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1. Introduction 

In reference [4] a class of fourth order, m-point Runge-Kutta 

formulas is described of which the characteristic root contains m - 4 

free parameters. These parameters can be used to adjust the stability 

properties of the formula to the differential equation under consideration. 

In practice, this implies that in many cases a more efficient integration 

formula is obtained than the standard fourth order Runge-Kutta method. The 

present paper gives a more detailed analysis of six-point stabilized fourth 

order formulas. 

In pa.rticular, attention is paid to a technique called "exponential 

fitting" (see Liniger and Willoughby [7] ). Since a six-point formula of 

fourth order has two free parameters it is possible to fit the characteris­

tic root at two points (cf. section 3). The stability regions of exponen­

tially fitted Runge-Kutta formulas were studied in references [5,6]; it 

was pointed out that vector differential equations of type 

( 1. 1) ~~ = f( t, u) , 

of which the Jacobian matrix 

( 1. 2) J = (afi) 
au. 

J 

has eigenvalues with widely separated negative real parts (stiff differen­

tial equations), can be efficiently integrated by exponentially fitted 

Runge-Kutta methods. Furthermore, it was shown that the efficiency in­

creases as the number of free parameters is larger. Therefore, we also 

investigated six-point formulas containing 4 free parameters. It is proved 

(section 3) that these formulas also are fourth order exact, but the error 

constant is considerably larger; effectively, the 'four-parameter forms are 

only second order correct. 

The step size strategy used in our formulas is bas.ed on the assumption 

that an exponentially fitted formula integrates a linear system accurately 

(cf. [7]). This suggests to choose the integration steps in such a way that 

the differential equation is sufficiently linear over the successive inte-
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gration steps. For that purpose a reference for:mula was derived which is 

identical to the actual integration formula. in case of linear equations. 

For non-linear equations the reference formula is only second order accu­

rate. The difference of the results produced by these formulas is taken as 

an estimate of the non-linearity. By monitoring this estimate an indication 

of a suitable step is obtained. In addition, we automatically have a 

(conservative) estimate of the local error, provided that the system is 

non-linear. The price to be paid for the step size control just described 

is an additional function evaluation in the reference formula. 

Finally, an interpolation formula of third order is derived which can 

be used when integration steps are chosen, which are larger than the 

spacing of the reference points prescribed by the user of the integration 

formula. 

In section 6 an ALGOL 60 version of our integration formula is 

presented; in section 7 a number of numerical examples is given. 
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2. Six-point formulas of fourth order 

( 2. 1 ) 

Consider the six-point Runge-Kutta formula defined by 

(0) 
'\:+1 = 

( 1 ) 
'\:+1 = 

~2) = 1-\ + J_ T 
+1 2 k 

f ( 1 ) 
k+1' 

~3) = 1-\ + ;\ Tk 
f ( 1 ) 

+1 3 '1 k+1 

(4) 
= 1-\ + A T f ( 1 ) 

'\:+1 4, 1 k k+1 

(5) 
= 1-\ + T f(4) 

~+1 k k+1' 

1 [f(O) 
1-\+1 = 1-\ + 6 T + 

k k+1 

f (j) f(t(j) ( j ) 
= 1\:+1 ) , k+1 k+1' 

+ .A T f(2) 
3,2 k k+1' 

+ \ T ,3 k 
f(3) 
k+1' 

2f( 1 ) 2f( 2 ) + f( 5) J + 
k+1 k+1 k+1 , 

t(O) ( 1 ) t(2) = t 1 
= tk, tk+1 = + - T 

k+1 k+1 k 2 k, 

t(3) = tk + (A. 3, 1 + ;\3,2) Tk' k+1 

t(4) = t + (;>, 4 1 + ;\4 ) Tk' k+1 k ' ,3 

t(5) 
k+1 = tk + Tk. 

This formula is second order exact irrespective the values of the parameters 

.A. 1 . It can be proved (cf. reference [4]) that it is fourth order exact as 
J' 

Tk 7 0 when the parameters >. 3 , 1 , A. 3 , 2 , A. 4 , 1 , A. 4 , 2 satisfy the conditions 

(2.2) 
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For future reference we represent scheme (2.1) in the form of the 
matrix (cf. Butcher [1]). 

(2. 11) 

3. Sta.bili t;,y 

0 

0 

0 

0 

0 

"3,2 
0 

0 

1 
3 

0 

0 

0 

0 

"4,3 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 
6 

The characteristic root of scheme (2.1) is given by (cf. [4]) 

( 3. 1) 

where 

( 3.2) 

6 
z • 

We shall require that the para.meters $,., j = 3, ... ,6 are such that the 
J 

function R(z) is exponentially fitted at two points z 1 = Tk61 and z2 = Tk6 2 , i.e. 

( 3. 3) 



or 

S3 + + 2 3 :z. + = ., 
"' 

( 3. 3 1 ) at z = 
+ i;:Z + = F' ( z 

/ 

where 

F(z) 

When the parameters a. are solved from conditions 3,3 1 ) we can determine J 
the parameters A. 1 from (3.2) by expressing the 1 in terms of s .• that 

J' ' J is 

>-4,1 = 12(134-2135)• 

.A4 ,3 = 6133 
1 

-2- /\4, 1' 
( 3.2 1 ) 

A.3,2 = 24 
A.4,3 ' 

>-3,1 = 12 
s5 _ 2s6 

::\4,3 

The final step then is to show that the para.meters /\. 1 satisfy the con­
J. 

sistency conditions (2.2). 

