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Introduction

On request of the Academic Computing Centre Amsterdam (SARA) the Mathe-
matical Centre adapted its library of numerical procedures for use with
the CD CYBER 70 system. The major part is now available for use and
compatible with the CD ALGOL 60 compiler version 3. The resulting library
is called NUMAL.

The aim of NUMAL is to provide a high level numerical library for ALGOL 60
programmers. The library contains a set of validated numerical procedures
together with supporting documentation. Except for a small number of
double length scalar product routines, all the source texts are written

in ALGOL 60 and they are to a high degree independent of the computer/

compiler used.

Unlike the former numerical library of the Mathematical Centre, the do-
cumentation of the library NUMAL is self-contained and does not refer to
other MC-publications as far as the directions for use and the source

texts of the procedures are concerned.

Of course, the library is in continuous development and any descriptiomn
will be an instantaneous one. In this report we give an index of the
procedures available in april 1974 and a kwic-index of the procedures
whose full descriptions were available at december 1St 1973.

The aim of the Mathematical Centre is to distribute an extended version

of the index and kwic-index approximately twice a year.



Organization of the library

The library NUMAL is stored as a number of permanent files in the

CD CYBER 70 system of SARA.

These files are:

1.

the file "numal 3 index"

This file contains an up to date index of the library. A listing of
version 740321 (march ZISt 1974) is printed below.

It gives a survey of the procedures and it describes the way omne can

obtain the documentation of each procedure.

the file "numal 3"

(Numerical procedures in ALGOL 60, version 3).

This is a library file which contains the object code of the procedu-
res available. This library can be used when programs are loaded, com-

piled by the CD ALGOL 60 compiler, version 3.

the files "numal 3 document a'"

"numal 3 document b"

etc.
These files contain the documentation.
Each of these documentation files is subdivided into a number of seg-
ments, each consisting of two successive records. The first record of
a segment contains a description of a procedure (or set of procedures)
and instructions for use; the second record contains the ALGOL 60

source text(s).

The files "numal 3 document a'" and "numal 3 document b'" only contain

ALGOL €0 source texts. Full documentation is in preparation. Mostly, the

user can find documentation in the LR-series of the Mathematical Centre.

The files "numal 3 document c" upto "numal 3 document f" contain full do-

cumentation of those procedures which also were available for the EL-X8

computer of the Mathematical Centre and which are now available in a re-

vised form for the CD CYBER 70 system.



The files "numal document g" and "mumal document h'" contain full do-

comentation of the procedures, developed in 1973 for NUMAL.

The procedures described in "numal 3 document a'" up to and including
"numal 3 document f'" are available for all users of the SARA CD CYBER
70 system. At the moment (april 1974) the procedures described in
"numal 3 document g" upto and including "numal 3 document j" are only

available for those who have the disposal of an MC-project number.
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ON REQUEST OF THE ACADEMIC COMPUTING CENTRE AMSTERDAM ( SARA )
THE LIBRARY NUMAL IS DEVELOPED AND SUPPORTED BY THE NUMERICAL
MATHEMATICS OEPARTMENT QOF THE MATHEMATICAL CENTRE (AMSTERDAM),

THE PRESENT DOCUMENT CONTAINS A SURVEY OF THE PROCEOURES AVAILABLE IN
OR PLANNED FOR NUMAL , MOREQVER, IT DESCRIBES THE WAY BY wHICH ONE
CAN OBTAIN FULL DOCUMENTATION OF THOSE PROCEDURES ALREADY AVAILABLE,

FILES,

THE LIBRARY NUMAL CONSISTS OF A NUMBER OF FILES:

1, FILE "NJMAL3IINDEX",

THIS FILE CONTAINS THIS PARTICULAR DOCUMENT, I,k, THE INDEX TO
THE LIBRARY,

2, FILE "NUMAL3" A LIBRARY FILE WHICH CONTAINS THE ODBJECT CODE UF
THE PROCEDURES AVAILABLE, THIS LIBRARY CAN BE USED WHEN PROGRAMS,
COMPILED UNDER ALGOL3 , ARE LOADED, FOR THE USE OF A LIBRARY FILE
SEE  E.G

$COPE REF MANUAL, CHAPTER 6,
INTERCOM REF MANUAL, CHAPTER 3, XEG COMMAND,
3, THE FILES "NUMAL3DOCUMENTA"
UNUMALIDOQCUMENTBY
"NUMALIDOCUMENTCY
ETCe
THESE FILES CONTAIN THE DOCUMENTATION OF THE PROCEDURES,
EACH OF THESE FILES 18 SUBDIVIDED INTO A NUMBER OF SEGMEHNTS, EACH
CONSISTING OF TWO SUCCESSIVE RECORDS,
THE FIRST RECORD OF A SEGMENT CONTAINS A DESCRIPTION OF A
PROCEDURE ( OR SET OF PROCEDURES )y THE SECOND RECORD CONTAINS ThE
ALGOL 60 SODURCE TEXT(S),
THE FILES ®“NUMALSDOCUMENTAY AND "NUMALIDOCUMENTB® DNLY CONTAIN
ALGOL 60 SOURCE TEXTS, FULL DOCUMENTATION IS [N PREPARATION, MOSTLY
THE USER CAN FIND OOCUMENTATION IN TYRE (ReSERIES OF THE
MATHEMATICAL CENTRE, WHICH CONTAINS DOESCRIPTIONS OF THE ELex8
IMPLEMENTATION OF THE ALGORITHMS,
THE FILES PNUMAL3DOCUMENTC" , “NUMAL3DOCUMENTD" ETC, CONTAIN
FULL DOCUMENTATION,

HOW TO GET ENTRANCE TO THE DOCUMENTATION,

CLASSIFIED ACCORDING TO SUBJECT, THE PRESENT INDEX CONTAINS THE
NAMES OF THE PROCEDURES, THE CORRESPONDING CODE NUMBERS IN NUMAL3Z
AND A REFERENCE TO THE OOCUMENTATION, THIS REFERENCE GIVER A
FILENAME AND A NUMBER OF RECORDS 70 BE SKIPPED ON THAT FILE (SKIPR),
IN ORDER TJ CONSULT A SPECIFIED RECORD OF DOCUMENTATION, ALL PRECEDING
RECORDS HAvE 10 BE SKIPPED,



EXAMPLE,

IN ORDER TO OBTAIN THE DESCRIPTION OF THE PROCEDURE ™MULTISTEP"
(SECTION 5,2,1,14141, +ON FILE "NUMALSDOCUMENTC® , SKIPR=30 )
THE NEXT CONTROL CARDS CAN BE USED

(AR R NN

ATTACH,N3C,NUMAL3DOCUMENTC,

SK1PF,N3C,30,

COPYBR,N3C,0UTPUT,

IN ORDER T OBTAIN THE SOURCE TEXT, ONE MORE RECORD HAD TO BE SKIPPED,

SERVICE,

ADVICE ABOJT THE USE OF THE LIBRARY OR ABQOUT THE USE OF THE INDIVIDUAL
PROCEDURES CAN BE OBTAINED FROM THE PROGRAM ADVISOR OF THE
MATHEMATICAL CENTRE,

NOTE,

FOR FUTURE PUBLICATION THE DOCUMENTATION 1S SCATTERED WITH LAYOUT
SYMBOLS: 8+ %< $» $] $= §; 8, ETC,,

P, W, HEMKER
(MATHEMATICAL CENTRE)

REMARK ,

AT THE MOMENT ( 1974+3e20 ) THE PROCEDURES DESCRIBED IN NUMALDQCUMENTG,
NUMAL3DOCUMENTH AND NUMALDOCEMENTJ ARE ONLY AVAILABLE FOR THOSE WHO
HAVE THE DISPOSAL OF AN MC=PROJECTNUMBER,

NO PART OJF THE LIBRARY NUMAY MAY BF REPRODUCED, STORED IN A
RETRIEVAL SYSTEM OR  TRANSMITTED, IN ANY FORM OR BY ANY MEANS,
ELECTRONIC, PHOTOCOPYING, RECORDING, OR OTHERWISE, WITHOUT THE
PRIOR WRITTEN PERMISSION OF THE ACADEMIC COMPUTING CENTRE AMSTERDAM
(SARA) QR THE MATHEMATICAL CENTRE (AMSTERDAM),



INDEX

1 ¢ELEMENTARY PROCEDURES

L

1 REAL VECT AND MAT OPERATIONS

1, INITIALTZATION

2,UPLICATION

3 MULTIPLICATION

4,SCALAR PRODUCTS

SCELIMINATION

64 INTERCHANGING

T,ROTATION

8,VECTOR NORMS

9,YECTOR SCALING

PROCEDURE

INIVEC
INIMAT
INIMATD
INISYHD
INISYMROW

DUPVEC
DUPVECROw
DUPROWVEC
DUPVECCOL
DUPCOLVEC
DUPMAT

MULVEC
MULROH
MULCOL
coLCST
ROWCST

VECVEC
MATVEC
TAMVEC
MATMAT
TAMMAT
MATTAM
SEGVEC
SCAPRDY
SYMMATVEC

ELMVEC

ELMCOL

ELMROW

ELMVECCOL
ELMCOLVEC
ELMVECROw
ELMROWVEC
ELMCOLROW
ELMROWCOL
MAXELMROW

ICHVEC
IcHCOL
ICHROW
[CHROWCOL
ICHSEGVEC
ICHSEQ

ROTCOL
ROTROW

ABSMAXVEC

CO0E

31080
31011
31012
31043
51044

31030
31034
31032
51033
31034
51035

31020
31024
31022
3113}
31132

34010
34011
34012
34013
34014
34015
54016
34017
34018

34020
34023
34024
34021
34022
34026
34027
34029
34028
34025

34030
3403}
34032
34033
34034
54035

34040
3404y

31060

DESCRIPTIUN

FILENAME

NUMAL SDOCUMENTD
NUMAL3DOCUMENTD
NUMAL3IDOCUMENTD
NUMAL3DOCUMENTD
NUMAL3DOCUMENTD

NUMAL3DOCUMENTD
NUMAL3DOCUMENTD
NUMAL3DOCUMENTD
NUMAL 3DOCUMENTD
NUMAL3DUCUMENTD
NUMAL SDOCUMENTD

NUMAL 3DOCUMENTD
NUMAL3DOCUMENTD
NUMAL3DOCUMENTD
NUMAL 3DOCUMENTD
NUMAL 3DOCUMENTD

NUMAL 3DDCUMENTD
NUMAL 3DOCUMENTD
NUMAL 3DOCUMENTD
NUMAL3DOCUMENTD
NUMAL3IDOCUMENTD
NUMAL 3DOCUMENTD
NUMAL3DOCUMENTD
NUMAL3DOCUMENTD
NUMAL3DOCUMENTOD

NUMAL3DOCUMENTOD
NUMAL SDOCUMENTD
NUMAL3DOCUMENTD
NUMAL3DOCUMENTD
NUMAL3DOCUMENTD
NUMAL3IDOCUMENTD
NUMAL3DOCUMENTD
NUMAL3DOCUMENTD
NUMAL3DOCUMENTD
NUMAL3DOCUMENTD

NUMAL3DOCUMENTD
NUMAL 3DOCUMENTD
NUMAL3DOCUMENTD
NUMALSDOCUMENTD
NUMAL SDOCUMENTD
NUMAL3DOCUMENTD

NUMAL3DOCUMENTD
NUMAL3DOCUMENTD

NUMAL3DOCUMENTD

SKIPR
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INDEX

9,
{0,MATRIX NORMS
11, MATRIX SCALING
2,C0MPL VECT AND MAT OPERATIONS
e
2,
3,MULTIPLICATION

4,SCALAR PRODUCTS
SLELIMINATION

6, INTERCHANGING
7.ROTATION

8,VECTOR NORMS
9,VECTOR SCALING
10 ,MATRIX NORMS
L1,MATRIX SCALING

3,COMPLEX ARITHMETIC
1,MONADIC OPERATIONS

2,DYADIC OPERATIONS

4,LONG INTEGER ARITHMETIC

5,LONG REAL ARITHMETIC
1,ELEM, ARITHMETIC OPERATIONS
2,SCALAR PRODUCTS

e 54 2y

PROCEDURE

REASCL
MAXMAT

COMCOLCST
COMROWCST

COMMATVEC
HSHCOMCOL
HSHCOMPRD

ELMCOMVECCOL
ELMCOMCOL
ELMCOMROWVEC

ROTCOMCOL
ROTCOMROM

COMSCL
COMEUCNRM

SCLCOM

COMABS
COMS@QRT
CARPOL

COoMMUL
COMDIV

LNGINTADD
LNGINTSUR
LNGINTMUL
LNGINTDIV
LNGINTPOW

LNGVECVEC
LNGMATVECD
LNGTAMVEC
LNGMATHAT
LNGTAMMAT
LNGMATTAM
LNGSEQVEC
LNGSCAPRD]
LNGSYMMATVEC

CODE

34183
34230

34352
343553

34354
34355
34356

34376
34377
34378

34357
34358

34193
34359

34360

34340
34543
34344

34541
34342

31200
31201
31202
31203
31204

34410
1441y
34412
34413
34414
34413
34416
34417
34448

DESCRIPTION

FILENAME

NUMAL3DOCUMENTF

NUMAL3DOCUMENTD

NUMAL3DDCUMENTG
NUMAL3DOCUMENTG

NUMAL 3DUCUMENTG
NUMAL 3DOCUMENTG
NUMAL3DOCUMENTG

NUMAL3DOCUMENTG
NUMAL30OCUMENTG
NUMAL3DOCUMENTG

NUMAL 3DOCUMENTG
NUMAL 3DOCUMENTG

NUMAL 3DOCUMENTF
NUMAL3IDOCUMENTG

NUMAL3DOCUMENTG

NUMAL 3DOCUMENTD
NUMALSOOCUMENTD
NUMAL3DOCUMENTD

NUMAL3DOCUMENTD
NUMAL3DDCUMENTD

NOT YET AVAILABLE
NOT YET AVAILABLE
NOT YET AVAILABLE
NUT YET AVAILABLE
NUT YET AVAILABLE

NUMAL3DOCUMENTH
NUMAL3DOCUMENTH
NUMAL 3DOCUMENTH
NUMAL3DDCUMENTH
NUMAL3DOCUMENTH
NUMAL SDOCUMENTH
NUMAL, 3DOCUMENTH
NUMAL3DOCUMENTH
NOMAL3DOCUMENTH

SKIPR

2é

[

18
P-L ]
24

10
20

2e

td
16
18

20
22

14
14
14
14
14
14
14
14
14



INDEX PROCEDURE CODE DESCRIPTIUN

FILENAME SK1PR
2o ALGEBRAIC EVALUATIONS
1,EVAL, OF A FINITE SERIES
2.EVAL, OF POLYNOMIALS
1 EVAL, OF GENERAL POLYNOMIALS
POL 351040 NUMAL 30DCUMENTC 0
NEWPOL, 31041 NUMAL3DOCUMENTC e
TAYPOL 31244 NOT YET AVAILABLE
NORDERPOL, 3242 NOT YET AVAILABLE
DERPOL 31248 NOT YET AVAILABLE
2,EVAL, OF ORTHOGON, POLYNOMIALS
CHEPOL 31042 NOT YET AVAJLABLE
ALLCHEPOL 31043 NOT YET AVAILABLE
ORTPOL, 31044 NUT YET AVAILABLE
ALLORTPOL, 31045 NOT YET AVAILABLE
CHEPOL SER 31046 NOT YET AVAILABLE
ORTPO(,SER 31047 NOT YET AVAILABLE
3LEVAL, OF TRIGONOM, POLYNDMIALS
FOUSER 31090 NUT YET AVAILABLE
3,EVAL, OF CONTINUED FRACTIONS
JFRAC $5083 NUMAL 300CUMENTYJ 0
4,0PERATIONS ON POLYNOMIALS
1,TRANSF, OF REPRESENTATION
NEWGRN 31050 NUMAL 3DDCUMENTC 4
POLCHS 31250 NOT YET AVAILABLE
POWCHS 351051 NOT YET AVAILABLE
2,0P, ON GENERAL POLYNOMIALS
ADDPOL 3105% NOT YET AVAILABLE
SUBPOL 31054 NDT YET AVAILABLE
MULPOL 31052 NOY YET AVAILABLE
DIFPOL 310585 NUT YET AVAJLABLE
INTPOL 31057 NOT YET AVAJLABLE
5,0P, ON QRTHOGONAL POLYNOMIALS
INTCHS 31248 NUT YET AVAILABLE
5,FAST FOURIER TRANSFORM
FFY 31300 NOT YET AVAILABLE
3,LINEAR ALGEBRA
1 ,LINEAR SYSTEMS
1,FULL MATRICES
1,8QUARE NON=SINGULAR MATRICES
{.REAL MATRICES
1 oGENERAL MATRICES
1 PREPARATORY PROCEDURES
DEC 34300 NUMAL 3DDCUMENTE 22
GSSEL™ 423y NUMALIDOQCUMENTE 22
ONENRMINY 14240 NUMAL3OOCUMENTE 22
ERBELM 3424y NUMAL300CUMENTE 22
GSSERB 34242 NOMAL30QCUMENTE 2e
GSSNRI 34252 NUMAL3DOCUMENTE 22
2¢CALCULATION OF DETERMINANT : ’ C
DETERM 34303 NUMALIOOCUMENTE 24
3,S0LUTION OF LINEAR EQUATIONS .
SoL 34051 NUMAL3DOCUMENTE 26
DECSOL 34301 NUMALSDOCUMENTE 26
SOLELM 34061 NUMAL SDUCUMENTE 26

3, i 1 1, 1 1. 3, GSssOL 34232 NUMAL 3DOCUMENTE 2b



INDEX

3, 1y Ly 1, 1, 1, 3,
4,MATRIX INVERSION

S,ITERATIVELY IMPROVED SOLUTION
2,SYMMETRIC POS DEF MATRICES

1 PREPARATORY PROCEDURES

2,CALCULATION OF DETERMINANT

3,S0LUTION OF LINEAR EQUATIONS

4,MATRIX INVERSION

2,COMPLEX MATRICES
2.FULL RANK OVERDETERM SYSTEMS
{ (REAL MATRICES
| PREPARATORY PROCEDURES

2,LEAST SQUARES SOLUTION
Y, INVERSE WMATRIX OF NORMAL EGN,
2,COMPLEX MATRICES
3,0THER PROBLEMS

1, REAL MATRICES
1.SDLUTION CVERDETERMINED SYST

2,50LUTION UNDERDETERM SYSTEMS
3,SO0LUTION HO4YOGENEQUS EQUATION

4,PSEUDO=INVERSION

3, e 1e 3, 1a 44

PROCEDURE

GSSSOLERB

INV
DECINV
INVY
GSSINY
GSSINVERS

171804
GSSITISOL
ITISOLERB
GSSITISOLERS

CHLDEC?2
CHLREC!

CHLDETERMZ
CHLDETERM]

CHLSOL?2
CHLSOLY
CHLOECSOL2
CHLOECSOL)

CHLINV2
CHLINYY
CHLDECINVE
CHLDECINVY

LSQORTREC
LSQDGLINY

LSGS0L
LSQORTDECSOL

LSQINV

SOLSVPOVR
SOLOVR

SOLSYDUND
SOLUND

HGMSOLSVD
HOMSOL,

PSDINVSYD
PSDINV

CODE

34243

34053
34302
54235
3423b
342u4

34250
34251
34253
34254

34310
34311

34312
34343

34390
3439y
34392
34393
34400
34401

34402
54403

34134
34132

54131
34135

34136

34280
s4281

34282
34283

34284
34285

34286
3ues7

DESCRIPTION

FILENAME

NUMALIDOCUMENTE

NUMAL3DUCUMENTE
NUMALIDOCUMENTE
NUMAL3DUCUMENTE
NUMAL3IDOCUMENTE
NUMAL $DUCUMENTE

NUMAL3DDCUMENTE
NUMAL3IDOCUMENTE
NUMAL3DOCUMENTE
NUMAL3OOCUMENTE

NUMAL 3DOCUMENTF
NUMAL SDOCUMENTF

NUMAL SOUCUMENTF
NUMAL 3DOCUMENTF

NUMAL 3DOCUMENTE
NUMAL3DOCUMENTF
NUMAL 3DOCUMENTE
NUMAL 3DOCUMENTF

NUMAL3DOCUMENTF
NUMAL 3DOCUMENTF
NUMAL3DOCUMENTF
NUMAL3IDOCUMENTF

NUMAL3DUCUMENTE
NUMALSDOCUMENTE

NUMAL 3DUCUMENTE
NUMAL 3DUCUMENTE

NOT YET AVAILABLE

NUMALSDOCUMENTH
NUMAL3DOCUMENTH

NUMAL 3DOCUMENTH
NUMAL 3DOCUMENTH

NUMAL3DOCUMENTH
NUMAL3DOCUMENTH

NUMAL 3D0CUMENTH
NUMAL 3D0CUMENTH

SKIPR

26

28
28
28
28
28

30
30
30
30

non oo

PN N

oo oo

se
32

34
34

R~ -

oo



INDEX PROCEDURE CODE DESCRIPTION

FILENAME SKIPR
3, 1. 1. 3, 2.COMPLEX MATRICES
2,SPARSE MATRICES
1,DIRECT METHODS
1 ,REAL MATRICES
1 ,NON=-SYMMETRIC MATRICES
1 ,BAND MATRICES
1 ,PREPARATORY PROCEDURES
DECBND 34520 NUMALSDQCUMENTE 0
2,CALCULATION OF DETERMINANT
DE TERMBND 34321 NUMAL 3DOCUMENTE 2
3,50LUTION OF LINEAR EQUATIONS
SOLBND 54974 NUMAL3DOCUMENTE 4
DeECSOLBND 34322 NUMAL3DOCUMENTE 4
2,TRIDIAGONAL MATRICES )
t PREPARATORY PROCEDURES
DECTR] 34423 NUMAL3DOCUMENTH 16
DECTRIPIV 34426 NUMAL3DOCUMENTH 16
2,CALCULATION OF DETERMINANT i
3,S0LUTION OF LINEAR EQUATIONS
SOLTRI 34424 NUMAL3DOCUMENTH 18
DECSOLTRI 34425 NUMAL 300CUMENTH 18
SOLTRIPIV suy27 NOUMALIDOCUMENTH 18
DECSOLTRIPIV 34428 NUMAL 3DOCUMENTH i8
3,BLOC=TRIDIAGONAL MATRICES )
2,SYMMETRIC POS DEF MATRICES
{ ,BAND MATRICES
1,PREPARATORY PROCEDURES
CHLDECBND 34330 NUMAL3DOCUMENTE 6
2,CALCULATION OF DETERMINANT
CHLOETERMBND 34534 NUMAL3DROCUMENTE 8
3,S0LUTION OF LINEAR EQUATIONS ’ i
CH{.SOLBND 34332 NUMAL 3DUCUMENTE 10
CHLDECSOLBND 34333 NUMAL3DOCUMENTE 10
2,TRIDIAGONAL MATRICES ’ )
1 PREPARATORY PROCEDURES
DECSYMTRY 34420 NUMAL3DOCUMENTH 20
2,CALCULATION OF DETERMINANT
3,SOLUTION OF LINEAR EQUATIONS
SOLSYMTRI 3442y NUMAL3DOCUMENTH 22
DECSOLSYMTR] 34422 NUMAL300CUMENTH 22
3,8LOC=TRIDIAGONAL MATRICES S )
2.COMPLEX MATRICES
2,ITERATIVE METHODS
1,REAL MATRICES
CONJ GRAD 34220 NUMAL3DDCUMENTC 36
CONJ RESI 34224 NOT YET AVAILABLE
2,COMPLEX MATRICES
2,TRANSFORMATION TO SPECIAL, FORM
{SIMILARITY TRANSFORMATIONS
1,EQUILIBRATION
1,REAL MATRICES
EQILBR 34173 NUMAL 3DOCUMENTF 12
BAKLBR 34174 NUMAL3DOCUMENTF 12

2,COMPLEX MATRICES
3, - Lo 1s 2, EQILBRCOM 34361 NUMAL3DOCUMENTG 16



INDEX

30 20 4, e 2y
2,TRANSF TO HESSENBERG FORM
1,REAL MATRICES
1,SYMMETRIC MATRICES

2,ASYMMETRIC MATRICES

2,COMPLEX MATRICES
{,HERMITIAN MATRICES

2,NON»HERMITIAN MATRICES

2,0THER TRANSFORMATIONS
1,TRANSF TO BIDIAGONAL FIRM
1,REAL MATRICES

2,COMPLEX MATRICES
3,THE (ORDINARY) EIGENV PROBLEM
1,REAL MATRICES
1,SYMMETRIC MATRICES
1,TRIDIAGONAL MATRICES

2,FULL MATRICES

2,ASYMMETRIC MATRICES
1,MATRICES IN HESSENBERG FORM

2.FULL MATRICES

3, 3 1, 2y 2

PROCEDURE

BAKLBRCOM

TFMSYMTRI2
BAKSYMTRIZ
TFMPREVEC
TFMSYMTRIY
BAKSYMTRI |

TEMREAHES
BAKREAHES]
BAKREAMES2

HEHHRMTR]
HSHHRMTRIVAL
BAKHRMTR]

HSHCOMHES
BAKCOMHES

HSHREABID
PSYTFMHMAY
PRETFMMAT

VALSYMTRY
VECSYMTRI
QRIVALSYMTRI
QRISYMTRI
RATGR]

EIGVALSYMZ
EIGSYMR
EIGVALSYMY
EIGSYM]
QRIVAL8YM2
QRISYM
QRIVALSYHMY

REAVALQR]
REAVECHES
REAGRY

COMVALGR]
COMVECHES

REAEIGVAL
REAEIGY

CODE

34362

34140
3agay
34142
34143
34144

34170
3417y
34472

34363
34364
34365

34366
34367

34260
34261
34262

34151
34152
3ug60
3416y
34166

341538
34154
34159
34456
3uy62
34163
34164

34180
34184
14186
34190
34191

34182
4184

DESCRIPTION

FILENAME

NUMAL3DOCUMENTG

NUMAL 300CUMENTD
NUMAL3DOCUMENTD
NUMAL 3D0CUMENTD
NUMAL3DOCUMENTD
NUMAL 300CUMENTD

NUMAL3DOCUMENTF
NUMAL 3DOCUMENTF
NUMAL3DOCUMENTE

NUMAL3DOCUMENTG
NUMAL 3DDCUMENTG
NUMAL3DDCUMENTG

NUMAL3DDCUMENTG
NUMAL 3DOCUMENTG

NUMAL SODCUMENT R
NUMAL 3DOCUMENTH
NUMAL SDOCUMENTH

NUMAL3DUCUMENTD
NUMAL3DOCUMENTD
NOT YET AVAILABLE
NUMAL30UCUMENTD
NOT YET AVAILABLE

NUMAL SDOCUMENTE
NUMAL3DOCUMENTE
NUMAL30DCUMENTE
NUMAL3DOCUMENTE
NUMAL3Q0CUMENTE
NUMAL3DOCUMENTE
NUMAL3DOCUMENTE

NUMAL3DOCUMENTE
NUMAL3DOCUMENTF
NUMAL3DOCUMENTF
NUMAL3DDCUMENTF
NUMAL3DOCUMENTF

NUMAL SDOCUMENTY
NUMAL3DOCUMENTY

SKIPR

16

34
34
4
34
34

14
14
14

14
14

x>

36
36

12
1e
12
1e
12
1e
12



INDEX PROCEDURE CODE DESCRIPTION

FILENAME SKIPR
3, 3, e 2y 2, REAEIG2 34185 NOT YET AVAILABLE
REAEIGY 34187 NUMAL 3DOCUMENTYJ 6
COMEIGVAL 34192 NUMAL 300CUMENTY 6
COMEIGY 34194 NUMAL3DOCUMENTY [
COMETIG2 341959 NOT YET AVAILABLE
2,COMPLEX MATRICES
1 HERMITIAN MATRICES
EIGVALKHRM 34368 NUMAL3IDOCUMENTG 8
EIGHRM 34369 NUMAL SDOCUMENTG 8
ORIVALHRM 34370 NUMAL 3DOCUMENTG 8
QRIHAM 3437y NUMALIDOCUMENTG 8
2 ,NON=HERMITIAN MATRICES ’ )
{1 «MATRICES IN HESSENBERG FORM
VALQRICOM 34372 NUMAL SDOCUMENTG 12
QRICOM 34373 NUMAL 3DOCUMENTG 12
2,FJlL MATRICES b
EIGVALCOM 34374 NUMAL3DOCUMENTG 10
EIGCOM 34375 NUMAL 3DOCUMENTG 10
4,THE GENERALIZED EIGENV PROBLEM ‘
5,SINGULAR VALUES
1,REAL MATRICES
1,BIDIAGONAL MATRICES
QRISNGVALBID 34270 NUMAL3D0CUMENTH 10
. GRISNGVALDECBID 3427 NUMAL3DDCUMENTH 10
2,FULL. MATRICES ’ - -
QRISNGVAL su272 NUMAL3DOCUMENTH 12
QRISNGYALPEC 34273 NUMAL3DDCUMENTH 12
2,COMPLEX MATRICES i
6,2EROS OF POLYNOMIALS
1,ZERDS OF GENERAL REAL POLYNOM,
POLZEROS 34500 NOT YET AVAILABLE
2,2ERNDS OF DRTHOGONAL POLYNOM,
ALLZERORTPOL 31362 NOT YET AVAILABLE
LUPZERORTPOL 31363 NOT YET AVAILABLE
SELZERORTPOL 31364 NUT YET AVAILABLE
3,LERQS OF COMPLEX POLYNDMIALS
COMKWD 34348 NUMAL3DOCUMENTD 24
4, ANALYTIC EVALUATIONS
{1,EVAL, OF AN INFINITE SERIES
EULER 32010 NUMAL 3DDCUMENTD 28
SUMPOSSERIES 32020 NUMAL 3DOCUMENTE 16
2,QUADRATURE )
1 ONE=DIMENSIONAL QUADRATURE
QRADRAT 32070 NUMAL3DOCUMENTC 6
INTEGRAL 32051 NUMAL 300CUMENTL 48
2,MULTIDIMENSIONAL QUADRATURE :
TRICUB 52078 NOT YET AVAILABLE
3,GAUSSTAN WEIGHTS '
RECCOF 31249 NUT YET AVAILABLE
GSSHGT 31420 NOT YET AVALLABLE

3,NUMERICAL DIFFERENTIATION
1 FUNCTIONS OF ONE VARIABLE
2,FUNCTIONS OF MORE VARIABLES
1,CALC, WITH DIFFERENCF FORMULAS
4, 3, 2, 1 JACOBNNF 34437 NOT YET AVAJLABLE



INDEX PROCEDURE CODE OESCRIPTION

FILENAME SKIPR
4, 3, 2, 1, JACOBNMF 34438 NUT YET AVAILABLE
JACOBNBNDF 34439 NOT YET AVAILABLE
Sy ANALYTICAL PROBLEMS '
1 ANALYTICAL EQUATIONS
1 NONe_INEAR EQUATIONS
1,A SINGLE EQUATION
ZEROIN 34150 NUMAL 3DOCUMENTF 18
ZEROINRAT 34436 NUMAL3DOCUMENTF 18
2,A SYSTEM OF EQUATIONS
1, AUXILTARY PROCEDURES
2,JACOBIAN MATRIX NJOT AVAILABLE
QUANEWBND 34430 NOT YET AVAILABLE
QUANE#BND 3443y NUT YET AVAILABLE
3,JACOBIAN MATRIX AVAILABLE
DAMPED NEWTON 54200 NUMAL3DOCUMENTB 44
2, UNCONSTRAINED OPTIMIZATION
1,FUNCTIONS OF ONE VARIASLE
2,FUNCTIONS OF MORE VARIABLES
1, AUXILTARY PROCEDURES
LINEMIN 34210 NUMAL 3DOCUMENTD 30
RMK{UPD s4211 NUMAL 3DUCUMENTD 30
DAVUPD 34212 NUMAL3IDOCUMENTD 30
FLEUPD 34213 NUMAL3DOCUMENTD 30
2.ND DERIVATIVES AVAILABLE
3I,GRADIENT AVAILABLE
RNKIMIN ddety NUMAL 3DOCUMENTD 30
FLEMIN 3421% NUMALIDOCUMENTD 50
3,0VERDETERMINED NONLINEAR SYST,
1, LEAST SQUARES SOLUTIONS
1 AUXILIARY PROCEDURES
2,JACOBIAN MATRIX NJOT AVAILABLE
3,JACOBIAN MATRIX AVAILABLE
MARQUARDY 34440 NUT YET AVAlLABLE
2,FUNCTIQONAL EQUATIQNS
{1 ODIFFERENTIAL EGUATIONS
1,INITIAL VALUE PROBLEMS
1 FIRST ORDER ORDINARY D,E,
1 ,NO DERIVATIVES RHS AVAILABLE
RK{ 33030 NUMAL3DOCUMENTC 8
RK{N 33011 NUMALSDDCUMENTC 10
RK4A 33016 NUMAL3DOCQM£NIC 20
RK4NA 53047 NUMAL3DOCUMENTC 2e
RKSNA 33018 NUMAL3IDOCUMENTC 24
MULTISTEP 33080 NUHAL3D0COMENTC 30
DIFFSYS 33180 NUMAL3DOCUMENTJ 3
MODIFIED RUNGE KYTTA 33060 NUMAL 3DOCUMENTC 28
EXPONENTIAL FITTED RUNGE KUTTA 33070 NUMAL3DOCUMENTA 16
2,JACOBIAN MATRIX AVAILABLE
EFSJRK 33160 NUMAL3DUOCUMENTC 34
EFERK 33120 NUMAL3DOCUMENTC 32
LINIGER} 33130 NUMAL3IDOCUMENTD 38
LINIGER2 33134 NUMAL 3DOCUMENTD 38
TWEFSIRK 33190 NOT YET AVAILABLE

SEE AL50 PROE, MULTISTEP (5,2,1,1,1,1)
S, 2, 1» 1s 1. 3,SEVERAL DERIVATIVES AVAJLABLE



INDEX PROCEDURE

5S¢ 2, 1 le 1 3, MODIFIED TAYLOR
EXPONENTIAL FITTED TAYLO-

2,SECOND ORDER ORDINARY D,E,
1,NO DERIVATIVES RHS AVAILABLE
RK2
RK2N
RK3
RK3IN
2,SEVERAL DERIV, RHS AVAILABLE
3,PARTIAL DIFFERENTIAL EQUATIONS
2 ,BOUNDARY VALUE PROBLEMS
1.THO POINT B,V,P,
1,SHOOTING METHODS
2,DISCRETIZATION PROCEDURES
3,SPECTAL LINEAR SYSTEMS
SEE ALSO SECTION 3,{,2
3,SPECIAL NONwLINEAR SYSTEMS
2,THO=DIMENSIONAL B,V,P,
{,ELLIPTIC B,V,P,S
1,DISCRETIZATION PROCEDURES
2,SPECIAL LINEAR SYSTEMS

RICHARDSON
ELIMINATION

SEE ALSD SECTION 3,.,4,2
3,SPECIAL NONe| INEAR SYSTEMS
2,PARABOLIC * HYPERBOLIC B,V,P,S
3,MULTI=DIMENSIONAL B,V P,
4,0VER®DETERMINED PROBLEMS
3,INVERSE PROBLEMS
2,INTEGRAL EQUATIONS
3,INTEGRO= DIFFERENTIAL EGS
4,DIFFERENCE EQUATIONS
5,CONVOLUTION EQUATIONS
6,FUNCTION EVALUATIONS
1, MATHEMATICAL CONSTANTS

