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ABSTRACT. Consider a finite population u, which can be viewed as a realization of a super
population model. A simple ratio model (linear regression, without intercept) with hetero
scedastic errors is supposed to have generated u. A random sample is drawn without 
replacement from u. In this set-up a two-stage wild bootstrap resampling scheme as well as 
several other useful forms of bootstrapping in finite populations will be considered. Some 
asymptotic results for various bootstrap approximations for normalized and Studentized 
versions of the well-known ratio and regression estimator are given. Bootstrap based 
confidence intervals for the population total and for the regression parameter of the under
lying ratio model are also discussed. 
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1. Introduction 

Resampling methods for finite populations is an important topic of current research. We 
refer to Booth et al. (1994) for a survey. In the present paper the situation is considered 
where the finite population is viewed as a realization of a certain super-population model. 
This enables us to incorporate auxiliary information (past experience) in the statistical 
analysis. The authors first came across this problem in a 1994 statistical consultation 
project at CWI with The Netherlands postal services PTT Post. In this set-up a new 
resampling scheme called "two-stage wild bootstrapping" is proposed and studied. 

Suppose that the finite population Yi.N • ... , YN,N is a realization of the following super
population ;: 

Y;,N = {3x;,N + e;,N, (l.l) 

where E;,N are independent random variables, all defined on the same probability space, with 

E1;,e;,N = 0, EgeT,N = aT,N• i = I, .. ., N, N = l, 2, ... 

That is, a simple ratio model (linear regression, without intercept) with heteroscedastic 
errors is imposed: Eg Y;,N = {:Jx;,N, a~( Y;,N) = OT,N• i = I, .. ., N. Usually the x;,NS 

(I .;;; i .;;; N) are all known positive real numbers, but the regression parameter (J and the 
variances a7,N ( l .;;; i .;;; N) are unknown and are to be estimated data. In the sequel, we 
shall assume that the auxiliary quantities x;,N are indeed known and also strictly positive. 
Auxiliary information of the simple form (l.l) is of course not always available. The 
super-population model may have a more complicated structure, e.g. instead of (1.1) one 
may employ a general linear regression model. Another possibility, recently explored in 
Dorfman (1994), is to use non-parametric regression. 
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Given a realization Yl.N· ... , YNJv, we draw a random sample without replacement. Denote 

by s = {i 1, •.• , in} c u ={I, ... , N}, the coordinates of the (necessarily distinct) drawn 

observations. Let P~ denote the probability measure generated by the super-population model 

and let rr be the probability induced by random sampling without replacement from a finite 

population. Our asymptotic analysis will only require n --+ ex and N - n --+ oo. No further 

restrictions on the sample fraction I = 17 / N are needed. 

It should be noted that the heteroscedastic regression super-population model (I. I) involves 

N + I parameters, while the number n = isl of elements drawn without replacement from the 

finite population Lv1,1, ... , YN.N} is only equal to IN; i.e. the sample size 17 is usually 

considerably less than the number of parameters involved. In such cases consistent estimation of 

the high-dimensional model (I. I) is clearly impossible, but-essentially because of a CLT type 

argument similar to the one given by R. Beran in his contribution to a discussion of a paper by 

C. F. J. Wu ( l 986)-some appropriate form of wild bootstrapping may still work. In fact, only 
. . h d f h 2 . l N) l"k "'N 2 "'N 2 ? ·11 h certam we1g te averages o t ea i,N (1 = , ... , , 1 e L-i=la i.N or L-i=lxi,Nai.N• w1 s ow 

up in the asymptotics, rather than all the a7.Ns (I "" i "" N) separately. Our main results ( cf. 

section 3) can be viewed as an extension the already existing theory of wild bootstrapping for 

heteroscedastic regression models ( cf., e.g. Liu, l 988; Liu & Singh, 1992; Wu, 1986) to the 

situation considered in the present paper, where such models serve as an underlying super

population structure for a finite population {y1,1, ••• , YN.N} at hand. In a way the only thing we 

do is prove that some suitable forms of wild bootstrapping indeed provide consistent estimates 

for the distribution of various statistics of interest in a finite population context, such as the 

population total. In particular, we will propose and study a resampling scheme called two-stage 

wild bootstrapping, which not only imitates the underlying s-model ( 1.1 ), but also properly 

reflects the random sampling without replacement from a finite population in the "wild 

bootstrap world". Some other useful forms of bootstrapping in finite populations will also be 

considered. 

In this paper we consider the ratio estimator 

PRA = ~Yi,N /~xi.N ( 1.2) 

and the regression estimator 

(1.3) 

Note that /3 RA and f3 RE can be viewed as the solution of a least squares problem: mm1m1ze 

LiE1·( Y;,N - /hud x~~. respectively LiEs( Yi.N - fJxud, as a function of (3. More gener
ally, we may as well consider the class of estimators given by 

(I .4) 

If we take V;,N = 1 for all i and N then f3 8w = /3 RE and if we take v1,N = x1,N for all i 

and N then /3sw = f3RA· Note that f3sw is the solution of min11 I; 1Es(Yi.N -f3xi,N>2-ui~· If 
the variances ai,N were known, one should certainly take vi,N = a7N· Clearly iJRE i.s the 

least squares estimate in the homoscedastic model, while f3 RA is the' least squares estimate 

when aI,N = x;,N. 