In order to solve equations (3.3') we introduce the abbreviations 

S(zj) = ZJ j S(F) = F( z2 ) + F(z 1), ... 2 + z 1' 

D(zJ) = zj j D(F) = F(z ) - F( z 1), ••. 2 z 1' 2 

Equations (3.3') can then be written as 
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2 + 285S(z) + 386S(z ) = S(F' ), 

A simple calculation leads to the following expressions for the para­

meters e. 
J 

0 _ D(z) S(F•) - 2D(F) 
p6 - ' 

3D(z) S(z2) - 2D(z3) 

. D(F') "". 386D( z2 ) 

(3.4) 85 = I 2D(z) 

For z2 + 0 and z 1 + 0 we deduce from these expressions 

0 .1 
p4 = 24' 

This means that the parameter >.. behave as 
J,l 
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Substitution into the consistency-conditions shows that we have fourth 

order accuracy when Tk + 0. It should be noted, however, that effectively 

(Tk~O) method (2.1), (3.2), (3,3) is only second order exact. Methods which 

are also effectively fourth order accurate can be obtained by putting 

for all values of the step size Tk and by fitting only once at z1 . and z2• 

Formulas (3.2 1 ) and (3.4) then reduce respectively to 

(3.2'') 

and 

( 3. 4 I ) 

A4,1 
1 = - -2 

s6 
A3,2 =-

S5 
, 

- Pill 136 - D(z) ' 

24135' A4, 3 = 2485, 

s6 
A3, 1 

1 = - --2 135 

_ l D(z) S(F) - S(z) D(F) 
135 - 2 D(z) 

Having derived the coefficients s. in terms of the fit-points z 1 and 
. J . 

z2 , we arrive at the problem to determine the stability regions of the 

integration method. This problem was considered in [5,6]. It was found 

that for large values of lz 11 and lz2 1 the stability region (defined by 

the set of points S = {z I IR(z)I < 1}) consists of three subregions 

situated at the origin and the points z 1 and z2 . For small values of 
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jz 11 and jz2 1 these subregions melt together and become approximately the 

stability region of the polynomial 

R(z) 

The cases of interest, however, are the larger values of lz 11 and lz2 1· 
We then have (cf. [5]) for the left hand subregions the disks 

( 3. 5) ' J = 1 ,2 

in case of (3.3) and the disks 

( 3. 5' ) J = 1,2 

I z-z . I < 124 I z . 1- 1 
J J 

in case of (3.4' ). From this we can easily derive an upper bound for the 

stepsize T. For example in case of (3,3) we find 

6. 
t < 12 J 

Pjl62-61I ' 61 ~ 62 

, j = 1,2, 
6. 

T < 12 _J_ 
' a, = 02 2 p. 

J 

where 6. is the center and p. the radius of the cluster near 6 .. The J . J . J 
right hand subregions resemble respectively the stability regions of the 

polynomials 

( 3. 6) 1 + z + l z2 
2 
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and 

(3.6') 1 + z + 1 2 + 1 3 + 1 4 2z 6z 24z 

It can be proved that the following right hand stability conditions 

hold: 

T < 2 
oo+Po 

' p = 2, 

( 3. 7) 

T < 
2.63 
oo+Po 

' p = 4, 

where the eigenvalues close to the origin are supposed to be in the 

negative interval [-o0-p0 ,0J when p = 2 and in the disk l-o 0+oj ~ p0 when 

p = 4. 

In an actual computation it is important that the parameters A. 1 , and 
J' 

therefore the coefficients s., are calculated with high accuracy, in par-
J 

ticular when jz 1 j and jz2 j have large values. Hence, we shall derive 

asymptotic expressions for the coefficients sj which holds for !z 1 I + 00 and 

jz2 1 + 00 • Let us write R(z) in the approximate form 

1 
R(z) = ---

2 2 z 1 z2 

2 2 2 ( z-z 1) ( z-z2 ) ( 1+az+bz ) , 

where a and bare determined by the condition R'(O) = RV(o) = 1 (cf. (3.1)). 
By working out the right hand side we can easily find the coefficients 

s .. Straightforward calculation yields 
J 

R(z) 
az 1 z2- 2 ( z 1 +z2 ) 

= 1 + -------- z 

2 z 
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+ 2az 1z2 ~ 2z 1z2(z 1z2 )b - 2(z 1tz2 ) z3 
2 2 z 1 z2 

2 1-2a(z 1+z2 ) + (z 1+z2 ) b + 2z 1z2b 4 + ~~~.;..._~~2~2~~~~~~~- z 
z1 z2 

Identification with (3.1) leads to the following expressions for Bj' 
j > 2: 

2 1 2 
B6 = £2 [- - 2£1 + (3£1 - 2£2)], 2 

B5 £2 [ 1 
2 2 

- 4£1 + (6£1 - 2£2)] + £2(1-4£,) = £ 1 

( 1 2 2 4 
B4 = £2+~ 1) - 2e1(£1 +£2) + 3£ 1 

B3 = £1 + 
2 

( 2£2-3£ 1 ) 
2 

+ 2£1 ( 2£ 1-3£2). 

Here, the parameters £ 1 and £ 2 are defined by 

1 =--

For the parameters A· 1 we finally have J, 

2 
3£2 
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1 2 
A.4,3 = - - + 6e:1 - 24e:1 + 12e:1e:2 + 2 

2 
[2-3e:1] -

4 - 48 e: e:2 36e: 1 1 

+ 48e:~ -
2 

144e:,e:2 
2 + 6oe:2 , 

A.3,2 = 24 !:L_ 
' A.4,3 

Similar expressions can be derived in case of formula (3.4' ). Finally, we 

remark that in the case (3.4 1 ) the special fit-points 

z 1 = -7.59521, z2 = -9.70395 

generate the stability polynomial 

1 2 1 3 1 4 
R(z)=1+z+2z +6z +24z +.00530343p * z5 + 

+ .0002404730 * z6 

This polynomial has a real stability boundary 

which is, in fact, the largest value obtainable by fourth order polynomials 

of degree 6(cf. reference [3]). 

