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Abstract 

A method is described for the computation of the electron density in a 

conducting medium in the presence of an impurity. Finite element techniques 

are used for the solution of the resulting one-dimensional nonlinear 

operator equation. 

The nonlinear operator involves a linear integral operator which causes a 

non-sparse system of equations to be solved. Nonlinearity is dealt with by 

a modified Newton-Raphson process. Proper initial approximations are ob­

tained by means of the Davidenko principle. 
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O. Preface 

The main purpose of this report is not only to find the solution of a 

boundary value problem. It is also intended to show how a constructive 

solution of a problem can be found by only the elaboration of some concep­

tually simple techniques. 

Often one is inclined to transform a problem into another one which is ma­

thematically equivalent indeed, but is different conceptually. In a number 

of cases such a transformation enables us to find an analytical solution 

of the original problem, and that solution may be of use when numerical 

results are wanted. However, when the problem does not admit an analytical 

solution, often a numerical approximation remains possible. 

In many cases it will be easier and more efficient to look for a construc­

tive method that agrees with the original problem. This implies that we 

disregard the transformation that in some cases will make it possible to 

find the analytical solution. 

In our example we show an electron density problem. We will disregard the 

differential equations and the corresponding boundary data by which the 

problem can be described and we will base our constructive method directly 

on the minimum-energy principle. 

Our constructive method consists of the use of: 1. piecewise cubic Hermite 

polynomials for the approximation of the solution; 2. the Rayleig-Ritz­

Galerkin method for the set-up of the discrete set of equations; 3. the 

Lagrange multiplier method for the implementation of a supplementary condi­

tion; 4. the modified Newton-Raphson method for the solution of the resul­

ting set of nonlinear equations, and 5. the Davidenko principle for finding 

proper initial approximations. 
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We remark that this model only simplifies reality as the terms U(p) 

and~ (Vp) 2 are approximate descriptions to the physical behaviour. The 8 p 
solution of the given equations was requested in order to test the validity 

of these approximations for different values of µ. 

Because of the sphere symmetry of the problem we write equation ( 1.2) as 

with p' = dp/dr 

and 

- 2 + (V(r)+~(r))(p(r)-p)] r dr 

V(r) = ~n Jr (p-p)s2ds + 2n J
00 (p-p)sds . 

O r 

( L6) 

( 1. 7) 

The resulting electron density p(r) will be that function of r, which 

minimizes the energy E (cf. eq. 1.6) and satisfies the supplementary con­

dition (cf. eq. 1.4) 

( 1. 8) 

i.e. the local surplus of charge takes a value, such that the disturbing 

potential p(~) will be compensated. 
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2. The numerical problem 

Mathematically stated, the problem reads as follows: 
+ + find a numerical approximation to the distribution p (x) : JR -+ JR which 

minimizes the functional 

st;] =I: [g(p,Dp) + (~(r)+W[p-p](r))(p-p)] r 2dr 

and which satisfies the supplementary condition 

where 

( ) ___ 3 ( 3rr2) 2/ 3 5/3 3(3) 1/3 4/3 g p,Dp 10 p - 4; P -

~(r) 

2 
- 0.00517 p lnp + ~ (Dp) 

8 p ' 

if r < r - 0 

if r ~ r 0 

2rr fr - 2 Joo -W[p-p](r) =--;;-- O (p-p)s ds + 2rr r (p-p)sds , 

and where p,Q,µ and r 0 are some given positive parameters. 

( 2. 1 ) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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3. The formulation of the discrete problem 

Using the basic principle of the Rayleig-Ritz-Galerkin method we try to 

find the solution as a linear combination of a previous given set of 

functions. 

Hence we write 

j=N s iji~(x) ph(x) = p + l a. 
j=O J J 

( 3. 1 ) 

s=1,2 

where p is a known parameter (electron density at infinity) and {iji~(x)}. 
J J. s 

is a set of chosen functions. 

The set {a~}. has to be determined such that ph(x) gives a sufficient 
J J,S 

approximation to the electron density p(x). Where no confusion will be 

possible, we will omit the subscript hand write p(x) for ph(x). 