EULER NUMBERS
BERNOULLI NUMBERS

2,PHYSICAL CONSTANTS
3 RANDOM NUMBERS

RANDOM
SETRANDOM

4, ELEMENTARY FUNCTIONS
{1, CIRCULAR FUNCT]IONS
TAN

ARCSIN
ARCCOS

2 ,MYPERBOLIC FUNCTIONS
SINH
CO8H
TANH

ARCSINH
ARCCOSH
ARCTANH

S.EXPONENTIAL INTEGRAL
6, Sy El

CODE

33040
33050

33012
33013
33014
53015

53170
331714

DESCRIPTION

FILENAME

NUMAL3DOCUMENTC
NUMAL3DOCUMENTA

NUMAL3DOCUMENTC
NUMAL3DOCUMENTC
NUMAL3DOCUMENTC
NUMAL3DOCUMENTC

NUT YET AVAILABLE
NOT YET AVAILABLE

NOT YET AVAILABLE
NOT YET AVAILABLE

NOT YET AVAILABLE
NUT YEY AVAILABLE

NOT YET AVAILABLE
NOY YET AVAILABLE
NOT YET AVAILABLE

NUMAL 3DOCUMENTA
NUMAL3DOCUMENTA
NOMAL3DOCUMENTA
NUMAL3DOCUMENTA
NUMAL3DOCUMENTA
NUMALIDOCUMENTA

NUMAL3DOCUMENTY

SKIPR

26
12

1e
14
16
18

24
24
24
24
24
24



by

5,

INDEX

6,GAMMA FUNCTION, ETC,

7,ERROR FUNCTION, ETC,

B,LEGENDRE FUNCTIONS
9,BESSEL FUNCTIONS OF INT, ORDER

1 ,BESSEL FUNCTIONS J AND Y

2,BESSEL FUNCTIONS I AND K

3, KELVIN FUNCTIONS

10,BESSEL FUNCTIONS OF REAL ORDER

10,

1,BESSEL FUNCTIONS J AND Y

2,8ESSEL FUNCTIONS 1 AND K

35,SPHERICAL BESSEL FUNCTIONS

44,AIRY FUNCTIONS

LN

PROCEDURE

El ALPHA
El BEYA

GAMMA
RECIP GAMMA
LOG GAMMA
INCOMGAM
INCBETA
1BPPLUSN
I1BAPLUSN
1XQF1IX
I1XPFIX
FORWARD
BACKWARD

ERF
FRESNEL
FG

BESSELJ
BESSELY
Yo

BESSEL!
BESSELK

KO
NONEXPBESSEL]
NONEXPBESSELK
NONEXPKO

JAPLUSN
YA

YAPLUSN
BESSELPO

TAPLUSN
NONEXPIAPLUSN
KA

KAPLUSN
NONEXPKA
NONEXPKAPLUSN

SPHERBESSJ
SPHERBESSY
SPHERBESSI
SPHERBESSK
NONEXP SPHERBESSI
NONEXP SPHERBESSK

AIRY
Al

CODE

35081
35082

55061
35060
35062
35030
35050
35051
35052
35053
35054
35055
35056

35020
35027
35028

35100
35101
35078

35102
35403
35040
35104
35105
315038

35Q79
35075
35076
35077

35106
35107
35071
35072
35073
35074

55150
35154
35152
35153
35154
3515%

35140
35141

DESCRIPTION

FILENAME

NUMAL3DOCUMENTJ
NOT YET AVAILABLE

NUMAL3DOCUMENTC
NUMAL3DOCUMENTC
NUMAL3DUCUMENTC
NUMAL3DOCUMENTC
NUMAL3DOCUMENTE
NUMAL 3DOCUMENTE
NUMAL 3DOCUMENTE
NUMAL 300CUMENTE
NUMAL3DUCUMENTE
NUMAL SDOCUMENTE
NUMAL3DOCUMENTE

NUMAL3DUCUMENTC
NOT YET AVAILABLE
NOT YEY AVAILABLE

NUMAL3DOCUMENTA
NUMALIDOCUMENTA
NOT YET AVAILABLE

NUMAL3DOCUMENTJ
NUMAL SDOCUMENTJ
NUMAL3DOCUMENT
NUMAL 3DOCUMENTJ
NUMAL3DOCUMENT
NUMAL 300CUMENT

NOT YET AVAILABLE
NUMAL3DOCUMENTJ
NUMAL3DOCUMENTJ
NUMAL3DOCUMENTY

NUT YET AVAILABLE
NOT YET AVAILABLE
NUMAL 3DOCUMENTY
NUMAL3IDOCUMENTJ
NUMAL 3D0CUMENTJ
NUMAL3DOCUMENTY

NOT YET AVAILABLE
NUT YET AVAILABLE
NUT YET AVAILABLE
NUT YET AVAILABLE
NOT YET AVAILABLE
NOT YET AVAILABLE

NOT YET AVAILABLE
NOT YET AVAJLABLE

SKIPK

e

42
42
42
40
14
14
14

14
14
14

38

26
26

10
10
10
10
10
10

14
14
14

12
12
12
12



INDEX

6, 10, 4,

ToINTERPOLATION & APPROXIMATION
{1 INTERPOLATION

2, APPROXIMATION
{1 PREPARATORY PROCEDURES
2.NEAR MINIMAX APPROXIMATION
3,MINIMAX APPROXIMATION
4,LEAST SQUARES APPROXIMATION

8,NUMBER THEORY
9, TABLE HANDLING

VERSIONY T4d0321

PROCEDURE

8l
AIRYZEROS
NEWTON
INT
SNDREMEZ

MINMAXPOL

READ
WRITE

CODE

35142
35145
36010

36020
3o02y

36022

39999
39998

DESCRIPTION

FLLENAME SKIPR

NUT YET AVAILABLE
NOT YET AVAILABLE

NUMAL3IDOCUMENTC 44

NUMAL 3DOCUMENTE 18
NUMAL SDOCUMENTE 20

NUMAL3DOCUMENTC b

NOT YET AVAILABLE
NUT YET AVAILABLE



OBSOLETE PROCEDURES

PROCEDURE CODE RETIREMENY  EXPIRATION REPLACED BY
RNKSYM20 34100 730901 740401

SOLSYM20 3410¢ 730904 7312014

RNKSOL SYM20 34102 73090t 731201

INVSYM2p 34103 730901 740401

RNKINVSYM20 34100 730901 74040}

SOLSYMHOM20 34405 730901 740401

RNKSYM{ 0 34110 730901 7404014

SOLSYMLO 34111 73090t 740401

RNKSOLSYML0 34112 730901 740401

INVSYM{Q 34113 730901 740401

RNKINVSYMLO 34114 730901 740401

DET 34050 730901 740401 DEC(3,101e8elel el )sDETERM(3,1,1,141,1,2)

DETSOL 34052 730901 740401 oacsoL(z.1.1.1.1.1.3),0&1&Rn.

DETINY 34054 730901 731201 DECINV(3,1,141,1,1,4),DETERN,

RNKELM 34060 730901 740401 csseLM(J,x.x,t.x.l.l)

RNKSOLELM 34062 730901 740401 6SSSOL(3,1,1,1,1,1,3

SULWOM 14063 730901 740401 SINGULAR VALUE PROCEDURES (3,5)

INVELM 34064 730901 740403 GESINV(3,1,0,0s801,4)

DETBND 34070 730901 740401 DECBND(3,1,2,8,1o041,1), DETERMBND(3,1,2,8,1,1,1,2)
DETSOLBND 34072 730901 T4OUO1 OECSOLBND(S.t.E,t.t.t.x 3),DETERMBEND,

DETSYM? 34080 730901 TR040Y CHLDEC2(3,1elelole2,1)sCHLDETERM2(3 1 1,1,1,2,2)
SOLSYM2 34081 730901 T40401 CHLSOL2(3,1,1,10142,3)

DETSOLSYM2 34082 730901 740401 anDEcsochi.t.t.x.i.2.3),:HLDETER~2,

INVSYM2 54083 730901 740401 CHLINV2(3,1,0¢1,142,4)

DETINVSYMR 34084 730901 740401 CHLDECINV2(334¢lelole2sd) CHLDETERMZ,

DETSYMY 34090 730901 T40401 CHLDECT(3,14141,1,2,1)CHLDETERMI(3,1,1,1,1,2,2)
SOLSYMY 34091 730901 740401 CHLSOLI(3,1,1,1,1,2,3)

DETSOLSYML 34092 730901 7404014 CHLOECSOL1(3,1,14141,243)sCHLDETERML,

INYSYM 34093 730904 T40401 CHLINVE(3,1,1,1,1,2,8)

DETINVSYMY 34094 730901 740401 CHLDECINVI (3,440 ¢8,1,2,4),CHLOETERM],

DETSYMBND 34120 730901 740401 CHLDECBND(S.l.E,i.I.Z.S.X) CHLDETERMBND,
SOLSYMBND 3412y 730901 740601 CHLSOLBND (3,1,2,141,24143)

DETSOLSYMBND 34122 730901 7404018 CHLDECSOLBND(3,1,2¢1,14241¢3),CHLDETERMBND,
LSaDEC 34130 730901 740401 LSRORTIDEC(3,1,1,2,1,1)

LSQDECSOL 34133 730901 740401 LSRORTDECSOL (3,8,1,2,1,2)

VERSIONY 740321



Kwic index to the library NUMAL of ALGOL 60 procedures in numerical

mathematics.

This key word in context (kwic) index is based upon only those procedures

whose full documentation was available on 1 december 1973.

Directions for use:
The kwic index is based upon program abstracts such as:
32070 C 6 $qadrat ( $quadrature ) computes the $definite $integral of a

$function of one variable over a finite interval.

The first ten characters ("3207T0 C 6") of each abstract are a code to
locate the procedure, while the remaining characters until a period com~
prise a short description of the program (its name, what it does, and
how it does it), only "important" words (preceded by a $ in the above
example) are used as key words in the kwic index.

The first appearance of our above example abstract in the kwic index is:

t ( quedrature ) computes the definite integral of a function of one

variable over a finite interval. 32070 C 6

If this program (qadrat) is of interest, you can locate it as follows:
the first five digits give the number of the object code procedure in the
library file "NUMAL3". The next letter is to locate the documentation
file: "A" corresponds to file "NUMAL3DOCUMENTA", "B" to file "NUMAL3DOCU
MENTB" etc.. The final number specifies the number of records to be skip-
ped on the documentation file in order to locate the documentation of the

particular program.

In case an entry in the kwic index is not completely readable (i.e.,
truncated at an end of the line), you can find a complete listing (by

code number) of all the abstracts following the kwic index.



HE NEW ROW ELEMENT OF mAxinum
HAT MATRIX ELEMENT OF MAximMum
$} GEARS, ADAMS = MOULTON, COR
ING MULT{STEF METHODS; GEARS,
ELICOMVECCOL

ELMCOMCOL

ELMCOMROWVEC

ELMVEC

ELMCOL

ELMVECCCL

ELMROW

ELMCOLVEC

ELMYECROY

ELMROWVEC

ELMCOLROV

ELMROWCOL

HAXELMARCY

EULER COMPUTES TrE SU® OF AN

NOM|AL (IN GRUNERT FORM) THAT
D FOR TH{S MiINIMAX PULYNOM|AL
FERENTIAL EQUATIONS USING TrE
L VALUE PROBLEMS, GIVEN aAS AN
. VALUE PROBLEMS, GIVEN A4S
L VALUE PROBLENS, GIVEN AS
L VALUE PROBLEMS, GIVEN a8
LINEMIN S

RRKIVPD 1§

LCAVUPD 18

FLEUPD 13

IXQFIX 18

IXPFIX 18

FCRYARD 8

BACKWARD 18

iINT 1S

GSSLR3 5

S8R 1§

COMSCL 18 AN

PERFOR%S
PERFORAG
PERFCRIS
PERFQCR"MSG
PERFOR™S
PERFOR!IS
PERFOR™S
LERFORNS

JAKSYMTRI 2
BAKSYHMTR 1

BAKL AR
BAKREANMEST
BAKREAHES?
BAKHRITRI
BAXCONMHES
BAKLBRCOM

COMPUTES THE DETERMINANT OF A
STEM OF LINEAR EQUATIONS wi1TH
H SYMMETRIC POSITIVE DEFINITE
A SYUMETRIC POSITIVE DEFNITE

ABSMAXVEC COMPUTES THE INFINITY NORM OF A VECTOR AND DELIVERS TeE [(NDEYX FOR AN ELEMENT MAXIMAL N MO
ABSOLUTE VALVE,

ABSOLUTE VALUE.

ADAMS = RASHMFORTH METHON WITH AUTOMAT|C STEP AND ORDER CONTROL AND SUITABLE FOR THE INTEGRATICN OF
ADAMS o MOULTON, OR 4DAMS w RASHFORTHM METHOD; wiTH AUTOMATIC STEP AND ORDER CONTRO{ AND SUITABLE FOR
ADDS A COMPLEX NUMBER TIYES A COMPLEX COLUMN VECTOR TO A COMPLEX VECTOR,

ADDS A COMPLEX MUMBER TIMES A COMPLEX COLUMN VECTOR TO ANOTHER COMPLEX COLUMN VECTOR,

ADDS A COMPLEX NUMBER TIMES A COMPLEX VECTOR TH A COMPLEX ROW VECTOR,

ADDS A SCALAR TIHES A VECTOR TO ANOTHER VECTOR,

ADPS A SCALAR TIHMES COLUMN VECTOR TO ANDTHER COLUMN VECTOR,

ADDS A SCALAR TIHES a COLUMN VECTOR TN A vECTOR,

ADDS A SCALAR TItES A RN¥ VECTOR TO ANOTHER ROw VECTOR,

ADDS A SCALAR TIMES a VECTOR TO A COLUMN VECTOR,

ADDS A SCALAR TIHES A RAW VECTOR TO a VECTOR,

ADDS A SCALAR TIi'IES a VFCTOR TO A ROw VECTOR,

ADDS A SCALAR TIMES a ROW VECTOR TO A COLUMN VECTOR,

ADDS A SCALAR TIMES & COLUMN VECTOR TN A ROW VECTOR,

ADDS A SCALAR TidES a RAY VECTOR TC & RO« VECTOR, AND RETURNS THE SUBSCRIPT VALUE OF TrE wEw RCw ELE
ALTEANATING SERIES,

APPROX IMATES A FUNCTION GIVEN FOR DISCRETE ARGUMENTS; 18 USED FO
APPROX iMATION,

ARC LENGTH AS INTEGRATION VARIABLE,
AUTONOMCUS SYSTE! OF FiRST ORDER DIFFERENTI AL
AUTONO ICUS SYSTE!N OF FinST ORDER DIFFERENT AL
AUTCHOCUS SYSTE.t OF Fi2S8T ORDER DIFFEREMT 1AL
AUTCNOICUS SYSTE OF Fi98T ORDER DIFFERENT AL
AUXILIARY PROCEDURE FQR OPTIMIZAT ON,
AUXILTARY PROCEDURE FOR OPTIM1ZATION,
AUXILIVARY PROCEDURE FOR OPTI®iZATION,
AUXILVARY PROCEDURE FOR OPTIMIZATION,
AUXTLIARY PROCEDURE FOR THE (NCOMPLETE
AUX L IARY PROCEDURE FOR THE INCOMPLETE
AUX L IARY PROCEDURE FOR THE (NCOMPLETE BETA FUNCTION,

AUX L IARY PROCEDURE FOR THE INCOMPLETE BETA FUNCTION,

AUX L PARY PROCEDURE FOR MINIMAX APPROXIMATION,

AUXILIARY PROCEDURE FOR THE SOLUTION OF LINEAR EAUATION WITr AN JPPER BOUND FCR THE ERROR,
AUXILIARY PROCEDURE FQR THE ITERATIVELY REFINED 30LUTION OF A SYSTEM OF LINEAR EQUATIONS,
AUXILIARY PROCECURE FOR THE COMPUTATION OF COMPLEX EIGENVECTORS OF A RFAL MATRIX,
BACKSARD i§ AN AUXILIARY PROCEDURE FOR THE I1NCOMPLETE 3ETA FUNCT(ON,

FACK TRAWSFORMAT ON CORRESPONDING TO THE HOUSE-OLDERS TRANSFORMATION AS PERFORMED
JACK TRAMSGFORMATION CORPESPOMDING TO THE HOUSEHOLDERS TRANSFORMATION A8 PERFNARMED
JACK TRANSFORMATION CORRESPONDING TO TWHE EQUILIBRATION AS PERFORHMED By EQILBR,
3ACK TRANSFORMATION CLORRESPONDING TO THE WILKINSON TRANSFORMAT|On AS PERFORMED gY
FJACK TRANGFORMATION CORRESPONDING TO THE WiLKINSON TRANSFORMAT|Cx AS PERFORMED BY
3ACK TRANGFORMAT 0% CORRESPONDING TO HSHHRMTR

BACK TRANSFORMATION LORRESPONDING TO HSHCCOMRES,

SACK TRANSFORMATION CORRESPONDING TO THE EQUILIBRATION AS PERFORMED By EQILBRCOM,
JAKCOMHES PERFORMS THE SACK TRANSFORMATION CORRESPONDING TN HSHCOMHES,

THE SECOND REMEz ExCHAMGE ALGOR!ITHm

ExXPONENT ALLY FITTED, EXPLICIT RAUNGE

EXPONENT ALLY FITTED, SEM| = (MPLICIT
1HPLICIT, EXPONENTiALLY FITTED, FIRST
PHPLICHT, EXPONENTALLY FITTED, SECON

FQUATIONSG,
EQJAT | ONS,
FQUATIONS,
EQUAT I ONS,

8y
8y
ay
8y

AN
AN
AN
AN

FUNCTION,
FUNCTION,

BETA
BETA

BY TFMSVYFTRIZ,
BY TFHMSYMTRIY,

TFHMREAHES,
TFMREAHES,

On A VE
ON THE

3AKHRMTR| PERFORIIS THE SACK TRANGFORMATION CORRESPONDING TO HSHRRMTRY

BAKLARCCHM PERFORIMS Ti{E RACK TRANSFORMATION CORRESPONDING TO THE EQU'LiRRATICN AS PERFORMED By EQILBR
JAKLBR PERFORMS THE BACK TRANSFORMATIQON CORRESPONDING TO THE EOUILIBRATION AS PERFORMED Bvy EQILBR,
BAKREAES] PERFORMS THE AACK TRANSFORMATION CORRESPONDING TO THE WILKiNSON TRANSFORMATION AS PERFORM
3AKREAHESD PERFCRMS THE BACK TRANSFOR™AT(ON COPRESPONDING TO THE WILKINSON TRANSFORMATION AS PERFCRM
JAKSYMTR ] PERFCRMS THE BACK TRANSFORMATION CORRESPONDING TO THE HOUSEHOLDERS TRANSFORMATICN AS PERF
JAKSYMTR 2 PERFCRMS THE BACK TRANSFORNAT Ot CORRESPONDING TO THE HOUSEMOLDERS TRANSFORMATICN AS PERF

BAND
BAND
SAND
3AND

MATRIX, WhiCH rma8 A9EEN DECOMPOSED BY DECAND,
MATRIX, wHiCH 18 DECOMPOSED BY DECBND,
MATRIX, WHICH Ha8 S3EEN DECOMPOSED BY CHLDECHBND,

MATR{X AND SOLVES THE SYSTE™M OF | INEAR EQUATIONS 3Y THE CHOLESKY METHAD,

11060
34025
34230
33088
33080
34376
34377
34378
34620
34023
14621
34024
34022
34026
24027
34029
34028
34025
32010
36022
36022
33018
33120
33160
33130
33431
34210
34211
34212
34213
35053
35054
35055
35056
36020
34242
34252
34493
35056
34141
34144
34174
34471
34172
34365
34367
34362
34367
34365
34362
34474
34171
34172
34144
34141
34321
34071
34332
34333
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TRIANGULAR DECOMPOSITION OF A
RFORMS THE DECOMPOSITION OF A
, ADAMS . MQULTON, OR ADAMS .
SOLSVDUND CALCULATES THE
SOLUND CALCULATES THE

CBETA COMPUTES THE |NCOMPLETE
PLUSN COMPUTES THE IKCOMPLETE
PLUSN COMPUTES THE INCOMPLETE
N OF A REAL MATRIX OF WH;CH A
TRANSFORMS A REAL MATRIX (NTO
ID TO TRANSFORM A MATRIX INTO
ID TO TRANSFORM A MATRIX (NTO
THE SINGULAR VALUES OF A REAL
ED TAYLOR SOLVES AN INITIAL (
NGE KUTTA SOLVES AN INITIAL (
UAT)ONS AND COMPUTES AN UPPER
ERSE OF A MATRIX AND AN UPPER
REF INED SOLUTION AND AN UPPER
ERBELM COMPUTES AN UPPER

RMS A COMPLEX NUMBER GIVEN IN

NEAR EQUATIONS ) CONMPUTES Tk
NEAR EQUATIONS ) COMPYTES TrE
SITIVE DEFINITE MATRIX BY TRE
EM OF LINEAR EQUATIONS pv THE
EM OF LINEAR EQUATIONS BY TrE
EM OF LINEAR EQUATIONS Bv THE
CHLDEC INV2 COMPUTES, Hv ThE
CHWLDECINVL COMPUTES, #Y THE

L ELEMENTS AWD SQUARES OF THE
INISYMD INITJALIZES A

LIZES (PART OF) A DIAGOWAL COR
ADRATIC EQUATION wI1TH COMPLEX
NEWTON DETERIINES ThE
MINMAXPOL OETERITINES THE

TES THE SCALAR PRODUCT UF TwO
{NTERCHANGES ELEMENTS OF TwQ
ARY ROTATION OPERAT!ON ON TwO
R PRODUCT OF A ROW VECTOR AND
ELEMENTS OF A ROW VECTOR AND
PUTES THE SCALAR PRODUCT OF A
MULCOL NMULTIPLIES A

COLCST MULTIPLIES A

BAND MATRIX BY GAUSSIAN ELIMINATION,

BAMD MATRIX BY GAUSSIAN ELIMINATION AND SOLVES THE SYSTEM OF LINEAR EQUATIONS,

SASHFORTH METHOD; WITH AUTOMATIC STEP AMD ORDER CONTROL AND SU|TABLE FOR THE INTEGRATION OF STIFF DI
3EST LEAST SQUARES SOLUTION OF A UNDERDETERMINED SYSTEM OF LINEAR EQUATIONS, PROVIDED THAT THE SINGU
3EST LEAST SQUARES SOLUTION OF A UNDERDETERMINED SYSTEM OF LINEAR EQUATIONS BY MEANS OF SINGULAR VAL
3ETA FUNCTION [(X,P,Q),0<=X<=1,P>0,Qx»0,

SETA FUNCTION 1 (X,Pat,0),0<¢=X<el,P>0,Q50, FOR N=U{Ll)NMAX,

AETA FUNCTION 1(X,P,Q04Ny,0e=X<=1,P>0,950, FOR Nzu(l)NMAX,

31D1IAGONAL DECOMPOSITION 1S GIVEN, BY MEANS OF AW IMPLICIT OR=ITERATION,

3{DIAGONAL FORM BY MEANS OF HOUYSEHMOLDER TRANSFORMATION,

31D AGONAL FORM,

31DIAGONAL FORM,

3IDIAGONAL MATRIX BY MEANS OF IMPLICIT QRa|TERATICN,

30UNDARY ) VALUE PROBLEY, GIVEN AS A SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATICNS, BY A ONE=STEP TAY
3OUNDARY ) VALUE PROBLE1, GIVEN AS A SYSTEM OF F|RST QRDER ( NONaLINEAR ) DIFFERENTIAL EQUATIONS, BY
B8OUIND FCR 1TS ERROR,

3CUND FCR TS ERROR,

J0UND FCR ITS ERROR, OF A SYSTEM OF [INEAR EQUATIONS, OF WHICH THE TRU1IANGULARLY DECOMPOSED FQORM OF T
BCUND FCR TRE ERROR IN THE SOLUTION OF A SYSTEM OF LINEAR EQUATIOUNS,

CARPOL TRANSFORMS A COMPLEX NUMBER GIVEN {N CARTES|AN COORDINATES INTO POLAR COORDINATES,

CARTES AN COORDINATES (*TO POLAR CQORDINATES,

CHLDEC] ( LINEAR EQUATIONS ) COMPYTES THE CHOLESKY DECOMPOSITION OF A SYMMETRIC POSITIVE DEFINITE MA
CHLDECD? ( LINEAR EQUATIONS ) COMPUTES THE CHOLESKY DECOMPOSITION OF A SYMMETRIC POS|TIVE DEFINITE MA
CHLDECHND PERFORMS THE TRIANGULAR DECQMPOS|TION OF A SYMMETRIC POS|TIVE DEFINITE MATRIX BY THE CHOLE
CHLDECINVY COMPUTES, BY THE CHOLESKY "ETHOD, THE INVERSE OF A SYMMETRIC POSITIVE DEFINITE MATRIX, ST
CHLDECINVD? COMPUTES, BY THE CHOLESKY METHOD, THE [NVERSE OF A SYWMETRIC POSITIVE DEFINITE MATRIX, ST
CHLDECSCL1 SOLVES A SYMMETRIC POSITIVE DEFIN|TE SYSTEM OF LINFAR EGUATIONS BY THE CHOLESKY FETROD, T
CHLDFCSCL? SOLVES A SYMMETRIC POSITIVE DEFIN|TE SYSTEM OF LINEAR EQUATIONS BY TRE CHOLESKY METFROD, T
CHLDECSCL3ND PERFOR!S THE DECOMPOSITION OF A SYMMETRIC POSITIVE DEFINITE BAND MATRIX AND SCLVES THE
CHLDETERMY COMPUTES THE DETERMINANT OF A SYMMETRIC POSITIVE DEFINITE MATRIX, wHICH HAS BEEN DECOMPOS
CRLOETERMY COMPUTES THE DETERMINANT OF A SYMMETRIC POS|TIVE DEFINITE MATRIX, WHICH HAS BEEN DECOMPOS
CHLDETERMBND COMPUTES THE DETERMINANT OF A SYMMETRIC POSITIVE DEFINITE MATRIX, WHICH HAS BEEN DECOMP
CHLINYY COMPUTES THE INVERSE OF A SYMMETRIC POSITIVE DEFINITE HMATRIX wHICH =AS BEEN DECOMPCSED BY Ck
ChL VD COMPUTES THE INVERSE OF 4 SYMMETRIC POSITIVE DEFINITE MATRiX WHICH HAS BEEN DECOMPCSED BY Ch
CHLSOLY SOLVES A SYMHETRIC POSITIVE DEFINITE SYSTEM OF LINEAR EQUAT!IONS, THE MATRIX 3EING DECONPOSED
CHLSOL?2 SOLVES A SYMNETR|C PDSITIVE DEFINITE SYSTEM OF LINEAR EQUATIONS, THE MATRIX BEING DECOMPOSED
CHLSOLIND SOLVES A SYSTEM OF L INEAR EQUATIONS wiTw SYMMETRIC POS|T{VE DEFINITE BAND MATR{X, WHICK HA
CHOLESKY DECOMPCSITION OF A SYMMETRIC POSITIVE DEFINITE MATRiX, STORED IN A TW0D=DIMEMSIONAL ARRAY,
CHOLESKY DECOMPCSITION AF A SYMMETRIC POSITIVE DEFINITE MATRIX, STORED COLUMNWISE IN A ONE~DIMENS|CN
CHOLESKY METHQD,

CHOLESKY METHQD,

CHOLESKY METHOD, THE MATRIX BEING STORED (H A TWO=DIMENS|ONAL ARRAY,

CHROLESKY METHOD, THE MATRIX BREING STORED N A NNE=DIMENSIONAL ARRAY,

CHROLESKY METHQOD, THE (NVERSE OF A SYMHMETRIC POSITIVE DEFINITE MATR(X, STORED IN A TWO-D!MENSIONAL AR
CHOLESKY METHOD, THE INVERSE OF A SYMHMETRIC POSITIVE DEFINITE MATRIX, STORFED IN A ONE-DIMENRSIONAL AR
CODIAGONAL ELEMENTS OF & HERMITIAM TRIDIAGONAL MATRIX WHICH 1S UNITARY SIiMILAR TO A GIVEN FRERMIT|AN
COU''AGONAL OF A SYMMETRIC MATRIX WITH A CONSTANT,

CONTAGONAL WITH A CONSTANT,

COEFFICIENTS,

COEFFICIENTS OF TWE NEWTON INTERPOLATION POLYNOMIAL FOR GIVEH ARGUMEMTS AND FUNCTION VALUES,
COEFFICIENTS OF THE POLVYNOMIAL (IN GRUNERT FNRM) THAT APPROX(MATES A FUNCTION GIVEN FOR DISCRETE ARG
COLCST MULTIPLIES A COLUMN VECTOR BY A SCALAR,

COLUNN VECTORS,

COLUIIN VECTORS,

COLUMN VECTORS,

COLUMN VECTOR,

COLUMN VECTOR,

COLUMN VECTOR AND VECTOR,

COLUNMN VECTOR BY A SCALAR,

COLUMN VECTOR BY A SCALAR,

34320
34322
33080
34282
34283
35050
35051
35052
34271
34260
34261
34262
34270
33040
33060
34243
34244
34253
34241
34344
24344
34311
34310
34330
34403
34402
34393
34392
34333
24313
34312
34331
34401
34400
34391
34390
34332
34310
34311
34330
34333
34392
34393
34402
34403
34364
31013
21012
34345
36010
36022
31131
34014
34051
34040
34013
34033
34012
31022
31431
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OMCOLCST MULTIPLIES a COMPLEX
DUPVECCAL CIPIES (PART ofy a
ELMCOL ADDS A SCALAR TIMES A

MVECCOL ADDS A SCALAR TIMES A

MROWCOL ADDS A SCALAR TiMES a

MPUTES T-4E ERROR FUNCTION
1OM wiTH COMBINED PARTIAL AND
1ON wiTH COMHINED PARTIAL AND
OF A QUADRATIC EQUATIOR ¥ 17K
ADDS A COMPLEX NUIBER TIimMOS A
ADDS A COMPLEX NUHBER TiMES 2
Of, PERFORMS A ROTATION ON TwC
COMCOLCST FULTIPLIES &

PLIES A COMPLEX MATRIX WiTH
COMPUTES ALL Ei1GENVALUES CF
NVECTORS AND E!GERVALUES CF
PUTES THE EUCLIiDEAMN HORi CF
M NORMALIZES THE COLUINS CF
HSHCOMHES TRANSFURES
EQILBPCON TRALSFORNS

COMMUL MULTIPLIES TwO
COMPUTES THE QUOTIERT OF Tyvo
ABS COMPUTES THE roluLus OF
COMPUTES THE SOUARE ROOT CF
CAPPOL TRAHNSFORNMS
ELHCOMYECCOL ADRDS

ELMCOMCOL ADDS

ELMCOMRUWYEC ADDS

OW PERFORMS A RUTATION CN TkO
COMROWCST I ULTIPLIES

PUTES THE SCALAR FRQLUCT OF
COMPUTES ALL EiGENVALUES CF
NVECTORS AND E1GEFVALUES CF
ADDS A COMPLEX NURBER TINMES
HSHCOMCOL TRANSFORWMS

AnD

R

3 B

P

BB PP >

AR EQUATIONS BY TrE #SETHOD CF

FAN MATRIX AND AUTOMATIC STEP
WITH AUTOMATIC STEP AND ORDER
TES1aN COORDINATES INTH POLAR
LEX NUMBER GIVEN !N CARTESiAN

DUPVEC
DUPVECRCH
DUPROWVEC
DUPVECCCL
DUPCOLVEC

CUPHMAT
MATR X BY

DECOMPOSITiINN OF A

VECTOR
VECTOR
VECTOR

COLUNN
COLUNN
COLUMN
COLUMN

-2 4
TC
TC

A COMPLEX NUMRER,

A VECTaR,

ANOTHER COLUMN VECTOR,

VECTOR TC A VECTAR,

COLUMN VECTOR TO A R0y VECTOR,

COMADS COMPUTES THE 0DULUS OF A COMBLEX NUMBRER,

COMCOLECST MULTIPLIES A COMPLEX COLWMN VECTOR Bv A COMPLEX NUMBER,

COMDIV COMPUTES THE WQUOTIENT OF Tyn COMPLEX NUMBERS,

COMEUCNRM COMPUTES THE EUCLIDEAN NORM OF A COMPLEX MATRIX,

COMKUD COMPUTES THE wOOTS OF A GUADRATIC EQUAT:ON wiTh COMPLEX CUEFFICIENTS,
CCHMMATVEC COMPUTES THE SCALAR PRODUCT OF A ComelEXx R0w VECTOR AND A4 COMPLEX VECTOR,
cotryL MULTIPLIES TWU CHOMPLEX NUMBERS,
COMPLEMENTARY ERROR FUNCT 0N FOR 4 REAL ARGUMENT;
COMPLETE PIVOTING,

COMPLETE PIVOTING,

THESE FUNCTIiONS ARE RELATED TG THE ~ORVAL OR GAUSS

COMPLEX CCEFFICIENTS,

CONMPLEX COLUMN VECTOR TY A COMPLEX VECTOR,

COMPLEX COLUMN VECTOR TO ANCTHER COMPLEX COLUMN VECTOR,

COMPLEX COLUMAN VECTORS,

COMPLEX COLUNMN VECTOR BV A COMPLEX NUMBER,

COMPLEX HOUSEHOLDER NATRIX,

COMPLEX MATRIX,

COMPLEX MATR:iX,

CONPLEX MATRIX,

CONPLEX ™ATR X,

COMPLEX PATRIX NTC w SiMILAR UnN:!TARY PPER HESSENBERG MATRIX wiTH A REAL MNON-NEGATIVE SUBDiAaGCNAL,
CCUPLEX #MATR:iX INTC a Si* | AR EQUILIBRATED COMPLEX MATRIX,

COI'PLEX NUWBERS,

CCHMPLEX NUMBERS,

CCFPLEX NUMBER,

COMPLEX NUWBER,

CCMPLEX NUMBER G!VEN 1N CARTES!AN COORDINATES (NTO POLAR COCRDINATES,
COMPLEX NUMBER TIiMES . COMPLEX COLUMN VECTOR T3 A COMPLEX VECTOR,
CEYPLEX NUVBER TIiMES 5 COMPLEX COLYMN VECTOR T0 ANOTRHER COMPLEX COLuUMK VECTOR,
COTPLEX NUMBER Ti™MES | COMPLEX VECTOR TO A COMPLEX RO¥ VECTOR,
COMPLEX POG- VECTORS,

COVPLEX ROw VECTOR ®Y A COMPLEX NUMBER,

COMPLEX ROw VECTUR AWL A COMPLEX VECTOR,

CCIMPLEX UPPER HESSENSERG MATRIX wiTH A REAL SURDIAGONAL,

COMPLEX UPPER HESSENJERG MATRIX wiTH A REAL SUBD!AGONAL,

CCHMPLEX VECTOR Tu & COMPLEX R0W VECTOR,

COMPLEX VECTOR IHNTO a VECTOR PRORORT!IONAL TO A UNIT VECTOR,

COMROWCST “ULT!PLIES 4 COMPLEX ROW VECTOR 8Y A4 COMPLEX NUMBER,

COMSCL 1S AN AUXIL!ARY DROCEDURE FOR TWE COMPUTATION OF COMPLEX E!GENVFCTORS OF A REAL MATRIX,
COMSQRT CO¥PUTES THE SGUARE ROQT OF 4 COMPLEX NUMBER,

CONMVALAR! CALCULATES THE REAL AND COMPLEX E!GENVALUES OF A REAL UPPER WESSENBERG MATRIX By WMEANS OF
COMVECHES CALCULATES THE E|GENVECTOR CORRESPONNING TO A GIVEN COMPLEX EIGENVALUE OF A REAL UPPER MES
CONJUGATE GRADIENTS,

COlJ GRAD SOLVES A SYMMETRIC AND POS|TIVE DEFINITE, SYSTEM OF LIinEAR EQUAT!ONS BY THE METHOD OF CONJY
COMTROL; SU!TABLE FOR IMTEGRAT!ON OF §TIFF DiFFERENTIAL EQUATIONS,

CONTROL AND SUITABLE FOR THE NTEGRATION OF ST(FF DIFFERENTIAL EGUATIONS,

COORD i NATES,
COORD ‘NATES
COPIES (PART
COFIES (PART
COPIES (PART
CORPIES (PART
COPIES (PART
CCP'LS (PART
CROUT FACTOR!