4. Step size control 

The stability considerations given in the preceding section are local 
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,that is they are based on a linear approximation of the 

in a neighbourhood of ( tk ,'\.). Thus, the differential 

equation should be sufficiently linear over the integration step Tk actual-

ly used. By choosing sufficiently s:mall, this condition can always be 

satisfied, Hence, we are faced with the problem how s:ma.11 should Tk be 

chosen. We need the following strategy: let 1\+1 be a ref P.rence solution 

which is identical to '1c+l as soon as the differential equation under 

consideration is linear; then Tk should be such that 

( 4. 1) 

where na and nr a.re given absolute a.nd relative tolerances, respectively. 
,.., ~ 

Furthermore, let ~+l be of order p. Then 

(4.2) 

~ 

provided that p ~ p. The error function ~(t,T) generally is a slowly 

varying function of t and T, so that 

(4.3) 
11_'\-~ll 

p+1 
Tk-1 

From ( 4. 1 ) - ( 4. 3) it then follows that 

(4.4) 

Next we consider the construction of the reference solution ~+ 1 • We 

try to satisfy the requirements imposed on U. for the class of formulas 
K.+1 

generated by the parameter matrix 



0 0 0 0 0 

2 
0 0 0 

0 0 0 0 0 

4.5) 0 A 3, 1 A.3,2 0 0 0 

0 
• 1 

0 )\4, 3 0 0 

0 0 0 0 .\5,4 0 

1 1 1 1 0 0 
1 

3 6A.5.4 3 3 6)\5,4 

Here, A. 3, 1, A. 3, 2 , 11 401 and A. 4, 3 are identical to the parameters used in the 

calculation of t\:+ 1. The parameter >. 5 4 is a free parameter ~ 1. Hence, an , ~ 

additional point is introduced for the computation of t\:+l" It is easily 

verified that (4.5) generates Runge-Kutta formulae of which the characte­

ristic root is identical with R(z), defined by (3.1), (3.2). From this it 
~ 

is immediately clear that 1\+i = l\.+ 1 in case of linear differential 

equations. Furthermore, this implies that ~+l is second order correct 

(i.e. p = 2) in case of non-linear equations. !n our experiments we have 

chosen 

(4.6) 1 
).5,4 = 2 

~ 

The step size 1k can now be predicted by formula (4.4) with p = 2. In 

actual computation, however, we used a rational approximation of (4.4), 
namely 

(4.4 1 ) .,. = [2. -
'k 3 

3( 1+ 

For I ! I I the Euclidean norm was chosen. 

5. An interpolation formula 

Suppose that the solution of a differential equation is required in 
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given reference t; , v = 1,2, ... ,N. When formula (2.1) is used this v 
requires at least 6N function evaluations. However, if the inter-

-( are small it may happen that the accuracy of the results is 
v-1 

than required, so that relatively much computing time is spend 

vals 

much 
to the problem. For instance, when it turns out that an integration step as 
large as - ~O = ~N - t 0 yilelds sufficiently accurate results at t = sN' 
one may ask whether it is possible to interpolate at the points t = ~v' 
v < N. We have tried to find a.n interpolation formula generated by the para­

meter matrix 

( 5. 1) M = 

0 

0 

0 

0 

0 

"3,2 
0 

0 

82 

0 

0 

0 

0 

"4,3 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

85 

where eo, e,, 82 and 85 are parameters which will be chosen such that the 
result of applying M with step tk is a reasonable approximation to the 
solution at a 

denoted by '\: 

of -r. When we 

point t = tk + T, 0 < t < 'k' This approximation will be 
+ ..1.. Clearly, the parameters e. will appear to be functions 

' J suc~eed we have obtained an interpolation formula which does 
not require additional function evaluations. 

Our starting point in finding a reasonable accurate value for u. + ' 
K i ' 

is the observation that applying M with step 'k is equivalent with k 
applying 1 k M with step t. This implies that we simply have to satisfy as 

T t 
many consistency conditions of _!. M with step T as possible. In doing so we t 
find the following set of conditons: 
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Tk 
[8 + 81 + 82 + 85] 1 = T 0 ' 

p > 

2 

p > 2 
Tk 1 1 

+ 8 J 1 [2 81 + - 8 = ' 2 2 2 5 2 T 
3 

+ ~ 8 + 8 J 
1 Tk [ 1 81 = 

T3 4 2 5 3 
(5.2) 

3 
Tk cl 82 + p,4' 1 + "4 ) 

1 
T3 4 ,3 85] = 6 

p ~ 3 

Since only 4 parameters 8. are available at most third order accuracy can 
• T J 

be obtained for u. + ~by solving these four consistency conditions. 
k Tk 

However, when equations (5.2) are actually solved, it turns out that 

1\. + T: ~ 1\.+1 for T = Tk' unless the parameter S3 defined by (3.2) equals 

1/6. This is easily explained by observing that 1\.+ 1 is fourth order exact 

as Tk ~ O; for rk ~ 0 it is effectively second order exact,unless s3 = 1/6 
T 

and s4 = 1/24. In order to make 1\. + rk equal to ~+l as T ~ Tk we replace 

in the last equation of (5.2) the righthand side by s3 . The corresponding 

interpolation function u + __!._ then is also effectively second order cor­
. k Tk 

rect for 'k ~ 0 and third order correct as Tk ~ o. 
A simple calculation yields 

85 
1 2 + _1._ T3 - - --T 
2 3 

2Tk 3Tk 

82 = 
4S3 3 

4(1..4 1 + "4,3) 85 --T 
3 

Tk ' 

= _1_ T3 + (_1._ ,3 - 485) (t..4,1 + "4,3) . 
3T3 3 

k 3,k 
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T 
Substitution into ( 5. 1 ) leads to a third degree polynomial for u. + -

.K 'k 

( 5. 3) 

3 
T • 

In the ALGOL 60 implementation of scheme (2. 1) the coefficients of this 

polynomial are automatically computed and stored in an array I, where the 
( 0) 

j-th row of I contains the j-th component of the coefficients '1it• fk+ 1, ...• 

Thus in terms of I formula (5.3) reads 

( 5. 3' ) T 
~+-= 

'k 
I 

6 • The procedure EFFORK 

In this section we describe an ALGOL 60 version of the integration 

process discussed in the preceding sections. 