Our aim is two-fold: in the first place we want to validate bootstrap based inference about 

unknown yarameters of the actual finite population {yu..;, .. ., YN,N} at ha~d, e.g. the parameter 

fJN = Li=lYi,N, the population total. Secondly we focus on the regress10n parameter of the 
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underlying super-population model /3, which in a way describes how the finite population is 
supposed to be generated. 

Estimators of () N and /3 based on ~RA and {~RE are discussed in section 2. This section also 
contains some preliminary results of CLT-type. Some asymptotic theory for various boot
strapped versions of these estimators will be developed in section 3. The proofs of the main 
results are given in the appendix. 

2. Preliminaries 

Define YN = N- 1LiEuY;,N, the population mean, Yn = n- 1LiEsY; .. v. the sample mean. The 
quantities XN, Xn, EN, En are defined in the similar way. In addition we define 
XNYN = N--!LiEuXi.NYi.N and x~ = N- 1LiEux7.N· To begin with, we rewrite i3R4 and /~RE· 
Because x/ y = x0 /y0 + [x -- y(xo/ y0 )]/y is valid for all real x, xo and non-zero y. _io. one 
easily checks 

A YN 1 ~( YN ) /3 RA = -:::- + --:= 0 )';,N - -:::- X;,N , 
XN nxn iEs XN 

and 

For notational convenience we also define 

a;,N = y;,N - BNxi,N = (/3 - BN )x;,N + E;,.v. 

- - 2 - 2 a· N = y· Nx· N - BN:x-;N = (/3 - BN)x v + E;,NXi.N· l, I. l, /, l,i 

So we may as well write 

A 1 ~ 
/3RA = BN +-=.0a;,N 

nXn iEs 

A - 1 ~ 
/3RE = BN + , 0 ai.N· 

nx;, iEs 

(2. l) 

(2.2) 

(2.3) 

Finally, we define the population variances of Ol,N• ... , a,\',V resp. a~ .. v, .. " as,.\ by 
D2 - N-1z=. a2 and b2 = N- 1LiEua2N. Note that LiEua;,.v = L1Euai.N = 0. 
~ ~seful pr~~uabi~stic tootfor our asympt~tic analysis is given in the following lemma. 

Lemma 2.1 
Consider the super-population model (1.1), and set Sn.N = LiEsai,N and Sn .. v = LiEsai,.'i· 
Under the following conditions 

(A) max Ei;IE;,Nl 2+6 = { (!), as N--> oo for some 0 < b; 
l~J~N · 

(B) max lx;,NI = r (!), as N-> oo; 
J=!S;1::;;;N 

1[:) Board of the Foundation of the Scandinavian Journal of Statistics 1998. 
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N 

(C) 'l:x7.N ~ c1N, as N-> oo, for some O<c1 <oo; 
i=I 

and either 

N 

(D) L a7.N ~ c2N, as N-> oo, for some 0 < c2 < oo; 
i=l 

or 

N 

Scand J Statist 25 

(D) L x7.Na7.N ~ c2N , as N --> oo, for some 0 < c2 < oo; 
i=l 

we have, with P1;-probability 1, as n -> oo, N - n -> oo, 

S n,N '!.+. I '(0, 1 ), 

V f(I - f)Jt a7.N 

Sn,N '!.+. f '(O, 1). 

V f(I - /)Jt af,N 

In addition, we may replace L~ 1 af.N by L~ 1 a7,N in 
'L~ 1 (x;,Na;,N)2 in (2.5). 
For any estimator fi the "estimated residuals" are given by 

e;,N = Y;,N - fix;,N, i Es. 

(2.4) 

(2.5) 

(2.4) and L-!1 GT,N by 

(2.6) 

With the aid of lemma 2.1, we easily obtain a CLT for normalized (2.7), (2.9) and 

Studentized (2.8), (2.10) versions of fiRA and fiRE· 

Theorem 2.1 
Under the same conditions as in lemma 2.1, we have for almost every realization 

Y1.N, .. ., YN,N, as n-> oo, N - n -> oo, 

(2.7) 

iEu 

(2.8) 

Similarly, 

(2.9) 

iEu 

CO Board of the Foundation of the Scandinavian Journal of Statistics 1998. 
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v'fix'Af ----c===::=!~===(~RE - Bw)!..... I '(0, I), (2.10) 
n~ I 2)e;,NXi,N )2 

iEu 

Results somewhat related to theorem 2.1 can be found in Fuller ( 1975) and Scott & Wu 
(1981). 

