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1. Introduction 

This paper contains two applications of stabilized Runge-Kutta methods 

for numerical integration of initial boundary value problems. These meth

ods are described and analysed in van der Houwen [3]. Both problems con

sidered here are chosen in the field of hyperbolic differential equations. 

The first problem originates from a paper by A. and F. Solomon [8]. They 

solved the problem numerically by means of a rather specific scheme. 

Our purpose was to compare these results with those which may be obtained 

by the more general, stabilized Runge-Kutta methods. 

The second problem is a mathematical model of dispersion of gas in a tube. 

This problem initially was subject of investigation by a university labo

ratory on chemical engineering. 

The ALGOL 60 procedure "modified runge kutta 11 presented in Beentjes [1] 

was used. This procedure chooses its step sizes automatically, depending 

on the reQuired accuracy and on the stability properties of the formula 

which is used to solve the system of differential equations. 

The numerical experiments were carried out on the EL X8 computer of the 

Mathematical Centre. 
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2. The equation (tu ) = u 
t t xx 

In this section we describe some methods for solving the initial 

boundary value problem 

( 2. 1 ) u 

u 

u xx 

= f(x), 

= g(t)' 

0 s x s 21T t > 0 ' 

0 s x s 21T t = 0 ' 

x = 0, x = 2n, t ~ 0 , 

for given, sufficiently differentiable functions f(x) and g(t). 

In 1969 A. and F. Solomon [8] published a paper in which a numerical 

scheme for this problem was proposed. 

We will compare our methods and results with those published in [8]. 

Equation (2.1) arose from considerations of heat conduction with delay 

and also governs the motion of a homogeneous rope with one free end when 

the variables t and x are interchanged. 

It is hyperbolic for t > 0 and parabolic for t = O. In the latter case the 

equation reduces to the heat equation 

(2.2) = u xx 

In the following subsections we examine some methods for solving the par

ticular initial boundary value problem 

t Utt + ut = u 0 s 
xx 

x s 2rr t > 0 ' 

(2.3) u = cos x 0 s x s 21T t = 0 ' 

u = J 0( 2/t) x = 0, x = 2n ) t ~ 0 . 
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The ~nalytical solution reads U(x,t) =cos x J 0(2/t), 

where J 0 denotes the Besselfunction of order zero. 

2.1 The discretization of the space derivatives 

Calling Ut = v and Ux = w we rewrite (2.3) as a system of first order 

partial differential equations 

= (;:~: 
(2.4) v(x,O) = -cos x 

w(x,O) = -sin x ' 
v(O,t) = v(2rr,t) = -J 1 ( 21t) I It 

w( 0, t) = w(2rr,t) = 0 ' 

or more compactly, 

( 2. 5) 

a;= A(t, 0/ax); 
at 

-+ -+ 
r(x,O) = r 

0 

-+ -+ -+ 
r(O,t) = r(2rr,t) = r 0 . 

If we discretize the operator 0/ax in (2.5) we are led to a set of first 

order ordinary differential equations, i.e 

+ _ 1 /t E -E 

(2.6) 
dr 1 /t + - + 
dt = 2h r 

' 
E -E 

+ - 0 
2h 

where E± are the usual shift operators and h denotes the mesh size on the 

x-axis. 

The vectorfunction ;(t) has the components 



-5-

where N is the number of points used on the x-axis. 

Problem (2.5) now obtains the form 

(2.7) 

with 

D = 

and 

+ 
r = 

-+ -+ + 
r = D r + g(t), 

v(jh) = -cos(jh), 

w(jh) = -sin(jh), 

' _1/t 
--- 1------

0 2h o------o 
1 '-.._ I 

-- 0 '-.._ I 

2 h "' "' "'-
0 " " "' I '-, '- '-

I "-- '- 2h 
I "-1", 
0- - - - 0 -2h 0 

I 

VN-1 
+ 

- - - - g = 
~1 

I 
I 

WN-1 

j=0,1, •.. N 

I o 
I 

1 
2ht 

2h 

1 --2h 

0--- - ---0 
I 
I 

2ht 
_1_ 0 

-2ht - - -

0 

0 

I 

0 

- - - - - -·-- - -

J1(2/t)//t 

0 

I 

0 
J1 (2/t)//t 
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2.2 Numerical integration methods and stability criteria. 

