. WOLFE [25] showed that

the right hand inequality of (1.7) is equivalent to

(l . 8)

while the left hand inequality of (1.7) can be replaced by the condition

that the function

(l • 9) f(a) = F(x+ad)

is monotonously decreasing on the interval (O,a).
m

3

In section 3 we propose a class of algorithms which make use of (1.8)

for the line search. In these algorithms we did not specify the updating

matrix. For constructing this class and for proving convergence for con

vex functions, we use· some results given by LENARD [13], which are sunnned

up in section 2.

In section 4 we give conditions that should be imposed on the updating

matrix in order to obtain superlinear convergence.

Furthermore, in section 5 we consider some particular updating for

mulas and give some results for the specific members of the given class of

algorithms that use these formulas.

In section 6 and 7, we give some numerical results and conclusions.

An ALGOL 60 procedure implementing an algorithm which uses the updating

formula given by BROYDEN [3], FLETCHER [9] and SHANNO [23], is given in

appendix.

2. PRELIMINARY RESULTS

(2. I)

Let F be a given, twice differentiable function

n F:ScIR +IR,

4

where Sis some convex region in]Rn and let F be bounded below on s. We

assume in this section that the second derivative matrix G(x) of F sat

isfies

(2.2)

n for all x ES and u # 0 E JR , where m and Mare two positive constants

and II • II denotes the euclidean norm. In fact, we demand that F is strict

ly convex. The following lemma is easily proved (POWELL [21], LENARD [13]).

LEMMA 2. 1. If, for any tuJo points x and x', o = x' - x and y = g(x') -g(x),

where g(x) = VF(x) then

(2.3) m !loll :s; llrli :s;M !loll,

Now we give some results due to LENARD [13].

* * T T * T LEMMA 2.2. Let x = x +ad, where g (x)d < 0 and g (x)d = 8g (x)d, for

some e, - 1 :s; e :s; 1. Let

T cos 1/i = g (x) d/ (11 g (x) 11 II d II) •

Then

(2.4) * F(x) - F(x)

PROOF. See LENARD [13]. 0

As a consequence of lemma 2.2 we have:

LEMMA 2.3. Let x be the position of the minimwn of F(x), then

(2.5)

5

PROOF. See LENARD [13]. 0

Using lemmas 2.2 and 2.3 we obtain the following theorem.

THEOREM 2.4. Let an iterative method for calculating the minimum of F
00

generate a sequence of points {~}k=o·

Denote

(2.6) 8 = oT g / oT g
k k k+l k k'

where

(2. 7)

Assume that

(2.8) F (~+ 1) '.> F(~)' k 0,1,2, ... ,

(2.9) - (8)2
k

2: c, k = 0,1,2, ... ,

(2.10) T
11 gk 11 11 ok 11 , k 0,1,2, ... , - gk 0k 2: r =

00

for two constants c and r with O < c, r < 1. Then {xk}k=O converges to a

minimum of F at a rate that is at least linear.

PROOF. (See also LENARD [13]) Using inequalities (2.4) and (2.5) and de-

noting

(2.11) cos l/Jk k = 0,1,2, ... ,

we obtain

(2. 12)

Hence, using (2.8) up to (2.10) leads to

6

(2.13) -1 2
1 - M m c r < 1,

which proves the theorem. D

3. A CLASS OF VARIABLE METRIC ALGORITHMS

Let

(3. 1) U = U(A,u,v)

be a synnnetric matrix for any given matrix A and vectors u and v. Then,

we define a variable metric algorithm A(U), depending on U as follows.

Algorithm A(U)

AO. (Initialisation)

Let x0 be an initial guess for the position of the minimum of F, let

H0 be a synnnetric initial approximation to the inverse hessian (matrix

of second derivatives) of Fat x0 and let rand c be given constants

such that O < r, c < 1.

Then, fork= 0,1,2, ••• we compute ~+land ~+l as follows:

Al. (calculation of search direction)

set pk = - ~gk, if II ~II is bounded,

pk = - gk otherwise;

if
T

- gk Pk 2'. r 11 gk 11 11 pk II , then set dk = pk,

if
T

~ - II gkll II pkll then dk - gk pk r set = - pk,

otherwise, compute ;\k > 0 such that

(3. 2)
T

II gkll II ;\kgk + ~gkll gk(;\kI+Hk)gk = r

A2. (line search)

calculate ak > 0 such that

(3.3)

and

(3.4) ~ I - c;

A3. (calculating new approximation).

set ~+l = ~ + akdk;

A4. (updating metric)

7

It is easily shown that Ak > 0 and ak > 0 always exist such that (3.2)

up to (3.4) are satisfied; (3.2) is based on an idea, first given by

LEVENBERG [16] and used by MARQUARDT [17]. Choosing the direction of search

according to Al ensures us of having a direction in which the function is

sufficiently decreasing. If Ak is increasing, then dk tends to the steepest

descent direction (-gk).

The following theorem is an immediate consequence of theorem 2.4 and

the construction of algorithm A(U).