INTC
oF)
CF) A
OF) A
oF) A
0F) A
OF) A

ZAT 1 ON

POLAR CCORD NATES,
VECTAR TC & VECTOR,

Ruw VECTOR TO A VEGTOR,
VECTAR TO A RO¥ VECTCR,
COULUMN VECTOR TO a VECTOR,
VECTOR TO A COLLUMN VECTCR,
MATRIX TO (AN OTHER) #ATR:X,
wiT4 PARTIAL PIVOTING,

34352
31633
34023
34021
34028
34340
34352
34342
34359
24348
34354
34341
35020
34231
34252
34345
34376
24377
34357
34352
34356
24374
24378
34359
34360
34366
34361
34341
34342
34345
24343
24344
34376
34377
343/8
24398
24353
34354
34372
34373
34378
34355
34353
34493
34343
34490
34191
34220
34220
33120
33060
34344
34344
25030
31034
31032
31033
31034
31035
34300
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SYSTEM OF LINEAR EQUATIONS BRY

ATRIX, PROVIDED TrHAT Tht yipy
ECBND PERFORME THE TRIANGULAR
DECSOLBND PERFORMS THE

ECBND PERFORIME THE TRIAWNGULAR
CHLDECSOLBND PERFORMS TrE

DEC PERFORMS THE TRIANGULAR
SSELM PERFORNS THE TRIANGULAR
TIONS ) COMPUTES THE CHCLESKY
TIONS ) COMPUTES THE CHOLESKY
TES, WITHOUT PIVOTING, THE LU
WITH PARTIAL PIVOTING, THE LU
DECSYMTR| CALCULATES THE U'DU

ECOMPOSITION AS CALCULATED BY

LVES A SYMMETRiC
T ( QUADRATURE )
L ( QUADRATUREL )

AND POSTIVE
COMPUTES TrE
COMPUTES TrE

DETERMBND
CHLDETERMBND
DETERM
CHLDETERMZ
CHLDETERM]

COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPYTES

e
THE
THE
TrE
THE

LSADGL INY CONMPUTES

ARES PROSLEM AND COMFPUTES
SHHRMTR I VAL DEL!VERS THE
IMATD INITIALIZES (PART
IMIZATION ) MiniMiZES A
1AIZATION ) MiNi™MZES A
1 SOLVES A SINGLE FiRST
OLVES A SYSTE™M CF FIRST
RK2 SCLVES A EECONL
LVES A SYSTE™ 0OF SECOMD
RKZ SOLVES & SECCKD ORDER
LVES A SYSTEM OF &ECOKD ORQDER
RK4A SCLVES A SINGLE

RK4NA SOLVES & SYSTER CF
OLVES A SYSTEM CF FIiRST ORDER
EN AS A SYSTEM OF FIRST ORDER
SYSTEMS ARISING FROM PART AL
OF FIRST ORDER ( MNON=| INEAR )
EN A8 A SYSTEM OF FIRST DRLER
FQR THE INTEGRATION OF STIFF
ONOMOUS SYSTEM OF FIRST ORDER
ABLE FOR (NTEGRATION OF STIifF
ONOMOUS SYSTEM OF FIRST OR[ER
ABLE FOR INTEGRATION OF STIiFF

“rE
THE
FAaN
ofFy A
GIVEHY
GIVE®
CRDER
ORDER
CRDER
OFDFR

CROUT FACTCRIZATION Wi T4 PARTIAL PIVOTING,

DAVUPD 1S AN AUXILIARY PROCEDURE FOR OPT MIZATON,

DECEND PERFORMS THE TRIANGULAR DECOMPOS!ITION OF A BAND MATRIX BY GAUSS AN EL (M INATION,

DECiINV COMPUTES THE INVERSE OF A MATRIiX,

DECOMPOSITION i§ GIVEN,

GECCHMPOSITION OF A 3aND MATRiX BY GAUSS AN ELIMINATION,

DECONPOSITION CF BanD MATRIX BY GAUSBSIAN EL IMINATIiON AND SOLVES TRE &VSTF¥ OF | INEAR EQUATONS,
DECCHMPOSITION OF SYMMETRIC POSITIVE DEFINITE MATR:iX 8Y THE CHOLESKY METHOD,

DECONMPOSITION COF SYMMETRIC POSITIVE DEFINITE BAND MATRiIX AND SOLVES ThHE SYSTE¥ OF LiINEAR EQUAT I ONS

DECCHPOSITiON OF MATRIX BY CROUT FACTOR|ZATION W(Tr PARTIAL PIVOTING,

MATRIX BY GAUSSIAN ELIMINAT(ON WiTH COMBINED PART AL AND COMPLETE 2IVOT.AG,
DECCMPOS | TION OF SYMMETRIC POS(TIVE DEFIMITE MATRIX, STORED [N A TWO=DIMENSIONAL ARRAY,
GECCMPOSITION OF SYMMETRIC POSITIVE DEFINITE MATRIX, STOPED COLUMNWISE N A ONE-DNIMENS | CNAL ARRAY,

DECOMPOSITION OF
DECOMPOS 1T ON OF

TRIDIAGONAL MATRIX
TRIDIAGONAL MATRIX,
DECCHPOS ITiON OF A SYMMETRIC TRIDIAGONAL MATRIX,

DECSOLAND PERFOR!I§ THE NECOMPOSITION OF A RAND MATR:X 3Y GAUSS AN ELIMINATICN AND SOLVES Trt SYSTEW
DECSOLSYMTR! SOLVES a SYSTEM OF [ INEAR EQUAT!ONS wiTH SYMMETRIC TRIDIAGONAL COEFFICIENT WMATR X,
DECSOLTRIPIV SOLVES Wi!T- PARTIAL PIVOTING A SYSTEM OF [ INEAR EQUATIONS wITH TRID!AGONAL COEFFICIENT
DECSOLTR SOLVES A SYSTEM OF L INEAR EQUATIONS wiTh TRIDIAGONAL COEFFICIENT MATRIiX,

DECSOL SOLVES A SYSTLM OF [ INEAR EQUATIONS BY CRIUT FACTORIZAT(On ®iTH PARTIAL PIVOTiNG,

DECSY¥TR! CALCULATES THE U'DU DECOMPOS!TION OF A SYMMETR C TRID I AGONAL MATR X,

DECTR:PIY CALCULATES, WiTH PART AL PIVOTING, THE LU DECOMPOS: T iOn OF A TRIDIAGONAL MATR:x,
DECTRIPIV i§ GIVEN,

DECTR! CALCULATES, “iTHAUT PIVOT NG, TWE LU
DEC PERFORES THE TRIANGILAR DECOMPOS;Ti0ON oF

A
A
A
A
DECCMPOS ITION OF A
A
A
A
A

DECOMPOSITION OF A TRIDIAGONAL MATRIX,
A MATRIX Y CRCUT FACTUR:ZAT ON wiTr PARTIAL PIvOT ING,

DEFtNITE, SYSTEM OF LIiNEAR EQUATIONMS AY THE METHOD OF (CCMUUGATE GRADIENTS,
DEFINITE INTEGRAL OF A FUNCTION OF ONE VARIABLE OVER A FiN(TE [NTERVAL,
DEFINITE INTEGRAL 0OF A FUNCTION OF ONE VARIABLE OVER A FiNITE OR INFINITE INTERVAL OR OVER A NUMBER

DETERMBND COMPUTES THE DETERMINANT CF A BAND MATRIX, wHiCH HAS BEEN DECOMPOSED
DETERMINANT OF A BAND MATRIX, wWHiCH =AS BEEN DECOMPOSED 3y DECBND,
DETERMINANT OF A SYMHETRIC POSITIiVE OEFINITE MATRiX, w+4ICH ~a8 BEEN DECOMPASED
DETERM NANT OF A MATR (X PROV:IDED THAT THE MATRiX HWAS BEEN DECOMPOSED BY DEC OR
A
A

BY DECAND,

BY CHLDECEBND,

GSSELM,

DETERMINANT OF SYNMETRIC POSITIVE DEFINITE MATRIX, wHiCH RHAS BEEN DECOMPNSED BY CHLDECZ,
DETERMINANT OF SYMMETRIC POS TIVE BEFINITE MaTR Y, wiiCrH a8 BEEN DECOMPOSED BY CHLDECY,

UETERNM COMPUTES THE UETERMINANT OF A "ATRIX PROVIDED THAT THE MATRIX ~AS BEEN DECOMPOSED BY DEC CR 6
DIAGONAL ELEMENTS OF THE (NVERSE OF Mi¥ (M COEFFICIENT MATRIX) OF A LINEAR LEAST SQUARES PRCBLEM,
DIAGONAL ELEMENTS OF THE (NVERSE OF Miv (M COEFFICIENT MATRIX),
DIAGONAL ELEMENTS Aty STUVARES OF THE CODIAGONAL ELEMENTS OF a HERMiTiaNM
DIAGONAL OF COD ! aGCNAl 1T A CONSTANT,

DIFFERENT I ABLE FunCT:0oM OF SEVERAL VARIABLES By A VARIABLE METRIC
DIFFERENT RABLE FUNCTiON OF SEVERAL VAR:ABLES By A VARIABLE MET®R:C
DIFFERENT (AL EGUAT DN USING A S=TH ORDER RUNGE KuTTA MITHOD,
DIFFERCAT (AL FGUATIONE SING A SaTH 227%ER RUNGE XUTTA METHOD,
DIFFERENTIAL EGUATION USING A S5=TH ORDER RUNGE KUTTA METHCD,
UIFFERENTIAL EQUATINNS 1S 186G A HeTH ARDER RUNGE KUTTA METROD,
NIFFERENT AL EQUATION USING A SeTH ORDER RUNGE KuUTTa METHOD; NO DERI!VATIVES ALLOWED On RiGeT maAND S
DIFFERENT (AL EQUATIONS (SING A 5aTH ORDER RUNGE KUTTA “METHOD; NO DER:VATIVES ALLOWED SN RIGRT ~anD §
DIFFERENT (AL EQUATION Bv SOMETIMES UBING A DEPENDENT VARIASBLE AS (NTEGRAT I ON VARIABLE,

PIFFERENT AL EGUATIONS AY SCOMETIMES USING THE DEPENDENT VAR!ABLE AS INTEGRATICN VARIABLE,
DIFFERENT i AL ECUATIONS S ING THE ARC LENGTH AS INTEGRATION VAR|ABLE,

UIFFERENTIAL EQUATIONS, BY A ONESSTER TAYLOR HETHOD; THIS METHOD 18 PARTICULARLY SU!TABLE FCR TrE N
DIFFERENT AL EQUATINNS, PROVIDED HIGHER ORDER DERIVATIVES CAN RE EAS!_V OBTAINED,

DIFFERENTIAL ECUATIONS, BY A STABIL!ZED RUNGE KUTTA METROD WiTH LIM!ITED STORAGE REQUIREMEANTS,

TRIDIAGCNAL MAaTRiX wriCr I8

METHOD,
HETHOD,

DIFFERENT AL FGUATIONS, BY ONE OF THE FOLLOWING MULTIBTER METRADS: GEARS, ADAMS o MOULTON, CR aDAMS
DIFFERENT AL EGUATIONS,
DIFFERENT AL EQUATIONNS, By AN EXPONENTIALLY FITTED, EXPLICIT RUNGE KUTTA #METHCD wHilH USES TwE _JACCE

CIFFERENT AL
GIFFERENT AL
DIFFERENT (AL

EGUATIONS,
EQUATIDNS,
EGUATINNS,

By AN EXPONENTiIALLY FITTED, SEYi = 1MPLICIT RUNGE WUTTA METHOD; SU!TABLE FOR

24301
34212
34320
34302
34421
34320
J43¢2
34330
34333
34300
14231
34310
24311
34423
34426
34420
34322
34422
34428
34423
34301
34420
34426
34427
34423
24300
34220
320/0
32051
343214
34321
34331
34303
34312
34313
34303
343152
34135
34364
31012
34214
14215
13610
33011
13012
33013
33014
33015
33616
33017
33018
33040
33040
23060
33080
23080
33120
33120
33160
33160
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ORDER
STIFF

ONOMOUS SYSTEM OF FIRST
ABLE FOR INTEGRATION OF
ONOMOUS SYSTEM OF F{RST ORDER
ABLE FOR INTEGRATION OF STIFF
LNGVECVEC COMPUTES 1IN
LNGMATVEC COMPUTES IN
LNGTAMVEC COMPUTES
LNGMATMAT COMPUTES
LNGTAMMAT COMPUTES
LNGMATTAM COMPUTES
LNGSEQVEC COMPUTES
LNGSCAPRD] COMPUTES
LNGSYMMATVEC COMPUTES

OR SOME CONSECUTIVE
OR SOME CONSECUTIVE
QRISYM COMPUTES aALL
REAQR| CALCULATES THE

TES ALL, OR SOME CONSECUTIVE,
VALQRISYMTR! COMPYTES AlL
COMPUTES ALL EIGENVECTORS anD
UTES ALL, OR SOME CONSFECUTIVE
UTES ALL, OR SOME CONSECUTIVE
QRIVALSYM1 COMPUTES ALL

QR (VALSYM2 COMPUTES ALL
REAVALQRI CALCULATES TKE
LCULATES THE REAL AND COMPLEX
EI1GVALHPM COMPYTES ALL
COMPUTES ALL EIGENVECTORS AND
QR IVALHRM COMPUYTES ALL
COMPUTES ALL EIGENVECTORS AND
E1GVALCOM COMPYTES ALL
COMPUTES ALL EI1GENVECTORS AND
VALQRICOM COMPUTES AlL
COMPUTES ALL E1GENVECTORS AND
CORRESPONDING TO A GIVEN REAL
RESPONDING TO A GIVEN COMPLFX
QRISYMTR! COMPUTES ALL

E)GHRM COMPUTES ALL

QRIHRM COMPYTES ALL

EIGCOM COMPUTES ALL

QRICOM COMPUTES ALL

VECSYMTR! COMPUTES

E CONSECUTIVE EIGENVALUES AND
E CONSECUTIVE EIGENVALUES AND
COMPUTES ALL EIGENVALUES AND
ALCULATES THE EI!GENVALUES AND
REAVECHES CALCULATES THE
COMVECHES CALCULATES THE

UTES ALL,
UTES ALL,

DIFFERENTI1AL
DIFFERENTI AL
ODIFFERENTIAL
DIFFERENT AL
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUEBLE
DOUEBLE
DOUEBLE
DOUBLE
DOUBLE

EQUATIONS,

BY AN IMPLICIT, EXPONEMTIALLY FITTED, FIRST ORDER ONE-STEP METHOD WITH NO AU

EQUATIONS,

EQUATIONS,

By AN IMPLICIT, EXPONENTIALLY FITTED, SECOND ORDER ONE-STEP METHOD WiTH NO A

EQUATIONS,

PRECISION
PRECISICON
PRECIS|ION
PRECISION
PRECISION
PRECISION
PRECISION
PRECISION
PRECISION

DUPCOLVEC COPIES

DUPMAT COPIES (PART OF) A MATRIX TO
DUPROWVEC COPIES (PART nF) A VECTOR
DUPVECCCL COPIES (PART 9F) A COLUMN

THE
THE
THE
THE
THE
THE
THE

PRQDYCT
PRODUCT
PRODYCT
PRODYCT
PRODUCT
PRODUCT
PRODUCT
PRQDUCT
PRODUCT
A VECTOR

oF
aF
OF
aF
QF
aF
oF
aF

SCALAR
SCALAR
SCALAR
SCALAR
SCALAR
SCALAR
SCALAR
THE SCALAR
THE SCALAR
(PART oF)

TWQ VECTORS,

A ROW VECTOR AND A VECTOR,

A COLUMN VECTOR AND A VECTOR,

A RoW VECTOR AND A CCLUMN VECTOR,
TWO COLUMN VECTARS,
TWO ROow VECTORS,
TWO VECTORS,

TWO VECTORS,

OF A VECTOR AND A ROV
TQ A COLUMN VECTOR,
(AN OTHER) MATRIX,

TH A ROW VECTOR,
VECTOR TO A VECTOR,

IN A SYMMETRIC MATRIX,

DUPVECRCY COPIES (PART 2F) A ROW VECTOR TO A VECTOR,

DUPVEC COPIES (PART OF)
INITIAL VALUE PROBLEMS,
INITIAL VALUE PROBLEMS,

EFERK SCLVES

EFSIRK SOLVES

A VECTOR TO A VECTOR,
GIVEN AS AN AUTONOMOUS SYSTEM OF FIRST ORDER DIFFERENTIAL EQUAT

GIVEN AS AN AUTONOMOUS SYSTEM OF FIRST ORDER DIFFERENTIAL EQUA

EI1GCOM COMPUTES ALL EIGENVECTORS AND E|GENVALUES OF A COMPLEX MATRIX,

EIGENVALUES
EIGENVALUES
EIGENVALUES

AND EIGENVECTORS OF A SYMMETRIC MATRIX,
AND EIGENVECTORS OF A SYMMETRIC MATRIX,
AND EIGENVECTORS OF A SYMMETRIC MATRIX 38Y QR«ITERATION,

IN A ONE~DIMENSIONAL ARRAY,
IN A TWO-DIMENSIONAL ARRAY,

IS STORED
IS STORED

WHICH
WH|CH

FIGENYALUES AND EIGENVECTORS OF A REAL UPPER HESSENBERG MATRIX, PROVIDED THAT ALL EIGENVALUES ARE RE
SIGENVALUES OF A SYMMETO|C TRIDIAGONAL MATRIX 8Y LINEAR INTERPOLATION USING A STURM SEQUENCE,
E|GENVALUES OF A SYMMETR{|C TRIDIAGONA[ MATRIX BY QR«!TERATIONM,

EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATR!X 8Y QRaITERATION,

EIGENVALUES OF A SYMOETR|C MATRIX, STQRED IN A ONE=-DIMENSIONAL ARRAY, 3Y LINEAR INTERPOLATICON USING
EIGENVALUES OF A SYMMETR|C MATRIX, STORED (N A T¥O0-DIMENSIONAL ARRAY, BY LINEAR |NTERPOLATICON USING
FIGENVALUES OF A SYHMMETRIC MATRIX, STQRED (N A OVE~DIMENSIONAL ARRAY, BY QR~!TERATION,

EIGENVALUES OF A SYMMETR|C MATRIX, STQRED IN A TWODIMENSIONAL ARRAY, BY QR=ITERATION,

£ 1GENVALUES OF A REAL UPPER HESSENBERG MATRIX, PROVIDED THAT ALL E!GENVALUES aRE REAL, BY MEANS OF S
EIGENVALUES OF A REAL UPPER HESSENBERG MATRIX RY MEANS OF DOUBLE QR=|TERAT{ON,

E1GENVALUES OF A HERMITIAN MATRIX,

EIGENVALUES OF A HERMITIAN MATRIX,

EIGENVALUES OF A HERMITIAN MATRIX,

EIGENVALUES OF A HERMITIAN MATRIX,

EIGENVALUES OF A COMPLEX MATRIX,

EI1GENVALUES OF A COMPLEX MATRIX,

EIGENVALUES OF A COMPLEX UPPER HESSENBERG MATRIX WITH A REAL SUBDIAGONAL,

EIGENYALUES OF A COMPLEX URPER HESSENBERG MATRIX WITH A REAL SUBDIAGONAL,

EIGENVALUE OF A REAL UPPER HESSENBERG MATRIX, BY MEANS OF [NVERSE ITERATION,

EIGENVALUE OF A REAL UPPER HESSENBERG MATRIX By MEANS OF INVERSBE ITERATION,

E1GENVECTORS
E1GENVECTORS
EIGENVECTORS
EIGENVECTQRS
EIGENVECTOQRS
EIGENVECTORS
EIGENVECTORS
EIGENVECTORS
EIGENVECTORS
EI1GENVECTORS

MATR{X By QR=ITERATION,

AND EIGENVALUES OF A SYMMETRIC TRIDIAGONAL

AND EIGENVALUES OF A HERMITIAN MATRIX,

AND EIGENVALUES OF A HERMITIAN MATRIX,

AND EIGENVALUES OF A COMPLEX MATR|X,

AND EIGENVALUES OF A COMPLEX UPPER HESSEN3ERG MATRIX WITH A REAL SUBDIAGONAL,
OF A SYMMETRIC TRID|AGONAL MATRIX BY INVERSE ITERATION,

OF A SYMMETRIC MATRIX, WHICH 1S STORED IN A ONE-D|MENSIONAL ARRAY,

OF A SYMMETRIC MATRIX, WHdICH IS STORED IN A TWORDIMENSIONAL ARRAY,

OF A SYMMETRIC MATRIX BY GR«ITERATION,

OF

A REAL UPPER HESSENBERG MATRIX,

PROVIDED THAT AL| E!GENVALUES ARE REAL, BY MEANS OF

EIGENVECTOR CORRESPONDIMG TO A GIVEN REAL EIGENVALUE OF A REAL UPPER HESSENBERG MATRIX, BY MEANS OF
EIGENVECTOR CORRESPONDING TO A GIVEN COMPLEX EIGENVALUE OF A REA| UPPER HESSENBERG MATRIX RBRY MEANS O

E1GFRM COMPUTES ALL EI1GENVECTORS AND E|GENVALUES OF A HERMIT)AN MATRIX,
EI1GSYM{ COMPUTES ALL,

OR SOME CONSECUTIVE EIGENVALUES AND EIGENVECTORS OF A SYMMETRIC MATRIX, wHICH

E1GSYMD COMPUTES AlLL, OR SOME CONSEGUTIVE EIGENVALUES AND EIGENVECTORS OF A SYMMETRIC MATRIX, WHICH

33130
33430
33131
33131
34410
34411
34412
34413
34414
34415
34416
34417
34418
21034
31035
31032
31033
31031
31030
23120
33160
24375
34156
34154
34163
34186
24151
34165
34161
34155
34153
34164
34162
34180
34190
34358
34369
34370
34371
34374
34375
34372
34373
34461
34191
34161
34369
34371
34375
34373
34152
34156
34454
34163
34186
34161
34191
34369
34456
34154
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{ CHROWCOL

| CHVEC

ICHSEQVEC

|CHSEQ

I CHCOL

I CHROW

ANO DELIVERS THE
ES AND MODULUS OF
QF A BAND MATRIX
OF A BAND MATRIX
ITION OF A MATRIX
LINEAR EQUATIONS

EQUILIBRATION AS
EQUILIBRATION AS

OF FIRST ORCER
( MON=LINEAR )
OF FIRST ORDER
OF FIRST ORDER
OF FIRST ORDER
OF FIRST ORDER
OF FIRST ORDER

2T

INTERCHANGES
INTERCHANGES
INTERCHANGES
INTERCHANGES
INTERCHANGES
INTERCHANGES
INGEX FOR AN
THAT MATRIX
8Y GAUSSIAN
3Y GAUSSIAN
3¥ GAUSS AN
3Y GAUSS|AN

PERFORMED PY
PERFORMED EY

CIFFERENTIAL
CIFFERENT AL
CIFFERENT AL
CIFFERENTIAL
CIFFERENT 1AL
DIFFERENT AL
DIFFERENT 1AL

SOL SOLVES A SYSTEM OF LINEAR
ELM SOLVES A SYSTEM OF LiNEAR

ING FROM PARTIAL
GRATION OF ST!FF
GRATION OF STiFF
GRATION OF STIFF
GRATION OF STIFF
GRATI{ON OF STIFF

CIFFERENT AL
CIFFERENT 1AL
CIFFERENT 1AL
DIFFERENT AL
DIFFERENT AL
DIFFERENT AL

D SOLVES THE SYSTEM OF LINEAR
OLUTION OF A SYSTEY OF LINEAR
ERB SOLVES A SYSTEM OF LINEAR
SOL SOLVES A SYSTEM OF LINEAR
SOL SOLVES A SYSTEM OF LINEAR

LVES A SYSTEM OF

DIFFERENT | AL

VE DEFINITE, SYSTEM OF LINEAR
D SOLVES THE SYSTEM OF LINEAR

M OF FIRST ORDER
OF SECOND ORDER
OF SECOND ORDER

M OF FIRST ORDER

DIFFERENT AL
DIFFERENT 1AL
L!FFERENT 1AL
DIFFERENT AL

BND SOLVES A SYSTEM OF L [NEAR

EIGVALCCM COMPUTES ALL E|GENVALUES OP A COMPLEX MATRIX,

EIGVALHRM COMPUTES ALL E|GENVALUES OF & HERMITIAN MATRIX,

EIGVALSYM{ COMPUTES aLL, OR SOME CONSECUTIVE E1GENVALUES OF A SYMMETR|C MATRIX, STORED IN A ONELDIME
EIGVALSYM2 COMPUTES ALL, OR SOME CONSECUTIVE £)1GENVALUES OF A SYHMMETRIC MATRIX, STORED IN A TWC.DIME
ELEMENTS OF A RCW VECTOR AND COLUMN VECTOR,

ELEMENTS QF TwO VECTORS,

ELEMENTS QF TwO VECTORS,

ELEMENTS OF TwO VECTORS,

ELEMENTS OF TwO COLUHMN VECTORS,

ELEMENTS OF Tw0 ROV VECTORS,

ELEMENT MAXIMAL IN MODULUS,

ELEMENT OF MAXIMUM AUSOLUTE VALUE,

ELIMINATION,

ELIMINATION AND SOLYVES THE SYSTEM OF L INEAR EQUATIONS,

ELIMINATION WiTk COMB|NED PARTIAL AND COMPLETE PIVCTING,

ELIMINATION WITH COMBINED PARTIAL AND COMPLETE PIVOTING,

ELMCOLRCW ADDS A SCALAR TIMES A ROW VECTOR TO A COLUMN VECTCR,

ELMCOLVEC ADDS A SCALAR TIMES A VECTOR TO A COLUMN VECTOR,

ELICOL ADDS A SCALAR TI“ES A COLUMN VECTOR TO ANOTHER COLUMN VECTOR,

SLMCOMCCL ADDS A COMPLEX NUMBER TIMEB A COMPLEX CCLUMN VECTOR TO ANOTHER COMPLEX COLUMN VECTOR,
ELMCOMRCWYEC ADDS A COMPLEX NUMBER TIMES A COMPLEX VECTOR TO A COMPLEX ROW VECTOR,

ELI'COMVECCOL ADDS A COMPLEX NUMBER TIMES A COMPLEX CQLUMN VECTOR TO A COMPLEX VECTOR,

ELMROWCCL ADDS A SCALAR TIMES A COLUMN VECTOR TO A ROW VECTOR,

ELMROWVEC 4DDS A SCALAR TIMES A VECTOR TO A ROW VECTOR,

ELIROW ADDS A SCALAR TIMES A ROW VECTOR TO ANOTHER ROW VECTOR,

ELMVECCCL ADDS A SCALAR TIMES A COLUMN VECTOR TO A VECTOR,

ELI"VECROW ADDS A SCALAR TIMES A ROW VECTOR TO A VECTOR,

ELMVEC ADDS A SCALAR TI®ES A VECTOR T) ANOTHER VECTOR,

£Q1LRBRCCIH,

EQILBRCCH TRANSFORMS A COMPLEX MATRIX INTO A S)MILAR EYUILIBRATED COMPLEX MATRIX,

EQiLBR,

EQILBR TRAWSFORMS A NMATR{X INTO A SIMILAR EQUILIBRATED MATRIX,

EQUATIONS, BY A ONE=STE® TAYLOR METHOD; THiS METH0D IS PARTICULARLY SUITABLE FOR THE INTEGRATICN OF
EQUATIONS, BY A STABILIZED RUNGE KUTTA METHOD WiTh LIMITED STORAGE REQUIREMENTS,

EQUATIONS, BY AN EXPONENTIALLY FITTED, EXPLICIT RUNGE XUTTA METHOD WriCH USES THE JACOBIAN MATRIX AN
EQUATIONS, BY AN EXPONENT|ALLY FITTED, SEMI = IMPLICIT RUNGE KUTTA METHOD; SUITABLE FOR INTEGRATION
EQUATIONS, BY AN IMPLICIT, EXPONENTIALLY FiTTED, FIRST ORDER ONESTEP METHOD W!TH NO AUTOMATIC STEP
EQUATIONS, BY AN IMPLICIT, EXPONENTIALLY FITTED, SECOND ORDER ONE=STEP METHOD WITH NO AUTOMATIC STEP
EQUATIONS, BY ONE OF THE FOLLOWING MULTISTEP MFTHODSY SEARS, ADANMS - MOULTON, OR ADAMS = BASHFCRTH M
EQUATIONS, OF WhiCH THE TRIANGULARLY DECOMPOSED FCRM OF THE MATRIX 'S GIVEM,

EQUATIONS, CF WKICH THE TR|IANGULARLY DECOMPOSED FORM OF THE MATRiX (S5 GIVEN,

EGUATIONS, PROVIDED HIGHER ORDER DERIVATIVES CAN BE EASiLY CBTAINED,

EQUATIONS,

EQUATIONS,

EQUATIONS,

EQUATIONS,

EQUATIONS,

EQUATIONS,

EQUATIONS,

EQUATIONS AND COMPUTES AN UPPER BOUND FOR TS ERROR,

EQUATIONS BY CRCUT FACTNRIZATION WITk PARTIAL PIVOTING,

EQUATIONS BY GAUSSIAM ELIM|INATION WiTH COMRINED PARTIAL AND COMPLETE PIVOTING,

EQUATIONS BY SOMETIMLS :SING THE DEPENDENT VAR|ABLE AS INTEGRATION VARIABLE,

EQUATIONS BY THE METHOD OF CONJUGATE GRADIENTS,

EQUATIONS BY THE CHOLESKY METHOD,

EGUATIONS USING A SaTH ORDER RUYNGE KYTTA METHOD,

EQUATIONS USING A E=TH NRDER RUNGE KUTTA METHOND,

EQUATIONS USING A SeTH NRDER RUNGE KUTTA METHOD}) NO DERIVATIVES ALLOWED ON RIGHT HAND SIDE,
EQUATIONS USING THME ARC LEMGTH AS [NTBGRATION VARIABLE,

EGUATIONS wITH BAND “MATRIX, WHICH |S DECOMPOSED B8Y DEC3ND,

34374
34368
34155
34153
34033
34030
34034
34035
34031
34032
31060
34230
34320
34322
34231
34232
34029
34022
34023
24377
34378
24376
34028
34027
34024
34021
34026
34020
34362
34301
34374
34173
33040
33060
33120
33160
33130
33434
33060
34051
34061
33040
33080
33120
33160
33430
33131
34322
34241
34243
34301
34232
33017
34220
34333
33011
33013
33015
33018
34071
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BND SOLVES A SYSTEM OF | INEAR
SOLVES A SINGLE DIFFERENTIAL
NGLE FIRST ORDER DIFFERENTIAL

S A SECOND QRDER DIFFERENTIAL .

S A SECOND ORDER DIFFERENTIAL
UTES THE ROOTS OF A QUADRATIC
COMPLEX MATRIX INTO A SIMILAR
FORMS A MATRIX INTO A SIMILAR
ORMATION CORRESPONDING TO TFE
ORMATION CORRESPONDING TO TKE

ON AND AN UPPER BOUND FOR (TS
MPUTES AN UPPER BCUND FOR ITS
IX AND AN UPPER BOUND FOR ITS

ERF COMPUTES THE

OR FUNCTION AND COMPLEMENTARY
MPUTES AN UPPER BOUND FOR THE
COMEUCNRM COMPYTES ThHE

PCL

NEWRCL

THE RANGE ([1/2,3/2); ODD AND
EMEZ (SECOND REMEZ ALGOR|THN)
E ARGUMENTS; THE SECOND REMEZ
, BY AN EXPONENTIALLY FITTEC,
DIFFERENTIAL EQUATIONS, aY AN
DIFFERENTIAL EQUATIONS, BY AN
AL EQUATI|ONS, BY AN IMPL|CIT,
AL EQUAT]ONS, BY AN IMPLICIT,
PQSITION OF A MATRIX BY CROUT
OF LINEAR EQUATIONS BY cRouT
RK1 SOLVES A S|NGLE

RK{N SOLVES A SYSTEM CF

RKS5NA SOLVES A SYSTEM
PROBLEM, GIVEN AS A SYSTgM
PROBLEM, GIVEN AS A SYSTEM
EN AS AN AUTONOMOUS SYSTEM
EN AS AN AUTONOMOUS SYSTEM
EN AS AN AUTONOMOUS SYSTEM
EN AS AN AUTONOMOUS SYSTEM
PROBLEM, GIVEN AS A SYSTEM
QUATIONS, BY AN EXPONENTIALLY
BY AN IMPLICIT, EXPONENTIALLY
BY AN IMPLICIT, EXPONENT{ALLY
QUATIONS, BY AN EXPONENT]ALLY

ORMAL OR GAUSSIAN PROBABiLITY
ERF COMPUTES THE ERROR
COMPUTES THE (NCOMPLETE GAMMA
S THE RECIPROCAL CF THE GAMMA
CTION AND COMPLEMENTARY ERROR
GAMMA COMPUTES THE GAMMA
ATURAL LOGARITHM GF THE GAMMA

ERYT FORM) THAT APPROXIMATES A
COMPUTES THE INCOMPLETE BETA
COMPUTES THE INCOMPLETE BETA
COMPUTES THE INCCMPLETE BETA

EQUATIONS WITH SYMMETRIC PQSITIVE DEFINITE BAND
EQUATION BY SOMETIMES US|NG A DERENDENT
EQUATION USING A 5-TH ORDER RUNGE KUTTA
EQUATION USING A 5-TH ORDER RUNGE KUTTA
EQUATION USING A 5=TH ORDER RUNGE KUTTA
EQUATION WITH CCMPLEX CNEFFICIENTS,
EQUILIBRATED CONMPLEX MATRIX,
EQUILI3BRATED MATRIX,

EQUILIBRATION AS PERFORMED BY EQ|LBR,
EQUILIBRATION AS PERFORHED By EQILBRCOM,
ERBELM COMPUTES AN UPPER BOUND FOR THWE ERROR

METHOD ,
METHOD,
METHOD

IN

ERF COMPUTES THE ERRUR FUNCTION AND COMPLEMENTARY ERROR FUNCTIQON FOR A REAL ARGUMENT)
OfF WHICH THE TRIANGULARLY DECOMPOSED FORM OF THE MATRIX

ERROR,
ERROR,
ERROR,
ERRCR FUNCTION AND COMPLEMENTARY ERROR FUNCTION
ERROR FUNCTION FOR A REAL ARGUMENTj) THESE FUNCTI
ERROR
EUCL IDEAN NORM OF A COMPLEx MATRIX,

EULER CCMPUTES THE SUM OF AN ALTERMNATING SERIES,
EVALUATES A POLYNOMIAL G|VEN
EVALUATES A POLYNOMIAL GIVEN IN THE NEWTON FORM
EVEN PARTS ARE ALSO DELIVERED,

CF A SYSTEM OF LINEAR EQUATIONS,

VARIABLE AS

MATRIX, WHICH HAS BEEN DECOMPOSED 8Y CHLDECEND,
INTEGRAT |ON VARIABLE,

NC DER|VATIVES ALLOWED ON RIGRT HAND SIDE,

THE SOLUTION OF A SYSTEM OF LINEAR EQUAT|ONS,
THESE FUNCTION
IS &

FOR A REAL ARGUMENTj; THESE FUNCT|ONS ARE RELATED TC
ONS ARE RELATED TO THE NORMAL OR GAUSSIAN PROBABILIT

IN THE SOLUTIQN OF A SYSTEM OF [ INEAR EQUATIONS,

IN THE GRUNERT FORM By THE HORNER SCHEME,

8y THE HORNER SCHEME,

EXCHANGES NUI'BERS WITH NUMBERS OUT OF A REFERENCE SET,

EXCHANGE ALGORITHM

EXPCNENTIALLY FITTED,

1S USED FOR THW(|S8 MINIMAX POLYNOMIAL APPROXIMATION,
EXPLICIT RUNGE KUTTA METHOD WHICH USES THE JACOBIAN MATRIX AND AUTOMATIC STEP CONTROL;
EXPLICIT RUNGE KUTTA METHOD WHICH USES THE JACOBIAN MATRIX AND AUTOMATIC STEP

SUITABLE POR

EXPCHENTIALLY FITTED, SEMI = IMPLICIT RUNGE KUTTA METHOD; SUITABLE FOR INTEGRATION OF STIFF DIFFEREN
EXPONENTIALLY FITTED, FIRST ORDER ONEnSTEP METHOD WITH NO AUTOMATIC STEP CONTROLj; SUITABLE FOR [INTEG
EXPONENTIALLY FITTED, SFCOND ORDER ONEwSTEP METHOD WITH NO AUTOMAT|C STEP CONTROLj; SUITABLE FOR |NTE