In order to integrate system (2.7) numerically we use polynomial 

methods described and analysed in [2]. 

We have to select suitable polynomials to integrate our system. 

This selection depends completely on the location of the eigenvalues of 

the operator D of equation (2.7) in the complex plane. 

Moreover, the spectral radius cr of D plays an important role in stability 

considerations. 

We determine these eigenvalues by substituting the vector 

(2.8) ~(t) = ;'(t) exp(i w j h) 

into the equations 

_1/t 1 E+-E-
/t~ 

(2.9) 
-+ ..,,. 
e = 8 e E -E + -

2h 0 

It then follows that the eigenvalues 8 of D are 

(2.10) 

We distinguish the following cases 

1 ) t ::::: h2 /4. 

From (2.10) it follows that all eigenvalues are real and negative. 

The spectral radius cr is given by 1/t (see figure 2.1) 

1 
- 2t 

0 

0 

fig. 2.1 Eigenvalues of Din case 1. 
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2) h2/4 ~ t ~ h2 . 

In this case we see that the eigenvalues 8 are situated on a 

cross in the left half plane (see figure 2.2). 

It is easily verified that the spectral radius is still the same 

as in case 1. 

-1/t 

ih 
2t 

2 fig.2.2. Eigenvalues of D in the case h /4 

Again the eigenvalues 6 are situated on a cross as in figure 2.2. 

However, the spectral radius becomes 1/h/t, because of the fact 

that in this case maxlol ~ maxlRe(o) I. 
w w 

We may conclude that in all cases the eigenvalues are situated in a region 
. ( -2)2 2 -4 consisting of the negative x-axis and the disk x+h + y ~ h , 

where 8 = x+iy (see figure 2.3). 

-CO 

-i/h2 

fig.2.3. Location of the eigenvalues of the matrix D. 
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The spectral radius is given by 

rt for t ~ h2 

(2.11) o(t) = 
1 /hit for t ~ h2. 

Having determined the eigenvalues and the spectral radius of the Jacobian 

matrix D we can select the polynomials which generate our integration 

methods. 

We also have to consider the accuracy required. 

If only first order accuracy is wanted and the eigenvalues are real or 

"almost" real, then the Chebyshev polynomials 

T (1+Z/n2 ) = cos[n arccos(1+Z/n2 )J are most efficient. 
n 

For higher order accuracy we refer to [5]. 

If the eigenvalues are purely imaginary the polynomial 

(2.12) 1 2 1 3 1 4 
P4 ( z) = 1 + z + 2 z + 6 z + 24 z . 

is to be preferred. (see L4J). 

Figure 2.3 suggests to start with one of the polynomials for real eigen

values. However, the eigenvalues of D soon run out of the stability re

gions of these polynomials so that we have to switch to P4(z). Therefore 

we preferred to start directly with P4(z). 

The stability condition becomes (see [2]) 

(2.13) 

Polynomial (2.12) is fourth order exact. Hence, the analytical solution 

of (2.3) will locally satisfy the difference scheme generated by (2.12) 

apart from a term 

(2.14) 

Since (2.13) allows time steps of order h we have an approximation error 

of O(h3). 
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The approximation errors due to discretization of time and space deriva

tives a.re of order h5 and h3, respectively. 

In general, the best results are obtained if both errors are of the same 

order, since in that case the possibility of partial cancellation exists. 

Therefore we can either lower the order of the method or raise the order 

of the operator which approximates the space derivative. 