THEOREM 3.1. Let F be given by (2.l) and let its second derivative satisfy

(2.2). Let x0 ES, H0 be a given symmetric matrix and c and r constants

such that O < c, r < I. Then, for any symmetric U(A,u,v), the sequence of

points {~}~=O' generated by A(U), converges to the position of a minimum

of Fat a rate that is at least linear.

In most variable metric algorithms known, the initial matrix H0 and

the updating formula U are chosen, such that Hk remains positive definite.

It seems more likely to do so, since H(x) = G-1(x) is positive definite at

the position of the minimtm1 and our goal is to let~ be as good an

8

approximation to H(~) as possible. Restricting ourselves to such updating

formulas we may simplify algorithm A(U) by replacing Al by:

Bl. (simplified calculation of search direction).

set if 11 I\ 11 is bounded

otherwise.

If - g~ pk ~ r 11 gk II II pk II , then set dk = pk, otherwise, compute

Ak > 0 such that (3.2) is satisfied and set

In the sequel, the algorithm obtained in this way is called B(U).

The advantage of algorithms A(U) or B(U) is the separation of the

different problems arising in variable metric algorithms. On one hand we

specify the choice of the direction of search and the line search in such

a way that convergence is assured. On the other hand we are completely free

in choosing the updating formula U in order to try to obtain superlinear

convergence.

4. CONDITIONS FOR SUPERLINEAR CONVERGENCE OF A(U)

In this section we derive conditions for U, such that algorithm A(U)

converges superlinearly. Before stating the final theorem, we give a lemma.

The proof of this lemma, as well as the proof of the theorem, is based on

the proof of a similar theorem given by GOLDSTEIN & PRICE [II]. Their theo

rem, however, was given for a Newton algorithm with a strategy for the line

search based on (1.6) and (1.7).

LEMMA 4.1. Let F be given by (2.1), Zet its second derivative G(x) satisfy

(2.2) and Zet, moreover, G(x) satisfy a Lipschitz condition:

(4. I) II G(x) - G(x') II :;; LIi x-x' II,

for all x, x' ES a:nd a certain constant L. Let the sequence of points
00

{xk}k=O be generated by algorithm A(U), where r:;; m/(3M) and c:;; 0.5.

Denote, for• arbitrary N

(4. 2)
00

T (N) = { u E JR.n I u = I µkgk, for certain uk}
k=N

a:nd assume that for all E > 0 there exists a:n N such that

(4.3)

for aU k ;:,: N and u E T (N) . Then, a:n N0 exists such that ok = - l\gk for

aU k > N0 .

PROOF. First we prove that an integer N exists, such that
I

(4.4) 0 I 11 11 2 < uTH.u <_ 2rn3 11 u 11 2 , < 2M u - --k

for all k > NI and u E T(NI), u # 0.

Choose

(4.5) E = I/(2M).

Then, an NI exists such that (4.3) is satisfied for all k > NI and .

u E T(NI).

Writing

(4. 6)

and using

(4. 7)

9

10

for all k > N1 and u e T(N 1), we obtain with (2.2):

(4.8) -1 2 T -I 2
(M -E:) II ull :S: u l\u :S: (m +E:) II ull

Hence, with the special choice of E:, we obtain immediately the required

result (4.4). Analogously, we can prove

(4. 9)

for all u e T (NI) and k > NI. Now, substituting pk = - l\gk and using (4.8)

and (4.9) we obtain

T T

(4. 10)
-gkpk gkHkgk

>~ ~ for all k > NI .
II gkll II pk 11

=
II gk II 11 f\gk II

r, - 3M

Since 11 ~ 11 1.s bounded for all k > N 1, we may therefore choose dk = pk in

step Al of algorithm A(U).

For proving the existence of an integer N2 , such that ak = I satisfies

(3.3) and (3.4) for all k > N2, we choose E: = 1/12.

Using theorem 3.1 we know that {x.}~ 0 converges to x with F(i) 1.s
l. 1.=

minimal. Hence, with Taylor's theorem,

(4.11)

Now, choose N' such that

(4. 12) - 3 2
11 ~ - x 11 :s: 2m E: / (2 7LM)

and

(4.13)

for all k > N' and u e T(N'). Using Taylor's theorem again, we obtain

(4. 14)

(4. 1 S)

Since~= - l\gk we have

(4. 16)

and

(4. 17)

Using (4.1), (4.11), (4.12) and the fact that dk = - l\gk we have, for

k > N'

(4. 18)

I I

For the second term in the right hand side of (4.17) we obtain with (2.2),

(4 • 4) and (4 . 1 3)

(4. 19)

Substituting (4.16), (4.18) and (4.19) in (4.15) we obtain

(4.20) for all k > max(N 1,N').

Hence, with the choice of e: and c we have proved that (3.4) is satisfied

for ak = I and for all k > N2 = max(N 1,N')

Finally, we have to prove that an N3 exists, such that

(4.21) for all k > N3 •

12

Therefore, denote

(4.22) h(x,a) = - (F(x) - F(x+ad))/(ag1d).

With Taylor's theorem we may write

(4.23)

(4. 24) a
- - + a 2

With (4.18) this leads to

for all k > N1, ~ N and arbitrary E > O. Hence, by the definition of h,
~• l

we obtain fork> N3

(4. 25)

Choosing E < I proves (4.21). By combining (4. 10), (4.20) and (4.21) and by

choosing N0 = max(N2 ,N3) we have proved the lemma. D

Using this lemma we are able to prove the following theorem about the

superlinear convergence of algorithm A(U).

