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Abstract 

Solving the nonlinear systems arising in implicit Runge-Kutta-Nystrom type methods by (modified) Newton iteration 
leads to linear systems whose matrix of coefficients is of the form 1 - A © h2J where A is the Runge-Kutta-Nystrom 
matrix and J an approximation to the Jacobian of the right-hand-side function of the system of differential equations. 
For larger systems of differential equations, the solution of these linear systems by a direct linear solver is very costly, 
mainly because of the LU-decomposition. We try to reduce these costs by solving the linear Newton systems by an inner 
iteration process. Each inner iteration again requires the solution of a linear system. However, the matrix of coefficients 
in these new linear systems are of the form I - B ® h2J where B is a nondefective matrix with positive eigenvalues, 
so that by a similarity transformation, we can decouple the system into subsystems the dimension of which equals the 
dimension of the system of differential equations. Since the subsystems can be solved in parallel, the resulting integration 
method is highly efficient on parallel computer systems. The performance of the parallel iterative linear system 
method for Runge-Kutta-Nystrom equations (PILSRKN method) is illustrated by means of a few examples from the 
literature. 

Keywords: Numerical analysis; Convergence of iteration methods; Runge-Kutta methods; Parallelism 

1. Introduction 

Suppose that we integrate the initial-value problem (IVP) for the system of special second-order 
equations 

d2y 
dt2 =/(y), y,/EfRd 
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(1.1) 
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by the Runge-Kutta-Nystrom (RKN) method 

Yn = Yn-1 + hy~-l + h2(hT 0 I)F( Y,,), y~ = Y~-1 + h(dT 0 I)F( Y,,) (1.2) 

where the stage vector Y,, is the solution of the equation 

R(Y,;) = 0, R( Y) := Y - h2(A 0 I)F( Y) - e 0 Yn- I - he 0 Y~-1- (1.3) 

This equation will be referred to as the corrector equation. In the RKN method { ( 1.2 ), (I .3)}, A 
denotes a nonsingular s x s matrix, h, c, d, e are s-dimensional vectors, e being the vector with unit 
entries, h is the stepsize tn - tn_ 1, 0 denotes the Kronecker product, and I is the d x d identity matrix 
(in the following, we shall use the notation I for any identity matrix, however, its order will always 
be clear from the context). The s components Y,;; of the sd-dimensional stage vector Y,; represent s 
numerical approximations to the s exact solution vectors y( tn-I + c;h ), where c = ( C;) denotes the 
abscissa vector. It is assumed that the components of c are distinct. Furthermore, for any vector 
Y=( Y;),F( Y) contains the derivative values (f( Y;)). The arrays {A,h, c,d} define the RKN method. 
In this paper, we shall confine our considerations to RKN methods that originate from RK methods, 
that is, if the RK method is defined by the triple {ARK, bRK• c} then the corresponding RKN method 
is defined by {(ARK.)2,AiKbRK;c,hRK} (see, [3]). 

In the following, the Jacobian J := 8/(y )/8y of f(y) is assumed to have a negative spectrum (that 
is, the IVP for ( 1.1 ) is assumed to be stable). Since we want to apply the RKN method to problems 
where J may have large, negative eigenvalues (such problems will be called stiff IVPs), we shall 
use the Shampine type-step point formulas, i.e. we rewrite (l.2) as (cf. [12], see also [5,p. 129]) 

Yn=Yn-1 +hy~-I +(bTA- 1 0l)(Y,;-e0yn-I -hc®y~-1), 

y~ =y~_ 1 + h- 1(dTA- 1 0 /)( Y,; - e 0 Yn-1 - he 0Y~-1). 
( 1.4) 

In actual implementation, these (algebraically equivalent) formulas are much more stable than (1.2). 
The conventional way of solving the corrector Eq. ( 1.3) is the modified Newton iteration scheme. 
In the case of Runge-Kutta methods, we developed in [8] a parallel linear solver for the solution of 
the linear systems that arise in each modified Newton iteration. In the present paper, we investigate 
how this linear solver should be adapted in the case of RKN methods. 