Using the basic idea of the finite element method, we choose a finite set 

of functions {iji~}. with limited support. Since the function p(x) is 
J J,S 

defined on the infinite interval [O,oo), we choose a sufficiently large 

subinterval [O,R], assuming that p(x) - p on (R, 00]. The interval [O,R] is 

divided into a number of subintervals [xi,xi+ 1J , i = 0,1,2, ... ,N-1. 

We take XO = o, ~ = ro and XN = R. 

The functions {ijJ~(x)} 0 1 J s= , ; Qs;js;N are defined on [x0 ,~J such that 

1 ) 

2) 

3) 

iji~(x) = 0 
J 

iji~(x) is a 
J 

for x 4 (x. 1,x. 1) 
J- J+ 

piecewise ld degree polynomial on [x. 1 ,x.] 
i- i 

and on [xi,xi+1J, and 

0 0 *) 1/1. (x.) = DijJ. (x.) = 0 
J J J J 

1 1 
1jJ. (x.) = 0 Diji. (x.) = 1 . 

J J J J 

*) D d . · d enotes the differential operator D = 
dx 



It follows that 

0 2 
ljJ.(x) = (1-s) (1+2s) 

1 

1 ljJ. ( x) 
l 

2 = s (3-2s) 

2 
= s(1-s) (x. 1-x.) 

l+ 1 

for 

with 

for 

with 

for 

x E [x.,x. 1J 
l l+ 

s = (x-x. )/(x. 1-x.) 
l l+ l 

x E [x. 1 ,x.] 
l- 1 

s = (x-x. 1)/(x.-x. 1l 
l- l l-

x E [x.,x. 1J 
l 1+ 

with s = (x-x. )/(x. 1-x.) 
l l+ l 

for x E [x.,x. 1J 
l l-

with s = (x-x. 1)/(x.-x. 1) 
l- l l-

"""71 
xi-1 xi xi+1 

The discrete problem is obtained by substituting ph(x) for p(x) 

(cf. eq.(3.1)) in equations (2.1) and (2.2). 
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( 3. 2) 

( 3. 3) 

In order to compute the function ph(x) which minimizes s[p] we consider the 

variational equations 

t aa. 
l 

s[pJ = 0 ' 
t 

Va. 
l 

( 3 .4) 

In order to implement the supplementary condition (2.2), which reads in its 

discrete form 

( 3. 5) 
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we introduce a Lagrange multiplier A, thus expanding the set of equations 

( 3. 4) to 

(3.6.a) 

(3.6.b) 

More explicitly these equations may be written as 

( 3. 7) 

and 

Joo 
s s 2 

S[p] = L a. ~· r dr - Q/(4~) = 0 
J 0 J 

(3.8) 

Since (3.6) is a 
s {a.} 
J 

nonlinear system - g and g , are nonlinear functions of p p 
- we try to solve it by means of the Newton-Raphson method. Starting 

with sufficient accurate approximations p and A to p and A, respectively, 
. {~as.} and defining by 

J 

p = p + .l 
JS 

we compute corrections 

and D.A we have to solve 

( t s aR./aa. 
1 J 

s as/aa. 
J 

~s ~ 

Denoting these corrections by s to {a.} and L { D.a.} 
J J 

the linear system 

aR ~ ;a0 

(::jJ · C) =C) · d8:3J 
(3.9) 

If the initial approximations are not too bad, better approximations to p 

and A are 

l ( a~+ l.\a ~ ) ~' ~ and );' + tU 
J J J 

(3.10) 
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4. The construction of the linearized system of eguations 

Since the support of l)J~(x) is the finite interval S. = [x. ,x. ] the 
J.. J.. J..-1 :i..+1 

entries of the linear system (3.9) can be computed without difficulties. 

The entries of the right hand side are -R~ and -S, given in eqs. (3.() and 
J.. 