THEOREM 4.2. Det F be given by (2.1) and let its second derivative G(x)

satisfy (2.2) and (4.1). Let, moreover, r, c and the updating formula U

satisfy the conditions of lemma 4.1. Then, the sequence of points, generated

by A(U), converges superlinearly to a point at which F(x) has a minimum.

PROOF. Suppose lim x. = x. Then, using Taylor's theorem
k➔oo K

for nk = ¾: + 8 (i-xk), 0 ~ 8 ~ J •

Hence

With

we obtain

Using Taylor's formula again gives

(4.26)

for arbitrary E > 0 and k > N = N(E).

This completes the proof. D

It is obvious from (4.26), that the asymptotic order of convergence

of algorithm A(U) depends on

If Sk = 0 (11 u 11 p) for some p > I, then the order of convergence of algo

rithm A(U) equals min(2,p).

5. SOME PARTICULAR UPDATING FORMULAS

(5. I)

We consider in this section the following updating formulas:

D
U (H, cS, y)

ocST
= -- -

T
Hyy H

T
y Hy

13

which is, originally due to DAVIDON [6];

F
(1

T \ T T T
(5. 2) U (H, o ,y) = + y Hy oo Hyo + oy H

ory) ory - oTy
,

which is due to FLETCHER [9], BROYDEN [3], and SHANNO [23];

(5.3) c D F u (H,o,y) = eu (H,o,y) + (t-e)u (H,o,y),

where e
[9]).

= 8(H,o,y) is some parameter such that O ~ ek ~ 1 (see FLETCHER

14

Before proving some properties of these updating formulas we give two

lemmas which appear to by useful.

LEMMA 5.1. Let A be a syrrmet:raic matrix with eigenvalues Al~ A2 ~ ... ~ An.

* Let A be obtained from A by adding a syrrmetric perturbation matrix of rank

1 to it

(5.4)

for some vector v and some scalar a IO.

Let the eigenvalues * * * * of A be denoted by Al ~ A2 ~ ~ A . Then, n

(5.5) a > 0 * * * => Al ~ Al ~ A2 ~ ~ A ~ A n' l'l

(5.6) a < 0 * * => Al ~ Al ~ A2 ~ ~ A ~ A .
n n

PROOF. See WILKINSON [24], section 44-47. □

* LEMMA 5.2. Let A and A be given as in lerrma 5.1. Let x. denote the eigen-
1.

vector of A corresponding to eigenvalue A., i = l, ... ,n. Then, the fol-
1.

lowing implications hold for q,p = 1, ... ,n.

(5.7) T
V X = 0 =>

p
A is an eigenvalue of A*

p
and x is the corresponding eigenvector.

p

15

(5. 8) * * if >.. = >.. = = >.. => >.. = = >.. = >.. a > 0
p p+l q p+l q q'

* * * if >.. = >.. = >.. = = >.. q-1' a < o.
p p p+l

(5.9) * (q=p-1 , p, p+ I) T q '::f >.. = >.. => V X = 0 or >.. = >.. and p.
q p p q p

T PROOF. Suppose A= ~\X, where A= diag(>.. 1,>.. 2 , •.• ,>..n) and Xis the orthog-
T onal matrix of eigenvectors x 1, ••• ,xn. Then, with the notation u =Xv, we

have

(5. IO)

* T Hence, the eigenvalues of A are those of A+ auu. Some elementary algebra

shows that these eigenvalues are equal to the roots of the equation

n
(5. 11) K(µ) = TT (>...-µ)

1 i= l

T
where u = (u 1,u2 , ... ,un)

Then

K(µ) = (>.. -µ)
p

r ~
li=l

i-::fp

n
+ a I

j=l

(>... -µ)
1

2
n

u. TT (>... -µ) = 0,
J i= 1

1

i-::fj

n
2 n

<\-µ)] + a I u. TT
j=l J i= 1
j'::fp i:# j 'p

* K(>..) 0 and eigenvalue of A since Hence, = >.. is an Furthermore,
p p

(5. 12) * AX
p

T = (A+avv)x = >.. x
p p p

we proved implication (5. 7).

+ au v = >.. x,
p p p

In order to prove (5.8), assume that>.. = >.. =
p p+l

K(µ)

= /\ . Then,
q

where I = { i I I ~ i < p, q ~ i ~ n} and I. = I\ {j}. Therefore, using lenrrna
J

5.1, we have proved implication (5.8).

16

*
1 ' Finally, suppose A = A p' q = p - p or p + I. Then,

q

2
n

* (A.-A*) K()1.) = a.u n = o.
q p i=l 1 q

i#p
T

Hence, u = v x =
p p

0 or A.= A* for some i # p. Using lennna 5.1, simple
1 q

checking yields A
q

= A . This completes the proof. D
p

LEMMA 5.3. If H0 is positive definite, then

(5. 13)
C

U (H . , o . , y .) ,
J J J

where Uc is defined by (5.3), is positive definite for aZZ kif o!y. > O
J J

for aZZ j s; k.