2. A parallel linear solver 

Application of modified Newton iteration to the corrector Eq. (1.3) yields 

(I -A 0h2J)(Y,,Ul - Y,,<J- 1l) = -R( Y,,U- 1)), j = 1,2,. . .,m, (2.1) 

where J is evaluated at tn and Y,,<0l is the initial iterate to be provided by some predictor formula. 
Each Newton iteration requires the solution of an sd-dimensional linear system for the Newton 
correction Y,,Ul - Y,,U- 1>. If the linear systems in (2.1) are solved by a direct linear solver, then the 
bulk of the computational effort often goes in the LU-decomposition of the matrix I - A 0 h2 J. In 
the case of (2.1) this would mean the LU-decomposition of an sd x sd matrix requiring O(s3d 3 ) 

arithmetic operations. 
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In order to achieve a reduction of the computational complexity of the process (2.1 ), we introduce 
an iterative method for solving the linear systems in (2.1 ). Following [8], this inner iteration process 
reads: 

v = 1,2, . .. ,r, (2.2) 

where i;;<j.Ol = i;;u-i.r> and where Y.(m,rl is accepted as the solution Y,; of the corrector Eq. (1.3). 
Furthermore, B is a nondefective, real matrix with positive eigenvalues, and hence diagonalizable. 
The iterative method { (2.1 ), (2.2)} may be considered as an outer-inner iteration process where the 
modified Newton iteration represents the outer iteration. Note that cU-I) does not depend on v, so 
that the application of the inner iteration process requires only one evaluation of the function R. 

Since B is assumed to be diagonalizable, we may write B = sfJs- 1 with S a real matrix and 
lJ a diagonal matrix whose diagonal entries are the eigenvalues of B. By performing a similarity 
transformation Y,;U.•l = (S ® I)XU.vl ( cf. [l ]), the process (2.2) transforms to 

v = l, ... ,r, (2.3) 

where X(j,O) = (S- 1 ® J)Y,;U-1). If for a given j, the transformed inner iterates X(j,v) converge to a 
vector xu·00 >, then the modified Newton iterate defined by (2.1) can be obtained from Y,;UJ = (S © 
J)XU.oo>. The iterations in (2.3) are diagonal-implicit, so that the LU-decomposition of the matrix 
I - fJ ® h2 J splits into s LU-decompositions of dimension d which can all be computed in parallel. 
Thus, the LU costs associated with (2.3) are a factor s2 less than the LU costs associated with (2.1 ), 
and effectively (on an s-processor system) even a factor s3• 

As to the total computational effort of the modified Newton process (2.1) and the outer-inner 
iteration process { (2.1 ), (2.3)}, we remark that on top of the updates of the Jacobian matrix J 
and the LU-decomposition of the linear system matrices, the modified Newton process requires m 
forward-backward substitutions of dimension sd, whereas the outer-inner iteration process requires 
mrs forward-backward substitutions of dimension d. However, in the case of (2.3), the forward­
backward substitutions can be distributed over s processors. 

We shall call (2.3) a Parallel Iterative Linear System solver for RKN methods (PILSRKN method). 
Given the matrix A, it is completely defined by the matrices fJ and S. 

3. Convergence of the iterative linear solver 

The speed of convergence of the method { (2.1 ), (2.3)} depends on the modified Newton iteration 
process (2.1) and the inner iteration process (2.3). In general, modified Newton converges relatively 
fast, and usually only a few iterations suffice to solve the corrector Eq. ( 1.3 ). The convergence of 
the inner iteration process (2.3) is highly dependent on the matrices fJ and S. This will be the subject 
of the following subsections. 

----- "" ___ ·- - ----- "---"---------,,,---=-=c::==-=== 
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3.1. Convergence region of the inner iteration process 

In order to analyse the region of convergence for the inner iteration process, we consider the error 
recursion 

y:U,v) _ :f:Ul = M( l".:(j,v-1) _ :y:Ul) 
n n n n ' (3.1) 

We have convergence if the powers Mv of the amplification matrix M tend to zero as v -+ oo, 
that is, if the spectral radius p(M) of M is less than I. Consider the vectors a 0 w, where w is an 
eigenvector of J and a is an eigenvector of the matrix 

Z(x) :=x(l-xB-1)(A -B), x :=h22 (3.2) 

with A. in the eigenspectrum u(J) of J (we recall that J is assumed to have a negative spectrum 
of frequencies A., otherwise, the IVP for ( 1.1 ) would be unstable). Evidently, these vectors are 
eigenvectors of M with eigenvalues given by the eigenvalues of Z(h2A.). Suppose that the Jacobian 
matrix J and the matrix Z(h2J..) with 2Ea(J) both have a complete eigensystem. Then, M has sd 
eigenvectors of the form a®w, and hence, all its eigenvalues are given by those of the matrix Z(h2A.) 
with J..Ea(J). This justifies to define I':={x: p(Z(x))<l,x ~ O} as the interval of convergence 
of the inner iteration process. Thus, we have convergence if the eigenvalues of h2J lie in r. If r 
contains the whole nonpositive real axis, then the inner iteration process will be called A0-convergent. 

