
stichting

mathematisch

cent rum

AFDELING NUMERIEKE WISKUNDE

J.G. VERWER
A TWO-STEP RUNGE-KUTTA METHOD OF THIRD
ORDER WITH EXTENDED STABILITY REGION

·~
MC

NW 5/73 NOVEMBER

2e boerhaavestra.at 49 amsterdam

P!Un.te.d a.:t :t.he. Ma.thematic.al. Ce.n:lJLe., 49, 2e. Boe.Jthaa.vetd°Jr.a.a..t, Am.6.teJLdam.

The. Ma.:thema..t.i.c.al. Ce.n:l:Jr.e., 6owtde.d .the. 11-.th 06 fe.bJtuaJLy 1946, Lb a. non
p!t..o 6U ..ln6.tltuX1..o n a-i.m..lng a.:t .the. pJtomotio n o 6 pUJte. ma.thematic.A and ili
a.pp.Uc.a..t.i.om.. 1.t Lb -0pon60Jc .. e.d by .the. Ne..the.trhtndo Gove.Jtnmen.t .thJtou.gh .the
Ne;the.Jti.a.ndo OJtga.vU..za..t.i.on 6oJt .the. Adva.nc.eme.n.t 06 Pu.Jt..e. Rue.a.Jt..c.h {Z.W.0),
by .the. Mu.n..lc...lpal.Uy 06 Am.6.te.Jtdam, by .the. Un..lve.MUy 06 Am.6.te.Jtdam, by
.the F.'1..e.e. Unive.MUy a.:t Am.6.te.Jtdam, and by -lndu.-0We.-0.

AMS (MOS) subject classification scheme (1970): 65105

1st printing: july 1973
2nd printing: november 1973 (slightly corrected)

Abstract

In this report a two-step Runge-Kutta method of third order is proposed
which is based on three function evaluations. This two-step formula is
compared with the classic third order formula of Heun. An ALGOL 60 proce
dure is described which implements both formulae. Numerical experiences
are reported.

-1-

Contents

1 . Introduction

2. An explicit two-step Runge-Kutta method

2.1 General structure of the integration scheme

2.2 Consistency conditions

2. 3 Stability

2.3.1 The error of the difference scheme

2.3.2 Stability and eigenvalues

2.3.3 Absolute and relative stability

2.3.4 Negative eigenvalues

3. A third order exact scheme

4.

5,

3. 1 The generating matrix

3.2 Regions of absolute stability

3.3 Stability J..n case of negative eigenvalues

3.4 Stability J..n case of non-real eigenvalues

3,5 The truncation error

The procedure two step runge kutta

4. 1 General information

4.2 Heading and parameters

4.3 The body of two step runge kutta

Numerical examples

5.1 A stiff linear system

5.2 A simple non-linear equation

5,3 A problem in nuclear reactor physics

5.4 An example from the literature

References

-2-

1. Introduction

Both one- and multi-step Runge-Kutta methods may be used to solve

numerically initial value problems for systems of ordinary differential

equations of the type

dU
dt = H(t,U) .

Up to now the one-step methods are more widely used. The two-step

Runge-Kutta methods were first considered by Byrne and Lambert (see

reference [6]). The two-step scheme discussed here was given by v.d. Houwen

(see [1]). This scheme is closely related to the usual one-step scheme,

since it does not use preceding evaluations of H(t,U).

Some theoretical aspects of the method developed are discussed in

chapter 2. Special attention will be paid to stability.

In chapter 3 is given a third order exact formula which uses three

evaluations of H(t,U). The real stability boundary of this formula varies

between 4.3 and 5, whereas the real stability boundary of the corresponding

one-step formula is 2.5.

In chapter 4 we present the procedure two step runge kutta. This

procedure is an ALGOL 60 realization of the third order formula given in

chapter 3.

The last chapter presents some results of a comparative analysis of the

one- and two-step methods.

-3-

2 An explicit two-step Runge-Kutta method

In this chapter we present some theoretical aspects of the method

developed. The stability of the method will have our special attention.

2.1 General structure of the integration scheme

Consider the initial value problem

(2. 1)

dU
dt = H(t,U),

where u0 is a given initial vector and H is a given (vector) :unction of

t and U. The analytical solution of (2. 1) will be denoted by U. Suppose H

has derivatives with respect to t and U of sufficiently high order.

Our two-step scheme has the following form (see [1])

u = u
0 0'

(2.2)

k=1,2, ... ,

where we assume u1 has been calculated with some one-step method. In this

scheme we have

Uk: numerical approximation to the analytical solution U at t = tk,

Tk: the steplength tk+ 1 - tk,

y, e., µ., A. 1 : real parameters to be determined by consistency and
J J J

stability conditions.

-4-

The para.meter y will be of importance for the stability of the method.

It will be called the stahility parameter. Note that for y = 1 scheme (2.2)

reduces to the usual one-step scheme.