The heading of the procedure EFFORK (Exponentially Fitted Fourth Order 

Runge Kutta method) reads as follows: 
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procedure EFFORK (t, te, mO, m, u, derivative, output, k, phi, sigma.O 

sigma1, sigma.2, roO, ro1, r62, p, eta, aeta, reta, 

hmin, hmax, I, fillI); 

integer mo, m, k, p; 

real 

array 

t, te, phi, sigmaD, sigma1, sigma2, roO, ro1, ro2, eta, aeta, 

reta, hmin, hmax; 

u, I· 

procedure derivative, output; 

boolean fillI; 

The actual parameters corresponding to the formal parameters are: 

t <variable> ; 

t is used as Jensen parameter; 

entry: the initial value t0 ; 

te <expression> ; 

the end value of t; 

mO,m <expression> ; 

indices of the first and last equation to be solved; 

u <array identifier> ; 

a one-dimensional array u [mO : m] ; 

entry: the initial values of the solution u(t); 

derivative: <procedure identifier> ; 

output 

k 

a procedure to be declared by the user: 

procedure derivative (t,v); real t; array v; 

<body> ; 

upon completion of a call of derivative array v should contain 

the components of f(t,v); 

<procedure identifier> ; 

a procedure to be declared by the user: procedure output; 

<body >; by this procedure one may order to print the values of 

t, u[mOJ, ... , u[m], etc; 

<variable> 
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counts the integration steps; 

entry: it is required that k = O; 

<expression> 

the argument ' of the point in the complex plane where expo­

nential fitting is desired; 

phi= e.rg (z 1) = 2w - arg (z2 ); 

<expression> 

the mdulus of the center of the cluster near the origin; 

sigme.0 = I o0 I ; 
sigma1 , sigme2 : <expression> 

moduli of the {complex) points where exponential fitting is 

desired; 

sigma.1 = lo 1j, sigma2 = lo 2 1; if $~n then it is required 

that sigmal = sigma2 

roO , ro1 , ro2 <expression> ; 

p 

eta 

aeta, reta: 

hmin' hma.x: 

I 

radii of the clusters corresponding to sigma.O ,, sigmal and 

sigma.2 

roO = = p 1 and ro2 

<expression> ; 

determines the effective order of the scheme; the alternatives 

are p = 2 or p = 4 corresponding to (3.2') and (3.2"), 

respectively; 

<variable> ; 

the tolerance nk which is a function of aeta and reta 

(formula (4.1)); 

<expression> ; 

absolute and relative tolerance 

<expression >; 

.'!llini:mal respectively maximal steplength by which the integra­

tion is performed; 

<array identifier>; array I [mO : m, O : 3]; in this array 

information is stored, to be used in the interpolation 

formula (formulas (5;3), (5.3' ); 
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<Boolean expression> ; 

if fillI = fals~ then the statements concerning array I are 

skipped; 

Next the complete ALGOL 60 text is })resented: 

procedure EFFORK(t,te,mO,m,u,derivative,output,k, 
phi,sigmaO,sigma1,sigma2,roO,ro1,ro2, 
p,eta,a.eta,reta,hmin,hmax,I,fillI); 

integer mO,m,k,p; 
real t,te,sigma0,sigma1,sigma2,phi,ro0,ro1,ro2, 
- eta,aeta,reta,hmin,hmax; 
array u, I; 
procedure derivative,output; 
boolean fill I; 
begin real tau,z1,z2,z01,z02,phi0,pi,d2md1,c,c1,tau0; 

integer i, j; 
boolean real,change,righthalfplane,first; 
array mu[0:5],labda[-2:5],beta[3:6], 

r,r1,u0,u1,s[n:D:m],thetha[0:3],e[0:5,1:3]; 

procedure fome; 
begin real t1,t2; 

e[o;i1:=1;t1:=1/tau;t2:=t1xt1; 
e[0,2]:=-1.5xt1;e[0,3]:=e[5,3]:=2xt2/3;e[1,2]:=2xt1X(1-mu[4]); 
e[1,3]:=t2x(2Xmu[4]-5/3);e[2,2]:=2xt1xmu[4]; 
e[2,3]:=t2x(1/3-2xmu[4]);e[5,2]:=>-.5xt1 

end forme; 

procedure coefficient2; 
begin zOl:=z1;z02:=z2;phiO:=phi; 

if righthalfplane then z1:=z2:=0; 
If abs(z1 )>50/\abs{z2)>50 then 
begin real a,b,a2,b2,ab; -

b:=1/(z1xz2);a:=if real then (z1+z2)Xb else -2xz1xcos(phi)Xb; 
a2:=axa;b2:=bxb;ab:=axb;-- -
labda[-1]:=12x(b+a2x(.5-ax(2-3Xa+12xb)+8xb)+ 

4xabx(3Xb-1)-5Xb2); 
labda[4]:=-.5+6xa+12Xab+a2x(-24-96xb+144xab-36xa2+48xa)+ 

b2x(60-144xa); 
labda[3]:=24x(b2X(.5-2Xa+3Xa2-2xb))/labda[4]; 
labda[-2]:=12Xbx(a-2xab+a2X(-4+6xa-6Xb)+4Xb2)/labda[4]; 
goto mu34 

end;-
Ir abs(z2-z1)>.1 then 
begin real array ar;-:4,1:4],f[1:4]; 

rea:I'"Z';integer j; 
:orocedure init(i,z);integer i;~ z; 
begin real z2,z3; 

z:-;;;::z;z2:=zxz;z3:=z2xz; 
if abs(z)<1o-3 then 
begin f[i]:=1/o+z724+z2/120;f[i+1]:=1/24+z/6o+z2/240 ~ 

else 



-20-

z)-( 1 )/z3;f[ i+1] :=f[ i]-(3Xf[ 1)-. 5)/2 end; 
i+l,2 :""1;a[i+1 1 1 :=O;a[i,2]:=z;a[i+1,3):=2Xz; -