PROOF. First we prove the statement fore= 1 in (5.3), by showing that,

if~ is positive definite, then ~+l is positive definite. To simplify

the notation we will omit the indices k and the superscript D, and mark

with an asterisk those quantities which should have subscript k+l.

Denote
T

H = H - Hy; H •
y Hy

Then, by lennna 5.1 and the positive definiteness of H, the eigenvalues

(5.14)

~ .•. ~ A of H satisfy
n

-
> A = O,

n

where the last equality holds since Hy= O. Hence y is an eigenvector of

H with eigenvalue 0.

With (5.1) we obtain

Therefore, denoting the eigenvalues of H* by A;~ A;~

by lennna 5.1 and oTy > 0 that

* ~ A , we know
n

17

* -~ >.. ~ >.. = O.
n n

Since A # O, we know by (5.14) that "-n-l # "-n' so that using lemma 5.2
T n * -and o y > O, we see that A > >.. = 0. Hence H* is positive definite, which

n n
proves that~ is positive definite for all k. As simple checking may show,

we have the relation

(5.15) F -1 -1 D
[H + u (H,o,y)] = H + u (H,y,o).

F -1 Hence, with the same arguments as above we can prove that (Hk) and, con-
F sequently, ~ is positive definite. Therefore, using (5.3) the lemma is

proved. D

It is obvious that algorithm B(Uc) converges at least linearly for

any quadratic function with a positive definite hessian matrix (see section

3 for the definition of algorithm Band (5.3) for the definition of Uc).

In order to prove superlinear convergence in this case we need the follow

ing theorem.

THEOREM 5.4. Let F be a quadratic function with positive definite hessian

G and let H0 be any positive definite syrrmetric matrix. Let the sequence

of matrices {Hk}~=O be generated by B(Uc), where Uc= Uc(H,o,y) is defined

by (5.3). Then we have

(5. 16) lim II (Hk-H)u II / II ull = 0,
k-+oo

for all u E T(N). Here H = G-l and T(N) is defined by (4.2).

! l l
PROOF. Define~= G2 HkG 2 and zk = G2 ok Then, using yk = Gok for quadratic

functions, we have fore= 1 in (5.3):

(5. 17)

18

Consider Z(N) = {u E lRn I u = I~=N µkzk, for certain µk}. Then, since

Z(N 1) c Z(N2) if N1 ~ N2, and :m.n is finite-dimensional, there exists an

N0 such that Z(k) = Z(N0) for all k ~ N0 . Suppose Pis a projector on

Z(N0). Then Pzk = zk and denoting Lk = P~P we have from (5.17).

(5. I 8)

By the definition of~ and~ and using (2.3) and lemma 5.3 we know that

Lk is positive semi-definite for all k.

We restrict ourselves to the nonzero eigenvalues

A;l) ~ A~2) ~ ~ A~r) of Lk whose corresponding eigenvectors

xk 1>, ... ,x~r) are in Z(N0), where r equals the dimension of Z(N0).

Let

-
Lk =

have eigenvalues

A (I)
k

T
LkzkzkLk

L -k T
zkLkzk

-(I)
Ak ~

-(2)
Ak

~
-(1)

~ /2)
Ak k

~

~

~ i~n), then lemma 5.1 shows that

~ A(r)
k

and since Lkzk = 0 we see that the eigenvalues of Lk+l are equal to

A~l) , .•. ,A~r-l) and I. Since Z(k) is r-dimensional for all k > N0 we know

that NI ~No+ r exists, such that ZNo'ZNo+l'''''ZNJ span the whole space

Z(N0). Hence, using (5.7) we may conclude that an index j(N0~j~N 1) exists,·

such that ztx~l) # 0. Now suppose
J J

Then with lemma 5.2, we see that

gument leads to A (I)# A(2) for
m m '

(q-1) (q)
AN+· # AN .• Repeated use of this ar-

O J O +J T (2)
some m > N0 + j. Since z.x. # O, for

J J
some J ~ m, we obtain with (5.10), that a number N2 exists such that

Therefore, using the fact, that all Lk have an eigenvalue equal to 1, we

have shown that 11.~l) converges to 1 fork tending to infinity.

Analogously, we can prove that 11.~r) converges to 1, since
,(r) -- ,(r-l) ~ ,(r) Th f d h L t t . Ak+l Ak Ak • ere ore we prove tat k converges o a ma rix

with all eigenvalues, corresponding to eigenvector in Z(N0), equal to 1.

Hence

II (Lk-I)ull / II ull ➔ o,

for all u E Z(N0) and k tending to infinity. Since Pis a projector on

Z(N0) we have

11 (~ - I) u 11 / 11 u 11 ➔ o,

for all u E Z(N0) and therefore

(5. 19)

Since G is positive definite we can show

(5.20)

!
This is easily seen using G2 z

k

which holds because of

u =

and

u =

00

I
k=N

0

00

I
k=N

0

µkyk ~ u =

00

I
k=N

0

00

I
k=N

0

vkyk, with VN = -]J

0 NO

vk = µk - µk+ 1 •

19

20

Using (5.19) en (5.20), the theorem is proved for Uc= UD (8=1 in (5.3)).