Scheme (2.2) may be cparacterized by y and the matrix

(2.3) R =

µ >. >. n-1 n-1 0 n-11

2.2 Consistency conditions

>. n-1n-2

e n-2 e n-1

Here, we introduce a set of para.meters s. which are convenient in the
J

formulation of consistency and stability (compare [2], formula (3.6)).
They are defined by

n-1
S1 = l e.

j=O J

n-1
s2 = l e.µ.

j=1 J J
(2.4)

n-1 j-1 n-1 2
S3 = l e. l >.jlµl 631 = l e.µ.

J ' J J j=2 1=1 j=1

Furthermore, we introduce the growthparameter

(2.5) k = 1,2, .•..

It will be aasi.mi.t~d that both and 1 lL"ll llour:ded

to . Her:ceforth we the k. Moreover, we assume
s paper that the relations are satisfied:

(,~:: h)
L ""-·"·

,J-1
"" l

l=O
= lJ: jl v

j = 1,2, ... ,n-1 .

These relations simplify the calculations (compare 4 J) ·

Let the integration method (2.2) be written as

Then of consistency is defined in the following way:

Definition 2. 1

The method is said to be consistent of order p at the point t = tk if

where t) is the solution of the differential equation which satisfies the
condition U(tk) = u ..

.K

Theorem 2.1

The integration method (2.2) is of order p = 1 if

(2.7) s1 = (1+(1-y)c)/y •

of order p = 2 if, in addition,

(2.8) 2 82 = (1-(1-y)c)/2y ,

of order p = 3 if) lll addition~

(2.9) B3 = (1+(1-y)c3)/6y

(2.10) 13 31 = (1+(1-y)c 3)/3y •

-6-

Proof

The proof can be given by a Taylor expansion of Lk(U(tk_1),U(tk)) with

respect to 'k· By identifying the first p+1 terms of this expansion with

the Taylor series of U(t), we obtain the conditions for p-th order

consistency (compare [2], section 3.2, and [4]). In order to guarantee

convergence, we assume that s1 ~ 0 (see [1], p.4).

2.3 Stability

We shall investigate the stability of the integration method as

applied to the linear differential equation

(2.11) dU - = DU+ F , dt

where D is a matrix with constant entries and F is a (vector) function of

the variable t.

This approach is suggested by the fact that locally each non-linear

differential equation

(2.12) dU
dt = H(t ,U) ,

has the form (2.11), where Dis the Jacobian of H(t,U) (compare [3], p.2).

Stability of this kind is called Zinear- or ZocaZ stability.

2.3.1 The error of the difference scheme

In each integration step there are two ty:pes of errors:

1. The ZocaZ discretization error - the error introduced by approximating

the differential equation by a difference equation

2. The ZocaZ numerical error - the error introduced by round-off errors

which give rise to a numerical solution u* instead of the difference

solution U.

During the integration process, both types of errors accumulate in a

so-called gZobaZ error. A difference scheme for the global error will be

-7-

presented below. It is easily verified that in the case of linear

differential equations (2.11), scheme (2.2) reduces to the scheme

(2. 13)
' k = 1 ,2 ••• '

where

(2.14) + •.. +

and where the vector ~n) is determined by the vectors F(tk+µjt). For

y = 1, it has been proved, in reference [3], section 2.1-2.3, that the

global error

(2. 15)

satisfies the difference scheme

(2.16) k = 0,1,2, ... ,

where sk is the sum of the local discretization error and the local

numerical error.

For all y, it can be proved, in a completely analogous way, that the

global error (2.15) satisfies the difference scheme

(2.17) k = 1,2, •••.

2.3.2 Stability and eigenvalues

Suppose D has an orthogonal system of eigenvectors {Ej} with

eigenvalues o .. Then the matrix P (•kD) has the same orthogonal system of
J n

eigenvectors {E.} with eigenvalues P (,kc.). Consequently, we may write
J n J

(2.18) ek = l e (j) E . , sk = ~
j k J J

-8-

S (j) E
k j

After substitution of (2.18) into (2.17) we obtain

(2.19) l [e(j) -yP (T cS.)e(j)
j k+1 n k J k

(j)
(1-y) ek-1

The system {E.} is independent, so for each J we have
J

k = 1 ,2'. . . .

(2. 20) e~i~ = yPn(,koj)e~j) + (1-y)e~~~ + s~j) k = 1,2,

The error vector e will not grow in any norm, if for each j the absolute
value of e~j) doesknot increase. Therefore we continue with the single
difference equation (2.20).

In general the homogeneous solution of (2.20) determines the
accumulated error at each step (compare [5], section 3.2). It thus seems
reasonable to approximate the inhomogeneous equation (2.20) with the
homogeneous error equation.

(2.21) k = 1 ,2'. . . '

where z = Tko and o is some eigenvalue of D.

Thus we have reduced scheme (2.17) to the single error equation (2.21).

When the integration method (2.2) is applied to the single linear
differential equation

(2.22) dU
dt = oU '

scheme (2. 13) is reduced to

(2.23) Uk+l = yPn(z) Uk+ (1-y) Uk_1 , k = 1,2, ... ,

-9-

and scheme (2.17) is reduced to (2.21). Therefore it is sufficient to

consider the single linear equation (2.22). In case of a non-normal

matrix D this approach is applied too.