FACTORI[ZATION
FACTORIZATION
FIRST ORDER
FIRST ORDER
FIRST ORDER
FIRST ORDER
FIRST ORDER
FIRST ORDER
FIPST ORDER

WITH PARTIAL PIVQTING,
WITH PARTIAL PIVOTING,
DIFFERENTIAL
DIFFERENT 1AL
DIFFERENT I AL
DIFFERENT AL
DIFFERENTIAL
DIFFERENT AL
DIFFERENTIAL
FIRST ORDER DI{FFERENTIAL
FIRST ORDER DIFFERENTIAL
FIPST ORDER (
FITTED,
FITTED,
FITTED,
FITTED,

EQUATIONS,
EQUATI1ONS,
EQUATIONS,
EQUAT |ONS,
EQUAT|ONS,
EQUAT | ONS,
NONaL INEAR )

BgY
BY
14
34
BY
BY

AN
AN

SEM!I . IMPLICIT RUNGE KUTTA METHOD;

EQUATION USING A 5=TH ORDER RUNGE KUTTA METHOD,
EQUATIONS USING A 5-TH ORDER RUNGE KUTTA METHOD,
EQUATIONS USING THE ARC LENGTH AS
A ONE-STEP TAYLOR METHOD;
ONE OF F¥HE FOLLOWING MULTISTEP METHODS:
AN EXPONEMTIALLY FITTED,
AN EXPONENWTIALLY FITTED,
IMPLICIET,
IMPLICHT,
DIFFERENT AL EQUATINNS,
EXPLICIT RUNGE KUTTA METHOD wHiCH USES THE JACOBIAN MATR[X AND AUTOMAT|C STEP CONTRCOL;
FIRST CRDER UNELSTEP METHOD W!TH NO AUTOMATIC STEP CONTROL)
SECOUND CRDER ONESTEP METHOD WITH NO AUTOMATIC STEP CONTROL;
SUITABLE FNR

INTEGRATION VARIABLE,

THIS METHOD IS PARTICULARLY SUITABL
GEARS, ADAMS - MOULTO
EXPLICIT RUNGE KUTTA METHOD WHICK US
SEM] - IMPLICIT RUNGE KUTTA METHOD;
EXPONENT|ALLY FITTED, FIRST ORDER ONE&STEP METHC
EXPONEMTIALLY FITTED, SECOND ORDER ONE=STEP METH
BY A STABILIZED RUNGE KUTTA METHOD WITH LIMITED S
SUITA
SUITABLE FOR INTEGRATICN OF STIF
SUITABLE FOR [NTEGRATICN CF ST!
INTEGRATION OF STIFF DIFFERENTIAL EQUATIONS

FLEMIN ( QOPTIMIZATION ) MINIMIZES A GIVEN DIFFERENTIABLE FUNCTION OF SEVERAL VARIABLES By & VARIABLE

THESE FUNCTIONS ARE RELATED TO THE NO

THESE FUNCTIONS ARE RELATED TO THE NORMAL OR GAUSSIAN PROBABILITY FUNC

IS USED FOR THIS MINIMAX

FLEUPD 1S AN AUXILIARY PROCEDURE FOR QPTIMIZATION,

FOPWARD 18 AN AUXILIARY PROCEDURE FOR THE INCOMPLETE BETA FUNCTION,
FUMCTION,

FUNCTION AND COMPLEMENTARY ERROR FUNCT{ON FOR A REAL ARGUMENT;

FUNCTION BY PADE APPROXIMATIONS,

FUNCTION FOR ARGUMENTS IN THE RANGE [1/2,3/2)3 ODD AND EVEN PARTS ARE ALSO DELIVERED,
FUNCTION FOR A REAL ARGUMENT)

FUHNCTION FOR A REAL ARGUMENT,

FUNCTION FOR POSI|TIVE ARGUMENTS,

FUNCTION GIVEN FUR DISCRETE ARGUMENTS) THE SECOND REMEZ EXCHANGE ALGORITHM
FUNCTION !(X,P+N,Q),U<=Xes4,P>0,850, FOR N=0(1)NMAX,

FUNCTION 1 (X,P,Q),0<¢=X<el,P>0,0>0,

FUNCTION 1(X,P,Q4N),Uc=X<2y,P>0,0>0, FOR N=U(Ll)NMHAX,

34332
33016
33010
33012
33014
34345
34361
34173
34174
34362
34241
35020
34253
34243
34244
35020
35020
34241
34359
32010
31040
31044
35060
36021
36022
33120
334120
33460
33130
33131
34300
34301
33010
33011
33018
33040
33080
33120
33160
33130
33131
33060
33120
33430
33431
33160
34215
34213
35055
35020
35020
35030
35060
35020
35061
35062
36022
35051
35050
35052
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ES THE DEFIN|TE INTEGRAL OF A
ES THE DEFIN|TE INTEGRAL OF A
ROIN SEARCHES FOR A zERO OF A
IMIZES A GIVEN DIFFERENT | ABLE
IMIZES A GIVEN DIFFERENT|ABLE

RECIP

LCG

OMGAM COMPUTES THE INCOMPLETE
OMPUTES THE REC!PROCAL OF TKE
GAMMA COMPUTES TFE

THE NATURAL LOGAFIThM OF THE

MPOSITION OF A BAND MATR|X BY
MPOS|ITION OF A BAND MATR|X BY
DECOMPOSIT!ION OF A MATRIX BY

SYSTEM OF LINEAR EQUATIONS BY
ARE RELATED TO THE NORMAL OR

FOLLOWING MULT!ISTEP METHCDS:

NS BY THE METHOD OF CONJUGATE
NTATION FROM NEWTON FORM INTO
TES A POLYNOMIAL GIVEN IN TKE
JCIENTS OF THE POLYKOMIAL (IN

HSHHRMTRI TRANSFORMS A
1S UNITARY SIMILAR TO A GIVEN
COMPUTES ALL EIGENVALUES OF A
NVECTORS AND E!1GENVALUES OF
COMPUTES ALL E1GENVALUES OF
NVECTORS AND EIGENVALUES OF

THE CODIAGONAL ELEMENTS OF A
L MATRIX INTO A SIMILAR UPPER
E EIGENVALUES OF A REAL UPPER
AL EI1GENVALUE OF A REAL UPPER

EI1GENVECTORS OF A REAL UPPER
X EIGENVALUES OF A REAL UPPER
EX EIGENVALUEL OF & REAL UPRER
IGENVALUES OF A COMPLEX UPPER
JGENVALUES OF A COMPLEX UPPER

INTO A SIMILAR UNITARY UPPRER

HOMSOLSVD SOLVES A
HOMSOL SOLVES A

> » P

EN [N THE GRUNERT FORM
VEN IN THE NEWTCN FORM
A SIMILAR TRIDIAGONAL

ORMAT ION CORRESPOND ING
A SIMILAR TRIDIAGONAL ONE RY

ORMATION CORRESPONDING TO TKE
COMPLEX MATRIX WITH A COMPLEX
O BIDIAGONAL FORM BY MEANS CF
LSQORTDEC PERFORMS THE

BY TkE
sy TRE
ONE RY
To THE

FUNCTION OF ONE VARIABLE OVER A F|NITE INTERVAL,

FUNCTION OF ONE VARIABLE OVER A FINITE OR INFIN|ITE |NTERVAL OR OVER A NUMBER OF CONSECUT|VE [NTERVA}
FUNCTION OF ONE VARIABLE [N A GIVEN INTERVAL,

FUNCTION OF SEVERAL VARIABLES By A VARIABLE METRIC METHOD,

FUNCTION OF SEVERAL VARIABLES By A VAR|ABLE METRIC METHOD,

GANMMA CCMPUTES THE RECIPROGAL OF THE GAMMA FUNCTION FOR ARGUMENTS [N THE RANGE ([1,/2,3/213 ODD AND EV
GAI'MA CCMPUTES THE GAMMA FUNCTION FOR A REAL ARGUMENT,

GAMMA CCMPUTES THE NATURAL LOGAR|THM QF THE GAMMA FUNCTION FOR POS|TIVE ARGUMENTS,

GAI'MA FUNCTION BY PADE APPROXIMAT{QONS,

GAMMA FUNCTION FOR ARGUIENTS IN THE RANGE [1/2,3/21; 0ODD AND EVEW PARTS ARE ALSO DELIVERED,

GAMMA FUNCTION FOR A REAL ARGUMENT,

GAMMA FUNCTION FOR PUSIT|VE ARGUMENTS,

GAUSS AN ELIMINATION,

GAUSSIAN ELIMINATION AND SOLVES THE SYSTEM OF L INEAR EQUAT|ONS,
GAUSSIAN ELIMINATION wi™H EOMBINED PARTIAL AND COMPLETE PIVOTING,
GAUSSIAN ELIMINATION wi™ COMBINED PARTIAL AND CIMPLETE PIVOTING,
GAUSSIAN PROBABILITY FUMCTION,
GEARS, ANRDAMS o MOULTON, OR ADAMS =
GRADIENTS,

GRUNERT FORM,

GRUNERT FORM BY THE HORSNER SCHEME,
GRUNERT FQORM) THAT APPRIX|MATES A FUNCTION GIVEN POR DISCRETE ARGUMENTS; THE SECOND REMEZ EXCHANGE A
GSSELM PERFORMS THE TRIANGULAR DECQOMPORITION QOF A MATRI{X 8Y GAUSSIAN ELIMINATION WITH COMBINED PART!
GSSERB |8 AN AUXILIARY PROGEDURE FOR THE SOLUT|OY OF LINEAR EGUATION WITH AN UPPER BOUND FOR THE ERR
GSSIHNVERB COMPUTES THE [(NVERSE OF A MATRIX AND AN UPPER BOUND FOR |TS ERROR,

GSSIHNV COMPUTES THE INVERSE OF A MATRIX,

GSSITISCLERSB COMPUTES AY ITERATIVELY REFINED SoOLJTION NF A SYSTEM OF L INEAR EQUAT|ONS,

GSSITISCL COMPUTES AN ITERATIVELY REFINED SOLYT!ION OF A SYSTEM OF LINEAR EQUATIONS,

GSSNRI 1S AN AUXI|LIARY PROCEDURE FOR THE I|TERATIVELY REFINED SOLUTION OF A SVSTEM OF LINEAR EQUATICN
GSSSOLERB SOLVES A SYSTEM OF LINEAR EQUATINNS AND COMPJTES AN UPPER BOUND FOR ITS ERROR,

GSSSOL SOLVES A SYSTEM NF LINEAR EQUATIONS BY GAJSSIAN ELIMINAT|ON WITK COMBINED PARTIAL AND CCMPLET

BASHFORTH METHOD; WITH AUTOMATIC STEP AND ORDER CONTROL AND SYITa

HEBNM I T{AN MATRIX INTO A SIM|LAR REAL SYMMETRIC TRIDIAGINAL MATRIX,

HERMITIAN MATRIX,

HERMITIAN MATRIX,

HERMIT|AN MATRIX,

HERMITIAN MATRIX,

HERMITIAN MATRIX,

HERMIT|AN TRIDIAGONAL MATRIX WHICH 18 UNITARY §IMILAR TO A G{VEN HERM;TIAN MATRIX,
HESSENBERG MATRIX BY THE W|{LKINSQN TRANSFORMAT|ON,

HESSEN3SERG MATRIX, PROVIDED THAT ALL EIGENVALUES ARE REAL, BY MEANS OF SINGLE QR=|TERATION,
HESSENBERG MATRIX, BY MEANS OF INVERSE ITERATION,

HESSENRERG MATRIX, PROVIDED THAT ALL CIGENVALUES ARE REAL, BY MEANS OF SINGLE QReITERATION,
HESSENBERG MATRIX BY MEANS OF DOUBLE QR=ITERATON,

HESSENBERG MATRIX BY MEANS OF |NYERSE |TERATION,

HESSENBERG MATRIX WITH A REAL SUBDIAGONAL,

HESSENBERG MATRIX WITH & REAL SUBDIAGONAL,

HESSENHERG MATRIX WITH A REAL NON«NEGATIVE SUBD!AGONAL,

HOMOGENEOUS SYSTEM OF LINEAR EQUATIONS, PROVIDED THAT THE SINGULAR VALUE DECOMPOSITION OF ThE COEFFI
HOIMCGENEOUS SYSTEM OF LINEAR EQUATIONS BY MEANS OF SINJULAR VALUE DECOMPOSITION,

HOMSOLSVD SOLVES A HOMOGENEOUS SYSTEM OF LINEAR EQUATIINS, PROVIDED THAT THE SINGULAR VALUE DECOMPOS
+HOMSOL SOLVES A HOMOGENEOUS SYSTEM OF LINEAR EQAUAT|ONS BY MEANS OF SINGULAR VALUE DECOMPOSITION,
HHORNER SCHEME,

HORNER SCHEME

HOUSEROJOLDERS TRANSFORMAT|ON,

HOUSEHOLDERS TRANSFORMAT|ON AS PERFORMED Bv TFMSYMTRIZ,

HHOUSENOLDERS TRANSFORMATI|ON,

HOUSEMOLDERS TRANSFORMATION AS PERFORMED BY TFMSYMTRIY,

HOUSEMOLDER MATRIX,

HOUSEMOLDER TRANSFORMATION,

MOUSEHROLDER TRIANGULLARIZATION OF THE (QEFFPICIENT MATRIX OF A L|NEAR LEAST SQUARES PROBLEM,

32070
32051
34450
34214
34215
35060
35061
35062
35030
35060
35061
35062
34320
34322
34231
34232
35020
33080
34220
31050
31040
36022
34234
34242
34244
34236
34254
34251
34252
34243
34232
34363
34364
34368
34369
34370
34371
34364
34170
34480
341081
34186
344190
34191
34372
I4373
34366
34264
34285
4284
34285
31040
31041
344140
34141
34143
34344
34356
34260
34134
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ANSFORMATION CORRESPONDING

ANSFORMATION CORRESPONDING

OSTMULTIPLY NG MATRIX USED
PREMULT IPLYIHGE MATRIX USED

DIFFERENTIAL EQUATIONS,
DIFFERENTIAL EQUATIONS,
EXPONENTIALLY FITTED,

INCBETA COMPUTES
1BPPLUSN COMPUTES

1 BOPLUSN COMPUTES
AUX1L1ARY PROCEDURE FOR
AUX L IARY PROCEDURE FOR
AUXIL1ARY PROCEDURE FOR
AUX{LtARY PROCECURE FOR
INCOMGAM COMPYUTES

OF A VECTOR AND [EL IVERS
MAXMAT FINDS

Tz zzZ

ONE

T0

T0

BY
By

BY AM
B8Y AN
SeMy

THE
THE
THE
TrE
THE
THE
THE
THE
THE
THE
VAR (ABLE OVER A FINITE CR

ABSMAXVEC COMPUTES THE

tRISYMD

INISYMROW

ITMIVEC

INIMAT

INI|MATD

MULTISTEP SOLVES AN

EFERK SOLVES

EFSTRK SOLVES

LINIGER] SOLVES

LINIGERZ SOLVES

MODIFIED TAYLOR SOLVES AN
ODIFIED RUNGE KUTTA SOLVES AN

ATURE ) COMPUTES THE DEF NITE
ATURE ) COMPUTES THE DEF|NITE

PARTICULARLY SU!TABLE FOR
CONTROL AND SUITABLE FOR
I1C STEP CCNTROL; SU!ITABLE
GE KUTTA METHOD; SU!TABLE

ThE
THE
FOR
FCR

HESHCOMCOL TRANSFORME A COMRLEX VECTOR
HEHCOMHES,

HEHCOMMES TRANSFORMS A COMPLEX MATRIX INTO A SiMI AR UNITARY UPPER HESBENBERG MATRIX #i1Tr A REAL NOK
HEHCOMPRD PREMULTIPLIES A COMPLEX MATRIX WiTH a4 COMPLEX HOUSEROLDER MATRIX,

HEHRRMTRIVAL DELIVERS THE MAIN DIAGONAL ELEMENTS AMD SOUARES OPF THE CODIAGONAL ELEMENTS OF A HERMIT!
HEHHRMTR |,

INTO A VECTOR PROPORTIONAL TO 4 UNIT VECTOR,

HEHHAMTR] TRANSFORMS A SERMITIAN MATRIX INTO A SIMILAR REAL SYMMETRIC TRIDIAGONAL MATRIX,
HEHREAZID TO TRAHSFORM A MATRIX INTO BiDIAGONAL POam,

HBHMREABID TO TRANSFOHRM A MATRIX INTD 51D1AGONAL FPORM,

HSHREABID TRANSFORNS A REAL MATRIX INTO SID!AGONAL FOR'W BY MEANS OF HOUSEMNLDER TRANSFORMATION,

IBPPLUSN COMPUTES THE INCOMPLETE BETA FUNCTION
|BOPLUSN COMPUTES THE INCOMPLETE BETA FUNCTION
1CHCOL INTERCHANGES ELEMENTS OF
ICHROWCCL INTERCHANGES ELEMENTS
ICHROW (MTERCHANGES ELENENTS OF
iCHSEQVEC INTERCHANGES ELEMENTS
iCHSEG INTERCHANGES ELEMENTS OF
ICHVEC INTERCHANGES ELEHMENTS OF
IMPLICIT, EXPONENTIALLY FITTED,
IMPLICIT, EXPONENTIALLY FITTED,
IMPLICIT RUNGE KUTTA HMETHOD;
INCBETA COMPUTES THE
INCONGAY COMPUTES THE
{NCOHMPLETE BETA
iNCOMPLETE BETA
iNCOMPLETE BETA
INCCHPLETE BETA
INCCHMPLETE BETA
INCOMPLETE BETA FUNCTIOM,

INCOMPLETE BETA FUNCTIOM,

(NCOMPLETE GAMMA FUNCTION BY PADE APAROXIMATIONS,

(NDEX FCR AN ELEMENT MAX{MAL (N MODULUS,

INDICES AND HMODULUS OF THAT MATRIX ELEMENT OF MAX MUM ABSOLUTE VALUE,
INFINITE (NTERVAL OR OVER A NUMBER OF CONSECUTIVE (NTERVALS,

INFINITY NORM OF A VECTOR AND DELIVERS THE INDEX POR AYM ELEMENT HAXIMap
INIMATO INITIALIZES (PART OF) A DIAGANAL OR CODIAGONAL W!TH A CONMSTANT,
INIMAT INITIALIZES (PART OP) A MATRIX WITH A CONSTANT,

INTSYMD INITIALIZES A CODIAGONAL OF A SYMMETRIC MATRIX WiTH A CONSTANT,
INISYMRCOYW INITIALIZES A ROW OF A SYMMETRIC MATRIX WiTH A CONSTANT,
INITIALIZES A CCDIAGONAL OF A SYMMETRIC MATRIX ¥iTH A CONSTANT,
INITIALIZES A RCW OF A SYMMETRIC MATR|X WITH A CONSTANT,

INITIAL1Z2ES (PART OF) A VECTOR WiTH &4 CONSTANT,

INITIALIZES (RART OF) A MATRIX WITH A CONSTANT,

INITIALIZES (PART OF) A DIAGONAL OR CQD!AGONAL WITH A CONSTANT,
INITIAL VALUE PROBLEM, GIVEN A8 A SYSTEM OF FiRST ORDEA DIFFERENTIAL
INITIAL VALUE PROBLEMS, GIVEN AS AN AUTOMOMOUS SYSTEM OF FIRST ORDER
INITIAL VALUE PROBLEMS, GIVEN AS AN AUTONOHOUS SYSTEM OF F|RST ORDER
INITIAL VALUE PROBLEMS, GIVEN AS AN AUTONOMOUS SYSTEM OF FIRST ORDER
INITIAL VALUE PROBLEMS, GIVEN AS AN AUTONOMOUS SYSTEM NOF FIRST ORDER DIFFERENTIAL EQUATIONS, By AN |
INITIAL ( BOUNDARY ) VALUE PROBLEM, GIVEN A5 A SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS, BY & ON
INITIAL ( BOUNDARY ) VALUE PROBLEM, GIVEN AS A SYSTEM OF FIRST ORDER ( NON=LINEAR ) DIFFERENTIAL ECU
INIVEC IN!TIALIZES (PART OF) A VECTOR W!TH A CONSTANT,

IN! 1S AN AUXILIARY PROCEDURE FOR MiNIMAX APPROXIMATION,

INTEGRAL OF A FUNCTION OF ONE VARIABLE OVER A FINITE INTERVAL,

INTEGRAL OF A FUNCTION OF ONE VARIABLE OVER A FINITE OR |NFINITE (NTERVAL 0OR CVER A NUMBER CF CONSEC
INTEGRAL ( QUADRATURE ) COMPUTES THE DEFINITE INTEGRAL OF A FUNCTION OF ONE VARIABLE OVER A FINITE ©
INTEGRATION OF LARGE S§YSTEMS ARISBING FROM PART{AL DIFFERENTIAL, EQUATIONS, PROVIDED HIGHER ORDER DER!
INTEGRATION OF 8TIFF DIFFERENT A EQUATIONS,

INTEGRATION OF STIFF DIFFERENTIAL EQUAT!IONS,

INTEGRATION OF STIFF DIFFERENTIAL EQUATIONS,

FOR wNa(¢linNBAX,
FOR NmQ(L)NMAX,

P(X,PsN,Q),0<2Xes],P>0,650,
P{X,P,QaN),0<eXexy,P>0,0850,
TWO COLUMN VECTORS,
OF A ROW VECTOR AND COLUMN VECTOR,
TWO ROW VECTORS,
OF Tw0O VECTORS,

T¥O VECTORS,
TWO VECTORS,

FIRST ORDER ONF.STEP METHOD ¥ iTH NO AUTOMAT:(C STEP CONTRGCLy
SECOND ORDER ONE«STEP "ETHOD W(TH NO AUTOMATIC STEP CONTROL;
SUITABLE FOR (NTEGRATION OF STiFF DIFFERENTI AL EGUATIONS,
INCOMBLETE BETA PUNCTION 1({X,P,0),0«aX<=1,Px0,0>0,

INCOMPLETE GAMMA FUNCT!ON dY PADE APPROX|MATIONS,
FUNCTION 1(X,P,Q),0<aXesl,P>0,0>d,
FUNCTIOY 1(X,PeN,Q),0¢8X<cal,P>0,50,
FUNETIOMN 1 (X,P,QsN),DcuXcnl,P>0,43],
FUNCT 0N,

FUNCT 1 O8

SUITABLE
SUITABL

FAR N=( (1 )NNAXK,
FOR N=0(1)NHMAX,

1N MODULUS,

EQUATIONS, BY ONE OF THE FOLLOW
DIFFERENT 1AL, EQUATIONS, BY AN E
DIFFERENT AL EQUATIONS, BY AN E
DIFFERENT AL, EQUATIONS, BY AN |

34358
34367
34366
34356
34364
34365
34363
34261
34262
34260
35051
3g652
346314
34033
34032
34034
34035
34630
33130
33131
33160
35050
35030
35050
35051
35082
35053
35054
35658
35056
35030
34060
34230
32051
34060
34012
31011
31013
34014
31013
31014
34010
31011
31012
33060
33120
33160
33430
33434
33040
33060
34010
36020
32070
32051
32054
33040
33080
33120
33160
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|IC STEP CONTROL; SUITABLE FOR
IC STEP CONTROL; SUITABLE FCR
USING A DEPENDENT VARIABLE AS
ING THE DEPENDENT VARIABLE AS
TIONS USING THE ARC LENGTH AS
1CHVEC

ICHSEBVEC

ICHSEQ

lcHeoL

I CHROY

1 CHROVCOL

HE COEFF|CIENTS OF THE NEWTCHN
TRIDIAGONAL MATRIX BY LINEAR
=D IMENS IONAL ARRAY, BY LINEAR
<D IMENS IONAL ARRAY, BY LINEAR
OVER A NUMBER OF CONSECUTIVE

INTEGRAT I ON
INTEGRAT I ON
INTEGRAT|ON V
INTEGRATION V
INTEGRATION V
INTERCHANGES

INTERCHANGES

INTERCHANGES

INTERCHANGES

INTERCHANGES

INTERCHANGES

INTERPOLATION
INTERPOLATION
INTERPOLATION
INTERPOLATION
INTERVALS,

ARIABLE,

ARIABLE,

ARIABLE,

ELEMENTS OF
ELEMENTS OF
ELEMENTS OF
ELEMENTS OF
ELEMENTS OF
ELEMENTS OF
PCLYNOM 1AL

TWO
TWO
TWO
TVO
TWO

OF STIFF DIFFERENTIAL EQUATIONS,
OF STIFF DIFFERENTIAL EQUATIONS,

VECTORS,
VECTORS,
VECTORS,

COLUMN VECTORS,
ROW VECTORS,

A ROW VECTOR AND COLUMN VECTOR,

FAOR GIVEN ARGUMENTS AMD FUNCT|ON VALUES,
USING A STURM SEQUENCE,
USING A STURM SEQUENCE,
USING 4 STURM SEQUENCE,

33130
33131
33016
33017
33018
34030
34034
340353
34031
34032
34033
36010
34451
34155
34153
32051

INV{ COMPUTES THE INVERSE OF A MATRIX OF WHICH THE TRIANGULARLY DECOMPOSED FORM IS GIVEN, 34235

MMETRIC TRIDIAGONAL MATRIX BY INVERSE | TERATION, 344152
ESSENBERG MATRIX, BY MEANS OF INVERSE 1TERATICN, 344681
HESSENBERG MATRIX BY MEANS OF INVERSE |TERATION, 34191
NV CQMPUTES THE 1=NORI" OF THE INVERSE OF A MATRIX, WHiCH IS TRIANGULARLY DECOMPOSED, 34240
INV COMPUTES THE INVERSE OF A MATRIX OF wHICH THE TRIANGULARLY DECCMPOSED FORM [S GIVEN, 34053

DECINV COMPUTES TKE INVERSE OF A MATRIX, 34302

INV1 COMPUTES THE INVERSE OF A MATRIX OF WH|CH THE TRIANGULARLY DECOMPOSED FORM |S§ G|VEN, 34235

GSSINV COMPUTES TKE INVERSE OF A MATRIX, 34236

GSSINVERB COMPUTES THE INVERSE OF A MATRIX aND AN UPPER BOUMND FOR TS ERROR, 34244
DINVYSVD CALCULATES THE PSEUDO INVERSE OF A MATRIX, PRAVIDED THAT THE SINGULAR VALUE DECOMPOSITION IS GIVEN, 34286
PSDINV CALCULATES THE PSEUDO INVERSE OF A MATRIX oy “EANS OF THE SINGULAR VALUE DECOMPOSITION, 34287
CHLINV2 COMPUTES THE INVERSE OF A SYMMETRIC PONSITIVE DEFINITE MATRIX WHICH {AS BEEN DECOMPOSED BY CHLDECZ2, 34400

CHL INV1 COMNPUTES THE INVERSE OF A SYMHMETRIC POS|TIVE DEFINITE MATRIX @h|Ch HAS BEEN DECOMPOSED RY CHLDEC1, JA4401%

, BY THE CHOLESKY METHOD, TKE INVERSE OF A SYMMETRIC POS|TIVE DEFINITE MATRIX, STORED IN A TWO«DIMENSIONAL APRAY, 34402
, BY THE CHOLESKY METHOD, ThE INVERSE OF A SYWHETRIC POS|TIVE DEFINITE MATRIX, STORED IN A ONE.DIMENSIONAL ARRAY, 34403
THE DIAGONAL ELEMENTS OF TrRE INVERSE OF M'm (11 COEFFICIENT MATRIX) OF A LINEAR (EAST SQUARES PROBLEM, 34432
THE DIAGONAL ELEMENTS OF THE INVERSE OF M'M (M COEFFICIENT MATR|X), 34435
INV COMPUTES THE INVERSE OF A MATRIX OF WHiCH THE TRIANGULARLY DECOMPOSED FORM IS5 GIVEN, 34053

TRIDIAGONAL MATRIX BY INVERSE ITERATICN, 34152
G MATRIX, BY MEANS OF INVERSE ITERATICN, 34161
RG MATRIX BY MEANS OF INVERSE I TERATICN, . 34191
ITISOL COMPUTES AN JTERATIVELY REFINED SOLUTION OF A SYSTEM OF LINEAR EQUATIONS, THE MATRIX OF WhICH 1S GIVEN IN 1T5 TR 34250

6GSSITISOL COMPUTES AN | TERATIVELY REFINED SOLUTION OF A SYSTEM OF LINEAR EQUATIONS, 34251
ITISOLER3 COMPHTES AN JTERATIVELY REFINED SOLUTION AND AN UPRER BOUND FCR TS ERROR, OF A SYSTEM CF LINEAR EQUATICNS, OF W 34253
GSS{T|SOLERB COMPUTES AN I TERATIVELY REFINED SQLMTION OF A SYBTEM OF LINEAR EQUATIONS, 34254

| TISOLERB COMPUTES AW ITERATIVELY REFINED SOLUTION AND AN UPPER BOUND FOR 1TS ERROR, OF A SYSTEM OF 34253

|TISOL COMPUTES AN ITERATIVELY REPINED SOLUTION OF A SYSTEM OF L INEAR EQUATIONS, THE MATRIX OF wHICH 34250

IXPFIX 1S AN AUXILIARY PROCEDURE FOR THE [NCOMPLETE BETA FUNCT|ON, 35054

IXQFIX 18 AN AUXILIARY PROCEDURE FOR THE INCOMPLETE BETA FUNCT|ONM, 35053

THE INCOMPLETE BETA FUNCTICN 1 (X, P+N,0),0<=X€e1,P>0,2>0, FOR NaO(L)NMAX, 35051
THE INCOMPLETE BETA FUNCTION 1 {X,P,Q+N),0<=X<¢=1,P>0,@>0, FOR NEN(1)NMAX, 35052
THE INCOMPLETE BETA FUNCTION 1({X,P,Q),0eaXc=1,P>0,6>0, 35050
E KUTTA METHOD WHICH USES THE JACOBIAN MATRIX AND AUTOMATIC STEP CONTROL; SU!ITABLE FOR INTEGRATION OF STIFF DIFFERENTIAL EQUATIONS 33420
I TABLE FOR THE INTEGRATION OF LARGE SYSTEMS ARISING FROM PARTIAL DIFFERENTIAL EQUATIONS, PROVIDED HIGHER ORDER DERIVAT|VES CAN BE 33040
OEFFICIENT MATRIX OF A LINEAR LLEAST SQUARES PROBLEM, 34434
EFFICIENT MATRIX) OF A LINEAR LEAST SQUARES PROBLEM, 34132
LSQS0L SOLVES A LINEAR LEAST SGUARES PROBLEM, PROVIDED THAT THE COEFF|CIENT MATRIX HAS BEEN DECOMPOSED BY LSQORTDEC, 34431
LSQORTDECSOL SOLVES A LINEAR LEAST SGUARES PROBLEM AND GOMPUTES THE DIAGONAL ELEMENTS OF THE |[NVERSE OF M'M (M COEFFICIENT MATRIX 34435
SOLSVDOVR CALCULATES THE LEAST SGUARES SOLUTIUN OF A OVERDETERMINED SYSTEM OF LINEAR EQUATIONS, PROVIDED THAT THE SINGULAR VA 34280
SOLOVR CALCULATES TFE LEAST SGUARES SOLUTION OF A OVERDETERM|NED SYSTEM OF LINEAR EQUATIONS BY MEANS OF SINGULAR VALUE DEC 34281
SOLSVDUND CALCULATES THE BEST LEAST SGUARES SOLUTION OF A UNDERDETERMINED SYSTEM OF [ INEAR EQUATIONS, PROVIDED THAT THE SINGULAR V 34282
SOLUND CALCULATES THE BEST LEAST SGUARES SCLUTION OF A UNDERDETERMINED SYSTEM OF LINEAR EQUATIONS BY MEANS OF SINGULAR VALUE DE 34283
NTIAL EQUATIONS USING THE ARC LENGTH AS INTEGRATION VARIABLE, 33018
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POS|TIVE DEFINITE,
SOLBND SOLVES A
TION AND SOLVES TRE
CHLSOLBND SOLVES A
TRIX AMND SOLVES THE
N THE SOLUTION OF A
SOL SOLVES

DECSOL SOLVES
SOLELM SOLVES
GSSSOL SOLVES
GSSSOLERB SOLVES
FINED SOLUTION OF
FINED SOLUTION OF
ITS ERROR,
FINED SOLUTION OF

FOR

laNalNeNal

POSITIVE
POSITIVE
POSITIVE
POSITIVE
OF A OVERDETERMINED
OF A OVERDETERMINED
F A UNDERDETERMINED
F A UNDERDETERMINED
OLVES A HOMOGENEOUS
OLVES A HOMOGENEOUS
SOLTRI
DECSOLTR!
SOLTRIPIV SOLVES
PARTIAL PIVOTING
SOLSYMTRI
CSOLSYMTRI
MMETRIC TRIDIAGONAL
N A ONE-DIMENSIONAL
N A TWO=DIMENSIONAL
F THE COEFFICIENT MATRIX OF
M (M COEFFICIENT MATRIX) OF
LSQSOL SOLVES
LSQORTDECSOL SOLVES

SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
A SYSTEM
A SYSTEM
A SYSTEM
A SYSTEM
A SYSTEM
A SYSTEM
A SYSTEM
A SYSTEM
A SYSTEM

OF

OF
OF
oF
oF
OF
CF
CF
CF
OF
CF
OoF
OoF
OF
OF
OF

CHLDECZ (

CHLDECY

DEFINITE
DEFINITE
PEFINITE
DEFINITE

SYSTERM
SYSTEM
SYSTEM
SYSTEM
SYSTeEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
A SYSTEM
A SYSTEM
A

A

SOLVES A
SOLVES

SYSTEM
SYSTEM
SYSTEM
MATR X
ARRAV,
ARRAY,

SOLVES
SOLVES A

(
OF
OF
oF
OF
CF
oF
OF
OF
CF
OF
OF
CF
OF
CF
CF
OF
BY
BY
BY

A

A
A
A

0G GAMMA COMPUTES THE NATURAL

ULATES,

S, WITH PARTIAL PIVQOTING,

WITHOUT PIVQTING,

THE
THE

LINEAR EQUATIONS BY THE METHOD OF CONJUGATE GRADIENTS,

LINEAR EQUATIONS WITH BAND MATRIX, WHICH |S DECOMPOSED BY DECBND,

LINEAR EQUATIONS,

LINEAR EQUATIONS WITH SYMMETRIC POSITIVE DEFINJTE BAND MATRIX, WHICH HAS BEEN DECOMPOSED BY CHLDECBN
LINEAR EQUATIONS BY THE CHOLESKY METHOD,

LINEAR EQUATIONS,

LIHEAR EQUATIONS, OF wHICH THE TRIANGULARLY DECOMPOSED FORM OF THE MATRIX IS GIVEN,

LINEAR EQUATIONS BY CROUT FACTOR|ZATION WITH PARTIAL PIVOTING,

LINEAR EQUATIONS, OF WHICH THE TRIANGULARLY DECOMPOSED FORM OF THE MATRIX IS GIVEN,

LINEAR EQUATIONS BY GAUSSIAN ELIMINATION WITH COMBINED PARTIAL AND COMPLETE PIVOTING,

LINEAR EQUATIONS AND COAPUTES AN UPPER BOUND FOR ITS ERROR,

LINEAR EQUATIONS, THE MATRIX OF WHICH (S GIVEN IN (TS TRIANGULARLY DECOMPOSED FORM,

LINEAR EQUATIONS,

LINEAR EQUATIONS, OF WHICH THE TRIANGULARLY DECOMPOSED FORM OF THE MATRIX 1S GIVEN,

LINEAR EQUATIONS,

LINEAR EQUATIONS ) COMPUTES THE CHOLESKY DECOMPOSITION OF A SYMMETRIC POSITIVE DEFINITE MATRiX, STOR
LINEAR EQGUATIONS ) COMPUTES THE CHOLESKY DECOMPOSITION OF A SYMMETRIC POS|TIVE DEF|NITE MATRIX, STOR
LINEAR EQUATIONS, THE MATRIX BE!NG DEGOMPOSED BY CHLDEC2,