We shall call Z(x) the amplification matrix at the point x and p(Z(x)) the (asymptotic) amplifica­
tion factor at x. The maximal amplification factor, i.e. the supremum of p(Z(x)) on the nonpositive 
axis, will be denoted by Pmax· Furthermore, we define the (averaged) amplification factor 

p<v> := max{pM(x): x ~ O}, (3.3) 

Note that pM(x) approximates the asymptotic amplification factor p(Z(x)) as v-+ oo. 
Since, it seems not feasible to minimize \\Z(x)\\ over all possible (real, nondefective) matrices B 

with positive eigenvalues, we decided to follow an alternative approach. Obviously, we may write 
B = QfQ-1 where Q is a nonsingular, real matrix and t is a lower triangular matrix with positive 

diagonal entries. By performing the similarity transformation Y,,<J.v> = (Q®l)~J,v>, the process (2.2) 
can be transformed to 

(/ - t ® h2J)CY:j,v) - y~J,v-l)) =-(/-A 0 h2J)y;J,v-l) + (Q-1 @I)C~J-1), 

v=l,2, ... ,r, (3.4) 

where A :=Q-1AQ and Yn(J,Ol = (Q- 1 ® J)Y,,U-ll. The iteration process (3.4) will not be used in 
an actual implementation, but only serves to construct a suitable matrix B. We shall specify special 
families of matrix pairs (f', Q) and perform a minimization process for the asymptotic amplification 
factor Pmax within these families. The derivation of suitable families of matrices B can be based 
on the observation that strong damping of the stiff error components usually ensures a fast overall 
convergence (for a detailed discussion of this aspect, we refer to [6]). Here, stiff error components 
are understood to be components corresponding to eigenvectors of J with eigenvalues .A of large 
magnitude. This leads us to require the matrix f to be such that p(Z(x)) is small at infinity. The 
next result is similar to a result derived in [7] and covers this situation: 
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Theorem 3.1. Let Q be an arbitrary, nonsingular matrix and Jet A:== Q- 1AQ have the Crout 
decomposition A =LU, where L and U are, respectively, lower triangular and unit upper triangular. 
Then, the asymptotic amplification factor vanishes at infinity if f = L. 

Proof. It follows from the representation for A that 

By setting f = L, we achieve that Q-1 Z( oo )Q = I - U which is strictly upper triangular so that 
p(Q-1Z(oo)Q) = p(Z(oo)) = 0. 0 

Theorem 3.1 defines a family of PILSRKN methods satisfying p(Z(oo)) = p(J - s-1A) = 0. In 
the construction of families of suitable transformation matrices Q, our guide line will be to increase 
the lower-triangular dominance of the matrix A:= Q- 1AQ. In the following subsections we discuss 
three options. The matrix B and the corresponding vector of amplification factors p = (pM) resulting 
from these options (with respect to the Euclidean norm) will be explicitly computed for the R.KN 
corrector generated by the four-stage Radau IIA method. Details for RKN correctors generated by 
other RK methods will be given in [10]. 

3.2. Diagonal transformation matrices 

The most simple family of transformation matrices is formed by the nonsingular, diagonal matrices 
Q=D leading to A:=D- 1AD and T:=D- 1BD. At first sight, it seems that the effectiveness of the 
matrix B is increased by choosing D such that the upper triangular part of A has entries of small 
magnitude. However, that need not to be the case. For example, if we choose f according to 
Theorem 3.1, then B =DLD- 1, where L satisfies LU =D- 1AD with U unit upper triangular. Hence, 
we have the relation DLD- 1DUD- 1 =A. Since DUD-1 is again unit upper triangular, DLD-1 turns 
out to be the lower triangular Crout factor of A. Thus, B does not depend on D, so that we may 
equally well set D =I. Similarly, if we identify f with the lower triangular part of A, we obtain a 
matrix B that does not depend on D. 

Calculations for a number of Gauss-Legendre and Radau IIA correctors with Q=I and f defined 
according to Theorem 3.1 will be reported in [10]. These calculations show that f does have 
positive diagonal entries and generates A0-convergent PILSRKN methods. For the four-stage Radau 
IIA corrector we found 

( 
0.00672834 0 0 0 ) 

- 0.06814566 0.08355843 0 0 
B = T = 0.15530325 0.28718085 0.11595801 0 . 

0.20093191 0.41620407 0.24088357 0.02173913 

(3.5) 

We remark that there is no need to implement the linear solver with a high precision matrix B, 
because the amplification factors will not change much. In the case (3.5) the amplification vector is 
given by 

p = (1.62, 1.07,0.75,0.71, ... '0.63). (3.6) 
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Thus, convergence starts in the third iteration. However, we should bear in mind that the amplifica­
tions factors pM are "worst case" values, so that in many problems, convergence may start already 
in the second or first iteration. 