(3.8). The entries of the matrix are given by 

as/a:>.. = 0 ' ( 4. 1 ) 

aR~/a:>.. t 
= f i)J~ 2 (4.2) = as/aa. r dr 

J.. J.. s. J.. 
, 

J.. 

t s 
f [DljJ ~ DljJ~ (Dl)J~ s s t) + l)Jtl)Js 2 aR./aa. = gp'p' + ljJ.+DijJ. ljJ. g I i jgpp ]r dr + 

J.. J S. nS. J. J J.. J J J. pp 
J. J 

+ f . { 1jJ ~ W[l)J~] + 1.jJ~ W[ijJ~]}r2dr (4.3) 
J.. J. J J. s.ns. 

J.. J 

Most components of these definite integrals can easily be computed analyti-

cally or 

operator 

the fact 

by means of numerical quadrature. However, the occurance of the 
. t . ~Rt/~ s . . . W in R. and in a • aa. causes some computational inconvenience: 

i i J 
that W is defined by an integral will force us to deal with a 

double-integral and, as a consequence, the linear system will be non-sparse. 

We will treat this in more detail. 
t s In order to be able to compute aR./aa. we have to compute 
J. J 

T~~ @· f 1.jJ~ W[ijJ~](r)r2dr . 
J..J J. J s.ns. 

(4.4) 

i J 

Using the definition of W (eq.(2.5)) we write 

(4.5) 

= 2'IT fJ 
O<r<s< 00 
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ts We note that T .. 
lJ 

it follows that 

with 

x. 
J 

x. 1 J-

~ 

T~~ = 
lJ 

= 

ts 
Kkhj 

/ 
v 

= T:~ , and, because of the finite support of \)J~ and \)J: 
Jl. l. J 

JJ \)J~(r)l)J:(~) {if 21T 
rES. J 

J. 
~ES. 

J 

I ts 
2rr Kk2ij . 

k=i-1,i 
.Q.=j-1 ,j 

rk+1 r.Q.+1 l/J~(r)l)J~(s) = 
r=~ ~=xfl 

J. J 

l/r =~ 

/ 
v 

/ 

~<r then 2 2 
~ r else r s} dsdr 

(4.6) 

{if s<r then 2 
~ r else 2 

r 0 dsdr. 

(4.7) 

Figure 1. 

ts The domain of integration of T ..• 
1J 

Thus we split the double-integral into four parts, each of which can be 

compute separately. 

In the case k ~ fl the calculation can be reduced to the computation of 

line-integrals: 

ts t s 
Kkiij = Mki x 1 . for k < fl 

2-J 

(4.8) 
t x M : for k > Jl = 1ki 2-J 

where 
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Mk1 = J:::1 w1(r) r 2dr , 
k 

Lk1 = J:::1 w1(r) rdr 
k 

t t 
We note that Mki can also be used for the computation of 3Ri/3A, since 

3R~/3A = 
l 

3S/3a~ 
i 

t t 
= M(i-1 )i + Mii ( 4. 9) 

Now equations (3.7) and (4.3) may be written 

and 

where 

R~ = J [Dw. g I + w~ g + w~{~(r)+A}] r 2dr + 2 l a~T~~ (4.10) 
i s. i p l p l . J iJ 

l JS 

t s 3R./3a. 
l J 

= Q~~ + 2T~~ 
iJ lJ 

Q~~ 
iJ = I [Dip1 

s.ns. 
l J 

(4.11) 

Inspection of (4.11) shows that 

1 . 

2. 

3. 

4. 

(3R~/3a~) is a symmetric positive definite matrix. 
i J 

Q~~ - with rows identified by (i,t) and columns identified by (j,s) -
lJ 

is a band.matrix. 

( t/ s) . ts . f . 3R. 3a. is non-sparse, since T .. is a ull matrix. 
l J lJ 

The first 

dependent 

ts 
term, Q .. , of the right hand side of equation (4.11) is 

lJ 
{ s} ts . . d on p - and hence on a. - but T .. is in ependent of p. 

J iJ 

Hence, we have to solve the non-sparse symmetric positive semi-definite 

system (3.9) at each Newton iteration step, and each time the corrected 
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value p 

s s 
/::ia.ljl. 

J J 

t ts enables us to update R. and Q ... 
1 1J 

However, in order to save computing time, the modified Newton-Raphson 

method is used, in which the matrix Q~~ is evaluated only a small number 
1J 

of times. 
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5, The physical meaning of the Lagrange multiplier. 