2.3.3 Absolute and relative stability

Suppose we have integrated (2.22) up to the point t = tk and ck = ck
0 0

k = k0 , k0 + 1, •••• The difference equations (2.21) and (2.23) are thus

reduced to

(2.24)

(2.25)

where z = To. The aharaateristia Poots of the linear difference equation

with constant coefficients (in the z-:!_)lane) are the roots of the characteristics

equation

(2.26) A2 - yP (z)A - (1-y) = O.
n

If the roots are distinct, the solution of (2.25) takes the form

(2.27)

where a 1 and a2 are constants determined by the initial conditions. If the

roots are equal the solution of (2.25) takes the form

(2.28) k = k0 , k0+1 , . • . .

One of the characteristic roots approximates the analytical solution Cke 6'

of (2.22). This root is called the pr>inaipai Poot and is denoted by A1. The

remaining root A2 is called the parasitic Poot, and arises because a

second-order difference equation has been used to approximate a first-order

differential equation. The parasitic root has no relation to the exact

-10-

solution of the differential equation.

The characteristic roots of the difference equation for the error Ek
are the same as those of (2.25). Therefore the solution of (2.24) also

takes the form (2.27) or (2.28). Thus, at each integration step k0 the
stability is determined by the roots of (2.26) and is defined in the

following way (compare [5], section 3.2)

Definition 2. 2

The integration method (2.2) is called

ahsolute stable if IA.· I .::._ 1 , i = 1,2,
].

r-e Zati ve Z.y stab Z.e i f I A. 2 1 .::._ I A. 1 I •

Let us be more specific with regard to the absolute stability. Suppose
O < y < 2. Substitute A.= e1 rp in (2.26) and solve P (z). This results in n

(2. 29) () -irp 2i .
P n z = e + Y srnrp , 0 .::._ rp < 27f , 0 .::._ y < 2 .

The curve oS in the complex Z-plane defined by (2.29) is called the general.
boundaxy of absolute stability. The domain S bounded by cS is called the
region of absolute stability. At each integration step k0 we have absolute
stability if the point z = 'k o belongs to S. The region S is symmetric

0
with respect to the real z-axis.

2.3.4 Negative eigenvalues

In the case of negative eigenvalues, the characteristic equation
(2.26) has real coefficients.

First we give the condition which determines the real bounda:ty of
absolute stability, S 1 ; and secondly, the condition which determines rea
-the reaZ. boundary of relative stability, o. 1 . rea

1. The characteristic roots are within or on the unit circle if

(2. 30) IP (z) I < 1 , n O.::._y<2.

-11-

In the next chapter y will be used to maximize S real'

2. The principal root Al + 1 as Tk + O. Therefore, we have

(2.31)

where D(z) = y2P 2 (z) + 4 - 4y. Let us distinguish two possibilities: n
a. D(z) < 0:

Here we have IA 1 1 = IA 2 1. This implies relative stability.

b. D(z) > 0:

In this case it is easily verified that

(2.32)

Consequently, a 1 is the first zero of P (z) on the negative z-axis. rea n

-12-

3. A third order exact scheme

In this chapter we present the scheme of which an Algol 60 version

can be found in chapter 4.

3.1. The generating matrix

In scheme (2.2) we choose n=3. The scheme then uses three evaluations

of H~,U). With the relations (2.4) and (2.6) we find expressions for the

parameters ej, µj and Ajl' In order to simplify the difference scheme we

substitute e1 = A20 = o. Calculations then yield

0

~ ~
s2 S2

(3.1) R = 2s3 2s3

s2
0

62

s2 L s,
2

0 -2s3 2s3

If the parameters Sj are defined by the consistency conditions (2.7)

(2.9), R generates a third order exact scheme. The elements of R satisfy

condition (2.10).

The

(compare

(3.2) R =

generating matrix of

[5], section 2.3.3)

0

1 1
3 3
2

0 2
3 3

1
0 4

the corresponding one-step scheme of Heun is

3
4

-13-

3.2 Regions of absolute stability

(3,3)

where

(3.4)

The general boundary of absolute stability 68 is defined by

P 3(z)

= e-i~ + 2i sin~ , 0 ~ ~ < 2~ , 0 ~ y < 2
y

= 1 + 1 + (1-y)c z + 1 - (1-y)c2 z2 + 1 + (1-Y)c3 z3
y y 2 y --g-

Obviously, each value of the growthparameter c determines a 6S. To show

this dependence of 6S on c, we have illustrated some stability regions in

fig. 3.1-3.5. The choice of the parameters candy will be clear after

the next section.

-6 -3 -2 -1

Fig. 3.1 68 for c = .5, y = yR(c).

-14-

+2

+t

-1

Fig. 3.2 oS for c = .8, y = yR(c).

+2

+1

Fig. 3.3 oS for c = 1, y = yR(c) •.

-15-

-4 -a

Fig. 3.4 88 for c = 1.5, y = yR(c).

Fig. 3.5 88 for c = 2, y = yR(c).