However, since we are interested in a rather accurate result, we decided 

for the latter. In the following subsection we derive an operator which 

approximates the operator a;ax with third order accuracy ash+ o. 

2.3 Higher order discretization of the space derivative. 

Taking into consideration arguments given at the end of section 2.2 

we need an operator that approximates the derivative 0/ax with third or

der accuracy. For that purpose we define the operator 

(2.15) A --- aE2 bE dE E2 u + _ + c + + + e + , 

where a,b,c,d and e are weight para.meters to be determined in such a way 

that b. approximates the operator 0/ox with third order accuracy. After ex

pansion of the operator 6, it turns out that conditions for a third order 

approximation are 

a + b + c + d + e = 0 ' 
-2a b + d + 2e = h-1 

' 
(2.16) 4a + b + d + 4e = 0 

-8a b + d + Be = 0 

16a + b + d + 16e = 0 . 

A simple calculation reveals that (2.16) is solved by the set of values 

(2.17) a = 1 
12h ' b 

2 = - 3h ' c = 0 ' d = 2 
3h 

and e = - 12h 
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The operator 6 can be applied at the internal gridpoints 

(jh,tk) j = 2,3, ... ,N-2. 

At the point (h,tk) we define the operator 

(2.18) n' = a'E + b' + c'E + d 1 E2 + e 1 E3 
1 - + + + 

and at the point ((N-1)h,tk) the similar operator 

(2.19) n~ - a I 'E+ + b I ' + c' 'E + d I I E~ + e I 'E~ 

a It turns out that a third order approximation to /3x at the boundary 

points is obtained by 

(2.20) a'= -a'' =J/4h b' = -b'' = _5/6h 

d' = -d'' =J/2h e' = -e' 1 = 1 /12h 

c' = -c'' = 3/2h, 

Problem (2.5) can now be approximated by an initial value problem for the 

system of ordinary differential eqµations (2.7), 

(2.21) 

b' /t c';t d' /t e';t 0--------0 

b/t C/t d/t e;t 0 

a;t b/t, C/t' d/t -, e /t, .__ 
..... ' ---- I 

(2.22) ' ----
...._ 

' ' B = 0 ' ' ---- ---- ' 0 
' ' ' ----

,, 

':;~ 
'b;t ' " , -a;t C/t d;t 

I 0 a;t b/t Cjt 
I 

e' '/t d' '/t c I I It b I I /t o- - - - - - - - 0 
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(2.27) C = t B 

and 

0 

I 

(2.24) 0 

a' 

a 

0 

I 

0 

e 

a'' 

From (2.17) and (2.20) it follows that 

(2.25) B = 12ht 

-10 

-8 

' 
0 ' 
I 

I 

I 
I 

' 

18 

0 

-8 
' 

' 
' 

'1 

0 

0------0 

' 

-6 
8 

0 
" ' 

' 
~8 

-1 

-1 

8 
', 

"' 
' 

' 
"o 
-8 

6 

0------0 

0 

-1 
' ' I 

' ' 0 
' ' ' '8 ' -1 

0 8 

-18 10 

It is easily verified that the eigenvalues A of the operator 6 are 

(2.26) A = i sin wh(4-cos wh) /3h . 

The eigenvalues of the matrix D become 



-12-

(2.27) 
I 4 . 2 (4 )2 ± 1 - ""'-"'t_s;;;;..1=n...;.._;a"-'--_-_c_o_.s--"-a ) 

9h2 

where a = wh ( c f. ( 2. 1 0) ) • 

An analysis of formula (2.27) similar to section 2.2 reveals that the 

spectral radius 

for 
(2.28) 

for 

The stability condition becomes 

(2.29) 'k $ 2hl2tk /1.4. 

t $ 12h2/(3+8/6) 

4h217. 53. t 2: 

Now the analytical solution of (2.3) locally satisfies scheme (2.7) apart 

from a residual term 

(2.30) 

2.4 Actual computation scheme and numerical results. 

Since the spectral radius of the matrix D is infinite for t = 0 , 

we have to start our calculations in a way different from the one we 

described in the preceding sections. 