LINEAR EQUATIONS, THE MATRIX BE!NG DECOMPOSED BY CHLDEC],

LINEAR EQUATIONS BY THE CHOLESKY METHOD, THE MATRIX BEING STORED IN A TWO-DIMENSIONAL ARRAY,

LINEAR EQUATIONS BY THE CHOLESKY METHOD, THE MATRIX BEING STORED IN A ONE-DIMENSIONAL ARRAY,

LINEAR EQUATIONS, PROVIDED THAT THE SINGULAR VALUE DECOMPOSITION OF THE COEFFICIENT MATRIX IS GIVEN,
LINEAR EQUATIONS BY MEANS OF SINGULAR VALUE DECOMPOSIT]ON,

LINEAR EQUATIONS, PROVIDED THAT THE EINGULAR VALUE DECOMPOSITION OF THE COEFFICIENT MATRIX IS GIVEN,
LINEAR EQUATIONS BY MEANS OF SINGULAR VALUE DECOMPOSITION,

LINEAR EGUATIONS, PROVINDED THAT THE §INGULAR VALUE DECOMPOSIT|ON OF THE COEFFICIENT MATRIX IS GIVEN,
LINEAR EQUATIONS BY MEANS OF SINGULAR VALUE DECOMPOSITION,

LINEAR EQUATIONS WITH TRIDIAGONAL COEFPFICIENT MATR|X, PROVIDED THAT THE LU DECOMPOSITION IS GIVEN,
LINEAR EQUATIONS WITH TRIDIAGONAL COEFFICIENT MATRIX,

LINEAR EQUATIONS WITH TR|D|AGONAL COEFFICIENT MATRIX, PROVIDED THAT THE LU DECOMPOS|TION AS CALCULAT
LINEAR EQUATIONS WITH TRIDIAGONAL COEPFICIENT MATRIX,

LINEAR EQUATIONS WITH SYMMETRIC TRIDIAGONAL COEFFICIENT MATRIX, PROVIDED THAT THME UI1DU DECOMPOSITION
LINEAR EQUATIONS WITH SYMMETRIC TRIDIAGONAL COEFFICIENT MATRIX,

LINEAR INTERPOLATION USING A STURM SEQUENCE,

LINEAR INTERPOLATION USiNG A STURM SEQUENCE,

LINEAR INTERPOLATION USING A STURM SEQUENCE,

LINEAR LEAST SOQUARES PRABLEM,

LIMEAR LEAST SQUARES PROBLEM,

LINEAR LEAST SQUARES PRNBLEM, PROVIDED THAT THE CCEFFICIENT MATRIX HAS BEEN DECOMPOSED BY LSQORTDEC,

LINEAR LEAST SOUARES PRNBLEM AND COMPUTES THE DIAGONAL ELEMENTS OF THE INVERSE OF M1l (M COEFFICIENT

LINEMIN IS AN AUXILIARY PROCEDURE FOR OPTIMIZATICN,

LINIGERY SOLVES INIT1AL VALUE PROBLEMS, GIVEN AS’AN AUTONOMOUS SY¥STEM OF FIRST ORDER DIFFERENTIAL EQ
LINIGER? SOLVES INITIAL VALUE PROBLEMS, GIVEN AS AN AUTONOMOUS SYSTEM OF FIRST ORDER DIFFERENTIAL E@
LNGMATMAT COMPUTES IN DOUBLE PRECISION THE SCALAR PRODUCT OF A ROYW VECTOR AND A COLUMN VECTOR,
LNGMATTAM COMPUTES IN DOUBLE PRECISION THE SCALAR PRODUCT OF TwO ROW VECTORS,

LNGMATVEC COMPUTES IN DOUBLE PRECISION THE SCALAR PRGDUCT OF A ROW VECTOR AND A VECTOR,

LNGSCAPRD] COMPUTES IN DOUBLE PRECISIQON THE SCALAR PRODUCT OF TWo VECTORS,

LNGSEQVEC COMPUTES IN DOUBLE PRECIS!ON THE SCALAR PRODUCT OF TwO VECTORS,

LNGSYMMATVEC COMPUTES IN DOUBLE PREGISION THE SCALAR PRODUCT OF A VECTOR AND A ROW IN A SYMMETRIC MA

TWO COLUMN VECTORS,
A COLUMN VECTOR AND A VECTOR,
TWO VECTORS,

LNGTAMMAT
LNGTAMVEC
LNGVECVEC
LOGARIThHM

COMPUTES IN DNUBLE PRECISION THE SCALAR PRODUCT OF
COMPUTES IN DOUBLE PRECISIQN THE SCALAR PRODUCT OF
COMPUTES IN DOUBLE PRECISION THE SCALAR PRODUCT OF
OF THE GAMMA PUNCTION FOR POSITIVE ARGUMENTS,

LOG GAMNA COMPUTES THE NATURAL LOGARITHM OF THE GAMMA FUNCTION FOR POSITIVE ARGUMENTS,

LSQDGL INV COMPUTES THE DIAGONAL ELEMENTS OF THE INVERSE OF MiM (M COEFF{CIENT MATRIX) OF A LINEAR LE
LSQORTDECSOL SOLVES A LINEAR LEASYT SQUARES PROBLENM AND COMPUTES THE DIAGONAL ELEMENTS OF THE [NVERSE
LSQORTDEC PERFORMS THE HOUSEHOLDER TRIANGULAR!ZATION OF THE COEFFICIENT MATRIX OF A LINEAR LEAST SQU
LLSOSOL SOLVES A L INEAR LEAST SQUARES PROBLEM, PROVIDED THAT THE COEFFICIENT MATRIX HAS BEEN DECOMPOS
LU DECOMPOSITION OF A TRID|AGONAL MATRIX,

LU DECOMPQSIT{ON OF A TR|D|AGONA, MATRIX,

34220
34071
34322
34332
34333
34241
34051
34301
34061
34232
34243
34250
34251
34253
34254
34310
34311
34390
34391
34392
34393
34280
34281
34282
34283
34284
34285
34424
34425
34427
34428
34421
34422
34451
34455
34453
34134
34132
34131
34435
34210
33130
33134
34413
34415
34411
34417
34416
34418
34414
34412
34410
35062
35062
34432
34135
34134
34131
34423
34426
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HSHHRMTRIVAL DEL!VERS THE

RS
ES

oF A
OF A

SYMMETRIC TRIDIAGONAL
SYMMETRIC TRIDIAGONAL
ES OF A SYMMETRIC TR{DIAGONAL
ES OF A SYMMETRIC TRIDIAGONAL
E INDICES AND MODULUS OF THAT
VEC COMPUTES THE TRANSFORMING

DUPMAT COPIES (PART OF) &
NIMAT INITIALIZES (PART OF) A
S A CODIAGOMAL OF A SYMHETRIC
TIALIZES A ROW OF A SYMMETRIC

VERS THE INDEX FOR
LUE OF THE MNEW ROW
LUS OF THAT MATRIX

AN ELEMENT
ELEMENT OF
ELEMENT CF

VERAL VARIABLES
VERAL VARIABLES
IS AN AUXILIARY PROCEDURE FCR
GE ALGOR(THM |S USED FOR THIS
RNK1MIN ( OPTIMIZATICN )
FLEMIN ( OPTIMIZATION )

BY A VAR|ABLE
BY A VAR|ABLE

DEX FOR AN ELEMENT MAXIMAL 1IN

COMABS COMPYTES THE
MAXMAT FINDS THE iNDICES AND
ISTEP METHODS: GEARS, ADAMS =

MuLcoL
coLcsT
coMcoLCsT
COMROWCST
MULROW
ROWCST
MULVEC
CoMMUL

|ONS, BY ONE OF THE FOLLOWING

LOG GAMMA COMPUTES THE

TES A POLYNOMIAL GIVEN IN THE
OLYNOMIAL REPRESENTATION FROM
MINES THE COEFFICIENTS OF THE
AS A SYSTEM OF FIRST ORDER ¢
REASCL

ScLeeM

FUNCTIONS ARE RELATED TO THE
EUCNRM COMPUTES THE EUCLIDEAN
SMAXVEC COMPUTES THE INFINITY
ONENRMINV COMPUTES THE 1w
COMMUL, MULTIPLIES TWO COMPLEX

MAIN DIAGONAL ELEMENTS AND SQUARES OF THE CODIAGONAL ELEMENTS OF A HERMITIAN TRIDIAGONAL MATRIX WHIC

MATMAT COMPUTES THE SCALAR PRODUCT OP A ROV VECTOR AND COLUMN VECTOR,
MATRIX BY INVERSE ITERAT|ON,

NATRIX BY LINEAR INTERPOLATION USING A STURM SEQUENCE,

MATRIX BY @R~]TERATION,

MATRIX BY QR=-ITERATION,

MATRIX ELEMENT OF MAX|MUM ABSOLUTE VALUE,

HATRIX
MATRIX
MATRIX
MATRIX
MATRIX
MATTAM
MATVEC
MAXELMRCW ADDS A SCALAR TIMES A ROW VECTOR TO A RCW VECTOR,
MAX IMAL IN MODULUS,

MAX1MUM ABSOLUTE VALUE,

MAX1MUM ABSOLUTE VALUE,

MAXMAT FINDS THE INDICES AND MODULUS OF THAT MATRiX ELEMENT OF MAX|MUM ABSOLUTE VALUE,

METRIC METHOD,

METRIC METHOD,

MINIMAX APPROXIMATION,

MINIMAX POLYNOMIAL APPROXIMATION,

1"INIMIZES A GIVEN DIFFERENTIABLE FUNCTION OF SEVERAL VARIABLES BY A VARIABLE METRIC METHOD,
MINIMIZES A GIVEN DIFFERENT|ABLE FUNETION OF SEVERAL VARI|ABLES By A VARIABLE METR{C METHCOD,
MINMAXPCL DETERM{NES THE COEFFICIENTBE OF THE POLYNOMIAL (IN GRUNERT FORM) THAT APPROXIMATES A FUNCT!
MODIFIED RUNGE KUTTA SOLVES AN INITIAL ( BOUNDARY ) VALUE PROBLEM, GIVEN AS A SYSTEM OF FIRST CRDER
MODIFIED TAYLOR SOLVES AN [NITIAL { BOUNDARY ) VALUE PROBLEM, GIVEN AS A SYSTEM OF FIRST ORDER DIFFE
nopuLus,

MODULUS OF A COMPLEX NUMBER,

MEDULUS OF THAT MATRIX ELEMENT OF MAX|MUM ABSOLUTE VALUE,

MOULTON, OR ADAMS = BASHFORTH METHOD| W!TH AUTOMAT|C STEP AND CRDER CONTROL AND SUITABLE FOR TrE
MULCOL MULTIPLIES A COLUMN VECTOR BY A SCALAR,

MULROW MULTIPLIES A ROW VECTOR BY A SCALAR STORING THE RESULT
MULTIPLIES A COLUMN VECTOR By A 8CALAR,

IN COMBINATION WITH PROCEDYRE TFMSYMTRI2,

TO (AN OTHER) MATRIX,

WiTH A CONSTANT,

WITH A CONSTANT,

WiTH A CONSTANT,

COMPUTES THE SCALAR PRODUCT OF TWO ROW VECTORS,
COMPUTES THE BCALAR PRODUCY OF A ROW VECTOR AND VECTCR,

AND RETURNS THE SUBSCRIPT VALUE OF TKWE N

INT

|N ANOTHER VECTOR,

MYLTIPLIES COLUMN VECTOR BY A SCALAR,

MULTIPLIES A COMPLEX COLUMN VECTOR BY A COMPLEX NUMBER,

MULTIPLIES A COMPLEX ROw VECTOR BY A COMPLEX NUMBER,

MULTIPLIES A ROW VECTOR BY A SCALAR STORING THE RESULT IN ANOTHWER VECTOR,
MULTIPLIES A ROW VECTOR BY A SCALAR &TORING THE RESULT IN ANOTHER ROWVECTOR,
MULTIPLIES A VECTOR 8BY A SCALAR,

MULTIPLIES TWO COMPLEX NUMBERS, !

MULTISTEP METMODS: GEARS, ADAMS « MOV TON, OR ADANMS = BASHFORTH METHOD}] WiTH AUTOMAT!C STEP AND ORDE
MULTISTEP SOLVES AN INITIAl VALUPE PROBLEM, GIVEN AS A SYSTEM OF FIRST ORDER DIFFERENTIAL EGUATIONS,
MULVEC MULT!IPLIES A VECTOR BY A 8CALAR,

NATURAL LOGARITHM OF THE GAMMA FUNCTION FOR POSITIVE ARGUMENTS,

NEWGRN TRANSFORMS A POLYNOM|AL REPRESENTAT!ON FROM NEWTON FORM INTO GRUNERT FORM,

NEWPOL EVALWATES A POLYNOMIAL GIVEN |N THE NEWTON FORM BY THE HORNER SCHEME,

NEWTON DETERMINES THE COEFPICIENTS OF THE NEWTON INTERPOLATION POLYNOMIAL FOR GIVEN ARGUMENTS AND FU
NEWTON FORM BY THE HORNER SCHEME,

NEWTON FORM INTO GRUNERT FORM,

NEWTON INTERPOLATION POLYNOMiAL FOR GIVEN ARGUMENTS AND FUNCTION VALUES,

NON~L INEAR ) DIFFERENTIAL EQUATIONS, AY A STAB|LIZED RUNGE KUTTA METHOB WITH LIMITED STORAGE REQUIRE
NORMAL [ ZES THE COLUMNS OF A TwO=DBIMENS|ONAL ARRAY,

NORMAL [ ZES THE COLUMNS OF A COMPLEX MATRIX,

NORMAL CR GAUSSIAN RROBABILITY FUNECTION,

NORM OF A COMPLEX MATRIX,

NORM OF A VECTOR AND DEL |VERS THE
NORM QF THE INVERSE OF A MATRIX,
NUMBERS,

INBEX FOR AN ELEMENT MAXiMAL IN MODULUS,
WHICH 1S TRIANGULARLY DECOMPOSED,

34364
34013
34152
34151
34165
34161
34230
34142
34035
31011
31013
31014
34015
34011
34025
31060
34025
34230
34230
34214
34215
36020
36022
34214
34215
36022
33060
33040
34060
34340
34230
33080
31022
31021
31022
31431
34352
34353
31021
31482
31020
34341
33080
33080
31020
35062
31050
31044
36010
31044
31050
36010
33060
34483
34360
35020
34359
31060
34240
34344

OMOPAOOAMONONOONNNDNNUDDUUDMATUUDNODOONNNUUNMUDOO0O0OUDUDDO0O0UUUDO0O00D0O0O0OU06



8 THE QUOTIENT OF TVWO COMPLEX
UTES THE MODULUS OF A COMPLEX
THE SQUARE ROOT OF A COMPLEX
CARPOL TRANSFORMS A COMPLEX
MENTS iIN THE RANGE ([1/2,3/2)}

PROCEDURE
PROCEDURE
PROCEDURE FOR
PROCEDURE FOR
RNKIMIN (
FLEMIN (
THOD; WiTH AUTOMATIC STEP AND
RK1 SOLVES A SINGLE FIRST
RK1IN SOLVES A SYSTEM OF FIRST
RK2 SOLVES A SECOND

K2N SOLVES A SYSTEM OF SECOND
RK3 SOLVES A SECOND

K3IN BOLVES A SYSTEM OF SECOND
K5NA SOLVES A SYSTEM OF FIRST
M, GIVEN AS A SYSTEM OF FIRST
M, GIVEN A5 A SYSTEM OF FIRST
AN AUTONOMOUS SYSTEM OF F(RST
AN AUTONOMOUS SYSTEM QF FIRST
AN AUTONOMOUS SYSTEM OF FIRST
AN AUTONDMOUS SYSTEM OF FIRST
RENTIAL EQUATION USING A SaThH
M, GIVEN AS A SYSTEM OF FiRST
E LEAST SQUARES SOLUTION OF A
E LEAST SQUARES SOLUTION OF A
TAN ELIMINATION W|TH COMBINED
AN ELIMINATION W|TH COMBINED
OF LARGE SYSTEMS AR{SING FRCM
X BY CROUT FACTORIZATION W|TH
S BY CROUT FACTORIZATION WITH
DECTRIPIY CALCULATES, ¥IiTH
DECSOLTRIPIV SOLVES W TH
RANGE [(1/2,3/21i ODD AND EVEN
IPIV CALCULATES, ¥iTH PARTIAL
UT FACTORIZATION WITH PART AL
COMBINED PARTIAL AND COMPLETE
UT FACTORIZATION WITH PARTIAL
COMBINED PARTIAL AND COMPLETE
SOLTRIPIV SOLVES wWiTH PARTIAL
IN CARTESIAN COORDIMATES INTO
{THM 1S USED FOR THIS MINIMAX
8 OF THE NEWTON INTERPOLATICON
POL EVALUATES A

NEWPOL EVALUATES A

NEWGRN TRANSFORMS A

MINES THE COEFFICIENTS OF THE

AN
AN
AN
AN

AUX L 1ARY
AUX1ILIARY
AUXIL1ARY
AUXILIARY

FOR
FOR

J GRAD SOLVES A SYMIIETRIC AND
DECOMPOSITION OF A SYMMETRIC
HE DETERYINANT OF A SYMMETR!C
NEAR EQUATICONS WITH SYMHETRIC
DECOMPOSITION OF A SYMMETR!C
DECOMPOSITION OF A SYMMETR!C
DECOMPOSITION OF A SYMMETRIC
HE DETERMINANT OF A SYMMETRIC

NUMBERS,

NUMBER,

NUMBER,

NUMBER GIVEN N CARTESIAN COORDINATES
OpB AND EVEN PARTS ARE ALSO DELIVERED,
ONENRMINV COMPUTES THE (.NORM OF THE INVERSE QF A MATRIX,
OPTIMIZATION,

OPTIMIZATION,

OPTIMIZATION,

CPTIMIZATION,

OPTIMIZATION ) MINIMIZES A GIVEN DIFFERENT|ABLE PUNCTION OF SEVERAL VARIABLES BY A VARIABLE METRIC P
OPTIMIZATION ) MINIMIZES A GIVEN DIFFERENT |ABLE FUNCTION OF SEVERAL VARIABLES BY A VARIABLE METRIC M
ORDER CONTROL AND SUITABLE FOR THE (NTEGRATION OF STIFF DIFFERENTI AL EGUATIONS,

INTO POLAR COORDINATES,

WHICH |8 TRIANGULARLY DECOMPOSED,

ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER

DIFFERENT AL
DIFFERENT | AL
DIFFERENT L AL
DIFFERENT AL
DIFFERENT I AL
DIFFERENT I AL
CIFFERENT ! AL

EQUAT|ON USING & Bo,TH ORDER RUNGE KUTTA METHOD,

EQUATIONS UBING A 5«TH ORDER AUNGE KUTTA METHOD,

EQUAT|ON USING A B8eTH ORDER RUNGE KUTTA METHOD,

EQUAT|ONS UBING A 5.TH ORDER RUNGE KUTTA METHOD,

EQUATION USING A S.TH ORDER RUNGE KUTTA METHOD; NO DERIVATIVES ALLOWED CN RIGKRT K
EQUATIONS USING A 8.TH ORDER RUMGE KUTTA METHOD); NO DER|VATIVES ALLOWED CN R1GHT
EQUAT|IONS USING TWHE ARC LENGTHM AS INTEGRATION VARIABLE,

ORDER
ORDER
CRDER
ORDER
ORDER
ORDER
ORDER

DIFFERENT I AL
DIFFERENT AL
DIFFERENT 1AL
DIFFERENT AL

EQUATIONS, BY A ONELSTEP TAVLOR METHOD); THI8 METHOD 18 PARTICULARLY SUITABLE FOR
EQUAT | ONS, ONE QOF THE FOLLOWING MULTISTEP METHODS; GEARS, ADAMS . MOULTON, OR
EQUAT|ONS, AN EXPONENTIALLY FITTED, EXPL{CIT RUNGE KUTTA METHOD WH|CH USES THE
EQUATIONS, AN EXPONENTIALLY FITTED, SEM| o (MPLICIT RUNGE KUTTA METhCD; SUITAB
DIFFERENT AL EQUATIONS, AN IMPLICIT, EXPONENTIALLY FITTED, FIRST ORDER ONE-STEP METHOL WiTH
DIFFERENT!AL EGUATIONS, AN IMPLICIT, EXPONENTIALLY FITTED, SECOND ORDER ONELSTEP METHCD WIT
RUNGE KyTTA METHOD,

ORDER ( NON=~L INEAR ) DIFFERENT|A|, EQUATIONS, By A STABILIZED RUNGE KUTTA METHOD WITH LIMITEC STORAGE
OVERDETERMINED SYSTEM OF LINEAR EQUATIONS, PROVIDED TWAT THE 8 (NGULAR VALUE DECOMPOSITION OF ThHE COE
OVERDETERMINED SYSTEM OF L {INEAR EQUATIONS BY MEANS OF SINGULAR VALUE DECOMPCSI(T{ON,

PART AL AND COMPLETE PIVOTING,
PART (AL AND COMPLETE PIVOTING,
PART (AL DIFFERENT ! AL EQUAT|ONS,
PARTIAL PIVOTING,

PARTIAL PIVOTING,

PARTIAL PIVOTING, THE LU DECOMPOSITION OF A TRIDIAGONAL MATRIX,

PARTIAL PIVOTING A SYSTEM OF LINEAR EQUATIONS wiTh TRIDIAGONAL COEFFICIENT MATRIX,
PARTS ARE &LSO DELIVERED,

PIVCTING, THE LU DECOMPOSITION OF A TRIDIAGONAL MATRIX,

PIVOTING,
PIVOTING,
PIVCTING,
PIVOTING,
PiYOTING A SYSTEM OF { INEAR EQUATIONS %I!TH TRIDIAGONAL COEFFICIENT MATRIX,

POLAR CCORDINATES,

POLYMNOMIAL APPRCXIMATION,

POLYHKOMIAL FOR GIVEN ARGUMENTS AND FUNCTION VALUES,

POLYNOMIAL GIVEN IN THE GRUNERT PORM BY THE HORMER SCHEME,

POLYNOMIAL GIVEN 1N THE NEWTON FORM BY THE HORNER SCHWEME,

POLYNOMIAL REPRESENTATION FROM NEWTON FORM INTO GRUNERT FORM,

POLYNOMIAL (IN GRUNERT FORM) THAT APPROXIMATES A FUNCT|ON GIVEN FOR DISBCRETE ARGUMENTS;
POL EVALUATES A POLYNOMIAL GIVEN |N THE GRUNERT FCRM BY THE HORNER SCHEME,

POSITIVE DEFINITE, SYSTEM OF LINEAR EQUAT!ONS BY THE METHOD OF CONJUGATE GRADIENTS,
POSITIVE DEFINITE MATRIX BY THE CHOLESKY METHOD,

POSITIVE DEFINITE MATRIX, WHICH WAS BREEN DECOMPOSED BY CHLDECEBND,

POSITIVE DEFINITE BAND MATRIX, WHICH WAS BEEN DECCOMPOSED BY CHLDECEND,

POSITIVE DEFINITE BAWD MATRIY AND SOLVES THE SYSTEM OF LINEAR EQUATIONB BY THE CHOLESKY METHOD,
PCSITIVE DEFINITE MATRIX, STORED IN A TWOD!IMENSICNAL ARRAY,

POSITIVE DEFINITE MATRIX, STORED COLUMNWISE (M A ONEaDIMENSIONAL ARRAY,

POS!TIVE DEFINITE MATRIX, WHICH HAS BEEM DECOMPOSED BY CHLDEC?,

PROVIDED HIGHER QRDER DERIVAT(VES CAN BE EASILY OBTAINED,

THE SECOND R

34342
34340
34343
34344
35060
34240
34210
34211
34212
34213
34214
34215
33080
13010
33011
33012
23013
33014
23015
33018
33040
33080
33120
33160
33130
33131
33010
33060
34280
34281
34231
34232
330640
34300
34301
34426
34428
35060
34426
34300
34231
34301
34232
34428
34344
36022
36010
31040
31041
31050
36022
31040
34220
34330
34331
34332
34333
34310
34311
34312
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HE DETERMINANT OF A SYMMETRIC
CHLE0L2 SOLVES A SYMMETRIC
CHLSOLY SOLVES A SYMMETR:IC

CHLDECSOL2 SOLVES A SYMMETR:!C

CHLDECSOLY SULVES A SYMMETR:!C

ES THE INVERSE OF A SYMMETRIC

ES THE INVERSE OF A SYMMETRIC

D, THE INVERSE OF A SYMMETR:!C

D, THE INVERSE OF A SYMMETR:IC

M OF A CONVERGENT SERIES Wi TH

PETTFMMAT CALCULAT
HEH
PRETFMMAT CALCULAT

TED TO THE NORMAL OR GA

EFERK SOLVES 1miIT1AL

EFSIRK SOLVES INIT:iAL
LINIGERY SOLVES 1h1TIAL
LINIGER2 SOLVES INITIAL
AN (NITial ( BOUN[LARY )
AN (MITraL ( BOUNDARY )
{8STEP SOLVES AN iNI1TiAL

TAMVEC COMPUTES

N DOUBLE PRECISIOK
MATVEC CCHPUTES
MATMAT COMPUTES

N DOUBLE PRECISION
N DOUBLE PRECISION
SYMMATVEC CONPUTES
N DOUBLE PRECISIOK
VECVEC CONPUTES
TAMMAT CONPUTES
MATTAM COMPUTES
SEQVEC COMPUTES
BCAPRDL COWPUTES
DOUBLE PREC!SION
DOUBLE PRECISION
DOUBLE PRECISiICN
DOUBLE PRECIS!ON
DOUBLE PRECISION

THE
THE
THE
THE
THE
THE
THF
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE

zrzZZTZ

Es THE
COMPRD
£ES THE

USS AN
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR
SCALAR
SCALAR

SCALAR
SCALAR

SCALAR

SCALAR

SCALAR

SCALAR
SCALAR
SCALAR

PSDINVEVD CALCULATES THE
PED MY CALCULATES THE

MMETRiC TRID!IAGONAL
MMETRIC TRID!AGONAL

N A ONE-DIMENS|ONAL ARRAV,

MATR X BvY
MATRIX BY

By

WHICH WAS BEEN DECOMPOSED BY CHLDECY,

OF LINEAR EQUATIONS, THE MATRIX BEING DECCMPOSBED ARY CHLDECZ,
OF LINEAR EQUATIONS, THE MaATRiIX BEING DECOMPOSED AY C(HLDECY,
OF LINEAR EGUATIONS By TweE CHOLESKY METHOD, THE MATRIX BEING
OF LINEAR EQUATIONS Bv THE CWOLESKY METHOD, TWE MATRIX BEING
WHiCH HAS BEEN DECOMPOSED BY CHLDEC?,
WHiICH HAS BEEN DECOMPOSED BY ChLDECY,
MATRIX, STORED IN A TWO=D!MENSICNAL ARRAY,

POSITIVE DEFINITE MATRIX, S8TORED (N A ONEsDIMENSICNAL ARRAVY,

POSITIVE TERMS, USING THE VAN WIJNGAARDEN TRANSFORMATION,

POSTHMULTIPLYING MATRIX USED BY HEWHREAR!D TO TRANSPORY A MATR:iX (%70 BiDIAGONAL FORM,
PREMULTIPLIES A COMPLEX MATRIX WiTM A COMPLEX HOUSEMOLDER MATR X,
PREMULTIPLYING MATRIX USED BY HSWREABID TO TRANSFORM A MATRIX (NTO B!DiAGONAL FORM,
PRETFMMAT CALCULATES THE PREMULTIPLYING MATRIX USED BY HSHREABID TC TRANSFORM A MATRIX
PROBABILITY FUNCTION,
PROBLEMS, GIVEN a8 AN
PROBLENS, GIVEN AS AN
PROBLEMS, GIVEN AS AN
PROBLEMS, GIVEN AS AN
PROBLEM, G!VEN A5 A SYSTEM
PROBLEM, GIVEN AS A SYSTEM
PROBLEM, GIVEN AS A SVYSTEM
PRODUCT OF A COLUMN VECTOR AND VECTOR,

PRNODUCT COLUMN VECTCR AND A VECTOR,

PRODUCT ROW VECTOR AND VECTOR,

PRODUCT ROW VECTOR AND COLUMN VECTOR,

PRODUCT ROwW VECTOR AND A VECTOR,

PRCODUCT ROwW VECTOR AND A COLUMN VECTOR,

PRODUCT VECTOR aND A ROW OF A SYMMETR:C  MATR|X,

PRODUCT OF A VECTOR aND A ROW !N A SVYMMETR,C MATRIx,

PROCUCT TWO VECTORS,

PRODUCT TWQo COLUMN VECTORS,

PRODUCT TWC ROW VECTOPS,

PRODUCT TWwo VECTORS,

PROCUCT Two VECTORS,

PRODUCT TWO VECTOKS,

PRODUCT TWo COLUMN VECTORS,

PRCOUCT TW0O RQw VECTNRS,

PRODUCT TWC VECTORS,

PRODUCT Two VECTORS,

PSP INVSVD CALCULATES THE PSEUDD NVERSE OF A MaATRix, PROVIDED THAT THE S:!NGULAR YALUE DECCMBOS1T 0N
PSP INY CALCYLATES THE PSEYDO 'NVERSE QF A MATRIX /By MEANS OF THE S nNGULAR VALUFE CECCHMBOSITIiCON,
PSELDO !NVERSE CF A MATRIX, PROVIDED TWAT THE g NGULAR VALUE LDECOMPOS TiOn 1§ GIVEN,

PSEURG INVERSE CF A MATRIX By MEANS OF THE S I NGUWAR VALUE DECOMPOS:YTioh,

PETTFMMAT CALCULATES THE POSTMULT IPLYiING MATRiX USED BY HSHREABID 70 TRANSFORM A MATR I X (NTC B:D1AGO
GADRAT ( QUADRATURE ) COMPUTES THE DEFINITE (NTEGRAL OF A FUNCTIGN OF ONE VARIABLE OVER & FiniTE iNT
GRICOM COMPUTES ALL EIGENVECTORS AND EIGENVALUES CF A& COMPLEX UPPER NESSENRERS ®ATRIX wiTw A REAL 8L
QRIHRM COMPUTES ALL E!GENVECTORS AND EBIGENVALUES CF A NERM:TIAN MATRIX,

QR ISNGYALBID CALCULATES THE SINGULAR VALUES OF A& REAL 3:D!AGONAL MATRIX Bv MEANS OF (#PLICITY GR.:TER
QR ISNHNGVALDECB D CALCULATES THE SINGULAR VALUE DECCHMPOSiTiON OF A REAL MATRiX CF ¥miCH A BiDIiAGONAL D
GRISNGVALDEC CALCULATES THE SiNGULAR VALUE DECOMPOS!TIiON OF A REAL MATR (X BY MEANS OF AN [¥B_iC|T GR
GRISHGVAL CALCULATES THE SINGULAR VALUES COF A REAL MATRIX BY MEANS OF AN (MPLICIT QR TERATION,
GRISYMTR COMPUTES ALL EIGENVECTORS AND E(GENVALUES OF A SYMMETRIC TRIDIAGONAL ¥ATRIX BY @Rei1TERATIO
QR!8SVM COMPUTES ALL EIGENVALUES AND EIGENVECTORS CF 4 SYMMETR:IC MATRIX BY QR-ITERATION,

GR!VALHR® COMPUTES ALL EIGENVALUES OF A HERM(T AN MATRIX,
GRIVALSYHL COMPUTES all EIGENVALUES OF A SVYMHMETRIC MATR:iX,
ORIVALSYMD COMPUTES Al EiGENVALUES OF A SVMMETRIC MATRIX,
OR= i TERATION,

OR-!TERATION,

AR~ 1 TERATION,

POSITIVE
POSITIVE
POSITIVE
PGS TIVE
POStTIVE
PCSITIVE
POSITIVE
POS I TIVE

DEFINITE
DEFINITE
DEFINITE
DEFINITE
DEFINITE
DEFINITE
DEFINITE
DEFINITE

MATRIX,
SYSTEM
SYSTE™
SYSTEH
SYSTE™
MATRIX
HMATR X

STCRED
STCREC

Ih A Tw
‘N A CN

INTC BIDIAGON

oF
OF

BY AN EXPONENTIALLY F
BY AN EXPCNENTIALLY F
ODIFFERENT 1AL, EQUATIONS, BY AN iMPLICIT, EXPON
DIFFERENT (AL, EQUATIONS, BY AN IMPLICIT, EXPCN
OF FIRST ORDER DIFFERENT AL EQUAT ONS, BY A ONELSTEP TAVLOR METWCDj) THIS

OF FiR8YT QRBDER ( NONalk INEAR ) DIFFERENTIAL EQUATIONS, BvY A STAB:iLIZED RUN
OF FIRST ORDER DIFFERENTIAL EQUATIONS, BY OMNE OF ThE FOLLOWING MU_TISTEP

ATONOMOUS
AUTONOMOUS
AUTONOMOUS SYSTEM OF FiRST ORDER
AUTONOMOUS SYSTEM OF FIRST ORDER

EVSTEM
SYSTEM™

FiRST
FiRET

CRDER
CRDER

DIiFFERENT { AL
DIFFERENT 1 AL

EQUAT I ONS,
EQUAT iONS,

A
A
oF A
A
A
A

STORED
STORED

BY QRg
BY QRp

IN A4 ONELDIMENS i ONAL ARRAY,
N A TWOLDIMENSIONAL ARRAY,

24313
34360
14391
34392
14393
34400
34401
34402
34403
32020
342061
34356
34262
34262
35020
33120
33160
33130
33131
33040
33060
33040
34012
34412
34011
34013
34413
34413
34018
34418
34010
34014
340158
34016
34017
14410
34414
34415
24418
34417
34286
24287
34286
34287
14261
32078
34373
24371
34270
34273
34273
34272
34561
34463
34370
34464
34362
34465
24561
34164

MOUM MO MOV ITIIMdNEMIIIIIIIITIVOOUOUWICIIVURIOAAMDOAAOI IMIM™M™ ™Y A WM™

-

~
PELEDOCCOCTE DL D AN



N A TWO~DIMENS|ONAL
TORS OF A SYMMETRIC
ARE REAL, BY MEANS
ARE REAL, BY MEANS
ERG MATRIX BY MEANS
L MATRIX BY fMEANS OF
IVEN, BY MEANS OF AN
ATR{X BY MEANS OF AN IMPLICIT
ATR|X BY MEANS OF AN IMPLICIT
OMKWD COMPUTES THE ROOTS CF A

QADRAT ¢

INTEGRAL ¢

COMDIV COMPUTES THE

ATES THE SINGULAR VALUES OF A
ATES THE SINGULAR VALUES OF
TFMREAHES TRANSFORMS
HSHREABID TRANSFORMS

ULAR VALUE DECOMPQSITION OF
TFMSYMTRI2 TRANSFCRMS
TFMSYMTR{]1 TRANSFORMS

ARRAY, BY
MATRIX BY
OF SINGLE
OF S|INGLE
OF DOVBLE

IMPLICIT

IMPLICIT

>PPrrrr

RECIP GAMMA COMPUTES THE

TiSoL COMPUTES AN |TERAT|VELY
TiSoL COMPUTES AN ITERATIVELY
OLERB COMPUTES AN ITERATIVELY
OLERB COMPUTES AN ITERATIVELY

SNDREMEZ (SECOND
| SCRETE ARGUMENTS; THE SECOND
EWGRN TRANSFORMS A POLYNO[MIAL

COHKWD COMPUTES THE

COMSQRT COMPUTES THE SQUARE
ROTCOMCOL PERFORMS A
ROTCOMROW PRERFORMS A

ROTCQL PERFORMS AN ELEMENTARY
ROTROW PERFORMS AN ELEMENTARY

INISYMROW INITIALIZES A

LAR PRODUCT OF A VECTOR AND A
TES THE SCALAR PRGDUCT OF Two
INTERCHANGES ELENENTS OF TwoO
ARY ROTATION OPERATION ON TWO

QRw~ I TERATION,

QR= I TERATION,

QR= I TERAT!ON,

QR= I TERATION,

QR~ I TERAT|ON,

QR~ITERAT|ON,

QR= I TERATION,

QR=ITERATION,

QR~ | TERATION,

QUADRATIC EQUATION WITH COMPLEX COEPF|CIENTS,

QUADRATURE ) COFRUTES THE DEFINITE INTEGRAL OF A FUNCTION OF ONE VARIABLE OVER A FINITE
QUADRATURE ) COMPUTES THE DEFINITE INTEGRAL OF A FUNCTION OF OME VARIABLE OVER A FINITE OR
QUOTIENT OF TWO COMPLEX NUMBERS,