11 4]: =z3;a[ i+ 1, 4]: =3xz2 
end· 

( 1 , z 1 ; ini t z2); 
detsol(a, f); 
~ j: =1 step 1 until 4 do beta[ j+2]: =f[ j] 

end else 
F real\tz then 
begin~ z,z2,f1,f2,f3,f4; 

z:-z1 z2:=zxz; 
if z)<11r3 then 
begin f1:=1/6+~+z2/120;f2:=1/24+z/6o+z2/240; 
~ f3:=1/6o+z/12o+z2/420;f4:=1/120+z/210+z2/672 
end else 
begin real expz; expz: =exp( z); 
----r1:=(expz-(1+z+z2/2))/(z2xz); 

f2: =f1-(3Xf1-.5}/z; 
f3:=f1+(1-6xf1)/z2+(.5-6Xf2)/z; 

:=(expz-6Xf1-18xzXf2-9xz2Xf3)/(z2Xz) 
end; 
beta[6] :=f4/6; 
beta[5]:=(f3-6Xbeta[6]xz)/2; 
beta(4]:=f2-3Xbeta[6]xz2-2xbeta[5]xz; 
beta[3]:=fl-beta[6]xz2xz-beta[5]xz2-beta[4]xz 

end else 
begin real array a[ 1 : 4, 1 :4], f[ 1: 4 ]; 

real r,i,z2,expr,r2,i2,rt,it,rn,in,n; 
Meger j; 
r:=z1xcos(phi);i:=z1xsin(phi);z2:=z1xz1; 
expr:=exp(r);r2:=rxr;i2:=iXi; 
rt:=e:x:prxcos(i)-(1+r+r2/2-i2/2); 
it: ==exprXsin( i)-( i+rxi); 
rn:=rx(r2-3Xi2);:in:=iX(3xr2-i2); 
n:=rnxrn+inxin; 
f[1]:=(rtxrn+itxin)/n;f[2J:=(itxrn-rtxin)/n; 
f (3]: =f [ 1]-3X{rXf[1 ]+iXf[2]-r/6) /z2; 
f[4]:=f[2]-3x(rXf[2]-ixf[1]+i/6)/z2; 
a[ 2, 1 ] : =a[ 3, 1 ]: =a[ 4, 1 ]: :sa.[ 4, 2]: :::O; a[ 1 , 1 ] : =a[ 3, 2] : =1 ; 
a[ 1,2]: =r;a[2, 2]: =i;a[3, 3]: =2Xr;a[ 4, 3]: =2x1; 
a[1,3]:=r2-i2;a[3,4]:=3xa[1,3];a[2,3]:=2xrxi; 
a[4,4]:=3xa[2,3];a[1,4]:=rn;a[2,4]:=in; 
detsol(a,4,f); 
for J: =1 step 1 until 4 do beta[j+2]: =f[j] . 

end; 
Iaba.a[-1J:=12X(beta.[4]-2xbeta[5]); 
labda[4].=6Xbeta[3]-,5-labda[-1]; 
labda[3):=24Xbeta[6)/labda[4]; 
labda[-2]: =12X(beta( 5 ]--2xbeta[ 6}) /labda[ 4]; 

mu34:mu[3]:=labda[3]+labda[-2];mu[4]:=labda[4]+labda[-1] 
~ coefficient2; 
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Erocedure coefficient4; 
begin real g1,g2,a,b; 

z01:=z1;z02:=z2;phi0:=phi;. 
a:=if real then -(z1+z2) else 2xz1xcos(phi); 
if righthalfplane then --
begin beta[5]:=1/120;beta[6]:=1/720 end else 
if abs( z 1 )<5 10-2 /\ abs( z2 )<5 10-2 then - --
begin beta[5]:=1/120 - z1xz2/5040;beta[6]:=1/720+a/5040 end else 
if abs(zl )>10 4 /\ abs(z2)>104 then - -­
begin beta[6]:=1/(24xz1xz2);beta[5]:==-a.Xbeta[6] end else 
if real then 
begin z1::::Z1;z2:::o-z2; 

if abs(z1-z2)<.1 then 
begin real z,z5,z6,expz; 

z:=z1;expz:::::exp(z);z6:=1/z1'6;z5:= z6xz; 
beta[5]:=expzxz5x(6-z)-z5x(6+zx(5+zx(2+zx(.5+z/12)))); 
beta[6]:=expzxz6x(z-5)+z6x(5+zx(4+zX(1 .5+zx(1/3+z/24)))) 

end else 
begin-

end 

gl :=if abs(zl )<5 10-2 then 1/120+z1/720+z1xzl/5040 else 
if abs(z1)>104 then=(z1+4)/(24xz1xz1) else -­
l7Cz1~5)x(exp(z1)-(l+z1x(1+z1x(.5+z1x(TT6'+z1/24))))); 

g2:=if abs(z2)<5 10-2 then 1/120+z2/720+z2Xz2/504o else 
if abs(z2)>104 then -(z2+4)/(24xz2xz2) else --
17(z~5)x(exp(z2)-(l +z2X(1 +z2x( .5+z2x(TT6'+z2/24)) ))); 

beta[5]:=(z2xgl-z1Xg2)/(z2-z1);beta[6]:=(g2-g1)/(z2-zl) 

end else 
begin.-ieal expre,expim,a2,a4,b2,b4,a2b2,ret,ren,imt,imn,d; 