We consider the Taylor series 

2 
v(x,To) = v(x,o) +To vt(x,O) +To /2! vtt(x,O) + •.• 

and determine the following limits (cf .2.4) 
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lim vt = lim ~v:w~ = 1 ; 21 v (x,o) ' t+O t+O 
xx _, 

lim vtt = lim d ~v:w~ = 1/3! v (x o) ' t+O t+O at xxxx ' 

lim vttt = lim 32 ~v:w~ = 1/4! v (x o) . 
t+O t+O xxxxxx ' 

at 2 

Hence, the Taylor expansion becomes 

(2.31) v(x,T 0 ) =cos x(-1+ 1 I;! 
2 3 

.I..£_+ To ) = 2!3! 3!4! - ... 

In a similar way we find that 

2 3 
(2.32) sin x(-1+ To 

( 1 ! ) 2 
To + To - )- -sin x J 0(2ho) 
(2!)2 (3!)2 ... 

+ -+ ( After initializing the vectors v and watt= T0 by 2.31) and (2.32) res-
. +( ) +( ) pectively, we calculate the values of v T0 + kTk and w T0 + kTk by a 

fourth order Runge Kutta method which reads, represented by the array form 

introduced by Butcher, as follows 

0 

~ 
1 /2 1 /2 

(2.33) = 1;2 0 1;2 
-

0 0 

1 /6 1 /3 1;3 1/6 

Here Mis the column vector (µ 0 , ... ,µm_ 1) , A the lower triangular ma

trix containing the parameters Aj,l and G the row vector (e 0 , ... ,8m_1). 

2 
Let T0 = h /2 then, by virtue of (2.11), we may take for the next step size 
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2 Af.ter this step t > h holds. Hence, the step size is determined by 

for first and third order approximations of the space derivative, respec

tively. 

At every t-level we have to determine the values of uk by a quadrature 

formula, e.g. Simpsons rule, 

(2.34) 

If higher order accuracy is required we can use one of Bode's rules [6]. 

This completes the description of the method used. 

In table I and II the results of the experiments are listed for discreti

zation I and II, respectively. 

Table I First order exact approximation of 0/ax (discr. I). 

t l~ 0 TT/5 2TT/5 3TT/5 4TT; 5 TT €. 
rel £abs 

1. 99958 
0 +1 +l 

-.8910 
0 0 0 

.3410 
-;:: 

19 0 .3710 . 1510 -.1910 - . 7910 . 71 10 

10.40000 4o 
0 +1 +1 0 0 

.4410 
0 -2 0 .5010 · 1710 -.1210 -.2110 - . 7010 . 27 10 

66 
0 +1 -.3810 

+1 +1 
-.1810 +1 

. 1410 
+1 

. 6110 
-2 30.13000 0 .2910 .2210 -.2010 

60.23000 92 0 .6610 
-1 

- . 1310 
+1 

.3510 
+1 

.2010 
+1 

. 1810 
+1 

. 1410 
+1 

.3810 -2 

100.02800 118 . 6710 
0 +1 -.4810 

+1 +1 
-.1810 

+1 
. 1610 

+1 
.6710 

-2 0 .3510 -.2110 
----·--

In these tables the relative errors in percents, i.e 

(2.35) 

( j ) 
are shown. The error c:k is defined by the difference between the analy-

tical solution of (2.3) 



I 
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(2.36) U(x,t) = cos x J 0(2lt) 

and the numerical solution ~[j] at the point (jh,tk) 

~[jJ. 

The errors E 1 and E b in the last two colu.mns of table I and II are de-re a s 
fined by 

(2.37) 

and 

(2.38) 

where II II denotes the Euclidean norm over the grid points x. = jh 
J 

( j = 0' 1 ' ... '50) . 