Remark 2.1. An important issue in practice is estimation of the population total 
~N = 'LiEuYi,N of an actual finite population at hand. We can estimate this quantity simply by 
~RA :xw (set xw = 'LiEuXi,N l· Provi_:ig asymptotic normality of j3RA ·xw becomes straightforward 
111 view of theorem 2.1. Let e RA = (3 RA ·X N and note that 

' ' N XN ~ 
8RA-8N =xw(f3RA -BN)=-·=·L..,a;,N, 

n Xn iEs 

and hence, the counterpart of (2.7) becomes: with ?_;-probability I we have, as n - x, 
N - n ___, oo, 

(2.11) 

N~ 
iEu 

Similarly, setting Bw = xN'BN and iJRE = j3RE'XN, we have Pg-a.s., as n _, oo and 
N - n---+ oo, 

(2.12) 

iEu 

However, e w-in contrast to e w-is not a very interesting quantity. Instead of e RE' 
consider 

eRE,c = Nyn +8RE(1-::) 

as our estimator based on ()RE· The estimator eRE,c for the population total 8w also appears 
in Wright (1983) as the "combined regression through the origin" estimator. We note in 
passing that Wright (1983); see also Sarndal et al. (1992) views eRA and eRE as 
"predictors" of the random variable 8w, because the randomness induced by the s-model is 
taken into account. In contrast, we condition on the finite population at hand, but use the 
auxiliary information to motivate the estimators '(}RA and fJ RE,c• for the population total. 

In view of the results obtained in lemma 2.1 and theorem 2.1, proving asymptotic normality 
of{) RE,c is an easy task. Observe that fJ RE,c is an asymptotically unbiased estimator of 8 N and 
that we have the following decomposition: 

fJRE,c - 8N = N{(Yn - yw)- ~RE(Xn - xw)} 

= N(Yn -)iN) - N(j3RE - Bw)(Xn - XN) - NBN(Xn - :X.v) 

= N{(Yn - Bwxn) -(YN - Bwxw)} - N(f3RE - Bw)(Xn - xw) 
(2.13) 

© Board of the Foundation of the Scandinavian Journal of Statistics 1998. 
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where ai.N, i Es are centred random variables ai.N = [y;,N - BNx;.N]-[YN - BNxNJ. Note 

that there is only a minor difference between a;.N and ai.N (cf. (2.3)). As a consequence 

we have indeed under the same conditions as in lemma 2.1 asymptotic normality of the 

first term in (2.13 ): with Ps-probability 1, as n -+ oo and N - n -+ oo, 

iEs 1/ 

---~===.:_...· I "(O, 1). (2.14) 

Jj(l - /) 2:)ai,N)2 
iEu 

By theorem 2.1 we have that Jn/(I -/)(PRE - BN) is asymptotically normal and that the 

difference lxn - XN I tends in n-probability to zero. This result and the identity (2.13) and 

the asymptotic normality (2.14) entail P~-a.s., as n --> oo and N - n --> :x;;, 

-----;:=fo=n====(fJRE,c - eN)::_., J '(O, 1). 

N~ N- 1 })af.N)2 
iEu 

(2.15) 

With the aid of (2.11) and (2.15) we can validate normal based confidence intervals for the 

population total e N. Clearly we have to replace the quantities N- 1 I:iEll a7 N and 

N- 1LiEu(ai.N)2 appearing in (2.11) and (2.15) by estimates, i.e. by n-1I;;E,£f.N and 

n- 1LiEsET,N - (n- 1:L,;Esf;,N)2 respectively. Note that we are concerned here with a problem 

in conditional inference; i.e. the resulting confidence intervals for eN are valid asymptoti

cally for a fixed sequence of finite populations {YJ.N, ... , YN,N }, N = 1, 2, ... , for which 

the results of theorem 2.1 hold true. In the next section we introduce bootstrap based 

confidence intervals for 8 N ( cf. remark 3 .2 ). 

Remark 2.2. In the special case that f-+ 0 then BN, respectively BN, can with impunity be 

replaced by /3 in (2.7) and (2.8), respectively (2.9) and (2.10). In general, however, when the 

sample size n may be of the same order as the population size N, the bias B N - f3 of /3 RA in 

estimating /3 is not negligible, but it can be estimated consistently if we introduce some 

additional randomness. Notice that 

Let ZN,n be a centred normally distributed random variable with variance 

and define the bias corrected estimate f3 RA,b by f3 RA - ZN,n· The claim is now that /3 RA can 

be replaced by /3 RA,b and B N by /3 in (2. 7) and (2.8 ). For this purpose we employ the 
following identity: 

(2.16) 

The first term at the right of (2.16) tends to a (non-degenerate) normal distribution by 

theorem 2.1, while the second term VN((BN - /3)- ZN,n) tends in ?~-probability to zero. 

This is a direct consequence of our definition of ZN,n since the variance a~(B N) is 

«;:, Board of the Foundation of the Scandinavian Journal of Statistics 1998. 
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con~istently estim~ted by (N/nJ"[,;Esf:f.s/C'£;EuX;.N)2. A similar analysis can easily be 
earned out, using f3 RE instead of f3 RA. 

In practice, one may be interested in confidence intervals for /3. A normal based confidence 

interval for f3 can now be based on P RA - Z.v. 11 , using (2.8). This interval estimate for /3 is given 
by ~ 

(2.17) 

where Ua/2 and u 1 u./2 denote the (a/2)th and ( 1 - a/2)th quantile of the standard normal 

~istribution. The confidence interval based on p RE is obtained from (2.17) by replacing 

f3RA - Zn,N by a bias corrected version of PRE (cf. (2.10)). In the next section we introduce 

bootstrap based confidence intervals for /3 (cf. remark 3.3). 