3.3. Transformation to block-triangular form 

In [8] where the RK case has been investigated, the matrix Q was chosen such that A= Q- 1AQ 
becomes a (real) a-by-0' lower block-triangular matrix 1 = (A1:1 ), of which the diagonal blocks Akk 
are either 1 x 1 or 2 x 2 matrices. In some sense, this is the "best" we can achieve in the lower­
triangularization of A . At the same time, this class of transformation matrices allows us to minimize 
the asymptotic amplification factor Pmax by analytical means and to prove A0-convergence. Following 
[8], we set Akk = ek if 'k a real eigenvalue of A, and we set 

lkk = ( :: 2ek b~ ak ) ' 
(3.7) 

if ek ± irtk is a complex eigenvalue pair of A. Here, ak and ck are free parameters. Let K denote the 
set of integers with the property that 11k =f.:. 0 whenever k EK. Then, a natural choice for T now is 

fu 0 0 0 

A21 f22 0 0 ( •. :.) t·- fkk := if kEK, tkk =~k if k </.K, (3.8) .-
A31 A32 f33 0 Vk 

where uk, vk and wk are free parameters with uk and Wk assumed to be positive. 

3.3.1. Ao convergent methods 
In this subsection, we try to construct matrices f' such that the generated PILSRK.N method is 

A0-convergent. Note that the A0-convergence does not depend on Q. Recalling that we want strong 
damping of the stiff error components, we may resort to Theorem 3.1 and choose t such that it 
becomes the lower triangular Crout factor of A. However, we can proceed slightly more generally 
by deriving the complete set of matrices f leading to a vanishing asymptotic amplification factor 
p(Z( oo) ). Within this set we shall look for the matrix t yielding a minimal asymptotic amplification 
factor Pmax. 

Theorem 3.2. Let A have its eigenvalues in the positive halfplane, let Q satisfy 1 = Q-1AQ where 
the diagonal blocks of A are defined by (3.7) and let f be de.fined by (3.8) with 

aka.k + fta.k(2~k - ak) - 2ykoci (t.k 
uk=YklXk, vk= -ck 2 2 , wk=-, kEK, (3.9) 

Yk(ak - 2ekak + ak) YJ: 

where YJ:>O. Then, for all ak and Ct. the following assertions hold for the PILSRKN method: 
(i) p(Z(oo))=O. 

(ii) The eigenvalues of B are positive. 
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(iii) It is Ao-convergent with Pmax. = max {I 1 - 2yk( Yk + 1 )-2( ctk + ~k )a,;- 1 J: k EK}. 
(iv) If A is block-diagonal, then pM(x) = O(x< 1-v>I•> as x-+ oo. 

Proof. If f is of the form (3.8), then the value of p(Z(x)) equals the maximum of the spectral 
radius p(Zkk(x)) of the diagonal blocks zkk :=x(1-xf"*)-1(lkk -Akk) of Z=x(J-xf)- 1(1 - f), 
where .ikk is assumed to vanish if the underlying eigenvalue of A is real (k r/: K). Hence, in order to 
have p(Z( oo)) = 0, we choose the f /de with k EK such that the spectral radius of the corresponding 
diagonal blocks Zkk(x) vanishes at x = oo. 

We derive from (3.7) and (3.8) that the eigenvalues (k of ikk satisfy the characteristic equation 

(
(ak - uk)x - (k(l -xuk) bkx ) 

~ =Q 
(ck - vk)x + (kvkx (2~k - ak - wk)x - (k(l - xwk) 

It is easily verified that we always have one zero root if 

vk =h"k1(uk - ak)(2~k - ak -wk) +ck. 

(3.10) 

On substitution of bk as defined in (3.7) we obtain the expression given in (3.9). Furthermore, the 
second root reads 

r ( ) _ 2~k - uk - wk + x( Uk wk - rxD 
<,k x -x 

( 1 - xuk )(1 - xwk) ' 

which vanishes at infinity if (3.9) is satisfied. This proves assertion (i). 

(3.11) 

Since uk and w* are positive for Yk >0, the matrix f has positive eigenvalues, proving assertion (ii). 
The root (k(x) assumes a maximal value at x = - ( uk wk )- 112 = - a/; 1 which is given by 

Pk := l _ 2yk(ak + ~k). 
ixk(rk + 1 )2 

It is easily verified that Pk always satisfies - l <Pk < 1, so that assertion (iii) follows. 
In order to prove assertion (iv), we first show that integer powers of Z ( oo) greater than 1 vanish. 