3.3 Stability in case of negative eigenvalues

In this section 8 is assumed to be negative. We shall concentrate on

absolute stability. Let us define the polynomials

-16-

2 3 2 T(z) c c
;;:: c - 2 z + b z

(3. 5) 2 c3 +
(c + 1) -

c - 1 2
N(z) ;;:: z + 6 z .

2

Now condition (2.30) with n ;;:: 3 can be reduced to

(3.6) T(z) < .l < zT(z) - 2
N (z) - y - zN (z)

O.::_y<2.

At this point we use the fact that the parameter y is still a free

parameter. The problem is to determine y in such a way that the interval

-8 < z < 0 is as large as possible, while satisfying condition (3.6). real - -
For c = 1 , or constant stepsize, (3. 6) is reduced to

(3. 7)

where

(3.8)

Y1(z) < 2-y < Y (z) ,
- y - 2

2 - z
2

2z (1 : z6)

O.::_y<2,

- - -----
2

2z(1 + ~)

In fig. 3.6, Y1(z) and Y2 (z) are illustrated. The optimal choice of

y is defined by

(3.9) 2-y_ ()
y - y 1 zo '

where z 0 satisfies the eg_uation

(3.10) d
dzY 1(z)=O.

The optimal choice of 8 1 is defined by rea

(3.11)

A simple calculation yields

-17-

(3.12)

....,.... •4

•2

+I

Y(z)
t

(2-y) /y
(2-y*)/y*

-~1--------,~:---------+~------1---t---------+---+-----+---------+-------.:::::::.L ~
z + Sreal -4 -3 ZQ -2 -I •O

Fig. 3.6.

With the help of fig. 3.6, we shall derive in an heuristic way an

expression for the optimal value of y for all values of c. If in fig. 3.6
y = 8/(4+15) or y = y*, oS has respectively three or four points on the real

z-axis. These points represent real roots of equation (3,3). Evidently in

the optimal case two real roots coincide. Only if ~ = 0 or ~ = TI equation

(3.3) does have one or three real roots. We have to take ~ = O. In this case

(3,3) reduces to

(3.13) B B 2 z3 = 0 1 z + 2 z + S3 .

This equation has two equal roots if

-18-

(3.14)

Solving (3.14) for y, we have

(3.15)

where

(3.16)

Y (c) = M(c) + 2c~ 4~(c)
R 2c

8 3 6 2 8
M(c) = 5 c + 5 c + 5 c .

4'
·- 4c

From numerical experiments with condition (3.6), it appears that

y = yR(c) does represent the optimal value of y in relation to the optimal

choice of Breal· The function yR(c) has been illustrated in fig. 3.7. To

satisfy the condition 0 ~ y ~ 2, the growthpara.meter c must be limited to

the interval c ;:, .4.

•2

•1

~-+-~l---+-~+---+~-+---'1---+-~+--+~-t-~t--t-~-t-~t---t-~~

..g •1 •2 +3 •4
-+ c

Fig. 3,7 The stabilitypa.ra.meter yR(c).

-19-

The numerical experiments with (3.6), yielded the S 1 1 s as given rea
in table 3.1. The corresponding a 1 1 s are numerically determined as the rea
first real root on the negative z-axis of

(3, 17)

and are also given in table 3.1.

Table 3.1. Real stability boundaries

c sreal a real

.4 4.3 4.3

.5 4.3 4.3

.7 4.3 4.3

.9 4.4 4.4
1.0 4.5 4.4
1.2 4.6 4.5
1.4 4.7 4.5
1.6 4.8 4.6
1 • 8 4.9 4.7
2.0 5.0 4.7

As long as .4 < c < 2, the minimum. value of f3 1 and a al appears - - rea re
to be 4.3. The real stability boundary of the corresponding one-step method

is 2.5 (compare [3], section 3.1). Conse~uently we have an increase of the

stability interval of about 42%.
Finally, we have illustrated the absolute value of the characteristic

roots in fig. 3.8 for c = 1. The characteristic roots are given by (2.31),
with n = 3 and y = 8/(4+/b).

-20-
•3

\
\
\
\
\
\
\

•2

\ I '-2 1
\
\
\
\
\
\ •I

\

.._

t----+~-+-~-+-~t--+~-+-~+---ir--+~-+-~+---i~-+~-+-~+-~+---i~-+~-+~-+ ~
-s ~ z + -2 -I

Fig. 3.8 The characteristic roots.

3.4 Stability in case of non-real eigenvalues

The stability regions illustrated in section 3.2 suggest that no

improvement can be expected with respect to the one-step method in case of

complex or imaginary eigenvalues. In fig. 3.1-3.2 the imaginary stability

boundary is in fact zero. Only if c ~ 1 we do have approximately the same

region in the complex z-plane (compare [3], fig. 3.1). Numerical experiments

with the characteristic roots and the parameter y confirmed this presumption.

Therefore it is advisable to use the two-step method only if the Jacobian

of H(t,U) has real eigenvalues.

3. 5 The truncation error

We shall compare the truncation error of the two-step scheme generated

by y = yR(c) and (3.1) with the truncation error of the one-step scheme

generated by (3.2). For both schemes the truncation error is 0(, 4).

I '-I
t

-21-.