3. Bootstrapping 

Much is known about different forms of bootstrapping in a variety of regression models, 

such as the residual method, the paired bootstrap, and the wild bootstrap. We refer to Liu 

(1988), Liu & Singh (1992), Mammen (1992) and Wu (1986). Bootstrapping in finite 

population models also received a lot of attention. For instance, the asymptotic behaviour 

of the bootstrap for stratified sampling without replacement from a finite population has 

recently been explored in Chen & Sitter ( 1993) (see also the references given in their 

paper). These authors proposed a two-stage resampling procedure in order to mirror the 

original sampling scheme: simple random sampling without replacement in each stratum 

and show that the resulting bootstrap is second order efficient. Our situation as described in 

the introduction, is somewhat intermediate between these two models. We work condition

ally given a realization of the super-population model (1.1) (i.e. conditionally given the 

finite population at hand) and employ the auxiliary information provided by the regression 

model (1.1) to motivate the use of statistics like p[L4, PRE, eRA· eRE and eRE,c in our study. 

In this section we propose and study three different bootstrap resampling schemes for 

estimating the distributions of normalized and Studentized versions of P RA and PRE. As an 

application various bootstrap confidence intervals for the population total 8,v = LiEuY; .. v and 

the parameter f3 of the super-population model are given in remarks 3.2 and 3.3. 

Another approach in general regression problems for estimating /3 is the so-called "residual 

method". This resampling strategy generally fails for the heteroscedastic case since the variances 

of p RE - f3 and '/3~E - p RE are typically different (see, e.g. Liu, 1988). Also in the finite 

population context as considered in this paper, apparently this resampling method does not work. 

Our first and perhaps most promising bootstrap resampling scheme, which we call two-stage 

wild bootstrapping, is as follows: given a sample s = { i 1, ... , in} from population u and any 

estimator p: 
(1) calculate "estimated residuals" E;,N = y;,N - ~x;,.v, i Es (cf. (2.6)); 

(2) wild bootstrap component generate n independent copies Z1, ... , Zn of a random variable 
2 * f3' * .h * - Z 'E Z with EZ = 0 and EZ = I and set Y;,N = x;,N + e;,N wit e;,N = E;,N ;, z s; 

(3) two-stage resampling procedure put n' = ([ nf] + I) A n and k = [ n / n ']. 

1g Board of the Foundation of the Scandinavian Journal of Statistics 1998. 
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Stage 1. Draw without replacement from s a bootstrap sample si = {ij1, .. . , ijn·} with size 

n' (the indices iji, ... , ijn" being necessarily distinct); 

Stage 2. Repeat this (stage I) independently k times, replacing the resamples each time, and 

obtain a bootstrap samples*= sfu ···us: of size n* = n' k. 

' '* * . '* 
The bootstrap version of j) RA becomes (3 RA = LY;.N /"I;x;,N and we obtam (3 RE = 

I;x;,NY~N/"I:x7.N for PRE where the summation is now taken overs*. The integers n' and 

k can be considered as the design parameters of our resampling procedure. Similarly as in 

Chen & Sitter ( 1993 ), our resampling scheme can be viewed as a stratified resample 

without replacement, with k identical strata of size n and within-stratum resample size n'. 

We mirror-using their terminology-the original sampling scheme since the sampling 

fractions f' = n' / n and f = n/ N agree asymptotically. The second stage is needed to 

match the skewness. In a way we imitate the .;-model (cf. (I. I)) by a wild bootstrap 

version £*: 

y* ?.! * 
i,N = f 1 Xi.N + Ei,!v' i E s (3. I) 

where <N are independent random variables with 

and resample from the finite population { Y~N' i E s} our two-stage resampling proce

dure. 
We are now ready to state the first main result of this section. 

Theorem 3.1 
Set f' = n' /n. Under the same conditions as in lemma 2.1 

(3.2) 

#xn 
----;=====-(/3~ -/3RA)::_,. I "(O, 1), (3.3) 

1/n* ~(£* )2 
£._, 1,N 

iEs* 

Similarly, 

V/i*x2 
----;====" ===(/3~£ - j3 RE)::_,. I "(0, 1 ), (3.4) 

~ 1/n L(E;,NX;,N)2 

iEs 

Vii* x2 '* - '/ 
---r====n===(fJRE -/3RE)-+ .. f "(O, 1), 

~ 1 / n* L (x;,NEi,N )2 

(3.5) 

iEs* 

in n-probability. 

Combination of (3.4) with (2.9) and the fact that n* ~ n directly yields that the bootstrap 

approximation given by the left-hand side of (3.4) is indeed asymptotically consistent in 

estimating the distribution at the left of (2.9). A similar remark applies of course to (3.5) 

re Board of the Foundation of the Scandinavian Journal of Statistics 1998. 
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and (2.10). The corresponding assertions concerning the normalized and Studentized 
versions of f3 RA are now obvious and therefore omitted. 

Remark 3.1. In principle, it appears possible to strengthen the assertions of theorem 3.1 
slightly, by showing that the weak convergences in (3.2)-(3.5) are valid in a stronger almost 
sure sense, rather than in .ir-probability. To show this one would certainly need some of the 
results in Serfling (1974). Because theorem 3.1 (as well as the other theorems in this section) in 
its present form appears to be sufficient for practical applications, we did not pursue this point 
here. 