INTERVAL,
INFINITE

REAL BIDIAGONAL MATRIX BY MEANS OF IMPLICIT QRa!TERATION,

REAL MATRIX By MEANS OF AN IMPL(€IT QR=ITERATION,

REAL MATRIX INTO A SIMILAR UPPER HESEENBERG MATRIX BY THE WILK|NSON TRANSFORMATION,

REAL MATRIX INTO BIDIAGONAL FORM BY MEANS OF HOUSEHOLDER TRANSFORMATIOM,

REAL MATRIX OF WHICH A 3(D|AGONAL DECOMPOSITION IS5 GIVEN, BY MEANS OF AN IMPLICIT QR«ITERATION,
REAL SYMMETRIC MATRIX INTO A SIMILAR TRIDIAGONAL ONE BY HOUSEHOLDERS TRANSFORMATION,

REAL SYMMETRIC MATRIX INTO A SIMILAR TRIDIAGONAL ONE BY HOUSEHOLDERS TRANSFORMATION,

REAGR! CALCULATES THE EIGENVALUES AND E!GENVECTORS OF A REAL UPPER HESSENBERG MATRIX, PROVIDED THAT

REASCL NORMAL [ZES THE CO[UMNS OF A TwQuDIMENSIONAL ARRAY,

REAVALQR! CALCULATES THE E{GENVALUES OF A REAL UPPER HMESSENBERG MATRIX, PROVIDED THAT ALL EIGENVALUE
REAVECHES CALCULATES THE E|GENVECTOR CORRESPONDI!NG TO A GIVEN REAL EIGENVALUE OF A REAL UPPER HESSEN
RECIPROCAL OF THKE GAMMA FUNCTION FOR ARGUMENTS |N THE RANGE (1,2,3/2); ODD AND EVEN PARTS ARE ALSO D
RECIP GAMMA COMPUTES THE RECIPROCAL OF THE GAMMA FUNCT|ON FOCR ARGUMENTS IN THE RANGE (1/2,3/2]) ©PD
REF INED SOLUTION OF A SvySTEM OF | INEAR EQUATIONS, THE MATRIX OF wHICH IS GIVEN IN ITS TRIANGULARLY D
REFINED SOLUTION OF a SYSTEM OF | INEAR EQUATIONS,
REFINED SOLUTION AMD AN UPPER BOUND FOR 1TS ERROR,
REFINED SOLUTION OF a SYSTEM OF | INEAR EQUATIONS,
REMEZ ALGORITHM) EXCHANGES NUMBERS W|™H NUMBERS OUT OF A REFERENCE SET,

REMEZ EXCHANGE ALGORITHM 18§ USED FOR THIS MINIMAX POLYNOMIAL APPROXIMATION,

REPRESENTATION FROM HEWTON FORM INTO GRUNERT FORM,

RKIN SOLVES A SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS USING A 5=TH ORDER RUNGE KUTTA METHCD,
AK1 SOLVES A SINGLE FIRST ORDER DIFFERENTIAL EQUATION USING A 5eTH ORDER RUNGE KUTTA METHOD,

RK2ZN SOLVES A SYSTEM OF SECOND ORDER DIFFERENTIAL EQUATIONS US{NG A 5.TH ORDER RUNGE KUTTA NMETFOD,
RK? SOLVES A SECOND ORDER DIFFERENTIAL EQUATION USING A 5=Th ORDER RUNGE KUTTA METHOD,

RK3IN SOLVES A SySTEM OF SECOMD ORDER D!FFERENTIAL EQUATIONS US|NG A 5-TH ORDER RUNGE KUTTA NMETHOD) N
RK3 SOLVES A SECOND ORDER DIFFERENTIAL EQUATION USING A 5=TH ORDER RUNGE KUTTA METHOD; NO DERIVATIVE
RK4A SOLVES A SINGLE DIFFERENTIAL EQUATION By SOMETIMES USING A DEPENDENT VARIABLE AS INTEGRATION VA
RKANA SCLVES A SYSTEM OF D|FFERENTIAL EQUATIONS By SOMETIMES USING THE DEPENDENT VARIABLE AS INTEGRA
RKSNA SCLVES A SYSTEM OF FIRST ORDER DI!FFERENT|AlL EQUATIONS USING THE ARC LENGTH AS INTEGRATION VARI
RNK1MIN ( ORTIMIZATION ) MINIMIZES A GIVEN DIFFERENTIARLE FUNCTION OF BEVERAL VAR|ABLES By A VARIABL
RNK1UPD 1§ AN AUXIL!ARY PROCEDURE FOR QPTIMIZATION,

ROOTS OF A QUADRATIC EQUATION WITH COMPLEX COEFFICIENTS,

RONT OF A COMPLEX NUMBER,

ROTATION ON TWO COMPLEX COLUMN VECTORS,

ROTATION ON TWO COMPLEX ROV VECTORS,

ROTATION QPERATION ON TWwO COLUMN VECTORS,

ROTATINN OPERATION ON TWO ROW VECTORS,

ROTCOL PERFORMS AN ELEMENTARY ROTATION OPERATION ON TWO COLUMN VECTORS,

ROTCOMCCL PERFORMS A ROTATION ON TWO COMPLEX COLUMN VECTORS,

RCTCOMRCW PERFORMS A ROTAT|ON ON TWO COMPLEX ROW VECTORS,

ROTRNW PERFORMS AN ELEMENTARY ROTATION OPERATION ON TWO ROW VECTORS,

ROWCST MULTIPLIES A ROW VECTOR BY A SCALAR STORING ThHE RESULT |N ANOTHER ROWVECTOR,

OF A SYSTEM OF LINEAR EQUATIONS, OF WHICH TFE TRI

ROY OF A SYMMETRIC MATRIX WITH A CONSTANT,
ROW OF A SYMMETRIC MATRIX,

ROW VECTORS,

ROW VECTORS,

ROW VECTORS,

34162
34463
34480
34186
34190
34270
34271
34272
34273
34345
32070
32051
34342
34270
34272
34170
34260
34271
34140
34143
34186
34183
34180
34161
35060
35060
34250
34251
34253
34254
36021
36022
31050
33011
33010
33013
33012
33015
33014
33016
33017
33018
34214
34211
34345
34343
34357
34358
34040
34041
34040
34357
34358
34041
31132
31014
34018
34015
34032
34041
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PUTES THE SCALAR PRODUCT OF A ROYW VECTOR AND VECTOR,
PUTES THE SCALAR PRQDUCT QF A RO¥ VECTOR AND CoLUMN VECTQR, 34013
OL INTERCHANGES ELEMENTS OF A ROW VECTOR AND COpUMW VECTOR, 34033
MULROW WULTIPLIES A ROW VECTOR BY A $CALAR STORING THE RESULT IN ANOTHRER VECTOPR, 31021
ROWCST [ULTIPLIES A ROV VECTOR BY A SCALAR STORING THE RESULT IN ANOTHER ROWVECTAR, 31432
OMROWCST MULTIPLIES A COMPLEX ROYW VECTOR BY A COIMPLEX NYMBER, 34353
DUPVECROW COPIES (PART oF) A RoW VECTOR TO A VECTOR, 31031
ELMROW ADDS A SCALAR TIinEs A RoW VECTOR TO ANOTHER RaW VECTOR, 34024
MVECROW ADDS A SCALAR TIimES A RoW VECTOR TO A VECTOR. 34026
MCOLROW ADDS A SCALAR TIHES A RoW VECTOR TO A COLUMN VECTOR, 34029
XELMROW ADDS A SCALAR TIMES A RCV VECTOR TO A ROV VECTOR, AND RETURYS THE SUBSCRIPT VALUE OF THE NEW ROW ELEMENT OF MAXIMUM ABSOLY 34025
L EQUATION USING A 5=TH QRDER RUNGE KUTTA METROD, 33010
EQUATIONS USING A 5=TH oRDER RUNGE KUTTA METROD. 33011
L EQUATION USING A b=TH ORDER RUNGE KUTTA METHROD, 33012
EQUATIONS USING A 5«Th ORDER RUNGE KUTTA METHOD, 33013
L EQUATION USING A 5=TH ORDER RUNGE KUTTA METHOD; NO NER[VATIVES A{LLOWED ON RIGHT HAND SIDE, 33014
EQUATIONS USING A SaTH ORDER RUNGE KUTTA METKOD; NO DERIVATIVES ALLOWED ON RIGHT HAND SIDE, 33015
AL EQUATIONS, BY A STARILIZED RUNGE KUTTA METHOD wITH LIiMITED STORAGE REQUIREMENTS, 33060
XPONENTIALLY FITTED, EXPLICIT RUNGE KUTTA METHOD WHICH USES THE JACOBIAN MATRIX AND AUTOMATIC STEP CONTROL; SUITABLE FOR INTEGRAT! 33120
JALLY FITTED, SEMI = [MPLICIT RUNGE KUTTA METKUD; BUITABLE FOR INTEGRATION OF ST|FF DIFFERENTIAL EQUATIONS, 33160
VECVEC COMPUTES THE SCALAR PRQDUCT CF TWO VECTORS, 34010
MATVEC COMPUTES THE SCALAR PRQDUCT OF A ROW VEGTOR AND VECTOR, 34011
TAMVEC COMPUTES THE SCALAR PRODUCT CF A COLUMN VECTOR AND VECTOR, 34012
MATMAT COMPUTES TKHE SCALAR PRODUCT CF A ROW VECTOR AND COLUMN VECTOR, 34013
TAMMAT COMPUTES TKE SCALAR PRODYCT CF TWO COLUMN VECTQRS, 34014
MATTAM COMPUTES THE SCALAR PRODYCT OF TWO RNW VECTORS, 34015
SEQVEC CONMPUTES THE SCALAR PRODUCT OF TWu VECTORS, 34016
SCAPRD1 COMPUTES THE SCALAR PRODUCT OF Two VECTORS, 34017
SYMMATVEC CONPUTES THE SCALAR PRODUCT CF A VECT™NOR AND A ROW AF A SYMMETRIC MATRIX, 34018
COMMATVEC COMPUTES THE SCALAR PRQDUCT CF A COMPLEX ROW VECTOR AND A CoMPLEX VECTOP, 34354
PUTES IN DOUBLE PRECISION TKE SCALAR PRODUCT CF TWo VECTORS, 34410
PUTES IN DOUSLE PRECISION ThE SCALAR PRODUCT CF A ROW VEGTOR AND A VECTQR, 24411
PUTES N DOUYSLE PRECISION THE SCALAR PRODUCT CF A COLJMN VECTOR AND A& VECTOR, 34412
PUTES IN DOURLE PRECISION TKE SCALAR PRODUCT CF A ROW VEGTOR AND A COLUMN VECTOR, 34413
PUTES IN DOUBLE PRECISION TrE SCALAR PRODUCT CF Twu CALUMN VECTORS, 34414
PUTES N DOUBLE PRECISION TrE SCALAR PRQDUCT CF TW0 Row VECTORS, 34415
PUTES IN DOUBLE PRECISION TrE SCALAR PRODUCT CF Twu VECTORS, 34416
PUTES IN DOU3LE PRECISICON THE SCALAR PRODUCT CF TWwu VECTORS, 34417
PUTES IN DOUHLE PRECISION ThE SCALAR PRODUCT CF A VECTYOR AND A ROW (N A SYNWMETRIC MATRIX, 34418
ELMVEC ADDS & SCALAR TIMES A VECTOR TO ANOTHER VECTOR, 34020
ELMCOL ADDS A SCALAR TiMES A COLUMN VECTOR TO ANOTHER COLUMN VECTOR, 34023
ELMVECCOUL ACDS 4 SCALAR T(MES A COLUMH VECTOR TO A VECTOR, 4 34021
ELMROY ADDS A SCALAR TIMES A ROwWw VECTOR TO ANOTHER ROW VECTOR, 34024
ELMCOLVEC ADDS 4 SCALAR TIMES A VECTOR TO A COLUMN VECTOR, 34022
ELMVECROY ADDS A SCALAR TI(MES A ROw VECTOR TO A VEGCTOR, 34026
ELMRCYVEC ADDS 4 SCALAR TIMES A VECTOR TQ A ROW VECTOR, 34027
ELMCOLROY ADDS A SCALAR TiMES A ROwW VECTOR TO A COLWUMN VECTOR, 34029
ELMROWCOL ADDS A SCALAR T(MES A COLUMN VECTOR TO A ROw VECTCR, 34028
MAXELMROY ADDS A SCALAR TIMES A ROW VECTIR TO A ROW VEGTOR, AND RETURNS THE SUB3CRIPT VALUE OF ThE NEW ROW ELEMENT OF 34025
SCAPRD1 COMPUTES THE SCALAR PRODUCT OF TwW0O VECTORS, 34017
SCLCOM NORMALIZES THE COLUMNS 0OF A COAPLEX MATRIZ, 34360
KK2 SOLVES & SECCND CRDER DIFFERENTIAL EQUATION USING A 5-TH ORDER RUNGE KUTTA METHOD, 33012
RKZ2N SCLVES A SYSTEM CF SECCHD CRDER DIFFERENTIAL EQUATIONS USING A 5«TH ORDER RUNGE KUTTA METWOD, 33013
RKX SCLVES A SECQHD CRDER DIFFERENTIAL EQUAT!ION USING A 5.TH ORDER RUNGE KUTTA METHOD; NC DERIVATIVES ALLOWED ON 33014
RK3N SOLVES A SYSTeM OF SECCHD CRDER DIFFERENTIAL EQUATIONS USING A 5aTH ORDER RUNGE KUTTA METHOD; NO DERIVATIVES ALLOWED ON 33015
SNDREMEZ ( SECOND REMEZ ALGORITHM) EXGHANGES NUMAERS W!TH NUMBERS OUT OF A REFERENCE SET, 36021
N FOR DISCRETE ARGUMENTS; THE SECOND REMEZ EXCHANGE ALGOR|THM [S USED FOR THIS MINIMAX POLYNOM|AL APPROXIMATION, 36022
, BY AN EXPOMENTIALLY FITTED, SEMI = IMPLICIT RUNGE KuTTA METHAD) SUITABLE FOR INTEGRATION OF STIFF DIFFERENT AL EQUATIONS, 33460
SEQVEC COMPUTES THE SCALAR PRODUCT OF TWO VECTORS, 34016
TES THE SUM OF AN ALTERNATING SERIES, 32010
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PUTES THE SUM OF A CONVERGENT
EN DIFFERENTIABLE FUNCTION OF
EN DIFFERENTIABLE FUNCTION OF

BR TRANSFORMS A MATRIX INTO A
FORMS A COMPLEX MATRIX INTO A
RMS A HERMITIAN MATRIX INTO A
GONAL MATRIX WHICh 1S UN;TARY
REAL SYMMETRIC MATRIX INTO A

REAL SYMMETRIC MATRIX INTO A

FORMS A COMPLEX MATRIX INTO A
ANSFORMS A REAL MATRIX INTO A
RK4A SOLVES 3

RK1 SOLVES a

QRISNGVALBID CALCULATES THE
QRISNGVAL CALCULATES TFE
EQUATIONS, PROVIDED THAT THE
LINEAR EQUATIONS BY MEANS OF
EQUATIONS, PROVILED THAT THE
LINEAR EQUATIONS BY MEANS OCF
EQUATIONS, PROVIDED THAT TkE
LINEAR EQUATIONS BY MEANS CF
F A MATRIX, PROVIDED THAT TKE
E OF A MATRIX BY MEANS OF TkE
RISNGVALDECBID CALCULATES THE
QRISNGVALDEC CALCULATES THE

CALCULATES THE LEAST SQUARES
CALCULATES THE LEAST SOQUARES
ER BOUND FOR THE ERROR IN ThE
ULATES THE BEST LEAST SGUARES
ULATES THE BEST LEAST SQUARES
MODIFIED TAYLCR

MODIFI1ED RUNGE KUTTA
MULT)STEP

HOMSQLSVD

HoMSOL

lL.s@soL

LSQORTPECSOL

RK?2

RK3

RK{

RK4A

CONJ GRAD

cHLSOL?

cHLSOLY

CHLDECSOL?

CH,DECSOLY

RK1N

RK2N

RKIN

RK4NA

SERIES WITH POSITIVE TERMS, USING THE VAN WIJUNGAARDEN TRANSFORMATION,

SEVERAL VARIABLES BY A VARIABLE METRI({ METHOD,

SEVERAL VARIABLES BY A VARIABLE METRIC METHOD,

SIMILAR EQUIL|BRATED MATRIX,

SIMILAR EQUILIBRATED COMPLEX MATRIX,

SIMILAR REAL SYMHMETRIC TRIDIAGONAL MATRIX,

SIMILAR TO A GIVEN RERMITIAN MATRIX,

SIMILAR TRIDIAGCNAL ONE 3Y HOUSEMOLDERS TRANSFORMATION,

SIMILAR TRIDIAGONAL ONE B8Y HOUSEHOLDFRS TRANSFORMATION,

SIMILAR UN!ITARY UPPER HESSENBERG MATRIX WITH A REAL NONSNEGATIVE SUBDIAGONAL,
SIMILAR UPPER HESSENBERG MATRIX 8Y THE WILKINSON TRANSFORMATION,

SINGLE DIFFERENTIAL EQUATION BY SOMETIMES USING A DEPENDENT VARIABLE AS INTEGRATION VARIABLE,
SINGLE FIRST ORDER DIFFERENTIAL EQUATION USING A 5«TH ORDER RUMGE KUTTA METHOD,
SINGULAR VALUES QF A REAL BIDIAGONAL #ATRIX By MEANS OF IMPL)C|T QR-ITERATION,
SINGULAR VALUES QF A REAL MATRIX BY MEANS OF AN IMPLICIT QR«|ITERATION,

SINGULAR VALUE DECOMPOSITION OF THE COEBFFICIENT MATRIX IS GIVEN,

SINGULAR VALUE DECOMPOSITION,

SIHGULAR VALUE DECOMPOSITION OF THE €GQEFFICIENT MATRIX IS GIVEN,

SINGULAR VALUE PECOMPOS|TION,

SINGULAR VALUE DECOMPOSITION OF THE CQEFFICIENT MATRIX IS GIVEN,

SINGULAR VALUE DECOMPOSITION,

SINGULAR VALUE DECOMPOSIT|ON I8 GIVEN,

SINGULAR VALUE DECOMPOSITION,

SINGULAR VALUE DECOMPQSITION OF A REAL MATRIX OF WHICH A BIDIAGONAL DECOMPNSITION IS GIVEN, BY-MEANS
SINGULAR VALUE DECOMPOS!ITION OF A REAL MATRIX RY MEANS OF AN [MPLICIT GR-ITERATION,

SNDREMEZ (SECOND REMEZ ALGORITHM) EXCHANGES NUMBERS WITH NUMBERS OUT OF A REFERENCE SET,

SOLEND SOLVES A SYSTEM QOF L INEAR EQUATIONS WITH BAND MATRIX, WHICH IS DECOMPOSED BY DECBND,

SCLELM SOLVES A SYSTEM OF LINEAR EQUATIONS, OF WH{iCH THE TRIANGULARLY DECOMPOSED FORM OF THE MATRIX
SOLOVR CALCULATES THE LEAST SQUARES SQLUTION OF A OVERDETERMINED SYSTEM OF LINEAR EQUATIONS BY MEANS
SOLSVDOVR CALCULATES THE LEAST SQUARES SOLUTION OF A OVERDETERMINED SYSBTEM OF LINEAR EQUATIONS, PROV
SOLSVDUND CALCULATES THE BEST LEAST SQUARES SOLUT{ON OF A UNDERDETERMINED SYSTEM OF LINEAR EQUAT|ONS
SOLSYMTR| SOLVES A SYSTEM OF LINEAR EQUATIONS wITH SYMMETRIC TRIDIAGONAL COEFFICIENT MATRIX, PROVIDE
SOLTRIPIV SOLVES A SYSTEM OF LINEAR EQUAT|ONS w|TH TRIDIAGONAL COEFFICIENT MATRIX, PROVIDED THAT THE
SOLTR! SOLVES A SYSTEM OF LINEAR EQUATIONS WITH TRIDIAGONAL COEFF[CIENT MATRIX, PROVIDED THAT THE LU
SOLUMD CALCULATES THE BEST LEAST SQUARES SOLUT|ON OF A UNDERDETERMI|NED SYSTEM OF LINEAR EQUATIONS BY
PROVIDED THAT THE SINGULAR VALUE DECOMPDSIT

SCLUTION OF A OVERDETER'"|NED SYSTEM OF LINEAR E£QUAT(ONS,

SELUTION OF A OVERDETER'INED SYSTEM OF LINEAR EQUATIONS BY MEANS OF SINGULAR VALUE DECOMPOS|TICN,
SOLUTION OF A SYSTEX OF L INEAR EQUATIONS,

SOLUTION OF A UNDERUDETERMINED SYSTEM OF LINEAR EQUATIONS, PROVIDED THAT THE SINGULAR VALUE DECOMPOSI
SOLUTION OF A UNDERDETERMINED SYSTEM QOF LINEAR EQUATIONS BY MEANS OF SINGULAR VALUE DECOMPCS|TION,
SCLVES AN INITIAL ( BOUNMDARY ) VALUE PROBLEM, GIVEN AS A SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATION
SOLVES AN INITIAL ( BOUNDARY ) VALUE PROSLEM, GIVEN AS A SYSTEM OF FIRST ORDER ( NON<LINEAR ) DIFFER
SOLVES AN INITIAL VALUE PROBLEM, GIVEH AS A SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS, BY ONE OF
SOLVES A HOMOGENEOUS SYSTEM OF LINEAR EQUATIONS, PROVIDED THAT THE SINGULAR VALUE DECOMPOSITION OF T
SOLVES HOMOGENEOUS SYSTE™ OF LINEAR EQUATIONS BY MEANS OF SINGULAR VALUE DECOMPOS|TION,

SOLVES A [INEAR LEAST SQUARES PROBLEM, PROVIDED THAT THE COEFF|C(ENT MATRIX HAS BEEN DECOMPOSED B8Y L
SOLVES A LINEAR LEAST SAUARES PROBLEM AND COMPUTES THE DIAGONAL ELEMENTS OF THE INVERSE OF MiM (M CO
SOLVES A SECOND ORDER DIFFERENTIAL EQUATION USING A 5aTH ORDER RUNGE KUTTA METHOD,

SOLVES A SECOND ORDER DIFFERENTIAL EQUATION USING A 5aTH ORDER RUNGE KUTTA METHOD; NO DERIVATIVES Al
SOLVES A SINGLE FIRST ORDER DIFFERENTIAL EQUATION USING A 5eTH ORDER RUNGE KUTTA METHOD,

SOLVES A SINGLE DIFFEREMT|AL EQUAT|ON BY SOMETIMES USING A DEPENDENT VARIABLE AS INTEGRATICN VARIABL
SOLVES A SYMMETRIC AND POS|TIVE DEFIN|TE, SYSTEM OF LINEAR EQUAT|ONS BY THE METHOD OF CONJUGATE GRAD
SOLVES A SYMMETRIC PUSITIVE DEFINITE SYSTEM OF LINEAR EQUATIONS, THE MATRIX BEING DECOMPCSED BY CHLD
SOLVES A SYMMETRIC POSIT|VE DEFINITE SYSTEM OF LINEAR EQUATIONS, THE MATRIX BEING DECOMPOSED BY CHLD
SOLVES A SYMMETRIC POSITIVE DEFINITE SYSTEM OF LiNEAR EQUATIONS BY THE CHOLESKY METHOD, THE MATRIX 8
SOLVES A SYMMETRIC PUSITIVE DEFINITE SYSTEM OF LINEAR EQUATIONS 8Y THE CHOLESKY METHOD, THE MATRIX B
SO0LVES A SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS USING A 5-TH ORDER RUNGE KUTTA METHOD,

SOLVES A SYSTEM OF SECOND QRDER DIPFERENTIAL EQUATIONS USING A 5.TH ORDER RUNGE KYTTA METHOD,

SOLVES A SYSTEM OF SECOND ORDER DIPFERENTIAL EQUAT|ONS USING A 5.TH ORDER RUNGE KUTTA METHOD; NO DER
SOLVES A SYSTEM OF DIFFERENTIAL EQUATIONS pY SOMET|MES USING THE DEPENDENT VARIABLE AS INTEGRATION VY

32020
34214
34215
34173
34361
34363
34364
34140
34143
34366
34470
33016
33010
34270
34272
34260
34281
34282
34283
34284
34285
34286
34287
34271
34273
36021
34071
34061
34281
34280
34282
34421
34427
34424
34283
34280
34281
34241
34282
34283
33040
33060
33080
34284
34285
24131
24135
33012
33014
33010
33016
34220
34390
34391
34392
34393
33011
33013
33015
33017
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RKSNA
SOLBND
CHLSOLBND

SCL

DECSCL
SOLELM
GsSscL
GSSSOLERB
SOLTR!
DECSOLTRI
SOLTRIRPIV
SOLSYMTR
LECSOLSYMTRI
EFERK
EFSIRK
LIN|IGERY
LINIGERD

TIVE DEFINITE 8aANC

MATRIY AND

LECSCLTRIRIY

COMSQRT COMPUTES THE

DIFFERENT AL EQUATIONS,
HFORTH METHOD;

BY A
WITH ALTCMATIC

JACOBIAN MATRIX AMD pUTOMATIC

ITABLE FOR THE INTEGRATION CF
3 SUITABLE FOR INTEGRATI!ON CF
; SUITABLE FOR INTEGRATION CF
; SUITABLE FOR INTEGRATION CF
3 SUITABLE FOR INTEGRATION CF
NGE KUTTA METHOL ¥ (TH LIMITED

LINEAR INTERPOLATION USING A
LINEAR INTERPOLATION USING A
LINEAR (NTERPOLATICH US|KG A

A ROW VECTOR,

AND RETURNS TrE

EULER COFNPUTES TrE
SUMPOSSERIES COMPUTES THE

CONJ GRAL
INITIALIZES A CODIAGONAL
SYMROW INITIALIZES A KOW

TFMSYMTRI2 TRANSFORME A
TFMSYMTRI1 TRANSFORHME A
CONSECUTIVE EJGERVALUES
CONBECUTIVE EIGENVALUES
NVALUES AND EIGENVECTORS
NVALUES AND EIGEMVECTCRS
COMPYTES ALL EIGEKVALUVES
COMPUTES ALL EIGENVALUES
NVALUES AND EIGENVECTORS
CT OF A VECTOR ANLC A KOW
TRIANGULAR DECOMPGSITION
COMPUTES THE ODETERMINANT
STEM OF LINEAR EQUATIONS
RFORMS THE DECOMPLSIT!ON
E CHOLESKY DECOMPCSITION
E CHOLESKY DECOMPCSITION
COMPUTES THE DETERMINANT
COMPUTES THE DETERMINANT

SCOLVES &

OF A
CF A
REAL
REAL
CF A
CF
oFf
¢]
CF

O
"
PP > I>>E>>PpPpEr>

CHLSCLY? SOLVES

SOLVES
SeLves
SOLVES
SOLVES
SCLVES
SOLVES
SOLVES
SCLVES
SCLVES
SOLVES
SCLVES
SCLVES
SOLVES
SCLVES
SCLVES
SOLVES
3CLVES
SOLVES
SCLVES

SCL SOLVES A SYSTEM OF LINECAR EQUATIONS,

A SYSTEM UF FIRST ORDER DIFFERENTIAL EQUATIONS USING THE ARC LEMGTH AS INTEGRATION VARIABLE,
A SYSTEM OF LINEAR EQUATIONS wI(TH BAND MATRIX, YWHICH |S DECOMPOSED ARY DECBND,

A SYSTEM OF LINEAR EQUATIONS wiTH SYMMETRIC POSITIVE DEFINITE BAND MATRIX, WHICH HAS BEEN DEC
A SYSTEM OF L INEAR EQUATIONS, QF WwHICH THE TRIANGULARLY DECOMPOSED FORM CF THE MATRIX 1§ GiVE
A SYSTENM OF LINEAR EGUATIONS 8y CROUT FACTORIZATION WiITH PARTIAL PIVOTING,

A SYSTEM OF LINEAR EQUATIONS, OF WwHICH THE TRIANGULARLY DECOMPOSED FORM OF THE MATRIX IS GIVE
A SYSTEM OF LINEAR EQUAT(ONS BY GAUSS!AN ELIMINAT|OM ¥wITH COMBINED PARTIAL AND COMPLETE PIVYyOT
A SYSTEM OF L INEAR EQUATIONS AND COMPUTES AN JPPER BOUND FOR ITE ERROR,

A SYSTEM OF LINEAR EQUATIONS W|TH TRIDIAGINAL COEFF{CIENT MATRIX, PROVIDED THAT THE LU CECOMP
A SYSTEM OF LINEAR EQUATIONS Y|)TH TRID|AGONAL COEFFICIENT HATRIX,

A SYSTEM OF LINEAR EQUATI(ONS «iTH TRIDIAGONAL COEFF|CIENT MATR!X, PROVINED THAT THE LU CECOMP
A SYSTEM OF L INEAR FQUATIONS WiTH SYMMETR{C TRIDIAGONAL CUGEFFICIENT MATRIX, PROVIDED THAT TRE
A SYSTEM OF LINEAR FQUATIONS WiITH SYMMETR!C TRIDIAGONAL COEFFICIENT MATRIX,

INITIAL VALUE PRNBLEMS, GIVEN AS AN AUTONOMOUS 3YSTENM OF FIRST ORDER DIFFERENTIAL EGUAT|ONS,
iNITIAL VALUE PRNBLEMS, GIVEN AS AN AUTHNOMOUS 3YSTEM OF FIRST ORDER DIFFERENTIAL ECUATIONS,
INITIAL VALUE PRNOBLEMS, G[VEN AS AN AUTONOMOUS SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS,
INITIAL VALUE PROBLEMS, GIVEN AS AN AUTONOUMOUS SYSTEM OF FIRSY ORDER DIFFERENT|AL EQUATIONS,
THE SYSTEN OF L INEAR EQUAT|ONS AaY THE CHOLESKY HETHOD,

WiTH PARTIAL PIVATING A SYSTEM OF LINEAR FQUATIONS WITH TRIDIAGONAL COEFFICIENT MATRIX,
WH|ICH THE TRIAHGULARLY DECOMPOSED FORM OF THE MATRIX IS

SGUARE ROQT OF A CONMPLEX NUMSBER,

STABILIZED RUNGE KUTTA
STEP AND ORDPER CONTROL AND SUITABLE FOR THE
STEP CHONTROL; INTEGRATION OF STIFF
DIFFERENT AL
DIFFFRENTIAL
DIFFERENT AL
DIFFERENT 1AL
DIFFERENT | AL

STIFF
STIFF
STIFF
STIFF
STIFF

SUITA3LE FOR
EQUAT|ONS,
EWUAT|ONS,
EQUAT|ONS,
EQUAT|ONS,
EGUATIONS,

STORAGE REQUIRENMENTS,
SEQUENCE,
SERUENCE,
SEQUENCE,
SUASCRIPT VALUE OF THE 'IEW ROW ELEMENT OF MAXiMUM ABSOLUTE VALUE,

STURM
STURM
STURM

SUI'POSSERIES COMPUTES THE SUM OF A COMVERGENT
OF An
SUI" OF A CONVERGENT SERIES WITH POSITIVE TERMS,

suf

ALTERNATING SER{ES,

oF

METHOD WiITH LINVITED STORAGE REQUIREMENTS,
OF STIFF DIFFEREMTIAL EQUATIONS,

INTEGRATION
DIFFERENT{AL EQUAT{ONS,

SERIES wiTH POSIT|VE TERWVS,

SYNWATVEC COHPUTES THE SCALAR PRODUCT 2F A VECTOR AND A ROY¥ OF A SYMMETRIC

SYMMETRIC AND PCSITIVE DEFINITE,

USING

THE VAN WiJNGAARDEN

USING THE VAN W!JNGAARDEN TRANSFORMAT!ION,
MATRIX,
SYSTEM OF LINEAR EQUATIONS 3Y THE METHMOD NF CONJUGATE GRADIENTS,

{WTERPOLATION USING A STURM SEQUENCE,
INTERPOLATION USING A STURM SEQUENCE,

THE SYSTEM OF LINEAR EQUATINNS BY THE CHCLESKY ME

SYIMETRIC FATRIX WITH A CONSTANT,

SYMMETRIC MATRIX wiTH A CONSTANT,

SYIMETRIC NMATRIX INTO A SIMILAR TRIDIAZOMNAL ONE v HOUSEHOLDERS TRANSFORMATION,
SYI'METRIC MATRIX INTO A SIMILAR TRIDiAGONAL ONE 3Y HOUSEHOLDERS TRANSFORMATION,
SYPMETRIC MATRIX, STOREN IN A ONE=DIMENSIONAL ARRAY, BY LIMEAR

SYI'METRIC MATRIX, STORED IMN A TWO=D!MENSIOMAL ARRAY, BY LIMEAR

SYI'METRIC MATRIX, YiiiCH |S STORED IN A ONE-DIMENSIONAL ARRAY,

SYNWETRIC MATRIX, WUHICH IS STORED IN 4 TWO=DIMENSIONAL ARRAY,

SYI'METRIC MATRIX, STORED [N A ONEDIMENS|OMNAL ARRAY, BY QR-ITERATICN,

SYIMETRIC MATRIX, STURED [N A TwODIMENS|OMAL ARRAY, BY QR~ITERAT!ON,

SYMMETRIC MATRIX AY GWR=ITERATION,

SYI'METRIC MATRIX,

SYi'!METRIC POSITIVE DEFiN|ITE MATRIX BY THE CHOLESKY METIHIOD,

SYMMETRIC POS|TIVE DLFIN[TE MATRIX, WwHiCH HAS ]EEN DECOMPOSED 3Y CHLDECBND,
SYMMETRIC POSITIVE DEFIMITE BAND MATRIX, WHICH HAS BEE' DECCHMPOSED BY CHLDECHAND,
SYI'METR!IC POS|TIVE DEFIMITE 3aAND MATRIX AND SOLVES

SYPVETRIC POS|TIVE DLFIMITE MATRIX, STORED N A TwOLDIiNENSICNAL ARRAY,

SYI'METRIC POSITIVE DEFINITE MATRIX, STORED COLUMNWISE IN A ONE«DIMENSIASNAL ARRAV,
SYMMETRIC POSITIVE NEFINITE MATRIX, wHiCH HAS BEEN DECOMPOSED BY CHLDEC2,
SYIMETRIC POS{TIVE DEFIMITE MATRIX, wriiCr HAS BEEN DECOMPOSER B8Y CHLDECY,
SYMMETRIC PQSITIVE DEFIN|TE SYSTEM OF [LINEAR EOUAT(ONS, THE MATRIX BEING DECOMPOSED BY CHLDEC2,

33018
34071
34332
34051
34301
34061
24232
34243
34424
34425
34427
34421
34422
33120
33160
33130
33131
34333
34428
34051
34343
33060
33080
33420
33080
33120
33160
33130
33131
33060
34151
34455
34153
34025
32020
32010
32020
34018
34220
31013
31014
34440
34143
34155
34153
34456
34154
34164
J4ie2
34163
34418
3433¢C
34331
34332
34333
34310
24311
34312
34313
34390
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CHLSCL] SOLVES

CHLDECSOL? SBOLVES
CHLDECSCL] SOLVES

NY2 COMPUTES THE (NVERSE OF
NV1 COMPUTES THE INVERSE OF
ESKY METHOD, THE INVERSE OF
ESKY METHOD, THE INVERSE COF
CONSECUTIVE, EIGENVALUES COF
RI COMPUTES E1GENVECTCRS OF
COMPUTES ALL EI!GENVALVES CF
NVECTORS AND EIGENVALUES OF
AN MATRIX INTO A S{MILAR

PP EFPEPPDRPERDP

REAL

S THE U'DU DECOMPCSITION
STEM OF L INEAR EOUATIONS
STEM OF L INEAR EQUATIONS
CT OF A VECTOR AN[ A ROV
FOR THE INTEGRATiONM

RK4NA

RN

RKHNA

Y ) VALUE PROBLE™, GIVEN
Y ) VALUE PROBLEM, GIVEN
AL VALUE PROBLEM, GIVEN
BLEMS, GiVEN AS AN
BLEMS, GIVEN AS AN
BLEMS, GIVEN AS AN