With e3 = 0, the coefficients of the derivatives in the t 4-term of the

Taylor expansion of U(tk+1)-1K(U(tk-l) ,U(tk)) are reduced to (compare [4],
p. 19).

(3.18)

(3.19)

(3.20)

(3.21)

Substitution of the para.meter values in (3.18)-(3.21) yields a measure

for the truncation error. Thus, we arrive at table 3.2.

Table 3.2.

y (3.18) (3.19) (3.20) (3.21)

yR(.5) . 1125 .0500 .0563 .0438
. yR(1) .2067 .0775 .1034 .0517
yR(1.5) .2971 .1057 . 1485 .0628
yR(2) .3663 .1278 . 1832 .0725

1 .0278 .0278 .0139 .0417

From this table we may conclude that the one-step scheme is more

accurate than the two-step scheme.

-22-

4. The procedure two step runge kutta

4.1 General information

The programmed scheme lS

uk+1 = y[Uk + (s 1 -s;12s 3)r~o) + (S 2/2S)r(2)J
2 3 k + (1-y)Uk-1 '

(0)
rk = TkH(tk 'Uk) '

(4. 1)
(1) (S /S)r(o)") = TkH(tk + (S/S2hk Uk + rk 3 2 k '

(2)
rk = TkH(tk + (2S/S2hk ' Uk +

(1)
(2SiS2)rk)

The procedure uses the variable step-size mechanism as given in [4],

p. 56-58. This mechanism is based on the last Taylor term taken into

account. The formula for this term is

(4.3) 2 2 6s2s3) bo = (2s2s3-s2)/(12s 3

2 2
b2 = s2/(12s 3 - 6s2s 3)

b3
2 = -2s2s 3/(12s 3 - 6s2s 3)

In this formula a new evaluation of H(t,U) is used. If the integration step

is accepted, we can use this evaluation in the next integration step for

r~o). At each call of the procedure we have y = 1, so we can start the

integration pocess with one initial value.

-23-

4.2. Heading and parameters

procedure two step runge kutta(t, te, mO, m, u, derivative, k, kreject,

singlestep, sigma, step, tol, output);

integer

real

boolean

array

procedure

Parameters:

t

te

mO, m

u

derivative

k

mO, m, k, kreject;

t, te, sigma, step, tol;

singlestep;

u;

derivative, output;

: <variable>;

t represents the independent variable; when two step runge

kutta is called, t should have its initial value to;

:<expression>;

the end value of t;

:<expression>;

indices of the first and last equation of the system to be

solved;

:<array-identifier>;

the array u[mO:m] represents the numerical solution;

when two step runge kutta is called, u should contain the
~

initial vector u0 ;

:<procedure-identifier>;

derivative has to be declared by the user as follows:

procedure derivative (t,a);

real t; array a;

<replacement of the component a. by the component
l.

H.(t,a 0 , ... ,a) for i=mO, ... ,m>;
i m m

:<variable>;

kreject

single step

sigma

step

tol

output

-24-

k counts the number of integration steps, including the

rejected ones;

:<variable>;

kreject counts the number of rejected integration steps;

:<boolean expression>;

if singlestep is true, the procedure uses the one-step

scheme generated by (3.2); otherwise the two-step scheme

generated by (3.1); it is also possible to use expressions

like t<t1, where tO<t1<te; in this case b·oth schemes are used;

:<expression>;

sigma denotes the spectral radius of the Jacobian; in each

integration step the steplength tau satisfies the inequality

tau < S 1 / sigma; if the spectral radius is not available,
- rea

the user may substitute O;

:<variable>;

when two step runge kutta is called, step must be equal to the

length of the first integration step to be executed; this

initial step may be determined by accuracy considerations;

a~er each integration step except the last one, step gives

the step-size which has been used; at the end of the

integration process step gives the step-size for a new first

integration step for continuation of the integration;

:<expression>;

a measure of the required local accuracy; see the subprocedure

test accuracy;

:<procedure-identifier>;

output must be declared by the user;

the heading of output is

procedure output;

<by this procedure, the user may order the values oft, k,

kreject, step, u[mO], ... ,u[m] etc., to be printed; output may

-25-

also be used to stop the integration process, e.g. with the

statement

if k > 1000 v step < .01 then t:= te>;

4.3 The body of two step runge kutta

procedure two step runge kutta(t, te, nD, m, u, derivative, k,
kreject, singlestep, sigma, step, tol, output);
integer mO, m, k, kreject; real t, te, sigma, step, tol;
boolean singlestep; a.rrey urprocedure derivative, output;
begin integer j;

real tau, tauO, bO, b2, b3, c, de, dem, int, mu, mu1, tl,
tolint, ga, max, gamma, labda10, labda21, thetaD, theta2;
boolean first, last, reject, onestep;
array ul, ull, kO, k1, k2[mO:m];

procedure initialize;
begin k:= kreject:= o; ga:= sqrt(6);

int:= te - t; to1int:= to1 / int; ti:= t;
max:= if' singlestep then 2.5 / sigma else 4.3 / sigmaJ
tau:= tauO: = if step~ max then step else max;
for j: = mO step 1 until m dOliI[j]: = urJT;
onestep:= first:= reJect:=""true