However, with yk = G<\ and (5.15) we can use the same arguments for proving

that

1 im ll C c!-c) u I I I 11 u l I = o,
k--+m

for all u E {u E]Rn Ju= l~=N vkok, for certain N0 and vk}. Therefore the

theorem is also proved for uc0= uF (8=0 in (5.3)) and, in fact, for all

8,0~8~1. □

As an immediate consequence of theorem 4.2 and 5.4 we have the fol

lowing extension of a theorem given by FLETCHER [9].

THEOREM 5.5. Let F be a quadratic function with positive definite hessian

G and let H0 be any positive definite symmetric matrix. Then, the sequence

of points {~}~:=O generated by algorithm B(Uc), where Uc is defined by (5.3),

converges super•Zinearly to a minimum of F.

In our opinion, theorem 5.5 is an indication for the usefulness of

theorem 4.2 as a tool for proving superlinear convergence of algorithm A(U)

for various updating formulas U and for more general (convex) functions.

6. NUMERICAL COMPARISONS

In order to obtain some insight in the practical usefulness of alga-
. () . 1 d 1 . h (D) h D . . b (5 I) rithm AU, we have imp emente a gorit m AU , were U is given y . ,

and algorithm A(UF), where UF is given by (5.2).

These two algorithms are compared with an implementation of an algo

rithm given by FLETCHER [9], which is called algorithm Fin this section.

A detailed description of this implementation, together with an ALGOL 60

procedure, is given in BUS [4].

The functions, used for comparison are known from literature.

I. A function given by ROSENBROCK [22].

F(x)

T The initial guess is chosen to be (- I . 2, I) .

2. A function given by LEON [15].

F(x)

The initial guess is (-1.2,-l)T.

3. A function given by BEALE [I].

F(x) =

where c 1 = 1.5, c2 = 2.25 and c3 = 2.625.

The initial guess is (0.1,0.l)T.

4. A function given by FLETCHER & POWELL [10].

F (x)

where

and

: arctan

2·rr8

'IT + if x I < 0.

The initial guess is (-1,0,0)T.

5. A function given by COLVILLE [5], also known as Wood's function.

F(x)

21

22

The initial guess is (-3,-1,-3,-I)T.

6. A function given by POWELL [18].

F(x)

T The initial guess is (3,-1,0,I) .

7. Another function given by POWELL [19].

The initial guess is (O,I,2)T.

8. A function given by BOX [2].

IO
F(x) = l (exp(-ix 1/IO) - exp(-ix2/IO) - x3(exp(-i/IO) -

i= I

T The initial guess is (0,20,I) •

In all tests H0 is chosen equal to the identity matrix, c = 0.0001 and

r = 0.01 or 0.1. The testing has been done on a Cyber 73 computer with a

machine precision of 48 bits. The results are listed in table 6.1, where

nf denotes the number of function evaluations and ni the number of itera

tion steps needed to obtain the position of the minimum within a relative

and absolute precision of 10-5. In this table N means that 151 function

evaluations were not sufficient to obtain the required result, but the

algorithm did converge. D means that no convergence or convergence to a

non-minimizing stationary point occurred.

23

table 6.1.

F
Alg. A(U) Alg. A(UD)

0. 1 0,01 0. I 0.01 ALG. F
function

r = r = r = r =

n. nf n. nf n. nf n. nf n. nf 1. 1. 1. 1. 1.

I 28 37 32 42 72 I 13 34 40 40 46

2 - N 55 5s* - N - N 70 73*

3 27 31 27 31 32 36* - N 28 32

4 - N 40 57 56 106 50 61 46 62

5 12 14 12 14 13 15 13 15 12 16

6 I I 21 I I 21 12 22 12 22 12 14

7 82 134 73 97 - N - D 70 83

8 76 150 21 30 - N - D 30 35

* precision not reached.

Table 6.1 indicates that algorithm A(UF) with r = 0.01 is at least

as efficient as algorithm F. Furthermore, the choicer= 0.1 appears to be

bad for ill-conditioned problems, i.e. problems for which m/M (see (2.2))

is very small relative to I. This is affirmed by the theory, since in lerrnna

4.1 r is related to the quantity m/M. Finally, using the updating formula
D

U seems to be a bad choice for ill-conditioned problems. As is mentioned

earlier in various papers (e.g. FLETCHER [9]), the tendency to singularity

of the matrices~ (k=0,1,2, ...) is greater than of the matrices H:.

7. DISCUSSION

In this report, we gave a class of variable metric algorithms without

specifying the updating formula. It is proved that these algorithms are

convergent (at least linearly) for convex functions. Furthermore, conditions

on the updating formula are given to obtain superlinear convergence. In our

opinion, the separation of the problem of the line search on one hand and

the choice of the updating formula on the other hand, provides a good

24

starting point for examinating the various updating formulas. It is clear

that the choice of the updating formula is only a tool for increasing the

order of convergence, since chasing Hk = I will give also a convergent

algorithm. Although LENARD [14] gave conditions for superlinear convergence

of a Davidon-Fletcher-Powell-algorithm with a relaxed strategy for the line

search, these conditions are not very transparent and difficult to imple

ment in an algorithm. Moreover, she considered only DAVIDON's [6] updating

formula (cf. (5.1)), which is not as good as the formula given by FLETCHER

[9], BROYDEN [3] and SHANNO [23] (cf. (5.2)), as is shown by the results

in section 6. We hope that the results given in this report will contribute

to a more general convergence theory for variable metric algorithms in op

timization.