Here is our second result. In a way we adapt the familiar "paired bootstrap" resampling 
scheme (cf. also Liu & Singh, (1992) to our finite population set-up. Similarly as in theorem 3.1 
we apply a two-stage procedure to obtain consistent bootstrap approximations. 

Theorem 3.2 
Consider the following resampling scheme: 

(1) put n' = ([nf] + 1) /\ n and k = [n/ n']; 
(2) stage I. draw without replacement from s a bootstrap sample si with size n'; 

stage 2. repeat the previous step (stage 1) k times independently, replacing the resamples 
each time, and obtain a bootstrap samples* = si U · · · Usj of size n* = n' k; 

•*p •*p 2 
(3) compute /3 RA = l:s• Yi.N /l:s• X;,N and f3 RE = 'L.s•X;,N Yi,N /L.s•Xf,N· 

Then, under the conditions of lemma 2.1, we have in .ir-probability, 

Rx. ·*p , '/ . 
-----.===(f3RA -/3RA)->. I (0, 1), (3.6) 

l/n L:e7.N 
iEs 

R x2 ·*p • '/ . 
-----;:===n====(/3 RE - (3 RE) -->. f (0, 1 ), (3.7) 

~ l / n L:<x7.Ne7.N )2 

iEs 

with f' = n'/n. 

Finally we propose an extremely simple wild bootstrap variant. Instead of employing a two
stage resampling procedure to mimic random sampling without replacement in the bootstrap 
world, we chose the Z;s ("wild bootstrap component") properly to reflect sampling from a finite 
population as well. 

Theorem 3.3 
Consider the following resampling scheme: 

(1) generate n independent copies of a random variable Z with EZ = 0, EZ2 = I - f and 
El Zl2+'1 < oo for some 7/ > O; 

(2) compute yf.N = fJx;,N + E;,NZ;, i Es for both f3 = fJRA and f3 = f3RE; 

(3) compute fJjJ' = 'L.sYi,N/l:iEsXi,N and f3~'J = L,sxi,NYi,N/L,;EsxT,N· 

Then, under the conditions of lemma 2.1, we have in n-probability 

© Board of the Foundation of the Scandinavian Journal of Statistics 1998. 
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foxn '*W ' '/ ----;::::=== (/3 RA - f3 RA)-+. I '(0, 1 ), (3.8) 

(3.9) 

Studentized versions of (3.6), (3. 7) and (3.8), (3.9) are certainly also possible. In view of (3.3) 
and (3.4), this appears to be an easy matter and is therefore omitted. 

Remark 3.2. We establish bootstrap confidence intervals for the population total 
eN = LiEuYi.N of the actual finite population at hand. For instance, a (1 - a) confidence 
interval for 8N, obtained by the two-stage wild bootstrapping procedure, is given by 

(3.10) 

where c;12 and ci-a;2 denote the (a/2)th and (1 - a/2)th quantile of the (bootstrap) dis
tribution of 

n 
------;===== (B~ - BRA). (3.11) 

l/n* ~(e* )2 L 1,N 
iEs* 

This is a simple consequence of (3.3), similarly as (2.11) is easily implied by (2.7). The two
stage wild bootstrap confidence interval (3.10) for eN has coverage probability 1 - a+ r•(l), 
as n-+ oo, N - n-+ oo. Because Studentization was employed in the construction of (3.10) 
and the two-stage resampling procedure mimics sampling without replacement from a finite 
population in the bootstrap world one may expect that in fact the interval is second order 
efficient, i.e. the coverage probability is equal to 1 - a+ ,.(n- 112), provided the distribution 
of the Zs is chosen such that the skewness of (2.11) (with N- 1LiEuaf.N replaced by 
n- 1L;esETN) matches the skewness of (3.11) (see also section 4). Similarly, a (I-a) 
bootstrap ~onfidence interval for (JN based on ORE,c is given by (3.10) with ORA replaced by 
e, d -I" ·2 b -1'°' ·2 ( -1" , )2 h'l h b 'l * RE,c an n L,,iesE;,N Y n L,,iesE;,N - n L,,iesEi,N , w I e t e ootstrap quantt es ca/2 

~nd ::t-a/Z are now ~eter:njned by (3.11), with LiEs•(E;,N)2 replaced by Lies•(x;,Nei,N)2 and 
(JRE((J RE) instead of (JRA(O RA), 

Remark 3.3. Wild bootstrapping can now also be employed for the construction of confidence 
intervals for the parameter f3 of the super-population model~ (cf. (1.1)). Replace in (2.17) the 
normal quantiles by the bootstrap quantiles of the distribution of 

#xn ----;::::::::====CP':u - /3RA), 
~ l/n* ~(e~ )2 V' -1 L 1,N 

iEs* 

the left-hand side of (3.3). A difference from remark 2.2 is that the bootstrap version for /3 
is unbiased, whereas for f f+ 0, /3 - {3 is biased. 