a: =a/2; b: =d2md 1 xtau/2; 
expim: =exp( a); 
expre:=expirn><cos(b);expim:=expimXsin(b); 

end; 

a2:= a x a; a4:~a2xa2;b2:~bxb;b4:=b2xb2;a2b2:=20xa2Xb2; 
ren:=b2X(10Xa4-a2b2+2xb4); 
imn:=axbx(-2 xa4+a2b2-10xb4); 
ret:=expre-1-a-(a2-b2-axb2)/2-a2Xa/6-(a4-.3xa2b2+b4)/24; 
imt:=expim-bX(1+a+a2/3+(a+l)x(a2-b2)/6); 
d:=l/(renxren+imnXimn); 
beta[6]:=>-2Xdx(renxret+imtximn); 
beta[5]:=-axbeta[6]+2xbxdx(renximt-retximn) 

labda[3]:= betaf6]/beta[5]; 
labda[ 4]:=24xbeta[5]; 
labda[-2]:=.5-labda[3]; 
labda[-1]:~.5-labda[4] 

~ coefficient4; 



-22-

procedure stepsize; 
begin real d, d 1, d2, s1, s2; 

rea:r:-:abs(phi-pi)<.01; 
righthalfplane:=(pni<piX.5Vphi>piX1 .5); 
dl:=sigrna1;d2:=sigma2, 
if hrnin=brnax then begin first:=true;tau:=hrnin end else 
If first then begirlf'i'rst:=false;tau:=tauO end else---
begin real taustab, tau1; -- - -

ta~ax; 
if rea.l.J\abs(d1-d2)<.1 then taustab:=if p=2 then 
- cxdi'ltro1xro1) else c/sqrt(d1xrol) 

else ~ 

begin d2md1:=if real then abs(d2-d.1) else abs(2Xd1Xsin(phi)); 
-- if p=2 then begin sl: =abs( cXd2{lrOTxd2md 1)); 

- --s2::a:b5 ( cxd 1 / ( ro2xd2md 1 ) ) 
end else 

begin d:=d1Xd2/d2md1;s1:=abs(cx(d/ro1)1'.25/dl); 
~ s2:=abs(cx(d/ro2)1'.25/d2) 

end; 
taustab:=if s1<s2 then sl else s2 

end; 
d:=abs(cl/(sigmaO+roO)); 
if taustab>d then taustab::::d.; 
if tau>taustab then tau:=taustab; 
for j:=mO step 1 until m do ul[j]:=ul[j]-u[j]; 
eta:=aeta+retaxsqrt(vecveC'[mo,m,O,u,u)); 
taul:=tauOX(l/3+eta/(.75x(eta+sqrt(vecvec(mO,m,O,u1,u1))))); 
if taul<tau then tau:=tau1; 
if righthalfplane then tau: =brnax; 
If tau<hrnin then t~brnin; 

end;- --
tauO: =tau; 
if t+tau>te then tau:=te-t; 
If tau<abs(txro-12) then goto out; 
ZT:=tauxd1;z2:=tauxd2; ~ 
s 1 : =. 1 xro 1 xtau; 
if real then begin s2:=.1Xro2Xtau; 
- -- - change: =k=OV(abs(z01-z1 )>s1Vabs(z02-z2)>s2) 

end stepsize; 

end else 
begin d: =s1 xsl; 
~ change:=k=OV((z1-zo1)x(z1-zo1)+ 

z1xzo1x(phi-phiO)x(phi-phiO)>d) 
end 

~rocedure difference scheme; 
begin real mt,lt,ltau; 

i:=-1; 
!:?E. j:=mO step 1 ~ m ~ uO[j]:=ul[j]:=r[j]:=U[j]; 
if fillI ~ ~ j:=rno step 1 ~ m ~ I[j,O]:=u[j]; 

nextterm: 
mt:=mu[i+l]Xtau;lt:=labda[i+l]xtau; 
if i=2Vi=3 then 
begin ltau:=labda[i-4]xtau; 

for j:=mO step 1 ~ m do r[j]:=uO[j]+ltxr[j]+ltauxrl(j] 
end else 
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if i>-1 then for j:lllllli.) step 1 until m do r[j]:-uO[j]+ ltxr[j]; 
T:"•i+1;-- - -
if 1•51\hmax~hmin then 
begin real lt1,m:t1;lt1:=mtl:=tau/2; 

end; 

for j:lllllli.) Ctep 1 until m do s[j]:•uO[J]+lt1xr[j]; 
derivative t+mt1,sr-- -

derivative(t+mt,r); 
if i=1 then for j:=mO step 1 until m do r1[j]:=r[J]; u r111"It11en - -
begin integer k; 

if i..o then for j:=m) stef 1 until m do 
for k:='l,2,'3do I[J,k]:=e i,k]xr[J]; -
tti=1Vi=2Vi~then 
fur J: =m::i step TUiitn m do 
for k:=2,3 do I[j,kJ:=I(J;k]+e[i,k]xr(J] 

end;- -
tti=0Vi=1Vi=2Vi=5 then 
begin real tht; --

tht::=if i=5 then ta.uxtheth.a[ 3] else tauxthetha.[ i]; 
for j~ step 1 until m do u[j]:=u[j]+ thtxr[J]; 
tthminrbmax then- -
begin if i=5 then 
--i:iegin tht:=tau/3; 