We obtain far more accurate results if we apply the third order exact ap

proximation of 3/3x as given in section 2.3. 

Table II Third order exact approximation of 3/3x (discr. II). 

t ~ 0 rr;5 2rr; 5 3rr; 5 4rr; 5 7T t:rel 

1. 99958 26 0 -.3410 
-2 

- . 961 0 
-2 

. 111 0 
-1 

. 431 0 
-2 

. 361 0 
-2 

.3910 
-2 

10.31000 55 0 .9610 
-3 .2310 

-2 
-.1310 -2 -.1510 -2 .2210 -4 

. 661 0 
-3 

30.45000 92 0 -.3510 
-2 -.9210 -2 . 11 1 0 

-1 
.4610 -2 .3910 

-2 
.4010 

-2 

60.36000 128 0 .5010 
-2 . 131 0 

-1 
-.1110 

-1 
-.3210 

-2 
-.2210 

-2 
. 411 0 

-2 

100.02800 164 0 .2710 -3 . 321 0 -3 . 741 0 
-3 

.6810 
-3 

. 661 0 
-3 

.4610 
-3 

In order to compare our results with those of Solomon we introduce a 

measure for the computational labour by 

(2.39) 
K n c 

C = iOOh 

Eabs 

. 191 0 
-4 

4 -5 . 01 0 

6 -4 . 1 1 0 

. 121 0 
-4 

. 191 0 
-5 
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where K denotes the number of integration steps and n the order of a meth

od with respect to t. ( c= 1 for a three-point formula and c=2 for a five

point formula). 

Two methods are comparable if for both schemes the computational labour is 

nearly equal. Therefore we choose in discr. II the value of h twice as 

large as we used in computing table II, i.e. h=4n;100. 

In table III and IV we show the results for both Solomons method and 

discr. II. 

Table III. Comparison of Solomons scheme and discr. II. 

~ 0 7f/5 2n; 5 3n;5 4n; 5 e: rel e:abs 7f 

t=1.99958 

Solomon 46 0 .7110 -2 -.2010 -1 . 111 0 
0 

0 7910 
-1 .7810 -1 - -

II 15 0 .6610-3 -.1110 -1 .2410 -1 .1310 -1 . 111 0 
-1 

.8810 -2 .4310 -4 

t=100. 028C 

Solomon 319 0 .3210 -2 . 181 0 -1 .3410 -1 -.201 o· 
-1 . 181 0 -1 - -

II 85 0 .2210 -2 . 5210 -2 .2410 -1 .1610 -1 . 141 0 -1 . 111 0 -1 .4310 -3 

Introducing the discrete Euclidean norm 11 II R over the grid points 

xj = jh (j = 0,5, ... ,25) we can produce table IV. 

Table IV. Overall comparison of Solomons scheme and discr. II. 

K t=1.99958 c II e:kl~!ll ul~ h 
~ 

46 Solomon 7 15. 731 0 - 2 27f/100 

15 II 10 3. 121 0 -2 4n/100 

,.___ t=l00.0280 

319 Solomon 51 4.6910 -2 2n;100 

85 II 54 2.8710 -2 4n/100 
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We may conclude that the method described in this paper and which is ap

plicable to a large class of partial differential equations, is at least 

as good as the scheme of A. and F. Solomon, which, as it seems, was con

structed for just one particular equation. With our method we can cover 

all physical problems which give rise to a hyperbolic or parabolic system 

of differential equations with the only restriction that the eigenvalues 

of the Jacobian matrix D should have no positive real parts. 