end initialize; -

procedure test growthparam:ter;
begfu max: = if' onestep then 2.5 / sigma else 4.3 / sigma;

if' tau > max then t~ max:; c: = tau"QT tau;
if' c < .5 theU-
begin c: = -:-5'.rtau: = tauO / c end;
last: = tau > te - tl; if' last '"'then
begin step:= ta:u; ta:u:= te - tl; c:= tauO / tau~;
if' c > 2 then onestep:= true

end test growthparaIDeter; -

procedure coefficient;
if onestep then
begin gamma:;;-;; theta0:= .25; theta2:= • 75;

labda10:= 1 / 3; labda21 := 2 / 3;
bO:= .5; b2:= - 1.5; b3:= 1

end
eI'Se if c = 1 then
'begingamna:= dT(4 + ga); thetaD:= - ga / 4;

theta2: = - 2 x thetaD; labda 10: = ga / 12;
1abda21 := 2 X labda10; b2:= 2 / (1 - ga);
b3:= - b2 / ga; bO:= - b2 - b3

end

-26-

else
begin real c2, c3, c4, beta1, beta2, beta3, sum;
-----C2-:;;-c x c; c3:= c x c2; c4:= c x c3;

sum:= 1.6 x (c + 0.75 x c2 + c3); gamma:= 1 +
(sum - sqrt(sum X sum - 4 X c4)) / (2 X c4);
beta1:= (1 + (1 - gamma) x c) / gamm.aJ
beta2: = (1 - (1 - gamma) x c2) / (2 x gamma);
beta3:= (1 + (1 - gamma) X c3) / (6 X gamma);
theta2: = beta2 x beta2 / (2 x beta3);
thetaD:= beta1 - theta2; labda10:= beta3 / beta2;
labda21: = 2 x labda 10;
b2:= - 1 / ((6 - 12 X labda10) X labda10);
b3:= - 2 X labda10 X b2; bO:= - b2 - b3

~ coefficient;

procedure difference scheme;
begin if reject then
~eg!n for j := mO step 1 until m do kO[j] := ul[j];

---cienvative(ti;kO) - -
end;
fur j := mO sJp 1 until m do
kiTj]:= ul[j +tau X labda:iO x kO[j]j
t:= tl +tau x labda10j derivative(t, k1);
for j : = mO sJep 1 until m do
kITT" j] : = u1 [j + tau X laba.821 X k 1 [j] ;
t:= tl +tau x labda21,; derivative(t ,k2);
for j := mO step 1 until m do k1 [j] := u[j] := gamma X
(ul[j] + ta3i'X(tbetaO x kO["j] + theta2 x k2[j])) +
(1 - gamna) x ull[j];
t:= if last then te else tl + tau;
derivative(t, k1); k:;;-'k + 1

end difference scheme;

procedure test accuracy;
begin real discr, eps;
----a:e~Oj reject:= false;

for j:= mO step 1 Uiitii m do
begin di scr:=-abs (tau x -
----rbo X kO[j] + b2 X k2[j] + b3 X k1[j]));

end

eps:= tolint X (abs(tau X kO[j]) + tau);
reject:= discr > eps V reject; de:= discr / eps;
if de> dem then dem:= de

end te'St accuracy;

-27-

procedure stepsize;
begin mu:= 1 / (1 + dem X dem) + .45; if reject then

begin tau:= mu X tau; kreject:= kreject + i;-
goto next level

end;-
lllfirst then
begin de: = Iiiilx tau / tau.O + mu - mu 1,; tauo: = tau,;

tau:= de x tau,; mu1:= mu
end
else
"6egiii tauO:= tau,; tau:= mu x tau,; first:= false,;

mu1 :=mu
end,;
Ulla.st then step:= tauO

end Stepsize,;~

procedure next integration step;
begin tl:= t,;

for j := mO step 1 until m do
begin ull[j] := u1[j]; ul[jT:= u[j],; k.O[j] := kl [j] end;
onestep:= if singlestep then true else false;
goto next revel - - -

~ next integration step;

initialize,; output;
next level: test growthpa.raneter; coe:f'f'icient;

difference schene; test accuracy; stepsize; output;
if t < te then next integration step;
Il lla.st then step:= tau

end tWo step ii:iiige kutta;

Next we discuss the several subprocedures which are used in two step

runge kutta

The procedure initialize

In this procedure variables are initialized. At each call of two step

runge kutta initialize is called once.

The procedure test growthparameter

In test growthpara.meter we check the steplength tau, the growthparameter c

-28-

and the place of the new integration point. If c > 2, the boolean onestep
will have the value true and two step runge kutta uses the one-step

scheme.

The procedure coefficient

In coefficient we compute:

the stability parameter y,

the parameters eo, e2' "'10' "'21
and

the parameters bo, b2' b3.

The procedure difference scheme

In this procedure the components U[mO], ... ,U[m] of the numerical

solution Uk are replaced by the components of the numerical solution Uk+ 1.

At the same time H(tk+ 1,uk+1) is computed.