Of course it would be possible to solve the system (3.9) and to consider 

the Lagrange multiplier as an unknown quantity indeed. However, in the 

present problem we are able to give an alternative treatment of the supple­

mentary condition and to compute the Lagrange multiplier in advance. 

Let us first consider the simple problem to find the vector x that mini­

mizes the vectorfunction f(x) under the supplementary condition t(x) = c. 

The Lagrange multiplier method leads us to solve the system 

grad (f(x)) +A grad (t(x)) = 0 

t(x) = c • 

Thus A denotes a constant ratio such that 

where x0 is the solution of (5.1). 

( 5. 1 ) 

The same arguments applied to the functional s[p] (cf. eq.(2.1)) and the 

supplementary condition eq. (2.2) show that 

with 

grad (s[p]) =-A grad (I: (p-p) r 2dr) 

grad ( s[p]) = lim s[p+hxop] - s[p] 
h h+O 

( 5. 2) 

The constant ratio -A, which is independent of the shape of the perturba­

tion op, is easily calculated for some op with its support at infinity and 

Dop << op. A simple calculation yields 

grad (s[p]) = J00 

[g op + g , DopJr2dr . 
0 p p 
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For this special choice of 6p 

Joo 
2 

0 
6p r dr 

= g (p,0) grad (J00 (p-p) r 2dr) • 
p 0 

W11ich yields 

A = -g ( p, 0) • 
p 

( 5. 3) 

This consideration enables us to compute the Lagrange multiplier in advance 

and to solve the linear system (3.9) with disregard of the last row and 

the last column. 'rhe remaining matrix directly stems from our minimizing 

problem and, consequently, is symmetric and positive definite. In order to 

solve the system Choleski's method is used. 

Actually we replaced a global condition (eq.(2.9)) 

Q - 2 J
oo 

4n = 0 (p-p) r dr 

by an equivalent local one 

grad (J ooo (p-p-) r2dr) grad (E[p]) = gp(p,O) 

JR 2 
We may compute (p-p) r dr 

0 
and check relation (2.2), which yields 

( 2. 2) 

( 5. 4) 

some information about the relevancy of truncating the infinite interval 

[0, 00 ) to the interval [O,R]. 



6. The solution 

The boundary conditions 

The treatment of the boundary conditions is simple. 

It can be done in two ways. 

1. Since the boundary conditions at r = 0 and r = oo are natural, the non­

linear system (3.6) can be solved, just as it stands. In this case all 

parameters {a~} j = 0,1, ... ,N s = 0,1 are computed. 

15 

J 1 0 1 
It is expected that a 0 ~ O, aN ~ 0 and aN ~ O, as they are the computed 

values of p'(O), p(xN)-p and p'(~), respectively. The discrepancy can 

be used as an indication of the accuracy obtained. 
1 0 1 2. It is also possible to keep one or more of the values a 0 , aN, aN fixed 

at zero. 

In this case we disregard the equations (3.6.a) for (i,t) = (0,1),(N,O) 

and (N, 1). 
. 1 . In most computations we kept only a 0 fixed at zero in order to preserve 

continuity of the first derivative at r = 0. 

The convergence of the Newton-Raphson iteration 

The value of the parameter p has a large influence on the convergence of 

the Newton-Raphson iteration process. This is caused by the nonlinearity 

of the function g(p,p' ). In figure 2 the behaviour of g(p,O) is sketched. 

0.00011 1 i 
o. ooo4s l T 

Figure 2. 

0.00159 I 
0.00594 

0.01 

The qualitative behaviour of g(p,O). 

g(p,O) 

p 
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Since g (p,O) > O and g (p,O) > 0 for p > 0.06 the functional s[p] is p pp 
easily minimized for these values of p and, started with the initial ap-

proximation p = p, good convergence is obtained for p > 0.06. However, 

values down to p = 0.001 are of physical interest and in this range con­

vergence is very poor. We expect bad convergence since g (p,O) < 0 for pp 
p < 1.59210-3. Actually, for p = 0.001 the process diverges when started 

with p = p. This difficulty is dealt with by the Davidenko principle as 

follows. 