- for j:=tnO step 1 ~ m do u1[j]:=u1[j]+thtxs[j] 
end else 
tti=1Vi=2 then 
for j: =mJ step 1 ~ m do u1 [j]: =ul [J ]+thtxr[j] 

end 
end;-
if i<5 ~ goto nextte:nn; 
t:=t+tau 

~ difference scheme; 

pi: =4xarctan( 1 ) ; 
if p=2 then begin c:=sqrt(2);c1:=2 end 
- -- - ~begin c:=2'4;f.°25;c1:=2.63 end; 
tauO:=hmin;first:=true; 
mu[O]:=O;mu[1]:=muf2'17=mu.[3]:=mu[4]:=.5;mu[5]:=1; 
theth.a[O]:=thetha[3]:=1/6;thetha.[1]:=thetha[2]:=1/3; 
labda[O]:=O;labda[l]:=labda[2]:=.5;labda[5]:=1; 

next level: 
stepsize; 
if change then 
begin if p=2 then coefficient2 else coefficient4 end; 
1T1IllI then forme; -
E=k+1; -
difference scheme; 
output; 
if t<te ~ goto next level; 

out: 

~ runge kut ta orde 4; 
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Finally, an outline is given of the subprocedu:resoccurring in proce­

dure EFFORK. 

procedure forme 

This procedure is used for the construction of array I, concerning the 

interpolation formula. 

procedure coefficient 2 

If the parameter p has the actual value 2 this procedure is used for 

the calculation of A3, 1, A3, 2 , A4, 1' A4, 3 ; 

pr.ocedure coefficient 4 

If p = 4 this procedure calculates A3, 1, A3, 2 , A4, 1' A4, 3 · 

procedure stepsize 

The determination of the step Tk is based both on the stepsize control 

described in section 4 and the stability regions (3,5), (3,5 1 ), (3.6), 
(3.6 1 ). 

Also in stepsize the variations of the complex points ~ = T * o1 is 

considered. The coefficients are newly computed when I d2J_ j > • 1 * T * 11_. 

procedure difference scheme 

By this procedure the values of u[j], representing the components of 

the numerical solution u(tk), are replaced by the components of an 

approximation to u( t.k +T k) • 

7. Numerical examples 

In this section results are presented of procedure EFFORK when applied 

to a number of stiff differential equations. 
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Two coupled equations 

Consider the following initial value ;problem (cf. Fowler and Warten 

[ 2] 

( 7. 1) 

where D 

. 
U = DU + F, U(O) = U0 , 

= .f-500.5 
\ 499.5 

The matrix D has the eigenvalues al = 
cal solution of (7.1) is given by 

-1000 and a = -1. The analyti­r 

U = 2 ( 1-e -t ) C ) + • 1 * -1000t 
e 

A uniform steplength was used for the integration fro.m t = O to t = 10. 

In table 7.1 we give - 101og E, where E = max j11c(t) - ~(t)j, for some 
k=1,2 values of the stepsize T. 

Parameters used 

phi= n, sigma1 = sigma2 = 100, hmin = hmax = T. 

Since the integration was performed with a constant ste;plength, the choice 

of the parameters sigmaO,.roO, ro1, ro2, eta, reta is irrelevant. 

Table 7.1 Numerical results for problem (7.1) 

effective order t ste-psize T 

1 .5 .2 . 1 .05 .02 

2 1 .7 1.5 2.4 3.0 3.7 4.7 

2 10 3.0 4.4 5.5 6.1 6.8 7.8 

4 1 1. 7 3.3 5. 1 6.3 7.6 9.3 

4 10 5.0 6.4 8. 1 9.0 9.6 12.0 
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. t t .. 
The single equation U = -e U + e lnt + 1/t 

We consider the initial value problem: 

(7.2) { U(.01) = ln(.01). 

This problem has the solution U(t) = ln(t). Since the Jacobian matrix 

behaves as -exp(t), the differential equation becomes increasingly stiff 

for t > 3. This suggests the use of a variable steplength. The fourth 

order exact scheme gives rise to the stability condition (compare (3.5 1 ) 

with z 1 = z2 ) 

( 7. 3) 
241/4 

'k ~ ( o*p ) 1 /2 

where 

t o = e and 

p = radius of the cluster. 

Instead of p = 0 we took 

Substitution into (7.3) yields 

(7.3r) t < 24 116 
k-

From this it follows that the parameters ro1 and ro2 should be chosen 

according to 

(7.4') ro1 
1/6 tk/3 

= ro2 = 24 * e 
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When the second order scheme 1.S used, a similar calculation yields (com-

pare (3.5) with z 1 = z2 ) 

ro 1. = ro2. = 21/6 * 2tk/3 
e 

However, since both schemes give rise to almost the same results, in table 

7.2 only the results obtained with the fourth order scheme are presented. 

Parameters used 

te = 6 ,5' 

phi sigma 1 sigma2. t ro1 ro2. 241/6 t/3 = 1T' = = e = = * e ' ' 
sigma.a = roo = o, 

p = 4, 

aeta = na' reta = nr' hmin = • 01. 

Table 7. 2 The effective four,th order method applied to problem ( 7. 2) 

na = nr hmax stepnumber - 101oglu(6.5) - U(6.5)I 
k 

10-2 • 1 159 6.4 

10- 1 • 1 105 4.2 

10-2 .5 147 6.4 

10- 1 .5 81 4.6 

. -1 A more detailed description of the experiment with n = n = 10 a r 
and hmax = .5 is shown in table 7,3, We have respectively given the step-

number k, the value tk of the integration variable, the number of correct 

digits of u( 6. 5), the maximal step 's allowed by stability, the maximal step 

'a allowed by (4.4' ), the actual step -r = min (-rs,Ta) and the eigenvalue o. 
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Table 7.3 The effective fourth order method applied to problem (7.2) with 

n = n. = 10-1 and bm.aX = .. 5 a r 

10 . lo I k t - log t: T T T s a 
5 . 174 2.9 1. 58 .07 .07 1. 19 

10 1.588 2.3 .80 .45 .45 4.89 

15 3. 303 2.3 .22 . 30 .22 27.2 

20 4.062 2.6 . 12 .17 • 12 58. 1 

25 4.556 2.4 .086 . 135 .086 95,2 

30 4.925 1.9 . 067 . 067 .067 137,6 

35 5. 191 2.2 .055 .074 .055 179.7 

40 5.412 2.5 .48 .057 .048 224. 1 

50 5,774 2.8 .037 .024 .024 321. 9 

60 6.068 2.2 . 030 . 035 .030 432. 0 

70 6.295 3.0 .026 .027 .026 541.6 

80 6.495 3. 1 .023 .013 .013 661. 8 

81 6.500 4.6 .022 .014 .005 665.1 

From these results it is seen that initially the discrepancy of 

linearity controls the step size ([0,1.6]). Fort> 3 the stiffness of the 

equation becomes an important factor; in the interval [3.3, 5.4] the steps 

are completely determined by stability conditions. However, when t increases 

the equation also becomes increasingly non-linear; for t > 5. 4 both stiff­

ness and non-linearity enter in the determination of a suitable step length. 