The procedure test accuracy

In test accuracy the last Taylor term taken into account is computed

for each component U~i) of Uk. If for some 1 0

'k
> ---* te-to

the last integration step is rejected.

The procedure stepsize

In stepsize the length of the next integration step is computed by

means of the variable step-size mechanism mentioned in 4.1.

The procedure next integration step

In this procedure the components U[mO], ... ,U[m] of the numerical

solution Uk-l are replaced by the components of the numerical solution Uk
and the extra evaluation of H(t 1,u) is utilized. Furthermore, the k+ k+1
boolean singlestep is checked.

-29-

5 Numerical examples

In this chapter we present some results of the procedure two step

runge kutta when applied to a number of differential equations with real

eigenvalues. The one-step results were 8.lso obtained with two step runge

kutta.

When the steplength is determined by a stability condition and not

by a given accuracy condition, we may expect a great number of rejected

integration steps, because the step-size mechanism is based on accuracy

conditions. Therefore it is advisable to give the spectral radius of the

system. The examples show that this is the best strategy for both methods

when using two step runge kutta.

In the following subsections

k

k .
reJect

f.e.

= the total number of executed integration steps,

= the number of rejected integration steps,

= the number of evaluations of H(t,U),

a.e. = max u(i)(t.) - u~i)I, where the index i indicates the
J J {i ,j}

components of U(t) and U and where j=1,2, ... ,k-k . t' re Jee

In the given figures the characters T and 0 refer to the two-step

and one-step method.

In section 5.3 an example of the procedure derivative and a call of

two step runge kutta are given.

5.1 A stiff linear system

Consider the following initial value problem:

(5. 1) ~ Ju,t~O,U= [-~1]
-1501

' t = 0 .

The analytical solution is given by

(5.2) u(t)

-30-

The Jacobian has the eigenvalues o1 = -1000, o2 = -500 and o3 = -1.

Consequently we have stability if 'k ~ Sreal * 10-3

First the predicted S 1 was checked by using a uniform steplength T
rea

from t =Oto t =KT, where K is the number of integration steps. In this

case S 1 = 4.5. The results given in table 5.1 are a confirmation of the
rea

linear stability theory.

Table 5. 1.

T K a.e

.0045 200 .110-7

.0046 200 .71013

Secondly, (5.1) was integrated from t=O to t=1 with variable steplength,

both with sigma = 0 and sigma = 1000. For both the one-step- and two-step

method, much better results were obtained with sigma= 1000. In this case,

we have no rejected steps; the steplength is completely determined by the

severe stability condition. The results are given in table 5.2.

Table 5.2.

k k reject
f.e. a.e.

sigma 0 1000 0 1000 0 1000 0 1 OOO

480 401 133 0 1573 1203 .210-2 .310-7

one- 512 401 154 0 1690 1203 . 110-3 .3,0-7

step 503 401 148 0 1657 1203 .110-4 .310-7

517 401 152 0 1703 1203 . 11 o-5 .310-7

369 234 115 0 1222 702 .210-2 .410-7

two- 383 234 115 0 1264 702 .210-3 .410-7
step 381 234 113 0 1256 702 .210-4 .310-7

399 234 123 0 1320 702 .210-5 .4,0-7

-31-

5.2 A simple non-linear equation

Consider the initial value problem

(5. 3) { u = 100 - u2 ,

u = 0 '

t > 0 '

t = 0

with the analytical solution

(5.4) U(t) = 10 - 20/(e20t+1) .

We have integrated (5.3) on the interval [0,10]. On this integration

interval the spectral radius comes up to 20. For sigma = 0 and sigma = 20

we have almost the same number of rejected steps. This means that on a part

of the integration interval, the steplength is strongly determined by

accuracy conditions. The reason for this is that near the origin, the

derivative is very large. In general in this situation, the one-step results

are slightly better. The results are presented in table 5.3 and fig. 5.1-5.2.

Table 5.3

k k reject f.e. a. e.

sigma 0 20 0 20 0 20 0 0

104 84 22 1 334 253 .4,0-0 .410-0

one- 119 87 37 3 394 264 ,310-0 .3 10-o

step 123 106 32 7 401 325 .4,0-2 .410-2
199 161 47 7 644 490 .710_4 .710_4
362 336 36 8 1122 1026 .4 10-5 .410-5

86 57 31 4 289 175 .510-0 . 510-0

two- 91 58 25 3 298 177 .210-0 .210-0

step 105 80 27 7 342 247 .910-2 .910-2
162 134 30 7 516 409 .5,0-3 .510-3
346 312 35 10 1073 946 .3,0-4 . 310-4

-32-

5.3 A problem in nuclear reactor physics

In nuclear reactor physics the following system is of interest

r1 = .2(U2-u1) t > 0

(5.5) u2 = 10u1 (60+.125t)u2 + .124t t > 0

u, = u = 0 t = 0 . 2

Because an analytical solution was not obtained, we use the reference

solution

(5.6) { u1 = .01248223537 ,

u2 = .02224529798 ,

t = 10'

t = 10.