By observing that zv = Qzv Q- 1, we have to show that all positive integer powers of Z( oo) greater 
than 1 vanish. Evidently, if f is block-diagonal, then Z(z) is block-diagonal. Hence, Z( oo) is block­
diagonal with diagonal blocks Zkk( oo ). By virtue of assertion (i), these blocks have a zero spectral 
radius, and consequently, (Zkk( oo) Y vanishes for v ~ 2 (this can easily be verified by considering 
their Schur decompositions). This implies that zv(oo) itself, and hence z•(oo), vanishes for v ~ 2. 
It can be verified that 

00 

zv(x) = l:(Z(oo)flilO(xI-i), (3 .12) 
i=I 

where for any real r, [r] denotes the first integer greater than or equal to r. Hence, zv(x) = O(x1-v) 
as x-> oo. Substituting into (3.3) yields the fourth assertion of the theorem. D 

From this theorem it follows that Pmax is minimized if all /'k equal 1. However, if Yk = 1, then 
uk = wb so that f, and hence B, is defective. This means that we cannot diagonalize the iteration 
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process (2.2) into the form (2.3 ). Therefore, we shall choose Yk close to but distinct from I. For 
example, if all Yk equal ~. then u* and wk are well separated and 

{I 112 -11 } Prnax = max 1 - 225 ( cxk + ek )cxk : k EK , 

whereas the minimal value is given by Pmax = max { 11 - tc C(k + ek )ex; 11: k EK}. 

3.3.2. Choice of the free parameters 
As already remarked, the strictly lower triangular blocks of f, and the parameters ak and ck 

are still free. We shall choose these strictly lower triangular blocks zero, so that according to 
Theorem 3.2, pM(x) vanishes at infinity for v ~ 2. The free parameters ak and ck can be used for 
reducing the magnitude of p< 1> = max{l!Z(x)ll: x ~ O}. One option is to minimize llZ(x)!I in the 
inequality llZ(x)ll ~ K(Q)jjZ(x)ll, K(Q) being the condition number of Q. This can be achieved by 
minimizing the values of llZkk(x)IJ. The representation 

- x Zkk(x)=-----­
(1 - ukx)(I -wkx) 

( 
(ak - uk)(l - wkx) bk(l - wkx) ) 

x (ak - uk)vkx +(ck - vk)(l - ukx) bkvkx + (2~k -ak - wk)(l - ukx) ' 

suggests choosing ak = Ut. to obtain 

ak = YkCXt. vk = Ct. wk = rx*/y*' 

and 

- ( 0 ek ) 2ek - a1c - W1c 81c(x) := - Cai - 2c;kak + ixi)x zkk = 0 ck ' ,,t(x) =x(l )(1 )' l 'k - xak - XWk - a1cx 

(3.13) 

with ck still a free parameter. Since '1c(x) is a function with fixed coefficients, the maximum norm 
of Zick is minimized if 

I I max{l8k(x)I: x ~ O} 
Ck ~ } • max{l,k(x)I: x ~ 0 

From (3.13) and (3.14) we obtain the method 

f 11 

0 
t·-.-

0 

0 0 0 

f22 0 0 

0 f 33 0 

! ) if k EK, t kk = ~k otherwise, 

/'k 

(3.14) 

(3.15) 
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where 

3.3.3. Construction of Q 
For the methods generated by (3.15), there is still some freedom in choosing f and Q. For each 

ck, the matrix A is fixed and defines a family of transformation matrices Q satisfying the relation 
QA =AQ. This family can be generated by a procedure described in [8]. Within this family, we 
have determined the matrix for which p< 11 is numerically minimized. In the case of the four-stage 
Radau IIA corrector we fowid for '/k = ~ the following numerically optimal method parameters: 

0.03448384 0 0 0 

f = 
-0.15834419 0.04504012 0 0 

0 0 0.026431456 0 

0 0 -0.12136894 0.03452272 

0.38205380 0.01709570 -0.32651514 -0.13054141 

0.26713523 -0.07242663 0.59303366 0.33355256 
Q= 0.82772826 -0.52316543 0.87439479 -0.22432712 ' 

(3.16) 

-1.40177558 -1.54184094 -2.48244565 -1.62324383 

0.00069709 -0.02327295 0.01324386 -0.00389225 

0.09133373 0.09490827 -0.03178816 0.00945629 
B= 

0.11486891 0.03494592 0.06066531 -0.00566972 

0.09129004 -0.07918010 0.19322700 -0.01579253 

with amplification factors 

p = (7.93, 1.30, 1.06, 0.95, ... '0.69). 

Notice that the p(•l values for the PILSRKN method (3.5) are much better. On the other hand, for 
(3.16), the accumulated amplification matrix z•(x) vanishes at infinity if v ~ 2, so that the stiff error 
components are more or less removed from the iteration error within two iterations, whereas it talces 
four iterations in the case of (3.5). 