-18-

3. A dispersion problem. 

The next initial boundary value problem arose during chemical techno

logical investigations [7]. 

ut = -(vu) + x 

( 3. 1 ) U(x,o) = 0, 

U(O,t) = g(t) 

with d = .43410-1 and 

1 

v(x) = ( c 1 + c x)- 2 
2 

v 

4.838~-----

dU xx' 

c1 = 

0 :s; x < 

.427210-1 
' 

6.055 
I 
I 
I 
I 
Ix 

ol--~~~~~~~~~~~~~~~ 

fig.3.1. The function v(x) 

00' 

c2 = - . 59710 -4 

The function g(t) is not given in an analytical form, but as a table of 

values g(tk) , tk = 2.56(.08)7.96. 

g 

fig.3.2. The function g(t) 

Problem (3.1) describes the density of a certain gas in a tube with 

length L = 258.8. The function g(t) represents a gas injection started 

at t = 2.56 untill t = 7.96. 
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The process proceeds as follows: 

A density wave is built up and after some time, say t 1 , it travels along 

the positive x-axis by the convection term -vU . The wave is slightly x 
damped by the term -v'U and spread out by diffusion. The maximal density 

or concentration (U ) moves on untill it reaches the end of the tube max 
at x = L, where measurements are done. 

There are two difficulties in integrating problem (3.1) numerically 

1. Untill the time t = t 1 the step size 'k has exactly to be .08 or, if 

this is not possible in view of accuracy or stability requirements, we 

have to interpolate between the given values of the function g(t). 

2. The function g(t) reaches in a very short time a large value and then 

decreases to 0 in a slightly longer time. This implies the presence of 

very large derivatives. 

Hence, if we do not take the value of /j,x very small the numerical 

scheme will introduce spurious oscillations, since the coefficients 

of the differential equation depend on x. 

Thus it will take a very long time to integrate problem (3.1) untill 

Umax reaches x = L. Therefore we will use a smoothing technique to sup

press the incorrect oscillations. 

3.1 The discretization of the space derivatives. 

2 
If we discretize the operators a/ax and a /ax2 1n problem (3.1) by 

central differences we are led to a set of ordinary differential equation 

of the form 

(3.3) dD -+ -:t 
dt = DU+ .t"(t) , 

where 



(3.4) D= 

-2d/h2 

v(h);2h+d/h2 

0 
I 
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-v(2h)/2h+d/h2 

-2d;112 

o------ ----o 
-v(3h) ; 2h+d/h2 

I 

', 0 

-v((N-1)h);2h+d;112 ' 
v((N-3)h)/2h+d/h2 

and 

u = 

I 

6 - - - - - - -- - - --0 

U(h) 
I 

F(t) = g(t) 

I 

I I 

U((N-1)h 0 

At t=2.56 we have U.=O j=O, ... ,N. 
J 

The initial boundary value problem (3.1) has now become a Cauchy problem, 

since the left boundary function g(t) is included in the vector F. For 

reasons of simplicity we suppose that the tube is longer than L = 258.8, 

such that the differential equation still holds, when the wave passes L. 

3.2 The spectral radius of the Jacobian matrix and the numerical scheme. 

As mentioned in section 2.2 the eigenvalues 6 and the spectral radius 

a of the Jacobian matrix D play an important role in stability considera

tions. 

After substituting the vector 

(3.5) ~(t) = ;'(t)exp(iwjh) 

into equation 

J 



(3.6) + + 
De = oe 

it follows that 

-21-

(3.T) oJ. = c-4d/h2 + (vJ.+ 1-vJ._ 1 )/h] sin2wh/2 (v v )/2h - j+1- j-1 

- i I 2h ( v . 1 +v . 1 ) sin wh , 
J+ J-

where v. denotes v(jh). 
J 

It is easily verified that the spectral radius becomes 

(3.8) a = max 
Q::s;j::::;N 

From ( 3. T) it follows that the eigenvalues are complex and 11 almost" purely 

imaginary. 

In section 2.2 and in [4] it was pointed that for this case the polynomial 

( 3. 9) 1 2 1 3 1 4 
= 1 + z + -~:? + "62' + 24 z 

is an appropriate choice. 