ACKNOWLEDGEMENTS

The author is grateful to prof. T.J. DEKKER for his valuable sugges

tions concerning some eigenvalue problems; to dr. P.J. VAN DER HOUWEN and

drs. J. KOK for their careful reading of the manuscript, and to

mr. Th. Gunsing, mrs. R. Riechelmann and mr. D. Zwarst for typing and printing

printing this report.

REFERENCES

[I] BEALE, E.M.L., On an iterative method for finding a local minimum of

a function of more than one variable, Techn. Report No. 25,

Statistical Techniques Research Group, Princeton Univ. (1958).

[2] BOX, M.J., A comparison of several current optimization methods and

the use of transformations in constrained problems, Comp. J.

9 (1966) p. 67-77.

[3] BROYDEN, C.G., The convergence of a class of double-rank minimization

algorithms, Part I and II, J. Inst. Maths. Applies. 6 (1970)

p. 76-90, 222-231.

[4] BUS, J.C.P., Minimization of functions of s~veral variables (Dutch),

Mathematical Centre, report NR 29/72 (1972) Amsterdam.

[5] COLVILLE, A.R., A comparative study of nonlinear programming codes,

IBM New York, Scientific Center Tech. Report 320-2949 (1968).

[6] DAVIDON, W.C., Variable metric method for minimization, Argonne Nat.

Lab. Report ANL- 5990 (-1959).

25

[7] DAVIDON, W.C., Variance algorithm for minimization, Comp. J. IO (1968)

p. 406-410.

[8] DIXON, L.C.W., Quasi-Newton algorithms generate identical points,

Math. Progr. 2 (1972) p. 383-387.

[9] FLETCHER, R., A new approach to variable metric algorithms, Comp. J.

13 (1970) p. 317-322.

[IO] FLETCHER, R. & POWELL, M.J.D.,A rapidly convergent descent method for

minimization, Comp. J. 6 (1963) p. 163-168.

[II] GOLDSTEIN, A.A. & PRICE, J.F.,An effective algorithm for minimization,

Numer. Math. IO (1967) p. 184-189.

[12] HEMKER, P.W., (ed.), NUMAL, a library of numerical procedures in

ALGOL 60, 8 vols., Mathematical Centre, Amsterdam (1974).

[13] LENARD, M.L., Practical convergence conditions for unconstrained

optimization, Math. Progr. 4 (1973) p. 309-323.

[14] LENARD, M.L., Practical convergence conditions for the Davidon

Fletcher-PowelZ method, Univ. of Wisconsin, MRC Tech. Summ. Rep.

1356 (1974).

[15] LEON, A., A comparison of eight known optimizing procedures,

In: Lavi, A. and Vogl, T.P. (eds.), Recent advances in opti

mization techniques, Wiley (1966).

[16] LEVENBERG, K., A method for the solution of certain non-linear problems

in least squares, Appl. Math. 2 (1944) p. 164-168.

'.~ ! 7 J MARQUARDT, D. W., An algorithm for least-squares estimation of non

Zine010 p,.:Y'mneters, J. SIAM, 11 (1963) p. 431-441.

26

[18] POWELL, M.J.D., An iterative method for finding stationary values

of a function of several variables, Comp. J. 5 (1962)

p. 147-151.

[19] POWELL, M.J .D., An efficient method for finding the minimum of a func

tion of several variables without calculating derivatives,

Comp. J. 7 (1 964) p. 155-162.

[20] POWELL, M.J.D., In: Abadie, J. (ed.), Integer and non-linear program

ing', North-Holland (1970).

[21] POWELL, M.J.D., On the convergence of the variahle metric algorithms.

J. Inst. Maths. Applies, 7 (1971) p. 21-36.

[22] ROSENBROCK, R.H., An automatic method for finding the greatest or

least value of a function, Comp. J. 3 (1960) p. 175-184.

[23] SHANNO, D.F., Conditioning of quasi-Newton methods for function mini

mization, Math. Comput. 24 (1970) p. 647-656.

[24] WILKINSON, J.H., The algebraic eigenvalue problem, Clarendon Press

(1965).

[25] WOLFE, P., Convergence conditions for ascent methods, SIAM Rev. 11

(1969) p. 226-235.