3. 4. Orthogonal transformations 

In order to have fast convergence right from the beginning, we should have small initial averaged 
amplification factors pM. To achieve this it is not sufficient to have a small asymptotic amplification 
factor Prrw<, but the condition number of the transformation matrix should also be sufficiently small. 
The most ideal case is to look for orthogonal transformation matrices Q. One obvious option for 
choosing a family of orthogonal matrices Q are the permutation matrices. By means of a suitable 
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permutation, we may try to move the entries of large magnitude in the lower left comer of the 
transformed matrix. However, in the RKN correctors we have in mind (i.e. the classical Gauss­
Legendre and Radau IIA correctors), the matrix A already has its larger entries in the lower left 
comer. An alternative family of orthogonal transformation matrices consists of rotation matrices: 

Q = diag(Qkk ), Qkk := ( c~s( cPk) - sin( 1>k)) if k E K, Qkk = 1 if b/;. K, 
sm( 1>k) cos( 1>k) 

(3.17) 

where the <f>k are free parameters. Such transformation matrices yield only a minor rearrangement 
of the magnitudes of the matrix entries. Given the matrix A and the parameters cPh we apply Theo­
rem 3 .l by computing the Crout decomposition LU for the transformed RKN matrices X: = Q-1 A Q, 
to obtain T=L and B = QLQ- 1• Then, by evaluating the corresponding maximal amplification factor 
Pmax and by minimizing Pmax over the parameters </>k. we find the matrices Q which are optimal in 
the class (3.17). This procedure was carried out for the 4-stage Radau IIA corrector: 

( 0.04467745 0 0 0 

t = 0.04236621 0.01258375 0 
0 ) 0.17376891 0.10910205 0.09118815 0 ' 

0.32687760 0.24513629 0.26054917 0.02764423 

( 0.68929086 -0.72448472 0 

0.115~768!} 0.72448472 0.68929086 0 
Q= 

0 0.99328690 
(3.18) 

0 

0 0 -0.11567681 0.99328690 

(0.00667530 -0.00621012 0 

-001~78765} 0.03615609 0.05058590 0 
B= 

0.04598076 0.24668626 0.12027503 

0.04268388 0.37980180 0.24976152 -0.00144265 

with amplification factors 

p = (0.79, 0.75, 0.68, 0.65, ... ' 0.61 ). 

With respect to its pM values, the PILSRKN method defined by (3.18) is superior to (3.5) and to 
(3.16) as well. 

4. Stability 

In practice, the PILSRKN method will not be applied until convergence, so that the Newton 
iterates are not exactly computed. As a consequence, we do not get the corrector stability, that is, 
if A originates from a Gauss-Legendre method or Radau IIA method for first order IVPs, then we 
do not automatically get an A-stable or L-stable method for the second-order IVP ( 1.1 ). In order to 
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derive the stability matrix we assume that each outer iteration consists of r inner iterations and that 
the predictor formula is of the type 

yrO,r) = (P '°' I)Y(m,r) 
n ~ n-1 ' (4.1) 

where P is an s x s matrix. If P is such that Y,,(O,r) has maximal order q = s - 1, then it will be 
called the extrapolation (EPL) predictor, and if P = eeJ' (with e5 denoting the sth unit vector), then 
it will be called the last step value (LSV) predictor. Let us define 

G(LI) := F( Y,; +LI) - F(Y,;) - (I 0 J)LI, N :=(I -A 0 h2 J)- 1 (A 0 J). (4.2) 

Setting Y,;U,Ol := v,.u-1,ri, we find by a simple manipulation that 

Y,;(J,r) - Y,; =Mr( Y,;u-1,r) - Y,;) + h2(! - M' )NG( Y,,u-1,r> - Y,; ), j = 1, .. ., m, 

where M is defined in (3.1 ). For the stability test equation y" = A.y, we obtain 

G(Y,;(}-l,r) _ Y,;)=0, Y,; =(I-xA)- 1(Yn-I +hcy;_ 1 ), x:=h2A. 

so that 

Y,;<m,rl =(I - zmr)(I - xA )- 1(eYn-i + chy~_ 1 ) + zmr PY,,<::(>_ 

Similarly, the step point formulas ( 1.4) take the form 

Yn - bTA- 1 Y,,(m,r) = Yn-1 + hy~-1 - bTA- 1eYn-I - br A- 1 chy~-1• 

hy~ - dTA-l Y,,(m,r) = hy~-1 - dTA-leYn··I - dr A-lchy~-1' 

to obtain the stability matrix 

o 0)- 1 

I 0 

0 1 

(
zm'(x)P (I - zm'(x))(l - xA)- 1e 

x OT I - bTA- 1e 

OT -dTA- 1e 

(I - zm'(x))(I - xA)- 1c) 
1 - bTA- 1c 

1 - dTA- 1c 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(we remark that for Radau IIA correctors, we have bTA- 1 = eJ'). For the PC pairs (LSV, 4-stage 
Radau HA) and (EPL, 4-stage Radau IIA), we found the stable mr-values as listed in Table I. These 
figures clearly indicate that the LSV predictor yields a more stable overall process than the EPL 
predictor, particularly in the case of the Crout type and orthogonal Q type PILSRKN methods (3.5) 
and (3.18). 