On the integration interval [0,10] the eigenvalues are approximately

-60 and -.17. The results of integration are presented in table 5.4 and

fig. 5. 3-5 .. 4. From the given numbers for k . t, we see that the reJec
steplength is determined by the stability condition.

In table 5.4 and fig. 5.3-5.4 e = max lu. - U. I in t=10.
i=1,2 l l

Table 5,4

k k reject f. e. e

sigma 0 60 0 60 0 60 0 60

308 242 84 0 1008 726 .810-6 .610-4

one- 323 243 95 1 1064 730 .210-5 .310-6

step 348 244 108 1 1152 733 .410-6 .410-6

347 256 109 6 1150 774 .110-8 .510-7

244 141 79 0 811 423 .610-4 .510-8
two- 236 142 69 1 779 427 .910-6 .1,0-8
step 235 149 75 4 780 450 .310-6 .6,0-8

266 160 83 7 881 487 .2,0-6 .6,0-8

end· --'
t:= O;

two s

t,a

a 1 := ; a2:= 2 ;

. - • 2 * (a.2-a 1) ;

2 :::c 10 * a1 - (• 1

:= 1 .-
ruri.ge kutta (t' 10'

false,

&1d a call of two

t;

t)*a2+.1 * t

.- O;

1 • 2, u,
' k,

60, step, 10-2 ' output);

5.4 An exBJlWle from the literature

runge lrntta, are

ect,

The last example we consider is the initial value problem

(compare [5], p. 286)

f u = -20(U-F(t)) + F(t),

(5.7) ~ u = 10 ' t = 0 • ! -t I t) 10 - (10+t)e l =

with the analytical solution

(5.8) t) = F(t) + 10e-20t ,

The solution (5.8) contains a rapidly decaying component and a slowly

decaying component. The eigenvalue is -20 and the solution is desired from

t=O to t=20. Thus, the component ex:p(-20t) soon becomes negligible

compared to the e.xp(-t) component. The maximum error, presented in table

5.5 and fig. 5.5-5.6, represents the error early in the integration. This

error will decrease late in the integration.

Using the one-step method early in the integration and the two-step

method late in the integration would yield results comparable to those of

the two-step method.

Table 5. 5

k k .
reJect

f.e. a.e.

sigma 0 20 0 20 0 20 0 20

209 165 50 2 677 497 .310-0 • 310-0
244 170 80 4 812 514 .2,0-0 .210-0 one-
289 249 75 26 942 773 . 1, 0-2 .110-2 step
486 441 105 56 1563 1379 .s10-4 .810-4

1020 983 202 162 3262 - 3111 .1,0-4 .1,0-4

160 100 53 2 533 302 .6,0-0 .6,0-0

two- 195 136 55 18 640 426 .210-0 .210-0

step 235 206 28 7 733 625 .210-2 .210-2
413 398 70 58 1309 1252 .2,0-3 .210-3
888 877 151 141 2815 2772 .410-4 .410-4

f.e. 12

100
10

t

8

6

4

6 f.e.
200

t 5

4

3

0

-35-

T

0

T

0
00 T

T T

-5 -4 -3 -2 -1 0
-+ log a.e.

Fig. 5.1. sigma= 0

0

cP
T

T T T

2 .__~_,_~_......~__.~~"--~......._~
-9 -8 -7 -6 -5 -4 -3

-+ log a.e.

Fig. 5.3. sigma= 0

f.e.
100

t

f.e.
200

t

12

10 0
T

8

6

0
4 T

0
T

2 ~
TT

-6 -5 -4 -3 -2 -1 0

6

5

4

3

2
-9

-+log a.e.

Fig. 5.2. sigma = 20

0
& 0

-8 -7 -6 -5 -4 -3
-+ log a.e.

Fig. 5.4. sigma = 60

11 11
f.e. f.e. 0
150 150

t 9 T t 9 0
T

7 7
0

5 T 0
0 TQ 5

T
T

3 3 Oo
T

T

1 1
-6 -5 -4 -3 -2 -1 0 -6 -5 -4 -3 -2 -1 0

-+ log a.e. -r log a.e.
Fig. 5. 5. sigma = 0 Fig. 5.6. sigma = 20

-36-

References

[1] Houwen, P.J. van der, A note on two-step Runge-Kutta methods,

Report TN 61/71, Mathematisch Centrum, Amsterdam, (1971).

[2] Houwen, P.J. van der, Stabilized Runge-Kutta methods with limited

storage requirements. Report TW 124/71, Mathematisch Centrum,

Amsterdam, (1971).

[3] Houwen, P.J. van der, One-step methods for linear initial value

problems I. Polynomial methods, Report TW 119, Mathematisch Centrum,

Amsterdam, (1970).

[4] Zonneveld, J.A., Automatic numerical integration, MC Tract 8,

Mathematisch Centrum, Amsterdam, (1964).

[5] Lapidus, L. and Seinfeld, J.H., Numerical integration of ordinary

differential equations, Academic Press, New York, London, (1971).

[6] Byrne, G.D. and R.J. Lambert, Pseudo-Runge-Kutta methods involving two

points, J. Assoc. Comput. Mach. 13, p. 114 (1966).