APPENDIX

In this appendix we give the text of an ALGOL 60 procedure imple

menting algorithm A(UF). A description of the meaning of the formal para

meters is also given. The procedures which are given as "code"-declarations

are described in HEMKER [12].

calling sequence:

the heading of this procedure is:

procedure minimize(n, x, g, h, funct, in, out);

value n; integer n;

array x, g, h, in, out; real procedure funct;

the meaning of the formal parameters is:

n: <arithmetic expressio;;>,;

the number of variables of the function to be minimized;

x: <array identifier>;

array x[l : n];

the independent variables;

entry: an approximation of the position of a minimum;

exit: the calculated position of a minimum;

g: <array identifier>;

array g [1 : n] ;

exit: the gradient of the function at the calculated

position of the minimum;

h: <array identifier>;

a one - dimensional array h[l : n x (n + 1) 2];

the uppertriangle of an approximation of the inverse

hessian is stored columnwise in h; i.e. the (i ,j)-th

element is given in h[j x (j + 1) ~ 2 + i];

if in[9] > 0 initializing of h wi 11 be done automatically

27

28

and the initial approximation of the inverse hessian wi 11

equal the unit-matrix multiplied with the value of in[6];

if in[9] < 0, then no initializing of h wi 11 be done and

the user should give in h an approximation of the inverse

hessian at the starting point;

the uppertriangle of an approximation of the inverse

hessian at the calculated position of the minimum is

de I i ve red i n h;

funct: <procedure identifier>;

the heading of this procedure should be:

real procedure funct(n, x, g); value n;

integer n; array x, g;

funct:= the value of the function evaluated at the point

as g i ven in x [1 : n];

the meaning of the formal parameters is:

n: <arithmetic expression>;

the number of variables;

x: <array identifier>; array x[1 :n];

entry: the value of the variables for which the

function has to be evaluated;

g: <array identifier>; array g[1:n];

exit: the gradient of the function;

in: <array identifier>;

array in [0 : 1 0] ;

entry:

in[0]: the machine precision; for the cyber 73 a suitable

va 1 ue is 10-14;

in[l], in[2]: the relative and absolute tolerance for the

improvement of the variables (relative to the

current estimates of the variables);

in[3], in[4]: the relative and absolute tolerance for the

difference between the penultimate and the ultimate

function value;

the process is terminated if the improvement of the

variables is less than norm(x) x in[l] + in[2], and the

improvement of the function value is less than

abs(f) x in[3] + in[4]; here norm(.) denotes the

euc 1 i dean norm;

in(S]: the maximum number of function evaluations allowed;

since the process is terminated at the end of an

iteration step, it may happen that the actual

number of function evaluations , given in out[4],

exceeds the value of out[S] at the end of the

process;

in[6]: the maximum steplength allowed;

in[7]: a value that is used for calculating the direction

of search, see section 3; usually, a suitable value

is 0.01;

in[8]: a value that is used for calculating the steplength

, see section 3; usually, a suitable value is 10-4;

29

30

in[9]: a value for controlling the initialisation of h,

see above; when no information about the inverse

hessian at the starting point is known, then the

user is advised to set in[9]:= 1;

in[lO]: a lowerbound for the function value;

out: <array identifier>;

a r ray out [1 : 6] ;

exit:

out[l]: this value gives information about the termination

of the process;

out[l] = 0: normal termination;

out[l] = 1: the process is terminated at the end of a

step in which the number of function evaluations

exceeded the value of in[S];

out[l] = 2: this is only possible when input is wrong;

for instance, in(O] = 0 or in[9] < 0 and h is not

i n i t i a 1 i zed we 11 ;

out[l] = 3: the procedure cannot improve the function

value, while the steplength in the last step was

not small enough; this may happen if programming

of the gradient is wrong, if the precision asked

for is too high, or if the function is very flat

in a neighbourhood of the position of the

minimum (the problem is i II-conditioned);

out[2]: the calculated minimum value of the function;

out[3]: the value of the function at the initial guess;

out[4]: the number of calls of funct necessary to obtain

the calculated result;

out[S]: the total number of iteration steps performed;

out[6]: the euclidean norm of the stepvector in the last

iteration step.

data and results:

usually the precision of the calculated position x of the minimum

wi 11 be at least equal to norm(x) x in[l] + in[2]; however, we can

not guarantee such a result; the solution will possibly not

satisfy this condition if the hessian matrix is singular at the

position of the minimum; the user can discover such a situation by

examining the approximation to the inverse hessian at the position

of the minimum which is given in h; when the norm of this matrix is

very large relative to 1 then it is very likely that the hessian

matrix is (almost) singular at the solution, and that the precision

is not reached.

source text:

procedure minimize(n, x, g, h, funct, in, out);

value n; integer n;

31

32

array x, g, h, in, out;

real procedure funct;

begin integer it, fcntmax, fcnt, err;

real f, f0, macheps, rtol, atol, rtolf,atolf, r, c, h0,

alfa, nrmdelta, fmin, smx;

array delta, g0[l :n];

real procedure vecvec(l, u, shift, a, b); code 34010;

real procedure symmatvec(l, u, s, a, b); code 34018;

procedure inivec(l, u, a, x); code 31010;

procedure in i symd (l , u, s' a, x); code 31013;

procedure elmvec (l, u, shift, a, b, x); code 34020;

procedure mu l vec (l, u, shift, a, b, x); code 31020;

procedure dupvec (l, u, shift, a, b) ; code 31030;

boolean procedure zeroin(x, y, fx, tolx); code 34150;

real procedure mininder(x, y, fx, dfx, tolx); code 34435;

real procedure eval(n, x, g); value n; integer n;

array x, g;

begin fcnt:= fcnt + 1; if fcnt > fcntmax then err:= 1;

eva l := funct (n, x, g)

end eval;

procedure update(h, n, delta, gamma); value n;

integer n; array h, delta, gamma;

begin integer i; real dg; array hg[l :n];

procedure fleupd(h, n, v, w, cl, c2); code 34213;

for i := step 1 until n do

hg[i] := symmatvec(1, n, i, h, gamma);

dg:= 1 / vecvec(1, n, 0, delta, gamma);

fleupd(h, n, delta, hg, dg,

(1 + vecvec(1, n, 0, gamma, hg) x dg) x dg)

end update;

procedure length(x, alfa, delta, nrmdelta, f, g);

real alfa, nrmdelta, f; array x, delta, g;

begin real dg, dg0, f0, lb, t, aid; array x1[1:n];

real procedure 1 infu(par); value par; real par;