The solution p(r) is continuously dependent on the parameter p. Hence, for 

reasonable small values of 6c, the solution with p = c + 6c will be a good 

approximation to the solution with p = c. An approximate solution for 

p = 0.01 is obtained in one Newton iteration step. This approximation is 

used as an initial approximation in another Newton iteration step that 

computes the solution for p = 0.01 - 6c (e.g. p = 0.008). In this way p 

is decreased each time when an iteration step has been executed. 

Thus p is changed during the iteration process and a good approximation is 

obtained when the process goes to an end with the required p. In this way 

convergence is obtained. E.g. withµ = 0.5 and Q = r 0 = 1 the sequence 

p = 0.01, 0.008, 0.006, 0.004, 0.002 is sufficient to obtain convergence 

for p = 0.001. 

The number of iteration steps which is necessary also depends on the nurnl::er 

of nodes (N) used in the discretization of the continuous problem. 

The larger the number of nodes, the larger the number of iteration steps 

to obtain the same accuracy. Hence, we increased the number of nodes 

during the iteration process. A large number of numerical experiments have 

been done and, in all computations, 15 iteration steps were sufficient in 

order to obtain the solution. 

The convergence with respect to the discretization 

A comprehensive literature exists on the convergence of piece-wise polyno­

mial approximations to the solution of continuous problems. Important 

papers on this subject are published by Bramble and Hilbert [1970, 1971], 

Ciarlet and Raviart [1972], Ciarlet, Schultz and Varge [1967, 1969] and 



Strang [1972]. 

The most striking feature of the 3rd degree Hermite polynomial which we 

used is the order of accuracy [cf. Strang, 1972]. The discretization error 

in the computation of p is O(h4) and the error of p' is O(h3), where h 

denotes the mesh width. Moreover, this property not only holds for a uni­

form mesh, but also for a non-uniform one. This means that, given a number 

of nodes, the discretization error is decreased by a factor of 16 when an 

e~ual number of nodes is added. The only condition is that no extreme 

mesh-ratios occur. 

These features enable us (1) to place the nodes in an efficient way, i.e. 

dense in those regions where the solution has large higher derivatives, 

and (2) to estimate the discrepancy between the continuous and the discrete 

problem by analyzing the difference between the discrete problems. 

In order to give an impression of the accuracy obtained and of the amount 

of computational work involved, we report a numerical experiment with 

µ = 0.5, p = 0.006, Q = r 0 = 1. 

number of max. rel. err. number of 

nodes in p iterations 

14 11 o-4 SN 
-------~ 

4 4,0-2 1N + 1MN 

9 310-3 + 1N + 1MN 

28 210-6 + 3N + 3MN 

t s 
N : Newton iteration step (with evaluation of a matrix 3R./8a.) 

l J 

MN: Modified Newton iteration step (without evaluation of a matrix 

3R~ /da~) 
l J 

During the second iteration process the number of nodes was increased from 

4 to 9 to 28. 



18 

References 

J.H. Bramble and S.R. Hilbert (1970). 

(1971). 

Estimation of linear functionals on Sobolev spaces with applica­

tion to Fourier transforms and spline interpolation. 

SIAM J. Numer. Anal. 17 (1970) 112. 

Bounds for a class of linear functionals with application to 

Hermite interpolation. 

Numer. Math. 16 (1971) 362. 

P.G. Ciarlet and P.A. Raviart (1972). 

General Lagrange and Hermite interpolation in Rn with applica­

tions to finite element methods. 

Arch. Rational Mech. Anal. 46 (1972) 177. 

G. Strang (1972). 

Approximation in the finite element method. 

Numer. Math. 19 ( 1972) 81. 

P.G. Ciarlet, M.A. Schultz and R.S. Varga (1967-1969). 

Numerical methods of high order accuracy for nonlinear boundary 

value problems. 

I. One dimensional problem. 

Numer. Math. 9 (1967) 394. 

V. Monotone operator theory. 

Numer. Math. 13 ( 1969) 51 . 