A third order differential equation 

Consider the initial value problem 

(7,5) { 
U + (1-2rcos~) U ~ r (r-2cos*) U + r 2u = O, 

U(O) = 1, u (o) = O, u (o) = 0 
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where rand c/> are given parameters. 

This problem can be written in the equivalent form 

(7.5') 

+ 

. 
+ 
u= 

U(O) = 

0 

r(r-2coscp) 

where Uhas the components U, U and U 

+ 
u ' 

The eigenvalues of the Jacobian matrix of (7.3') are 

ict> -it/> -1, re and re . 

When r = 1000 and c/> 

given by 

2 
= 3 TI, the analytical solution of this problem is 

-+ u = 
-t 

e 

We use this problem to show some results of the interpolation formula 

(5.3). 

Para.meters used 

te = T, 

phi 2 sigrna1 sigma2 1000, = - 7T, = = 
3 

p = 4, hmin = hmax = T, 

fill! = true 



Starting in t = O we applied formula ( 5. 3) with Tk = 1 and Tk = . 5 ~ 

respectively. In table 7. 4 we have given the interpolation point t and 

10 I ..... I - log e, where E = max '\(t) - '\(t) . 
k=1,2,3 

Table 7.4 The interpolation formula applied to ;problem (J.5') 

t •=1 T=.~ 
--

• 1 2.9 3.6 

.2 2.3 3. 1 

.3 2.0 3.0 

.4 1. 8 3.0 

.5 1. 7 3.4 

.6 1.6 

.7 1.6 

.8 1. 7 

.9 2.2 

1.0 1. 7 

A sy.stem of two non-linear equations 

In nuclear reactor physics the following problem is of interest 

(cf. [7]). 

. 
u1 = .2(U2-u1), 

( 7.6) 
. t 
u2 = 1ou1 - (6o+s) u2 + .124t, 

u1(o) = o, u2 (o) = o 
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The eigenvalues of the Jacobian matrix of ( 7. 6) are· a.pprorime.tely -60 

and - . 17, changing slightly during the integration from t = O to t = 10. 

An analytical solution is not obtained and the results from EFForuc, p = 4, 
using a small steplength were taken as reference solution. 

Since a uniform steplength was used, only the following parameters are 

of interest: 

phi = 'IT 

sigma 1 = sigma2 1 t t = 2( 60. 2+a+sqrt ( ( 60. 2+s) (60-i) +8) 

hmax = bmin = 1"· 

In table 7.5 we listed - 10logl'1r(10)-~(10)I, k = 1,2 for some values 

of the step size T. Both second and fourth effective order schemes vere 

used. 

Table 7.5 Numerical results for problem (7.6) 

I p = 4 p = 2 
I 

'[' u, ~ u1 ~ 
• 1 8.4 6.4 5.7 6.6 

.2 7.3 5.3 4.6 5.0 

.3 7. 1 4.6 4. 1 4.8 

.4 6. 1 4.o 3.8 3.6 

.5 4.4 4.9 3,5 4.4 

.6 unstable 3. 1 2.5 

.7 2.9 2.7 

.8 2.5 1. 7 

.9 unstable 

An examination of these results clearly shows that the P = 2-scheme 

has an extended region of stability, while the p = 4-scheme is more accu­

rate. 
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Finally we give some results of the interpolation formula, applied to 

( 7 .. 6). Using the fourth order scheme, one integration step of length . 5 was 

performed, starting in t = 0 and t = .5, respectively. The results at some 

interpolation points are listed in tables 7.6 and 7.7. Hereby, we denoted 

by u. the reference solution and by~- the solution obtained with the 
1 1 

interpolation formula. 

t 

• 1 

.2 

,3 

.4 

.5 

t 

.6 

.7 

.8 

.9 

1.0 

Table 7.6 The inter;polation formula applied to problem (7.6) 

u1 I u 1-:;;:11 ~ lu2-~I 

. 15 10-5 4 10-5 .17 10-3 10-2 

.69 10-5 10-4 ,38 10-3 4 10-2 

• 16 10-4 2 10-4 ,59 10-3 6 10-2 

.30 10-4 2 10-4 .80 10-3 5 10-2 

.47 10-4 7 10-9 .10 10-2 3 10-5 

Table 7.7 Results of the interpolation formula with initial 

value t = .5 

lu1-~1 I 
10 ~ 

l~-~I 10 I ~ I u1 - log(lu1-u1l/u1) .~ - log( u2-~ /u2 ) 

.68 10-4 3 10-8 3.4 • 12 10-2 8 10-6 2.2 

• 93 10-4 9 10-8 3.0 .14 10-2 2 l0-5 1.8 

• 12 10-3 10-7 3,0 • 16 10-2 4 10-5 1. 7 

. 15 10-3 10-7 3, 1 • 18 10-2 3 10-5 1. 8 

• 19 10-3 8 10-9 4.4 .21 10-2 2 10-6 3.0 

From these tables it may be concluded that the interpolation formula 

yields poor approximations in the initial phase, but is quite satisfactory 

when the stiff components become negligible. 
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