© Board of the Foundation of the Scandinavian Journal of Statistics 1998. 
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4. Possible extensions 

In this section we discuss very briefly some possible extensions of our results. To begin 

with let us note that so far we have only dealt with first order asymptotics. That is, we 

have shown that the bootstrap approximations given in section 3 are asymptotically 

consistent. However, the question remains: how well do these bootstrap approximations (cf. 

theorems 3.1, 3.2 and 3.3) compare with the more traditional normal approximations (cf. 

theorem 2.1 )? A second order analysis (involving Edgeworth expansions) is necessary to 

confirm our conjecture that two-stage wild bootstrapping of Studentized statistics like (3.3) 

and (3.4) is second order correct. Although our estimators differ from the ones considered 

by Chen and Sitter (linear combinations of stratum means), they can be expressed as an 

average as well ( cf. (2.1 ), (2.2) and (5.10) and (5.13) ahead). The finite population aspect 

is reflected by the two-stage procedure as in Chen & Sitter (1993) whereas the hetero

scedastic nature of the underlying regression model (1.1) is captured by the wild bootstrap 

component. At this point we may add an assumption on EZ3 (cf. also Liu, 1988) and a 

more careful choice of the design parameters n' and k of the resampling scheme will be 

needed. We do not expect however, that the other two bootstrap . methods we discussed in 

section 3 will be second order efficient. An investigation along these lines appears feasible, 

but outside the scope of the present paper. The authors hope to report on these matters 

elsewhere. 
Second one may be interested in a slight extension of our set-up, namely the case that the 

super-population model £ (cf.(1.1 )) is still valid, but stratified sampling, instead of simple 

random sampling, from the finite population is employed. Le., we now assume that the 

population II= {y1,N, .. ., YN.N} at hand, is divided into L disjoint strata I1 1, ••• , Ill, where 

II= Uf= 1 I11. We note in passing that one may try to use the super-population model (l.l) to 

obtain an efficient stratification of II (cf. Wright, 1983; see also Siimdal et al., 1992). However, 

at this point, we shall consider the situation that the stratification of IT in L subpopulations 

(strata) is already known a priori, as appears to be frequently the case in sample surveys. In 

each stratum (of size N1) a simple random sample (of size n1) is drawn. I.e., ifwe take a sample 

(without replacement) of size n1 from stratum I1 1 and require n1 _, oo and N1 - n1 --+ oo in 

each stratum IT 1 ( l = 1, ... , L ), while the number of strata L is kept fixed, we may extend the 

results of this paper in a fairly straightforward manner. We omit further details. 

In the third place one may want to extend our results to a more general class of statistics, e.g. 

the one described in ( 1.4 ). This appears to be a straightforward matter and is therefore omitted. 

Finally it may be of some interest-as already alluded to in the introduction-to consider super

population models of a more general type, such as the general linear regression model. Such an 

extension is certainly possible, but will not be pursued here. 
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Appendix 

This section contains the proofs. We only prove the statements in the case of the regression 

estimator but for the ratio estimator similar arguments hold. 

Proof of lemma 2.1. According to Erdos & Renyi (1959) and Hajek ( 1960), we have to show 

that the Hajek-Lindeberg condition 

~ L a7,N1{ la;,NI > 1J f(I - .n 2=a7.N} __, 0 for all 17 > 0 L a1,N iEu 1Eu 

iEu 

(A. I) 

as N - n -+ oo, n --+ oo holds with ?$-probability one. We shall use a strong law of large 

numbers (SLLN) for independent zero mean random variables (cf. th. 12, p. 272 in Petrov 

(1975)) to prove that 

l ~La;.N-~L(x;,Na;,N)2 1--+0 asN->co (A.2) 
tEu tEu 

(A.3) 
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Note that with P.;-probability one, 

BN -/3 = l:x;,Nfi,N/LxY.N ___, 0, 
1Eu 1Eu 

(A.4) 

where we need assumptions (A), (B) and (C) in order to apply the mentioned SLLN for 
independent r.v.s. As a result of (A.4) condition (B) we have (/3 - B N )2 N- 1 L,;Euxi,N = ,..(1) 

P.;-a.s. The last term in (A.3) vanishes too, because by the Cauchy-Schwarz inequality 

It remains to consider the middle term in (A.3) and this term will in fact tum out to be 
the dominant one. Again by means of the SLLN and condition (A), we can see that (A.2) 
is true. In view of (A.2), it suffices to check whether 

1 
Na2 LaT.Nl{la;,NI >11Jf(l -/)NaN}---+ 0 for all rJ >0 

N 

if n ___, oo, N - n ___, oo holds, with P.;-probability one, where 

-2 N-1 """""< )2 a N = L... X;,Nai,N . 
iEu 

(A.5) 

(A.6) 

Since a;,N = (/3 - BN )x;,N + x;,Nf;,N (cf. (2.3)), we can bound the left-hand side of (A.5) 
above by d~~n (17 /2) + d~~/17 /2'], defined by 

(! > 1 """"" -2 { - 2 . I - } d N,n(17) = Na2 L... a;,N1 1/3 - BNlxi,N > 17v /(1 - /)NaN ' 
N lEU 

Assumption (B) and the fact that BN-f3=,.(I) P1;-a.s. entail that for every 17>0, 
limn~x.N-n~cc d~.~(rJ/2) = 0 with ?;-probability one. Note that * L l{lx;,Nf;,NI > 11J f(N - n)aN}-> 0 as N - n ___, oo, n ___, oo 

iEu 

as N - n--+ oo, n ___, oo, P;-a.s. Application of Holder's inequality yields d~~('YJ/2) ___, 0 
P1;-a.s. for n --+ oo, N - n ___, oo for every 17 > 0. This proves the lemma. 