OF A
WiTH
WiITH
OF A

OFf LARGE
SOLVES &
SOLVES
SOLVES

LY
AS
AS

» > P>

A
AUTONCMOUS
AuTONOMOUS
AUTONONOUS
AUTONONOUS

BLEMS, GIVEN AS AR
METRIC AND POSITIVE DEFINITE,
SOLEBND SOLVES 4

AN ELIMINATION ANL SOLVES THE
CHLSOLEBND SOLVES A

TE BAND MATRIX AN[D SCLVES TrE
HE ERROR N THE SCLUTION CF A
80, SOLVES

DECEOL SOLVES

SOLELM SNLVES

GSSS0L SNLVES

GSSSOLERR SO0LVES

ATIVELY REFINED SCLUTION OF
ATIVELY REFINED SCLUT!ON COF
PER BOUND FOR T8 ERROR, CF
ATIVELY REFINED SOLUT!ION CF A
A SYMMETRIC POSITIVE DEFINITE
A SYIMETRIC POS:TIVE DREFINITE
A SYMMETRIC POSITIVE DEFINITE
A SYMMETRIC POSITIVE DEFINITE
SOLUTION OF 4 OVLRLETERMINED
SOLUTION OF A CVERPETERMINED
SOLUTION OF A UNDERDETERIINED
SOLUTION OF A UNDERDETERMINED
OMSOLSVD SOLVES A HOMOGENEOUS
HOMS80L SOLVES A HOMOGENEQUS
SOLTR! SNLVES &
CECSCLTRI SNLVES
SOLTRiIPIV SOLVES

WiITH PARTIAL PIVATING
SOLSYYTR! SOLVES
DECSOLSYMTR! SOLVES
KN SOLVES

Rk 3IN SOLVES

LR R I

OLVES

PR 2 b D

SYFMETRIC
SYMMETRIC
SYMMETRIC
SYHMETRIC
SYNPETRIC
SYI'"WETRIC
SYNMETRIC

SYNKETRIC

SYNMETRIC
SYNRETRIC
SYMMETRIC

SYMRETR:IC
SYMMETRIC
SYHMETRIC
SYNMETRIC
SYNMETR I C

SYSTEMS ARISING FROM™ PART| AL DIFPERENT AL FEQUAT!ONS,
DIFFERENT laL EQUAT IONS BY SOMETIMES

SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SVYSTEM
SYSTEM
SYSTEM
SVESTEM
SYSTEW
SYSTEM
SYSTEM
SvSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYETLM
SYETEWN
SYSTEM
SYSTEM
SYSTEM
SYETELHM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTE®R
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEH
SYSTE®
SYSTEM
SYSTEM

CF

PCS|T!
POSITIH
POASITI
FOSITY
POSITI
POSIITI
POS T
TRIDIA
TRIDIA
TRIDIA
TRIDIA
TRIDIA

TRIDIAGONAL

TRIpD!IAGONAL

TRIipDIAGONAL
MATRIX,

VE DEFINITE SYSTEM OF LINEAR EOUAT|ONS, THE MATRIX BEING DECOMPCSED BY CHLDECL,
VE DEFIM|TE SYSTEM OF | INEAR EQUATIONS BY THE CHOLESKY METHOD, THE MATRIX BEING BTCK
VE DEFIN|TE SYSTEM OF L!NEAR EQUATIONS BY THE CHOLESKY METHOD, THE MATRiIX BEING 8TOR
VE DEFIN|TE MATRIX WHiCH MAS BEEN DECOMPOSED BY CHLDEC?,
VE DEFINITE MATRIX WHiCH HAS BEEN DECOMPOSED BY CHLDECY,
VE DEFIN|TE MATRiX, STORED N A& TW0LDIMENSIONAL aRRAY,
VE DEFIH|TE MATRIX, STORED IN A ONE-DIMENSICnAL ARRAY,
GONAL MATRIX BY L INEAR !NTERPOLATION USING A STURM SEQUEMNCE,
GOHAL MATRIX BY INVERSE (TERAT|ON,
GOMAL MMATRIX BY OR«!ITERATION,
GONAL MATRIX BY QR=!TERATION,
GONAL MATRIX,
MATRIX,

CAEFFICIENT MATR (X, PROVINED THAT THE uIDU DECOMPOSITION 1S GiVEN,

COEFFICIENT MATRIX,

PROVIDER HWIGHER ORDER DERIVATIVES CanN EE EASILY

USING THE DEPENDENT VAR ABLE AS INTEGRATION VARIABLE,

FIRGT ORDER DiFFERENTI AL EQUATIONS USING A B.TH ORDER RUNGE xUTTA METHOD,

FIRST URDER DiFFERENTIAL EQUATIONS USING THE ARC LENGTH AS !MTEGRATION VARIABLE,

FIRST OREEWR DIFFERENT I AL EQUATIONS, AY A ONELSTEP TAVLOR METHOD; THiS METHOD 1§ PARTICULAR
FiR§T ORDER ( MOMgL !NEAR ) DIFFERENT AL EQUATIONS, BY A STABILIZFED RUNGE KUTTA METHOD wiTH
FIRST ORDER DIFFERENT!AL EQUATIONS, AY ONE OF THE FOLLOWING MULTISTEP METHODS: GEARS, ADAM
FIRST ORDER DiFFERENTIAL EQUATIONS, BY AN EXPONEMT{ALLY FITTED, EXPLIC!IT RUNGE KUTTA METHO
FIRST ORDEN DIFFERENT AL EQUATIONS, BY AN EXPONENTIALLY FITTED, SEMI = iMPLICIT RUNGE ®UTT
FiIRST ORPEWR D(FFERENT AL EQUATIONS, BY AN iMPL:iCIT, EXPONENTIALLY FITTED, FIRST ORDER ONE~
FIRST ORDEW DIFFERENT 1AL EQUATIONS, BY AN IMPLICIT, EXPONENTIALLY FITTED, SECOND CRDER ONE
LINEAR ERUAT!ANS BY TrE METHOD OF CONJUGATE SGRADIENTS,

LINEAR EQUATIANS W:!TH BAND MaATRIX, wHiCh 18 DECOMPOSED BV DECSBND,

LINEAR EGUATIONS,

LINEAR EGUATIANG WiTH SYMMETRIC POSITI(VE DEF(NITE BAND MATRI(X, WHICH MAS BEEN DECCMPCSED B
LINEAR ENDUATIONS BY THE CHOLESKY METHOD,

LINEAR ERUATIONG,

LINEAR EOUATIONS, OF WHICH THE TRIANGULARLY DECOMPOSED FORM OF THE MATRIX (8 GIVEN,

LINEAR EQUATINNG BY CROUT FACTORIZAT 0% wiTh PaRTIAL PiVOTIiNG,

LiNEAR EQUATIONS, OF WHICH TWE TRIANGULARLY DECONMPOSED FORM OF THE MATRIX 1S GIVEN,

LINEAR EQUATINMNS BY GAUSE!AN EL!MiINATION WITH COMBINED PART AL AND COW#PLETE PIVCTING,
L!NEAR EQUATIANS AND COMPUTES AN UPPER BOUND FOR ITS ERROR,

LINEAR EGUaTINNS, THE MATR(X OF wHICH I8 GIVEN !N ITS TRIANGULARLY DECOMPOSED FORM,

LINEAR EQUATIANS,

LINEAR EQUATIONS, OF WHICH THE TRIANGULARLY DECCHMPOSED FURM OF THE MATRIX 18 GIiVEN,

L IHEAR EQUATINNS, !

LINEAR EQUATINNS, THE MATRIX BE NG DECOMPOSED BY CHLDECZ,

LINEAR EQUATIONS, THE MATRIX BEING DECOMPOSED BY CHLLECT,

LINEAR EQUATIONS BY THE CHOLESKY METHOD, THE MATR!X BEING STORED IN A TwO-DIMENSICNAL ARRA
LINEAR EOUAT!ONS BY THE CHOLESKY METHOD, THE MATRIX BE:NG BTORED 1IN A ONE-DIMENSIONAL ARRA
LINEAR EQUATINNS, PROVIDED THAT THE SiNGULAR VALUE DECOMPOS | TION OF TrE COEFFICIENT MATRIX
LINEAR EOUAT!ONS BY MEANS OF SiNGULAR VALUE DECOMPOS|TION,

LiMNEAR EQUATIONS, PROVIDED THAT THE SINGULAR VALUE DECOMPOSITION OF TrE COEFFICIENT MATRIX
LiNHEAR EQUATIANS BY MEANS OF SINGULAR VALUE DECOMPOSITON,

LiINEAR EQUATIONS, PROVIDED THWAT THE SiNGULAR VALUE DECOMPOSiTiON OF THE COEFFICIENT WMATRIX
LiINEAR EQUATIONS BY MEANS OF SINGULAP VALUE DECOMPOS|TiON,

LINEAR EQUATIONS WiTH TRIDIAGONAL COEFFICIENT MATRIX, PROVIDED THAT TRE |y DECCMPCSITION |
LINEAR EQUATINNS W1TH TRIDIAGONAL COEFFICIENT MATRIX,

LINEAR EQULTIONS WiTH TRIDIAGONAL COEFFICIENT MATRIX, PROVIDED THAT THE LU DECCMPCSITICN A
LINEAR EQUATINNS WITH TRIDIAGONAL COEFFICIENT MATRIX,

LINEAR EQUATIANS WITH SYMMETRIC TRID|AGONAL COEFFICIENT MaTRIX, PROVIDED THAT THE U'DU DEC
LINEAR EQUATIANMS WiTH SYMMETRIC TRID|AGCONAL COEFFICIENT MATRIX, -

SECOND ORDER NIFFERENTIAL EQUATIONS USING A 5.TH ORDER RUNGE KUTTA METHOD,

BECOND ORDER DIFPERENTIAL EQUATIONS USING A 5.TH ORDER RUNGE KUTTA METHOD; NO DERIVATIVES

34391
34392
34393
34400
34401
34402
34403
34151
34452
34165
36161
14363
34420
34421
34422
34018
33040
33017
33011
33018
33040
33060
313080
33120
33160
33430
13131
34220
34071
34322
34332
34333
34241
34051
34301
34061
14232
34243
34250
34251
34253
24254
34390
34391
34392
34393
34280
34281
34262
34283
34284
34285
34424
24425
34427
34428
34421
34422
33013
33015
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BY A ONELSTEP
MODFI1ED

TIAL EQUATIONS,

FPERFORMED
PERFORMED

AS
AS

BY
ey

RANSFORMATION
RANSFORMAT | ON
RANSFORMATION AS PERFORMED RV
RANSFORMATION AS PERFORMED gv
IN COMBINATION WITH PROCEDURE

SCALAR
SCALAR
SCALAR
NUMRER
NUMBER
NUMBER
SCALAR
SCALAR
SCALAR
SCALAR
SCALAR

ELMCOL ACDS A
ELMVECCOL ADDS A
ELMROWCCL ALDS A

MVEcCCOL ADDS A COMPLEX
MCOMCOL ADDS A COMPLEX
MROWVEC ADDS A CONPLEX

ELMROW ACDS A
ELVMVECROW ADDS A
ELMCOLROW ADDS A
MAXELMROYW ADDS A

ELMVEC ADDS 4
ELMCOLVEC ADRDS A SCALAR
ELVROWVEC ADDS A SCALAR

IDIAGONAL ONE BY HOUSEHOLDFRS
IDIAGONAL ONE BY +0OUSEHOLCEFRS
NBERG MATRIX BY THE WILK|NSCN
FOR BY MEANS OF HOUSFHOLDER
BAKSYMTRI12 PERFORMS THE BACK
ESPONDING TO THE ROUSEKOLDEPRS
BAKSYMTRIZ PERFNRMS THE BACK
ESPONDING TO THE KOUSFHCLURRS

BAKLBR PERFORMS THE BACK
BAKREAHES] PERFORMS THE BACK
BAKREAKES?2 PERFOPMS THE BacCK

BAKHRMTRI PERFORMS THE BACK
BAKCOMHES PERFORMS THE BACK
BAKLBRCOM PERFORMS THE BACK
TFMPREVEC COMPUTES THE
CaRPCL

HSHCOMME §

EQtLBRCOM

H§HCOMCOL

HSHHRMTR I

EQILBR

NEWGR™N

TFMSYMTR |2

TFMSYMTR |1

TFMREAKES

HSHREARID

G MATRIX USED BY mSHREABID TO
G MATRIX USED 8Y FSHREABID TO
TDEC PERFORMS THE HOUSEROLDER
DECBND PERFOQRMS ThE

CHLDECBND PERFORNMS THE

CEC PERFORMS TrE

GSSELM PERFORMS THE

STEM OF LINEAR EQUATIONS WiITH

TAMMAT COMPUTES THE SCALAR PRODUCT OF TWO COLUMN VECTORS,

TAPVEC COMRUTES THE SCALAR PRODUCT OF A COLUMN VECTOR AND VECTOR,

TAYLOR METHOD; THIS METHOD 1S PARTICULARLY SUITABLE FOR THE [NTEGRATION OF LARGE SYSTEMS ARISING FRO
TAYLOR SOLVES AN IMITIAL BOUNDARY ) VALUE PROBLEM, G|VEN AS A SYSTEM OF FIRST ORDER DIFFERENTIAL E
TFMPREVEC COMPUTES THE TRANSFORMING MATRIX IN COMBINATION WITH PROCEDURE TFMSYMTRI2,

TFMREAHES, ON A VECTOR,

TFI'REAHES, ON TRE COLUMNS QF A MATRIX,

TFMREAHES TRANSFORMS A REAL MATRIX INTO A SIMILAR UPPER HESSENBERG MATRIX 8Y THE W(LKINSON TRANSFORM
TFISYMTRI L,
TFNSYMTRI{ TRANSFORMS A BEAL SYMMETRIC MATRIX (NTO A S|{MILAR TR[DIAGONAL ONE EY HOUSEHOLDERS TRANSFO
TFHSYMTRI2,
TFNSYMTRI2,

TFMSYMTRI2 TRANSFORMS A REAL SYMMETRIC MATRIX |NTO A SIM|LAR TR{DIAGONAL ONE BY HOUSEHOLDERS TRANSFO

TIMES A COLUMN VECTOR TH ANOTHER COLUMN VECTOR,
TIHMES A COLUMN VECTOR TH A VECTOR,

TIMES A COLUNMN VECTOR TOo A ROW VECTOR,

TINES A COMPLEX COLUMN VECTOR TO A COMPLEX VECTOR,

TIMES A COMPLEX COLUMN VECTOR TO ANOTHER COMPLEX COLUMY VECTOR,

TIMES A COMPLEX VECTOR TO 4 COMPLEX RQW VECTOR,

TIMES A RQW VECTOR TO ANMOTHER ROW VECTOR,

TIMES A ROW VECTOR TU A VEGTOR,

TIMES A ROW YECTOR TU A COLUMN VECTOR,

TIMES A ROW VECTOR TO A ROW VECTOR, AND RETURNS THE SYJISCRIPT VALUE OF THE NEW ROW ELEMENT CF WMAXIMU
TIMES A VECTOR TO ANOTHER VECTOR,

TIMES A VECTOR TO A COLiJMN VECTOR,

TIMES A VECTOR TU A RQOW VECTOR,

TRANSFORMATION,
TRANSFORMATION,
TRANGSFORMATION,
TRANSFORMATION,
TRANSFORMATION
TRANSFORMATION
TRANSFORMAT ION
TRANSFORMAT I ON
TRANSFORMATION

CORRESPONDING TO THE HWNUSEHOLDERS TRANSFORMATIOM AS PERFORMED BY TFMSYMTRIZ,

AS PERFORMED AY TPMSYMTRIZ,

CORRESPONDING TO THE HOUSEMNLDERS TRANSFORMAT|ON AS PERFORMED
AS PERFORMED aY TEFMIYMTRI{,

CORRESPONDING TO THE EQUILIABRATION AS PIRFORMED BY EQILBR,

BY TFMSYMTRIY,

TRANSFORMATION CORRESPONDING TO THE wiLKINSON TRANSFORATION AS PERFORMED 8Y TFMREARES, CN A VECTOR,
TRANSFORMATION CURRESPOMDING TO THE WILKINSON TRANSFOR'“ATION A8 PERFORMED 3y TFWREAWES, ON THE COLUM
TRANSFORMATION CORRESPOND (NG TO WSHHRMTR|,

TRANSFORMATION CORRESPOND NG TN HSHCOMNES,

TRANSFORMAT ION COURRESPONDING TO THE EQUILI3RATION AS PCRFORMED By EQILBRCOM,

MATRIX (N COMBINATICON WITH PROCEDURE TFMSYMTRI2,
COMPLEX NUAMBER GIVEN IN CARTES'AH COORDINATES INTC POLAR COORDINATES,
CONPLEX MATRIX !NTO A Si‘t1LAR UMITARY UPPER HESSENBERG MATRIX WiTH A REAL NON=NEGAT|VE

TRANSFORMING
TRANGFORMS A
TRANSFORMS

TRANSFORMS COMPLEX MATRIX INTO A SI11iLAR EQUILIBRATED COMPLEX HATRIX,

TRANSFQRMS CONMPLEX VECTOR INTO A VECTOR PROPORTIONAL TO A UN|T VECTOR,

TRANSFORMS HERMITIAN "ATRIX INTO A SIMILAR REAL SYMMETRIC TRIDIAGONAL MATRIX,
MATRIX INTY A SIMILAR EQUIL!IBRATED MATRIX,

PCLYNOMI AL REPRESENTATIQON FROM NEWTON FORA INTO GRUNWERT FARM,
REAL SYNMMETRIG MATRIX INTO A SIMILA? TRIDIAGONAL ONE BY HOUSEHOLDERS TRANSFORMATICN,
REAL SYNMETRIC MATRIX I(NTO A SI!MI|_AR TRIDIAGONAL ONE BY HOUSEHOLDERS TRANSFORMATICN,
TRANSFORMS REAL MATRIX INTO A SIM|LAR UPPER HESSENBERG MATRIX AY THE WILKINSON TRANSFORMAT|ON,
TRANSFORMS REAL MATRIX INTO BIDIAGONAL FORM BY MEANS OF HOUSEHOLDER TRANSFORMATION,

TRANSFORM A MATRIX INTO 8ID!IAGONAL FORM,

TRANSFORM A MATRIX INTO BiDIAGONAL FORM,

TRIANGULARIZATICH OF THE COEFFICIENT 4ATRIX OF A LINEAR LEAST SQUARES PROBLEM,

TRIANGULAR DECOMPOSITION OF A BAND MATRIX BY GAUSS|AN ELIMINATION,

TRIANGULAR DECOMPQSITION OF Ao SYMMETRIC POSITIVE DEFINITE MATR|X BY THE CHOLESKY METHOD,

TR!ANGULAR DECOMPOSITION OF A MATRIX 3Y CROUT FACTORIZATION WITH PART|AL PIVOTING,

TRIANGULAR DECOMPOSITION OP A MATRIX AY GAUSS|IAN ELIMINATION W|TH COMBINED PARTIAL AND COMPLETE PIVO
TRiIDIAGCNAL COEFFICIENT MATRIX, PROVIDED THAT THE LU DECOMPOSITION 1S GIVEN,

TRANSFORMS
TRANSFORMS

A
A
A
A
TRANSFORMS A
A
A
TRANSFORMS A
A
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EQUATIONS WITH
EQUATIONS WITH
EQUATIONS WITH
WITH SYMMETRIC
WITH SYMMETRIC
OF A SYMMETRIC
OF A SYMMETRIC
OF A SYMMETRIC
OF A SYMMETRIC
INTO A SIMILAR REAL SYMMETR!C
GONAL ELEMENTS OF A HERM|TiAN
NG, THE LU DECOMPOSI|TION OF A
NG, THE LU DECOMPOSITION CF a
DECOMPOSITION OF A SYMMETR|C
MMETRIC MATRIX INTO A SIMILAR
MMETRIC MATRIX INTO A SIM|LAR
T LEAST SQUARES SOLUTION OF a4
T LEAST SQUARES SOLUTION OF A
N TRIDIAGONAL MATRIX WhicH IS
COMPLEX MATRIX INTO A SIMILAR
ERBELM CQMPUTES AN

EAR EQUATIONS AND COMPUTES AN
HE |INVERSE OF A MATRix AND AN
IVELY REFINED SOLUTION AND AN
A REAL MATRIX INTO A SIMILAR
TES THE EIGENVALUES OF A REAL
VEN REAL EIGENVALUE OF A REAL
ES AND EIGENVECTORS OF A REAL
COMPLEX EIGENVALUES OF A REAL
COMPLEX EIGENVALUE OF A REAL
ALL EIGENVALUES OF A COMPLEX
AND EIGENVALUES OF A COMPLEX
MATRIX [NTO A SIMILAR UN{ITARY
DECSYMTR| CALCULATES THE

ENT MATRIX, PROVIGCED THAT TFrE

STEM
STEM
STEM

OF LINEAR
OF LINEAR
OF LINEAR
NEAR EQUATIONS
NEAR EQUATIONS
E, EIGENVALUES
S EIGENVECTORS
LL EIGENVALUES
ND E!GENVALUES

W ELEMENT OF MAXIMUM ARBSOLUTE
X ELEMENT OF MAXIMUM ARSOLUTE

EFSIRK SOLVES iNiTiaL
|TH POSITIVE TERMS, USING THE
RENTIABLE FUNCTION OF SEVERAL
RENTIABLE FUNCTION OF SEVERAL
ION OF SEVERAL VARIABLES BY A
ION OF SEVERAL VARIABLFS BY A

TES THE SCALAR PRODUCT OF TwO
SCALAR PRODUCT OF TWQ COLUNMN
THE SCALAR PRODUCT OF Two RCY
TES THE SCALAR PRODUCT OF Twn
TES THE SCALAR PRODUYCT OF Two
INTERCHANGES ELEMENTS OF Two
INTERCHANGES ELERENTS OF TwO
INTERCHANGES ELERENTS OF TwO
HANGES ELEMENTS OF TWO COLUMN
ERCHANGES ELEMENTS OF TWO RCW
ATION OPERATION ON TWO COLUMN
ROTATION OPERATION ON TWO ROW
ION THE SCALAR PRODUCT OF TwoO

TRIDIAGONAL
TRIDIAGCNAL
TRIDIAGONAL
TRIDIAGCNAL
TRIDIAGCNAL

COEFFICIENT
COEFF|CIENT
COEFFICIENT
COEFFICIENT
CQEFFICIENT

HATRIX,
MATRIX,
MATR X,
MATRIX,

PROVIDED THAT THE LU DECOMPOS|TION AS CALCULATED BY DECTRIPIV IS GIVY

PROVIDED THAT THE U'DU DECOMPOSITION I8 GIVEN,

MATRIX,
MATRIX BY LINEAR INTERPOLATION USING A STURM SEQUENCE,
MATRIX BY INVERSE ITERATION,

MATRIX BY QR-|TERATION,

MATRIX BY QR=-ITERATION,

MATRIX,
MATRIX WHICH
MATRIX,
MATRIX,
MATRIX,

ONE 3v HOUSEHOLDERS TRANSFORMATION,

TRIDIAGCNAL ONE BY HOUSEHOLDERS TRANSFORMATION,

UNGERDETERMINED SYSTEM OF LINEAR EQUATIONS, PROVIDED THAT THE SIHMGULAR VALUE DECOMPOSITION OF THE CO
UNDERDETERMINED SYSTEM OF L INEAR EQUAT|ONS BY MEANS OF SINGULAR VALUE DECOMPOSITION,

UNITARY SIMILAR TO A GIVEN HERMITIAN MATRIX,

UNITARY UPPER HESSEWHBERG MATRIX W|TH A REAL NON-HEGATIVE SUBDIAGONAL,

UPPER BCUND FQOR THE ERRAR N THE SQLUTION OF A SYSTEM OF LINEAR EQUATIONS,

UPPER BCUND FQOR TS ERROR,

UPPER BCUND FOR ITS ERRQOR,

UPPER BCUND FOR 1TS ERROR, OF A SYSTEM OF LINEAR EQUATIONS,
UPPER HESSENBERG MATRIX BY THE WILKINSON TRANSFORMATION,
UPPER HESSENSERG MATRIX, PROVIDED THAT ALL EIGENVALUES ARE REAL,
UPPER HESSENBERG MATRIX, BY MEANS OF |NVERSE JTERATION,

UYPPER HESSENBERG MATR|X, PROVIDED THAT ALL EIGENVALUES ARE REAL,
UPPER HESSENBERG MATRIX BY MEANS OF DOUBLE QR«|JTERATION,

UPPER HESSENBERG MATRIX BY MEANS OF INVERSE ITERAT|ON,

UPPER HESSENBERG MATR!IX WITH A REAL SUBDIAGONAL,

UPPER HESSENBERG MATRIX WITH A REAL SUBDIAGONAL,

UPPER HESSENBERG MATRIX WITH A REAL NONNEGATIVE SUBDIAGONAL,
Uitu DECOMPOS|ITION OF A SYMMETRIC TRID|AGONAL MATRIX,

UrDU DECOMPOSITION 1S GIVEN,

VALGRICCM COMPUTES ALL ©|GENVALUES OF A COMPLEX JPPER HESSENBERG MATRIX WITH A REAL SUBD|AGCNAL,
VALGRISYMTR| COMPUTES ALL EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX BY QR-ITERATION,

VALSYMTR| COMPUTES ALL, OR SOME CONSECUTIVE, EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX BY LINEAR
VALVE .

vaLVE,

VALUE PROBLEMS, GIVEN AR AN AUTONOMOUS SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS,
VAN W1 JUNGAARDEN TRANSFORMATION, /

VAP IABLES BY A VAR!AHLE METRIC METHOD,

VARIABLES BY A VARIABLE METR|C METROD,

VARIABLE METR|C HMETHOD,

VARIABLE METRIC METHOUD,

VECSYMTRI COMPUTES EIGENVECTORS OF A SYMMETRIC TR DIAGINAL MATRIX BY
VECTORS,

VECTORS,

VECTORS,

VECTORS,

VECTORS,

VECTORS,

VECTORS,

VECTORS,

VECTORS,

VECTORS,

VECTORS,

VECTORS,

VECTORS,

TRIDIAGCNAL
TRIDIAGCNAL
TRIDIAGCNAL
TRICIAGCHAL
TRIDIAGCHNAL
TRIDIAGCNAL
TRICIAGCHAL
TRIDIAGCNAL
TRIDIAGCNAL
TRIDIAGCNAL

IS UNITARY S{MILAR TO A G|VEN HERMITIAN MATRIX

OF WHICH THE TRIANGULARLY DECOFPOSED FOR
BY MEANS OF SINGLE QR=-ITERATICN,

BY MEANS OF SINGLE QR«ITERATICN,

8Y AN EXPCNENTI

INVERSE ITERATION,

34425
34427
34428
34421
34422
34151
34152
34165
34361
34363
34364
34423
34426
34420
34140
24143
34282
34283
34364
34366
34241
34243
34244
34253
34470
34160
24181
34186
34190
34191
34372
34373
34366
34420
34421
34372
34165
24451
34025
34230
33160
32020
34214
34215
34214
34215
34152
34010
34014
24015
34016
24017
34030
34034
34035
34031
34032
34040
34041
34410
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R PRODUCT OF A ROW VECTOR AND
ROBUCT OF A COLUMN VECTOR AND
CT OF A ROW VECTOR AND COLUMHN
TS OF A ROW VECTOR AND COLUWMN
PUTES THE SCALAR PRODUCT OF A
S THE SCALAR PRODUCT OF A RCW
NTERCHANGES ELEMENTS OF A RCW
MPUTES THE INFINITY NORM OF A
S THE SCALAR PRODUCT OF A RCW
HE SCALAR PRODUCT OF A CoLuMn
T MULTIPLIES A COFPLEX COLUMN
WCST MULTIPLIES A COMPLEX RCW
MULVEC FULTIPLIES A

MULROW MULTIPLIES A RCV
ROWCST MULTIPLIES A RCY
MULCOL MULTIPLIES A COLUMN
COLCST MULTIPLIES A COLUMN
ELMVEC ADDS A SCALAR TIMES A
ROW ADDS A SCALAR TIMES A RCYW
DUPCOLVEC COPIES (PART OF) A
MCOLVEC ADDS A SCALAR TIMES A
ROW aDDs A SCALAR TIMES a Rew
DUPROWVEC COPIES (PART OoF) A
MROWVEC ADDS A SCALAR TIMES A
ADDS A SCALAR TIFES A COLUMN
ROW ADDS A SCALAR TIMES A ROW
DUPVEC COPIES (PART 0oF) A
VECRQOW COPIES (PART OF) A ROW
COL COPIES (PART QOF) A COLUMN
ADDS A SCALAR TIMES A COLUMN
ROW ADDS A SCALAR TIMES A RCW
NIVEC INITIALIZES (PART OF) A

POSITIVE TERMS, USING THE VAN
PPER HESSENBERG MATRIX BY THE
ORMATION CORRESPONDING YO TkE
ORMAT|ON CORRESPONDING TO THE

ZEROIN SEARCHES FOR A

VECTOR,
VECTOR,

VECTOR,

VECTOR,

VECTOR AND
VECTOR AND
VECTOR AND
VECTOR AND
VECTOR AND
VECTOR AND
VECTOR BY
VECTOR BY
VECTOR BY
VECTOR pvY
VECTOR BY
VECTOR BY
VECTOR RY
VECTOR TO
VECTOR TO
VECTOR TO

VECTNR TO 4

VECTOR TO
VECTOR TO
VECTOR TO
VECTOR TO
VECTNR ToO
VECTOR T0O
VECTOR TO
VECTOR TO
VECTOR TO
YECTOR TC

A ROW OF A SyMMETRIC
COLUMN VECTOR,
COLUMN VECTOR,

MATRIX,

DELIVERS THE [NDEX FOR AN ELEMENT MAXIMAL

VECTCR,

VECTOR,
CQMPLEX HUMRER,
COMPLEX NUMAER,
SCALAR,

SCALAR,
SCALAR,

ANOTHER VECTOR,
ANOTRER ROW VECTOR,
A COLUMN VECTIR,
COLUHN VECTIR,
COLUIN VECTAR,
ROW VECTOR,

ROW VECTUR,

ROV VECTOR,

e x> rP P

VECTOR,
VECTOR,
VECTOR,
VECTUR,
A VECTOR,

VECTOR wWiTH A CCHSTANT,
VECVEC COMPUTES THE SCALAR PRODUCT OF TWO VECTORS,
VIJNGAARDEN TRANSFORMATION,

HILKINSCN

WILKINSCN TRANSFORMATION AS PERFORMED BY TFMREAHES,
WILKINSCN TRANSFORMAT ION AS PERFORMED BY TFMREAHES,
ZERCIN SEARCHES FOR A ZERO OF A FUNCTION OF ONE VARIABLE
IN A GIVEMNM

ZERO OF A

TRANSFORMAT ON,

FUNCTION OF ONE VARIABLE

SCALAR STORING THE RESULT IN ANOTHER VECTOR,
SCALAR STORING THE RESYLT IN ANOTHER

ROWVECTOR,

I
A
A
A
A ROW VECTOP, AND RETURNS THE SUBSCRIPT VALUE OF THE NEW
A
A
A
A

INTERVAL,

IN MODULUYS,

ON A VECTOR,
ON THE COLUMNS OF A MATRIX,
IM A GtVEN

ROw ELEMENT OF MAXIMUM

INTERVAL,

ABSOLUTE V

34011
34012
34013
34033
34018
34013
34033
31060
34011
24012
34352
34353
31020
31021
31132
31022
31131
34020
34024
31034
34022
34029
31032
34027
34028
34025
31030
31081
31633
34021
34026
31010
34010
32020
34170
34171
34172
34150
34150

"!"I’I“!"INUUUUOUOUUUUODUUQUOOUOG\ODUUUUOOOOU

-
@

e [
NOoOo OO oo

[EN
oo PENNNOEOONN DN DOD DD DD

e s
FNF NN

-
@



31010
31011
31012
31013
31014
31020
31021
34022
31030
31031
31032
31033
31034
31035
31040
31041
31050
31060
31131
31132
32010
32020
32051

32070
330190
33011
33012
33013
33014
33015

33016
33017
33018
33040
33060

33080

33120

33130

33131

33160

34010
34011
34012
34013
34014

N MOODUONNNUODO0O0OUO0O0ODOUDUOOU0

[aNaNaaNalNalNel

[aNalalal

[eRviiviiele]

W
DHANBNONNNVNNNNNELE DPDODOOCOO

NN
® oo

10
12
14
18
20
22
24
26
28

30

32

38

38

34

Lo K¢ e e 0

INIVEC INITIALIZES (PART OF) A VECTCR WITH A CONSTANT,

INIMAT INITIALIZES (PART OF) A MATRIX W|TH A CONSTANT,

INIMATD INITIALIZES (PART OF) A DIAGONAL OR CODIAGONAL WITH A CONSTANT,

INISYKHD INITIALIZES A CCD!AGONAL OF A SYMMETRIEC MATRIX WITN A CONSTANT,

INISYMROW IN|T{ALIZ2ES A ROW OF A SYMMETRIC MATR(X VITH A CONSTANT,

MULVEC MULTIPLIES A VECTOR BY A SCALAR,

MULROW MULTIPLIES A ROW VECTAR BY A SCALAR STORING THE RESULT IN ANOTHER VECTOR,

MULCOL MULTIPLIES A COLUMN VECTOR BY A SCALAR,

DUPVEC COPIES (PART OF) A VECTOR TO A VECTOR,

DUPVECROW COPIES (PART OF) A ROW VECTOR TO A VECTOR,

DUPROWVEC COPIES (PART OF) A VECTOR TO A ROW VECTOR,

DUPVECCOL COPIES (PART OF) A COLUMN VECTOR TO A VECTOR,

DUPCOLVEC COPIES (PART CF) A VECTOR TO A COLUMN VECTOR,

DUPMAT COPIES (PART OF) A MATRIX TO (AN OTHER) MATRIX,

POL EVALUATES A POLYNCIIAL G{VEM IN THE GRUMERT FORM BY THE HORNER SCREME,

NEWPOL EVALUATES A POLYNOMIAL GIVEN IN THE NEWTON FORM BY THE HORNER SCHEME,

NEWGRN TRANSFORMS A POLYNO"!AL REPRESENTATINN FROM NEWTON FORM INTO GRUNERT FORM,

ABSMAXVEC COMPUTES THE INFINITY MORM OF a VECTOR AND DELIVERS THE (NDEX FOR AN ELEMENT MAXIMAL IN MODULUS,

COLCST MULTIPLIES A COLUMN VECTOR BY A SCALAR,

ROWCST MULTIPLIFES A ROW VECTOR BY A SCALAR

EULER COMPUTES THE SUM OF AN ALTERNATING SERIES,

SUMPOSSERIES COMPUTES THE SUM CF A CONVERGENT 8ERIES WITH POSITIVE TERMS, USING THE VAN WIJUNGAARDEN TRANSFORMATION,

INTEGRAL ( QUADRATURE ) COMPUTES TRE DEFINITE [NTEGRAL OF A FUNCTION OF ONE VAR!ABLE OVER A FINJTE OR INFINITE INTERVAL OR OVER A Ny

MBER OF CONSECUTIVE INTERVALS,

QADRAT ( QUADRATURE ) COMPUTES THE DEFINITE |NTEGRAL OF 4 FUNCTION OF ONE VARIABLE OVER A FINITE INTERVAL,

RK4 SCLVES A SINGLE FIRST ORDER DIFFEREHTIAL EQUATION USING A 5=TH ORDER RJUNGE KUTTA METHOD,

RK1N SOLVES A SYSTEM CF FIRST CRDER DIFFERENT|AL EQUATIONS USING A 5=TH ORDER RUNGE KUTTA METHOD,

RK2 SCLVES A SECOND ORDER DIFFERENTIAL EWUATION USING A S5=TH ORDER RUNGE KUTTA METHCD,

RK2N SOLVES A SVSTENM CF SECCND ORDER DIFFERENT|AL FQUATIONS USING A D=TH ORDER RUNGE KUTTA METHOD,

RK3 SCLVES A SECOND ORDER DIFFERENTIAL EGUATION USING A 5«TH ORDER RUNGE KyUTTA METHOL; NO NERIVATIVES ALLOWED ON RIGHT HAND SIDE,