The 4-point Runge-Kutta method with third order accuracy generated by 

(3.9) is characterized by the array form 

]J 1 A10 8 /17 8 /17 

]J 2 0 A. 21 
= 

8;15 0 17 /60 

ll3 0 0 A32 2;3 0 0 5;12 

81 82 83 84 1 /4 0 0 3;4 

(see section 2.4 and [ 3 J) • 



-22-

Runge-Kutta methods make use of intermediate time levels, hence for t<t1 

we have to interpolate the given values g(tk) at the points 

rJ=t +µ..,. 
~k k j 'k 

(j=1 ,2,3). 

We determined these intermediate values g(r;kj) by means of the 4-point 

Lagrange interpolation formula 

. k+2 k+2 

(3.11) g(r; J) = I i-T 
k i=k-1 l=k-1 

g(t.) (j=1,2,3). 
l 

l;ti 

Method (3.10) is third order exact, hence we have a discretization error 

(3.12) 

From the stability condition 

(3.13) T ~ 2/2/cr(D) 

and (3.8) it follows that T = O(h). 

We may conclude that the approximation error of the difference scheme 

generated by (3.10) is of order h3. 

3.3. An approximation to the analytical solution. 

In order to get an impression of the analytical solution of problem 

(3.1) we assume the coefficients of the differential equation to be 

constant instead of slowly varying: 

Ut = aU + bUX + dU , 
xx 

U(x,O) = 0, 
(3.14) 

U(O,t) = g ( t)' 

U(oo,t) < 00. 
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00 

Let u(x,s) = LU(x,t) = J e-st U(x,t)dt; 

0 

then problem (3.14) becomes 

du + bu + (a-s)u = o xx x 

(3.15) u(O,s) = g(s) 

u(oo,s) < 00 

The general solution of (3.15) is given by 

(3.16) u(s,x) = A(s) e(p+q)x + B(s) ( p-q)x 
e ' 

where p = -b/2d and q = (b 2-4d(a-s))~/2d. 
Taking for the values of a and b the average values of -v'(x) and -v(x) 
on (0,1) respectively, we may state 

(3.17) Jb < 

1: < 

0, hence p > 0, 

0 and d > O, hence q > 0, q E JR. 

Furthermore, (3.17) yields 

(3.18) {A(s)::: ~' 
B(s) = g(s) 

so that the solution of the transformed problem becomes 

u(x,s) = g(s) exp(p-q)x). 

Hence, 

U(x,t) = exp(px) g(t) * L-1{exp(-q(s)x)} = 
(3.19) 

x ( ( x+ bt ) 2 + at ) . ~ exp - 4dt 
2.Y7Tdt-' 

g( t) * 
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Tbe function g(t) is given at the discrete points tk=2.56 + k*.08, 

k=0,1, ... ,80, as follows 

g(tk)= O, 6, 150, 998, 2796, 4238, 4320, 3480, 2480, 1690, 1152, 804, 

578, 426, 322, 250, 198, 158, 130, 108, 90, 76, 66, 56, 48, 42, 

38' 34, 30, 26, 24, 22' 20' 18, 16, 14' 14, 14' 12, 10, 10' 1 0' 

10' 8, 8, 8, 8, 8, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4, 4' 4, 4, l+, 

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, o. 

In order to make the convolution (3.19) not too complicated we represent 

g( t) by 

( 3. 20) g(t) = c o(t-a). 