Table 1 
Stable mr-values for 4-stage Radau IIA 

Predictor (3 .5) 

LSV 4 
EPL 9 

(3.16) 

7 
8 

(3.18) 

3 
8 
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5. Numerical illustration 

In this section, we illustrate the convergence behaviour when using the PILSRKN matrices (3.5), 
(3.16) and (3.18) for solving the Newton systems (2.1). In our experiments, we use the LSV 
predictor, the 4-stage Radau IIA corrector, the Shampine step point formulas ( 1.4 ), and constant 
stepsizes. In order to avoid round-off for small values of h in the iteration scheme and in the output 
formulas ( 1.4 ), we define the new variables 

Zn :=hy~, 

zU.v) := (S-1 ® /)( Y,,(J,v) - e ® Yn-l - c ® Zn-l) = x<J,v) - (S-1 ® I)(e ® Yn-l + c ® Zn-i), 

where S is the diagonalizing matrix used in (2.3 ). Then, the method { ( 1.4 ), (2.1 ), (2.3)} can be 
implemented according to 

z<O,r) = -(S-l ®J)(C®Zn-1), 

for j = l tom 
G~J-l) := h2(S- 1A ® J)F((S ® J)zu-l,rl + e ® Yn-t + c ® Zn-1) - (S- 1AS ® h2J)zu-t.rJ 

for v =I to r 
zU.Ol = zU-1,r) 

solve (I - B ® h2J)(Z(j,v) - zu.v-l)) =-(I - s-1As ® h2J)Z(j,v-l) + G~j-l) 
Yn = Yn-I + Zn-I + (hTA- 1S ® J)Z(m,r) 

Zn = Zn-1 + (dTA- 1S ® J)z<m,r)_ 

5.1. Iteration strategy 

Our first concern is to get insight how the performance of the iteration process depends on the 
number of inner and outer iterations r and m. We illustrate this by means of the nonlinear orbit 
equation of Fehlberg (cf. [2]): 

y"(t)=Jy(t), J·- (-4t
2 -,~,)) r(t):=lly(t)llz; r;j2 ~ t ~ 1211:, (5.1) 

.- 2 -4t2 ' v IL/.t-

r(I) 

with exact solution y(t) = (cos(t2),sin(t2 )?. We performed the iteration strategy test for the or­
thogonal Q type PILSRKN method generated by (3.18), because this method yields the most stable 
integration process. The Tables 2(a)-(d) present the minimal number of significant digits LI of the 
components of y at the end point of the integration interval, that is, at the end point, the absolute 
errors are written as 10-J (negative L1-values are indicated with * ). Our first conclusion from these 
tables is that for solving the corrector equation, we need at least two outer iterations (i.e. m ~ 2). As 
soon as we impose this condition, there is hardly no difference between the accuracies obtained for 
constant values of mr. Because for given LU-decompositions of the diagonal blocks of the matrix 
1 - fJ ® h2J, the value of mr may be considered as a measure of the computational costs per step, 
our second conclusion is that we may perform a constant number of inner iterations. 
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Table 2(a) 
Fehlherg problem, h = 0.0228 

m r=l r=2 r=3 r=4 r=S r=6 

* * * 0.4 1.9 1.l 
2 * 0.3 1.6 2.0 2.1 2.l 
3 * 1.6 2.1 2.1 
4 0.3 2.0 2.l 
5 1.0 2.1 
6 1.6 2.1 

Table 2(b) 
Fehlberg problem, h = 0.0114 

m r=I r=2 r=3 r=4 r=S r=6 

1 * * 1.2 2.2 2.0 2.0 
2 * 2.4 4.l 4.2 4.2 4.2 
3 I.I 4.1 4.2 
4 2.4 4.2 
5 3.6 4.2 
6 4.1 4.2 