_!.i. par= 0 then linfu:= f0 else

begin dupvec(1, n, 0, x1, x);

elmvec(1, n, 0, x1, delta, par);

1 infu:= f := eval (n, x1, g)

end linfu;

real procedure dlinfu(par); value par; real par;

_!.i. par= 0 then dlinfu:= dg0 else

dl infu:= dg:= vecvec(1, n, 0, delta, g);

real procedure tol;

tol :=(_!.i. (dg / dg0) 4 2 ~ c A f < f0 then aid

else sqrt(vecvec(1, n, 0, x1, x1)) x rtol + atol);

33

34

dgO:= vecvec(1, n, 0, delta, g); fO:= f;

if it> n v hO < 0 then alfa:= 1 else

begin alfa:= (fmin - f) x 2 / dgO;

t:= (sqrt(vecvec(1, n, 0, x, x)) x rtol + atol) /

nrmdelta; if alfa < t then alfa:= t

end; lb:= O;

aid:= smx / nrmdelta; if alfa > aid then alfa:= aid;

f:= mininder(alfa, lb, linfu(alfa), dlinfu(alfa), to]);

if alfa = 0 then

begin err:= 3; nrmdelta:= 0 end

else .ii_ alfa + 1 thei:,

begin mulvec(1, n, 0, delta, delta, alfa);

nrmdelta:= nrmdelta x alfa

end; dupvec(1, n, 0, x, x1)

end length;

boolean procedure test(er, a, nd, ed, ng, eg);

value er, a, nd, ed, ng, eg; integer er;

real a, nd, ed, ng, eg;

test:= er+ 0 v (a= 1 And< ed Ang~ eg);

boolean procedure direction(delta, nd, g, h);

real nd; array delta, g, h;

begin integer i; real ghg, nrmg2, aid, y, nrmg, par;

boolean d;

nrmg2:= vecvec(1, n, 0, g, g); nrmg:= sqrt(nrmg2);

for i:= 1 step 1 until n do

delta[i]:= -symmatvec(1, n, i, h, g);

nd := sq rt (vecvec (1 , n, 0, delta, delta)) ;

ghg:= - vecvec(1, n, 0, g, delta);

aid:= nd x nrmg x r; l!_ ghg > aid then

d:= true else l!_ ghg < -aid then

begin mulvec(1, n, 0, delta, delta, -1); d:= true end

else

begin real procedure f(par); value par; real par;

begin array v[1:n];

dupvec(1, n, 0, v, delta);

elmvec(1, n, 0, v, g, - par);

f:= nrmg2 x par+ ghg - sqrt(vecvec(l, n, 0, v, v))

x n rmg x r

end f;

y := O;

for i := 1 step 1 until n x (n + 1) 7 2 do

begin aid:= abs(h[i]); if aid> y then y:= aid

end; y:= y x n x 2; par:= 0;

if~ zeroin(par, y, f(par), abs(par) x macheps +

macheps) then d:= false else

begin d:= true; elmvec(1, n, 0, delta, g, -par);

nd:= sqrt(vecvec(l, n, 0, delta, delta)}

end

end; direction:= d

end direction;

35

36

macheps:= in[O] x 2; rtol:= in[l]; atol:= in[2]; rtolf:= in[3];

atolf:= in[4]; fcntmax:= in(S]; smx:= in[6]; r:= in[7];

c:= 1 - in[8]; hO:= in[9]; fmin:= in[lO]; it:= err:= fcnt:= O;

out[3]:= f:= eval (n, x, g); if hO > 0 then

beg i n i n i vec (1 , n x (n + 1) -:- 2 , h , 0) ;

inisymd(l, n, 0, h, hO)

end initialisation;

iteration: it:= it+ 1;

dupvec(l, n, 0, gO, g); fO:= f;

l..f. ~ direction(delta, nrmdelta, g, h) then err:= 2

else length(x, alfa, delta, nrmdelta, f, g);

l.f. test(err, alfa, nrmdelta, sqrt(vecvec(l, n, O, x, x)) x

rtol + atol, fO - f, abs(f) x rtolf + atolf) then goto end;

mu 1 vec (1 , n, 0 , gO , gO , -1) ; e 1 mvec (1 , n, 0, gO , g, 1) ;

update(h, n, delta, gO);

goto iteration;

end: out[l]:= err; out[2]:= f; out[4]:= fcnt; out[5] := it;

out[6]:= nrmdelta

end minimize;