Then, the analytical solution of problem (3.14) reduces to 

(3.21) U(x,t) = 
2 

C x exp { (x+b(t-a)) + a(t-a)} . 
I 3 - 4d(t-a) 

2v'7Td(t-a) 

3.4 Numerical results and smoothing. 

If we apply method (3.10) to problem (3.3) with the given boundary 

function U(O,t) = g(t) we get results which start to oscillate after 36 

steps at t=5.52. These small oscillations do not vanish but, on the con

trary, become more serious when t increases (see fig. 3.3). 

u 

c:__~~~~~~~~~~~~~~~-=::::::==-,_,,x 

fig.3.3. Spurious waves are superposed on the solution. 
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By convection these oscillations move on along the x-axis and their wave

lengths increase since the coefficients of the differential equation de

pend on x. At t=5.52 only three netpoints are involved but at t=6.00 the 

oscillations already cover five netpoints. Hence, we need a smoothing 

technique that keeps the oscillations under control during the whole in

tegration process. It turned out that a smoothing operator of the form 

(3.22) s - B + a E2+ + yE2_ , 

where E2+ U. = U. 2 , sufficiently damped the oscillations. For reasons 
- J J+ 

of consistency the coefficients a, B and y have to be determined in such 

way that 

(3.23) u~ _ s u. 
J J 

Expansion of the shifted functions U. (n=-2:_2) reveals that (3.23) is J+n 
satisfied if 

(3.24) 
{

a+ 

-2a 

Hence, 

B + y = 1, 

+ 2y = o. 

(3.25) u~ 
J 

n 
Bun. 1-B( n n ) = J + ~2- uj+2 + uj-2 ' 

Substitution of the Fourier component u eiwjh into (3.25) yields w 

(3.26) us= (B +(1-S) cos 2wh) w 
~ 

u w 

The multiplicative factor of (3.26) is real, so that the phases of the 

components are unaffected. 

From (3.26) it follows that the high-frequency oscillations with w = ~h 
will vanish if B = ~ (see fig. 3.4). 
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f . 3 4 Osc1'llations damped by the operator S. 1g ... 

The energy spectrum of the operator S is given by 

(3. 27) 

A2 
s 

2 4 = [~(1+cos 2~)] =cos(~) (see fig. 3.5). 

where ; = wh. 

L---------=========-----,~~ 0 7T 2 
fig.3,5, Energy spectrum of S. 

We applied smoothing after every integration step only in those points 

where oscillations started. 

It turned out that this partially applied, first order exact smoothing 

operator removed all oscillations during the whole interval of integra

tion. (see figure 3.6). 

u 

I 

\ 
I 
I 
\ 
I 
\ 

\ 

' ' 

fig.3.6. The solution at t = te 

' x 
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We compared the numerical solution and the approximated analytical solu

tion (3.21) at t=25.57 and t=51 .17. 

The most significant quantities of the solutions are (see figure 3.7) 

1. The value U , 
max 

2. The coordinate x for which U(x ) = U 
max max max 

3. The width E = x2 - x 1 , where x 2 and x 1 are the coordinates for which 

u = 1u 2 max 

u 

x 
x x x 

1 max 2 
1 

fig. 3.7 Significant quantities of the solution 

At t=51. 17 only the value of s' = x -x 1 could be determined, because at 
max 

that time x ~ L and the values of U for x > L were not computed. 
max 

We also evaluated the convolution integral (3.19) by means of Simpsons 

rule. 

In table V some numerical results are shown. 

Table V Comparison of the numerical and analytical solution. 

formula (3.21) 3.2 

formula (3.19) 4.o 

numerical solution 4.4 

E' 

formula (3.21) 2.4 

formula (3.19) 2.9 

numerical solution 3. 1 

x max 
114. 6 

113. 4 

112.6 

x max 

258.6 

258.3 

256.2 

u 
max 

2635.5 

2035. 0 

1963.5 

u max 

1686.9 

1402.2 

1379. 5 

t = 25.57 

t = 51. 17 
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Although the chemist injects a o-like boundary function we may conclude 

from table V that formula (3.21) gives a less accurate approximation of 

the solution of problem (3.1). 

The convolution integral (3.19) well agrees with the numerical solution 

in all quantities. 

Of course the numerical treatment is far more laborious than the eva

luation of the convolution integral, however, with the numerical method 

we can also treat differential equations of which the coefficients vary 

considerably. 
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