Table 2(c) 
Fehlberg problem, h = 0.0057 

m r= 1 r=2 r=3 r=4 r=5 r=6 

1 * LO 3.9 2.9 2.8 2.8 
2 1.0 4.7 6.4 6.3 6.3 6.3 
3 2.8 6.3 6.3 
4 4.7 6.3 
5 6.2 6.3 
6 6.3 

Table 2(d) 
Fehlberg problem, h = 0.00285 

m r=l r=2 r=3 r=4 r=5 r=6 

1 * 2.1 3.8 3.7 3.7 3.7 
2 2.1 7.1 8.4 8.4 8.4 8.4 
3 4.6 8.4 
4 7.0 8.4 
5 8.4 
6 8.4 
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5.2. Comparison of PILSRKN methods 

In this section we compare the performance of the PILSRKN methods (3.5), (3.16) and (3.18). 
These comparisons were carried out for the Fehlberg problem (5.1 ), the Kramarz problem [9] 

11 ( 2498 4998 ) 
y (t) = -2499 -4999 y(t), y(O) = (-~)' y'(O)=(~). O~t~IOO, (5.2) 

with exact solutiony(t)=(2cos(t),-cos(t))f, the Strehmel-Weiner problem [13] 

y;'(t) = (y1(t) - y2(t))3 + 6368y1(t) - 6384y2(t) + 42cos(l0t), 

y~(t) = -(y1(t) - Y2(t))3 + 12768y1(t) - 12784y2(t) + 42 cos(IOt), 

y(O) = ! ( ! ) , y'(O) = ( ~) , 0 ~ t ~ 10, 

(5.3) 

with exact solution y 1(t) = y2(t) = cos(4t)- !cos(lOt), and the Pleiades problem PLEI given in 
[ 4, p. 23 7]. The PLEI problem consists of 14 nonlinear orbit equations on the interval [O, 3]. 

We used one inner iteration (r = l) and, in order to enable a mutual comparison, we chose the 
number of outer iterations one less than needed to really solve the corrector Eq. ( 1.3 ). 

The results listed in the Tables 3-6 indicate that the method {(2.1), (3.16)} produces the highest 
accuracies if it converges. However, it is less robust than the methods { (2.1 ), (3.5)} and { (2. l ), 
(3.18)} due to the development of instabilities (see also Table 1). Since {(2.1), (3.18)} is in almost 
all cases (slightly) more accurate than {(2.1), (3.5)}, our conclusion is that {(2.1), (3.18)} is the 
most attractive one of the three methods constructed in this paper. 

Finally, we compare the efficiency of the methods of this paper with the diagonally implicit RKN 
method based on the 4-stage Radau IIA formula as developed in [ 11]. This method requires 5 
sequential, singly diagonal-implicit stages per step. Effectively (on 4 processors), this is comparable 

Table 3 
Fehlberg problem, m = 5, r = I 

h 

0.0228 
0.0114 
0.0057 
0.00285 

Table 4 

{(2.1),(3.5)} 

0.7 
3.3 
6.0 
8.3 

{(2.1),(3.16)} 

2.5 
4.2 
6.3 
8.4 

Kramarz problem, m = 4, r = 1 

h {(2.1),(3.5)} {(2.1),(3.16)} 

0.8 2.5 4.1 
0.4 4.9 6.9 
0.2 7.3 * 
0.1 9.7 * 

{(2.1 ), (3.18)} 

1.0 
3.6 
6.2 
8.4 

{(2.1), (3.18)} 

2.8 
5.2 
7.6 

10.0 
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Table 5 
Strehmel-Weiner problem, m = 5, r =I 

h {(2.1),(3.5)} {(2.1),(3.16)} {(2.1),(3.18)} 

0.5 1.1 2.1 1.4 
0.25 3.4 5.1 3.8 
0.125 6.2 7.4 6.6 
0.0625 9.1 9.9 9.4 
0.03125 11.5 11.5 11.5 

Table 6 
PLEI problem from [4], m = 4, r = l 

h {(2.1 ),(3.5)} { (2.1 ), (3.16)} {(2.1),(3.18)} 

0.002 0.4 2.0 0.9 
0.001 3.4 4.3 3.7 
0.0005 5.9 6.2 6.0 
0.00025 8.2 8.3 8.3 
0.000125 10.4 10.3 10.3 

with the computational needed in our methods when applied with mr = 5. For the Kramarz problem, 
[11, Table 6] reports for stepsizes h=0.2 and h=0.1 accuracies of 5.4 and 8.1 significant digits. From 
Table 4 it follows that {(2.1), (3.5)} and {(2.1), (3.18)} produce considerable higher accuracies for 
less computational effort (mr = 4, same stepsizes). Similarly, for the Strehmel-Weiner problem, [11, 
Table 10] reports for stepsizes h = 0.05 and h = 0.025 accuracies of 6.4 and 9.0 significant digits, 
whereas Table 5 again shows considerable higher accuracies for less computational effort (mr = 5, 
larger stepsizes ). 
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