Proof of theorem 2.1. Recall that (cf. (2.2)) 

, - l """""- I x2N """""-f3RE-BN = 2L...a;,N= 2' 2-~ai,N· 
nxn iEs nxn Xn iEs 

Note that lemma 2.1 implies 

--;======l:a;,N~-'W. 1). 
j(l _ /) """"" a2 iEs L... 1,N 

iEu 

(A.7) 

Since x2N/x~ .!:...1, (2.9) follows from Slutsky's lemma. It remains to check the validity of 
(2.10). It suffices clearly to show that 
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(A.8) 

and with ?1:,-probability one 

1
1 ~' 2 I ~-2 I N L_.,(Ei,NX;,N) - NL.., a;,N ___, 0, 

lEU 1Eu 

(A.9) 

where e;,N = Y;,N - /3 REX;,N for all i E u. But this is an easy matter in view of condition b 
and the last assertions of lemma 2.1. 

Next we first prove theorem 3.2 ("paired bootstrap") and then proceed by proving theorem 

3.1 ("two-stage wild bootstrapping"). In part, we will exploit the argument given in our proof of 

theorem 3.2 again in the somewhat more complicated setting we consider in the proof of 

theorem 3.1. Finally, we conclude the appendix with a fairly easy proof of theorem 3.3. 

Proof of theorem 3.2. We start with the following representation: 

k 
A *P ' I ~ A 1 """"' """"' -

{JRE -fJRE = ---7 -L.., E;,NXi,N = --,-L.., L.., E;,NXi.N· 

~ X~ N iEs* """"' X~ N J= I i<:os* L......t l, ~1. I 

iEs* iFs* 

(A.10) 

Next we prove a CLT for I:;;Esri';,NX;,N where si is the first bootstrap sample obtained by 

random sampling without replacement from s. For this purpose we first observe that 

I:;;E.Ju.;x;,N = 0. Note that a more general statement than (A.8) holds: for every sequence 

of Borel sets C1, ... , CN, 

1
1 ~(A 2 I """"' - )7 I :r 7iL E;,NX;,N) le; -y:;L(E;,NXi,N -ic; --+O, 

I Es iEu 

N __, oo, n __, oc. 

This implies that the Hajek-Lindeberg condition 

f'( I - .f') L(X;,Nfi,N )2 } _, 0 
rEs 

for all YJ > 0 may with impunity be replaced by 

I 2)x;,Nfi,N )21 { lx;,Nf;,NI > YJ 
""""'( A 2 , L_., X;,NE;,N) tEu 

iEu 

for all YJ>O where .f'=n'/n. Recall that x;,Nf;,N=(f3-/3R£)XT.N+E;,NX;,N. By the 
triangle inequality, we have 

lfJ - f3 REI "" lfJ - ENI+ IBN - PR£1, 
where the first term at the right is 1•(1) ?1:,-a.s. and the second term is of order 

r,,,([l - f]/n) 112 . Therefore we have P:;,-a.s. . 

1
1 ~A 2 I """"' 21 " N L_.,(E;,NXi,N) -y:; L..,(a;,NX;,N) --+ 0. 

IEU IEU 
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This reduces the Hajek-Lindeberg condition to 

for all r; > 0, with ?£-probability one, whenever n' --> oo and n - n' --> oo. A similar 
reasoning as in the proof of lemma 2.1 entails 

--------;===== L E;.NXi,N ___::__.. J '(O, 1 ), 

VJ'( I - j') L(E;,NXi,N )2 iEsf 

iEs 

(A. I I) 

whenever n' -> oo and n - n' __, oc. Since the second stage resampling is performed 
independently, we have then 

l l k '/ 
------;===== 11:L L E;.NXi.N ...:...... J '(O, 1). 

lf'(I - f') '°'<' )? v k j-1 . * V ~ E;,NXi,N " - iEsj 

(A.12) 

iEs 

This completes the proof for the case that n' and n - n' both get large. From the definition 

of the design parameters n' and k of the two-stage wild bootstrap resampling scheme it 

follows that n - n' ""n - (n2 / N) = n(N - n)/ N __, oo. If n' remains bounded (this hap
pens only when the original sample fraction f __,, 0 at the rate r: (N··l/2)), however, a 

slightly different argument is needed. In this case we may simply replace with impunity 

sampling without replacement by sampling with replacement. This is an easy consequence 

of a result on the difference in the total variation distance between sampling with and 

without replacement by Freedman (1977). Relation (A.12) now follows directly from 
Lindeberg's CLT for triangular arrays. Therefore (cf. (A.JO) and Slutsky's lemma) 

n*x2 '*P - 'I 
---.===="===(/3RE -/3RE)_:_., I '(O, I), 

Vk J'(I -j') L f:;x7 
iEs 

which completes the proof. 