RK3IN SOLVES A SYSTFM CF SECCND ORDER DIFFERENTIAL EQUATIONS USING A Y=TH ORDER RUNGE KUTTA METHOD; NO DERIVATIVES ALLOWED ON RIGHT H

AND SIDE,

RK4A SOLVES A SINGLE DIFFERENTIAL EGUATION 3Y SOMETIMES USING A DEPEWNDENT VARIABLE AS INTEGRATICN VAR|ABLE,

RK4NA SOLVES A SYSTE!N OF DIFFERENTIAL EQUATIONS 8Y SOMETIMES USING THE DEPENDENT VARJABLE AS INTEGRATION VARJABLE,

RKGENA SOLVES A SVSTE!! OF FIRST ORDER DIFFERENT|AL EQUATIONS USING THE ARC LENGTH AS |NTEGRATION VARIABLE,

MODIFIER TAYLOR SOLVES AN INITIAL ( BOUNUARY ) VALUE PROBLEM, GIVEN AS A SySTEM OF FIRST ORDER DIFFERENTIAL EQUATICNS, By A ONEeSTEP
TAYLCR METHOG} THIS METHOD 18 PARTICULARLY SUITABLE FOR THE INTEGRATION OF LARGE SYSTEMS ARISING FROM PARTIAL DIFFERENTIAL EQUATION

S, PRCVIDED HIGHER CRPER DERIVATIVES CAN BE EASILY OBTAINED,

MODIFIEDR RUNGE KUTTA SOLVES AN INITIAL ( ROIUNDARvV ) VALUE PROBLEM, GIVEN AS A SYSTEM OF FIRST ORDER ( NON<LINEAR ) DIFFERENTIAL EQUA
TIONS, BvY A STARILIZED RUNGE KUTTA METHOU WITH L IM|TED STORAGE REQUIREMENTS,

MULTISTEP SOLVES AN INiTIAL VALUE PRORLEM, G|VEN AS A SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS, BY ONE OF THE FOLLOWING MULT|STE
P METHODS{ GEARS, ADa¥$ - HCULTON, CR ADaMS « BASHFORTH METHOD; WITH AUTOMAT|C STEP aND ORDER CONTROL AND SUITARLE FCR THE INTEGRAT|

ON OF STIFF DIFFERENT]AL EQUATIONS,

EFERK SOLVES INITIAL VALUE PROBLENMS, GIVEN AS AN AUTONOMOUS SySTEM OF FIRST ORPER DIFFERENTIAL EQUATIONS, By AN EXPONENTIALLY FITTED

EXPLICIT RUNGE KUTTA METHCD WHICH USES THE JACOBIAN MATRIX AND AUTOMATIC STEP CONTROL; SUITARLE FOR INTEGRATION CF STIFF DIFFERENT

?
|AL EQUATIONS,
LINIGERY SOLVES INITIAL VALUE PROBLEMS, GIVEN AS AN AUTONOMOUS SYSTEM OF FIRST ORDER DIFFERENTIAL EGUATIONS, By AN [MPLICIT, EXPONEN

TIALLY FITTED, FIRST ORDER CNEwSTEP METHOD WI|TH NO AUTOMATIC STEP CONTROL) SUITABLE FOR INTEGRATION OF STIFF DIFFERENTIAL EQU&TIONS'

LINIGER? SOLVES IN!TialL VALUE PROBLEMS, GIVEN AS AN AUTONOMOUS SYSTEM OF FIRST ORDER DI|FFERENTIAL EQUATIONS, BY AN (MPL|cIT, EXPONEN
TIALLY FiTTED, SECOND ORDER ONE=STEP METHOD WITH NO AUTOMATIC STEP CONTROL; SUITABLE FOR |NTEGRATION OF STIFF DIFFERENTIAL EQUATIONS

éFSIRK SOLVES iNITIAL VALUE PROBLEMS, GIVEN AS AN AUTONOMOUS SYSTEM OF F|RST ORDER D|FFERENTIAL EGUATIONS, BY AN EXPONENTIALLY FITTg
D, SENM| = IMPLICIT RUNGE KUTTA METHOD; SUITABLE FOR INTEGRATION OF STIFF DIFFERENT|AL EQUATIONS,

VECVEC COMPUTES THE SCALAR PRODYCT CF TWo VECTORS,

HATVEC COMPUTES THE SCALAR PRODUCT CF A RQOW VECTOR AND VECTOR,

TAMVEC COMPUTES TRE SCALAR PRODUCT CF A COLUMN VECTOR AND VECTOR,

MATMAT COMPUTES THE SCALAR PRODUCT OF A ROW VECTOR AND COLUMN VECTOR,

TAMMAT COMPUTES THE SCALAR PRODUCT OF TWO COLUMN VECTORS,
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MATTAM COMPUTES THE SCALAR PRQDUCT OF TWO ROW VECTORS,

SEQVEC COMPUTES ThHE SCALAR PRODUCT CF TWO VECTORS,

SCAPRp1 COMPUTES THE SCALAR PRODUCT OF TWQ VECTORS,

SYMMATVEC COMPUTES THE SCALAR PRODUCT OF A VECTOR AND A RQW OF A SYMMETRIC MATRIX,

ELMVEC ADDS A SCALAR TIMES A YECTOR TO ANOTHER VECTOR,

ELMVECCOL ADDS A SCALAR TIMES A COLUMN VECTOR TO A VECTOR,

ELMCOLVEC ADDS A SCALAR TIMES A VECTOR TO A COLUMN VECTOR,

ELMCO{, ADDS A SCALAR TIMES A COLUMN VECTOR TO ANOTHER COLUMN VECTOR,

ELMROW ADDS A 8S8CA{AR TIMES A ROW VECTOR TO ANOTHER ROW VEGTOR,

MAXELMROW ADDS A SCALAR TIMES RQW VECTOR TO A ROW VECTOR, AND RETURNS THE SUBSCR|PT VALUE OF THE NEY ROW ELEMENT OF MAXIMUM ABSOLU
TE VALUE,

ELMVECRCW ADDS A SCALAFR TIMES A RQW VECTOR TO A VECTOR,

ELMROWVEC ADDS A SCALAR TIMES A VECTOR TU A ROW VECTOR,

ELMROWCOL ADDS A SCALAR TIMES A COLUNN VECTOR TO A ROW VECTOR,

ELMCOLROW ADDS A SCALAR TIMES A RQW VECTUR TO A COLUMN VECTOR,

ICHVEC INTERCHANGES ELEMENTS OF TwO VECTORS,

ICHCOL INTERCHANGES ELEMENTS QOF TwO COLUMN VECTORS,

I CHROW [NTERCHANGES ELEMENTS OF TwC ROW VECTORS,

ICHROWCOL INTERCHANGES ELEMEMTS OF A ROW VECTOR AND COLUMN VECTOR,

ICHSEGQVEC INTERCHANGES ELEMENTS OF TwO VECTORS,

ICHSEG INTERCHANGES ELEMENTS OF TwO VECTORS,

ROTCOL PERFORMS AN ELEMENTARY ROTATION OPERATION ON TWO COLUMN VECTORS,

ROTROW PERFORMS AN ELEMENTARY ROTATION OPERATION ON TWO ROW VECTORS,

SOL SOLVES A SYSTEM OF LINEAR EQUATIONS, OF WH|CH THE TRIANGULARLY DECOMPOSED FGCRM OF THE MATRIX IS GIVEN,

INV COMPUTES THE INVERSE OF A FATRIX OF WrICH THE TRIANGULARLY DECOMPOSED FORM 1S GIVEN,

SOLELNM SOLVES A SYSTEM OF LINEAR EQUATIONG, OF WHICH THE TRIANGULARLY DECOMPOSED FORM OF THE MATRIX I§ GIVEN,

SOLBN[ SOLVES A SYSTEM CF LINEAR EGUATIONS |TH BANO MATRIX, WHICH 13 DECOMPOSED BY DECBND,

LSQSOL SOLVES 4 LINEAR LEAST SQUARES PROBLEM, PROVIDED THAT THE COEFFICIENT MATRIX HAS BEEN DECOMPOSED BY LSQORTDEC,

LSQDGL INV COMPUTES THE DIAGCNAL ELEMENTS 0OF THE INVERSE OP M'M (M COEFFICIENT MATR(X) OF A LINEAR LEAST SQUARES PRCBLEM,

LSQORTNDEC PERFORMS THE HOUSEHOLDER TRIANGULARIZAT|ON OF THE COEFFICIENT MATRIX OF A LINEAR LEAST SQUARES PROBLEN,

LSQORTDECSOL SOLVES A LINEAR LEAST SQUARES PROBLEM AND COMPUTES THE D] AGONAL ELEMENTS OF THE (NVERSE OF MtM (M COEFFICIENT MATRIX),
TFMSYFTR1Z2 TRANSFORFS A REAL SYMMETRIC MATRIX INTO A SIMiLLAR TRID|AGONAL ONE BY HOUSEHOLDERS TRANSFORMATION,

BAKSYMTRI2 PERFCRMS THE 3ACK TRANSFCRMATION CORRESPONDING TO THE HOUSEHOLDERS TRANSFORMATION AS PERFORMED BY TFMSYNTRIZ,

TFMPREVEC COMPUTES THE TRANSFORMING !MATRIX IN GOMBINATION W|{TH PRQCEDURE TFMSYMTR!2,

TFMSYILTRI] TRQAWNSFORMS A REAL SYMMETRIC HaTRIX |[NTO A S|Mi(AR TRIDIAGONAL ONE BY HOUSEHOLDERS TRANSFORMATION,

BAKSYNTR 11 PERFORMS THE BACK TRANSFCORMATION CORRESPONDING TO THE HOUSEHOLDERS TRANSFORMAT!AN AS PERFORMED BY TFMSYMTRli'

ZEROIN SEARCHES FOR A ZERO CF A FUNCTION OF ONE VARIABLE IN A GIVEN INTERVAL, .
VALSYMTRI COMPUTES ALL, OR SOME CONSECUTIVE, E|GENVALVES OF A SYMMETRIC TRIDIAGONAL MATRIX BY LINEAR |[NTERPOLATION USING A STURM SHg
UENCE,

VECSYFTR| COMPYTES E|GENVECTORS OF A SYMMETR|C TRIDIAGONAL MATRIX BY INVERSE ITERATION,

EI1GVALSYM2 COMPUTES ALL, OR SOME CONSECUTIVE E|JGENVALVES OF A SVMHETRDC MATRI1X, STORED IMN A Twn-DIMENS|IONAL ARRAY, BY LINEAR INTERPO
LATION USING A STURFM SEQUENCE,

E1GSYrN2 COMPUTES ALL, OR SOME CONSECUTIVE E|GENVALUES AND ElGENVECTO?S OF A SYMMETRIC MATRIX, WHICH 1S STORED IN A TWO=D|MENSIONAL A
RRAY,

E1GVALSYM1 COMPUTES ALL, OR SOME CONSECUTIVE E|GENVALUES OF A SYMMETR|C MATRIX, STORED IN A ONE=DIMENSIONAL ARRAY, BY LINEAR INTERPO
LATION USING A STURN SEQUENCE,

E1GSvYry COMPUTES ALL, OR SOME CONSECUTIVE EIGENVALUES AND EIGENVECTORS OF A SYMMETRIC MATRIX, WHICH IS STORED IN A ONE=CIMENSIONAL A
RRAY,

QRISYFTRI COMPUTES ALL EIGENVECTORS AND EIGENVALUES OF A SYMMETRIC TR|DIAGONAL MATRIX BY QR« | TERATION,

GRIVALSYH2 COMPUTES ALL EIGENVALUES OF A $YIMETRIC MATRIX, STORED IN A TWO=DIMENSIONAL ARRAY, BY QP=1TERATION,

QR1SY!. COMPUTES ALL EIGENVALUES AND EIGENVECTORS OF A SYMMETRIC MATRIX BY QR- I TERATION,

ORIVALSYN] COMPUTFS ALL EIGENVALUES OF A tVYMETRIC MATRIX, STORED IN A ONE-DIMENS|ONAL ARRAY, BY QRaITERATION,

VALQRISYMTRI COMPUTES ALL EIGENVALUES OF ; SYMMETRIC TRIDIAGONAL MATR|X BY QR={TERATION,

TFMREAHES TRANSFORMS A REAL MATRIX INTO A S{M{LAR UPPER HESSENBERG MATRIX 3Y THE W|LKINSON TRANSFORMATION,

BAKREAHESY PERFCRIMS THE BACK TRANSFORMATION CORRESPONDING TO THE W{LK|NSON TRAMSFORMATION AS PERFORMED BY TFMREAHES, ON p VECTOR,
SAKREAHESZ PERFORMS THE BACK TRANSFORMATION CORRESPONDING TO THE W{LKINSON TRANSFORMAT(ON AS PERFORMED BY TFMREAHES, ON TME COLUMNS
OF A FATRIX,

EQILBK TRANSFORNMS A MATRIX [MTO A SIMILAR EQUILIBRATED MATRIX,

BAKLBR PERFORMS THE BACK TRANSFORMATION CORRESPONDING TO THE EGQGUILIBRATION AS PERFORMED BY EQILBR,

REAVALQR! CA{CULATES THE EIGENVALUES OF a REAL UPPER HWESSENBERG MATRIX, PROVIDED THAT ALL EIGENVALUES ARE REAL, BY MEANS OF SINGLE @
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R=|TERATION,

REAVECHES CALCULATES THE E{GENVECTOR CORRESPONDING TO A GIVEN REAL EIGENVALUE OF A REAL UPPER HESSENBERG MATRIX, By MEANS OF INVERSE
ITERATION,

REASCL NORMALIZES THE COLUMNS OF A TwO-DIMENSIONAL ARRAY,

REAQR| CaLCULATES THE FIGENVALUES AND EIGENVECTORS OF A REAL UPPER HESSENBERG MATR|X, FROVIDED THAT ALL EIGENVALUES ARE REAL, BY MEp

NS OF SINGLE GR-ITERATION,

COMVALAR] CALCULATES THE REAL AND COIMPLEX EIGENVALUES OF A REAL UPPER WESSENBERG MATRIX By MEANS GF DOUBLE QR=|TERATION,

COMVECHES CALCULATES THE E{GENVECTOR CORRESPONDING TO A GIVEN COMPLEX EIGENVALUE OF A REAL UPPER HESSENBERG MATRIX BY MEANS OF INVER

SE ITERATION,

COMSCL 18 Ab AUXILIARY PROCEDURE FOR THE cOHMPUTATION OF COMPLEX EIGENVECTORS OF A REAL MATRIX,

LINEMIN 1§ N/kuxchARv PROCEDURE FCR OPT|MIZATION,

RNK1UPD 18) AN AUXILIARY PROCEDURE FOR OPTIMIZATION,

DAVUPD 1S AN AUXILIARY PROCEDYRE FCR OPTIMIZATION,

FLEUPD 1S AN AUXIL IARY PROCEDURE FOR OPTIMIZATION,

RNKIMIN ( OPTIM|ZATION ) MINIMIZES A GIVEN DIFFERENTIABLE FUNCT!ON OF SEVERAL VARIABLES BY A VARIABLE METRIC METHOD,

FLEMIN ( OPT | M{ZATICH ) MINIM|IZES A GIVEN DIFFERENTIABLE PUNCT|ON OF SEVERAL VARJABLES BY A VARIABLE METRIC METHOD,

GONJ GRAD SOLVES A SYMIIETRIC AND POSITIVE DEFINITE, SYSTE!\ OF LINEAR EQUAT|ONS BY THE METHND OF CONJUGATE GRADIENTS,

AAXMAT FINDS THE INDICES AND MODULUS OF THAT MATRIX ELEMENT OF MAXIMUM ABSOLUTE VALUE,

GSSELM PERFORMS THE TRIAHGULAR DECOMPOSITION OF A MATRIX 8Y GAUSSIAN ELIMINATION W|TH COMBINED PART|AL AND COMPLETE PIVCTING,

GSSSOL SOLVES A SYSTEM OF LINEAR EQUATIONS 3Y GAUSSIAN ELIMINATION WITH COMBINED PARTIAL AND COMPLETE P{VOTING,

INV{ COMPUTES THE INVERSE OF A MATRIX OF wHICH THE TRIANGULARLY DECOMPOSED FORM 1S GIVEN,

GSSINY COMPUTES THE (NVERSE OF A MATRIX,

ONENRWM INV COMPUTES THE 1-NORM OF THE INVERSE OF A MATR|X, WHICH S TRIANGULARLY DECOMPOSED,

ERBELM COMPUTES AN UPPER BOUND FOR THE ERROR IN THE SOLUT(ON OF A SYSTEM OF LINEAR EQUATIONS,

GSSERB IS AN AUXILIARY PROCEDURE FOR THE SOLUTION OF LINBAR EQUATION WITH AN UPPER BOUND FOR THE ERROR,

GSSSOLERAB SOLVES A SYSTEN OF L INEAR EQUAT|ONS AND COMPUTES AN UPPER BOUND FOR [TS ERROR,

GSSINVERAB COMPUTES THE INVERSE OF A MATRIX AND AN UPPER BOUND FOR |TS ERROR,

ITISOL COMPUTES AN ITERAT|VELY REFINED SOLUT|ON OF A SYSTEM OF LINEAR EQUATIONS, THE MATRiX OF WHICh IS GIVEN IN ITS TRIANGULARLY DE

COMPOSED FORM,

GSSITISOL COMPUTES A!l ITERATIVELY REFINEDL SOLUTION OF A SySTEM OF LINEAR EQUATIONS,

GSSNR| IS AN AUXILIARY PROCEDURE FOR THE |TERATIVELY REFINED SOLUTION OF A SYSTEM OF LINEAR EQUATIONS,

ITISOLERB COMPUTES AN (TERAT|VELY REFINED SHLUTION AND AN UPPER BOUND FOR TS ERROR, OF A SYSTEM OF LINEAR EQUATIONS, OF WHICH THE T

RIANGULARLY DECOMPOSED FORM OF THE MATRIX 1S GIVEN,

GSSITISOLERB COMPUTES AN ITERATIVELY REFINED SOLUTION OF A SYSTEM OF LINEAR EQUATIONS,

HSHREABID TRANSFORMS A REAL MATRIX INTO BID|AGONAL FORM BY MEANS OF MOUSERODLDER TRANSFORMATION,

PSTTFI4MAT CALCULATES THE POSTMULTIPLYING MATRIX USED BY HSHREABID TO TRANSFORM A MATRIX INTO BIDIAGONAL FORM,

PRETFIMAT CALCULATES THE PREMULTIPLYING NATRIX USED BY HSHREABID TO TRANSFORM A MATRIX INTO 8IDIAGONAL FORM,

QRISNGVALBID CALCULATES THE S|NGULAR VALUES OF A REAL BIDIAGONAL MATRIX BY MEANS OF |MPLICIT QR=!TERATION,

QRISNGVALDECSID CALCULATES THE SINGULAR VALIE DECOMPOSITION OF A REAL MATRIX OF WHICH A BIDIAGONAL DECOMPOSITICN 1S GIVEN, BY MEANS

OF AN 1MPLICIT QR~|TERATION,

QRISNGVAL CALCULATES THE SINGULAR VALUES OF A REAL MATRIX BY MEANS OfF AN IMPLICIT GRaITERATION,

ORISNGVALDEC CALCULATES THE 8INGULAR VALUE DECOMPOSITION OF A REAL MATRIX 3y MEANS OF AN IMPLICIT QRe|TERATION,

SOLSVDOVR CALCULATES THE LEAST SQUARES SOLUT|ON OF A OVERDETERMINED SVSTEM OF LINEAR EQUATIONS, PROVIDED THAT THE SINGULAR VALUE DEC

OMPOSITION OF THE CCEFFICIENT MATRIX 1S GIVEN, .

SOLOVR CALCULATES THE LEAST SQUARES SOLUTION OF A OVERDETERMINED SYSTEM OF LINEAR EQUATIONS B8Y MEANS OF SINGULAR VALUE DECOMPOSITION

éOLSVDUND CALCULATES THE BEST LEAST SQUARES SOLUTION OF A UNDERDETERMINED SYSTEM OF | INEAR EQUATIONS, PROVIDED THAT THE SINGULAR vaL
JE DECOMPOSITION OF THE COEFFICIENT MATRIX IS GIVEN,

SOLUND CALCULATES THE BEST LEAST SQUARES SOLUT|ON OF A UNDERDETERMINED SYSTEM OF L|NEAR EQUATIONS BY MEANS OF SINGULAR VaLUE DECOMPO
SITION,

HOMSOLSVD SOLVES A HOWMOGENECUS SYSTEW OF LIHEAR EQUATIONS, PROVIDED THAT THE SINGULAR VALUE DECOMPOSITION OF THE CCEFFICIENT MATRIX
1S GIVEN,

HOMSOL SOLVES A HOMCGENEOUS SYSTEM CF LINEAR EQUATIONS By MEANS OF SINGULAR VALUE DECOMPOSITION,

PSDINVSYD CALCULATES THE PSEUDO INVERSE OF A MATRIX, PROVIDED THAT THE SINGULAR VALUE DECOMPOSITION |S GIVEN,

PSDINV CALCULATES THE PSEUDC INMVERSE OF A MATRIX BY MEANS OF THE SINGULAR VALUE DECOMPOSITION,

DEC PERFORMS THE TRIANGULAR DECOMPOS|TION OF A MATRIX BY CROUT FACTORIZATION WITH PARTIAL PIVOTING,

DECSOL SOLVES A SYSTEM OF LINEAR EQUATIONS 3Y CROUT FACTOR|ZATION WITH PARTIAL PIVOTING,

DECINV COMPUTES THE INVERSE OF A MATRIX,

DETERM COMPUTES THE DETERMINANT OF A MATRIX PROVIDED THAT THE MATRIX HAS BEEN DECOMPOSED BY DEC OR GSSELM,

CHLDEC?2 ( LINEAR EQUATIONS ) COMPUTES THE CHOLESKY DECOMPQOSITION OF A SYMMETRIC POSITIVE DEFINITE MATRIX, STORED IN A TWOaDIMENS|ONg
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L ARRAY,

CHLDECY ( LINEAR EQUATICHNS ) COMPUTES THE CHOLESKY DECOMPQSITION OF A SYMMETRIC POSITIVE DEFINITE MATRIX, STORED CCLUMNWISE IN A ONE
=D IMENSIONAL ARRAY,

CHLDETER!2 COMPUTES THE DETERMINANT OF A SYYMETRIC POSITIVE DEFIN|TE MATRIX, WHICH HAS BEEN DECOMPOSED BY CHLDEC2,

CHLCETERM{ COMPUTES THE DETERMINANT OF A SYUHMETRIC POSITIVE DEFINITE MATRIX, WHICH HaS BEEN DECCMPNSED BY CHLDECY,

DECBND PERFORMS THE TRIANGULAR DECOMPOSITION OF A BAND MATRIX AY GAUSS|AN ELIMINAT|ON,

DETERMBND COMPUTES THE DETERMINANT CF A SANND MATRIX, WHICH HAS BEEN DECOMPQOSED BY DECBND,

DECSOLBND PERFORHAS THE DECOMPOSITION OF 4 BAND MATR|X BY GAUSSIAN ELIM{NAT|ON AND SO|.VES THE SYSTEM OF LINEAR EGUAT|ONS,

CHLDECBND PERFORMS THE TRIANGULAR DECOMPOSIT|ON OF A SYMMETRIC POSITIVE DEFINITE MATRIX Bv THE CHOLESKY METHOD,

CHLDETERMBND COMPUTES THE DETERMINANT OF A SYMMETRIC POSITIVE DEFINITE MATRIX, WHICH HAS BEEN DECOMPOSED BY CHLDECEND,

CHLSOLBND SOLVES A SVYSTEN OF LINEAR EQUATIOMS WITH SYMMETRIC POSIT|VE DEF{{ITE BAND #NATR!X, WHICH HAS BEEN DECONPOSED BY CHLDECBND,

CHLDECSOLBND PERFORNMS THE DECOMPOSITION OF A SYMMETRIC POSITIVE DEFINJTE BAND MATR|X AND SOLVES THE SYSTEM OF LINEAR EQUATIONS BY TH
E CHOLESKY METHOD,

COMABS COMPUTES THE MODULUS OF A COMPLEX NUNAER,

COMMUL MULTIPLIES TWN COMPLEX NUMBERS,

COMDIV COMPUTES THE QUOTIENT QF TwO COMPLEX MUMBERS,

COMSQRT COMPUTES THE SQUARE ROOT OF A COMPLEX NUMBER,

CARPQOL TRANSFORMS A COMPLEX NUMBER GIVEN IN CARTES|AN COORDINATES |NTO POLAR COORD|NATES,

COMKWD COMPUTES THE RCOTS OF A QUADRATIC EQUATION W!ITH COUPLEX COEFFICIENTS,

COMCOLCST MULTIPLIES A COMPLEX COLUMN VECTOR BY A COMPLEX NUNMBER,

COMROWCST MULTIPLIES A COMPLEX ROW VECTOR B¥ A COMPLEX NU'{BER,

COMMATVEC COMPUTES THE SCALAR PRODUCT OF A COMRLEX ROW VECTOR AND A COUPLEX VECTOR,

HSHCOMCOL TRANSFORMS A COMPLEX VECTOR 1!1TO 4 VECTOR PROPORTIONAL TO A UNIT VECTOR,

HSHCOMPRD PREMULTIPLIES A CCHPLEX MATRIX wi™+ A COMPLEX HOUSEHOLDER "MATRIX,

ROTCOLCCL PERFORMS A ROTATICH ON TWC COMPLEX COLUMN VECTORS,

ROTCOMRO¥ PERFORMS A ROTATICN OGN TWC COMPLEX ROW VECTORS,

COMEUCNRM COMPUTES THE EUCLIDEAN NOR!} OF A COMPLEX MATRIX,

SCLCOM NORMALIZES THE COLUNNS OF A COMPLEX 1ATRIX,

EQILBRCOM TRANSFORMS A COMPLEX MATRIX IMTC A SIMILAR EQUILIBRATED COMPLEX MATRIX,

JAKLBRCOM PERFORAS THE BACK TRANSFORNATION CORRESPONDING ¥8 THE EQUILIBRATION AS PERFORMED BY EQILBRCOM,

{SHHRMTR TRANSFORMS A HERI{TIAN MATRIX (NTA A SIMILAR REAL SYMMETRIC TRID|IAGOMNAL ™ATRI|X,

HASHHRMTRIVAL DEL!VFRS THE "IAIN DIAGCNAL ELE tENTS AND SQUARES OF THE CCDIAGONAL ELEMENTS OF A HERMITIAN TRIDIAGONAL MATRIX WHICH |S U
NITARY SifiLarR TO A GIVEN HERMITIAN HATRIX,

SAKHARMTRI PERFORNS TiHE BRACK TRANSFORMATION CORRESPONDING TO ASHHRMTRY,

ASHCOMHES TRANSFORMS A COMPLEX MATRIX !TQ A SIMILAR yY4ITARY UPPER HESSENBERG MATR|X WiTH A REAL NON-NEGATIVE SUBD|AGONAL,

HAKCOMHES PERFORMS THE BACK TRANSFORIATION CORRESPONDING TO ASHCOMHES,

EI1GVALHRM COMPYTES ALL E1GENVALUES CF A HERVYVITIAN MATRIX,

EIGrRI COMPUTES ALL EIGENVECTORS AND EIGENVALUES OF A MERMITIAN MATRIX,

QARIVALHRM COMPUTES ALL EIGENVALUES OF A HERYITIAN ™MATRIX,

QR IHRf: COMPUTES ALL EIGENVECTORS AND EIGENVALUES OF A HERWMITIAN MATRI|X,

VALQRICOM COMPUTES ALL EIGENVALUES OF A COMPLEX UPPER HESSEN3ERG MATRIX #ITH A REAL SUBDIAGONAL,

QRICOM COMPUTES ALL EIGENVECTORS AND EIGENVALUES OF 4 COMPLEX UPPER HESSEN3ERG MATRIX #ITH A REAL SuBDIAGONAL,

EIGVALCO' COMPUTES ALL EIGENVALUES OF A COMPLEX MATRIX,

£1GCOM COMPUTES ALL EIGEHVECTORS AND E!GENVALUES OF A COMPLEX MATRIX,

ELMCOMVECCOL ADDS A CO'IPLEX NUMBER TIMES A COMPLEX COLUMN VECTOR Tn A COMPLEX VECTOR,

ELMCOMCOL ADDS A COMPLEX NUMBER TIMES A COMPLEX COLUMN VECTOR TO ANOTHER COMPLEX COLUMN VECTOR,

ELMCONROWYEC ADDS A COMPLEX NUMBER TIMES A COMPLEX VECTOR TO A COMPLEX ROW VECTOR,

CHLSOL? SOLVES A SYMIETRIC PASITIVE DEFINITE SYSTEM OF LINEAR EQUATIONS, THE MATRIX BE|NG DECOMPOSED BY CHLDECZ,

CHLSOL1 30LVES A SYMIETRIC POSITIVE DEFIHITE SYSTEH OF LINEAR EQUATIONS, THE MATRIX BEING DECOMPOSED BY CHLDEC1,

CHLDECSOL2 SOLVES 4 SYI™ETRIC POS|TIVE DEFIN|TE SYSTEM OF LINEAR EQUAT|ONS BY THE CHOLESKY METHCD, THE MATRIX BEING STORED !N A TWOe
DIMENS I ONAL ARRAY,

CHLDECSOLY SOLVES A SYNNMETRIC POSITIVE DEFIN|TE SYSTEM OF LINEAR EOQUAT|ONS BY THE CHOLESKY METHOD, THE MATRIX BEING STORED IN A ONE=
DIMENS [OMAL ARRAV,

CHLINV2 COMPyTES THE |iIVERSE OF A SYNMETRIC POSITIVE DEFINITE MATRIX WHICH HAS BEEN DECOMPOSED BY CHLDEC2,

CHLINVY COMPUTES THWE |UVERSE OF A SYMMETRIC POSITIVE DEF|NITE MATRIX WHICH HAS BEEN DECOMPOSED BY CHLDECY,

CHLDECINVY COMPUTES, 8Y THE CHOLESKY METHQOD, THE INVERSE OF A SYMMETR|C POSITIVE DEFIN|TE MATRIX, STORED IN a TWODIMENS|ONAL ARRAY

CHLDECINVY COMPUTES, BY TRHE CHOLESKY METHOD, THE INVERSE OF A SYMMETRI|C POS|T|VE DEF|NITE MATRIX, STORED IN A ONE«D|MENSIONAL ARRAY'

LNGVECVEC COMPUTES It DOUBLE PRECISION THE SCALAR PRODUCY 6F TwO VECTORS,
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LNGMATVEC COMPUTES 1IN DOUBLE PRECISION ThHE SCALAR PRODUCT OF A ROW VECTOR AND A VECTOR,

LNGTAMVEC COMPUTES 1N DOUBLE PRECISION THE SCALAR PRODUCT OF A COLUMN VECTOR AND A VECTOR,

LNGMATMAT COMPUTES IN DOUBLE PRECISION THE SCALAR PRODUCT OF A ROW VECTOR AND A COLUMN VECTOR,

LNGTAMMAT COMPUTES IN DOUBLE PRECIS{ON THE SCALAR PRODUCT OF TWO COLJMN VECTORS,

LNGMATTAI COMPUTES 14 DOUBLE PRECISION THE SCALAR PRODUCT OF TwO RnW VECTORS,

LNGSEQVEC COMPYTES (1 DOUBLE PRECISION THE SCALAR PRODUCT OF TWOo VECTORS,

LNGSCAPRDYL COMPUTES IN DOUBLE PRECISION THE SCALAR PRODUCT OF TWO VECTORS,

LNGSYMMATVEC COMPUTES IN DOUBLE PRECISION THE SCALAR PRODUCT OF A VECTOR AND A ROW IN A SYMMETRIC MATRIX,

DECSYMTR! CALCULATES THE U'DU RECOMPOSITIQN OF A SYMMETRIC TRIDIAGONAL MATRIX,

SOLSYMTR| SOLVES A SYSTEM OF LINEAR EQUATIONS W[TH SYMMETRIC TRIDIAGONAL COEFFICIENT MATRIX, PROVIDED THAT THE U1tDU DECOMPOSITION IS
G VEN,

DECSOLSYMTR! SOLVES A SYSTEM OF LINEAR EQUAT|ONS W|TH SYMMETRIC TRID|AGONAL COEFF|CIENT MATRIX,

DECTRI CALCYLATES, WiTHOUT PIVOTING, THE LU DECOMPOS|TION OF A TRIDIAGONAL MATRIX,

SOLTR| SOLVES A SYSTEM OF LINEAR EQUATIONS ¢|TH TRID{AGONAL COEFFICIENT MATRIX, PROV|DED THAT THE LU DECOMPOS{TI(ON {6 GIVEN,

DECSOLTR! SOLVES A SYSTE!" OF LINEAR EQUATIONS WITH TRIDIAGONAL COEFFICIENT MATRIX,

DECTRIPIV CALCULATES, YIThH PARTIAL PIVOTING, THE LU DECOMPOSITION OF A TRINIAGONAL MATRIX,

SOLTRIPIV SOLVES A SYSTEM OF LINEAR EQUATIOYS WITH TRIDIAGONAL COEFFICIENT MATRIX, PROVIOED THAT THE LU DECOMPOSITION AS CALCULATED
BY DECTRIPIV 18 GIVEH,

DECSOLTRIPIV SOLVES YITH PARTIAL PIVOTING A SYSTEM OF LINEAR EQUATIONS WITH TRIDIAGONAL COEFFICIENT MATRIX,

ERF COMPUTES THE ERROR FUNCT|ON AND COMPLEMENTARY ERROR FUNCTION FOR A REAL ARGUMENT) THESE FUMCTIONS ARE RELATED TO THE NORMAL OR 6
AUSS I AN PROBABILITY FUNCTION,

INCOMGAM COMPUTES THE INCOMPLETE GAMMA FUNCT|ON B8Y PADE APPROXIMAT|ONS,

INCBETA COMPUTES THE (NCOMPLETE BETA FUNCTINAN 1(X,P,Q),0¢=X<=1,P>0,8>0,

{8PPLUSN COMPUTES THE INCOMPLETE BETA FUNCTION | (X,PaN,Q@),0<=Xe¢=1,P>0,0>0, FOR N=z0(1l)NMAX,
IBQPLUSN COMPUTES THE {NCOMPLETE BETA FUHCTION |(X,P,GQN),0<=X<=1,ﬁ>0,0>0, FOR N=0(1)NMAX,

IXQF IX IS AN AUXILIARY PROCEDURE FOR THE |NCOMPLETE BETA FUNCTION,

IXPFIX IS AN AUXILIARY PROCEDURE FOR THE |NCOMPLETE BETA FUNCTION,

FORWARD 1S AN AUXILIARY PROCEDURE FOR THE [NCOMPLETE BETA FUNCTION,

BACKWARD 1S AN AUXILIARY PROCEDURE FOR THE INCOMPLETE BETA FUNCTION,

RECIP GAMMA COMPUTES THE RECIPROCAL OF THE GAMMA FUNCTION FOR ARGUMEATS IN THE RANGE [1/2,3/2); ODD AND EVEN PARTS ARE ALSO DELIVERE

D,

GAMMA COMPUTES THE GAMI*A FUNCTION FOR A REAL ARGUMENT,

LOG GAMWMA CONMPUTES THE NATURAL LOGARITHNM OF THE GAMMA FUNCTION FOR POS|TIVE ARGUMENTS,

NEWTON DETERMIMNES THE COEFFICIENTS CF THE MRWTON INTERPOLATION POLVNOM|AL FOR GIVEN ARGUMENTS AND FUNCTION VALUES,

INI 15 AM AUXI{ IARY PROCEDURE FOR M[NI[IAX APPROXIMATION,

SNDREFEZ (SECOND RENMEZ ALGOR|THM) EXCHANGES NUMBERS WITH NUMBERS OUT OF A QEFERENCE SET,

INMAXPOL PETERMINES THE COEFFICIENTS OF THE POLYNOMIAL (N GRUNERT FORM) THAT APPROXIMATES A FUNCTION GIVEN FOR DISCRETE ARGUMENTS;)

THE SECOND REMEZ EXCHANGE ALGORITHM 1S USEN FOR THIS MINIMAX POLYNOIAL APPROXIMATION,