Proof of theorem 3.1. We first prove (3.4 ). The bootstrap sample can be written as a union of 

k independent samples: s* = siU · · · Us!. Consider the stochastic representation of /J;E - j3 RE 

(A.13) 

Observe that generally L,iEsE;,NXi.NZi =J 0 although it has expectation zero under Pz, the 
probability induced by 2 1, ••• , Z n· Define 
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l:x7.N 

* iEs* (/J* f3 ) 
T n = Jkv' /'(l _ f'),,jn RE - RE· 

Then we can rewrite T! as 

T*=-1 ~ l '°'[E·NX·NZ·-M(Z)]+J k M(Z). 
n Jk ~ IJ'(l _ /') f7i L_, 1, 1, 1 l _ J' 

J-1 V V "1Es* 
J 

The left-hand side of (3.4) is precisely equal to 

_!_2:-2 
n iEs i,N */ I" " 2 l ·Tn - L_,(E;,NX;,N). - °"' x~N n iEs n* L._, I, 

ies* 

Note that M(Z)!!...o since EM(Z)=O and EM2(Z)=r(n- 1). Ifwe define 

L1 2 = EzL1 2(Z) = n-1 L(X;,NE;,N)2 - n-2 (L:x;,NE;,N) 
2 ~ n- 1 L(x;.NE;,N)2, 

iEs iEs iEs 

the convergence L1(Z) - L1!!...0 is easily verified by the Von Bahr-Esseen inequality (cf. 
Von Bahr & Esseen, 1965). 

We can not apply the Erdos-Renyi CLT for samples drawn without replacement from a finite 
population (see Erdos & Renyi, 1959; Hajek, 1960) at once, we first have to condition on 
Z = (Zi, .. ., Zn). 

Similarly as in the proof of theorem 3.2 (cf. the argument leading to (A.12) can be repeated, 
with x;,NE;,N replaced by X;,NE;,NZ;), one can show that for every realization z = (z1, ... , Zn) in a 
set An with arbitrarily large probability as n--> oo, we have 

I °" . './ 1· ) IT.ff L_,(x; Nf; NZ; - M(z))-->.. (0, 1 . 
v K f'(I - f')nL1(z). * ' ' 

lES 

(A.14) 

Such a sequence An exists due to the convergence of M(Z) and L1(Z) stated above. Thus we 
have proved that, for every z E An, 

IP*(T~ ~ YIZ = z E An) - <t>(1 ~~(z)) I-> 0, as n---> oo, (A.15) 

where <P denotes the standard normal distribution. lfwe define rn(Z) as the difference between 
these two probabilities at the left of (A.15), we have rn(Z) .!._!_. 0, lrnOI .;;: 2 and hence, by 
dominated convergence, Ezlrn(Z)I-+ 0 as n--> oo. Consequently, we may integrate the Z out. 
Now, we employ the following Taylor expansion 

<P (y -M(Z)) = <t>(2:'.) + {y -M(Z) _ 2:'_}</J(l;) 
L1(Z) L1 A(Z) ~ 

(A.16) 

where <P is the standard normal density and l; is a point between (y - M( Z))/~(Z) and 
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y/'1. Note that, for every fixed value of y, the difference f[y - M(Z)J/'1(2)- y/L'.1[ goes 
in P2 -probability to zero. Also note that f[y - M(2)]/L1(2) - y/'1[1>(~).:;;; 2 because of 
(A.16) and the triangle inequality. As a result we obtain by dominated convergence that 
Ezc/>([y - M(Z)]/'1(2)) = c/>(y/'1) + r·(l). This completes the proof of (3.4). 

Finally we prove the weak convergence of the Studentized version (3.5). It clearly suffices to 
show that we may replace n- 1 L,;Es(i:;,Nx;.N )2 by '1 2(Z) in (3.5). Recall the definition of 
* k * h s = u1= 1s1 sot at 

k 
1" • z2 1"1" • 2 * ~(X;,Nf'i,N ;) == k~----; ~(X;,Nf';,NZ;) · 

n iEs* j= I n iEs* 
J 

By the triangle inequality we have 

I ~ L(x;,NE;.NZ;)2 - ~ L(x;,NE;,N)2
1 

n iEs* n iEs 

(A.17) 

As before, conditionally on 2 1,. .. , Zn. the first part of (A.17) tends to zero in n* -
probability, whereas the second part goes to zero in P2 -probability. Notice that at this point 
we also invoke moments inequalities and the Von Bahr-Esseen inequality. 

Proof of theorem 3.3. Rewrite/;~;' in 

L X;,N Y~N L X;,NE;,N Z; 
j;~E == iEs == j; RE + _iE_s ___ _ 

L:x7.N L:x7,N 

(A.18) 

iEs iEs 

As EZ2 == I - f and El Zf 2+~ < oo for some ~ > 0, we have by an application of the Von 
Bahr-Esseen inequality 

1

1 "" • 2 1 - f"" . )21 Pz 0 - ~(x;,Nf'i,N Z;) - -- ~(x;,Nf';,N ___. · 
n iEs n iEs 

This entails (see Loeve, 1963, p. 331, prob. 5) that conditionally given s, 

""f· NX· NZ· .L-..t '· '· J 
iEs '/ ----===== -->. I '(0, I) 

~ L:<e;,Nxi.Nl2 
iEs 

because 

Combination of (A.19) and (A.21) gives the desired result (3.9). 
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(A.19) 

(A.20) 

(A.21) 


